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2. ABSTRACT 
With the emergence of multi-standard and cognitive radios, the need for reconfigurable RF 

circuits increased. Such circuits require wide-band quadrature voltage controlled oscillators 

(QVCOs) to provide the local oscillator (LO) signal for up and down conversion. Wide-band 

QVCOs performance has lagged behind their narrowband VCO counterparts and numerous 

circuit techniques have been introduced to bridge the gap.  

This dissertation presents techniques that have been used to implement wide-band reconfigurable 

QVCOs with focus on dual-resonance based circuits. System and circuit analysis are performed 

to understand the tuning-range, phase noise, and power tradeoffs and to consider quadrature 

phase errors. An 8.8-15.0 GHz actively coupled QVCO and a 13.8-20GHz passively coupled 

QVCO are presented. Both oscillators employ dual-resonance to achieve extended tuning ranges. 

Impulse sensitivity functions were used to study the impact of different passive and active device 

noises on the overall phase noise performance of the dual-resonance oscillator and the actively 

and passively coupled quadrature oscillators.  The quadrature phase error due to the different 

architecture parameters were investigated for the actively and passively coupled quadrature 

oscillators.   

The advantages of using switched capacitor tuning as a major part of passive tuning are 

identified, and the advantage of employing switches with large bandwidths, such as those 

associated with phase change materials, is mathematically quantified. 

Furthermore, a novel method for accurate off chip phase error measurement using discrete 

components and phase shifters that does not require calibration is introduced. 
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Chapter 1 
1. INTRODUCTION  

1.1. Background 

Reconfigurable RF circuits are important for implementing multi-standard radios and cognitive 

radios. Multi-standard radios allow for higher integration in end-user products such as cell 

phones and tablets. Higher integration can save power, area and cost, while cognitive radio 

enables a more efficient use of the spectrum.  

High-quality, wide-tuning quadrature voltage controlled oscillators (QVCOs) are necessary to 

provide the local oscillator (LO) signal for up and down conversion in multi-standard and 

cognitive radios.  

LC-tank voltage controlled oscillators have become one of the most popular oscillators for signal 

generation in CMOS integrated RF transceivers. This is attributed to their simple design, start-up 

conditions and competitive phase noise performance. It has been shown that they outperform 

differential Colpitts in phase noise performance for a given power consumption and swing specs 

[1]. However, LC-tank oscillators suffer more significantly from the impact of parasitic 

capacitances that limit their tuning range and dominate at high frequencies.  

Quadrature signal generation has become an integral part of modern transceivers. Quadrature 

down conversion is necessary in direct conversion receivers, and for image rejection in full 

integrated heterodyne receivers. This has driven significant innovation in quadrature generation 

circuits.  

Quadrature techniques, ranging from passive hybrid couplers and poly-phase filters to active 

master-slave flip-flop divide-by-2 circuits, have been used to obtain quadrature.  Quadrature 

couplers suffer from their relatively large size factor, which scales down with frequency. 
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Quadrature poly-phase filters suffer from delay mismatches and narrow frequency selectivity, 

which can be tuned and calibrated with additional overhead. On the other hand, quadrature 

dividers provide accurate wideband I/Q generation, with a small size factor. However, they 

consume more power than the aforementioned techniques because they require an oscillator 

operating at twice the desired frequency, and an active divider.  

Alternatively, active quadrature VCO oscillators have been widely used to produce quadrature 

by coupling two voltage controlled oscillators using a quadrature loop. However, these 

architectures suffer from increased phase noises due to:  

1) Frequency shift away from resonance, increasing the losses of the tank[2] 

2) AM to PM noise modulation due to quadrature [3] 

3) Additional noise induced by the active transistors used to obtain quadrature 

Three such architecture were compared in [4], which are presented in Figure 1.1 (b). The 

architectures trade off coupling strength for improved phase noise. The paper shows an 

advantage to using architectures (1) and (2) due to current sharing between the oscillation and 

quadrature transistors which leads to reduced noise contribution from the additional transistors. 

O O

 

 

Q Q

I I QQ

I I

1

3

2

 
(a)  (b) 

Figure 1.1: (a) Conventional basic LC-tank VCO and modified in (b) to implement quadrature in 3 different actively 
coupled architectures.     
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However, at higher frequencies, parasitic nodes can present significantly low impedances 

creating parallel noise paths and rendering these architectures less beneficial.   

To alleviate limited tuning range and active quadrature disadvantages, passive circuit techniques 

have been deployed: dual/multi-resonance mode resonators and passive quadrature coupling 

respectively. Over the last 10 years these techniques have evolved separately and more recently a 

number of works have deployed both techniques to achieve widest tuning range possible for 

quadrature oscillators.   

Dual-resonance is the technique by which a coupled resonator is used as the passive load of a 

VCO. In LC-tank VCOs, frequency tuning is commonly achieved by tuning the capacitive 

component of the tank. The range of capacitive tuning is limited by technology, parasitics, and 

the required quality factor. Dual-resonance increases the tuning range by using the same 

capacitive tuning to tune the resonator at two different resonance modes, corresponding to two 

different frequency ranges. An extended tuning range is achieved by selecting two overlapping 

frequencies ranges. Since coupled resonators are often based on a coupled inductor, it’s possible 

to implement such structures with little area overhead, but with added complexity.   

One of the earlier works to apply dual-resonance to VCOs is presented in [5]. Two principle 

circuit topologies were discussed: one and two port oscillation. While one port oscillation 

requires resonator’s asymmetry to do mode switching, the two port structure uses active 

feedback to pick the resonance mode for symmetric and asymmetric resonators. A later work that 

used these principles in a quadrature VCO was presented in [6]. This work used asymmetry in 

the coupled resonator’s tuning in order to implement mode switching. It also used active parallel 

quadrature coupling in order to implement quadrature. A further expansion on the original work 

was presented in[7], in which additional control was added by tuning the capacitive coupling 
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between the two resonators in an attempt to equate the impedance magnitudes of the passive 

network in both operating modes.  

Passive quadrature coupling is a technique to obtain quadrature without the use of active devices. 

It’s based on building VCOs around passive resonance architectures that inherently provides 90o 

phase shift.  

One of the earliest passive quadrature coupling works was presented in [8] in which two VCOs 

were coupled using two transformers.  Other passive quadrature coupling structures have relied 

on capacitive coupling. In [9], capacitive coupling of the second harmonics of the outputs of two 

VCOs is used to generate quadrature. This theory was further investigated in [10], in which a 

study of phase error vs. nonlinearity was performed and better quadrature phase accuracy was 

obtained using bi-directional nonlinear switches in series with the capacitive coupling.  

Passive quadrature coupling can also be implemented by designing the passive network to 

provide quadrature. This can be thought of as a tunable poly-phase oscillator. An early example 

of this was presented in [11]. This work can be considered an extension on the design in [8] with 

explicit analysis of phase noise, noise figure and phase error for a transformer coupled 

quadrature oscillator. Similar to [8], it presents no multi-mode resonance tuning.  

More recently, similar passive structures have been extended to also support dual-resonance 

mode. In [12], such a structure was implemented using four capacitive coupled LC resonator 

tanks. In [13] and [14], the four separate resonators were replaced with two coupled resonators 

and they again employed capacitive coupling in the quadrature loop. While these works provided 

performances comparable to that of stand-alone VCOs, with enhanced tuning ranges, they 

employed relatively complex active device structures to control mode selection, and they focused 



5 
 

mainly on low frequencies at which the inductances dominate the quality factors of the resonance 

tanks. 

1.2. Thesis Contribution and Organization 

 This work extends the state-of-the-art by demonstrating two quadrature oscillators: a) an active-

quadrature, dual-resonance, symmetric-resonator oscillator with a less complex mode selection 

technique compared to [13] and [14] and b) a passively coupled quadrature, dual-resonance 

oscillator that employs four coupled resonators.  

Both architectures make use of the same elementary passive devices. They combine several 

tuning methods including dual-resonance and switched capacitive tuning in order to minimize 

phase-noise while achieving wideband tuning. Theoretical analyses and simulations indicate 

significantly lower phase noise of the passively coupled QVCO at higher frequencies compared 

to the actively coupled QVCO. This thesis aims to provide design insights into these 

architectures, and validates these insights through the design and measurement of circuit 

prototypes in 65 nm CMOS. The specific contributions of this thesis are: 

A. Circuit Contributions: 

1) Proposing two novel wide-tuning quadrature voltage controlled oscillator architectures 

that use coupled resonators capable of dual-resonance operation to maximize the tuning 

range, and tuning them using simple and robust frequency selection techniques. The 

topologies use active transistors and passive coupled inductors to achieve quadrature.    

2) The fabrication and characterization of the aforementioned circuits and the comparison of 

their performance to the state-of-art presented in the literature. 
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3) The novel use of phase change switches as an alternative to CMOS switches in switch 

capacitor tanks, leading to an improved capacitor bank quality factor for a given tuning 

range.  

B. Analytical and Theoretical Contributions:  

1) Providing an in depth analysis of the dual-resonance small signal modeling. This is 

achieved by using equivalent representations of coupled resonators that allow for 

reducing the complex circuits into the more familiar second order circuits, which allows 

for deriving all the derivation of familiar second-order circuit attributes such as quality 

factor of a coupled resonator and startup conditions and simple phase noise analysis.  

2) Understating the dual-resonance large signal linear time variant (LTV) behavior  using 

impulse sensitivity function to study the impact of different passive and active device 

noises on the overall phase noise performance and using that in combination with the 

(LTV) phase noise model to derive overall phase noise of the dual-resonance oscillator.     

3) Extending the previous analysis the two proposed quadrature architectures and using that 

to compare and contrast the advantages of the two, showing the superior phase noise 

performance of the passive structure.  

4) Analyzing the quadrature phase error due to the different architecture parameters.  

5) Quantifying the possible improvement in capacitor bank’s quality factor with the use of 

phase change switches in place of CMOS switches, and highlighting the importance of 

pursuing phase change switch integration into a CMOS process.  

C. Measurement Methods Contributions: 

1) Describing a novel method for accurate off chip phase error measurement using discrete 

components and phase shifters, which requires no calibration and can readily provide 
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phase error results with no processing using developed phase error measurement 

accuracy plots.  

 

The thesis is organized in 5 chapters. In addition to the introduction the thesis is broken up into 

the following chapters:   

• Chapter 2 provides background material into the operation of wide tuning QVCOs. It 

analyzes a basic LC-oscillator, presenting the concepts of oscillation, startup, phase noise 

and its different models and quadrature. Each subject is explored with a number of 

examples as a basis for further investigation of the two advanced QVCO architectures. 

• Chapter 3 describes the two proposed QVCO architectures, namely the active and 

passive coupled dual-resonance quadrature VCOs. This chapter extends the analysis 

presented in the Chapter 1 to the dual-resonance oscillator and the two QVCO 

architectures providing a complete analysis including equivalent tank quality factors, 

startup conditions, phase noise and phase noise contributors as described by impulse 

sensitivity functions (ISFs). Additionally, the chapter presents the analysis of the phase 

error of the passive and active QVCOs as a function of multiple circuit non-idealities. 

• Chapter 4 focuses on the optimization of the design of passive resonators and the 

advantages of using Phase Change switching as part of this design. It studies the trade-

off between quality factor and tuning range for a number of passive tuning components. 

The chapter identifies the advantages of using switched capacitor tuning as a major part 

of passive tuning, and expresses the quality factor of such arrangement in terms of the 

bandwidth of the used switch. This quantifies the advantage of using switches with large 

bandwidths, such as those associated with phase change material switches.  
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• Chapter 5 presents the fabricated devices and their measurement results. It describes the 

methods used for obtaining the performance metrics, namely phase noise, tuning range, 

power consumption and quadrature phase error and presents the measurement results for 

each. A comparison with state-of-art circuits is presented based on the aforementioned 

performance metrics and the figure of merits (FOMs) derived based on them.   
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Chapter 2 
2. WIDE-BAND TUNING QVCOS BACKGROUND 

2.1. Introduction 

This chapter introduces the fundamental concepts needed to study a quadrature voltage 

controlled oscillator. The chapter introduces the concept of oscillation and its numerous 

mathematical representations, in both nonlinear and linearized forms, based on an LC-tank 

oscillator. The chapter used the LC-tank oscillator to demonstrate the concepts of (1) start-up, (2) 

phase noise and (3) quadrature. It also briefly discusses non-conventional methods that were 

used in the literature to expand the tuning range of VCOs, namely multi-mode resonance and 

capacitive degeneration.  

In examining the start-up condition, three methods are considered:  Barkhausen’s criterion, root 

locus method, and Nyquist stability criterion. The methods are described as three ways to 

determine the conditions required to obtain and maintain an oscillation. These concepts are 

applied to the LC-tank oscillator. 

In examining phase noise, the general concept of phase noise is introduced and defined, and the 

motivation for quantifying phase noise is expressed. The linear time variant method of studying 

phase noise is explained and the corresponding concept of impulse sensitivity function as a 

method of understanding the different contributors to phase noise is applied to the LC-tank 

oscillator.  

2.2. Voltage Controlled Oscillator (VCO) Basics 

Oscillation is the process in which a conserved amount of energy is transformed indefinitely 

from one form to another at a fixed rate. Oscillation can be observed in many types of systems. 
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In electric circuits, oscillation can be realized by an LC resonator, which transforms energy 

between electric energy stored in a capacitor (C) and magnetic energy stored in an inductor (L).  

An ideal lossless resonator can oscillate indefinitely once excited with an initial current or 

voltage.  

dt
tdvCtiC
)()( =

dt
tdiLtv )()( =

)(tin

)(ti

)(tv
 

Figure 2.1: LC oscillator system diagram 

Considering the lossless LC resonator in Figure 2.1, the differential equation representing this 

system and the general solution of the differential equation are given by equations (2.1) and 

(2.2), respectively. 

0)()()( 2

2
=−+ ti

dt
tidLCti n  (2.1) 

)()sin()cos()( 0100 titCtCti P++= ωω  (2.2) 

where ω0 is the oscillation frequency( "
#$
), C0 and C1 are constants given by the initial voltage 

and current conditions in the circuit and iP(t) is the particular solution of the differential equation 

for the given input in(t), which is equal to 0 for no input.   

Due to energy dissipated due to resistive losses, oscillation requires the periodic addition energy 

from external source in order to compensate for the dissipated energy. If a loss is introduced in 

the system in Figure 2.1  by adding a series resistor, the system’s differential equation becomes:  
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The homogenous solution of this differential equation is given by:  
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(2.4) 

Equation (2.4) describes a damped system that decays to zero. In order to obtain oscillation, the 

system requires an active component which can provide periodic energy precisely equal to the 

energy dissipated in resistance.   

This can be achieved by a negative resistance, an element that can provide energy to the circuit. 

In simple terms, if one were to cancel out the positive resistance of the LC tank with a negative 

resistance of the same magnitude, then the overall circuit resistance will be zero. This is 

described in equation (2.5), by adding a negative resistance (RN) to the aforementioned equation, 

and equating to the positive resistance (R).   

0)()()()()( 2

2
=−−++ ti

dt
tdICRR

dt
tIdLCti nN  (2.5) 

However, if the negative resistance (RN) exceeds in magnitude the positive resistance (R), the 

homogenous solution to the differential equation becomes an exponentially growing oscillation 

as described by: 
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(2.6) 

While oscillation can be theoretically achieved by linear circuit elements as described in the 

previous equations, the amplitude of such oscillation is dependent on the initial circuit 
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conditions, and unless resistance is cancelled precisely, the oscillation will either exponentially 

decay or exponentially grow.  

In practical circuits, fixed oscillation amplitude is needed. In order to achieve that, electric 

oscillators exploit nonlinearity associated with active circuit components used to implement the 

negative resistance. An ideal example of such nonlinear negative resistance can be expressed by 

its conductance transfer function )(0 INOUT vsignii −= , which is shown in Figure 2.2.  

An oscillation can be formed by placing this nonlinear negative resistance in parallel with a lossy 

LC resonator as shown in Figure 2.3 (a). In order to study such a circuit, it is customary to 

linearize it, by considering its frequency domain system model shown in Figure 2.3 (b).  

Z

LCR LCR
I(s)

Y(s)=Z-1

V(s)

Z0(s)

Negative 
Resistance 

 
 (a) (b)  

Figure 2.3: (a) A basic RLC oscillator consisting of an RLC resonance tank and an energy compensating 
impedance (Z), and (b) The system representation of this oscillator  

In order to obtain the linearized conductance Y in Figure 2.3 (b), a sinusoidal waveform (vIN) is 

applied to the nonlinear conductance as shown in Figure 2.4. The sinusoidal frequency is chosen 

vIN

iOUT
+I0

-I0

 
Figure 2.2:  Ideal nonlinear negative conductance transfer function 
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to be the resonance frequency of the LC resonator (ω0). The Fourier series of the output square 

current waveform, for an input ( )tVtvIN 00 sin)( ω= , is given by:  

( )∑−=
= ,...5,3,1

0
0 sin14)(
n

tn
n

Iti ω
π

 (2.7) 

 

Given the band-pass nature of the LC resonator, 3rd,5th and higher order harmonic terms in 

equation (2.3) should get attenuated and can be discarded. Therefore, the linearized conductance 

of the negative resistance at resonance is given by the following describing function:  

0

04)(
V
IsY

π
=  (2.8) 

Therefore, a linear transfer function (H(s)) can be used to describe the system in Figure 2.3 (b): 

)()(1
)(

)(
)()(

0

0

sZsY
sZ

sI
sVsH

+
==  (2.9) 

vIN

iOUT
+I0

-I0

t

iOUT

vIN

t

1/f0

1/f0

 
Figure 2.4:  Voltage input and current output waveforms of ideal nonlinear conductance 
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Note that this is simply the impedance of the parallel R, L, C, Z elements. Z0(s) can be rewritten:  

2
00

2
0

0 /
/)(

ωω

ω

++
=

Qss
QsRsZ  (2.10) 

While the negative resistance described in Figure 2.2 and Figure 2.3, is theoretically easy to 

analyze, in reality it is impossible to obtain such a step transfer function. A real negative 

resistance can be realized using cross coupled active CMOS devices as in Figure 2.5.  

MG
R

−
=

1
MG

MGMG

 
Figure 2.5: Negative resistance realized using cross coupled transconductance 

Without going into details with regards to the conductance transfer function which depend on the 

CMOS device used, a few characteristics of such transfer function can be given, and are true 

regardless of the CMOS device used. A generic transfer function of the conductance is depicted 

in Figure 2.6. 

vIN

iOUT
+I0

-I0

iOUT/vIN=gm

 
Figure 2.6: Conductance transfer function of a generic non-ideal negative resistance  

For such a generic transfer function, the conductance depends on the amplitude of the swing 

(V0). For a small V0, the conductance of the negative resistor is simply given by the small-signal 
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transconductance of the CMOS devices Y(s)=-gm. For a large V0, the output waveform resembles 

a square wave, and the conductance’s describing function Y(s)=Iω0/V0, where Iω0 is the amplitude 

of the first harmonic of the periodic current waveform, which approaches Y(s)=4/π(I0/V0) for an 

ideal square wave. These two values provide the minimum and maximum asymptotes for the 

conductance value versus the amplitude of the swing (v0). The corresponding effective large 

signal transconductance is denoted GM, where Y(s)=-GM. 

2.3. VCO Tuning 

Tuning range is defined as the ratio of maximum to minimum oscillation frequencies of the 

VCO. The tank’s quality factor is in general inversely proportional to the tuning range. 

Therefore, wider tuning range results in higher phase noises. A more detailed analysis of the 

tank’s quality factor dependence on tuning range is given in Chapter 4.  

Conventionally, some form of capacitive tuning is utilized to tune VCOs. Chapter 4 describes 

different capacitive tuning methods. This section, on the other hand, aims at introducing two 

methods that have been used to extend the tuning range of VCOs beyond that achievable by 

basic capacitive tuning. The two methods are: capacitive degeneration and multi-mode 

resonance.   

2.3.1. Capacitance Degeneration 

In order to overcome the limited frequency tuning imposed by parasitic capacitance, which 

becomes more dominant at higher frequencies, negative capacitance was introduced [15].  In 

addition, it has been shown that such technique provides finer frequency tuning and allows for 

using larger inductors which enhances the oscillator’s performance[16]. The basic principle uses 

a source degeneration capacitance as shown in Figure 2.7.  
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Figure 2.7: Modification of (a) differential pair negative resistance to implement (b) a negative capacitance using  
source degeneration and (c) the corresponding half-circuit small signal model 

Using the small signal model shown in Figure 2.7 (c), one can derive the effective conductance 

(Y) seen at the single ended output of the differential pair as:  
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Note that the differential conductance is Y/2. As long as the capacitance is large enough 

(ωC>gm), this will have no significant impact at reducing the negative resistance while providing 

additional negative capacitance to the tank. For a large capacitor value or at higher frequencies, 

the negative capacitance term becomes Cj
C
gm ω
ω ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
− 22

2

4
2 . This can be considered a negative 

capacitance with a scaling factor 2gm
2/(4ω2C2)at a given frequency or a gyrator with effective 

inductance C/gm
2.Under such operating conditions, this cannot be used for cancelling parasitic 

capacitance, thought it can provide fine tuning with effective inductance steps of ΔC/gm
2 .  

2.3.2. Multi-Mode Resonance 

Multi-mode resonance uses coupled resonators as means to generate widely separated resonances 

compared to those of the original (uncoupled) resonators. This can be viewed as a complex pole 
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splitting action. Consequently, this creates widely separated tuning bands and reaches higher 

frequencies.  
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Figure 2.8: An inductively coupled resonator  

For the inductively coupled resonator in Figure 2.8 we can express the Z-matrix as follows:  
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Where ω1,2
2=1/(L1,2C1,2) are the resonator’s uncoupled resonance frequencies and 

Q1,2=RP1,2/(ω1,2L1,2) are their quality factors. Assuming an infinite quality factors the resonance 

frequencies of the coupled resonator are found to be: 
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 For symmetric tanks ( 1ω = 2ω ), equation to: 
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2.4. Start-Up Condition 

The condition to obtain a sustainable oscillation for the system described in (2.9), can be reached 

using a number of system criteria:  

2.4.1. Barkhausen’s Criterion 

Barkhausen’s Criterion provides a necessary but not sufficient condition for oscillation:   

ZnnsZsY
sZsY

∈=∠

=

,2)()(
1|)()(|

0

0

π
 (2.15) 

2.4.2. Root Locus Method 

The root locus method traces roots of the characteristic equation in the complex plane:  

∞→Κ=Κ+ 0:,0)()(1 0 sZsY  (2.16) 

The condition necessary for oscillation is that the roots cross to the right half plane. Since right 

half plane roots of the characteristic equation represent right half plane poles of the closed loop 

system, the system is unstable.  

2.4.3. Nyquist Stability Criterion 

The number of unstable closed-loop poles (Z) of the system H(s) is equal to the number of 

unstable open-loop poles (P) of Y(s)Z0(s) plus the number of clock-wise encirclements (N) of the 

complex point -1+0j of the  Nyquist plot of Y(s)Z0(s). The Nyquist plot is the complex plot of 

Y(s)Z0(s) as “s” is swept along the complex contour in Figure 2.9 (a). The sweep from -∞j to ∞j 

along the imaginary axis is a simple frequency sweep of s=jω as the frequency (ω) is swept from 

-∞ to ∞, while the angular sweep of s= Aejφ (A→ ∞) from π/2 to -π/2 will map to a single point in 

the Nyquist plot as long as Y(s)Z0(s) is proper or strictly proper (Denominator is of equal or 
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higher order to Numerator of the transfer function).The stability criterion is summed up in the 

following simple equation:  

PNZ +=  (2.17) 

Nyquist criterion provides stability information in the form of phase margin (from the phase at 

which the Nyquist plot crosses the unity circle) and gain margin (from the magnitude of the 

Nyquist plot crossing the real axis) as shown in Figure 2.9 (b). 
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-∞j
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-1 1
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GM:	Gain	Margin
PM:	Phase	Margin  

(a) (b) 

Figure 2.9: (a) Contour of values of “s” swept to generate the Nyquist plot, and (b) an example Nyquist plot with 
gain and phase margins marked on the plot 

2.4.4. The Start-Up Condition of the Basic VCO 

L

C
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L

C
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-1/GM

 
Figure 2.10: Cross coupled oscillator schematic and equivalent small signal circuit 
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In a cross coupled oscillator, the negative resistance appears in parallel with the LC tank due to 

the need to provide a DC bias current for the CMOS devices which can’t be achieved if a series 

capacitance is inserted. As shown previously, this circuit would oscillate if the total resistance is 

less than or equal to zero.  

A parallel resistance (RP) is introduced to represent an equivalent theoretical lumped resistance 

that models the resistance in both the inductance and the capacitance. Under high quality factor 

assumption of both inductance and capacitance, the resistance RP is related to the total series 

resistance in the RLC at resonance (ω0) as 2QRR SP ≈ , where: 

C
L
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11
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0 ===
ω

ω  (2.18) 

Similarly, the quality factor of the parallel RLC tank can be defined as: 

L
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 (2.19) 

 The startup condition hence becomes:  
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For the basic VCO, we recall that the resonator has 
2
0/0

2
/0

0 )(
ωω

ω

++
=

Qss

QsRsZ  and that Y(s)=-GM. In 

order to apply the root locus method, the describing equation is: 0)(1 0 =− sZGM . The root locus 

traces the poles of the describing equation as GM is swept from 0 to ∞. This yields the following 

describing equation:  
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ω RGs
Q

ss M  (2.21) 
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The poles corresponding to this equation are given by:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−±

=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−±

−
= Q

RMGj
MM e
Q
RG

j
Q
RG

s 2
11cos

00

2

2
1

1
2

1
ωω

 
(2.22) 

These poles can plotted on the complex s-plane as shown in Figure 2.11. As apparent from the 

expression and the plot, the poles cross to the right half plane for any positive 
Q
RMG
2

1− , or 

equivalently if GM  is greater than 1/R.  
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Figure 2.11: Complex conjugate poles of the LC-tank VCO in the complex s-plane 

On the other hand, the Nyquist Criterion requires the creation of the Nyquist plot of the function 

T(s) = -GMZ0(s). The Nyquist plot can be analytically constructed by considering the four points: 

{T(s=0), T(s=∞j), Re[T(s=jω)]=0, Im[T(s= jω)]=0}. The points are summarized as follows:  

  0)0( ==sT  

(2.23) 

  0)( =∞= jsT  

[ ]
( )

( )( ) ( )
0

1
)(Re

2

0

22

0
2

2

0 =
+−

−
== RG
Q

jsT M

ω
ω

ω
ω

ω
ω

ω
 

→ 0)0( ==sT
 

[ ]
( ) ( )( )
( )( ) ( )

0
1

1
)(Im

2

0

22

0
2

2

00 =
+−

−−
== RG
Q

Q
jsT M

ω
ω

ω
ω

ω
ω

ω
ω

ω
 

→ 

0)0( ==sT
 

MRGsT −== )( 0ω  
MRGsT −=−= )( 0ω

  



22 
 

0
00

2)](Im[)](Im[
ω

ω
ω

ω
ω

QRGsT
d
dsT

d
d M=−===  (2.24) 

The resulting plot is shown in Figure 2.12. The Nyquist plot as given by (2.23) and (2.24), starts 

from the point 0+0j and crosses –GMR+0j twice with a positive imaginary gradient (clockwise) in 

both cases. Since T(s) has no unstable poles by qualitative reasoning (the passives are lossy for 

any Q<∞), then for Z=N+P to be greater than 0, N has to be greater than 0. This condition can 

only occur if –GMR<-1 or equivalently, GM> 1/R. If P=2 for Q=∞, then the circuit is 

unconditionally unstable and it can oscillate for any GM as expected.  
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-GMR

 
Figure 2.12: Nyquist plot 

2.4.5. VCO Start-Up Summary 

The transfer function H(s) can be simplified with the assumption that Y(s) is a real value (-GM) 

and the impedance Z0(s) is the ratio of two polynomials of s: 
)(
)()(0 sD
sNsZ =  
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Based on this and the previous discussion of startup conditions we can come up with the 

following set of equations that would satisfy start-up based on the Nyquist and the Root Locus 

criteria. Note that these conditions are compatible. Both equations can be further broken into real 



23 
 

and imaginary parts to provide two sets of equations whose solution yields the resonance 

frequency and the startup condition.  

Root Locus )()( ωω jNGjD M−  )](Re[)](Re[ ωω jNGjD M=
)](Im[)](Im[ ωω jNGjD M=

 
(2.26) Nyquist Criterion jjZGM 01)(0 +−=− ω

 
0)](Im[ 0 =ωjZ

MG
jZ 1)](Re[ 0 =ω  

The two conditions share the assumption that the complex variable s is only swept along the 

imaginary axis (j∞). As shown in Figure 2.13 (a), in the root locus plot, we are only interested in 

the poles when they are crossing from the left half plane to the right half plane so we only sweep 

along the imaginary axis. We then solve describing equation as given in (2.26). The equation can 

be further broken into imaginary and real parts to generate two equations. In the Nyquist plot 

displayed in Figure 2.13 (b), we are making an assumption that -GMZ0(jω) has no right half plane 

poles, which is a reasonable assumption for any lossy resonator. Given that assumption, if the 

Nyquist plot of -GMZ0(jω) crosses the point -1+0j (in a CW fashion), then the system is unstable. 

Similar to the root locus case, this equation can be further broken into imaginary and real parts. 
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Figure 2.13: (a) the s-plane is swept along the imaginary axis for both root locus and Nyquist plot methods  as 
given by equation (2.26), and (b) The Nyquist plot that corresponds to start-up condition in equation (2.26) with 
the implicit assumption that -GMZ0(jω) has no right half plane poles 
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2.5. Phase Noise  

2.5.1. The importance of phase noise: Spectral skirting and reciprocal mixing 

An ideal sinusoidal oscillator’s voltage waveform is given by )cos()( 00 φω += tAtV , where A is 

a constant amplitude, ω0 is the oscillation frequency and φ0 is the initial phase. Such an ideal 

oscillator can be represented in the frequency domain by a single impulse as shown by the 

“Desired” signal highlighted in Figure 2.14. 

Desired
Actual

f

RF

LO (VCO)

IF

LO	With	Phase	Noise

Desired	RF

Strong	Interferer

Down-converted	
Desired	RF

Down-converted	
Interferer

 

Figure 2.14: Spectral skirting resulting from phase noise corrupting the down conversion of a desired received 
signal by an undesired blocker  



25 
 

 However, in a real voltage oscillator, the oscillation waveform is more generally given by 

))(()()( 0 ttftAtV φω += , where f(x) is a periodic function, and the amplitudes A(t) and the 

added phase )(tφ  fluctuate with time. These fluctuations are a result of different circuit noise 

sources presenting themselves at the oscillation node. Phase fluctuations known as phase noise 

can be represented in the frequency domain by sidebands appearing close to the desired 

oscillation frequency as captured by the “Actual” signal highlighted in Figure 2.14. This is known 

as spectral skirts. Therefore phase noise disperses the signal power over a wide frequency range 

rather than a single frequency tone. 

In radio receivers, small desired signals are accompanied by large, unwanted interferers. Spectral 

skirts resulting from phase noise in the LO signal causes reciprocal mixing of the interferers 

down to the same frequency as the desired signal, thus corrupting the received desired signal as 

highlighted in Figure 2.14. 

Phase noise L(Δf) is defined as the power spectral density (PSD) of the phase fluctuation term 

(φn(t)) in (2.27). Phase noise can also be approximated by the single side band PSD of the 

voltage waveform, by taking the ratio of the PSD (measured at a given frequency offset from the 

center oscillation frequency) to the total carrier power as in equation (2.28). 

The later definition of phase noise is only true for phase noise greater than amplitude noise, so 

that phase noise dominates the voltage spectrum, yet small enough so that the small angle 

approximations are valid. This can be seen in Figure 2.15, where both spectra are plotted for 

comparison.  
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Figure 2.15: Signal Spectrum and Phase spectrum vs. offset frequency as ways to determine phase noise 

))(())(()( 000 ϕϕω +++= ttftVVtV nnVCO   where f is periodic 
(2.27) ))(cos())(()( 000 ϕϕω +++= tttVVtV nnVCO

 
For a sinusoidal oscillation 
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2.5.2. Leeson’s LTI phase noise equation 

In his partially empirical work, Leeson highlights that the phase noise spectrum of a feedback 

LTI oscillator is comprised of three major regions as depicted in Figure 2.16 [17].  
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Figure 2.16: Phase noise plot as described by Leeson [17] 
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 In arriving at this conclusion, Leeson assumes that the oscillator is an LTI system whose 

equivalent baseband operation can be captured by the filter depicted in Figure 2.17. The 

equivalent cutoff frequency ω3dB  is determined from the definition of the quality factor Q of a 

passive resonator,
dB

Q
3

0

2ω
ω

= , where ω0 is the resonance frequency.  

The input noise vnin(t) is noise resulting from circuit devices and it has a period to period phase 

noise given by Δθ and it has a spectrum equivalent to that of the voltage noise divided by the 

mean power (assuming small angle approximations). This spectrum is depicted in Figure 2.16 

(SΔθ(Δω) ) and it accounts for thermal white noise as well as flicker 1/f noise. The output period 

to period phase noise is the given by the input spectrum shaped by the equivalent transfer 

function:   
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Where GMZ0* can be estimated by 1 at steady state operation of the oscillator where amplitude is 

kept constant. The frequency noise at the output can be related to the period to period noise at the 

1

GMZ*

)(tvnout)(tvnin

 
Figure 2.17: LC oscillator equivalent baseband LTI system diagram 
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output, by the phase definition of quality factor 
ω
θω

Δ

Δ
=
2
0Q . Consequently, the added 

frequency noise (Sω(Δω)) is given by:  
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Finally accumulated phase can be derived from frequency by taking the time integral, and the 

phase spectrum SΦ(Δω)=Sω(Δω)/(Δω)2. This results in the following expression for the phase 

noise of a feedback tuned tank LTI oscillator:  
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Where k is Boltzmann’s constant, T is absolute temperature, PS is the signal power at the 

oscillator’s active element inputs, ω0 is the resonance frequency, Δω is the offset frequency, Q is 

the loaded quality factor of the passives. While the equation in its full form was not stated by 

Leeson, the plots he provide, which are replicated in Figure 2.16, indicate Δω1/f  is the 1/f 

frequency cutoff of the input noise sources and F is an empirical parameter known as the device 

excess noise number. However, it has been clarified in the literature that both Δω1/f  and F are 

empirically fit parameters that cannot be derived in the manner explained in the previous 

analysis[18].  

2.5.3. Hajimiri’s linear time-variant phase noise model 

In his model, Hajimiri argues the LTI assumption, is incorrect and leads to being unable to 

correctly predict the performance of the system without obtaining the empirical parameters Δω1/f 

and F apriori [18]. In developing an alternative model, the oscillator is modeled as a linear time-

variant (LTV) system. If an impulse current is injected at any node in the circuit, it will create a 
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voltage step proportional to the injected current. Such a voltage step can result in step in the 

amplitude or phase (or both) of the oscillation waveform. The oscillation’s phase response to this 

current impulse (hΦ(t,τ)) is periodic time-variant and is given by:  

)(
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),(
max

0 τ
τω

τ −
Γ

=Φ tu
q

th  (2.32) 

where ( )τω0Γ  is known as the impulse sensitivity function (ISF) which is a periodic function 

that captures the magnitude of the oscillator’s phase step in response to an injected current 

impulse at time τ , maxq = maxCV  is the maximum charge swing across the tank’s capacitor and u(t). 

Being a periodic function, the ISF can be written in terms of its Fourier series coefficients as:  
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 Using the LTV model, an arbitrary oscillator’s 1/f2 phase noise )(2/1 ωΔ
f

L  evaluated at offset 

frequency ωΔ from its resonant frequency 0ω is expressed as: 
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where fi mn Δ2
,

 is the power spectral density of the mth noise source, 2
,mrmsΓ is the root mean-square 

of the ISF. And the oscillator’s 1/f3 phase noise )(3/1 ωΔ
f

L is given by:   
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Where mf ,/1ω is the 1/f noise corner of the mth noise source similar to before. This gives a closed 

form expression of the relationship between the 1/f noise corner of the source and the 1/f3 phase 

noise corner.  
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The impulse sensitivity function of a differential oscillator, oscillating with a sinusoidal 

waveform, to the noise of resonance tank’s resistances, can be well approximated by a sinusoid 

in quadrature with its oscillation waveform and with magnitude equal to the inverse of the 

number of resonators in the oscillator (N) [19]. 

The overall noise term (∑ ΔΓ fi mnmrms /2
,

2
,

) due to cyclostationary and non-cyclostationary thermal 

noise sources can be expressed as RTkBα   where α is a constant the depends only on the 

architecture and operating region of the transistors, Bk is Boltzmann’s constant, T is absolute 

temperature and R is the tank’s equivalent parallel resistance.  

For LC oscillators, the value of α was derived in [1] to be simply (1+γ), where γ is the noise 

factor of the oscillation transistors, where the transistor’s noise power is modeled as 

fgTki mBdsn Δ= γ42
, .  

For a current-limited oscillator, equation (2.34) can be expressed as: 
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where BI is the tank’s bias current, L is the tank’s inductance and [ ]0ωTANKQ  is the tank’s 

quality factor at resonance. Equation (2.36) defines the theoretical relationship between the four 

performance metrics: resonant frequency, tuning range, phase noise, power consumption. 

The bias current (IB) in equation (2.36) is directly proportional to the DC power consumption of 

the oscillator DDBVIP = , where DDV is the oscillator’s supply voltage. Phase noise is inversely 

proportional to the power consumption as long as the oscillator is operating in the current-limited 

regime. When the oscillator enters the voltage-limited regime, its voltage swing becomes 

independent of the bias current IB and equation (2.36) becomes invalid. For best phase noise 
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performance, oscillators are typically designed to operate at the edge of the voltage-limited 

regime where equation (2.36) is still valid [20].  

Phase noise is directly proportional to resonant frequency if the oscillator’s tank inductance and 

quality factor are maintained constant. However, the assumption that the term [ ]LQTANK 0
3 ω is 

constant is not correct. This can be seen in the plot of maximum QL
3 (ω0)L for a number of 

inductor configurations in the 65 nm CMOS presented in Figure 4.1. 

2.5.4. The simulation of the impulse sensitivity function 

 The evaluation of the ISF function can yield significant insight into the output phase noise of an 

oscillator. The typical method to compute the ISF uses its original definition; by injecting a 

transient impulse current at a specific node and observing the corresponding steady-state phase 

shift. This method requires long simulations. An alternative method proposed by Pepe [21] uses 

frequency domain simulation to compute the ISF. This is accomplished by observing the output 

voltage waveform of the oscillator with a tonal noise input at the noise node. The paper [21] 

shows that the output fundamental oscillation waveform for an input noise tone at ωm frequency 

offset from the at all n-harmonics ( )( )∑ −=
n

mnn tnIti ωω0cos)(  is given by:  
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where nC , nϕ are the ISF parameters in (2.33) and the other parameters correspond to the 

standard sinusoidal oscillation waveform as defined in (2.27). In Cadence SpectreRF simulator, 

this corresponds to a periodic steady state simulation (PSS) followed by a periodic transfer 

function (PXF) simulation. From the PSS simulation, the steady state amplitude and initial phase 

(V0 and 0ϕ  respectively) are found. From the PXF simulation, the amplitudes at frequency offset 
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mωω ±0  and phases nϕϕ ±0 are found, which allows the computation of parameters nC , nϕ  for 

the considered nth-harmonics.  

The extracted parameters are used in (2.33) to compute the ISF as approximated up to the nth 

considered harmonic. Since qmax is equal to V0C, where C is the total loaded capacitance of the 

tank, the amplitude of the output modulated tones are independent of the amplitude V0 but 

require the knowledge of the total capacitance. The loaded capacitance (including that from 

transistors) can be found from the oscillation frequency as 1/ω0
2L. The PSS-PXF simulation 

method is both more time efficient and more robust than the original transient simulation.   

2.5.5. Impulse sensitivity function of a basic LC oscillator 

The method for evaluating phase noise using PSS and PXF simulations has been discussed 

previously. Firstly, this method is applied to the basic LC-oscillator shown in Figure 2.18.  

The circuit consists of two CMOS transistor biased with an ideal 2mA tail current source and 

loaded with an ideal RLC load. The RLC load is selected to have a Q of 15 at a resonance 

frequency of 10GHz. Due to the CMOS devices’ parasitic capacitance, the resonance frequency 

drops to 9.83GHz and the quality factor at resonance becomes 15.28.  

L=400pH
C=631.5fF
RP=377.5Ω

inQ

inT

inD

ITAIL=2mA

W/L=
16/0.06µm

VOUT+VOUT-

M1M0

 
Figure 2.18: Cross coupled LC-oscillator schematic with noise sources of interest highlighted (inQ, inD, inT)  
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(a)

(b)

(c)  
Figure 2.19: (a) The normalized output voltage waveform and the Impulse sensitivity function of the output phase to 
noise injected at the three noise sources  (inQ, inD, inT) as indicated in Figure 2.18 and (b) The normalized drain 
current and (c) transconductance of transistor M0 
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The three noises sources of interest are (1) the tank noise (inQ) generated by the loaded LC tank 

parasitic impedance (RP), (2) the cross-coupled transistor noise (inD) and (3) the tail transistor 

noise (inT). The ISF plots are shown in Figure 2.19. The voltage and current results are normalized 

to 1 by dividing each waveform by the amplitude, while the ISF are presented as is. The time is 

normalized in the form of phase. The evaluated ISF functions are:  

(1) The tank noise ISF (ГinQ) is approximately a sinusoid with amplitude equal to 1 and a 

phase offset of π/4 from the output voltage waveform. This result has been explored in the 

literature [19] and can be summarized for an oscillator, which consists of n-tanks, and whose 

sinusoidal output waveform is given by vOUT(t)=V0cos(ω0t) as:  

n
t )cos( 20

πω +
=Γ  (2.38) 

The tank noise ISF (ГinQ) is maximum during differential output voltage zero-crossing since all 

injected current noise contributes to phase noise rather than amplitude noise. The ISF is 

minimum when the voltage is maximum, as all current swings contribute to amplitude 

fluctuations rather than phase fluctuations. This can be best understood by observing the state-

space of the voltage and current in the tank as the oscillation takes place as in Figure 2.20.  

VC

IL

φ0

Δφ

ΔV

VC0

IL0

 
Figure 2.20: The state-space of the single LC-tank oscillator as defined by the voltage across the capacitor (VC) and 
the current inside the inductor (IL): A charge injection results in a voltage step (ΔV), which can cause a phase shift 
(Δφ), while the oscillation amplitude eventually returns to VC0 limited by circuit nonlinearities [18] 
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As shown in Figure 2.20, an impulse current results in a voltage step (ΔV). The voltage step can 

result in a phase shift (Δφ). If the voltage step occurs at phase φ0=kπ+π/2 then no phase step 

occurs and the impulse sensitivity is 0. If the occurs at phase φ0= kπ then maximum phase step 

occurs and the impulse sensitivity is maximum. 

(2) The transistor noise ISF (ГinD) follows ГinQ closely while the transistor is off as all the 

noise generated couples directly to the output and the sensitivity is only impacted by the output 

voltage and phase. On the other hand, as the transistor turns on and starts conducting, the 

sensitivity to the noise source drops as the noise current starts flowing into the transistor’s low 

impedance rather than getting channeled to the output node.  

(3) The differential transistor noise ISF (ГinDΔ) given by the difference between the two ISFs 

from transistors M0 and M1. Is equal to the tank noise ISF (ГinQ). This ISF will be used for 

deriving closed form expression of the phase noise from the differential pair. 

(4) The effective transistor noise ISF (ГinDEFF) captures the impact of the large signal swing 

on the noise generated by transistors M0 and M1 and effectively their overall noise contribution at 

the output. The thermal current noise power density of a CMOS transistor is approximately:  

mn gkTfi γ4/2 =Δ  (2.39) 

The parameter γ is equal to 2/3 for long-channel transistors and can be larger than that for short 

channel transistors. Since gm, which is depicted in Figure 2.19 (c) is deterministic and varies 

periodically during the oscillation cycle; the noise is cyclostationary and can be described as:  

)()()( 00 tgtiti mnn ω=  Where γkTfin 4/2
0 =Δ  (2.40) 
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Hence, the cyclostationary thermal noise can be decomposed into a product of a stationary 

thermal noise in0
2’/Δf, and the deterministic periodic function )( 0tgm ω . The effective ISF of 

thermal noise in0
2’/Δf  is therefore given by the product: 

inDminDEFF tg Γ=Γ )( 0ω  (2.41) 

Similarly, an effective ISF can be defined for the differential transistor noise as: 

ΔΔ Γ=Γ inDMEFFinD tG )( 0ω  (2.42) 

The differential transistor noise can be derived as 
diffdv
diffdi

, where vdiff is the differential voltage at 

the input (gates) of the differential pair, and Idiff is the differential output current. Assuming that 

the transistors operate as switches, for a sinusoidal input differential voltage (vdiff), the effective 

differential current (idiff) switches between IT/2 and -IT/2 where IT is the tail current, and is in 

phase with the voltage. This assumes that transistors do not introduce a phase shift or 

equivalently, the transistors have a much larger bandwidth than the operating frequency.  

One way to approximate such switching nonlinearity is using a hyperbolic tangent (tanh) 

function, where the periodic voltage and current can be expressed as:  

( ) ( )φφ cos0Vvdiff =
 

(2.43) 

( ) ( )( ) ( )( )φφφ costanhtanh
0
0

0000 I
V

mdiffmdiff gIvgIi ==
 

 

where I0=IT/2, gm0 is the small signal transconductance and V0 is the voltage amplitude. This is 

depicted in Figure 2.21, for a K=gm0V0/I0=1, 10.  
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Figure 2.21: Normalized periodic oscillating differential voltage (vdiff) and switching current (idiff) waveforms 
captured by a hyperbolic tangent (tanh) function  

The resulting differential transconductance is:  

( )
( )
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( )( )2
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00 cossech φ
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φ I
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G ==
 

(2.44) 

As gm0 grows much larger than I0/V0, in the case of an ideal switch, the differential 

transconductance approaches:  

( ) ( ) ( )( )22
0

02 ππ φδφδφ −++=
V
IGM

 
(2.45) 

This provides a very good estimate to be used in closed form expression evaluation of ISF, and 

it’s independent of the exact type on the nonlinearity (exponential or tanh) since it assumes ideal 

switching. This is depicted in Figure 2.22 as GM(Φ) for K=gm0V0/I0=1, 2,5,10,100 showing how 

GM(Φ) approaches a Dirac delta function. As GM(Φ) approaches a Dirac delta, only the ISF value 

of the output node at π/2 and –π/2	becomes	significant.	 
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Figure 2.22: Effective differential transconductance (GM) as a function of phase, showing how as the value of 
K=gm0V0/I0 increases, the transconductance approaches a Dirac delta.  

Given that )sin( 0
1 tninD ω=Γ Δ , the effective ISF is:  

( ) ( )( )22
0

0 sinsin21 ππ φφ −++=Γ Δ V
I

nEFFinD  (2.46) 
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which can be written in terms of the first harmonic of the switching current Iω0=4I0 /π:  
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n ΔΔΔ Γ=Γ==Γ ωω  (2.48) 

The same result is presented in [22], using a Fourier expansion of the transconductance. While 

both approaches yield the same estimate for a non-quadrature ISF, only this method is able to 

capture the impact of quadrature ISF on the overall effective ISF as will be discussed later. 

(5)  The tail current noise ISF is impacted by two mechanisms: The output waveform voltage 

and phase which defines its sensitivity to any injected current at that node (namely ГinQ) and the 
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current splitting between the two legs of the differential pair. The assumption is that the tail 

current is an ideal current source and hence there should be no consideration for noise current 

splitting between the current source itself and the output nodes. When both diff-pair transistors 

are equally conducting, the noise from the tail transistor will appear as a common mode noise 

component at the output rather than a differential noise component and hence the differential 

output would be least sensitive to the noise during these transitions and that should correspond to 

ISF nulls. Since the currents splits equally when the differential voltage at the output is 0, this 

corresponds to maximum  ГinQ, and vice versa. Hence the two aforementioned contributors to the 

impulse sensitivity of the tail transistor are in quadrature. Since the overall ISF is the result of the 

product of these two processes, the overall ISF is the product of two in quadrature processes, 

which translate to a waveform with twice the frequency of ГinQ and a lower amplitude. The 

sinusoidal nature of ГinT seen in Figure 2.19, indicate that both processes contribute equally to the 

overall ISF.  

2.5.6. ISF-based phase noise derivation for the basic LC oscillator 

 
Figure 2.23: Phase noise plots for circuit shown in Figure 2.18  
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 The phase noise is obtained from the ISF functions according to equation (2.34) and plotted in 

Figure 2.23. The plot contrasts a number of cases for which phase noise is computed/simulated. 

The cases are given by: 

(1) PN1: A closed form expression of the phase noise considering the thermal noise from the 

transistors M0, M1 and RP as:  
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(2.50) 

where Boltzmann’s constant kb=1.38⋅10-23 m2kg s-2K-1 , the temperature T=300K and the 

design parameters Q=15.275, RP=377.5, f0=9.833 GHz and γ=1. The first harmonic of the 

output switching current can be estimated as 2/πIB where IB is the bias current (2mA).  

(2) PN2: A closed form expression of the phase noise given by equation (2.49), with all 

parameters as before but using the output voltage amplitude (V0) from simulation.  

(3) PN3: Phase noise expression from the ISF and voltage plots depicted in Figure 2.19. 

(4) PN4: Simulated PN using a Cadence SpectreRF PSS and PNOISE simulations using same 

circuit schematic and device models with only thermal noise.  

(5) PN5: Simulated PN using a Cadence SpectreRF PSS and PNOISE simulations using same 

circuit schematic and device models with thermal and 1/f noise.  
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(6) PN6PMOS , PN6NMOS: Simulated PN using a Cadence SpectreRF PSS and PNOISE 

simulations using same circuit schematic and device models with thermal and 1/f noise 

with a non-ideal (transistor based) tail current source using both PMOS and NMOS tail 

current bias current architectures as shown in Figure 2.24. 

L
C
RP

IB=2mA

VOUT+VOUT-

M1M0

W/L=
40/0.4µm

L
C
RP

IB=2mA

VOUT+VOUT-

M1M0

W/L=
40/0.4µm

 
(a) (b) 

Figure 2.24: (a) NMOS and (b) PMOS based current biasing circuit  

Since the values of phase noise are very close for a number of the plots, their values are tabulated 

for 10 kHz and 1 MHz offset frequencies in Table 1. 

Table 1: Phase noise evaluated for the LC-tank at 10kHz, 1MHz for a number of cases 
  PN@10kHz 

dBc/Hz 
PN@1MHz 

dBc/Hz 

PN1 -72.4338 -112.434 
PN2 -71.759 -111.759 
PN3 -71.1166 -111.117 
PN4 -71.4337 -111.433 
PN5 -69.7595 -111.389 
PN6PMOS -70.6955 -111.13 
PN6NMOS -65.8468 -108.741 
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Based on the results in Figure 2.23 and Table 1 the following can be concluded:  

(1) The theoretically estimated phase noise  is accurate within 1.5 dBc/Hz (PN1 vs. PN4).  

(2) The estimate is improved by using the actual output voltage which drops the error by 0.7 

dBc/Hz, indicating that the first harmonic amplitude of the tank current is not as large as 

4/πIB which is expected given the shape of the current waveform in Figure 2.19 (b).  

(3) The evaluation of phase noise from the ISF and voltage plots matches almost exactly the 

simulated phase noise (PN3 vs. PN4) which validates the ISF simulations.  

(4) The introduction of 1/f (PN4 vs. PN5) did not have significant impact at 1 MHz since the 

1/f3 corner frequency is less than 1 MHz . The impact is more pronounced at 10 kHz. 

(5) The increase of Phase noise due to PMOS biasing is significantly less than that due to the 

NMOS tail current (0.3dBc/Hz vs. 2.3dBc/Hz at 1MHz). It’s expected for the PMOS 

biasing to introduce less noise since it has lower thermal and flicker noise and does not 

drive the differential devices into deep triode.  

2.6. Quadrature Considerations 

When extending the previous phase noise analysis to quadrature VCOs, additional consideration 

must be given to the quadrature implementation. Quadrature outputs are typically obtained by 

placing two identical VCOs inside a quadrature loop. The 90o phase shift is obtained by 

introducing an excess 180o phase shift inside the loop and ensuring that the only possible mode 

of oscillation in that case is if both signals outputs are in quadrature. Several quadrature 

implementation techniques have been studied in the literature. Many of these implementations 

can be modeled by extending the linearized LC-tank oscillator model in Figure 2.10 to the 

linearized quadrature LC-tank oscillator model in Figure 2.25.  



43 
 

L

C
RP

-1/GM

L

C
RP

-1/GM

vQvI

iQ(vQ) iQ(vI)

iI(vI) iI(vQ)

 
Figure 2.25: Linearized quadrature LC-tank oscillator model 

In such model, the quadrature loop injects a current phasor (iQ) that is at angle (typically 

perpendicular) to the VCOs internal positive feedback current phasor (iI) in both coupled 

oscillators. This can be captured by considering the current phasors and their summation as 

depicted in Figure 2.26. 

iI

iQφ	 ψ		
iO

|Z(jω)|

ω

ω

∠Z(jω)

ω0 ω0

φ	

ωoscωosc
 

Figure 2.26: Quadrature current phasors summing up at the oscillation nodes and causing a frequency shift from 
the natural oscillation frequency of the LC- tank   

As can be seen in Figure 2.26, the addition of the two phasors (iQ , iI) can only happen if there is a 

phasor (iO) that sums the two currents at the LC-tank. Since the voltage across the tank is in 
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phase with (iI), then the phase between the voltage across the tank and the current through it is Φ. 

Therefore, adding up the two current phasors, results in a frequency shift equal to [23]: 
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where IQ and II are the magnitudes of the in-phase and quadrature vectors (iQ , iI) and they 

usually correspond to the tail bias current of the corresponding transistors.  For the common case 

where the angle between the phasors (Ψ=90o), the expression simplifies to: 
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This frequency shift degrades phase noise by converting the current phasor’s amplitude noise 

into phase noise. Furthermore, as frequency is shifted away from the tank’s resonant frequency, 

the tank’s effective quality factor at the oscillation frequency is reduced. In addition, additional 

noise is introduced from the devices used to implement the quadrature loop. The frequency shift 

can be reduced by reducing the injected quadrature current. However, this directly impacts the 

quadrature phase error, which is defined as the offset of the I/Q phase difference from 90o. 

In [4], three QVCO architectures are compared to identify the trade-off between phase noise and 

phase error. These architectures were presented in Figure 1.1. The architectures were: 1) Parallel 

QVCO, where the quadrature devices appear in parallel to the in-phase devices. 2) Top-Series 

QVCO, where the quadrature devices appear in series with the in-phase devices and are placed 

between the output nodes and the in-phase devices. 3) Bottom-Series QVCO, where the 

quadrature device appears in series with the in-phase device but placed between the in-phase 

device and the tail current source. The study shows that using Top-Series/Bottom-Series QVCO 

can yield a phase noise increase of less than 1dBc/Hz at 2GHz when compared to a VCO that 
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doesn’t implement quadrature. Additionally, the study shows that using the Parallel QVCO 

yields a much worse result, which is 3dBc/Hz higher than the phase noise obtained using the 

Top-Series/Bottom-Series QVCOs.  

As an alternative, passive quadrature injection has been presented in [8],[11],[6].  One 

embodiment of this technique employs transformers  to create the 90o phase shift [11]. Coupled 

LC resonators are fourth-order systems capable of providing up to 360o phase shift and can be 

designed to provide the highest quality factor defined as 
ω
φω

d
d

2
0 in the vicinity of 90o phase 

shift. Hence, if a loop is formed to contain two such identical transformers in addition to a 180o 

phase shift it’s possible to obtain quadrature without introducing additional phase noise. The 

phase error is dependent only on the matching between the two transformers in the quadrature 

loop.  

There has been two works that attempted to fully quantify the impact of the quadrature on phase 

noise using: (1) Extended Adler’s equation work by Mirzaei et al [23] and (2) ISF based 

approach by Andreani [24]. Both works reach same conclusions, however, Andreani’s work is 

better fitted as an extension to the previous ISF based noise analysis introduced in the previous 

sections.  The fundamental and most significant conclusion presented in [24] is that for the 

quadrature oscillator, and specific case where Ψ=90o, the ISF given by equation (2.38), which 

corresponds to a sinusoidal output waveform (vOUT(t)=V0cos(ω0t)), is rewritten as:  

( )θ
θω π

cos
)cos( 20

n
t ++

=Γ
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

I

Q

I
I

arctanθ  
(2.53) 



46 
 

The second significant conclusion of [24] is that the oscillation amplitude is independent of the 

coupling strength (IQ/II). By combining the two previous works, one can postulate that the angle 

(θ) can be extended for a general case where Ψ≠90o as ( )karctan=θ , where: 

( )

( )Ψ+

Ψ
=

cos1

sin

II
QI
II
QI

k  (2.54) 

Given the ISFs, an ISF based closed form expression for phase noise can be derived by 

considering the thermal noise from three noise sources: (1) the tank noise ( inQΓ ), (2) the in-phase 

devices ( IEFFinD −ΔΓ ) and (3) the quadrature devices ( QEFFinD −ΔΓ ): 

(1) inQΓ  is given by (2.53), and its root mean square value is 
( ) 22
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nrmsinQ

+==Γ
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.This 

indicates that the noise from the tank increases as 1/cos2(θ) due to quadrature. It must be noted 

that there is still a noise improvement by the fact that quadrature couples two oscillators (n=2) at 

the expense of burning twice the power.   

(2) IEFFinD −ΔΓ is given by the product ( )φMIinQ GΓ  

( )
( )

( ) ( )( )22
2 2

cos
)cos( ππ

π

φδφδ
θ

θφ
φ −++

++
=Γ −Δ

I

I
IEFFinD V

I
n  

(2.55) 
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This simplification is only correct due to the swing being independent of θ. This indicates that 

the noise contribution from the in-phase devices is the same as that in the case without 

quadrature as given by equations (2.47) and (2.48), ignoring the noise improvement due to 

coupling two oscillators. Furthermore, this noise is independent of the strength of the coupling.  
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(3) QEFFinD −ΔΓ is given by the product ( )φMQinQ GΓ , where the differential large signal 

transconductance of the quadrature devices (GMQ) is derived similar to GMI: 

( ) ( ) ( )( )πφδφδφ −+=
Q

Q
MQ V

I
G 2

 
(2.57) 

where IQ in this case is the bias current of the coupling devices, equal to half the tail current of 

the coupling devices and VQ is the voltage amplitude on the quadrature node which is typically 

equal to amplitude on the in-phase node (VI).  The ISF is therefore given by:   
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The corresponding root mean square 2
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The overall phase noise closed form expression, derived from the previous ISFs is: 
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In order to verify this conclusion, a test circuit is created and simulated, similar to the analysis 

performed on the LC-tank oscillator in Chapter 2.5.6 for the quadrature oscillator shown in 

Figure 2.27. For this circuit Ψ=90o and k=IQ/II=1. 
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Figure 2.27: Quadrature LC-oscillator schematic in low resonance mode with noise sources of interest highlighted 
(inQ1, inQ2)  

The phase noise is depicted in Figure 2.28 and Table 2.  

 
Figure 2.28: Phase noise plots for circuit shown in Figure 2.27 
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Table 2: Phase noise evaluated for the quadrature LC-tank at  1MHz  
  Settings Noise 

Sources 
PN@1MHz 

dBc/Hz 

PN1 Expression (2.50) (Hand calculation) Thermal -111.987	
PN2 Expression (2.49) (simulated oscillation amplitude) Thermal -109.431	
PN3 Expression (2.34) (simulated GM and ISF) Thermal -108.644	
PN4 Simulated PSS+PNOISE - ideal tail current  Thermal -108.498	
    

 The theoretical expression captures the thermal noise correctly once the amplitude is corrected 

from the 2ITAILRP/π estimation to the actual voltage swing. In order to study the impact from 

coupling strength on the phase noise, the coupling strength is swept. In order to avoid having to 

resize transistors, to maintain current density, this simulation was performed using a Verilog-A 

model of the transistor that uses the tanh nonlinearity as described by equation (2.43). The exact 

Verilog-A code is presented in Figure 2.29. 

 
module Diff_GMC (vin_p, vin_n, iop, ion) ;
input vin_p, vin_n;
output iop, ion;
electrical vin_p, vin_n, iop, ion ;

parameter real gm = 1;
parameter real IT = 1e-6;
parameter real kb=1.38e-23;
parameter real gamma=1;
parameter real ennoi=0;

real vin, outp, outn;

analog begin

vin =V(vin_p) - V(vin_n);

outp = IT/2 - IT/2*tanh(2*gm/IT*vin) 
+ white_noise(ennoi*4*kb*$temperature*gamma*gm/pow(cosh(gm*vin/IT),2),"thermal");

outn = IT/2 + IT/2*tanh(2*gm/IT*vin) 
+ white_noise(ennoi*4*kb*$temperature*gamma*gm/pow(cosh(gm*vin/IT),2),"thermal");

I(iop) <+  outp;
I(ion) <+  outn;
end

endmodule

 
Figure 2.29: Verilog-A code for a differential tanh-GM used to replace transistors in simulation  
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Using the model, the same simulation shown in Figure 2.27 is repeated and the resulting ISFs are 

shown in Figure 2.30, and the corresponding phase noise is shown in Figure 2.31 and tabulated in 

Table 3 at 1MHz. The theoretical result PN1 matches that of the real transistor circuit (with a 

slight difference due to frequency shift resulting from real transistor parasitics).  The rest of the 

phase noise expressions match each other to a great degree as expected.  

 
Figure 2.30: The normalize output voltage waveform and the Impulse sensitivity function of the output phase to 
noise injected at the noise sources  indicated in Figure 2.27using Verilog-A GM as described by Figure 2.29 

 
Figure 2.31: Phase noise plots for circuit shown in Figure 2.27using Verilog-A GM as described by Figure 2.29 
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Table 3: Phase noise evaluated for the quadrature LC-tank at  1MHz using Verilog-A GM  described by Figure 2.29 
  Settings Noise 

Sources 
PN@1MHz 

dBc/Hz 

PN1 Expression (2.50) (Hand calculation) Thermal -111.625	
PN2 Expression (2.49) (simulated oscillation amplitude) Thermal -111.516	
PN3 Expression (2.34) (simulated GM and ISF) Thermal -111.919	
PN4 Simulated PSS+PNOISE - ideal tail current  Thermal -111.643	
    

Using the aforementioned model and quadrature circuit, the coupling strength k, which is in this 

case equal to IQ/II is swept. The observable increase in phase noise matches the expected 

behavior from the theoretical expression very well, and it diverges slightly at higher coupling 

factors as simulated ISFs diverge from theoretical ISFs due to diverging from ideal switching 

condition. It’s important to note that at coupling strength close to 0.1, the quadrature has 

theoretically little impact on the phase noise.  

 
Figure 2.32: Phase noise sweep versus k=IQ/II  , for circuit shown in Figure 2.27using Verilog-A GM as described by 
Figure 2.29 

From the previous discussion it appears that a weaker coupling is advantageous. However, a 

weaker coupling has two disadvantages: (1) Narrower locking range between the two quadrature 

oscillators. If the quadrature oscillators unlock then neither quadrature, nor the 3dB phase noise 
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improvement due to coupling two oscillators can be obtained.  (2) Quadrature phase error. The 

quadrature phase error refers to the divergence of the quadrature angle of the desired 90o
 angle. 

The 90o angle is guaranteed by the symmetry between the two oscillating cores and the path 

delays that comprise the quadrature oscillator. Any mismatches in this symmetry due to 

unbalanced layout, or fabrication process and mismatch variation between the two different 

oscillation cores, will lead to an overall quadrature phase error. An expression for such error was 

derived using generalized Alder’s equations in [23] as:  
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(2.61) 

where ΔI is the difference between the tail bias currents of the two oscillator cores, ΔIQ is the 

difference between the tail bias currents of the two coupling stages between the oscillators, and 

Q is the quality factor of the LC-tank, Δω is the difference in the oscillation frequency of the two 

cores, ΔR is the difference in the parallel resistance of the two LC-tanks and ΔΨ is the difference 

between the extra phase delay in the quadrature path between the two cores. For a Ψ=90o this 

simplifies to:  
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This shows that aside from the error due to path mismatch captured by ΔΨ term, the phase error 

is inversely proportional to IQ/II which means stronger coupling results in a reduced phase error 

for the same mismatches between the two cores.    
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Chapter 3 

3. PROPOSED QVCO ARCHITECTURES AND ANALYSIS 
3.1. Introduction 

This chapter introduces two new QVCO architectures: an actively coupled dual-resonance 

QVCO and a passively coupled dual-resonance QVCO. Both architectures use the same core 

dual-resonance VCO.  The chapter analyzes two key aspects of the proposed dual-resonance 

VCO’s, namely startup, and phase noise.  

The startup analysis is performed by introducing a network simplification technique that enables 

the reduction of the 4th order dual-resonator based network into a 2nd order network. With such 

simplification, the startup condition is readily found based on the theory introduced in Section 

2.4.4 for the second order LC-tank VCO. The result is verified for a number of cases using a 

complete derivation of startup condition of the actual 4th order system using both Nyquist and 

Root locus methods as summarized in Section 2.4.5.  

The phase noise analysis presented in this chapter extends the discussion of Section 2.5.3 to 

quantify the contributions of three design elements, namely resonator quality factor, oscillation 

amplitude and device noise to the phase noise of the dual-resonance VCO. The analysis is done 

in three steps: a) an effective quality factor is derived for the coupled resonator after reducing the 

fourth-order network to a second-order one, b) the voltage amplitude across the terminals of the 

resonator is obtained at the edge of the current-limited oscillation regime, and c) the ISF and 

noise modulating functions for cyclostationary noise sources are obtained in order to compute 

their contributions to the phase noise of the oscillator.  
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In order to extend the previous analysis to the two quadrature oscillators, the active quadrature 

impact introduced in Section 2.6 is extended using the 2nd order equivalent circuit obtained after 

network simplification. This is quantified using circuit simulations to compute the ISF, which is 

then used to analytically predict the phase noise, and then using direct phase noise simulations in 

SpectreRF for the two quadrature oscillators. The phase noise thus obtained is then compared to 

the phase noise of the dual-resonance single VCO.  

Finally, the phase accuracy of the quadrature oscillators is analyzed by considering: a) the 

constant phase shift introduced by capacitive imbalances in the passive QVCO loop and its 

frequency dependence, and b) circuit mismatches impact on both active and passive QVCOs as 

quantified using a series of statistical Monte Carlo simulations.  

3.2. The Proposed QVCO Architectures 

The current study aims at comparing and contrasting two methods of quadrature coupling; 

namely, passive and active quadrature coupling when applied to wide-band dual-resonance tuned 

QVCOs.  

As it has been introduced earlier in the quadrature coupling section, passive quadrature coupling, 

if applied properly, has the advantage of not introducing orthogonal current phasors. 

Alternatively, it uses coupled resonators to introduce a phase shift, which corresponds to creating 

a 3rd oscillation loop enforcing the oscillation and improving the circuit’s phase noise.  

The two architectures studied by this work are shown side by side in Figure 3.1. The coupled 

resonance VCO shown in Figure 3.2 is the main building of both architectures. It consists of a 

coupled resonance tank, a positive feedback transconductance (negative impedance) at one 

terminal of coupled resonator and a second positive feedback transconductance between the two 

terminals. The resonator is a two port system that can be represented by its impedance 
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parameters matrix (Z-matrix). Given the Z-matrix, the system can be simplified into a basic 

linear feedback system as shown in Figure 3.2.  
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(a) (b) 
Figure 3.1: (a) Passive and (b) active quadrature voltage controlled oscillator architectures with dual-resonance 
mode coupled resonator tanks  
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Figure 3.2: A coupled resonance oscillator with two transconductance elements forming two feedback loops and the 
system representation of this circuit 
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The coupled resonator VCO can be represented by the following set of system equations:  

)()(1
)()()(

1121

111

sZGsZG
sZs

I
VsH

MNMPN −−
==

 

)()(1
)()()(

1121

212
2 sZGsZG

sZs
I
VsH

MNMPN −−
==

 

)(
)()()(

11

21

1

2

sZ
sZs

V
Vs ==α  

(3.1) 

Note that H(s) and H2(s) share the same poles and startup condition and differ in the small signal 

voltage amplitudes only. 

3.3. 2nd Order Simplification of a 4th Order Dual-Resonator Network 

This section aims at reducing the 4th order dual-resonance circuit to a conventional 2nd order 

resonator which has been analyzed in Chapter 2. This is achieved by developing a relationship 

between the voltages on both sides of the resonator, and using an equivalent model for the 

mutual coupling in the resonator. The combination of the two allows for the shorting of the 

resonator terminals which yields a 2nd order resonator.  
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Figure 3.3: (a) Equivalent Pi-model of coupled center-tapped inductors,  and (b) the corresponding half-circuit 
equivalent models  
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The basis of the simplification relies on the equivalent Pi-model of the coupled center-tapped 

inductors shown in Figure 3.3(a). Due to symmetry around the center tap, the half circuit model, 

shown in Figure 3.3(b), is considered, and extended to the fully differential case. While this 

assumption is not always true, it is true for all circuits considered in this work. 

The equivalent model parameters are derived by equating the Z-parameters of the two half 

circuit-models:  
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The resultant parameters L1’, L2’, LM are therefore given by the following equations: 
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The coupled center-tapped inductor simplification is applied to the dual-resonance circuit 

presented in Figure 3.2, and the resultant circuit is shown in Figure 3.4. 
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Figure 3.4: The coupled resonance oscillator with the mutual inductance replaced by the differential Pi-model 

In order to simplify this 4th order circuit to 2nd order equivalent, the nodes V1 and V2 need to be 

reduced to a single node. In order to achieve that, the ratio of the voltage α =V2/V1 is computed. 

If α is a real number, the circuit parameters, can be scaled in a manner that sets V1=V2 while 

maintaining the impedance seen on one of the two nodes. The two nodes are therefore reduced 
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into a single node. The reduction is presented over the following steps: (1) the inductors LM/2 are 

split into two separate inductors at nodes V1 and V2, (2) the real voltage ratio (α) is derived, (3) 

the assumption of real voltage ratio (α) is validated and (4) the circuit parameters are scaled to 

equate voltages V1 and V2. 

3.3.1. The Splitting of Inductor LM  

The inductance LM/2 in Figure 3.4 can be eliminated by splitting it into separate impedances. This 

is achieved, as shown in Figure 3.5, by equating the impedances Z1 and Z2 seen at the two 

terminals of the inductance LM/2.  

LM1 LM2

VX α	VX

RM2RM1

VX α	VXLM/2
Z1 Z2 Z1 Z2

 
Figure 3.5: The splitting of a 2-terminal inductance into two single terminal inductances by equating impedances Z1 
and Z2  

The two impedances are derived as:  
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For a complex valued voltage ratio (α), the impedances are complex and can be split into 

inductances and resistances as shown in Figure 3.5, by setting LM1,2=Im[Z1,2]/ω, and 

R1,2=Re[Z1,2]. For a real α, the impedances are imaginary, and the resistances R1,2 reduce to zero. 

In such case, the circuit in Figure 3.4, can be represented by the circuit in Figure 3.6: 
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Figure 3.6: The coupled resonance oscillator’s Pi model broken into two parts for a given voltage ratio α 

3.3.2. The Derivation of the Voltage Ratio (α) 

The voltage ratio has already been given for a general case by equation (3.1) as the ratio of the 

two impedances Z21(s)/Z11(s) of the coupled resonator network. While this expression is valid at 

all frequencies, we are mostly interested in evaluating α at resonance. Since there are two 

resonance frequencies, there are two possible α values for any dual-resonance network.  

The values of α at resonance can be found from the circuit in Figure 3.6 by observing that the 

resonance frequency is the same for every node in the coupled resonator. This indicates that at 

resonance, 2211 '''' CLCL = . Using this equation, and the term 
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For the case where the inductance ratio is 1, the ratio is plotted in Figure 3.7. Note that there will 

always be a positive and negative α values, where the positive value is bounded by 1/k and the 

negative is unbounded. This can create large unwanted swings.   

When considering the special case where the tank is symmetric as before, 1±=α . These two 

cases have been presented in the literature as Odd and Even resonance modes of the coupled 

resonator.  
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Figure 3.7: A plot of the voltage swing ratio at the two nodes of the coupled resonance oscillator as a function of 
the ratio of the resonance frequencies of the two resonators prior to coupling (ζ) for 5 mutual coupling factors (k)   

3.3.3. The Validity of the Real Voltage Ratio (α) Assumption 

The assumption that the voltage ratio (α) is real is justified under infinite quality factor condition. 

In such condition, all impedances in the circuit are imaginary (inductive or capacitive), and 

hence the ratio of the voltages, which in turn is a ratio of impedances, is a real number (α). In 

order to verify this assumption for real circuit components, a Cadence Spectre AC simulations 

were conducted in which the coupled resonator presented in Figure 3.14 was considered.  
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Figure 3.8: The test structure for validating the real voltage ratio (α) assumption 

The first AC simulation computed the phase of voltage ratio (α) over a wide frequency range that 

includes both resonance frequencies. The second AC simulation computed both the magnitude 

and the phase of voltage ratio (α) at only the resonance frequencies. In both simulations the 
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coupling factor k, the quality factor Q and the frequency ratio factor ζ were swept. The results of 

the first simulation are presented in Figure 3.9 and Figure 3.11, and the results of the second 

simulation are presented in Figure 3.10 Figure 3.12, for k=0.5, 0.3 respectively. 

Resonance

  
(a) Q=10 (b) Q=100 

 
(c) Q=1000 

Figure 3.9: The phase of the voltage ratio (α) vs. frequency for Q=10, 100, 1000 and coupling factor k=0.5. Each 
plot considers three frequency ratios  ζ, and the resonance frequencies are marked 
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Figure 3.10: The (a) magnitude and (b) phase of the voltage ratio (α) at resonance vs. frequency ratios  ζ frequency 
for Q=10, 20,100, 1000 and coupling factor k=0.5. The plot marked expression is the plot of the α as derived in 
equation (3.4) 
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(a) Q=10 (b) Q=100 

 
(c) Q=1000 

Figure 3.11: The phase of the voltage ratio (α) vs. frequency for Q=10, 100, 1000 and coupling factor k=0.3. Each 
plot considers three frequency ratios  ζ, and the resonance frequencies are marked  
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Figure 3.12: The (a) magnitude and (b) phase of the voltage ratio (α) at resonance vs. frequency ratios ζ frequency 
for Q=10, 20,100, 1000 and coupling factor k=0.3. The plot marked expression is the plot of the α as derived in 
equation (3.4) 

From the previous simulation, one can conclude that under the high quality factor assumption, 

the expression in equation (3.4) is correct. However, for realistic quality factors of Q in the range 
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of 10 to 20, the assumption of a real α is more accurate (1) for lower resonance mode than the 

higher resonance mode (significantly), (2) for a stronger coupling factor (k), (3) for a higher 

frequency ratio (ζ) in the case of the lower resonance mode and (4) for a lower frequency ratio 

(ζ) in the case of the higher resonance mode. 

Despite the inaccuracies, the circuit cannot be further reduced into a 2nd order network without 

the assumption of a real α.  

3.3.4. Circuit Parameter Scaling and Final Reduction  

The circuit in Figure 3.6 is further reduced by scaling the voltage on both resonance nodes to be equal as 

shown in Figure 3.13.  The voltages on both resonators are set to be equal by scaling the 

impedances to maintain the same currents. This preserves the overall impedance at one of the 

nodes. Given equal voltages, the two terminals can be connected. This simplified second order 

circuit can be used to derive a generalized quality factor parameter as well as startup conditions.  
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Figure 3.13:  The second order resonator representation of the fourth order coupled resonator  

For a symmetric resonator, the overall expression simplifies to that shown in Figure 3.14. This 

corresponds to the Odd and Even modes of resonance. The concept of Odd and Even modes can 

be extended to the circuit in Figure 3.14, by observing that for a positive α>0, the LM terms cancel 

between L1’’ and L2’’, which can be thought of as an even mode. If α<0, the LM terms in L1’’ and 
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L2’’ are equal and they add up, which can be thought of as an odd mode. This is an indication to 

weather currents flow through the original LM’. 
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Figure 3.14: The second order resonator representation of the fourth order symmetric coupled resonator 
(consisting of two identical resonators coupled) 

3.4. The Resonance Frequency of a Dual-Resonance Oscillator 

To verify the validity of the model, and assuming α>0, the resonance frequency is given by: 
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This expression matches that previously derived in (2.12), and combines the result is obtained for 

α<0. This expression is plotted in Figure 3.15.  

The plot normalizes the resonance frequency in the high resonance mode to the higher uncoupled 

resonance frequency, and similarly, normalizes the resonance frequency in the low resonance 

mode to the low uncoupled resonance frequency (ωH/Max[ω1,2], ωL/Min[ω1,2]). The actual high 

to low resonance frequency ratio (ωH/ωL) requires scaling by a factor (ζ). As evident in the plot, 

a symmetric tank with matching initial frequencies (ζ=1) yields the most frequency separation, 
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and consequently achieves the highest maximum frequency in the high frequency resonance 

mode.  

Low	Res.	Mode

High	Res.	Mode

 

Figure 3.15: The ratio of the of the coupled resonator’s resonance frequencies to the uncoupled resonance 
frequency (ω1,2) versus the mutual coupling factors (k)  for a 6 ratios of the uncoupled resonance (ζ= ω2/ ω1).   

3.5. Effective Quality Factor of Dual-Resonance Oscillator  

Given the 2nd order network simplification of the dual resonator, the quality factor of the 

effective resonator can be derived by considering the overall resistance and capacitance at the 

merged node:  
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The parallel tank resistances R1 and R2 are lumped parameters, derived from the inductor’s and 

capacitor’s parasitic series resistances. The impact of dual-resonance on the overall quality factor 

depends on whether the capacitance or the inductance dominates the quality factor of the 

uncoupled resonators. To clarify, a symmetric dual-resonance network can be considered. For 

the symmetric case, the quality factors are given by: 
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⎠

⎞
⎜
⎝

⎛=ω  (3.8) 
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Where R1=R2=R is the parallel resistance of the dual resonator, derived after coupling. And 

C=C1=C2 is the capacitance of the uncoupled resonator. R is therefore the parallel combination 

of the capacitor’s effective parallel resistance, and the coupled inductor’s effective parallel 

resistance. As shown in Figure 3.16, the coupled inductor’s effective parallel resistance 

corresponds to the quality factor of the coupled inductor L’’ and not the uncoupled inductor L. 

Since the resistance RLS remains unchanged, and the effective inductance L’’ is (1 ± k) L as given 

by Figure 3.14. , the quality factor of the coupled inductor (QL’’) equals (1 ± k) QL. The quality 

factor of the capacitor remains unchanged. The overall quality factor is given by the parallel 

combination of the two.  

LC CL

VX ±	VX

RLsRCs RLs RCs

L''C CL''

VX ±	VX

RLsRCs RLs RCs

LC CL

VX ±	VX

RR

k

 
Figure 3.16: The derivation of the lumped parallel resistance R of a symmetric coupled resonator from the parasitic 
series resistance of the inductors and capacitors. 

This indicates that at lower frequencies where the inductance quality factor dominates, dual-

resonance leads to a boost of the quality factor of one resonance mode, at the expense of the 

dropping of the quality factor in the other, for a symmetric resonator’s case. While at higher 

(mm-wave frequencies), where the quality factor of the capacitance dominates, this impact is 

reduced and the coupled quality factor of a symmetric coupled resonator approaches that of the 

uncoupled one.  

A quality factor expression is derived for a non-symmetric coupled resonator where (1) quality 

factor dominated by inductance Q, (2) the coupled inductors are symmetric (L1=L2 =L and 
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QL1=QL2 =QL) and (3) The tuning capacitors are different, and α depends on the ratio of the 

tuning capacitors. In this case, the parallel resistances R1 and R2 are given by:  

11
1

1
1 ''''

LQL
L
LR ω≈  22

2

2
2 ''''' LQL

L
LR ω≈  (3.9) 

Where QL1 and QL2 are the quality factor of the uncoupled inductors. The quality factor is 

therefore given by the expression:  

( ) ( )
( )( ) LLH Q

kk
kkQ 222

2

, 141
)1(11
ααα

α
+++−

±
=

!!   (3.10) 

To appreciate the result, consider the plot in Figure 3.17. A ratio QR equal to QH,L/QL is plotted 

against the swept frequency ratio ζ. The value α is implicitly derived as in (3.5) and Figure 3.7. It 

can be seen that for low coupling ratio a symmetrical resonator can achieve equal Quality factors 

in the coupled resonator modes which are close to the original QL of the uncoupled resonator.  

As coupling factor increases, an enhancement of the quality factor of one resonance mode (low 

frequency, even mode), comes at the cost of degradation in the quality factor in the other mode. 

This has been considered in the literature and designs that employ capacitive as well as inductive 

coupling were suggested[7][13]. However, this can be similarly achieved by creating imbalance 

in the resonance frequency ratio (ζ).    

It is important to note that this imbalance in resonance frequency ratio results in unequal voltage 

magnitudes at the two resonance nodes. It also results in a reduction in the frequency separation 

between the high and low resonance modes for the same coupling factor (k).  

Even if such imbalance was created, in order to equate the quality factors in the two resonance 

modes, the resulting quality factor will always be less than that of the original quality factor of 

the uncoupled inductor.  
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Equal	QR	Trend	line

 

Figure 3.17: The ratio of the quality factor of a coupled resonator consisting of two identical inductors tuned 
differently (ζ) to the original quality factor of the inductors when the coupled resonator’s quality factor is 
dominated by that of the inductors 

3.6. Startup Condition of the Dual-Resonance Oscillator 

Based on the previous analysis, and using equation (2.20), the startup condition is: 

 
21

2
1

1 ||][
RR

RRGSignG MPMN

−+
>+

α
α   (3.11) 

 Where R1, R2 are defined for the tank whose Q is inductance dominated as before in equation 

(3.9). For a symmetric dual resonance tank, this simplifies to: 

R
GSignG MPMN

2][ >+ α   (3.12) 

The startup condition of the dual-resonance circuit can also be derived using both Nyquist and 

root locus methods as summarized in (2.26). Firstly, the overall circuit is broken into two circuits 

that can be linearly superposed as shown in Figure 3.18. 
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(a)  (b)  

Figure 3.18: Decomposing the dual-resonance oscillator into two circuits that can be linearly superposed, namely: 
(a)the two terminal negative feedback loop and  (b) the single terminal negative gm loop 

Oscillation is achieved if either of the two loops meets the oscillation condition. These two 

circuits can be described by their feedback system representations in Figure 3.19 where the Z 

parameters are given by the:  
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Figure 3.19: System representation of the linear decomposition where the Z-parameters (Z11,Z21) are described in 
Figure 3.2 
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3.6.1. Nyquist Criterion and Root Locus Method 

Based on the theory summarized in section 2.4.5, and with reference to the Z-parameters 

presented in equation (3.13), the startup condition can be given by the combination of GM and ω 

at resonance. Since both Nyquist and Root Locus yield the same set of equations, given the 

restrictions defined in section 2.4, the analysis is combined.  

The resonance frequency (ω) and the required GM for startup of the GMP, Z21 loop are given by 

the following equations: 

 
Root Locus Nyquist Criterion 
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Root Locus Nyquist Criterion 

(3.15) 
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Under high quality factor approximation, equation (3.15) reduces to (3.6).  Similarly, the 

resonance frequency (ω) and the required GM for startup the startup of the GMN, Z11 loop is given 

by the following equations: 

 
Root Locus Nyquist Criterion 
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Root Locus Nyquist Criterion 

(3.17) 
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One can apply the previous equations to the symmetric tank, with frequencies derived with a high quality 

factor approximation. The startup conditions are:  
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Since GMN is always positive, equation (3.19) indicates that resonance can be achieved using the 

GMN , Z11 loop regardless of the resonance frequency. This could theoretically lead to the 

presence of multiple resonances at the same time.  

On the other hand, GMP can be positive or negative. Equation (3.18) indicates that resonance can 

be achieved using the GMP, Z21 loop for two values of GMP> 2/R, and GMP<-2/R. These two 

startup-conditions correspond to two different frequencies, where a positive GMP corresponds to 

the high frequency resonance mode and the negative GMP corresponds to the low frequency 

resonance mode. Since α=1 for the high frequency resonance mode and α=-1 for the low 

frequency resonance mode, the same startup condition can be expressed as 
R

GSign MP
2)( >α

which corresponds to equation (3.12). The sign of GMP is used as to select the resonance-mode.  

3.7. Phase Noise of the Dual-Mode Resonance Oscillator (high resonance mode) 

The Impulse sensitivity is evaluated, similar to the analysis performed on the LC-tank oscillator 

in Chapter 2.5.6. Consider the dual resonance circuit shown in Figure 3.20. For the sake of 
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simplicity and using an argument of symmetry, only the noises from the half circuit are 

considered. One should note that since this test circuit relies on a fixed parallel resistance (RP), it 

resembles the case where the quality factor of the tank is dominated by the capacitance, and 

doesn’t account for the impact on quality factor which was captured (3.10), which will be 

considered later.  

K=0.3

L=400pH
C=631.5fF
RP=377.5Ω

inQ1

inT1

inD1

ITAIL=2mA

16µm/
0.06µm

VOUT+VOUT-

M1M0

L=400pH
C=631.5fF
RP=377.5Ω

inQ2

inT2

inD2

ITAIL=2mA

VOUT+

M2 M3
16µm/
0.06µm

16µm/
0.06µm

16µm/
0.06µm

 
Figure 3.20: Dual resonance cross coupled LC-oscillator schematic in high resonance mode with noise sources of 
interest highlighted (inQ1, inD1, inT1, inQ2, inD2, inT2)  



73 
 

(a)

(b)

(c)  
Figure 3.21: (a) The normalize output voltage waveform and the Impulse sensitivity function of the output phase to 
noise injected at the noise sources  indicated in Figure 3.20 , (b) the normalized drain current of the transistor M0 
and (c) the corresponding transconductance gm   
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The inductance, capacitance and parasitic resistance, as well as the transistors were sized 

similarly to those in Figure 2.18 to compare the performance of the dual resonance oscillator to 

the LC-tank oscillator. The ISF plots for the circuit in Figure 3.20 are presented in Figure 3.21. As 

can be seen in the figure, the ISF for the tanks are 

(1) The tanks noise ISFs (ГinQ1,2) are approximately a sinusoid with amplitude equal to 1 and 

a phase offset of π/4 from the output voltage waveform with half the amplitude of that of the LC-

tank oscillator. This result is expected based on equation (2.38) for n=2.  

(2) The transistors noise ISFs (ГinD1,2) behave the same as that of the LC-tank oscillator 

scaled by the factor ½ similar to ГinQ1,2.  

(3) The differential transistor noise ISF (ГinDΔ1,2) given by the difference between the two 

ISFs from transistors M0 and M1 for ГinDΔ1, and transistors M2 and M3 for ГinDΔ2 are equal to the 

tank noise ISFs (ГinQ1,2).  

(4) The effective transistor noise ISF (ГinDEFF1,2) which captures the impact of the 

cyclostationary noise from the transistors are the same as those of the LC-tank scaled by a factor 

of ½. The transconductance and drain current of the transistors are the same of the LC tank. Note 

that in order to maintain the same output swing twice the current was used in the dual-resonance 

circuit as that in the basic LC-tank. Since the output voltage is the tail current for each 

differential pair is the same as that of the LC-tank, the overall transconductance is expected to 

remain the same.   

(5) The tail current noise ISF (ГinT1,2) behave the same as that of the LC-tank oscillator 

scaled by the factor ½ similar to all other ISFs. 
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3.7.1. The 2nd Order Simplification of the test circuit 

The dual resonance circuit can be simplified according to the theory discussed in Chapter 3.3. 

While the analysis was intended for a small signal linear model of the circuit, it can be loosely 

extended to the circuit schematic with non-linear elements such as transistors, as long as the 

describing functions of the nonlinear blocks is maintained. For this analysis to be strict, one 

should consider the different parasitic capacitance of transistors at the two oscillating nodes. If 

the parasitic capacitance is ignored, the resulting reduction of the circuit in Figure 3.20 is shown 

in Figure 3.22. 

L=½ (1+0.3β )400pH
C=2× 631.5fF
RP=½ 377.5Ω

ITAIL=4mA

32µm/
0.06µm

VOUT+VOUT-

M1M0

VOUT+

32µm/
0.06µm

 
Figure 3.22: Reduced model of the dual-resonance cross coupled LC-oscillator schematic 

Based on the circuit in Figure 3.22, the following is the expected performance of dual-resonance 

circuit in the high resonance mode (β=-1) compared to the LC-tank circuit in Figure 2.18:  

(1) The resonance frequency is √1.42⋅. 

(2) The amplitude is the same (2⋅ the bias current and ½⋅ the tank resistance). 

(3) The phase noise is ½⋅ (2⋅ the tank capacitance and ½⋅ the tank resistance). 
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3.7.2. Phase noise simulation results  

 
Figure 3.23: Phase noise plots for circuit shown in  Figure 3.20 

 The phase noise is obtained from the ISF functions according to equation (2.34) and plotted in 

Figure 2.23. The plots use the same legend as was previously described in Chapter 2.5.6. The 

results are further tabulated for offset frequencies 10 kHz and 1 MHz in Table 4. 

Table 4: Phase noise evaluated for the LC-tank at 10kHz, 1MHz for a number of cases for dual-resonance circuit 
  Settings Noise 

Source 
PN@10kHz 

dBc/Hz 
PN@1MHz 

dBc/Hz 

PN1  Expression (2.50) (Hand calculation) Thermal -75.575 -115.575 
PN2 Expression (2.49) (simulated oscillation amplitude) Thermal -74.482 -114.482 
PN3 Expression (2.34) (simulated GM and ISF) Thermal -73.831 -113.831 
PN4 Simulated PSS+PNOISE - ideal tail current  Thermal -74.141 -114.139 
PN5 Simulated PSS+PNOISE - ideal tail current Thermal+1/f -71.891 -114.081 
PN6PMOS Simulated PSS+PNOISE - PMOS bias current source Thermal+1/f -56.755 -111.621 
PN6NMOS Simulated PSS+PNOISE - NMOS bias current source Thermal+1/f -68.257 -113.772 
PN7 Simulated 2nd order simplification - ideal tail current Thermal -74.432 -114.793 
     

The simulation results agree with the expectations based on the reduced circuit model in this 

resonance mode.     
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3.8. Phase Noise of the Dual-Mode Resonance Oscillator (low resonance mode) 

The Impulse sensitivity is evaluated, similar to the analysis performed on the LC-tank oscillator 

in Chapter 2.5.6 for the dual-resonance oscillator operating in the lower resonance mode for the 

circuit shown in Figure 3.24.  

K=0.3

L=400pH
C=631.5fF
RP=377.5Ω

inQ1

inT1

inD1
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0.06µm
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RP=377.5Ω
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M2 M3
16µm/
0.06µm

16µm/
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Figure 3.24: Dual resonance cross coupled LC-oscillator schematic in low resonance mode with noise sources of 
interest highlighted (inQ1, inD1, inT1, inQ2, inD2, inT2)  

Similar to the high resonance mode, the circuit can be reduced to the LC-tank circuit in Figure 

3.24, where β=1 for the low resonance mode.  Consequently, the performance of the dual-

resonance oscillator compared to the LC-tank circuit in Figure 2.18:  

(1) The resonance frequency is √0.77⋅. 

(2) The amplitude is the same (2⋅ the bias current and ½⋅ the tank resistance). 

(3) The phase noise is ½⋅ (2⋅ the tank capacitance and ½⋅ the tank resistance). 
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The voltage waveforms and ISFs are depicted in Figure 3.25, while the phase noise is depicted in 

Figure 3.26 and Table 5.  

 
Figure 3.25: The normalize output voltage waveform and the Impulse sensitivity function of the output phase to 
noise injected at the noise sources  indicated in Figure 3.24 

  

 
Figure 3.26: Phase noise plots for circuit shown in Figure 3.24 
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Table 5: Phase noise evaluated for the LC-tank at 10kHz, 1MHz for a number of cases for dual-resonance circuit 
  Settings Noise 

Sources 
PN@10kHz 

dBc/Hz 
PN@1MHz 

dBc/Hz 

PN1 Expression (2.50) (Hand calculation) Thermal -75.575 -115.575 
PN2 Expression (2.49) (simulated oscillation amplitude) Thermal -75.097 -115.097 
PN3 Expression (2.34) (simulated GM and ISF) Thermal -74.205 -114.205 
PN4 Simulated PSS+PNOISE - ideal tail current  Thermal -74.525 -114.523 
PN5 Simulated PSS+PNOISE - ideal tail current Thermal+1/f -73.179 -114.485 
PN6PMOS Simulated PSS+PNOISE - PMOS bias current source Thermal+1/f -61.964 -113.273 
PN6NMOS Simulated PSS+PNOISE - NMOS bias current source Thermal+1/f -70.657 -114.242 
PN7 Simulated 2nd order simplification - ideal tail current Thermal -74.459 -114.456 
     

3.9. Phase Noise of the Dual-Mode Resonance Oscillator Summary 

The simulation results in both high and low resonance modes of the dual-resonance oscillator 

agree with the reduced order model under the condition that the describing functions of the non-

linear elements in the circuit can be maintained. That effectively requires consuming twice as 

much current as a single oscillator, with the advantage of keeping the same voltage swing and 

halving the phase noise.  

Therefore, the phase noise per power consumed ratio of the dual resonance oscillator is the same 

as that of a basic LC-tank oscillator. However, the maximum allowable power (limited by 

Voltage) swing is twice as large as that of the LC-tank oscillator. This is only the case under the 

assumption that the circuit is to be operated at maximum allowable voltage swing (edge of 

current limited regime). For example, if the dual-resonance circuit is to be operated at the same 

current consumption as the original LC-tank VCO, the phase noise of the dual-resonance VCO is 

2⋅ that of the LC-tank. This is due to the fact that phase noise scales with the total DC bias 

current (IDC) as approximately 1/IDC
2. To summarize, for a fixed DC power, the basic LC-tank 

has a better phase noise to power ratio, however, for a fixed maximum output swing, both VCOs 
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have the same phase noise to power ratio, and the dual-resonance oscillator has a lower phase 

noise. This is the general case for power combining oscillators.   

This result assumes that the parallel tank resistance (RP) remains unchanged in both modes and 

the quality factor of the tank remains unchanged at a given frequency. However, equation (3.10) 

indicate that the quality factor of the dual-resonance tank scales at a given frequency if its 

dominated by quality factor of the inductors. Equation (2.49) is rewritten as:  
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Equation (3.20) is evaluated for the basic LC-tank VCO and for the dual-resonance VCO 

constructed by combining two LC-tank VCOs, where each tank consists of a parallel 

Capacitance (CU) and inductance (LU) and their series resistances RCS and RLS, as it was done in 

sections 3.7 and 3.8 where: 

1) Quality factor of capacitors dominate QC=1/(ω RCS CU) 

2) Quality factor of inductors dominate QL= ω LU / RLS 
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For the symmetric dual-resonance oscillator, created using two symmetric LC-tank oscillators 

whose oscillation frequency is ωLC, and resonators quality factor QLC, the equation in (3.21) 

simplifies to:  
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QC or QL dominant 
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(3.22) 

This result indicates that, in the case of a symmetric dual-resonator, regardless of whether the 

quality factor of the inductor or the capacitor dominates, the dual-resonance phase noise and 

resonance frequency will be 1/2(1±k)3⋅ and 1/√(1±k)⋅ that of the uncoupled resonator 

respectively.  

In order to test this result, two LC-tank VCOs were constructed: (1) series inductor (L1), 

resistance (RLS) in parallel with capacitance (C1) and (2) series capacitor (C2), resistance (RCS) in 

parallel with inductance (C2). For the first VCO, L1=400 pH and RLS was set to give an inductor 

quality factor of 15 at 10GHz. Due to parasitic capacitance, and the impact of Q, the effective 

resonance frequency shifted to 9.83GHz, and the effective quality factor (QL) at resonance was 

14.75.  

For the second VCO, and in order to match the resonance frequency and quality factor with the 

first VCO, L2 was set to (1+QL
2)/ QL

2 L1, and QC=ωRES (1+QL
2) RSL C1 = (C1 /CT) QL=14.3, 

where CT is the total load capacitance including the parasitic capacitance. Additionally, the 

capacitance C2 = ((1+ QC
2) / QC

2) C1 and the resistance RSC = ((1+ QL
2) / (1+ QC

2)) RSL. 

The two VCOs are combined similar to the circuits presented in Figure 3.20 Figure 3.24 to 

produce the high and low resonance modes. The simulation is conducted using ideal bias current 

sources and thermal noise only. The result is presented in Figure 3.27 and Table 6. 
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Figure 3.27: Phase noise comparison of the capacitor quality factor dominated resonator (PNRSC) and the 
inductance quality factor dominated resonator (PNRSL) in single LC-tank VCO and dual mode resonance in high 
frequency mode (DRH) and low frequency mode (DRL) 

Table 6: Phase noise evaluated for inductor and capacitor quality factor dominated LC-tank, low and high mode 
dual-resonance VCOs at 1MHz 

  Tank Dual Resonance PN@1MHz 
dBc/Hz 

Calculated  Calculated 
(V0 from Sim) 

Simulated 

PNRSL (L1 + RSL)//C1 None -112.086 -111.305 -110.839 
PNRSC L2//(C2 + RSC) None -112.086 -111.337 -111.001 
PNDRH,RSL (L1 + RSL)//C1 Hi-res mode (k=0.3) -110.449 -105.267 -104.79 
PNDRH.RSL L2//(C2 + RSC) Hi-res mode (k=0.3) -110.449 -105.686 -105.335 
PNDRL,RSL (L1 + RSL)//C1 Lo-res mode (k=0.3) -118.515 -118.309 -117.808 
PNDRL.RSL L2//(C2 + RSC) Lo-res mode (k=0.3) -118.515 -118.333 -117.872 

  

The results overall match the prediction that the phase noise will depend on the oscillation mode 

in a real tank modeled by series resistances, and that the dependence is the same if the quality 

factor is capacitor dominated or inductor dominated. The main discrepancy is between calculated 

and simulated results for the high resonance mode, which are matched more accurately by using 

the output voltage swing from simulation. This is due to lowered output swing that changes Iω0 

and changes the nonlinear GM from current switching to almost linear operation.   
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Chapter 4 
4. THE RESONANCE TANK PASSIVES AND PHASE CHANGE 

SWITCHING 
4.1. Introduction 

This section introduces the different VCO tuning methods and compares their impact on the 

tank’s quality factor and hence phase noise. Consider a tank comprising a varactor, a switched 

capacitor array and a fixed inductor, as shown in Figure 4.2. An expression for the quality factor 

of a switched capacitor arrays is first derived. This analysis is then employed to compare the 

impact of alternative tuning methods, including switched inductance, dual-mode resonance and 

PC switched capacitors.  

4.2. The Inductor 

Assuming that QTANK is dominated by the inductor’s quality factor (QL), the term [ ]LQTANK 0
3 ω can 

be replaced by [ ]LQL 0
3 ω . Based on simulation results in a 65 nm CMOS process, the [ ]LQL 0

3 ω  

term is evaluated for a number of inductor configurations corresponding to oscillators optimized 

to operate at a range of resonant frequencies. Figure 4.1(a) depicts the maximum [ ]LQL 0
3 ω  for 

each inductor plotted against the frequency that yields the maximum QL. As can be seen in the 

figure, for a 2 turn inductor which is optimal for use at frequencies below 15 GHz, the [ ]LQL 0
3 ω  

term drops with frequency while a 1 turn inductor which is optimal for use at frequencies above 

15 GHz , the [ ]LQL 0
3 ω increases with frequency. The resulting phase noise dependence on 

resonant frequency is given by the term [ ]LQL 0
3

0 / ωω  is depicted in Figure 4.1 (b). Overall, the 

phase noise increases with frequency. However, the rate of this increase drops at higher 
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frequency when single turn inductor configurations are utilized as long as the tank’s QTANK is 

dominated by the inductor’s QL. 

1	Turn	Inductor2	Turn	Inductor

1	Turn	Inductor

2	Turn	Inductor

 
(a) (b) 

Figure 4.1: (a) Maximum QL
3 (ω0)L for a number of inductor configurations in the 65 nm CMOS process 

normalized and plotted against the maximum QL frequency and (b) The normalized phase noise term  ω0/QL
3 (ω0) L 

plotted against the resonant frequency (ω0) 

4.3. The Tuned Capacitor 

A cross-coupled LC VCO can be tuned by changing the inductance and/or the capacitance. 

Varactors can be used for continuous tuning, whiles switched inductors and switched capacitors 

can be used for discrete tuning. Coupled resonators which employ magnetic coupling (using 

transformers) or electrical coupling (using capacitors) can be used instead, and enable dual 

resonance modes. By appropriate design, the VCO can be programmed to oscillate in only one of 

the two modes. One way to switch between the two modes is to change the polarity of the 

transformer coupling factor (k). 

CU

x	N
VCTRL

Inductance Switched	Cap. Varactor

CVMIN-CVMAXCU
L CF

 
Figure 4.2:  A basic LC tank that consists of a fixed inductor (L), a tuning varactor with capacitance ranging from 
CVMIN to CVMAX  and a switched capacitor array consisting of N identical instances of equal unit capacitance (CU) 
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4.4. Basic LC Tank Design  

The LC tank shown in Figure 4.2 uses capacitive tuning only. While the varactor allows for 

continuous tuning, it suffers from low quality factors. Additionally, the voltage dependence of 

the C-V characteristic converts amplitude noise into phase noise [25]. The maximum to 

minimum capacitance ratio of the varactor is fixed and independent of the quality factor. While 

the varactor cannot be eliminated in most applications, its capacitance should be minimized. If 

the varactor capacitance is much smaller than the switched capacitor array, the switched 

capacitor array dominates the quality factor, since the quality factor of two parallel capacitors is:  

( )21
2

2

1

1 // CC
C
Q

C
QQ

P
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

(4.1) 

The operator ‘//’ refers to the parallel combination. To guarantee continuous frequency tuning, 

the unit capacitance (CU) has to be smaller than the varactor’s tuning capacitance CVMAX-CVMIN. 

The analysis from this point onwards will only consider the switched capacitor array’s quality 

factor.  

CU

x	m

Fixed	cap.

CF

CU

ON	branches

CU

x	(N-m)

CU

OFF	branches

CU
x	m

Fixed	cap.

CF

CU

ON	branches

CU
x	(N-m)

CU

OFF	branches

RON RON
CP CP

=Cu/β	

 
(a) (b) 

Figure 4.3: (a) Switched capacitor array with parasitic fixed capacitance (CF),  m On branches and  N-m Off 
branches of unit capacitance (CU) and (b) The equivalent model of the switched capacitor array with CMOS switch 
parasitic on-resistance (RON) and off-capacitance (CP) considered 

Nanoscale CMOS technologies feature high quality factor capacitors (>100 at mm-wave 

frequencies) with acceptable density. Such capacitors, switched using MOS switches as depicted 

in Figure 4.3 (a), can be employed to obtain discrete (switched) tuning. However, the quality 

factor of such a capacitor array is inversely proportional to the tuning range (TR).   
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In order to understand the tradeoff between tuning range and quality factor, consider the model 

in Figure 4.3 (b) .The model comprises N unit capacitor (CU) and CMOS switches, of which m 

branches are switched on. The MOS switches are modeled by their on-resistance (RON) in the ON 

state and by their parasitic capacitances (CP) in the OFF state, respectively. Qualitatively, in 

order to obtain a larger tuning range, a large ratio (β) between the maximum capacitance (all 

CMOS switches on) to the minimum capacitance (all CMOS switches off) is required. To obtain 

a large β, a wide MOS device is necessary, which is accompanied by a large (CP). Conversely, 

choosing a switch with lower widths increases the RON and degrades the quality factor. The 

relationship between CP and RON for a CMOS device with dimension W/Ln can be expressed as 

follows:  

LnWCCC PU
U

P ××=
−

=
1β

    ,      
( )

U

PU
ON C

LnC
W
LnR

21−
==

β
κκ  (4.2) 

where CPU is the unit parasitic capacitance and κ is the on-resistance per square of the CMOS 

switch. A smaller β is therefore desirable.  

χN=0.2

χN=0.0

χN=0.4
χN=0.6

χN=0.1

 
Figure 4.4: Tuning range as a function of the switched capacitor array’s β(the ratio of max to min tuning 
capacitances) at a range of χN values (the ratio of the fixed capacitance to the total capacitance) 
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In the presence of a fixed capacitance (CF), a larger β is required to obtain the same tuning range. 

The fixed capacitance can arise from parasitic capacitance of passive/active devices in the 

oscillator, parasitic capacitance from the inductor in the tank, varactors, and capacitors switched 

using “ideal” (e.g., PC) switches. .  The tuning range can be expressed in terms of β and CF as 

follows: 

( )11 −+
=

βχ
β

N

TR      ,   
FU

F
N CNC

C
+

=χ  (4.3) 

where χN is the ratio of the fixed capacitance to the maximum total capacitance of the tank. This 

relationship can be better understood by plotting it in Figure 4.4. The figure indicates that as χN 

(i.e. CF) increases, a much larger β is required to meet the same tuning range. The figure also 

indicates that for a given χN, a tuning range greater than Nχ/1  cannot be obtained. Since a 

smaller β  value is desirable, the design can:  

a) Use a smaller inductor value to accommodate a larger tuning capacitor. 

b) Tightly control the parasitic capacitance.  

c) Cancel the parasitic capacitance by introducing negative capacitance[26],[15]. 

d) Reduce the CMOS switched capacitor array’s tuning range by using alternative tuning 

methods.   

4.5. Quality Factor of the CMOS Switched Capacitor Array 

A closed form expression for the quality factor of the CMOS switched capacitor array depicted 

in Figure 4.4 is derived. The switched capacitor array is designed to meet a tuning range (TR), a 

minimum resonant frequency (ωMIN), and has a fixed to maximum total capacitance ratio (χN). 

The normalized resonant frequency ωR (defined below) is depends on the number of on-branches 

(m). The quality factor of the switch capacitor array is given by: 
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Equation (4.4) can be divided into three terms (A, B, C). Term A is a technology dependent and is 

limited by the minimum available transistor length. Term B is inversely proportional to the 

minimum resonant frequency and is process independent. Technology-dependent fixed parasitic 

capacitance across the tank causes χN  to be process dependent; however, if this is ignored, then 

term C also becomes process independent. Term C is plotted in Figure 4.5 against the normalized 

frequency for several target tuning ranges. As can be seen in Figure 4.5, the quality factor of the 

CMOS switched capacitor array can be vastly improved by reducing its tuning range. This tuning 

range reduction can be achieved by using other tuning methods to perform coarse tuning and 

using switch capacitor arrays to perform the fine tuning. A number of alternative tuning methods 

are introduced and discussed in the next sub-section, and their impact on the switched capacitor 

array’s quality factor is discussed in the final sub-section. 

TR=2

TR=21/4

TR=21/2

 
Figure 4.5: Normalized quality factor  as a function of normalized resonant frequency (ωR), as tuning range (TR) 
and fixed to maximum total capacitance ratio (χN) are varied. 
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4.6. Phase Change Switching 

Compared to MOS switches, PC switches have much lower capacitance for the same RON, and 

therefore, have much higher bandwidth (ωBW=1/(RONCP)). Therefore, PC switches are well-suited 

to switching between different sub-bands, with CMOS switched capacitors used for discrete 

tuning within each sub-band.  

PC	Switch

CUPC

	Equivalent	Model

CUPC

RON/ROFF CP

 

ON

OFF
R R

RC =

 
( )PONBW CR/1=ω  

Figure 4.6: Phase-changed switched capacitor branch and its circuit model. 

A single PC switch is used to switch between two sub-bands, whose total tuning range is TR0, 

with no overlap. In each sub-band, CMOS switched capacitive tuning is used to sweep the 

frequency. Ideally, a PC switched capacitor can switch between an arbitrarily large capacitance 

CUPC and a small capacitance, which is approximately equal to its parasitic capacitance CP, while 

maintaining a high quality factor in both cases. In practice, a real PC switch has a small, but non-

zero RON, and a large, but non-infinite ROFF. The effective capacitance and quality factor of the 

PC-switched capacitor branch shown in Figure 4.6 is:  
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(4.5) 

In order to get the maximum quality factor improvement from using the PC switched capacitor, 

the On/Off QEFF has to be greater than the minimum CMOS switched capacitor array’s quality 
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factor in the On/Off sub-band. Using this condition, the required QPC, ωBW and CR are 

determined.  

In order to determine the minimum CMOS switched capacitor array’s quality factor in each sub-

band, the tuning ranges (TRL,H) and fixed capacitance ratios (χNL,H) in both sub-bands has to be 

determined. Assuming the original CMOS switched capacitor array was used to switch between 

two capacitances CMAX = NCU and CMIN=CMAX/β, the modified CMOS switched capacitor array’s 

C’MAX and C’MIN and the corresponding CPU are:  

PMINMIN CCC −='  

P
MINMAX

MAX CCCC −
+

=
2

'  

P
MINMAX

UPC CCCC +
−

=
2

 
(4.6) 

The Corresponding tuning range in lower sub-band is  )+TR/(TRTRL
2
0

2
0 12= , and in the upper 

sub-band is  )/+TR(TRH 21 2
0= .The corresponding χNL,H for a given original χN0 are: 
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4.7. Alternative Tuning Methods’ Impact on CMOS Switched Capacitive Tuning 

Since different alternative tuning methods result in different tuning ranges in the resulting sub-

bands and different χN values, their impact on the modified CMOS switched capacitor circuit’s 

quality factor varies. Figure 4.7 shows the normalize quality factors before and after applying the 

alternative tuning method for the three tuning methods.  
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Table 7: Impact of alternative tuning methods on CMOS switched capacitive tuning parameters 
Original Term 0TR  0Nχ  Effective L 

Dual Resonance  TRTR LH 0, =  
00 NTR χ×  L (L(1+k), L(1-k) ) 

Inductance Increase  TRTR LH 0, =  00 NTR χ×  L , 2L 

Inductance decrease  TRTR LH 0, =  
0Nχ  L, L/2 

PC switching  )+TR/(TRTRL
2
0

2
0 12=  

 )/+TR(TRH 21 2
0=  

See Eq. (4.7) 
 
L 

 

 
(a) (b) 

 
(c) 

Figure 4.7: Normalized quality factor (Terms B⋅C) demonstrating Q improvement from (a) TR reduction (χN=0.1) , 
(b) TR reduction with χN scaled by a factor of (TRORIGINAL/TRFINAL)2 (χN:0.1à 0.2) and (c) TR reduction associate 
with P-C switch (χN=0.1 à [0.2,0.5] for [high, low] sub-bands respectively) 

It is worth noting that equation (4.4) does not consider the off quality factor of the switched 

capacitor, dominated by the quality factor of the capacitors used. Consequently, the plotted 
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quality factors in Figure 4.7 approach infinity as ωR approaches TR. In a more accurate model, it 

should approach the quality factor of a single unit capacitance, a value that is inversely 

proportional to frequency. 

To compare the improvement in CMOS switched capacitor quality factor based on the different 

alternative tuning methods, Figure 4.8 shows the quality factor improvement (2 sub-bands 

Q/Original Q) evaluated at the minimum quality factor frequency in the two resulting sub-bands. 

As the figure shows, if the switch used to switch inductors does not impact its quality factor, one 

should use switching inductance and dual mode resonance as the most coarse tuning method, 

followed by switching inductance to a larger value and finally P-C capacitor switching.  

Mode	Switching

L	↓

L↑

P-C	Cap	Switching

 

Mode	Switching

L	↓

L↑

P-C	Cap	Switching

 
(a) (b) 

Figure 4.8: Improvement in CMOS switched capacitor tank’s minimum quality factor as a function of tuning range 
(χNORIG= 0.1) 
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Chapter 5 
5. CIRCUIT DESIGN AND SIMULATIONS 

5.1. Introduction  

This chapter presents the two proposed QVCOs with device and bias current sizes, along with a 

set of phase noise simulations covering the full tuning range for each circuit. The simulations 

study the impact of a number of layout parasitics by adding significant parasitics gradually and 

observing their impact on resonance frequency (tuning range) and phase noise. 

5.2. Active QVCO Circuit and Simulations 

5.2.1. Circuit Overview 

The active QVCO consists of two dual-resonance circuits coupled as shown in Figure 5.1. The 

device sizes have been specified on the schematic. Mode switching is achieved as discussed 

earlier by controlling the sign of the GM transconductance. This is achieved by the two parallel 

differential GM cells which are controlled by the Sel’ digital control signal.  

GMN ±	GMP

±	GMP GMN

C C

CC

GMC GMC

16/0.06µm 16/0.06µm

16/0.06µm

8/0.06µm8/0.06µm

16/0.06µmk

k

W/L µm
IB

IB/2

W/L µm W/L µm

GMN/C

IB/2

W/L µm
IB

IB/2

W/L µm W/L µm

Sel=Sign[GMP]

GMP

Sel Sel

IB/2

 
Figure 5.1: Active quadrature voltage controlled oscillator architectures with dual resonance mode coupled 
resonator tanks  
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The bias currents are generated and controlled by a PMOS bias circuit that was laid out as a 

single unit to ensure current ratio matching despite process mismatches. PMOS devices were 

used due to their lower flicker noise, in order to minimize the overall phase noise of the circuit. 

The bias circuit topology and current ratios are depicted in Figure 5.2. 

Q-Bias

10xUnit10xUnit 1xUnit

IB GMNQ IB GMCQIB GMPQ
IREF

0.6mA – 2mA

Unit=4/0.4 µm

4xUnit 10xUnit10xUnit 1xUnit

IB GMNI IB GMCIIB GMPI

I-Bias

 
Figure 5.2: Circuit schematic of the PMOS current mirror used for the biasing of the VCO 

5.2.2. Transformer Design 

Both dual-resonance cores utilize the same transformer architecture. The layout of this 

transformer is shown in Figure 5.3. It consists of two center tapped inductors which are arranged 

in a manner to allow for access to both transformers from the same side. The transformer is 

310µm x 210µm in size. This is less than a 1/3rd larger than the area of a single such inductor. A 

single turn inductor was used based on the simulation on the Q3L parameter at this frequency. 

The inductance, coupling and differential quality factors are shown in Figure 5.17. 
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210 	µm

310	µm

 
Figure 5.3: Mutual inductor layout and dimensions  

The mutual inductor is a complex structure which can be best captured by the lumped element 

model such as that shown in Figure 5.4. The model elements represent actual circuit elements. 

CSUB and RSUB represent the resistance and capacitance due to the substrate, while Cox represents 

the oxide capacitance. CM represents the capacitance between the two inductors in the 

transformer, while C represents the self capacitance of each inductor. L, and R and k represent 

the inductance, resistance and coupling between the two coils.  

L2 L1
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Figure 5.4: Lumped element model of integrated circuit mutual inductor 
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L2/2 L1/2
k

RLs2/2 RLs1/2

 
Figure 5.5: Half circuit of reduced center-tapped mutual inductor model  

While it is advantageous to construct such model, one can attempt to use data collected 

differentially to fit parameters into the simpler half circuit model in Figure 5.5.  

The inductor layout was created using Cadence LayoutXL, and Integrand Software EMX EM 

simulator was used to extract the S-parameters from the layout. The resulting S-parameters are 

used to create a 4-port element whose voltage/current equations are defined by equations 

interpolated from the EM simulation. The model is simulated using Cadence SpectreRF S-

parameters simulations to obtain a set of Z/Y-parameters. This can be done using either a single-

ended driven or a differential driven test bench as shown in Figure 5.6.  
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(a) (b) 

Figure 5.6: (a) Single-ended and (b) differentially driven mutual inductor 

The circuit parameters L, R and k can be readily obtained from the 2-port Z-parameter matrix 

derived from the S-parameter matrix the simulation produces according to equation:  
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On the other hand, the differentially driven model requires further data processing. This can be 

done by considering the Y-parameter model shown Figure 5.7 (a), which can be simplified 

further in Figure 5.7 (b) and (c) which assumes symmetry along the dotted line in Figure 5.7 (c).  
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Figure 5.7: (a) Y-parameter representation of the 4-port mutual inductor and its reduction to (b) then to (c)  

Similar to equation (5.1), the circuit parameters L, R and k can be readily obtained from the 4-

port Y-parameter matrix derived from the S-parameter matrix the simulation produces according 

to equations (5.2) and (5.3): 
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The derived inductance, coupling factor and quality factors derived from the s-parameter 

simulations according to the single-ended and differential equations are presented in Figure 5.8. 

The inductance is nominally 400 pH, and the coupling factor is nominally 0.26.  

The differential quality factor is higher than the single-ended quality factor at frequencies above 

5GHz. The trend is expected due to the smaller impact of substrate resistance on the differential 

quality factor, which becomes significant at higher frequencies. However, the values predicted 

by the differential model for quality factor appears way too optimistic. The single-ended 

extracted values are verified in the following sections. 

 

Differential Model

Single-ended Model

 

Differential Model

Single-ended Model

 
(a) (b) 

Differential Model

Single-ended Model

 
(c) 

Figure 5.8: Mutual inductor (a) inductance, (b) coupling factor and (c) differential quality factor  
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5.2.3. Switch Capacitor Tuning Circuit 

The frequency tuning is performed using the switched capacitor circuit depicted in Figure 5.9. 

The circuit parameters where chosen according to the design analysis presented in Chapter 4.5. 

The circuit has 6-bits control allowing for 64 frequencies steps of ~7fF each.   

The circuit is simulated using Cadence SpectreRF S-parameter simulation. Similar to the mutual 

inductance, the circuit can be simulated using a single-ended or a differential simulation as 

shown in Figure 5.10.  

 

b0

b1

b2

b3

b4

b5

0.24/0.1 µm0.24/0.1 µm

1.6/0.06 µm
15 fF15 fF

b

32	x

16	x

08	x

04	x

02	x

01	x

Unit	Switch	Cap	Cell

 
Figure 5.9: Circuit schematics of the switched capacitor array showing devices sizes and approximate unit 
capacitance.  
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(a) (b) 

Figure 5.10: (a) Single-ended and (b) differentially driven capacitor 
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For the single-ended simulation, the capacitance is obtained by taking the Z11=R+(sC)-1. The 

capacitance is therefore the -1/(ω Im[Z11]), and the quality factor -Im[Z11]/( Re[Z11]).  

[ ]11Im
1
Z

C
ω

−
=

[ ]
[ ]11
11

Re
Im
Z
ZC −=

 
(5.4) 

For the differential simulation, the differential YD is obtained as:  

22211211

21122211

YYYY
YYYYYD +++

−
=

 
(5.5) 

The capacitance and resistance can be obtained from YD, by using Z11=1/YD and applying it to 

equation (5.4). The switched capacitor circuit was designed and laid out. Mentor Graphics 

Calibre PEX RC extraction tool was used to obtain the full capacitance and parasitic trace 

resistance of the full switch capacitor array. The RC extracted schematics were simulated in 

order to obtain capacitance and quality factor of the full capacitor array as a function of 

frequency for different control codes. The results of the simulation are depicted in Figure 5.11. 

 

  
(a) (b) 

Figure 5.11: Switched capacitor array’s (a) capacitance and (b) quality factor across the tuning range for a layout 
based simulations  

The minimum capacitance from the switch capacitor array is 266fF and the maximum capacitance is 

471fF. The quality factor remains above 40 up to 20 GHz. For each capacitance value, the quality factor 

drops with frequency as expected. However, the significant point to observe is the quality factor of the 
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capacitor at the resonance frequency. This requires assuming a fixed value for the inductor (as well as 

additional fixed capacitance from other circuit parasitics) and calculating the resonance frequency for 

each value of the capacitance. For each calculated resonance frequency, the quality factor of that 

particular switch capacitor array arrangement is evaluated at resonance. The simulation was performed 

assuming a fixed capacitance (CF=100fF) and an inductance (L=400pH). Both values reflect post layout 

estimates. The simulation results are depicted in Figure 5.17. The results match theory discussed in 

Chapter 4.5. 

 
Figure 5.12: Passive quadrature voltage controlled oscillator architectures with dual resonance mode coupled 
resonator tanks  

5.2.4. Complete Dual-Resonance Tank Simulation 

The quality factor of the dual-resonance is obtained using the three definitions of quality factor as 

a mean to validate the theory, and evaluate the design. The three definitions are:  

(a) Real and imaginary parts of the impedance: 

The ratio of the imaginary part of the impedance to the real part of the impedance defines the 

quality factor of the impedance at frequencies below its self-resonance.   

]Re[
]Im[
Z
ZQ =

 
(5.6) 
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This definition is the one used to obtain the inductor and capacitor array’s quality factors. Given 

the discussion on quality factor in Chapter 3.5, the quality factor, at resonance, of the dual-

resonance tank when tuned in a symmetric fashion is given by:   

)1(//ReIm kQQQ LC ±=

 
(5.7) 

The effective QL is enhanced by the factor (1+k) at the low resonance mode, and degrades by the 

factor (1-k) at the high resonance mode.  

(b) The phase of the impedance at resonance:  

The quality factor at resonance is obtained using the phase definition of quality factor:  

0

0

2 ωω
ω
d
dQ Φ

=Φ

 
(5.8) 

This simulation was performed using Cadence Spectre AC simulation. The test bench is depicted 

in Figure 5.13. The circuit is driven differentially using iAC+ and iAC- of equal magnitude of 0.5 

and opposing phases. The differential voltage vi+-vi- is obtained, and ZIN= (vi+-vi-)/1. The 

resonance frequencies, phase, and phase derivate at resonance are obtained from ZIN. 

CF

L2 L1
k

RLs2 RLs1
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Coupled inductor 
4-port object

RC extracted 
Cap-array
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(a) (b) 

Figure 5.13: (a) Single-ended and (b) differentially driven capacitor 
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(c) The bandwidth of the impedance at resonance: 

Using the same phase test bench, the pass-band bandwidth at resonance of ZIN is obtained, and 

the quality factor is derived from that as the ratio of the resonance frequency to the bandwidth.  

dB
BQ

3

0
3 ω

ω
=

 
(5.9) 

The three previous definitions of quality factor are evaluated and plotted against resonance 

frequency for the complete dual-resonance tank. The results are depicted in Figure 5.14. The three 

methods agree with small discrepancies. The discrepancies increase at higher frequency since the 

single-ended inductor quality factor was used in the derivation. QΦ requires a large number of 

frequency samples in order to correctly calculate the derivatives at resonance. A reasonable 300 

frequency samples were selected as a reasonable accuracy vs. simulation time.  

 
Figure 5.14: Overall Tank Quality factor at resonance assuming a 100fF additional fixed capacitance 

5.2.5. Startup-Condition  

The implications of the quality factor plots presented in Figure 5.14, and according to theory 

presented in Chapters 2 and 3 on start-up, the required GM for startup in the upper band for the 
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symmetric resonator is almost 1.5x that in the lower resonance mode. Assuming GM to be 

proportional to 𝐼' , the bias current requirements for the higher oscillation mode are on the 

order of 2.25x that in the lower oscillation mode. This was observed in simulations and 

measurement as will be presented in Chapter 6. 

5.2.1. Phase noise and phase error 

The phase noise of the actively coupled dual-resonance QVCO circuit can be readily found by 

applying the quadrature theory presented in Section 2.6 to the equivalent 2nd order simplification 

circuit presented in Section 3.3. This statement can be verified by performing a number of circuit 

simulations similar to those performed in Chapters 2 and 3 on the dual resonance circuit 

presented in Figure 5.1 and the its equivalent 2nd order counterpart shown in Figure 5.15.  
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2×C½R ½	(1±	k	)L

 
Figure 5.15: Active quadrature voltage controlled oscillator 2nd order equivalent circuit 

To allow for GMC sweeps the circuit is simulated using the Verilog-A models for GM that were 

presented in Section 2.6. A theoretical phase expression is derived by extending equation (2.60), 

by observing that for the dual resonance quadrature circuit: 1) in the ISF expression n=4, 2) 
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twice as many noise source are presented as in the LC-tank quadrature circuit and 3) the coupling 

strength factor k=IGMC/(IGMN+IGMP) for the case Ψ=90o, or more generally:  
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 The phase noise expression is therefore:  
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(5.11) 

The theoretical expression in (5.11) is plotted against the simulated phase noise from the dual 

resonance AQVCO and its equivalent 2nd order QVCO in Figure 5.16. The results simulations 

diverge at higher coupling strength values mainly due to the lower GM/IBIAS ratio used for these 

simulations. The results show that, if the CMOS devices act as switching transistors, the second 

order simplification of the dual-resonance actively coupled QVCO is a very good approximation 

of the original circuit.   

 
Figure 5.16: Phase noise sweep versus k=IQ/II  , for dual-resonance QVCO, Equivalent 2nd order QVCO and the 
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theoretical expression for phase noise with circuits simulated using Verilog-A GM as described by Figure 2.29 

Furthermore, the phase error due to mismatches between the two coupled cores or the coupling 

traces, of the dual resonance AQVCO, is given by:  
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MPGIMNGI

MCGIk +=  

(5.12) 

where ΔI is the difference between the sum of the bias currents (IGMN+IGMP) of the two oscillator 

cores, ΔIGMC is the difference between the tail bias currents of the two coupling stages between 

the oscillators, and Q is the quality factor of the LC-tank, Δω is the difference in the oscillation 

frequency of the two dual-resonance cores, ΔR is the difference in the parallel resistance of the 

two equivalent LC-tanks and ΔΨ is the difference between the extra phase delay in the 

quadrature path between the two cores. For a Ψ=90o this simplifies to:  
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(5.13) 

5.3. Passive QVCO Circuit and Simulations 

5.3.1. Circuit Overview 

The passive QVCO consists of two dual-resonance circuits coupled as shown in Figure 5.17. The 

device sizes have been specified on the schematic. Similar to the active QVCO architecture, 

mode switching is achieved by controlling the sign of the GM transconductance. This is achieved, 

by the two parallel differential GM cells which are controlled by the Sel’ digital control signal.  



107 
 

gMN ±	gMP

±	gMP gMN

k2

C C

CC

L

L

L

L

16/0.06µm 16/0.06µm

16/0.06µm16/0.06µm

k

k

W/L µm
IB

IB/2

W/L µm W/L µm

GMN/C

IB/2

W/L µm
IB

IB/2

W/L µm W/L µm

Sel=Sign[GMP]

GMP

Sel Sel

IB/2

 
Figure 5.17: Passive quadrature voltage controlled oscillator architectures with dual resonance mode coupled 
resonator tanks  

In order to maximize the layout reuse between the two designs, the same GM stages as the active 

quadrature architecture were used with slightly modified layouts. Moreover, the bias current 

circuit was also the same as the one used in the active QVCO, however, since there is no use for 

the bias current allotted to the quadrature coupling cell in the active QVCO, this bias current was 

rerouted to the GMN cells as shown in Figure 5.18. 
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IB GMNQIB GMPQ
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Unit=4/0.4 µm
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Figure 5.18: Circuit schematic of the PMOS current mirror used for the biasing of the VCO 
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5.3.2. The four coupled resonators network 

650	µm

650	µm

 
Figure 5.19: Layout and dimensions of the four coupled resonators with capacitance placement indicated by arrows 

Due to the presence of 4 coupled inductors, and in order to separate the terms from each other, 

each coupled inductor is implemented separately and isolated and resembles the same 

architecture as presented for the active QVCO in Figure 5.3. The capacitor and inductor values 

presented previously for the active design still holds.  

In order to maintain a small quadrature phase error, the combination of the coupled inductors is 

placed in a symmetric cross shape to equalize the parasitic inductances and capacitances between 

adjacent blocks. In order to avoid additional parasitic capacitance, the tuning capacitors are 

routed along the traces connecting the 4 mutual inductors as indicated in Figure 5.19. 

5.3.3. Startup-Condition  

The four coupled resonators maintain approximately the same quality factor that was presented 

previously for the active design since each uncoupled resonator is loaded by two inductors in 
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parallel with one capacitor.  However, since total inductance is halved at each un-coupled 

resonator, the parallel resistance is also halved.  

The reduction of the parallel resistance indicates that a much higher 2⋅GM is required, almost 4⋅ 

the current is required in order to obtain startup. However, due to the fact that the quadrature 

inductors have to operate in two different modes (one is odd and one is even) always, the impact 

of their presence on the overall quality factor is countering that of the dual-resonance and it 

improves the quality factor of the upper band while reducing it in the lower band. This in turn 

makes the current bias requirements in the two bands more comparable and reduces the 4x 

current requirement. This general trend was also observed in simulations and in lab 

measurements.   

In order to verify this, the passive network corresponding to the PQVCO shown in Figure 5.20 is 

considered where k2 is replaced by αk. Since the PQVCO doesn’t suffer from frequency shift 

from quadrature that takes place in AQVCO, the resonance frequency, quality factors and 

startup-condition can all be determined based on the passive network alone.  

k
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L CLC
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Figure 5.20: Passive network corresponding to the passive quadrature voltage controlled oscillator 

The passive network is studied by observing the input impedance marked (ZIN) in Figure 5.20. 

The input impedance is given by  
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The input impedance has two resonance frequencies given by 
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where LC/20 =ω . Under the special condition that α=k2/k1 , the resonance frequency 

expression simplifies to  
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ωω =  (5.16) 

The expression in (5.15) can be visualized by plotting the ratio of the high to low resonance 

frequencies for multiple coupling strength ratios (α) as a function of the coupling strength of the 

dual resonance core (k) as shown in Figure 5.26. For the sake of comparison, the tuning range of 

the AQVCO is also shown in Figure 5.26. As the figure shows, the tuning range of the PQVCO is 

in general smaller than that of the AQVCO, and it approaches that of the AQVCO for large 

values of α, as k2 approaches 1. 

 
Figure 5.21: Tuning range of the PQVCO passive network given by ωH/ωL versus the coupling factor (k) for 

multiple values of α compared to that of the AQVCO  
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Furthermore, in order to obtain effective quality factor of the two poles, the denominator D(s) of 

the system ZIN(s)=N(s)/D(s) can be fitted into the following system model  

( )( )( )ssD
LQLQ

γωω ωω +++++= 22
L

L22
L

L2 s ssss)(  (5.17) 

The expression of ZIN(s) is derived from the passive network with the addition of resistance (R) is 

series with every inductor as shown in Figure 5.22.  
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Figure 5.22: Passive network corresponding to the passive quadrature voltage controlled oscillator with the series 

resistance (RS) considered 

The corresponding denominator expression  
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By equating the s, s3 and s5 terms in equations (5.17) and (5.18), the quality factors QL and QH 

are given by  
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The expression in (5.19) corresponds to the quality factor of the inductors at resonance (ωH,LL/R) 

scaled by a factor that is a function of α, k, ωH,L and ωH,L. For the special case α=1, the expression 

simplifies to 
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The equivalent parallel resistance at resonance is evaluated as 
LH

LHQ
C

R
,

,1
ω

= , and the 

corresponding start-up  condition is 
R

GG MPMN
2

>± . The impact of this is captured by Figure 

5.23 and Figure 5.24.  

 
Figure 5.23: The ratio of the quality factor in the high resonance mode to that in the low resonance mode as a 
function of the tuning range given by the frequency ratio of the high resonance mode to the low resonance mode for 
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AQVCO and PQVCO with multiple values of α 

In Figure 5.23, the quality factor ratio QH/QL is plotted as the tuning range. As the quality tuning 

range increases, so does the ratio of quality factor between QH and QL for the AQVCO case. This 

results in startup conditions being drastically different at the two resonance frequencies. 

However, for the PQVCO and for a range of α values, the  ratio of quality factor between the two 

resonance modes drops, which results in more similar startup condition between the high and 

low resonance modes. This however has the negative impact of lowering the overall quality 

factor which is captured by Figure 5.24, which shows the ratio of the high resonance mode 

quality factor of the resonance circuit (QH) to the quality factor of the corresponding inductor at 

the same resonance frequency (ωHL/RS). For all values of α, the quality factor in the high 

resonance mode of the PQVCO is lower than that of the AQVCO for the same tuning range. This 

impact can be overcome by using a larger coupling inductor than that used inside the dual-

resonance core.  

 
Figure 5.24: The ratio of the quality factor in the high resonance mode to the quality factor of the inductor at the 

same frequency as a function of the tuning range given by the frequency ratio of the high resonance mode to the low 
resonance mode for AQVCO and PQVCO with multiple values of α 
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5.3.1. Phase noise and phase error 

The phase noise of the passively coupled dual-resonance QVCO circuit can be approximated by 

applying the quadrature theory presented in Section 2.6 to the equivalent 2nd order simplification 

circuit presented in Section 3.3. The simplified circuit is shown in Figure 5.25. 

GMN+GMP

GMN+GMP

2×C

32/0.06µm

32/0.06µm

½	(1±	k	)L ½R

2×C½R ½	(1±	k	)L

k2
k2

 
Figure 5.25: Passive quadrature voltage controlled oscillator 2nd order equivalent circuit 

It is important to note that while this simplification allows for a simple derivation of phase noise, 

it’s not a strictly accurate simplification. It has been pointed out in [9] and [10] that a circuit 

which consists of two oscillators coupled through any type of passive symmetric passive 

networks and a 180o inversion, can never be coupled due to even symmetries.  Therefore, in 

reality, it is important to have 4 oscillators (such as the case of the dual-resonance passive 

quadrature), with non-zero phase shifts between each oscillating node, in the quadrature 

configuration to have a properly locked QVCO. Under this simplification, the phase noise can be 

simply found as:  
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This is due to the fact that in the simplified model, no two current vectors of different phases 

sum up at any node; therefore the ISFs are always in quadrature with the voltage at each node. In 

the non-simplified circuit model, there is a phase difference between the two oscillating nodes in 

each dual-resonance oscillator. This phase difference, if significant, leads to creating phasors 

between currents, which should be considered for ISF calculation. In order to verify the 

significant of this phase shift on the design, the circuit is simulated. To allow for proper 

comparison with the active QVCO, the circuit is simulated using the same Verilog-A models for 

GM that were presented in Section 2.6.  

The resulting plot is shown in Figure 5.26 compares the theoretical expression in (5.21) (PN1) 

with the simulated phase noise (PN4) and the phase noise calculated from simulated ISFs (PN3). 

The three expression match very well, which indicates the original assumption that the passive 

dual resonance circuit does not suffer from noises contributed by active quadrature or in other 

words they have similar phase noise to that of active quadrature when the active coupling factor 

is 0.  

 
Figure 5.26: Phase noise plots for passive dual-resonance QVCO  
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The phase error due to mismatches of the dual resonance PQVCO can be empirically derived 

using a series of simulations by considering that the error would follow an equation similar to 

that in equation (5.13) as follows 
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The constant C1, C2 and C3 are experimentally evaluated and compared to the AQVCO case. The 

resulting comparison is shown in Figure 5.27. The phase error appears to be inversely 

proportional to the coupling strength α and it shows good coupling for α=1 that is comparable to 

that of the AQVCO with quadrature coupling strength k=0.25. However, mismatches between 

the two coupling transformers appear directly as phase delay mismatches ΔΨ which are 

frequency dependent, and they result in quadrature phase errors that would require additional 

phase delay control to calibrate.  

  

 
Figure 5.27: Quadrature phase error versus mismatch in (a) resonance frequency , (b) tank resistance and (c) bias 
current of the two dual-resonance cores in the case of AQVCO (Q=15, and k=0.25) and PQVCO with α=0.5,1,2  
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Chapter 6 
6. CIRCUIT MEASUREMENT 

6.1. Introduction  

This chapter also presents the measurement data obtained for both chips for both phase noise and 

phase error measurements. The tuning range and power consumption measurement results are 

presented as part of the phase noise measurement, since the phase noise measurement was 

conducted across the full tuning range. For both measurements, the measurement setup and 

theory are explained. Furthermore, a comparison with state-of-art circuits is presented and the 

figures of merit (FOMs) are derived based on them. 

 
 (a) (b)  

Figure 6.1: Die photo of (a) active coupled QVCO and (b) passive coupled QVCO  

Two standalone VCO designs were taped out in TSMCs 65nm Process. Both design featured 

digital control via a serial to parallel digital controller. The controls were used to tune the 

capacitor arrays, the bias current and the resonance mode selection. Both designs were followed 

by two stages of buffers to mitigate the off-chip loading impact on the circuit.  

The die photo of the two VCOs is depicted in Figure 6.1. The measurement made use of a set of 3 

probes: two eye-pass probes for bias and digital control signals, and 1 SGS probe for output 
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monitoring. A set of 2.92mm cables along with connectors and various instruments were used to 

collect the phase noise and quadrature phase error data.   

6.2. Phase Noise Measurement 

6.2.1. Methodology 

The measurement of phase noise can be performed using a number of methods. The main 

challenge lies in measuring a noisy, unlocked VCO oscillating at a high frequency. Advanced 

measurement instruments have reduced the complexity of performing phase noise measurements. 

This subsection briefly investigates the theory behind a number of the methods employed by 

these instruments.  

6.2.2. Direct spectrum power density measurement at oscillation frequency 

As discussed in section 2.5, and expressed in (2.28), the phase noise can be directly computed 

from the power spectral density of the oscillating signal.  While this method is direct, it requires 

a stable and frequency locked oscillation in order to capture the spectrum correctly. 

6.2.3. Phase detectors 

The phase detector is used to decouple the phase noise on one hand, and the oscillation 

frequency on the other. This has two main advantages: 1) The measurement no longer requires a 

locked oscillation (though the phase detector’s architecture might set stability requirements on 

the signal), and 2) The measurement is only concerned with offset frequencies (often are 

considered up to a 100 MHz) rather than having to capture high frequency (GHz) VCO outputs.  

A simple phase detector can be realized by a mixer followed by a low pass filter as depicted in 

Figure 6.2 . As indicated by equations (6.1), a VCO under test has the output waveform given by 
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VVCO(t). If there exists a waveform (VX(t)) that has the same oscillation frequency (ω0) and a 

different phase, then the filtered down output is approximately the difference between the two 

phases scaled by some factor KPD (under small angle approximation as before). 

vVCO(t)

vX(t)

vPD(t)

 
Figure 6.2:Mixer and low pass filter as simple phase detector 

 

 (t))tcos(V(t)v 0VCO0VCO VCOϕω +=  
 (t))tcos(V(t)v 0X0X Xϕω +=

(t))-(t)(K(t))-(t)cos(K(t)v XVCOPDXVCOPDPD ϕϕϕϕ ≈=
 

(6.1) 
 

6.2.4. Phase locked loop  

One way to generate the waveform VX (t) is using a phase locked loop. Qualitatively, the loop 

locks the phases of the local oscillator (VLO(t)) and the VCO under test (VVCO(t)) up to the 

bandwidth of the loop. The residual phase difference is effectively high pass filtered. If the 

loop’s bandwidth is sufficiently low and the phase noise of the LO is well below that of the VCO 

under test, then the output VO(t) will be directly proportional to the phase noise of the VCO 

under test. 

AVVCO(t)

VLO(t)

VO(t)

 
Figure 6.3: First order PLL as a phase noise measurement setup 
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Mathematically, assuming the phase noise of the LO is much lower than that of the VCO under 

test, the output phase can be expressed in the frequency domain as:  

(s) 
1

(s)O n
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LO KAK

sK

s
ϕϕ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=  

(s) (s)O OV ϕ≈  

(6.2) 

This is a high pass response whose pass frequency ω3dB equals AKPDKLO, where KPD is the phase 

detector’s gain and KPD is the LO gain and both are assumed to be constants. Note that the pass 

frequency needs to be set low enough to pass the phase noise, yet high enough to guarantee 

locking. This method is better suited for signals with low phase noise or frequency locked.  

6.2.5. Delay line frequency discriminator 

The delay line discriminator mixes the VCO’s waveform with a delayed version of itself as 

shown in Figure 6.4, instead of generating a second oscillation as the case in the PLL setup.   

VVCO(t) VO(t)
τD

Φ
 

Figure 6.4: Delay line discriminator as a phase noise measurement setup 

The delay line is configured so that the phase difference between the signal and its timed delayed 

version is π/2. Hence the output of the phase detector can be written as:   

))()(sin()( τϕϕ −−= ttKtV nnPDO  (6.3) 

It was shown in [27] that the spectrum of output voltage is related to the spectrum of the 

frequency noise (ωn) as given in equation (6.4): 
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 It’s important to note that the relationship between frequency noise and output voltage is colored 

by a sinc function with a notch at frequency 1/τD. Hence, in order to make a measurement, either 

the sinc function has to be calibrated out or τD has to be small enough so that the offset 

frequencies of interest are in the “flat” region of the sinc response. The disadvantage of using a 

small τD is the loss of output voltage sensitivity to frequency noise. This method is often used 

with unlocked signals and signals with high close-in spurious content, which would make it hard 

to measure using the PLL method.  

The main disadvantage of this method is the need for programmable delay lines which are 

frequency dependent. Advancement in Digital Signal processing (DSP) allowed for the 

development of the heterodyne discriminator [28]. It is a two step process where the signal under 

test is first down converted into a lower frequency, and then digitized using a fast ADC. If the 

phase noise of the down converted signal is dominated by the phase noise of the signal under 

test, then it is sufficient to apply the frequency discrimination method to it, to obtain the phase 

noise of the original signal. Once the down converted signal is digitized, an arbitrary delay can 

be applied to it using a DSP algorithm.  

6.2.6. Measurement Setup 

The phase noise measurement was performed using the E5052B Signal Source Analyzer 

accompanied by E5053A Microwave down-converter. The E5052B is capable of performing 

heterodyne frequency discrimination measurements as well as PLL based measurements. The 
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E5053A down converter extend the frequency range to cover 3 GHz to 26.5 GHz as shown in 

Figure 6.5.  

 
Figure 6.5: E5052B Signal Source Analyzer connected to E5053A Microwave down-converter [29] 
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6.3. Results 

 
(a) 

 
(b) 

Figure 6.6: Raw collected phase noise data for (a) active coupled QVCO and (b) passive coupled QVCO for offset 
frequencies ranging from 1 kHz to 10MHz superposed for multiple frequency points collected over the full tuning range of 
each QVCO 

The measurement was automated to collect phase noise sweeps for all digital code 

configurations. The raw collected data is presented in Figure 6.6.  
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High	Sub-band

Low	Sub-band

5mA 20mA 16mA

 
(a) 

High	Sub-band

Low	Sub-band

22mA

 
(b) 

Figure 6.7: Phase noise measured for (a) active coupled QVCO and (b) passive coupled QVCO at an offset frequency of 
1MHz collected over the full tuning range of each QVCO, with current consumption of the QVCO noted for each 
arrangement over different frequency ranges that was used in the measurement 
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6.4. Quadrature Phase Measurement 

6.4.1. Methodology 

The measurement of quadrature can be done using a wide range of methods. The most common 

method uses image rejection of either up or down conversion quadrature mixing schemes to 

determine the phase error angle.    

ΦIFE

ΦE

0o

90o

ΦR

ΦR AI

AQ

0o

90o
LO
(DUT)

RFIF

α=
Q

I

A
A

 
Figure 6.8: Quadrature upconversion architecture used in quadrature phase accuracy measurement considering 
different circuit non-idealities that require to be measured/calibrated (AI, AQ, ΦIFE, ΦR) 

Considering the upconversion circuit displayed in Figure 6.8, the goal of the measurement is to 

measure the phase error (ΦE) of the quadrature VCO under test by upconverting a known 

quadrature low frequency signal (IF) and using power combining to cancel the positive or the 

negative sideband image (LO + IF, LO - IF). The challenge lies in capturing and calibrating all 

the other non-idealities in the circuit such as IF phase error (ΦIFE), IF phase rotation (ΦIFE), and 

gain mismatch between I channel and Q channel (AI vs. AQ). 
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Given sinusoidal signals, the setup in Figure 6.8 can be described by the following equations:  
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The ratio of the powers of the upper sideband (ωLO+ ωIF) and the lower sideband (ωLO- ωIF) is 

given by the expression RP(α, ΦE, ΦIFE) in (6.6) 
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In the special case where α=1, and ΦIFE =0, the expression simplifies to that in (6.7) 

( )
2

tan2 E
EPR

φ
φ =  (6.7) 

Typically, the phase measurement apparatus is set up using voltage limiters to equate amplitudes 

and a calibration process is performed to set the IF phase error to zero. However, this is hard to 

achieve off chip at high frequencies over a wide frequency range. As it can be seen in Figure 6.9, 

the image rejection magnitude (in dB), for an ideal case where there is no amplitude imbalance 

between the I/Q channels, the sensitivity of the phase measurement around 0 degrees is very high 

and an image rejection greater than 42 dB indicates a phase error less than 1o. 

However, as amplitude imbalances are introduced (α = 0.1, 0.4, 0.7), not only does the image 

rejection become a function of the amplitude imbalance, but also the sensitivity to phase error 

increases, which reduces the measurement’s accuracy.    
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0.7

0.4
0.1

α=

 
Figure 6.9: Image rejection of a quadrature up/down converter as a function of phase error and I/Q channels gain 
mismatches 

In order to allow for an accurate measurement of phase error, we conduct the experiment with a swept IF 

phase. By doing so, we inherently can calibrate out IF phase error, and separate the phase error 

measurement from the amplitude imbalance.  The use of IF sweeps aims at finding the IF phases for 

which the image rejection is maximum. We begin by rewriting the equation in (6.6) in terms of ΦIF 

instead of ΦIFE, where ΦIF refers to the absolute phase difference between the IF signal in the I 

and the Q channels. The resulting image power rejection ratio is given by (6.8): 
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The maximum image power rejection angle is given by  (6.9) 
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Assuming small angle approximations, this maxim image power rejection RPMAX(α) and the 

corresponding ΦIF are given by (6.10): 
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From the previous two equations we notice that for very small error signals:  

1) The calibration of ΦIF is inherent; because ΦIFPMAX are symmetric around ΦIF=0. 

2) The maximum image rejection is only a function of amplitude imbalances.  

3) Once amplitude imbalance (α) and ΦIF=0 are known, ΦE can be readily found.  

These results are depicted in Figure 6.11 (a). The plot is constructed by sweeping the phase error 

ΦE and plotting the resulting RPMAX as a function ΦIFPMAX as well as ΦE.  In addition the small 

signal approximation expression is plotted (it’s phase independent). The plot shows there is very 

good correspondence between the “RPMAX vs. ΦIFPMAX” and ““RPMAX vs. ΦE” well beyond small 

angle approximation for moderate alpha values. 

Consequently, one can use ΦIFPMAX as an approximation of ΦE. In order to facilitate this task, 

Figure 6.10 (b) shows the contours of errors in this approximation. One can set an upper bound 

on the approximation based on the required accuracy and the limitations on the measurement 

(mainly noise and phase steps). If a measurement falls beyond the tolerance, exact phase error 

can be calculated using a numerical solution to equations (6.8) and (6.9).  

The main disadvantage of this method is that it requires the stepping of the IF phase with fine 

steps and constant amplitude, which requires advance instrumentation. However, it’s a method 

where no calibration is needed.  
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α=0.9o

α=0.7o
α=0.5o

 
(a) 

0.05o

2o
0.5o

1o
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(b) 

Figure 6.10: (a) Maximum image rejection RPMAX  as a function of maximum image rejection angle (ΦIFPMAX ), phase 
error (ΦE) and small signal approximation (given by(6.10)) for three different amplitude imbalance values 
(α=0.5,0.7,0.9). (b) Phase estimation error contours (ΦE -ΦIFPMAX ) of the maximum image rejection RPMAX  as a 
function of maximum image rejection angle (ΦIFPMAX ) plot 

 

  



130 
 

6.4.2. Measurement Setup 

Wafer and probe
(SGS)

1.85 mm semi-rigid 
connectors

Mixers
(ZX05-24MH-s+)

Power Combiner
(Krytar 6010180)

To PSA
(E4440a)

Quadrature
(ZX10Q-2-3-S+)

PSG
(E8257D)
@100MHz

 
Figure 6.11: Quadrature upconversion measurement setup picture with parts and test equipment marked 

An initial measurement setup shown in Figure 6.11 was used to characterize the phase. An SGS 

probe similar to the case for phase noise was landed on both the I and the Q channels of the 

quadrature VCO and both channels were connected to off chip mixers (ZX05-24MH-s+). The IF 

was initially derived from a 90o power splitter (ZX10Q-2-3-S+). However due to amplitude 

imbalances, the quadrature was replaced by two 50MHz signals from an arbitrary waveform 

generator (Arb: Tektronix AWG70002A) with a swept phase difference as described in the 

previous section. The outputs of the mixers were combined using a Krytar 6010180 power 

splitter/combiner and the output was observed in the E4440a power signal analyzer (PSA).  

The measurement was automated to step through IF phase difference derived from the Arb (with 

coarse and fine sweeps). For each phase point the power data was capture by the PSA, the 

relevant peaks were detected and their power ratio is calculated, and logged vs. the angle.   
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6.4.3. Results 

The raw measured data of the phase sweeps is presented in  

 
 (a) 

 
(b) 

Figure 6.12: Raw collected image rejection vs. IF phase sweep data for (a) active coupled QVCO and (b) passive 
coupled QVCO with phase estimation error contours given in Figure 6.10 (b) marked on each plot 

Using the previous data and the methodology discussed in the previous section the actual phase 

figures are computed and presented is Figure 6.13. 
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 (a) 

 
(b) 

Figure 6.13: Phase errors of (a) active coupled QVCO and (b) passive coupled QVCO calculated as the maximum 
image rejection angle in the phase sweeps presented in  Figure 6.12  

6.5. Overall Performance 

For the sake of comparison, a number of figures of merit are introduced and used to compare this 

work with other works in the literature. Originally the phase noise figure of merit (FOMPN) has 

been used to compare oscillators. It aims at capturing the architecture’s ability to minimize phase 

noise for a given power budget and oscillation frequency at a certain frequency offset.   
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Since this FOM doesn’t capture the tradeoff between tuning range, phase noise and power 

budget, a second FOM denoted FOMT is introduced to capture the tuning range.  

A final figure of merit aims similar to (6.12) is given by FOMT2 with further emphasis on 

fractional tuning range versus absolute tuning range, which agrees more with the discussion 

presented on tradeoffs between fractional tuning range and phase noise for a given power budget 

presented in 4.5.  
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The FOMs are plotted across the tuning range of both passive and active QVCO in Figure 6.14. 

The works are compared with the state-of-art designs in Table 8. 

 
(a) (b) 

Figure 6.14:  FOMPN ,FOMT and FOMT2 of the (a) active coupled QVCO and (b) passive coupled QVCO evaluated for an 
offset frequency of 1MHz over the full tuning range 
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Table 8: Performance comparison with state-of-art wideband VCO designs 
      Saberi et al 

(2011) 
Bajestan et 

al (2015) 
This Work 

(Active) 
This Work 
(Passive) 

Process    130nm 65nm 65 nm 65 nm 

Center Frequency  GHz  13.3 3.8 12 17 

Tuning Range  %  62.7 78 46 36 

Supply Voltage  V  1.2 0.6 1.2 1.2 

Power  mW  20-29 5.8-9.4 6 -19.2 26.4 

Phase Noise  dBc/Hz  -107 -123.7 -107 -109 

(1 MHz offset at center frequency)      

FOM(PN) dB/Hz  -175.59 -186.49 -177.58 -179.39 

FOM(T) dB/Hz  -171.53 -184.33 -170.84 -170.52 

FOM(T2) dB/Hz  -191.53 -204.33 -190.84 -190.52 

Area  mm2   0.35 0.27 0.42 

Phase Error o   <3.3 <1.5 <0.6 <6 
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Chapter 7 
7. CONCLUSION AND FUTURE WORK 

In order to create a wideband voltage controlled oscillator, a necessary component for multi-

standard and cognitive radios, this thesis presented two QVCO designs targeted towards the 10-

20GHz bands. Dual-resonance is a key feature of the presented work, which aimed at generating 

wider tuning range using little area overhead and without sacrificing phase noise. The two 

architectures used a dual-resonance circuit core with symmetrically tuned coupled resonators. 

The resonance mode was selected using a digital code that controlled the feedback architecture in 

the circuit. 

The two architectures employed passive and active mechanisms to obtain quadrature in the 

circuit. The underlying premise is that an active loop can provide a very accurate quadrature 

angles, at the expense of added phase noise. On the other hand, passive architectures have lower 

phase noises, but their quadrature accuracy is susceptible to passive element imbalances.  

Low phase noise, and low quadrature phase error are desired. Quadrature angle accuracy is 

necessary for image rejection and has significant impacts on receiver sensitivity. Similarly, phase 

noise reduces the sensitivity of radios and makes them more susceptible to blockers. An ideal 

design should aim at minimizing both.   

This thesis presented principles of voltage controlled oscillator design that focused on the design 

of LC-tank VCOs. The main concepts that were introduced in this context were startup 

condition, phase noise, and quadrature accuracy.  

The previous analysis was made relevant to the studying of a dual-resonance VCO, which is the 

main building block of the two QVCOs presented in this thesis, by introducing a method of 

circuit reduction that allowed for the reduction of the 4-th order network of the dual-resonance 
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VCO, to a 2nd order LC-tank. Startup condition, phase noise analysis and quadrature accuracy 

theory considered previously was extended based on this model. Impulse sensitivity function 

analysis, based on linear time invariant phase noise theory, was presented as a mean to study the 

phase noise contribution of different circuit elements.  

In order to achieve wide tuning, while not sacrificing phase noise, the passives (tune-LC 

networks) were analyzed. The advantage of using high bandwidth switches such as phase change 

switches was studied, and quantified through mathematical expressions that capture that tradeoff 

between phase noise, tuning range and the switch bandwidth.  

The theory introduced was reflected in the design of the two QVCOs which were presented with 

focus on the circuit, dual-resonance passive resonator design, and startup conditions of both 

architectures. This was then compared and contrasted with the measured results which showed 

agreement in general trends.  

The results presented have shown that it is possible to obtain equal phase noise to power 

consumed performance at higher frequencies, as defined by FOMs, using passive QVCO 

compared to the active QVCO. However, the passive QVCO needed higher currents in order to 

obtain startup. This was the case because the passive QVCO architecture was implemented using 

parallel dual resonators, halving the parallel tank resistance and doubling the required GM. 

Additionally, the phase error of the passive QVCO (6o) is significantly larger than the active one 

which was within 0.6o. Additional circuitry is needed to control and reduce this error.  

The circuit design can be enhanced by the introduction of a phase error correction unit. 

Architectures can range from introduction of tuned coupling capacitance between the resonators, 

phase-shifters, and additional digital logic. The error correction circuit can either use a set of 
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calibration points in addition to digital lookup tables, or a closed loop image rejection based 

receiver with negative feedback. 

Furthermore, the design can be furthered by introducing a combined architecture that employs 

phase change switches and both QVCOs in order to generate frequencies over the range of 8-20 

GHz. Since the loops share a lot and have been implemented using the same unit elements, it can 

be possible to use phase change switches to chose between inductive coupling and active device 

coupling. In doing so, a much wider tuning range can be obtained with minimal impact on the 

phase noise of the lower frequency bands. The higher frequency bands, on the other hand, which 

would be implemented using the phase change switched inductors need to be further studied, 

since even 1Ω resistance in series with the inductors can half its quality factor at resonance.      

[1], [2], [4], [5], [9]–[14], [16], [19], [22]–[24], [24], [30]–[47][48]  
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