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ABSTRACT

With the emergence of multi-standard and cognitive radios, the need for reconfigurable RF
circuits increased. Such circuits require wide-band quadrature voltage controlled oscillators
(QVCOs) to provide the local oscillator (LO) signal for up and down conversion. Wide-band
QVCOs performance has lagged behind their narrowband VCO counterparts and numerous
circuit techniques have been introduced to bridge the gap.

This dissertation presents techniques that have been used to implement wide-band reconfigurable
QVCOs with focus on dual-resonance based circuits. System and circuit analysis are performed
to understand the tuning-range, phase noise, and power tradeoffs and to consider quadrature
phase errors. An 8.8-15.0 GHz actively coupled QVCO and a 13.8-20GHz passively coupled
QVCO are presented. Both oscillators employ dual-resonance to achieve extended tuning ranges.
Impulse sensitivity functions were used to study the impact of different passive and active device
noises on the overall phase noise performance of the dual-resonance oscillator and the actively
and passively coupled quadrature oscillators. The quadrature phase error due to the different
architecture parameters were investigated for the actively and passively coupled quadrature
oscillators.

The advantages of using switched capacitor tuning as a major part of passive tuning are
identified, and the advantage of employing switches with large bandwidths, such as those
associated with phase change materials, is mathematically quantified.

Furthermore, a novel method for accurate off chip phase error measurement using discrete

components and phase shifters that does not require calibration is introduced.
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Chapter 1
INTRODUCTION

1.1. Background
Reconfigurable RF circuits are important for implementing multi-standard radios and cognitive
radios. Multi-standard radios allow for higher integration in end-user products such as cell
phones and tablets. Higher integration can save power, area and cost, while cognitive radio
enables a more efficient use of the spectrum.
High-quality, wide-tuning quadrature voltage controlled oscillators (QVCOs) are necessary to
provide the local oscillator (LO) signal for up and down conversion in multi-standard and
cognitive radios.
LC-tank voltage controlled oscillators have become one of the most popular oscillators for signal
generation in CMOS integrated RF transceivers. This is attributed to their simple design, start-up
conditions and competitive phase noise performance. It has been shown that they outperform
differential Colpitts in phase noise performance for a given power consumption and swing specs
[1]. However, LC-tank oscillators suffer more significantly from the impact of parasitic
capacitances that limit their tuning range and dominate at high frequencies.
Quadrature signal generation has become an integral part of modern transceivers. Quadrature
down conversion is necessary in direct conversion receivers, and for image rejection in full
integrated heterodyne receivers. This has driven significant innovation in quadrature generation
circuits.
Quadrature techniques, ranging from passive hybrid couplers and poly-phase filters to active
master-slave flip-flop divide-by-2 circuits, have been used to obtain quadrature. Quadrature

couplers suffer from their relatively large size factor, which scales down with frequency.



Quadrature poly-phase filters suffer from delay mismatches and narrow frequency selectivity,
which can be tuned and calibrated with additional overhead. On the other hand, quadrature
dividers provide accurate wideband I/Q generation, with a small size factor. However, they
consume more power than the aforementioned techniques because they require an oscillator
operating at twice the desired frequency, and an active divider.
Alternatively, active quadrature VCO oscillators have been widely used to produce quadrature
by coupling two voltage controlled oscillators using a quadrature loop. However, these
architectures suffer from increased phase noises due to:

1) Frequency shift away from resonance, increasing the losses of the tank[2]

2) AM to PM noise modulation due to quadrature [3]

3) Additional noise induced by the active transistors used to obtain quadrature
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Figure 1.1: (a) Conventional basic LC-tank VCO and modified in (b) to implement quadrature in 3 different actively
coupled architectures.

Three such architecture were compared in [4], which are presented in Figure 1.1 (b). The
architectures trade off coupling strength for improved phase noise. The paper shows an
advantage to using architectures (1) and (2) due to current sharing between the oscillation and

quadrature transistors which leads to reduced noise contribution from the additional transistors.



However, at higher frequencies, parasitic nodes can present significantly low impedances
creating parallel noise paths and rendering these architectures less beneficial.

To alleviate limited tuning range and active quadrature disadvantages, passive circuit techniques
have been deployed: dual/multi-resonance mode resonators and passive quadrature coupling
respectively. Over the last 10 years these techniques have evolved separately and more recently a
number of works have deployed both techniques to achieve widest tuning range possible for
quadrature oscillators.

Dual-resonance is the technique by which a coupled resonator is used as the passive load of a
VCO. In LC-tank VCOs, frequency tuning is commonly achieved by tuning the capacitive
component of the tank. The range of capacitive tuning is limited by technology, parasitics, and
the required quality factor. Dual-resonance increases the tuning range by using the same
capacitive tuning to tune the resonator at two different resonance modes, corresponding to two
different frequency ranges. An extended tuning range is achieved by selecting two overlapping
frequencies ranges. Since coupled resonators are often based on a coupled inductor, it’s possible
to implement such structures with little area overhead, but with added complexity.

One of the earlier works to apply dual-resonance to VCOs is presented in [5]. Two principle
circuit topologies were discussed: one and two port oscillation. While one port oscillation
requires resonator’s asymmetry to do mode switching, the two port structure uses active
feedback to pick the resonance mode for symmetric and asymmetric resonators. A later work that
used these principles in a quadrature VCO was presented in [6]. This work used asymmetry in
the coupled resonator’s tuning in order to implement mode switching. It also used active parallel
quadrature coupling in order to implement quadrature. A further expansion on the original work

was presented in[7], in which additional control was added by tuning the capacitive coupling



between the two resonators in an attempt to equate the impedance magnitudes of the passive
network in both operating modes.

Passive quadrature coupling is a technique to obtain quadrature without the use of active devices.
It’s based on building VCOs around passive resonance architectures that inherently provides 90°
phase shift.

One of the earliest passive quadrature coupling works was presented in [8] in which two VCOs
were coupled using two transformers. Other passive quadrature coupling structures have relied
on capacitive coupling. In [9], capacitive coupling of the second harmonics of the outputs of two
VCOs is used to generate quadrature. This theory was further investigated in [10], in which a
study of phase error vs. nonlinearity was performed and better quadrature phase accuracy was
obtained using bi-directional nonlinear switches in series with the capacitive coupling.

Passive quadrature coupling can also be implemented by designing the passive network to
provide quadrature. This can be thought of as a tunable poly-phase oscillator. An early example
of this was presented in [11]. This work can be considered an extension on the design in [8] with
explicit analysis of phase noise, noise figure and phase error for a transformer coupled
quadrature oscillator. Similar to [8], it presents no multi-mode resonance tuning.

More recently, similar passive structures have been extended to also support dual-resonance
mode. In [12], such a structure was implemented using four capacitive coupled LC resonator
tanks. In [13] and [14], the four separate resonators were replaced with two coupled resonators
and they again employed capacitive coupling in the quadrature loop. While these works provided
performances comparable to that of stand-alone VCOs, with enhanced tuning ranges, they

employed relatively complex active device structures to control mode selection, and they focused



mainly on low frequencies at which the inductances dominate the quality factors of the resonance

tanks.

1.2. Thesis Contribution and Organization
This work extends the state-of-the-art by demonstrating two quadrature oscillators: a) an active-
quadrature, dual-resonance, symmetric-resonator oscillator with a less complex mode selection
technique compared to [13] and [14] and b) a passively coupled quadrature, dual-resonance
oscillator that employs four coupled resonators.
Both architectures make use of the same elementary passive devices. They combine several
tuning methods including dual-resonance and switched capacitive tuning in order to minimize
phase-noise while achieving wideband tuning. Theoretical analyses and simulations indicate
significantly lower phase noise of the passively coupled QVCO at higher frequencies compared
to the actively coupled QVCO. This thesis aims to provide design insights into these
architectures, and validates these insights through the design and measurement of circuit
prototypes in 65 nm CMOS. The specific contributions of this thesis are:
A. Circuit Contributions:

1) Proposing two novel wide-tuning quadrature voltage controlled oscillator architectures
that use coupled resonators capable of dual-resonance operation to maximize the tuning
range, and tuning them using simple and robust frequency selection techniques. The
topologies use active transistors and passive coupled inductors to achieve quadrature.

2) The fabrication and characterization of the aforementioned circuits and the comparison of

their performance to the state-of-art presented in the literature.



3)

The novel use of phase change switches as an alternative to CMOS switches in switch
capacitor tanks, leading to an improved capacitor bank quality factor for a given tuning

range.

B. Analytical and Theoretical Contributions:

1y

2)

3)

4)

8))

Providing an in depth analysis of the dual-resonance small signal modeling. This is
achieved by using equivalent representations of coupled resonators that allow for
reducing the complex circuits into the more familiar second order circuits, which allows
for deriving all the derivation of familiar second-order circuit attributes such as quality
factor of a coupled resonator and startup conditions and simple phase noise analysis.
Understating the dual-resonance large signal linear time variant (LTV) behavior using
impulse sensitivity function to study the impact of different passive and active device
noises on the overall phase noise performance and using that in combination with the
(LTV) phase noise model to derive overall phase noise of the dual-resonance oscillator.
Extending the previous analysis the two proposed quadrature architectures and using that
to compare and contrast the advantages of the two, showing the superior phase noise
performance of the passive structure.

Analyzing the quadrature phase error due to the different architecture parameters.
Quantifying the possible improvement in capacitor bank’s quality factor with the use of
phase change switches in place of CMOS switches, and highlighting the importance of

pursuing phase change switch integration into a CMOS process.

C. Measurement Methods Contributions:

1y

Describing a novel method for accurate off chip phase error measurement using discrete

components and phase shifters, which requires no calibration and can readily provide



phase error results with no processing using developed phase error measurement

accuracy plots.

The thesis is organized in 5 chapters. In addition to the introduction the thesis is broken up into
the following chapters:

*  Chapter 2 provides background material into the operation of wide tuning QVCOs. It
analyzes a basic LC-oscillator, presenting the concepts of oscillation, startup, phase noise
and its different models and quadrature. Each subject is explored with a number of
examples as a basis for further investigation of the two advanced QVCO architectures.

*  Chapter 3 describes the two proposed QVCO architectures, namely the active and
passive coupled dual-resonance quadrature VCOs. This chapter extends the analysis
presented in the Chapter 1 to the dual-resonance oscillator and the two QVCO
architectures providing a complete analysis including equivalent tank quality factors,
startup conditions, phase noise and phase noise contributors as described by impulse
sensitivity functions (ISFs). Additionally, the chapter presents the analysis of the phase
error of the passive and active QVCOs as a function of multiple circuit non-idealities.

*  Chapter 4 focuses on the optimization of the design of passive resonators and the
advantages of using Phase Change switching as part of this design. It studies the trade-
off between quality factor and tuning range for a number of passive tuning components.
The chapter identifies the advantages of using switched capacitor tuning as a major part
of passive tuning, and expresses the quality factor of such arrangement in terms of the
bandwidth of the used switch. This quantifies the advantage of using switches with large

bandwidths, such as those associated with phase change material switches.



Chapter 5 presents the fabricated devices and their measurement results. It describes the
methods used for obtaining the performance metrics, namely phase noise, tuning range,
power consumption and quadrature phase error and presents the measurement results for
each. A comparison with state-of-art circuits is presented based on the aforementioned

performance metrics and the figure of merits (FOMs) derived based on them.



Chapter 2
WIDE-BAND TUNING QVCOS BACKGROUND

2.1. Introduction
This chapter introduces the fundamental concepts needed to study a quadrature voltage
controlled oscillator. The chapter introduces the concept of oscillation and its numerous
mathematical representations, in both nonlinear and linearized forms, based on an LC-tank
oscillator. The chapter used the LC-tank oscillator to demonstrate the concepts of (1) start-up, (2)
phase noise and (3) quadrature. It also briefly discusses non-conventional methods that were
used in the literature to expand the tuning range of VCOs, namely multi-mode resonance and
capacitive degeneration.
In examining the start-up condition, three methods are considered: Barkhausen’s criterion, root
locus method, and Nyquist stability criterion. The methods are described as three ways to
determine the conditions required to obtain and maintain an oscillation. These concepts are
applied to the LC-tank oscillator.
In examining phase noise, the general concept of phase noise is introduced and defined, and the
motivation for quantifying phase noise is expressed. The linear time variant method of studying
phase noise is explained and the corresponding concept of impulse sensitivity function as a
method of understanding the different contributors to phase noise is applied to the LC-tank

oscillator.

2.2. Voltage Controlled Oscillator (VCO) Basics

Oscillation is the process in which a conserved amount of energy is transformed indefinitely

from one form to another at a fixed rate. Oscillation can be observed in many types of systems.



In electric circuits, oscillation can be realized by an LC resonator, which transforms energy
between electric energy stored in a capacitor (C) and magnetic energy stored in an inductor (L).
An ideal lossless resonator can oscillate indefinitely once excited with an initial current or

voltage.

i) o +_(|> >

i(t)=C d:l(; ) + % W) =L d;(; )

<
0

Figure 2.1: LC oscillator system diagram

Considering the lossless LC resonator in Figure 2.1, the differential equation representing this

system and the general solution of the differential equation are given by equations (2.1) and

(2.2), respectively.
2.
i)+ 1cD =0 @1
dt
i(t) = Cy cos(wyt) + C, sin(wyt) +ip(F) (2.2)

where w is the oscillation frequenc = , Cp and C; are constants given by the initial voltage
q M g y g

and current conditions in the circuit and ip(?) is the particular solution of the differential equation
for the given input i,(t), which is equal to 0 for no input.

Due to energy dissipated due to resistive losses, oscillation requires the periodic addition energy
from external source in order to compensate for the dissipated energy. If a loss is introduced in

the system in Figure 2.1 by adding a series resistor, the system’s differential equation becomes:
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i(t)+ LC———=

d? I(t) o)
7 o n)=0 2.3)

The homogenous solution of this differential equation is given by:

2 2
i) = Coemt_'_ Cle'm ‘ ﬁ

(2.4)

Equation (2.4) describes a damped system that decays to zero. In order to obtain oscillation, the
system requires an active component which can provide periodic energy precisely equal to the
energy dissipated in resistance.

This can be achieved by a negative resistance, an element that can provide energy to the circuit.
In simple terms, if one were to cancel out the positive resistance of the LC tank with a negative
resistance of the same magnitude, then the overall circuit resistance will be zero. This is
described in equation (2.5), by adding a negative resistance (Ry) to the aforementioned equation,
and equating to the positive resistance (R).

d*l (z) dI(t)

i(t)+ LC +(R=Ry)C= =

~i,(t)=0 (2.5)

However, if the negative resistance (Ry) exceeds in magnitude the positive resistance (R), the
homogenous solution to the differential equation becomes an exponentially growing oscillation

as described by:

(2.6)

While oscillation can be theoretically achieved by linear circuit elements as described in the

previous equations, the amplitude of such oscillation is dependent on the initial circuit

11



conditions, and unless resistance is cancelled precisely, the oscillation will either exponentially
decay or exponentially grow.

In practical circuits, fixed oscillation amplitude is needed. In order to achieve that, electric
oscillators exploit nonlinearity associated with active circuit components used to implement the

negative resistance. An ideal example of such nonlinear negative resistance can be expressed by

its conductance transfer functioni, , = —i,sign(v,, ), which is shown in Figure 2.2.

iO UT
+1, 0

VIN

-1y

Figure 2.2: Ideal nonlinear negative conductance transfer function

An oscillation can be formed by placing this nonlinear negative resistance in parallel with a lossy
LC resonator as shown in Figure 2.3 (a). In order to study such a circuit, it is customary to

linearize it, by considering its frequency domain system model shown in Figure 2.3 (b).

Zo(s)
o~ [T 3
Negative s 1 9 I(s) 3 b= V(s)
Resistance ‘:R C 8 L R —R: [
Y(s)=Z"
(@) (b)

Figure 2.3: (@) A basic RLC oscillator consisting of an RLC resonance tank and an energy compensating
impedance (Z), and (b) The system representation of this oscillator

In order to obtain the linearized conductance Y in Figure 2.3 (b), a sinusoidal waveform (vzy) is

applied to the nonlinear conductance as shown in Figure 2.4. The sinusoidal frequency is chosen

12



to be the resonance frequency of the LC resonator (). The Fourier series of the output square

current waveform, for an input v, (¢) =V, sin(a)ot ), is given by:

41, 1 .
i(ty=-—- —sinlnw,t

T n=1,23,5,.., n ( 0 ) (2.7)
iOL"T
+I, iour

VIN t
ar

5 /) IS S

VIN

D
BB

t
Figure 2.4: Voltage input and current output waveforms of ideal nonlinear conductance

Given the band-pass nature of the LC resonator, 3rd,5th and higher order harmonic terms in
equation (2.3) should get attenuated and can be discarded. Therefore, the linearized conductance
of the negative resistance at resonance is given by the following describing function:

4],
Y(s)=—2 2
(s) v, (2.8)
Therefore, a linear transfer function (H(s)) can be used to describe the system in Figure 2.3 (b):

V(s) _ Zy(s)
I(s) 14Y(s)Zy(s)

H(s) = (2.9)

13



Note that this is simply the impedance of the parallel R, L, C, Z elements. Zy(s) can be rewritten:

sRaw,/Q

2 2
ST +sw,/ Q+w,

Zy(s) = (2.10)

While the negative resistance described in Figure 2.2 and Figure 2.3, is theoretically easy to
analyze, in reality it is impossible to obtain such a step transfer function. A real negative

resistance can be realized using cross coupled active CMOS devices as in Figure 2.5.

5,00 =

Figure 2.5: Negative resistance realized using cross coupled transconductance

Without going into details with regards to the conductance transfer function which depend on the
CMOS device used, a few characteristics of such transfer function can be given, and are true

regardless of the CMOS device used. A generic transfer function of the conductance is depicted

in Figure 2.6.

..........

VIN

lourVIN=8m

Ay

Figure 2.6: Conductance transfer function of a generic non-ideal negative resistance

For such a generic transfer function, the conductance depends on the amplitude of the swing

(V). For a small V), the conductance of the negative resistor is simply given by the small-signal
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transconductance of the CMOS devices Y(s)=-g,. For a large V), the output waveform resembles
a square wave, and the conductance’s describing function Y(s)=I,¢/Vy, where I, is the amplitude
of the first harmonic of the periodic current waveform, which approaches Y(s)=4/m(1y/V}) for an
ideal square wave. These two values provide the minimum and maximum asymptotes for the
conductance value versus the amplitude of the swing (vy). The corresponding effective large

signal transconductance is denoted Gy, where Y(s)=-Gyy.

2.3.VCO Tuning

Tuning range is defined as the ratio of maximum to minimum oscillation frequencies of the
VCO. The tank’s quality factor is in general inversely proportional to the tuning range.
Therefore, wider tuning range results in higher phase noises. A more detailed analysis of the
tank’s quality factor dependence on tuning range is given in Chapter 4.

Conventionally, some form of capacitive tuning is utilized to tune VCOs. Chapter 4 describes
different capacitive tuning methods. This section, on the other hand, aims at introducing two
methods that have been used to extend the tuning range of VCOs beyond that achievable by
basic capacitive tuning. The two methods are: capacitive degeneration and multi-mode

resonance.

2.3.1. Capacitance Degeneration
In order to overcome the limited frequency tuning imposed by parasitic capacitance, which
becomes more dominant at higher frequencies, negative capacitance was introduced [15]. In
addition, it has been shown that such technique provides finer frequency tuning and allows for
using larger inductors which enhances the oscillator’s performance[16]. The basic principle uses

a source degeneration capacitance as shown in Figure 2.7.
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set

(a) (b) (c)

Figure 2.7: Modification of (a) differential pair negative resistance to implement (b) a negative capacitance using
source degeneration and (c) the corresponding half-circuit small signal model

Using the small signal model shown in Figure 2.7 (c), one can derive the effective conductance

(Y) seen at the single ended output of the differential pair as:

2g,,
g — —_—
M (gm2 + 4w’ C?

2

AC*0?
Y=—( @ jaoC 2.11)

gm2 + 4w’ C?

Note that the differential conductance is Y/2. As long as the capacitance is large enough
(wC>gy), this will have no significant impact at reducing the negative resistance while providing

additional negative capacitance to the tank. For a large capacitor value or at higher frequencies,

2g,”
40*C?

the negative capacitance term becomes—( ] jwC. This can be considered a negative

capacitance with a scaling factor 2g,*/(4w°C)at a given frequency or a gyrator with effective
inductance C/g,’.Under such operating conditions, this cannot be used for cancelling parasitic

capacitance, thought it can provide fine tuning with effective inductance steps of AC/g,,” .

2.3.2. Multi-Mode Resonance

Multi-mode resonance uses coupled resonators as means to generate widely separated resonances

compared to those of the original (uncoupled) resonators. This can be viewed as a complex pole

16



splitting action. Consequently, this creates widely separated tuning bands and reaches higher

frequencies.

Figure 2.8: An inductively coupled resonator

For the inductively coupled resonator in Figure 2.8 we can express the Z-matrix as follows:

2
PRI 2 L s Lo’ Lz LL,w w,’s
1 O, 1-k 1-k
Z=~ i , (2.12)
——JLLo w,’s | D2 4| - Is |Lyo,”
1-k o) 1-k
2. 2 ) 2 2 2 2
A=S4+ ﬂ+& S3+ ﬂ&_FCUI +CU2 Sz+ a)la)z +a)2a)l S+a)la)2
o O 00 1-K -k 0 0, 1-k?

Where 1,°=1/(L1,C1,) are the resonator’s uncoupled resonance frequencies and

O12=Rp1 /(w1211 ) are their quality factors. Assuming an infinite quality factors the resonance

frequencies of the coupled resonator are found to be:

2 (“’12 + wzz)‘—' \/(wl2 + wzz)z - 4a)12a)22(1 - kz) (2.13)
201-#2)

For symmetric tanks (@, = @, ), equation to:

1
O =T (2.14)
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2.4. Start-Up Condition
The condition to obtain a sustainable oscillation for the system described in (2.9), can be reached

using a number of system criteria:

2.4.1. Barkhausen’s Criterion

Barkhausen’s Criterion provides a necessary but not sufficient condition for oscillation:

| Y($)Z,(s) |=1

2.15
LY(8)Zy(s)=2m,nEZ 2.15)
2.4.2. Root Locus Method
The root locus method traces roots of the characteristic equation in the complex plane:
1+KY(s5)Zy(s)=0,K:0—> 0 (2.16)

The condition necessary for oscillation is that the roots cross to the right half plane. Since right
half plane roots of the characteristic equation represent right half plane poles of the closed loop

system, the system is unstable.

2.4.3. Nyquist Stability Criterion
The number of unstable closed-loop poles (Z) of the system H(s) is equal to the number of
unstable open-loop poles (P) of Y(s5)Zy(s) plus the number of clock-wise encirclements (N) of the
complex point -1+0j of the Nyquist plot of Y(s)Zy(s). The Nyquist plot is the complex plot of
Y(s)Zy(s) as “s” is swept along the complex contour in Figure 2.9 (a). The sweep from -o0j to ooj
along the imaginary axis is a simple frequency sweep of s=jw as the frequency (o) is swept from
-o0 to oo, while the angular sweep of s= A’ (4— o0) from 1/2 to -n/2 will map to a single point in

the Nyquist plot as long as Y(s)Zy(s) is proper or strictly proper (Denominator is of equal or

18



higher order to Numerator of the transfer function).The stability criterion is summed up in the
following simple equation:

Z=N+P (2.17)
Nyquist criterion provides stability information in the form of phase margin (from the phase at
which the Nyquist plot crosses the unity circle) and gain margin (from the magnitude of the

Nyquist plot crossing the real axis) as shown in Figure 2.9 (b).

Im[s] |
+09j > - -

1 ""u‘ \\\‘
/' 1/6Mm \
GV :

Re[s] -1 il Re

_ <=1~ GM: Gain Margin
- J PM: Phase Margin

(a) (b)

9

Figure 2.9: (a) Contour of values of “s” swept to generate the Nyquist plot, and (b) an example Nyquist plot with
gain and phase margins marked on the plot

2.4.4. The Start-Up Condition of the Basic VCO

Q_'Q_QL Q00
I I
i c i c
—’VV\;K » _W\'K

[ 1
]

-1/Gy

Figure 2.10: Cross coupled oscillator schematic and equivalent small signal circuit
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In a cross coupled oscillator, the negative resistance appears in parallel with the LC tank due to
the need to provide a DC bias current for the CMOS devices which can’t be achieved if a series
capacitance is inserted. As shown previously, this circuit would oscillate if the total resistance is

less than or equal to zero.

A parallel resistance (Rp) is introduced to represent an equivalent theoretical lumped resistance
that models the resistance in both the inductance and the capacitance. Under high quality factor

assumption of both inductance and capacitance, the resistance Rp is related to the total series

resistance in the RLC at resonance (o) as R, = RSQz, where:

Q_a)OL_ 11 L

Similarly, the quality factor of the parallel RLC tank can be defined as:

R, C
Q=@=“’0RPC=RP\E 2.19)

The startup condition hence becomes:

= Ry 0 or GM>L

R,/ = <
P76, 1-GuR, R, (2.20)

For the basic VCO, we recall that the resonator has Z (s) = % and that ¥(s)=-Gy. In
sT+swg / Q+ax

order to apply the root locus method, the describing equation is:1- G,,Z,(s) = 0. The root locus
traces the poles of the describing equation as G, is swept from 0 to co. This yields the following

describing equation:

2 Dy 1 2 _
ST +s Qs(l GyR)+w,” =0 2.21)
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The poles corresponding to this equation are given by:

(2.22)

These poles can plotted on the complex s-plane as shown in Figure 2.11. As apparent from the

Gy R-1

expression and the plot, the poles cross to the right half plane for any positive , Or

equivalently if Gy, is greater than 1/R.

Rels]

Figure 2.11: Complex conjugate poles of the LC-tank VCO in the complex s-plane

On the other hand, the Nyquist Criterion requires the creation of the Nyquist plot of the function
T(s) = -GmZo(s). The Nyquist plot can be analytically constructed by considering the four points:
{T(s=0), T(s=%), Re[T(s=jw)]=0, Im[T(s= jw)]=0}. The points are summarized as follows:

T(s=0)=0
T(s=0/)=0

Re[T(s = jow)]= ( )g)z ( )26MR=O o T(s=0)=0 2.23)

—_Ole _wwo T(s=0)=0
[T (s = jw)]= . (IQ(”(";X;Z)Z(“’O()Z ))@ GyR=0  _, T(s=w,)=-RG,

T(s = -w,) =-RG,,
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_2G,OR

L (s = )] = < (T (s = ~a)]
dw dw w,

(2.24)

The resulting plot is shown in Figure 2.12. The Nyquist plot as given by (2.23) and (2.24), starts
from the point 0+0j and crosses —GR+0j twice with a positive imaginary gradient (clockwise) in
both cases. Since 7(s) has no unstable poles by qualitative reasoning (the passives are lossy for
any Q<o), then for Z=N+P to be greater than 0, N has to be greater than 0. This condition can
only occur if —GyR<-1 or equivalently, Gy> 1/R. If P=2 for Q=oo, then the circuit is

unconditionally unstable and it can oscillate for any Gy as expected.

Im

Re

-GyR

Figure 2.12: Nyquist plot

2.4.5. VCO Start-Up Summary

The transfer function H(s) can be simplified with the assumption that ¥(s) is a real value (-Gy)

and the impedance Zy(s) is the ratio of two polynomials of s: Z(s) = ZES;
s
H(s) = Zy(s)  _ N(s) -
1=GyZy(s) - D)~ Gy N(s) 229

Based on this and the previous discussion of startup conditions we can come up with the
following set of equations that would satisfy start-up based on the Nyquist and the Root Locus
criteria. Note that these conditions are compatible. Both equations can be further broken into real
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and imaginary parts to provide two sets of equations whose solution yields the resonance

frequency and the startup condition.

Root Locus D(jw) -Gy N(jw) Re[D(jw)]=G,, Re[N(jw)]
Im{D(j@)]= Gy Im[N(j)]
Nyaquist Criterion -Gy Zy(jw)=-1+0j Im[Z,(jw)]=0 (2.26)
1
Re[Zy(jw)]= G,

The two conditions share the assumption that the complex variable s is only swept along the
imaginary axis (joo). As shown in Figure 2.13 (a), in the root locus plot, we are only interested in
the poles when they are crossing from the left half plane to the right half plane so we only sweep
along the imaginary axis. We then solve describing equation as given in (2.26). The equation can
be further broken into imaginary and real parts to generate two equations. In the Nyquist plot
displayed in Figure 2.13 (b), we are making an assumption that -GZy(jw) has no right half plane
poles, which is a reasonable assumption for any lossy resonator. Given that assumption, if the
Nyquist plot of -Gy Zy(jw) crosses the point -1+0j (in a CW fashion), then the system is unstable.
Similar to the root locus case, this equation can be further broken into imaginary and real parts.

Im[s] Im

Re
Rels] Im[Zo(jw)]=0

(a) (b)
Figure 2.13: (a) the s-plane is swept along the imaginary axis for both root locus and Nyquist plot methods as

given by equation (2.26), and (b) The Nyquist plot that corresponds to start-up condition in equation (2.26) with
the implicit assumption that -GyZy(jw) has no right half plane poles
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2.5.Phase Noise

2.5.1. The importance of phase noise: Spectral skirting and reciprocal mixing
An ideal sinusoidal oscillator’s voltage waveform is given by V(¢) = Acos(w,t + @, ), where 4 is

a constant amplitude, wy is the oscillation frequency and ¢y is the initial phase. Such an ideal
oscillator can be represented in the frequency domain by a single impulse as shown by the

“Desired” signal highlighted in Figure 2.14.

Desired
RF IF
/ Actual
f
LO (VCO)
20
n L
g LO With Phase Noise Strong Interferer
T -20
E Desired RF
=40

-600102()30405060703090100
Frequency (MHz)
20
Down-converted Down-converted

Desired RF | ' \terferer

PSD (dB/Hz)

-6
—%040—3(}—20—1001()203:]4050
Frequency (MHz)

Figure 2.14: Spectral skirting resulting from phase noise corrupting the down conversion of a desired received
signal by an undesired blocker
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However, in a real voltage oscillator, the oscillation waveform is more generally given by

V(t)=A(t) f(wyt + §()), where f{(x) is a periodic function, and the amplitudes A(¢) and the

added phase ¢(f) fluctuate with time. These fluctuations are a result of different circuit noise

sources presenting themselves at the oscillation node. Phase fluctuations known as phase noise
can be represented in the frequency domain by sidebands appearing close to the desired
oscillation frequency as captured by the “Actual” signal highlighted in Figure 2.14. This is known
as spectral skirts. Therefore phase noise disperses the signal power over a wide frequency range
rather than a single frequency tone.

In radio receivers, small desired signals are accompanied by large, unwanted interferers. Spectral
skirts resulting from phase noise in the LO signal causes reciprocal mixing of the interferers
down to the same frequency as the desired signal, thus corrupting the received desired signal as
highlighted in Figure 2.14.

Phase noise L(Af) is defined as the power spectral density (PSD) of the phase fluctuation term
(@n(2)) in (2.27). Phase noise can also be approximated by the single side band PSD of the
voltage waveform, by taking the ratio of the PSD (measured at a given frequency offset from the
center oscillation frequency) to the total carrier power as in equation (2.28).

The later definition of phase noise is only true for phase noise greater than amplitude noise, so
that phase noise dominates the voltage spectrum, yet small enough so that the small angle
approximations are valid. This can be seen in Figure 2.15, where both spectra are plotted for

comparison.
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Figure 2.15: Signal Spectrum and Phase spectrum vs. offSet frequency as ways to determine phase noise

Veco(t) = (Vy +V,(0)) f (ot + @,(0) + @) where fis periodic
Vico () =(Vy +V, () cos(ayt + ¢, () + @) For a sinusoidal oscillation (2.27)
S, (A S A
L(Af) — Pn ( f) ~ V,SSB( f) (228)

2 JS.(M)Hdf

2.5.2. Leeson’s LTI phase noise equation
In his partially empirical work, Leeson highlights that the phase noise spectrum of a feedback

LTT oscillator is comprised of three major regions as depicted in Figure 2.16 [17].

w, W 0 / 20
2FkT

S S (Am)
%

g

oo

Freq ueﬁcy Offset (Amj

Figure 2.16: Phase noise plot as described by Leeson [17]
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Vain (t) + Vout (t)

6%

Figure 2.17: LC oscillator equivalent baseband LTI system diagram

In arriving at this conclusion, Leeson assumes that the oscillator is an LTI system whose
equivalent baseband operation can be captured by the filter depicted in Figure 2.17. The

equivalent cutoff frequency w;gp is determined from the definition of the quality factor Q of a

passive resonator, Q = , where wy is the resonance frequency.

2034p
The input noise v,,(?) is noise resulting from circuit devices and it has a period to period phase
noise given by 46 and it has a spectrum equivalent to that of the voltage noise divided by the
mean power (assuming small angle approximations). This spectrum is depicted in Figure 2.16
(Ss0(4w) ) and it accounts for thermal white noise as well as flicker 1/f noise. The output period

to period phase noise is the given by the input spectrum shaped by the equivalent transfer

function:
H(Aw) = ! ~ !
. GyZy " 1 (2.29)
1+ jAw/ wy 1+ jA®/ @34

Where GyZy* can be estimated by 1 at steady state operation of the oscillator where amplitude is

kept constant. The frequency noise at the output can be related to the period to period noise at the
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w, |AG
output, by the phase definition of quality factor Q = 70 ol Consequently, the added
w
frequency noise (S,(4w)) is given by:
2
Sw(Aa))=(§)—£’2) |H(Aw)|* S5, (Aw) (2.30)

Finally accumulated phase can be derived from frequency by taking the time integral, and the
phase spectrum Sa(4w)=S.(dw)/(dw)*. This results in the following expression for the phase

noise of a feedback tuned tank LTI oscillator:

2 3
Zk—TF(1+( “o )][HM)#]] (2.31)
P 20Aw Aw

Where k is Boltzmann’s constant, 7 is absolute temperature, Ps is the signal power at the

L(Aw) =10Log

oscillator’s active element inputs, @, is the resonance frequency, Aw is the offset frequency, Q is
the loaded quality factor of the passives. While the equation in its full form was not stated by
Leeson, the plots he provide, which are replicated in Figure 2.16, indicate Aw;y is the 1/f
frequency cutoff of the input noise sources and F'is an empirical parameter known as the device
excess noise number. However, it has been clarified in the literature that both Aw,, and F' are
empirically fit parameters that cannot be derived in the manner explained in the previous

analysis[18].

2.5.3. Hajimiri’s linear time-variant phase noise model
In his model, Hajimiri argues the LTI assumption, is incorrect and leads to being unable to
correctly predict the performance of the system without obtaining the empirical parameters Aw s
and F apriori [18]. In developing an alternative model, the oscillator is modeled as a linear time-

variant (LTV) system. If an impulse current is injected at any node in the circuit, it will create a
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voltage step proportional to the injected current. Such a voltage step can result in step in the
amplitude or phase (or both) of the oscillation waveform. The oscillation’s phase response to this

current impulse (4¢(2,7)) is periodic time-variant and is given by:

(wy7)

he (2,7) = 2 u(t -7) (2.32)

max

where F(wor) is known as the impulse sensitivity function (ISF) which is a periodic function
that captures the magnitude of the oscillator’s phase step in response to an injected current
impulse at time 7, ¢, =CV.__ is the maximum charge swing across the tank’s capacitor and u(?).

Being a periodic function, the ISF can be written in terms of its Fourier series coefficients as:
CO 0
I'(w,yT) = 5 +3..C, cos(naw,r + @, ) (2.33)

Using the LTV model, an arbitrary oscillator’s l/fg phase noise Ll/f2 (Aw) evaluated at offset

frequency A from its resonant frequency @,is expressed as:

S s /&
L Aw)=10L 2
1/f2( ) o8 242 x(Aw)

q max

(2.34)

- . . h : 2 1
where i / Af is the power spectral density of the m" noise source, I, is the root mean-square

of the ISF. And the oscillator’s 1/£ phase noise L, 3 (Aw)is given by:

Ecg,m (E/Afxa)]/f,m)
Ll/f3 (Aw) =10Log 4q§nax x(Aa))3

(2.35)

Where @, , ,,1s the 1/f noise corner of the m"" noise source similar to before. This gives a closed

form expression of the relationship between the 1/f noise corner of the source and the 1/ phase

noise corner.
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The impulse sensitivity function of a differential oscillator, oscillating with a sinusoidal
waveform, to the noise of resonance tank’s resistances, can be well approximated by a sinusoid
in quadrature with its oscillation waveform and with magnitude equal to the inverse of the

number of resonators in the oscillator (V) [19].

The overall noise term ("I i* /Af) due to cyclostationary and non-cyclostationary thermal
\f y ry y ry

rms.,m - n,m

noise sources can be expressed as ckp7 /R Wwhere a is a constant the depends only on the
architecture and operating region of the transistors, £ gis Boltzmann’s constant, T is absolute

temperature and R is the tank’s equivalent parallel resistance.
For LC oscillators, the value of a was derived in [1] to be simply (1+y), where v is the noise

factor of the oscillation transistors, where the transistor’s noise power is modeled as

l‘r%,ds = 4kBT}/gmAf :
For a current-limited oscillator, equation (2.34) can be expressed as:

1 1 1 w,
0nl0) T70LY o) (239

TANK 0

L(Aw) = IOLog(akBT

where [ gis the tank’s bias current, L is the tank’s inductance and Or ANK[‘UO] 1s the tank’s

quality factor at resonance. Equation (2.36) defines the theoretical relationship between the four
performance metrics: resonant frequency, tuning range, phase noise, power consumption.
The bias current (/) in equation (2.36) is directly proportional to the DC power consumption of

the oscillator P =7,V , where V, is the oscillator’s supply voltage. Phase noise is inversely

proportional to the power consumption as long as the oscillator is operating in the current-limited
regime. When the oscillator enters the voltage-limited regime, its voltage swing becomes

independent of the bias current /z and equation (2.36) becomes invalid. For best phase noise
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performance, oscillators are typically designed to operate at the edge of the voltage-limited
regime where equation (2.36) is still valid [20].
Phase noise is directly proportional to resonant frequency if the oscillator’s tank inductance and

quality factor are maintained constant. However, the assumption that the term Q7 [a)O]Lis

constant is not correct. This can be seen in the plot of maximum QL3 (wg)L for a number of

inductor configurations in the 65 nm CMOS presented in Figure 4.1.

2.5.4. The simulation of the impulse sensitivity function
The evaluation of the ISF function can yield significant insight into the output phase noise of an
oscillator. The typical method to compute the ISF uses its original definition; by injecting a
transient impulse current at a specific node and observing the corresponding steady-state phase
shift. This method requires long simulations. An alternative method proposed by Pepe [21] uses
frequency domain simulation to compute the ISF. This is accomplished by observing the output
voltage waveform of the oscillator with a tonal noise input at the noise node. The paper [21]
shows that the output fundamental oscillation waveform for an input noise tone at w,, frequency

offset from the at all n-harmonics i, (r)= 7, cos((nw, — w,, ) is given by:

oW +cos\\wy —w,, f+7T+@, —@,
Vo0 =V costang s g+ 3 Cele_ (oo -an ke v g )) (237)

n 4Qmaxa)m + COS((CUO +w, )t + %o +@, )

where C,, @, are the ISF parameters in (2.33) and the other parameters correspond to the

standard sinusoidal oscillation waveform as defined in (2.27). In Cadence SpectreRF simulator,
this corresponds to a periodic steady state simulation (PSS) followed by a periodic transfer

function (PXF) simulation. From the PSS simulation, the steady state amplitude and initial phase

(Vo and @, respectively) are found. From the PXF simulation, the amplitudes at frequency offset
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w, * w,, and phases @, = @, are found, which allows the computation of parameters C,, ¢, for

the considered n"-harmonics.

The extracted parameters are used in (2.33) to compute the ISF as approximated up to the n™
considered harmonic. Since g4 1s equal to V)C, where C is the total loaded capacitance of the
tank, the amplitude of the output modulated tones are independent of the amplitude V), but
require the knowledge of the total capacitance. The loaded capacitance (including that from
transistors) can be found from the oscillation frequency as I/w;°L. The PSS-PXF simulation

method is both more time efficient and more robust than the original transient simulation.

2.5.5. Impulse sensitivity function of a basic LC oscillator
The method for evaluating phase noise using PSS and PXF simulations has been discussed
previously. Firstly, this method is applied to the basic LC-oscillator shown in Figure 2.18.
The circuit consists of two CMOS transistor biased with an ideal 2mA tail current source and
loaded with an ideal RLC load. The RLC load is selected to have a Q of 15 at a resonance
frequency of 10GHz. Due to the CMOS devices’ parasitic capacitance, the resonance frequency

drops to 9.83GHz and the quality factor at resonance becomes 15.28.

Q00 L=400pH

| C=631.5fF
AMN— R=377.50Q

Vour- °__@l__° Vour+

nQ

inD ¢ Mgl —| M1 W/L:

16/0.06um
ITAILZZI’MA d)

lur

Figure 2.18: Cross coupled LC-oscillator schematic with noise sources of interest highlighted (i,0, inp, in7)
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Figure 2.19: (a) The normalized output voltage waveform and the Impulse sensitivity function of the output phase to
noise injected at the three noise sources (ing, Inp, ing) as indicated in Figure 2.18 and (b) The normalized drain

current and (c) transconductance of transistor M,
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The three noises sources of interest are (1) the tank noise (i,p) generated by the loaded LC tank
parasitic impedance (Rp), (2) the cross-coupled transistor noise (i,p) and (3) the tail transistor
noise (i,7). The ISF plots are shown in Figure 2.19. The voltage and current results are normalized
to 1 by dividing each waveform by the amplitude, while the ISF are presented as is. The time is
normalized in the form of phase. The evaluated ISF functions are:

(1) The tank noise ISF (lno) is approximately a sinusoid with amplitude equal to 1 and a
phase offset of m/4 from the output voltage waveform. This result has been explored in the
literature [19] and can be summarized for an oscillator, which consists of n-tanks, and whose

sinusoidal output waveform is given by vour(t)=Vycos(wyt) as:

= w (2.38)

n
The tank noise ISF (I},0) is maximum during differential output voltage zero-crossing since all

injected current noise contributes to phase noise rather than amplitude noise. The ISF is
minimum when the voltage is maximum, as all current swings contribute to amplitude
fluctuations rather than phase fluctuations. This can be best understood by observing the state-
space of the voltage and current in the tank as the oscillation takes place as in Figure 2.20.

I
'y

AV

Figure 2.20: The state-space of the single LC-tank oscillator as defined by the voltage across the capacitor (V) and
the current inside the inductor (I1): A charge injection results in a voltage step ( AV), which can cause a phase shift
(A @), while the oscillation amplitude eventually returns to Veylimited by circuit nonlinearities [18]
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As shown in Figure 2.20, an impulse current results in a voltage step ( A V). The voltage step can
result in a phase shift ( A ¢). If the voltage step occurs at phase py=kn+n/2 then no phase step

occurs and the impulse sensitivity is 0. If the occurs at phase ¢y= kx then maximum phase step
occurs and the impulse sensitivity is maximum.

(2) The transistor noise ISF (I'i,p) follows 5,0 closely while the transistor is off as all the
noise generated couples directly to the output and the sensitivity is only impacted by the output
voltage and phase. On the other hand, as the transistor turns on and starts conducting, the
sensitivity to the noise source drops as the noise current starts flowing into the transistor’s low
impedance rather than getting channeled to the output node.

(3) The differential transistor noise ISF (I'i,p,) given by the difference between the two ISFs
from transistors M, and M;. Is equal to the tank noise ISF ([j,0). This ISF will be used for
deriving closed form expression of the phase noise from the differential pair.

(4) The effective transistor noise ISF (I'i,perr) captures the impact of the large signal swing
on the noise generated by transistors My and M, and effectively their overall noise contribution at

the output. The thermal current noise power density of a CMOS transistor is approximately:

2
The parameter vy is equal to 2/3 for long-channel transistors and can be larger than that for short
channel transistors. Since g,, which is depicted in Figure 2.19 (¢) is deterministic and varies

periodically during the oscillation cycle; the noise is cyclostationary and can be described as:

in (t) = inO (t)\/ Em (wot) Where % / Af = 4kT}/ (2.40)
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Hence, the cyclostationary thermal noise can be decomposed into a product of a stationary
thermal noise 7,,°’/Af, and the deterministic periodic functionm . The effective ISF of
thermal noise i,s°’/Af is therefore given by the product:
Loperr = & (@68)Tp (2.41)
Similarly, an effective ISF can be defined for the differential transistor noise as:
Lipaerr = Gy (@)L pa (2.42)

d[di/ﬁ’

The differential transistor noise can be derived as dai”
l.

where vy 1s the differential voltage at

the input (gates) of the differential pair, and 1y is the differential output current. Assuming that
the transistors operate as switches, for a sinusoidal input differential voltage (vqiy), the effective
differential current (is) switches between /7/2 and -I7/2 where Ir is the tail current, and is in
phase with the voltage. This assumes that transistors do not introduce a phase shift or
equivalently, the transistors have a much larger bandwidth than the operating frequency.

One way to approximate such switching nonlinearity is using a hyperbolic tangent (tanh)

function, where the periodic voltage and current can be expressed as:
Vi (8) = V4 cos(g) (2.43)

Laifr (¢) =1, tanh(g moVdiff (¢)) =1, tanh(g m0 1V_8 COS(¢))

where [p=I7/2, gmo 1s the small signal transconductance and V) is the voltage amplitude. This is

depicted in Figure 2.21, for a K=g,,0Vo/lp=1, 10.
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Figure 2.21: Normalized periodic oscillating differential voltage (vay) and switching current (izz) waveforms
captured by a hyperbolic tangent (tanh) function

The resulting differential transconductance is:

digg(g)

N )
GM (¢)_ dvd,ﬁf<¢) Emo SGCh(ng Iy COS(¢))Z (2.44)

As gno grows much larger than [y/V), in the case of an ideal switch, the differential

transconductance approaches:
Gy (9)=2:2(6lp+ 3)+ 0o - 1)
Vy (2.45)
This provides a very good estimate to be used in closed form expression evaluation of ISF, and
it’s independent of the exact type on the nonlinearity (exponential or tanh) since it assumes ideal
switching. This is depicted in Figure 2.22 as Gy(®) for K=g,,oVo/l)=1, 2,5,10,100 showing how
Gu(D) approaches a Dirac delta function. As Gy(@) approaches a Dirac delta, only the ISF value

of the output node at /2 and —1/2 becomes significant.
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Figure 2.22: Effective differential transconductance (Gy) as a function of phase, showing how as the value of
K=g,.,0Vy/l, increases, the transconductance approaches a Dirac delta.

Given that T}, ,, = Lsin(wy), the effective ISF is:

Lyoagrr = % 211/—0(sin(¢ + %)"' sin(q) - %)) (2.46)
0
T 2 _ 12]_0
inDAEFF rms naV, (2.47)

which can be written in terms of the first harmonic of the switching current /,,0=41) /n:

11, 1 1

2 0 2 2
1_‘inDAEFF,rms = 2_7’1 % = VL I-‘inDA,r'ms = R_ I-‘inDA,rms (2.48)
0 0 D ’

The same result is presented in [22], using a Fourier expansion of the transconductance. While
both approaches yield the same estimate for a non-quadrature ISF, only this method is able to
capture the impact of quadrature ISF on the overall effective ISF as will be discussed later.

(5) The tail current noise ISF is impacted by two mechanisms: The output waveform voltage

and phase which defines its sensitivity to any injected current at that node (namely /7,0) and the
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current splitting between the two legs of the differential pair. The assumption is that the tail
current is an ideal current source and hence there should be no consideration for noise current
splitting between the current source itself and the output nodes. When both diff-pair transistors
are equally conducting, the noise from the tail transistor will appear as a common mode noise
component at the output rather than a differential noise component and hence the differential
output would be least sensitive to the noise during these transitions and that should correspond to
ISF nulls. Since the currents splits equally when the differential voltage at the output is 0, this
corresponds to maximum /j,p, and vice versa. Hence the two aforementioned contributors to the
impulse sensitivity of the tail transistor are in quadrature. Since the overall ISF is the result of the
product of these two processes, the overall ISF is the product of two in quadrature processes,

which translate to a waveform with twice the frequency of l,p and a lower amplitude. The

sinusoidal nature of [;,7 seen in Figure 2.19, indicate that both processes contribute equally to the

overall ISF.

2.5.6. ISF-based phase noise derivation for the basic LC oscillator
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Figure 2.23: Phase noise plots for circuit shown in Figure 2.18
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The phase noise is obtained from the ISF functions according to equation (2.34) and plotted in
Figure 2.23. The plot contrasts a number of cases for which phase noise is computed/simulated.
The cases are given by:

(1) PN;: A closed form expression of the phase noise considering the thermal noise from the

transistors My, M and Rp as:

I‘iftQ,rms ( 41];bT ) + ri%zDA,rms ( 4];7Ty )
P P

2(CV,)? x(Aw) (2.49)

Ll/f2 (Aw) =10Log

1(4ka)+1(4’%”) .
L, 2(A)=10Log 2 R};(Q)zi i (i—})
@0 (2.50)

where Boltzmann’s constant k,=1.38-10> m’kg s”K™' , the temperature T=300K and the
design parameters OQ=15.275, Rp=377.5, fy=9.833 GHz and y=1. The first harmonic of the
output switching current can be estimated as 2/n/z where /5 is the bias current (2mA).

(2) PN,: A closed form expression of the phase noise given by equation (2.49), with all
parameters as before but using the output voltage amplitude (V7)) from simulation.

(3) PNj;: Phase noise expression from the ISF and voltage plots depicted in Figure 2.19.

(4) PN,: Simulated PN using a Cadence SpectreRF PSS and PNOISE simulations using same
circuit schematic and device models with only thermal noise.

(5) PNs: Simulated PN using a Cadence SpectreRF PSS and PNOISE simulations using same

circuit schematic and device models with thermal and 1/f noise.

40



(6) PNspmos ., PNenmos: Simulated PN using a Cadence SpectreRF PSS and PNOISE
simulations using same circuit schematic and device models with thermal and 1/f noise
with a non-ideal (transistor based) tail current source using both PMOS and NMOS tail

current bias current architectures as shown in Figure 2.24.

I W/L=
” - | 40/0.4um |%
W Q0Q
Vour.o— — Vours+ Iz=2mA ” L
— C
—MA—
M, |_x_| M, Rp
Vour. o —o |/,
I=2mA our our+
—] M, |_x_| M,
W/L=
40/0.4um
(a) (b

Figure 2.24: (a) NMOS and (b) PMOS based current biasing circuit

Since the values of phase noise are very close for a number of the plots, their values are tabulated

for 10 kHz and 1 MHz offset frequencies in Table 1.

Table 1: Phase noise evaluated for the LC-tank at 10kHz, 1MHz for a number of cases

PN@10kHz PN@1MHz
dBc/Hz dBc/Hz

PN, -72.4338 -112.434
PN, -71.759 -111.759
PN; -71.1166 -111.117
PN, -71.4337 -111.433
PN; -69.7595 -111.389
PNgpmos -70.6955 -111.13
PNenmos -65.8468 -108.741
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Based on the results in Figure 2.23 and Table 1 the following can be concluded:

(1) The theoretically estimated phase noise is accurate within 1.5 dBc/Hz (PN, vs. PNy).

(2) The estimate is improved by using the actual output voltage which drops the error by 0.7
dBc/Hz, indicating that the first harmonic amplitude of the tank current is not as large as
4/mp which is expected given the shape of the current waveform in Figure 2.19 (b).

(3) The evaluation of phase noise from the ISF and voltage plots matches almost exactly the
simulated phase noise (PN; vs. PNy4) which validates the ISF simulations.

(4) The introduction of 1/f(PN4 vs. PNs) did not have significant impact at 1 MHz since the
1/f corner frequency is less than 1 MHz . The impact is more pronounced at 10 kHz.

(5) The increase of Phase noise due to PMOS biasing is significantly less than that due to the
NMOS tail current (0.3dBc/Hz vs. 2.3dBc/Hz at IMHz). It’s expected for the PMOS
biasing to introduce less noise since it has lower thermal and flicker noise and does not

drive the differential devices into deep triode.

2.6. Quadrature Considerations
When extending the previous phase noise analysis to quadrature VCOs, additional consideration
must be given to the quadrature implementation. Quadrature outputs are typically obtained by
placing two identical VCOs inside a quadrature loop. The 90° phase shift is obtained by
introducing an excess 180° phase shift inside the loop and ensuring that the only possible mode
of oscillation in that case is if both signals outputs are in quadrature. Several quadrature
implementation techniques have been studied in the literature. Many of these implementations
can be modeled by extending the linearized LC-tank oscillator model in Figure 2.10 to the

linearized quadrature LC-tank oscillator model in Figure 2.25.
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Figure 2.25: Linearized quadrature LC-tank oscillator model

In such model, the quadrature loop injects a current phasor (ip) that is at angle (typically
perpendicular) to the VCOs internal positive feedback current phasor (i) in both coupled
oscillators. This can be captured by considering the current phasors and their summation as

depicted in Figure 2.26.

» W

i > )
WoWosc WoWosc

Figure 2.26: Quadrature current phasors summing up at the oscillation nodes and causing a frequency shift from
the natural oscillation frequency of the LC- tank

As can be seen in Figure 2.26, the addition of the two phasors (ip , i) can only happen if there is a

phasor (ip) that sums the two currents at the LC-tank. Since the voltage across the tank is in
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phase with (i;), then the phase between the voltage across the tank and the current through it is @.

Therefore, adding up the two current phasors, results in a frequency shift equal to [23]:

, , 1+L—Ig‘sm(IIJX
osc = Wy 20 1+[g‘cos(‘PX (2.51)

where Ip and I; are the magnitudes of the in-phase and quadrature vectors (ip , i;) and they
usually correspond to the tail bias current of the corresponding transistors. For the common case

where the angle between the phasors (¥=90°), the expression simplifies to:

1 1
1

This frequency shift degrades phase noise by converting the current phasor’s amplitude noise
into phase noise. Furthermore, as frequency is shifted away from the tank’s resonant frequency,
the tank’s effective quality factor at the oscillation frequency is reduced. In addition, additional
noise is introduced from the devices used to implement the quadrature loop. The frequency shift
can be reduced by reducing the injected quadrature current. However, this directly impacts the
quadrature phase error, which is defined as the offset of the I/Q phase difference from 90°.

In [4], three QVCO architectures are compared to identify the trade-off between phase noise and
phase error. These architectures were presented in Figure 1.1. The architectures were: 1) Parallel
QVCO, where the quadrature devices appear in parallel to the in-phase devices. 2) Top-Series
QVCO, where the quadrature devices appear in series with the in-phase devices and are placed
between the output nodes and the in-phase devices. 3) Bottom-Series QVCO, where the
quadrature device appears in series with the in-phase device but placed between the in-phase
device and the tail current source. The study shows that using Top-Series/Bottom-Series QVCO

can yield a phase noise increase of less than 1dBc/Hz at 2GHz when compared to a VCO that
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doesn’t implement quadrature. Additionally, the study shows that using the Parallel QVCO
yields a much worse result, which is 3dBc/Hz higher than the phase noise obtained using the
Top-Series/Bottom-Series QVCOs.

As an alternative, passive quadrature injection has been presented in [8],[11],[6]. One
embodiment of this technique employs transformers to create the 90° phase shift [11]. Coupled

LC resonators are fourth-order systems capable of providing up to 360° phase shift and can be

in the vicinity of 90° phase
dw

,
designed to provide the highest quality factor defined as 70

shift. Hence, if a loop is formed to contain two such identical transformers in addition to a 180°
phase shift it’s possible to obtain quadrature without introducing additional phase noise. The
phase error is dependent only on the matching between the two transformers in the quadrature
loop.

There has been two works that attempted to fully quantify the impact of the quadrature on phase
noise using: (1) Extended Adler’s equation work by Mirzaei et al [23] and (2) ISF based
approach by Andreani [24]. Both works reach same conclusions, however, Andreani’s work is
better fitted as an extension to the previous ISF based noise analysis introduced in the previous
sections. The fundamental and most significant conclusion presented in [24] is that for the
quadrature oscillator, and specific case where ¥=90°, the ISF given by equation (2.38), which

corresponds to a sinusoidal output waveform (vour(t)=Vycos(wot)), is rewritten as:

~ cos(wyt +7 +6)
B ncos(ﬁ)

I, (2.53)
@ = arctan| —
I
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The second significant conclusion of [24] is that the oscillation amplitude is independent of the

coupling strength (/p/I;). By combining the two previous works, one can postulate that the angle

(6) can be extended for a general case where ¥#90° as 6 = arctan(k), where:

Ig .
) §|Sln(‘P]

1+ %|cos(‘l‘) (2.54)

Given the ISFs, an ISF based closed form expression for phase noise can be derived by

considering the thermal noise from three noise sources: (1) the tank noise (T}, ), (2) the in-phase

devices (I, ppzpr_; ) and (3) the quadrature devices (T, DAEFF_Q):

L . .0 _ . k2
(1) T, 1s given by (2.53), and its root mean square value is Lo, ms = T el) ;nz .This

indicates that the noise from the tank increases as 1/cos*(0) due to quadrature. It must be noted
that there is still a noise improvement by the fact that quadrature couples two oscillators (n=2) at

the expense of burning twice the power.

(2) T, paprr_s1s given by the product LoV Gur 1¢i

cos(p+Z+6) | I
r =——2 " Lol +Z)+Slp-Z
mDAEFF—I( ) ncos(ﬁ) \/ v, ( (¢ 2) (¢ 2 )) (2.55)
The corresponding root mean square I‘l.i DAL ms
2 2L b Ly 1
inDAEFF~I yms w2 v, 02 v, Rp inQ,rms (2.56)

This simplification is only correct due to the swing being independent of 0. This indicates that
the noise contribution from the in-phase devices is the same as that in the case without
quadrature as given by equations (2.47) and (2.48), ignoring the noise improvement due to

coupling two oscillators. Furthermore, this noise is independent of the strength of the coupling.
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?3) I’inDAEFF_QiS given by the product I}anlGMQiﬂ, where the differential large signal

transconductance of the quadrature devices (Gwmg) is derived similar to Gur:

Gy (@)= 2%(5(¢)+ S(p-r)) 2.57)

where /p in this case is the bias current of the coupling devices, equal to half the tail current of
the coupling devices and V) is the voltage amplitude on the quadrature node which is typically

equal to amplitude on the in-phase node (V7). The ISF is therefore given by:

cos(p+Z+6) | I, 1
rinDAEFF—Q( ) —2\/2 .

1cos(6) 7}3(5(¢)+ 8¢~ 7)) (2.58)

. 2
The corresponding root mean square T, DAQ.ms

- LEI_II_QkZ LII_wOI_Q]ﬁ = LI_Q/J

r - L,
inDAEFF-Q,rms nz JZV[ [I 2n2 VI ]I Rp [[ inQ,rms (2.59)

The overall phase noise closed form expression, derived from the previous ISFs is:

inQ,rms
P

4k, T
. ( b ) + riizzDAI,rms (4ka ?’) + riiDAQ,rms (4ka 4 ))

2(CV,y)* x (Aw)

2(
Ll/f2 (Aw) =10Log

; (2.60)
(l+k2 +y(1+Qk2)](4ka) )
T

Af

L A =10L
2 (A@) = 10kog 8(0)°1,,°

In order to verify this conclusion, a test circuit is created and simulated, similar to the analysis
performed on the LC-tank oscillator in Chapter 2.5.6 for the quadrature oscillator shown in

Figure 2.27. For this circuit WY=90° and k=Iy/I=1.
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Figure 2.27: Quadrature LC-oscillator schematic in low resonance mode with noise sources of interest highlighted
(Inot> ino2)

The phase noise is depicted in Figure 2.28 and Table 2
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Figure 2.28: Phase noise plots for circuit shown in Figure 2.27
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Table 2: Phase noise evaluated for the quadrature LC-tank at 1MHz

Settings Noise PN@1MHz

Sources dBc/Hz
PN, Expression (2.50) (Hand calculation) Thermal -111.987
PN, Expression (2.49) (simulated oscillation amplitude) Thermal -109.431
PN; Expression (2.34) (simulated GM and ISF) Thermal -108.644
PN, Simulated PSS+PNOISE - ideal tail current Thermal -108.498

The theoretical expression captures the thermal noise correctly once the amplitude is corrected

from the 2/74Rp/m estimation to the actual voltage swing. In order to study the impact from

coupling strength on the phase noise, the coupling strength is swept. In order to avoid having to

resize transistors, to maintain current density, this simulation was performed using a Verilog-A

model of the transistor that uses the tanh nonlinearity as described by equation (2.43). The exact

Verilog-A code is presented in Figure 2.29.

module Diff_GMC (vin_p, vin_n, iop, ion) ;
input vin_p, vin_n;

output iop, ion;

electrical vin_p, vin_n, iop, ion ;

parameter
parameter
parameter
parameter
parameter

real gm = 1;

real IT = le-6;
real kb=1.38e-23;
real gamma=1;
real ennoi=0;

real vin, outp, outn;

analog

begin

vin =V(vin_p) - V(vin_n);

outp =

outn

I(iop)

I(ion)

end
endmodule

IT/2 - IT/2*tanh(2*gm/IT*vin)

+ white_noise(ennoi*4*kb*$temperature*gamma*gm/pow(cosh(gm*vin/IT),2), "thermal");

IT/2 + IT/2*tanh(2*gm/IT*vin)

+ white_noise(ennoi*4*kb*$temperature*gamma*gm/pow(cosh(gm*vin/IT),2), " "thermal");

<+ outp;
<+ outn;

Figure 2.29: Verilog-A code for a differential tanh-G), used to replace transistors in simulation
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Using the model, the same simulation shown in Figure 2.27 is repeated and the resulting ISFs are

shown in Figure 2.30, and the corresponding phase noise is shown in Figure 2.31 and tabulated in

Table 3 at IMHz. The theoretical result PN/ matches that of the real transistor circuit (with a

slight difference due to frequency shift resulting from real transistor parasitics). The rest of the

phase noise expressions match each other to a great degree as expected.

iNnDAEFF-I

-'-'linDaEFF-Q

Phase (rad)

Figure 2.30: The normalize output voltage waveform and the Impulse sensitivity function of the output phase to
noise injected at the noise sources indicated in Figure 2.2Tusing Verilog-A Gy as described by Figure 2.29
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Table 3: Phase noise evaluated for the quadrature LC-tank at_IMHz using Verilog-A Gy described by Figure 2.29

Settings Noise PN@1MHz

Sources dBc/Hz
PN, Expression (2.50) (Hand calculation) Thermal -111.625
PN, Expression (2.49) (simulated oscillation amplitude) Thermal -111.516
PN; Expression (2.34) (simulated GM and ISF) Thermal -111.919
PN, Simulated PSS+PNOISE - ideal tail current Thermal -111.643

Using the aforementioned model and quadrature circuit, the coupling strength k, which is in this
case equal to [p/l; is swept. The observable increase in phase noise matches the expected
behavior from the theoretical expression very well, and it diverges slightly at higher coupling
factors as simulated ISFs diverge from theoretical ISFs due to diverging from ideal switching
condition. It’s important to note that at coupling strength close to 0.1, the quadrature has

theoretically little impact on the phase noise.
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120 —
10 10 10
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Figure 2.32: Phase noise sweep versus k=I1p/l; , for circuit shown in Figure 2.2Tusing Verilog-A Gy as described by
Figure 2.29

From the previous discussion it appears that a weaker coupling is advantageous. However, a
weaker coupling has two disadvantages: (1) Narrower locking range between the two quadrature

oscillators. If the quadrature oscillators unlock then neither quadrature, nor the 3dB phase noise
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improvement due to coupling two oscillators can be obtained. (2) Quadrature phase error. The
quadrature phase error refers to the divergence of the quadrature angle of the desired 90° angle.
The 90° angle is guaranteed by the symmetry between the two oscillating cores and the path
delays that comprise the quadrature oscillator. Any mismatches in this symmetry due to
unbalanced layout, or fabrication process and mismatch variation between the two different
oscillation cores, will lead to an overall quadrature phase error. An expression for such error was

derived using generalized Alder’s equations in [23] as:

[sin(W) Al sin(W) AL, 1+(%)2+2I]€‘cos(‘1’] Aw

= - —0
Closw) 2 Caos(w] 2o 2 (2 fcos(v)

Wy

Ap= 2.61)

. 1+%1‘cos(‘PX Sm(‘P)‘ngg

% + ‘co s(‘PX R 2
where Al is the difference between the tail bias currents of the two oscillator cores, Al is the
difference between the tail bias currents of the two coupling stages between the oscillators, and
Q is the quality factor of the LC-tank, Aw is the difference in the oscillation frequency of the two
cores, AR is the difference in the parallel resistance of the two LC-tanks and AY is the difference
between the extra phase delay in the quadrature path between the two cores. For a ¥=90° this

simplifies to:
IpfVAL (1 V1AL o2\ . Aw [ip['AR AW
st ] 2ol e {1ofef oo fe) o, 2
1o M1 2[Q 1 w, 1 R o) (2.62)
This shows that aside from the error due to path mismatch captured by AY term, the phase error

is inversely proportional to Io/I; which means stronger coupling results in a reduced phase error

for the same mismatches between the two cores.
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Chapter 3

PROPOSED QVCO ARCHITECTURES AND ANALYSIS

3.1. Introduction
This chapter introduces two new QVCO architectures: an actively coupled dual-resonance
QVCO and a passively coupled dual-resonance QVCO. Both architectures use the same core
dual-resonance VCO. The chapter analyzes two key aspects of the proposed dual-resonance
VCO'’s, namely startup, and phase noise.
The startup analysis is performed by introducing a network simplification technique that enables
the reduction of the 4™ order dual-resonator based network into a 2™ order network. With such
simplification, the startup condition is readily found based on the theory introduced in Section
2.4.4 for the second order LC-tank VCO. The result is verified for a number of cases using a
complete derivation of startup condition of the actual 4™ order system using both Nyquist and
Root locus methods as summarized in Section 2.4.5.
The phase noise analysis presented in this chapter extends the discussion of Section 2.5.3 to
quantify the contributions of three design elements, namely resonator quality factor, oscillation
amplitude and device noise to the phase noise of the dual-resonance VCO. The analysis is done
in three steps: a) an effective quality factor is derived for the coupled resonator after reducing the
fourth-order network to a second-order one, b) the voltage amplitude across the terminals of the
resonator is obtained at the edge of the current-limited oscillation regime, and c) the ISF and
noise modulating functions for cyclostationary noise sources are obtained in order to compute

their contributions to the phase noise of the oscillator.
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In order to extend the previous analysis to the two quadrature oscillators, the active quadrature
impact introduced in Section 2.6 is extended using the 2" order equivalent circuit obtained after
network simplification. This is quantified using circuit simulations to compute the ISF, which is
then used to analytically predict the phase noise, and then using direct phase noise simulations in
SpectreRF for the two quadrature oscillators. The phase noise thus obtained is then compared to
the phase noise of the dual-resonance single VCO.

Finally, the phase accuracy of the quadrature oscillators is analyzed by considering: a) the
constant phase shift introduced by capacitive imbalances in the passive QVCO loop and its
frequency dependence, and b) circuit mismatches impact on both active and passive QVCOs as

quantified using a series of statistical Monte Carlo simulations.

3.2. The Proposed QVCO Architectures

The current study aims at comparing and contrasting two methods of quadrature coupling;
namely, passive and active quadrature coupling when applied to wide-band dual-resonance tuned
QVCOs.

As it has been introduced earlier in the quadrature coupling section, passive quadrature coupling,
if applied properly, has the advantage of not introducing orthogonal current phasors.
Alternatively, it uses coupled resonators to introduce a phase shift, which corresponds to creating
a 3" oscillation loop enforcing the oscillation and improving the circuit’s phase noise.

The two architectures studied by this work are shown side by side in Figure 3.1. The coupled
resonance VCO shown in Figure 3.2 is the main building of both architectures. It consists of a
coupled resonance tank, a positive feedback transconductance (negative impedance) at one
terminal of coupled resonator and a second positive feedback transconductance between the two

terminals. The resonator is a two port system that can be represented by its impedance
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parameters matrix (Z-matrix). Given the Z-matrix, the system can be simplified into a basic

linear feedback system as shown in Figure 3.2.

k k
+ + ono opo
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(a) (b)
Figure 3.1: (a) Passive and (b) active quadrature voltage controlled oscillator architectures with dual-resonance
mode coupled resonator tanks
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Figure 3.2: 4 coupled resonance oscillator with two transconductance elements forming two feedback loops and the
system representation of this circuit
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The coupled resonator VCO can be represented by the following set of system equations:

H(s) =1 (s) = 40,
Iy 1-GypZy1(5) = Gy Zy1(9)
_n _ Zy,(s)
Hals)= Iy ) 1-GypZy(8) = Gy Zy1(5) G.1)
VS Z2a)
NN

Note that H(s) and H(s) share the same poles and startup condition and differ in the small signal

voltage amplitudes only.

3.3.2" Order Simplification of a 4™ Order Dual-Resonator Network
This section aims at reducing the 4™ order dual-resonance circuit to a conventional 2™ order
resonator which has been analyzed in Chapter 2. This is achieved by developing a relationship
between the voltages on both sides of the resonator, and using an equivalent model for the
mutual coupling in the resonator. The combination of the two allows for the shorting of the

resonator terminals which yields a 2™ order resonator.
y
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The basis of the simplification relies on the equivalent Pi-model of the coupled center-tapped
inductors shown in Figure 3.3(a). Due to symmetry around the center tap, the half circuit model,
shown in Figure 3.3(b), is considered, and extended to the fully differential case. While this
assumption is not always true, it is true for all circuits considered in this work.

The equivalent model parameters are derived by equating the Z-parameters of the two half

circuit-models:

1( L kJLL)\_ 1 L'(L,'+L,)  L'L,
2\ kL, L, 2oL +L,+L, )\ L'L,  L,'(L/'+L,,) (3.2)
The resultant parameters L;’, L,’, Lysare therefore given by the following equations:

lkL I 1-k

1-k*
= '=—L =
h 1-JL/Lk > -L/Lk b =k (3.3)

The coupled center-tapped inductor simplification is applied to the dual-resonance circuit

presented in Figure 3.2, and the resultant circuit is shown in Figure 3.4.

L\ Liy/2
+ + J

G

ry

Lw/2

Figure 3.4: The coupled resonance oscillator with the mutual inductance replaced by the differential Pi-model

In order to simplify this 4™ order circuit to 2" order equivalent, the nodes ¥; and ¥ need to be
reduced to a single node. In order to achieve that, the ratio of the voltage o =V,/V; is computed.
If a is a real number, the circuit parameters, can be scaled in a manner that sets V,=V, while

maintaining the impedance seen on one of the two nodes. The two nodes are therefore reduced
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into a single node. The reduction is presented over the following steps: (1) the inductors L,/2 are
split into two separate inductors at nodes V; and V>, (2) the real voltage ratio () is derived, (3)
the assumption of real voltage ratio (a) is validated and (4) the circuit parameters are scaled to

equate voltages V; and V.

3.3.1. The Splitting of Inductor Ly,
The inductance L,/2 in Figure 3.4 can be eliminated by splitting it into separate impedances. This
is achieved, as shown in Figure 3.5, by equating the impedances Z; and Z, seen at the two

terminals of the inductance L;,/2.

Zl <_|ZZ Zl ZZ
V)(II> LM/Z +a Vyx \/)I(_-|-> ﬂa Vy
LM1 LMZ
RMl RMZ

Figure 3.5: The splitting of a 2-terminal inductance into two single terminal inductances by equating impedances Z,;
and Z,

The two impedances are derived as:

sL,, /
M2 (3.4)

=SLM/2 zZ, -

-a l-a

For a complex valued voltage ratio (), the impedances are complex and can be split into
inductances and resistances as shown in Figure 3.5, by setting Ly ,=Im[Z;,]/w, and
R;,=Re[Z;,]. For a real a, the impedances are imaginary, and the resistances R, » reduce to zero.

In such case, the circuit in Figure 3.4, can be represented by the circuit in Figure 3.6:
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Figure 3.6: The coupled resonance oscillator’s Pi model broken into two parts for a given voltage ratio a

3.3.2. The Derivation of the Voltage Ratio («)

The voltage ratio has already been given for a general case by equation (3.1) as the ratio of the
two impedances Z»,(s)/Z;:(s) of the coupled resonator network. While this expression is valid at
all frequencies, we are mostly interested in evaluating a at resonance. Since there are two
resonance frequencies, there are two possible a values for any dual-resonance network.

The values of a at resonance can be found from the circuit in Figure 3.6 by observing that the

resonance frequency is the same for every node in the coupled resonator. This indicates that at

resonance, L,"'C, = L," C,. Using this equation, and the term ¢ = —2 o is found to be:

wy

o= 1—§2+ 1—52 2+§2 ﬁ (35)
2k | 2k L '

For the case where the inductance ratio is 1, the ratio is plotted in Figure 3.7. Note that there will
always be a positive and negative a values, where the positive value is bounded by //k and the
negative is unbounded. This can create large unwanted swings.

When considering the special case where the tank is symmetric as before, = +1. These two
cases have been presented in the literature as Odd and Even resonance modes of the coupled

resonator.
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Figure 3.7: 4 plot of the voltage swing ratio at the two nodes of the coupled resonance oscillator as a function of
the ratio of the resonance frequencies of the two resonators prior to coupling ({) for 5 mutual coupling factors (k)

3.3.3. The Validity of the Real Voltage Ratio (o) Assumption

The assumption that the voltage ratio (a) is real is justified under infinite quality factor condition.
In such condition, all impedances in the circuit are imaginary (inductive or capacitive), and
hence the ratio of the voltages, which in turn is a ratio of impedances, is a real number (o). In
order to verify this assumption for real circuit components, a Cadence Spectre AC simulations

were conducted in which the coupled resonator presented in Figure 3.14 was considered.

k
V
xt o 4oV L;=L,=400pH
g & oo s
RES2= GJRESI
| R C, | L L 1GC IR, & 0 (01=0,), k swept
liac|=1 - -

Figure 3.8: The test structure for validating the real voltage ratio (&) assumption

The first AC simulation computed the phase of voltage ratio (a) over a wide frequency range that
includes both resonance frequencies. The second AC simulation computed both the magnitude

and the phase of voltage ratio (a) at only the resonance frequencies. In both simulations the
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coupling factor k, the quality factor Q and the frequency ratio factor { were swept. The results of
the first simulation are presented in Figure 3.9 and Figure 3.11, and the results of the second

simulation are presented in Figure 3.10 Figure 3.12, for £=0.5, 0.3 respectively.
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Figure 3.9: The phase of the voltage ratio (a) vs. frequency for Q=10, 100, 1000 and coupling factor k=0.5. Each
plot considers three frequency ratios {, and the resonance frequencies are marked
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Figure 3.10: The (a) magnitude and (b) phase of the voltage ratio (&) at resonance vs. frequency ratios { frequency
for O=10, 20,100, 1000 and coupling factor k=0.5. The plot marked expression is the plot of the o as derived in

equation (3.4)
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Figure 3.11: The phase of the voltage ratio () vs. frequency for Q=10, 100, 1000 and coupling factor k=0.3. Each
plot considers three frequency ratios {, and the resonance frequencies are marked
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Figure 3.12: The (a) magnitude and (b) phase of the voltage ratio (@) at resonance vs. frequency ratios { frequency
Jfor OQ=10, 20,100, 1000 and coupling factor k=0.3. The plot marked expression is the plot of the a as derived in
equation (3.4)

From the previous simulation, one can conclude that under the high quality factor assumption,

the expression in equation (3.4) is correct. However, for realistic quality factors of Q in the range
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of 10 to 20, the assumption of a real a is more accurate (1) for lower resonance mode than the
higher resonance mode (significantly), (2) for a stronger coupling factor (k), (3) for a higher
frequency ratio ({) in the case of the lower resonance mode and (4) for a lower frequency ratio
(¢) in the case of the higher resonance mode.

Despite the inaccuracies, the circuit cannot be further reduced into a 2™ order network without

the assumption of a real a.

3.3.4. Circuit Parameter Scaling and Final Reduction
The circuit in Figure 3.6 is further reduced by scaling the voltage on both resonance nodes to be equal as
shown in Figure 3.13. The voltages on both resonators are set to be equal by scaling the
impedances to maintain the same currents. This preserves the overall impedance at one of the
nodes. Given equal voltages, the two terminals can be connected. This simplified second order

circuit can be used to derive a generalized quality factor parameter as well as startup conditions.
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Figure 3.13: The second order resonator representation of the fourth order coupled resonator

For a symmetric resonator, the overall expression simplifies to that shown in Figure 3.14. This
corresponds to the Odd and Even modes of resonance. The concept of Odd and Even modes can

be extended to the circuit in Figure 3.14, by observing that for a positive a>0, the L), terms cancel

between L;’’ and L,"’, which can be thought of as an even mode. If a<0, the L),terms in L;’’ and



L,’’ are equal and they add up, which can be thought of as an odd mode. This is an indication to

weather currents flow through the original Ly, .
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Figure 3.14: The second order resonator representation of the fourth order symmetric coupled resonator
(conmsisting of two identical resonators coupled)

3.4. The Resonance Frequency of a Dual-Resonance Oscillator

To verify the validity of the model, and assuming a>0, the resonance frequency is given by:

1 1

a)H,L = " " ' =
\/(L1 /L") TEY) (1—k2)L1L2 // (1—k2)L1L2 (C, + aC,)
L,-ak\LL, alL -kLL, 1 P

(3.6)

) \/(1+§2)w 2o et ot + 220 2- 4l -£2))
L= 2(1-k?)
This expression matches that previously derived in (2.12), and combines the result is obtained for
0<0. This expression is plotted in Figure 3.15.
The plot normalizes the resonance frequency in the high resonance mode to the higher uncoupled
resonance frequency, and similarly, normalizes the resonance frequency in the low resonance
mode to the low uncoupled resonance frequency (wp/Max[w; 2], wr/Min[w;:]). The actual high

to low resonance frequency ratio (wg/w;) requires scaling by a factor ({). As evident in the plot,

a symmetric tank with matching initial frequencies ({=1) yields the most frequency separation,



and consequently achieves the highest maximum frequency in the high frequency resonance

mode.
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Figure 3.15: The ratio of the of the coupled resonator’s resonance frequencies to the uncoupled resonance
frequency (w ;) versus the mutual coupling factors (k) for a 6 ratios of the uncoupled resonance ({ = wy/ ).

3.5. Effective Quality Factor of Dual-Resonance Oscillator
Given the 2™ order network simplification of the dual resonator, the quality factor of the
effective resonator can be derived by considering the overall resistance and capacitance at the
merged node:

R R,
Our =0y (Rl //Rz')(cl //C2V)= Wy 1 1—2,(C1+ la|Cy) (3.7)
R +R,

The parallel tank resistances R; and R, are lumped parameters, derived from the inductor’s and
capacitor’s parasitic series resistances. The impact of dual-resonance on the overall quality factor
depends on whether the capacitance or the inductance dominates the quality factor of the
uncoupled resonators. To clarify, a symmetric dual-resonance network can be considered. For

the symmetric case, the quality factors are given by:

R
Onp =0y, (5)(2C) (3.8)



Where R;=R,=R is the parallel resistance of the dual resonator, derived after coupling. And
C=C,=C; is the capacitance of the uncoupled resonator. R is therefore the parallel combination
of the capacitor’s effective parallel resistance, and the coupled inductor’s effective parallel
resistance. As shown in Figure 3.16, the coupled inductor’s effective parallel resistance
corresponds to the quality factor of the coupled inductor L'’ and not the uncoupled inductor L.
Since the resistance Ry s remains unchanged, and the effective inductance L’ is (1 + k) L as given
by Figure 3.14. , the quality factor of the coupled inductor (Q; ) equals (1 + k) Q;. The quality
factor of the capacitor remains unchanged. The overall quality factor is given by the parallel

combination of the two.

ch.|. + % Vy ch-l- + % Vx Vx+ + *Vx
k
RS R Rcs ReSR Res
c LSy ThLs e » c L s SRc » d b
I X 8r|lu 'Ihg
Lclt Llc. ) [Av]c, RrRlclt] [Llclr

Figure 3.16: The derivation of the lumped parallel resistance R of a symmetric coupled resonator from the parasitic
series resistance of the inductors and capacitors.

This indicates that at lower frequencies where the inductance quality factor dominates, dual-
resonance leads to a boost of the quality factor of one resonance mode, at the expense of the
dropping of the quality factor in the other, for a symmetric resonator’s case. While at higher
(mm-wave frequencies), where the quality factor of the capacitance dominates, this impact is
reduced and the coupled quality factor of a symmetric coupled resonator approaches that of the
uncoupled one.

A quality factor expression is derived for a non-symmetric coupled resonator where (1) quality

factor dominated by inductance Q, (2) the coupled inductors are symmetric (L;=L, =L and
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Qz/=0Q12 =0r) and (3) The tuning capacitors are different, and a depends on the ratio of the
tuning capacitors. In this case, the parallel resistances R; and R, are given by:

L " " ' L ! "
Rl“a’f[q O R, “W%Lz O, (3.9)

1 2
Where Q;;and Q;; are the quality factor of the uncoupled inductors. The quality factor is

therefore given by the expression:

2 (1 _
QH’L:( (1=kP(1Ta)izh) 0, (.10)

1-4ka + o’ +k2(l+a2»
To appreciate the result, consider the plot in Figure 3.17. A ratio Qg equal to O 1/Q; is plotted
against the swept frequency ratio . The value a is implicitly derived as in (3.5) and Figure 3.7. It
can be seen that for low coupling ratio a symmetrical resonator can achieve equal Quality factors
in the coupled resonator modes which are close to the original O of the uncoupled resonator.

As coupling factor increases, an enhancement of the quality factor of one resonance mode (low
frequency, even mode), comes at the cost of degradation in the quality factor in the other mode.
This has been considered in the literature and designs that employ capacitive as well as inductive
coupling were suggested[7][13]. However, this can be similarly achieved by creating imbalance
in the resonance frequency ratio ({).

It is important to note that this imbalance in resonance frequency ratio results in unequal voltage
magnitudes at the two resonance nodes. It also results in a reduction in the frequency separation
between the high and low resonance modes for the same coupling factor (k).

Even if such imbalance was created, in order to equate the quality factors in the two resonance
modes, the resulting quality factor will always be less than that of the original quality factor of

the uncoupled inductor.
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Figure 3.17: The ratio of the quality factor of a coupled resonator consisting of two identical inductors tuned

differently () to the original quality factor of the inductors when the coupled resonator’s quality factor is
dominated by that of the inductors

3.6. Startup Condition of the Dual-Resonance Oscillator
Based on the previous analysis, and using equation (2.20), the startup condition is:

Rl"’|05|_1 R,

G, + Sign[alG,,p >
MN gn[a]Gyp RR,

(3.11)

Where R;, R, are defined for the tank whose Q is inductance dominated as before in equation

(3.9). For a symmetric dual resonance tank, this simplifies to:

2
Guay + Signl@lGyp > (3.12)

The startup condition of the dual-resonance circuit can also be derived using both Nyquist and
root locus methods as summarized in (2.26). Firstly, the overall circuit is broken into two circuits

that can be linearly superposed as shown in Figure 3.18.
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Figure 3.18: Decomposing the dual-resonance oscillator into two circuits that can be linearly superposed, namely:
(a)the two terminal negative feedback loop and (b) the single terminal negative gm loop

Oscillation is achieved if either of the two loops meets the oscillation condition. These two
circuits can be described by their feedback system representations in Figure 3.19 where the Z

parameters are given by the:

2
sP+| =2 s+ s L’ k 5 LLw o s
1 0, - -
z= ,
k 5 LLw w’s s +(—1)s2 +| -2 = |5 [Lyw,
1= | 1= (3.13)

2 2 2 2 2 2
W w +w 1 w w, w
A=s4+(_1 2)S3+ GG, B TG )2 G@w, OB |\ DD

22
o 0O 0 0, 1-k? 1-k? ) 0, 1-k2

211 Vl

Zy Vv,

<
<

Figure 3.19: System representation of the linear decomposition where the Z-parameters (Z;,,Z;) are described in
Figure 3.2
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3.6.1. Nyquist Criterion and Root Locus Method
Based on the theory summarized in section 2.4.5, and with reference to the Z-parameters
presented in equation (3.13), the startup condition can be given by the combination of Gysand w
at resonance. Since both Nyquist and Root Locus yield the same set of equations, given the
restrictions defined in section 2.4, the analysis is combined.
The resonance frequency (w) and the required Gy for startup of the Gap, Z2; loop are given by

the following equations:

Root Locus Nyquist Criterion
Im[D(Zy,(j@))] = Gyp IMN(Z, (j@))] Re[Z,,(jw)]=Gyp”
(3.14)
1 w’ ’ w,Q w’ ) w,Q
Gyp =——| | —\1=k*)-1] [ =L +| =—(1-k*)-1] 222
ME g R\R, (( a)l2 ( ) ) 0,0, * ( a)22 ( ) 210
Root Locus Nyquist Criterion
Re[D(Z,,(jw))] = Gyp Re[N(Z,,(jw))] Im[Z,,(jw)]=0
2
" (a)l2 + a)22 +ggz(l - kz)) + \/(a)lz + a)22 +ggz(l - kz)) —4a)12a)22(1 —k2) (3.15)
201-42)

Under high quality factor approximation, equation (3.15) reduces to (3.6). Similarly, the
resonance frequency () and the required Gy, for startup the startup of the Guw, Z;; loop is given

by the following equations:

Root Locus Nyquist Criterion
Im[D(Z,,(jw))] = Gy Im[N(Z,,(jw))] Re[Z,,(jw)] =Gy
1 D2 (21 52)-w?) (3.16)
Gy =—|1+ 9,

8 )

1
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Root Locus Nyquist Criterion
Re[D(Z,,(jw)] = Gy Re[N(Z,,(j))] Im{Z,,(jw)]=0
(3.17)

(l —k? )u)4 + ((GMNR - 1)(1 —k? )S% - (a)lz + a)22 )]a)z + a)lza)z2 =0

1 =2

One can apply the previous equations to the symmetric tank, with frequencies derived with a high quality

factor approximation. The startup conditions are:

2 1

|G 1> o’ - W, (3.18)
1 2

Gy >~ 2 =1J?7w° (3.19)

Since Gy is always positive, equation (3.19) indicates that resonance can be achieved using the
Guy , Z;; loop regardless of the resonance frequency. This could theoretically lead to the
presence of multiple resonances at the same time.

On the other hand, Gyp can be positive or negative. Equation (3.18) indicates that resonance can
be achieved using the Gup, Z>; loop for two values of Gyp> 2/R, and Gyp<-2/R. These two
startup-conditions correspond to two different frequencies, where a positive Gyp corresponds to
the high frequency resonance mode and the negative Gyp corresponds to the low frequency

resonance mode. Since a=1 for the high frequency resonance mode and a=-1 for the low
.. ) 2
frequency resonance mode, the same startup condition can be expressed as Sign(a)G,,p > n

which corresponds to equation (3.12). The sign of Gyp is used as to select the resonance-mode.

3.7.Phase Noise of the Dual-Mode Resonance Oscillator (high resonance mode)
The Impulse sensitivity is evaluated, similar to the analysis performed on the LC-tank oscillator

in Chapter 2.5.6. Consider the dual resonance circuit shown in Figure 3.20. For the sake of
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simplicity and using an argument of symmetry, only the noises from the half circuit are
considered. One should note that since this test circuit relies on a fixed parallel resistance (Rp), it
resembles the case where the quality factor of the tank is dominated by the capacitance, and
doesn’t account for the impact on quality factor which was captured (3.10), which will be

considered later.
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ES [ J [ J ES
L=400pr —2Q QOQ __ /—soopr
C=631.5fF | | C=631.5fF
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O—_q O [ ]
Vour- _@E Vour+ _@E

M |—x—| M, =M M; [—
. 16um/ 16um/ 16um, . 16um/
upi 0.06um 0.06um 0.06um Un)Y) 0.06um

Iran=2mA C]D C]D Iryn=2mA

lat1 a2

Figure 3.20: Dual resonance cross coupled LC-oscillator schematic in high resonance mode with noise sources of
interest hlghllghted (inQ1, i.D1 inT], inQZ, 1202 inTg)
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Figure 3.21: (a) The normalize output voltage waveform and the Impulse sensitivity function of the output phase to
noise injected at the noise sources indicated in Figure 3.20 , (b) the normalized drain current of the transistor M,

and (c) the corresponding transconductance g,
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The inductance, capacitance and parasitic resistance, as well as the transistors were sized
similarly to those in Figure 2.18 to compare the performance of the dual resonance oscillator to
the LC-tank oscillator. The ISF plots for the circuit in Figure 3.20 are presented in Figure 3.21. As
can be seen in the figure, the ISF for the tanks are

(1) The tanks noise ISFs (Ix1,2) are approximately a sinusoid with amplitude equal to 1 and
a phase offset of /4 from the output voltage waveform with half the amplitude of that of the LC-
tank oscillator. This result is expected based on equation (2.38) for n=2.

(2) The transistors noise ISFs (I'iup;2) behave the same as that of the LC-tank oscillator
scaled by the factor 2 similar to [,0; 2.

(3) The differential transistor noise ISF (I'i,ps12) given by the difference between the two
ISFs from transistors M, and M, for I'i,p,;, and transistors M> and M; for I';,p42 are equal to the
tank noise ISFs (Fino1.2).

(4) The effective transistor noise ISF (Ijperri2) which captures the impact of the
cyclostationary noise from the transistors are the same as those of the LC-tank scaled by a factor
of 4. The transconductance and drain current of the transistors are the same of the LC tank. Note
that in order to maintain the same output swing twice the current was used in the dual-resonance
circuit as that in the basic LC-tank. Since the output voltage is the tail current for each
differential pair is the same as that of the LC-tank, the overall transconductance is expected to
remain the same.

(5) The tail current noise ISF (I';,r12) behave the same as that of the LC-tank oscillator

scaled by the factor ' similar to all other ISFs.
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3.7.1. The 2" Order Simplification of the test circuit
The dual resonance circuit can be simplified according to the theory discussed in Chapter 3.3.
While the analysis was intended for a small signal linear model of the circuit, it can be loosely
extended to the circuit schematic with non-linear elements such as transistors, as long as the
describing functions of the nonlinear blocks is maintained. For this analysis to be strict, one
should consider the different parasitic capacitance of transistors at the two oscillating nodes. If
the parasitic capacitance is ignored, the resulting reduction of the circuit in Figure 3.20 is shown

in Figure 3.22.

000

L=Y% (1+0.35 )400pH
C=2x 631.5fF
ANN—R =1 377,50

Vour.-o—¢ 1 Vour+

M, |—x—| M,
32um/ 3 2,um/

() 06um 0.06um

ITAIL—4mA ?

Figure 3.22: Reduced model of the dual-resonance cross coupled LC-oscillator schematic

Based on the circuit in Figure 3.22, the following is the expected performance of dual-resonance
circuit in the high resonance mode (f=-1) compared to the LC-tank circuit in Figure 2.18:

(1) The resonance frequency is V1.42-.

(2) The amplitude is the same (2- the bias current and '%- the tank resistance).

(3) The phase noise is - (2- the tank capacitance and - the tank resistance).
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3.7.2. Phase noise simulation results
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Figure 3.23: Phase noise plots for circuit shown in Figure 3.20

The phase noise is obtained from the ISF functions according to equation (2.34) and plotted in

Figure 2.23. The plots use the same legend as was previously described in Chapter 2.5.6. The

results are further tabulated for offset frequencies 10 kHz and 1 MHz in Table 4.

Table 4: Phase noise evaluated for the LC-tank at 10kHz, 1MHz for a number of cases for dual-resonance circuit

Settings Noise PN@10kHz PN@1MHz
Source dBc/Hz dBc/Hz

PN, Expression (2.50) (Hand calculation) Thermal -75.575 -115.575
PN, Expression (2.49) (simulated oscillation amplitude) Thermal -74.482 -114.482
PN; Expression (2.34) (simulated GM and ISF) Thermal -73.831 -113.831
PN, Simulated PSS+PNOISE - ideal tail current Thermal -74.141 -114.139
PN;s Simulated PSS+PNOISE - ideal tail current Thermal+1/f -71.891 -114.081
PNgpmos | Simulated PSS+PNOISE - PMOS bias current source Thermal+1/f -56.755 -111.621
PNgnmvos | Simulated PSS+PNOISE - NMOS bias current source Thermal+1/f -68.257 -113.772
PN, Simulated 2™ order simplification - ideal tail current Thermal -74.432 -114.793

The simulation results agree with the expectations based on the reduced circuit model in this

resonance mode.
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3.8. Phase Noise of the Dual-Mode Resonance Oscillator (low resonance mode)
The Impulse sensitivity is evaluated, similar to the analysis performed on the LC-tank oscillator
in Chapter 2.5.6 for the dual-resonance oscillator operating in the lower resonance mode for the

circuit shown in Figure 3.24.
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Figure 3.24: Dual resonance cross coupled LC-oscillator schematic in low resonance mode with noise sources of
interest hzghllghted (inQ1, 1,p1, InTl, inQZ, 1,02 inTg)

Similar to the high resonance mode, the circuit can be reduced to the LC-tank circuit in Figure
3.24, where =1 for the low resonance mode. Consequently, the performance of the dual-
resonance oscillator compared to the LC-tank circuit in Figure 2.18:

(1) The resonance frequency is vV0.77-.

(2) The amplitude is the same (2- the bias current and '%- the tank resistance).

(3) The phase noise is %' (2- the tank capacitance and - the tank resistance).
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The voltage waveforms and ISFs are depicted in Figure 3.25, while the phase noise is depicted in

Figure 3.26 and Table 5.
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Figure 3.25: The normalize output voltage waveform and the Impulse sensitivity function of the output phase to
noise injected at the noise sources indicated in Figure 3.24

z &
g £

—
j
=

Phase Noise (dBc/Hz)
= =

—
=
=]

—
LA
=

Phase Noise (dBc/Hz)
s = 8

-
-
=

10° 10
Offset Frequency (Hz)

Figure 3.26: Phase noise plots for circuit shown in Figure 3.24
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Table 5: Phase noise evaluated for the LC-tank at 10kHz, IMHz for a number of cases for dual-resonance circuit

Settings Noise PN@10kHz PN@1MHz
Sources dBc/Hz dBc/Hz

PN, Expression (2.50) (Hand calculation) Thermal -75.575 -115.575
PN, Expression (2.49) (simulated oscillation amplitude) Thermal -75.097 -115.097
PN; Expression (2.34) (simulated GM and ISF) Thermal -74.205 -114.205
PN, Simulated PSS+PNOISE - ideal tail current Thermal -74.525 -114.523
PN;s Simulated PSS+PNOISE - ideal tail current Thermal+1/f -73.179 -114.485
PNgpmos | Simulated PSS+PNOISE - PMOS bias current source Thermal+1/f -61.964 -113.273
PNexmos | Simulated PSS+PNOISE - NMOS bias current source Thermal+1/f -70.657 -114.242
PN, Simulated 2™ order simplification - ideal tail current Thermal -74.459 -114.456

3.9. Phase Noise of the Dual-Mode Resonance Oscillator Summary

The simulation results in both high and low resonance modes of the dual-resonance oscillator
agree with the reduced order model under the condition that the describing functions of the non-
linear elements in the circuit can be maintained. That effectively requires consuming twice as
much current as a single oscillator, with the advantage of keeping the same voltage swing and
halving the phase noise.

Therefore, the phase noise per power consumed ratio of the dual resonance oscillator is the same
as that of a basic LC-tank oscillator. However, the maximum allowable power (limited by
Voltage) swing is twice as large as that of the LC-tank oscillator. This is only the case under the
assumption that the circuit is to be operated at maximum allowable voltage swing (edge of
current limited regime). For example, if the dual-resonance circuit is to be operated at the same
current consumption as the original LC-tank VCO, the phase noise of the dual-resonance VCO is
2- that of the LC-tank. This is due to the fact that phase noise scales with the total DC bias
current (Ipc) as approximately 1/Ipc”. To summarize, for a fixed DC power, the basic LC-tank

has a better phase noise to power ratio, however, for a fixed maximum output swing, both VCOs
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have the same phase noise to power ratio, and the dual-resonance oscillator has a lower phase
noise. This is the general case for power combining oscillators.

This result assumes that the parallel tank resistance (Rp) remains unchanged in both modes and
the quality factor of the tank remains unchanged at a given frequency. However, equation (3.10)
indicate that the quality factor of the dual-resonance tank scales at a given frequency if its
dominated by quality factor of the inductors. Equation (2.49) is rewritten as:

U+l () [ 1\
Ll/fz (Aa))=10L0g[1—2bC(50) (A_a)) (3.20)

@0
Equation (3.20) is evaluated for the basic LC-tank VCO and for the dual-resonance VCO
constructed by combining two LC-tank VCOs, where each tank consists of a parallel
Capacitance (Cyp) and inductance (Ly) and their series resistances Rcs and Rys, as it was done in
sections 3.7 and 3.8 where:

1) Quality factor of capacitors dominate Qc=1/(w Rcs Cv)

2) Quality factor of inductors dominate O;= w Ly / Ris

2
1+y)k,T 1
LC-tank / Q¢ dominant 10Log (Lzb Cy (a)OzRCS Cy )3 (—)
IwO Aw
U+ VT . (R Y[ 1Y
LC-tank / Q; dominant 10Log 4 3 b Cy| ==
I, Ly Aw

(3.21)

Dual-resonance / Q¢ dominant

Dual-resonance / O; dominant

1(L+y W, T 1Y\
IOLog[E("'ILszU(wozRCSCU)E(E) ]

0

3 2
10Log 1 (l+ );)kb]; Cy Rys !
2 (Qr) Lo Ly ) \Aw
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For the symmetric dual-resonance oscillator, created using two symmetric LC-tank oscillators
whose oscillation frequency is w.c, and resonators quality factor Qrc, the equation in (3.21)

simplifies to:

3

Dual-resonance 10Lo l(l+y)kaC 1w, 1\2
81277 7 U=k 0, (Aa)) (3.22)

Qc or Q; dominant @0

This result indicates that, in the case of a symmetric dual-resonator, regardless of whether the
quality factor of the inductor or the capacitor dominates, the dual-resonance phase noise and
resonance frequency will be 1/2(12k)* and 1A/(1xk)- that of the uncoupled resonator
respectively.

In order to test this result, two LC-tank VCOs were constructed: (1) series inductor (L)),
resistance (Rys) in parallel with capacitance (C,) and (2) series capacitor (C.), resistance (Rcs) in
parallel with inductance (C5). For the first VCO, L;=400 pH and R;s was set to give an inductor
quality factor of 15 at 10GHz. Due to parasitic capacitance, and the impact of Q, the effective
resonance frequency shifted to 9.83GHz, and the effective quality factor (Q;) at resonance was
14.75.

For the second VCO, and in order to match the resonance frequency and quality factor with the
first VCO, L, was set to (1+0;%)/ O,* L;, and Oc=wges (1+01%) Ry C; = (C; /Cr) Q1=14.3,
where Cr is the total load capacitance including the parasitic capacitance. Additionally, the
capacitance C>= ((1+ ch) / ch) C; and the resistance Rsc= ((1+ QLZ) / (1+ ch)) Rg;.

The two VCOs are combined similar to the circuits presented in Figure 3.20 Figure 3.24 to
produce the high and low resonance modes. The simulation is conducted using ideal bias current

sources and thermal noise only. The result is presented in Figure 3.27 and Table 6.
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Figure 3.27: Phase noise comparison of the capacitor quality factor dominated resonator (PNgsc) and the
inductance quality factor dominated resonator (PNgs;) in single LC-tank VCO and dual mode resonance in high
frequency mode (DRy) and low frequency mode (DR;)

Table 6: Phase noise evaluated for inductor and capacitor quality factor dominated LC-tank, low and high mode
dual-resonance VCOs at IMHz

Tank Dual Resonance PN@1MHz
dBc/Hz
Calculated Calculated Simulated
(Vo from Sim)

PNRSL (L1 + RSL)//CJ None -112.086 -111.305 -110.839
PNRSC Lg//(Cg""Rsc) None -112086 -111337 '111001
PNDRH,RSL (L1 + RSL)//C1 Hi—res mOde (k:03) -1 10449 -105267 '10479
PNDRH.RSL Lg//(Cg + Rsc) Hi—res mOde (k:03) -1 10449 '105686 '105335
PNDRL,RSL (L1 + RSL)//CJ Lo-res mode (k:03) -118515 '118309 '117808
PNDRL.RSL Lg//(Cg""Rsc) Lo-res mode (k:03) -118515 '118333 '117872

The results overall match the prediction that the phase noise will depend on the oscillation mode
in a real tank modeled by series resistances, and that the dependence is the same if the quality
factor is capacitor dominated or inductor dominated. The main discrepancy is between calculated
and simulated results for the high resonance mode, which are matched more accurately by using
the output voltage swing from simulation. This is due to lowered output swing that changes Iy

and changes the nonlinear Gy from current switching to almost linear operation.
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Chapter 4

THE RESONANCE TANK PASSIVES AND PHASE CHANGE
SWITCHING

4.1. Introduction

This section introduces the different VCO tuning methods and compares their impact on the
tank’s quality factor and hence phase noise. Consider a tank comprising a varactor, a switched
capacitor array and a fixed inductor, as shown in Figure 4.2. An expression for the quality factor
of a switched capacitor arrays is first derived. This analysis is then employed to compare the
impact of alternative tuning methods, including switched inductance, dual-mode resonance and

PC switched capacitors.

4.2. The Inductor

Assuming that Qrynk is dominated by the inductor’s quality factor (Qy), the term O [a)o ]L can
be replaced by O’ [%]L Based on simulation results in a 65 nm CMOS process, the QZ[CUO]L

term is evaluated for a number of inductor configurations corresponding to oscillators optimized

to operate at a range of resonant frequencies. Figure 4.1(a) depicts the maximum Q; [a)o]L for

each inductor plotted against the frequency that yields the maximum Q;. As can be seen in the

figure, for a 2 turn inductor which is optimal for use at frequencies below 15 GHz, the O’ [a)O]L

term drops with frequency while a 1 turn inductor which is optimal for use at frequencies above

15 GHz , the [, |L increases with frequency. The resulting phase noise dependence on
resonant frequency is given by the term ¢, / Qz[a)o]L is depicted in Figure 4.1 (b). Overall, the

phase noise increases with frequency. However, the rate of this increase drops at higher
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frequency when single turn inductor configurations are utilized as long as the tank’s Qrunx is

dominated by the inductor’s Q.
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Figure 4.1: (a) Maximum Q;° (wg)L for a number of inductor configurations in the 65 nm CMOS process
normalized and plotted against the maximum Qy frequency and (b) The normalized phase noise term wy/Q;> (wy) L
plotted against the resonant frequency (wg)

4.3. The Tuned Capacitor

A cross-coupled LC VCO can be tuned by changing the inductance and/or the capacitance.
Varactors can be used for continuous tuning, whiles switched inductors and switched capacitors
can be used for discrete tuning. Coupled resonators which employ magnetic coupling (using
transformers) or electrical coupling (using capacitors) can be used instead, and enable dual
resonance modes. By appropriate design, the VCO can be programmed to oscillate in only one of
the two modes. One way to switch between the two modes is to change the polarity of the

transformer coupling factor (k).

5 l %CU %CU oo
1%y 57

Inductance  Switched Cap. Varactor

Figure 4.2: A basic LC tank that consists of a fixed inductor (L), a tuning varactor with capacitance ranging from
Cyuvto Cyyax and a switched capacitor array consisting of N identical instances of equal unit capacitance (Cy)
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4.4. Basic LC Tank Design

The LC tank shown in Figure 4.2 uses capacitive tuning only. While the varactor allows for
continuous tuning, it suffers from low quality factors. Additionally, the voltage dependence of
the C-V characteristic converts amplitude noise into phase noise [25]. The maximum to
minimum capacitance ratio of the varactor is fixed and independent of the quality factor. While
the varactor cannot be eliminated in most applications, its capacitance should be minimized. If
the varactor capacitance is much smaller than the switched capacitor array, the switched

capacitor array dominates the quality factor, since the quality factor of two parallel capacitors is:

C 4.1)

0,-[212)c+c)
1 C2

The operator ‘//’ refers to the parallel combination. To guarantee continuous frequency tuning,
the unit capacitance (Cy) has to be smaller than the varactor’s tuning capacitance Cyyix-Crann.

The analysis from this point onwards will only consider the switched capacitor array’s quality

factor.

\ J

) ) S )
Fixed cap. N Y Fixed cap.
ON branches OFF branches ON branches OFF branches

(a) (b)
Figure 4.3: (a) Switched capacitor array with parasitic fixed capacitance (Cr), m On branches and N-m Off
branches of unit capacitance (Cy) and (b) The equivalent model of the switched capacitor array with CMOS switch
parasitic on-resistance (Roy) and off-capacitance (Cp) considered

Nanoscale CMOS technologies feature high quality factor capacitors (>100 at mm-wave
frequencies) with acceptable density. Such capacitors, switched using MOS switches as depicted
in Figure 4.3 (a), can be employed to obtain discrete (switched) tuning. However, the quality

factor of such a capacitor array is inversely proportional to the tuning range (7R).
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In order to understand the tradeoff between tuning range and quality factor, consider the model
in Figure 4.3 (b) .The model comprises N unit capacitor (Cy) and CMOS switches, of which m
branches are switched on. The MOS switches are modeled by their on-resistance (Roy) in the ON
state and by their parasitic capacitances (Cp) in the OFF state, respectively. Qualitatively, in
order to obtain a larger tuning range, a large ratio (f) between the maximum capacitance (all
CMOS switches on) to the minimum capacitance (all CMOS switches off) is required. To obtain
a large f, a wide MOS device is necessary, which is accompanied by a large (Cp). Conversely,
choosing a switch with lower widths increases the Roy and degrades the quality factor. The
relationship between Cp and Roy for a CMOS device with dimension W/Ln can be expressed as

follows:

n  (B-1)C,, Ln’
o Ry =k =K (4.2)

U

C, = Gy
P /))_1

where Cpy is the unit parasitic capacitance and « is the on-resistance per square of the CMOS

=C,, xWxLn

switch. A smaller f is therefore desirable.

Tuning Range (TR)

0 5 10 15

p
Figure 4.4: Tuning range as a function of the switched capacitor array’s [ (the ratio of max to min tuning
capacitances) at a range of x y values (the ratio of the fixed capacitance to the total capacitance)
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In the presence of a fixed capacitance (Cr), a larger f is required to obtain the same tuning range.
The fixed capacitance can arise from parasitic capacitance of passive/active devices in the
oscillator, parasitic capacitance from the inductor in the tank, varactors, and capacitors switched

using “ideal” (e.g., PC) switches. . The tuning range can be expressed in terms of f and Cr as

ﬂ X =L
BTy~ P TNG +C, (43)

where yyis the ratio of the fixed capacitance to the maximum total capacitance of the tank. This

follows:

relationship can be better understood by plotting it in Figure 4.4. The figure indicates that as yy

(i.e. Cr) increases, a much larger f is required to meet the same tuning range. The figure also
indicates that for a given yv, a tuning range greater than 1/,/y, cannot be obtained. Since a
smaller £ value is desirable, the design can:

a) Use a smaller inductor value to accommodate a larger tuning capacitor.

b) Tightly control the parasitic capacitance.

c) Cancel the parasitic capacitance by introducing negative capacitance[26],[15].
d) Reduce the CMOS switched capacitor array’s tuning range by using alternative tuning
methods.

4.5. Quality Factor of the CMOS Switched Capacitor Array
A closed form expression for the quality factor of the CMOS switched capacitor array depicted
in Figure 4.4 is derived. The switched capacitor array is designed to meet a tuning range (7R), a
minimum resonant frequency (wuy), and has a fixed to maximum total capacitance ratio (y).
The normalized resonant frequency wg (defined below) is depends on the number of on-branches

(m). The quality factor of the switch capacitor array is given by:

87



1 L) [(1- 2, TR\|[ Vo,
kC,,Len’ | | w,, -x) J[|TR* - w,
A

Qs =

5 ¢
0 ) " (44

L
1+N(TR 1)

min

where w; =(

Equation (4.4) can be divided into three terms (4, B, C). Term 4 is a technology dependent and is
limited by the minimum available transistor length. Term B is inversely proportional to the
minimum resonant frequency and is process independent. Technology-dependent fixed parasitic
capacitance across the tank causes yy to be process dependent; however, if this is ignored, then
term C also becomes process independent. Term C is plotted in Figure 4.5 against the normalized
frequency for several target tuning ranges. As can be seen in Figure 4.5, the quality factor of the
CMOS switched capacitor array can be vastly improved by reducing its tuning range. This tuning
range reduction can be achieved by using other tuning methods to perform coarse tuning and
using switch capacitor arrays to perform the fine tuning. A number of alternative tuning methods
are introduced and discussed in the next sub-section, and their impact on the switched capacitor

array’s quality factor is discussed in the final sub-section.

el
o
1

-
[
T

o

Normalized Quality Factor (Normalized Term C)
=)

(=]

Figure 4.5: Normalized quality factor as a function of normalized resonant frequency (wg), as tuning range (TR)
and fixed to maximum total capacitance ratio (yy) are varied.
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4.6. Phase Change Switching
Compared to MOS switches, PC switches have much lower capacitance for the same Ry, and
therefore, have much higher bandwidth (wgp=1/(RonCp)). Therefore, PC switches are well-suited
to switching between different sub-bands, with CMOS switched capacitors used for discrete

tuning within each sub-band.

CUPC C _ ROFF
"R
Ron/Rorr Cp on
Wy = 1/(RONCP)
PC Switch Equivalent Model

Figure 4.6: Phase-changed switched capacitor branch and its circuit model.

A single PC switch is used to switch between two sub-bands, whose total tuning range is 7R,
with no overlap. In each sub-band, CMOS switched capacitive tuning is used to sweep the
frequency. Ideally, a PC switched capacitor can switch between an arbitrarily large capacitance
Curcand a small capacitance, which is approximately equal to its parasitic capacitance Cp, while
maintaining a high quality factor in both cases. In practice, a real PC switch has a small, but non-
zero Ron, and a large, but non-infinite Rorr. The effective capacitance and quality factor of the

PC-switched capacitor branch shown in Figure 4.6 is:

L 0. - L 1480
EFF UpPC b EFF
1+ ﬁPCQ}z’C QPC ﬁPC -1
¢ i (4.5)
where /J)PC =1+ =%< , O, = w/ Wy, Switch ON
P w/w,, xC, Switch OFF

In order to get the maximum quality factor improvement from using the PC switched capacitor,

the On/Off Qgrr has to be greater than the minimum CMOS switched capacitor array’s quality

&9



factor in the On/Off sub-band. Using this condition, the required QOpc, wpw and Cp are
determined.

In order to determine the minimum CMOS switched capacitor array’s quality factor in each sub-
band, the tuning ranges (7R z) and fixed capacitance ratios (ynz z) in both sub-bands has to be
determined. Assuming the original CMOS switched capacitor array was used to switch between
two capacitances Cyux = NCyand Cynv=Cuax/f, the modified CMOS switched capacitor array’s

C’uax and C’yyyand the corresponding Cpy are:

C;VI]N = CM[ - CP
C/me — CMAX + CMIN _ CP
2 (4.6)
CUPC — CMAX - CMIN + CP
2

The Corresponding tuning range in lower sub-band is7R, =/27TR;/(1+TR; ) , and in the upper

sub-band is TR, = ./(1+TR.)/2 .The corresponding yy.. i for a given original y are:

1+2(1_ CP )(I_TR(?XN()]

C, 1+7TR;
X = 2
TR
CP Cp 4.7)
MIN * TREXNO(I B CMIN )
XNH = TRZ

4.7. Alternative Tuning Methods’ Impact on CMOS Switched Capacitive Tuning
Since different alternative tuning methods result in different tuning ranges in the resulting sub-
bands and different yy values, their impact on the modified CMOS switched capacitor circuit’s
quality factor varies. Figure 4.7 shows the normalize quality factors before and after applying the

alternative tuning method for the three tuning methods.
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Table 7: Impact of alternative tuning methods on CMOS switched capacitive tuning parameters

Original Term 1 Ro Xvo Effective L

Dual Resonance TR, , = \JTR, TR, X X, L (L(1+K), L(1-k))
Inductance Increase TR, , = \|TR, TR, X X o L,2L

Inductance decrease TRH,L = TR, %NO L, L2

PC switching TR, =/2TR;/(1+TR? )
See Eq. (4.7) L
1R, - [OTTRI2
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w w
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Figure 4.7: Normalized quality factor (Terms B-C) demonstrating Q improvement from (a) TR reduction (yy=0.1),
(b) TR reduction with yy scaled by a factor of (TRORIGINAL/TRFINAL)Z (n-0.1-2> 0.2) and (c) TR reduction associate
with P-C switch (yy=0.1 2 [0.2,0.5] for [high, low] sub-bands respectively)

It is worth noting that equation (4.4) does not consider the off quality factor of the switched

capacitor, dominated by the quality factor of the capacitors used. Consequently, the plotted
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quality factors in Figure 4.7 approach infinity as wg approaches 7R. In a more accurate model, it
should approach the quality factor of a single unit capacitance, a value that is inversely
proportional to frequency.

To compare the improvement in CMOS switched capacitor quality factor based on the different
alternative tuning methods, Figure 4.8 shows the quality factor improvement (2 sub-bands
Q/Original Q) evaluated at the minimum quality factor frequency in the two resulting sub-bands.
As the figure shows, if the switch used to switch inductors does not impact its quality factor, one
should use switching inductance and dual mode resonance as the most coarse tuning method,

followed by switching inductance to a larger value and finally P-C capacitor switching.

Quality Factor Improvement in the Low Sub-band Quality Factor Improvement in the High Sub-band

: YN : .
'é—n *'Mode Switching ( / 'é—n 4 §
c c :
Soal T T Eal AT
2 g : £ 7| Mode Switching
o) P-C Cap Switching o)
. o S U PP PPP PR e : S 2T
£ £
= =} N
= = T : :
w w : : :
ﬁ B T T Y. ﬁ T P-CCapSWItChing
S <] 5 5 :
= = : '
= 0 ; ; ; i = 0 ; ; ; i
1 1.5 2 2.5 3 1 1.5 2 2.5 3
TR TR
(a) (b)

Figure 4.8: Improvement in CMOS switched capacitor tank’s minimum quality factor as a function of tuning range
(xvoric= 0.1)
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Chapter 5
CIRCUIT DESIGN AND SIMULATIONS

5.1. Introduction
This chapter presents the two proposed QVCOs with device and bias current sizes, along with a
set of phase noise simulations covering the full tuning range for each circuit. The simulations
study the impact of a number of layout parasitics by adding significant parasitics gradually and

observing their impact on resonance frequency (tuning range) and phase noise.
5.2. Active QVCO Circuit and Simulations

5.2.1. Circuit Overview
The active QVCO consists of two dual-resonance circuits coupled as shown in Figure 5.1. The
device sizes have been specified on the schematic. Mode switching is achieved as discussed
earlier by controlling the sign of the G, transconductance. This is achieved by the two parallel

differential Gy, cells which are controlled by the Se/’ digital control signal.

i i
I i
I I
i i k
: W/,_/“,,: 16/0.06pum Lo, 16/0.06pm
I
; o L ool A&
! p— sl C § @ C
I I
I I
I I
I I
I I
L
+ I +
I+ \ $0.06um 80.06um \! +
2 |
I i
i i
: Iy2 1y2 : GMN
: WIL - +W/l : +
L um L um
1 1 -+
! |:>;—| — ! _
i i -
1 wLm H
1 Iy = 1 16/0.06um 16/0.06um
i i
1 ]

Figure 5.1: Active quadrature voltage controlled oscillator architectures with dual resonance mode coupled
resonator tanks
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The bias currents are generated and controlled by a PMOS bias circuit that was laid out as a
single unit to ensure current ratio matching despite process mismatches. PMOS devices were
used due to their lower flicker noise, in order to minimize the overall phase noise of the circuit.

The bias circuit topology and current ratios are depicted in Figure 5.2.

W\ I-Bias

4xUnit 10xUnit 10xUnit IxUnit

Unit=4/0.4 um j} ”;L |_||‘_:L |_|[

IB GMPI IB GMNI IB GMCI

Irer ¢
0.6mA — 2mA

Figure 5.2: Circuit schematic of the PMOS current mirror used for the biasing of the VCO

5.2.2. Transformer Design
Both dual-resonance cores utilize the same transformer architecture. The layout of this
transformer is shown in Figure 5.3. It consists of two center tapped inductors which are arranged
in a manner to allow for access to both transformers from the same side. The transformer is
310pum x 210pm in size. This is less than a 1/3™ larger than the area of a single such inductor. A
single turn inductor was used based on the simulation on the Q°L parameter at this frequency.

The inductance, coupling and differential quality factors are shown in Figure 5.17.
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210 pum

Figure 5.3: Mutual inductor layout and dimensions

The mutual inductor is a complex structure which can be best captured by the lumped element
model such as that shown in Figure 5.4. The model elements represent actual circuit elements.
Csus and Rgsyp represent the resistance and capacitance due to the substrate, while C,, represents
the oxide capacitance. Cjs represents the capacitance between the two inductors in the
transformer, while C represents the self capacitance of each inductor. L, and R and k represent

the inductance, resistance and coupling between the two coils.

Cwmz
||
G T A | ||° csiTl |
||| ' < ' I
Il | ofk\o | |
[ Coxs L, L, Coxs I
Rsuss i 1 Rsus1
C,=—= =C
Rsuss ' R
II C0X4 RLSZ RLSl COX II
| | I

| | ‘ ,
i——— |_T T_‘ | |
CSUB4 O . = } . 0 CSUBZ

Cm2
Figure 5.4: Lumped element model of integrated circuit mutual inductor
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Figure 5.5: Half circuit of reduced center-tapped mutual inductor model

While it is advantageous to construct such model, one can attempt to use data collected
differentially to fit parameters into the simpler half circuit model in Figure 5.5.

The inductor layout was created using Cadence LayoutXL, and Integrand Software EMX EM
simulator was used to extract the S-parameters from the layout. The resulting S-parameters are
used to create a 4-port element whose voltage/current equations are defined by equations
interpolated from the EM simulation. The model is simulated using Cadence SpectreRF S-
parameters simulations to obtain a set of Z/Y-parameters. This can be done using either a single-

ended driven or a differential driven test bench as shown in Figure 5.6.

o PORT, Cant PORT,
11 i A 11 A I
ST 11 | =S C5053 | 11 =T
[ |—||| [ n I
I ofk\o 1 I 55 1
[l Coxs | L, L Cox1 I [l Coxs | L, Ly Cox1 I
Rsugs 4 4 Rsus1 Rsugs 4 4 Rsus1
C,=— =cC C,=— =C
PORT, Rsusa ? t Rsus2 PORT, Rsusa ? t Rsus2
i Cos | R R | ¢ I | Cons | Ris R | c I
OX4 OX -OX4 OX
|||—| i I |—||| |||—| i I |—|||
C ” C i A C. ” C A I
Cwz PORT, Cvz PORT,
(a) (b)

Figure 5.6: (a) Single-ended and (b) differentially driven mutual inductor

The circuit parameters L, R and k can be readily obtained from the 2-port Z-parameter matrix

derived from the S-parameter matrix the simulation produces according to equation:

=(le le) (5.1)

R, +sL, sk L/L,
Zon 2y
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On the other hand, the differentially driven model requires further data processing. This can be
done by considering the Y-parameter model shown Figure 5.7 (a), which can be simplified

further in Figure 5.7 (b) and (c) which assumes symmetry along the dotted line in Figure 5.7 (¢).

(a)
Port 3 Port 1 Port 3 Port 1
o—l —0 0 0
-Y
LY |
%
Y13+Y3+Ya3+ Yz | [ o V | YirtY12+Ya3+Yq,
Yx3a= >l’." >I‘." =Yx12
Y1a+Y20+Y34+Yas Y12+Y2+Y23+Y24
Ay
-Y. |
L2
Lo 0
Port 4 Port 2 Port4 Port 2
(b) ©)

Figure 5.7: (a) Y-parameter representation of the 4-port mutual inductor and its reduction to (b) then to (c)

Similar to equation (5.1), the circuit parameters L, R and k can be readily obtained from the 4-
port Y-parameter matrix derived from the S-parameter matrix the simulation produces according

to equations (5.2) and (5.3):

-1
Ry +sL, sk\LL, _9 2(YX12_YIZ) (‘le‘Yz4+Y14+Y23)/2 (5.2)
sky[LiL, R, +sL, (_Yl3_YZ4+Yl4+Y23)/2 2(YX34_Y34)
)= N+ Y+ Y3+ )+ + 5+ 1)
X12 =
N+ Y+ Y3+ )+ (Y + Yy + Y3+ 15y)
(5.3)

Y3+ Y3+ 5+ )Y+ Yy + Yy +Y,,)
Y3+ Y+ Y+ )+ (Y + o+ Y3 +Yy)

X34 =
(
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The derived inductance, coupling factor and quality factors derived from the s-parameter
simulations according to the single-ended and differential equations are presented in Figure 5.8.
The inductance is nominally 400 pH, and the coupling factor is nominally 0.26.

The differential quality factor is higher than the single-ended quality factor at frequencies above
5GHz. The trend is expected due to the smaller impact of substrate resistance on the differential
quality factor, which becomes significant at higher frequencies. However, the values predicted
by the differential model for quality factor appears way too optimistic. The single-ended

extracted values are verified in the following sections.
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Figure 5.8: Mutual inductor (a) inductance, (b) coupling factor and (c) differential quality factor
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5.2.3. Switch Capacitor Tuning Circuit
The frequency tuning is performed using the switched capacitor circuit depicted in Figure 5.9.
The circuit parameters where chosen according to the design analysis presented in Chapter 4.5.
The circuit has 6-bits control allowing for 64 frequencies steps of ~7fF each.
The circuit is simulated using Cadence SpectreRF S-parameter simulation. Similar to the mutual
inductance, the circuit can be simulated using a single-ended or a differential simulation as

shown in Figure 5.10.

32x | |
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16 x I I

______________________________ by
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1.6/0.06 |—~ »—|
0—| I 1 I'um I |—0
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b I A I

— i '-———— bz‘
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01 x I I

by

Figure 5.9: Circuit schematics of the switched capacitor array showing devices sizes and approximate unit
capacitance.

PORT;

PORT; = C

PORT,
(a) (b)
Figure 5.10: (@) Single-ended and (b) differentially driven capacitor
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For the single-ended simulation, the capacitance is obtained by taking the Z;;=R+(sC)". The

capacitance is therefore the -1/(w Im[Z;;]), and the quality factor -Im[Z;,]/( Re[Z;/]).

-1 __IleuJ

C= C= 4
a)Im[Z“] RelZnJ G4

For the differential simulation, the differential Y}, is obtained as:

- 1Y - 1Y,
Y +Y,+h,+1),

(5.5)

The capacitance and resistance can be obtained from Yp, by using Z;,=1/Yp and applying it to
equation (5.4). The switched capacitor circuit was designed and laid out. Mentor Graphics
Calibre PEX RC extraction tool was used to obtain the full capacitance and parasitic trace
resistance of the full switch capacitor array. The RC extracted schematics were simulated in

order to obtain capacitance and quality factor of the full capacitor array as a function of

frequency for different control codes. The results of the simulation are depicted in Figure 5.11.

Control Code

Capacitance fF
w
= w
=i =
Control Code
Quality Factor

0 5 10 15 20
Frequency (GHz) Frequency (GHz)

(a) (b)

Figure 5.11: Switched capacitor array’s (a) capacitance and (b) quality factor across the tuning range for a layout
based simulations

The minimum capacitance from the switch capacitor array is 266fF and the maximum capacitance is
4711F. The quality factor remains above 40 up to 20 GHz. For each capacitance value, the quality factor

drops with frequency as expected. However, the significant point to observe is the quality factor of the
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capacitor at the resonance frequency. This requires assuming a fixed value for the inductor (as well as
additional fixed capacitance from other circuit parasitics) and calculating the resonance frequency for
each value of the capacitance. For each calculated resonance frequency, the quality factor of that
particular switch capacitor array arrangement is evaluated at resonance. The simulation was performed
assuming a fixed capacitance (Cr=100fF) and an inductance (L=400pH). Both values reflect post layout
estimates. The simulation results are depicted in Figure 5.17. The results match theory discussed in

Chapter 4.5.

Quality Factor

8 10 12 14 16
Frequency (GHz)

Figure 5.12: Passive quadrature voltage controlled oscillator architectures with dual resonance mode coupled
resonator tanks

5.2.4. Complete Dual-Resonance Tank Simulation
The quality factor of the dual-resonance is obtained using the three definitions of quality factor as
a mean to validate the theory, and evaluate the design. The three definitions are:
(a) Real and imaginary parts of the impedance:
The ratio of the imaginary part of the impedance to the real part of the impedance defines the

quality factor of the impedance at frequencies below its self-resonance.

Q= (5.6)
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This definition is the one used to obtain the inductor and capacitor array’s quality factors. Given
the discussion on quality factor in Chapter 3.5, the quality factor, at resonance, of the dual-
resonance tank when tuned in a symmetric fashion is given by:
Oimre =Q9c 10, (1£k) (5.7)

The effective Q. is enhanced by the factor (1+k) at the low resonance mode, and degrades by the
factor (1-k) at the high resonance mode.

(b) The phase of the impedance at resonance:
The quality factor at resonance is obtained using the phase definition of quality factor:

_ @ d®
2 da)wo

Qo (5.8)

This simulation was performed using Cadence Spectre AC simulation. The test bench is depicted
in Figure 5.13. The circuit is driven differentially using iyc+ and iyc. of equal magnitude of 0.5
and opposing phases. The differential voltage v;+-vi. is obtained, and Zp= (vi+-vi.)/1. The

resonance frequencies, phase, and phase derivate at resonance are obtained from Zy.

iact
=) vit+
— f I

—=Cs

.

IIF@ Vi- : !

iac- RC extracted Coupled inductor RC extracted
Cap-array 4-port object Cap-array
(a) (b)

Figure 5.13: (a) Single-ended and () differentially driven capacitor
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(c) The bandwidth of the impedance at resonance:
Using the same phase test bench, the pass-band bandwidth at resonance of Z;y is obtained, and

the quality factor is derived from that as the ratio of the resonance frequency to the bandwidth.

%o (5.9)

QB3 =

W54

The three previous definitions of quality factor are evaluated and plotted against resonance
frequency for the complete dual-resonance tank. The results are depicted in Figure 5.14. The three
methods agree with small discrepancies. The discrepancies increase at higher frequency since the
single-ended inductor quality factor was used in the derivation. Q¢ requires a large number of
frequency samples in order to correctly calculate the derivatives at resonance. A reasonable 300

frequency samples were selected as a reasonable accuracy vs. simulation time.

25 T T T

Quality Factor

10 A A 'l
8 10 12 14 16

Frequency (GHz)
Figure 5.14: Overall Tank Quality factor at resonance assuming a 100fF additional fixed capacitance

5.2.5. Startup-Condition
The implications of the quality factor plots presented in Figure 5.14, and according to theory

presented in Chapters 2 and 3 on start-up, the required Gy for startup in the upper band for the
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symmetric resonator is almost 1.5x that in the lower resonance mode. Assuming Gy to be
proportional to /Iz , the bias current requirements for the higher oscillation mode are on the

order of 2.25x that in the lower oscillation mode. This was observed in simulations and

measurement as will be presented in Chapter 6.

5.2.1. Phase noise and phase error
The phase noise of the actively coupled dual-resonance QVCO circuit can be readily found by
applying the quadrature theory presented in Section 2.6 to the equivalent 2™ order simplification
circuit presented in Section 3.3. This statement can be verified by performing a number of circuit
simulations similar to those performed in Chapters 2 and 3 on the dual resonance circuit

resented in Figure 5.1 and the its equivalent 2" order counterpart shown in Figure 5.15.
p g q rp g
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Figure 5.15: Active quadrature voltage controlled oscillator 2" order equivalent circuit

To allow for Gyce sweeps the circuit is simulated using the Verilog-A models for Gy that were
presented in Section 2.6. A theoretical phase expression is derived by extending equation (2.60),

by observing that for the dual resonance quadrature circuit: 1) in the ISF expression n=4, 2)
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twice as many noise source are presented as in the LC-tank quadrature circuit and 3) the coupling

strength factor k=Isyc/(Ieun+Icup) for the case P=90°, or more generally:

1g .
Tou e fsin(W)
k= Gyn M Gpp

1 5.10
1+]GM§+CGW|COS(‘PX (5.10)

The phase noise expression is therefore:

I
[1+k2+y[1+1 GMCI kz]](4];bT) ,
+
L, »(Aw)=10Log G 0w ! (ﬁ)

16(0)* 10" Af

(5.11)

The theoretical expression in (5.11) is plotted against the simulated phase noise from the dual
resonance AQVCO and its equivalent 2" order QVCO in F igure 5.16. The results simulations
diverge at higher coupling strength values mainly due to the lower Gy/Ip14s ratio used for these
simulations. The results show that, if the CMOS devices act as switching transistors, the second
order simplification of the dual-resonance actively coupled QVCO is a very good approximation

of the original circuit.
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Figure 5.16: Phase noise sweep versus k=Ip/l; , for dual-resonance QVCO, Equivalent 2 order QVCO and the
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theoretical expression for phase noise with circuits simulated using Verilog-A Gy as described by Figure 2.29

Furthermore, the phase error due to mismatches between the two coupled cores or the coupling

traces, of the dual resonance AQVCO, is given by:

‘sin(‘l’} Al ‘sin(‘P) Al 1+(k)2 +2k‘c0s(‘l’) Aw
_k+ ‘cos(‘l’] 2 k+ ‘cos(‘l’} 21 e ) k(k + ‘COS(IPX) w,
B N (1+k‘cos(‘l’) sin(‘PX §+A_1P

k+‘c0s(1PX R 2

Ag

(5.12)

Qave
ey +HGyp

where k =
where Al is the difference between the sum of the bias currents (IguntIcup) of the two oscillator
cores, Alguc is the difference between the tail bias currents of the two coupling stages between
the oscillators, and Q is the quality factor of the LC-tank, Aw is the difference in the oscillation
frequency of the two dual-resonance cores, AR is the difference in the parallel resistance of the

two equivalent LC-tanks and AY is the difference between the extra phase delay in the

quadrature path between the two cores. For a ¥=90° this simplifies to:

Al
A<p=k_1£—k_l—GMC —(1+k‘2)Q%+k_1§+A—III
@

21 2, b R 2 (5.13)

5.3. Passive QVCO Circuit and Simulations

5.3.1. Circuit Overview
The passive QVCO consists of two dual-resonance circuits coupled as shown in Figure 5.17. The
device sizes have been specified on the schematic. Similar to the active QVCO architecture,
mode switching is achieved by controlling the sign of the G), transconductance. This is achieved,

by the two parallel differential G, cells which are controlled by the Se/” digital control signal.
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Figure 5.17: Passive quadrature voltage controlled oscillator architectures with dual resonance mode coupled
resonator tanks

In order to maximize the layout reuse between the two designs, the same Gy stages as the active
quadrature architecture were used with slightly modified layouts. Moreover, the bias current
circuit was also the same as the one used in the active QVCO, however, since there is no use for
the bias current allotted to the quadrature coupling cell in the active QVCO, this bias current was

rerouted to the Gy cells as shown in Figure 5.18.

W\ I-Bias
s
4xUnit 10xUnit, 10xUnit IxUnit

Unit=4/0.4 um j} ”;L |_||‘_:L |_|[

I B GMPI I B GMNI

Irer ¢
0.6mA — 2mA

Figure 5.18: Circuit schematic of the PMOS current mirror used for the biasing of the VCO
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5.3.2. The four coupled resonators network

Figure 5.19: Layout and dimensions of the four coupled resonators with capacitance placement indicated by arrows

Due to the presence of 4 coupled inductors, and in order to separate the terms from each other,
each coupled inductor is implemented separately and isolated and resembles the same
architecture as presented for the active QVCO in Figure 5.3. The capacitor and inductor values
presented previously for the active design still holds.

In order to maintain a small quadrature phase error, the combination of the coupled inductors is
placed in a symmetric cross shape to equalize the parasitic inductances and capacitances between
adjacent blocks. In order to avoid additional parasitic capacitance, the tuning capacitors are

routed along the traces connecting the 4 mutual inductors as indicated in Figure 5.19.

5.3.3. Startup-Condition
The four coupled resonators maintain approximately the same quality factor that was presented

previously for the active design since each uncoupled resonator is loaded by two inductors in
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parallel with one capacitor. However, since total inductance is halved at each un-coupled
resonator, the parallel resistance is also halved.

The reduction of the parallel resistance indicates that a much higher 2-Gy is required, almost 4-
the current is required in order to obtain startup. However, due to the fact that the quadrature
inductors have to operate in two different modes (one is odd and one is even) always, the impact
of their presence on the overall quality factor is countering that of the dual-resonance and it
improves the quality factor of the upper band while reducing it in the lower band. This in turn
makes the current bias requirements in the two bands more comparable and reduces the 4x
current requirement. This general trend was also observed in simulations and in lab
measurements.

In order to verify this, the passive network corresponding to the PQVCO shown in Figure 5.20 is
considered where £, is replaced by ak. Since the PQVCO doesn’t suffer from frequency shift
from quadrature that takes place in AQVCO, the resonance frequency, quality factors and

startup-condition can all be determined based on the passive network alone.

k
5y
(@ 1
-] X3 BT
clr] [L]c
QOOL LOQO
ak(® Dak
000, ;000
k
5%
@)
clr) []c

Figure 5.20: Passive network corresponding to the passive quadrature voltage controlled oscillator

The passive network is studied by observing the input impedance marked (Z;v) in Figure 5.20.

The input impedance is given by
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sLa,> (2(1-k2)s? (1-ak> ) + (2- (1+ )k )

7 -
) 4(1-k)s* (1-ak?) +4s> 2-(1+ @)k, + (4-(1+ k), (5.14)

The input impedance has two resonance frequencies given by

) 2-k(1+a)k=\1+a(1-4k> +(1+a)k*)) 2
- 2(1-k*)(1- k) 0 (5.15)

H,L

where @, —/2/JLC. Under the special condition that a=k/k; , the resonance frequency

expression simplifies to

2 lﬂ:k/\/z 2
Wy = Wwo (5.16)

The expression in (5.15) can be visualized by plotting the ratio of the high to low resonance
frequencies for multiple coupling strength ratios (o) as a function of the coupling strength of the
dual resonance core (k) as shown in Figure 5.26. For the sake of comparison, the tuning range of
the AQVCO is also shown in Figure 5.26. As the figure shows, the tuning range of the PQVCO is
in general smaller than that of the AQVCO, and it approaches that of the AQVCO for large

values of a, as k, approaches 1.

1.8 T
—AQVCO
¢ ¢=0.0
1.6} * 0=0.5 v
o ¢=1.0 ,"/ J
o=1.5
1.4

Tuning Range (mH/mL)
o

______

0 0.1 0.2 0.3 0.4 0.5
Coupling Factor (k)

Figure 5.21: Tuning range of the PQVCO passive network given by w g/ w 1 versus the coupling factor (k) for

multiple values of oo compared to that of the AQVCO
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Furthermore, in order to obtain effective quality factor of the two poles, the denominator D(s) of
the system Z;v(s)=N(s)/D(s) can be fitted into the following system model

wL

|2 o 2.2 2)(.2
D(S)—(S o SO g sty )(s +)/s) (5.17)
The expression of Zjy(s) is derived from the passive network with the addition of resistance (R) is

series with every inductor as shown in Figure 5.22.

R k R
o— 3
ZIN —- — =
C L L C
R% I I R
o
ak ¢ o ::)ak
L L
R R
k
5%
N
C L L C
R R

Figure 5.22: Passive network corresponding to the passive quadrature voltage controlled oscillator with the series
resistance (Rs) considered

The corresponding denominator expression

R?wy* 2Rwy%(R? + L*wy?)
1+ kDL2(—1 + k2a?) | (1 + kDL (—1 + k?a?) "
4R* + 2412R?wy? — L*(—4 + k2 (1 + a2))wy*
4(—1 + kB L*(—1 + k2a?)

R(4R? = I(=6 + K*(1 + a®)w?)
(—1+ k»L3(—1 + k?a?) (5.18)
R2(—6 4+ k?(1 4+ a?)) + L*(-2 + k2(1 + a®)w,?

B (=1 + k?2)L2(—1 + k2a?)
L 2R(-2 + k*(1 + a?)) .
(=1 + k?)L(~1 + k2a?)

D(s) = 2

SZ

4

5 6

+s
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By equating the s, s° and s’ terms in equations (5.17) and (5.18), the quality factors Q; and Qy

are given by

1- Wy,
2
o - (1-k2)(1- ak?) Wy o,y oy, L
L= 2 2\ 2 (5.19)
) 10 R
2 2-(1+a)k?-4-L | [1-TL | 0
WDy 1 Wy

The expression in (5.19) corresponds to the quality factor of the inductors at resonance (wp L/R)

scaled by a factor that is a function of a, k, wg 1 ana @wr . For the special case o=1, the expression
simplifies to

=k Ji-k2)
Op,r = Tevok k2 (5.20)

. . ) 1
The equivalent parallel resistance at resonance is evaluated as R =—QH’L , and the

@y 1
corresponding start-up condition is G, *G,;p > 2 The impact of this is captured by Figure

5.23 and Figure 5.24.
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Figure 5.23: The ratio of the quality factor in the high resonance mode to that in the low resonance mode as a
function of the tuning range given by the frequency ratio of the high resonance mode to the low resonance mode for
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AQVCO and PQVCO with multiple values of a

In Figure 5.23, the quality factor ratio Qn/Q; is plotted as the tuning range. As the quality tuning
range increases, so does the ratio of quality factor between Oy and Q;, for the AQVCO case. This
results in startup conditions being drastically different at the two resonance frequencies.
However, for the PQVCO and for a range of a values, the ratio of quality factor between the two
resonance modes drops, which results in more similar startup condition between the high and
low resonance modes. This however has the negative impact of lowering the overall quality
factor which is captured by Figure 5.24, which shows the ratio of the high resonance mode
quality factor of the resonance circuit (Qp) to the quality factor of the corresponding inductor at
the same resonance frequency (wwnl/Rs). For all values of a, the quality factor in the high
resonance mode of the PQVCO is lower than that of the AQVCO for the same tuning range. This
impact can be overcome by using a larger coupling inductor than that used inside the dual-

resonance Core.
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Figure 5.24: The ratio of the quality factor in the high resonance mode to the quality factor of the inductor at the
same frequency as a function of the tuning range given by the frequency ratio of the high resonance mode to the low
resonance mode for AQVCO and PQVCO with multiple values of o
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5.3.1. Phase noise and phase error
The phase noise of the passively coupled dual-resonance QVCO circuit can be approximated by
applying the quadrature theory presented in Section 2.6 to the equivalent 2™ order simplification

circuit presented in Section 3.3. The simplified circuit is shown in Figure 5.25.

32/0.06um

s = 2
% (1t kLB 2xCN %R S
Gun+Gmp
. :> ks K, <: ':::.
GMN+GMP
< _! + +
SR TxC & % (1 k)L - _

32/0.06um

Figure 5.25: Passive quadrature voltage controlled oscillator 2" order equivalent circuit

It is important to note that while this simplification allows for a simple derivation of phase noise,
it’s not a strictly accurate simplification. It has been pointed out in [9] and [10] that a circuit
which consists of two oscillators coupled through any type of passive symmetric passive
networks and a 180° inversion, can never be coupled due to even symmetries. Therefore, in
reality, it is important to have 4 oscillators (such as the case of the dual-resonance passive
quadrature), with non-zero phase shifts between each oscillating node, in the quadrature
configuration to have a properly locked QVCO. Under this simplification, the phase noise can be

simply found as:

(1+7) R s
= P Jo
Ll/fz(Aw)—IOLog 16(Q)2Iw02 (Af) (5.21)
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This is due to the fact that in the simplified model, no two current vectors of different phases
sum up at any node; therefore the ISFs are always in quadrature with the voltage at each node. In
the non-simplified circuit model, there is a phase difference between the two oscillating nodes in
each dual-resonance oscillator. This phase difference, if significant, leads to creating phasors
between currents, which should be considered for ISF calculation. In order to verify the
significant of this phase shift on the design, the circuit is simulated. To allow for proper
comparison with the active QVCO, the circuit is simulated using the same Verilog-A models for
G that were presented in Section 2.6.

The resulting plot is shown in Figure 5.26 compares the theoretical expression in (5.21) (PN;)
with the simulated phase noise (PN,) and the phase noise calculated from simulated ISFs (PN;).
The three expression match very well, which indicates the original assumption that the passive
dual resonance circuit does not suffer from noises contributed by active quadrature or in other

words they have similar phase noise to that of active quadrature when the active coupling factor

is 0.
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Figure 5.26: Phase noise plots for passive dual-resonance QVCO
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The phase error due to mismatches of the dual resonance PQVCO can be empirically derived
using a series of simulations by considering that the error would follow an equation similar to
that in equation (5.13) as follows

AR AY

Al Aw
A= cl(a)5+ Cz(a)Q70+ Ca(a)7+ 5 (5.22)

The constant C;, C, and Cj; are experimentally evaluated and compared to the AQVCO case. The
resulting comparison is shown in Figure 5.27. The phase error appears to be inversely
proportional to the coupling strength a and it shows good coupling for a=1 that is comparable to
that of the AQVCO with quadrature coupling strength £=0.25. However, mismatches between
the two coupling transformers appear directly as phase delay mismatches AY which are
frequency dependent, and they result in quadrature phase errors that would require additional

phase delay control to calibrate.
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Figure 5.27: Quadrature phase error versus mismatch in (a) resonance frequency , (b) tank resistance and (c) bias
current of the two dual-resonance cores in the case of AQVCO (Q=15, and k=0.25) and POQVCO with a=0.5,1,2
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Chapter 6
CIRCUIT MEASUREMENT
6.1. Introduction

This chapter also presents the measurement data obtained for both chips for both phase noise and
phase error measurements. The tuning range and power consumption measurement results are
presented as part of the phase noise measurement, since the phase noise measurement was
conducted across the full tuning range. For both measurements, the measurement setup and
theory are explained. Furthermore, a comparison with state-of-art circuits is presented and the

figures of merit (FOMs) are derived based on them.

5 a0 elljaly
- AL

!
g .

. BN EEEREN
(a) (b)
Figure 6.1: Die photo of (a) active coupled QVCO and (b) passive coupled QVCO

Two standalone VCO designs were taped out in TSMCs 65nm Process. Both design featured
digital control via a serial to parallel digital controller. The controls were used to tune the
capacitor arrays, the bias current and the resonance mode selection. Both designs were followed
by two stages of buffers to mitigate the off-chip loading impact on the circuit.

The die photo of the two VCOs is depicted in Figure 6.1. The measurement made use of a set of 3

probes: two eye-pass probes for bias and digital control signals, and 1 SGS probe for output
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monitoring. A set of 2.92mm cables along with connectors and various instruments were used to

collect the phase noise and quadrature phase error data.

6.2. Phase Noise Measurement

6.2.1. Methodology
The measurement of phase noise can be performed using a number of methods. The main
challenge lies in measuring a noisy, unlocked VCO oscillating at a high frequency. Advanced
measurement instruments have reduced the complexity of performing phase noise measurements.
This subsection briefly investigates the theory behind a number of the methods employed by

these instruments.

6.2.2. Direct spectrum power density measurement at oscillation frequency
As discussed in section 2.5, and expressed in (2.28), the phase noise can be directly computed
from the power spectral density of the oscillating signal. While this method is direct, it requires

a stable and frequency locked oscillation in order to capture the spectrum correctly.

6.2.3. Phase detectors
The phase detector is used to decouple the phase noise on one hand, and the oscillation
frequency on the other. This has two main advantages: 1) The measurement no longer requires a
locked oscillation (though the phase detector’s architecture might set stability requirements on
the signal), and 2) The measurement is only concerned with offset frequencies (often are
considered up to a 100 MHz) rather than having to capture high frequency (GHz) VCO outputs.
A simple phase detector can be realized by a mixer followed by a low pass filter as depicted in

Figure 6.2 . As indicated by equations (6.1), a VCO under test has the output waveform given by
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Vvco(t). If there exists a waveform (Vx(¢)) that has the same oscillation frequency (w)) and a
different phase, then the filtered down output is approximately the difference between the two

phases scaled by some factor Kpp (under small angle approximation as before).

Vico(t) B\ vep(?)

vx(?)

Figure 6.2:Mixer and low pass filter as simple phase detector

Vyeo () = Vycooos(@yt + @pep (1)
Vx (1) = Vypcos(ayt + @y (1) (6.1)
Vpp (1) = Kppcos(@yco (1) - @x (1) = Kpp (@yco () - ¢x (1)

6.2.4. Phase locked loop
One way to generate the waveform Vy (¢) is using a phase locked loop. Qualitatively, the loop
locks the phases of the local oscillator (V.0(¢)) and the VCO under test (Vyco(t)) up to the
bandwidth of the loop. The residual phase difference is effectively high pass filtered. If the
loop’s bandwidth is sufficiently low and the phase noise of the LO is well below that of the VCO

under test, then the output Vo(f) will be directly proportional to the phase noise of the VCO

under test.

Vyeo(t) my _{&_* Vo(®)

Vio(t
~O

Figure 6.3: First order PLL as a phase noise measurement setup
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Mathematically, assuming the phase noise of the LO is much lower than that of the VCO under
test, the output phase can be expressed in the frequency domain as:

Po(s) = a ,(5)

S
KLO(I TN ) (62)
Vo(8)=@p(s)

This is a high pass response whose pass frequency w;qp equals AKppK;o, where Kpp is the phase
detector’s gain and Kpp is the LO gain and both are assumed to be constants. Note that the pass
frequency needs to be set low enough to pass the phase noise, yet high enough to guarantee

locking. This method is better suited for signals with low phase noise or frequency locked.

6.2.5. Delay line frequency discriminator

The delay line discriminator mixes the VCO’s waveform with a delayed version of itself as

shown in Figure 6.4, instead of generating a second oscillation as the case in the PLL setup.

Vico(t) D _oVo(f)

=y
¥

Figure 6.4: Delay line discriminator as a phase noise measurement setup

The delay line is configured so that the phase difference between the signal and its timed delayed

version is 1/2. Hence the output of the phase detector can be written as:

Vo) = Kpp sin(, () - @, (1 - 7)) (6.3)
It was shown in [27] that the spectrum of output voltage is related to the spectrum of the

frequency noise (w,) as given in equation (6.4):
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Vo(f) = K pps (%’f’)) 0,(f)
D
5, (&) (6.4)

o, () =w,()] f o L(Af)zm

It’s important to note that the relationship between frequency noise and output voltage is colored
by a sinc function with a notch at frequency 1/zp. Hence, in order to make a measurement, either
the sinc function has to be calibrated out or 7p has to be small enough so that the offset
frequencies of interest are in the “flat” region of the sinc response. The disadvantage of using a
small zp is the loss of output voltage sensitivity to frequency noise. This method is often used
with unlocked signals and signals with high close-in spurious content, which would make it hard
to measure using the PLL method.

The main disadvantage of this method is the need for programmable delay lines which are
frequency dependent. Advancement in Digital Signal processing (DSP) allowed for the
development of the heterodyne discriminator [28]. It is a two step process where the signal under
test is first down converted into a lower frequency, and then digitized using a fast ADC. If the
phase noise of the down converted signal is dominated by the phase noise of the signal under
test, then it is sufficient to apply the frequency discrimination method to it, to obtain the phase
noise of the original signal. Once the down converted signal is digitized, an arbitrary delay can

be applied to it using a DSP algorithm.

6.2.6. Measurement Setup
The phase noise measurement was performed using the ES5052B Signal Source Analyzer
accompanied by E50534 Microwave down-converter. The E5052B is capable of performing

heterodyne frequency discrimination measurements as well as PLL based measurements. The
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E50534 down converter extend the frequency range to cover 3 GHz to 26.5 GHz as shown in

(10 MHz to 7 GHz)

Figure 6.5.
E5053A Microwave down-converter E5052B Signal Source Analyzer
(10 MHz to 7 GHz)
A(w""‘ @ (Bt010 GHz)\
IF in | :
F out RFi
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104 ADC FFT
n IF amp.
J Y2
RF 1 T E DSP
10 (Correlation)
3GHz Fundamental MHz
to or to .
265 GHz 3 harmonic 3GHz
Input mixing Input Display
RF RF out
L0in O O @
IF amp. REin
F out ‘ ADC FFT
e [ Vo]
=
K Bro106H) )

Figure 6.5: E5052B Signal Source Analyzer connected to E50534 Microwave down-converter [29]
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6.3. Results
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Figure 6.6: Raw collected phase noise data for (a) active coupled QVCO and (b) passive coupled QVCO for offset
frequencies ranging from 1 kHz to 10MHz superposed for multiple frequency points collected over the full tuning range of
each QVCO

The measurement was automated to collect phase noise sweeps for all digital code

configurations. The raw collected data is presented in Figure 6.6.
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Phase Noise at 1MHz (dBc/Hz)

Phase Noise at 1MHz (dBc/Hz)

Figure 6.7: Phase noise measured for (a) active coupled QVCO and (b) passive coupled QVCO at an offset frequency of
IMHz collected over the full tuning range of each QVCO, with current consumption of the QVCO noted for each
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arrangement over different frequency ranges that was used in the measurement
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6.4. Quadrature Phase Measurement

6.4.1. Methodology
The measurement of quadrature can be done using a wide range of methods. The most common
method uses image rejection of either up or down conversion quadrature mixing schemes to

determine the phase error angle.

Figure 6.8: Quadrature upconversion architecture used in quadrature phase accuracy measurement considering
different circuit non-idealities that require to be measured/calibrated (A, Ag, Pire, Pr)

Considering the upconversion circuit displayed in Figure 6.8, the goal of the measurement is to
measure the phase error (@x) of the quadrature VCO under test by upconverting a known
quadrature low frequency signal (/F) and using power combining to cancel the positive or the
negative sideband image (LO + IF, LO - IF). The challenge lies in capturing and calibrating all
the other non-idealities in the circuit such as IF phase error (@zr), IF phase rotation (@rz), and

gain mismatch between / channel and Q channel (4, vs. 4p).
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Given sinusoidal signals, the setup in Figure 6.8 can be described by the following equations:

Ve ©) = adoV i OV 10, (1) + AgV 1o OV 1,00 (1)
V301 (t) = cos(@t)

LO (DUT) Vioo(t) = sin(w, ot + ¢ )
Vig () = COS(wlFf + P ) (6.5)
IF Virg () = Sin(wIFt +Pp + P )

Ao (O‘COS(¢R + (w0 + a)IF)Z) - COS(¢E +@ipp + P + (@0 + wIF)t)+
2

Vep(t) = —=
RF O‘COS(‘ Pr + (00 — a)]F)t)+ COS(¢E ~ Pre — Pr + (W10 - wIF)t)
The ratio of the powers of the upper sideband (wo+ wr) and the lower sideband (wro- wF) is

given by the expression Rp(a, @r, Prr) in (6.6)

l+a’ -2a cos(@g + i)

Rp\a, ¢, = 6.6
p(t, g Prr) Lt o 1 2q008d —p) (6:6)

In the special case where a=1, and @z =0, the expression simplifies to that in (6.7)
R ()= tan® 2 67)

Typically, the phase measurement apparatus is set up using voltage limiters to equate amplitudes

and a calibration process is performed to set the /F phase error to zero. However, this is hard to

achieve off chip at high frequencies over a wide frequency range. As it can be seen in Figure 6'9,
the image rejection magnitude (in dB), for an ideal case where there is no amplitude imbalance
between the 1/Q channels, the sensitivity of the phase measurement around 0 degrees is very high
and an image rejection greater than 42 dB indicates a phase error less than 1°.

However, as amplitude imbalances are introduced (o = 0.1, 0.4, 0.7), not only does the image
rejection become a function of the amplitude imbalance, but also the sensitivity to phase error

increases, which reduces the measurement’s accuracy.
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Figure 6.9: Image rejection of a quadrature up/down converter as a function of phase error and 1/Q channels gain
mismatches

In order to allow for an accurate measurement of phase error, we conduct the experiment with a swept /F'
phase. By doing so, we inherently can calibrate out /F phase error, and separate the phase error

measurement from the amplitude imbalance. The use of /F sweeps aims at finding the /F phases for
which the image rejection is maximum. We begin by rewriting the equation in (6.6) in terms of @7
instead of @z, where @ refers to the absolute phase difference between the /F signal in the I

and the Q channels. The resulting image power rejection ratio is given by (6.8):

1+a’ - 2asin(g, +¢,)

RP(a’¢Ea¢lF)=

— (6.8)
l+a” -2asin(¢; — @)
The maximum image power rejection angle is given by (6.9)
. -1 20 JT
¢]FRP1V[AX (aa¢E)_—COS 1+a2 CoS E_¢E (69)

Assuming small angle approximations, this maxim image power rejection Rpyx(a) and the
corresponding @;rare given by (6.10):
2

1+
Ry (@) = ( = Z) (6.10)
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From the previous two equations we notice that for very small error signals:

1) The calibration of @ is inherent; because @;rpp4xare symmetric around @;=0.

2) The maximum image rejection is only a function of amplitude imbalances.

3) Once amplitude imbalance (o) and @;=0 are known, @ can be readily found.
These results are depicted in Figure 6.11 (a). The plot is constructed by sweeping the phase error
@r and plotting the resulting Rpyax as a function @rpuax as well as @z In addition the small
signal approximation expression is plotted (it’s phase independent). The plot shows there is very
good correspondence between the “Rpyux vs. @rrpyax” and ““Rppax vs. @~ well beyond small
angle approximation for moderate alpha values.
Consequently, one can use @rpyax as an approximation of @g. In order to facilitate this task,
Figure 6.10 (b) shows the contours of errors in this approximation. One can set an upper bound
on the approximation based on the required accuracy and the limitations on the measurement
(mainly noise and phase steps). If a measurement falls beyond the tolerance, exact phase error
can be calculated using a numerical solution to equations (6.8) and (6.9).
The main disadvantage of this method is that it requires the stepping of the /F phase with fine
steps and constant amplitude, which requires advance instrumentation. However, it’s a method

where no calibration is needed.
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Figure 6.10: (a¢) Maximum image rejection Rpyax as a function of maximum image rejection angle (Drpyax ), phase

error (®g) and small signal approximation (given by(6.10)) for three different amplitude imbalance values
(¢=0.5,0.7,0.9). (b) Phase estimation error contours (Pg -@rpyax) of the maximum image rejection Rpyx as a
function of maximum image rejection angle (D rpyax) plot
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6.4.2. Measurement Setup

To PSA mmner '

(E4440a)<=‘t (Krytar 6010180)

| J ~ -

7

Figure 6.11: Quadrature upconversion measurement setup picture with parts and test equipment marked

An initial measurement setup shown in Figure 6.11 was used to characterize the phase. An SGS
probe similar to the case for phase noise was landed on both the / and the Q channels of the
quadrature VCO and both channels were connected to off chip mixers (ZX05-24MH-s+). The IF
was initially derived from a 90° power splitter (ZX10Q-2-3-S+). However due to amplitude
imbalances, the quadrature was replaced by two 50MHz signals from an arbitrary waveform
generator (Arb: Tektronix AWG70002A) with a swept phase difference as described in the
previous section. The outputs of the mixers were combined using a Krytar 6010180 power
splitter/combiner and the output was observed in the E4440a power signal analyzer (PSA).

The measurement was automated to step through /F phase difference derived from the Arb (with
coarse and fine sweeps). For each phase point the power data was capture by the PSA, the

relevant peaks were detected and their power ratio is calculated, and logged vs. the angle.
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6.4.3. Results

The raw measured data of the phase sweeps is presented in

_105° 90° 75

60"

-105°_ggo -75°
—862GHz — 9.6GHz  11.22GHz 125 GHz

(a)

15 GHz

13.5 GHz 15.8 GHz 16 GHz 16.9 GHz —20 GHz

(b)

Figure 6.12: Raw collected image rejection vs. IF phase sweep data for (a) active coupled QVCO and (b) passive
coupled QVCO with phase estimation error contours given in Figure 6.10 (b) marked on each plot

Using the previous data and the methodology discussed in the previous section the actual phase

figures are computed and presented is Figure 6.13.
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Figure 6.13: Phase errors of (a) active coupled QVCO and (b) passive coupled QVCO calculated as the maximum
image rejection angle in the phase sweeps presented in Figure 6.12

6.5. Overall Performance
For the sake of comparison, a number of figures of merit are introduced and used to compare this
work with other works in the literature. Originally the phase noise figure of merit (FOMpy) has
been used to compare oscillators. It aims at capturing the architecture’s ability to minimize phase

noise for a given power budget and oscillation frequency at a certain frequency offset.
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FOM ), = L(Af)-101log

2
fo) (6.11)

Ppc(mW) (Af
Since this FOM doesn’t capture the tradeoff between tuning range, phase noise and power

budget, a second FOM denoted FOM7 is introduced to capture the tuning range.

2

fMAX_fM]N
6.12
PDC(mW>( I ) (¢12)

FOM, = L(Af)-10log

A final figure of merit aims similar to (6.12) is given by FOMyp, with further emphasis on
fractional tuning range versus absolute tuning range, which agrees more with the discussion
presented on tradeoffs between fractional tuning range and phase noise for a given power budget

presented in 4.5.

2
1 FTR
DC 0

The FOMs are plotted across the tuning range of both passive and active QVCO in Figure 6.14.

The works are compared with the state-of-art designs in Table 8.
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Figure 6.14: FOMpy ,FOM7 and FOMr;, of the (a) active coupled QVCO and (b) passive coupled QVCO evaluated for an
offset frequency of IMHz over the full tuning range
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Table 8: Performance comparison with state-of-art wideband VCO designs

Saberi et al Bajestan et This Work This Work
(2011) al (2015) (Active) (Passive)
Process 130nm 65nm 65 nm 65 nm
Center Frequency ... 133 3.8 12 17
Tuning Range % 62.7 78 46 36
Supply Voltage v 1.2 0.6 1.2 1.2
Power v 20-29 5.8-9.4 6-19.2 26.4
Phase Noise dBe/Hz -107 -123.7 -107 -109
(1 MHz offset at center frequency)
FOM(PN) AB/Hz -175.59 -186.49 -177.58 -179.39
FOM(T) AB/Hz -171.53 -184.33 -170.84 -170.52
FOM(T?2) AB/Hz -191.53 -204.33 -190.84 -190.52
Area 2 0.35 0.27 0.42
mm
Phase Error o <3.3 <l.5 <0.6 <6
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Chapter 7
CONCLUSION AND FUTURE WORK

In order to create a wideband voltage controlled oscillator, a necessary component for multi-
standard and cognitive radios, this thesis presented two QVCO designs targeted towards the 10-
20GHz bands. Dual-resonance is a key feature of the presented work, which aimed at generating
wider tuning range using little area overhead and without sacrificing phase noise. The two
architectures used a dual-resonance circuit core with symmetrically tuned coupled resonators.
The resonance mode was selected using a digital code that controlled the feedback architecture in
the circuit.

The two architectures employed passive and active mechanisms to obtain quadrature in the
circuit. The underlying premise is that an active loop can provide a very accurate quadrature
angles, at the expense of added phase noise. On the other hand, passive architectures have lower
phase noises, but their quadrature accuracy is susceptible to passive element imbalances.

Low phase noise, and low quadrature phase error are desired. Quadrature angle accuracy is
necessary for image rejection and has significant impacts on receiver sensitivity. Similarly, phase
noise reduces the sensitivity of radios and makes them more susceptible to blockers. An ideal
design should aim at minimizing both.

This thesis presented principles of voltage controlled oscillator design that focused on the design
of LC-tank VCOs. The main concepts that were introduced in this context were startup
condition, phase noise, and quadrature accuracy.

The previous analysis was made relevant to the studying of a dual-resonance VCO, which is the
main building block of the two QVCOs presented in this thesis, by introducing a method of

circuit reduction that allowed for the reduction of the 4-th order network of the dual-resonance
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VCO, to a 2™ order LC-tank. Startup condition, phase noise analysis and quadrature accuracy
theory considered previously was extended based on this model. Impulse sensitivity function
analysis, based on linear time invariant phase noise theory, was presented as a mean to study the
phase noise contribution of different circuit elements.

In order to achieve wide tuning, while not sacrificing phase noise, the passives (tune-LC
networks) were analyzed. The advantage of using high bandwidth switches such as phase change
switches was studied, and quantified through mathematical expressions that capture that tradeoff
between phase noise, tuning range and the switch bandwidth.

The theory introduced was reflected in the design of the two QVCOs which were presented with
focus on the circuit, dual-resonance passive resonator design, and startup conditions of both
architectures. This was then compared and contrasted with the measured results which showed
agreement in general trends.

The results presented have shown that it is possible to obtain equal phase noise to power
consumed performance at higher frequencies, as defined by FOMs, using passive QVCO
compared to the active QVCO. However, the passive QVCO needed higher currents in order to
obtain startup. This was the case because the passive QVCO architecture was implemented using
parallel dual resonators, halving the parallel tank resistance and doubling the required Gw.
Additionally, the phase error of the passive QVCO (6°) is significantly larger than the active one
which was within 0.6°. Additional circuitry is needed to control and reduce this error.

The circuit design can be enhanced by the introduction of a phase error correction unit.
Architectures can range from introduction of tuned coupling capacitance between the resonators,

phase-shifters, and additional digital logic. The error correction circuit can either use a set of

136



calibration points in addition to digital lookup tables, or a closed loop image rejection based
receiver with negative feedback.

Furthermore, the design can be furthered by introducing a combined architecture that employs
phase change switches and both QVCOs in order to generate frequencies over the range of 8-20
GHz. Since the loops share a lot and have been implemented using the same unit elements, it can
be possible to use phase change switches to chose between inductive coupling and active device
coupling. In doing so, a much wider tuning range can be obtained with minimal impact on the
phase noise of the lower frequency bands. The higher frequency bands, on the other hand, which
would be implemented using the phase change switched inductors need to be further studied,

since even 1Q resistance in series with the inductors can half its quality factor at resonance.
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