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Abstract 
 

A 2007 U.N. survey found that 54% of Americans advocate ―wait-and-see‖ behavior on policies 

that mitigate climate change, i.e., they infer that climate mitigation actions can be deferred until 

there are clear signs of danger. By evaluating different cognitive factors that influence human 

behavior, this thesis builds a framework that provides answers to an important question: why do 

people advocate wait-and-see behavior on climate change? One cognitive factor is 

misperceptions of feedback (i.e., ignorance of large feedback delays between CO2 emission 

decisions and the corresponding changes in CO2 concentration). Results reveal that the use of 

simulation tools, that provide repeated feedback about decision actions and corresponding 

consequences, is likely to enable people to overcome these misperceptions. A second factor is 

people‘s reliance on correlational or linear thinking (that the shape of CO2 emissions and CO2 

concentration should look alike). Results reveal that the use of a physical representation (i.e., a 

picture of a problem in the form of a metaphor), simulation tools, and presenting problems such 

people‘s reliance on heuristics and biases enables them to make ecofriendly decisions is likely to 

enable people to overcome their correlational thinking. Other cognitive factors that affect 

people‘s wait-and-see behavior include people‘s risk and time preferences about future climate 

consequences when these consequences are either described or experienced. Results reveal that 

descriptive methods (e.g., books, newspapers, and reports) are likely to produce more wait-and-

see behavior due to a high probability, small cost, and late timing of future consequences; 

whereas, experiential methods (e.g., movies, imagery, and games) are likely to produce more 

wait-and-see behavior due to a low probability, large cost, and early timing of future 

consequences. Policy implications suggest a careful design of descriptive and experiential 
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climate risk communication methods, and the use of above described manipulations to improve 

people‘s decision making on climate change.  
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Chapter 1: Introduction and Motivation 
 

1.1 Introduction 
 

Despite strong scientific consensus about causes and risks of climate change, the 

general public seems to exhibit a complacent attitude towards actions that benefit Earth‘s 

climate (Bostrom et al., 1994; Leiserowitz, 2007; Read et al., 1994; Weber, 2006). Recent 

surveys have shown that most Americans exhibit ―wait-and-see‖ behavior, according to 

which they infer that mitigation actions on climate change (e.g., reductions in yearly 

greenhouse gas (GHG) emissions) can be deferred until there is greater evidence that 

climate change is harmful (Sterman & Booth Sweeney, 2002, 2007; Leiserowitz, 2007). 

People‘s wait-and-see behavior on climate policies is currently widespread. For example, 

a 2007 U.N. survey found a large majority of U.S. respondents (54%) advocating a wait-

and-see or go-slow approach to emission reductions (Sterman, 2008; Leiserowitz, 2007), 

and larger majorities favoring the wait-and-see option in Russia, China, and India 

(Sterman, 2008; Leiserowitz, 2007).  

Moreover, recent evidence shows that wait-and-see behavior is also widespread 

among policymakers who directly decide on policies that mitigate climate change. For 

example, Tony Abbott, opposition frontbencher and a senior member of the Liberal Party 

of Australia in response to a news-poll commented, ―The government should not be 

rushing headlong into any premature trading scheme [for policies that mitigate climate 

change]‖ (Conway, 2009, para. 2). Also, the former White House science adviser John 

Marburger briefed a Senate Panel on climate change, saying, ―We know we have to make 

very large changes if this [climate] turns out to be a problem. The consequences of 

human-induced global warming could be quite severe‖ (Jones, 2002, para. 2). At the 



 

 

2 

 

same briefing, the U.S. administration stood behind its wait-and-see behavior by claiming 

that, ―we should only slow the growth of greenhouse gas emissions (GHGs), and - as the 

science justifies - stop, and then reverse that growth‖ (Jones, 2002, para. 3). Similarly, 

Fred Singer, professor emeritus environment sciences, University of Virginia, expressed 

a stronger wait-and-see view by commenting that, ―human activities are not influencing 

the global climate in a perceptible way. Climate will continue to change, as it always has 

in the past, warming and cooling on different time scales and for different reasons, 

regardless of any human action‖ (Singer, 2009, p. 1).  

Amidst these wait-and-see statements, there is a growing consensus that Earth‘s 

climate is likely changing as a direct result of human actions such as burning of fossil 

fuels and deforestation that lead to greenhouse gas emissions (IPCC, 2007a; Arctic 

Climate Impact Assessment, 2004). Although there are serious concerns for Earth‘s 

climate among certain climate scientists, citizens, policymakers, and governmental 

officials, it is clear that a majority of people currently prefer to exhibit a risk-seeking 

wait-and-see behavior on initiating any actions that mitigate climate change.
1
 People‘s 

wait-and-see behavior is risk-seeking because holding off actions that mitigate climate 

change is likely to invite climate ―black swans‖ in the future, i.e., high-impact, hard-to-

predict, and rare climate consequences beyond the realm of normal expectations (Taleb, 

2007). That is because, unlike simple systems that have short delays between detection of 

a problem and the implementation of corrective actions (e.g., boiling beans in a cooker 

where upon hearing the whistle one could immediately remove the cooker from the 

                                                 
1
 Defined more formally, consider these two choices: A. Paying a certain amount now for sure and reducing 

the future impacts of climate change; or, B. Defer paying now and paying a larger but an uncertain amount 

in the future as a result of climate change. Then, achoice for option B is a measure of risk-seeking behavior 

on climate change. This risk-seeking choice also exhibits wait-and-see behavior to climate change 

mitigation actions in the status quo. 
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flame), for a complex system like Earth‘s climate there are long delays between the 

decision to mitigate emissions and the corresponding changes in atmospheric greenhouse 

gas (GHG) concentrations (IPCC, 2007b; Sterman & Booth Sweeney, 2002, 2007; 

Sterman, 2008). Therefore, for the climate change problem, one cannot afford to delay 

acting (i.e., exhibit wait-and-see behavior) till the last day and then decide to take actions 

when there are clear signs of danger due to climate change. On account of deferring 

immediate mitigation actions and the long feedback delays in the climate system, the 

climate black swans experienced in the future are likely to be negative consequences in 

the form of severe storms, sudden melting of polar ice-caps and droughts that occur in 

different parts of the world. Also, the cost of adaptation to these negative consequences is 

estimated to be very large (IPCC, 2007a; Nordhaus, 1994). 

Currently, there is lot of technological and engineering research on developing 

mitigation options for climate change. Some of these technological options include 

carbon capture and sequestration (CCS), geo-engineering, and switching to renewable 

sources of energy (IPCC, 2007a). This technological and engineering research is very 

important and very much needed. However, as the decisions to adopt different 

technological and engineering options ultimately rests with people, therefore, research 

that studies the role of people, their understanding of climate change, and their wait-and-

see behavior on climate change is also critically needed, though currently lacking in the 

literature (APA, 2009).  

This thesis fills this void and directly considers the role of people, their wait-and-

see behavior, and their understanding of climate change. In order to explain people‘s 

wait-and-see behavior, this thesis takes an approach that is different from applying 
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standard economic methods like cost-benefit analysis, where one would justify people‘s 

wait-and-see behavior in terms of sure costs now versus larger and uncertain costs of 

consequences that are distant in the future and that are discounted at high discount rates 

(Monbiot, 2009; Nordhaus, 2008; Stern, 2006).
2
 Rather, this thesis proposes a framework 

of people‘s wait-and-see behavior by considering different cognitive factors that are 

peculiar to how humans make day-to-day decisions. Therefore, this thesis considers the 

human perceptions and decisions on climate change from a cognitive perspective. Given 

that  climate change is already occurring in some parts of the world while people 

continue to exhibit wait-and-see behavior on the problem (Arctic Climate Impact 

Assessment, 2004), the main purpose of this thesis is to investigate from a cognitive 

perspective the following research questions:  

 

Q1: Why do people want to defer mitigation actions on climate change 

when science currently shows signs of a rapid change in Earth‘s climate? 

Q2: Furthermore, is there a way to influence people‘s wait-and-see behavior 

through certain manipulations? 

 

Different chapters in this thesis investigate both these research questions using an 

experimental laboratory-based approach. This approach involves systematically 

                                                 
2
 Discount rate is the rate at which a future cost (F) is discounted to the present cost (P). The exact 

relationship is F = P * (1 + i/100)
n
, where i is the per annum discount rate and n is the number of years in 

the future after which cost F is incurred. If future costs of climate consequences is large, then even for a 

moderate discount rate (~ 8%), the calculated present costs will be very small. From an economic 

perspective, these costs of future consequences in the status quo will be small and this observation is likely 

to make people exhibit wait-and-see behavior on policies that mitigate climate change.  
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manipulating certain conditions and collecting behavioral data, where human participants 

make judgment and choices on climate problems in a controlled laboratory environment.   

1.2  Background and Contributions 

 
There could be several potential reasons for people‘s wait-and-see behavior on 

climate change. Recent research has concentrated on the effects of the current costs of 

mitigation actions (using a high discount rate for future costs) and denial, i.e., ignorance 

of the climate change problem (Monbiot, 2009; Nordhaus, 2008; Stern, 2006). These 

economic reasons on cost and benefits have been the topic of many current 

investigations.  

Furthermore, there is also research that has considered the role of motivational 

factors on environmental decisions (e.g., political ideology, perceptions of needs versus 

luxuries, and core psychological needs etc.) (APA, 2009; Hardisty, Johnson, & Weber, in 

press). For example, in November, 2008 there were devastating fires in southern 

California disrupting the ecology of that place; however, very few people (including 

those that had lost houses in the previous fires) decided to move out of the region. One 

motivational factor that explains this behavior could be place attachment (Gifford, 2007), 

i.e., continued attachment to family, job, and community, a motivation that can be more 

salient in the aftermath of adverse events, when fears have faded, than the goal of 

avoiding a low-probability future disaster. More recently, in other but similar situations 

involving organ donations (Johnson & Goldstein, 2003) and insurance decisions 

(Johnson, Hershey, Meszaros, & Kunreuther, 1993), the role of cognitive factors like 

status quo bias and inertia have been documented as reasons rather than the motivational 
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factors. As there is evidence in favor of both cognitive and motivational factors, they are 

both likely to influence people‘s decisions on environmental problems.  

In this regard, although the role of motivational and economic factors in 

connection to environmental problems is documented in literature, the role of cognitive 

factors has been somewhat less studied and downplayed (APA, 2009). Due to the 

inseparable interaction of humans‘ actions on climate, it is important to investigate the 

role of certain cognitive factors that are likely to influence people‘s wait-and-see 

behavior on climate change. Detailed below are some of the cognitive factors and how 

this thesis builds upon these factors to suggest a framework of people‘s wait-and-see 

behavior. 

1.2.1 Misperceptions of Feedback 

According to the misperceptions of feedback (MOF) hypothesis (Sterman 1989), 

people ignore the feedback delays present in their decisions in a dynamic system. In the 

case of the Earth‘s climate, the MOF hypothesis suggests that people are likely to fail to 

take into account the long time delays between increases in carbon-dioxide (CO2) 

emissions and the subsequent increases in CO2 concentration, and the delays between 

increases in CO2 concentration and its effects on increasing average atmospheric 

temperature (Sterman & Booth Sweeney 2002; 2007). In Earth‘s climate, an increase in 

CO2 emissions does not increase CO2 concentration and atmospheric temperature 

immediately, but after a long delay where it might be too late to act to avoid significant 

impact of these increases. 

Moxnes and Saysel (2009) have built on Sterman and Booth Sweeney's (2007) 

results by focusing on how people incorporate feedback delays in their decisions and 
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regulate CO2 emissions in order to reach an attainable CO2 concentration goal in a 

simulated climate system. They tested participants‘ ability to control CO2 concentration 

to 300 GtC above the pre-industrial level in a period between the years 2000 and 2100, 

where participants decided on emissions every 10 years. They tested participants in 

different conditions that mimicked the working of the climate system, with repeated 

feedback about decisions and the resulting changes in CO2 concentration. Participants 

entered ten numbers which represented their emission decisions every ten years over a 

100 year period. In all but one feedback condition, participants entered all ten emission 

values at one time and then observed the effects of their decisions on the CO2 

concentration over the 100 year period. In conditions without feedback, Moxnes and 

Saysel‘s (2009) results coincided with results from Sterman and Sweeney (2007): 

Participants showed a general tendency to overshoot the goal level, misperceiving 

feedback delays in their emission decisions. In the feedback condition, however, Moxnes 

and Saysel (2009) gave participants the ability to make repeated emission decisions every 

10 years and to observe the effects of these decisions on the CO2 concentration before the 

next 10 yearly emission decision was made. Within a 10 year period, the emissions 

remained constant at values which were set at the start of the period. Results show that 

providing repeated feedback helped participants change their strategy over time, and may 

have helped them to reduce their misperceptions of feedback delays. 

In this thesis‘ chapter 2, Dutt and Gonzalez (2009) extend results of Moxnes and 

Saysel (2009) and Sterman and Booth Sweeney (2002; 2007) in a task called the 

Dynamic Climate Change Simulation (DCCS),
3
 where participants control CO2 

                                                 
3
 The DCCS simulation can be downloaded for free under an academic license from: 

http://downloads.ddmlab.com/?action=form&package_id=2 

http://downloads.ddmlab.com/?action=form&package_id=2
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concentration to a goal level under different kinds of feedback delays in inputs (CO2 

emissions) and outputs (CO2 absorptions). The design of DCCS has been motivated from 

a generic dynamics stocks and flows task (Gonzalez & Dutt, 2011) and the use of the 

―bathtub metaphor,‖ where CO2 emission is represented by a tap, CO2 absorption is 

represented by a drain, CO2 concentration is represented by the amount of liquid in the 

tub, and the tub itself represents Earth‘s atmosphere.  

Using DCCS in an laboratory experiment, Dutt and Gonzalez (2011) have 

systematically varied two types of feedback delays in DCCS, the frequency of making 

emission decisions (frequently or infrequently) and rates of CO2 absorption (rapid or 

slow). They show that when laypeople are presented with the problem of controlling 

carbon-dioxide (CO2) concentration in DCCS, people who perform in realistic climate 

conditions (where the rate of CO2 absorption is slow and emission decisions are made 

infrequently) produce larger CO2 emissions compared to people who perform in more 

optimistic conditions (where the rate of CO2 absorption are fast and emission decisions 

are made frequently). These results are explained by the difficulty individuals have in 

perceiving feedback delays in dynamic systems (Diehl & Sterman, 1995; Booth Sweeney 

& Sterman, 2000; Sterman & Booth Sweeney, 2007; Sterman, 1989; Sterman, 2000; 

Sterman, 2002; Sterman, 2008). According to Dutt and Gonzalez (2011), people in 

conditions of feedback delay exhibit wait-and-behavior in their yearly CO2 emission 

policies because people continue to maintain their emissions at a high value (as is the 

case in the world presently) and when they want to cut the emission to meet absorption 

upon hitting the goal (which is needed) it becomes too late for them to act. Here, cutting 

down emission to meet absorption is something that opposes people‘s wait-and-see 
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behavior and is needed right from the start in the task, rather than only upon reaching the 

goal. However, results also show that participants do learn to improve their emission 

decisions by cutting down emissions over many repeated trials of decision making in 

DCCS. Thus, one manipulation for reducing people‘s misperceptions of feedback delays, 

that this thesis proposes, is the use simulation tools like DCCS that compress time and 

space and that improve people‘s understanding of the dynamics of Earth‘s climate over 

repeated interactions with these tools.  

1.2.2 Reliance on Correlation Heuristic 

 
In addition to the human misperceptions of feedback delays (Dutt & Gonzalez, 

2011; Sterman, 1989), a less explored cognitive factor for people‘s wait-and-see behavior 

is the human tendency to rely on ―correlation heuristic‖ while making judgments about a 

level or accumulation (e.g., CO2 concentration in the atmosphere) based on CO2 emission 

(inflow) and absorption (outflow), respectively (Cronin & Gonzalez, 2007; Cronin, 

Gonzalez & Sterman, 2009).
4
 According to correlation heuristic, people incorrectly 

assume that the shapes of accumulation and inflow overtime should be identical. For 

example, it has been shown that highly educated people rely on correlational thinking, 

assuming that if the task demands one to increase the GHG concentration to stabilize at a 

higher level than the status quo, then GHG emissions should also increase and stabilize in 

an identical manner to the GHG concentration (Sterman & Booth Sweeney, 2002; 

Sterman & Booth Sweeney, 2007). People‘s reliance on correlation heuristic for Earth‘s 

climate supports wait-and-see behavior and violates basic laws of physics. That is 

                                                 
4
 Inflow and Outflows are rates of change and the change in accumulation is the integral of the difference 

between the inflow and outflow. Therefore,                   ∫                       
 

 
    

                . 



 

 

10 

 

because, for Earth‘s climate, the CO2 concentration has been increasing nonlinearly over 

time (years) due to an approximate linear increase in CO2 emissions every year (IPCC, 

2007). By relying on correlation heuristic, people are likely to judge the nonlinear CO2 

concentration‘s shape to be linearly increasing over time, i.e., similar to the linearly 

increasing shape of CO2 emissions. Consequently, such linear judgments are likely to 

make people underestimate the actual nonlinear increase in CO2 concentration, 

undermine the seriousness of the climate problem, and make them exhibit wait-and-see 

behavior.  

As reliance on correlation heuristic is likely to be very problematic for immediate 

actions on climate change, this thesis investigates a number of manipulations that aim to 

reduce people‘s reliance on this heuristic and the associated misconceptions. One of the 

manipulations relies on using DCCS among people from both the science and 

mathematics backgrounds (STEM) as well as the humanities and arts backgrounds (non-

STEM) (Dutt & Gonzalez, 2011a) (chapter 3). Dutt and Gonzalez (2011a) put 

participants from both STEM and non-STEM backgrounds in two separate conditions in 

a laboratory experiment. In one (control) condition, participants sketched the CO2 

emission and absorption trajectories they thought to correspond to a given CO2 

concentration stabilization (CS) scenario over 100 years on a sheet of paper (i.e., the CS 

Task, Sterman, 2008). In a separate (experimental) condition, participants controlled the 

CO2 concentration as close as possible to a CO2 stabilization trajectory (same as that 

given in CS task) by indirectly manipulating the CO2 emissions and absorptions in DCCS 

over 100 years. Participants‘ performance in DCCS was followed by their performance in 

the CS task. Results revealed that the DCCS manipulation worked effectively in reducing 
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participants‘ reliance on correlation heuristic among both STEMs and non-STEMs in the 

CS task after performing in DCCS compared to when participants performed in the CS 

task alone. However, the benefits of DCCS performance were greater for STEMs 

compared to non-STEMs: the reduction in reliance on correlation heuristic was greater 

for STEMs compared to non-STEMs in the CS task after performing in the DCCS. One 

explanation of this observation is that previous exposure to mass balance and energy 

balance concepts in mathematics, science, and engineering enables STEMs to improve 

their sketches in the CS task because they focus less on the surface (i.e., irrelevant) 

features of decision problems, and focus more on the more fundamental underlying 

structure of the problem (Chi, Feltovich, & Glaser, 1981; Gonzalez & Wong, in press).  

Furthermore, in chapter 4, Dutt and Gonzalez (2011b) hypothesize that people‘s 

reliance on correlation heuristic and their consequent underestimation of nonlinear 

accumulation are influenced by the format in which these problems are presented to 

them. Here, Dutt and Gonzalez (2011b) motivate and investigate the use of a physical 

representation to communicate climate problems as an alternative to other conventionally 

used representations that include text descriptions and mathematical graphs. Physical 

representation presents a problem using a picture that works as a ―metaphor.‖ For 

example, consider a mathematical problem where the length (L) of a square‘s side is 

doubled and one needs to calculate the new area. A physical representation of the 

problem will be one where a single square tile of side L is replaced by four square tiles, 

each of side L (i.e., to form a square of side 2L) in a picture. In a series of experiments, 

Dutt and Gonzalez (2011b) have shown that the physical representation reduces people‘s 

reliance on correlation heuristic and their underestimation of CO2 accumulation when the 
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representation‘s use is compared to other graphical and text representations in different 

problems and contexts (that are even different from the climate context).  

Finally, in chapter 5 and 6, Dutt and Gonzalez (2011c; 2011d) discuss an 

information presentation manipulation that is hypothesized to enable people to improve 

their decisions by directly relying on the correlation heuristic rather than reducing this 

reliance. According to the information presentation manipulation, one method of 

improving people‘s decisions is to present ecofriendly options in such a manner that these 

options appear more attractive to people when they rely on linear thinking. Therefore, if 

people choose an ecofriendly option by relying on linear thinking, then they will pick an 

option that mitigates climate change without any alteration in their incorrect linear 

thought process. For example, in chapter 5, Dutt and Gonzalez (2011c) discuss how 

linear thinking could be particularly problematic in the case of interpreting carbon-

dioxide‘s (CO2) lifetime in the Earth‘s atmosphere. They took participants from policy 

and non-policy backgrounds and asked them to rank five ranges of CO2 percentages to be 

removed from the atmosphere according to their impact on CO2‘s lifetime in two separate 

conditions: Aid and no-Aid. In the Aid condition, participants were provided with a 

descriptive decision aid through instructions that would likely enable them to answer the 

problem correctly, while this aid was absent in the no-Aid condition. Two problems were 

presented to each participant in random order: Linear, where a ranking based upon linear 

thinking yielded a correct rank order; and Nonlinear, where a ranking based upon linear 

thinking yielded an incorrect rank order. Results revealed that a majority of participants 

from both backgrounds responded linearly on both problems and got the problem correct 

where a linear response gave the correct answer. Furthermore, although the decision aid 
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had no effect on participants‘ correct responses, it enabled policy backgrounds to move 

away from responding according to linear thinking. In another example in chapter 6, Dutt 

and Gonzalez (2011d) have applied the same information presentation manipulation to 

ecological (eco) taxes, which are promising mechanisms to enable ecofriendly decisions; 

however, which do not currently enjoy popular public support. Dutt and Gonzalez 

(2011d), show that thinking linearly people rely on the linear-thinking heuristic, i.e., they 

prefer a small price increase while associate larger price increases to mean proportionally 

greater benefits or improvements in quality. Participants were asked to choose between 

two eco-tax increases in two decision problems: in one, the smaller eco-tax increase 

resulted in greater CO2 emissions reduction, while in the other, the smaller increase 

resulted in lesser reduction. Although larger eco-tax increases did not always save more 

CO2 emissions, a majority of participants preferred the smaller eco-tax increases, while 

judging larger tax increases to cause greater reductions in CO2 emissions (i.e., they relied 

on the linear-thinking heuristic). Since participants rely on the linear-thinking heuristic in 

reaching their preferences and judgments about eco-taxes, eco-tax policies are likely to 

benefit by presenting information such that smaller tax increases (which are linearly more 

attractive and are likely to be chosen by people) cause greater CO2 emissions reductions. 

In the different manipulations discussed above, the approach taken is either to 

help people reduce their reliance on the discussed cognitive factors, or to use that very 

reliance to promote decisions that mitigates climate change.  

1.2.3 Risk and Time Preferences  

Another cognitive factor for people‘s wait-and-see behavior is related to human 

risk preferences, i.e., people‘s risk-seeking (wait-and-see) or risk-averse (act-now) 



 

 

14 

 

behavior when they make choices based upon either reading a written description of the 

likelihood and outcomes or after an actual experience of the frequency and outcomes 

(Hertwig et al., 2004; Hertwig, 2009; Kahneman & Tversky, 1979; Tversky & 

Kahneman, 1992). Research has shown that people underweight rare events when they 

experience the small frequency of occurrence of these events; whereas, people 

overweight the same rare events when they read written descriptions about these events 

and their likelihood of occurrence (Hertwig et al., 2004; Hertwig, 2009). For Earth‘s 

climate, although there are many available written descriptions that detail the future 

likelihood and consequences of climate change (e.g., newspaper, climate reports, and 

books etc.) (IPCC, 2007a; IPCC 2007b; Gray, 2009; Sterman & Booth Sweeney, 2007; 

Sterman, 2008), people‘s every day experiences of climate change may be very different 

from what these descriptions suggest. For example, it may be very difficult to currently 

detect changes in Earth‘s climate in people‘s everyday experiences, because these 

changes are very gradual and slow for human perception to notice; therefore, the 

associated consequences might be perceived as occurring with a low probability (i.e., rare 

events). As people underweight rare events in experience (Hertwig et al., 2004), their 

perceptions of these rare climate consequences is likely to be low and consequently 

people will exhibit wait-and-see behavior on climate change. However, climate scientists, 

who primarily rely on written descriptive knowledge about climate change rather than 

their experiential knowledge of climate change, are likely to overweight the same rare 

events and promote immediate actions on policies that mitigate climate change.  

In addition to people‘s risk preferences due to probability of consequences, 

people‘s time preferences also seem to impact their wait-and-see choices. There is 
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currently uncertainty about when or how soon climate consequences are expected to 

appear (Nordhaus, 1994; Öncüler, 2010). According to literature on inter-temporal 

choice, people‘s repeated choices for risky and safe options in both experience and 

description under a time delay depend on whether the delay provides an incentive 

(Luhmann, Chun, Yi, Lee, & Wang, 2008; Wu, 1999). Therefore, people are likely to 

choose a risky wait-and-see option,which produces a time delay between making a choice 

and observing the corresponding consequence, so long as people could derive an 

incentive during the waiting time. For climate, if negative climate consequences occur 

early in the future (e.g., 10 years from now), then the cost of consequences may outweigh 

the economic gains that people make while waiting for a short time. However, if these 

climate consequences occur later in the future (e.g., 60 years from now), the economic 

gains people make while waiting may outweigh the associated costs of consequences. If 

people‘s time-preferences are driven by the option that provides them with a greater 

incentive in both experience and description (Dutt & Gonzalez, in press; Luhmann et al., 

2008; Wu, 1999), then we expect a greater proportion of wait-and-see choices when 

climate consequences occur later rather than earlier in the future. 

In this thesis‘ chapter 7, Dutt and Gonzalez (in press) test people‘s wait-and-see 

behavior on climate change due to the uncertainty in both the timing and probability of 

future consequences. In a laboratory experiment, they presented their participants with 

climate consequences as carbon-taxes in one of two forms: a written description, where 

the probability, consequence, and timing were explicitly provided; and experience, where 

the probability, consequence, and timing were sampled through unlabeled buttons and 

then a final choice was made. In both forms, participants were asked to choose between 
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two options, one act-now and the other, wait-and-see. Four problems were presented in 

each condition such that the probability of consequences on the wait-and-see option was 

high or low and the timing was early or late. Results indicated that the proportion of wait-

and-see choices was greater in experience than description. Furthermore, in both 

experience and description, the proportion of wait-and-see choices was greater when the 

probability was low rather than high. The difference in the proportion of wait-and-see 

choices between the low and high probability was amplified in experience and attenuated 

in description. Finally, there was no difference in the proportion of wait-and-see choices 

when the timing of climate consequences was early rather than late in both experience 

and description. Interestingly, the timing did not have an influence on the proportion of 

wait-and-see choices. A likely reason for this observation appears to be the absence of 

any incentive when people waited in experience or read about the wait in description. In 

the real world, people are likely to generate monetary incentives (e.g., remuneration) due 

to productive work and investment in the time they decide to wait for actions on climate 

change. Thus, due to lack of incentives in the above study in wait-and-see option, the 

early or late costs were likely perceived as costing equally to people.  

In order to address the above issue of a lack of incentive in the time people wait, 

in this thesis‘ chapter 8, Dutt and Gonzalez (2011e) report a separate study. The new 

study investigated how a written description or an actual experience of cost, timing, and 

probability of future climate consequences affected people‘s risky wait-and-see behavior 

on climate change, where now a wait-and-see choice produced a monetary incentive to 

participants depending upon the time they waited before the cost occurred. In a laboratory 

experiment, climate consequences as carbon-taxes were presented to participants in one 
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of two forms: a written description, where the cost, timing, and probability were 

explicitly provided; or experience, where the cost, timing, and probability were sampled 

through unlabeled buttons and then a final choice was made. Eight problems, each with 

an act-now (safe) option and a wait-and-see (risky) option, were presented in description 

and experience such that the probability of consequences on the wait-and-see option was 

low or high, the timing was early or late, and the cost was small or large. Results 

indicated that while in both experience and description, the proportion of wait-and-see 

choices was greater when the probability was low rather than high, the difference 

between low and high probability was amplified in experience and attenuated in 

description (replicating the findings by Dutt and Gonzalez, in press). Also, the proportion 

of wait-and-see choices was greater in description when the timing was late rather than 

early, and when the cost was small rather than large; however, the effects of timing and 

cost were absent in experience. In this study, unlike the study by Dutt and Gonzalez (in 

press), the timing of occurrences of consequences had an effect on people‘s wait-and-see 

choices in description and was as hypothesized: Greater proportion of wait-and-see 

choices when consequences occur later rather than earlier. Thus, providing incentives to 

people, during the time they waited for climate consequences to occur, seem to cause the 

timing to influence people‘s wait-and-see choices in description; however, not in 

experience.     

In summary, this thesis theoretically motivates certain cognitive factors and 

manipulations that affect and influence people‘s wait-and-see behavior in a series of 

laboratory experiments. In the next section, these cognitive factors are brought together 

into a framework to explain people‘s wait-and-see behavior. 
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1.3 Significance  
 

Although prior research has expounded economic reasons for people‘s wait-and-

see behavior on climate change, currently very little is known about how certain 

cognitive factors might influence this behavior. Considering the global nature of the 

climate problem and the associated large negative consequences in the future (IPCC, 

2007a; 2007b; Sterman, 2008), the research described in this thesis contributes to certain 

cognitive factors that are likely to influence people‘s wait-and-see behavior. This 

contribution is significant because no matter what technology or policy solutions are 

worked out for averting future climate change, these solutions will suffer from the 

problem of adoption and acceptance by the common and global populace without a 

proper understanding of how humans are likely to respond to these solutions and whether 

they are going to defer acting on these solutions (Sterman, 2008; APA, 2009). 

Figure 1-1 presents a schematic diagram of how this thesis proposes a framework 

of people‘s wait-and-see behavior by combining the role of different cognitive factors 

(described above) to influence this behavior. Furthermore, as shown in the figure, this 

thesis proposes a number of manipulations that influence people‘s wait-and-see behavior 

through their cognitive factors.  

Figure 1-1. A framework about wait-and-see behavior as a consequence of a number 

of cognitive factors. Certain manipulations indirectly affect people’s wait-and-see 

through their cognitive factors. 
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According to the research reported in this thesis, people‘s wait-and-see behavior 

on climate change is impacted by a number of cognitive factors listed in Figure 1-1. 

These factors include: people‘s linear perception of GHG accumulations in climate 

problems, their misperceptions of feedback delays present in different actions and 

consequences in these problems, and their risk and time preferences for uncertain future 

cost of consequences in these problems. Thus, according to this thesis, while designing 

technology or policy solutions for averting climate change, policymakers need to be 

careful and pay attention to the proposed cognitive factors that are likely to influence 

people‘s wait-and-see judgments and choices on these solutions.  

Furthermore, as shown in Figure 1-1, this thesis provides a set of manipulations 

that indirectly influence people‘s wait-and-see behavior on climate change that is 

mediated through cognitive factors. One of these manipulations is to provide repeated 

feedback in simulation tools and in the real world after people make judgment and 

choices. Repeated feedback enables people to understand and observe the consequences 

of their decision actions and consequently correct their future decision actions. Another 

manipulation is to use the physical representation, i.e., to exhibit climate problems using 

pictures as metaphors that enable people to improve their understanding, reduce their 

misconceptions, and improve their decision judgments in these problems.  

However, this thesis also argues that often times it might become difficult to 

change or alter people‘s reliance on cognitive factors, improve their decision making, and 

influence their wait-and-see behavior. Therefore, rather than change people‘s existing 

thinking processes, often times it might be beneficial to exploit these processes to enable 
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people to improve their decisions. As discussed above, according to the information 

presentation manipulation, presenting options that are better for Earth‘s climate as 

options that people are likely to choose due to their cognitive factors, will enable people 

to improve their decisions on climate change without any alteration in the way they 

decide on day-to-day problems.  

Furthermore, this thesis also provides a theoretical account of people‘s wait-and-

see behavior due to different forms of climate risk communication methods that are 

widely used: Some that are descriptive (newspaper and reports etc.) and some that are 

experiential (movies and simulations etc.). According to this thesis, people respond 

differently to the exact same information depending on whether this information is 

communicated using either experiential or descriptive methods of risk communication. 

Thus, this thesis provides important guidelines to policymakers on how to communicate 

information about magnitude of climate consequences, and their likelihoods and timing 

that manipulates people‘s wait-and-see behavior in different ways.       

Finally, this thesis also contributes to furthering the study of cognitive factors. 

Therefore, this thesis extends what is currently known on how human behavior is 

impacted by different cognitive factors, namely, misperceptions of feedback, 

correlational or linear thinking, risk preferences, and time preferences. For example, 

currently little is known about how certain manipulations are likely to reduce people‘s 

reliance on correlational or linear thinking. This thesis suggests the use of repeated 

feedback and physical representation as two promising manipulations for reducing 

people‘s reliance on linear thinking. Similarly, people‘s time preferences and risk 

preferences have been studied as separate topics in abstract problems which have often 
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been disconnected from real-world problems like those concerning Earth‘s climate. First, 

this thesis takes into account both people‘s time and risk preferences together and 

analyzes their combined effect on people‘s wait-and-see behavior on climate change in 

the real world. Thus, the simple gambles used in this thesis‘ chapters 7 and 8 are both 

interspaced in time and probability and the results of their interaction extends 

understanding of human behavior due to both risk and time preferences. Second, the 

extension in this thesis that investigates the combined effects of probability and timing on 

human behavior is extremely relevant to the study of climate change. That is because, the 

climate change problem includes future cost consequences that are both uncertain in time 

and probability (i.e., when in the future and with what probability climate consequences 

are likely to be observed).  

The upcoming chapters in this thesis systematically investigate the influence of 

different cognitive factors on people‘s wait-and-see behavior through a number of 

laboratory studies involving human participants.  
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1.5 Next Chapter’s Highlights  

The next chapter discusses the misperceptions of feedback hypothesis as a 

cognitive factor that influences people‘s wait-and-see behavior on climate change. An 

experiment is reported with DCCS, where different kinds of feedback delays in Earth‘s 

climate are manipulated. The effects of these manipulations are observed on people‘s 

ability to control CO2 concentration to a goal level. 
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2.1  Abstract 

The use of analogies and repeated feedback might help people learn about the 

dynamics of climate change. In this paper, we study the influence of repeated feedback 

on the control of a carbon-dioxide (CO2) concentration to a goal level in a Dynamic 

Climate Change Simulator (DCCS) using the ―bathtub‖ analogy. DCCS is a 

simplification of the complex climate system into its essential elements: CO2 

concentration (stock); man-made CO2 emission (inflow); and natural CO2 removal or 

absorption in the atmosphere (outflow). In a laboratory experiment involving DCCS, we 

manipulated feedback delays in two ways: the frequency of emission decisions and the 

rate of CO2 absorption from the atmosphere (climate dynamics). Our results revealed that 

participants' ability to control the CO2 concentration generally remained poor even in 

conditions where they were allowed to revise their emission decisions frequently (i.e., 

every two years) and where the climate dynamics were rapid (i.e., 1.6% of CO2 

concentration was removed every year). Participants‘ control of the concentration only 

improved with repeated feedback in conditions of lesser feedback delay. Moreover, the 

delay due to climate dynamics had a greater effect on their control than the delay due to 

emission decisions frequency. We provide future research directions and highlight the 

potential of using simulations like DCCS to help people learn about dynamics of Earth‘s 

climate. 

Keywords: Dynamic decision making; simulation; climate change; stocks and 

flows; bathtub metaphor, feedback delay  
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2.2  Introduction 

Growing evidence indicates that people do not understand accumulation processes 

even in simple dynamic systems that include a single stock (or accumulation), a single 

inflow rate that increases the stock, and a single outflow rate that decreases the stock 

(Booth Sweeney and Sterman 2000; Cronin and Gonzalez 2007; Cronin et al. 2009; 

Sterman and Booth Sweeney 2002). In fact, even people with strong background in 

mathematics and sciences fail to interpret a basic principle of dynamic systems: a stock 

rises (or falls) when the inflow exceeds (or is less than) the outflow (Cronin et al. 2009).  

Climate is a complex dynamic system that presents important challenges for its 

perception, interpretation, and understanding by the general public (Bostrom et al. 1994; 

Moxnes and Saysel 2009; Read et al. 1994; Sterman and Booth Sweeney 2007). It has 

been shown that people rely upon a simple but erroneous heuristic called the correlation 

heuristic, whereby they wrongly believe that system outputs are positively correlated with 

inputs. For the climate system, relying on the correlation heuristic means incorrectly 

assuming that stabilizing emissions (inputs) would rapidly stabilize GHG concentration 

(output); and emissions cuts would quickly reverse GHG concentration (Sterman and 

Booth Sweeney 2002, 2007). Consequently, people who rely on this heuristic are likely to 

defer acting on climate change (wait-and-see behavior) because they significantly 

underestimate the delay between reductions in GHG emissions and reductions in GHG 

concentration (misperceptions of feedback), and the magnitude of emissions reductions 

needed to stabilize the concentration. 

According to the misperceptions of feedback (MOF) hypothesis (Sterman 1989), 

people ignore the actions in a dynamic system that involves feedback delays. In the case 
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of the climate system, the MOF hypothesis suggests that people likely fail to account for 

the long time delays between increases in carbon-dioxide (CO2) emissions and the 

subsequent increases in CO2 concentration, and those between increases in CO2 

concentration and its effects on increasing atmospheric temperature. An increase in 

emissions does not increase concentration and atmospheric temperature immediately, but 

after a long delay where it might be too late to act to avoid significant impact. 

Moxnes and Saysel (2009) have built on Sterman and Booth Sweeney's (2007) 

study by focusing on how people regulate CO2 emissions to reach an attainable 

concentration goal in a simulated climate system. They tested participants‘ ability to 

control the concentration to 300 GtC above the pre-industrial level in a period between 

the years 2000 and 2100, where participants decided on emissions every 10 years. They 

tested participants in different conditions that mimicked the working of the climate 

system, with repeated feedback about decisions and the resulting changes in CO2 

concentration. Participants entered ten numbers which represented their emission 

decisions every ten years over a 100 year period. In all but one feedback condition, 

participants entered all ten emissions at one time and then saw the effects of their 

decisions. In the conditions without feedback, Moxnes and Saysel‘s (2009) results 

coincided with the static, onetime, paper-and-pencil climate policy task‘s results from 

Sterman and Sweeney (2007): Participants showed a general tendency to overshoot the 

goal level and to rely on the correlation heuristic in their emission decisions. In the 

feedback condition, however, Moxnes and Saysel (2009) gave participants the ability to 

make repeated emission decisions every 10 years and to observe the effects of these 

decisions. Within a 10 year period, the emissions remained constant at values which were 
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set at the start of the period. Results show that providing repeated feedback helped 

participants change their strategy over time, and may have helped them to reduce their 

reliance on the correlation heuristic and misperceptions of feedback. 

In this paper, we build on prior studies by utilizing an interactive and dynamic 

stock-management simulation (Gonzalez and Dutt 2011). This task, called the Dynamic 

Climate Change Simulation (DCCS),
5
 is used to investigate people's ability to control 

CO2 concentration to a goal level under different kinds of feedback delays for inputs 

(CO2 emissions) and outputs (CO2 removal or CO2 absorptions). Our main objective is to 

investigate the reasons for poor control over dynamic systems, particularly in the context 

of climate change, and to discover possibilities in which these problems can be 

overcome. 

The DCCS utilizes the graphical "bathtub metaphor" proposed by Sterman and 

Booth Sweeney (2007) and expands upon the feedback manipulation presented by 

Moxnes and Saysel (2009). The bathtub metaphor is a common analogy used to explain 

the behavior of dynamic systems (Sterman 2000), and it has also been used to 

communicate the complex dynamics of the climate system (Kunzig 2009). DCCS is 

different from the simulation used in Moxnes and Saysel (2009) because it is an 

interactive simulation where participants make emission decisions repeatedly after a 

certain number of time periods. The emission, absorption, and concentration information 

is represented graphically on the DCCS‘s interface. According to Moxnes and Saysel's 

(2009) results, one would expect less reliance on the correlation heuristic and MOF, and 

less wait-and-see behavior given the transparency in DCCS. Furthermore, by 

                                                 
5
 The DCCS simulation can be downloaded for free under an academic license from: 

http://downloads.ddmlab.com/?action=form&package_id=2 

http://downloads.ddmlab.com/?action=form&package_id=2
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manipulating the frequency of feedback, we expect participants to improve their strategy 

in controlling CO2 concentration more often and over several time periods of interaction 

with the task (Moxnes and Saysel 2009). However, there are currently several open 

questions regarding how helpful feedback frequency and the historical information 

provided in a simulation is to learning control (Moxnes and Saysel 2009). 

In general, research is needed to develop interventions to help people learn about 

the dynamics of climate. Simulation tools like DCCS may help overcome the reliance on 

MOF and correlation heuristic by giving direct experience with the accumulation 

processes and feedback delays involved. Research is also needed to compare people's 

understanding using tools like DCCS in contrast to other forms of information 

presentation, including descriptive information such as the Intergovernmental Panel on 

Climate Change (IPCC) reports (Houghton et al. 2001), one-shot climate policy task 

(Sterman and Booth Sweeney 2007), or simulations with no feedback (Moxnes and 

Saysel 2009). In this regard, an initial evaluation of DCCS was performed to investigate 

the effects of repeated feedback on subsequent performance in Sterman and Sweeney‘s 

(2007) climate policy task (Dutt and Gonzalez 2010). In that study, we provided 

participants with experiences of future CO2 concentration in DCCS. One group was first 

asked to control the concentration in DCCS to a predefined goal trajectory over 100 time 

periods. This group was later given Sterman and Sweeney‘s (2007) climate policy task, 

which asked them to sketch the emission and absorption corresponding to a CO2 

concentration trajectory over 100 time periods. A separate group of participants did not 

experience DCCS and were immediately given the climate policy task. Results showed 

that participants with experiences in DCCS were able to reduce their reliance on 
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correlation heuristic and MOF in their sketches compared to participants without DCCS 

experiences. Thus, the repeated feedback in DCCS enabled participants to answer 

subsequent climate policy task more accurately.  

In this paper, we study the effects of two delay types in repeated feedback that are 

present in emission and absorption on participants' ability to control the concentration in 

DCCS. One type of feedback delay is the frequency of emission decisions. Moxnes and 

Saysel (2009) kept this delay fixed at 10 emission decisions in increments of 10 years 

each, while we vary the frequency at two levels: high, every 2 years; and low, every 4 

years. The second type of feedback delay manipulated is the climate dynamics: variations 

in the rate of natural CO2 absorption in DCCS. Moxnes and Saysel (2009) also discussed 

how current uncertainty in our understanding of absorption processes might influence our 

ability to control the concentration. In this paper, we test this idea by manipulating the 

climate dynamics in DCCS at two levels: slow, 1.2% of CO2 concentration per year; and 

rapid, 1.6% of CO2 concentration per year).  

These two feedback delays in CO2 emission (inflow) and CO2 absorption 

(outflow) are of two very different kinds. Frequency delay of emission decisions is 

similar to production delay (Diehl and Sterman 1995), but it is feed-forward for climate 

(i.e., people need to anticipate future emissions that affect CO2 concentration). Thus, 

what is set as emissions policies now is held constant in DCCS for a certain number of 

time periods (years) in the future. On the other hand, feedback delay in the climate 

dynamics determines the speed with which CO2 is absorbed from the atmosphere in each 

time period. This feedback delay is outside of the participants‘ direct control, and it is an 

inherent part of the climate system simulated in DCCS.  
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In this paper, it is hypothesized that:  

H1: In DCCS, slower climate dynamics and less frequent emission decisions 

would result in poorer human control of the CO2 concentration to a goal level, compared 

to faster dynamics and more frequent decisions.  

This hypothesis is supported by prior evidence of how the MOF hypothesis and 

feedback delays generally hinder human control in dynamic tasks (Brehmer 1989; Diehl 

and Sterman 1995; Dörner 1980; Paich and Sterman 1993; Sterman 1989). In addition, 

both the climate dynamics and frequency of emission decisions have been identified as 

particularly hard to understand by the general public (Cramer et al. 2001; Joos et al. 

2001; Matear and Hirst 1999; Moxnes 2004; Moxnes and Saysel 2009; Sarmiento and 

Quéré 1996; Sterman and Booth Sweeney 2007), though it is hard to determine 

beforehand which of these two delays would be more problematic in DCCS. 

In what follows, we first motivate the development of DCCS and its capabilities. 

Then, details of an experiment where the two feedback delays were manipulated are 

provided. Finally, we provide experimental results, and discuss their implications for 

improving understanding and future research. 

2.3  A Simplified Model of the Earth’s Climate 

Figure 2-1 provides the system-dynamics representation of a simple climate 

model used in DCCS (for Vensim® PLE model equations refer to the supplementary 

material). The CO2 Concentration represents the accumulation in the atmosphere which 

increases indirectly from an inflow of man-made CO2 emissions called Total Emissions 

(made of two kinds of emissions: fossil-fuel and deforestation). The outflow of 

Absorptions causes a decrease in CO2 Concentration due to CO2 absorbed by terrestrial 



 

 

34 

 

and oceanic ecosystems. As long as Total Emissions exceed Absorptions, CO2 

Concentration continues to increase. Only when Total Emissions equal Absorptions will 

CO2 Concentration stabilize at a particular level. The arrow from CO2 Concentration into 

Absorptions illustrates that the Absorptions are a function of CO2 Concentration at all 

times and are assumed to be directly proportional to CO2 Concentration. 

 

Figure 2-1. The simple climate model. The CO2 Concentration represents the stock 

or accumulation in the atmosphere. The CO2 concentration increases indirectly by 

man-made (or anthropogenic) Total Emissions (i.e., inflow). The Rate of CO2 

Transfer is a constant multiplier into CO2 Concentration that gives rise to 

Absorptions after the Preindustrial CO2 (the 1970 baseline CO2 concentration) has 

been subtracted from the CO2 Concentration. 

 

This model representation is very similar to the example of filling and draining a 

bathtub (the bathtub metaphor) (Sterman 2000). The Rate of CO2 Transfer in the model 

is a constant multiplier in CO2 Concentration that gives rise to Absorptions after the 

Preindustrial CO2 (the 1970 baseline CO2 concentration) has been subtracted from CO2 

Concentration (the Preindustrial CO2 concentration is assumed to be due to natural CO2 

emissions). The use of a baseline concentration and year enables us to determine the 

change in Absorptions values.  

The model can be represented mathematically as: 

d(CO2 Concentration)/dt = CO2 Emissions – Absorptions  (1) 



 

 

35 

 

Where Absorptions are defined as: 

Absorptions = Rate of CO2 transfer * (CO2 Concentration – Preindustrial CO2)
6
(2) 

This simple climate model was calibrated between years 2000 and 2100 with 

projections given by two different and extreme emission scenarios from the 2001 IPCC 

report (Houghton et al. 2001; Nakicenovic et al. 2000). A popular carbon-dioxide 

dynamics model, called the Integrated Science Assessment Model (ISAM), was used to 

predict CO2 Concentration for the two emission scenarios: an "optimistic" and a 

"pessimistic" scenario (Jain et al. 1994). The scenarios are storylines about potential 

courses of future emissions. For details on the ISAM model, scenarios, and our 

calibration exercise, please refer to the supplementary material. 

After calibrating our simple climate model with the ISAM model, we found that 

the Rate of CO2 Transfer was 0.016 of the CO2 concentration per year in the optimistic 

scenario and 0.012 of the CO2 concentration per year in the pessimistic scenario. The 

calibration of our model‘s predictions for CO2 concentration with the ISAM model‘s 

predictions is shown in Figure 2-2. The top and bottom panels show the calibration in the 

optimistic and pessimistic scenarios, respectively. For the optimistic scenario, R
2 

= .97, 

RMSD = .50 GtC for a Rate of CO2 Transfer = 1.6% of CO2 concentration. For the 

pessimistic scenario, R
2 
= .99, RMSD = .50 GtC for a Rate of CO2 Transfer = 1.2% of 

CO2 concentration. Therefore, our model closely replicates results from a more 

                                                 
6
 The units of CO2 Concentration are GtC (Giga or 10

9 
tons of carbon) and represent the CO2 concentration 

in the atmosphere above its preindustrial level. The units of Total Emissions and Absorptions are GtC per 

year (Giga tons of carbon per year). The Rate of CO2 Transfer is the amount of CO2 absorbed in a single 

year with units of percentage (%) per year. The inverse of the Rate of CO2 Transfer yields the average 

residence time of CO2 in the atmosphere. As a cautious reader would have observed, the Rate of CO2 

Transfer is assumed to be a constant for the model. 



 

 

36 

 

mechanistic ISAM model and represents realistic predictions of future CO2 concentration 

based upon those two Rates of CO2 Transfer. 

 

 

Figure 2-2. Top panel: The simple climate model calibrated to ISAM model’s 

predictions in the optimistic scenario, R
2
=.97, RMSD = .50, Rate of CO2 Transfer = 

0.016.  Bottom panel: The simple climate model calibrated to ISAM model’s 

predictions in the pessimistic scenario, R
2
=.99, RMSD = .50, Rate of CO2 Transfer = 

0.012. In both figures, error bars show 90% confidence interval around the average 

estimate. 
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Those two Rates of CO2 Transfer were used to manipulate the feedback delay due 

to climate dynamics. Later, we used this model as the scientific basis to design DCCS. 

2.4  Dynamic Climate Change Simulator (DCCS) 

DCCS was built on the simple climate model described above, and was inspired 

by a generic dynamic stock and flows task (Gonzalez and Dutt 2011) and ideas from an 

earlier study by Moxnes and Saysel (2009). The interface, shown in Figure 2-3, presents 

a single stock, CO2 concentration, as an orange-colored liquid in a tank which 

metaphorically represents Earth‘s atmosphere (Figure 2-3-1). The participants' aim is to 

maintain the CO2 concentration within an acceptable range around an attainable goal 

level of 938 GtC (= 450 ppmv). The level is shown with a green horizontal line labeled 

Goal. Participants are asked to keep the concentration within +/- 15 GtC of the goal level 

(Goal upper bound (GtC) and Goal lower bound (GtC) define the upper and lower 

bounds of this range). The current time period‘s CO2 Concentration is presented on the y-

axis, and it is also displayed as a label above the tank. 

In the 1992 Dynamic Integrated Climate Economy model (or DICE-92; Nordhaus 

1992) and in the real world, there are two major man-made sources of CO2 emissions: 

from deforestation and land use, and from burning fossil-fuels, especially in 

transportation, power generation, and industry. In DCCS, participants decide on both 

emission types (Figure 2-3-4). These two emissions are summed, and their addition 

represents the Total Emissions represented on the interface by a pipe connecting the top-

left of the tank (Figure 2-3-2). Based upon the IPCC report (Houghton et al. 2001), the 

starting proportions of fossil-fuel emissions in Total Emissions is 80% and starting 

deforestation emissions constitute only 20%. Below the Year range, information on the 
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last time period's Fossil Fuel Emissions (GtC/Year), Deforestation Emissions (GtC/Year), 

and Total Emissions (GtC/Year) is displayed. 

Absorptions, represented by a pipe on the bottom right of the tank (Figure 2-3-3), 

are proportional to CO2 concentration and decrease the concentration according to our 

simple climate model. The absorption equation and its values are also shown on the 

interface (see Figure 2-3). 

 

Figure 2-3. Dynamic Climate Change Simulator (DCCS) task (see description 

in text). 

 

Participants set emissions in the boxes respectively labeled Fossil fuel emissions 

(GtC/year) and Deforestation emissions (GtC/year), and then clicked the Make Emission 

Decision button. This causes DCCS to implement these emissions as Total Emissions and 

to provide feedback on the CO2 concentration resulting from Total Emissions and 

Absorptions.  
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To avoid extreme exploration in participants‘ emission decisions, the fossil-fuel 

and deforestation emissions were restricted to the values between the From and To ranges 

(Figure 2-3-5). These ranges provide realistic bounds on the possible increases and 

decreases in emissions, and reflect realistic emission policies in the real world. The From 

value ensures that emissions reductions do not underestimate world economic growth and 

energy requirements. At the same time, the To value allows for economic growth and a 

more fossil-fuel intensive economy. The From value does not allow participants to cut 

their yearly emissions immediately, while the To value allows participants to increase 

their yearly emissions by only certain amounts. The values in these ranges are dynamic 

and are calculated after each emission decision is executed. The From and To range for 

fossil-fuel emissions was set at -14% to +22% of the value of its current emissions. For 

deforestation emissions, the From and To range was set at -51% to +55% of its current 

emissions. The exact values were derived after analyzing the maximum and minimum 

values of current and future emissions across different emission scenarios (Jain et al. 

1994). To see how these ranges were determined, please refer to the supplementary 

material of the paper. 

There are three graphical displays provided at the bottom of DCCS‘s interface. 

The display on the left shows the current and past CO2 concentrations across several time 

periods up to the current time point in the simulation (the simulation year is shown in the 

top-left corner of the interface). Displays in the middle and on the right show the current 

and past total CO2 emissions and CO2 absorptions, respectively. 

In DCCS, each time a participant is unable to keep the concentration within the 

goal range, she incurs a cost penalty based upon the IPCC report (Houghton et al. 2001). 
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The penalty (in $) represents damages due to climate change in the time participants take 

to control the CO2 concentration to the goal. It is assumed to be $100 million per GtC 

times the difference between the goal and the current CO2 concentration (in GtC). 

Participants do not incur this penalty if they maintain the concentration within the 

permissible range around the goal. Current and accumulated penalties are shown as the 

Current Costs and Total Costs. 

After participants enter their emissions values and click Make Emission Decision, 

DCCS automatically moves forward by a number of simulated years. During each of the 

transit years until DCCS stops again, Total Emissions are maintained at the same constant 

values initially entered. This procedure is similar to establishing an emission policy that 

is kept constant for a number of planned years. After that number of years, participants 

can again decide on new values for emissions based upon the current and past CO2 

concentrations. This repeated decision-feedback process carries on until the final year is 

reached. 

2.5  Experiment 

When emission decisions are made less frequently, there is a larger gap between 

two consecutive decisions. Due to the MOF hypothesis and feedback delay in emission 

decisions, poorer performance in DCCS is expected when decisions are less frequent 

compared to when they are more frequent. 

Different climate dynamics were induced by taking two Rates of CO2 Transfer 

values, which result in different CO2 absorptions in DCCS (Eq. 2). We used a 1.6% per 

year rate (optimistic scenario, rapid dynamics) and a 1.2% per year rate (pessimistic 

scenario, slow dynamics). When climate dynamics are slow, the feedback delay in DCCS 



 

 

41 

 

increases and poorer performance is expected compared to a situation where the climate 

dynamics are rapid. 

Although any kind of feedback delay is expected to produce sub-optimal control 

over the CO2 concentration, this experiment helps us determine which of these two 

feedback delays produces a more detrimental effect and how they interact to determine 

how people learn about climate dynamics under different dynamic conditions. These 

feedback delays are important representations of the actual delays in man-made emission 

decisions and in the real world climate system where the latter is beyond the direct 

human control. For example, climate meetings and negotiations (i.e., the frequency of 

emission decisions) have become nearly annual events since 1996.
7
 Also, it is expected 

that oceans (Matear and Hirst 1999; Sarmiento and Quéré 1996) and plants would reduce 

their ability to absorb CO2 due to the increases in CO2 concentration (Cramer et al. 2001; 

Joos et al. 2001). Therefore, it is important to consider the variations in climate dynamics 

and its effects on human learning. 

As mentioned, the climate dynamics combined with the frequency of emission 

decisions is expected to hamper human learning and result in increased difficulties in the 

control of CO2 concentration in DCCS. Specifically, a situation with slower climate 

dynamics (i.e., 1.2% rate of CO2 transfer) combined with less frequent emission decisions 

(i.e., every 4 years) is expected to result in the poorest performance. Due to these long 

feedback delays involved, participants who are unable to foresee the long-term effects of 

their decisions are likely to show overshooting and undershooting in their attempts to 

reach the goal level. It is also likely that only a smaller proportion of participants are able 

                                                 
7
 See a list of previous Congress of Parties (COP) meetings at: 

http://unfccc.int/meetings/archive/items/2749.php 

http://unfccc.int/meetings/archive/items/2749.php
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to reach and stabilize the CO2 concentration within the goal range, and that they would 

need more time periods to do so. This oscillatory (sinusoidal) behavior in CO2 

concentration trajectory over time is similar to that observed in other complex dynamic 

control systems (Forrester 1961; Sterman 1989). In contrast, higher frequency of 

emission decisions (i.e., every 2 years) combined with rapid climate dynamics (i.e., 1.6% 

rate of CO2 transfer) is expected to result in the best control of the concentration in 

DCCS. 

2.6  Methods 
 

2.6.1 Experimental Design 

Participants were randomly assigned to one of four between-subjects conditions: 

rapid-high, where the rate of CO2 transfer is 1.6% per year with emission decisions made 

every 2 simulated years; rapid-low, where the rate of CO2 transfer is 1.6% per year with 

emission decisions made every 4 simulated years; slow-high, where the rate of CO2 

transfer is 1.2% per year with emission decisions made every 2 years; and slow-low, 

where the rate of transfer is 1.2% per year with CO2 emission decisions made every 4 

years.   

Participants‘ target under all four conditions was to maintain the CO2 

concentration within a +/- 15 GtC range around a 938 GtC (~450 ppmv) goal value. In 

order to equalize the number of decisions made in all four conditions to 50 decisions 

each, the rapid dynamics condition ran for 100 simulated years and the slow dynamics 

condition for 200 years. The DCCS started in the year 2000 where the initial CO2 

concentration was fixed at 769 GtC, the real-world value of CO2 concentration that year 
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(Houghton et al. 2001). Similarly, the initial deforestation emissions were fixed at 1.3 

GtC/year and the initial fossil-fuel emissions at 6.88 GtC/year (Houghton et al. 2001).  

The value of the CO2 concentration goal (= 938 GtC) was deliberately set above 

2000's CO2 concentration (= 769 GtC ~ 370 ppmv). That is because attainable goals in 

the real-world are set higher than the status-quo concentration with an expectation that 

emission reductions will be immediately initiated to attain these goals. In addition, the 

goal used in our experiment corresponds to the IPCC‘s ―best-case‖ stabilization scenario 

(Houghton et al. 2001, pg. 76). Goal values that are higher than 2000's actual 

concentration were also used by Moxnes and Saysel (2009). Setting the goal higher than 

the status-quo concentration is also necessary to make the goal realistically achievable 

and to account for the practical inability to drastically reduce emissions.  A participant 

may try to increase emissions initially. Again, this increase mimics the pattern of real-

world emissions, which are accelerating (see CSIRO Australia, December 8, 2006 for 

more details). The main implication of achieving the goal in our experiment is to attain 

control over the CO2 concentration to levels that are considered safe for Earth‘s climate. 

Thus, participants who manage to do so do not incur any costly penalties. The more time 

participants take to reach and maintain the concentration within the goal range, the more 

it will cost them.  

Across all conditions, the CO2 concentration will stabilize at the goal when total 

emissions equal CO2 absorptions. This means that when climate dynamics are slow, the 

optimal value of total emissions should equal (938 – 677) * 0.012 = 3.13 GtC per year. 

Similarly, when climate dynamics are rapid, the optimal value of total emissions should 

equal (938 – 677) * 0.016 = 4.18 GtC per year (Eq. 2). 
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The optimal combination of emission values was calculated to reach the goal in 

the minimum number of time periods for each condition. These values are irrespective of 

the frequency of emission decisions. Therefore, if a participant is able to decrease total 

emissions from the initial value of 8.18 GtC per year to the corresponding optimal values, 

then that participant would be able to optimally hit the goal and stabilize the 

concentration at the goal. 

We use the absolute value of the discrepancy as the main dependent variable 

(absolute discrepancy measures the deviation from a goal and equals the absolute value 

of the difference between the goal and CO2 concentration). Also, we used fossil-fuel, 

deforestation, and total emissions as other dependent variables to investigate participants' 

decision-making strategies in a regression model.  

2.6.2 Participants 

Fifty-three graduate and undergraduate students from diverse fields of study
 

participated in this experiment, 26 were females. Ages ranged from 18 years to 54 years 

(Mean= 26 years, SD= 8 years). In self-reports, 64% of participants indicated having 

heard of climate change through television, websites, or movies; 25% reported having 

read something about climate change through newspapers or magazines; and the 

remaining 11% reported having knowledge on the subject through some other means. 

Also, 70% of participants reported they either completed or are currently pursuing 

degrees in science, technology, engineering, and management (STEM). 

Fourteen participants were randomly assigned to the slow-low condition and 

thirteen participants were assigned to each of the slow-high, rapid-high, and rapid-low 

conditions, respectively. All participants received a base pay of $5 for a 30-minute study. 
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Participants could also earn an additional bonus of no more than $3, which was based on 

their performance in DCCS. If a participant deviated outside the goal range in any given 

time period, then a cost penalty was incurred that was calculated as the product of $100 

million and the absolute discrepancy in that time period. Participants incurring more than 

$400 billion in accumulated costs were paid a bonus of $0. Participants incurring less 

than or equal to $15 billion in accumulated costs were paid a bonus of $3. All other 

accumulated costs between $15 billion and $400 billion were linearly transformed to 

actual dollar payments. Four hundred billion dollars is four times the accumulated cost 

incurred if one entered the optimal values for total emissions for the slow climate 

dynamics. Therefore, the upper limit on the penalty was not very stringent and still 

enabled them to explore and learn from their decisions and repeated feedback. Similarly, 

a $15 billion lower bound was kept to ensure that the initial discrepancy between the 

concentration and the goal range's lower bound in the starting year did not penalize 

participants. 

2.6.3 Procedure 

Participants were given instructions before starting the DCCS task. The 

instructional text given in the slow-low condition is provided in the supplementary 

material. After participants read the instructions, they were shown a video of what would 

happen in DCCS if the status-quo total emissions (=8.18 GtC) were maintained for the 

next 50 years. Climate dynamics in this video were set at their manipulated value of 1.2% 

or 1.6% of the CO2 concentration per year depending upon the condition. The main 

intention was to motivate participants and to make them understand what would happen 

if they maintained the status quo emissions for the next 50 years. Starting in the year 
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2000, the video's CO2 concentration crossed the 938 GtC goal value and increased to 

more than 1000 GtC by the year 2050, which is more than a 5% increase from 2000's 

value. After watching the video, participants were asked to imagine the severe 

consequences this increase would have on the world's climate. Participants only watched 

the video and did not interact with DCCS at this point. In addition, 2000's fossil-fuel and 

deforestation emissions values were used throughout the demonstration and the same 

video was shown to all participants in all conditions. Showing the video could possibly 

anchor and bias participants‘ judgments. But this bias does not constitute a problem in the 

experiment because believing that CO2 emissions need to change or fall does not 

necessarily help people understand when and by how much these emissions need to be 

reduced. 

After the video, participants were reminded of the requirements in DCCS. They 

were then asked to play DCCS for 50 decision points over a course of 100 or 200 years 

depending upon the condition.  

2.7  Results 

 

2.7.1 General Performance: Discrepancy from Goal 

Figure 2-4 shows the average absolute discrepancy in each condition (the absolute 

discrepancy is averaged over all participants and decision points in a condition). 

Participants were clearly not performing optimally. The average absolute discrepancy is 

greater than the optimal goal range (the black line showing ―Optimal‖ is the upper bound 

at 15 GtC of the goal range) in all conditions. The distribution of discrepancies in all four 

conditions was non-normal. Normality of the dependent variable in our data was tested 
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for on the 1st, 25th, and 50th decision points in all four conditions.
8
 Levene‘s test for 

homogeneity of variances for the dependent variable revealed that the variance in the data 

were non-homogenous at those points, F (3, 49) = 2.668, p < .05; F (3, 49) = 7.561, p < 

.05 and F (3, 49) = 10.136, p < .05, respectively. 

A nonparametric Kruskal-Wallis test reported that the effect of different 

conditions on the absolute value of the discrepancy was significant (H(3) = 12.120, p < 

.05). In fact, the average absolute discrepancy was greater when the emission decisions 

frequency was low (Median = 61.77 GtC) compared to when it was high (Median = 

45.57 GtC), U = 267.00, Z = -3.00, p < .01, r = -.21. In addition, the average absolute 

discrepancy was greater when climate dynamics were slow (Median = 61.67 GtC) 

compared to when they were rapid (Median = 37.42 GtC), U = 182.00, Z = -3.00, p < .01, 

r = -.41. Thus, the hypothesis is supported: participants‘ control of the CO2 concentration 

is poorer when the climate dynamics were slow and the emission decisions were made 

less frequently compared to when the climate dynamics were rapid and the emission 

decisions were made more frequently. 

                                                 
8
 We tested for normality of the dependent variable on the 1

st
, 25

th
, and 50

th
 decision points in all four 

conditions. For the 1
st
 decision point, the data was normal in the rapid-high and slow-high conditions, 

D(13) = .913, ns and D(13) = .930, ns, respectively; however, it was non-normal for the slow-low and 

rapid-low conditions, D(14) = .776, p<.05 and D(13) = .862, p<.05, respectively. For the 25
th

 decision 

point, the data was normal for the rapid-high and slow-high conditions, D(13) = .887, ns and D(13) = .924, 

ns, respectively; however, it was non-normal for the slow-low and rapid-low conditions, D(14) = .606, 

p<.05 and D(13) = .819, p<.05, respectively. Lastly, for the 50
th

 decision point, the data was non-normal in 

all conditions, i.e., rapid-high (D(13) = .655, p<.05), slow-high (D(13) = .650, p<.05), slow-low (D(14) = 

.819, p<.05), and rapid-low (D(13) = .627, p<.05), respectively. 
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Figure 2-4. Average Absolute Discrepancy (GtC) in the four conditions (this 

discrepancy is averaged over all participants and decisions points in a condition). 

Participants have more difficulty achieving control of CO2 concentration when 

climate dynamics are slow than rapid and when the frequency of emission decisions 

is low than high. Error bars show 90% confidence interval around the average 

estimate. The line labeled “Optimal” shows the optimal value around the goal of 15 

GtC (if participants kept their Average Absolute Discrepancy within the goal range 

then they should be below the optimal). Absolute Discrepancy was more than the 

“Optimal” value in all conditions. Readers wanting to convert the result to ppmv 

can use a 0.47 ppmv to 1 GtC conversion ratio. 

 

Post-hoc pair-wise comparisons for the average absolute discrepancy revealed the 

following: slow–low condition (Median = 79.40 GtC) > rapid-high condition (Median = 

40.34 GtC), U = 26.00, Z = -3.154, p < .01, r = -.43; slow–high (Median = 52.78 GtC) 

was no different from rapid-low (Median = 32.74 GtC), U = 64.00, Z = -1.051, ns, r = -

.14; rapid–high (Median = 40.34 GtC) was no different from rapid-low (Median = 32.74 

GtC), U = 83.00, Z = -0.077, ns, r = -.01; slow–low (Median = 79.40 GtC) > slow-high 

(Median = 52.78 GtC), U = 53.00, Z = -3.000, p < .01, r = -.25; slow–low (Median = 

79.40 GtC) > rapid-low (Median = 32.74 GtC), U = 37.00, Z = -2.620, p < .01, r = -.36; 
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and rapid–high (Median = 40.34 GtC) was no different from slow-high (Median = 52.78 

GtC), U = 55.00, Z = -1.513, ns, r = -.21. 

2.7.2 Learning Effects 

Figure 2-5 shows the average absolute discrepancy in each of the four conditions 

over 50 decision points (each point within each condition is averaged over all participants 

in that condition). As expected, the discrepancy in the slow-low condition shows a 

sinusoid oscillation above the optimal value across all 50 decision points. In addition, 

according to the confidence intervals, the slow-low condition has the greatest variability 

in human behavior. 

 

Figure 2-5. Average Absolute Discrepancy in CO2 concentration in the slow-rapid 

and low-high conditions over 50 decision points (this discrepancy is averaged over 

all participants in a condition for every decision point). Error bars show 90% 

confidence interval around the average estimate. Readers wanting to convert the 

result to ppmv can use a 0.47 ppmv to 1 GtC conversion ratio. 
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In each of the four conditions, the average absolute discrepancy changed 

significantly over 50 decision points according to a nonparametric Friedman‘s ANOVA 

test (χ
2
(49) = 371.02, p < .001; χ

2
(49) = 230.51, p < .001; χ

2
(49) = 296.17, p < .001; and 

χ
2
(49) = 97.40, p < .001 for the rapid-high, rapid-low, slow-high, and slow-low 

conditions, respectively). There was no difference in the average absolute discrepancy 

between the 1st decision point (Median = 163.27 GtC) and the 50th decision point 

(Median = 59.32 GtC) in the slow-low condition, T = 23, p > .05, r = -.35. In contrast, 

this difference was significant in the other three conditions. The average absolute 

discrepancy in the rapid-high, slow-high, and rapid-low conditions was significantly 

greater for the 1st decision point (Median = 161.57 GtC; Median = 163.04 GtC; and 

Median = 162.80 GtC respectively) compared to the 50th decision point (Median = 5.66 

GtC; Median = 8.24 GtC; and Median = 11.97 GtC), with, T = 0, p < .001, r = -.62; T = 

1, p < .001, r = -.61 and T = 0, p < .001, r = -.62, respectively. These results suggest that 

the repeated feedback in DCCS enabled participants to learn about the dynamics of the 

simulated climate system in all conditions but slow-low. In the slow-low condition, 

learning is offset by the presence of strong oscillations in discrepancy due to excessive 

feedback delays. These results also demonstrate DCCS' effectiveness in helping 

participants learn how to stabilize their CO2 concentration in three out of the four 

conditions; however, these three conditions are those that have comparatively less 

feedback delay than the slow-low condition. 
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2.7.3 Participants’ Strategies 

2.7.3.1 Reaching and stabilizing within the goal range 

The time it took participants‘ CO2 concentration to reach the goal range for the 

first time and their ability to keep it within the goal range thereafter were analyzed. The 

proportion of participants that reached the goal range for the first time was smaller when 

climate dynamics were slow (Mean = 78%) compared to when they were rapid (Mean = 

96%), U = 286.50, Z = -1.97, p < .05, r = -.27. The frequency of emission decisions had 

no effect on the proportion of participants reaching the goal. Furthermore, we classified 

participants as ―stabilizing at the goal,‖ if their CO2 concentration was maintained within 

the goal range for eight consecutive time periods after it initially came within the goal 

range. The proportion of participants stabilizing at the goal was significantly smaller 

when climate dynamics were slow (Mean = 41%) compared to when they were rapid 

(Mean = 65%), U = 286.00, Z = -1.97, p < .05, r = -.27. Again, frequency of emission 

decisions had no effect on the proportion of participants stabilizing at the goal. These 

results suggest that human control behavior is significantly driven by the climate 

dynamics and less so by the frequency of emission decisions. 

2.7.3.2 Ratio of fossil-fuel to total emissions 

To understand participants‘ choices between the two emission types, the ratio of 

fossil-fuel emissions to total emissions was analyzed. Fossil-fuel emissions constituted on 

average 96% of total emissions and deforestation emissions only the remaining 4%. 

However, these percentages did not change significantly as a function of different 

conditions. These results indicate that participants chose fossil-fuel emissions as the 
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primary means of controlling their CO2 concentration over the deforestation emissions 

overall.  

2.7.3.3 Distance of emissions from TO value 

A reason for greater discrepancy in conditions of greater feedback delay might be 

that participants maintain the fossil-fuel and deforestation emissions closer to the To 

value in the range of emissions. When emissions are closer to the To side of the range, it 

also indicates participants' attempt to increase emissions faster. An analysis of fossil-fuel 

and deforestation emissions' distances to the To value revealed that fossil-fuel emissions 

were on average only 36% away from the To value and the deforestation emissions were 

on average only 42% away. Therefore, participants generally kept emissions closer to the 

To values. Furthermore, this strategy for the two types varied with condition (fossil-fuel 

emissions: H(3) = 12.044, p < .01; deforestation emissions: H(3) = 7.800, p < .05). 

Fossil-fuel and deforestation emissions were significantly closer to the To value when 

climate dynamics were slow (Median = 28%; Median = 25%) compared to when they 

were rapid (Median = 45%; Median = 38%), U = 168.00, Z = -3.26, p < .001, r = -.45 

and U = 206.00, Z = -2.58, p < .01, r = -.35, respectively. Again, the frequency of 

emission decisions did not influence the distance to the To value. 

Detailed comparisons show that both emissions were significantly closer to the To 

value in the slow–low condition (Median = 25%, Median = 26%) compared to the rapid-

high condition (Median = 38%, Median = 48%), U = 32.00, Z = -2.692, p < .01, r = -.52 

and U = 33.00, Z = -2.641, p < .01, r = -.52, respectively. Thus, these results show that 

participants kept emissions closer to the To value of the From – To range in conditions of 

longer feedback delay.  
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2.7.4 Decision Rule: Emission Decisions 

Similar to other stock-management problems (Sterman 1989), the decision rule 

used to determine CO2 emissions can be adapted to the DCCS task: emissions are a 

function of CO2 concentration and CO2 absorptions. We developed three regression 

models to predict each of the following: the average Total Emissions (TE), the average 

Fossil-fuel Emissions (FE), and the average Deforestation Emissions (DE).  

Predictor variables were calculated as the average of the 50 decision points for 

each participant. This gave a dataset of 53 data points (one point for each participant) for 

the purpose of three multiple regression models with the following predictors: 

A: CO2 absorptions 

D: Discrepancy (Goal – Amount) 

FEfrom: Fossil-fuel emissions‘ From Value 

FEto: Fossil-fuel emissions‘ To Value 

DEfrom: Deforestation emissions‘ From Value 

DEto: Deforestation emissions‘ To Value 

RatioFossilToTotal: Ratio of fossil-fuel emissions to Total emissions 

DistanceFossilfrom: Distance of fossil-fuel emissions from the From value 

DistanceDeforestationfrom: Distance of deforestation emissions from the From value 

In addition, we kept two dummy {0, 1} variables to test for the effects of different 

conditions:  

FR: Frequency of emission decisions (FR=1 for low, i.e., every 4 years; FR=0 for high, 

i.e., every 2 years) 
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CD: Climate Dynamics (CD=1 for slow, i.e., 1.2% of CO2 concentration; CD=0 for rapid, 

i.e., 1.6% of CO2 concentration) 

e: Residual 

The following equations were used in each of the three models: 

Model 1 

FE = b0 + b1 D + b2 A + b3 FEfrom + b4 FEto + b5 RatioFossilToTotal + b6 

DistanceFossilfrom  

+ b7 CD + b8 FR + e  (3) 

Model 2 

DE = b0 + b1 D + b2 A + b3 DEfrom + b4 DEto + b5 RatioFossilToTotal   

+ b6 DistanceDeforestationfrom + b7 CD + b8 FR + e  (4) 

Model 3 

TE = b0 + b1 D + b2 A + b3 FEfrom + b4 FEto + b5 DEfrom + b6 DEto + b7 

RatioFossilToTotal   

+ b8 DistanceFossilfrom + b9 DistanceDeforestationfrom + b10 CD + b11 FR + e

 (5) 

When CD = 0 and FR = 0, the three resulting models generate predictions for the 

rapid-high condition, which is the condition with the least feedback delay and best 

participants‘ performance. Therefore, values of the standardized beta coefficients (bx) in 

these models are relative to the rapid-high condition. 

Table 2-1 provides the results of ordinary least-squares linear regression involving 

these models. As seen in Table 2-1, model 1 (p < .001) accounted for 92.7% of the 
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variance in fossil-fuel emissions. The only standardized beta coefficients that were 

significant were the From and To ranges for fossil-fuel emissions. Both of these 

standardized beta coefficients also possessed strong positive values, i.e., an increase in 

the From or To predictors caused an increase in fossil-fuel emissions while holding all 

other predictors constant. Participants did take the values of the From and To ranges into 

account while making their fossil-fuel emissions, and moreover the ranges caused 

participants to increase fossil-fuel emissions.   
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Table 2-1. Regression output of the three models. 

 
Model 1 

Fossil Emissions
α
 

Model 2 

Deforestation Emissions
α
 

Model 3 

Total Emissions
α
 

R
2
 

Adjusted R
2
 

F (N=53 participants) 

0.927 

0.916 

       81.612*** 

0.929 

0.918 

       83.724*** 

1.00 

1.00 

              15192.61*** 

Variables B SE B  B SE B  B SE B  

Constant 2.384 2.384  0.795 0.819  0.155 0.300  

Discrepancy -0.002 -0.007 -.134 -0.002 0.001 -.536 -0.001 0.000 -.060* 

Absorptions -0.273 0.555 -.217 -0.165 0.115 -.593 0.126 0.043 -.093** 

From Fossil Emissions 1.191 0.217 .999***    1.176 0.020 .929*** 

To Fossil Emissions 0.839 0.153 .999***    0.829 0.014 .929*** 

From Land Emissions    1.974 0.219 .959*** 2.267 0.093 .226*** 

To Land Emissions    0.624 0.069 .959*** 0.717 0.030 .226*** 

Ratio Fossil To Total -1.181 1.499 -.042 -0.251 0.628 -.040 0.415 0.216 .014* 

Distance Fossil From 0.725 1.090 .039    0.330 0.093 .017*** 

Distance Deforestation From    0.161 0.087 .096* 0.024 0.030 .003 

CD 0.145 0.497 .060 0.016 0.111 .302 0.131 0.038 .050*** 

FR 0.143 0.170 .060 0.006 0.024 .012 0.019 0.017 .007 
 

Note: 
α
 Dependent Variable for model 1: FE, for model 2: DE and for model 3: TE.  * p < .05, ** p < .01, *** p < .001. N =53 participants (i.e., we averaged 50 

decision points for each participant). B refers to non-standard beta coefficients. SE B is the standard error in B. β refers to standard beta coefficient (which can be 

used for magnitude comparison in the models) 
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Model 2 (p < .001) accounted for 92.9% of the variance in the deforestation emissions. 

Similar to Model 1, the standardized beta coefficients of the From and To ranges for 

deforestation emissions were significant and positive. The standardized beta coefficient of the 

distance of deforestation emissions from the From value was also significant and positive. These 

findings are consistent with the reasoning that participants who maintained their deforestation 

emissions father away from the From value, or kept them closer to the To value, were bound to 

cause significant increases in their deforestation emissions. 

Model 3 (p < .001) accounts for 100% of the variance in total emissions. Firstly, the 

standardized beta coefficients of Discrepancy and CO2 absorptions predictors were negative and 

significantly affected total emissions. As per our simple climate model, CO2 absorptions are 

proportional to the concentration and thus also proportional to the discrepancy. In addition, 

participants in DCCS need to decrease emissions from a higher value to make it equal to 

absorptions in order to control CO2 concentration (the absorptions were less than total emissions 

initially in the year 2000). Due to the same reason, the correlation between total emissions and 

CO2 absorptions should be negative if participants were able to control the concentration within 

the goal range. The decrease in total emissions on account of an increase in Discrepancy and 

absorptions predictors indicates that participants decreased their total emissions from the greater 

initial 2000 value in different conditions. Participants do learn to control the CO2 concentration 

over repeated time periods as they decrease their total emissions when their Discrepancy 

predictor increases. 

In addition, consistent with the previous two regression models, the standardized beta 

coefficients of the From and To ranges in model 3 for both emission types significantly affected 

the total emissions. The effect of the From and To ranges for fossil-fuel emissions on the total 



 

 

58 

 

emissions (beta coefficient = .929) exceeded that of the From and To ranges for deforestation 

emissions (beta coefficient = .226) when all other predictors were maintained at their constant 

values.   

Furthermore, the standardized beta coefficients for the RatioFossiltoTotal and 

DistanceFossilFrom predictors were positive and significantly affected total emissions. The effect 

of these two predictors on total emissions validates earlier findings that participants 

predominantly used fossil-fuel emissions to control the CO2 concentration. Finally, climate 

dynamics (determined by CD dummy) significantly affected the total emissions. This 

observation is also consistent with the earlier finding where the discrepancy and therefore CO2 

concentration resulting from total emissions was greater with slower climate dynamics (as shown 

in Figure 2-4). The frequency of emission decisions did not influence total emissions. 

Furthermore, the magnitude of standardized beta coefficient for emission decisions frequency 

(FR dummy) was less than the standardized beta coefficient for climate dynamics (CD dummy 

variable). The significance and magnitude of the standardized beta coefficients for the CD and 

FR dummy variables show that climate dynamics played a significantly greater role compared to 

decision frequency when comparing their individual effects on total emissions. 

2.8 Discussions and Conclusions 

Many of the complex dynamic effects found in the real world can be better understood 

with simple tasks (Cronin et al. 2009), and a demonstration of such a process for a simulated 

climate system was presented here in DCCS. The complex problem was simplified into its 

essential elements: CO2 concentration, and CO2 emissions and absorptions over time. DCCS was 

built from a simple climate model, and it was used to investigate participants‘ ability to control 

the system under different conditions of feedback delays: frequency of emission decisions and 



 

 

59 

 

climate dynamics. Results show that a change in climate dynamics from rapid to slow (when 

averaged across the frequency of emission decisions) deteriorated participants‘ control of CO2 

concentration compared to a change in frequency of emission decisions from high to low (when 

averaged across the climate dynamics). This supports many previous results on people's inability 

to understand basic dynamics and to control an accumulation in the presence of feedback delays 

(Brehmer 1989; Diehl and Sterman 1995; Dörner 1980; Gonzalez 2005; Sterman 1989). Despite 

the poor performance, participants improved their control over the CO2 concentration over many 

time periods in DCCS for three out of the four conditions. These three conditions are those 

where the feedback delay was the least.  

Emission decisions frequency results are consistent with previous findings in a simulated 

climate system (Moxnes and Saysel 2009) and in other dynamic systems (Diehl and Sterman 

1995; Paich and Sterman 1993). Participants‘ control performance deteriorates as a function of 

increasing delays in the inflow and outflow. The effects created by delays in our study are 

similar to the cause-and-effect relationships that determine the fate of the population in Dörner 

and Kimber‘s (1997) study, where participants had to increase the well-being of fictitious 

occupants in the presence of long feedback delays between their decision actions and outcomes.  

Furthermore, we find evidence of the MOF hypothesis in our results on account of the 

oscillatory behavior found in CO2 concentration for the slow-low condition. In this study, 

participants started below the goal and were asked to stabilize the concentration within the goal 

range as quickly as possible. These requirements caused participants to rapidly increase 

emissions in the initial period of performance to bring their concentrations closer to the goal as 

quickly as possible. However, participants soon realized that their CO2 emissions were too high 
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to stabilize the concentration and thus their concentration trajectories tended to overshoot the 

goal range. 

We argue that participants‘ poor control is likely due to their failure to reduce CO2 

emissions in DCCS. To be successful in this task, participants need to slowly reduce emissions, 

but instead we found their emissions to be closer to the To value of emissions range. The late 

realization that emissions are too high when participants reach the goal range produces an 

attempt to reduce emissions when it is already too late (the coefficients of absorptions and 

discrepancy in regression model 3 were negative, showing that overall participants do try to 

reduce total emissions on account of these two predictors). This late correction causes a 

"bullwhip" sinusoidal oscillation, which is well known in dynamic systems with feedback delays 

(Sterman 1989) and a sign of the MOF. One possible explanation for the greater effect of climate 

dynamics is the saliency and nature of the feedback delay in emission decisions. Fossil-fuel and 

deforestation emissions are directly controlled and manipulated by participants in all conditions 

from one decision point to the next. Repeatedly making emission decisions and observing their 

effects might force participants to notice the delay present in their direct controls. Furthermore, 

repeatedly making decisions enables participants to anticipate the future effects of emissions. 

This explanation is supported by the fact that prior research has found similar effects for repeated 

feedback and how it improves performance in a control task similar to DCCS (Dutt and 

Gonzalez 2008a, 2008b). 

Participants‘ control only improved in those conditions that offered comparatively less 

feedback delays. In future research, we plan to investigate learning over many repeated 

performances in DCCS. Prior work in dynamic decision making literature suggests that 

participants‘ initial performance in interactive management flight simulators is generally quite 
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poor, but they can improve due to repeated performances (Brehmer 1989; Diehl and Sterman 

1995; Dörner and Kimber 1997; Sterman, 1989). This finding of learning-by-doing is intuitive, 

and it is one of the strengths of management flight simulators that we could test DCCS for in the 

future. In the current experiment, participants faced the same conditions in a single performance 

and thus, may have improved solely as a function of repetition, without developing any generic 

understanding about accumulation or how to handle time delays. Following the work of Diehl 

and Sterman (1995) and Paich and Sterman (1993), we would like to vary the learning 

parameters in DCCS from one performance to the next without revealing these variations to 

participants. This manipulation is likely a better test of participants‘ understanding of the 

principles of accumulation. For example, we would like to vary key parameters such as the 

climate dynamics and then asses participants‘ knowledge of the relevant processes (i.e., the 

stock-flow structure, controlling atmospheric CO2 concentrations, the impact of feedback from 

CO2 concentrations, etc.) using a pre-test and post-test design. As part of the pre- and post-test, 

participants‘ knowledge may be tested outside the context of the simulator by using Sterman and 

Booth Sweeney‘s (2007) climate policy task.  

Management flight simulators are becoming increasingly common and may be used by 

the IPCC to supplement its forthcoming assessment reports.
9
 In the real world, people are more 

likely to be exposed to traditional descriptive text and figures that describe the projected impacts 

of different climate policies. Here, people must make judgments about when and by how much 

emissions must decline to meet any goal for either the CO2 concentration or temperature change 

(such as stabilizing at CO2 at 450 ppmv or with warming ≤ 2 °C). Because prior research shows 

that people cannot make such judgments reliably, one would like to know if the chance to 

                                                 
9
 For example: http://climateinterative.org; http://scripts.mit.edu/~jsterman/climate/master/; 

http://www.astr.ucl.ac.be/users/matthews/jcm/; and http://www.google.com/landing/cop15/     

http://climateinterative.org/
http://scripts.mit.edu/~jsterman/climate/master/
http://www.astr.ucl.ac.be/users/matthews/jcm/
http://www.google.com/landing/cop15/


 

 

62 

 

explore these dynamics through a simulator might help them improve their understanding of 

these issues in common settings. These settings might include reading media reports or other 

information about future climate change, and the policy options to control it. As mentioned 

above, Dutt and Gonzalez (2010) have found DCCS to be effective in helping people to 

understand the dynamics of CO2 concentration. A group of participants, who experienced DCCS, 

improved their performance in the succeeding Sterman and Booth Sweeney‘s (2007) climate 

policy task compared to another group of participants who performed the climate policy task 

directly. As part of future research, we would also like to know what features of simulations are 

most helpful in building people‘s understanding of climatic processes – as the examples above 

illustrate, existing simulators vary widely in their level of detail in regards to the carbon cycle, 

other greenhouse gases, radiative forcing, and other climate processes in their interface designs, 

use of graphics and video, and in many other attributes. Therefore, it might be interesting to 

evaluate what features enable the most effective learning. A future study centered on 

investigating a simulator's greatest features would make a vitally needed contribution to our 

understanding of the critical processes in risk communication for climate change and other issues 

involving complex dynamic systems.    
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2.11 Next Chapter’s Highlights 

The next chapter discusses people‘s reliance on correlational or linear thinking as a 

cognitive factor for their wait-and-see behavior. Furthermore, this chapter discusses how 

performance in DCCS influences people‘s wait-and-see behavior among those with and without 

STEM backgrounds.  

 



 

 

66 

 

Chapter 3: Correlational Thinking and Repeated Feedback 
 

Submitted to: Journal of Environmental Psychology 

Decisions from experience reduces misconceptions about climate change 

Varun Dutt and Cleotilde Gonzalez 

Carnegie Mellon University, Pittsburgh, PA, USA 

 

Author Note 

 

Varun Dutt, Department of Engineering and Public Policy and Dynamic Decision 

Making Laboratory, Department of Social and Decision Sciences, Carnegie Mellon University; 

Cleotilde Gonzalez, Dynamic Decision Making Laboratory, Department of Social and Decision 

Sciences, Carnegie Mellon University. 

This research was supported by a Defense Threat Reduction Agency‘s grant to 

Cleotilde Gonzalez and Christian Lebiere (HDTRA1-09-1-0053). The authors are thankful to 

Hau-yu Wong, Dynamic Decision Making Laboratory, Carnegie Mellon University for providing 

comments on the manuscript. 

Please address correspondence to Cleotilde Gonzalez, Dynamic Decision Making Laboratory, 

4609 Winthrop Street, Pittsburgh, PA 15213. Email: coty@cmu.edu, Phone: (412) 268-6242, 

Fax: (412) 268-6938  



 

 

67 

 

3.1 Abstract 

Research has shown widespread misconceptions in public understanding of the dynamics of 

climate change: a majority of people incorrectly infer that carbon-dioxide (CO2) concentrations 

can be controlled by stabilizing emissions at or above current rates (correlation heuristic), and 

while emissions continuously exceed absorption (violation of mass balance). Such 

misconceptions delay actions that can mitigate climate change. This paper tests a way to reduce 

these misconceptions through experience in a dynamic simulation. In a laboratory experiment, 

participants were randomly assigned to one of two conditions: description, where participants 

performed a CO2 stabilization (CS) task that provided them with a CO2 concentration trajectory 

over a 100 year period and asked them to sketch the corresponding CO2 emissions and 

absorption over the same period; and experience, where participants performed the same task in 

a dynamic climate change simulator (DCCS), followed by the CS task. In both conditions, half of 

the participants were science and technology (STEM) majors, and the other half were non-

STEM. Results revealed a significant reduction in people‘s misconceptions in the experience 

condition compared to the description condition. Furthermore, STEMs demonstrated better 

performance than non-STEMs. Policy implications highlight the potential for using experience-

based simulation tools like DCCS to improve understanding about the dynamics of climate 

change. 

 

Keywords: Decisions from description; Decisions from experience; misconceptions; 

repeated feedback; STEM; non-STEM. 
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3.2 Introduction  

Despite strong scientific consensus about the causes and risks of climate change, the 

general public exhibits a complacent attitude towards actions that benefit Earth‘s climate 

(Bostrom, Morgan, Fischhoff, & Read, 1994; Leiserowitz, 2007; Read, Bostrom, Morgan, 

Fischhoff, & Smuts, 1994; Weber, 2006). Recent surveys have shown that most Americans 

exhibit wait-and-see behavior; they infer that reductions in greenhouse gas (GHG) emissions can 

be deferred until there is greater evidence that climate change is harmful (Leiserowitz, 2007; 

Sterman & Booth Sweeney, 2002, 2007). For example, 60% of participants in a survey in the 

U.S. chose either ―until we are sure that global warming is really a problem, we should not take 

any steps that would have economic costs,‖ or ―its effects will be gradual, so we can deal with 

the problem gradually‖ (Kull, 2001). This wait-and-see behavior is also seen among people 

outside the U.S., with a large majority favoring to ―wait-and-see‖ or ―go-slow‖ in Russia, China, 

and India (Leiserowitz, 2007), and also among policymakers: ―slow the growth of greenhouse 

gas emissions (GHGs), and – as the science justifies – stop, and then reverse that growth‖ (G. W 

Bush, 2/14/02; Jones, 2002). According to Jones (2002), G. W. Bush believed that climate 

mitigation actions could be taken at a slow pace until science confirmed climate change as a real 

problem.  

Furthermore, some scientists also seem to possess a stronger wait-and-see (inaction) view 

on climate change. For example, Fred Singer, professor emeritus of environmental sciences at 

the University of Virginia and an ex-member of the U.S. National Advisory Committee on 

Oceans and Atmosphere, recently commented: ―Human activities are not influencing the global 

climate in a perceptible way. Climate will continue to change, as it always has in the past, 

warming and cooling on different time scales and for different reasons, regardless of any human 
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action‖ (Singer, 2009, p. 1). Thus, Singer argues that human activity has no influence on climate 

change whatsoever, which would result in inaction rather than a slow wait-and-see action. 

Moreover, climate initiatives like the Kyoto Protocol and Clear Skies, that have pledged to 

mitigate the global warming problem, have also expressed support for wait-and-see behavior: the 

Kyoto Protocol‘s proposed reductions in emissions fall short of the proposed targets and Clear 

Skies‘ initiative promotes even further greenhouse gas emissions growth (Sterman & Booth 

Sweeney, 2002, 2007). 

Wait-and-see behavior would work well in simple systems that have short delays between 

the detection of a problem and the implementation of corrective actions. For example, one can 

afford to wait-and-see when boiling beans until steam builds up and the cooker whistles because 

there is a short delay between the whistle and removing the cooker from the flame. Unfortunately 

for a complex system like Earth‘s climate, there are much longer delays between the decision to 

mitigate emissions and the corresponding changes in atmospheric GHG concentrations (IPCC, 

2007; Sterman, 2008; Sterman & Booth Sweeney, 2002, 2007). Prior research shows that people 

often ignore long feedback delays in complex systems (Sterman, 1989), and people who exhibit 

wait-and-see behavior might be acting under the implicit misconception of very short delays in 

Earth's climate system (Sterman, 2008; Sterman & Booth Sweeney, 2002, 2007). As there are 

long feedback delays, however, people‘s wait-and-see behavior would become problematic. 

Because even if mitigation actions are taken, atmospheric CO2 accumulation would continue to 

rise until emissions fell below the absorption rate. Average atmospheric temperature would then 

peak, and consequences such as rising sea levels and thermal expansion would continue (Wigley, 

2005; Meehl, Washington, Collins et al., 2005). Therefore, wait-and-see behavior is likely to 
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cause abrupt, persistent, and costly regime changes on Earth in the future (Alley, Marotzke, 

Nordhaus et al., 2003; Scheffer et al., 2001). 

Prior research has shown that people‘s misconceptions about the climate system are 

related to their own deficient mental models:
10

 the general public lacks training in climatology 

and has little understanding of climate processes (Bostrom et al., 1994; Kasemir, Dahinden, 

Swartling et al., 2000; Kempton, 1997; Morgan, Fischhoff, Bostrom, & Atman, 2002; Palmgren, 

Morgan, de Bruin, & Keith, 2004; Read et al., 1994). In this paper, however, we argue that 

people‘s misconceptions about the climate system are due to a more fundamental limitation of 

their mental models: a weak understanding of accumulation and mass balance. Cronin, Gonzalez, 

and Sterman (2009) have demonstrated that as the relationship between inflows and outflows 

become more complex, people tend to rely more on simple but erroneous heuristics. According 

to Cronin et al. (2009), people rely on the "correlation heuristic," whereby they wrongly infer 

that the system's accumulations are positively correlated to its inflows. 

Sterman (2008) and Sterman and Booth Sweeny (2007) have shown that people‘s wait-

and-see behavior on climate is related to their reliance on the correlation heuristic. For climate, 

relying on the correlation heuristic means that people wrongly infer that an accumulation (CO2 

concentration) follows the same path as the inflow (CO2 emissions); hence, stabilizing emissions 

would rapidly stabilize the concentration, and emissions cuts would quickly reduce the 

concentration and damages from climate change. Consequently, people who rely on the heuristic 

would demonstrate wait-and-see behavior because they would significantly underestimate the 

delay between reductions in CO2 emissions and in the CO2 concentration. They would also 

                                                 
10

 By ―mental model‖ we mean a person‘s inferences or judgments about the networks of causes and effects that 

describe how a system operates which include the system‘s boundary (i.e., factors are considered endogenous or 

exogenous) and its time horizon. Therefore, in this paper, the term ―mental model‖ refers to participants‘ inferences 

about shapes of CO2 emissions and absorption overtime. 
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underestimate the magnitude of emission reductions needed to stabilize the concentration. 

Furthermore, Sterman and Booth Sweeny (2007) have also shown that people‘s wait-and-see 

behavior is also related to the violation of mass balance, whereby people incorrectly infer that 

atmospheric CO2 concentration can be stabilized even when emissions exceeds absorption. 

Violating mass balance leads to wait-and-see behavior because people think the current state of 

the climate system, where emissions are double absorption (IPCC, 2007), would not pose a 

problem to future stabilization. 

Research has evaluated wait-and-see behavior in terms of correlation heuristic reliance 

and mass balance violation in a one-shot paper-and-pencil climate stabilization (CS) task 

(Sterman, 2008; Sterman & Booth Sweeney, 2007). In the CS task, participants are asked to 

sketch CO2 emissions and absorptions that would stabilize the CO2 concentration to an attainable 

goal by the year 2100. In this problem, people are given the concentration‘s starting value in the 

year 2000, and its historic trends and emissions between the years 1850 and 2000. Sterman and 

Booth Sweeney (2007) report that about 70% of participants (about 60% of whom had 

backgrounds in science, technology, engineering, and management (STEM), and a majority of 

the rest in economics) sketched CO2 emissions that were positively correlated with CO2 

concentration. Moreover, 74% of participants violated mass balance in their responses either by 

failing to keep emissions greater than absorption before the concentration stabilized in the year 

2100; or failing to make emissions equal to absorption when the concentration reached 2100.  

Sterman (2008) and Sterman and Booth Sweeney (2007) made a qualitative claim that 

using simulation-based tools can likely help people correct their misconceptions about Earth‘s 

climate. Other researchers also suggest that experiencing the adverse consequences of climate 

change is likely to improve people's understandings of the climate system (Weber, 2006). 
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However, the efficiency of simulation tools in reducing people‘s reliance on the correlation 

heuristic and the violation of mass balance has only been demonstrated in some initial attempts 

(Dutt & Gonzalez, 2009, 2011; Moxnes & Saysel, 2009). Moxnes and Saysel (2009) used a 

simulated computer task where participants were required to stabilize the CO2 concentration by 

making emissions decisions every 10 simulated years starting in the year 2010. After every 10 

years elapsed, participants could see the changes in the concentration as a result of their 

decisions. Moxnes and Saysel (2009) demonstrated that better emission decisions are possible 

through providing repeated feedback about decision actions and outcomes to participants. 

Feedback empowers participants to try new hypotheses and also to understand the cause-and-

effect relationships between their decisions and outcomes. 

Building on these results, we developed a very simplified but interactive computer-based 

simulation of the climate system called the Dynamic Climate Change Simulator (DCCS), and 

used it to collect data on how participants control the atmospheric CO2 accumulation to a goal 

under different conditions of feedback delays (Dutt & Gonzalez, 2009, 2011). The two types of 

manipulated feedback delays employed in the DCCS were the natural delays in CO2 absorption, 

and the frequency with which multiannual emission policies are revised for a simulated climate 

system. We found that participants improved their control of the CO2 concentration through 

experiences gained in DCCS, where these experiences might have enabled participants to revise 

their existing mental models. But again, the efficiency of simulation tools has not been fully 

demonstrated. 

3.3 Current Research 

 
Given people’s widespread misconceptions about the climate system, research is 

critically needed to shows how their misperceptions (relying on the correlation heuristic and 
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violating mass balance) can be overcome through experience in simulation tools. The main 

objective of this paper is to evaluate whether or not experiencing repeated outcome of decisions 

(i.e., feedback) in DCCS reduces participant’s misconceptions about our climate. 

DCCS provides repeated feedback on the changes in the CO2 concentration each year as a 

result of CO2 emissions and absorption policies set by participants, allowing participants to 

observe results of their decisions as they try to control the concentration to a goal. We compare 

participants' responses to the CS task after previously making repeated decisions in DCCS to 

other participants' responses in the CS task where they were not given the DCCS experience. We 

expect that repeated feedback in DCCS will affect the responses made in the CS task. The null 

hypothesis is:  

H1: There is no difference in the misconceptions (relying on the correlation heuristic and 

violating mass balance) for participants who receive repeated feedback and those who do not 

receive repeated feedback. 

Research has observed misconceptions in the CS task among participants both with and 

without a scientific (STEM) background (Sterman & Booth Sweeney, 2007). Sterman and Booth 

Sweeney (2007) have suggested that the technical background of STEM participants does not 

reduce their reliance on the correlation heuristic or their violation of mass balance. But they have 

not tested STEMs’ and non-STEMs’ misconceptions (relying on correlation heuristic and 

violating mass balance) systematically; they have not tested the background or the relationship of 

background to their performance in the CS task. Considering the widespread misconceptions 

prevalent among scientists, general public, and policymakers (Nordhaus, 1994), it becomes 

important to determine the value of a STEM education in reducing misconceptions. In this 

regard, psychological research has found that novices in a problem often focus on the surface 
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(i.e., irrelevant) features of a problem, rather than on more fundamental underlying structural 

features (Chi, Feltovich, & Glaser, 1981; Gonzalez & Wong, in press). According to Schoenfeld 

(1982), this difference in focus on the surface versus the structure is affected by a person’s 

background in mathematics and sciences. A person with a STEM background possesses far 

greater experience in mathematical and scientific problem-solving compared to someone with a 

non-STEM background. The mathematical background is expected to help STEMs focus more 

on the structure of the task compared to non-STEMs, and enable STEMs nurture fewer 

misconceptions about the climate system compared to non-STEMs. The null hypothesis is: 

H2: There is no difference in misconceptions (relying on correlation heuristic and 

violating mass balance) of people from STEM backgrounds and people from non-STEM 

backgrounds. 

3.4 Methods 

To test our hypotheses, we conducted a laboratory experiment using STEM and non-

STEM participants who either performed the CS task only (description condition), or completed 

DCCS then followed by the CS task (experience condition).   

3.4.1 Participants 

One hundred and twenty participants from Carnegie Mellon University and from the 

surrounding Pittsburgh area were invited to participate through an online advertisement and were 

randomly assigned to either the description or experience condition (60 participants in each 

condition). Out of the 60 participants in each condition, 30 were from STEM backgrounds and 

30 were from non-STEM backgrounds. STEM backgrounds included majors in the fields of 

science, technology, engineering, management, economics, and medicine. Non-STEM 

backgrounds included majors in the fields of the arts, social sciences, and the humanities. Among 
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the 120 participants, 2 were pursuing Ph.D. degrees, 48 were pursuing Masters or MBA degrees, 

and 70 were pursuing undergraduate degrees. Fifty-five participants were females. The mean age 

was 23 years (S.D. = 6), and ages ranged from 18 to 55 years. All participants received a flat 

compensation of $5 for participating in the experiment. 

3.4.2 The CS task 

In the CS task used here, participants were first told that the amount of CO2 in the 

atmosphere is affected by anthropogenic CO2 emissions (emissions resulting from human 

activity) and natural processes that gradually absorb CO2 from the atmosphere (for example, CO2 

is used by plant life and dissolves in the ocean). Furthermore, participants were shown the 

historic trend of CO2 emissions and the resulting CO2 concentration over a 150 year period from 

1850 to 2000. They were also told that in the year 2000, the absorption of atmospheric CO2 by 

natural processes was half of the CO2 emissions. As a result, atmospheric CO2 concentrations 

increased from preindustrial 1850 levels of about 600 GtC to about 769 GtC in 2000. Figure 3-

1A shows the graphs with the historic trend given to the participants. Participants were also 

graphically shown a scenario in which the CO2 concentration gradually rose to 938 GtC, about 

22% higher than its year 2000 level, and then stabilized by the year 2100 (see Figure 3-1B). 

Participants were also provided a separate graph showing CO2 emissions from 1900-2000 and 

CO2 absorption from the atmosphere in 2000. They were then asked to sketch the likely future 

CO2 absorption and emissions between 2001-2100 that corresponded to the CO2 concentration 

scenario in Figure 3-1B. Finally, participants were asked to clearly explain the reasons for which 

they drew their CO2 absorption and emissions. 

The 938 GtC stabilization value in Figure 3-1B was taken from the IPCC‘s Fourth 

Assessment Report (FAR), which considers 938 GtC (= 450 ppmv) to be a realistically attainable 
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climate goal for the future (IPCC, 2007). Obviously, the objective in the CS task was not to test a 

participant‘s knowledge of futureCO2 emissions and absorption (which no one really knows), or 

to make predictions on the future trends (as climate scientists would do). Rather, the goal in the 

task was to test whether or not participants‘ CO2 emissions and absorption responses reflect 

misconception from relying on the correlation heuristic or violating mass balance. 

 

 

Figure 3-1 (A). Figures given to participants as part of the instructions in the CS task. 
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Figure 3-1 (B). The trajectory of CO2 concentration given to participants over a 200 year 

period (from 1900 to 2100). 

3.1(C) 

 

Figure 3-1(C). Participants had to sketch the trajectory of CO2 absorptions and emissions 

corresponding to the trajectory of CO2 concentration given in Figure 3-1(B). 

 

The CS task used in this paper is identical to the one used by Sterman and Booth Sweeney 

(2007) and Sterman (2008) with one minor difference: In their task, the ―Anthropogenic CO2 
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emissions‖ and ―net removals‖ (i.e., the inflow and outflow) were provided to participants in 

units of GtC/year and the CO2 concentration in units of ppmv; whereas, we consistently use GtC 

for CO2 concentration and GtC/year for CO2 emissions and absorption.
11

 The different units of 

measurement used to define the flows and stock by Sterman and Booth Sweeney (2007) could be 

somewhat responsible for any misconceptions about the relationship between the concentration 

and its associated flows. Participants may likely infer that the CO2 concentration is unrelated to 

CO2 emissions and absorption. The other option was to express CO2 concentration in ppmv and 

the ―Anthropogenic CO2 emissions‖ and ―net removals‖ in ppmv/year.
12

 

3.4.3 Dynamic Climate Change Simulator (DCCS) 

DCCS was developed based on previous research with generic stock-and-flows control 

tasks (Gonzalez & Dutt, in press). The simulation, its validation, and full functions are explained 

in different publications (Dutt & Gonzalez, 2009, 2011). For the purpose of the current research, 

we created the same CO2 concentration scenario in DCCS as that depicted in the CS task. In 

DCCS, people made CO2 emissions and absorption decisions each simulated year and got 

feedback on how their decisions effected the CO2 concentration (see Figure 3-2).  

                                                 
11

 GtC/year = 10
9
 tons of Carbon / year or billion tons of Carbon / year and ppmv = parts per million by volume. 

12
 2.08 GtC = 1 ppmv using the method suggested by (CDIAC, 2009, http://cdiac.ornl.gov/pns/faq.html ) 

http://cdiac.ornl.gov/pns/faq.html
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Figure 3-2. The Dynamic Climate Change Simulation (DCCS). 

Participants made decisions by entering values for CO2 emissions and absorption 

(number 1) during each simulated year from 2001 to 2100 (number 2) by clicking the "Make 

Decision" button. The task needed participants to enter CO2 emissions and absorption so that the 

resultant CO2 concentration would closely follow the CO2 concentration scenario (shown in 

Figure 3-2) for every year until the year 2100. The yearly value of the CO2 concentration goal 

was derived from the concentration scenario and was displayed as a red line on the atmospheric 

tank (number 3). The values of the upper and lower bound of the annual goal were displayed on 

the left hand side of the tank and an acceptable range of ± 0.5 GtC was assumed around it. The ± 

0.5 GtC range was taken from Sterman and Booth Sweeney (2007) as a reasonable difference 

between CO2 emissions and absorption for which the concentration was assumed to be stabilized 

at a yearly goal value. This range also helped us to classify participants according to whether or 

not their yearly CO2 emissions and absorption decisions violated mass balance. 
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3.4.4 Violating mass balance and relying on correlation heuristic 

 
The climate problem presented in the CS task and DCCS has a simple structure with one 

CO2 concentration, one CO2 emissions inflow, and one absorption outflow. CO2 emissions add to 

the existing CO2 concentration each year and CO2 absorption subtracts from it. When CO2 

emissions are more than absorption, the concentration increases; and when CO2 emissions are 

less than absorption, the concentration decreases. Given that CO2 absorption are half of CO2 

emissions at the start of the CS task and DCCS (year 2000), the concentration is increasing. In 

order to stabilize the concentration at 938 GtC in 2100, one needs to keep emissions above 

absorption before 2100 (although with a diminishing gap between the two over time), and 

equalize emissions and absorption in 2100. A participant’s response that does not satisfy the two 

previous constraints violates mass balance. To classify participants as violating mass balance, we 

visually determined whether or not a CO2 emissions trajectory was greater than the CO2 

absorption trajectory before year 2100; and if emissions were less than or equal to ± 0.5 

GtC/year away from absorption in 2100. If either of these two conditions was not met, a 

participant’s response was classified as violating mass balance. Two independent raters that were 

blind to the hypotheses under test evaluated participants’ sketched CO2 emissions and absorption 

in both the CS task and DCCS. The inter-rater reliability statistic for the two independent raters 

was Kappa = 0.85 (p < 0.001), 95% CI (0.80, 0.90). This Kappa statistic reveals a satisfactory 

level of agreement between the two raters (Landis & Koch, 1977). 

To determine participants’ reliance on the correlation heuristic, we correlated their CO2 

emission values over a 100 year period (between years 2001 and 2100) to their CO2 

concentration values over the same period in both the CS task and DCCS. We assumed a very 

conservative threshold of 0.8 for the correlation coefficient value as classifying participants’ 
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responses as relying on the correlation heuristic. Furthermore, their responses rely on the 

correlation heuristic if CO2 emissions in 2100 are greater than 11.51 GtC/year. The value of 

11.51 GtC/year was taken to be the largest of the average CO2 emissions entered by participants 

in the CS task and DCCS. To find the mean emissions, we separately averaged the CO2 

emissions values entered or sketched by participants in different tasks over a 100 year period. 

Thus, a participant’s response was classified as relying on the correlation heuristic if the 

correlation coefficient between their CO2 emissions and CO2 concentration trajectory over a 100 

year period was more than 0.8; and if their CO2 emissions in the year 2100 exceeded 11.51 

GtC/year. 

3.4.5 Experiment’s Design and Dependent Measures 

 
Participants were randomly assigned to one of the two between-subjects conditions: 

description or experience. In the description condition, participants were asked to do only the 

paper-and-pencil CS task. In the experience condition, participants performed the DCCS task 

first and then did the CS task. The CS task was given to participants in both conditions because it 

constitutes the main testing phase, which allowed us to evaluate their reliance on the correlation 

heuristic and violation of mass balance with or without DCCS experience. We wanted to 

evaluate the influence of two independent measures in this experiment: the experience in DCCS 

(present in experience condition and absent in description condition) and the participants’ 

backgrounds (STEM or non-STEM). 

To test H1, we compared participants’ reliance on the correlation heuristic and their 

violation of mass balance in the CS task across the experience and description conditions. To test 

H2, we first explored correlation heuristic reliance and mass balance violations among STEM 

and non-STEM backgrounds between the CS task in the experience and description conditions. 
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Then, we explored correlation heuristic reliance and mass balance violations between STEM and 

non-STEM backgrounds within the CS task in the description condition, and within DCCS and 

the CS task in the experience condition. Later, we also coded and analyzed participants’ 

explanations about the reasoning and procedure they followed while sketching CO2 emissions 

and absorption.  

3.4.6 Procedure 

In the description condition, participants were first asked to read the instructions as part 

of the CS task and the experimenter answered participants’ questions at this point, if any. 

Participants were not given any details on how they could solve the task correctly, only 

clarification questions in instructions were answered. Then, they were asked to sketch the CO2 

emissions and absorption over the 100 year period. No participant took more than 15 minutes on 

the CS task in either the description or experience conditions. In order to equalize the length of 

the description and experience conditions, participants in the description condition were given an 

unrelated task at the beginning of their experiment. 

Participants assigned to the experience condition were first asked to read the instructions 

that appeared on a computer screen before they could start in DCCS. The experimenter then 

answered any questions clarifying the instructions, if any. Participants were told that after DCCS, 

they would be asked to respond to a short paper-and-pencil task. But they were not shown the CS 

task at that time. Once participants finished the DCCS, they were handed the CS task 

immediately after.  
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3.5 Results 

3.5.1 Misconceptions across Description and Experience 

Misconceptions were analyzed by first considering the percentage of participants that 

relied on the correlation heuristic and violated mass balance. Figure 3-3 shows the response of a 

typical participant in the description condition. For this participant, CO2 emissions exceed 

absorption by a large difference in the year 2100, which violates mass balance. Furthermore, the 

shape of the CO2 emissions curve is highly correlated to the shape of the CO2 concentration 

trajectory given in the problem, showing the participant’s reliance on the correlation heuristic. 

Therefore, by responding with the shapes of CO2 emissions and absorption curves in Figure 3-3, 

this participant relies on the correlation heuristic and violates mass balance. 

 

Figure 3-3. A typical sketch by a non-STEM participant in the description condition. The 

participant makes CO2 emissions much greater than CO2 absorptions in the year 2100. The 

trajectory of CO2 emissions shape is correlated and similar to CO2 goal trajectory that was 

given to the participant as part of the instructions. The gap between the emissions and 

absorptions is more than ± 0.5 GtC/year in the figure. 
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Figure 3-4 shows the proportion of participants relying on the correlation heuristic in the 

CS task in the experience and description conditions. The aggregated result is further divided by 

STEM and non-STEM participants. Overall, 82% of participants relied on the correlation 

heuristic in the description condition, while 60% of participants did so in the CS task in the 

experience condition (
2
 (1) = 6.82, p < .01, r

13
 = .24). This finding rejects hypothesis H1. 

 

Figure 3-4. Proportion of participants relying on correlation heuristic in the CS task in the 

description and experience conditions. The figure also shows the breakup of correlation 

heuristic for STEM and non-STEM backgrounds. 

 

Figure 3-5 shows the proportion of participants violating mass balance in the CS task in 

the experience and description conditions. The aggregated result is further divided by STEM and 

non-STEM participants. Overall, 80% of the participants violated mass balance in the description 

condition, while 57% did so in the CS task in the experience condition (
2
 (1) = 7.55, p < .01, r = 

.51). Again, this finding rejects hypothesis H1. 

                                                 
13

 This refers to the effect size unless otherwise mentioned. 
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Figure 3-5. Proportion of participants violating mass balance in the CS task in the 

description and experience conditions. The figure also shows the breakup of participants 

violating mass balance within STEM and non-STEM backgrounds. 

 

In order to understand the reasons why participants violate the principle of mass balance, 

we broke results into constituting subparts as shown in Table 3-1: Net CO2 emissions in 2100 > 

0.5 GtC/year, Net CO2 emissions in 2100 < 0.5 GtC/year, and Net CO2 emissions in 2100 

between ±0.5 GtC/year. The Net CO2 emissions in 2100 (denoted by the short form “NET E”) 

equals CO2 emissions minus the absorption in the same year. In order not to violate mass 

balance, the NET E should ideally be equal to 0 GtC/year because participants were asked to 

stabilize the CO2 concentration in 2100. The assumption of ± 0.5 GtC/year in Table 3-1 serves as 

a less stringent for participants. Thus, a participant’s NET E could be as high as 0.5 GtC/year or 

as low as -0.5 GtC/year and still would not be classified as violating mass balance. The Average 

Absolute NET E refers to the positive value of Average Net CO2 emissions in 2100 (where the 

averaged is taken over all participants in the respective condition). “VOMB?” refers to the 

proportion of participants violating mass balance.   
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As seen in Table 3-1, 80% (N=48/60) of participants in the description condition wrongly 

inferred that CO2 emissions could be either greater than or less than CO2 absorption and the CO2 

concentration still could be stabilized in 2100 (column labeled: “Net E > 0.5 or Net E < -0.5”); 

whereas, in the experience condition, 57% (N=34/60) and 26% (N=16/60) of participants 

demonstrated the same incorrect inference in the CS task (
2
 (1) = 11.63, p < .001, r = .31) and 

in DCCS (
2
 (1) = 43.25, p < .001, r = .49), respectively. Similarly, 78% (N=47/60) of 

participants wrongly inferred that CO2 emissions could exceed CO2 absorption and the CO2 

concentration could still be stabilized in 2100 (column labeled: “Net E > 0.5”) in the description 

condition; whereas, in the experience condition, 50% (N=30/60) and 18% (N=11/60) of 

participants showed this wrong inference in the CS task (
2
 (1) = 11.63, p < .001, r = .31) and in 

DCCS (
2
 (1) = 43.25, p < .001, r = .49), respectively. 

Finally, participants in the CS task and DCCS (experience condition) had a significantly 

smaller Average Absolute Net E in the year 2100 compared to participants in the description 

condition (U = 1133.00, Z = -3.536, p < .001, r = -.32 and U = 542.50, Z = -6.772, p < .001, r = -

.62, respectively). Thus, the experience gained in DCCS helped participants to reduce mass 

balance violations. Furthermore, the reduction helped participants to perform better in the 

following CS task in the experience condition compared to that in the description condition. 

Altogether, participants in the experience condition showed fewer misconceptions (i.e., 

less reliance on the correlation heuristic and less violation of mass balance) in the CS task in the 

experience condition compared to those in the CS task in the description condition. 
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Table 3-1. Conservation of Mass Balance and Conformance. 

 
Note: Net CO2 emissions in 2100 (called ―Net E‖) = CO2 emissions in 2100 – CO2 absorptions in 2100 and should be ideally equal to 0 GtC/year. Average 

Absolute Net E = | Average CO2 emissions in 2100 – Average CO2 absorptions in 2100 | when the different values are averaged over all participants in a specific 

task. Net E > 0.5; Net E >=-0.5 and Net E <= 0.5; and, Net E < -0.5 refer to when the Net CO2 emissions in year 2100 were greater than 0.5, in-between -0.5 and 

0.5, or less than -0.5 GtC/year. The value of 0.5 GtC/year is the same as used by Sterman and Booth Sweeney (2007). The assumption of ±0.5 GtC/year makes 

the requirement on Net CO2 emissions in 2100 to equal 0, to be less stringent for participants. Thus, a participant‘s Net CO2 emissions in 2100 could be as high 

as 0.5 GtC/year or as low as -0.5 GtC/year and still she would not commit violation of mass balance. ―VOMB?‖ refers to the proportion of participants that 

violate mass balance, i.e., whether or not CO2 emissions > absorptions before year 2100, and, Net CO2 emissions in 2100 < 0.5 GtC/year. A value in round 

brackets, "()", indicates the standard deviation around the average value. 

 
Net CO2 emissions in 2100 (called “NET E”) = 

CO2 emissions - absorptions in 2100 (GtC/year) 
 

Task 

Average 

Absolute 

 NET E 

Net E > 0.5 (A) 

Net E ≥ -0.5 

and 

Net E ≤ 0.5 

Net E < -0.5 (B) 

Net E > 0.5 

or 

Net E < -0.5 

(A) + (B) 

VOMB? 

  N % N % N % N % N % 

CS (description) 5.40 (3.76) 47 78 12 20 01 02 48 80 48 80 

CS (experience) 2.93 (3.37) 30 50 26 43 04 07 34 57 34 57 

DCCS (experience) 0.66 (1.58) 11 18 44 73 05 08 16 26 18 30 

            

CS (description, STEM) 4.63 (3.63) 21 70 08 27 01 03 22 73 22 73 

CS (description, non-STEM) 6.21 (3.77) 26 87 04 13 00 00 26 87 26 87 

            

CS (experience, STEM) 2.18 (2.77) 12 40 11 37 07 23 19 63 15 50 

CS (experience, non-STEM) 3.68 (3.78) 18 60 11 37 01 03 19 63 19 63 

            

DCCS (experience, STEM) 0.56 (1.16) 06 20 21 70 03 10 09 30 09 30 

DCCS (experience, non-STEM) 0.77 (1.93) 05 17 23 77 02 07 07 23 09 30 
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3.5.2 Interaction between Background and Condition 

With the additional factor of participants from both STEM and non-STEM backgrounds, 

DCCS’ exact influence in the experience condition become becomes difficult to untangle if there 

are significant interactions between participants’ backgrounds and the condition given. As the 

main effect of experience in DCCS significantly reduced reliance on the correlation heuristic and 

violation of mass balance in the CS task in the experience condition, we investigated the effects 

of DCCS’s experience among both STEM and non-STEM backgrounds. There was a significant 

interaction between the condition (experience or description) in the CS task and participants’ 

backgrounds (STEM or non-STEM) for reliance on the correlation heuristic (F(1, 116) = 3.6, p < 

.05). As shown in Figure 3-4, the difference in reliance between the CS task in the description 

and experience conditions is greater for STEM participants (36%) than for non-STEM 

participants (10%). This difference was significant for STEMs (CS task, description (83%) > CS 

task, experience (47%) with 
2
 (1) = 8.86, p < .001, r = .38), but not for non-STEMs (CS task, 

description (83%) = CS task, experience (73%) with 
2
 (1) = 0.37, ns, r = .08). 

The interaction between condition (experience or description) in the CS task and 

backgrounds (STEM or non-STEM) for violating mass balance was not significant (F(1, 116) = 

0.0, ns). As shown in Figure 3-5, DCCS experience led to a reduction in mass balance violations 

for both STEMs and non-STEMs. Therefore, as Figure 3-5 and Table 3-1 indicate, the 

experience gained in DCCS (experience condition) reduced violation of mass balance for both 

STEMs (23%) and non-STEMs (24%). These differences were significant for both backgrounds: 

for STEMs, 73% in description condition > 50% in experience condition with 
2
 (1) = 3.50, p < 
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.05, r = .24; and for non-STEMs, 87% in description condition > 63% in experience condition 

with 
2
 (1) = 4.36, p < .05, r = .27. 

3.5.3 Misconceptions among STEMs and non-STEMs (Investigating 

hypothesis H2) 

 
We compared the proportion of misconceptions between STEM and non-STEM 

participants within the CS task in the description and experience conditions (hypothesis H2). In 

the description condition’s CS task, we found an excessive reliance on the correlation heuristic 

by both STEMs (83%) and non-STEMs (83%), and the difference between these groups was not 

significant (
2
 (1) = 0.11, ns, r = .04) (see Figure 3-4). Similarly, as seen in Figure 3-5, the 

difference between STEMs (73%) and non-STEMs (87%) for violating mass balance in the CS 

task in the description condition was not significant (
2
 (1) = 1.67, ns, r = .17). These results 

replicate Sterman’s (2008) and Sterman and Booth Sweeney’s (2007) findings. In contrast in the 

experience condition’s CS task, the difference in correlation heuristic reliance between STEMs 

(47%) and non-STEMs (73%) was significant (
2
 (1) = 4.44, p < .05, r = .27) (see Figure 3-4), 

but the difference between STEMs (50%) and non-STEMs (63%) for violating mass balance was 

not (
2
 (1) = 1.09, ns, r = .14) (see Figure 3-5).  

Some of the reasons for the lack of differences between STEMs and non-STEMs on 

violating mass balance can be seen in Table 3-1. For example, STEMs and non-STEMs were 

equally likely to infer that the CO2 concentration could be stabilized even when emissions do not 

equal the absorption in 2100 in the CS task in both conditions (CS task, description: 27% versus 

13% with 
2
 (1) = 2.46, ns, r = .20; CS task, experience: 37%  versus 37% with 

2
 (1) = 3.27, ns, 

r = .23). Furthermore, STEMs and non-STEMs were equally likely to infer that CO2 emissions 
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could exceed absorption and the CO2 concentration could still be stabilized in 2100 in both 

conditions (column labeled: “Net E > 0.5”) (CS task, description: 70% versus 87% with 
2
 (1) = 

2.46, ns, r = .20; CS task, experience: 40% versus 60% with 
2
 (1) = 3.27, ns, r = .23). Finally, 

there were no significant differences between STEMs and non-STEMs in the Average Absolute 

Net E in the experience and description conditions (CS task, description: U = 357.50, Z = -1.372, 

ns, r = -.17; CS task, experience: U = 343.00, Z = -1.623, ns, r = -.21). 

3.5.4 Participants' Explanations 

As mentioned above, all participants were asked to explain the reason for which they 

drew the absorption and CO2 emissions for the given CO2 concentration trajectory that they did. 

These explanations help us to investigate participants’ existing mental models. Sterman and 

Booth Sweeney (2007) had previously analyzed participants’ written explanations and we coded 

our participants’ written explanations according to the same procedure they detailed. 

Explanations were classified under the following categories, which we also used: Mass Balance, 

Correlation Heuristic, Inertia/Delays, CO2 Fertilization, Sink Saturation, and Technology. The 

definitions and explanations of these categories are provided under each category in Table 3-2. 

Mass balance indicated awareness of a relationship between CO2 emissions/absorption flows and 

the concentration of atmospheric CO2 (i.e., where participants wrote terms such as “mass 

balance”). 
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Table 3-2. Codes for written participant explanations in CS tasks (experience, description) based on rater Kappa statistics. 

 

Categories
1
 

 

CS
 

(description)
2
 

 

 

CS 

(experience)
2
  

 

 N
3
 %

4
 N

3
 %

4
 

Mass Balance  

Description indicating awareness of relationship between emission and absorption flows and the concentration of 

atmospheric CO2; terms such as mass balance. 

STEM 

Non-STEM 

 

 

20 

15 

05 

 

 

33 

50 

17 

 

 

29 

16 

13 

 

 

48 

52 

45 

Correlation Heuristic 

Description mentioning correlations or similarity of behavior or patterns among emissions, atmospheric CO2, 

indication that emissions change should be proportional to changes in atmospheric CO2 (perhaps with lags or time 

delays).  

STEM 

Non-STEM 

 

 

 

39 

15 

24 

 

 

 

65 

50 

80 

 

 

 

22 

10 

12 

 

 

 

37 

32 

41 

Inertia/Delays  

Mention of delays in response of system to changes in emissions, atmospheric CO2; terms such as ‗delay,‘ ‗lag,‘ 

‗inertia,‘ etc. 

STEM 

Non-STEM 

 

 

10 

05 

05 

 

 

17 

17 

17 

 

 

03 

02 

01 

 

 

05 

06 

03 

CO2 Fertilization  

Mention of the possibility that CO2 absorptions may rise due to enhanced plant growth, other effects of higher 

atmospheric CO2 or higher temperatures. 

STEM 

Non-STEM 

 

 

17 

09 

08 

 

 

28 

30 

27 

 

 

04 

01 

03 

 

 

07 

03 

10 

Sink Saturation  

Mention of the possibility that CO2 absorptions may fall due to Carbon sink saturation, e.g., deforestation, ocean 

saturation, carbon discharge stimulated by higher. 

STEM 

Non-STEM 

 

 

10 

04 

06 

 

 

17 

13 

20 

 

 

05 

00 

05 

 

 

08 

00 

17 

Technology  

Indicates inference that technology will enable emissions reductions (e.g., alternative energy sources) or enhance 

CO2 absorptions (e.g., anthropogenic carbon capture and sequestration). 

STEM 

Non-STEM 

 

 

06 

05 

01 

 

 

12 

17 

07 

 

 

04 

02 

02 

 

 

08 

06 

10 
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Note: 
1
 Categories and their definitions were taken from Sterman and Booth Sweeney (2007). A single participant‘s explanation could be classified into 

multiple categories. Also, absence of a category in a participant written explanation does not reveal whether or not the participant was aware of it. Even if the 

participant‘s conclusion was wrong but belonged to a particular category, it was classified as part of that category. 
2
 The CS task (description) and CS task 

(experience) were given in the description and experience conditions of the experiment respectively. 
3
 N refers to the number of participants whose explanation 

included the category under consideration. 
4
 % proportion of participant‘s explanation out of a total of 60 participants in the CS task (description) and 60 

participants in the CS task (experience).
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Correlation Heuristic indicated the incorrect assumption that emissions changes should be 

proportional to changes in atmospheric CO2 (perhaps with lags or time delays). Inertia/Delays 

indicated mention of delays in response of system to changes in emissions, atmospheric CO2, and 

the use of terms such as "delay," "lag," "inertia," etc. CO2 Fertilization indicated the possibility 

that CO2 absorption may increase due to enhanced plant growth and other effects of greater 

atmospheric CO2 or temperatures. Sink Saturation indicated the possibility that CO2 absorption 

may fall due to saturation of carbon sinks (e.g., oceans). Finally, Technology indicated the 

assumption that technology will more easily enable CO2 emissions reductions (e.g., alternative 

energy sources) or enhance CO2 absorption (e.g., anthropogenic carbon capture and 

sequestration). 

Two independent raters, who were blind to the hypotheses under test, coded participant 

explanations. The inter-rater reliability statistics for the two independent raters was Kappa, Mass 

Balance = 0.95 (p < 0.001), 95% CI (0.89, 1.00); Kappa, Correlation Heuristic = 0.97 (p < 

0.001), 95% CI (0.92, 1.00); Kappa, Inertia = 1.00 (p < .001), 95% CI (1.00, 1.00); Kappa, CO2 

Fertilization = 0.91 (p < 0.001), 95% CI (0.81, 1.00); Kappa, Sink Saturation = 0.92 (p < 0.001), 

95% CI (0.81, 1.00); and Kappa, Technology = 0.91 (p < 0.001), 95% CI (0.78, 1.00). These 

Kappa statistics reveal a satisfactory level of agreement between the two raters on their 

individual categorizations (Landis & Koch, 1977), hence the same levels of categorization was 

used for subsequent analysis of participant explanations (any disagreements between raters were 

resolved by meeting and active discussion). Table 3-2 displays the frequency and proportions of 

explanations for the CS task in the description and experience conditions, then further broken 

down by participants’ backgrounds. A participant’s explanation could belong to more than one 

category at the same time.  
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The differences between explanations in the description and experience conditions for the 

Mass Balance, Inertia/Delays, Sink Saturation, and Technology categories were insignificant (
2
 

(1) = 2.79, ns, r = .15; 
2
 (1) = 4.23, ns, r = .19; 

2
 (1) = 1.91, ns, r = .13; 

2
 (1) = 0.37, ns, r = 

.06 respectively). The proportion of participants suggesting Correlation Heuristic in their 

explanations, however, was significantly lower in the experience than in the description 

condition (37% versus 65%; 
2
 (1) = 9.64, p < .01, r = .28). The proportion of explanations 

suggesting an increase in CO2 absorption due to CO2 Fertilization was also significantly larger in 

the description than in the experience condition (28% versus 7%; 
2
 (1) = 9.76, p < .01, r = .29). 

The latter two differences consistently show why participants suffered from greater 

misconceptions in the description condition than in the experience condition. 

The difference between the description and experience conditions in the proportion of 

Correlation Heuristic explanations was among non-STEMs, but not STEMs (non-STEM 80% to 

41%: 
2
 (1) = 9.25, p < .001, r = .40; STEM 50% to 32%: 

2
 (1) = 1.98, ns, r = .18). On the other 

hand, the difference between the description and experience conditions for CO2 Fertilization 

explanations was a result found among STEMs and non-STEMs (STEM 30% to 3%: 
2
 (1) = 

7.97, p < .01, r = .36; non-STEM 27% to 10%: 
2
 (1) = 2.59, ns, r = .21). Therefore, there was an 

increase in the Correlation Heuristic explanations from the description to the experience 

conditions for non-STEMs; whereas, there was a reduction in CO2 Fertilization explanations 

from the description to the experience condition for STEMs. 

Finally, if STEMs demonstrated fewer misconceptions with their Correlation Heuristic 

and Mass Balance responses than non-STEMs, there should be significant differences in these 

two categories within the description condition between the types of backgrounds. Moreover, if 

DCCS is an effective manipulation, then the proportions of Correlation Heuristic and Mass 
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Balance explanations should be less and more respectively for both STEMs and non-STEMs in 

the experience condition. We tested for these expectations. In the description condition, the 

proportion of Mass Balance explanations made by STEMs were significantly larger than those 

made by non-STEMs, and the proportion of Correlation Heuristic explanations were significantly 

less for STEMs than for non-STEMs (50% versus 17% with 
2
 (1) = 7.50, p < .01, r = .35; 50% 

versus 80% with 
2
 (1) = 5.93, p < .05, r = .31 respectively). In the experience condition, 

however, differences in the use of both categories were insignificant between STEMs and non-

STEMs (52% and 45% with 
2
 (1) = 0.28, ns, r = .07; 32% and 41% with

2
 (1) = 0.54, ns, r = 

.10).  These results highlight the fact that STEMs showed fewer misconceptions in their 

explanations than non-STEMs in the description condition, but not in the experience condition. 

3.6 Discussion and conclusions 

One main and consistent result of our study is that acquiring experiential feedback in the 

Dynamic Climate Change Simulator (DCCS) helps to reduce participants' misconceptions about 

the way the climate system in the subsequent Climate Stabilization (CS) task works. Reducing 

misconceptions about Earth’s climate is likely to reduce wait-and-see behavior (Bostrom et al., 

1994; Sterman, 2008; Sterman & Booth Sweeney, 2002, 2007).  

Feedback in DCCS enables participants to test several hypotheses they might have about 

how CO2 emissions and absorption processes affect the CO2 concentration. It is likely that the 

ability to test several hypotheses repeatedly about the cause-and-effect relationship in DCCS 

enables them to understand that the concentration increases when CO2 emissions are greater than 

absorption, decreases when emissions are less than absorption, and stabilizes at a particular value 

when emissions equal absorption. Consequently, participants are able to apply this understanding 

in the following CS task. We do find some evidence for this reasoning from our results. For 
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example, the proportion of participants’ explanations indicating the correlation heuristic was far 

less in the experience condition’s CS task than that in the description condition. Therefore, it 

seems that the experience gained in DCCS enabled participants to decrease their reliance on the 

correlation heuristic and also enabled them to improve their performance in the CS task that 

followed. 

The above explanations are also supported by similar findings in the literature for other 

dynamic tasks (Cronin et al., 2009; Dutt & Gonzalez, 2011; Gonzalez, Lerch, & Lebiere, 2003; 

Moxnes & Saysel, 2009). For example, Cronin et al. (2009) suggest that participants can get 

increasingly accurate answers in simple dynamic tasks with even just "correct/incorrect" 

feedback given after each attempt. In the first attempt, only 15% of their participants answered 

the accumulation question correct, but 80% of the participants were able to solve the problem 

correctly by the seventh attempt. Similarly, it appears that participants in our study are able to 

successfully transfer their experiences through repeated feedback in DCCS to the following CS 

task.  Based upon the success of using DCCS, the use of experiential tools (like DCCS) are 

recommended to aid in the process of formulating climate policies. Considering the reduction in 

correlation heuristic reliance and mass balance violations with experience after DCCS, another 

important implication is the use of DCCS as a tool to supplement basic education about climate 

change at all levels of schooling.  

However, we also found differential effects of using DCCS for participants with science 

(STEM) and non-science (non-STEM) backgrounds in our results: the decrease in correlation 

heuristic reliance between the CS task in the description and experience conditions was present 

for STEMs but absent for non-STEMs. Given that neither STEMs or non-STEMs relied on the 

correlation heuristic during DCCS, what we can conclude is that only STEMs were able to retain 
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and transfer the experiential knowledge previously acquired to the following CS task. In contrast, 

non-STEMs reduced their reliance on the correlation heuristic after performing in DCCS, but this 

reduction was not seen in non-STEMs in the description condition. One probable reason is that 

STEMs are more commonly exposed to dynamic problems that require attaining an equilibrium 

or control of an accumulation as part of their prior training and curriculum. For example, science 

courses in thermodynamics and physics cover concepts of mass balance and energy balance as 

part of their curriculum. When STEMs are asked to perform in DCCS, they are likely reminded 

of these equilibrium concepts that they previously learnt as part of their prior education. This 

background might enable STEMs do better in the following CS task compared to those that did 

not gain experience in DCCS. On the other hand, courses in the humanities and social sciences 

do not explicitly cover concepts of mass balance and energy balance as part of their curriculum. 

Thus, non-STEMs may not necessarily have the prior knowledge base to rely on. As learning 

new concepts might take time, non-STEMs are unlikely to be able to carry forward these 

concepts and do better in the following CS task.  

One could also argue that the reduction in correlation heuristic reliance  among STEMs 

may also be due to their prior education in mathematics and sciences that help these participants 

see the underlying stock-and-flow structure of the problem (Chi et al., 1981).
14

 STEMs may be 

able to recognize the stock-and-flow structure and how the associated flows (CO2 emissions and 

absorption) affect the CO2 concentration. This explanation is supported by prior research, which 

has shown that people with expertise in mathematics and sciences can learn faster and generate 

more meaningful categories, superior performance, better use of problem metaphors, and a 

deeper understanding of the problem structure compared to people without the same expertise 

                                                 
14

 By stock-and-flow structure we mean the ability to recognize the accumulation and its corresponding inflows and 

outflows, and to be able to determine how flow processes affect the accumulation in a problem.   
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(Chi et al., 1981; Schoenfeld, 1982). For example, Schoenfeld (1982) has shown that college 

freshmen students and college faculty members generate very different classifications for 

problems in geometry and algebra. College freshmen students classify these problems based 

upon surface similarities (e.g., based upon circles, functions, or whole numbers); whereas, 

college faculty members with prior experience show a deeper understanding of the problem 

structure in their classifications.  

The fact that simulation tools have differential success based upon prior scientific 

background has some important implications. First, if experience needs the support of a 

mathematical background to reduce misconceptions as shown in our results, then it is possible 

that many policymakers, who lack the needed scientific training and mathematical backgrounds, 

might make climate policies while relying on the correlation heuristic. Second, the design of 

simulation tool (e.g., what features to put in these tools and the length of training in these tools 

etc.) needs to be carefully determined, given that they would be directed towards both students 

with and without prior STEM education. Although we can only speculate, perhaps it might be 

beneficial to extend the length of training for non-STEMs compared to STEMs; as extended 

practice with simulation tools might yield more benefits for non-STEMs.  

Furthermore, we find that there is a reduction in the proportion of participants violating 

mass balance; however, there is still an absence of a corresponding increase in explanations 

indicating Mass Balance. This inconsistency between what people “do” versus what people 

“say” might be due to the previously recorded dissociation between explicit and implicit leaning 

(Berry & Broadbent, 1984). People can speak English well (implicit learning) without being able 

to express a single rule of grammar (explicit learning). The absence of an increase in the 

proportion of Mass Balance explanations by participants (explicit learning) need not lead to a 
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decrease in the proportion of participants committing  a violation of mass balance (implicit 

learning). 

Finally, the problems used in DCCS and in the following CS task in this study were 

identical. Therefore, there is a possibility that any improvement in participants’ performance in 

the CS task following DCCS is because of the similarity they perceive between these two tasks. 

Although this observation might not necessarily constitute a problem for the effectiveness of the 

DCCS manipulation, it does raise an important question for future research: whether people are 

learning the stock-and-flow structure of the problem while they are performing DCCS, or 

whether they are learning the numerical values of CO2 emissions, absorption, and CO2 

concentration and these shapes over time only (i.e., the surface of the problem). As the 

participants’ explanations in the CS task do show an overall reduction in their misconceptions 

about correlation heuristic in our results, DCCS is believed to affect the way participants 

observed the stock-and-flow structure in the problem. As part of future research, however, we 

would like design problems for the experience condition’s CS task that are different from or 

similar to the one given in DCCS. By doing so, we will be able to test the boundaries of 

experiential learning in DCCS to similar or novel problems in the CS task. Second, we also plan 

to discuss misconceptions with participants after their performance in DCCS and before they 

complete the CS task. This second manipulation is likely to produce even stronger evidence of 

learning, and perhaps even more drastic reduction in people’s misconceptions in the following 

CS task. 

Although we all experience climate in our day-to-day lives, it is possible that we 

misperceive the association between our decisions and their effects because the climate effects 

are vastly delayed in time. There is an important need to develop efficient methods of climate 
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risk communication where methods are designed in accordance with people’s existing mental 

models of climate change (Morgan et al., 2002). According to Morgan et al. (2002), simply 

asking experts what to do for the climate and then passing the expert’s view onto lay people 

generally results in lay people missing the point and becoming confused, disinterested, and even 

annoyed. In a world where people with non-STEM backgrounds are plentiful and their support is 

clearly needed considering the global nature of the climate problem, the experts should 

understand and pay close attention to the underlying mental models, pre-existent knowledge, and 

needs of lay people. Again here, the use of simulation tools like DCCS is likely to help improve 

lay people’s understanding of the cause-and-effect relationships that govern Earth’s climate. 
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3.8 Next Chapter’s Highlights 

The next chapter discusses how a physical representation helps to reduce people‘s 

reliance on correlational thinking in different problems and contexts compared to other graphical 

and text representations that are commonly used. The use of physical representation is expected 

to reduce people‘s wait-and-see behavior on climate change. 
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4.1 Abstract 

Research shows that while judging accumulations of quantities over time (e.g., money in a bank 

account or CO2 in Earth‘s atmosphere), people assume that the shape of the accumulation is 

similar to the shape of the inflow (i.e., people rely on a correlation heuristic). Relying on 

correlation heuristic is particularly worrisome for Earth‘s climate as judging CO2 accumulation 

according to its emissions (inflow) would underestimate the actual (nonlinear) increase in 

accumulation, undervaluing the seriousness of climate problem and resulting in wait-and-see 

behavior. We report two experiments where we test the effectiveness of a physical representation 

compared to graphical (mathematics graphs) and text representations in reducing people‘s 

underestimation of nonlinear accumulation in different contexts and problems. A physical 

representation presents an accumulation using a picture that works as a metaphor. In a first 

experiment, participants drew the shape of an accumulation over time relying on physical or 

graphical representations in one of two contexts: carbon-dioxide and marbles. Although 

participants underestimated the accumulation in both contexts, their underestimation was 

reduced in the physical representation compared to the graphical. In a second experiment, we 

extended the evaluation of physical representation against text and graphical representations in 

two different problems in the climate context (with linearly increasing or decreasing inflow). 

Again, the underestimation of accumulation was reduced in the physical representation compared 

to the other two representations, regardless of the nature of the problem. We discuss implications 

of using the physical representation for improving people‘s estimates of nonlinear CO2 

accumulation. 

Keywords: linear thinking, climate change, physical representation, graphical representation, text 

representation, correlation heuristic  
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4.2 Introduction 

Consider a fable that tells a story of an ancient king and the inventor of chess. When the 

inventor presented the chess game to the king, the king was so impressed that he offered him a 

reward. The inventor asked for rice grains for each square of the chess board, such that he would 

get one grain for the first square of the board, two for the second, four for the third, and so on 

(i.e., 2
n-1

, where n is the square number starting at n = 1). The king thought that the inventor was 

modest and accepted the proposal, but he realized halfway into the exercise how difficult it 

would be to meet the request. Assuming that 60 grains weigh 1 gram, meeting the inventor‘s 

request would amount to 153 billion tons of rice grains, which would need 31 million cargo ships 

capable of holding 5,000 tons each. The king failed to perceive the nonlinearity in the request 

and underestimated the accumulation of rice. 

Examples of accumulation of nonlinear quantities are pervasive, and the king is not alone 

in his difficulties of understanding nonlinear accumulation. There is currently growing evidence 

that a large majority of adults fail to perceive the effects of accumulation of quantities in 

nonlinear problems in different contexts (Cronin & Gonzalez, 2007; Cronin et al., 2009; Dörner, 

1980; Dörner et al., 1997). Research has shown that people have no intuitive feeling for 

processes that develop nonlinearly, regardless of how common these problems are in the real-

world (Cronin et al., 2009). For example, when participants were asked to infer or sketch the 

shape of accumulation of a nonlinear quantity due to changes in the inflow (a rate that increases 

the accumulation) and outflow (a rate that decreases the accumulation), more than half responded 

as if the shape of accumulation was linear (Cronin et al., 2009). According to Cronin et al. 

(2009), participants could be classified as relying on an intuitive but erroneous heuristic, called 

―correlation heuristic‖ (CH), where they incorrectly assume that the accumulation of a quantity 
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should ―look like‖ or have the same shape as the inflow. According to Cronin et al. (2009), if the 

inflow is linear, then people relying on CH will infer the accumulation‘s shape to be linear as 

well. Moreover, people‘s reliance on CH cannot be attributed to their inability to interpret 

graphs, contextual knowledge, motivation, and cognitive capacity.  

Studying our understanding of nonlinear accumulations is not only important in simple 

mathematical problems, but also important for global problems with serious socio-economic 

impact like those concerning the Earth‘s climate. For example, well-educated participants with 

backgrounds in science and mathematics rely on correlational reasoning when judging changes 

in accumulation of carbon-dioxide (CO2) due to changes in emissions and absorptions (Dutt & 

Gonzalez, 2010; Sterman, 2008; Sterman & Booth Sweeney, 2007). In these studies, participants 

were given a problem where the CO2 accumulation was shown to change nonlinearly as a result 

of both emission (inflow) and absorption (outflow) over time. They were asked to sketch the 

emission and absorption trajectories that would produce the given trajectory of the CO2 

accumulation. Participants relying on CH, however, misperceived the dynamics of the future 

CO2 accumulation. They assumed that if one is to stabilize the accumulation at a level greater 

than status-quo, then emissions should rapidly increase and stabilize at a higher level as well 

(Dutt & Gonzalez, 2010; Sterman, 2008; Sterman & Booth Sweeney, 2007). Thus, participants 

base their inferences solely on the shape of emission and do not consider the shape of both 

emission and absorption together along with the accumulation‘s initial value.  

Moreover, as a consequence of relying on CH in cases where emissions increase linearly 

over time, participants‘ correlational (linear) reasoning would grossly underestimate the actual 

nonlinear increase in the accumulation. This underestimation is a serious problem that results in 

undervaluing the urgency of the climate change problem and is likely to encourage ―wait-and-
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see‖ behavior, according to which people like to defer climate mitigation actions to a time in the 

future (Dutt & Gonzalez, 2011, 2010; Sterman, 2008). Wait-and-see behavior becomes 

particularly worrisome for Earth‘s climate due to the inherent long delays between the effects of 

mitigation actions and corresponding changes in atmospheric CO2 (IPCC, 2007; Sterman, 2008; 

Sterman & Booth Sweeney, 2007). Even if mitigation actions are started given such delays, 

atmospheric CO2 accumulation would continue to rise until emissions equals the absorption 

rates. Average atmospheric temperature would then peak, and rising sea level from ice melt and 

thermal expansion would continue (Wigley, 2005; Meehl et al., 2005). Therefore, current wait-

and-see policies are likely to cause abrupt, persistent, and costly climatic changes on Earth in the 

future (Alley et al., 2003; Scheffer et al., 2001). 

In this paper, we hypothesize that people‘s reliance on CH and their consequent 

underestimation of nonlinear accumulation is influenced by the format in which the information 

is communicated. Research indicates that when accumulation problems are presented using text 

or mathematical graphs, responses often rely on CH (Cronin & Gonzalez, 2007; Cronin et al., 

2009). This evidence extends to CO2 accumulations in climate problems (Sterman & Booth 

Sweeney, 2002, 2007). However, research is critically needed on what presentation formats 

could reduce people‘s reliance on CH (Cronin et al., 2009). Here, we motivate and investigate 

the use of a physical representation, which presents a problem using a picture as a metaphor.   

Experiment 1 evaluates a physical representation against a conventionally used graphical 

representation in nonlinear problems in two different contexts: a generic non-climate context 

(i.e., accumulation of marbles in a container) and a specialized climate context (i.e., 

accumulation of CO2 in Earth‘s atmosphere). Experiment 2 builds upon the results of experiment 

1 and investigates the effectiveness of the physical representation against both a text and a 
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graphic representation in two nonlinear problems that differ in their dynamics: an increasing 

function where the inflow increases linearly while the outflow is constant, and a decreasing 

function where the inflow decreases linearly while the outflow is constant. We believe that the 

use of physical representation will improve people‘s understanding of nonlinear CO2 

accumulation in the atmosphere, and nonlinear accumulations in other problems and contexts. 

4.3 Experiment 1: Physical and graphical representations in different contexts 

Research shows that people‘s reliance on CH in nonlinear problems represented with 

graphs is robust and increases as the complexity of the problem increases (Cronin & Gonzalez, 

2007; Cronin et al., 2009; Dörner, 1980; Dörner et al., 1997). As climate is a complex system 

and makes extensive use of graphical representations for communicating climate change, it is 

likely that people would rely on CH. For example, the IPCC (2001a) report has a number of 

graphical figures that illustrate CO2 emission scenarios and the corresponding CO2 accumulation 

in the atmosphere under each scenario, when projected over time. Figure 4-1 shows an example 

from the IPCC (2001a) Synthesis Report‘s Summary for Policymakers. The figure shows 

different hypothesized CO2 emission trajectories over a 300 year period. Each of these CO2 

emission trajectories leads to a nonlinear projection for CO2 accumulation over time (please refer 

to IPCC, 2001a report for other examples).  
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Figure 4-1. A figure taken from the IPCC Synthesis Report’s Summary for Policymakers 

document. Different emission trajectories (A2, A1B, B1 etc.) are sketched (in Giga tons of 

Carbon on the Y axis) with respect to time (in years on the X axis). Source: IPCC (2001b; 

Figure SPM 6a, page 20). 

 

Similarly, the United States Environment Protection Agency (EPA) explains historic 

climate change with mathematical graphs detailing nonlinear increases in CO2 accumulation over 

time (EPA, 2010), and graphical representations that communicate climate change have also 

been common in news reports (Schiermeier, 2010).  

Prior research has evaluated people‘s reliance on CH for climate problems that are 

presented graphically (Sterman, 2008; Sterman & Booth Sweeney, 2007). In these graphical 

problems, participants are asked to sketch CO2 emission and CO2 absorption that would stabilize 

CO2 concentration to an attainable goal by the year 2100. Sterman and Booth Sweeney (2007) 

report that about 70% of participants (about 60% of whom had backgrounds in science, 

technology, engineering, and management (STEM), and a majority of the rest in economics) 

sketched CO2 emission trajectories that were positively correlated with CO2 concentration 

trajectories. Therefore, these participants robustly relied on CH.  
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We believe that the use of the physical representation to depict CO2 accumulation, CO2 

emission, absorption, or average atmospheric temperature over time is likely to improve people‘s 

understanding of climate change. A physical representation would present a problem using a 

series of pictures that work as a ―metaphor‖ to explain changes in the quantity of interest. For 

example, consider a mathematical problem where the length (L) of a square‘s side is doubled and 

one needs to calculate the new area. A physical representation of the problem will be one where 

a single square tile of side L is replaced by four square tiles, each of side L (i.e., to form a square 

of side 2L). There is abundant literature in mathematical education which depicts how and why 

drawings, pictures, and diagrams, facilitate people‘s ability to solve mathematical problems 

when they are presented as metaphors (e.g., Aprea & Ebner, 1999; De Corte et al., 1996; Hall et 

al., 1997; Larkin & Simon, 1987; Schoenfeld, 1992), and we expect that pictorial metaphors are 

likely to enable people to reduce underestimation and reliance on correlation heuristic in 

nonlinear problems. For example, pictorial representations that use an array of icons as a 

metaphor to represent fractions have been effective in reducing people‘s tendency to neglect the 

denominator of a fraction while evaluating a probability or a risk (Garcia-Retamero et al., 2010), 

and to aid people with low numeracy skills in forming improved judgments about risks in 

general (Galesic et al., 2009). Also, research has revealed that a picture of a nonlinear problem 

drawn by students themselves helps them to construct a proper mental representation of the 

essential elements and relations involved in the problem (Pólya, 1945; Schoenfeld, 1992). 

Making a drawing or diagram, however, does not guarantee that one will find the solution to a 

given problem if the representation is incorrect (Van Essen & Hamaker, 1990). According to De 

Bock et al. (2007), an effective method provides students with a ―correct ready-made drawing,‖ 

or a physical representation of a nonlinear problem as a metaphor that communicates the 
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dynamics of the problem. Using this idea, Van Dooren et al. (2007) have shown that among 

school children, the ability to solve nonlinear area problems improves with a physical 

representation compared to a graphical representation. The performance of the group that was 

given a physically represented word problem was superior to the group that was given a 

graphical problem. Thus, we expect that: 

H1: Estimations of accumulation will be more accurate in a physical representation 

compared to a graphical representation. 

If the physical representation can effectively communicate a problem's dynamics and 

help participants to answer correctly, we would like to determine how dependent this effect is on 

a problem‘s context or cover story . That is because prior research has shown that the general 

public lacks training in climatology and has little understanding of climate processes (Bostrom et 

al., 1994; Kasemir et al., 2000; Kempton, 1997; Morgan et al., 2002; Palmgren et al., 2004; Read 

et al., 1994). Consequently, the climate context with CO2 accumulation, emission, and absorption 

processes in Earth‘s atmosphere, is expected to be unfamiliar compared to other contexts that 

people encounter in their day-to-day judgments (e.g., accumulation of water in a bathtub with a 

tap adding water and a drain removing water from the tub, of money in a bank account with 

income and expenditure, or of marbles in a container with marbles being put in and removed).  

Current research is not conclusive regarding the effect of context on problem solving. On 

one hand, research has shown that people‘s judgments are often influenced by their familiarity 

with the context of the problem they solve (Gigerenzer & Hug, 1992). For example, Brunstein, 

Gonzalez, and Kanter (2010) put nonlinear accumulation problems in the medical context and 

found that context‘s familiarity actually hurt participants' performance. Medical students did 

worse in the medical context compared to in a generic context.  Other research, however, reveals 
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no influence of context on judgment (e.g., Almor & Sloman, 2000; Cronin et al., 2009). For 

example, Cronin et al. (2009) found no effect of familiarity with the context on participants‘ 

reliance on CH. In their design, however, the three contexts used were represented using only 

graphical representations. 

We extend this analysis to a physical representation and its comparison to the graphical 

representation in both a climate and non-climate context. Given the expected effectiveness of the 

physical compared to the graphical representation and the lack of consensus regarding the effect 

of context, we expect that: 

H2: Estimations of accumulation will be more accurate in a physical representation 

compared to a graphical representation, regardless of the context used. 

4.3.1 Participants  

One hundred and thirty-two adults from Pittsburgh, PA were recruited through a website 

advertisement and participated in this experiment. Forty-four percent were graduate students 

enrolled in a M.S. or a Ph.D. program, or had completed one of these degrees in the past. The 

rest were undergraduates either enrolled in an undergraduate program, or had completed a 

bachelor's degree. Forty-four participants were females. Ages ranged from 18 to 62 years (M = 

23 years, SD = 6 years). Sixty-two percent of the participants self-reported having degrees in 

science, technology, engineering, and management (STEM), and the rest were non-STEM 

backgrounds. All participants received a flat $3 compensation for answering an accumulation 

problem. 

4.3.2 Experimental Design 

Based upon the two representations and the two contexts within each, participants were 

randomly assigned to one of four between-subjects treatments: climate context and physical 
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representation (climate-physical, N = 25), climate context and graphical representation (climate-

graphical, N = 25), marble context and physical representation (marble-physical, N = 39), and 

marble context and graphical representation (marble-graphical, N = 42). In each treatment, 

participants were provided with one accumulation problem that differed in the context and the 

representation. All four problems were mathematically identical.  

Figure 4-2 shows an example of the graphical representation of the inflow and outflow 

provided to participants in the climate context. The graphs provided in the marble context were 

identical. In the climate context, the CO2 emission and absorption were the inflow and outflow, 

respectively. Similarly, in the marble context, the marbles inserted in and removed out of the 

container were the inflow and outflow. In both contexts, the inflow increased linearly over time 

while the outflow remained constant over all five time periods. Participants were first asked to 

sketch the inflow and outflow in a blank graph provided. Asking participants to sketch the given 

inflow and outflow was done to test their understanding of these flows in the problem. Then, 

participants were asked to sketch the accumulation in another blank graph provided. As shown in 

Figure 4-2, participants were given an initial accumulation value (at time = 0), which was 

depicted as a black dot in the blank graph. The linearly-increasing inflow and constant outflow 

results in a nonlinear (parabolic) and increasing accumulation. This problem was also used by 

Cronin et al. (2009) to demonstrate participants‘ reliance on CH in the graphical representation.  

In the physical representation, participants were shown ―opaque‖ containers in three 

states for each time period: initial state, inflow, and outflow.  The units of inflow and outflow are 

shown as small circles and by using numbers, and the direction of the flow is indicated by arrows 

(see Figure 4-3 for the corresponding physical representation of the graphical form for the 

climate context of Figure 4-2). 
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Figure 4-2. The task presented to the participants in the graphical representation in the climate context in Experiment 1 and 2. 

Participants were provided with graphs showing changes to the inflow and outflow over time and were asked to sketch the 

accumulation value over the five time periods due to the changes in the inflow and outflow. 
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Figure 4-3. The task presented to the participants in the physical representation for the climate context in Experiment 1 and 2. 

Participants were provided a set of opaque containers that depicted the changed in the inflow and outflow over time. 

Participants were asked to sketch the accumulation value over the five time periods due to the changes in the inflow and 

outflow.
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Furthermore, like the graphical representation, participants were asked to sketch the 

accumulation. Again, the same linearly-increasing inflow and constant outflow as in the 

graphical representation were used. Participants were asked to read instructions and to sketch the 

shape of the inflow, outflow, and accumulation over time.   

These problems depicted the changes in the inflow and outflow over five time periods (or 

years) and asked participants to sketch the curve of the inflow, outflow, and the resulting 

accumulation over that time. 

4.3.3 Evaluating participants' responses 

The correct accumulation values were the same in all treatments and could be derived by 

repeatedly using the following equation: 

ST = ST-1 + IT - OT   (1) 

That is the accumulation at time T (ST) is the sum of the accumulation at time T-1 (ST-1) 

and the net inflow (=inflow (IT) – outflow (OT), at time T). For example, given an initial 

accumulation of 10 units and an inflow and outflow of 2 units each in the first time period, the 

accumulation at the end of time period 1 will remain at 10 units (= 10 + 2 - 2). Similarly, the 

accumulation in the second time period (with 4 units inflow and 2 units outflow) will become 12 

units. Calculated in the same way, the accumulation in the time periods 3, 4, and 5 will be 16, 22, 

and 30 units, respectively. 

The sketched accumulation values averaged over all participants in each of the five time 

periods were used as the main source for our analyses. The accumulation values in each of the 

five time periods were compared to the correct corresponding values. Participants 

underestimated the correct accumulation if their sketched accumulation values were less than the 
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correct values. The comparison of the average sketched values with the correct values in each 

time period allows us to test participants‘ reliance on CH using one-sample t tests. 

Correlation coefficients were calculated between participants‘ sketched inflow and 

outflow values in each of the five time periods and the correct corresponding values that were 

given to them in the problem. If any of these two correlation coefficients between the sketched 

and correct inflow and outflow were different from 1.00, then the sketches were marked as 

incorrect. Moreover, in order to classify participants as relying on CH, we correlated 

participants‘ sketched accumulation in each of the five time periods to the correct inflow values. 

If this score was 1.00, then the sketched accumulation was classified as relying on CH. The 

coefficient value of 1.00 is a conservative grading scheme because CO2 emissions are linearly 

increasing in the problem and any nonlinear increasing sketch of CO2 accumulation would result 

in a high positive correlation coefficient. A correlation coefficient value of 1.00 ensures that the 

relationship between the CO2 emissions and concentration is none other than perfectly linear and 

one that follows CH.       

4.3.4 Results 

The percent of correct inflow and outflow responses in different treatments were more 

than 93%. Therefore, participants' understanding of inflows and outflows was similar and highly 

accurate across different treatments.  

To test H1, we compared the participants‘ average sketched accumulation value in each 

of the five time periods to the correct corresponding values in the physical and graphical 

representations (see Table 4-1). There was no difference between the correct accumulation and 

corresponding average accumulation in the graphical and physical representation in the first three 

time periods. For the last two time periods, however, the average accumulation in the physical 
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representation was closer to the correct accumulation, though still less than the correct 

accumulation, compared to that in the graphical representation. This result is illustrated in Table 

4-1 by the weaker p values, and smaller standard deviations and effect sizes in the physical 

representation compared to that in the graphical representation for the last two time periods. 

Estimations of accumulation in the physical representation were more accurate than those in the 

graphical representation (H1).    

Table 4-1. The correct accumulation in different time periods and their corresponding 

average accumulation in the graphical and physical representations in Experiment 1. 

 
Representation Time 1 Time 2 Time 3 Time 4 Time 5 

Correct 10.0 (0.0)
1
 12.0 (0.0) 16.0 (0.0) 22.0 (0.0) 30.0 (0.0) 

Graphical (G) 10.4 (2.2) 12.6 (3.4) 15.7 (4.3) 19.6 (5.6) 24.7 (7.7) 

Statistics (comparison to 

Correct) 

t(66)=1.5, 

ns, r=0.18
2
 

t(66)=1.5, 

ns, r=0.18 

t(66)=-0.5, 

ns, r=0.06 

t(66)=-3.4, 

p<.001, 

r=0.39 

t(66)=-5.7, 

p<.001, 

r=0.57 

Physical (P) 10.0 (1.1) 11.9 (1.2) 15.8 (1.5) 21.4 (2.4) 28.8 (4.0) 

Statistics (comparison to 

Correct) 

t(63)=-0.3, 

ns, r=0.04 

t(63)=-0.5, 

ns, r=0.06 

t(63)=-0.4, 

ns, r=0.05 

t(63)=-2.1, 

p<.05, 

r=0.26 

t(63)=-2.4, 

p<.05, 

r=0.29 

Note. 
1
 The values in bracket represent the standard deviation about the mean. 

2
 The value 

indicates the effect size. 

 

Table 4-2. The correct accumulation in different time periods and their corresponding 

average accumulation in the four treatments in Experiment 1. 

 
Treatment Time 1 Time 2 Time 3 Time 4 Time 5 

Correct 10.0 (0.0)
1
 12.0 (0.0) 16.0 (0.0) 22.0 (0.0) 30.0 (0.0) 

Climate-graphical 10.3 (2.4)
 
 12.3 (2.6) 15.0 (3.1) 18.4 (4.2) 22.6 (6.5) 

Statistics (comparison to 

Correct) 

t(24)=0.6, 

ns, r=0.12
2
 

t(24)=0.6, 

ns, r=0.12 

t(24)=-1.5, 

ns, r=0.29 

t(24)=-4.3, 

p<.001, 

r=0.66 

t(24)=-5.7, 

p<.001, 

r=0.76 

Climate-physical 10.2 (0.8) 12.1 (1.1) 15.9 (1.2) 21.2 (2.3) 28.4 (4.0) 

Statistics (comparison to 

Correct) 

t(24)=1.0, 

ns, r=0.20 

t(24)=0.6, 

ns, r=0.12 

t(24)=-0.5, 

ns, r=0.10 

t(24)=-1.7, 

ns, r=0.33 

t(24)=-2.0, 

ns, r=0.38 

Marble-graphical 10.5 (2.0) 12.8 (3.8) 16.1 (4.9) 20.4 (6.2) 25.9 (8.1) 

Statistics (comparison to 

Correct) 

t(41)=1.6, 

ns, r=0.24 

t(41)=1.4, 

ns, r=0.21 

t(41)=0.2, 

ns, r=0.03 

t(41)=-1.7, 

ns, r=0.26 

t(41)=-3.3, 

p<.01, 

r=0.46 

Marble-physical 09.8 (1.3) 11.8 (1.3) 15.7 (1.7) 21.4 (2.6) 29.1 (4.0) 

Statistics (comparison to 

Correct) 

t(38)=-0.9, 

ns, r=0.14 

t(38)=-1.0, 

ns, r=0.16 

t(38)=-0.4, 

ns, r=0.03 

t(38)=-1.4, 

ns, r=0.22 

t(38)=-1.4, 

ns, r=0.22 

Note. 
1
 The values in bracket represent the standard deviation about the mean. 

2
 The value 

indicates the effect size. 
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Table 4-2 presents the correct accumulation in different time periods and the 

corresponding accumulation in the four treatments to test the effects of context: climate or 

marble. 

There was no difference between the correct accumulation and the corresponding average 

accumulation in the climate-physical and marble-physical treatments in all five time periods, 

regardless of the context. The accumulation in the climate-graphical and marble-graphical 

treatments was less than the correct accumulation in the last two time periods and in the last time 

period, respectively. Thus, regardless of the context, graphical representations led to 

underestimations of the accumulation, supporting hypothesis H2. 

We analyzed the proportion of responses that relied on CH in the graphical compared to 

physical representations. Figure 4-4 shows a typical participant‘s response in the marble-

graphical treatment where the response was classified as relying on CH (based upon a 1.0 

correlation coefficient between the average accumulation and the inflow given in the treatment). 

Also, the participant‘s accumulation in the fifth time period (=18 marbles) underestimated the 

correct accumulation (=32 marbles) as a result of his relying on CH.  
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Figure 4-4. A typical participant’s response in the marble-graphical treatment which shows 

participant’s sketched accumulation that was classified as relying on CH. The marbles in 

the bag (i.e., accumulation) follows a linear trend over time periods (with a constant slope 

of 2 marbles per time period). The correlation coefficient of the marble accumulation with 

the inflow (i.e., Marbles put) is 1.0. Also, the accumulation in the fifth time period (=18 

marbles) underestimates its correct value (=30 marbles). 

 

Table 4-3 shows that the proportion of responses that were classified as relying on CH 

was significantly greater in the graphical than the physical representation, regardless of context 

(climate or marble).That is because of the weaker p value and effect size in the physical 

representation compared to the graphical representation while comparing to a correct response.  

Table 4-3. Proportion of responses classified as relying on the Correlation Heuristic (CH) 

in different treatments in Experiment 1. Comparison statistics with the correct 

accumulation’s CH value (= 0%) are also shown. 

 
Treatment CH (%) Statistics (comparison to Correct) 

Correct 00 - 
Graphical (G) 52 t(66)=8.5, p<.001, r=0.72 

Climate-graphical 72 t(24)=7.9, p<.001, r=0.85 
Marble-graphical 40 t(41)=5.3, p<.001, r=0.64 

Physical (P) 09 t(63)=2.6, p<.05, r=0.31 
Climate-physical 16 t(24)=2.1, p<.05, r=0.39 
Marble-physical 05 t(38)=1.4, ns, r=0.22 



 

 

123 

 

 

Finally, Table A1 in the Appendix presents results regarding the non-STEM and STEM 

backgrounds. In the graphical representation, participants‘ average accumulation underestimated 

the correct accumulation in the last time period (for non-STEMs) and last two time periods (for 

STEMs). In the physical representation, there was no difference between the average 

accumulation and the correct accumulation, regardless of the background. A similar pattern was 

found for undergraduates, who underestimated the correct accumulation in the last time period 

and for graduates, who underestimated the correct accumulation in last three time periods (see 

Table A2 in Appendix). For both backgrounds and levels of education, a smaller proportion of 

responses were classified as relying on CH in the physical representation than in the graphical 

representation (for detailed statistics, see Table A3 in the appendix).  

4.3.5 Discussion 

In agreement with previous literature in mathematical education (Evangelidou et al., 

2004; Leinhardt et al., 1990; Van Deyck, 2001) and on accumulation problems (Cronin et al., 

2009), our results show that people underestimate nonlinear accumulations and rely on 

correlation heuristic in graphical representations. In contrast, a physical representation reduces 

participants‘ underestimations as well as their reliance on correlation heuristic; regardless of the 

context, education background, and levels of education of the participants. Although we can only 

speculate, it is likely that the physical representation helps people understand the accumulation‘s 

basic dynamics: accumulation rises when inflow is greater than the outflow, accumulation falls 

when the inflow is less than the outflow, and accumulation stabilizes when inflow equals 

outflow. Due to the use of a metaphor in the physical representation, participants might be able 

to improve their visualization of the processes that govern the changes in accumulation. 



 

 

124 

 

Moreover, this visualization is not completely salient in the graphical representation, and this 

fact could be a reason for participants‘ poor performance in the graphical representation.  

Furthermore, prior research has also used a text representation to investigate people‘s 

reliance on CH in CO2 accumulation problems (Sterman, 2008; Sterman & Booth Sweeney, 

2007). People‘s reliance on CH has been found to be equally strong in the text representation like 

in the graphical representation (Cronin et al., 2009). Although this experiment allowed us to test 

in a physical representation compared to that in a graphical representation, we still do not know 

whether the physical representation is also as effective compared to the text representation. For 

this experiment, we used an increasing accumulation problem where the inflow increased 

linearly, while the outflow was constant. This inflow-outflow behavior caused the accumulation 

to increase nonlinearly over time. For such an inflow-outflow behavior, reliance on CH made 

people sketch a linearly increasing accumulation that was similar in shape to the linearly 

increasing inflow. As a linearly increasing accumulation sketch approximates a nonlinearly 

increasing accumulation, people‘s reliance on CH is likely to produce only a small 

underestimation of the actual accumulation. However, if one considers a decreasing problem 

where the shape of the inflow decreases over time but it is greater than a constant outflow, then 

the accumulation will still increase nonlinearly over time. This increase, however, will be in 

direct opposition to the linearly decreasing inflow. If people rely on CH in this decreasing 

problem, they would also sketch a linearly decreasing accumulation over time, and their sketch 

will greatly underestimate the actual nonlinearly increasing accumulation. Moreover, because of 

the opposing direction of the inflow and accumulation, the decreasing problem is also likely to 

be a more challenging problem to participants compared to the increasing problem (Dutt, in 

press; Dutt & Gonzalez, 2007; Gonzalez & Dutt, 2007, 2011; Lebiere et al., in press). Finally, 
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the decreasing problem also seems to be a realistic case for Earth‘s climate because policymakers 

could potentially decide upon interventions in the near future which decrease CO2 emissions, 

rather than leave them unregulated and increasing over time. We test the effectiveness of the 

physical representation against the text representation for the decreasing problem as part of the 

next experiment. 

4.4 Experiment 2: Physical, graphical, and, text representations in increasing 

and decreasing problems 

As discussed above, people‘s reliance on CH is also present in nonlinear problems that 

are presented as text descriptions (Cronin & Gonzalez, 2007; Cronin et al., 2009), which has also 

been commonly used as part of climate research (Sterman & Booth Sweeney, 2002). In this 

experiment, we extend our investigation of the robustness of physical representation against both 

the text and graphical representations in problems with different shapes of inflow: linearly 

increasing and decreasing. If physical representation is effective in improving people‘s 

understanding about the dynamics of emission, absorption, and accumulation in different 

problems, then we expect:    

H3: Estimations of accumulation will be more accurate in a physical representation 

compared to both graphical or text representation, regardless of whether the inflow linearly 

increases or decreases over time. 

In order to test H3, we take two nonlinear problems in the climate context, increasing and 

decreasing, in three different representations: text (i.e., using a written description), graphical 

(i.e., using mathematical graphs), and physical (i.e., using pictures). 
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4.4.1 Participants  

One hundred and thirty-two adults from Pittsburgh, PA were recruited through a website 

advertisement and participated in the experiment. Forty-eight percent were graduate students 

enrolled in a M.S. or a Ph.D. program, or had previously completed one of these degrees. The 

rest of the participants were undergraduates either enrolled in an undergraduate program, or had 

previously completed a bachelor's degree. Forty-seven participants were females. Ages ranged 

from 18 years to 70 years (M = 27 years, SD = 10 years). Sixty-nine percent of the participants 

self-reported having degrees in science, technology, engineering, economics, and management 

(STEM), and the rest had a non-STEM background. Furthermore, participants self-reported to 

gather news on climate change from the following sources: 3% from books, 52% from Internet, 

2% from magazines, 19% from newspapers, 1% from family and friends, 1% from radio, 11% 

from television, and the rest (11%) reported having no source of news on climate change. Also 

based upon responses to a question that asked participants about their knowledge on climate 

change, participants‘ responses could be summarized as follows: 21% mentioned having no 

knowledge about climate change, 37% mentioned the causes of climate change (e.g., ―climate 

change is caused by…‖), 27% mentioned the effects of climate change (e.g., ―climate change 

leads to or has the following effects…‖), and 15% expressed their beliefs about the 

occurrence/no occurrence of climate change (e.g., ―I believe climate change will occur…‖). All 

participants received a flat $3 compensation for answering a nonlinear accumulation problem in 

the treatment to which they were randomly assigned. 

4.4.2 Experimental Design 

Participants were randomly assigned to one of six between-subjects treatments: 3 

representations (text, graphical, and physical) x 2 (increasing and decreasing) problems. In each 
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of the six treatments, participants attempted a nonlinear accumulation problem concerning CO2 

accumulation in the atmosphere with different representations and increasing or decreasing 

inflows (where inflows were greater than a constant outflow): text-increasing (N = 26), text-

decreasing (N = 18), graphical-increasing (N = 26), graphical-decreasing (N = 18), physical-

increasing (N = 26), and physical-decreasing (N = 18). Just as done in experiment 1, all six 

problems depicted the changes in the inflow and outflow over five time periods (or years) and 

asked participants to sketch the curve of the inflow, outflow, and resulting accumulation over the 

five time periods. The dependent variables used were identical to those used in experiment 1.  

Figure 4-5 shows the decreasing problem presented to participants in the text 

representation. The tabulated inflow (CO2 emissions) decreased linearly over time from 10 GtC 

per year to 2 GtC per year, whereas the outflow remained constant (=2 GtC per year). The 

increasing problem in the text representation was the exactly the same as the decreasing problem, 

but now the inflow increased linearly over time from 2 GtC per year to 10 GtC per year (outflow 

was constant at 2 GtC per year). The increasing problem in the graphical and physical 

representations was identical to that used for the climate context in experiment 1 (except that the 

initial accumulation was set at 20 GtC instead of 10 GtC so as to keep the initial accumulation 

equidistant from the two endpoints of the Y axis).
15

 The decreasing problem in graphical and 

physical representation followed the same structure as the increasing problem; however, now the 

inflow decreased linearly in the problem from 10 GtC per year to 2 GtC per year. As in 

experiment 1, the correct accumulation in the increasing and decreasing problems could be 

derived by repeatedly using equation 1. 

                                                 
15

 In experiment 1, we placed the starting accumulation (t=0) below the mid-point of the Y axis. This non-

equidistant placement of initial accumulation along with the climate context (where real-world CO2 accumulations 

are increasing) could have hinted participants that the accumulation was going to increase over the next five time 

periods. Furthermore, this could have been a possible reason for their relying on CH in different treatments in this 

experiment. Therefore, in experiment 2, we correct this methodological issue in our design. 
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Figure 4-5. The decreasing problem presented to participants in the text representation in 

Experiment 2. 
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4.4.3 Results 

In both the increasing and decreasing problems for different representations, more than 

96% of participants correctly sketched the inflow and outflow shapes over time. Thus, 

participants‘ understanding about the inflow and outflow in the different representations and in 

different problems was similar and extremely high. 

To test H3, we compared participants‘ responses in the text and graphical representations 

to those in the physical representation for both the increasing and decreasing problems. Table 4-4 

presents the correct accumulation in different time periods and the corresponding average 

accumulation given by participants in the graphical, text, and physical representations for each 

problem. In the increasing problem, the average accumulation in the physical representation was 

much closer to the correct accumulation compared to that in the graphical or text representations. 

Upon comparing the graphical and physical representations, we find that these results are in the 

same direction as reported in experiment 1.  

In the decreasing problem, again the accumulation in the physical representation was 

much closer to the correct accumulation compared to that in the graphical or text representations. 

The decreasing problem is much more challenging for participants; participants relying on CH 

would think that the CO2 accumulation decreases linearly over the five time periods, whereas, 

relying on CH in the increasing problem would have the accumulation increase linearly over 

time. Therefore, it is likely to become counter intuitive for participants in the decreasing problem 

to sketch accumulations that increase over the five time periods. Due to these observations, the 

underestimation of the correct CO2 accumulation is found to be greater in the decreasing problem 

compared to that in the increasing problem. The accumulation reported in the graphical and text 

representations for the decreasing problem underestimated the correct accumulation much more 
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than that in the physical representation. In accordance with our expectation about CH reliance, a 

majority of participants in the text and graphical representation seemed to have sketched their 

accumulation sloping downwards, similarly to the shape of the linearly decreasing inflow. That 

is because, as shown in Table 4-4, the accumulation has a negative slope and the accumulation in 

the fifth time period is less than that in the first time period. However, in the physical 

representation, the slope of accumulation over time periods is still positive. Taken together, these 

confirm our expectation in H3: the estimation of accumulation is more accurate in the physical 

representation compared to that in the graphical and text representations for both increasing and 

decreasing problems.  

Table 4-4. The correct accumulation in different time periods and their corresponding 

average accumulation in the graphical, text, and physical representations for the increasing 

and decreasing problems in Experiment 2. 

 
Increasing problem 

Representation Time 1 Time 2 Time 3 Time 4 Time 5 

Correct 20.0 (0.0)
1
 22.0 (0.0) 26.0 (0.0) 32.0 (0.0) 40.0 (0.0) 

Graphical (G) 18.5 (5.4) 19.9 (5.3) 21.9 (5.6) 24.5 (6.7) 27.6 (9.0) 

Statistics (comparison to 

Correct) 

t(25)=-1.4, 

ns, r=0.27
2
 

t(25)=-2.0, 

p<.05, 

r=0.37 

t(25)=-3.7, 

p<.001, 

r=0.59 

t(25)=-5.7, 

p<.001, 

r=0.75 

t(25)=-7.0, 

p<.001, 

r=0.81 

Text (T) 18.5 (5.4) 20.0 (5.3) 22.1 (5.6) 24.7 (6.7) 27.9 (9.0) 

Statistics (comparison to 

Correct) 

t(25)=-1.4, 

ns, r=0.27 

t(25)=-1.9, 

ns, r=0.36 

t(25)=-3.6, 

p<.01, 

r=0.58 

t(25)=-5.5, 

p<.001, 

r=0.74 

t(25)=-6.9, 

p<.001, 

r=0.81 

Physical (P) 20.0 (0.0) 22.0 (0.0) 25.8 (0.7) 31.3 (2.0) 38.6 (3.9) 

Statistics (comparison to 

Correct) 

t(25)=0.0, 

ns, r=0.00 

t(25)=0.0, 

ns, r=0.00 

t(25)=-1.8, 

ns, r=0.34 

t(25)=-1.8, 

ns, r=0.34 

t(25)=-1.8, 

ns, r=0.34 

Decreasing problem 

Representation Time 1 Time 2 Time 3 Time 4 Time 5 

Correct 28.0 (0.0) 34.0 (0.0) 38.0 (0.0) 40.0 (0.0) 40.0 (0.0) 

Graphical (G) 19.0 (8.9) 20.1 (12.4) 20.4 (15.2) 20.0 (17.1) 18.8 (18.1) 

Statistics (comparison to 

Correct) 

t(17)=-4.3, 

p<.001, 

r=0.72 

t(17)=-4.7, 

p<.001, 

r=0.75 

t(17)=-4.9, 

p<.001, 

r=0.77 

t(17)=-5.0, 

p<.001, 

r=0.77 

t(17)=-5.0, 

p<.001, 

r=0.77 

Text (T) 18.0 (9.2) 19.4 (13.2) 19.9 (16.0) 19.3 (17.8) 17.8 (18.7) 

Statistics (comparison to 

Correct) 

t(17)=-4.6, 

p<.001, 

r=0.74 

t(17)=-4.7, 

p<.001, 

r=0.75 

t(17)=-4.8, 

p<.001, 

r=0.76 

t(17)=-4.9, 

p<.001, 

r=0.77 

t(17)=-5.0, 

p<.001, 

r=0.77 

Physical (P) 22.0 (8.2) 25.1 (11.9) 27.0 (14.8) 27.7 (16.7) 27.1 (17.6) 

Statistics (comparison to 

Correct) 
t(17)=-3.1, 

p<.01, 

t(17)=-3.2, 

p<.01, 

t(17)=-3.2, 

p<.01, 

t(17)=-3.1, 

p<.01, 

t(17)=-3.1, 

p<.01, 
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r=0.60 r=0.61 r=0.61 r=0.60 r=0.60 
 

Note. 
1
 The values in bracket represent the standard deviation about the mean. 

2
 The value 

indicates the effect size. 

 

Furthermore, greater underestimation in text and graphical representations compared to 

the physical representation is likely due to participants‘ reliance on CH. The procedure followed 

to classify a participant‘s response as relying on CH was identical to in experiment 1. Table 4-5 

shows the proportion of responses classified as relying on CH in different treatments. If 

participants responded correctly, then their  sketched accumulations will be nonlinear in shape 

and would not be classified as relying on CH (the correct accumulation shape therefore has 0% 

CH). In both increasing and decreasing problems, the proportion of responses classified as 

relying on CH was less for the physical representation compared to the graphical and text 

representations.  

Table 4-5. Proportion of responses classified as relying on the Correlation Heuristic (CH) 

in different representations and problems in Experiment 2. Comparison statistics with the 

correct accumulation’s CH value (= 0%) are also shown. 

 
Increasing problem 

Representation and Education CH (%) Statistics (comparison to Correct) 

Correct 00 - 

Graphical (G) 73 t(25)=8.2, p<.001, r=0.85
1
 

Text (T) 69 t(25)=7.5, p<.001, r=0.83 

Physical (P) 12 t(25)=1.8, ns, r=0.34 

Decreasing problem 

Treatment CH (%) Statistics (comparison to Correct) 

Correct 00 - 

Graphical (G) 61 t(17)=5.2, p<.001, r=0.78 

Text (T) 56 t(17)=4.6, p<.001, r=0.74 

Physical (P) 33 t(17)=2.9, p<.01, r=0.58 

 

Note. 
1
 The value indicates the effect size. 

Finally, we also tested the effectiveness of the physical representation compared to the 

graphical and text representations for each problem among different education backgrounds and 

education levels. For STEMs and non-STEMs in both problems, estimates of the accumulation 
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were much closer to the correct in the physical representation compared to the graphical and text 

representations (see Table B1 in the appendix). Again in both problems, both the 

undergraduates‘ and graduates‘ accumulation were generally more accurate in the physical 

representation than that in the graphical and text representations (see Table B2 in the appendix). 

Similarly, the proportion of responses relying on CH among STEMs and non-STEMs in the 

physical representation was much less compared to that among STEMs and non-STEMs in the 

graphical and text representations, respectively (see Table B3 in the appendix). Also, a similar 

relationship was observed among graduate and undergraduate levels of education (see Table B3 

in the appendix).  

4.4.4 Discussion 

Our results indicate that the physical representation is more effective compared to both 

the text and graphical representations across different problem types, and is effective in reducing 

participants‘ reliance on CH. Even though participants‘ understanding about inflow and outflow 

was no different in different treatments, the physical representation decreased participants‘ CH 

reliance. The decrease in CH reliance in the physical representation was despite the fact that the 

relationship between the accumulation and inflow is counter-intuitive in the decreasing problem: 

the emissions decrease linearly, although the actual CO2 accumulation continues to increase 

nonlinearly over time. This is observed in both the graphical and text representations for our 

results; the average sketched accumulation over the five time periods had a negative slope. In the 

physical representation, however, the slope of the average sketched accumulation over the five 

time periods was positive. Taken together, these findings reinforce the effectiveness of the 

physical representation in different problems and compared to different representations. The 
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physical representation‘s effectiveness makes it suitable for use in different kinds of dynamic 

problems, where the resulting shape of the inflow might be different over time. 

4.5 General Discussion 

People underestimate the correct value of nonlinear accumulation given their reliance on 

the correlation heuristic for different contexts and problems. The use of a physical 

representation, however, can help reduce people‘s underestimation and reliance on the 

correlation heuristic in nonlinear accumulation problems, regardless of the problem‘s dynamics 

or context, and participants‘ educational backgrounds and education levels. 

Considering its effectiveness in our results, the use of a physical representation may 

motivate participants to get involved in the problem they‘re solving, and may help them 

construct a correct representation of the problem. Research that has investigated physical 

representation in the past has also concluded similarly for the representation‘s effectiveness 

(Cooper & Harris, 2002, 2003; De Lange, 1987; Freudenthal, 1983; Palm, 2002). Given its 

effectiveness in our results and the documented benefits in mathematical education and judgment 

and decision making literature (Aprea & Ebner, 1999; De Corte et al., 1996; Galesic et al., 2009; 

Garcia-Retamero & Galesic, 2010; Garcia-Retamero et al., 2010), physical representations will 

also be effective in reducing correlation heuristic reliance in a wider range of nonlinear problems 

and contexts.  

Generally, one could imagine many different physical representations in nonlinear 

problems that depend upon what needs to be communicated to a decision maker in these 

problems. For example, in order to communicate fractions, probability, or risk, an icon array has 

been found to be very effective (Galesic et al., 2009; Garcia-Retamero & Galesic, 2010; Garcia-

Retamero et al., 2010). The physical representation we used here provided a picture snapshot of 
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the inflows and outflows at any instance of time to a decision maker. A possible limitation of our 

representation is that it might be impractical for problems with a larger time scale. One could 

depict the changes in flows only for the first few and last few time periods in problems with a 

larger time scale, and may still reap the benefits of using a physical representation. By doing so, 

one is likely to be able to communicate the correct understanding of accumulation in a problem. 

In this paper, we have shown that the physical representation is effective in both climate 

and non-climate contexts. Therefore, the use of physical representation would be of immense 

potential to improving public understanding in these contexts. As the current wait-and-see 

policies for Earth‘s climate are likely to cause catastrophic changes in the near future (Alley et 

al., 2003; Scheffer et al., 2001), however, our findings are particularly relevant to research on 

wait-and-see behavior for climate change. With wait-and-see behavior, people prefer to delay 

policy actions that mitigate climate change to a future time. The changes in atmospheric CO2 

accumulation (which is one of the main contributors for climate change) has been increasing 

nonlinearly for many years since the Industrial Revolution (IPCC, 2007). Furthermore, the 

accumulation‘s nonlinear increase is predicted to intensify over the next 50-60 years (IPCC, 

2007), with adverse consequences like temperature change, melting of polar icecaps, and rising 

sea levels (Alley et al., 2003; Scheffer et al., 2001). As seen in our findings, people tend to 

underestimate a nonlinear change in the CO2 accumulation, when inferring from text and 

graphical representations. Because text and graphical representations are commonly used to 

communicate climate change (IPCC, 2001a; EPA, 2010; Schiermeier, 2010), people are likely to 

underestimate the CO2 accumulation‘s nonlinear change and inaccurately infer much less CO2 in 

the atmosphere compared to that predicted by climate scientists. Underestimating the CO2 

accumulation is likely to undermine the importance of the climate problem, and this could result 
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in people‘s wait-and-see behavior. A physical representation could be used to represent the CO2 

accumulation information and communicate the dynamics of Earth‘s climate. Using the physical 

representation over other forms like text or graphs, we might be able to improve our estimation 

on atmospheric CO2 and its associated global warming, and may ultimately reduce people‘s wait-

and-see behavior.  

Let us return to the fable about the inventor of chess and the king. By now, it becomes 

easier to explain why the king thought that the inventor‘s request was modest; He was unable to 

foresee how the accumulation of rice was nonlinear. He underestimated the rice accumulation 

much like our participants did on nonlinear accumulation problems. But the king realized the 

cleverness of the inventor‘s request halfway through fulfilling it. The actual ―physical exercise‖ 

of putting the rice grains on the chess board‘s squares was an example of a physical 

representation. As shown by the current research, the use of physical representation enables 

people to overcome underestimation of accumulation in nonlinear problems. 
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4.7 Next Chapters’ Highlights 

As it might be difficult to change people‘s correlational or linear thinking processes in the 

real world, the next two chapters (5 and 6) discuss how one could instead rely on these processes 

to enable people to make decisions that are better for Earth‘s climate. Furthermore, chapter 5 

extends this analysis to people from both policy and general backgrounds. 
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5.1 Abstract 

Past research has shown that a majority of people exhibit robust linear thinking for nonlinear 

changes in their decision environment. We argue that linear thinking could be particularly 

problematic in the case of interpreting carbon-dioxide‘s (CO2) lifetime in the earth‘s atmosphere. 

Participants from policy and non-policy backgrounds were asked to rank five ranges of CO2 

percentages to be removed from the atmosphere according to their impact on CO2‘s lifetime in 

two separate conditions: Aid and no-Aid. In the Aid condition, participants were provided with a 

descriptive decision aid through instructions that might enable them to answer the problem 

correct, while this aid was absent in the no-Aid condition. Two problems were presented to each 

participant in random order: Linear, where a ranking based upon linear thinking yielded a correct 

rank order; and Nonlinear, where a ranking based upon linear thinking yielded an incorrect rank 

order. Results reveal that a majority of participants from both backgrounds responded linearly on 

both problems and although the decision aid had no effect on participants‘ correct responses, it 

enabled policy backgrounds to move away from responding according to linear thinking. We 

discuss implications of these findings on policymaking about climate change. 

   

Keywords: carbon-dioxide gas‘s lifetime; linear thinking; climate change; aid; nonlinear 

problems. 
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5.2 Introduction 

According to Galileo Galilei (Galilei, 1638), Aristotle believed that the speed with which 

an object falls is linearly related to its weight. Thus, comparing dropping a ball weighting 100 kg 

and another weighting 1 kg from the same height, the heavier ball will fall 100 times faster. 

Responding linearly as Aristotle did refers to a function, f(x) = a*x, where f(x) is a person‘s 

decision response, x is a change in the decision environment, and a is different from zero
16

 

(Freudenthal, 1983). Many centuries later, Galileo proved Aristotle‘s reasoning as wrong, but it 

is unclear whether our tendency to respond linearly to nonlinear problems has been solved. 

Currently, there is burgeoning amount of evidence that a majority of people think linearly 

when encountering nonlinear problems in their decision environment (Cronin, Gonzalez, & 

Sterman, 2009; Dörner, Kimber, & Kimber, 1997; Dutt & Gonzalez, 2009a, 2011; Larrick & 

Soll, 2008; Van Dooren, De Bock, Janssens, & Verschaffel, 2007). For example, more than 90% 

of students at the end of elementary school responded ―170 seconds‖ to the question: ―John‘s 

best time to run 100 meters is 17 seconds. How long will it take him to run 1 kilometer?‖ (Greer, 

1993). Similarly, many people wrongly believe that ―3,500 calories consumed is a pound,‖ or for 

every 3,500 ―extra‖ calories consumed, you will gain one pound (Chow, 2010).
17

 In fact, the 

tendency to respond linearly has been shown to pervasively affect human judgment in global 

problems involving serious socio-economic consequences such as those concerning the earth‘s 

climate (Dutt & Gonzalez, 2009a, 2011; Sterman, 2008; Sterman & Booth Sweeney, 2007). For 

example, Dutt and Gonzalez (2009b) have shown that when university students were asked to 

estimate the shape of a carbon-dioxide (CO2) accumulation and given linear changes in CO2 

                                                 
16

 If a = 0, then the relationship is constant (= 0) rather than linear. For a constant relationship, a person‘s decision 

response is independent of environmental changes. 
17

 The actual relationship between the changes in body weight over time is nonlinear, and is a function of a person‘s 

food intake and the difference of one‘s current body weight from a reference body weight (Chow, 2010).  
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emissions and absorptions over time, a majority drew a linear shape for the accumulation that 

was similar to the linear shape of CO2 emissions over time. Similarly, Sterman and Booth 

Sweeney (2007) and Sterman (2008) have shown that people often misperceive the dynamics of 

CO2 accumulation; assuming that if one is to increase the accumulation, then CO2 emissions should 

increase as well in a shape similar to the accumulation. This tendency to respond linearly is also 

related to people‘s level of education in science and technology (STEM) (Dutt & Gonzalez, 2009b), 

where people with backgrounds in STEM seem to respond less linearly compared to non-STEM 

backgrounds.  

A prediction that the shape of an accumulation ―looks like‖ the shape of the inflow is an 

example of robust linear thinking called the correlation heuristic (CH) (Cronin et al., 2009). 

According to Cronin et al. (2009), the proportion of participants relying on the CH increased as 

the nonlinear relationship between the inflow, outflow, and accumulation became more complex. 

In the case of the earth‘s climate, people may underestimate the extent of the nonlinear increase 

in CO2 accumulation (Dutt & Gonzalez, 2010). That is because the shape of CO2 emissions 

(inflow) has been increasing about linearly over time (IPCC, 2007), and people might think that 

the accumulation will also increase linearly. In practice, an assumption of linear increase will 

underestimate the actual increase. Furthermore, such underestimations could undermine the 

urgency of the climate problem and encourage deferment of human actions, leading to wait-and-

see behavior (Dutt & Gonzalez, 2009a, 2011; Sterman, 2008; Sterman & Booth Sweeney, 2007). 

It has been argued that overreliance on linear thinking is partly due to its simplicity 

(Fischbein, 1999; Freudenthal, 1983; Lesh, Post, & Behr, 1988; Rouche, 1989). For example, 

Rouche (1989) argued that ―it is the idea of proportionality that comes immediately in the mind, 

because undoubtedly there are no functions that are more simple than the linear ones‖ (pg. 17). 

Similarly, Freudenthal (1983) commented that ―linearity is such a suggestive property of 
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relations that one readily yields to the seduction to deal with each numerical relation as though it 

were linear‖ (pg. 267).  

Furthermore, literature on heuristics and biases show that simple linear models lead to 

approximate correct responses that are more accurate than even expert judgments (Dawes, 1979; 

Goldberg, 1970). For example, Dawes (1979) gives the example of predicting something as 

abstract as ―professional self-actualization.‖ Given students‘ graduate record examination, grade 

point average, and letters of recommendation, one could create a simple linear model to predict 

the students‘ professional self-actualization (self-actualization was measured for a set of students 

based upon their achievement post-graduation from the university). When Dawes and Corrigan 

(1974) applied different linear models to five different datasets to predict the criterion, an equal 

weighting linear model (the simplest assumption of linearity) outperformed all other competing 

models. Thus, simple linear assumptions can be accurate in many situations, and people depend 

upon it because it yields an accurate answer in many situations. 

Concrete interventions can help reduce linear thinking in both simple and complex 

nonlinear problems (Cronin et al., 2009; Larrick & Soll, 2008; Garcia-Retamero, Galesic, 

Gigerenzer, 2010). For example, a physical representation of a nonlinear problem that uses 

pictures as ―metaphors‖ helped participants reduce their reliance on linear thinking and increased 

their accuracy (Dutt & Gonzalez, 2010). Although these interventions seem to be effective in 

reducing reliance on linear thinking, they require people to change their cognitive thought 

processes in nonlinear problems, where such a change might at times become very difficult or 

even impossible to attain (Klayman & Brown, 1993). 

This paper demonstrates robust reliance on linear thinking in a nonlinear environmental 

problem. It tests concrete interventions to help people respond correctly without changing their 
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tendency to think linearly.
18

 One intervention is to present a nonlinear problem in a way where 

linear thinking results in a correct response. Some research has shown that a change in the 

information context can enable people to make correct responses without influencing their 

natural thought process (Klayman & Brown, 1993; Payne, Bettman, & Schkade, 1999). Another 

intervention is to encourage participants through instruction to think nonlinearly; an intervention 

that tries to change a participant‘s thought process. Recent research has shown that a nudge given 

in the form of written instructions might enable improved decisions (Thaler & Sunstein, 2008). 

Furthermore, we evaluate whether participants‘ policy backgrounds influence their reliance on 

linear thinking in these problems. Because decisions about environmental problems are made by 

policymakers, it is important to determine if the participant's background in politics, business, 

economics, and law influence their thinking compared to non-policy backgrounds. According to 

Nordhaus (1994), the policy background is highly representative of the backgrounds possessed 

by policymakers who decide on environmental issues facing the world. 

5.3 The Nonlinear CO2 Lifetime Problem 

The lifetime of CO2 in the atmosphere (in units of years) is the time it takes to remove a 

certain mass of CO2 from the atmosphere. CO2 lifetime is naturally affected by the yearly 

percentage of CO2 removed ("percent-removed" hereafter) by natural processes like absorptions 

by oceans and photosynthesis in plants (IPCC, 2007). A large percent-removed is desirable 

because larger quantities of accumulated CO2 leads to climate change and increasing average 

temperature (IPCC, 2007). Figure 5-1 exemplifies CO2‘s lifetime in the atmosphere as a 

nonlinear function of its percent-removed: the lifetime of CO2 in the atmosphere (units: years) = 

100 / percent-removed (units: percent per year). 

                                                 
18

 We discuss other problems in the discussion section where linear thinking could result in a correct response based 

upon the problem‘s presentation. 
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Figure 5-1. The nonlinear relationship between CO2’s lifetime and percent-removed in the 

CO2 lifetime problem. 

 

As shown in Figure 5-1, a decrease in the percent-removed corresponds to a nonlinear 

increase in CO2 lifetime. In addition, the percent-removed is expected to decrease in future years, 

as oceans and plants are expected to have a reduced ability to absorb CO2, resulting in a large 

increase in atmospheric CO2 lifetime  (Cramer et al. 2001; Joos et al. 2001; Matear & Hirst, 

1999; Sarmiento & Quéré, 1996). Given the nonlinear relationship between the percent-removed 

and CO2 lifetime, the equal range of reduction in percent-removed may result in a very large or 

very small increase in CO2 lifetime, depending on where the range falls on the non-linear curve 

(see Figure 5-1). For example, a percent-removed reduction from 0.3 to 0.1 (i.e., 0.2 range) per 

year results in a 667 years increase for CO2 lifetime. A reduction from 0.8 to 0.6 (i.e., a similar 

0.2 range) per year, however, results in only a 42 years lifetime increase.  

Consistent with the substantial evidence of human linear thinking in nonlinear problems, 

we expect that participants will think linearly when asked to judge the effect of a decrease in 

CO2‘s percent-removed on an increase in CO2 lifetime: they would believe that the largest 

reduction in percent-removed would result in the largest increase in lifetime. Thus, we expect: 
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H1a: A larger proportion of linear responses than nonlinear responses. 

Furthermore, we expect that by presenting a problem where a linear response leads to a 

correct response, we will enable participants to make correct responses even when relying on 

linear thinking (Klayman & Brown, 1993; Payne et al., 1999). We accomplish this by changing 

the presentation of information in the decision environment. This manipulation is strictly in the 

decision environment, not a treatment to change participants‘ thought processes. Such an 

approach has also been suggested in other judgment research (Larrick, 2004; Klayman & Brown, 

1993; Payne et al., 1999). In other cases, however, linear thinking would lead to incorrect 

responses. Thus, we hypothesize that: 

H1b: The proportion of correct responses will be greater when the correct response in the 

problem is aligned with linear thinking compared to when it is not.  

Furthermore, another way to improve participants‘ decision making is to provide them 

with a descriptive aid through instruction (Thaler & Sunstein, 2008). The aid could be in the 

form of a statement that suggests to convert a CO2‘s percent-removed value to a CO2‘s lifetime 

value (where CO2‘s lifetime = 100 / percent-removed as seen in Figure 5-1) and make it simpler 

for them to calculate the linear increase in CO2‘s lifetime. Using CO2‘s lifetime information will 

help a person reduce the nonlinear problem to a linear one, making it easy to answer the problem 

correctly. It is to be noted that unlike the above manipulation that changed a person‘s decision 

environment, this aid manipulation is aimed at changing a person‘s linear thought process. Thus, 

we hypothesize that: 

H2: The proportion of correct responses will be greater for those who are given an aid 

than those who are not given an aid. 
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Finally, according to Dutt and Gonzalez, (2009b), a greater proportion of STEMs 

provided correct responses in nonlinear problems compared to non-STEMs. A possible reason 

for this finding is that STEMs possess greater expertise in mathematical problem solving (Chi, 

2006). For example, Chase and Simon (1973) found that expertise and skill in chess enabled 

participants to recognize significant patterns and remember them easily. Similarly, experience in 

mathematical problem solving might enable STEMs to respond appropriately in nonlinear 

problems. Currently, there is dearth of research that directly investigates people with policy 

backgrounds‘ linear responses in nonlinear problems. If policy backgrounds possess some 

expertise in policymaking, then they should respond more accurately in the CO2 lifetime 

problem. Thus, we expect: 

H3: A larger proportion of correct responses by those with policy backgrounds compared 

to those with non-policy backgrounds.  

5.4 Methods 

5.4.1 Participants  

Sixty-seven participants participated in this experiment and were recruited using an 

online advertisement. Twenty-three participants were from a policy background, and possessed 

or were pursuing degrees in political science (N=3), business (N=2), economics (N=5), policy 

(N=9), and law (N=4). The rest of the participants (N=44) had non-policy backgrounds. Thirty-

three participants were females. Ages ranged from 18 to 52 years (Mean= 25, SD= 6). Forty-nine 

percent of participants were either enrolled in a graduate degree or had completed a graduate 

degree in the past. Forty-four percent of participants with a policy background and fifty-two 

percent of participants with a non-policy background were either enrolled in a graduate degree or 

had completed a graduate degree in the past, respectively. All sixty-seven participants reported 
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knowing some information about climate change through television, radio, newspaper, magazine, 

movie, or a talk with family or friends. Ten and thirteen participants with policy backgrounds 

were randomly assigned to the no-Aid and Aid conditions, respectively. Twenty-five and 

nineteen participants with non-policy backgrounds were randomly assigned to the no-Aid and 

Aid conditions, respectively. All participants received a flat compensation of $5 in the 

experiment, which lasted for about 10 minutes.   

5.4.2 Materials and Procedure 

Each participant was presented with two problems in random order. One of the problems 

is aligned correctly with linear thinking (Linear) while the other problem is not (Nonlinear). 

"Aligning correctly" with linear thinking meant that the problem was presented such that a linear 

response would yield a correct response, while ―aligning incorrectly‖ meant that the problem was 

presented such that a linear response would yield an incorrect response. Each problem consisted 

of five ranges of decreasing values of CO2 percent-removed per year, with a From (status-quo 

and higher) and a To (future and lower) value. Participants were asked to rank the percent-

removed ranges from the one that would cause the largest increase in CO2 lifetime (rank 1) to the 

smallest increase (rank 5) (see Figure 5-2 for full instructions). Participants were also requested 

to clearly show their math in the space provided. 

Participants were randomly assigned to one of two conditions, Aid or no-Aid. In the Aid 

condition, participants were given the following statement as part of the instructions: ―For 

calculations, the climate scientist has suggested that you translate the yearly percentage of CO2 

removed values (in percentage of CO2 per year) into the lifetime that CO2 stays in the 

atmosphere (in years).‖ This sentence was omitted from the instructions for participants assigned 

to the no-Aid condition.  



 

 

150 

 

Aid Condition, Linear Problem Aid Condition, Nonlinear Problem 

  

Figure 5-2. The climate problems, Linear and Nonlinear, presented to the participants in 

the Aid condition. The same problems were presented in the no-Aid condition, except that 

the statement instructing the participant to convert the percent-removed to CO2’s lifetime 

was omitted. 

 

The ranks and math shown by participants were used to classify the type of procedure 

they used to respond (linear or nonlinear). Only one sequence of ranks from 1 to 5 is correct 

response in each problem, however, participants could enter different sequence of ranks by 

following different rank-order rules. Table 5-1 provides five different linear rank-order rules that 

participants could follow in each problem (numbered from 1 to 5) as a result of linear thinking. 

We made use of these five rules to classify a participant's ranking as being a linear response. The 

From and To values are given to participants (in Figure 5-2). The next three columns: 

"Proportional Change," "Delta Change," and "Correct Change in Years" are used to calculate 

five possible linear rules: "Correct Rule," "Difference Rule," "Addition Rule," "Ratio Rule," and 
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"Proportional Rule." Proportional Change refers to the relative change in the percent-removed 

given by the formula (From - To) / From. Delta Change refers to the difference between the 

From and To values of a percent-removed range. Correct Change in Years refers to the correct 

values of CO2 lifetime that could be obtained by using the formula, 100/To - 100/From. 

The Correct Rule was the correct rank order obtained through the Correct Change in 

Years column. The other four rules represent different forms of linear-thinking response: the 

Difference Rule is the rank order obtained based on the Delta Change column; the Addition Rule 

is the rank order obtained by the addition of From and To values; the Ratio Rule is the rank order 

obtained based on the ratio of From/To; and the Proportional Rule is the rank order obtained 

using Proportional Change. In the Linear problem, all of the other four rank-order rules are the 

same as the Correct Rule (or correct response), but not in the Nonlinear problem.  

Participants‘ responses were classified according to the rule they appeared to follow, or 

as "other" if their ranks did not correspond to any of the five linear rules (i.e., their responses 

were nonlinear-incorrect responses). If a participant ranked according to linear response or the 

Correct Rule in the Linear problem, then this ranking would lead her to a correct response. In 

contrast, a participant could only get a correct response on the Nonlinear problem by following 

the Correct Rule. Therefore, following a linear response on the Nonlinear problem could not 

have produced a correct response.  
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Table 5-1. Different linear rank orders of the percent-removed ranges in the Linear and Nonlinear problems. 

Linear Problem 

From To Proportional Change 
Delta 

Change 

Correct Change 

in Years 

Correct Rule 

(1) 

Difference 

Rule (2) 

Addition Rule 

(3) 
Ratio Rule (4) Proportional Rule (5) 

2.1 0.1 0.95 2.0 952 1 1 1 1 1 

2.0 0.3 0.85 1.7 283 2 2 2 2 2 

1.9 0.5 0.74 1.4 147 3 3 3 3 3 

1.6 0.9 0.44 0.7 49 4 4 4 4 4 

1.7 1.1 0.35 0.6 32 5 5 5 5 5 

Nonlinear Problem 

From To Proportional Change 
Delta 

Change 

Correct Change 

in Years 

Correct Rule 

(1) 

Difference 

Rule (2) 

Addition Rule 

(3) 
Ratio Rule (4) Proportional Rule (5) 

2.2 1.1 0.50 1.1 46 4 1 5 3 3 

0.9 0.2 0.78 0.7 389 2 3 2 1 1 

2.1 1.2 0.43 0.9 36 5 2 4 4 4 

0.3 0.1 0.67 0.2 667 1 5 1 2 2 

0.8 0.5 0.38 0.3 75 3 4 3 5 5 
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5.5 Results 

 Two independent raters coded each participant‘s response as belonging to one the five 

rank rules (given in Table 5-1) or as "other". Inter-rater reliability for the two independent raters 

revealed satisfactory amounts of agreement between the two, Kappa, Correct = 0.94 (p < 0.001), 

95% CI
19

 (0.89, 1.00); Kappa, Difference = 0.97 (p < 0.001), 95% CI (0.92, 1.00); Kappa, 

Addition = 1.00 (p < .001), 95% CI (1.00, 1.00); Kappa, Ratio = 0.92 (p < 0.001), 95% CI (0.81, 

1.00); Kappa, Proportion = 0.92 (p < 0.001), 95% CI (0.81, 1.00); and Kappa, Other = 0.93 (p < 

0.001), 95% CI (0.80, 1.00). These categorizations were used for subsequent analysis of 

responses after resolving any inconsistency between raters through direct meeting and active 

discussion. 

5.5.1 Proportion of Linear Responses within each Problem (H1a) 

To test H1a, we compared the proportion of linear responses to other (nonlinear) 

responses within the Linear and Nonlinear problems in the Aid and no-Aid conditions for policy 

and non-policy backgrounds. Table 5-2 shows the proportion of correct responses, linear 

responses, and other responses for participants in both problems and both conditions. A non-zero 

correct response in the Linear problem was only due to linear thinking, and there were 0% 

correct responses in the Nonlinear problem. 

For participants with non-policy backgrounds, the proportion of linear responses was 

significantly greater than the proportion of other (nonlinear) responses, regardless of the problem 

or condition: In the Aid condition and Linear problem (84% > 16%): χ2 (1) = 17.789, p < .001, r 

= .68; In the Aid condition and Nonlinear problem (79% > 21%): χ2 (1) = 12.737, p < .001, r = 

.58; In the no-Aid condition and Linear problem (92% > 8%): χ2 (1) = 35.280, p < .001, r = .84; 

                                                 
19

 95% Confidence interval 
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and in the no-Aid condition and Nonlinear problem (88% > 12%): χ2 (1) = 28.880, p < .001, r = 

.76. These results supports hypothesis H1a.  

For participants with policy backgrounds, the proportion of linear responses was significantly 

greater than the proportion of other (nonlinear) responses in the no-Aid condition‘s Linear (80% 

> 20%) (χ2 (1) = 7.200, p < .01, r = .60) and Nonlinear problem (80% > 20%) (χ2 (1) = 7.200, p 

< .01, r = .60). However, there was no difference between the proportion of linear responses and 

other responses in the Aid condition‘s Linear and Nonlinear problem (Linear problem: linear 

response (62%) = other response (38%) with χ2 (1) = 1.385, ns, r = .23; Non-linear problem: 

linear response (54%) = other response (46%) with χ2 (1) = 0.154, ns, r = .08). Therefore, an aid 

helped participants with policy backgrounds to rely less on linear responses. Support for 

hypothesis H1a is present in the problem without Aid, but not in the problem with Aid.  

Table 5-2. Proportion of participants following a correct, linear, and other response in the 

experiment. 

 

5.5.2 Proportion of Correct and Linear Responses between Linear and 

Nonlinear Problems (H1b) 

To test H1b, we compared the proportion of correct responses between each problem in 

each condition for policy and non-policy backgrounds, respectively. For non-policy 

backgrounds, the proportion of correct responses was significantly greater for the Linear problem 

compared to the Nonlinear problem in both conditions (see Table 5-2) (Aid: 63% > 0% with χ2 

 Policy  Backgrounds Non-policy Backgrounds 

 
Aid No-Aid Aid No-Aid 

Response 
Linear 

(%) 

Nonlinear 

(%) 

Linear 

(%) 

Nonlinear 

(%) 

Linear 

(%) 

Nonlinear 

(%) 

Linear 

(%) 

Nonlinear 

(%) 

Correct 62 00 50 00 63 00 72 00 

Linear 62 54 80 80 84 79 92 88 

Other 38 46 20 20 16 21 08 12 
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(1) = 17.538, p < .001, r = .68; no-Aid: 72% > 0% with χ2 (1) = 28.125, p < .001, r = .75). 

Similarly, for policy backgrounds, the proportion of correct responses was significantly greater 

for the Linear problem compared to the Nonlinear problem in both conditions (Aid: 62% > 0% 

with χ2 (1) = 13.765, p < .001, r = .73; no-Aid: 50% > 0% with χ2 (1) = 6.667, p < .01, r = .58). 

These results support H1b. 

Furthermore, regardless of the background, the proportion of participants giving linear 

responses was no different between each problem in both conditions (see Table 5-2) (For non-

policy background: Aid: 84% = 79% with χ2 (1) = 0.175, ns, r = .07; no-Aid: 92% = 88% with 

χ2 (1) = 0.222, ns, r = .07. For policy background: Aid: 62% = 54% with χ2 (1) = 0.158, ns, r = 

.08; no-Aid: 80% = 80% with χ2 (1) = 0.000, ns, r = .00). These results show that the difference 

in correct responses between problems was due to the participants‘ persistent reliance on linear 

reasoning, regardless of their backgrounds and any aid.  

5.5.3 Proportion of Correct and Linear Responses Between Aid and No-Aid 

Conditions (H2) 

To test H2, we compared the proportion of correct responses between the Aid and no-Aid 

conditions in the Linear and Nonlinear problems for non-policy and policy backgrounds. Aid had 

no effect on the proportion of correct responses in the Linear problem (for non-policy 

background: Aid: 63% = no-Aid: 72% with χ2 (1) = 0.389, ns, r = .09; for policy background: 

Aid: 62% = no-Aid: 50% with χ2 (1) = 0.878, ns, r = .20) or in the Nonlinear problem (for non-

policy background: Aid: 0% = no-Aid: 0% with χ2 (1) = no-statistic
20

, ns, r = no-statistic; for 

policy background: Aid: 0% = no-Aid: 0% with χ2 (1) = no-statistic, ns, r = no-statistic). Again, 

Aid had no effect on the proportion of linear responses in the Linear problem (for non-policy 

                                                 
20

 Because there is no participant in the Nonlinear problem who gave a correct response, there is no statistic to report 

for the comparison due to the absence of data. 
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background: Aid: 84% = no-Aid: 92% with χ2 (1) = 0.650, ns, r = .12; for policy background: 

Aid: 62% = no-Aid: 80% with χ2 (1) = 0.910, ns, r = .20) or in the Nonlinear problem (for non-

policy background: Aid: 79% = no-Aid: 88% with χ2 (1) = 0.661, ns, r = .12; for policy 

background: Aid: 54% = no-Aid: 80% with χ2 (1) = 1.704, ns, r = .27). Thus, Aid had no 

influence on participants‘ reliance on linear or correct responses. These results do not support 

hypothesis H2.   

5.5.4 Effects of Educational Backgrounds   

Finally, to test hypothesis H3, we compared the proportion of correct responses between 

policy and non-policy backgrounds in each problem in the Aid and no-Aid conditions, 

respectively. Overall, there was no difference for participants with policy and non-policy 

backgrounds. This finding holds in the Aid condition for the Linear problem (Correct response: 

62% = 63% with χ2 (1) = 0.126, ns, r = .06; Linear response: 62% = 84% with χ2 (1) = 2.116, 

ns, r = .26) and for the Nonlinear problem (Correct response: 0% = 0% with χ2 (1) = no-statistic, 

ns, r = no-statistic; Linear response: 54% = 79% with χ2 (1) = 2.264, ns, r = 0.27). This finding 

also holds in the no-Aid condition for the Linear problem (Correct response: 50% = 72% with χ2 

(1) = 1.534, ns, r = .21; Linear response: 80% = 92% with χ2 (1) = 1.016, ns, r = .17) and for the 

Nonlinear problem (Correct response: 0% = 0% with χ2 (1) = no-statistic, ns, r = no-statistic; 

Linear response: 80% = 88% with χ2 (1) = 0.373, ns, r = .10). When taken together, these results 

do not support hypothesis H3. 

5.6 General Discussion 

This research shows that people‘s linear thinking is pervasive while making judgments in 

nonlinear environmental problems. Our manipulation of aligning correct responses with linear 

thinking proved highly effective. Changing the information in the problem to align with a 
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person‘s dominant decision-making strategy (which in this case is responding linearly) can be an 

effective way of improving their decision making (Klayman & Brown, 1993; Payne et al., 1999). 

Moreover, an important point to note is that the information presentation manipulation does not 

change their thought processes in any way. The manipulation is simply meant to make use of 

these linear cognitive processes to help participants understand nonlinear problems in the way 

they naturally are inclined to and thus enable them to correctly respond. Furthermore, our results 

agree with prior evidence of linear thinking in environmental problems concerning inferences 

about CO2 accumulation (Sterman, 2008; Sterman & Booth Sweeney, 2007).  

Our results also indicate that a majority of participants with non-policy backgrounds 

responded linearly in problems with or without instructional aid and regardless of whether or not 

correct response was aligned with linear thinking. There could be a number of reasons for this 

overreliance amongst participants with non-policy backgrounds. First, it could simply be because 

linear responses are the simplest response to come to mind (Fischbein, 1999; Freudenthal, 1983; 

Lesh, Post, & Behr, 1988; Rouche, 1989). Second, literature has shown that even simple linear 

models lead to correct approximate responses in many cases that are more accurate than expert 

judgments (Dawes, 1979; Goldberg, 1970). Linear thinking offers two crucial benefits of being 

simple and/or it producing accurate and good enough answers in many problems, while avoiding 

more complicated nonlinear rules.   

Furthermore, in our results, participants with policy backgrounds still relied on linear 

thinking and were not able to provide correct responses. But they were able to make some use of 

the instructional aid, which helped them to move away from linear thinking to other nonlinear or 

incorrect types of response. Although we can only currently speculate, one reason may be that it 

is challenging to change participants‘ cognitive thought processes to improve their decision 
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making (Klayman & Brown, 1993) and the aid was not inadequate in producing this change. A 

second reason could be on account of the aid‘s effectiveness itself: a descriptive aid that 

provided participants with the exact relationship between CO2 lifetime and percent-removed 

might have been more effective. Still, participants with policy backgrounds, just like those with 

non-policy backgrounds, are limited by their cognitive capacity (Sterman & Booth Sweeney, 

2007) and are thus unable to utilize the aid effectively. We plan to investigate these explanations 

as part of future research.  

It is expected that the yearly percentage of CO2 removed from the atmosphere will 

decrease in future years, resulting in a large increase in CO2 lifetime (Cramer et al., 2001; Joos et 

al. 2001; Matear & Hirst, 1999; Sarmiento & Quéré, 1996). As this change will be detrimental to 

the earth‘s climate, accurate human assessment of the nonlinear relationship between the 

percent-removed and CO2 lifetime is important. When participants were given a problem where a 

linear response would lead to an incorrect answer, none of the participants in the experiment 

correctly ranked the decreasing percent-removed ranges in the problem. They ultimately 

underestimate the most detrimental changes in CO2 lifetime. This inaccurate assessment could be 

a possible reason for wait-and-see policies for climate change. 

Finally, aligning a nonlinear problem with linear mental models is a manipulation that 

may also be useful in many other important problems. For example, an intervention similar to the 

one tested here could be attempted for reducing the dispersal of a commodity (e.g., pollution in 

river) by giving people choices about the taxes they pay per unit of dispersing the commodity. 

For example, consider a certain tax per kilogram on pollution created in a river (units: $/Kg of 

pollution) aimed at reducing pollution. Polluters, like large industrial factories on the river‘s 

banks, could be offered different taxation choices, where they are charged with a smaller tax now 
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and a larger tax in the near future for each policy. A range of tax increases could be designed in 

such a way that the smallest increase for the same amount of total pollution appears the most 

attractive to polluters according to their linear thinking. But in fact, the smallest increase has the 

maximum potential to reduce river pollution. Our future endeavor in this research will be to 

extend the information presentation manipulation to other nonlinear problems faced in daily life. 
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6.1 Abstract 

Ecological (eco) taxes are promising mechanisms to enable eco-friendly decisions but few 

people would like to pay them. In this study, we present a way in which eco-tax options may be 

communicated to general public to encourage their payment. The suggested implementation 

(called “information presentation”) takes advantage of the non-linear relationship between eco-

tax payments and CO2 emissions, and the human reliance on the proportional-thinking heuristic. 

According to the proportional-thinking heuristic, people are likely to prefer a small increase in 

eco-tax and judge larger eco-tax increases to cause proportionally greater reductions in CO2 

emissions. In an online study, participants were asked to choose between two eco-tax increases 

in two decision problems: In one, a smaller eco-tax increase resulted in greater CO2 emissions 

reduction, while in the other, a smaller tax increase resulted in lesser CO2 emissions reduction. 

Although the larger eco-tax increase in one of the problems did not reduce CO2 emissions the 

most, across both problems, people judged larger eco-tax increases to cause proportionally 

greater reductions in CO2 emissions and preferred smaller tax increases. Thus, eco-tax policies 

are likely to benefit from presenting information in terms of eco-tax increases, such that smaller 

eco-tax increases (which are more attractive and are likely to be chosen by people) cause greater 

CO2 emissions reductions. 

 

Keywords: Proportional thinking; Eco-tax; Climate change; Carbon-dioxide emissions 
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6.2 Introduction 

 Literature on human decision making broadly demonstrates that humans rely upon a 

number of heuristics (Gilovich et al. 2002). Many of these heuristics might adversely affect 

human decision making on important global problems (e.g., climate change). To improve human 

decisions, one option is to design manipulations that make humans aware and help them 

overcome their reliance on heuristics; however, another and perhaps easier manipulation is to 

present information in a way that people‘s reliance on heuristics improves their decisions 

(Johnson et al. 1988; Klayman and Brown 1993; Payne et al. 1999). In this paper, we follow the 

latter approach and show how information about ecological (eco) tax increases may be presented 

such that this presentation takes advantage of people‘s reliance on a ―proportional-thinking‖ 

heuristic and enables them to make choices that result in larger reductions in CO2 emissions. 

Furthermore, we discuss that our information-presentation manipulation may be used to improve 

people‘s decision choices in many other societal problems (e.g., cigarette smoking, pollution in 

rivers, air pollution, and overfishing).  

An eco-tax (or carbon price) is the cost people would pay to emit a unit of CO2 in the 

atmosphere (units: $/ton of CO2 emissions or $/ton). Eco-taxes are promising economic 

mechanisms to enable eco-friendly decisions – decisions that reduce carbon-dioxide (CO2) 

emissions in the atmosphere and mitigate climate change (Carbon Tax Center (CTC) 2010; 

Dawson and Spannagle 2009; Nordhaus 2008; Stern 2006). Yet, very few people would likely to 

agree to pay eco-taxes to reduce CO2 emissions on account of their reliance on heuristics. One of 

these heuristics is called proportional thinking, according to which, people assume a strong 

positive correlation between a problem‘s independent (input) and dependent (output) variables 

(Booth Sweeney and Sterman 2000; Cronin and Gonzalez 2007; Cronin et al. 2009; Dörner 
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1996; Dutt and Gonzalez 2009, 2011; Larrick and Soll 2008; Van Dooren et al. 2007). For 

example, by relying on the proportional-thinking heuristic for the Earth‘s climate people might 

wrongly infer that the shape of CO2 concentration (output) over time should be identical to the 

shape of the CO2 emissions (input) (Dutt and Gonzalez, 2011; Sterman and Booth Sweeney 

2002, 2007; Sterman 2008). Therefore, if CO2 emissions are assumed to increase linearly over 

time
21

, then by relying on proportional thinking people will infer a linear increasing shape for the 

atmospheric CO2 concentration that is similar to the shape of CO2 emissions. Consequently, such 

linear judgments are likely to make people underestimate the actual nonlinear increase in CO2 

concentration, undermine the seriousness of the climate problem, and cause them to defer acting 

on climate change (Dutt 2011).  

People‘s reliance on the proportional-thinking heuristic is likely to be present for their 

decisions about eco-tax payment preferences and judgments. For example, by relying on the 

proportional-thinking heuristic, people are likely to prefer smaller tax increases, while 

associating larger tax increases to mean proportionally greater benefits or reductions in CO2 

emissions. An evidence for this belief comes from the marketing literature. For example, most 

shoppers believe that higher prices are a sign of greater product quality and repeated studies have 

shown that while shopping people expect more expensive products to be beneficial or better in 

quality (Dodds et al. 1991; Plassman et al. 2007; Rao and Monroe, 1989). A recent evidence of 

this finding comes from Plassman et al. (2007), who told their participants that they were 

drinking five different varieties of wine and disclosed the prices for each as participants drank. In 

practice, the participants were only consuming three different wines since two were offered 

twice: a $5 wine described as costing $5 and $45, and a $90 bottle presented as $90 and $10. 

                                                 
21

 An assumption of a linear increase in CO2 emissions over time serves as a good approximation to their pattern of 

actual increase over the last 20 years (IPCC 2007). 
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(There was also a $35 wine with the accurate price.) People rated identical wines as tasting better 

when they were priced higher (e.g., $45) and fMRI scans showed greater activity in the brain‘s 

pleasure regions. 

According to the proportional-thinking heuristic, given a range of options for eco-tax 

payments to choose between and due to people‘s tendency to avoid the displeasure of paying 

higher taxes (Plassman et al. 2007), people are likely to prefer an option with the smallest 

possible tax increase. Indeed, there is some real world evidence to support this expectation. For 

example, in a large poll conducted in the U.S. (N>600), only 17% of respondents preferred an 

increase in carbon taxes (Leiserowitz 2003, 2007). Similarly, when the French President Nicolas 

Sarkozy recently scrapped a planned carbon tax, 69% of respondents endorsed his decision, 

while only 21% said that it was wrong (N=948) (Kennedy 2011). 

In addition, for eco-tax payments and the corresponding CO2 emission reductions, relying 

on proportional-thinking thinking means that people believe that larger eco-tax increases will 

result in proportionally greater CO2 emissions reductions (i.e., benefits) compared to smaller 

increases. For example, under the 2009 America‘s Energy Security Trust Fund Act, a yearly 

$10/ton increase in carbon tax was believed by Congressmen to result in a proportional 31% 

reduction in CO2 emissions below their 2005 level. Thus, policymakers including laypeople are 

likely to believe that larger tax increases are also those that result in greater reductions of CO2 

emissions. 

The problem with applying the proportional-thinking heuristic to eco-taxes is that it is not 

true that larger eco-tax increases result in greater CO2 emissions reductions. According to the 

IPCC (2007), there is considerable uncertainty and difficulty in determining the base tax (in 

$/ton of CO2 emissions in the atmosphere) for eco-taxes (believed to vary between $3/ton to 
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$95/ton). A suggested method is to allow people to choose between multiple tax increases with 

different base taxes (Metcalf and Weisbach 2009). For example, suppose a person has a budget 

constraint of $100 for eco-taxes each month.
22

 Under this scenario, a $6/ton tax increase from a 

base tax of $18/ton tax would reduce this person‘s emissions by 1.39 tons (=100*(1/18 – 1/24)). 

However, a smaller $3/ton increase from a smaller base tax of $13/ton would reduce his 

emissions by 1.44 tons. Thus, in this case, the smaller base tax with a smaller tax increase is 

associated with a greater reduction of CO2 emissions, in contrast to proportional-thinking 

heuristic. 

Therefore, by relying on the proportional-thinking heuristic, people are likely to prefer 

smaller base tax with the smaller increase over larger base tax with the larger increase, and are 

likely to judge larger base tax with the larger increase to reduce CO2 emissions the most. The 

main idea that we demonstrate in this paper is that a proper presentation of eco-taxes and their 

increases is likely to enable more eco-friendly choices while people continue to associate larger 

tax increases with greater CO2 emissions reductions. Prior research in human psychology shows 

that a change in information presentation of a nonlinear mathematical problem can improve 

people‘s decisions in that problem (Johnson et al. 1988; Klayman and Brown 1993; Payne et al. 

1999). We demonstrate the effectiveness of this information-presentation manipulation with an 

experiment involving eco-taxes in the next section.  

6.3 Method 

In order to test people‘s tax preferences with respect to their judgments about CO2 

emissions reductions, we ran an online experiment using two problems: One in which reliance on 

the proportional-thinking heuristic is likely to cause more eco-friendly preferences and is likely 

                                                 
22

 It is common to find that a majority of families with monthly wages or income have such budgetary constraints 

which limit their spending on products they could purchase (Gale, 2011). 
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to hamper correct judgments about CO2 emissions reductions; and the other, where reliance on 

the proportional-thinking heuristic is likely to support correct judgments about emissions 

reductions and is likely to cause less eco-friendly preferences. 

6.3.1 Participants 

One hundred and sixty-five participants were recruited using Amazon‘s Mechanical Turk 

(MTurk). Based on self-reported demographics 54% were males; 40% held graduate degrees and 

the other 60% held undergraduate and high-school degrees; and 67% had a background in 

science, technology, engineering, mathematics, or medicine (STEM). Ages ranged from 18 to 55 

years (M = 25, S.D. = 8). No participant took more than 5 minutes to complete the experiment, 

and each participant was paid ¢5. The payment amount is considered standard for studies of this 

length on MTurk (Mason and Suri 2010; Paolacci et al. 2010). 

6.3.2 Material 

Two problems, P1 and P2, each involving a choice between two options were presented 

in a within-subjects design to participants. The order of presentation of the two options (left or 

right) was randomized within each problem, and the two options that appeared together in a 

problem were also randomized across the two problems. Both options in a problem involved an 

increase of a carbon-price from the ―From‖ price this month to the ―To‖ price next month and 

were designed such that a smaller carbon-price increase with a smaller base tax was tied to either 

greater or less CO2 emissions reduction. For example, depending upon the random assignment of 

options across the two problems, if the option with a smaller carbon-price increase reduced 

greater CO2 emissions in P1, then the option with the smaller price increase reduced less CO2 

emissions in P2.   
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Figure 6-1 shows the problems given to participants. Given a budget constraint of $100 

per month for tax payment, P1‘s option 1 reduces CO2 emissions by (1/18 – 1/24)*$100=1.39 

tons with a price increase of $6/ton, and P1‘s option 2 by (1/13 – 1/16)*$100=1.44 tons with a 

price increase of $3/ton. Therefore, P1‘s option 1 is a greater carbon-price increase that results in 

less CO2 emissions reduction (costly eco-adverse), and P1‘s option 2 is a low carbon-price 

increase that results in greater CO2 emissions reduction (cheap eco-friendly). In contrast, P2‘s 

option 1 reduces CO2 emissions by (1/19 – 1/25)*$100=1.26 tons with a price increase of $6/ton, 

and P2‘s option 2 by (1/15 – 1/18)*$100=1.11 tons with a price increase of $3/ton. Therefore, 

P2‘s option 1 involves a high carbon-price increase that results in greater CO2 emissions 

reduction (costly eco-friendly), and P2‘s option 2 involves a low carbon-price increase that 

results in less CO2 emissions reduction (cheap eco-adverse). Moreover, the ranges and values of 

carbon-prices ($/ton) given as part of the two options in each of the two problems is 

representative of the actual anticipated eco-taxes in the real world (IPCC 2007; Metcalf and 

Weisbach 2009). 

For each problem, participants were asked two questions. The first question (Q1, 

preference question) asked participants to choose one of the two options that they preferred. The 

second question (Q2, reduction-judgment question) gave participants a fixed personal tax-

payment budget (=$100 per month) and asked them to choose the option that they thought would 

reduce CO2 emissions the most. In Q1, we expected participants to prefer the cheap eco-friendly 

and cheap eco-adverse options, while we expected participants to simultaneously judge the 

costly eco-friendly and costly eco-adverse options as reducing CO2 emissions the most for Q2. 
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Figure 6-1. The two problems, P1 and P2, given to participants in the experiment. 

Each problem involved two options, option 1 and 2, and two questions, question 1 

and 2. The order of the presentation of the two options (left or right) was 

randomized within each problem and the two options that appeared together in a 

problem were also randomized across the two problems. Question 1 asked people 

their preference for one of the two options. Question 2 gave people a tax budget of 

$100 per month and asked them to judge which option reduced most CO2 emissions 

in the atmosphere. The order of presentation of questions in each problem was first 

question 1 and then followed by question 2. The text in italics was not provided to 

participants and has been solely placed to aid in understanding of the material. 

 

6.3.3 Procedure 

The problems were administered through a website online, with participants answering 

both questions in both problems. Only one problem was presented at a time. MTurk was used to 

recruit and compensate participants. Participants read an advertisement about an eco-tax study 

and were asked to click a link to participate. 

6.4 Results 

We compared the proportions of cheap and costly choices, and the proportions of eco-

friendly and eco-adverse choices in the preference question (Q1) aggregated across the two 

problems (see Table 6-1a). The proportion of cheap choices (70%) was greater than costly 

choices (30%) (χ
2
(1)=108.824, p<.001, r=.41); but, there was no difference between the 

proportions of eco-friendly choices (48%) and eco-adverse choices (52%) (χ
2
(1)=1.552, ns, 

r=.05): showing participants‘ preferences for smaller tax increases to be irrespective of whether 

the increase reduced greater or lesser CO2 emissions. 

When comparing individual preferences in Table 6-1b, the proportions of cheap eco-

friendly choices (68%) and cheap eco-adverse choices (73%) were greater than the proportions 

of costly eco-adverse choices (32%) and costly eco-friendly choices (27%), respectively (cheap 

eco-friendly>costly eco-adverse: χ
2
(1)=42.194, p<.001, r=.36; cheap eco-adverse>costly eco-

friendly: χ
2
(1)=68.182, p<.001, r=.46). Furthermore, the proportions of cheap eco-friendly 
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choices and cheap eco-adverse choices, and proportions of costly eco-friendly choices and costly 

eco-adverse choices were not significantly different (χ
2
(1)=0.929, ns, r=.05). Consistent with 

proportional-thinking heuristic, these results suggest that participants preferred the cheap 

options, irrespective of the actual reductions in CO2 emissions.  

We performed similar comparisons between choices, but now for the reduction-judgment 

question (Q2). For the reduction-judgments in Table 6-1c, the proportion of costly choices (67%) 

was greater than the proportion of cheap choices (33%) (χ
2
(1)=73.333, p<.001, r=.33); but there 

was no difference between proportions of eco-friendly choices (52%) and eco-adverse choices 

(48%) (χ
2
(1)=0.873, ns, r=.04): showing participants implicitly assumed that larger tax increases 

would reduce CO2 emissions the most, irrespective of whether or not they actually reduced CO2 

emissions. Upon comparing individual judgments for the reduction-judgment question in Table 

6-1d, the proportions of costly eco-adverse choices (65%) and costly eco-friendly choices (68%) 

were greater than the proportions of cheap eco-friendly choices (35%) and cheap eco-adverse 

choices (32%), (costly eco-adverse>cheap eco-friendly: χ
2
(1)=29.103, p<.001, r=.30; costly eco-

friendly>cheap eco-adverse: χ
2
(1)=45.103, p<.001, r=.37). Moreover, the proportions of costly 

eco-friendly and costly eco-adverse choices, and proportions of cheap eco-friendly and cheap 

eco-adverse choices were not significantly different (χ
2
(1) = 0.491, ns, r = .04). Consistent with 

proportional thinking, these results suggest that participants judged the costly options to reduce 

CO2 emissions the most, irrespective of the actual reductions. 
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Table 6-1a. Proportion of choices across the two problems for preferences. 

 

 Costly Cheap 

Preference (Q1) 30% (N=98/330
1
) 70% (N=232/330) 

 Eco-friendly Eco-adverse 

Preference (Q1) 48% (N=157/330) 52% (N=173/330) 

 

Note. 
1
This number is double the total number of participants in the experiment because it is aggregated across both problems that 

were presented within-subjects and that contained N=165 participants each. 

 

 

Table 6-1b. Proportion of choices for preferences. 

 

Questions 

Costly Eco-adverse 

(6 unit increase; 1.39 

tons CO2 emissions 

reduction) 

Cheap Eco-friendly 

(3 unit increase; 1.44 

tons CO2 emissions 

reduction) 

Costly Eco-friendly 

(6 unit increase; 1.26 

tons CO2 emissions 

reduction) 

Cheap Eco-adverse 

(3 unit increase; 1.11 

tons CO2 emissions 

reduction) 

Preference (Q1) 32% (N=53/165
1
) 68% (N=112/165) 27% (N=45/165) 73% (N=120/165) 

 

Note. 
1
This number represents the total number of participants in the experiment. 
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Table 6-1c. Proportion of choices across the two problems for reduction-judgments. 

 

 Costly Cheap 

Reduction-judgment (Q2) 67% (N=220/330
1
) 33% (N=110/330) 

 Eco-friendly Eco-adverse 

Reduction-judgment (Q2) 52% (N=171/330) 48% (N=159/330) 

 

Note. 
1
This number is double the total number of participants in the experiment because it is aggregated across both problems that 

were presented within-subjects and that contained N=165 participants each. 

 

 

Table 6-1d. Proportion of choices for reduction-judgments. 

 

Questions 

Costly Eco-adverse 

(6 unit increase; 1.39 

tons CO2 emissions 

reduction) 

Cheap Eco-friendly 

(3 unit increase; 1.44 

tons CO2 emissions 

reduction) 

Costly Eco-friendly 

(6 unit increase; 1.26 

tons CO2 emissions 

reduction) 

Cheap Eco-adverse   

(3 unit increase; 1.11 

tons CO2 emissions 

reduction) 

Reduction-judgment (Q2) 65% (N=107/165
1
) 35% (N=58/165) 68% (N=113/165) 32% (N=52/165) 

 

Note. 
1
This number represents the total number of participants in the experiment.
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6.4.1 Consistency between Preferences and Reduction-judgments 

Next, we determined how people‘s reduction-judgments (Q2) matched with their 

preferences (Q1). As shown in Table 6-2, 44% of participants simultaneously preferred cheap 

options and judged costly options as reducing CO2 emissions the most, while only 7% of 

participants simultaneously preferred costly options and judged cheap options as reducing 

emissions the most. This pattern of choices for costly and cheap options seems to be consistent 

with reliance on proportional-thinking heuristic in preferences and judgments about CO2 

emissions reductions, respectively. In addition, the proportion for simultaneous preferences and 

judgments about CO2 emissions reductions were comparatively smaller for the Costly-Costly and 

Cheap-Cheap choice combinations (see Table 6-2). Moreover, preferences for eco-friendly or 

eco-adverse options and simultaneous reduction-judgments for eco-friendly or eco-adverse 

options were about the same in all choice combinations. These results show that people decided 

primarily based upon options being costly or cheap, irrespective of whether their choices reduced 

greater or less CO2 emissions. 

6.4.2 Consistency of Preferences and Reduction-judgments Between the Two 

Problems 

As shown in Table 6-3, 63% preferred cheap options in both problems, while the 

proportion of preferences were comparatively smaller for the following combination of options 

across the two problems: cheap in the first problem and costly in the second problem, costly in 

the first problem and cheap in the second problem, and cheap in both problems. Similarly in 

Table 6-4, 55% judged costly options in both problems to reduce CO2 emissions the most, while 

the proportion of reduction-judgments were comparatively smaller for the following combination 

of options across the two problems: costly in the first problem and cheap in the second problem, 
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cheap in the first problem and costly in the second problem, and cheap in both problems. These 

results show that participants were pretty consistent about their preferences for cheap options and 

reduction-judgments for costly options across the two problems, irrespective of whether their 

preferences and reduction-judgments reduced greater or less emissions. 

6.4.3 Are Preferences Based on Options being Eco-friendly or Cheap? 

In our results, a large majority (68%) of participants preferred the cheap eco-friendly 

option (see Table 6-1). A possible explanation for this 68% (=112/165) preference is that it is 

based on the option being eco-friendly rather than it being cheap. The cheap eco-friendly option 

boasts a small carbon-price increase (=3 units), but also reduces CO2 emissions most (=1.44 

tons) at the same time. However, 60% (=68/112) of those that preferred the cheap eco-friendly 

option also judged the costly eco-adverse option to save more CO2. Furthermore, 92% 

(=103/112) of those that preferred the cheap eco-friendly option also judged the cheap eco-

adverse option as reducing CO2 emissions the most in the next problem. In both judgments, the 

costly or cheap eco-adverse options do not reduce CO2 emissions the most and thus these options 

are not eco-friendly. Therefore, a closer inspection of results reveals that the 68% of cheap eco-

friendly preferences represented participants that were relying on proportional-thinking heuristic 

and driven by selecting a cheap option, rather than participants that acted because the option was 

eco-friendly. 
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Table 6-2. Participants’ proportion of reduction-judgments with respect to their proportion of preferences within problems. 

 

 Preference (Q1) 

Reduction-judgment (Q2) 
Costly  

(N=98) 

Cheap  

(N=232) 

Eco-friendly  

(N=157) 

Eco-adverse 

(N=173) 

Costly (N=220) 23% (N=76/330
1
) 44% (N=144/330)   

     

Cheap (N=110) 7% (N=22/330) 26% (N=88/330)   

     

Eco-friendly (N=171)   25% (N=81/330) 27% (N=90/330) 

     

Eco-adverse (N=159)   23% (N=76/330) 25% (N=83/330) 

 

Note. 
1
This number is double the total number of participants in the experiment because it is aggregated across both problems that 

were presented within-subjects and that contained N=165 participants each. 
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Table 6-3. Participants’ proportion of preferences across the first and second presented 

problems. 

 

 First Presented Problem‘s Preference (Q1) 

Second Presented Problem‘s 

Preference (Q1) 

Costly 

(N=48) 

Cheap  

(N=117) 

Costly (N=50) 22% (N=36/165
1
) 8% (N=14/165) 

   

Cheap (N=115) 7% (N=12/165) 63% (N=103/165) 

 

Note. 
1
This number represents the total number of participants in the experiment. 

 

Table 6-4. Participants’ proportion of reduction-judgments in the first and second 

presented problems. 

 

 First Presented Problem‘s Reduction-judgment (Q2) 

Second Presented Problem‘s 

Reduction-judgment (Q2) 

Costly  

(N=112) 

Cheap  

(N=53) 

Costly (N=108) 55% (N=91/165
1
) 10% (N=17/165) 

   

Cheap (N=57) 13% (N=21/165) 22% (N=36/165) 

Note. 
1
This number represents the total number of participants in the experiment. 

 

6.4.4 Are Preferences Driven by Accumulated CO2 Reductions or Choice for 

the Cheaper Option? 

We believe that people‘s preference for cheap options is likely due to their displeasure of 

incurring a greater loss due to tax payment. But as we simply asked people which option they 

preferred, one possibility could be that they prefer a smaller increase with a smaller base tax 

because the smaller increase causes the most accumulated CO2 reductions over the two months 

compared to the larger tax increase.
23

 For example, smaller tax increases like $13/ton to $16/ton 

                                                 
23

 Accumulated CO2 reduction is Budget/Tax rate this month + Budget/Tax rate next month. For example, for a 

$100 budget, a change from $13/ton to $16/ton leads to 100/13 + 100/16 = 13.9 tons of accumulated CO2 reduction. 
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and $15/ton to $18/ton cause greater CO2 reductions of 13.9 tons and 12.2 tons, respectively, 

compared to those for larger tax increases like $18/ton to $24/ton (=9.7 tons) and $19/ton to 

$25/ton (=9.3 tons), respectively. In order to test this possibility, we ran an identical study with 

N=155 participants;
24

 however, where we now changed one problem to be a choice between an 

increase from $19/ton to $25/ton or an increase from $21/ton to $24/ton (the other problem with 

increases $18/ton to $24/ton and $13/ton and $16/ton was unchanged). The $21/ton to $24/ton 

increase is a small 3 units increase, but the accumulated CO2 reduction in this increase equals 8.9 

tons, which is less than that in the $19/ton to $25/ton increase (=9.3 tons). If people decided 

according to accumulated CO2 reductions, then fewer people should have chosen the smaller 

increase; however, results indicated that 63% of participants still chose the smaller tax increase 

($21/ton to $24/ton), thereby preferring the cheaper option.  

6.5 Conclusions 

We find that consistent with proportional-thinking heuristic, people prefer smaller rather 

than larger eco-tax increases while simultaneously judging larger increases as reducing CO2 

emissions more, consistent with proportional-thinking heuristic. Furthermore, we demonstrated 

how one could make use of the proportional-thinking heuristic to enable participants to make 

more eco-friendly choices: when participants are provided with ranges of tax increases, they 

prefer smaller increases and their preference can result in greater CO2 reductions, depending on 

how information is presented. 

                                                 
24

 The procedure and experimental design in this new study were identical to those reported for the original study. In 

the new study 155 participants were recruited using Amazon‘s Mechanical Turk (MTurk). Based on self-reported 

demographics 55% were males; 50% held graduate degrees and the other 50% held undergraduate and high-school 

degrees; and 70% had a background in science, technology, engineering, mathematics, or medicine (STEM). Ages 

ranged from 18 to 50 years (M = 19, S.D. = 4). No participant took more than 5 minutes to complete the new study, 

and each participant was paid ¢5. 
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People‘s preferences for smaller eco-taxes is likely due to proportional-thinking heuristic 

(Kahneman and Tversky 1979; Slovic et al. 2004; Tversky and Kahneman 1991): people are 

likely to perceive that a larger increase with a larger base tax (e.g., $18/ton to $24/ton) will 

reduce their current wealth more and bring them greater displeasure (Dodds et al. 1991; 

Plassman et al. 2007; Rao and Monroe 1989). Furthermore, people‘s implicit reasoning of a 

proportional relationship between increases in eco-taxes and the corresponding increases in CO2 

emissions reductions is also likely driven by proportional-thinking heuristic. People are more 

likely to associate a larger eco-tax increase with a larger base tax as resulting in proportionally 

greater emissions reduction compared to a smaller increase with a smaller base tax. This 

reasoning is more so because we specifically asked people to choose the option with most CO2 

reduction next month compared to the reduction this month in the reduction-judgment question.  

Therefore, people‘s reliance on the proportional-thinking heuristic can be used to enable 

more eco-friendly choices, even while people believe that they are saving money by preferring 

the smallest eco-tax increase. This manipulation does not require any change in people‘s 

psychological processes, but only a change in the way information is presented for decision 

making. This kind of manipulation is also effective in enabling improved judgments in other 

decision problems (Johnson et al. 1988; Klayman and Brown 1993; Payne et al. 1999). For 

example, Johnson et al. (1988) have shown that changing probability numbers from fractions 

(e.g., 29/36) to decimals (e.g., 0.8) caused people to make consistent choices for risky options in 

two lotteries that had the same expected value, but where the risky option had a small probability 

of a large outcome in one lottery and a large probability of a small outcome in the other. 

Similarly, changing the presentation of eco-taxes such that a smaller increase also reduces CO2 

emissions more will promote more eco-friendly decisions.  
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According to the CTC (2010), the current prices of gasoline, electricity, and fuels in most 

parts of the world include none of the costs associated with catastrophic climate change. This 

omission suppresses incentives to develop and deploy CO2 reduction measures that are energy 

efficient (e.g., high-mileage cars, high-efficiency heaters, and air conditioners in homes). 

Conversely, taxing people‘s consumption of fuels according to their emissions will infuse these 

incentives at every link in the chain of decision and action — from individuals‘ choices and uses 

of vehicles, appliances, and housing. The main implication of our manipulation benefits eco-tax 

policies, provided policymakers present eco-friendly options as the ones that also offer smaller 

increases. By doing so, we expect that society‘s adoption of eco-friendly taxes will be more 

readily accepted, because people would not need to change their current behavior.  

Although eco-tax is specifically used in this study, the applicability of our manipulation 

is broad and widespread given people‘s reliance on heuristics. A number of other important real-

world problems (e.g., cigarette smoking, pollution in rivers, air pollution, and overfishing) could 

be improved by presenting information in a similar form. For example, the government could 

consider increasing tax per packet of cigarette to reduce smoking. One of the tax options could 

be a tax increase of a dollar, from $1 per cigarette packet this month to $2 per packet next month. 

Another option could be a tax increase of $2, from $3 per packet this month to $5 per packet next 

month. If smokers spend on average a $100 tax buying cigarettes each month, then the first 

option will reduce their consumption by 50 cigarette packets; while the latter option only by 13 

packets. On account of proportional-thinking heuristic, we expect smokers to also readily prefer 

the option with $1 tax increase compared to the $2 tax increase. The end result would be a larger 

reduction in packets smoked – a desirable outcome. In the real world, it might be very difficult to 

change existent human behavior and reliance on heuristics (Klayman and Brown 1993). We 
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suggest an alternative: To change people‘s decision environment such that existent behavior and 

reliance on heuristics enables people to improve their decision choices. 
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6.7 Next Chapters’ Highlights 

The next two chapters in this thesis discuss people‘s risk- and time- preferences as 

important psychological factors influencing their wait-and-see choices. Here, probability, timing, 

and cost of future climate consequences are manipulated in a written description or as an actual 

experience. The effects of these manipulations are evaluated on people‘s wait-and-see choices. 
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7.1 Abstract 

This research tests people‘s support for the ‗‗wait-and-see‘‘ approach in climate change 

due to the uncertainty in both the timing and probability of future consequences. In a laboratory 

experiment, carbon-tax consequences were presented to participants in one of two forms: a 

written description, where the probability, consequences, and timing were explicitly provided; 

and experience, where the probability, consequences, and timing were sampled through 

unlabeled buttons. Four problems were presented in each condition such that the probability of 

consequences was high or low and the timing was early or late. Results indicated that the 

proportion of wait-and-see choices was greater in experience than description. Furthermore, in 

both experience and description, the proportion of wait-and-see choices was greater when the 

probability was low rather than high. The difference in the proportion of wait-and-see choices 

between the low and high probability was amplified in experience and attenuated in description. 

Finally, there was no difference in the proportion of wait-and-see choices when the timing of 

climate consequences was early rather than late in both experience and description. These results 

are explained by people‘s risk and time preferences.  

 

Keywords: time, probability, wait-and-see, decisions from experience, decisions from 

description, climate change 
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7.2 Introduction 

Unlike other problems with risky outcomes, the problem of climate change is a global 

problem and one where consequences are both delayed and uncertain (Sterman, 2008; Weber, 

2006). Despite the seriousness of the problem, a large number of people, including citizens, 

policy makers, and scientists, prefer to take risks and wait rather than act now on the problem‘s 

mitigation (i.e., they exhibit a ―wait-and-see‖ approach to climate change) (Dutt & Gonzalez, 

2011; Nordhaus, 1994; Sterman, 2008; Sterman & Booth Sweeney, 2002, 2007). 

A 2007 U.N. survey found that a majority of respondents advocate a wait-and-see or go-

slow approach to emission reductions (Leiserowitz, 2007; Sterman, 2008). This wait-and-see 

approach is directly related to people‘s risk-taking behavior: people that are more risk-taking 

also show more wait-and-see behavior toward climate change (Leiserowitz, 2006). Policymakers 

also seem to prefer to take risks: ―slow thegrowth of greenhouse gas emissions, and—as the 

science justifies—stop, and then reverse that growth‖ (G. Bush, 2/14/02; Jones, 2002). In fact, 

the wait-and-see approach has been a predominant policy in the U.S., and as a result, the U.S. is 

the second highest emitter of CO2 greenhouse gas in the world (i.e., 20% of world CO2 

emissions just after China) (Vidal & Adam, 2007). A comparison of the wait-and-see approach 

between the U.S. and E.U. reveals that a greater proportion of people express the need to act now 

on climate change in the E.U. than in the U.S. (Leiserowitz, 2007). In the E.U., the governments 

have already acknowledged a 20% decrease in emissions by the year 2020 and are now pressing 

for a 30% reduction in emissions, while the U.S. has still to consider such a commitment 

(Feldman, 2010).   

In contrast to the overwhelming amount of research done in engineering and climate 

sciences, very little work has been done in the behavioral sciences to understand why people 
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would prefer to wait-and-see rather than act now (APA, 2009). Support for the wait-and-see 

approach may be influenced by the uncertainties in both the timing (e.g., how early in the future 

would we experience negative consequences due to climate change?) and the probability of 

occurrence of the future climate consequences (e.g., what is the likelihood of the future climate 

consequences?) (The Economist, 2010). These uncertainties are somewhat driven by the lack of 

consensus among climate experts on the probability and timing of future climate consequences 

(Nordhaus, 1994). For example, according to the IPCC (2007), the average sea level is expected 

to rise by 18–59 cm in 2090–2099 relative to 1980–1999; however, more recent estimates 

indicate an accelerated melting of ice and a range between 50 and 140 cm in the same time 

period (Rahmstorf, 2008). Given all the uncertainties, people may prefer to take a risky 

approach, i.e., wait-and-see rather than act now on climate mitigation. 

According to Nordhaus (1994), people‘s support for the wait-and-see approach may also 

be due to their lack of ‗‗experience and exposure‘‘ to the negative consequences of the earth‘s 

climate. Recent research has suggested that human experience can often be a double-edged 

sword: Whether experience increases or decreases the wait-and-see approach may be determined 

by the nature of an individual‘s experience. In a simulation-based laboratory experiment, Dutt 

and Gonzalez (2010) provided participants with realistic and negative experiences of future 

accumulation of CO2 concentration. Participants were asked to control the CO2 concentration in 

the atmosphere in a simulation called the ‗‗dynamic climate change simulation‘‘ (DCCS). 

Participants that were exposed to DCCS showed a lower proportion of wait-and-see choices in a 

follow-up task, compared to participants without experiences in the DCCS. Thus, an immediate 

and certain experience of CO2 concentrations and the difficulties associated with its stabilization 

in the DCCS reduced the proportion of wait-and-see choices compared to no experience at all. 
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Unlike the exposure to immediate and certain experiences in a laboratory-based simulation, 

however, experiences of climate change in the real world are much delayed and uncertain, and 

exposure to realistic climate consequences can vary considerably from individual to individual. 

Thus, day-to-day personal experiences do not always agree with the scientific descriptions and 

predictions of future climate consequences: when there is two feet of snow on the ground, a 

person perceives the threat of climate change as far-off. For example, the recent 

―snowmageddon‖ in Washington, DC was sufficient enough for several congressmen to set back 

progress on an energy and climate bill pending legislation in Congress (Condon, 2010). 

Furthermore, given the uncertainties and complexity of the earth‘s climate, people seem to rely 

more on their recent day-to-day experiences, rather than on the scientific predictions and written 

descriptions about the catastrophic consequences of climate change in the future. This behavior 

is supported by recent findings suggesting that as the complexity of a problem increases, people 

rely more on their own experience rather than on a written description of a risky situation 

(Lejarraga, 2010). 

Motivated by the above observations, this research aims at understanding human 

decisions to ―wait-and-see‖ or ―act-now‖ when they are asked to experience different 

probabilities and timings of future climate consequences compared to when they are presented 

with a written description of the same. In this study, in a laboratory experiment, people make 

wait-and-see (risk-taking) or act-now (risk-averse) choices based on an experience or based on a 

written description of the future consequences of climate change. The experiment is a direct 

application of established Judgment and Decision Making (JDM) principles to the problem of 

wait-and-see on climate, and an extension of those findings that bring together the effects of the 

probability and timing of consequences on decisions from description and experience. 
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In the past, literature in JDM has either considered the influence of probability that is 

presented as a description or experience on people‘s decisions without considering the timing of 

consequences (Hertwig, Barron, Weber, & Erev, 2004; Kahneman & Tversky, 1979), or it has 

considered the influence of the timing of consequences as a description or experience on people‘s 

decisions without considering the probability (Loewenstein & Elster, 1992; Madden, Begotka, 

Raiff, & Kastern, 2003; Thaler, 1981). Thus, the contribution of this paper to JDM is unique and 

the climate problem is ideally suited for investigating the joint effects of probability and timing 

on people‘s decisions, as the future climate consequences are both delayed in time and are 

uncertain. 

In what follows, we first summarize the JDM research relevant to generating our 

hypotheses about human behavior when making decisions from an experience or from a written 

description in situations that vary in the probability and timing of future climate consequences. 

Next, we present a laboratory experiment that manipulates the presentation of probability and 

timing in the form of an experience or a written description. Then, we present the results of this 

experiment and discuss the implications of the results to policy and JDM research. 

7.3 Decisions from Description and Experience: Effects of Probability and 

Timing 

Current research in JDM has documented the differences in human risk-taking behavior 

when making decisions from experience or decisions from description (e.g., Hertwig et al., 2004; 

Hertwig, in press). In decisions from description, people are asked to choose between two 

alternatives described by their consequences and probabilities. In contrast, in decisions from 

experience, people make repeated decisions by clicking on two unlabeled buttons (representing 
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two alternatives) (Barron & Erev, 2003), or sample the consequences as many times as they wish 

before making a final choice for one of the two alternatives (Hertwig et al., 2004).   

The main finding from this literature is that when making decisions from experience, 

people behave as if the low probability consequences have less impact than they deserve 

according to their objective probabilities, whereas in decisions from description people behave as 

if the low probability consequences have more impact than they deserve (consistent with the 

predictions from cumulative prospect theory) (Hau, Pleskac, Kiefer, & Hertwig, 2008; Hertwig, 

in press; Hertwig & Erev, 2009; Hertwig et al., 2004; Weber, Shafir, & Blais, 2004). As a result, 

the risk-taking behavior predicted by prospect theory in decisions from description gets reversed 

in decisions from experience. The reversal of people‘s risk-taking behavior has been attributed to 

the reliance on small samples in decisions from experience (Gottlieb, Weiss, & Chapman, 2007; 

Hertwig et al., 2004; Rakow, Demes, & Newell, 2008; Ungemach, Chater, & Stewart, 2009); 

differential impact of low and high probability consequences in gamble problems (Hau et al., 

2008); and reliance on observed recent and frequent experiences of consequences (Gonzalez & 

Dutt, 2010; Hertwig, in press; Lejarraga, Dutt, & Gonzalez, in press; Weber et al., 2004). 

The change in people‘s risk preferences documented in decisions from experience and 

description is highly relevant to our understanding of people‘s support for the wait-and-see 

approach for climate. As explained above, a written description of the probability and the timing 

of future climate consequences do not always agree with a person‘s day-to-day experiences of 

climate consequences. Currently, climate change might be perceived as a low probability event 

because the consequences are delayed and there is considerable individual variability of human 

experiences. For example, a consequence of climate change is a reduction of glaciers in the 

Himalayas, but the reduction happens slowly and most people living in cities do not experience 
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it. Thus, people might perceive future climate consequences as low probability events that have a 

negligible chance of occurring in the future. According to the JDM literature, we expect people 

to behave as if future climate consequences have less impact than they deserve according to their 

objective probabilities, when making decisions from experience. Similarly, we expect people to 

behave as if the future climate consequences have more impact than they deserve according to 

their objective probabilities, when making decisions from a written description. Thus, we 

hypothesize that:   

H1: The proportion of wait-and-see choices will be greater when decisions are made 

from experience than from a written description. 

Literature in JDM has also documented people‘s risk-taking choices to be a function of 

both the probability of a consequence (low probability or high probability) and of the sign of the 

consequence (loss consequence or gain consequence) (Kahneman & Tversky, 1979; Tversky & 

Fox, 1995; Tversky & Kahneman, 1992). The basic finding is a ―fourfold pattern‖ (Hertwig, in 

press): In decisions from description, people are risk-taking when the probability of a loss is high 

and when the probability of a gain is low. Similarly, people are risk averse when the probability 

of a gain is high and when the probability of a loss is low (Tversky & Fox, 1995). This fourfold 

pattern of risk-taking and risk-aversion in decisions from description has been replicated in many 

studies in the past (Cohen, Jaffray, & Said, 1987; Fishburn & Kochenberger, 1979; Hershey & 

Schoemaker, 1980; Kahneman & Tversky, 1979). The fourfold pattern has been explained as per 

the tenets of prospect theory (Kahneman & Tversky, 1979), which suggests that the utility of a 

gamble problem is the product of a value function with a probability-weighting function. The 

shape of the value function is concave for gains and convex for losses, relative to a common 

reference point. In addition, the shape of the probability-weighting function is nonlinear such 
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that low probability consequences have more impact than they deserve according to their 

objective probabilities and moderate and high probability consequences have less impact than 

they deserve according to their objective probabilities. 

In decisions from experience, researchers have shown a reversal of the fourfold pattern 

observed in decisions from description (Hertwig et al., 2004): People are risk-taking when the 

probability of a gain is high, but risk-averse when it is low. At the same time, they are risk-taking 

when the probability of a loss is low, but risk-averse when it is high (Hertwig, in press). 

Although it might become difficult to explain people‘s risk-taking behavior in decisions from 

experience according to the prospect theory in a form that theory was originally proposed 

(Kahneman & Tversky, 1979), researchers have tried to apply the prospect theory to decisions 

from experience by recalibrating the theory‘s parameters (Hau et al., 2008). Thus, the 

recalibrated weighting and value functions in the prospect theory are able to account for the 

observations in decisions from experience (in fact the recalibration makes the theory provide one 

of the best accounts for results in decisions from experience). However, the recalibrated 

parameters in decisions from experience also turn the weighting function into an identity 

function of probability and this questions whether the essence of the theory is retained, post 

recalibration (Hau et al., 2008; Hertwig, in press).   

An act-now approach to climate change requires paying a cost (e.g., a carbon-tax), and 

thus, an act-now approach demands a monetary loss right now. In contrast, a wait-and-see 

approach to climate change, with some probability of occurring in the future, might entail losing 

a larger sum of money (e.g., as a tax). Given the inverse predictions of risk-taking behavior in 

decisions from description and experience, we expect that in description, people would prefer to 

wait-and-see (i.e., behave risk-taking) when they are presented with a carbon-tax payment that 
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has a high probability of occurrence in the future, but people would prefer to act-now (i.e., 

behave risk-averse) when they are presented with a tax payment that has a low future probability 

of occurrence. In contrast, in experience, people would prefer to wait-and-see when they 

experience a carbon-tax payment that has a low probability of occurrence in the future, but 

would prefer to act-now when they experience one that has a high probability of occurrence in 

the future. Thus, the proportion of wait-and-see choices should be greater when the probability of 

tax payment is low and should be smaller when the probability of tax payment is high. Therefore, 

in experience, the difference in the proportion of wait-and-see choices between a low and a high 

probability tax payment will be amplified compared to description. In description, the difference 

in the proportion of wait-and-see choices between a low and high probability tax payment will be 

attenuated. 

We hypothesize that: 

H2: The difference in the proportion of wait-and-see choices between a low probability 

and a high probability climate consequence will be greater when making decision from 

experience than when making decision from description. 

In addition to the uncertainty in the occurrence of future climate consequences, there is 

also an uncertainty and lack of consensus on the timing of the consequences (e.g., how soon 

from now the climate consequences are expected to appear) (Nordhaus, 1994). As mentioned 

above, the decisions from experience and description paradigms in JDM have been used to 

assess the effects of the probability and timing of future consequences independently; the 

paradigms have still not been used to assess the joint effects of the probability and timing on 

people‘s risk preferences. According to the literature in time preferences, a person tends to avoid 

a high and certain cost now (e.g., defer an increase in tax) when the associated benefits are 
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distant in the future (magnitude effect) (Ainslie, 1975; Loewenstein & Elster, 1992; Thaler, 

1981; Weber, 2006). However, a wait-and-see decision in the climate problem may also be 

influenced by the ―discount rate‖ (the interest rate used to determine the present value of future 

tax payments) (dynamic-inconsistency effect) (Benzion, Rapoport, & Yagil, 1989). Due to the 

magnitude and dynamic-inconsistency effects, a person‘s discount rate falls with an increase in 

time to pay a tax amount and an increase in magnitude of the tax amount. 

The carbon-tax one would have to pay to mitigate climate change is predicted to grow as 

one decides to follow a wait-and-see approach (Stern, 2006). The nature of growth of the carbon-

tax is nonlinear with small increments in the carbon-tax early in the future and larger increments 

late in the future (Stern, 2006). Thus, we expect that someone would prefer to pay a smaller 

carbon-tax now, rather than to pay a very large carbon-tax late in the future. Because of the 

nonlinear increase in the carbon-tax with increase in time, the tax one would need to pay early in 

the future (e.g., 10 years from now) might not be much larger than the carbon-tax one would 

need to pay right now. Therefore, one might decide to wait and pay the tax later in the future 

(wait-and-see) rather than pay it right now (act-now).  

Previous research has tested the effects of providing a time delayed monetary reward on 

people‘s time-preferences when the reward was presented either as a hypothetical reward (a 

written description of a delay in getting a reward) or as a real reward (an actual experience of the 

delay in getting a reward) (Madden et al., 2003). In their study, half of the participants were 

tested first with hypothetical rewards and then with real rewards; the other half were tested first 

with real rewards and then with the hypothetical rewards. In all cases, the amount of reward that 

could be won was $10, which was offered to a participant at different time delays. Participants 

were asked to choose one of the two alternatives: ―$X delivered today and $10 delivered in Y 
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years.‖ The $X corresponded to an immediate reward and $10 corresponded to a delayed reward. 

For the hypothetical rewards, participants did not receive any of the rewards that they chose in 

different problems. In contrast, for the real rewards, the reward was physically delayed and 

mailed out to participants after a time delay (Y), if participants had selected to delay the 

reception of the reward in a randomly selected problem. According to Madden et al. (2003) there 

was no difference in the amount of reward for which a participant switched from an immediate 

reward to a delayed reward between the real and hypothetical rewards. Madden et al.‘s (2003) 

intervention of a real time delay corresponds to a situation in which people are exposed to the 

timing as an experience, while the hypothetical time delayed rewards corresponds to a 

descriptive situation in which people read a written description on how long they would need to 

wait for the reward. 

Although Madden et al.‘s (2003) study is about monetary rewards rather than monetary 

losses as in the current study, we believe that Madden et al.‘s (2003) study gives some evidence 

that time preferences in description and experience would be similar. According to this and the 

literature in time preferences, we hypothesize that: 

H3: The proportion of wait-and-see choices will be greater when climate consequences 

are expected to occur early rather than late in the future, and this effect will be the same whether 

the time is experienced or described. 

7.4 Experiment 

We conducted a laboratory experiment to test participants‘ wait-and-see or act-now 

choices in a climate problem where they had to make decisions based on a written description or 

from an experience, and under different conditions of the probability and timing of climate 

consequences.   
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7.4.1 Method 

7.4.1.1 Experimental design  
 

Participants were randomly assigned to one of two conditions: description and 

experience. In the description condition, participants read a written description of climate 

consequences, probabilities, and timing of the occurrence of consequences in two different 

alternatives, and were asked to choose one of the alternatives based on the description (N = 51).  

Thus, the consequences, probability, and timing were explicitly given in a written form to the 

participants. In the experience condition, participants sampled two different alternatives 

presented as unlabeled buttons as many times as they wanted to, and were then asked to finally 

choose one of the two alternatives (N = 50). The probability and timing of climate consequences 

were not explicitly provided, but they were determined by participants based upon their 

sampling. In both conditions, one alternative reflected the wait-and-see (risk-taking) approach 

and the other alternative, the act-now (risk-averse) approach. 

Each participant received four problems in a random order, where the wait-and-see 

alternative differed according to the probability and timing of the climate consequences: a low 

probability consequence early (p=0.05 and n=10 years from now); a low probability consequence 

late (p=0.05 and n=100 years from now); a high probability consequence early (p=0.95 and n=10 

years from now); and, a high probability consequence late (p=0.05 and n=100 years from now).  

Each alternative presented consequences as a monetary outcome, which was derived in terms of 

a carbon-tax.
25

 The carbon-tax was determined by using a popular Stern Review proposal for 

mitigating future climate change (Stern, 2006). The Stern Review proposal was run in the 

                                                 
25

 The carbon-tax takes into account both the cost of damages due to future climate change as well as its cost of 

abatement. 
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Dynamic Integrated Climate Economy model (Nordhaus, 2008) with the Stern assumption of a 

1.4% discount-rate.
26

 The model gave a carbon-tax of $1,400 per-person-per-year for the act-

now alternative. Furthermore, for the wait-and-see alternative, the model run gave a carbon-tax 

of $18,000 per-person-per-year for 10 years in the future from now and $340,000 per-person-

per-year for 100 years in the future from now. These carbon-taxes were used as the outcomes in 

all problems in different conditions. 

7.4.1.2 The description condition  
 

The four problems used in the description condition are shown in Figure 7-1. The wait-

and-see and act-now alternatives were randomly assigned to be shown on the right or left of the 

computer screen. A participant read and chose one of the two alternatives in each of the four 

problems, presented one-by-one in random order. In the act-now alternative, a person had to pay 

a one-time carbon-tax of $1,400 now for sure. In contrast, in the wait-and-see alternative, Y 

years from now (=10 in the early case or =100 in late case), a person had to pay a one-time 

carbon-tax of $X (=$18,000 in the early case or $340,000 in the late case) with a probability P 

(=.05 for low or =.95 for high), or $0 otherwise. 

7.4.1.3 The experience condition  
 

In the experience condition, a participant clicked one of two unlabeled buttons (Figure 7-

2). Each button corresponded to one of the two alternatives, act-now or wait-and-see. Clicking 

on one of the buttons gave a participant a carbon-tax (= $1,400, if the button assigned to the act-

now alternative was chosen). Clicking on the other button gave the participant another carbon-

                                                 
26

 The output from the DICE model run contained a carbon-tax in units of dollar per ton of carbon. Thus, for 

generating the dollar per-person-per-year carbon-tax, an average of 5 tons of carbon consumption per-person-per-

year was assumed. Furthermore, the carbon-tax in units of dollar per ton of carbon was multiplied by 5 tons of 

carbon consumption per-person-per-year. 
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tax ($X and $0). The value of $X could be either $18,000 in the early case, or $340,000 in the 

late case, in the four problems. 
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Figure 7-1. The four problems presented to each participant in the description condition.
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Furthermore, clicking the wait-and-see alternative delayed the presentation of the carbon-

tax by a certain number of years, depending on the timing (Y=10 years in the early case or 

Y=100 years in the late case). One year corresponded to a one-second of real time-delay. The 

one-second to one-year correspondence is motivated by previous time preference studies with 

monkeys where a similar magnitude of delay had been used (McClure, Ericson, Laibson, 

Loewenstein, & Cohen, 2007). Participants were first encouraged to sample both button options 

as many times as they wanted to, to gain experience in a problem. Sampling essentially meant 

clicking on one of the two buttons to find out the carbon-tax that a participant would have to pay 

and to experience the corresponding time delay. A participant was asked to make a final choice 

by clicking the ―Make Decision‖ button after he was satisfied with his sampling. Although 

sampling the alternatives in a problem did not cost the participants money, it involved different 

time costs depending on the timing (early, late).  
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Figure 7-2. The four problems presented to each participant in the experience condition. The two choice alternatives in each 

problem were presented as two blank buttons that could be sampled many times by clicking in the buttons. Once a participant 

had sampled both buttons many times, a final decision could be made by clicking the “Make Decision” button followed by the 

button the participant wanted to choose.
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To test H1, we compared the proportion of wait-and-see choices across the experience 

and description conditions. To test H2, we compared the difference between the proportion of 

wait-and-see choices in the low probability problems (p=0.05) and the proportion of wait-and-

see choices in the high probability problems (p=0.95) within the experience and description 

conditions, respectively. Finally, to test H3, we compared the proportion of wait-and-see choices 

between problems where the timing was early or late, within the experience and description 

conditions, respectively.  

7.4.1.4 Participants 

One hundred and one undergraduate and graduate students at Carnegie Mellon University 

participated in this experiment. Sixty-two percent of the participants were males. Ages ranged 

from 18 years to 57 years (Mean = 25, S.D. = 8). All participants started with $7 and depending 

upon their final choice, they could lose money. Only a participant‘s final choice in both the 

experience and description conditions affected the final payment. Participants were told this fact 

in the instructions before the start of their experiment. The carbon-taxes could be $1,400 in the 

act-now and $0, $18,000, or $340,000 in the wait-and-see alternative. To pay participants, we 

scaled the actual carbon-taxes to smaller amounts. We used a log scaling to calculate a 

participant‘s earnings in the experiment. For example, if due to a participant‘s final decision in a 

problem, the carbon-tax generated was $X, then the adjustment to the earnings was = -0.1 * Log 

10 ($X + 1). Thus, for a $1,400 tax, a participant lost ¢31. Similarly, for an $18,000 or a $340,000 

tax, a participant lost ¢43 and ¢55, respectively. The log scaling ensured that none of the 

participants lost an amount greater than $2 in total depending upon the final carbon-tax they 

would have to pay in each problem. Also, the use of the log scaling ensured that the effect of 

differences in the magnitudes of $1,400, $18,000, and $340,000 was similar in the final payment 
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that a participant received. The log scaling was not revealed to participants, but they were told 

that they might lose up to $2 depending upon their final decisions in the problems.  

7.4.1.5 Procedure 

Participants read the instructions that appeared on a computer terminal. The experimenter 

answered any questions before the participant could begin the experiment. As part of the 

instructions, participants were told to assume that ―they earn a compensation of $55,000 in 2009‖ 

in each problem presented to them (this was the value for the average per-person-per-year salary 

projected for 2009 according to the year 2000 U.S. census). 

7.4.2 Results 

Across the four problems in the two conditions, experience and description, there was a 

significantly greater proportion of wait-and-see choices in the experience condition (47%) than 

in the description condition (33%), 
2
 (1) = 8.44, p < .01, r

27
 = .15. This result supports H1.  

Figure 7-3 presents the proportion of wait-and-see choices in the experience and 

description conditions according to the probability of the occurrence of consequences (low or 

high). In experience, there was a significant difference in the proportion of wait-and-see choices 

when the probability was low (74%) compared to when the probability was high (20%), 
2
 (1) = 

58.53, p < .001, r = .54. Similarly, in description, there was a significant difference in the 

proportion of wait-and-see choices when the probability was low (50%) than when the 

probability was high (14%), 
2
 (1) = 29.45, p < .001, r = .38. Furthermore, in support of our 

expectation in H2, the difference in the proportion of wait-and-see choices between the low and 

high probability (54%) in the experience condition is greater than the difference in the proportion 

                                                 
27

 The r refers to the effect-size unless otherwise indicated. 
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of wait-and-see choices between the low and high probability (36%) in the description condition 

(r experience (= .54) > r description (= .38)).  

 

Figure 7-3. The proportion of final wait-and-see choices in the experience and description 

conditions according to the probability of occurrence of future climate consequences (low 

or high). 

 

Figure 7-4 presents the proportion of wait-and-see choices in the experience and 

description conditions according to the timing of the climate consequences (early or late). In 

experience, the difference in the proportion of wait-and-see choices when the timing of 

consequences was early (52%) than late (42%) was not significant, 
2
 (1) = 2.01, ns, r = .10. 

Similarly, in description, the difference in the proportion of wait-and-see choices when the 

timing of consequences was early (37%) than late (28%) was not significant, 
2
 (1) = 1.81, ns, r 

= .09. Thus, H3 is not supported. 
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Figure 7-4. The proportion of final wait-and-see choices in the experience and description 

conditions according to the timing of the climate consequences (early or late). 

 

Although we did not have a prediction for the interaction between the timing and 

probability of future climate consequences, we present the combined effects of probability and 

timing in Figure 7-5. This figure shows the proportion of wait-and-see choices for each of the 

four problems used in our experiment. The proportion of wait-and-see choices was greater in 

experience than in description conditions in all cases except for these two: when the probability 

of the consequence was high and the time was late and when the probability of consequence was 

high and the time was early. When the probability of the consequence was high and the time was 

late, there were 10% wait-and-see choices in experience and 12% wait-and-see choices in 

description (
2
 (1) = 0.13, ns, r = .04). Similarly, when the probability of the consequence was 

high and the time was early, there were 30% wait-and-see choices in experience and 16% wait-

and-see choices in description (
2
 (1) = 2.59, ns, r = .16). However, when the probability of the 

consequence was low and the time was early, the proportion of wait-and-and-see choices was 

significantly greater in the experience condition (74%) than in the description condition (55%), 
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
2
 (1) = 3.99, p < .05, r = .19. Similarly, when the probability of the consequence was low and 

the time was late, the proportion of wait-and-and-see choices was significantly greater in the 

experience (74%) than the description (44%) condition, 
2
 (1) = 9.30, p < .01, r = .31. These 

results suggest that the wait-and-see choices were directly affected by the low probability of the 

consequences and not by the time. When the probability of the climate consequences is high, 

there is a smaller proportion of wait-and-see choices regardless of the time. 

 

Figure 7-5. The proportion of final wait-and-see choices in the experience and description 

conditions as a function of the time (early or late) and the probability (low or high) of the 

occurrence of climate consequences. 

 

7.4.2.1 Sampling in experience  

Across all four cases in the experience condition, participants sampled both alternatives 

less than 5 times on average (thus, the sample size was very small). The median number of 

samples of the act-now alternative was: 2 for late-and-high case, 1 for late-and-low case, 1 for 

early-and-high case, and 1 for early-and-low case. Similarly, the median number of samples of 

the wait-and-see alternative was: 1 for late-and-high case, 1 for late-and-low case, 1 for early-
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and-high case, and 2 for early-and-low case. Although the timing of the climate consequences 

did not affect the proportion of wait-and-see choices (see results above), the timing did affect the 

sampling of the wait-and-see alternative (the effect of the timing on the act-now alternative was 

absent with z = -0.60, p = .55, and r = .04). Remember, the timing was only manipulated in the 

wait-and-see alternative and not in the act-now alternative. The number of samples in the wait-

and-see alternative for an early timing of consequence (mean = 1.76) was significantly greater 

than the number of samples of the wait-and-see alternative for a late timing (mean = 1.39) with z 

= -2.31, p = .02, and r =.16. Furthermore, there was an effect of the probability of the future 

climate consequences on the number of samples in the act-now alternative (the effect of the 

probability of the climate consequences on the number of samples of the wait-and-see alternative 

was absent with z = -1.48, p = .14, and r = .10). The number of samples in the act-now 

alternative for a high probability of consequence (mean = 1.95) was significantly greater than the 

number of samples of the act-now alternative for the low probability (mean = 1.32) with z = -

3.14, p < .01, and r = .22. Thus, it was as if a participant who encountered the high probability 

consequence on the wait-and-see alternative, also wanted to check the consequence in the act-

now alternative more often than the wait-and-see alternative before making his final choice.  

The small sample size in different cases, on account of the probability and the timing of 

the consequence, made participants observe the low probability consequence at less than its 

expected probability. Table 7-1 provides the proportion of wait-and-see choices in different cases 

as a function of the frequency of observing a low probability consequence as being less than or 

more than or equal to its expected value. The expected value is determined by the product of ―n,‖ 

the number of samples of the wait-and-see alternative performed by a participant in a case, and 

―p,‖ the true probability of observing a low probability consequence in the case. The table shows 
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these percentages for different problem cases, where the monetary consequences, the probability 

of the non-zero wait-and-see consequence, and the low probability of the wait-and-see 

consequence are clearly labeled. When the probability of the consequence was low, there was a 

clear evidence of people behaving as if the low probability consequence had less impact than it 

deserved according to its objective probability (irrespective of the timing): The proportion of 

wait-and-see choices, where the low probability was encountered less frequently than expected, 

was greater than the proportion of wait-and-see choice, where the low probability was 

encountered as or more frequently than expected (78% >> 40% and 81% >> 29%). However, the 

proportion of wait-and-see choices, where the high probability was encountered less frequently 

than expected, was not consistently greater than the proportion of wait-and-see choices, where 

the high probability was encountered as or more frequently than expected (32% > 17% and 8% < 

100%). This observation is an explanation for a significantly greater proportion of wait-and-see 

choices in the experience condition when the probability was low, and a significantly smaller 

proportion of wait-and-see choices in the experience condition when the probability was high 

(see Figure 7-5). 
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Table 7-1. The proportion of wait-and-see choices with a low probability consequence as a 

function of the frequency of occurrence of the low probability consequence. 

 

Cases Problems 
 

 

 

 

 

 

 

 

Low Probability 

Consequence 

Proportion of wait-and-see choice 

(with low probability consequences) 

 

N 

 

P 

 

 

Wait-and-see 

Choice 

 

 

Act-now 

Choice 
# < np

1
 % # ≥ np

2
 % 

Early Low 18,000; 0.05 1,400; 1.0 18,000; 0.05 78 (35/45)
3
 40 (02/05) 

Early High 18,000; 0.95 1,400; 1.0 0; 0.05 32 (14/44) 17 (01/06) 

Late Low 340,000; 0.05 1,400; 1.0 340,000; 0.05 81 (35/43) 29 (02/07) 

Late High 340,000; 0.95 1,400; 1.0 0; 0.05 08 (04/49) 100 (01/01) 

 

Note. 
1
 Proportion of wait-and-see choice with a low probability consequence, where the low 

probability consequence was encountered less frequently than expected, i.e., n*p, where n is the 

number of samples of the wait-and-see choice performed by a participant and p is the probability 

of the occurrence of the low probability consequence. 
2
 Proportion of wait-and-see choice with a 

low probability consequence, where the low probability consequence was encountered as or 

more frequently than expected. 
3
 Numbers in brackets refer to the actual frequencies of different 

proportions. 

 

7.5 Discussion 

This research contributes to a better understanding of people‘s decisions to wait-and-see 

rather than act-now in a climate problem. We demonstrate that people‘s support to delay actions 

to mitigate climate change is largely influenced by the probability of the occurrence of future 

climate consequences and not by the timing of those occurrences. Further, the decision to choose 

wait-and-see is influenced by people‘s experience and exposure to the probability of climate 

consequences, regardless of its timing.   
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In general, we find a greater proportion of wait-and-see choices when decisions are made 

from experience rather than from a written description (H1). In a related research, Dutt and 

Gonzalez (2010) found that when people are exposed to certain negative experiences and 

realistic consequences of climate change in a simulation, they reduced the proportion of wait-

and-see decisions in a follow-up judgment task compared to participants without the experience 

in the simulation. The experience gained in the simulation was immediate and certain, because 

participants were given a constant CO2 goal value to maintain by manipulating their yearly CO2 

emissions and absorptions. In contrast, in this study, participants were exposed to future climate 

consequences that were both probabilistic and uncertain in the timing of their occurrence. Thus, a 

participant might have to either pay a carbon-tax sometime in the future or no tax at all, where 

the tax magnitude and time delay were determined by the underlying probability and timing of 

the consequences. Therefore, results in this study agree with the observations of Dutt and 

Gonzalez (2010), that experience is a double-edged sword: A certain and more immediate 

experience reduces people‘s wait-and-see choices, whereas an uncertain and delayed experience 

increases their wait-and-see choices for climate.   

This research also extends the main findings on decisions from experience and 

description by analyzing the combined effects of probability and time together. We find that the 

difference in wait-and-see choices between the low probability and high probability 

consequences is significantly greater when participants experience the climate consequences than 

when participants read about the low and high probability climate consequences as a written 

description (H2). 

While making decisions from experience, people behave as if the low probability 

consequences have less impact than they deserve , according to its objective probabilities, and 
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the high probability consequences have more impact than they deserve, according to their 

objective probabilities (see Table 7-1). In contrast, while making decisions from description, 

people behave as if the high probability consequences have less impact than they deserve, 

according to its objective probabilities, and the low probability consequences have more impact 

than they deserve, according to their objective probabilities. This result of less impact of the low 

probability consequences in experience may be explained further by the known small-sampling 

effect (Hertwig et al., 2004).  In experience, when the probability of a consequence is low, 

people encounter that low probability consequence less frequently than expected due to their 

small sampling of the two alternatives, as was found in our results (also see Table 7-1).  

However, when the probabilities and consequences are described rather than experienced, 

the difference between the low and high probability events is smaller than that in experience. 

This finding is consistent with the predictions of prospect theory (Kahneman & Tversky, 1979). 

According to prospect theory, in decisions from description, people behave as if a low 

probability consequence has more impact than it deserves, according to its objective probability, 

and a high probability consequence has less impact than it deserves, according to its objective 

probability. Although in our results, the predictions from prospect theory explain the reduction in 

the difference in the proportion of wait-and-see choices in description between the low 

probability and high probability, the difference does not disappear. Thus, we still find that a 

significantly greater proportion of people choosing to wait-and-see for the low probability than 

the high probability in description. One possible reason for this observation could be that the 

carbon-tax amounts used in the study are different and significantly greater than those that have 

been used in past studies (Hau, Pleskac, Kiefer, & Hertwig, 2008; Hertwig, in press; Hertwig et 
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al., 2004; Herwig & Erev, 2009; Kahneman & Tversky, 1979; Weber, Shafir, & Blais, 2004) that 

have documented the results of people‘s risk preferences in decisions from description. 

Furthermore, we find there was no significant difference in the proportion of wait-and-

see choices between times that were early or late, when participants experienced or read 

descriptions of carbon-tax consequences. This finding is the most surprising and unexpected 

given that people would tend to adopt a wait-and-see approach because the detrimental 

consequences are expected to happen in the distant future and not in the present. One explanation 

is that the timing is observed by people in the study as something that creates a wait and thus a 

cost. However, in the real world, the time delay might not necessarily be perceived as a cost 

(because when people decide to wait in the real world, they might spend that waiting time in 

more productive activities). The support for this observation comes from the fact that the time, 

early and late, did influence the number of samples people made of the wait-and-see alternative 

(on account of the late time being perceived by people as costly). However, another explanation 

for the lack of difference could also be that the early and late times were not salient enough in 

the study. The lack of saliency could be due to an enormously scaled-down version of the ―real 

experience,‖ where one year corresponded to a one-second of real-time delay in experience and 

no time delay in description. Although there was no difference in the proportion of wait-and-see 

choices between times that were early or late, our findings do support those by Madden et al. 

(2003), who found that although there were significant differences in choices for delayed and 

immediate rewards (unlike us); the direction of the difference was the same when the time was 

either experienced or described. We plan to do follow up studies to test the effects of early and 

late time after we have taken into account the above listed factors that could potentially be 

reasons for the lack of difference. 
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In the past, the JDM literature has documented the individual effects of the probability 

and timing of consequences on people‘s risk- and time- preferences, respectively. However, we 

know little about how choices are influenced by the experience and description of both the 

timing and the probability of the consequences. Our findings indicate that people's wait-and-see 

choices for climate are influenced primarily by their perception of the probability of climate 

consequences. Thus, a person‘s choice to wait-and-see is governed by a low or high probability 

of future climate consequence. A low probability has a moderating effect in the presentation of 

high taxes in the case of an early or late timing of a consequence: an early or late time makes the 

magnitude of carbon-tax high; however, a low probability makes a high tax-consequence rare. 

This explanation is confirmed by the fact that the difference in the proportion of wait-and-see 

choices disappeared when an early or late timing of climate consequence incurred a large tax that 

occurred with a high probability, in which case, very few people chose the wait-and-see 

alternative.  

We presented people with consequences of future climate change as carbon taxes. This is, 

of course, legitimate and also makes experimentation easier as different alternatives can easily be 

compared by participants. However, we believe that there are other ways of simulating people‘s 

imagination and giving people experiences of climate consequences that are different from tax 

payments. For example, in the past, Dutt & Gonzalez (2011) have given participants experiences 

of climate change by showing them the effects of the CO2 emissions on the CO2 concentration 

levels. Furthermore, Dutt and Gonzalez (2011) associated the increases in the CO2 concentration 

levels above a pre-define goal with a corresponding increase in temperature and sea level rise in 

the world. Similarly, some other means of providing climate experiences could be in the form of 

pictures of objects that participants associate with (e.g., a house one would live-in, which is close 
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to a sea coast), and how those objects might be affected by climate change (e.g., severe waves 

and winds due to future climate change).  

Finally, one might argue that it is possible that the likelihood of climate change is 

currently high, but the probability that specific intervention and/or research programs are cost 

effective, is low. It is to be noted that the carbon tax consequences that people faced in different 

problems in the study included both costs of damages due to future climate change as well as 

costs of abatement of climate change (the latter cost forms a part of the cost of different 

interventions). Thus, another possible explanation of a greater wait-and-see in experience 

compared to description could be that our experience with climate interventions can reduce our 

tendency to invest in addressing climate change because these interventions are perceived as 

costly. Also, as observed in our results, one might show more support for the wait-and-see 

alternative after costly experiences of an intervention. However, one should also acknowledge 

that currently we do not know whether the probability associated with future climate change, or 

whether the probability of the cost-effectiveness of its interventions in the future will be low or 

high. Thus, in the study, we assumed both possibilities, i.e., when the probability is low in the 

future and when the probability is high in the future. Although in the study, we provided tax 

consequences that were detached from a particular climate intervention, it will be interesting to 

test whether the experience of one of the intervention programs (e.g., switching off lights in 

one‘s home for 1 hour in the evening) could reduce our tendency to invest in addressing the 

climate change issue due to it being costly and due to the probability of the intervention‘s cost-

effectiveness being low currently, and it being low or high in the future.  
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7.6 Contributions of the Study to Judgment and Decision Making  

Unlike previous studies on decisions from experience and description, where only the 

probability of the risky outcomes was manipulated, we manipulate both the probability and 

timing in a problem involving a binary-choice in conditions of experience and description in this 

study. This unique manipulation allows us to experiment with a practical problem with 

distinctive characteristics like climate, where the consequences are both probabilistic and 

delayed in time, and to measure how these factors interact together to influence people‘s wait-

and-see choices. Although this study applied JDM principles to people‘s wait-and-see behavior 

on climate, similar applicative contributions of decisions from experience and description 

paradigms have been made in other practical problems. For example, Shafir, Reich, Tsur, Erev, 

and Lotem (2008) have demonstrated the certainty effect in descriptive-based and reversed-

certainty effect in experience-based choice both for bumble bees as well as humans. Similarly, 

Yechiam, Barron, and Erev (2005) have demonstrated that the risk sensitivity of local Israeli 

residents differ from those of the international tourists on account of their personal experiences. 

Yechiam et al. (2005) have reported similar findings in a laboratory experiment involving a 

binary-choice problem. 

We believe that the distinctive characteristics of the climate problem make it both 

interesting and challenging to apply the theories and methods of JDM research. Thus, unlike 

other problems, the climate problem is naturally suited to and allows us to test the joint effects of 

the probability and timing of consequences in a single problem on people‘s wait-and-see choices.  

7.7 Implications of the Findings to Policy 

There is little scientific doubt that climate change will occur if we continue on a path of 

increasing greenhouse gas emissions (IPCC, 2007). According to Weber (2006), an act-now 
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approach could be adopted if the consequences due to climate change could arouse visceral 

reactions of fear in the minds of the general public. One method for doing so is to provide 

climate consequences that are either descriptive or experiential. The descriptive information 

could appear using letters and numbers, whereas the experiential information could form a part 

of a figure or imagery (i.e., through commercials and movies like An Inconvenient Truth or The 

Day After Tomorrow) (Leiserowitz, 2004) or a dynamic simulation (Dutt & Gonzalez, 2010).  

Our results show that people like to act-now when they either experience or read a written 

description of climate consequences that communicates a high probability of climate 

consequences occurring in the future. Thus, based upon our results, one way to evoke visceral 

reactions of fear or a conscious awakening is to present people with descriptions and experiences 

of future climate consequences that make them perceive these consequences as occurring with a 

high probability in the future. In fact, Leiserowitz, (2004) found that a greater proportion of 

people who watched the movie, The Day After Tomorrow, wanted to act now on the climate 

problem than those who did not watch the movie. Future research that applies JDM principles on 

climate change would benefit by building upon the findings of this study.  
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8.1 Abstract 

This study investigates how a description or experience of cost, timing, and probability of future 

climate consequences affects people‘s risky wait-and-see behavior for climate change. In a 

laboratory experiment, carbon-tax consequences were presented to participants in one of two 

forms: a written description, where the cost, timing, and probability were explicitly provided; or 

experience, where the cost, timing, and probability were sampled through unlabeled buttons. 

Eight problems, each with an act-now (safe) option and a wait-and-see (risky) option, were 

presented in description and experience such that the probability of consequences on the wait-

and-see option was low or high, the timing was early or late, and the cost was small or large. 

Results indicate that while in both experience and description, the proportion of wait-and-see 

choices was greater when the probability was low rather than high, the difference between low 

and high probability was amplified in experience and attenuated in description. Also, the 

proportion of wait-and-see choices was greater when the timing was late than early, and when 

the cost was small than large; however, the effects of timing and cost were absent in experience. 

These results are explained by people‘s risk- and time- preferences, and the moderating effects of 

experience of climate consequences. We discuss the implications of our findings for risk 

communication in climate change.  

 

Keywords: time, probability, cost, decisions from experience, decisions from description, climate 

change 
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8.2 Introduction 

Unlike other global problems with risky outcomes (e.g., poverty, education, and war 

etc.), climate change is unique: It affects us all alike, and its future consequences might be costly, 

delayed, and uncertain (Sterman, 2008; Weber, 2006). Climate change is a serious problem 

needing immediate attention. The Intergovernmental Panel on Climate Change (IPCC) (2007), 

the Joint Science Academies (JSA) (2007), and the World Meteorological Organization (WMO) 

(2006) have jointly concluded that the current levels of greenhouse-gas emissions far exceed 

historic levels and that these emissions must be urgently and significantly reduced. Failing to do 

so, the world could face catastrophic consequences in the future. 

Despite the widespread scientific evidence of the seriousness and urgency of the climate 

problem, a large number of people, including citizens, policymakers, and scientists, prefer to take 

risks and wait, rather than act now to reduce emissions, i.e., they exhibit a risk-seeking ―wait-

and-see‖ behavior for climate change (Dutt & Gonzalez, 2011, in press, 2010; Leiserowitz, 2007; 

Nordhaus, 1994; Sterman, 2008; Sterman & Booth Sweeney, 2002, 2007). 

Amidst the wait-and-see behavior for climate change, economists and climate scientists 

seem to be in disagreement about the cost (how much?), timing (when?), and probability (with 

what chance?) of the impacts of future climate consequences (Nordhaus, 1994). For example, 

when economists and climate scientists from the National Academy of Sciences (NAS) were 

asked to assess the cost of damages in gross world product (GWP) for a rapid 6°C rise in average 

earth‘s temperature by 2090, the estimates varied between 0.8% of GWP (for economists) and 

62% of GWP (for climate scientists) (Nordhaus, 1994). Similarly, when asked to assess the 

probability of damages occurring under the same scenario, estimates varied between 0.3% (for 

economists) and 95% (for climate scientists). Moreover, the study admitted to being uncertain 
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about the timing of climate consequences and gave different scenarios to the NAS panel. For 

example, one scenario was projected more than 100 years from now in the year 2175, and 

another less than 100 years from now in the year 2090. Generally, the economists‘ predictions 

seem to underweight the cost and probability; whereas, the natural scientists‘ predictions seem to 

overweight the same cost and probability. According to Nordhaus (1994), the climate scientists‘ 

overweighting was due to their widespread exposure to descriptive models of climate change; 

whereas, economists‘ underweighting was driven by their widespread reliance on their current 

experiences of climate change in the absence of descriptive climate knowledge. In fact, recent 

research in judgment and decision making (JDM) has revealed that decisions made from a 

description (like those of climate scientists) overweight low probability consequences; whereas, 

decisions made from experience (like those of economists) underweight low probability 

consequences (Hertwig, Barron, Weber, & Erev, 2004).   

In this paper, we test how decisions made from description or experience differ according 

to the cost, timing, and probability of climate consequences. The literature in JDM has 

documented the influence of underweighting and overweighting of low probability consequences 

on people‘s risk-seeking behavior in description and experience, respectively (Hertwig et al., 

2004). However, there is not yet an empirical study that has evaluated the influence of 

descriptive and experiential probability of consequences in combination with their cost and 

timing on people‘s risk-seeking behavior.   

8.3 Background and Hypotheses 

Literature in JDM has studied people‘s risk-seeking choices in decisions made from a 

written description or from experience (Hertwig, in press; Hertwig et al., 2004; Kahneman & 

Tversky, 1979; Tversky & Kahneman, 1992). In decisions from description, people are asked to 



 

 

 

225 

 

choose between two options in which all consequences and their probabilities are stated 

(Kahneman & Tversky, 1979; Tversky & Kahneman, 1992). In contrast, in decisions from 

experience, people are provided with two blank buttons (representing the two options) where 

they can first sample the consequences by clicking the buttons as many times as they wish (with 

no costs) before deciding which option to choose for real (Hertwig, in press; Hertwig et al., 

2004).   

People‘s risk-seeking choices in decisions from description and experience are a function 

of both the probability (low or high) and the sign of the consequence (loss or gain) (Kahneman & 

Tversky, 1979; Tversky & Fox, 1995; Tversky & Kahneman, 1992). The basic finding is a 

―fourfold pattern‖ (Hertwig, in press): In decisions from description, people are risk-seeking 

when the probability of a loss is high and when the probability of a gain is low, while people are 

risk-averse when the probability of a gain is high and when the probability of a loss is low 

(Tversky & Fox, 1995). This fourfold pattern in decisions from description has been replicated in 

many studies in the past (Cohen, Jaffray, & Said, 1987; Fishburn & Kochenberger, 1979; 

Hershey & Schoemaker, 1980; Kahneman & Tversky, 1979), and it has been explained by 

prospect theory (Kahneman & Tversky, 1979). 

In contrast, a reversal of the fourfold pattern appears when people make decisions from 

experience (Hertwig, in press; Hertwig & Erev, 2009; Hertwig et al., 2004): People are risk-

seeking when the probability of a gain is high, but risk-averse when it is low. At the same time, 

they are risk-seeking when the probability of a loss is low, but risk-averse when it is high 

(Hertwig, in press). Although people‘s behavior in decisions from experience may be difficult to 

explain according to the original parameters of prospect theory (Kahneman & Tversky, 1979), 

researchers have found that by recalibrating the theory‘s weighting and value function 
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parameters with human data, it is possible to account for risky choices in decisions from 

experience. However, the recalibration also turns the weighting function into an identity function 

of probability, which sheds light on the boundaries of prospect theory‘s applicability in its 

original form (Hau, Pleskac, Kiefer, & Hertwig, 2008; Hertwig, in press).   

In previous research, we have presented an explanation of wait-and-see (risk-seeking) 

behavior for climate change when the information about probability and consequences was 

presented as a description or as experience (Dutt & Gonzalez, in press). We presented 

participants with choice problems as experience or as a written description with two options: act-

now (risk-averse) and wait-and-see (risk-seeking). The act-now option entailed paying a cost 

(e.g., a carbon tax of certain magnitude) right now; whereas, the wait-and-see option entailed 

losing a larger cost (as a tax) compared to the act-now choice with some probability (low or 

high) in the future. It was found that the difference in proportion of wait-and-see choices 

between a low and high probability tax payment was amplified in experience; whereas this 

difference was attenuated in description. The amplification in experience was explained by the 

four-fold pattern: people prefer to wait-and-see when they experience a carbon tax (a loss) that 

has a low probability, but prefer to act-now when they experience one that has a high probability. 

Similarly, the reason for the attenuation of the difference in description is due to the exact 

opposite effects of low and high probability carbon taxes compared to those in experience. Thus, 

a first goal in the current paper is to replicate this result. For the wait-and-see choices for climate 

change we expect: 

H1: The difference in the proportion of wait-and-see choices between a low probability 

and a high probability consequence will be greater when making decisions from experience than 

from description. 
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As mentioned earlier, there is currently uncertainty about when or how soon climate 

consequences are expected to appear (Nordhaus, 1994; Öncüler, 2010). We have also 

investigated the effects of timing of future cost consequences (as carbon taxes) on people‘s wait-

and-see behavior (Dutt & Gonzalez, in press). In previous research, we manipulated the timing 

on the wait-and-see option such that for an early occurrence of climate consequences (10 years in 

the future), the associated cost was smaller compared to that for a late occurrence of climate 

consequences (100 years in the future) (the cost increased directly as a result of timing with a 

smaller cost for early timing and a larger cost for late timing). Results revealed that the 

proportion of wait-and-see choices was not influenced by timing, early or late, and it was similar 

in both experience and description. One reason for this result is that the time delay was perceived 

only as a cost; however, in reality people might be able to earn salaries and might reap incentives 

during the time they wait to act on climate change. For example, some policymakers think that 

wait-and-see behavior to climate mitigation actions will enable people and industry to reap 

greater economic benefits in the time they wait to act on climate change through interest on 

savings in banks (Schoof, 2011). Therefore, there is a possibility that the accrued incentives in 

waiting would balance out the costs of future climate consequences, especially if these 

consequences occur late in the future. Motivated by these arguments, we modified our previous 

paradigm by making the time delay costly but also beneficial.  

According to literature on inter-temporal choice, people‘s repeated choices for risky and 

safe options in both experience and description under a time delay depend on whether the delay 

provides an incentive (Luhmann, Chun, Yi, Lee, & Wang, 2008; Wu, 1999). Therefore, people 

would prefer to choose a risky option which produced a time delay between repeated choices so 

long as they could derive an incentive during the waiting time. 
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For climate, if the consequences occur early in the future (e.g., 10 years from now), then 

the cost (carbon tax) of consequences may outweigh the gains that people make while waiting 

for a short time. However, if the climate consequences occur later in the future (e.g., 60 years 

from now), the economic gains people make while waiting may outweigh the cost (carbon tax). 

If people‘s time-preferences are driven by the option that provides them with a greater incentive 

in both experience and description (Dutt & Gonzalez, in press; Luhmann et al., 2008; Wu, 1999), 

then we expect a greater proportion of wait-and-see choices for later climate consequences than 

earlier consequences. We hypothesize that: 

H2: The proportion of wait-and-see choices will be greater when consequences are 

expected to occur late rather than early in the future, and this effect should not differ whether the 

time is experienced or described. 

Aside from the timing, there is also uncertainty and lack of consensus on the magnitude 

of costs (or magnitude of taxes) that future climate consequences will bestow on people 

(Nordhaus, 1994; Öncüler, 2010; The Economist, 2010). According to a popular climate 

economic model (Stern, 2006), the cost of future climate consequences, if left unmitigated, could 

vary between 5% and 20% of global GDP (a large range of variation). Also mentioned above, the 

NAS panel‘s estimates varied between 0.8% and 62% of GWP when the panel was asked to 

access the cost for a scenario with a rapid 6 degree centigrade rise in the earth‘s average 

temperature by 2090 (Nordhaus, 1994).  

Although we did not evaluate the effects of costs on people‘s wait-and-see behavior in 

our previous study (Dutt & Gonzalez, in press), cost has been shown to have an effect as strong 

as that produced by time delay (Benzion, Rapoport, & Yagil, 1989; Thaler, 1981). The basic 

finding is that for problems involving descriptive or hypothetical inter-temporal choices (i.e., 
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between paying now and paying in the future), people‘s discount rate falls sharply when costs 

increase (Holcomb & Nelson, 1992; Thaler & Loewenstein, 1992). This observation means that 

given a choice to pay a $10 carbon tax now or a $15 carbon tax in a year from now, a majority of 

people might prefer to pay the later $15 tax; however, if given a choice to pay a $100 carbon tax 

now or a $150 tax in a year from now, a majority of people might prefer to pay $100 right now. 

The main reason for this observation is that people are not only sensitive to relative differences 

in amounts they have to pay now and in the future, but they are also sensitive to the absolute 

differences in magnitudes between what they pay now and in the future (Prelec & Loewenstein, 

1991). Thus, we hypothesize: 

H3a: In description, the proportion of wait-and-see choices will be greater when the cost 

of consequences is small rather than large. 

In addition, although people‘s discount rate falls sharply when cost increases in both 

experience and description (Johnson & Bickel, 2002); some other studies have also documented 

a lack of the effect of cost in experience (Green, Myerson, Holt, Slevin, & Estle, 2004). 

Similarly, studies with animals, which only give animals an experience of a cost or reward, seem 

to find no effect on animals‘ discount rates (Jimura, Myerson, Hilgard, Braver, & Green, 2009). 

The main reason for this lack of consistency of the effect in experience is that an animal or 

human has to actually wait to pay a cost or to receive a reward, and such time delays are absent 

in a descriptive account of the same choice problem (Jimura et al., 2009). Thus, we hypothesize 

that: 

H3b: In experience, the proportion of wait-and-see choices should not differ when the 

cost of consequences is either small or large. 
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8.4 Method 

Participants were randomly assigned to one of two conditions: description or experience. 

In the description condition, participants read a written description of climate consequences and 

were asked to choose between two options that were each associated with a particular cost, 

timing, and probability values (N = 43). In the experience condition, participants sampled two 

different options that were presented as unlabeled buttons as many times as they wanted to (with 

no costs), and were then asked to choose one of the two options as their real choice (N = 44). 

Thus, in the experience condition, the cost, timing, and probability of climate consequences were 

not explicitly provided but were experienced according to the participants‘ sampling. In both 

conditions, one option reflected the wait-and-see (risk-seeking) choice and the other option, the 

act-now (risk-averse) choice. 

In both experience and description conditions, each participant received eight problems in 

random order, where the wait-and-see option in different problems differed according to the cost, 

timing, and probability of future climate consequences. The cost could be small (c=$18) or large 

(c=$36), the timing could be early (n=10 years) or late (n=60 years), and the probability could be 

low (p=0.20) or high (p=0.80). In all eight problems, the act-now option always presented 

participants with a $6 carbon tax which they would need to pay immediately and with certainty. 

In addition to the tax payment in the wait-and-see option in different problems, participants 

earned an interest at a rate of 2% per year on a $5 balance (their salary) in their bank account for 

each year elapsed in both the experience and description conditions. For an early timing of 

climate consequences, the balance in the bank increased to $6.09 and for a late timing of climate 

consequences, the balance increased to $16.41. The carbon tax ($18 or $36) that participants had 

to pay due to the early and late climate consequences at the end of the time elapsed was adjusted 
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in the accumulated bank balance. The net amount of the carbon tax minus the accumulated bank 

balance was the cost of climate consequences to participants (see below for more details).    

8.4.1 The description condition  

One of the eight problems used in the description condition is shown in Figure 8-1 (other 

problems were identical in form to the example shown, but with different cost, timing, and 

probability values). The wait-and-see and act-now options were randomly assigned to be shown 

on the left or right of the computer screen. A participant read and chose one of the two options in 

each of the eight problems, presented one-by-one in random order. In the act-now option (i.e., 

option 1 in Figure 8-1), a person had to pay a one-time carbon tax of $6 now for sure. Thus, upon 

selecting the act-now option, a person started with a $5 balance in his bank account, did not get 

any interest on his $5 balance, and was to pay a $1 cost (i.e., $5 balance +$0 interest - $6 tax 

payment = $1). In contrast, in the wait-and-see option, a person had to pay a one-time cost of $X 

(=18 for a small tax or =36 for a large tax) with a probability P (=.20 for low or =.80 for high) Y 

years from now (=10 in the early timing or =60 in late timing), or $0 otherwise. As previously 

mentioned, the value of time Y determined the interest that a participant got on his initial $5 

bank balance. At 2% per annum when Y=10 years, the interest amount was $1.09, and at 2% per 

annum for Y=60 years, the interest amount was $11.41. Therefore, participants paid a cost of $5 

+ $1.09 - $X (where, X = 18 for a small tax and X = 36 for a large tax with a probability P, and 

X=0 otherwise) for early timing, and participants paid a cost of $5 + $11.41 - $X (where, X = 18 

for a small tax and X = 36 for a large tax with a probability P, and X=0 otherwise) for late 

timing. As shown in Figure 8-1, participants in the description condition were shown a written 

description of their initial $5 bank balance, interest, tax, and the values of Y and P. 
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Figure 8-1. An example of a problem presented to each participant in the description 

condition. The problem has a small cost, early timing, and low probability of occurrence of 

climate consequences. 

 

8.4.2 The experience condition  

In the experience condition, participants clicked upon one of the two unlabeled buttons 

presented to them in each problem (see Figure 8-2 for an example of a problem given in the 

experience condition; other problems were presented similarly but with different cost, time, and 

probability values). Each button in a problem corresponded to one of the two options, act-now or 

wait-and-see. Clicking on one of the buttons each time gave participants a carbon tax (=$6) if the 

button was assigned to the act-now option.  Thus, upon clicking the act-now button each time, a 

participant started with a $5 balance in his account, did not accrue any interest on his $5 balance, 

and was to pay a $1 cost (i.e., $5 balance +$0 interest - $6 tax payment = $1). In contrast, 

clicking on the other button gave participants another carbon tax ($X and $0). The value of $X 

could be either $18 if the cost was small, or $36 if the cost was large. Furthermore, clicking the 

wait-and-see option delayed the presentation of the carbon tax by a certain number of years, 

depending on the timing (Y=10 years, if timing was early, or Y=60 years, if timing was late). 

One year corresponded to one second of real-time delay in the wait-and-see option. The one-

second to one-year correspondence is motivated from previous time-preference studies with 

primates where a similar magnitude of delay had been used (Dutt & Gonzalez, in press; 
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McClure, Ericson, Laibson, Loewenstein, & Cohen, 2007). Just like in the description condition, 

the value of time Y determined the interest that a participant got on his initial $5 bank balance: 

when Y=10 years, at 2% per annum, the interest amount was $1.09, and for Y=60 years, at 2% 

per annum, the interest amount was $11.41. Thus, for the early timing, participants paid a cost of 

$5 + $1.09 - $X, and for the late timing, participants paid a cost of $5 + $11.41 - $X. As shown 

in Figure 8-2, participants were presented with their initial $5 bank balance, interest, tax, and the 

values of Y and P as an experience based upon their choice for one of the two button options. 

Participants were first encouraged to sample both buttons as many times as they wanted (without 

any cost to them) to gain experience in a problem. Sampling essentially meant clicking on one of 

the two buttons to find the interest, carbon tax, and the cost that a participant would have to pay 

and to experience the corresponding time delay (without actually paying any cost for real). A 

participant was asked to make a final choice by clicking the ―Make Final Decision‖ button after 

he was satisfied with his sampling. A final choice for the wait-and-see option in a problem 

allowed participants to earn money as interest in their bank account depending on the timing and 

to observe the cost at the end of time delay. A final choice for the act-now option in a problem 

did not give participants any money as interest in their bank account while they observed the cost 

immediately. 

 



 

 

 

234 

 

Figure 8-2. An example of a problem presented to each participant in the experience 

condition. The problem has a small cost, early timing, and low probability of occurrence of 

climate consequences. The two choice options in the problem were presented as two blank 

buttons that could be sampled many times by clicking in the buttons. Once a participant 

had sampled both buttons many times (without any cost to him), a final decision could be 

made by clicking the “Make Final Decision” button followed by the button the participant 

wanted to choose. Sampling a button showed the Net total, Initial Amount in Bank, 

Interest, and Tax Payment at the end of a time period. The participants had to wait for 

certain number of years (1 year simulated as 1 second of time delay) to get to know their 

carbon tax payment in the wait-and-see option. The Net total and Interest updated after 

the end of each year of wait in the wait-and-see option while the Tax Payment was updated 

and shown to participants at the end of their period of wait under the wait-and-see option. 

The Net Total, Initial Amount in Bank, Interest, and Tax Payment were displayed 

instantaneously (i.e., without any wait) in the act-now option. 

 

8.4.3 Participants 

Eighty-seven undergraduate and graduate students at Carnegie Mellon University 

participated in this experiment. Participants were recruited through a website advertisement that 

asked them to participate in a climate decision study. Forty-six participants were males. Ages 

ranged from 18 years to 59 years (M = 26, S.D. = 8). All participants started with $5 base pay 

and depending upon their final choice in eight different problems they could win or lose money. 

In both conditions, only a participant‘s final choice affected his final payment (thus sampling the 

button options in experience did not cost participants). Participants were told about this fact in 

instructions before starting the experiment. Based upon different carbon taxes and interest 

amounts, the cost to participants could be $1 in the act-now option in each of the eight problems 

and one of -$6.09, -$16.41, $11.91, $1.59, $29.91, or $19.59 in the wait-and-see option in a 

problem (a negative sign with a cost indicates a gain). To pay participants, the amount obtained 

as a result of participants‘ final choices in each of the eight problems was added together to 

generate a total amount. Then, this total amount was scaled in a ratio of $10 in the experiment to 

$1 in real money and paid to participants. Participants were told that the final earnings in the 
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experiment will be determined by the 10:1 ratio and their total amount across different problems 

depending upon their final choices. Participants were shown their total amount and the tax 

consequences of their final choices in each of the eight problems only at the end of the 

experiment (to avoid any learning effects).  

8.4.4 Procedure 

Participants were randomly assigned to one of the two conditions, experience or 

description. They read instructions that appeared on a computer terminal. The experimenter 

answered any questions about the instructions before participants could begin. As part of 

instructions, participants were explained the breakup of different monetary amounts in each 

problem (e.g., initial amount in their bank account in each problem, interest earned in each 

problem under the wait-and-see option, and about the possibility of paying a carbon tax in each 

problem). Also, participants were told that they will get a base pay of $5. No participant took 

more than 15 minutes to complete the eight problems in each condition, description and 

experience. 

8.5 Results 

To test H1, we compared the difference between the proportion of wait-and-see choices 

in the low probability problems (p=0.20) and the proportion of wait-and-see choices in the high 

probability problems (p=0.80) within the experience and description conditions, respectively. 

Figure 8-3 presents the proportion of wait-and-see choices according to the probability of 

occurrence of the tax consequences (low or high). In experience, there was a significant 

difference in the proportion of wait-and-see choices when the probability was low (71%) 

compared to when the probability was high (34%), χ2 (1) = 48.14, p < .001, r = .37. Similarly, in 

description, there was a significant difference in the proportion of wait-and-see choices when the 
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probability was low (68%) compared to when the probability was high (40%), χ2 (1) = 30.42, p 

< .001, r = .29. Furthermore, according to our expectation in H1, the difference between the low 

and high probability (71%-34%=37%) in the experience condition was greater than the 

difference between the low and high probability in the description condition (68%-40%=28%) 

(due to the effect size, r experience (= .37) > r description (= .29)). Thus, these results are in the 

direction of our expectation in H1. 

 

Figure 8-3. The proportion of final wait-and-see choices in the experience and description 

conditions according to the probability that future climate consequences (low or high) may 

occur. 

 

To test H2, we compared the proportion of wait-and-see choices in problems where the 

timing was early (Y=10 years) or late (Y=60 years), within the experience and description 

conditions respectively. Figure 8-4 presents the proportion of wait-and-see choices according to 

the timing of the climate consequences (early or late). In experience, the difference in the 

proportion choices when the timing of consequences was early (50%) than when late (56%) was 

not significant, χ2 (1) = 1.38, ns, r = .06. However, in description, the difference in the 
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proportion of wait-and-see choices when the timing of consequences was early (42%) than when 

late (67%) was significant, χ2 (1) = 21.62, p < .001, r = .25. Therefore, a greater proportion of 

wait-and-see choices for later timing (H2) is supported in the description condition and not 

supported in the experience condition. 

 

Figure 8-4. The proportion of final wait-and-see choices in the experience and description 

conditions according to the timing of the climate consequences (early or late). 

  

Finally, to test H3a and H3b, we compared the proportion of wait-and-see choices in 

problems where the carbon tax was small (X=$18) or large (X=$36), within the description and 

experience conditions respectively. Figure 8-5 presents the proportion of wait-and-see choices 

according to the cost of the climate consequences (small or large). In experience, the difference 

in the proportion of choices when the cost of consequences was small (54%) than when large 

(51%) was not significant, χ2 (1) = 0.29, ns, r = .03. Therefore, this result in experience supports 

our expectation in H3b. However, in description, the difference in the proportion of wait-and-see 

choices when the cost of consequences was small (66%) than when large (42%) was significant, 
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χ2 (1) = 19.66, p < .001, r = .24. Therefore, this result in description also supports our 

expectation in H3a. 

 

Figure 8-5. The proportion of final wait-and-see choices in the experience and description 

conditions according to the cost of the climate consequences (small or large). 

 

Although we did not have a prediction about the interaction between the cost, timing, and 

probability of future climate consequences, we present the joint effects in Figure 8-6. The figure 

shows the proportion of wait-and-see choices in each of the eight problems used in the 

experiment. Similarly, Table 8-1 shows the proportion of wait-and-see choices between 

experience and description conditions in the eight problems along with statistical differences. 

The proportion of wait-and-see choices was greater in the experience than in the description 

condition when the probability of consequences was low, cost was large, and timing was early. 

In contrast, the proportion of wait-and-see choices was smaller in the experience than in the 

description condition when the probability of consequences was high, cost was small, and timing 

was late. In all other combinations of probability, cost, and timing, the difference in the 

proportion between experience and description conditions was not significant. These results 
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suggest that if the cost, timing, and probability align together to support the proportion of wait-

and-see choices in one of the experience or description conditions (based upon their individual 

effects in Figures 8-3, 8-4, and 8-5), the difference in the proportion of wait-and-see choices 

between description and experience conditions becomes significant. However, when one or two 

of the three factors opposes the effect of the remaining factors, the difference in the proportion of 

wait-and-see choices between experience and description conditions is not significant. 

 

Figure 8-6. The proportion of final wait-and-see choices in the experience and description 

conditions as a function of the probability (low or high), time (early or late) and cost (small 

or large) of the occurrence of climate consequences.
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Table 8-1. The proportion of wait-and-see choices between experience and description conditions in the eight problems. 

Values of Variables Problems Proportion of Wait-and-see (%) 

 

Difference between Experience and 

Description 

 

Probability 

 

Cost 

 

Timing 

 

Wait-and-see 

Option
1
 

 

Act-now 

Option 

   

Experience Description Statistics 

Low Small Early -11.91,0.2 and 6.09,0.8 -1,1.0 68 70 -02 (χ2 (1) = 0.13, ns, r = .04) 

Low Small Late -1.59,0.2 and 16.41,0.8 -1,1.0 73 84 -11 (χ2 (1) = 1.54, ns, r = .13) 

Low Large Early -29.91,0.2 and 6.09,0.8 -1,1.0 66 42 +24 (χ2 (1) = 5.06, p < .050, r = .24) 

Low Large Late -19.59,0.2 and 16.41,0.8 -1,1.0 77 79 -02 (χ2 (1) = 0.41, ns, r = .02) 

High Small Early -11.91,0.8 and 6.09,0.2 -1,1.0 32 33 -01 (χ2 (1) = 0.01, ns, r = .01) 

High Small Late -1.59,0.8 and 16.41,0.2 -1,1.0 43 77 -34 (χ2 (1) = 10.19, p < .001, r = .34) 

High Large Early -29.91,0.8 and 6.09,0.2 -1,1.0 32 21 +11 (χ2 (1) = 1.33, ns, r = .12) 

High Large Late -19.59,0.8 and 16.41,0.2 -1,1.0 30 26  +04 (χ2 (1) = 0.71, ns, r = .04) 

 

Note. 
1
The wait-and-see option where a cost occurred with a probability p and an interest amount occurred with a probability, 1- p, 

i.e., in the absence of a carbon tax (e.g., get -$1.59 with a 20% probability and get $16.41with an 80% probability in the second row of 

the table).
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8.5.1 Sampling in experience  

Across all the eight problems in the experience condition, participants sampled both 

options less than five times on average. Although timing and cost did not affect how many times 

either options were sampled, the probability did affect the number of samples of the act-now 

option. Consequently, the number of samples across both options was no different for early or 

late timing (for act-now option: mean early (4.5) = mean late (1.9) with z = -1.90, ns, r = -.10; for 

wait-and-see option: mean early (2.0) = mean late (1.6) with z = -1.23, ns, r = -.07). As a delay was 

present on the wait-and-see option, this result for that option shows that participants did not 

perceive the timing as a cost, where a time-cost perception could have dithered them from 

sampling the wait-and-see option (like in Dutt & Gonzalez, in press, where time delay in the 

wait-and-see option did not provide any incentive to people). Similarly, the number of samples 

of both options was no different for a small or large cost (for act-now option: mean small (4.2) = 

mean large (2.1) with z = -0.54, ns, r = -.03; for wait-and-see option: mean small (1.8) = mean large 

(1.7) with z = -0.06, ns, r = -.00, respectively). Furthermore, as mentioned above, the number of 

samples of the act-now option was affected by the probability of consequences, low or high 

(mean low (4.7) >> mean high (1.7): z = -4.07, p < .001, r = -.22); whereas the number of samples 

of the wait-and-see option was unaffected by probability (mean low (1.8) = mean high (1.8): z = -

0.39, ns, r = -.02). Therefore, when the probability of consequence was low on the wait-and-see 

option, participants sampled the act-now option more often before making their final choices.  

Hertwig et al. (2004) suggested that one main reason why probability of consequences 

affects participants‘ risk-seeking behavior is limited information search or limited samples of the 

two options. The smaller the number of samples from the wait-and-see (risk-seeking) option, the 

larger the chance that a participant will not come across the low probability consequence. 
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Consequently, the participant will remain ignorant of the existence of the low probability 

consequence. Indeed, the small sample size in different problems made participants observe the 

low probability consequence at less than its expected probability. Table 8-2 provides the 

proportion of wait-and-see choice in different problems as a function of the frequency of 

observing a low probability consequence as being less than, more than, or equal to its expected 

value (the median sample size for each option in each problem has been listed in brackets in 

Table 8-2 and depicts participants‘ small sample sizes). The expected value is determined by the 

product of ―n,‖ the number of times the wait-and-see option is sampled by a participant in a 

problem, and ―p,‖ the true probability of observing a low probability consequence in the 

problem. The table shows these percentages for different problems, where the monetary 

consequences in the two options, the probability of the wait-and-see consequence, and the low 

probability consequence are clearly labeled. When the probability of a negative consequence was 

low, there was a clear evidence of people behaving as if the low probability negative 

consequence had less impact than it deserved according to its objective probability (irrespective 

of the timing and cost): The proportion of wait-and-see choices, where the low probability was 

encountered less frequently than expected, was greater than the proportion of wait-and-see 

choices where the low probability was encountered as or more frequently than expected (76% > 

53%, 76% > 67%, 73% > 29%, and 85% > 55%). Similarly, the proportion of wait-and-see 

choices, where the low probability positive consequence was encountered less frequently than 

expected, was consistently smaller than the proportion of wait-and-see choices where the low 

probability positive consequence was encountered as or more frequently than expected (38% > 

31%, 80% > 24%, 60% > 17%, and 53% > 17%). These observations, which indicate 

participants‘ limited information search, is an explanation for the significantly greater proportion 
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of wait-and-see choices in the experience condition when the probability of the negative 

consequence was low, and a significantly smaller proportion of wait-and-see choices in the 

experience condition when the probability of the negative consequence was high (see Figure 8-

6). 

8.6 Discussion 

This research contributes to a better understanding of people‘s choice to wait-and-see 

rather than acting now in a climate problem according to how that decision is made (from 

description or experience). We replicated the effects of the probability of future climate 

consequences in experience and description from Dutt & Gonzalez (in press); and also 

demonstrated that cost and timing of future consequences have an effect on people‘s wait-and-

see choices when decisions are made from description, but not from experience.  

The amplification of the difference between low and high probability in experience is 

explained by people‘s risky choices in decisions from experience: they are risk-seeking and 

choose wait-and-see more for low probability consequences, and they are risk-averse and choose 

wait-and-see less for high probability consequences. While making decisions from experience, 

people behave as if the low probability consequences have less impact than they deserve 

according to their objective probabilities, and the high probability consequences have more 

impact than they deserve (Hertwig, in press). Similarly, the attenuation in description is 

explained by people‘s risky choices in decisions from description:  they are risk-averse for low 

probability consequences and they are risk-seeking for high probability consequences (Hertwig, 

in press; Tversky & Kahneman, 1992). As in the real world, there exists uncertainty about the 

true probability of future climate consequences (low or high). 
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Table 8-2. The proportion of wait-and-see choices with a low probability consequence as a function of the frequency of the low 

probability consequence occurring. 

 

Values of Variables Problems 
 

 

 

 

 

 

 

Low 

Probability 

Consequence 

Proportion of wait-and-see choice 

(with low probability 

consequences) 

Probability Cost  Timing 
Wait-and-see 

Option 

Act-now 

Option 
# < np

1
 % # ≥ np

2
 % 

Low Small Early -11.91,0.2 and 6.09,0.8 (1)
4
 -1,1.0 (1) -11.91,0.2 76 (22/29)

3
 53 (08/15) 

Low Small Late -1.59,0.2 and 16.41,0.8 (1) -1,1.0 (1) -1.59,0.2 76 (22/29) 67 (10/15) 

Low Large Early -29.91,0.2 and 6.09,0.8 (1) -1,1.0 (1) -29.91,0.2 73 (27/37) 29 (02/07) 

Low Large Late -19.59,0.2 and 16.41,0.8 (1) -1,1.0 (1) -19.59,0.2 85 (28/33) 55 (06/11) 

High Small Early -11.91,0.8 and 6.09,0.2 (1) -1,1.0 (2) 6.09,0.2 31 (11/36) 38 (03/08) 

High Small Late -1.59,0.8 and 16.41,0.2 (1) -1,1.0 (1) 16.41,0.2 24 (07/29) 80 (12/15) 

High Large Early -29.91,0.8 and 6.09,0.2 (2) -1,1.0 (2) 6.09,0.2 17 (05/29) 60 (09/15) 

High Large Late -19.59,0.8 and 16.41,0.2 (1) -1,1.0 (2) 16.41,0.2 17 (05/29) 53 (08/15) 

 

Note: 
1
Proportion of wait-and-see choices with a low probability consequence, where the low probability consequence was 

encountered less frequently than expected, i.e., n*p, where n is the number of samples of the wait-and-see choice performed by a 

participant and p is the probability of the occurrence of the low probability consequence. 
2
Proportion of wait-and-see choices with a 

low probability consequence, where the low probability consequence was encountered as or more frequently than expected. 
3
Numbers 

in brackets refer to the actual frequencies of different proportions. 
4
This number indicates the median sample size for the option in the 

respective problem in the experiment.
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Experiential methods that communicate this uncertainty might have more impact on current wait-

and-see policies for climate change compared to the descriptive methods.  

Our results also indicate that the effect of timing is absent in experience, but present in 

description. In description, we found a greater proportion of wait-and-see choices when 

consequences occur later in the future compared to earlier. People‘s thinking seems to be largely 

driven by the greater gains they can gain as a consequence of the wait when the consequences 

occur late rather than early.  

Similarly, one possible explanation why timing lacked an effect in experience could be 

that people had to actually wait for the time to elapse, unlike people in the description condition. 

In experience, people may have focused on the interest that grows in their account over time 

during their wait, rather than on the climate consequences that followed the wait. Not attending 

to or distinguishing the cost consequences after the early or late timing in experience could 

diminish the effects of timing. Another possible reason could be the experience of an increase in 

the interest amount with time in both early and late timing conditions. Participants sampled the 

wait-and-see option equally in both cases (which is indicated in our sampling results reported 

above) and later also chose the wait-and-see option with equal chances as their final choice. 

Thus, experiencing the timing seems to have a moderating effect on people‘s wait-and-see 

choices due to the actual delay present in the wait-and-see option under both timing conditions. 

The effects of costs are present in the description condition and are absent in the 

experience condition. In description, a large cost reduced the proportion of wait-and-see choices; 

whereas such a relationship is absent in the experience condition. People‘s discount rate fall 

sharply as the cost increases (Holcomb & Nelson, 1989; Thaler & Loewenstein, 1992). Thus, 

their disincentive due to a large cost in the wait-and-see option is greater than their disincentive 
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due to a small cost in the same option. The absence of a similar effect in the experience 

condition, however, could be because participants in experience needed to wait in order to pay a 

tax, while they accrued interest that seemed to moderate the effects of large and small taxes. This 

explanation is further supported by people‘s sampling of the wait-and-see option in our results: 

there was no difference in people‘s sampling behavior for small and large costs. Therefore, 

sampling was perceived as equally costly for both small and large costs, and thus failed to 

influence people‘s final choice for the different magnitudes of costs. Furthermore, our finding of 

the absence of effects of costs in experience support similar findings in literature involving 

humans (Green et al., 2004) and animals (Jimura et al., 2009). 

Consequently, the descriptive methods seem to have more impact on people‘s wait-and-

see policies for climate change compared to the experiential methods. Thus, reading descriptions 

about high and low cost alone, or an early and late timing alone carries more impact on people‘s 

wait-and-see behavior compared to when the same information about cost or timing is acquired 

through experiential methods. 

Moreover, the joint effects of probability, cost, and timing are interesting because 

literature in JDM has considered the influence of probability presented as a description or as an 

experience on people‘s risky choices without also considering the influence of timing or cost 

(Hertwig et al., 2004; Kahneman & Tversky, 1979). Similarly, JDM research has considered the 

influence of timing alone or of timing and probability in decisions from description and 

experience without considering the influence of cost (Dutt & Gonzalez, in press; Hayden & Platt, 

2007; Loewenstein & Elster, 1992; Luhmann et al., 2008; Madden, Begotka, Raiff, & Kastern, 

2003; Mischel & Grusec, 1967; Thaler, 1981). Our results show that the proportion of wait-and-

see choices is higher in experience compared to description when the probability is low, cost is 
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large, and timing is early; however, this proportion is smaller in experience when the probability 

is high, cost is small, and timing is late. This result may be explained through the effect of the 

probability in both the experience and description conditions, and the strong and weak effects of 

timing and cost on both conditions, respectively. The differences in the proportion of wait-and-

see choices are affected by all three factors.  

Descriptive methods of risk communication might produce more wait-and-see behavior 

when uncertain climate information communicates a high probability, small cost, and late timing 

for future consequences; whereas, experiential methods of risk communication might produce 

more wait-and-see behavior when the information communicates a low probability, large cost, 

and early timing for future consequences. Future research that applies JDM principles to climate 

change would benefit by building upon the findings of this study. 
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Chapter 9: Conclusions, Policy Recommendations, and Future 

Directions 
9.1 Conclusions 

This thesis builds a framework of people‘s wait-and-see behavior on climate change due 

to the interplay of a number of cognitive factors that are peculiar to human beings. The results in 

this thesis show that cognitive factors like misperceptions of feedback, correlational or linear 

thinking, and risk- and time- preferences influence people‘s wait-and-see behavior about policies 

that mitigate climate change. According to this thesis, due to misperceptions of feedback, people 

ignore the feedback delays between climate mitigation actions and their associated consequences 

and this ignorance results in wait-and-see behavior. Moreover, thinking linearly, people tend to 

underestimate the actual nonlinear accumulation of greenhouse gases in Earth‘s atmosphere. This 

underestimation is likely to result in people undervaluing the urgency of the climate change 

problem thus resulting in wait-and-see behavior. Furthermore, the same information about the 

timing, probability, and cost of consequences, when gathered descriptively or experientially, has 

a differential impact on people‘s wait-and-see choices. According to this thesis, descriptive 

methods are likely to produce more wait-and-see behavior when information communicates a 

high probability, small cost, and late timing for future consequences; whereas, experiential 

methods are likely to produce more wait-and-see behavior when information communicates a 

low probability, large cost, and early timing for future consequences.    

There is little doubt that climate change will become a serious problem for society if we 

decide to postpone mitigation actions to a time in the future (IPCC, 2007b; Sterman, 2008). 

Therefore, in order to make people act on climate change in the status quo, we must propose 

education policies that correct people‘s misperceptions about climate processes. According to 

this thesis, repeated feedback in simulation tools (like DCCS) about the consequences of setting 



 

 

252 

 

different CO2 emission policies helps people to improve their control of CO2 concentration over 

many trials. Thus, both during policymaking on climate and while imparting climate education in 

schools, it would be desirable to incorporate the use of simulation tools that supplement normal 

methods of policymaking and education. In this regard, the repeated feedback manipulation is 

also likely to help people to make energy efficient decisions that save electrical energy in their 

households. For example, imagine an air conditioner with a meter display that tells people how 

much time it has been running and how much energy and money it has accumulated since the 

first day of the month. Such an intervention that provides repeated feedback about energy and 

money used is likely to make people conscious of the cause-and-effect relationship between their 

decision to use the air conditioner and the corresponding high cost consequences in their monthly 

electric bill. As people are likely to avoid high costs, the end result is likely to be an efficient use 

of the air conditioner that saves energy. 

Policies that supplement the use of repeated feedback in simulation tools with normal 

methods are good, but these policies also need to be sensitive to the differential needs of people 

with and without backgrounds and education in science and mathematics. In this regard, this 

thesis suggests further research that investigates the design of certain background-specific 

features as part of these tools which when incorporated are likely to benefit people with science 

and non-science backgrounds equally. 

Furthermore, this thesis suggests the use of physical representation (which represents a 

problem using a picture that acts as a metaphor) as an effective method of representing different 

climate and non-climate problems compared to text and mathematical graphs. For example, a 

physical representation that shows the energy inflow and outflow in the U.S. using a picture is 

likely to be very useful to policymakers in order to target specific sectors of the economy (e.g., 
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industrial or transportation) for energy efficiency. Similarly, physical representation is also likely 

to succeed in conserving Earth‘s natural resources. For example, in 2008, the City of New York 

and partners launched an advertising campaign to promote recycling awareness in the city. The 

campaign used physical representation involving metaphor and analogy by comparing the huge 

amount of recyclable paper thrown away in New York City annually to be equivalent to filling 

the entire Empire State Building. The advertisement created a ―picture‖ of the iconic skyscraper 

composed entirely of discarded magazines and catalogs (i.e., a physical representation), and this 

metaphor enabled people to improve their recycling behavior.  

Given these successes, the physical representation manipulation also seems promising 

considering the fact that unlike a simulation tool that needs a computer machine, the physical 

representation does not require a computer to be projected, rather it could be drawn on a piece of 

paper (as the experiments in this thesis and the New York City advertisement campaign do). 

Thus, the physical representation could be directly used in climate reports and newspapers 

without any need of computer technology to accompany these publications. Consequently, it is 

likely that the physical representation has a greater societal reach considering that in many parts 

of the developing and underdeveloped world, the advent of computer technology and internet is 

still a distant dream, and in these places, people gather most of their news from newspapers and 

other printed material. 

This thesis also suggests that often times it might be difficult to change people‘s reliance 

on cognitive factors and here aligning problems with people‘s reliance on these factors (like 

linear thinking) is likely to enable a majority of them to make ecofriendly decisions. Such 

interventions, that target and use people‘s reliance on cognitive factors to improve their decision 

making, are likely to enable proliferation of ecofriendly policies (e.g., eco-taxes) that benefit 



 

 

254 

 

society and that are less problematic in terms of gathering public support (as they don‘t change 

the way people think). Also, the power of this information presentation manipulation is that the 

same manipulation can be used for many different societal problems that the world faces day-to-

day: pollution in river and seas, cigarette smoking, and throwing garbage in public places etc. 

Finally, the impact of people‘s risk- and time- preferences on people‘s wait-and-see 

choices have important implications towards how risks about future climate consequences are 

communicated using experiential methods (e.g., movies, pictures, computer simulations etc.) and 

descriptive methods (e.g., newspapers, media reports, magazines, books etc.). From the overall 

results in this thesis, the descriptive methods seem to have more impact on people‘s wait-and-see 

choices compared to the experiential methods; therefore, reading written descriptions about high 

and low cost alone, or an early and late timing alone is likely to carry more impact on people‘s 

wait-and-see behavior compared to when the same information about cost or timing is acquired 

through experiential methods. However, depending upon the nature of communication, its 

content, and the policymaker‘s intention, either of the two methods is likely to be effective in 

manipulating people‘s wait-and-see behavior. An important challenge for climate policy is how 

to closely monitor the descriptive and experiential impacts of these methods as these methods 

have tremendous potential to make people act in the status quo on climate change.   

9.2 Policy Recommendations 

There is substantial scientific evidence that climate change would occur with catastrophic 

consequences in the near future if we continue on a path of increasing greenhouse gas emissions 

(IPCC, 2007a; 2007b). The 1992 Rio Declaration on Environment and Development (UNCED, 

1993, Article 15) gave the world the ―precautionary principle‖ for resolving the climate change 

problem: ―a lack of full scientific certainty should not be used to justify postponing cost-effective 
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measures in the face of threat of serious or irreversible harm.‖ From a public-policy perspective, 

given the uncertainties present in the probability, timing, and cost magnitudes of future climate 

consequences, many people advocate that we should follow a precautionary approach to climate 

change and that policies should be such that they cause people to act on climate change rather 

than exhibit wait-and-see behavior (Spratt & Sutton, 2008). Therefore, policy interventions 

suggested here are those that enable people to improve their understanding of Earth‘s climate and 

its processes, enable them to reduce their wait-and-see behavior, and enable them to make 

decisions that benefit the environment. Based upon the results and conclusions drawn in this 

thesis, the following recommendations are likely to be beneficial: 

1. The use of simulation tools (like DCCS) in climate education that provide repeated 

feedback about actions and their associated consequences. 

2. Sensitivity to and cognizance of the differential effects that these simulation tools are 

likely to produce for people with and without science and mathematics education and 

backgrounds. 

3. The use of physical representation that represents a problem using a picture and that acts 

as metaphor. The physical representation is likely to reduce people‘s misconceptions 

related to correlational thinking and violation of mass balance. 

4. As much as possible, designing choices for people that align with their cognitive factors 

(e.g., linear thinking). This information presentation is likely to enable people to make 

decisions that help the environment without any change in the way they think about these 

problems.  

5. Finally, both descriptive and experiential methods should be used to communicate the 

risks of future climate change. However, as the impacts of presenting information about 
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consequence, probability, and timing are opposite in both these methods, this 

communication should be carefully designed to aid a reduction in people‘s wait-and-see 

choices. 

9.3 Scope and Limitations 

This thesis research is limited to the study of individual decision makers. Thus, for the 

purpose of this thesis, the main focus has been on a single decision maker whose choices 

influence decisions at a higher societal level. As climate policies are formulated by people with 

science and policy backgrounds (Nordhaus, 1994), an important question to consider is whether 

this research distinguishes between people with and without policy backgrounds and people with 

and without science backgrounds? The simple answer is that this research has indeed tried this 

distinction in different papers (Dutt & Gonzalez, 2011a; 2011c). For example, Dutt and Gonzalez 

(2011a) have distinguished between people from sciences and mathematical backgrounds 

(STEMs) and those from the arts and social sciences backgrounds (non-STEMs). The idea is that 

policymaking on climate change occurs in ―informed‖ groups in the real world and a critical 

finding is that to be able to benefit from manipulations of feedback, it is better if one possesses a 

scientific background (this was found in Dutt & Gonzalez, 2011a). Similarly, Dutt and Gonzalez 

(2011c) have distinguished between people from policy backgrounds (who are more suited to 

positions taken by policymakers) compared to people with general backgrounds. The conclusion 

from that research is that having a background policy does not help improve performance of 

these backgrounds over the general backgrounds. However, as this research was undertaken 

using resources available at the university level and due the difficulty of finding and questioning 

real policymakers, the scope of this research is confined to the distinction between STEMs and 

non-STEMs backgrounds and policy and general backgrounds. Thus, in this research, 
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background serves as a proxy for the actual decision maker, e.g., policymakers, laypeople, 

nonscientists, and scientists.  

Another important point to consider is whether this research focuses on groups of 

decision makers. The boundary and conclusions of this research are currently restricted to a 

single decision maker. That said, I do agree that the social dynamics, that arises from group 

behavior, is also extremely important and something to try in the future. When people make 

choices on climate problems in groups rather than as single individuals, there could be a conflict 

of interest between one person‘s choices for an option with the other person‘s choices. Also, in 

this regard, a person might not be able to accomplish his or her individual choice due to a 

group‘s consensus decision. Here, the role of people who possess power in the group to make a 

final decision becomes important and this role needs to be considered as part of the decision 

making process. However, if groups are completely democratic and decisions in groups are made 

by consensus with individuals possessing equal power status, then these consensus decisions are 

likely to be better compared to those that are made by single individuals. In fact, this expectation 

for democratic groups is likely to be true from some real world evidence as well: In the program, 

Who Wants to be a Millionaire?, often times single decision makers benefit in their decision 

choices by asking for an audience poll (which is a consensus decision of many people). 

On another point, this thesis has considered the role of cognitive factors that influence 

people‘s wait-and-see behavior and its conclusions are restricted to the cognitive factors 

described above. This thesis focused on the cognitive factors because the interplay of these 

factors has been downplayed in till recently (APA, 2009). However, one can argue that this 

thesis did not consider the role of motivational factors (e.g., political ideology, perceptions of 

needs versus luxuries, core psychological needs, and attachment to a place etc.) which are also 
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likely to influence wait-and-see behavior on climate change. However, the role of motivational 

factors has been part of recent research and has been studied much more compared to cognitive 

factors (APA, 2009; Hardisty, Johnson, & Weber, in press). For example, Hardisty et al. (2009) 

have experimented with a framing manipulation and shown that people‘s political ideology (a 

motivational factor) interact with the framing effect. These researchers polled a large national 

sample about a program that would raise the cost of certain products believed to contribute 

significantly to climate change (such as air travel and electricity) and use the money to fund 

alternative energy and carbon capture projects. The identical program was described as a ―carbon 

tax‖ to half the respondents, and as a ―carbon offset‖ to the other half. More liberal individuals 

did not discriminate between the two frames (meaning, they were equally likely to support the 

program regardless of the label used), but more conservative individuals strongly preferred the 

carbon offset to the carbon tax. as part of future research, I would like to consider how 

motivational factors (like political ideology) interact with the cognitive factors to influence 

people‘s wait-and-see behavior.     

Furthermore, although this research in different experiments, tries to best represent the 

―real world‖ by using well known climate models and dynamics, the research has the same 

limitations as every laboratory-based research: it deals with abstractions that might suffer from 

dissimilarities to real-life social and global decision making settings. Lastly, although this thesis 

tries to address the interplay of different cognitive factors to explain reasons for people‘s wait-

and-see behavior on climate change, yet this treatment is not exhaustive due to the constraints of 

time and resources. Thus, still many other manipulations could be tried within the proposed 

research areas and in other areas.  
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9.4 Topics to Explore in Future Research 

Future work in this research program will build upon and further the findings reported in 

this thesis. Within the confines of the currently considered cognitive factors, one could evaluate 

the effects of correlational or linear thinking, the effectiveness of the repeated feedback in 

simulation tool, and the physical representation on groups of decision makers compared to single 

decision makers. Here, it would be interesting to manipulate individuals‘ education backgrounds 

in these groups to be closer to those of policymaking groups that decide on policies on climate 

change. One possibility is that these groups could be heterogeneous with a mix of science and 

non-science backgrounds. Another possibility is that these groups could be homogenous with 

only people from one of the two backgrounds. Similarly, one could think of certain features in 

the DCCS that could benefit non-STEMs equally as they do to STEMs. Some of these features 

could be simply providing more trials of training on the same climate problem or more 

heterogeneous training on different problems for the same number of trials to non-STEMs 

compared to STEMs. However, one could also think of certain decision aids incorporated into 

DCCS that make the cause-and-effect relationships between decisions and their consequences 

salient to non-STEMs and indicate the quality of their decisions (correct/incorrect) after every 

decision made. Other manipulations could include climate problems that are either similar in 

DCCS and the following paper-and-pencil climate stabilization (CS) task, or that are different 

between DCCS and the CS task. This design will enable us to test whether people from STEM 

and non-STEM backgrounds learn the structural features (i.e., cause-and-effect relationships) in 

these problems, or do they learn the surface features (i.e., similarity of units and values) during 

their training in DCCS. That is because, if people learn the surface features, then they should 

perform well in DCCS during their training and perform poorly in the CS task that follows their 
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training, given that the problems used are different between these two tasks. At the same time, if 

people learn the structural features, then they should perform well in both DCCS and the CS 

task, given that the problems are different between these two tasks. 

Furthermore, under the theme of risk- and time- preferences, in a future study, it would 

be interesting to test people‘s wait-and-see choices on some of the IPCC proposals with different 

climate cost consequences (e.g., of limiting global mean temperature at 2 degree centigrade 

increase), or even manipulating the intergenerational issue of ―you paying‖ versus ―your children 

paying‖ under two separate conditions. Again, here a study of aggregate phenomena in a group 

setting and its comparison to an individual setting will be interesting to try as part of future. 

In order to investigate the area of group decision making on climate change, I have 

currently run a small pilot experiment that extends the study of people‘s wait-and-see behavior 

on environmental problems from a single individual to groups of individuals. Here, I have 

investigated people‘s wait-and-see behavior using a game-theoretic negotiation perspective that 

uses 2x2 games like the prisoner‘s dilemma and chicken. As part of these games, I propose to 

make participants that play each other in groups of two come from either the developed or 

developing world. Therefore, players playing each other could be: developed playing developed, 

developed playing developing, or developing playing developing in three separate between-

subjects conditions. Here, players play each other in groups repeatedly for an unknown number 

of rounds and decide between an act-now and a wait-and-see choice on climate change in each 

round. The combination of groups and the repeated play dynamics is representative of groups 

that come from different developed and developing countries and negotiate upon policies for 

climate change in meetings held by the U.N. in December every year. The interesting question 

here is whether participants in the developed – developing condition, after repeated rounds of 
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negotiations, decide to mutually agree to act on climate change, given that there are going to be 

in-group and out-group cognitive factors (e.g., in-group favoritism and out-group hate) that 

might hinder the mutual action. 

Finally, beyond this thesis, I would also like to expand my research work to include the 

interplay of other relevant cognitive and motivational factors in environmental decision-making 

and how these factors could be used to make ecofriendly decisions. For example, the ―framing‖ 

of environmental issues has a large impact on whether ecofriendly policies and decisions are 

acceptable to people. Findings in literature suggest that framing the same decision situation in 

different ways has differential effects on people‘s attention and response to them. Individuals are 

more receptive when they perceive the information being communicated as having salience, 

relevance, authority, and legitimacy (Cash et al., 2002). Thus, although the public support for a 

―carbon-tax‖ might be limited, people readily adopt a ―carbon-offset‖ or ―carbon-credit‖ 

(Hardisty et al., in press), where framing cost as a ―credit‖ as opposed to a ―tax‖ makes people 

more receptive and forthcoming. Similarly, people in India are expected to be more receptive to 

climate-change impacts when these impacts are communicated as a decrease in snow in the 

Himalayas, whereas people in Florida are expected to be more receptive when the same climate-

change impacts are communicated as hurricanes and floods. I am interested to investigate the use 

of framing interventions to make people adopt ecofriendly technologies and furthermore curtail 

their inefficient energy use.  

In connection to the role of motivational and cognitive factors, I am also interested to test 

how these factors come together to influence people‘s environmental decisions. For example, 

while playing DCCS, one is likely to misperceive the feedback delays in the simulated climate 

system‘s inputs and outputs. In such a system, it is interesting to see whether, when people are 
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motivated by giving them more incentive (money) to control CO2 concentration at the goal, does 

this motivation enables them to overcome their cognitive limitations? Also, does a more goal 

directed motivation like achieve 450 ppmv by year 2050 and in return getting a $100 Amazon 

gift card help people to overcome their cognitive limitations? Does this speculation also hold true 

for non-monetary motivations, e.g., a better for world for our children and grandchildren, or a 

higher level of ecofriendly commitment from people in our neighborhood?  

In the course of my future research, I would like to build upon and extend the research 

reported in this thesis in order to improve people‘s decision-making and behavior with regards to 

the Earth‘s climate. 
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Appendix A: Effectiveness of Physical Representation in 

STEM/non-STEM Backgrounds and Graduate/Undergraduate 

Levels of Education in Chapter 4’s Experiment 1 
 

Table A1. The correct accumulation in different time periods and the corresponding 

average accumulation in the two representations split by STEM and non-STEM 

backgrounds in Chapter 4’s Experiment 1. 

  

Representation and 

backgrounds 
Time 1 Time 2 Time 3 Time 4 Time 5 

Correct 10.0 (0.0)
1
 12.0 (0.0) 16.0 (0.0) 22.0 (0.0) 30.0 (0.0) 

Graphical – non-STEM 11.3 (2.3) 13.7 (4.7) 16.7 (6.2) 20.0 (7.6) 24.3 (9.0) 

Statistics (comparison to 

Correct) 

t(22)=2.3, 

p<.05, 

r=0.44
2
 

t(22)=1.7, 

ns, r=0.34 

t(22)=0.5, 

ns, r=0.11 

t(22)=-1.3, 

ns, r=0.27 

t(22)=-3.0, 

p<.01, 

r=0.54 

      

Graphical – STEM 10.0 (2.0) 12.1 (2.3) 15.2 (2.9) 19.5 (5.6) 24.9 (7.7) 

Statistics (comparison to 

Correct) 

t(43)=0.1, 

ns, r=0.02 

t(43)=0.2, 

ns, r=0.03 

t(43)=-1.8, 

ns, r=0.26 

t(43)=-3.9, 

p<.001, 

r=0.51 

t(43)=-4.9, 

p<.001, 

r=0.60 

Physical – non-STEM 09.7 (1.6) 11.7 (1.6) 15.5 (2.1) 21.1 (3.2) 28.6 (4.9) 

Statistics (comparison to 

Correct) 

t(24)=-0.9, 

ns, r=0.18 

t(24)=-1.0, 

ns, r=0.20 

t(24)=-1.3, 

ns, r=0.26 

t(24)=-1.4, 

ns, r=0.27 

t(24)=-1.4, 

ns, r=0.27 

      

Physical – STEM 10.1 (0.7) 12.1 (0.8) 16.0 (0.8) 21.7 (1.4) 29.3 (2.6) 

Statistics (comparison to 

Correct) 

t(36)=1.0, 

ns, r=0.16 

t(36)=0.8, 

ns, r=0.13 

t(36)=0.0, 

ns, r=0.00 

t(36)=-1.3, 

ns, r=0.21 

t(36)=-1.7, 

ns, r=0.57 

 

Note. 
1
 The values in bracket represent the standard deviation about the mean. 

2
 The value 

indicates the effect size. 

 

Table A2. The correct accumulation in different time periods and the corresponding 

average accumulation in the two representations split by graduate and undergraduate level 

of education in in Chapter 4’s Experiment 1. 

 

Representation and level 

of education 
Time 1 Time 2 Time 3 Time 4 Time 5 

Correct 10.0 (0.0)
1
 12.0 (0.0) 16.0 (0.0) 22.0 (0.0) 30.0 (0.0) 

Graphical – Undergraduate 10.7 (2.8) 13.3 (4.2) 16.7 (5.1) 20.8 (5.8) 26.0 (7.2) 

Statistics (comparison to 

Correct) 

t(36)=1.6, 

ns, r=0.04
2
 

t(36)=1.8, 

ns, r=0.05 

t(36)=0.8, 

ns, r=0.02 

t(36)=-1.2, 

ns, r=0.03 

t(36)=-3.4, 

p<.001, 

r=0.09 

      

Graphical – Graduate 10.0 (0.8) 11.8 (1.6) 14.6 (2.8) 18.2 (5.1) 23.1 (8.0) 

Statistics (comparison to 

Correct) 

t(29)=0.0, 

ns, r=0.00 

t(29)=-0.6, 

ns, r=0.02 

t(29)=-2.8, 

p<.01, 

r=0.10 

t(29)=-4.1, 

p<.001, 

r=0.14 

t(29)=-4.7, 

p<.001, 

r=0.16 

Physical – Undergraduate 09.8 (1.4) 11.7 (1.4) 15.6 (5.1) 21.2 (2.8) 28.7 (4.4) 

Statistics (comparison to 

Correct) 

t(34)=-0.9, 

ns, r=0.03 

t(34)=-1.1, 

ns, r=0.03 

t(34)=-1.4, 

ns, r=0.04 

t(34)=-1.7, 

ns, r=0.05 

t(34)=-1.7, 

ns, r=0.05 
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Physical – Graduate 10.1 (0.7) 12.1 (1.0) 16.0 (1.0) 21.6 (1.8) 29.0 (3.4) 

Statistics (comparison to 

Correct) 

t(28)=1.0, 

ns, r=0.04 

t(28)=0.8, 

ns, r=0.03 

t(28)=-0.2, 

ns, r=0.01 

t(28)=-1.3, 

ns, r=0.05 

t(28)=-1.6, 

ns, r=0.06 

 

Note. 
1
 The values in bracket represent the standard deviation about the mean. 

2
 The value 

indicates the effect size. 

 

Table A3. Proportion of responses classified as relying on the Correlation Heuristic (CH) in 

different treatments for different educational backgrounds and levels of education in in 

Chapter 4’s Experiment 1. Comparison statistics with the correct accumulation’s CH value 

(= 0%) are also shown. 

 

Treatment CH (%) Statistics (comparison to Correct) 
Correct 00 - 

Graphical – non-STEM 65 t(22)=6.4, p<.001, r=0.81
1 

Graphical – STEM 45 t(43)=6.0, p<.001, r=0.68 
Physical – non-STEM 08 t(24)=1.4, ns, r=0.27 

Physical – STEM 08 t(36)=1.8, ns, r=0.29 
Graphical – Undergraduate 54 t(36)=6.5, p<.001, r=0.18 

Graphical – Graduate 50 t(29)=5.4, p<.001, r=0.18 
Physical – Undergraduate 08 t(34)=1.8, ns, r=0.05 

Physical – Graduate 10 t(28)=1.4, ns, r=0.05 

 

Note. 
1
 The value indicates the effect size. 
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Appendix B: Effectiveness of Physical Representation in 

STEM/non-STEM Backgrounds and Graduate/Undergraduate 

Levels of Education in Chapter 4’s Experiment 2 
 

Table B1. The correct accumulation in different time periods and the corresponding 

average accumulation in different representations and problems split by education 

background in Chapter 4’s Experiment 2. 

 

Increasing problem 

Representation and 

backgrounds 
Time 1 Time 2 Time 3 Time 4 Time 5 

Correct 20.0 (0.0)
1
 22.0 (0.0) 26.0 (0.0) 32.0 (0.0) 40.0 (0.0) 

Graphical – non-STEM 20.0 (0.0) 21.4 (0.5) 23.1 (1.6) 25.1 (3.3) 27.4 (5.9)  

Statistics (comparison to 

Correct) 

t(06)=0.0, 

ns, r=0.00
2
 

t(06)=-2.8, 

p < .05, 

r=0.75 

t(06)=-4.8, 

p<.01, 

r=0.89 

t(06)=-5.4, 

p<.01, 

r=0.91 

t(06)=-5.7, 

p<.001, 

r=0.92 

      

Graphical – STEM 17.9 (6.3) 19.3 (6.1) 21.5 (6.4) 24.3 (7.6) 27.7 (10.0) 

Statistics (comparison to 

Correct) 

t(18)=-1.5, 

ns, r=0.33 

t(18)=-1.9, 

ns, r=0.41 

t(18)=-3.1, 

p<.01, 

r=0.59 

t(18)=-4.4, 

p<.001, 

r=0.72 

t(18)=-5.4, 

p<.001, 

r=0.79 

Text – non-STEM 20.0 (0.0) 21.0 (0.7) 22.2 (1.4) 23.0 (2.1) 24.0 (2.8) 

Statistics (comparison to 

Correct) 

t(04)=0.0, 

ns, r=0.00 

t(04)=-3.2, 

p < .05, 

r=0.85 

t(04)=-6.3, 

p<.01, 

r=0.95 

t(04)=-9.5, 

p<.001, 

r=0.98 

t(04)=-12.6, 

p<.001, 

r=0.99 

      

Text – STEM 18.1 (6.0) 19.8 (5.9) 22.1 (6.2) 25.1 (7.4) 28.8 (9.8) 

Statistics (comparison to 

Correct) 

t(20)=-1.5, 

ns, r=0.32 

t(20)=-1.7, 

ns, r=0.36 

t(20)=-2.9, 

p<.01, 

r=0.54 

t(20)=-4.3, 

p<.001, 

r=0.69 

t(20)=-5.3, 

p<.001, 

r=0.76 

Physical – non-STEM 20.0 (0.0) 22.0 (0.0) 25.9 (0.6) 31.5 (1.7) 39.1 (3.3) 

Statistics (comparison to 

Correct) 

t(12)=0.0, 

ns, r=0.00 

t(12)=0.0, 

ns, r=0.00 

t(12)=-1.0, 

ns, r=0.28 

t(12)=-1.0, 

ns, r=0.28 

t(12)=-1.0, 

ns, r=0.28 

      

Physical – STEM 20.0 (0.0) 22.0 (0.0) 25.7 (0.8) 31.1 (2.3) 38.2 (4.5) 

Statistics (comparison to 

Correct) 

t(12)=0.0, 

ns, r=0.00 

t(12)=0.0, 

ns, r=0.00 

t(12)=-1.5, 

ns, r=0.40 

t(12)=-1.5, 

ns, r=0.40 

t(12)=-1.5, 

ns, r=0.40 

Decreasing problem 

Representation and 

backgrounds 
Time 1 Time 2 Time 3 Time 4 Time 5 

Correct 28.0 (0.0) 34.0 (0.0) 38.0 (0.0) 40.0 (0.0) 40.0 (0.0) 

Graphical – non-STEM 15.7 (7.2) 15.0 (10.1) 14.0 (12.3) 12.7 (14.0) 11.0 (14.7)  

Statistics (comparison to 

Correct) 

t(05)=-4.2, 

p<.01, 

r=0.88 

t(05)=-4.6, 

p<.01, 

r=0.90 

t(05)=-4.7, 

p<.01, 

r=0.90 

t(05)=-4.8, 

p<.01, 

r=0.91 

t(05)=-4.8, 

p<.01, 

r=0.91 

      

Graphical – STEM 20.7 (9.4) 22.7 (13.1) 23.7 (16.0) 23.7 (17.9) 22.7 (18.9) 

Statistics (comparison to 

Correct) 

t(11)=-2.7, 

p<.05, 

r=0.63 

t(11)=-3.0, 

p<.05, 

r=0.67 

t(11)=-3.1, 

p<.05, 

r=0.68 

t(11)=-3.2, 

p<.01, 

r=0.69 

t(11)=-3.2, 

p<.01, 

r=0.69 

Text – non-STEM 13.0 (7.3) 12.3 (10.6) 11.3 (13.1) 10.0 (14.7) 8.3 (15.5) 

Statistics (comparison to t(05)=-5.0, t(05)=-5.0, t(05)=-5.0, t(05)=-5.0, t(05)=-5.0, 
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Correct) p<.01, 

r=0.91 

p<.01, 

r=0.91 

p<.01, 

r=0.91 

p<.01, 

r=0.91 

p<.01, 

r=0.91 

      

Text – STEM 20.5 (9.3) 23.0 (13.3) 24.2 (16.1) 24.0 (18.0) 22.5 (18.9) 

Statistics (comparison to 

Correct) 

t(11)=-2.8, 

p<.05, 

r=0.65 

t(11)=-2.9, 

p<.05, 

r=0.66 

t(11)=-3.0, 

p<.05, 

r=0.67 

t(11)=-3.1, 

p<.01, 

r=0.68 

t(11)=-3.2, 

p<.01, 

r=0.69 

Physical – non-STEM 19.0 (7.3) 20.0 (11.0) 20.5 (13.8) 20.5 (15.9) 20.0 (17.2) 

Statistics (comparison to 

Correct) 

t(03)=-2.4, 

ns, r=0.81 

t(03)=-2.5, 

ns, r=0.82 

t(03)=-2.5, 

ns, r=0.82 

t(03)=-2.5, 

ns, r=0.82 

t(03)=-2.3, 

ns, r=0.80 

      

Physical – STEM 22.9 (8.4) 26.6 (12.2) 28.9 (15.0) 29.7 (16.9) 29.1 (18.9) 

Statistics (comparison to 

Correct) 

t(13)=-2.3, 

p<.05, 

r=0.54 

t(13)=-2.3, 

p<.05, 

r=0.54 

t(13)=-2.3, 

p<.05, 

r=0.54 

t(13)=-2.3, 

p<.05, 

r=0.54 

t(13)=-2.3, 

p<.05, 

r=0.54 

 

Note. 
1
 The values in bracket represent the standard deviation about the mean. 

2
 The value 

indicates the effect size. 

 

Table B2. The correct accumulation in different time periods and the corresponding 

average accumulation in different representations and problems split by levels of education 

in Chapter 4’s Experiment 2. 

 

Increasing problem 

Representation and level 

of education 
Time 1 Time 2 Time 3 Time 4 Time 5 

Correct 20.0 (0.0)
1
 22.0 (0.0) 26.0 (0.0) 32.0 (0.0) 40.0 (0.0) 

Graphical – Undergraduate 20.0 (0.0) 21.3 (0.6) 23.1 (1.7) 25.4 (3.7) 28.1 (6.6) 

Statistics (comparison to 

Correct) 

t(13)=0.0, 

ns, r=0.00
2
 

t(13)=-4.4, 

p<.001, 

r=0.77 

t(13)=-6.3, 

p<.001, 

r=0.87 

t(13)=-6.6, 

p<.001, 

r=0.88 

t(13)=-6.7, 

p<.001, 

r=0.88 

      

Graphical – Graduate 16.7 (7.8) 18.3 (7.6) 20.5 (7.9) 23.4 (9.1) 27.0 (11.5) 

Statistics (comparison to 

Correct) 

t(11)=-1.5, 

ns, r=0.41 

t(11)=-1.7, 

ns, r=0.46 

t(11)=-2.4, 

p<.05, 

r=0.59 

t(11)=-3.3, 

p<.01, 

r=0.71 

t(11)=-3.9, 

p<.01, 

r=0.76 

Text – Undergraduate 20.0 (0.0) 21.5 (0.5) 23.5 (1.8) 26.2 (4.0) 29.4 (7.2) 

Statistics (comparison to 

Correct) 

t(16)=0.0, 

ns, r=0.00 

t(16)=-4.2, 

p<.001, 

r=0.72 

t(16)=-5.6, 

p<.001, 

r=0.81 

t(16)=-6.0, 

p<.001, 

r=0.83 

t(16)=-6.1, 

p<.001, 

r=0.84 

      

Text – Graduate 15.6 (8.8) 17.2 (8.7) 19.3 (8.9) 21.9 (9.8) 24.9 (11.6) 

Statistics (comparison to 

Correct) 

t(08)=-1.5, 

ns, r=0.47 

t(08)=-1.7, 

ns, r=0.52 

t(08)=-2.3, 

p<.05, 

r=0.63 

t(08)=-3.1, 

p<.05, 

r=0.74 

t(08)=-3.9, 

p<.01, 

r=0.81 

Physical – Undergraduate 20.0 (0.0) 22.0 (0.0) 26.0 (0.0) 32.0 (0.0) 40.0 (0.0) 

Statistics (comparison to 

Correct) 

t(13)=0.0, 

ns, r=0.00 

t(13)=0.0, 

ns, r=0.00 

t(13)=0.0, 

ns, r=0.00 

t(13)=0.0, 

ns, r=0.00 

t(13)=0.0, 

ns, r=0.00 

      

Physical – Graduate 20.0 (0.0) 22.0 (0.0) 25.5 (0.9) 30.5 (2.7) 37.0 (5.4) 

Statistics (comparison to 

Correct) 

t(11)=0.0, 

ns, r=0.00 

t(11)=0.0, 

ns, r=0.00 

t(11)=-1.9, 

ns, r=0.50 

t(11)=-1.9, 

ns, r=0.50 

t(11)=-1.9, 

ns, r=0.50 

Decreasing problem 
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Representation and level 

of education 
Time 1 Time 2 Time 3 Time 4 Time 5 

Correct 28.0 (0.0)
1
 34.0 (0.0) 38.0 (0.0) 40.0 (0.0) 40.0 (0.0) 

Graphical – Undergraduate 16.5 (7.9) 16.5 (11.4) 16.0 (14.0) 15.0 (15.8) 13.5 (16.7) 

Statistics (comparison to 

Correct) 

t(07)=-4.1, 

p<.01, 

r=0.51 

t(07)=-4.4, 

p<.01, 

r=0.53 

t(07)=-4.4, 

p<.01, 

r=0.53 

t(07)=-4.5, 

p<.01, 

r=0.54 

t(07)=-4.5, 

p<.01, 

r=0.54 

      

Graphical – Graduate 21.0 (9.5) 23.0 (13.0) 24.0 (15.9) 24.0 (17.9) 23.0 (18.9) 

Statistics (comparison to 

Correct) 

t(09)=-2.5, 

p<.05, 

r=0.27 

t(09)=-2.7, 

p<.05, 

r=0.29 

t(09)=-2.8, 

p<.05, 

r=0.30 

t(09)=-2.8, 

p<.05, 

r=0.30 

t(09)=-2.8, 

p<.05, 

r=0.30 

Text – Undergraduate 14.5 (8.3) 14.5 (12.0) 14.0 (14.8) 13.0 (16.7) 11.5 (17.6) 

Statistics (comparison to 

Correct) 

t(07)=-4.6, 

p<.01, 

r=0.55 

t(07)=-4.6, 

p<.01, 

r=0.55 

t(07)=-4.6, 

p<.01, 

r=0.55 

t(07)=-4.6, 

p<.01, 

r=0.55 

t(07)=-4.6, 

p<.01, 

r=0.55 

      

Text – Graduate 20.8 (9.3) 23.4 (13.3) 24.6 (16.1) 24.4 (17.9) 22.8 (18.9) 

Statistics (comparison to 

Correct) 

t(09)=-2.4, 

p<.05, 

r=0.26 

t(09)=-2.4, 

p<.05, 

r=0.26 

t(09)=-2.6, 

p<.05, 

r=0.28 

t(09)=-2.8, 

p<.05, 

r=0.30 

t(09)=-2.9, 

p<.05, 

r=0.31 

Physical – Undergraduate 25.4 (4.4) 29.7 (7.5) 32.6 (9.7) 34.0 (11.0) 34.0 (11.5) 

Statistics (comparison to 

Correct) 

t(06)=-1.5, 

ns, r=0.24 

t(06)=-1.5, 

ns, r=0.24 

t(06)=-1.5, 

ns, r=0.24 

t(06)=-1.4, 

ns, r=0.23 

t(06)=-1.4, 

ns, r=0.23 

      

Physical – Graduate 19.8 (9.4) 22.2 (13.6) 23.5 (16.7) 23.6 (18.8) 22.7 (19.8) 

Statistics (comparison to 

Correct) 

t(10)=-2.9, 

p<.05, 

r=0.28 

t(10)=-2.9, 

p<.05, 

r=0.28 

t(10)=-2.9, 

p<.05, 

r=0.28 

t(10)=-2.9, 

p<.05, 

r=0.28 

t(10)=-2.9, 

p<.05, 

r=0.28 

 

Note. 
1
 The values in bracket represent the standard deviation about the mean. 

2
 The value 

indicates the effect size. 

 

Table B3. Proportion of responses classified as relying on Correlation Heuristic (CH) in 

different representations and problems split by education background and levels of 

education in Chapter 4’s Experiment 2. Comparison statistics with the correct 

accumulation’s CH value (= 0%) are also shown. 

 

Increasing problem 

Representation and 

Education 
CH (%) Statistics (comparison to Correct) 

Correct 00 - 

Graphical – non-STEM 86 t(06)=6.0, p<.001, r=0.93
1
 

Graphical – STEM 68 t(18)=6.2, p<.001, r=0.83 

Text – non-STEM 80 t(04)=4.0, p<.05, r=0.89 

Text – STEM 67 t(20)=6.3, p<.001, r=0.82 

Physical – non-STEM 08 t(12)=1.0, ns, r=0.28 

Physical – STEM 15 t(12)=1.5, ns, r=0.40 

Graphical – Undergraduate 79 t(13)=6.9, p<.001, r=0.89 

Graphical – Graduate 67 t(11)=4.7, p<.001, r=0.82 

Text – Undergraduate 71 t(16)=6.2, p<.001, r=0.84 

Text – Graduate 67 t(08)=4.0, p<.01, r=0.82 

Physical – Undergraduate 00 t(13)=0.0, ns, r=0.00 
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Physical – Graduate 25 t(11)=1.9, ns, r=0.50 

Decreasing problem 

Treatment CH (%) Statistics (comparison to Correct) 

Correct 00  

Graphical – non-STEM 83 t(05)=5.0, p<.01, r=0.91 

Graphical – STEM 50 t(11)=3.3, p<.01, r=0.71 

Text – non-STEM 83 t(05)=5.0, p<.01, r=0.91 

Text – STEM 42 t(11)=2.8, p<.05, r=0.65 

Physical – non-STEM 50 t(03)=1.7, ns, r=0.70 

Physical – STEM 29 t(13)=2.3, p<.05, r=0.54 

Graphical – Undergraduate 75 t(07)=4.6, p<.01, r=0.55 

Graphical – Graduate 50 t(09)=3.0, p<.05, r=0.32 

Text – Undergraduate 75 t(07)=4.6, p<.01, r=0.55 

Text – Graduate 40 t(09)=2.4, p<.05, r=0.26 

Physical – Undergraduate 14 t(06)=1.0, ns, r=0.16 

Physical – Graduate 45 t(10)=2.9, p<.05, r=0.28 

 

Note. 
1
 The value indicates the effect size. 

 


