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Abstract. In the first part (Chapter 2) of this thesis, a new fractional order seminorm,
TGV", r € R, r > 1, is proposed in the one-dimensional setting, as a generalization of
the standard TGV *-seminorms, k € N. The fractional TGV "-seminorms are shown to be
intermediate between the standard TGV*-seminorms of integer order. A bilevel training
scheme is proposed, where under a box constraint a simultaneous optimization with respect
to the parameter a and the order r is performed.

In the second part (Chapter 3) of this thesis, the Ambrosio-Tortorelli approximation
scheme with weighted underlying metric is investigated. It is shown that it I'-converges
to a Mumford-Shah image segmentation functional depending on the weight w dz, where
w € SBV(Q), and on its value w™.

Some new ideas about bilevel training scheme and future works are collected in Chap-
ter 4-6.
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Chapter 1. Introduction

1.1. The image processing and bilevel training scheme. The mathematical treat-
ment of image processing is strongly hinged on variational methods, partial differential
equation (PDE), and machine learning. Variational methods provide model-based ap-
proaches which are mathematically rigorous, yield stable solutions and error estimates.
However, the underlying techniques have shortcomings in the adaptation to real data. Al-
though machine learning provides data-based reconstruction approaches which are best
fitted to the given data, it neither guarantees the reconstruction results as the variational
method does, nor it offers insights into the structural properties of the image model. Hence,
an unified approach that combines the advantages of a variational model with the data-
based approach is needed, and many contributions toward this goal have been presented
in recent articles (see [35, 54]). In particular, the bilevel training scheme is one of the most
popular.

We start with a brief historical summary of the state of the art of the bilevel training
scheme for model training. In machine learning, the bilevel training scheme is defined as a
semi-supervised training scheme that optimally adapts itself to the given “perfect data”.
For example, in [23, 24, 37, 38, 73, 74]) authors consider the bilevel training scheme in the
study of finite dimensional Markov random field models. In inverse problems, for instance
in [49, 48], authors discussed the optimal inversion and experimental acquisition in the
context of optimal model design. Recently, the bilevel training scheme framed, in the con-
text of functional variational regularization models, has also entered the image processing
community (see [35]), and our work will start from here.

The variational formulation of problems in image processing often has an underlying func-
tional

Z(u) :=F (u — uy, Q) + R(u, o, ),

where u,, is a given corrupted (noised) data, 2 = I = (0, 1) represents the domain of voice
signal and Q = @ := (0,1) x (0, 1) stands for the domain of a square image, F is the fidelity
term, a > 0 is the tuning parameter, and R is the regularizer.

Image denoising is a fundamental task in image processing, as it is always a necessary
step prior to higher level image processing problems such as reconstruction and segmen-
tation. For a fixed regularizer R, the image denoising problem aims at computing an
image

Ug € argmin{”u — unH%Q(Q) +R(u,a,Q): ue€ XR} , (1.1)

where a := (a1, a9, ...,an), the tuning parameter, is a given parameter with «; > 0 for all
1 <i< N,and N € N depends on R. An example is given by the ROF model ([68]), in
which the regularizer R(u, a, Q) := a |ulpy (), where ||y () is the total variation, and the
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tuning parameter o € R*. That is, we are considering the following minimizing problem:
. 2
Ue = arg min { lu— unlZag) + @ ulpyg) : u € BV(Q)} (1.2)

The quality of a reconstructed image u,, generated in (1.1) or (1.2), highly depends a:
choosing it too large may result in losing important fine details, and if it is too small
then it may keep noise un-removed. Hence, the choice of the “optimal” tuning parameter
a becomes an important task. In [35] the authors proposed a training scheme by using
bilevel optimization. To be precise, we assume that we can decompose the corrupted image
Uy = uc + 1) where u, represents a noise-free clean image (the perfect data), and 7 encodes
noise. A typical bilevel training scheme can be formulated as follows, using the ROF model
as an example:

Level 1.
dEargmin{Hua—ucH%z : a>0}, (1.3)

Level 2.
Ue 1= arg min {Hu — 2o + @ lulpyg) U € BV(Q)} . (1.4)
Roughly speaking, this training scheme searches a > 0 such that the recovered image
Uq, obtained from(1.4), best fits the given clean image u., measured in terms of the L2-
distance in (1.3). In [35] it has been proved that (1.3) admits a positive solution & > 0 if

TV (uy) > TV (uc). Some other choices of regularizers have also been proposed in [35], for
example, the second order total generalized variation TGV? which is defined as follows:

i / /
|u]TGV30,a1(I) := inf {ao lu' — ”0|Mb(1) + o ‘UO|Mb(I) , Vg € BV(I)} , (1.5)
and the corresponding bilevel training scheme becomes:
Level 1.
deargmin{ﬂua—uCH%g ©a=(ag,a1) >0}, (1.6)
Level 2.
U,y ‘= arg min {Hu - unHiQ(Q) + |“’TGV§0@1(Q) P u € BV(Q)} . (1.7)

TGV?, defined in (1.5), may yield geometric structures as compared with 7'V, therefore,
we should expect that

inf {||ua w2 a> o} £ inf {Huam —uel?y: ap > 0,01 > o} (1.8)

where 1, and uq, o, are defined in (1.4) and (1.7), respectively. It has been observed that
for image data u., if u. has large flat areas, then TV performs better than TGV?2. That
is, the quantity on the left hand of (1.8) smaller than the quantity on the right hand side.
However, if u, has many smooth transitions and fine details, then TGV? performs better.
Other situations are also observed in the case one dimension signal. In addition, the higher
order seminorms TGV*, k > 2, have rarely been analyzed, and hence their performance is
largely unknown.
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1.2. The fractional order total generalized variation. In the existing literature a
regularizer is fixed a priori, and the biggest effort is concentrated on studying how to iden-
tify the best parameters. In the case of the TGV* model, this amounts to set manually the
value of k first, and then to determine the optimal « in (1.3) or (1.6). However, as we said
before, there is no evidence suggesting that TGV ? will always perform better than TV (or
conversely). The main focus of Chapter 2 in this thesis is exactly to investigate how to
optimally tune both the tuning parameter o and the order k of the TGV -seminorm, in
order to achieve the best reconstructed image.

In Chapter 2 of this thesis we work in one dimension and generalize the bilevel train-
ing scheme introduced before so that it can not only do parameter training, but also it
can determine the optimal order k of the regularizer TGV* for image reconstruction. A
straightforward modification of (1.6) would be to just insert the order of the regularizer
inside the learning level 2 in (1.7). Namely,

Level 1.
(&, k) € arg min {Huak — ucHiQ(I) ta>0,ke N},
Level 2.
Ug 1= argmin{Hu - uOH%Q(I) + |u’TGV§“(I) TS BV(I)} .

Often, in order to show the existence of a solution of the training scheme and also for the
numerical realization of the model, a box constraint is imposed (see, e.g. [12, 33]), i.e.,

(o, k) € [A,1/A]F1 % [1,R], (1.9)

where 0 < A < 1 (called the index of box constraint) and R > 1 are fixed real numbers.
However, such constraint makes the above training scheme less interesting. To be precise,
restricting the analysis to the case in which k& € N is an integer, the box constraint (1.9)
would only allow k to take finitely many values, and hence the optimized order k of reg-
ularizer would simply be determined by performing scheme (1.6) finitely many times, at
each time with different values of k. In addition, finer texture effects, for which an “inter-
mediate” reconstruction between the one provided by TGV* and TGV*+! for some k € N
would be needed, might be neglected in the optimization procedure.

Therefore, a main challenge in the setup of such a training scheme is to introduce a mean-
ingful interpolation between the spaces TGV* ! and TGV*, to guarantee that the family
of such spaces exhibits certain compactness and lower semicontinuity properties. For this
purpose, we modify the definition of the TGV* functionals by incorporating the theory of
fractional Sobolev spaces, and we introduce the notion of fractional order TGV**¢ space
(see Definition 2.11), where kK € Nand 0 < s < 1. For k = 1, our definition reads as follows:

‘u|TGV1+5(I) = lnf{‘u/ — SUO’Mb(I) + 5(1 — S) |’U()‘Ws,1+s(1—s)(l) :

vy € WS,1+S(1—S) (I)’ /’UO(CC) dx = O} ,
1
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and similarly, the TGV, reads as follows, where a = (g, 1) € RT x RT:

‘U|TGVO}+S(I) ;= inf {040 |u' — SUO‘M;;(I) + 0518(1 — S) "U()’Ws,1+s(1—s)(1) :

vy € WS,1+S(1*S) (I)’ /vo(x) dxr = 0} .
1

In addition, for every k € N and s € [0,1] we introduce the classes of functions with
bounded infimal-convolution total variation seminorm

BGV*+S(T) = {u € LNI) « [ulpgyies(ry < +OO}'

In the expressions above, WS’1+S(1_S)(I) is the fractional Sobolev space of order s and
integrability 1+ s(1 — s). In Theorem 2.12 we show that the TGV** seminorm is indeed
intermediate between TV (TGV') and TGV?, i.e., we prove that,

i [ulpgyesy 2 [tlroveqy and limfulpgypes ) = lulry -

Namely, for s 1, the behavior of the TGV, **-seminorm is close to the one of the stan-
dard TGV2-seminorm, whereas for s \, 0 it approaches the TV functional. We additionally
prove (see Corollary 2.15) that analogous results hold for higher order TGV *5-seminorms.

The advantage in working with such interpolation spaces is twofold. First, TGV*** is
expected to inherit the advantages of fractional order derivatives, which have been shown
to reduce the staircasing and contrast effects in noise removal problems (see, e.g. [22]).
Second, they allow us to introduce the following improved training scheme, which, under
(1.9), simultaneously optimizes both with respect to the parameter o and to the order r
of derivation.

Level 1.
(&, ) € arg min {||ua,r — uc||ig([) , (a,r) € [A1/A] lrJ+1 1,2 — A]}, (1.10)
Level 2.
Ug,r = argmin{Hu —ug||3s + TGV (u): u € BGVJ(I)} .

In the definition above, |r| denotes the largest integer smaller than or equal to r. Note
that, according to the test noise-free image u., the level 1 in our training scheme (1.10)
directly indicates the higher order regularizer providing the best image reconstruction, as
well as the associated corresponding optimal parameters.

The construction of TGV" in two dimensions is work in progress. We will not include
it in this thesis but instead refer to the upcoming paper [31].
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1.3. The weighted Ambrosio - Tortorelli approximation scheme. Another draw-
back of the training scheme in (1.3) is that it uses a constant tuning parameter which
provides an uniform regularization strength over the entire domain (. It has been ob-
served in [25] that an uniform regularization strength is undesirable when both fine details
and large flat areas are present in an image, which is often the case in image denoising
problems. Ideally, we should try to instruct a weak regularization strength in fine details
area so that those details can be preserved, and to instruct a strong regularization strength
should be used over large flat areas so that the noise can be removed.

To this purpose, in Chapter 3 we propose a spatially dependent training scheme with
respect to the tuning parameter «. To write this precise, we introduce the following nota-
tion:

Notation 1.1. Recall that

0<A<<1 (1.11)
is a fixed constant.
1. For any V € N, we set

Qn (in,jn) = ((iv = 1)/N,in/N) x ((jn = 1)/N,jn/N)
for each 1 <ipn,jn < N,
On ={0Qn(in,jn),, 1 <in,jn < N},

and
Qa:={Le€Qn, N<1/A}. (1.12)
2. L denotes a collection of finitely many L € Q4 such that
L= {L € Q4 : L are mutually disjoint, Q C Uf} , (1.13)

3. Va4, called the training ground, is the collection of all possible £. Note that we have
#{Va} < +o0.

We propose a new bilevel training scheme which uses the scheme (1.3) in each subdomain of
(@, and searches for the best combination of different subdomains from which a recovered
image %, which best fits u. in certain sense, might be obtained. Moreover, in order to
explore more regularizers, in Chapter 3 we use the Mumford-Shah image segmentation
functional as the regularizer. The Mumford-Shah image segmentation functional is given
by

MS(u) = 04/Q Vul?de + aHN"1(S,) (1.14)

where u € SBV (Q2), S, stands for the jump set of w,

and was introduced in [67]. By minimizing the functional

Ju— un”?ﬂ(g) + MS(u, K)



Page 10 Section 1.3

one tries to find a “piecewise smooth” approximation of ug. The existence of such minimiz-
ers can be proved by using compactness and lower semicontinuity theorems in SBV () (see
[3]). Furthermore, regularity results in [32] assert that minimizers u satisfy u € C1(Q\ S,)
and HN=1(S, NQ\ S,) = 0.

With the Mumford-Shah image segmentation functional as the regularizer, our new training
scheme can be presented as follows:

Level 1.
£ € arg min {Huc —uglag): L€ VA} (1.15)

Level 2.
ac(z):=ap forze L e L, and (1.16)

ug € argmin {/ ar |Vu)? de +/ ac(z)dHN N 4 |lu — UnHiz(Q) fuE SBV(Q)}
Q

u

Level 3.

ar, € argmin{Hua - uc||%g(L) ra €A, 1/A]}
(1.17)
Uq € argmin{Hu - unHiZ(L) +aMS(u): ue SBV(L)}.

Scheme (1.15) allows us to perform the denoising procedure “pointwisely”, and it is an
improvement of the following training scheme

Level 1.
& € arg min {||ua el o> o} , (1.18)

Level 2.
Ug € argmin{”u - “nH%Z(Q) +aMS(u,Q): u€ SBV(Q)} ,

which is the M .S version of training scheme (1.3). Note that since {Q} € V4, (1.15) must
perform better than (1.18). We remark that the most important step is (1.16) for the
following reasons:

1. (1.16) is the bridge connecting level 1 and level 2 in scheme (1.15);

2. since az is defined by locally optimizing the parameter ar, we expect u, be “close” to
u. locally in L;

3. the last integrand in (1.16) keeps u, close to u, globally, hence we may expect uz to
have a good balance between local optimization and global optimization.

We may view (1.16) as a weighted version of (1.14) by changing the underlying metric
from dzx to asdz. By the construction of oz in (1.17), we know it is a piecewise constant
function and, since A > 0 is positive, the discontinuity set of oz has finite HN~! measure.
However, a, is only defined £N-a.e., and hence the term

/ op(x)dHN !
Su
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might be ill-defined.

In Chapter 3, we deal with the well-definedness of (1.16) by modifying a, accordingly,
and by building a sequence of functionals which T'-converges to (1.16). To be precise, we
adopt the approximation scheme of Ambrosio and Tortorelli in [6] and change the underly-
ing metric properly. In (1.14) Ambrosio and Tortorelli considered a sequence of functionals
reminiscent of the Cahn-Hilliard approximation, and introduced a family of elliptic func-
tionals

AT (u,v) := /

Q
where u € W12(Q), (v —1) € WOM(Q), and u, € L*(Q). The additional field v plays the
role of controlling variable on the gradient of u. In [6] a rigorous argument has been made to
show that AT, — M S in the sense of I'-convergence ([7, 27]), where M S is defined in (1.14).

o | Vul* v?de + /

1
a [5 Vol + —(v — 1)2} dx +/ (u— un)2 dzx,
Q 4e Q

In view of (1.17), we fix a spatially dependent parameter, or a weight function, w € SBV (Q)
such that

w is positive and bounded away from 0, and HY1(S,,) < +ooc. (1.19)

Our new Mumford-Shah image segmentation functional with a spatially dependent param-
eter is defined as

MS,,(u) ::/ |Vu2wdx—i—/ w™dHN
Q

u

and the Ambrosio - Tortorelli functionals with spatially dependent parameters are defined
as

1
AT ofu,0) = [ [Vl dat [ [evof + Lo - 12| wds
Q Q 4e

(Note that AT} .(u,v) and M Sq(u) are the Ambrosio-Tortorelli approximation scheme and
Mumford-Shah functional studied in [6] with constant parameters, respectively). Moreover,
since A > 0 is positive and oy, > A in (1.17) , it is not restricted to assume that

0 < A<essinf{w(z): z€Q} <esssup{w(z): z € N} < +o0, (1.20)

where A > 0 is given in (1.11).

The main result of Chapter 3 is the following:

Theorem 1.2. Let Q C RN be open bounded with Lipschitz boundary, let w € SBV(Q)
satisfy (1.19) and (1.20), and let AT e LY(Q) x LY(2) — [0, +00] be defined by

AT, c(u,v)  if (u,v) € WH2(Q) x WH2(Q), 0 < v < 1 aee.,

400 otherwise.

AT e (u,v) == {
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Then the functionals AT, . I'-converge, with respect to the L' x L' topology, to the func-
tional

MS,(u) ifue GSBV(Q) and v =1 a.e.,

+00 otherwise.

MS,(u,v) = {

A direct inspection of the proof of Theorem 1.2 allows to also consider the case in which
w € C(92) and satisfies (1.20). To be precise:

Theorem 1.3. Let Q C RY be open bounded with Lipschitz boundary, let w € C(Q) satisfy
(1.20). Then the functionals AT, . I'-converge, with respect to the L' x L' topology, to the
functional MS,,(u).

We recall similar problems that have been studied for different types of weight functions w
(see, for example [9, 10, 43, 59, 76]). In particular, [9, 10] treated a uniformly continuous
and strong Ao, (defined in [70]) weight function on Modica-Mortola and Mumford-Shah-
type functionals, respectively, and in [59] the authors considered a CYP_continuous weight
function, with some other minor assumptions, in the one-dimensional Cahn-Hilliard model.
Also, in [43] the author studies the family of energy functionals

/(02 +ne) f(x,u, Vu)dx + / F«pQ(Vv) + i(1 - U)2:| dx (1.21)
Q ol2 2e

where : RN — [0, +00) is a norm, and (u,v) € WH2(Q) x WH2(Q). Note that in (1.21)
©?(Vv) is anisotropic and penalizing differently different orientations of the gradient, but
spatially homogeneous so it does not include the case where that term is replaced by
w(x) [Vu|?. Moreover, [76] addresses the family of energies

/ Vv dx—i—/ {Egp (x,Vv) + 4%(1) — 1)2} dx.

where ¢ is required to be continuous, and we cannot set ¢(z, Vo) = w(z)|Vo|* with
w € SBV() as in our context. Lastly, we point out that in both [43, 76] the underlying
measure of integration is the Lebesgue measure £V, while in our model the underlying
measure is w(x)LY, which affects all terms.

The proof of Theorem 1.2 consists of two steps. The first step is to prove the “liminf
inequality” liminf. o AT, (ue,v:) > MS,(u) for every sequence u, — u, v: — v. This is
obtained in Section 3.2 in the case N = 1 by using most of the arguments proposed in [6],
and extended to the case N > 1 by using a particular slicing argument (see Lemma 3.23).
The second step is the construction of a recovery sequence (ue — u,ve — 1) such that the
term

1
/ [e Vol + —(v—1)?| wdz (1.22)
Q 45

only captures the information of w™, and this the main novelty of this chapter. We note
that for small £ > 0, (1.22) only penalizes a e-neighborhood around the jump point of w.
By using fine properties of SBV functions (see Theorem 3.4), we are able to incorporate
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u and v in our model such that (1.22) will only penalize along the direction —vg, (see
Notation 3.3). This will be carried out in Proposition 3.26.

1.4. Some insights from finite resolution images. In [35] the existence of a minimizer
& > 0 of the error function

E(a) = [Jug — uCH%Q(Q) ) (1.23)

where u, is obtained from (1.3) with 7'V as the regularizer, has been established. Still,
some important properties like convexity and differentiability have not yet been addressed,
and an efficient numerical scheme to locate @ is in need (see, e.g., [60]). To develop such
efficient scheme, we observe from numerical simulations that £(-) is likely to be strictly
quasi-conver ' (see (1.26) for the definition), and if indeed it is, then a quasi-convex pro-
gramming method can be inserted (see, e.g., [53]), which has been proven to be computa-
tionally efficient. Unfortunately, strict quasi-convexity of (1.23) is not easily established.
Successful attempts have been made in settings in which the regularization term is linear
and smooth, for example, using the W2 Sobolev seminorm as the regularization term (see,
e.g., [55]). But, to the author’s knowledge, nothing of the kind has been investigated when
regularization term is non-linear and non-smooth such as the total variation seminorm.

In Chapter 4 we take the first small step in this direction and only the one-dimensional
case is investigated. Although it might relevant to the denoising of bar codes (see [77]), it
is of marginal interest within the context of image reconstruction. However, extending a
similar analysis to the two dimensional setting is quite challenge due to the lack of explicit
expression for the minimizer u,, which is an important ingredient in the analysis of the
one dimensional case (see Theorem 4.5).

In this part of work we introduce a new way to represent the clean image and the noise,
which is compatible with a discrete computer image data, in the domain I := (0,1), and
hence we may apply our PDEs and functional analysis tools on it. To be precise, we assume
that an ideal clean image u, € BV (I) can only be captured by a “super” camera which
has infinite resolution, and we assume that a finite N € N resolution level image captured
by a real world digital camera is a piecewise constant function u. n, which is related to u.
via its averages

Ue, N () == ][ ucdy for x € In(k), (1.24)
In (k)

where Iy (k) := ((k—1)/N,k/N), 1 <k < N. We also introduce the family

IN = {IN(k‘), 1§k§N}

INote that this notation of quasi-convexity is not related in any way to the notation of quasiconvexity
as introduced by Morrey (see [26, 47]), which is used in Section 6.4.2
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and we use u. n(In(k)) to denote the value of u. n(z) for € Iy(k). Similarly, in two
dimensions, we define

Ue, N () ::][ ucdz for x € Qn (in, jn) ,
QN(N.IN)
where Qn (in,jn) is defined in Notation 1.1 item 1.

Then, we may write scheme (1.3) with respect to a finite resolution image u.n as fol-
lows:

Level 1.
Q€ argmin{”ua — uC’NHiQ(I) Ca> 0},
Level 2.
o 1= argmin { [u — wyx |72y + o fulpyy : we BV

We present our first main result of Chapter 4 in Theorem 1.4. To be precise, we define the
reconstruction operator £ by

1
Z(a,v,I) := argmin {2 |lu — U||%2(1) + TV (u, I)} , (1.25)

for v € L?(I) and o € RT.

In Theorem 1.4 we discuss the quasi-convexity of (1.23) with finite resolution data u. n pro-
vided that u. n is monotone. We say that a function f: RT — RY is strictly quasi-convex
([14], Section 3.4) if for all ag, ag € RT and X € (0,1) we have

FfQar + (1 — ANag) < max{f(a1), f(az)}. (1.26)

We show that under certain assumptions (see Assumption B.10) the following result holds
(see Theorem 4.13):

Theorem 1.4. Let I := (0,1), let u. € BV (I) be monotone, and let a resolution level
N € N be given. Then the error function

1 2
En(0) = 5 12 (0 unn) — ey @ € RY, (1.27)
is strictly quasi-convex provided that u, n satisfies Assumption B.10.

We remark that the Assumption B.10 cannot be relaxed, and in Section 4.3.1 we present
counterexamples to show that removing any of its conditions would result in losing the
quasi-convexity of Ex(a) nearby ay, which is the minimizer of (1.27).

However, Assumption B.10 is very restrictive and unlikely to be satisfied in concrete set-
tings, and requiring u. to be monotone renders Theorem 1.4 to be less interesting. There-
fore, we need an alternative way to locate &y without assuming Assumption B.10 nor the
monotonicity of u.. To overcome this drawback, we show in Chapter 4 that £y, defined in
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(1.27), is piecewise convex with finite many pieces both for one dimension and two dimen-
sions, and this is enough for our purpose. To do so, we define the stopping time as(v) of a
function v € L*°(Q) via the following definition.

Definition 1.5. Let v € L*™°(Q) be given. We say that as(v) € [0,400) is the stopping
time for v if

L(as,v,Q) = L(as+a,v,Q) =: C(v) and L(as,v,Q) # L(as — a,v,Q) (1.28)
for all a > 0, where C(v) is a constant depends on v.
By its definition, if it exists then the stopping time is unique. In Section 4.4.1 we show
that the stopping time o (uy n) exists where o (u, n) is defined in (4.3) with @ replaced

by I :=(0,1). Next, in Proposition 4.16, using Theorem 4.5 repeatedly, we show that the
level N error function

Enla) = % /I L w3, T) — o |2 da (1.29)

is continuous, and there exist finitely many 0 < a1 < ap < --+ < ay = as(uyn) < +00
such that in each interval [a;, avit1), En(+) is convex and E(+) is linearly increasing. Hence,
a direct search, which we detail in Section 4.4.2, of a minimizer «,, of (1.29) inside the fi-
nite interval [0, as(uy )] can be executed numerically and terminated within a finite time,
although it may take a long CPU time.

The behavior of (1.29) in the two dimensional setting is also discussed in Chapter 4. We
present a two dimensional version of Proposition 4.16 in Proposition 4.20. Although the
statement of Proposition 4.20 is weaker compared to that of Proposition 4.16, due to the
lack of the two dimensional version of Theorem 4.5, it is still sufficient to allow us to per-
form the same direct search to locate & within a finite time.

In Chapter 4 in addition to (1.15) we also introduce another spatially dependent train-
ing scheme. We recall Notation 1.1 and introduce our new spatially training scheme as
follows:

Level 1.
L € arg min{”uc - ’LLL”%Q(Q) , L€ VA} (1.30)
Level 2.
ur(x) :=ug, (z) for € L and L € L, where
ug, '= argmin {Hu — iy l2agy + @ lulpy gy - uE BV(L)} (1.31)
Level 3. for any given L € Q4, set

&g, € argmin {Hua - UCH%Q(L) Ca> 0} , where

Uq := arg min{”u - “77”%2(1;) +alulpy@y: ue BV(L)} (1.32)
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We prove in Chapter 4 that under a mild assumption on the noise 1y, the scheme (1.30)
is able to fully recover the clean image u. as the resolution level N goes to infinite and the
box constraint index A — 0. To be precise, let

Pr(A) = inf{uuc,N —uglyg, L€ VA}
and
P(N) i= Py (1/N) = inf {Juen = ucl}agy £€Vin}

where u, is obtained by replacing u, with u, y in (1.31) and (1.32). In Theorem 4.24 we
prove the following result:

Theorem 1.6. Assume that the noise ny2 has locally average 0, that is,

][UN2:0
L

for any L € Q1N defined in Notation 1.1. Then
lim P(N?) = 0.
N—o0

1.5. The comprehensive training scheme. Up to now we have introduced some new
ideas to improve the original training scheme (1.3), including a training scheme with re-
spect to regularizers in (1.10), and two spatially training schemes in (1.15) and (1.30) with a
fixed regularizer. In Chapter 5 we summarize those ideas and generalize them even further.

The skeleton of the bilevel training scheme for image processing problem can be stated
as follows:

Level 1.

Search for the best choice of o, R, and L so that A(uar c — ue, Q) attains its minimum

Level 2.
Uq,R,c € argmin {certain functional of u,, defined by using F, R, o, and L },

where the operator A, called the assessment operator, assesses the quality of a denoised
image. To be precise, we assume that the smaller is the value of A (u. — uq R ) then
the higher is the quality of uq r,c . We also assume that the corrupted image u, belongs
to a Hilbert space Y, which is usually taken to be L? in image denoising and deblurring
problems.

Recall that the training ground V4 defined in Notation 1.1 item 3 is only a finite collection
(in discrete space), which renders training schemes (1.15) and (1.30) less interesting. While
digitally acquired image data is discrete, the aim of high resolution image reconstruction
and processing is always to compute an image that is close to the real, that is, infinite
dimensional, and HD photography produces larger and larger images with a frequently in-
creasing number of megapixels. Thus, we should aim for training schemes that accentuate



Page 17 Section 1.5

and preserve qualitative properties in images independent of the resolution of the image
itself.

To this purpose, we introduce a version of the training ground V4 in continuum space.

1. H 4 is the family of rectangles such that
Ha:={L CQ: Lisan open rectangle with the shortest side length greater than or equal to A};

2. L is the collection of (finitely many) L € H4 such that
L= {L € Ha : L are mutually disjoint, Q C Uf}, (1.33)
3. V4 denotes the collection of all possible £, and we define, for any £, £ € Vg4,
vy (£, £) i= max {min { xz — xurll gy s Ve £} Lec)

where x, is the characteristic function over L.
Clearly, # {Va} = oc.

1.5.1. The parameter training scheme (PT). The training scheme, stated in (1.3) and (1.6),
with respect to the tuning parameter, can be generalized as follows:
Level 1.
& € argmin {A (ug — ue, Q) : a> 0}, (1.34)
Level 2.
Uq = argmin {F (u — uy, Q) + R(u, o, Q) : v € Xr},

where the regularizer R is given by
N
R(ua «, Q) = Z (67} ’RZU|M(Q)
i=1

where a = (a1, 00,...,an,) € (RT)N,| R; are linear operators, and the values R;u are
penalized in the Radon norm |-|,,. For example, we may take R(u,a, @) to be TV (u)
as in (1.4), with N = 1 and a € R*, or TGV2, ,(u) with N = 2 and o = (a1, 02) €
(R*)2. Since the result of (1.34) is a parameter &, we call this training scheme “Parameter
Training scheme”, and hence the name (P7). The scheme (P7) has at least one solution
ar € (0, —|—oo]N provided some mild assumptions on u. and 7 are satisfied, and we refer

readers to [35] for details.

1.5.2. The regularizer training scheme (RT). In Chapter 2 we introduced a bilevel training
scheme which trains the optimal regularizer. In Chapter 5 we generalize such training
scheme, named as “Regularizer Training scheme”, and hence (RT), as follows:

Level 1.
¥ € argmin {A (uen — UR ] Q): yell} (1.35)
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Level 2.

uppy) = arg min {F(uy n —u, Q) + R[] (u, Q), u € Xrpy ),
where the indexing set II of the regularizer space Z is defined as follows:
Definition 1.7 (The indexing set of #Z). Let Il :=T'; xI'y x --- xI'y,,, where the indexing
dimension is Ny € N, and each T'; is a compact subset of M™*ki (vector space of n; X k;
real valued matrices, n;, m; € N). We say that a space (set) of reqularizers X is indexed
by II if each R € Z can be uniquely represented by an element v = (1,72, .. .,7N,) € 11,

and we use R[] to indicate that R is indexed by . Moreover, we endow % with the norm
defined by

da(R)RED) =3Il = illy, -

Definition 1.8. Given u, € Y, we define the reconstruction map S: #Z — Xgr by
Su,(R) == argmin {F (u, — v, Q) + R(u, Q) : ue& Xgr}.
Assumption 1.9 (A-l.s.c with respect to dg). We say that the operator S,, (R) is A-l.s.c.
with respect to dg if for every {R[vn]},—y C % with limy,_,o dz(R[vn), R[7]) = 0,
hnrglo%f A(Sun (R[’Yn]) - uc) Z -A(Sun (R[’Y]) - uc)'
Theorem 1.10. Let A be an assessment operator satisfying Assumption 5.3. If S,, is
A-l.s.c. with respect to dg, then problem (5.5) admits a solution R € .

1.5.3. Training scheme in regularizer and parameter spaces. We recall the definition of the
so-called box constraint.

Definition 1.11. We say that a vector a = (ai,9,...,an) € R™ satisfies the box
constraint if there exist two positive numbers 0 < A < 1 such that o; € [A,1/A] for
1=1,2,...,n.

From now on, we use Il to denote the indexing set of the regularizer space Z (see Defi-
nition 1.7).

Definition 1.12. We say that a space Z has operator dimension ng € N if there exists a
set of operators

{Ri(-, ) Y xY" x T — R fori=1,... ,n%} with R;(tu,tv, ) = tR;(u,v,-), t € RT

such that each R[y] € Z can be represented by
RU(u, Q) = inf {Ra(t,0,7) + Ra(0,7) + -+ R (0,7) - v € Y™}, (1.36)

We define a scaled version of R[y] € Z by adding a parameter o = (a1, 2,...,0n,) €
R™%  which satisfies the box constraint in Definition 5.14, in the following sense:

Rlo, v](u) == inf {Ri(oqu, a1v,7) + Ra(ov,y) + ... + Ry, (on,v,77) - v E Y2},
(1.37)
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and we let
da (Rl Rlo! 7)) = dia(RIy). REY]) + o — .

We improve scheme (R7) by inserting parameters in the way of (5.8), and hence (RT) is
now able to train the parameters and regularizers, simultaneously.

Level 1.
(&,7) € arg min {.A (uc — UR[an]> Q) vy elly, a €A, 1/A]"%} (1.38)
Level 2.
UR[a] := argmin { F(u, — u, Q) + Rla, 7](u, Q), u € Xgp}- (1.39)
We improve Assumption 5.12 to accommodate the parameter spaces [A, 1/A]"%.

Assumption 1.13 (A-A-l.s.c. with respect to da ). We say that the operator S(R) is
A-A-l.s.c. with respect to da g if for every {(om, )}y C [A,1/A]"% x II with

Jim da % (Rlom, Yal, Rle,7]) = 0,

we have

lim inf A(S(R[an, n]) — ue) = A(S(R[a,v]) — ue).

n—o0

1.5.4. The comprehensive training scheme. We propose a Comprehensive Training scheme
(CT) taking into consideration several options:

Level 1.
L € argmin {A (u. — P(L)): LEVa}, (1.40)
Level 2.
P(L) is built upon the information of {(&r,¥r)}; in each L € L,
Level 3.

{(&r,%1)}, € argmin {.A (uc — uR[aﬁ],L) vy ell, a€[A, 1/A]”9f} , (1.41)
UR[a,H] *= arg Min {f(un —u, L)+ Rla,v](u, L), u € XRM} .

Here the operator P: V4 — Y acts as an assemble operator, using the local optimal
re-construction information obtained in Level 3 within each subdomain L to construct a
global re-constructed image u,, based on the partition domain £ € V4.

Assumption 1.14. We say that the operator P: V4 — Y is A-l.s.c. with respect to dy,
if for any sequence {L,},7 | C Va with lim, o0 dy, (L, L) =0,

lim inf A(P(£,) — 1) > A(P(L) - ue).

Theorem 1.15. If the assemble operator P is A-l.s.c. with respect to dy,, then problem
(5.24) admints a solution L € V4.
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Two examples of assemble operator P(L) are presented in Chapter 5.

In the end, we would like to point out that, although the results obtained in this the-
sis are mainly motivated by problems from image processing, their applicability goes well
beyond that and are related to problems involves parameter estimation. The box constraint
we impose on (5.27), which is necessary to prove the existence of solutions, could be relaxed
for certain regularizer spaces # based on observations made in [35]. However, to further
open up the possibility to address more generalized regularizers, we proved our main result
with box constraint, so that the scheme (C7) is compatible with more regularizer spaces.
Next steps from this work includes:

1. allow spatially dependent (weighted) tuning parameter w € BV to be 0 or +oo in
subdomains;

2. new assessment operator A. For example, the assessment operator optimized for edges
enhancement and cancer detection;

3. construct new assemble operator P. It is ideal to have a corresponding P for different
assessment operators A optimized for different purposes;

4. design sophisticated numerical schemes to solve the optimal solution for scheme (CT).

Chapter 2. The fractional order total generalized variation
In Chapter 2, we set I := (0,1) is an unit interval.

2.1. The theory of fractional sobolev spaces. In what follows we will assume that
I =(0,1). We first recall a few results from the theory of Fractional Sobolev spaces. We
refer to [36] for an introduction to the main results, and to [1, 56, 57, 65] and the references
therein for a comprehensive treatment of the topic.

Definition 2.1 (Fractional Sobolev spaces). For 0 < s <1, 1 <p < 400, and u € LP(I),
we define the Gagliardo seminorm of u by

1
ju(z) = u(y)l” g
s = drd . 2.1
s = ([ ] e ae 2
We say that w € WP(I) if

lullwerry = vl Loy + [ulweny < +o0.
The following embedding results hold true ([36, Theorems 6.7, 6.10, and 8.2, and Corollary
7.2]).

Theorem 2.2 (Sobolev Embeddings - 1). Let s € (0,1) be given.

1. Let p < 1/s. Then there exists a positive constant C' = C(p,s) such that for every
u € W*P(I) there holds

lullLary < Cllullwsr(r) (2.2)
for every q € [1, 1_psp]. If ¢ < 1—1.;5;97 then the embedding of W*'(I) into Li(I) is also
compact.
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2. Let p=1/s. Then the embedding in (2.2) holds for every q € [1,+00).
3. Let p > 1/s. Then there exists a positive constant C = C(p, s) such that for every
u e W*P(I) we have

HUHC(WU) < CHUHWs,p([),
sp—1
5

with o :=
The additional embedding result below is proved in [71, Corollary 19].

Theorem 2.3 (Sobolev Embeddings - 2). Let s > r, p < q and s — 1/p > r — 1/q, with
O<r<s<l,andl <p<qg<+oo. Then
WP(T) ¢ WH4(T)

and
36

|u’WTv‘1(I) < s ’u‘Ws’P(I)
The next inequality is a special case of [13, Theorem 1] and [64, Theorem 1].

Theorem 2.4 (Poincaré Inequality). Let p > 1, and let sp < 1. There exists a constant

C > 0 such that
u— ][u(x) dx
I

It is possible to construct a continuous extension operator from W#!(I) to W*1(R) (see,
e.g., [36, Theorem 5.4]).

Theorem 2.5 (Extension Operator). Let s € (0,1), and let 1 < p < +00. Then W*P(I)
is continuously embedded in W*P(R), namely there exists a constant C' = C(p, s) such that
for every u € W*P(I) there exists u € W5P(R) satisfying | = u and

P < Cs(1—s) |

LT o (1—sppt e

il < Clullyens -

The next two theorems ([75, Section 2.2.2, Remark 3, and Section 2.11.2]) yield an iden-
tification between fractional Sobolev spaces and Besov spaces in R, and guarantee the
reflexivity of Besov spaces By, for p, ¢ finite.

Theorem 2.6 (Identification with Besov spaces). If 1 < p < +co and s € R \ N, then
W*P(R) = B, ,(R)

Theorem 2.7 (Reflexivity of Besov spaces). Let —co < s < 400, 1 < p < 400 and
0 < q<+o00. Then
I —
(B, (R)) = B, (R),
where (B, ,(R))" is the dual of the Besov space B, ,(R), and where p' and ¢’ are the con-
jJugate exponent of p and q, respectively.

In view of Theorems 2.6 and 2.7 the following characterization holds true.
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Corollary 2.8 (Reflexivity of Fractional Sobolev spaces). Let 1 < p < 400 and s € RT\N.
Then the fractional Sobolev space W*P(R) is reflexive.

We conclude this section by recalling two theorems describing the limit behavior of the
Gagliardo seminorm as s /' 1 and s N\, 0, respectively. The first result has been proved in
[52, Theorem 3 and Remark 1], and [29, Theorem 1].

Theorem 2.9 (Asymptotic behavior as s /' 1). Let u € BV(I). Then

. _ !
(1= 8) [uhyengny = [0y, 1)

Similarly, the asymptotic behavior of the Gagliardo seminorm has been characterized as
s\ 0 in [64, Theorem 3.

Theorem 2.10 (Asymptotic behavior as s \, 0). Let u € Uy<s<1W*(R). Then,
li\fl%s |U‘W571(R) =2 HUHLl(R) :

2.2. The fractional order total generalized seminorm. In this section we define the
fractional order TGV '+* seminorm, 0 < s < 1, and prove some useful properties.

Definition 2.11 (The Fractional TGV Space). Let 0 < s < 1, k € N, and let a =
(g, 1,2, .., ) € R’fﬁl. For every u € L'(I), we define its fractional TGV*+* semi-
norm as follows.

For k=1 we set
‘U|TGVO}+S(I) = inf {Oéo |ul — Svo‘Mb(D + ozls(l — S) |U0’W5,1+s(1—s)(1) :

vy € WS,1+S(1—S) (I)’ /’UO(CC) dx = O} .
1

For k > 1 we define

|ul gyt gy = inf {ao lu' — UOle(I) + a1 |vp — Ul‘Mb(I) +

SR ey N |’()]::_2 — Svk_l}Mb(I) —+ Ozks(l — S) |vk—1|W5’1+5(1*5>(I) :

v; € BV(I) for 0<i<k—2, vp_y € W+s=s)(), /vk_l(:c) dx = 0} .
I
ForO0<s<1,keN, a=(a,a1,a9,...,0r) € ]R’fl, we say that u € BGVFS(I) if
lull gy oy = lull gy + lulpgyprs gy < +oo,

and we write w € BGV*5(I) if there exists a € R¥™ such that u € BGVF3(I). Note
that if w € BGVF+3(I) for some a € Rﬁ_ﬂ, then u € BGV;“(I) for every B € Rﬁ_ﬂ.

We observe that the TGV* 5 seminorm is actually “intermediate” between the TGV
seminorm and the TGV**! seminorm. To be precise, we have the following identification.



Page 23 Section 2.2

Theorem 2.12. For every u € BV (I), there holds

hm/lnf|u|TGV1+s(I) > |ulpgvey and hm |u\TGV1+s ’u ’Mb(l

Before proving the theorem we state and prove an intermediate result that will be crucial

in determining the asymptotic behavior of the TGV !+* seminorm as s 7 1.
Proposition 2.13. Let u be a Lipschitz function. Then

limsup(1 = s) [ufyys1rs0-5 ) < || a1
s,/'1

Proof. We first observe that for x,y € I there holds

2 —y| < |z —y]”.

Since u is Lipschitz, we have there exists a constant L > 0 such that for x, y € I there

holds
lu(z) —u(y)] < Llz —y[ < Lz —yl”.
We observe that

1+s(1—s)
‘ |Ws,1+s(lfs) (I)

B u(z) —u(y)"0Y Ju(z) — u(y)*" ) Ju(z) — u(y)|
_/ da:dy—/I/I dxdy

I |.%' _ |1+S(1+S(1—S)) Tz — y|1+s(1+5(1—s))

s(1-s o — " Ju(z) — u(y)| _ rs(i-s) u(z) — u(y)|
// Sy =1 e g

— 1s(1-s) |“|Ws«1(1) )

Therefore,

S TS s(1—s)
limsup (1 = s) [uly s 14505 () < limsup (1 — s) |u|;;§<11 I§> Li+s0=9),
s s/1

Thus, in view of Theorem 2.9 we conclude that

1 s(1—s)
limsup(1 — 8) |l yye1ss0-6y < limsup (1 — ) Jul ;2072 limsup L1095 = |/
it Wi+ () s 1 We1(I) o { }Mb(l)
as desired.

0

A crucial ingredient in the proof of Theorem 2.12 is a compactness and lower semicontinuity

result for maps with null averages and weighted W#1*5(1=5)_seminorm.

Proposition 2.14. Let {s,} C (0,1) be such that s, — 5, with 5 € (0,1]. For everyn € N

let v, € Wenttsnl=su) (1) satisfy [, vn(x)dz =0, and

Sl;}; s$n(L = sn) [Vnlywsn1+sn@—sn) () < +00. (2.3)
n>
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Then, for s € (0,1), and up to the extraction of a (non-relabeled) subsequence, there exists
o € WHHSU=5)(I) such that

v, =T strongly in L*(I),
and
llnnigf Sn(l — Sn) ‘Un’Wsn,1+sn(1—sn)(1) 2 5(1 - 5) |77|W§71+§(1—5)([) . (2'4)

The analogous statement holds for 5 = 1, by replacing W*'50=5)(I) with BV (I), and
(2.4) with

liminf s, (1 = sp) [Unlpyen 14sna-sn) (1) 2 |5,‘Mb(1) .

n—oo
Proof. We first observe that for @, y € I, and s < ¢, we have |z — y|'™* > |z —y|"™.
Hence, in view of (2.1) there holds
[ulwsncry < lulwesr (2.5)

for 1 < p < +o0, and for every u € WHP(I).

Without loss of generality (and up to the extraction of a non-relabeled subsequence) we
can assume that the sequences {s,} and {s,(1 — s,)} converge monotonically to § and
5(1 — §), respectively. Therefore, according to the value of § only 4 situations can arise:

Case 1: 0 <5< 2: s, \, 5 and s,(1 — s,) \, 5(1 — 3);
Case 2: £ <5< 1: s, \,5 and s,(1 —s,) 7 5(1 — 3);
Case 3: 3 <5<1: s, 7 5and sy(1—s,) \,5(1—3);
Case 4: 0 <5< 3: s, /' 5 and s,(1 —s,) /5(1 — 3).

We first consider Case 2. By (2.3) there exists a constant C' such that

sup |vn‘Wsn,1+sn(1_sn)(1) < (.
n>1

We point out that the function f: (0,1) — R, defined as

1
f(z) ::x—m

is strictly increasing on (0,1). Thus, we can apply Theorem 2.3 with s = s,, r = §,
p=14s,(1—sy),and ¢ =1+ 5(1 — 5) and we obtain

for every x € (0,1),

"Un’W§,1+§(1—§)(I) S C ’vn’WSn,HSn(l*Sn)([) S C (26)

Thus, by Theorem 2.4 and Corollary 2.8 there exists 7 € W' +5(1=%)(I) such that, up to
the extraction of a (non-relabeled) subsequence, we have

v, =0 weakly in WHIS=3) (1),
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By the lower semicontinuity of the W+5(1=5)(T) norm with respect to the weak conver-
gence, and by (2.6) we deduce the inequality

g(l — 5) |,D|W§71+§(1_§)(I) S %gﬁl-lgof 5(1 — g) ‘vn‘WSnal‘FSn(l—Sn)([)
= %ﬂgf s$n(1 = 5n) |n|wen1tana-sn) (1) -

In Case 1 we observe that the function g : (0,1) — R, defined as

o(z) !

Tlraog OOl

is strictly decreasing in (0, %] Since s; > s, > § for every n, there holds
1 1
> )
1+s1(1—s1) — 1+3(1-5)
and by the properties of the functions f and g,
1 - 1 S . 1
- >§-———— > - ———.
1+ sp(l—s,) — 1+s5(1-5) — 1+ s1(1—s7)
By (2.3) there exists a constant C' such that

Sn

A

sup |Un|WSn,1+Sn(1*Sn)(]) = C.
n>1

Choosing s = sy, 7 =38, p=1+5,(1 —sy), and ¢ = 1+ s1(1 — s1) in Theorem 2.3 we have
|Un|w§yl+51(1751>(1) < ‘UN‘WSn,1+Sn(1—Sn)(I) <C.

Thus, by Theorem 2.4 there exists a map © such that, up to the extraction of a (non-
relabeled) subsequence, there holds

vy, = weakly in WHIFst(l=s1) (1),
and by Theorem 2.2 also strongly in Ll(I ). In particular, Fatou’s Lemma yields

1+5(1-5) . 1+sn, (1_s”k)
| ‘W§,1+§(17§)(I) < igg}i-nog |vnk‘WSnk,lJrSnk(l*Snk)([) ’

which in turn implies the thesis.
We omit the proof of the result in Case 4, and in Case 3 for § < 1, as they follow from

analogous arguments. Regarding Case 3 for § = 1, by (2.3) and (2.5) there exists a constant
C such that

(1 - Sn) |Un|WSn,1(]) <C,
for every n € N. The thesis follows then by [52, Theorem 4]. O

We now prove Theorem 2.12.
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Proof of Theorem 2.12. Let € > 0 be given and vy € BV (I) N C*°(R) be such that
lulrayvey = ao |u’ — UO‘Mb(I) + 0| gy (r) — €

In view of Proposition 2.13 there holds

u — svg + S/vo(:v) dx
I

Hmsup |u|pgyi+s gy < limsup {ag

s 1 s/ My (1)

+ags(1—s) |UO|W5,1+5(175>(I)}

< |ulpgvegy te+ /Uo(l’) dx|. (2.7)
I
For every s € (0,1), let v§ € W*173(1=9)(T) be such that [} v§(z)dz = 0, and
ap |u — svg‘Mb(D + o15(1 = 8) [vlysatsa—o gy < [ulpgyies gy + (1 —s). (2.8)

In view of (2.7) and Proposition 2.14, there exists v € BV (I) such that, up to the extraction
of a (non-relabeled) subsequence,

vy — v strongly in L'(I),
and

. /
E/Hi s(1—s) |U(S)|st1+s<1fs>(1) = ’“ ‘BV([) :

Passing to the limit in (2.8) we deduce the inequality
/ / . .
ulravey < oo u’ — U|Mb(1) +ar v ‘BV(I) = hlsn/%{lf lulrayive

which in turn implies the thesis.

To study the case s\, 0, we first observe that

sup |U|TGVO}+S(I) < |U/|BV(I)~ (2'9)
s€(0,1)

Thus we only need to prove the opposite inequality. To this aim, for every s € (0,1) let
vy € WeHs(1=9)(T) be such that [} v§(z)dz = 0, and

Qg |u’ - SUS}M,,(I) + a18(1 = 8) [vf s assa-9) (1) < |u]TGVc}+S(I) +s. (2.10)
Since s(1 4 s(1 —s)) < 1 for s € (0,1), by (2.9) and in view of Theorem 2.4 there holds
sv§ — 0 strongly in L(I).
Passing to the limit in (2.10) we deduce the inequality

u < limsup || pey14s 7y -
| ‘Mb(I) N lulpqyr+sn

The thesis follows owing to (2.9). O
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Corollary 2.15. Let k > 2. For everyu € BV (I), up to the extraction of a (non-relabeled)
subsequence there holds

lirsn/j{lf \u|TGV§+S(I) > |u]TGV£+1(I) and ll\l"% |“’TGV§+S(1) = ’U|TG‘/§([)7
where & := (ag, ..., a5_1) € Rﬁ.

Proof. The result follows by straightforward adaptations of the arguments in the proof of
Theorem 2.12. [l

We proceed by showing that the minimization problem in Definition 2.11 has a solution.
Proposition 2.16. If the infimum in Definition 2.11 is finite, then it is attained.
Proof. Let k =1. Let o € R, and let u € BGVF*3(I). We need to show that

‘U|TGV,§+S(1) = min {ao |u' — SU‘Mb(I) + s(1 = s)ar [v]yairsa-s gy

v e Wettst=s)(p), /U(:):) dx = 0} . (2.11)

I
We first observe that u € BV (I).

Indeed, let i > 0, and let v € W**+s(1=9)(]) be such that J;v(x)der =0, and
ap v — SU‘M;,(I) +5(1 = s)on |vlysnrsa-so () < [ulpgyaes ) + -
By Holder inequality there holds
oo !u'}Mb(I) < ap ‘u’ — SU‘M;)(I) + sa ””HLl(I)
<ag|u' — SU{Mb(I) + 500 [V]yys a9 1y + 500 [|V][ prsa-s gy
< Nulpgypsry 1+ s(ao = (L= s)on) [l s avsa—s gy + sao [0l presa—s gy -

Let now {v,}2°, € W*5(0=9)(T) be a minimizing sequence for (2.11). Since s(1 + s(1 —
s)) < 1 for s € (0,1), by Theorem 2.2 there exists a constant C' such that

sup ”UnHWs,Hs(l—s)([) <C.
neN
Thus, by Corollary 2.8 there exists v € WS’HS(I_S)(I) such that, up to the extraction of a
(non-relabeled) subsequence, there holds
vp — 0 weakly in W= (1),
and hence by Theorem 2.2,
v, — U strongly in L'(I).

The thesis follows now by the lower semicontinuity of the total variation and the W1 +5(1—5)
norm with respect to the L' convergence and the weak convergence in Wsit+s(1—s) (1),
respectively.
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For k = 2, let {v§}°2, C BV(I) and {v]};2, ¢ WeiHs(=9)(]) with [, v}(z)dz = 0 for
every n € N be such that

nli)r_’l_loo {a0|u’ — /U(T)L|Mb(1) + a1|(1)5‘)/ — SU{L’Mb(I) + as(1 — S)|U?|W1,5(175)(1)}

= TGV2T(I).

Since s(14+s(1—s)) < 1 for s € (0,1), by Theorem 2.2 we obtain that {v]} 7 ; is uniformly
bounded in W#1+5(1=5)(T). Therefore, {v§}>, is uniformly bounded in BV (I), and there

n=1
exist vo € BV(I) and v; € WHs0=9)(]), with [, vi(z)dz = 0, such that, up to the
extraction of a (non-relabeled) subsequence,

vy =" vo  weakly* in BV (1),
and
vP — vy weakly in WSS9,
In particular, by Theorem 2.2,
v — vy strongly in L(I).

The minimality of vy and v is a consequence of lower semicontinuity. The thesis for & > 2
follows by analogous arguments. O

We observe that the TGV*t* seminorms are all equivalent to the total variation seminorm.
Lemma 2.17. For every k> 1 and 0 < s < 1, we have
BV (I) ~ BGV¥(I) ~ BGV**(I) ~ BGV*L(I).
Proof. We only show that
BV (I) ~ BGV™(I) ~ BGV*(I). (2.12)

The proof of the inequality for £ > 1 is analogous. In view of (2.9), to prove the first
equivalence relation in (2.12) we only need to show that there exist a constant C' and a
multi-index a € Ri such that

‘U/’Mb(l) < Clulpgy+sy -
By Theorem 2.2 we have
‘“/‘Mbu) <[ - SUO‘M;,(I) + 5 [vol ()
< ‘u' — SUOIMb(I) +Cs |U0|W5,1+s(175>(1)
C
= }’LL, — SUO’Mb(I) + @S(l — S) |U0‘Ws,1+s(1—s)(l)
for every vy € W**s(1=5)(I). Thus

!/
|u ‘Mb(l) <C |u’TGV1+SC (I)
§e=n)

for every s € (0,1). This completes the proof of the first equivalence in (2.12). Property
(2.12) follows now by [17, Theorem 3.3]. O



Page 29 Section 2.2

We conclude this section with a proposition that will be crucial in establishing our new
training scheme.

Proposition 2.18. Let 0 < A << 1, k€N, {5,}°%, C (0,1), and {a"}>2, C REM with
a" = (af,af,...,a}) satisfying

O0<A<inf{al, n>1,0<i<k}<sup{ej, n>1, 0<i<k}<1/A<+4oo0. (2.13)
Let u, € BGVE(I) be such that

sup {||unHBGVk;L‘r5n(I)} < +00. (214)
neN o

Then, up to the extraction of a (non-relabeled) subsequence, there exist 5 € [0,1], o € le_H
and u € BGV)*3(I) such that s, — 5, o™ — a, and

Uy — u in BV(I). (2.15)
In addition, if 5 € (0, 1] there holds

[ulpgyisqy < Hminf funlygypeon o) - (2.16)
If s =0 we have
[ulrave < Hminf unlrgysen .
where & € Ri is the multi-index & := (ag, ..., 0_1), and
/ . .
00 [U] v, 1y <TI0 lunlrgygeon (2.17)

for k> 1 and k = 1, respectively.

Proof. We prove the statement for £k = 1. The proof of the result for £ > 1 follows via
straightforward modifications. For k = 1, we have {a"}>"; C R? and by (2.13) up to the
extraction of a (non-relabeled) subsequence there holds

(ag,al) = (ap, 1), where A < ag, ag < 1/A. (2.18)

In addition, since {s,},—; is bounded, there exists 5 € [0,1] such that s, — 5. By
Proposition 2.16 we deduce that there exists v € Wn1+sn(1=sn)(T) such that

|u’TGVCff{S"(I) = ag |u/n - Snvg’Mb([) + af'sn(1l — sn) |,061’W8n,1+5n(17$n)([) .
Thus, by Theorem 2.4 and since [; vg(x) dz = 0, we have (note that s, < 1)
!/ /
|“n‘/\/lb(1) < ‘“n - Snvg‘Mb(I) +sn |USL|L1(I)
g C{’U{n - Snvg‘Mb(]) + Sn(l — Sn) |U6L|Wsn,l+sn(1fsn)(1)} .

Hence, by (2.14) and (2.18),

sup{u }ngup{u 14sn }<+oo
sup lunll gy (n sup lunll pavion r)
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which implies (2.15).

Note that for any 0 < s < 1,

11
l1—-s 1-—s
Hence by applying again Theorem 2.4 we obtain

1+s(l—s)— (—s+s(1—15)?) <0.

[0l ptvmimiry < N, s ) < O30 = 80) o hyonemi-sm

which by (2.13) implies
n(1 = 50) [0l onisnrgry < 108 prontisn) + 5a(L = 80) [0y mtonisnrgry
< Csa(L = 50) [ lyponasent-omty < C lunllpysen -
Therefore, by (2.14) we deduce the uniform bound

Sl;p sn(L = sn) [[vnllywan. 14 @—sn) () < +00. (2.19)
n>1

We subdivide the remaining part of the proof of Proposition 2.18 into 2 cases.

Case 1: 5 € (0,1].

Assume first that 5 < 1. By Proposition 2.14 there exists vg € W5+50=%)(I) such that
v — vy strongly in (1), (2.20)
and

lim inf sn(1 = 8n) [V lwen1+sna-sn) = 5(1 = 5) [volyssa-sp) - (2.21)

By (2.20) and since 0 < 5 < 1, there holds

Hminf funlpyieon )

> : : n /_ n : : n _ n ) ) .
> liminf ag [u, — snvg] ) + Hminf ofs, (1= sn) [0G lyysn om0

> ag |u — gvo}Mb(I) + 151 = 8) [volysatsa—s gy 2 [Ulpgyies ) (2.22)

where in the last inequality we used the definition of the TGV, *5-seminorm. In particular,
u € BGVT3(I), and (2.16) is satisfied. The proof of the proposition for 5 = 1 follows via
the same argument, and by replacing 5(1 — 5) [vo[yys.1s0-5 ;) in (2.21) and (2.22) with

‘U(/)’Mb(f )
Case 2: 5 =0. In view of (2.19) and Theorem 2.4, up to the extraction of a (non-relabeled)
subsequence we deduce that
snun — 0 strongly in L'(I).
Hence, there holds

Hmint funl oy ieon )



Page 31 Section 2.3

: : n / n : : n n
> hnnit%f of |u), — spvg |Mb(1) + hnnié%f of'sn(1 = sn) |05 lyren 1an@—sn) (1)

> oo |u'] g, 1)

which in turn implies (2.17). This completes the proof of the proposition. d

2.3. The bilevel training scheme with respect to parameter and regularizer. Let
r > 1 be given and let |r| denote the largest integer smaller than or equal to r. We propose

the following training scheme (R) which takes into account the order r of the regularizer
and the parameter o € ]RL:HI simultaneously. We restrict our analysis to the case in which

a and r satisfy the box constraint
(a,7) € [A, /AN X K, K +1— A] (2.23)
where 0 < A << 1 and K € N.

Our new training scheme (R) is defined as follows:
Level 1.

(&,7) := arg min {/ e — ) d, (a,r) € [A,1/AIMF x [K K + S]} , (2.24)
I

Level 2.

Uq,r 1= argmin {/ lu — uo|? dz + u|TGVr(])} , (2.25)
weBGVr(I) \JI <«

where u. € L*(I) represents a noise-free test picture, and uy € L!(I) is the noisy image.

Note that we only allow the parameters a and the order r of regularizers to lie within
a prescribed finite range. This is needed for the numerical realization of our model and
also to force the optimal reconstructed image ua7 to remain inside our proposed space
BGVI(I) (see Proposition 2.18). In particular, if some of the components of « blow up to
0o, we might end up in the space W!(I), which is outside the purview of this chapter.
We point out that no upper bound on R is required. Thus, despite the box constraint our
analysis still incorporates a large class of image reconstruction regularizers, such as TV
and TGV? (see, e.g., [34]).

Before we state the main theorem of this section, we prove a technical lemma that will
guarantee the existence of a unique solution to (2.25).

Lemma 2.19. For every r € [1,R], and o € RETJH there exists a unique uq, € BGV] (1)
solving the minimum problem (2.25).

Proof. Let {un},2; C BGV](I) be a minimizing sequence for (2.25). By Lemma 2.17,
{un};2 is uniformly bounded in BV (I). Thus there exists @ € BV (I) such that

u, =% u  weakly* in BV (1),



Page 32 Section 2.3

and hence also strongly in L?(I). The thesis follows then by Proposition 2.18 and by the
strict convexity of the functional. O

We are now in a position to prove existence and uniqueness of solutions to our training
scheme.

Theorem 2.20. Let ug,u. € BV(I) and 0 < A << 1 be given. Under the box constraint
(2.23), the training scheme (R) admits a unique solution (&,7) € [A,1/A)? x [1,2— A] and
provides an associated optimally reconstructed image ug = € BGVI(I).

Proof. Let {(cun,mn)}or, be a minimizing sequence for (2.24), with (o, ry,) C [A, 1/A4]? x

[1,2 — A] for every n € N. Let u,,, r, be the unique solution to (2.25) provided by Lemma
2.19. By (2.25), there holds

(el pavzn ) < Twolravzn ) < |40l wy )

for every n € N. There exists 7 € [1, R] such that, up to the extraction of a (non-relabeled)
subsequence, there holds r, — 7. Note that for n big enough r, = 1 + s,, with s, — 3,
and s € [0,1]. We distinguish two cases.

Case 1. ¥ ¢ N. Then 5 € (0,1).
Case 2. 7=1. Then § =0.

In both cases Proposition 2.18 yields the existence of a map us > € BGVZ(I) such that
Uay r — Ugr  weakly* in BV (I), (2.26)

thus, in particular, strongly in L?(I). The existence of solutions follows then by lower
semicontinuity, whereas the uniqueness is a direct consequence of the strict convexity of
the L?-error norm.

To be precise, we claim that

Ugs = argmin {/ lu — u0|2 dz + |u|TGVT(I)} . (2.27)
ueBGVI(1) W1 a
Define
pi= inf —up|*d I 2.28
¢ ueBlcr:lvg(l) {/I [u = uol” du + WTGV& (I)} (2.28)

Assume (2.27) does not hold, i.e., there exists another @, as the minimizer of (2.27), such
that

aF = / |1] — UO|2 dl‘ + |a‘TGV§(I) < / ‘U@j — U0|2 dl‘ —+ |U&7F|chf(]) = CL,.
1 1 *
In view of (2.26) we have
liminfa,, >a'. (2.29)

Assume 7 = 1. Then we have s, \, 5§ = 0. By Theorem 2.12 we may write

i [l gy oy = [@lravzn
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and hence
. - 2 -
nh—{go/] @ — wo|” dx + [t| pgym 1) = mr < a (2.30)

Now, in view of (2.29), for n large enough we have
1
ar, >a — Z(a’ — ap),
and hence, push r even larger if need to, together with (2.30) we have
. - 1 1
/|U — u0|2d$ + |u|TGVJn(I) S Q5 + Z(al — CLF) < a/ — Z(al — CLF) S ar,,
I n
which contradicts to the definition of m,., in (2.28). The case 7 > 1, i.e., § € (0,1) can be

proved in the same way as above. ([l

Remark 2.21. Theorem 2.20 hold with the box constraint [A, 1/A]% x [K, K+1— A], where
K € Nand 0 < A << 1. The proof of the result for K > 1 follows via straightforward mod-
ifications. In practice, we may take the box constraint [A, 1/A]X x ([1,1+ SJU[2,2 + 9]),
which covers a large class of image reconstruction regularizers, such as TV and TGV?2.

Chapter 3. The weighted Ambrosio - Tortorelli approximation scheme

3.1. Definitions and preliminary results. Throughout this part, @ C RY is an open
bounded set with Lipschitz boundary, and I := (—1,1).

Definition 3.1. We say that u € BV (QQ) is a special function of bounded variation, and
we write u € SBV(Q), if the Cantor part of its derivative, D u, is zero, so that (see [4],
(3.89))

Du = D% + D/u = Vu L [Q+ (uT — w1V LS. (3.1)
Moreover, we say that

1. u€ SBV2(Q) ifu € SBV(Q) and Vu € L*(Q);
2. ue GSBV(Q) if K ANuV —K € SBV(Q) for all K € N.

Here we always identify v € SBV(2) with its approximation representative u, where

u(z) = 1 [u+(x) + uf(x)] )

2
with N
B
ut(x) := inf {t eR: lim £ (ac,r)Nﬂ {lu>1t}) = 0} ,
r—0 r
and

N(B(z,r) N {u
u” (x) ::sup{tGR: }i_{f(l)ﬁ (B( ’T)Nm{ <th :0}.

We note that @ is Borel measurable (see [41], Lemma 1, page 210), and it can be shown
that @ = v LN-a.e. x € Q, and that

(@)"(z) = u"(z) and (@) (z) = u” ()
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for HNl-a.e. x € Q (see [41], Corollary 1, page 216). Furthermore, we have that
— <u (7)) <ut(z) < +o0 (3.2)
for HN¥"1l-a.e. 2 € Q (see [41], Theorem 2, page 211). The inequality (3.2) uniquely

determines the sign of v, in (3.1).

Definition 3.2. (The weight function) We say that w: Q — (0,+00] belongs to W(Q2) if
w € LY(Q) and has a positive lower bound, i.e., there exists | > 0 such that

essinf {w(z),z € Q} > L. (3.3)

Without loss of generality, we take [ = 1. Moreover, in this chapter we will only consider
the cases in which w is either a continuous function or a SBV function. If w € SBV then,
in addition, we require that

HNL(S,,) < 0o and HY (S, \ S.) = 0.
We next fix some notation which will be used throughout this chapter.

Notation 3.3. Let I' C Q be a H ~l-rectifiable set and x € I" be given.

1. We denote by vr(x) a normal vector at x with respect to I', and Q.. (z,7) is the cube
centered at x with side length r and two faces normal to vp(x);

2. Ty, stands for the hyperplane normal to vr(z) and passing through z, and P, ,,. stands

for the projection operator from I' onto T ,.;

we define the hyperplane T}, . (t) := Ty .. + tvr(z) for t € R;

4. we introduce the half-spaces

H, (z)":={ye RN : vp(z)- (y—2) > 0}

w

and
Hy(z)” ={yeR": vp(z) (y—z) <0}.
Moreover, we define the half-cubes

B (xa T) = QVF (1‘, T’) N HVF (w)iQ

vr
5. for given 7 > 0, we denote by R .. (z, ) the part of Q.. (z, ) which lies strictly between
the two hyperplanes T}, .. (—77) and Ty .. (77);
6. we set Ag:={x € Q: dist(z, A) < 0} for every A C Q and § > 0.
Theorem 3.4 ([41], Theorem 3, page 213). Assume that uw € BV (). Then
1. for HN"l-a.e. 29 € 2\ Sy,
lim () — @(zo)|F-T da = 0;
r—0 B(LU()J’)

2. for HN"1-a.e. zg € S,

lim lu(z) — ui(xg)‘ N-T dg = 0;
70 J B(zo,r)NH, g, (w0)*
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3. for HN"1 a.e. g € S,

. 1 _ . _
lim N—l/ ‘u*(az) —u (m)‘ dHN 1(a:) = |u+(xo) —u (mo)} )
e=0¢ Squr/Su (1075)
Lemma 3.5 (Lemma 5.2 and Remark 5.3 in [16]). If u € SBV?2(Q2) N L>(Q) then there
exists a sequence {u,}oo; C SBV2(Q) N L(Q) such that the following hold:

Nunlpoo < Jullfoe for alln € N;
2. u, — u in LY (Q);

3. Vu, — Vu strongly in L?(Q;R?);
4. HN=Y(S,, ASy,) — 0;

5. limp o0 HY 7! (Su, \ Su,) = 0 (see Remark 5.3 in [16]).

Lemma 3.6. Let w € SBV(I) be such that H°(S,,) < co. For every x € I the following
statements hold:

1. if {zn oy and {yn},—y C I are such that x, < © < yn, n € N, and limy, o0 T, =
limy, 00 Yn = x, then

—_

liminf essinf w(y)>w™ (x); (3.4)
n—00 y&(Tn,Yn)
2.
Jim ©(z) = wH(z); (3.5)
{zn}oZiCHY, (o)
3.
lim sup esssup  w(z) = wh(w), (3.6)
dy (Kn,z)—0 2€Kp
KnCCH, ()

where K, CC Hyis (@) and dy; denotes the Hausdorff distance (see Definition A.1).

Proof. If x ¢ S,,, then there exists § > 0 such that
SoN(z—9d,z+9) =0,

and so w is absolutely continuous in (z — 0,z + 9), and (3.4)-(3.6) are trivially satisfied
with w(z) = w™ (x) and with equality in place of the inequality in (3.4).

Let x € S, and, without loss of generality, assume that z = 0, and let z,, y, — 0
with 2, < 0 < y, for all n € N. Since H°(S,) < oo, choose 7 > 0 such that

S, N(0—7047) =0.

As @ is absolutely continuous in (—7,0) and (0,7), we may extend @ uniquely to x = 0
from the left and the right (see Exercise 3.7 (1) in [58]) to define

w(0T) := l{(xgrw(x) and w(0™) := xl}%l_@(x). (3.7)

x
Assume that (the case @(07) > @(0") can be treated similarly)
@(07) < @(0™). (3.8)
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We first claim that
liminf inf w(z)>w(07). (3.9)

n—r00 JJE(iL'n 7yn)

Let £ > 0 be given. By (3.7) find 7 > ¢ > 0 small enough such that
1 1
|@(z) —w(07)| < € for all z € (—6,0), and |@(z) —w(0")] < € for all x € (0,0).

This, together with (3.8), yields

1
787
2

for all z € (—6,6). Since x,, — 0 and y,, — 0, we may choose n large enough such that
(Tn, yn) C (—0,9) and hence

w(z)>w(07)—

nf o) >o(07) -
xe(xn»yn)

Thus, (3.9) follows by the arbitrariness of £ > 0.

We next claim that

©(0%) = w*(0). (3.10)
By Theorem 3.4 part 2 and the fact that @ = w L'-a.e., we have
I I
~(0) = Tim ~ i © _ _ -
w™(0) lim =/ w(t)dt lim=f w(t)dt =w(07),

s s

where at the last equality we used the properties of absolutely continuous function and the
definition of @(07). The equation w(0") = w™(0) can be proved similarly.

Therefore
liminf essinf w(z)=Iliminf inf &(x)>&(07)=w™ (0),
iminf essinf, () = lim in pelnt | (z) 2 w(07) (0)
which concludes (3.4), and (3.5) and (3.6) hold by (3.7) and (3.10). O

Lemma 3.7. The space L? is a Hilbert space endowed with the inner product

(u,v)r2 = (W, vw)p2 = /uvwdm. (3.11)

Proof. 1t is clear that (3.11) is an inner product. Also, (u,u)r2 = (u\/w,uy/w)r2 > 0, and

if (u,u)r2 = 0 then by (3.3)
/qu dr > /uzd:c =0,
Q Q

To see that L2 is complete, and therefore a Hilbert space, let {un}>2, be a Cauchy se-
quence in L2, and notice that {u,/w} -, is a Cauchy sequence in L?. Hence, there is a
function v € L? such that u,+/w — v in L2, Defining u := v//w, we have that u € L2

and u, — u in L2, O

and thus u =0 a.e.
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Lemma 3.8. Let {u,},-; C WA2(Q) be such that u, — u in L. and
sup/ |V |? wdz < oo.
Q

Then, for every measurable set A C (2

liminf/ ]Vun]2wdx2/ Vul? wd,
A A

n—oo
and u € Wy (Q).

Proof. By (3.3) we have that {Vu,}>2, is uniformly bounded in L?(Q,RY) and u, — u
in L'(Q). Hence Vu, — Vu in L?(Q;RY), and using standard lower semi-continuity of
convex energies (see [45], Theorem 6.3.7), we conclude that

+oo>liminf/ \Vun\dea:Z/ |Vul? wdz,

for every measurable subset A C . In particular, with A = Q and using the fact that
1 <w a.e., we deduce that u € Wp?(€). O

Lemma 3.9. Let u € LL(Q) be such that

/!Vu\2wdx+/ wdHN 1 < +oo. (3.12)
Q

u

Then HN=1(S,) < +o0 and u € GSBV,,(9).

Proof. By (3.12) and (3.3)
/ Vul? dz -+ HYN(S,) < 4o,
Q

and hence by [6] we have that v € GSBV(2). To show that u € GSBV,,(2), we only need
to verify that

/ ‘u};—u[_{‘wdHNfl < 400
S“‘K

for every K € N and with ug := K AuV —K. Indeed, by (3.12)

J

UK

lujfe — ug|wdHN ! < 2K/ wdHN ! < 2K/ wdHV ! < oo
Sug Su

3.2. The one dimensional case.



Page 38 Section 3.2

3.2.1. The case w e W(I)NC(I).
Let w € W(I) N C(I) be given. Consider the functionals
1
AT, - (u,v) = /1)2 }u"dex +/ = }’U"Q + —(v—-1>? wdz

’ I I 2 2e

for (u,v) € Wa?(I) x WEH2(I), and let
MS,(u) := / ‘u’!zwd:v+ Z w(x)
I

CCES’U,

be defined for w € GSBV,,(I) (Note that AT} .(u,v) and M S;(u) are, respectively, the non-
weighted Ambrosio-Tortorelli approximation scheme and Mumford-Shah functional studied
in [6]).

Theorem 3.10 (I'-Convergence). Let AT, .: L'(I) x LY(I) — [0, +00c] be defined by

AT, o (u,v) if (u,v) € WH(I) x WL(I),0 <o <1,
400 otherwise.

AT we(u,v) := {

Then the functionals AT, . I'-converge, with respect to the L' x L' topology, to the func-
tional

MS,(u) ifue GSBV(I) andv =1 a.e.,

400 otherwise.

MS.o(u,v) = {

We begin with an auxiliary proposition.

Proposition 3.11. Let {v.}.., C WY(I) be such that 0 < v, <1, v. — 1 in L'(I) and
pointwise a.e., and

. 13 2 1 9
1 — vl —(ve — 1)7| dx < 0.
1msup/I [2 lul]” + 2€(U€ )7 | dxr < oo

e—0

Then for arbitrary 0 < n < 1 there exists an open set H, C I satisfying:

1. the set I\ Hy is a collection of finitely many points in I;
2. for every set K compactly contained in H,, we have K C B for e > 0 small enough,
where
Bl :={zel:v}(z)>n}. (3.13)

Proposition 3.11 is adapted from [6], page 1020-1021 (see Lemma A.3).
Proposition 3.12. (I-liminf) For u € L. (1), let
MS, (u) := inf {lim inf AT, - (ue,ve) :

e—0
(ue,ve) € WEAHI) x WH2(I1),ue — w in LY, vo — 1 in LY, 0 < v, < 1}.

We have
MS,_ (u) > MS,(u).
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Proof. It M S, (u) = +oo then there is nothing to prove. Assume that M := MS_ (u) < co.
Choose u. and v, admissible for M S (u) such that

shg(l) AT, o (ue,ve) = M S (u) < oo,

and note that v. — 1 in L!(I). Since inf,cqw(z) > 1, we have
liran_}(l)af AT ¢ (ug,ve) < ligl_}i(])af AT, - (ue,ve) < 400,

and by [6] we obtain that

u € GSBV(I) and H°(S,) < +ooc. (3.14)
Let € > 0 be sufficiently small so that, for all 0 < € < &,

AT, -(ug,ve) < M + 1.

We claim, separately, that

/ ’u’|2wd9§ < Iiminf/ ‘u;|203wdaz < +o0, (3.15)
I e—0 I
and
D wlx) < liminf/ L ol |* + i(1 —v.)? | wdz < +o0. (3.16)
T es0 Jrp|27'F 2e

zESy
Note that (3.15), (3.16), and Lemma 3.9 will yield u € GSBV,,(I).

Up to the extraction of a (not relabeled) subsequence, we have u. — u and v, — 1
a.e. in I with

. 1 2 1 . 1 2 1
1 —e|vl]"+ —(1 —v.)?| dz <1 / —e |l 4+ —(1 —v)?| wdz < +o0.
1msup/l {25}125‘ + 26( Ve) ] x < limsup ; 25"05‘ + 28( ve)” | wdxr < 400

e—0 e—0

Therefore, up to the extraction of a (not relabeled) subsequence, we can apply Proposition
3.11 and deduce that, for a fixed n € (1/2,1), there exists an open set H,, such that the set
I'\ H, contains only a finite number of points, and for every compact subset K CC H,,, K
is contained in By for 0 < € < e(K), where B¢ is defined in (3.13). We have

u’deq:Sliminf u’ 2wdx
€
K e=0 Jk

1. . 2 L. . 2
< ~liminf [ o2 |ul|"wdz < = liminf v? |ul|” wdz,
n =0 Ji n =0 Jr

(3.17)

where we used Lemma 3.8 in the first inequality. By letting K H,, on the left hand side
of (3.17) first and then n 1 on the right hand side, we proved that

/I}UI‘dex < ligglf/lvg ’ué‘dex, (3.18)

where we used the fact that |1\ H,| = 0.

We claim that S, C I\ H,. Indeed, if there is g € S, N H,, since H, is open there
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exists an open interval I) containing zp and compactly contained in H, such that for

/
0<e<eg
/It/

0

u'E‘deg/ ‘ué’zwdxg 1/1}3 }ué’zwdx§2(M—{—1).
I nJr

Thus u € WLZ(I{)), and hence is continuous at xg, which contradicts the fact that zg € S,,.

e}

Let t € Sy, and for simplicity assume that ¢ = 0. We claim that there exist {t,ll}
{ti}zo:l, and {s,}o0, such that —1 <t} < s, <12 <1,

n=1’

. 1 . 2 .
lim ¢, = lim ¢, = lim s, =0,
n—oo n—oo n—oo

and, up to the extraction of a subsequence of {v.}_.,

lim. Ve(ny (1) = lim Ve(ny(t2) = 1, and 1im v (sn) = 0. (3.19)

Because I\ H, is discrete and 0 € I \ H,,, we may choose ¢y > 0 small enough such that
(—260,200) N (I \ Hy) = {0}.

We claim that
lim sup lim sup inf v.(z) = 0, (3.20)

50+  e—0t+ €S

where I5 := (—6,0). Assume that
limsup limsup inf v.(z) =: a > 0.
50t es0t+ ZELs
Then there exists 0 < d, < dp such that

2
limsup inf v.(z) > -a > 0.
e—0t zEIéoz 3

Up to the extraction of a subsequence of {v.} there exists 58" > 0 such that

>0

1
inf > -a>0
0, e =gz 0

forall 0 <e < Eg“, and we have

/|u"2da:§/ |u"2wd1:
Is Is

@ @

e—0 e—=0 «

2
§liminf/ ‘u’sfwda:gliminf/ ’u’s‘ngwd:ﬁ
Is Is,,
2 2
< liminf/‘u;‘zvgwdx < —(M+1).
e—=0 « I «

Hence u € WH2(Is,) and so u is continuous at 0 € S,, and we reduce a contradiction.
Therefore, in view of (3.20) we may find §,, — 0%, e(n) — 0%, and s,, € (—0,,, d,,) such that

nh_)Igo sp = 0 and nh_}rrgo Ve(n)(8n) = 0.
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We claim that for all 7 € (0,1/2),
lim inf 1 —vemy(x)) + inf 1 —v.y(x))| =0. 3.21
dm |G- @) (@) (321
To reach a contradiction, assume that there exists 7 € (0,1/2) such that
lim sup [ inf (I —wvy(@)+  inf (1 =10y (3:))] = 03>0.
n—oo |TE(Sn—T,5n) xE€(Sn,8n+T)
Without loss of generality, suppose that
1

I inf (1 — . (2)) > =8 > 0.

msup _ inf (1= e (@) 2 58
Then )

liminf  sup = v (7)) <1 - 55,

n—00 2E(Sn—T,8n)

which implies that
1
sup Ve(ny)(T) <1 — gﬂ (3.22)

xe(snk—q—,snk)
for a subsequence {e(ng)},e; C {e(n)} 2,. However, (3.22) contradicts the fact that

Ve(n,) () — 1 a.e. since for k large enough so that |s,, | < 7/4 it holds

3
(Sny — T, Sny,) D —*T,—I )
4 4

Therefore, in view of (3.21) we may find t}, € (8n(m) — 1/, Sp(my) and 2 € (Sn(m)> Sn(m) T+
1/m) such that

lim t71n = lim t?n =0 and lim Us(n(m)) (tin) = lim Us(n(m)) (t?n) =1.

n—oo n—o0 n—o0 n—o0
We next show that
. Sn(m) |1 2 1 2 1
I;gl&f /t}n {f(”(m)) ‘(Us(n(m)))/‘ + m(l — Ve(n(m))) ] dr > 9

Indeed, we have

liminf / e [16(n(m)) |(Weiy)'[* +

m—oo [, 2

R B I
22 (n(m)) “’“)]d

1
m

/

Ve (n) dz > lim inf

m—0o0

Sn(m) ,
/ (1-— Us(n))vs(n) dx

Sn(m)
> lim inf/ (1 = ven))
t

m—00 tl 1
m m

1] feem a )
:liﬂloréf2/t %(1—1)5(”)) dx

1
m

1 . 1
=5 lim [(1 - Ua(n(m))(sn(m)))Q - (1 - Us(n(m))(tin))Q] = 57

2 n—oo
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where we used (3.19). Similarly, we obtain

t
lim inf
m—00

Sn(m)

1
2e(n)

N | =

1 /
5t (o) +

We observe that, since w is positive,
2 1
+ 5y L e ] wla) o

/mm Bs“‘) 2(n)

Sn(m) [ 1
> inf . —
- (reéit%) wm) {/t [2€(n)

1
m

(1 — vg(n))2:| dx Z

vé‘(n)

_l’_

2e(m) ”E("))Q] NG

t2
+/Sn(m) [25(”’) ‘(vs(n))/‘ + 2€(n) (1 - vs(n)) :| dx} s
and so
liminf/tgn Lo ol + (1 = v)?| wla) d
ot ], 25 n) |Vz(n) 2e(n) Ve(n))” | w(z) do

o : - Sty 1 2, € 2
> (tminr i, ) lzn;%,%f{ A = R

t2 2
—|—/m + ! (1 — vegm)?| dz
; 2e(n) -

> (; + ;) w(0) = w(0),

where we used the fact that w is continuous at 0.

Finally, since S, C I\ H,, by (3.14) we have that S, is a finite collection of points,
and we may repeat the above argument for all ¢ € S, by partitioning I into non-overlaping
intervals where there is at most one point of .S, to deduce that

lim inf/I Bs |Ué‘2 + %8(1 - U5)2:| w(x)dr > Z w(z). (3.24)

e—0
IGSu
In view of (3.18) and (3.24), we conclude that

liminf AT, o (ue, ve) > M S, (u).
e—0

Proposition 3.13. (I-limsup) For u € L'(I) N L>(I), let

MST (u) = inf {lim sup ATy, - (ug, ve)

e—0

(ue,ve) € WEAHI) x WH2(I),ue — w in LY, ve — 1 in LY, 0 < v, < 1}.
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We have
MSTH(u) < MS,(u). (3.25)

Proof. Without loss of generality, assume that M S, (u) < co. Then by Lemma 3.9 we have
u € GSBV,,(I) and H°(S,) < co. To prove (3.25), we show that there exist {uz}, o C

Wao(I) and {ve}.og € WH(I) such that ue — win LY, ve = 1in L', 0 < v, <1, and
lim sup AT, o (ue, ve) < MS,(u). (3.26)
e—0
Step 1: Assume that S, = {0}.
Fix 7 > 0, and let T > 0 and vy € W2(0,T) be such that
T
0<wp<1 and / [(1—v0)2+\v6\2] dz <1+, (3.27)
0
with vg(0) = 0 and vo(T") = 1.

For & = o(e) we define

0 if |z| <&,
ve(z) := < v (|m|;§€) if & < |z| < & + €T, (3.28)
1 if x| > €& +¢€T.

Since [[ve|[ 00y < 1, by Lebesgue Dominated Convergence Theorem we have ve — 1 in L.
Let

ue(z) == {u(a:) if fa] > 5, (3.29)

affine from u (—3&.) to u (&) if |2| < 3.
and we observe that (recall in assumption we have u € L>(I))
HUEHLOO(I) = HUHLC’O(I)’

and

Therefore, by Lebesgue Dominated Convergence Theorem we deduce that u. — u in L.
Moreover, by (3.28) and (3.29) we observe that

1}2"11,/‘2: U?\u'|2 if x > |¢],
e 0 if z <&/,

and so v2 [ul|* < |u/[*. Since M S, (u) < oo we have u/ € L2(I), by Lebesgue Dominated
Convergence Theorem we obtain

;i_r}(l) Iv?‘u;fwdx:/[‘u"zwdaj.
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Next, since w is positive we have

/1 [; [ol]” + %(vs - 1)2] w(z) da

—Ee € 1

712 2

= — — -1 d
/§EET |:2 ‘vs} + 26 (ve ) :| w(x) !

1 1 e

Ee+eT £, 02 )
+ /55 [2 loL|” + g(v‘E -1) } w(z) dr + % %Ew(az)dx

& e, 1 )
= sup - w(t) |- Sl + (e — 1)?] da
te(—€e—eT &e+eT) —¢e—eT 2 2e

EeteT c 9 1 5
o[ [P gt = 17 e S el

We obtain
. 13 2 1 9
hmsup/l [2 luL]” + 2*(3(1}E - 1) ] w(x)dx

e—0

<lim sup ( sup w(t)) .
)

e—0 te(—&e—eT&c+eT

—&e c 9 1 beteT [ 5 1
li — Wl 4+ —(v. —1)?| d /‘ WL+ —(ve —1)?| d
u’il—?(l)lp{/gsg’f |:2 ‘UE‘ + 2€(U5 ) :| z + e 2 UE| + 25(/1)5 ) £r

<w(0)(1 4 1),
where we used (3.27).

We conclude that
limsup AT}, o (ue, ve) < / ‘ulf wdz +w(0)(1+n),
e—0 1

and (3.26) follows by the arbitrariness of 7.

Step 2: In the general case in which S, is finite, we obtain u. by repeating the construc-
tion in Step 1 (see (3.29)) in small non-overlapping intervals centered at each point in S,,.
To obtain v., we repeat the construction (3.28) in those intervals and extend by 1 in the
complement of the union of those intervals. Hence, by Step 1 we have

limsup AT, o (ug, ve) < / ‘u"gwdzv +(1+n) Z w(z),
I

e—0 2€S,

and again (3.26) follows by letting n — 0%. O

Proof of Theorem 3.10. The lim inf inequality follows from Proposition 3.12. For the lim sup
inequality, we note that for any given u € GSBV,, such that M S, (u) < 400, by Lebesgue
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Monotone Convergence Theorem we have that

MS,(u) = lim MS,(KAuV—-K),
K—o00
and hence a diagonal argument together with Proposition 3.13 conclude the proof. U

3.2.2. The Case w e W(I)NSBV(I).
Consider the functionals
1
AT, (u,v) = / ‘u"Qvgw dx + / = |v"2 + —(v—1)>?| wdz
’ I I 2 2e
for (u,v) € Wh2(I) x WH2(I), and for u € GSBV,,(I) let

MS,(u) ::/I’u’|2wdx+ Z w™ ().

(EGSu
We note that if w € W(I) N SBV(I) and w is continuous in a neighborhood of S, for

u € GSBV,(I), then
Z w (z) = Z w(x)

TESy, €Sy
and Theorem 3.10 still holds.

Here we study the case in which w is no longer continuous on a neighborhood of S,,.
We recall that w € SBV(I) implies that w € L*(I) and by definition of w € W(I), we
have H°(S,,) < co. Also, we note that w™ is defined H"-a.e, hence everywhere in 1.

Theorem 3.14. Let MS.: L'(I) x L'(I) — [0, 4+00] be defined by

AT, o (u,v) if (u,v) € WH2(I) x WH(I),0 <o <1,
400 otherwise.

ATy e(u,v) == {

Then the functionals AT, . T'-converge, with respect to the L' x L' topology, to the func-
tional

MSo(,v) = MS,(u) ifue GSBV(I) andv =1 a.e.,
400 otherwise.

The proof of Theorem 3.14 will be split into two propositions.

Proposition 3.15. (I-liminf) For u € L'(I), let

MS,, (u) :=inf {lim iglf AT, < (ug,ve) ¢
e—

w
(e, ve) € WEYAI) x WYA(I), ue — w in LY, v. — 1 in L', 0 < v, < 1}.

We have
MS; (u) > M5, (u)



Page 46 Section 3.2

Proof. Without lose of generality, assume that M S (u) < +oo. We use the same argu-
ments of the proof of Proposition 3.12 until (3.23). In particular, (3.14) and (3.15) still
hold, that is

e—0

H°(S,) < 400 and /‘u'fwdm < liminf/ ‘u;‘Qvgwdm.
I I

Invoking (3.23), we have

t?n 1
it [ 30

1
m

.. . .. Sn(m) 1 72 1 2
> (liminf essinf w(r) ) -liminf 55(71)‘(’05(”)) + (1 = ven))° | dz

, 2
”e<n>‘ +

2e(n) (1-— Us(n))2:| w(x)dx

m=%0 1€(th t3,) oo | Jy

tm
+/
S

1
m

1 , 1
| 0 g da:}

1 1
> wo 4o ) =wo
where the last step is justified by (3.4).

Since S, is finite, we may repeat the above argument for all ¢t € S, by partitioning [
into finitely many non-overlapping intervals where there is at most one point of 5, to
conclude that

1 1
liminf/I [26 ‘02‘2 + %(1 - ’1)5)2:| w(z)dx > Z w (x),

e—0
LL‘ESu

as desired. 0

The construction of the recovery sequence uses a reflection argument nearby points of
Sw N Sy.

Proposition 3.16. (I-limsup) For u € L'(I) N L>(I), let

e—0

MS7 (u) = inf {lim sup AT}, (ug, ve)

(ue,ve) € WHA(I) x WH2(I),ue —w in L', v. — 1 in L', 0 < v, < 1}.

We have
MSTH(u) < MS,(u). (3.30)
Proof. To prove (3.30), we only need to explicitly construct a sequence {(ue,v:)}.oo C

Wh2(I) x WH2(I) such that ue — w in L', v. — 1in L, 0 < v. < 1, and
lim sup AT}, o (ue, ve) < MS,(u). (3.31)

e—0
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Step 1: Assume that {0} =S, C S,,.

Recall that we always identify w with its approximation representative w, and by (3.5)
we may assume that (the converse situation may be dealt with similarly)

tl/i%l, w(t) =w (0) and tl\i(%l+ w(t) = w™(0).

Fix n > 0. For € > 0 small enough, and with £ = o(e), as in (3.27), (3.28) let

0 if o] <&
5. () == { v ('m';&) if & < |x| < &+ eT
1 if |z| > & + €T,

and define
ve(x) := V(x4 28 + €T).

Note that from (3.28) v. — 1 a.e., and since 0 < v. < 1, by Lebesgue Dominated Conver-
gence Theorem we have v. — v in L'. We also note that

1
et @)+ oo (1 = vuf@)? =0 (3.32)

if v e (—1,-3 —2eT)U (=&, 1), and if z € (—3& — €T, =& — eT') then
ve(7) = 0. (3.33)

Set

e (1) = u(x) ifxe(—1,-2{ —eT)U(0,1),
el = u(—z) ifxe -2 —¢€T,0].

Observe that 4. (z) is continuous at 0 since a1 (0) = a2 (0) = u™(0) by the definition of
Ue(x), and 4. may only jump at t = —2&. — €T but not at ¢ = 0 where u jumps.

We define the recovery sequence

us(x) ==
Ue () if eI\ [-2.5¢ —eT,—1.5¢ —eT],
affine from . (—2.5¢; — eT) to u.(—1.5§; —T) if x € [-2.5¢, — T, —1.5¢. — 7).

We claim that
lim / |ue —u|wdr =0 (3.34)
I

e—0

and
limsup/|u'€‘2v§wda¢§/‘u"de:r. (3.35)
I I

e—0
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To show (3.34), we observe that

0
lim / lue — ulwdr < lim [ue — u|wdr < lim 2 ||ul| e ||w] 10 (2.5 +€T") = 0.
e—0 e—0 2.555_6'11 e—0

We next prove (3.35). By (3.32) we have

0
/‘u’5|2vgwdx§/|u"2wdx+HwHLoo/ ‘u’(—w)‘Qdaj,
I I —&—eT

limsup/|u’6‘21)§wdx§/‘U/Fwdaz,
1 I

e—0

and so

since u’ € L%(I), and we conclude that v’ € L?(I).

On the other hand, by (3.32) and (3.33),

/[‘ (I T 1 —1)2] w(z) dx
/35525T [} ‘ + 2i -1 ] w(z) dx
( “selaeroe) ) 355—ng } ul 2%(% - 1)2} o

§€+5T 1
ess sup f‘N" + —(0.—1) ] dx.
3¢, 2¢T, gg {E—ET 2e
Therefore,

. € 2 1
1 ARSI A d
nggp/I {2 vz + 5 (Ve = 1) ] w(z) dx
§s+€T c 9 1
< lim sup ess sup w(t) {lim sup/ [ ‘ﬁé| + — (0 — 1)2] d:l:}
e—0 te(—3¢.—2eT,—E:) =0 J_g—eT |2 2e
<w (0)(1+n),
where at the last inequality we used the definition of 7., (3.27), and (3.5).

We conclude that

lim sup AT, . (ue, ve) S/‘u"de:c—i—w(O)(l-i-n),

e—0 I

and (3.31) follows due to the arbitrariness of 7.

Step 2: In the general case, we recall that S, is finite. We may obtain u. and v. by
repeating the construction in Step 1 in small non-overlapping intervals centered at every
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point of S, NS, and by repeating the construction in Step 1 in Lemma 3.13 in those
non-overlaping intervals centered at points of S, \ S,,. Hence, we have

limsup AT, - (ug, v:) < / |u"2wdx +(1+n) Z w(x),
I

e—0
TESy,
and (3.31) follows due to the arbitrariness of 7. O
Proof of Theorem 3.14. The proof follows that of Theorem 3.10, using Proposition 3.15
and Proposition 3.16, in place of Proposition 3.12 and 3.13, respectively. U

3.3. The multi-dimensional case.

3.3.1. One-dimensional restrictions and slicing properties.

Let SV~ be the unit sphere in RY and let v € SV~ be a fixed direction. We set
I, :={z eRY: (z,v) =0}, Q,:={z €Il : Q, # 0},
Q, ={teR:z+treQ} forzell,
Qpp ={y=z+tr: te R}NQ,
Up (1) = u(z +tv), 2€Q,, teQl .

(3.36)

Set x = (z/,zy) € RY, where 2/ € RV~! denotes the first N — 1 component of z € RY,
and given ¢: RN~ — R and G ¢ RY~!, we define the graph of ¢ over G as
F(¢;G) = {(2,an) € RN : 2 €@, ay = I(a")}.
If ¢ is Lipschitz, then we call F(¢; G) a Lipschitz - (N — 1) - graph.
Theorem 3.17 ([6], Theorem 3.3). Let v € SV~ be given, and assume that u € W12(Q).
Then, for HN"1-a.e. x € Q,, Uy, belongs to Wl’z(Qw,y) and
ul, (1) = (Vu(z + tv),v).

T,V

Lemma 3.18. Let w € W(Q) and ¢: RN~1 — R be a Lipschitz function. Then for every
Lebesgure measurable set G C RN~ such that F(¢; G) C Q, we have

/ wodHN T = / w(z,0(2)\/1+ |V(2)|*d=.
F(¢: Q) G

Proof. Since HVN1(S,,) < oo, we have that u := HV 1| S, is a nonnegative radon measure.
Moreover, as w € L>(Q) we deduce that w™ € L*(€, i), and the result now follows from by

Remark 8.3 in [51], where the Jacobian of F(¢ : G) is shown to be equal to \/1 + |V¢(z)[?
in Theorem 9.1 in [51]. O

Lemma 3.19. Let w € W(Q) and u € WP(Q), for p € [1,00), be given. If v € SN~ and
v € WIP(Q) is nonnegative, then

/ |Vul? vP w dx 2/ / |l (6) [P 08, (£) wa o (t) dida.
Q o Joi, ’
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Proof. Since essinfqw > 1, we have WP (Q) € WP(Q). Given v € S¥~! and a nonnega-
tive function v € W1P(Q), by Fubini’s Theorem and Theorem 3.17 we have

/|Vupvadx—/ / \Vul? vP wdt dHN 7 (z)
Q o, JaL,

PP w N=1(y
-/ V /| | P+ 0, D) 1) () 1Y 2)

= /(; /Ql ‘U;,V(t) ‘p ’Ug,y(t) wz,y(t) dtdeN—l(x)’

where we used the fact that

[ul,, ()| = [(Vu(z + tv),v)| < |[Vu(z + tv))|

T,V
HN "1 ae z€Q,. 0O
Proposition 3.20. Let v € SN be a fized direction, T C RN be such that HN~1(T") < oo,

and P,: RN — 11, be a projection operator, where by (3.36) II, € RY is a hyperplane in
RN=L. Then

HYTHP, (D)) < HYTHD), (3.37)
and for HN"'-a.e. z €11,
HY(Q,, NT) < +o0. (3.38)

Proof. Note that (3.37) follows immediately from Theorem 7.5 in [63] since P, is a Lipschitz
map with Lipschitz constant less or equal to one. To show (3.38), we apply co-area formula
(see [4], Theorem 2.93) with P, and again since P, is a Lipschitz map with Lipschitz
constant less or equal to one, we are done. O

Set x = (/,zy) € RY, where
2’ € RVN~! denotes the first N — 1 component of z € RY,
and given u: RV~! - R and G ¢ RN~!, we define the graph of u over G as
F(u; G) = {(a',zn) € RY: 2 € G, oy = u(z')} .
If w is Lipschitz, then we call F(u; G) a Lipschitz -(N — 1)-graph.

Lemma 3.21. Let I' C RY be a HN " L-rectifiable set, and let Py y.: RY — Ty, be a
projection operator for x € I'. Then

lim HN_l (P:po,up (F N QVF (xo, T)))
r—0 riN-1

=1 (3.39)

for HN"1-a.e. 2y €T.

Proof. By Proposition 3.20 we have

HNil(]P)xo,z/p (F N Ql/r‘ ($07 T’)))
rN-1

HN_I(I‘ N Qup(x0,7))
FN-1

lim sup
r—0

< limsup
r—0

=1 (3.40)
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for a.e. g € I'. By Theorem 2.76 in [4] we may write

o
r=Tou| T
i=1
as a disjoint union with ’HNfl(Fo) =0, I'; = (N, l;(N;)) where [; : RN-1 5 R is of class
C' and N; ¢ RN-1.

Let zg € T';, for some ip € N and, without loss of generality, let (—Vi;,(z(),1) = vr(xo),
with z¢ a point of density one in I'y (see Exercise 10.6 in [51]). Up to a rotation and a
translation, we may assume that Vi; (z() = (0,0,...,0) € RN=1 24 = (0,0,...,0), and
Puo o Tig — RY71 x {0}. Therefore, for 7 > 0 small enough,

Fio N QVF ('7307 7“) = (PID,VF (Fio N Ql/r (5507 7’)) ) lio((Pwo,Vr (Fio N QVF (xOv T))),))v
and by Theorem 9.1 in [63] we obtain that,
HY L 0 Qo) = [ 1+ 1V, (@) Pan (@),
Pag,vp (Fiole’F (zof))

Since l;, is of class C! and VI;,(zo) = 0, for ¢ > 0 choose 7. > 0 such that |VI;,(z)| <
for all 0 < r < r.. Therefore, we have that

HN_l(Pxo,ur ('N Quy(0,7))) > /HN_l(Pl"o,VF (Tip N Qup (w0, 7))
1

\/1—’_762 on,yl—\ (F'LO QQDF (IO’T))
1

= =Y T N Queeo,1).

> 1+ |V, (/)| da’

We obtain

N—-1
lim inf H (Pag,ur (TN Qup(z0,7)))
r—0 rN—-1
N-1(p.
> lim inf ! H (Flo n QVF (xﬂv T)) — 1

r=0 /14 €2 rN-t Vite?

By the arbitrariness of € > 0, we deduce that
/HN_l(PIo,VF (F N QVF ($07 T)))

lignn%i(?f N1 >1,
and, in view of (3.40), we conclude that
lim HN_1<]P)SU07VF (F n QVF (‘TOa 7“))) —1.
r—0 riV-1
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Lemma 3.22. Let Q := (—1,1)Y and let T C Q be a HN"'-rectifiable set such that
HNHT) < 0o and

HU N ({2} x (-1,1))) > 1 (3.41)
for HN=1a.e. o' € (=1,1)N=1. Then there exists a HY~'-measurable subset T' C T' such
that

"n({'} x(-1,1))) =1 (3.42)

for HN"1-a.e. 2’ € (—1,1)N~1,
Proof. By Lemma 3.20 we have
HO(T' N ({x/} 1)) < +oo
for HN"1-a.e. 2’ € (—1,1)V~1. Thus, for HN 1—ae 2’ € (—=1,1)N~1 the set
Iy=Tn({2'} x (-1,1))

is a finite collection of singletons, hence closed, and by (3.41) is non-empty. Applying
Corollary 1.1 in [39], page 237, we obtain a HN =1 measurable subset IV C T" which satisfies
(3.42). O

Lemma 3.23. Let 7 > 0 and n > 0 be given. Let u € SBV(Q) and assume that
HNY(S,) < oo. The following statements hold:

1. there exist a set S C S, with HN=1(S,\S) < n, and a countable collection Q of mutually
disjoint open cubes centered on elements of S, such that

Jeca,

QEeQ
and

HY sy (e =0
QeQ
2. for every Q € Q there exists a direction vector vg € SN=1 such that
HO(S N Quwg) = 1,

for HN"1 a.e. x € QNS;
3. for every Q € Q, SN Q is contained in a Lipschitz (N — 1)- graph I'q with Lipschitz
constant less than T.

Proof. Let 7,1 > 0 be given. By Theorem 2.76 in [4], there exist countably many Lipschitz
(N —1)- graphs I'; € RY such that (up to a rotation and a translation)

I; = {(:U',a:N) 2 €N;, an = li(az')}
with N; € RV~ [;: RV=1 — R of class O, |VI;| < 7 for all i € N, and

-1 (Su \ G ri) =0. (3.43)



Page 53 Section 3.3

Without lose of generality, we assume that
HYIT,NTy) =0if i #4i' € N, and HY 1) > 0. (3.44)

We denote by P the collection of Lipschitz (N — 1)-graphs I'; in (3.43)-(3.44). By (3.44),
for HN"1- a.e. x € S, there exists only one I' € P such that € I', and we denote such I'
by I'; and we write

To ={(¥ yn): ¥ € No CRYTL yy = La(y)} -
For simplicity of notation, in what follows we will abbreviate vr_(z) = vg,(x) by v(z),
Q,,Su (z,7) by Q(z,7), and Trvs, by T,.

We also note that HN=HT'n S,) < HN71(S,) < oo for each I' € P. Then HV"1- a.e.
x has density 1 in I'; NS, (see Theorem 2.63 in [4]). Denote by S; the set of points such
that 5, has density 1 at x and
o HN NS, NTL N Q. (m,7))
lim =
r—0 riV-1
Then HY=1(S, \ S1) = 0.

—1. (3.45)

Define N1
HY (SN Q(z,r
oy = H 02
Since f.(x) — 1 as r — 07 for # € Sy, by Egoroff’s Theorem there exists a set Sy C Sy
such that HV=1(S; \ S2) < /4 and f, — 1 uniformly on Ss. Find 71 > 0 such that
HN (SN Q(x, 7)) _ 1
>
riN-1 -2’

ie.,
HY (S, N Qe 1)) > 2! (3.46)

for all 0 < 7 < and = € Sy. Since Sy C S1, Ss is also HV " -rectifiable and so HN ! a.e.
x € Sy has density one. Without loss of generality, we assume that every point in Sy has
density one and satisfies (3.39) in Lemma 3.21.

Let xg € S2 be given and recall (3.36). We define
Ty(wo,7) == {@ € Q(@0,7) N Ty + HA(Q(@0,7)],1(0) N1 S2) = 2}
Ty(wo, ) = {@ € Qao,m) N1 Tag + HQw0,7)], 0y N 52) = 1} 4
S = | (820 1QW0aian) ) (3.47)

€Ty (zo,r)

Sowor)i= U (8201Q@0 M) -

x€Ty(zo,r)
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Note that
Ty(xo,r) N Ty(xo,r) =0 and Sp(xo, r) N Sy(zo,r) = 0, (3.48)
and by Proposition 3.20 we have
HY TSy (wo, ) = HNH(Ty(wo, 7). (3.49)
We claim that
HN=Y(Sy (o, 7)) = 2HN 1Ty (o, 7). (3.50)

By Lemma 3.22 there exists a measurable selection Sl} C Sp(xo, ) such that
HY (S} (0,7) 1 [Q(0, ), oy) = 1
for HN"1-a.e. x € Ty(xo,r). We define
S (w0, 1) = Sp(0,7) \ Sy (0, 7).

By the definition of Sy(zg,r) in (3.47), we have

HO([Q(x0, 7)) () N S5 (@0, 7)) = 1 and HO([Q(w0,7)],, 1 (me) N S5 (20, 7)) > 1
for all x € Ty(xo, 7). We observe that

HN T (Sy(wo, 7)) = HYTH(S) (w0, 7)) + HNTH(SE (w0, 7)) = 2HN T (T (o, 7))
by Proposition 3.20 and we deduce (3.50).

We next show that

=0. (3.51)
Indeed, since T, is the tangent hyperplane to S at z,

Tp(xo,7) UTy(xo, 1) = Puo,vs, (S2 N Q(xo, 1)),
and by Lemma 3.21 it follows that

HN Y (Ty(wo, ) U Ty(x0,7))
r—0 riN-1
On the other hand, in view of (3.48), (3.49), and (3.50), we deduce that

HY (S (wo, ) U Sy(wo, 7)) = HY T (Sp(0, 7)) + HV (S (0, 7))
Z QHN_l(Tb(l'o,T)) + HN_l(Tg<l‘0,7’)).

=1. (3.52)

That is,
HN TN (Ty(wo, 7)) < HVTH(Sp(wo, ) U Sylao, ) — [HNH(Ty(wo, 7)) + HY N (Ty(w0,7))]
= HNH(Sy(x0,7) U Sy(wo,7)) — HN (T (20, 7) U Ty(0,7))- (3.53)
Since xy € S9 has density 1, we have
- HN LSy N Q(xo, 7))

N—-1
r—0 rN-1 r—0 pN-1

=1. (3.54)
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In view of (3.52), (3.53), and (3.54), we conclude that
N-1

. (To(2o,7))
lim su
T—)Op riN-1
< lim HN_I(S(,(.T(),T) U Sg(wo, T)) ~ lim /HN_I(T(,(.T(),T} U Tg(xo,r)) —0.
r—0 ’r’Nﬁl r—0 ’I”N 1

which implies that
HN (T (o, 7))

}g% rN-1 =0.
This, together with (3.48) and (3.52), yields

AN (T (20, 7))

}ng% rN-1 =1

and so by (3.49) we have

N—-1 N—-1 T
liminf% (Sg(0, 7)) > lim [ (Ty(wo, 7)) _
r—0 rN-1 r—0 rN-1

while by (3.54)

HN=L(Sy(20,7)) < lim HN Sy (0, 7) U Sy(w0,7))

rN-1 — rN-1 ’

lim sup 1
r—

r—0

and we conclude that

- HYTH(Sy(0,7))
}IE(IJ rN-1
Now, also in view of (3.48) and (3.54), we deduce (3.51).

= 1.

We define, for x € S,

HN 1 (Sp(, 7))
gr(x) = N1 .

By (3.51) we have lim,_, g,(z) = 0 for all € Sy, therefore by Egoroff’s Theorem there

exists a set S3 C Sy such that

HN (S5 S) < ]

and g, — 0 uniformly on S3. Choose 0 < ro < 71 such that
M (Syar)) 1
rN-1 16 HN-1(Sy,)
for all x € S5 and 0 < r < 9. We claim that, for z € S3 and the corresponding I',, € P,

o 5 (S0(2,) \ [8, 1 T 01 Q)
r—0 rN-1

(3.55)

=0. (3.56)

Suppose that
HVL (Sy(z,7) \ [Su N T2 N Q(,7)])

N1 =: 0.

0 < limsup
r—0 r
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By (3.45), and the fact that I'; C S,,, we have that

| — i NS0 Q7))
r—0 ’I”N_1
i VSN QG )]\ [Su N Te 1 Qe 1)) USu N Te 1 QLa, 7))
r—0 rN-1
HY L ([Sy(z, )]\ [Su T2 N Q(z,7)])
erl

HN-1S, N T, N Q(x,7)]
N—-1

> lim sup
r—0

+ lim

r—0 r

=0+1>1,

which is a contradiction.

We define, for x € S,

_ HN T (Sy(,7) \ [Su N T N Q(x, 7))
FN-1 ‘

hy(x) :

By (3.56) lim,_,0 h-(z) = 0 for all = € S3, therefore by Egoroff’s Theorem there exists a
set of S4 C S3 such that

HN1(S5\ Sy) < g

and h, — 0 uniformly on S4. Choose 0 < r3 < ro such that

HN " (Sy(,7) \ [Su N T N Q(z,7)]) o1
rN-1 16 HN-1(Sy)
for all x € Sy and 0 < r < r3, and let
Q ={Q(z,r): €84, 0<r<r3}.

By Besicovitch’s Covering Theorem we may extract a countable collection @ of mutually
disjoint cubes from Q’ such that

(3.57)

Uecoandu™ s\ [ Q)] =0
QeQ QeQ

Define

Se=8u\ [[ U Solmq.re) | U | U [Selzq,ro)\ (SunTap,n@Q)] ||, (3.58)
QeQ QeQ

where z¢ is the center of cube ) and 7 is the side length of (). Note that the set S
satisfies properties 2 and 3 in the statement of Lemma 3.23. Finally, we show that

HN=L(S,\ S) < 7.
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Indeed, in view of (3.55) and (3.57), and using the fact that the cubes @ € Q are mutually
disjoint, we have

yN-1 (U Sb(acQ,rQ)) =Y HY T (Sy(z,mq)) < 167—{,N T Z rNh 0 (3.59)

QeQ QeQ QEQ
and
2 N-1 ( U [Se(zq:70) \ (SunTap N Q)]) (3.60)
QReQ
=Y HYT(Sy(2q.rQ) \ (SuNTay NQ)) < 16HN I Zr
QeQ QeQ

By (3.46) we obtain

3 %rg* <Y HVNSNQ) =HY (U Su ﬂQ) <HYHS). (361

QeQ QeQ QeQ
Using (3.59), (3.60), and (3.61), we deduce that

HY (U Sp( xQ,rQ)) g

QeQ
and
HY U [So(@q.ro) \ (SunTag Q)] | < g
QeQ
and so by (3.58) we get
HV-L(S4\ S) < Z.

Since S C Sy C S3 C Sy C 51 C Sy, we conclude that

HN (S, \ S)

<HNTHS, \ S1) + HV LS\ Sg) + HV TS\ S3) + HV TS5\ Sy) + HY TS, \ S)

L

Syty Tyt T
as desired. OJ

3.3.2. T'-liminf Inequality: The Multi-Dimensional Case. In this section we prove the I'-
liminf inequality which is stated in the following proposition.

Proposition 3.24. (T-liminf) For w € W(Q) and u € LY(Q), let

MS, (u) := inf {hm inf AT, - (ue,ve) :

e—0
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(ue,ve) € WH2(Q) x WH2(Q), ue —w in L' ve > 1in L', 0 <v. <1 ae.}.
We have M S (u) > MS,(u).

To prove Proposition 3.24 we reduce the statement to the case N = 1 by a special slicing
argument (Lemma 3.23), and we use the result from case N = 1.

Proof of Proposition 3.24. Without lose of generality we may assume that M := M S (u) <
0o. Let {(ue,ve)}.oq C WH(Q) x WH2(Q) be such that u. — win L', v, — 1 in L', and
lim. 0 AT}, o (ue, ve) = M S, (u). Since infycqw(x) > 1, we have

liminf AT . (ue, ve) < liminf AT, o (ue, v:) < 00,
e—0 e—0

and by [6] we deduce that v € GSBV(Q) and HV~1(S,) < co. We prove separately that

hmmf/ V| ve wde > / \Vul? wdz, (3.62)
and

1
lim inf/ (5 Vo + —(1 — vs)2> wdr > / wodHN L (3.63)
e—0 (o) 4 w

Let A be an open subset of Q. Fix v € S¥™!, and define A,,, AL ,, and A, as in (3.36).
For K € R, set ug := K AuV—K, and we observe, by Fubini’s T heorem7 Fatou’s Lemma,
Theorem 3.17, equation (3.15), and Theorem 2.3 in [6], that

lim inf/ (Ve |? v? wdx
A

e—0

>/ hmlnf/A1 ‘(Us) |2(v€) wmudthN 1(z) (3.64)

e—0

/ / usz’ Wy dt dHNTY( /|VuK V)| wdz.
Al

Letting K — oo and using Lebesgue Monotone Convergence Theorem we have

lim inf/ Ve 02 wdz > / (Vu(), ) wda. (3.65)
e—0 A A
Let ¢n () == [(Vu(z), vp)|? w for LN-a.e. x € Q, where {vn}o2, is a dense subset of SV,

and let p(A) := liminf. 0 [, |Vue|? v2 wdz. Then p is a positive function, super-additivity
on open sets A, B, with disjoint closures, and hence by Lemma 15.2 in [15], together with
(3.65), we conclude (3.62). Now we prove (3.63). By Fubini’s Theorem, Fatou’s Lemma,
(3.38), and (3.16), and using a similar calculation as in (3.64) we have

. 2 1 2 — N-1
hmlnf/A <€|VU5| —|—4—5(1—v5) >wdm > /AU Z Wy, () | dHT (). (3.66)

e—0
teSum’VmA;,,,
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Next, given arbitrary 7 > 0 and n > 0 we choose a set S C S, and a collection Q of
mutually disjoint cubes according to Lemma 3.23 with respect to S,. Fix one such cube
Qus(z0,70) € Q. By Lemma 3.23 we have, up to a rotation and a translation,

I1950 = {(y,alwo(y,)) NS Txoﬂ/s N st(mOaTO)} and HVZIOHLOO <T

In (3.66) set A = Q,4(z0,70) and v = vg(xp) and, using the same notation as in the proof
of Lemma 3.23, we obtain

- N-1
/[Q (z0,r0)] Z “e,vs(x0) (t) [ dH™ ()
vg B 3

s(zo) tESuI’VS@O)ﬂ[QVS (xo,ro)]zyys(lo)

> / w(z) dHY T (z) = / w (! 1 (2))dLN (). (3.67)
Ty(z0,r0) Ty(x0,70)

where in the first inequality we used the fact that w; ,(t) = w™(z +tv) (see Remark 3.109

in [4]). Next, in view of Lemma 3.18, we have that

/ o dHN-! = / W (2, Ly (&)1 + | Vi (27) 2da’
Q (35017'0)03 Taco,us mQuS (1'07T0)

<V1+72 w (2, 1y (2'))da

TZOVVS OQVS ($07T0)

which, together with (3.66) and (3.67), yields

o 2, 1 2
hrar;%lf/ﬂ |:6’V’U5’ —|—4€(1 ve)” | wdx

vs

1
Zliminf/ [E|VU P+ —(1-v )Q]wd:v
e—0 UQEQQ € 45 € (3-68)
1 / — Ja/N—1 1 (/ — /N1 )
S Wi dHN T > = w  dHN T — w1 )
V1472 Heolsne V1I+72\Js, ol

and (3.63) follows from the arbitrariness of  and 7, and the fact that n and 7 are inde-
pendent. ]

Remark 3.25. The assumption w € L can be removed by applying (3.68) to wx :=
K AN w V=K and letting K 7 oo and using Lebesgue Monotone Convergence Theorem.

3.3.3. The I'-limsup Inequality. This section is devoted to the proof of the I'-limsup in-
equality and the proof of Theorem 1.2. The main task is to prove the following proposition.

Proposition 3.26. (I-limsup) For w € W(2) and u € L' () N L>®(), let

MS} (u) = inf {lim sup ATy, < (ue,ve) :

e—0
(e, ve) € WHA(Q) x WH2(Q),ue = uw in L', v. = 1 in L', 0 < v, < 1}.
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We have M S} (u) < MS,(u).

Proposition 3.26 will be proved in several propositions. To get start, we recall Q,q (zo,7)
and Ty, s, (1) from Notation 3.3 1 and 2, and define I(to,t) := (to—t,to+t) C Rfor tg € R
and t € RT.

Proposition 3.27. Letw € W(Q) and 7 € (0,1/4) be given. Then for HN=1 a.e. 29 € S,
a point of density one, there exists ro := ro(xo) > 0 such that for each 0 < r < 1y there
exist tg € (2.577,3.57r) and 0 < to, = to,(to, T, z0,7) < to such that I(to,to,) C (277, 477)

and
sup / / w(x)dHN 1 (x)dl
0<t§t07u th )l I(to,t) Y Qug,, (x0,r)NTeg,vg  (—1)

/ ()dHN1+0() -1
SwnN Q”Sw (:po,r)

Proof. For simplicity of notation, in what follows we abbreviate Q¢ (zo,7) as Q(zo,7),
Toows, a8 Ty, and Tyyue (1) as Tyo(1). Since HNV71(S,) < oo, and so p = HN L[S,
is a nonnegative Radon measure, and since w™ € L'(Q, u), it follows that for HV~! a.e.
o € Sw

(3.69)

lim ’w_(a:) - w_(mo)’ dHN () =0, (3.70)
r—0 Q(zo,r)NSw
Choose one such zg € 5, also a point of density 1 of S, and let 7 > 0 be given. Select
r1 > 0 such that for all 0 < r < rq,

L HY (50 QM)

2
7.2 < N1 <1+77 (3.71)
Let 0 < rg < r1 be such that, in view of (3.70),
/ |w™ (z) — w ()| dHN L < 72N (3.72)
Q($07 )msw

for all 0 < r < rg, and observe that, in view of (3.71),
w (20)HY 1 Q(w0,7) N Ty (—t0)] < (1 + 72w (wo)HY 1 [Q(0,7) N S . (3.73)
By Theorem 3.4 we may choose 0 < r3 < r9 such that, for all 0 < r < r3,

]é o) |w(z) — w™ (20)] dz < 2, (3.74)

and so, since 3.57r < r, we have

3.57r
/ / () — w (z0)| MY (2)dt
2.5mr J Q™ (z0,m)NTxy(—1)

1
< / |w(z) — w™ (z0)| do < ~72pN,
Q™ (wo.r) 2
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Therefore, there exists a set A C (2.57r,3.57r) with positive one dimension Lebesgure
measure such that for every ¢t € A,

172N

/ |w(z) — w™ (20)] dHN(z) < = < 7rV-L (3.75)
Q (20,7 VT (1) 2

and we choose tg € A a Lebesgue point so that

wlax dHN_l x)dl
t—)O’I t(), | /I(t() t)/ Z‘077")0,1—’10 ( ) ( )

— / w(z >dHN 1( ).
Q- (:EQ,T)QTZO (7t0)

Hence, there exists tp, > 0, depending on to, 7, r, and x, such that I(to,t0,) C
(2.577,3.57r) and

sup / / w(z)dHN " (z)dl
o<t<to, |1 (to, t)| tOv ) J1(t0.t) J Q= (2o.r) Ty (1)

w(z )dHN Ly N1

(3.76)

_/Q (0,7 )N T (—to)

In view of (3.76), (3.75), (3.73), and (3.72), in this order, we have that for every 0 < r < r3
there exist ¢ty € (2.577,3.57r) and 0 < ¢, < to such that

/ / w(z)dHN " (z)dl
0<t<toT|I th )N J1(t.t) J Q= (20N Ty (—1)

_/ w(@)dHN L 4 7N L
Q™ (z0,m)NTy (—t0)

g/ |w(z) — w™ (z0)] dHN !
Q_(xo,T)QTIO(ftQ)

+ w_(xo)HN_l [Q_(mo, )N Txo(_tO)] + N1
<O 4 (14 7)™ () MY [Qr0, ) (1 5]
SO(T)rN*1 +(1+ 7'2)/ w*(x)dHNfl.
(:)30, )ﬂS
Since w € L™(Q), we have w™ € L*>°(Q) and thus, invoking (3.71),
72/ o (@)L < O(F) wll e HY 1 [Q0,r) N 8] < OV,
Q(x()? )msw

and we conclude (3.69). O

Proposition 3.28. Let w € W(R2) and 7 € (0,1/4) be given. There exist a set S C S, and
a countable family of disjoint cubes F = {stw (CUn,Tn)}Zozl with r, < 7, for alln € N,
such that the following hold:

L HN=YS,\S) <7 and S C U, Qus,, (Tn,mn) C O
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2. (1472~ 1pN-1 <yN-1 (S NQug, (:z:n,r)) < (1 +7)rN"1 for all 0 < r < 1y
3. SN Qug, (Tnymn) C Ryyayg (Tnsrn) (recall Ry, - from Notation 3.5);

4. if 0 < Kk < 1 then for every n € N there exist ty, € (2.57kry,3.57kry) and 0 <t . <
|tf|, depending on T, x,, and Kry, such that
1
sup  ———— / / w™ (z)dHN " tdl (3.77)
o<t<r, v LGOI 1650 Jar, @nrra) Ten g (<0

g/ W (@)dHY L+ (14w (20))O(r) () V1.
SwﬂQVSw (Inﬂﬂ"’n)

Proof. Let 7 € (0,1/4) and x € (0,1) be given. Since HV¥71(S,) < oo, there exists
S1 C S, such that HN=1(S, \ S1) < 7/3, S1 is compact and contained in a finite union
of (N — 1)-Lipschitz graphs T';, i = 1,..., M, with Lipschitz constants less than 7/(2v/N).
Moreover, since HN ™1 a.e. x € S; a point of density one, by Egorov’s Theorem, we may
find S C S7 compact such that HV~1(S; \ S2) < 7/3 and there exists 7; > 0 such that
(L4723 <HN L (81N Qug, (7)) < (L +72)rN " for all 0 <7 < ry and x € S.

Let L; :== S2 N T and without lose of generality we assume that L; are mutually disjoint.
Let Lj C L; be such that HY~'(L; \ Lj) < 7/ (3-2") and d;j; := dist(Lj, L};) > 0 for i # j.
We observe that

M
HNL S L; <L and d:= min di;} > 0.
(2\ZU1 ) 3 #].{ it

Define S := [JY, L. Note that there exists 0 < ry < min {7%,d/2,71} such that for every
0 < r < 7y and every z, y € S with |z — y| < v/ N7 we have SNQus, (x,7) C Rrjoyg (T,7),
where we are using the notation introduced in Notation 3.3. Next, for HV l-a.e. z € S
we may find ro(x) > 0 such that Qg (v,72(7)) C Q and wra(z) < ro(z) where ro(x)
is determined in Proposition 3.27. Let 7p(x) := min{ry,r2(z)}. The collection F' :=
{Qus (x,r): 2 €8, r<7y(x)} is a fine cover for S, and so by Besicovitch’s Covering
Theorem we may obtain a countable sub-collection F C F’ with pairwise disjoint cubes
such that S C UQsz (@nrm)eF Qus, (Tn,Tn) C Q.

Finally, for each Q. _(7n,7) € F we apply Proposition 3.27 to obtain t; € (2.57xry,,3.57kr,)
and t% > 0, depending on tf , 7, K7y, and z,, such that (3.77) hold. We complete this

Tn,Tn

proof by observing that
HVHS,\S) < HN TS, \ S1) + HY LS\ So) + HYH(Se\ S) < 7.
]
Proposition 3.29. Let w € W(Q) and 7 € (0,1/4) be given. There exist a set S C S,

and a countable family of disjoint cubes F = {stw (iﬁan)}Zo:l, with r, < T, such that
the following hold:

L HNTH(S,\ ) <7 and S € Uyl Qug, (T, ) C
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- dist(Qug,, (TnsTn), Qug, (T, 1)) > 0 for n # n';

.5N QVSW (Tn,1n) C RT/27V5w (Tn,70);

(14T )_1 N=1 < yN-1 (Sﬂ Qus, (xn,rn)) < (14 75)rN-1

2201 Tn <4HN l(S );

. for each n € N, there ezists t, € (2.57ryp,3.57r,) and 0 < tg, . < t,, depending
on T, Tn, and Tn, such that Ty, (—tn + ta,r,) O Qug, (Tnsmn) C Qg (Tn,n) \

Rejous (Tnymn) and, where we recall I(ty,t) == (—t, —t,—tn, +1),

/ / w™ (x)dHN Ll
O<t<tzn rn |I tn, | tn, Q wn,Tn mTTn VS ( l)
<

< / w™ d?-lN_l +O(r)rN -1
SmQusw (x’ﬂ7r’ﬂ)

Proof. By Proposition 3.28, we obtain a countable collection {Ql,s (Tp, r;)}ooz and a set
S" c S, such that HN—! (S \S) < I, 8 c Unl Qug, (zn,r,), SN Q,,S (T, 1)) C
Rejous, (xn, ), and (1 4+ 7 H=lpN=1 < g N-1 (SOQVSw (mn,r)) < (1 +72)rN=1 for all

0<r<r,. Find0</£<1suchthat

HN (5’\ U @, <xn,,@r;>> < g andlet §:=5'N (U Qus, (@n; m“%)) -

n=1 n=1

O U = W N

(3.78)

Then S C Uy Qug, (n, k1)) and HY (S, \S) < HVTL(S\S)+HN 1S\ S) < 7. Note
that S satisfies Proposition 3.29 (1), (3), (4), and (5), and the collection {Qy_ (n, ﬁr;)}:):l
satisfies Proposition 3.29 (2). Next, we apply Proposition 3.28 (4) with such x > 0
to find ¢, ¢§ ., such that (3.77) holds. It suffices to set r, := Krl, tn, =t and
oy =15 0. O
The next lemma provides an approximation of u € SBV?2(Q) N L*(Q) with functions u,,
whose jump sets are more regular than that of u.

Lemma 3.30. Let u € SBV2(Q) N L>®(Q) with HN=(S,) < +oo, and let w € W(Q) be
given. Then there exists a sequence {u,}°" ; C SBVZ(Q) N L>®(Q) such that the following
hold:

L lunllpoe < lJullgoo s
2. HNY(S,,,) < +oo for each n € N and

lim HY 7S, \ Sy,) =0;

n—oo

lim /|Vun|2wdaz+/

w‘dHN_ll :/ |Vu|2wd:c+/ w dHNTL (3.79)
Q w

n
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Proof. We apply Lemma 3.5 to obtain a sequence {uy} - such that Lemma 3.5 (2 - 5)
hold. Since HN¥~1(S,) < +o0 by assumption and in view of Lemma 3.5 (4) and (5), we
have HN=1(S,,) < +oc for each n € N.

We write
w dHN ! :/ w‘d%N_1+/ w—cmN—l—/ wodHN L.
Sun\Su u Su\sun

/
This, together with Lemma 3.5 (4) and the fact that [|w]| . < +00, yields

Uun,

lim wdHN ! :/ wodHN L
Sun u

n—oo
Moreover, by Lemma 3.5 (3), and again in view of ||w]||; < 400, we conclude (3.79). O

The next proposition is key to proving Proposition 3.26. In Proposition 3.31 we construct
a recovery sequence which converges to a function u € SBV?(Q) N L*°(Q) with a regular
enough jump set, such as those approximating function obtained in Lemma 3.30.

We summarize here the main ideas: We will modify most of S,, by replacing it with (V —1)
polyhedral sets located in the —vg, side of S, while ensuring that the L'-norm of u and
the L?-norm of Vu do not change much. This will be done by using a reflection argument
around suitable hyperplanes (see (3.90)). We will cover the rest of S, by using a finite
collection of cubes, and change the value of u to 0 in those cubes (see (3.87)). Hence, in
this way we replace the jump set of S, by a finite union of (N — 1) - polyhedral sets.

Proposition 3.31. Let w € W(Q) and let u € SBV?(Q) N L™ with HN1(S,) < +oc.
Then there ezists a sequence {(ue,ve)}.og C WH2(Q) x WH2(Q) such that u. — u in LY,
ve — 1 in Ll, 0<v. <1 a.e., and

limsup AT, o (ug,v:) < M S, (u) + O(?—[Nfl(Siu\ Su))-

e—0

e>0

Proof. Without lose of generality we assume that M S, (u) < +oc.

Step 1: Assume that HV~1(S, A S,) = 0. Fix 7 € (0,1/4). Applying Proposition 3.29

to w we obtain a set S;, a collection F, = {Qsz (xn,rn)} and corresponding t, €

n=1’
(2.57ry, 3.571ry,) and t,,, ,,, for which (3.78) holds. Extract a finite collection 7, = {Qsz (T, rn)}
from JF, with M, > 0 large enough such that

M,
yN-1 [ST\ U Qus, (iUn,Tn)] < T,

M,
n=1

n=1
we define F := S, N [UnM:TI Qus, (Tn, rn)], and note that

HN (S, \ Fr) < HV7H(S,\ Sy) + HY (S, \ Fr) < 27 (3.80)

Let © be an open bounded set such that Q@ cC Q and, since 99 is Lipschitz, using a
reflection argument as in Lemma 7.1 in [? ] we can extend u and w to % € SBV?(Q)NL>®(Q)



Page 65 Section 3.3

and @ € W(Q), respectively, in a way that #¥—1(Sz N 0Q) = HV~1(S5 N Q) = 0. Taking
dist (09, 9€2) small enough, it is not restrictive to assume that

MY (S 82 0 @\ 9) < HYTH(S ) (381)

and

[ (1Va? +[a) da + HY (57 \ 5.) < O(). (3.82)
a0

Define A, := Sz \ F, and recall R: /2., (Tn,mn) from Notation 3.3 (5). We show that the
set A\ UnM:T 1 Rrj2,s, (T, Tn) can be covered by a finite collection of cubes such that the

sum of the HV~! measure of the boundary of those cubes is at most O(7). We first note
that, in view of (3.80), (3.81), and (3.82),

HN_I(AT)

< HNT(Sa\ Sa) + HNTN(Sa \ Fy)

< WY\ S0 N @\ Q) + (S \ S\ @2\ Q) +H (S| s
< HVTHELN Su) + HVT((Sa\ Sa) NQ) + HVTH(SE\ Su) + HVTHSL\ Fr)
<HVU(G,\ Sy) + HV! ((Sﬁ\ Sﬁ) N Q) + Nt (Sa n(Q \ Q)) + 27

< 2HNTL(S, \ Su) + O(7).

Let @/ denote the minimum distance between all cubes in 7, and

1 -
ar = Zmin {dist(aﬂ,aﬁ), a., T, mp, 1<n < MT} : (3.84)
In view of (3.83), and using the definition of Hausdorff measure, there exists a countable
collection of balls {B(ym, dm/2)}e_, with center y,, € A, and diameter d,, > 0, such

that A; C U, ey B(YUms dm/2), maxmen {dn} < 72a;/2V'N, and

o0 4, \ V! o
> a(N-1) <2) <HNTYA) +7 < 2HNTY(S,\ Su) + O(7)
m=1

where a(N — 1) is a constant dependenting only on the dimension N (see [41], page 60),
and in the last inequality we used (3.83).

We note that for each m € N, since d,, < 72a, /2v/ N and a; is at most one quarter of the
minimum distance between all cubes in 7, there exists at most one index n,,, € {1,..., M}
such that Qug_(Tn,,;Tn,,) € Tr and

QZ/SW (xnm, Tnm) N B(ym, Qdm) 75 @
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(It is of course possible that for some m € N no such n,, exist). For every B(ym,dm/2),
m € N, define

Q) = Qus,on,, ) (Ym,dim/2)  if there exists such nn, € {1,..., M;}
" Qv (Ym, dm) otherwise,

where v € SN¥~1 is an arbitrary direction (recall the notation from (3.36)). We have
B(Ym,dm/2) C Qun, and

S W 0Qu) < 2V < 2V(0(r) + WY1 S\ 8.).

m=1

In view of Proposition 3.29 3,
F-n Qus (xna 7’n) C R7/2,usw ($n, Tn)a

which, together with the fact that F, C U 1 Qug, (T, ), implies that

M- M,
A’T\ U RT/27VSw ('Tn,rn) = Su\ U R7/2:sz (.’Bn77’n)7 (385)
n=1 n=1

and hence, in view of (3.85) A, \ Uﬂﬁl R: /2 (Tn,Tn) is compact, as well as

M,
AN O\ Ryjag, (@, ).

n=1

Therefore, we may extract a finite collection {Qm} where Y; € N, such that

m=1’

M~

Ar \ U RT/2 vs, xnarn U Qm,

n=1

and further a {Qm}m L C{Qm}, Y/ <Y, such that

AN Q\ U RT/2 Vs, xnvrn U Qm- (386)
We define u as follows:
if 2 € Qu, 1<m < Y5,
a(z) = {0 ifzed m (3.87)
t(x)  otherwise.
We remark that
Y, Y,
> HNTH0Qm) < 2V (2r + HN TS, \ Su)) and Y LN (Qm) < O(7). (3.88)

m=1 m=1
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Next, let Uy, be the part of Qg (2n,r,) which lies between Ty, ¢ (£ty), U, be the part
above T, (tn), and U, be the part below Ty, ¢ (—tn). We observe that, for each

Tn,Vs,

1 <n < M, fixed, since r, < 7 in Proposition 3.29,
LNU,) =72t < Trry, N T <72 NTL (3.89)

We define u, as follows (see Figure la in page 66):

~ {u (z + 2dist(x, Ty, s (tn))vs, (zn))  if 2 € Uy,

ur(z) = (3.90)

u(x) otherwise,
and, for 1 < m <Y, (see Figure 1b), where R, := Q N U, and R}, = Q,, NU,T,
R — (dim/2 = dist (2, Top s, (tn))) Vs, (2n)  if LY (Rpp) > LY (R},,) > 0,

R, — thm — (dm/2 + dist(xpm, Tmesw (tn)))vs, (zn) if ‘CN(R;;Fm) > EN(Rmn) >0,
") R = 2(dist (@, Top v, (t0)) Vs, (20) if LN(RE ) > LN (Ryn) = 0,

0 otherwise.

T'n Ql/sw (mny Tn) . . Tn QI/SW (xny rn)

(A) Reflection construction in (3.90) (B) Recovery area

FIGURE 1. (A) depicts the construction in (3.90), with u in the light gray
region, marked with color fill fainting toward above, reflected into the dark
gray region, marked with color fill fainting toward below; the rectangle
R: /205 (Tn,mn) is represented by the solid gray region in the middle of

QI/SW (:L'nv rn)-

In (B), the recovery region (P;). is plotted by (dark, light) gray and
black strips with dashed border. The region L, (e) in which the core of
the construction is undertaken is plotted as a dark strip. The small cubes
Q1(e) and Q2(¢e) are plotted by light white cubes on (Ly,)e.
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We observe that

M;
Nz eq, a(z) # - (x)}) = LN (U Un> <ZcN <7TQZ N=1 < O(7),
n=1

n=1

where in the second last inequality we used (3.89), and in the last inequality we used
Proposition 3.29 (5). We note that:

1. u, is a reflection of @ within the set with measure less than O(7);

2. LN{a#u}) < LY (Qm) < O(7);
3. 4 e SBV2(Q)N LOO(Q)

We conclude that

lim [ |G, —u| dz =0 and lim/ Vi, — Vul? dz = 0. (3.91)
7—0 QO T7—0 Q

For simplicity of notation, in the rest of the proof of this proposition we shall abbreviate
Qus,, (Tn,mn) by Qny Trp vs, by Ty, and Ty, vg (—tn) by Ty, (—t,). Note that the jump
set of 4, is contained in

M,
Pri=J [Th, (—tn) N Qn]U UaQnﬂUuanmuuaRm,
n=1 n=1 m=1

and note also that Sz, C P, with P; a union of finitely many (N — 1) - polyhedral sets.
We also observe that, with cl(-) denoting the closure of a set,

2N [d ((AQ 0G0 ﬂUn) v <D an> - (D 8Rm>>

My
<> HNTH0Q.NT) +ZHN H(0Qm) +Z”HN (ORym) (3.92)
m=1 m=1

n=1

<2r+Cr Y T 420N TS\ Sa) < O(7) + 4HN TS, \ S.) < oo,

n=1

where we used Proposition 3.29 (5), (3.80), (3.81), (3.88), and the assumption that HV~1(S,) <
~+00.
Recall a, from (3.84), and let € > 0 be such that

e2 4 Ve << min{ay, tg, ., for 1 <n < M,}. (3.93)
By Proposition 3.29 (6) we have

1
24 VE <ty <tn < 17 < Tn-

We set tr. := (1 — @c)tir, where o, is such that p. € C2°(Q;(0,1]), ¢ = 1 on (S, )24,
and . = 0 in Q\ (Sg, ).2/2. By (3.92) we have HN"1(S5,) < 400 and hence {ur.}.., C
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W12(Q). Moreover, using Lebesgue Dominated Convergence Theorem and (3.91), we con-
clude that u,. — u in L1(€).

Consider the sequence {v-c} ., € WH2(Q) given by vy (z) := 0-(dr(2)) where d-(x) :=
dist(x, Pr), and 0, € Wéf(R) is defined by

0 if t <e?,
t7€2
De(t) =4 —e7 25 +1 ife?<t< . E+e2, (3.94)
1
1—e 27 if t > /e +¢e2.
An explicit computation shows that
- 1 -
BL(t) = 5-(1 - (1) (3.95)
for 2 <t < /e + <2, and we remark that
1 -1
lim ¢ 2% =0, (3.96)
e—=0 €
and
d 1 ~ 2 ~ ~/
—2 3 (1—=9:(2)" ) = (1 —v(t)) v(t) > 0. (3.97)

Moreover, since S, C P:, by (3.91) we conclude that
/ Ve o2, wde < / Vi, | wde < / Vul? wdz + O(). (3.98)
Q Q Q

Define L,, := T, (—t,) N Qp and Ly (€) := (T4, (—tn) N Qn), and, without loss of generality,
assume that there exists only one R,, such that HV YT}, (—t,) N Qn N Rpy) > 0 (recall
Y; < +00). We claim that

1
/ [5 |VUT7E‘2 +—(1— vm)Q] wdz
Ln(€2+v/2)NQn de

1
S/ [5 ‘VULMEE +—(1- an’a)Q] wdzx + O(E)rﬁf—l
Ln(£24v/2)NQn 4e

where vy, -(2) := 0. (dist(x, Ly)). Indeed, let {yo,y1} := Ty, (—t) N Qn N OR,, and observe
that, where we abbreviate [E }Vv(_)f‘? + 41— v(.)ﬁ)z] by ¢().e and Qug . (i, g2+ /€)
by Qi(¢), i = 1,2 (see Figure 1b where Q;(¢) is represented by a white cube),

re(®) = pr,e(x) for & € Ln(e? + vE) N Qn \ (Q1() U Q2(e)),

(3.99)

and

Orewdr

/Ln(eg‘f'\/g)an

Orewdr

/ Orewdr + /
Ln(e24+v/€)NQn \(Q1(e)UQ2(e)) QnN(Q1()UQ2(e))
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<

(an,Ede+/ Prewdz.

/I/n(€2+\/g)nQn QnN(Q1(e)UQ2(¢))

Invoking Proposition 5.1 in [6] we have, for g9 > 0 fixed,

lim sup Yrewdr < limsup

/ / Prew dx
=0 JQRnN(Q1(e)UQ2(e)) =0 JQRnN(Q1(e0)UQ2(0))

<l Timsup [
e=0  JQnN(Q1(e0)UQ2(e0))

< lw|l oo HYTH(Q1(€0) U Q2(0)) N (L U ORp)) < 2||w|| o0 2Vl ™,

Pre dx

and, by letting €9 ~\, 0 on the right hand side, we conclude (3.99).

Next, for each 1 < n < M, fixed, we observe that, using Fubini’s Theorem,

1
/ [s ‘VULMEF +—(1- an’E)Q} wdz
Ln(24+v/2)NQn 4e

:3£%ﬁ<FMmf+;u—m@ﬂ)~

wly) dHN—l(y)> dl+ = w(z)dz  (3.100)

‘ </{d7 (y)=1}NLyn(e24+/E)NQn 4e Lp(e2)

e2+/e
- [, g la-woy]

2

/ w(y) dy dl
{dr () <HNLn(+/E)NQn

F AT 4 VE) — A () + - / w(w)dz,
46 n(52)

where

1,
A= 5= a0 [ wly) dy
2¢e {dr(2)<t}NLp (24+v/€)NQn

Since w € L*°() we have

AL +VE) < 5 T [l [2(2 + VB + (2 + VAN < O, (3101)

and

/62+\/E 1d [(1 - (l))z]/ (y) dy dl
_ — = — 9 wly)ay
22 2e dl : {d+ () <D Ln (e24+/2)NQn

e?+ye 1 d 9 1 ( )
= 20 —— 1—2o(1 / w(x)dx| dl.
/52 < 2e dl (1= 2:(0) ]> 2L J{dr (9) <YL (242N
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Recalling the notation from Proposition 3.29 and the fact that w™(z,) < ||w||;«, we have
for [ € (2,2 + \/¢)

1

2L ) )<B0Ln (/O

1
< sup / / w(z)dHN tds
0<t§52+\/§ (’I(t”’ t)’ I(tn,t) n(meTn)ﬂTxn(_S)

< / W (z) dHN N 4 O(r)yr N
STan(xnﬂ"n)

w(x)dx

where, in view of (3.93), we used (3.78) in the last inequality. Therefore, by (3.97) we
obtain

[ 20w i
_ 1dr_ 5 / w(z) de
2 2e dl : {dr () <BNLn (e24/2)NQn

SHVE 1 d (3.102)
= </e2 2edl [ =20 ldl) </San(xnmn) w™ () dHN T+ O(r)r T

An integration by parts, and using (3.95), yields

€2+\/E 1 d
—_—— —_— ) 2
/62 oo (=2 Ldl

e24\/E 2
= [, U= R0P - VR = e + VR + (1= ()

2+ 2
g/ 2¢ 6;(l)\2dl+6—(1 — 0 (e%))?
15

2 2¢e
€2+ﬁ 1d 1—<2 (3
_ la f = €1 — .(e2))2
/82 -2 <e )dl+2( 5.(2))
1 T
2(1 ¢ )*2(1 B s 5+ 58

which, together with (3.102) and Proposition 3.29 (4), gives

_ —— (1 -7, w (r)dz
22 2e dl {d+ (y)<UNLy (e24/2)NQn

< w(x d’HN_1+O7'7‘,]1V_1

+ e |wl oo HYTHS: N Q(wn, 7)) + €O(7)rN 7

g/ w (@) dHN L+ O(r)rY "t 4 O(e)O(r)rN L.
STﬂQ(In,’r‘n)
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Hence, in view of (3.99), (3.100), (3.101), (3.103), and since A, (2) > 0, we obtain that

4e
</ W™ (@AM 1 O()rY 1+ 0E)O(FrY 4 0(e)rY Y,
STQQ(l’n7rn)

1
/ |:€ |V1}T,g|2 +—(1- U7—75)2:| wdz
Lp(24/2)NQn

which implies that

13 (Y 2 i — U 2 w axr
/UT]:I—G(Ln(EQ-i-\/E)an) [ ‘V T,E‘ + 46(1 T,E) ] d

< / w™ (2)dH" !+ (O(1) + 0()O(7) +0(5))ir5—1 (3.104)
T n=1

< [ @ @A+ (0(r) + 0E)0() + 0 (1115 + [l i)

Next we define Lg := (Uﬁzl 0Qum U Uﬁ:l 8Rm) U (Uﬁﬁl 0Q, N Un>, where we recall Y/

from (3.86), Lo is a finite union of (N — 1) - polyhedral sets, with Lo(e) := (Lo). C Q.
Then, invoking Proposition 5.1 in [6] and the calculations within, we conclude that

1
lim sup/ [5 |VUT,5\2 +—(1- UT,E)2:| wdz
Lo(+/3) de

e—0

1
< |Jw]| 00 limsup/ eV > + —(1 —v,0)?| da
Lo(e2++/%) 4e

e—
. 1 . -—
< |w|| oo limsup — |[{z € Q : dist(z, Lo) < e}
0 26
= llwllgoe HY T (Lo) < llwll oo HY T ((Su\ Su) N82) + O(7),

where in the last inequality we used (3.92) and in the last equality we used Theorem 3.2.39

in [42]. Hence, we have

1
/ [5 Vo, |® + 4—(1 - U77€)2:| wdx
Lo(e2+v/e) <

1= = 3.105
<@l poo [HY 1 ((Su\ Su) N Q) + O(7) + O(e)] (3.105)
=[|wl| oo [H¥ 7 ((Su\ Su)) + O(7) + O(e)] .
Furthermore, by (3.94) and (3.96) we have that
/ {5 Vo, |® + i(1 - v77€)2] wdz
NP2, e de (3.106)

1 _ 1
< wl = £¥(9) £ 0.
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We note that, for each 1 <n < M, fixed,

[(0Qn N Tn) U (T, (=tn) N Qn)], = (0Qn N TUn), U [(Te, (~tn) N Qn). N Qul,
and in view of Proposition 3.29 (5), (3.104), (3.105), and (3.106), we have that

1
/Q [5 Vo c|? + == 21775)2} w da

(3.107)
< /S o (@) dHN 1 1 O(e) + O(r) + 0()O(r) + @l HY 1 ((Ba\ ).

Recall that Sz, C Pr. Hence, also by (3.98) and (3.107), for each 7 > 0 we may choose
¢(7) such that

/‘VuT7E(T)‘2v37E(T)wdw§/ \Vul? wdz 4+ O(1),
Q Q

and

2 1
/Q [5 |V’UT75(T)‘ + g(l — vm(T))Q] wdzx
< / W (@) dHN T+ O(r) + [l e HY (B0 \ Su) -

It suffices to define the recovery sequence {(ur,vr)} <o by Ur = Uro(r) and v7 1= vy (1.

7>0

Step 2: In the general case in which #V~1(S, A S,) > 0, we may apply the same construc-
tion in Step 1 to Sy, since it suffices to notice that w™(z) = w(z) if z € Sy, \ S,. O

Proof of Proposition 3.26. If u € L'(Q) N L>(Q) is such that M S,,(u) = +oco, then there
is nothing to prove. Suppose that MS,(u) < +oco. Then u € SBV?(Q) N L>®(f) and
HNL(S,) < +oo. We apply Lemma 3.30 to obtain a sequence {u,}°°, C SBV2(Q)nN
L*>(9) such that Lemma 3.30 (1), (2), and (3) hold. Then,

lim HY1(S,, \ Su,) =0, (3.108)

n—oo

and

lim / ]VunIdex—l—/
n—oo Q Su

By Proposition 3.31, for every n € N we may construct a sequence {“n,s»vn,s}g>o C
Wh2(Q) x WH2(Q) such that Une = Up, Une = 1,0 < v, <1, and

w‘d?-LN_1> :/ qu\dea;Jr/ w dHNL (3.109)
Q Su

n

lim sup AT}, - (Un.e, Vne) < MS,(un) + |wll oo OHY 1(Su, \ Sus))-

e—0

A diagonal argument, together with (3.108) and (3.109), concludes the proof. O
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Proof of Theorem 1.2. The liminf inequality follows from Proposition 3.24. On the other
hand, for any given v € GSBV () such that MS,(u) < oo, we have, by the Lebesgue
Monotone Convergence Theorem,

MS,(u) = lim MS,(KAuV—-K),
K—oo
and a diagonal argument, together with Proposition 3.26, concludes the proof. O

A direct inspection of the proof of Theorem 1.2 shows that the properties of SBV functions,
more specifically, of the distributional derivative of w, are only needed to ensure that
Theorem 3.4 holds. Indeed, if w € C(Q), then for all 2y € ', where I is any given HV ! -
rectifiable set,

lim lu(z) — u(xo)| 5T dz = 0,
70 J B(zo,r)NHyp (20)*
and )
lim —— / () — u(wo)| dHN () = 0.
e=0¢ I'NQup (z0.€)

Proof of Theorem 1.3. Here we only highlight the main modifications needed in the proofs
of Proposition 3.24 and Proposition 3.26.

Indeed, to prove Proposition 3.24 with w € C'(Q) we only need the following modification:
1. In (3.23) we have

t2
. . n
lim inf / [sn
n—oo t

1
n

+——1- Us(n))Q w(z)dz > w(0),

4e(n)

2
(v’

because for w € C(I),

liminf essinf w(r) =liminf inf w(r)=w(0).
n—00 re(th,2) n—00 re(th,12)

ny'n

2. The proof of Lemma 3.18 with w € C(€2) can be obtained directly from Theorem 9.1 in
[51].

By adapting to above modifications, the version of Proposition 3.24 with w € C(2) can be

now obtained following the argument provided in Section 3.2 mutatis mutandis, taking (1)

and (2) into consideration.

Regarding the proof of Proposition 3.26 with w € C(2), the only modification we need to
make is (3.69). We must show that for any u € SBV () such that MS,(u) < 400, the
following holds:

1
sup / / w(x) dHN () di
o<t<to, (L0 )| Jrttot) Jug (w0 Tagus, (<0
<

< / w(x) dHN T + O(T)’I"N_l.
Squ;Su (3:017')
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This can be obtained using the proof of Proposition 3.27 with (3.74) is replaced by
][ w(z) — w(zo)|dx < 72
Q™ (zo,m)

We conclude Theorem 1.3 by using the same arguments as in the proof of Theorem 1.2,
taking the above modifications into consideration. ]

Chapter 4. Some insights from finite resolution images

In Chapter 4 we collect some results which were investigated in the early stage of my
research in image processing.

4.1. The finite resolution image and the unavoidable noise during acquisition.
As we stated in the Introduction, in one dimension a finite N € N resolution level image
captured by a real world digital camera is a piecewise constant function wu.ny which is
related to u. via its averages

Ue, N () == ]€ w0 uc dx for x € In(k),
N

where Iy (k) := ((k—1)/N,k/N), for 1 < k < N, and where we set
In :={In(k), 0<Ek<N}.

Definition 4.1. We say that a piecewise constant function is an image with resolution
level N if it is constant in each In(k) € Iy.

The principal sources of noise in digital images are introduced during acquisition, for
example, the sensor noise caused by poor illumination, high temperature, and circuity
of a scanner. Other possible sources could be digital error during the transmission, and
the unavoidable shot noise of an photon detector. The noise is only generated during the
acquiring of the image, i.e., it is only added to u. n; and each time we acquire an image, we
produce a different noise ny. Therefore, we propose to use a piecewise constant function
nn over Iy to represent the noise at the resolution level N € N, and we write

Up N ‘= Ue,N + 1N

That is, when a image is taken with resolution N € N, although we only wish to observe
Ue,N, the noise ny is an unavoidable by-product, and hence the corrupted image u, n is
produced.

Since u,, y represents an image data, we may assume (after rescaling) that
[un N |l oo < 1.

When N — oo, ueny — uc in L?, but since ny is randomly generated, although for a
fixed N, ucn is fixed, ny would vary. As it often assumed in the literatures in image
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reconstruction papers (see, e.g., [21]), we also assume that

/ nn dz = 0. (4.1)
Q
Moreover, we use ny(In(k)) to denote the value of ny(z) for z € Iy (k).

4.2. The total variation and some preliminary results. We start by introducing
notations that will be used in the sequel.

Notation 4.2. Recall that I := (0,1) C R and M € N is a positive integer.

1. we say a function w is a piecewise constant function with M pieces if there exist M
intervals Ins(j) := (xj,2j41), where 0 = 21 < --- < x; < --- < xpr = 1, such that w is
a constant in each Ips(7). Moreover, we use w(Iy/(k)) to denote the value of w(z) for

2. given a piecewise constant function w with M pieces, we say that In;(j), 1 < j < M, is
a step region of w if

w(In(j—1)) < w(In(5) < w(lm(G+1)) or wln(j—1)) = wlu (i) = wln(j+1));
and (In;(4)) is a high eztreme region of w if
w(Iy(5)) > max {w(Iy (G — 1)), w(n (G + 1))}
and (Inf()) is a low extreme region. of w if
w(In(5)) < min {w( I (j — 1)), w(lar(G +1))} - (4.2)

3. we say Ipy(1) is a high (low) boundary regions of w if w(Iy (1)) > (<)w(Ip(2)), and
Iy (M) is a high (low) boundary regions of w if w(Ip (M)) > (<)w(Ip (M — 1)), respec-
tively.

4. we use Cg(w) to denote the collection of extreme regions, Cg(w) the collection of bound-
ary regions, and Cr(w) the collection of step regions.

Note: By (1.24), u. n is indeed a piecewise constant function with N pieces.

Definition 4.3. We say a piecewise constant function is an image with resolution level
N if it is a constant in each In(k) € Iy (Qn(%,7) in two dimensions).

Recall the reconstruction operator £ from (1.25).

Definition 4.4. Let v € L*°(I) be given. We say that as(v) € [0,+00) is the stopping
time for v if

L(as,v) = L(as + a,v) =: C(v) and L (as,v) # L(as — a,v) (4.3)

for all o > 0, where C(v) is a constant depends on v.
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Theorem 4.5 ([72], Theorem 2). Suppose that the function ug is piecewise constant with
M pieces, and let o be small enough. Then the unique solution u, = L(a,ug) is also
piecewise constant with the same number of pieces of ug, and we have

ua(Ipn (7)) = uo(Ins(j)) F \IMz(j)\a’ if In(9) is a high (low) extremum region,

ua(In (7)) = wo(In(4)), if Ina(j) is a step region,

ua(Ing(4)) = wo(In(4)) F Wl(j”a, if Ine(4) is a high (low) boundary region.
Moreover, for « is large enough, the function uq is a constant.

Notation 4.6. Let v € BV (I) be given.
1. we denote by

(v); = ]f o(a) da,

i.e., the average of v over I;
2. we denote by J, the jump set of v and for zg € J,,

v(zy) = xh/rgo v(z) and v(zd) == wl{‘rg v(x);

Lemma 4.7 ([60], Lemma 3.1 and Lemma 4.1). Let w be a piecewise constant function
with M pieces where M > 1 large is a positive integer, then there erists a positive integer
M' < M and
O=app<a <ay < - <ay <+ (4.4)
such that
1. Z(aj,w) has at least one more constant piece than £ (a1, w) fori=0,1,..., M —1;
2. Z(a; + a,w) has the same number of constant pieces of £ (a;,w), for any 0 < a <
it —a; where 0 <i < M' —1;
3. L(a,w) = (w)r for all a > apyp.
Moreover, the function t: [0,400) — [0,400) defined as
t(a) = |[L(, w) |72y

is continuous, and in each interval (o, aji1), t' is linearly increasing and t is convex.

Proposition 4.8 ([60], Proposition 3.2). For any given corrupted image u, n and clean
image uc N, there exists an integer N' < N and

O=ap <o <ap < <an = as(uyn) < 400 (4.5)
such that item 1, 2, and 8 of Lemma 4.15 holds. Moreover, in each interval (o, i)
En(:) is convex and Ey () is linearly increasing, where En is defined in (1.27).
Theorem 4.9 ([69], Theorem 10.10). Let v € L(I) and a1, a2 € RT be given. Then the
semigroup property

Lo + ag,v) = L(ag, L(a1,v)) = L(aq, L (az,v)) (4.6)
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holds for the one dimensional scalar total variation problem.
Theorem 4.10 ([20], Theorem 3.4). Let v € BV (I) be given. Then
Jf(oz,v) CJy

for any a > 0, where J,, denotes the jump set of v. Moreover, the same result holds if we
replace Q by I.

Remark 4.11. It follows from Theorem 4.9 and Theorem 4.10 that
J2(02,0,1) C J2L(01,0,1)
for any a1 < aw. Indeed, by Theorem 4.9
L, v, 1) = L(ag — a1 +a1,v,1) = L(ag — a1, L(aq,v,1),1),
and hence by Theorem 4.10 with « := as — a1, we obtain the result.

Proposition 4.12 ([11], Theorem 3). Letv € L*(Q) be given. Then £ (-,v,Q) € C([0,+00); L?(Q)).
The same result holds for one dimension case, i.e., Z(-,v,1) € C([0,+00); L*(I)).

4.3. The quasi-convexity of bilevel training scheme. Theorem 4.5 allows us analyti-
cally predict the effects of T'V regularization applied to any piecewise constant function in
R. Together with Theorem 4.9, we can completely obtain the explicit solution of £ (o, v, I)
for all « € RT. By using such result, we may prove the following theorem:

Theorem 4.13. Let u. € BV(I) be monotone and let N € N be given. Then the error
function

Enla) = % |2 ) = ey s @ € R (4.7)
18 strictly quasi-conver under Assumption 4.14.
The Assumption 4.14 is stated as follows:
Assumption 4.14. Let u. € BV (I) be monotone and N € N be givne. Here 1 <k < N.

1. The observed noise changes sign consecutively, that is,

ny(In(k))nn(In(k +1)) < 0;
2. uy N 15 oscillating at least at the half rate of u.n. That is, we require that
1
[un, v (In (k) = unn(In(k + 1)) 2 5 luen(In(K)) = uen(In(k + 1)) (4.8)
3. if upy N changes the sign of of jump of uc n, that is, if
(un,N(IN (k) = upn(In (K + 1)) (e n(In (k) = ven(In(k+1))) <0,

we require that

nn(In(k)) = —nn(In(k +1)). (4.9)
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4. we assume that
un N (In (1)) > (Quen(In(1))
if ueN(IN(1)) > (<)uen(IN(2)), and
ug NN (N)) > (<ten (IN(N))
if ue NUIN(N)) > (<)uen(IN(N —1)). Lastly, we assume that

InUn () = In(Un(N))| = %max{!??(fzv(kf))\, kr € Cr(uen)}- (4.10)

As we can see, Assumption 4.14 is very restrictive and unlikely to be satisfied in the concrete
setting, and requiring u, to be monotone renders Theorem 4.13 to be less interesting. Also,
since the proof of Theorem 4.13 is purely technical, we leave it in Appendix B and move
on to construct counterexamples directly.

4.3.1. Counterezamples. We first show that removing (4.10) results in losing quasi-convexity,
although the perturbation is relatively small. An explicit example is provided in Figure 2
below, but here let us draw some theoretical analysis first. Let u. x be monotone increasing,
and we assume that

v (In(N))| > [y (In(1))] = max {{nn (In(k))], 1 <k < N},

i.e., (4.10) is no longer satisfied. Moreover, to simplify our computation, we assume that
nn(In(2)) = 0.

By using the same argument of the proof of Theorem 4.13, at ag := |nnv(In(1))] /N,
we have &) y(aq) =0, In(k) € Z(aq), 1 < k < N, but
Enn(ag) = N (Inn(In(1))| = [nn(In(N))]) < 0.

On the other hand, for any a > 0 small such that

1

0<a<ar =+ (Z(aguyn)Un(1)) = ten(In(1),

we have

& n(ag+a)=Na > 0.
Moreover, according to (B.31) and (B.32), and ny(Ix(2)) = 0, we have that

& n((aa +a1)7) > Efy (@ + a1)™) + &y ((ag + ar) ™). (4.11)

Then by choosing 1y (In(N)) properly and using (4.11), the following inequalities could
hold:

En((ag+a1)”) =Eyn(ag+ar) + & n((aq +a1)7) (4.12)
= N [nn(IN(N)) = (aq + a1)] + & y((aa + 1)) > 0,
but
En((aq + 1)) =€y n(aa+ o) + &y ((aa + 1)) + &y (e + 1)) (4.13)
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=N [nn(IN(N)) = (ag + an)] + E v ((@a + 1)) + Efy ((ag +a1)™) <0,

and hence we lose quasi-convexity. We refer to Figure 2 for an explicit construction. In
Figure 2a we see En(a) is almost quasi-convex, but Figure 2b shows a small perturbation
around the red point in Figure 2a, as we zoom in sufficient enough.

140 T T T T T T T T T 354

20 L L L L L L L L L 344 L L L L L L
0 100 200 300 400 500 600 700 800 900 1000 0 50 100 150 200 250 300 350

(A) En(a) looks almost quasi-convex (B) a small perturbation around red point.

FIGURE 2. N = 100. u,n(In(i)) = (1 —1)/N, 1 <i < N. nnv(In(1)) =
—1/100, nn(In(100)) = 1.8/100, nn(In(3)) = 0.5/100, nn(In(4)) =
—0.1/100, nx(In(5)) = 0.5/100, nx (In(6)) = —0.1/100, and ny (In(k)) =
0 for all other intervals.

Moreover, removing either (4.9) or (4.8) will both result in losing (B.34) and hence some
perturbation would happen shortly after «,,,. By using the similar idea of (4.12) and (4.13),
we may build the counterexamples as shown in Figure 3a to Figure 3b.

4.4. A direct search for a minimizer of error function.

4.4.1. The one dimensional case. In Section 4.4.1 we will abbreviate £ (a, v, I) as £ («,v)
and TV (v,I) as TV (v).

Lemma 4.15. Let w be a piecewise constant function with M pieces where M > 1 large
is a positive integer, then there exists a positive integer M' < M and

O=app<a<ag < - <ay <+ (4.14)
such that

1. Z(a;,w) has at least one more constant piece than £ (i1, w) fori=0,1,...,M'—1;

2. L(a; + a,w) has the same number of constant pieces of L (ay,w), for any 0 < a <
i1 — a; where 0 <i < M' —1;

3. L(a,w) =: C(v) for all « > app, where C(v) is a constant depends on v.
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(A) violating of Assumption B.8 (B) En () is not quasi-convex

FIGURE 3. N =4. uc4a(L4(1)) =0, uca(14(2)) = 0.2, uca(14(3)) = 0.8, and
uea(14(4)) = 1. ma(I4(1)) = —0.1, na(14(2)) = —0.18, n4(I4(3)) = 0.18, and

na(14(4)) = 0.1.

Moreover, the function t: [0,400) — [0,400) defined as
t(a) = [|.L (, w) 72

is continuous, and in each interval [, aj11), ' is linearly increasing and t is conve.

Proof. According to Theorem 4.5, for each 1 < j < M and « > 0 small enough, we have

(ZL(a,w))Inm(7)) = w(Inm(j)) F i,a, if Ips(j) is a high (low) extremum region of w,
[Tar (5)]

(Z(a,w))Ip(F)) = w(pm(y)) F ;a, if In7(7) is a high (low) boundary region of w.
[ Tar (7))

Therefore, we have

2 2

12 (e, )21,y = Hw(IM(j)) I G)N”

L2(In(5))

provided that Ip/(j) is a high (low) extremum region of w. We obtain

1 d 2
Hg(a w)HL2 In(9) — 2(|] ( )|Oé:FU)(IM( )))7
which is continuous and linearly increasing in o, and

1 d? 4
20z (2@, p) = T )]
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which is strictly positive. A similar result holds if Ij/(j) is a boundary region. Moreover,
since

M
Ha) = 12 (e, )72 = Y 12000 ) T2y, )
j=1
which is a finite summation of ||.Z (a,w)H%g( Lu(s))> Ve conclude that t'(c) is continuous
increasing and t”(a) > 0 for o > 0 small.

We claim that there exists an unique a; > 0 such that for all o € (0, )
Z (a1 — a,w) has M pieces, but £ (5, w) have at most M — 1 pieces, (4.15)
for all 8 > ay.

We first show the uniqueness. Assume there exist distinct a3 and o) > 0 such that
(4.15) holds for both ay and ). Without lose of generality we assume that ay < o). Let
o > 0 be such that a3 < o < a/j. Then, on the one hand, by (4.15) and Remark 4.11 we
have

L(f,w) = ZL(a1 + (o] — 1), w) = L(af — a1, L(a1,w))
has at most M — 1 pieces, on the anther hand we have, again by (4.15), that £ (o] — (o} —
af),w) has M pieces since of — o > 0, and we have a contradiction.

We define the set
A:={d >0, Z(c/,w) has at most M — 1 pieces}

and we claim that
B = ir;% {a € A} (4.16)

has the properties required by (4.15). First, we have that § < +oo since by Theorem
4.5 there exists o/ > 0 large enough such that £ (o, w) is a constant, i.e., it has only one
constant piece, and hence A # &. Next, let {ay,}-; C A be such that oy, N\, 8. We have
Z(B,w) = limp 00 Z(an, w) by Proposition, 4.12 and hence .2 (3, w) has at most M — 1
pieces. Finally, we claim that Z(8 — a,w) has M constant pieces for any a > 0. If not,
then there would be o” > 0 such that £ (8 — o, w) has at most M — 1 constant pieces,

but this contradicts (4.16).

We have shown that the function ¢ has the required properties for 0 < a < a3 where
o is obtain via (4.16) (a7 := ), and o satisfies items 1 and 2 in Lemma 4.15. Next, by
(4.6) we may write, for a > a, that

L(oyw) =ZL(a1+a—aj,w) =ZL(a— a,w)

where wy := Z (a1, w) is a piecewise constant function with M; pieces and M; < M — 1.
We can repeat the above argument to obtain of, such that we := £ (o), w1 ) has at most My
constant pieces where My < M; — 1, and we define ag := ag + af. A recursive argument
will lead to wys a constant for M’ sufficiently large. Since w only has M pieces, M’ € N is
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finite and ajpr < 400 and so we obtain (4.14) as desired. Finally, since wyy := £ (apyr, w)
has only one piece, wyp(x) =: C for all z € I and C is a constant. We conclude that for
all a > apy
L(a,w) = L(a— appr,wpp) = wpyr.
O

Proposition 4.16. For any given corrupted image u, v and clean image u. n, there exists
an integer N’ < N and

O=ap <o <ag < <an = as(uyn) < 400 (4.17)

such that item 1, 2, and 8 of Lemma 4.15 holds. Moreover, in each interval (o, at1)
En() is convex and E\(-) is linearly increasing, where Ey is defined in (1.29).

Proof. Since u. y is a fixed piecewise constant function, we may apply Lemma 4.15 to u, y
to obtain (4.17), and that Ex(-) is convex and £} (+) linearly increasing within each interval
(o, aiy1). Moreover, we conclude that ans = as(u, n) by applying items 1, 2, and 3 in
Lemma 4.15 with i = N'. O

4.4.2. The direct search for a minimizer o, of level N error function. Proposition 4.16
allows us to perform a direct search to find a minimizer «,, of (1.29). Indeed, recall that
in each interval [a;, ait1), En(-) is convex and &} (+) is linearly increasing. Hence, we may
apply Newton descent (see, e.g., [8]) algorithm to locate the unique local minimizer «; ,, for
En(a) in [a4, a;41], and repeat over all intervals provided by (4.17). Since there are only
finitely many intervals [a;, a;41), we can locate all possible local minimizers a; ,, within a
finite time. Finally, the finite stopping time a;(u, ) provides a natural stopping criterion
for our searching algorithm. That is, we terminate our searching progress once we reach
the point when Ex(-) is a constant. After we terminate our searching progress, we only
need to find the smallest local minimizer «;,, and that is our «,, as desired. Lastly, if
there is a tie, i.e., two local minimizer «; ,, < oy ,, such that both gave the smallest value
of En(+), we choose a;,, as our minimizer oy, and ignore o,y,.

4.4.3. The two dimensional case. In this section we present a two dimensional (weaker)
version of Lemma 4.15 and Proposition 4.16 in Proposition 4.20. In particular, items 1 and
2 in Lemma 4.15 will be absent due to the lack of a two dimensional version of Theorem
4.5. We remark that so far we only have a weaker version of Theorem 4.5 in two dimensions
and we refer readers to our follow up work [62].

We start by recalling the following theorem in [19].

Theorem 4.17 ([19], Theorem 4 and 5). Let v € L*(Q) be given and let 9TV denote the
subgradient of the TV seminorm. Considering the gradient flow defined as
— T
0G(t,v) € ITV(G(t,v)), (4.18)
G(0,v) :=wv.

Then following hold:
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1. the solution G(t,v) is uniquely defined;
2. the solution G(t,v) satisfies G(t,v) = L (a,v) fort = a;
3. there exist finitely many 0 = tg < &1 < ty < -+ < tg < o0 such that the solution of
(4.18) is given by
G(t,v) = G(ti,v) — (t — 1) SG(tit1)
fort € [ti,tit1), where SG(tiy1) € 0TV (G(ti,v)).
We now prove the following two dimensional “semi-group” property.
Proposition 4.18. Let v € L*™®(Q) and let 0 < a; < ag < +00 be given. Then
L(ag,v) = L(ag — a1, L (a1,v)). (4.19)
Proof. Let vy := Z£(a1,v), and define a new gradient flow by
—9,G' (t,v1) € OTV (G (t,v1)), G(0,v1) == vy,
and we have G'(t,v1) is uniquely defined. By Theorem 4.17 we have that
Glay —ay,v) = Llag — a1, L (a1,v)),
and
g(Oé2, U) = g(O‘?v U)‘

Moreover, by the property of gradient flow, we have

G(az,v) = G (ag — a1, v1),

and hence (4.19) hold. O
We recall that the stopping time as was defined in Definition 4.4 and
1
Z(a,v,Q) := argmin { / lu —v*dz + aTV (u, Q)} . (4.20)
uesBvV(Q) L2 Jg

Lemma 4.19. Let v € L*™(Q) be given. Then as(v) < 400 and £ (as(v),v) is a constant.

Proof. We note that the null space of total variation seminorm
N(@TV) ={ve LY Q), TV(v) =0}, (4.21)

is the space of constant function (see, e.g., [4]), and hence a linear subspace of L!(Q).

By Proposition 2.1 in [21], the optimality condition of (4.20), with v in place of w,, is

L (Z(0,0) ~v) € OTV(Z 0, 0)).

Let Pry denote the projection operator onto N (T'V). Hence Pry(v) is a constant by

(4.21). We claim that

é (v — Pry(v)) € ATV (0) (4.22)
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for @ > 0 large enough. Indeed, since 9TV (0) has nonempty relative interior in N (T'V')
(see, e.g., [66]), we have that (4.22) holds for o > 0 sufficient large since v € L>(Q) and
Pry(v) is a constant. Let ag > 0 be large enough such that (4.22) hold. Then we have
1
as (v—Pry(v)) € 0TV(0) = 0TV (Pry(v))
where in the last inequality we used again the fact that Pry (v) is a constant. That is, we

have 1
as (v—Pry(v)) € 9TV (Prv(v)),
and hence Pry(v) is a solution of (4.20). Since the minimizer of (4.20) is unique, we

conclude that
Pry(v) = Z(asg,v) (4.23)
and thus Z(ag,v) is a constant.

Define

ag = inf{a >0, Z(a,v) = Prv(v)}.
Let {an}ry C{a >0, Z(a,v) = Pry(v)} and oy, N\, . We claim that oy is indeed the
stopping time of v. First, a, is unique by its definition, and ay is finite since there exists
at least one ag < +00 such that (4.23) hold. Next, by Proposition 4.12 we have

Z(as,v) = lim Z(an,v) = Prv(v).
n—oo
Therefore, for all a > 0, we have
g(as + Oé,’U) = f(a,f(as, U)) = z(avaV(U)) = PTV(U)v
where in the first equality we used Proposition 4.18. This concludes the proof. U

Proposition 4.20. For any gwen corrupted image u, N and clean image u. N, there erists
an integer N' € N and

0=ap< a1 <az<-<ay =as(u,n) < +0o

such that, in each interval (o, ai11), En(+) is convex and E(+) is linearly increasing, where
1
En(a) = 2/@ |-L (e, up ) — ch\;\2 dzx. (4.24)

Proof. Applying Theorem 4.17 to u,, n, we obtain finitely many
O=ap <o <ag < - <ay <4+

such that

ZL(o,upN) = L (g, upn) — (@ — ;) SG(aiy1) (4.25)
for a € (o, vit1), where SG(ait1) € 0TV (L (e, v)). By Lemma 4.19 we have .2 (ovs(uy,N), Un,N)
is a constant and hence SG(os(uy n)) = 0. Therefore, invoking (4.25) we deduce that
an' < as(uyn) < 400 and Z (o, uyn) = L (as(uy N), unn) for all o > as(uy n). More-
over, by (4.25) and the fact that u. y is a fixed function, we conclude that in each interval
(ai,aiq1), En(+) is convex and E)(+) is linearly increasing, as desired. O
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4.5. Another spatially dependent bilevel training scheme with respect to T'V.
One significant drawback of TV denoising is the staircasing effect, and many attempts
have been made to avoid such effect by, for example, introducing a higher level of deriva-
tive [28, 18], or by introducing a spatially dependent denoising parameter a(x) (see, e.g.,
[50]). In this section we present a new training scheme which is adapted from the bilevel
training scheme (1.3).

Before we introduce our new training scheme, we prove a useful lemma.

Lemma 4.21. Let v € L*®(Q) be given. Then
L(o,v) =t uq — (v)g ::][ vdx a.e..
Q

Proof. Recalling the definition of .Z(«, v) from (4.20) and using (v)qg as test function, we
have

/|ua—v] dzx 4+ TV (ug) /| )o — vol® dz < +o0.

Hence, {uq},~( is bounded in L?, and (up to a not relabeled subsequence) there exists a
Uso € L? such that 1, — us in L? as a — o0o. In turn, TV (u,) is bounded, i.e., {Uataso
is bounded in BV. Hence us € BV and

TV (uoo) < lminf TV (u,) < lim / |(v)q — vo|* dz =0,
a—00 a—+00 (Y
which implies that uo, =: ¢ is a constant. Invoking the compactness embedding in BV

space, we have u, — ¢ in L', and we have (up to a not relabeled subsequence) u, — ¢ a.e..
Moreover, by Fatou’s Lemma,

/Q|v—c]2dx§/Q
/]v—/\\ dx-?/(v—)\)d

and hence the left hand side of (4.26) reaches the minimum value at A = (v)g. We conclude
that ¢ = (v)g, and the proof is completed. O

v — (U)Qf dz. (4.26)

Note that

Remark 4.22. Combining the results from Lemma 4.21 and Lemma 4.19, we deduce that
for a > a,(v), Z(a,v) = (v)@, which is in agreement with Theorem 4.5.

4.5.1. A spatially dependent construction. Let N € N, u. ny, and nyx be given. For K € N,
Qg C R? denotes a cube with its faces normal to the orthonormal basis of R?, and with
side-length greater than or equal to 1/K. Ly will be a collection of finitely many Qg such
that

Lig = {QK C Q: Qg are mutually disjoint, Q C UQiK} , (4.27)

and Vg denotes the collection of all possible L. For K = 0 we set Qg := @, hence
Lo ={Q}. We define our improved training scheme (P) in resolution level N as:
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Level 1.
Up N 1= argmin {/ |Uc,N — U/;K|2 de, K >0, Lk € VK} (4.28)
Q

Level 2.
g () i= ZL(agy,unN,QKk) for x € Qx and Qk € Lk, (4.29)

where aq, := arg min/ |-L (e, up N, QK ) — e n|* da.
a>0 K

The training scheme (P) performs the training scheme (B) in each subdomain and combines

it all together to achieve an improved global result. Let

Pn(K) := inf {/ ”LLC’N—UﬁK‘2d$}
Q

Lr€EVK

where u,, is defined in (4.29), and
P(N) = /Q |ucyN - UP,N|2 dx

where up v is obtained from (4.28). Since Vk C Vi1, we have Py (K) > Py (K + 1) and
hence

lim Py (K) exists
K—oo

and is equal to infxen, Pv(K). Note that when K = 0, Py(0) = En(ayy,) where En(+) is
defined in (4.24) and «,, is the minimizer. That is, the improved scheme (P) does make
an improvement since P(N) < Pn(0) = En(am).

The assumption that u, y is a piecewise constant function attaining finitely many val-
ues yields a natural stop criterion of scheme (P) and prevents us from letting K — oo.
Indeed, since u, y is constant in each Qn € Qn where Qy is defined in (1.12), searching
in cubes Qx such that K > N would not benefit us anymore since £ («, v, Q) = v for
any « > 0 if v is constant in Q.

4.5.2. The staircasing effect. In this section we first illustrate with a simple example how
(P) avoids the staircasing effect. Figure 4a shows the given corrupted image u, n and
the clean image u.py, with N = 4. Scheme (B) results in Z(om,uyn,)(14(2)) =
L(om,un N, I)(14(3)) and hence the staircasing effect occurs, as Figure 4b indicates.
Scheme (P) operates in the subintervals I’ := (0,0.5) and I” := (0.5,1) separately, and
hence Z (o, up n,I')(14(2)) and Z (o, up n,I")(14(3)) are able to break up the staircase
produced in Figure 4b and go across each other, as shown in Figure 4c, and finally achieve
a better result, as Figure 4d indicates. Moreover, as shown in the end of this chapter for
the two dimensional case, where Figure 7 and 8 represents the clean image u. n and cor-
rupted image u,, v, respectively. We see in Figure 10, the reconstructed image by scheme
(P) results in smaller error value, mitigated staircasing effect (upper right corner), and
sharped edge (around the middle area), compare with the reconstructed image by scheme
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(B) in Figure 9.

L
05 0.

(C) Scheme (4.28) avoids staircasing

L L
05 0.75 1

(D) up,n and u. n overlap, a perfect recovery

FIGURE 4. I4(1) = (0,0.25), I4(2) = (0.25,0.5), I(4) = (0.5,0.75), I,(4) =

(0.75,1)

We remark that the ability to create a new jump point in % (v, u,, n), as shown in Figure
4c, is key to avoid the staircasing effect. In [50], the authors proposed a method to avoid
the staircasing effect by letting e = 0 in certain points and hence at those points new jump
points could be created in .Z (o, uy ). In Section 5.2 in [50] they showed that if 7y has
average 0 in each subinterval I;, where [ = Uf\i 1 I;, and if u. n is constant in each I;, then
they can achieve a perfect recovery (See Figure 5a to 5c). We remark that our scheme
(P) can produce the same perfect recovery result by choosing K large enough such that
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{I,...,In} C Lk. Indeed, invoking Lemma 4.21 we have that, for a > 0 large enough,

ZL(o,upg N, I;) = ][ Uy, N dx :][ (ue,N +1N) dz :][ Ue N dx = ue N (1;)
I

i i I
for any 1 <4 < M, where in the last two equalities we used the assumptions that ny has
average 0 in [; and that u. y is constant in I;.

(c) perfect recovery by scheme
(4.28)

(A) nn has average 0 in I; and

I, (B) perfect recovery by [50]

FIiGure 5. M =2. I} = (0,0.5), I = (0.5,1)

Finally, we remark that scheme (P) can deal with more generalized situations which cannot
be dealt by the method proposed in [50]. For example, in Figure 6a, u.(z) := 2 and hence
ueN(In(i)) = i/N for x € In(i), 1 < i < N (recall Iy(i) from (1.24)). We define
nn(2i — 1) = —nn(2i), 1 < i < N/2. That is, ny does not have average 0 in each
subinterval In (i) and so Proposition 5.5 in [50] can not be applied. However, scheme (P)
can still provide a perfect recovery result, as shown in Figure 4d, by choosing K large
enough such that {Io;—1 U Iy, 1 <1i < N/2} C Lx. Moreover, we observe that scheme (B)
produces, again, the staircasing effect, as shown in Fig 6b.

4.5.3. Approximation of the clean image. In the last section of this chapter, we show that,
under mild assumptions on the noise 7y, the scheme (4.28) can produce a perfect recovery
result for an arbitrary clean image u., as the resolution level N goes to co.

We recall a useful corollary for Lusin’s Theorem.

Corollary 4.23 ([40], Corollary 1, page 16. Also see [44], 7.10). Let u be a Borel regular
measure on RN and let f: RN — RM be p-measurable and bounded. Assume A C RN

is pi-measurable and p(A) < +oco. Fiz e > 0. Then there exists a continuous function f:
RN — RM such that || f|| ;. < |fllpe and p{z € A: f(z)# f(z)} <e.

The main theorem of this section is as follows.
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B) Z(om,uyn) by scheme

(A) up,n and ue N 21.3)

(C) up n by scheme (4.28)

FIGURE 6. N = 100. The noise ny is designed such that ny (i) = —nn (i +
1). Note that in Figure 6b, scheme (1.3) produces staircasing; in Figure 6c,
scheme (4.28) produces an almost perfect recovery

Clean Image

FIGURE 7. Clean image u. n

Theorem 4.24. Assume that the noise g2 has locally average 0, that is

][ . iz =0 (4.30)
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Noisy Image

F1GURE 8. Corrupted image u, n, where the artificial noise is added by
using a Gaussian noise distribution

for any Qx € O and all k € N. Then
lim P(K?) =0.

K—oo

Proof. Let K € N be fixed. Note that Qi € Vg. Then, according to (4.29) and invoking
Lemma 4.21, for each Qg € Qi we have

2

H"%(O‘Qm Uy, K2, QK) = Ue, K2 Hi2(QK)

2
< H][ Uy g2dx — U, g2 '][ Ue, 2 AT — Ug 2
Qx L2(Qk) Qx

where in the last equality we used (4.30).

)

L2(QK)

Hence, we have

P(K2)§ Z H"E’ﬂ(aQK’un,K27QK)_UQKzHi?(QK)
QreQK

<y

Qrelk

2

][ Ue g2 (T)dr — g g2
K

L*(Qk)
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Denoised Image sigle alpha

FIGURE 9. The reconstructed image by scheme (B). The training error is
931.667. Note that the staircasing effect is observed, upper left and right
corner.

We claim that

Kli_r}lOo Z HUC,K2 — uC”fZ?(QK) = Kh_r}noo ||uc’K2 - uCHiQ(Q) = 0. (4.31)
QKrEQK

It is clear that (4.31) holds if . is continuous and using Lebesgue Dominated Convergence
Theorem. We prove that (4.31) still hold if u, € L*°(Q). For simplicity, assume that
[tell gy < 1. Fix e > 0. By Corollary 4.23 there exists a compact set W CC @

and a continuous function v such that v|W = uc|W, [[v]|;e < |Juc|lfoo, and £2 (W) >
L£?(Q) —e =1—¢, where £2 stands for the two dimensional Lebesgure measure. Then we
immediately have

/ v — ue|* dz < e. (4.32)
Q
Let vg2 be defined similarly to u, g2 and we observe that vgs — v in L?(Q). That is,

. 2 .
Klgnoo vz = vll72¢g) = 0 (4.33)
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Denoised Image decomp alpha

FIGURE 10. The reconstructed image by scheme (P). The training error is
900.325. Note that the staircasing effect is reduced, and edges are sharper

We obtain

/Q‘UKQ—UC,I@MHC: Z /

/ (v —uc)dz
1<i,j<K?2 Qp2(i,5) Q2(4,9)

< KQ/ / |v — uc| dzdy
Z QK2 7/7]) QK2(7'7.])

1<i,j<K?

= Z / [v = el dz = ||lv — uell 1) < 2e.

1<ij<k? ’ Qr2(07)

dy

Since ‘fu K2 — U, Kz‘ < 2 uniformly in W we deduce that

/ ’UKz — uC’K2|2d:v < 2/ |’UK2 — uQKz‘ dr < 4e. (4.34)
Q Q

Hence, for K € N large enough, and in view of (4.34), (4.33), and (4.32), in this order, we
observe that

”UC,K? — uch‘ﬂ(Q) = HUC,K2 — Vg2 t Vg2 —V+ v — uCHiQ(Q)

2 2 2
< 3 e 2 — vg2 HL2(QK) + 3 lvrez — vl72(0,) + 3 [v = uclz2(g
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< 12e + 3¢ 4 3e = 18¢
and (4.31) is verified.

Similarly, we could show that (note below we have u -, but in (4.31) we have u, ;)
. 2
Klgnoo QZ e, — UCHLQ(QK) =0. (4.35)
K

Note that
f o2 (9)dy = e.xc(@) for @ € Q.

K

Then, in view of (4.31) and (4.35),

Z ][ Ue g2 (2)dw — u g2

2

QrEQK K LQ(QK)

— Z Hqu—UC+UC—UC,K2"i2(QK)
QrEQK

< Z HUC,K - Uc‘|i2(QK) - Z HUC,KQ o uCHiQ(QK) =0
QKEQK QKEQK

as K — oo.

Therefore, we deduce that

lim P(K?) < lim > =0,
K—o0 K—o0 0rcOx L2(QK)
and the proof is concluded. O

2

][ uchz (.’B)dx — ’LLC7K2
K

Remark 4.25. The noise ng2 in Theorem 4.24, which has locally zero average, can be
produced by using the compound camera which is the leading technology in robotic vision.
Roughly speaking, the compound camera captures a corrupted image u,, > with resolution
K? by capturing with K2 number of small cameras, each has resolution level K and captures
a part of u. in the subdomain Qx, and these put together yield u, 2. It is usually assumed
that each individual camera produces noise with zero average (see, e.g., [21]), which implies
that the nose nx2 has average zero in each Qg as required.

Chapter 5. The comprehensive training scheme

5.1. Notations and basic assumptions. Let @ := (0,1) x (0,1) be the unit square.
This will be the domain of our image data. Generally we may take Q C R? to be an
open bounded domain with Lipschitz boundary, although such generalization would not
be useful in image processing problems. The corrupted image u, and the associated clean
image u, are assumed to lie in a Banach space Y, which is usually taken to be L? or L' in
image denoising and deblurring problem.
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We next describe the basic assumptions on the assessment operators A, fidelity operator
F, and regularizer R, and we will provide some examples to illustrate these assumptions.

Definition 5.1. We say that an operator R: Y — R is a reqularizer if it satisfies the
following conditions:

1. R 1s convex;
2. the set

Xr:={ueY: R(u) <+oo}
equipped with the norm
ullxp = llully +R(u).
is a normed subspace of Y.

Definition 5.2. We say an operator F: Y — [0,+00] is a fidelity operator if it is proper
and strictly convex.

Definition 5.3. We say that an operator A: Y — [0,400] is an assessment operator if it
1s both continuous and weakly lower semicontinuous in 'Y .

Assumption 5.4 (imaging-ready operator). Let {u,}>-, CY be such that

n=1
sup {F (un — uy) + R(up) : n > 1} < 4o0. (5.1)

We say that the operators F and R are satisfy Assumption imaging-ready if, up to the
extraction of a (non-relabeled) subsequence, there exists u € Xr such that

U, = U inY and lirginf R(up) > R(w).

Remark 5.5. In the context of existing literature, the fidelity operator F is usually as-
sumed to be coercive in the sense that

F(v) = 400 as ||v]ly — oo. (5.2)

We remark that (5.2), together with Definition 5.1 and Definition 5.2, implies Assumption
5.4 provided that the Banach space Y is assumed to be reflexive.

To sketch the proof, note that for any sequence {uy},-; C Y such that (5.1) holds, by
(5.2) we have

sup {Hun — u,7||y} < 4o00.
Since Y is reflexive, by Banach - Alaoglu theorem there exists & € Y such that, up to
the extraction of a subsequence, u, — @ in Y. Finally, since R is convex, we have R is
s.w.l.s.c. and hence

+oo > liminf R(u,, Q) > R(4, Q),

n—oo

and @ € Xg.
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Lemma 5.6. Let R and F satisfy Definition 5.1 and Definition 5.2, respectively, and 5.4.
Then the minimizing problem

ur € argmin {F(u, —u, Q)+ R(u,Q): ue Xr}
has a unique solution.

Proof. Let
m = inf {F(u, —u,Q) + R(u,Q) : ue Xr}. (5.3)

o0

Since F and R are non-negative, we have m > 0. Let {u,} -, C Xg be a minimizing

sequence. Then, for n large enough, we have
F(un — uy, Q) + R(un, Q) <m+ 1.
In view of Assumption 5.4, up to a subsequence, we have there exists @t € Xx such that

u, — @ in'Y and lirginf R(upn) > R(a).
Since F is strictly convex, and hence weakly [.s.c., we have
m = liminf F(up — uy, Q) + R(un, Q) = F(& — uy, Q) + R(a, Q),
which, together with (5.3), implies that
F(t —uy, Q)+ R(u, Q) = m.
Finally, since R(-) is convex and F(-) is strongly convex, we conclude that % is unique and
we set ur = u. ]

We present a few examples to illustrate the abstract framework above.

Example 5.7 (Squared L? assessment and fidelity operator & (non)-smooth regularizer).
Let Y = L? with
2
A Q) = F(,Q) = Il 72¢) »
we recover the standard L2-squared fidelity and assessment operators (the role of A will
be explained in Section 1.5).

An example of a smooth regularizer is given by R(-, Q) = |-\W1,2(Q). In this case, Xr =
Wh2(Q) and we have

Fu—up) + R(w) = [lu—upyll7z + [ulyz- (5.4)
It is clear that F and R in (5.4) satisfy Assumption 5.4.

An example of a non-smooth regularizer is given by R(-,Q) := [-|py (), the total vari-
ation, and we define X = BV (Q) N L?(Q). Since the domain @ has Lipschitz boundary,
and the dimension is either 1 (signal) or 2 (image), we have that the operators F and R
in this example satisfy Assumption 5.4.
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5.2. The regularizer training scheme. For the convenience of the reader, we re-state
the definition of indexing set introduced in Chapter 1.

Notation 5.8. We use M™** to denote the vector space of n x k real valued matrices,
where n, k € N

Definition 5.9 (The indexing set of #Z). Let Il :=T'1 xI'y x--- xT'y,,, where the indexing
dimension is Ny € N, and each T; is a compact subset of M™*¥i. We say that a space
(set) of regularizers X is indexed by 11 if each R € X can be uniquely represented (see
Ezxample 5.11 below) by an element v = (y1,72, . ..,7YN,) € I, and we use R[] to indicate
that R is indexed by v. Moreover, we endow % with the norm defined by

Nz
da (R RIT) =3 [ = +illr, -

We introduce the following Regularizer Training scheme (RT).
Level 1.

7 := argmin {A (u, — UR[)» Q) : yell} (5.5)
Level 2.
UR[y] = arg min {J’:(w7 —u, Q)+ RN|(u,Q), ue XR[W]} .
Definition 5.10 (The reconstruction map). Given u, € Y, we define the reconstruction
map S: Z — X by
Su,(R) == argmin {F (u, —u, Q) + R(u, Q) : ue Xgr}.

Note that by Lemma 5.6, the operator S,, is well defined. Moreover, for simplicity of
notation, we abbreviate Sy, (R) as S(R) in the rest of this chapter.

Example 5.11. We present two examples to illustrate Definition 5.9.
1. Let II := T'; x I'y where I'; := [1,2] and I'y := [2,4]. Then we may define a space #
based on the indexing set 1I via
K= {W?P: sely, pels},
and we have R[(s,p)] = W*P and

dz(R(s,p)], RI(s",7")]) == |s = &'| + [p— 1]
2. Let I1 :=T'; = [1, S] where S € (1,400). The fractional order total generalized variation
TGV*® ([31]) is defined as follows:

My

TGV?*(u) = min {|Vu — mod(s, 1)vg| p4, + mod(s, 1) ‘gmod(s,l)vo — mod(s, 2)v;

+ mod(s, 1) ‘Sm‘)d(s’l)vk_g — mod(s, ! + 1)1};‘ +

b

.-+ mod(s, |S] —1) \gmod@vLSJ—l)vk_g — mod(s, LSJ)ULSJ_JM +
b
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+mod(s, |S]) [gmedt=L5Dy g o UE BV (Q,Sym!(R?)), 1 =0,...,|5] —1},
b

where mod(s, N) :==0V (s — N) A 1. We introduce a regularizer space % via
X ={TGV®: seTli},
and we have R[s] = TGV* and
da(R[s], R[s']) :=|s — &'|.

Assumption 5.12 (A-l.s.c with respect to dg). We say that the operator S(R) is A-l.s.c.
with respect to dg if for every {R[yn]}rey C Z with lim, o de(Rlym], R[Y]) = 0,

lim inf AS(R[a]) — ue) > AS(R) — ue).

Theorem 5.13. Let A be an assessment operator satisfying Assumption 5.3 and let' Y be
a Hilbert space. If S is A-l.s.c. with respect to dg, then problem (5.5) admits a solution
RIF| € Z.

Proof. Since the assessment operator is non-negative, we may extract a minimizing se-
quence {R[y,]}oe, C Z such that

lim A (uey — S(R[]), Q) = inf {A(uey —S(R[]),Q) : Ry] € Z} =m >0. (5.6)

n—o0

We claim that there exists a regularizer R[7] € # such that
A(ue — S(R[7])) = m.

Recall from Definition 5.9 the indexing dimension Ng € N. Then we may write v, in (5.6)
by

Yn = (71,n772,n7 e ,’YN@,n)’ {’Yi,n}zozl Clyfori=1,...,Ngp.

Since each I'; is closed and compact, by a diagonal argument we find ¥ = (31,72, ...,9n,,) €
II such that, up to a subsequence,

:}/i = lim Yi,n
n—oo
for each i = 1,..., Ngp. Now, in view of Assumption 5.12 we have

m = lim inf A(S(,R[’Yn]) - uc) > A(S(R[:Y]) - uc)'

n—oo

Since 4 € IT and hence R[Y] € #Z, we have
ASRA) = ue) =m

as desired. ]
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5.2.1. Training scheme in regularizer and parameter spaces. In order to add parameters
into the regularizer, we specific a more detailed structure of the set #. Recall from Defi-
nition 5.9 that we require a set #Z to be indexed by a set II, a product of compact subset
of M, so that we can define the distance between two regularizers. Here, in addition, we
define the dimension of Z so that we may specify the structure of #. First, we give the
definition of box constraint.

Definition 5.14. We say that a vector o = (a1,a9,...,0p) € R" satisfies the box
constraint if there ezist a positive number 0 < A << 1 such that oy € [A,1/A] for
i=1,2,...,n.

Definition 5.15. We say that a space Z has operator dimension ng € N if there exists a
set of operators

{Ri(-, ) Y xY" x T =R fori=1,... ,nﬁ} with R;(tu,tv,-) = tR;(u,v,-), t € RT

such that each R[y] € Z can be represented by

R, Q) = inf {Ra(t,0,7) + Rat,0,7) + .+ R (w,0,7) s v €Y}, (5.7)

We define a scaled version of R[y] € Z by adding a parameter o = (a1, 2,...,0n,) €
R™%  which satisfies the box constraint in Definition 5.14, in the following sense:

Rla, 7] (u) (5-8)

= inf {Ri(oqu, a1v,7) + Ra(oou, agv,y) + ... + Ry, (an,u, o ,v,7v) 0 v € Y2}

and we set
dagz(Rle, ], Rl 7)) := de(R[Y], RIY]) + | — o] .

Lemma 5.16. If « satisfies the box constraint, then Xp(q = Xr[y-
Proof. We only show that

XRlan] C ARy
The proof in the other direction is analogous.

Let u € Xg[q,) be given. Then by Definition 5.15 we have v € Y and

Rla,~](u)
= inf { Ry (a1u, a1v,7) + Ra(aou, v, y) + ... + Ry, (0t an,v,y) @ v € Y} < 400,

where a = (o, 2, ...,ap,,) € R"%. Let vg € Y% be such that

Ri(aqu, aqvo,y) + Ra(agu, agup,¥) + ... + Ry (angu, angvo,v) < Rlasy]+ 1.0 (5.9)

Since « satisfies the box constraint, i.e., A < oy, i =1,...,n4, we have
Rl (U, Vo, ’Y) + RQ(U, 'U07,7) +...+ RTL,@ ('LL, Vo, 7)
1 1 1
= ZRI(AM’ Avg,7y) + ZRQ(AU,A’UQ,’)/) +...+ ZRM?(AU, Avg, )
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1

< Z [Rl (Oélu, 10, 7) + RQ(Oqu 20, ’7) +...+ Rn@ (an@u7 Qn, 500, 7)}
1 1

< ZR[a,’y] + o < too.

Thus, in view of (5.9), we have
Ry](w) < Ri(u,v9,7) + Ra(u,v0,7) + ... + Rn, (u, vo,y) < +o00,
and hence u € X[, O

Example 5.17. Recall the fractional order total variation T'V*® from [78].
1. We define a space of regularizers # by using the indexing set Il := I'; = [1/2,1] and
setting
X -={TV?®: se|0,1]},
where T'V*® can be written in the form of (5.7), to be precise,
TV® =inf {TV*(u): v e L*}.

That is, the operator Ry in (5.7) is defined to be independent of the auxiliary variation
v. Then, we have

R [a, 8] (u) = oTV?, where a € [A,1/A].
2. Recalling Example 5.11, in terms of (5.8) we have

TGV?a)(u) = min {ao |Vu — mod(s, 1)vo| vy, + @1 mod(s, 1) ‘Emod(s,l)vo — mod(s, 2)01‘

M
-+ + asmod(s, 1) ‘gmod(s,l)vk_Q — mod(s, ] + 1)UZ‘Mb +
<+ aymod(s, [S] —1) ‘Em(’d(s’mfl)vk,g — mod(s, LSJ)ULSJ,l‘Mb +
+ayg mod(s, | S]) \5m°d<87LSJ>vLSJ \Mb . € BV(Q,Sym! (R?)), 1 =0,...,|S] - 1} ,
where & = (), . . . , ay) satisfies the box constraint. In [31] we proved that the regularizer

space Z constructed using TGVC—f'|rs satisfies Assumption 5.18.

We improve scheme (R7) by inserting parameters as in (5.8), so that (R7T) is now able to
train the parameters and regularizers, simultaneously. The scheme (R) can be viewed as
the generalization of the scheme defined (2.24).

Level 1.
(a,7) € argmin { A (uc — ug[o ), Q) : 7 € g, a €A 1/A"*}, (5.10)

Level 2.
UR[a] i= argmin { F(u,; —u, Q) + Rla, 7](u, Q), u € Xgpy}- (5.11)

We improve Assumption 5.12 to accommodate the parameter spaces [A,1/A]"%.
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Assumption 5.18 (A-A-l.s.c. with respect to da ). We say that the operator S(R) is
A-A-l.s.c. with respect to da g if for every {(om, )}y C [A4,1/A]"% x II with
lim,, 0 dA,F/?(R[am "Yn]7 R[Oé, 7]) =0,

lim inf AS(Rletn. 7)) — 1) = AS(Rlr, 7)) - ).

Remark 5.19. In most cases Assumption 5.18 on R]«, ] is redundant once Assumption
5.12 holds on R[7] since « satisfies the box constraint defined in Definition 5.14.

Theorem 5.20. Suppose that Assumption 5.18 holds. Then problem (5.10) admits a so-
lution (&, 7).

Proof. The proof can be carried out by using an argument similar to that adopted in the
proof of Theorem 5.13 and Assumption 5.18. O

Corollary 5.21. Recall the notations from (5.10) and (5.11). The set
{(oz,v)}opt := arg min {A (uQN — UR[a]» Q) vy ell, aelA, 1/A]"9”}
is closed.

Proof. I #{(cv, ) }opy < +00, we have nothing to prove. If not, in view of the box constraint
we have that for any sequence {(on,vn)}req C {(o,7)}
up to a subsequence,

opt there exist & and 7 such that,

an, — @ and v, — 7.
We claim that (&, 7) € {(a,7)}qp- Since {(an, ) }nzy € {(@7)}opts We have
A(S(Rlon, 1)) — ue) = m = inf {A (ue,n — ugjan), @) - v €11, a € [A1/A"#},

and in view of Assumption 5.18, we have

m > liminf AGS(Rlan, 7)) — ue) = AS(RIE,7]) - ue). (5.12)
Since (&, R) € [A,1/A]"% x Z, we have

A(S(R[@,A]) — ue) = m,

and together with (5.12), this conclude the proof. O
5.3. The comprehensive bilevel training scheme.

5.3.1. The construction. We first review the following notations from (1.33) (recall that
0 < A <1 from Definition 5.14):

1. H 4 is the collection of rectangles such that

Ha:={L CQ: Lisan open rectangle with the shortest side-length greater than or equal to A};

2. L stands for a collection of finitely many L € H 4 such that
L= {L € Hy : L are mutually disjoint, Q C Uf} , (5.13)
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3. V4 is the collection of all possible £, and we define, for any £, £’ € Vg,
dy, (L, L") := max {min {dy, (L, L"): L' e L'}: Le L},
and
dan (L, L") = |Ixe — xullpig) (5.14)
where x, is the characteristic function over L.
Next, we introduce a comprehensive training scheme (CT) as follows:
Level 1.

L € argmin{A (uenx —P(L)): LEVa}, (5.15)
Level 2.
P(L) is built upon the information of {(&r,4r)}; ineach L € L,
Level 3.
{(ar,51)}y, == argmin {A (ue N — ugjaq, L) : v €I, a € [A1/A"#},  (5.16)
UR[a,] := argmin { F (uy n — u, L) + Rle, 7](u, L), v € Xgp}-

Here the operator P: V4 — Y acts as an assemble operator, using the local optimal
re-construction information obtained in Level 3 within each subdomain L to construct a
global re-constructed image wu ., based on the partition domain £ € V4.

The delicate part of the training scheme (C7T) is the construction of an assemble oper-
ator P. We will provide two constructions in Section 5.3.2. Here we first give a sufficient
condition for an assemble operator so that the scheme (C7) admits a solution.

Assumption 5.22. We say that the operator P: V4 — Y is A-l.s.c. with respect to dy,
if for any sequence {L,}77 | C Va with limy, o0 dy, (L, L) =0,

linrggf A(P(Ly) —ue) > A(P(L) — ue).
Theorem 5.23. If the assemble operator P is A-l.s.c. with respect to dy,, then problem
(5.24) admits a solution L € V4.

To prove Theorem 5.23, we first establish two compactness results in the space H 4 and on
training ground V4.

Lemma 5.24. Let a sequence of {Ly},~; C Ha be giwen. Then, up to a subsequence,
there exists L € H 4 such that R
nh—{%o dy ,(Ln, L) = 0.
Proof. Select L,, from L,, for each n € N and define x,, := I, the characteristic function
of L. Since {L,} > C Ha, we have
IXnllBvQ) < [Lnl + [Xnlry < Q[+ 4 <5,

and hence
sup {HXnHBV(Q) 1 ne N} < 4o00.
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Therefore, by weak*-compactness in BV, up to a subsequence (not relabeled), there exists
X € BV such that
Xn — x in BV. (5.17)

We claim that x is the characteristic function for a set S C @ such that S € H4. Indeed,
since x, — x in L! strong, we have  is a characteristic function of certain set S, and we
only need to prove that S € H 4.

Next, let the four vertices of L, be an, = (a1,n,a2), bn = (bin,b2n), cn = (C1n,C2n),
dn = (din, d2n) € [0 1] x [0,1]. Upon a further extract subsequence, there exist a =
(al,ag) b = (bl, b2) (51, 52), and d = (dl, dz) (S [0, 1] X [O, 1] such that

an — @, by — b, ¢, — ¢, and d,, — d. (5.18)

We claim that S is a rectangle with vertices a, b, ¢, and d. Indeed, let X' be the characteristic
function of rectangle with vertices a, b, ¢, and d, we show that Xn — X' in L'. We observe
that

lim / ‘Xn — X/‘ dx
n—oo Q

< limsup (|a1,, — a1 |ag, — ban| + ’b2,n - 52‘ b1 — C1n
n—oo

+ |agn — as| ‘&1 —Jl‘ + |1 — ¢ ‘612 - 52‘)

< limsup |aj, — a1| + limsup |ba,, — bs| + lim sup lagn — az| + hmsup lc1n — €1 = 0.

Hence, we have x, — x’ in L' which forces x' = y since by (5.17) we have x, — x in
L', too. Therefore, we have S is a rectangle with vertices a, b, ¢, and d, and by (5.18) we
conclude that S € H4 and we set L:=8. O

Lemma 5.25. Let a sequence of {L,},~ 1 C Va be given. Then, up to a subsequence, there
exists L € V4 such that

Tim_dy, (Ly, £) =0.

Proof. Select L, from L, for each n € N. By Lemma 5.24, up to a subsequence, there
exists S7 € H 4 such that

lim dy,(Ly,S1) =

n—0o0

Define
Lh:={LeL,: LNS, =@} for each n € N. (5.19)

Repeating the argument above with L., we may obtain a rectangle Sy € H 4, and, in view
of (5.19), we have So NS} = &. We next define

L2 .= {LEE}L: LN Sy =} for each n € N.
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Recursively, we obtain S7, Sa, .... Since |L| > A? for arbitrary L € H 4, we have

1
M :=sup{#{L,}: nEN}§E<—|—oo.

Therefore, the above argument can only be repeated finitely many times, and we obtain a
set

S:=1{8,5,...,5r} (5.20)

where T' < M and each S; € H 4. We finally claim that S € V4. To do so, we only need to
prove that

T

U 5’1 D Q.

i=1
Suppose not, i.e.,

> 0.

T
Q\Jsi
=1

Since S; are all rectangles, there exists a rectangle

T
rce\s: (5.21)

i=1

(Note that L might be small and L' ¢ H 4). In view of (5.13), for each n € N there exists
L;, € Ly, such that

1
L'nLy,|> i L.
Let L” be the limit of L], up to a subsequence, in the sense of (5.17). We have
1
r'nL’'|>=|L. 5.22
| | =57 171 (5.22)

Hence, using {L,}°, in step one (5.19) above, we have L” € S where S is defined in
(5.20). That is, in view of (5.22),

T
L’m(Q\USZ)

However, (5.21) implies that

< |\L"| <|L|. (5.23)

=[],

o (s)

i=1

which contradicts to (5.23). O

We are now ready to proof Theorem 5.23
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Proof of Theorem 5.25. Let {L,}.2; C V4 be a minimizing sequence such that A(u, —
P(Ly)) — m, where
m :=inf {A(ueny —P(L)): L€ Va}.

Applying Lemma 5.25 to {£,}°° ,, there exists £ € V4 such that

n=1>
lim dy, (L, L) = 0.
In view of Assumption 5.22, we have
m > liminf A(P (L) — ue) > A(P(L) — ue).

n—oo
Since £ € Vg4, we obtain
A(P(L) —ue) > m,

and this concludes the proof. ]

5.3.2. Construction of assemble operators. In view of Theorem 5.20 and Theorem 5.23 we
observe that the existence of a solution to the training scheme (R7) and (CT) depends on
the [.s.c. of the solution operators, such as S(a,v) in (RT) and P(L) in (CT).

It is usually not easy to prove that S(a,7) and P(L) satisfying the l.s.c. properties, as
required in Assumption 5.18 and Assumption 5.22, respectively. In Chapter 2 we showed
that to prove TGV *¢ satisfies Assumption 5.18, even in one dimension, a serious amount
of knowledge in PDEs and calculation of variations are required. However, the construc-
tion of the assemble operator P(L), which is closer to a data-based approach, need to use
knowledge other than that used in the analysis of regularizers, for example, deep learning
techniques introduced in Machine Learning, but this is beyond the scope of this thesis.
Here, we will only present two elementary level constructions.

5.3.3. Assemble operator directly from a local optimization result. This construction is the
generalization of the training scheme (1.30).
Notation 5.26. Let a partition domain £ € V4 be given.

1. Fix L € £. We denote by E(L) the space of functions u, defined only in L, such that
[ully () < +oc.
2. We use £(L) to denote the collection of functions

E(L):={u: u|re E(L) for each L € L}.

The training scheme (CT) will read as follows:

Level 1.
L € argmin {A(u. —P(L)): L Vy} (5.24)

Level 2.
P(L) :=argmin {A(u — u., Q) : uwe (L)} (5.25)

(
where £(L) is built by using E(L) := {S(ar,7r) : (ar,7.) € {(ar,70)} .}, (5.26)
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Level 3.
{(&r,¥1)}; = argmin {.A (uc — UR[an]> L) vy ell, a€[A, 1/A]”92} (5.27)
UR (o] = argmin { F(uy —u, L) + Rla,7)(u, L), u € X[y} -

Lemma 5.27. The collection £(L) defined in (5.26) is closed.

Proof. This is a direct consequence of Corollary 5.21. Moreover, we have P(L£) € £(£). O

To show that P(L) defined in (5.25) satisfies Assumption 5.22, the following assumption
on 4y is needed.

Assumption 5.28. Let a regularizer space %1, a fidelity operator F, and v, © € Y be

given.

1. Let {(an, )} ey C [A,1/A]"% x 11 and {v,}, C Y be such that (an,vm) — (&, 79)
and v, — U 'Y, and define

Up 1= arg min {]—"(u — U, Q) + Rlam, 7] (4, Q) : u € XR[%]} . (5.28)
Then, up to a subsequence, there exists u € Y such that up, — @ in'Y and
@ = argmin {F (u—7,Q) + R[& 7](u,Q) : ue€ Xgp5}. (5.29)

2. Let a sequence {Lyp},;", C Ha and L € Ha be such that L, — L in the sense of (5.14),
and define

Wy, = arg min {f(u —0,Ly) + Rlan, Wnl(u, Ly) : u € XR[%]} .

Moreover, let {¢n}., be a sequence continuously differentiable bijective maps from L
into L,. Then, we have

lim A(w, —v,Ly,) = lim A(w, —v,L),

n—oo n—oo
where
Wy, = arg min {JT" (U — V0 vy, L) + R[&vﬂ(u7 L) Tue XRW} :

Lemma 5.29. Let two sequences {wy},-; and {v,},~; CY be gien such that w, — @
and vy, — U in Y. Let (an,Vn) be a solution of training scheme (5.10) in which we set
Ue := Wy and Uy, := v,. Then there exists (&,7), a solution of (5.10) with u. = w and
Uy =0, such that (on,vn) = (&, 7).
Proof. In view of the box constraint and the compactness of II, there exists (64,7%) such
that, up to a subsequence,

(an; Yn) = (@ 7).
We claim that (&,7) is a solution of (5.10) with u, = @ and u, = 0.

Let u, and @ be defined by (5.28) and (5.29), respectively. By Assumption 5.28, we
have that, up to a subsequence, v, — @ in Y and, by Assumption 5.3,

Aup, — wy, Q) = At — 0, Q). (5.30)
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Suppose that (&, ) is not a solution of (5.10) with u, = @ and u, = v. That is, there exist
(o/,~') and € > 0 such that

Al —w,Q) > AW — @, Q) +¢. (5.31)

Let u), and u' be defined by letting (o, v,) = (¢/,7') and (&,7) = (¢/,+') in (5.28) and
(5.29), respectively. Then, in view of Assumption 5.28 item 1 again we have, up to a
subsequence, u,, — u' and

A(U;Z — Wn, Q) - A(Ul - ﬁ)a Q)7

which implies that for n large enough
- 1 L 3 1
A(U,/n — Wnp, Q) S A(Ul - w, Q) + 16 < A(u —w, Q) - ZE S A(un — Wn, Q) - 56'

where at the second inequality we invoked (5.31) and at the last inequality we used (5.30).
Finally, we conclude that

A, — wp, Q) < A(up — wy, Q)
which contradicts the definition of (a,, vp). O
Theorem 5.30. The assemble operator P(L) defined in (5.25) satisfies Assumption 5.22.
Proof. Let a sequence {L£,}-; C V4 be such that
nhﬁnolo dy,(Ln, L) =0, (5.32)

where £ € V4. Let P(L,) be defined as in (5.25). By Lemma 5.27, for each L,, € £, we
have there exists (an,1,., Yn,L,) such that

P(Ly)(x) =S(an,L,s Yn,L,)(2), if © € Ly,.

In view of (5.32), for arbitrary L € L there exists a sequence {L,},-,, L, € L, for each
n € N, such that L, — L. Since {(an,1,,;Vn,L,)},q satisfies the box constraint, up to a
subsequence, we have

(2> Yn,Ln) = (@LsL)- (5.33)
Now, for a fixed L,, € {Ly},-, we may find a continuously differentiable bijective map ¢y,
of L onto Ly, such that ¢, ! is also continuously differentiable. Let
Uen () 1= uc(pp(x)) and uy . (x) = uy(pn(x)) for x € L.
We have
. {ue,y — “r:”y(L) = nlggo [unm — Un”y(L) = 0.

n—oo

Define
Uy, 1= arg min {f(u — Unm, L) + Rlom, 1, Yn,nn)(u, L) © w € XR[%,L”]} ,

and
ur, :=argmin {F (u — up, L) + Rlar, yo](u, L) : u € XRHL}} . (5.34)
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By Assumption 5.28, up to a subsequence, u,, — ur, in Y, and so

lim A(u, — uc, L) = A(ur, — ue, L). (5.35)

n—o0

Moreover, since {¢y, },-; is a sequence of continuously differentiable bijective maps, again
by Assumption 5.28, we have

lim A(P(L,) — ue, L) = lim A(uy, — ue, L),

n—oo n—oo
which, together with (5.35), implies that
lim A(P(L,) — te, Ly) = Alur — ue, L). (5.36)
n—oo

Next, in view of (5.33), (5.34), and Lemma 5.29, we have uy, € E(L) for each L € L, where
E(L) is defined in (5.26). Hence, the function

(x) :=up(x) forx e Le L
belongs to £(L). Therefore, we conclude that
At —ue, Q) > inf {A(u —ue, Q) : ue&(L)}. (5.37)
Finally, since sup # {£,,} < +00, we obtain

lim A(P(Ly)~ue, Q) = > lim A(P(Ln)—te, Ln) = Y Alur—ue, L) = A(li—ue, Q),

n—oo
Ln€ln LeLl

where on the second equality we invoked (5.36). Together with (5.37), we conclude that
linl)inf.A(P(En) — U, Q) > inf {A(u —u., Q) : ue&(L)}=APL) — ue, Q)
as desired. O

5.3.4. Assemble operator with spatially dependent tuning parameter. The operator P(L)
defined in (5.25) has one natural drawback: the construction is too local. To be precise,
for two adjacent rectangles L; and Lo, the construction of P(L£) in L; is independent of
P(L) in Lo, what may cause overfitting and edging problems, especially when the constant
A goes smaller.

In this section we propose another assemble operator which provides a good balance be-
tween local and global optimization. We remark that this new P(L) only works with a
fixed regularizer. That is, we need to fix a regularizer R[y] € Z at the beginning. For
simplicity of the notation, in Section 5.3.4 we will abbreviate R[«, ] by Ra] since 7 is
fixed and we will not train with respect to ~.

Notation 5.31. Let a partition domain £ € V4 be given.

1. Fix L € L. We denote by Ay, a collection of positive vectors o € [A,1/A]"% and A, a
collection of Ay i.e., Ap:={Ar: L€ L};
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2. We denote by W4, a collection of weighted (spatially dependent) parameters based on
the collection Az. We say wy € Wy, if we(z) is constant in each L € £, and wg(x) € A,
if x € L. Moreover, we use Wy, to denote

3. We say Wy, is a collection of weighted reconstructed images

Wa, ={uy: weWa,.},

where
Uy = arg min {F(u — uy, Q) + Rlw](u, Q) : v e Xr} (5.38)
The following training scheme is generalized from scheme (1.15).
Level 1.
L e argmin {A(u. —P(L£),Q): LEVa},

Level 2.

P(L) := argmin {A(u — u¢, Q) : u€ Wa,} (5.39)

where Az :={Ar: L € L} and Ay, is defined in (5.40),
Level 3.

Ap = argmin {A (uc — uqo, L) : a € [A,1/A]"%} (5.40)
Uq = argmin {F(u, —u,L) + Rla](u,L), u € Xr}.

Lemma 5.32. The set Wy, is a closed set under the L? norm.

Proof. By Corollary 5.21 we have that the set Ay, defined in (5.40) is closed, and hence the
collection W4, is closed under the L? norm.

Let {wp},~; C Wy, be given. By definition of w,, there exists sequence {L,}r-; C Va
such that w,, € WAcn for each n € N. By Lemma 5.25 there exists Le V4 such that, up to
a subsequence, £, — L. Fixing an arbitrary Le £~, we may extract a sequence {Ly} ",
from {L£,},7 ; such that x, — xj. Since w, is constant on Ly, we have wy, |, — aj where
aj € [A,1/A]"#, and by Lemma 5.29 we have a; € A;.

In the end, since there are only finitely many L inside £, we may repeat the above argu-
ment only finitely many times and conclude that w, — @ in L2, where &(z) := aj for z €

LecL. 0

Assumption 5.33. Let {w,},2, be a sequence of piecewise constant function such that
Wy — w in L2, Then u,, — uy, in'Y, where uy,, and u, are defined in (5.38).

Theorem 5.34. The assemble operator P(L) defined in (5.39) satisfies Assumption 5.22.
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Proof. Let {L,},2; and L be such that
dy,(Ly, L) =0.
By Lemma 5.32 there exist w, € W4 o such that
P (L) = argmin {F(u — uy, Q) + Rlwn](u,Q) : ve Xr}.
Since {wy, }o , satisfies the box-constraint, and finitely piece-wise constant, there exists w,
a finitely piecewise constant function, such that w, — w in L?, and by Lemma 5.32 we
have
we Wy,. (5.41)

Next, in view of Assumption 5.33 we obtain P(L,) — @, where

@ = argmin {F(u — up, Q) + Rlw](v,Q) : uve Xr}.
Since w € W4, we have & € Wy, an hence, in view of Assumption 5.4, (5.41), and (5.39),
we deduce that

liminf A(u. — P(Ly)) > A(ue — @) > A(ue. — P(L))
as desired. O

Chapter 6. Work in progress and future projects

In Chapter 5, we studied necessary conditions for regularizer spaces and assemble operators,
such that the scheme (CT), admit a solution. As a next step of my work in this direction,
I will derive more meaningful constructions of regularizer spaces and assemble operators.

6.4. The arsenal of regularizer spaces. Concerning regularizer spaces, one example
has been provided in Chapter 2, but only the one-dimensional case was investigated, and
this may be of marginal interest within the context of image reconstruction.

The two dimensional setting of fractional order generalized total variation is proposed
below and is being currently undertaken in [31].

6.4.1. The TGV regularizers with Riemann-Liouville (R-L) fractional derivative. For x €
(0,1), k € Np, and 0 < s < 1, we define the order s left-sided Riemann-Liouville derivative

by:
1 d\" T u(y)
ks - (e g
Ao, (%) Tk+1-2s) <d:c) /0 (@—yp"’

where T'(s) := fooo e 't5~1dt. For example, k = 0, then dfo 2] is defined a.e. and we can use

the fractional order derivative in the same manner of usual integer order derivative. That
is, we may define V*%u by

Viu = (dfo’m}u, df()’y]u) :
We introduce TGV 5, k € Nand 0 < s < 1, as

TGV (1) = min {|Vu —volpg, t1EV0 — V1l py, + o [EVR—2 — SUk—1[ gy, T SEVE—1 0y,
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v € BV(Q,Sym!(R?)), 1 =0,...,k— 1}

where £° denotes the fractional order symmetric derivative. Hence, we can define a regu-
larizer space #Z by % := {TGV" : r € [1, R]}, where R > 1.

The proof that # satisfies Assumption 5.12 is undertaking in [31].

6.4.2. o7 -B Morrey-quasiconvex reqularizer [30]. A more generalized regularizer space can
by constructed by using the /- (Morrey)-quasiconvex operator theory (see [26, 47]).2
To be precise, let 0 < s <1 be given and let &/ be a differential operator of the form

B 61+8 1 3

1

A= Z Aﬂaxi xju for every u € Lj,.(Q;R”),
i,7=1,2

where 9119 is the fractional order derivative, and A% € M®*3 (see Notation 5.8), 4,5 = 1,2.
Let £ be a first order differential operator such that

B — Z B’fiu for every u € L .(Q),
Tk
k=12

where B* € R? for k = 1,2. We define the regularizer (seminorm)

ABQ 5 (u)
= inf {||Vu —vllmgrs) + / Qu f(Bu(x))d : v € LNQ;R®), Bv € L1<Q;R3>}, (6.1)
Q

where Q. f represents the .@7-quasiconvex envelope of f, in the sense of Definition 3.2 in
[47], with f : M3*3 — [0, 4+00) is Lipschitz continuous, and there exists C' > 0 such that
CHE| < £(€) < O] for every € € MP*3 and same C > 0.

The proof that #Z, composed by ABQ}IE defined in (6.1), satisfies Assumption 5.12 is
undertaken in [30].

6.4.3. Generalized Mumford-Shah functional. For k € N, we set
k —
MS&,B(U) =
inf {ao/ |Vu — 1)0|2 dx + a1/ |Evo — 1)1|2 de + -+ Oékl/ |Evp_g — ’Uk71’2 dr
Q Q Q
Ci
—i—ak/ [Ever[* da + BoHN TN (Su) + BIHN (S, U S,2) + BN (U Sv;) +
Q i=1

Ch
e BHN T (U sz1> : v € GSBV(Q,Sym!(R)), le,...,k—l}, (6.2)

=1

2The notation of quasiconvexity is unrelated to the concept of quasi-convexity introduced in (1.26)
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where & := (ag,...,ax), B := (Bo,...,Pr) € R¥1 () denotes the number of components
in v, £ the symmetric derivative, and Sym” the space of symmetric tensors of order k.
Moreover, an approximation scheme of (6.2) based on the framework of the Ambrosio -
Tortorelli functionals, as well as the relevant numerical scheme, are undertaken in [61].

6.5. I'-convergence with non-negative spatially dependent parameters. It has
been observed that, at least in one dimension we may reduce the staircasing effect by
allowing the weight function w to be 0 in certain subdomains (see [50]). It is then inter-
esting to investigate precisely whether the same holds in two dimensions, and to study the
corresponding I'-convergence problem.

We introduce some notations and definitions in order to precisely state the problem.

Notation 6.1. Let Q € RY be an open bounded Lipschitz domain, and let w € SBV ()
be a non-negative function. Let S C ) be given.

1. We say that S € R(Q) if S (the closure of S) is H"~!-rectifiable and HV~1(S\ 5) =0
(Note that if S is HY ~1-rectifiable then S is H" ~!-rectifiable (See [4], Proposition 2.76)).
2. We set Pl(w) :=={z € Q: w(x) >t}, for t >0, and

P®(w) =[] P'(w) and P’(w) := () (2\ P'(w)).

t>0 t>0

3. We set S5 :={zx € Q: dist(x,S5) <6} for AC Q and § > 0.
We allow w to be 0 in certain subdomains as follows:

Definition 6.2. Let w: Q — [0, +00] belong to SBV (Q2).
1. We say that w € P(Q) if HVN~1(S,,) < +o0 and P(w) U P>®(Q) € R(Q).
2. We say that w € P,(Q) if w € P(Q) and

lim [/ wdHN1 +/ wdHN_1] =0.
0=0 | Ja((P>(w))s) A((PO(w))s)

3. We say that w € Pp(Q) if w € P() and satisfies (3.3).

We also define the function spaces SBV,, and GSBYV,,.

Definition 6.3. Let w € P(Q) be given. We say that u € SBV,(Q) if u € LY(Q),
u € SBV(Q\ (P°(w))s) for every § >0, and

/\Vu|2wd:v+/ |u+—u_}wd’;'-[N_l<—1—oo7
Q S9

where the jump set SO of u € SBV,,(), with a vanishing parameter w, is defined by

SV = (U Sﬁ) U P%(w)

>0

where SS denotes the jump set of u in SBV(2\ (P%(w))s). Moreover, we say that u €
GSBV,(Q) if K N\uV —K € SBV,(Q) for all K € N.
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The proof of following theorem is undertaken in [46].
Theorem 6.4. Let Q C RN be an open bounded Lipschitz domain, let w € P.(Q), and for
keN,e>0,let ATE : LY(Q) x LY(Q) — [0, +00] be defined by

ATE (u,v) if (u,v) € WH2(Q) x WH3(Q), 0 < v < 1,

400 otherwise.

.A’Tfjva(u, v) = {

Then the functionals .AT(]Z,E I'-converge, with respect to the L' x L' topology, to the func-
tional

MS,(u,v) = {MSw(u) ifue GSBV,(2) andv =1 a.e.,

400 otherwise.

We remark that the techniques we developed here can be adapted to other functional
models. For example,

1. the weighted Cahn-Hilliard model defined as
1
CH,-(u) := / [€|Vu(x)|2 + é_W(u)] wdz,
I

for u € W12(Q) and with a double well potential function W: R — [0, +0c0) such that
{W =0} ={0,1} with the I'-limit CH,(u) := cyw P,(u) defined for v = xg € BV, (),

where
1
cw = 2/ VW (s)ds and P, (u) ::/ w dHN Y
0 Su

2. the weighted version of functionals involving the L!-norm of the gradient [2].
1
Gy (u) :== / |Vu|wdzx +/ 3 [w(z™)] g(|uJr — u*‘)dHNfl,
Q Su
where u € SBV,,(2), v =1 a.e.;

1
G e(u,v) i= /¢(v) ]Vu|wdx+/ LW(U) +5]Vv|2} wdz, ue€ Wh(Q), ve WH(Q).
Q Q

Appendix A.

Definition A.1 ([5], Definition 4.4.9). Let X be a metric space. We denote by Cx the
family of all nonempty closed subsets of X. Then

dy(C,D) :=min{1,h(C,D)}, C,D € Cy,
where
h(C,D) :=inf { € [0,+o0] : C C Ds and D C Cs},

is a metric on Cx, and is called the Hausdorff distance between the set C and D (see
Notation 3.3 for definition of Ds and Cs).
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Consider X' to be the interval (0,1) with the Euclidian distance. We remark that for two
intervals [a1, b1] and [ag, bo] in (0, 1),

dy([a1,b1], [ag, b2]) = min {1, max {|a1 — aa],|b1 — b2|}}. (A.1)

Indeed, the d-neighborhood of [a1,b1] is [a1 — 0, b1 + 0], and contains [ag, bo] if and only if

d > max{a; —ag,bo — b1 }.
Similarly, the é-neighborhood of [ag, bo] contains [a1, b;] if and only if

d > max{ags — a1, by — b},
and we conclude (A.1).
Lemma A.2. Let I, := [ay,b,] C (—1,1). Then, up to the extraction of a subsequence,

I B I c (-1,1),
where I is connected and closed in (—1,1), and
LYIy) = lim_ L£NT,).

Moreover, for arbitrary K CC I, K must be contained in I, for n large enough.

Proof. Because I, C (—1,1), we have that {a,},., and {b,} -, are bounded and so, up
to the extraction of a subsequence, there exist

Goo := lim a, and by := lim b, (A.2)
n—oo n—oo

where —1 < aoo < boo < 1. We define Ing 1= [aoo, boo] If =1 < oo < boo < 1, Ing := (—1, bso]

if ase = —1, and I 1= [aco, 1) if bso = 1. Hence I is connected and closed in (—1,1) (in
the case in which ay = b = —1, O G = boo = 1, we have I, = @ and it is still closed
in (—1,1)).

Therefore

nh_)rrgodﬂ(ln, I) = nh_)n;omaxﬂan — ool |bn — boo|} =0,
and we have for I, # @,
LYNIs) = boo — oo = lim (b, —ap,) = lim £Y(I,),

n—oo n—o0

as desired.

Next, if K CC Iy then K C («, ) for some «a,  such that a0 < o < f < bs. By
(A.2) choose N large enough such that for all n > N,

an < a < f < by,

so that K C I, for all n > N. O
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Lemma A.3. Let {v:}.., C WH(I) be such that 0 < v. < 1, v. — 1 in LY(I) and
pointwise a.e., and

1
limsup/ [6 }vé’z + —(v- — 1)?| dz < 0. (A.3)
I 2 2¢e

e—0
Then for arbitrary 0 < n < 1 there exists an open set H, C I satisfying the following
properties:

1. the set I\ Hy is a collection of finitely many points in I;
2. for every set K compactly contained in H,, we have K C Bd for e > 0 small enough,
where
Bl = {zel:vi(z)>n}.

Proof. Choose a constant M > 0 such that

1 1
M > limsup/ [5 vt 24 —(ve — 1)2] dx > limsup/ |vZ] [1 = ve| dz = limsup / |cL| dz,
=0 Jr 2 2e e—=0 JI =0 2.Jr1

where c.(z) := (1 — v-(z))?. Note that by (A.3), c. — 0 in L'(I). Fix o, § with
0<o<d<Ll

By the co-area formula, for 0 < € < ¢y with ¢ sufficiently small, we have

00 0
2M +1 > /1 ()] d :/_ HO({z: co(z) =t})dt > / HO({z : c.(z) = t}) dt.

Hence, for each € > 0 there exists d. € (0,0) such that
2M +1

S—o > HO({x D ce(w) = 0e}). (A.4)

Define, for a fixed r > 0,

Al :={x€l: c(z)<r}.
Since v, € W1’2(I ), v is continuous and so is ¢, therefore A‘gf is closed and has at most
(2M 4+1)/(6 — o) 4+ 1 connected components because of (A.4) and in view of the continuity
of c¢.. Note that the number (2M +1)/(d — o) does not depend on € > 0.

For € € (0,£9) and k£ € N depending only on § — o and M, we have

1. A% = Ule It, where each I! is a closed interval or &;

2. for all i < j, max{z: z € I'} < min{m: S Ig}

By Lemma A.2, up to the extraction of a subsequence, for each i € {1,2,...,k} let I be
the Hausdorff limit of the I’ as e—0,ie, I it Ié, with Ié is connected and closed in I,
and for all i < j, max I} < min I}.

Set
k k

Ts == | J(I4)° and Ty := | J(ID)°, (A.5)

i=1 i=1
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where by (-)° we denote the interior of a set. Since
INA* c{zel: c(z) >0}
and c¢. — 0 in L'(I), by Chebyshev’s inequality we have
lim £1(T5) = lim £1(A:) = 2.

Moreover, since T, * Ts, by Lemma A.2 we have
k k k
1 _ 1/7i\o __ . 1/7iN\0o __ 7 1/7iN\0o __ 7: 1 _
£1(85) = 32 £ = 3ty (10 = By 32113 = by £(85.) =2

Thus |I\ T5| = 0. Moreover, since Ty has at most k& connected components, I \ Ts is a
finite collection of points in I.

Next, let K CC Ts be a compact subset. We claim that K must be contained in A‘gf for
e > 0 small enough. Recall I} and I’ from (A.5). Define K; := K N (1})° fori=1,...,k.
Then K; CC (I%)° for each i, and so by Lemma A.2 there exists &; > 0 such that for all
0 <e<e¢j K; C I Define

/ .
g = min Eirf -
z‘e{l,...,k}{ i

For 0 < e < ¢’ we have K; C I’, and so

k k
K=|JK c|JLl=A%
=1 =1

_ 2
Finally, given n € (0,1), set 6 := (1 — \/ﬁ)2 with Hy :=T(q_ 2 and B! = Agl V) , and
properties 1 and 2 are satisfied. O

Appendix B.

B.1. The forward and backward properties of £. Let operator £ be defined as in (1.25)
and v € L? be given. We define the forward error by

F(a) = |lv =L, @) |Tapy » (B.1)

and the backward error by

Bla) = ¢ |.2(v,0) ~ W)ilZaqr (B2)

(v)] = ]{u dz.

In Proposition B.1 and B.2 we establish some basic properties of (B.1) and (B.2).

where

Proposition B.1. Let v € L™(I) be given. Then the forward error Z () is non-decreasing.
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Proof. Let 0 < a1 < ag be given. We observe that

1 1
5 12 (@1,0) = vl L2y + 1 TV (L (01, 0)) < 5 L 02,0) = vllz () + TV (£ (02, v))

(B.3)
and

1 1
5 12 (az,v) = 72y + 2TV (L(az,v)) < 5 12 (a1, 0) = 72y + 2TV (L(a1,0)) -
Adding up the previous two inequalities yields
TV (L (a1,v)) + TV (L (az,v)) < TV (L (a2,v)) + TV (L (aq,v)),

that is,
(g — 1) TV (L (ag,v)) < (g —a1) TV (ZL(aq,v))
which implies that
TV (Z(ag,v)) <TV (ZL(a1,v)). (B.4)

Hence, in the view of (B.3) and (B.4) we have
1
B |-Z (a1, v) — UIILz + TV (Z(a1,v))
1
< 3 |-Z (a2, v) — vHLz + a1 TV (£ (ag,v))

1
< S 1202, 0) — vl + TV (Z(0n,0)
which implies that f(«) is non-decreasing as desired. O

Proposition B.2. Let w € BV (I) be a piecewise constant function with M pieces as
defined in Notation 4.6. Then the backward error B(«), defined in (B.2), is continuous,
piecewise convex, and strict decreasing to 0.

Proof. According to Lemma 4.15 there exist M’ < M positive numbers
O=ap < a1 <-apy_1<apy < +oco (B.5)
such that items 1-3 in Lemma 4.15 hold. Without loss of generality, we assume that
(w)r =0. (B.6)

We claim that for arbitrary 0 < i < M’, i € N, we have that #'(«) < 0 for all & € [, i41).
We first deal with 0 < a < aq. Let

A= {In(5), Im(j) € CE(w) UCp(w), 1 <j < M}.

Case 1: if Ips(j) is a low (high) extreme (boundary) region and w(Ip/(j)) < (>)0 for all
Iy (j) € A, we are done. Indeed, we observe that, for each region I/(j) € A and in view
of (B.6),

[ 1@ - @il [ 1 #eu@la
Int(5) In ()
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2
1) (o (T Jmk,ﬁmu6%<>
] (I )] = :857) > i In() € Co(w).

and hence

| d 2 (2~ lw(mG)I) < 0, if In(j) € Ca(w),
—— Lo, w de | =

5 do </1M(j)| (o, w) = (w) ) ( o |w([M( ))y) <0, ifIy(j) € Crw),

as long s 2a < ()] [w (T ()] 1 Tag () € Ci(w), or e < [1ag()| o Tas ) i T (5) €
Cp(w). Therefore, we have #'(a) < 0if 0 < o < &/, where

o = (B.7)

mm{MMMmmmm¢WUMMm@mwueAmm> <ﬂe@mﬁ.

The case a > o will be dealt with later.

Case 2: there exists jo € A such that Ip/(jo) is a low extreme region but w(Iy/(jo)) > 0
(the case In(jo) is a high extreme region but w(Ips(jo)) < 0 could be dealt in a similar
way). Then we have

2 . . 20 2
Amyz@w@nmzmmm(mmum+mmw),

and hence

—— Lla,w)|“de | =2 ———— +w(lp(J > 0, B.8
2 do ( IM(jo)| (o) ) TGy 100 (B8)
which might cause #'(a) > 0.

However, in view of (4.2), if Ip/(jo) is a low extreme region, there must exist two indexes
1 < 4§, 70 < M such that

0 < w(lnr(jo)) < min {w(ln (o)), w(ln ()} (B.9)
and hence one of the following three situations must hold:

1. In(j5) and In(j) are two high extreme regions, or

2. In(j§) is a high extreme region and Ips(jj) is a high boundary region (that is, jj = 1
or M), o

3. jo=1 and Jo = M, i.e., two high boundary regions.

(if not, Ips(jo) would not be a low extreme region).

We treat situation 1 first. We first assume that j) = jo + 1, 5§ = jo — 1, and

(Har (o)l + Has (o + D)) [w(Lar (o)) — w(Iar(Go + 1))
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< (1m(Go)l + [ITn (Go — D) [w(Zar (o)) — w(Im(Go — 1)) . (B.10)
We note that, in view of (B.9),

2c 2c
w(In (o)) + — <cw(y o+ 1) - — B.11
(o)) + gy < ar o+ 1) = e ) (B.11)
for o < @, where @ is defined that that
2a 2a
w([l ] + —=w( o+1) — ———.
By (B.10) we have that
Ld |L (e, w)|? dz
2 da Ing (jo+1)
1d 20 2
=—-—— |7 ] 1 I ] 1) - ———
2da [‘ w o) <w< b o+ 1) IM(joJrl)\) ]
2«
=2l ————w{Upy(Jo+1
(o~ o o+ )
for all @ < @. Hence, in the view of (B.8) and (B.11), we have that
1d
([ ewpa) g (e (B.12)
2 do Ing(jo) 2da In(jo+1)
2c 2c
=2 ———— +wm(o) | +2 [ =—— —w (I (o +1
<MMMI <mmﬁ QWUMJH <MW)>0

=2 (wrtion + (2005 ) = (i o+ 1) = 2 )| <0

for all & < @&. Note that at o = &, we have
Z (o, w)(In(jo)) = L (&, w)(In(jo + 1)),
which means that (@, w) has at most M — 1 constant pieces. Therefore, we have & > oy,

where «a is obtained in (B.5). If (B.10) does not hold, we use the region I;(jo— 1) instead
of Ins(jo+ 1) in (B.11) all the way to (B.12), and obtain the same result.

For the case in which Ij/(j§) is not adjacent to Ip/(jo), we may obtain a chain such that
w(In (o)) < w(ln(fo + 1)) < -+ <w(lu(jo — 1)) < wllm(jo)), (B.13)

and we again have oy < @ where @ is defined in (B.11) (actually, o in this case would be
much smaller than & since the value of £ (av, w)(Ips(jo)) will reach the value of w(Ips(jo+1))
early than w(Ips(j)))). Moreover, for j such that jo+ 1 < j < j{, — 1, we have Ij;(j) are
step regions and we don’t need to worry about them.

Note that in the above argument, we only used the strength of I5/(jj) but not yet Ins(j()-
Moreover, we can deal with situation 2 similarly by choosing jj to be the extreme region
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but not a boundary region since, according to Theorem 4.5, a boundary region only moves
with half speed compare with extreme region.

Now we deal with situation 3. First we assume that jj = 1, jo = 2, and j{ = 3. That is,
M = 3. We also assume that

(D] + [13(2)] /2) (w(l3(1)) = w(I3(2))) < (3)] + [13(2)| /2) (w(I3(3)) — W(13(2])3))-

—
—_
=

SN—

According to Theorem 4.5, we have

1d 9 _i w o« 2 _ o Cw
e [, (Zlow)in= 2 _|13<1>|( (1) - 755) |- (i~ wman).
and
1d 2, d [ f w .« d _ o«
i (Z10 0 e = g |1 @) (wrs ) - %) |- (i~ w o)
Let &' be such that
o 20/
w (I3 (1)) - ) w (I3 (2)) + 5 2)) (B.15)

and we observe that for 0 < a < a,

li «, w X *i X li o, w 2 X

2 do 13(1)(3( K 2da /(2) d T 2da ()(‘Z( w))"d

o « 2
= (w0 ”) (g vt “””) #2 (s @)+ )

<2y o)) +2 (wn @)+ 2 ) <o

where on the first inequality we used (B.14), and (B.15) in the last inequality. In the
general case that M > 0, we may obtain a chain as in (B.13), and the same result holds
since step regions do not count. Moreover, we have & > a7 according to (B.15).

In the general case, where there is a collection

S={In(j) € A, In(j) is low extreme region and w(Ip (7)) >0, 1 < j<m}

such that # (S) > 1, there must exists a collection H of regions Ij/(j) such that # (H) >
#(S) + 1 and for each In(j) € S, there exist In(j') and In(5”) € H such that one of
situations above is satisfied. Therefore, since () is a finite summation over each region
In(j), we conclude that ' (a) < 0 for 0 < @ < a1 and we finish Case 2.

Now we deal with what we left below (B.7). Let

o = Lmin (|1 ()| (T ()], G € A
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and define v’ = Z(a/,w). Then we may treat.Z (o, w) for a > o’ by looking at £ (a —
o/, w') and applying Case 2 above.

Hence, we have shown that %'(a) < 0 for all 0 < a < «;3. To show that #'(a) < 0
for a1 < a < ag, we set w; = ZL(a1,w) and apply the same argument above to
0 < a < as— a1 on wy to obtain that

d (1
T (2 H.,f(wl,aﬂ%g(l)) <0, 0<a<ay—a;
and this yield

d

1
B (o) = o <2 \.i”(w,a)”%g([)) <0, oy <a< .

Note that (wq); = 0 since, if not,

lim Z(a,w) = lim Z(a— a1, wy) = (w1); #0,

a—r 00 a—00

contradicting (B.6).

Since #(«a) is continuous according to Lemma 4.15, we conclude that %B(«) is strictly
decreasing for 0 < a < ajp; and ZB(ay) = 0 since (w); = Z(apy,w), by Lemma 4.15
again. (]

Proposition B.3. Let v € BV(I) be a monotone function and recall vy from Notation
4.6. Then the following statements hold:

1. (UN)[ = (’U)[,’

2.
au(on) = 5 /I o () — (o) 1] da (B.16)
3.
/]vN(x) — Z(a,vn)(z)|de =2, for0 < a < ;/’UN(JJ) — (vn)1| dz. (B.17)
1 I

Proof. Without loss of generality, we assume that v is monotone increasing. Let N > 0 be
fixed and define vy as in (1.24). Then, by definition of vy we have (vy); = (v);.

We now prove (B.16) and (B.17). First we assume that there exists a region Iy (my),
1 <mpy < N, such that

(o)1 = on(In(mn)). (B.18)
Define the subintervals (see Figure 11a)

Il = U IN(]C) and Ih = U IN(]C),

1<k<mpn my<k<N
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and we first focus on the subinterval I;.

Since vy is monotone increasing, we have
In(k) € Cs(vn), 1 <k <mpy,
and for
0 < Na<ovn(In(2)) —on(INn(1)),
we obtain, according to Theorem 4.5,
Z(a,vn)(In(1)) =v(In(1)) + Na, and
L(a,on)In(k)) =v(In(k)), 1 <k <my.

There,
a1 == (vn(In(2)) — v (In(1)))/N,
and
Z(a1,on)In(1)) = vn(INn(2)).
Moreover, from (B.19) we have, for 0 < a < ay,

lon(z) — Z(a,vn)(x)| de = / (Z(a,vn)(x) —vn(z)) de = %(Na) = a.

I I

Next, set vk := (a1, vy) and observe that, for

0= o< ah = o (ow(In(3) — on(In(2),
we have

L0, vh)In(1) = ZL(e, vk)(In(2)) = v(In(2) + =, and

2
ZL(a,vn)In (k) = v(In(k)), 2 <k <my.
Hence for a = of, we obtain
Z (o, vy)(In(1)) = Z (0, vy) (In(2)) = vn (In(3)),

and for

g = 4 oy = %(UN(IN(z)) —on(In(1))) + % (on(In(3)) —un(IN(2))),
we have that
L(az,on)(In(1)) = L(a2,v8)(IN(2)) = vn(IN(3)).

Moreover, we observe that for a; < a < as,

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

/(.i”(a,vN)—vN)d:c:/ (i’(al,fuN)—vN)d:L‘—i—/ (Z(a,vn) — ZL(a1,vn)) dz

I I; I

- / (on(In(2) — oy (In(1)) + / (Ll — o1, L{en,vy)) — Lo, vy)) de
In(1)

In(MUIN(2)
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2 N
=ap + NE(Q - Oél) = q,

where on the last equality we used (B.21) and (B.22).

Similarly, for
3
a3 = 57 (o (In(4)) = on(In(3))),

we have that

ZL(as+as,on)(In(1)) = L(a2+as,v8)(IN(2) = ZL(az+as,vn).(IN(3) = vn(In(4))
Recursively, we obtain
, my — 1
mN—l = N
and at o = ayy, 1, where

Q

(on(In(mn)) —vn(IN(my — 1)), (B.24)

mN—l mN—l

Umy—1:= Y o= Y %(UN(IN(k+1))—vN(IN(k))) (B.25)
k=1 k=1
my—1

- Z %(UN(mN)—UN(IN(k)))’

k=1
it holds

Z(omy-1,v8)(IN(1)) = ZL(amy-1,0n8)(IN(2)) =
o= L(amy-1,08)(In(my — 1)) = ZL(my-1,v8)(In(my)) = vn(In(my)).  (B.26)
Moreover, by using a similar computation as above we deduce that
/ (Z(a,vn) —on)dr =afor 0 < o < apmy—1 (B.27)
I

and

| (Z(amyr,0)(@) = on(a)) da = [ ((ow)s = on(a) d.

I I
Next, we claim that
Z(amy-1,v8)In(N)) = Z(amy—1,on8)(IN(N = 1)) =
= L(amy—1,v8)Un(my + 1)) = L(amy—1,o8) (In(my)) = vy (In(my))
and

/ (v — Z(a,vN)) = a. (B.28)
Iy

Indeed, in order to reach a contradiction we assume that Z(amy—1,vn8)(In(my)) >
uvn(In(mp)). In view of (B.26), we have

(Z(my-1,vn8))1 > ZL(amy—1,08)(In(mn)) = vn(In(my))
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and hence by (B.18), Proposition 4.12, and Theorem 4.9, we obtain

(on)r = on(In(my)) = lim Z(a,vy)

= lim Z(a, Z(amy-1,Vn)) = (L(mpy-1,vn))1 > on(In(mn)) = (vn)1, (B.29)

a—0o0

a contradiction. Moreover, using the same argument as in (B.19) and (B.21), we may
deduce (B.28).

That is, we have that 2 (amy—1,vn) = vn(In(mny)) is a constant, and we conclude that

as(vn) :/I (on — (on)1) da = ;/I|UN — (ow)1|da, (B.30)
1

where as(vy) := qmy—1. The behavior of (o, vy ) in subinterval the I, exactly mirrors
its behavior in I;. That is, Z(«, vy) behaves “symmetrically” with respect to the average
value (v);. See Figure 11a to Figure 11c for an illustration. Moreover, we remark that the
set {a1,...,amy—1} are only a subset of (4.14) in Lemma 4.15. We refer to Remark B.5
for details.

For the general case that there is no index my such that (B.18) holds, but an index my
such that

on(In(mn)) < (vn)r < vv(In(my + 1)),

we only need one more step to obtain (B.30).

Indeed, using the same argument until (B.24), we have that there exist oy = ap > 0
such that (see Figure 11d)
Z(a,vn)(Un(1)) = -+ = ZL(ag,on)(In(mn)) < (vn)r
and
Z(an, vn)(In(N)) = -+ = L (o, on)(In(mn + 1)) > (on)1-
Also, we have
N
L+ a,on)(In1)) ==Ly + a,on)In(my)) = on(In(my)) + m—Na
for
m
0<a<al, = (o) — on(Iy(my))).
Hence,

L(amy,vN)In(k)) = (vn)r for 1 <k < mp,

/

where ay, = a; + ay, ., and again we have (B.30) with as(vn) == amy-

Note that we also obtain

L(amy,vN)In(k)) = (vn)r for my +1 <k <N,
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L
0 0.5

(A) Il = (0,049), Ih = (051,1), IN(mN) =

(c) Z(10,vy) in blue

(B) Z(5,vn) in blue

0.5

(D) Z(50,vy) in blue

FiGure 11. N = 100. vy is plotted in red dashed line, and the constant
(v); is plotted in green. Moreover, in Figure 11b to 11d, « equals to the
area of the triangles formed by the blue line and the red line (left lower

corner and right upper corner)

since Z(as(vn),vn) = (vn)r and use the same contradiction argument as in (B.29).

Finally, in view of (B.27) and (B.28), we observe that

a:/I (Z(a,vy) —on)de =

1
2

/ (v — Lo, vx)) dz

1
:/’UN—g(a,UN)|, f0r0§a<2/|vN—(vN)Id:c,
I I
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and this conclude the proof. ]

Remark B.4. By (B.16), and invoking Lebesgue Dominated convergence theorem, we
have that

lim ag(vy) = hm /|UN—UN1|d:L“— /| v)r —o(t)| dt,

N—oo

and thus as(vy) is bounded and convergence.

Remark B.5. Since vy is a piecewise constant function with N pieces, we may apply
Lemma 4.15 to get a chain

O=ap<a; < - <ay <-+o0o
such that items 1-3 in Lemma 4.15 are satisfied, where N’ < N. We use
O=ap<al <ah<-<al, ;<400
to denote those a’s we found in (B.20), (B.23), and (B.25). Then,
{aﬁ, 1§i§mN—1}C{ai, 1<i<N'}

since at each a! we have Z(al, vn)(In(i)) = vn(In(i + 1)), and hence £ (, vy) loses one
piece in I;. Moreover, we may repeat the argument from (B.18) to (B.25) on the subinterval
I;, and obtain

0<aly <ay_,<--<al .1 <+o0

such that Z(al,vn)(In(k)) = vn(In(k — 1)) at each af, and hence £ (a,vy) loses one
piece in I, and this

{af, N2kzmy+1} o, 120 <N}
Moreover, we have
{aﬁ, lgigmN—l}U{aZ’, Nzk:sz—i—l}:{ozi, 1<i<N'}.
Proposition B.6. Let v € BV (I) be a monotone function and define

1
Eoy (@) = 2/J|$(a,v1\;) — vNIde.

Then &,,.(0) =0, and &, () is piecewise linear and increasing in each linear piece. More-
over, if & € Jg{)N(a), then
Ey (@) > & (a™).

Proof. Following the same argument as in Proposition B.3, we have for

0= o< an = 5 (on(I(2)) — o (I (1)),

that
Z(a,vn) =vN(In(1)) + Na and &, ( /\DS,” o, ue) — o) de = %%(NO&)Q.
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Therefore, for 0 < o < vy, we have &, (o) = Na, and hence
& (a7) = lim &,() = (en(In(2) = on(In (D). (B.31)
However, at o = a1, Z(a1,vn)(In(1)) = vn(In(2)), and thus for

a1 < a<ayi= o+ — (ox(In(3)) — on(In(2)))

N
we obtain
1|1 2 N 2
Eunlo) = [N (3= + on(iv@) - on(ix)) + 3 (G @) ] ,
therefore

We deduce that

&,y (af) = Jlim €, (2) = 5 (on(In(2) = o (In (1)) (B.32)
and
€1y (07) = Jim £l (0) = 5 (n(In(2) — on(Ix (1) + (on{In(3) — en(In(2).

Following a similar computation, we have
1, (03) = 3 (on(In(2)) ~ ow(In(1)) + (o (In(3)) ~ vw (I (2)).
Epy (a3) = % (on(In(3)) —on(In(1))) + é (on(In(3)) —on(IN(2))),
and
Eon (03)
1

=3 (on(IN(3)) —vn(INn(1))) + é (on(IN(3)) —vn(IN(2))) + (vn(In(4)) — on(IN(3))),

Euy (a3)
= & (o (v () — ox (I (D)) + § (ox (I (4) — ox (In(2) +  (on (I (4) — ox (In(3)),
and

-1
Ly (07) = 7 | S ol (D)) — uw(Un (k) | +on I+ 1) — o (In(D),
k=1
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l
iy (of) = g O (onlIn(1+ 1)) — on (I (1),
<

k=1
for any [ such that 1 <[ < my. That is, we conclude that

‘J&’)N(a) <N

and for each & € J&’JN ()
Euy (@7) > &, (@7).
O

B.2. The uniqueness of solution of bilevel training scheme. In this section we prove Theo-
rem 4.13. To do so, we introduce several definitions, assumptions, and propositions first.

Definition B.7. For a given clean image u. € BV, we define the deformation error by
1 2
Euc(0) = 5 112 (0 ue) = uelFagr)

and the level N deformation error by
1 2
Eoy () = B £ (v, ue,n) — UC,NHL2(I) :
Moreover, we define the denoising error by

1 2
5mv(04) = 5 HD?(OC,UN) - ]€77N

. (B.33)
L2(1)

Note that by Proposition B.1 we have that &, (a) and & n(c) are monotone increasing
and, according to Proposition B.3, we have that &, (a) (€x n(c)) is a constant for all
1
Euc(os(ue)) = 5

a > as(ue), with
][uc dr — u.
211 L3(1)

Moreover, we have &, () is strictly decreasing to 0 by Proposition B.2 with w = ny.

2

Assumption B.8. Let u. € BV (I) and N € N be given. We say that an image uqn with
resolution N is an acceptable compressed deformation of u. n if the following conditions
are satisfied:

1. if In(k) is a high (low) boundary (extreme) region of u. N, then it is also a high (low)
boundary (extreme) region of ugn and
ue N(In(k)) 2 (S)uan(In(F));
2. if In(k) is a step region of uc N, it is also a step region of ugn and we have

% (ue,n(In(k = 1)) +ue,N(IN(F))) < ugn(IN(F)) (B.34)

< 5 (ren (I (k) + ey (I +1))).
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Proposition B.9. Let u. ny be monotone and uq N satisfying Assumption B.8. Then

Euan (@) = 1 12 (0 ua ) — e
s non-decreasing as o — 0.
Proof. Without loss of generality, we assume that u. n is monotone increasing. That is,
ue,N(IN(1)) <ueN(IN(2)) < ueNn(IN(N = 1)) <uen(IN(N)),
and hence by Assumption B.8 we have

ue,N(IN(1)) S ugN(IN(1)) S ugn(IN(2) < -
<ugN(IN(N —1)) Sugn(IN(N)) < uen(IN(N)).

Therefore, in the same spirit of the argument used in the proof of Proposition B.3, we have
for

0<a<a := e [ug N (IN(2)) — ugn(IN(1))],

N
that
Z(a,ugn)(In(1)) = In(In(1)) + Ne,
and
uun (@) = 3 120, D) — e gy (B.35)
1 1
= 2] [Zn(In(1) + Na — uen(In(1))];
and for
o < 0 < oy = o fuan (In(3) — wan (I ()] +an,
that
L0, a3 In (1)) = L ua ) (In(2) = In(In(2)) + (@ — ar),
and
2
(@) = 57 |2 (IN() + 5 (@ = ) =~ we(Iv(1)] (B.36)
2
F o [ INn@) + 0 - an) — uen(n(@)]

We note that (B.35) is increasing for o € [0, 1) since Zn(In(1)) > uen(In(1)) by as-
sumption. We discuss the monotonicity of (B.36) in two cases:

Case 1: if
ue,N(IN(1)) S ugN(IN(1)) < uen(IN(2) < ugn(IN(2)),
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then both (B.35) and (B.36) are increasing, and so g, («) is increasing for 0 < o < aa.

Case 2: if

e, N(IN(1)) S ugn(In(1)) < uaN(IN(2)) < ue N (IN(2)),
then the second term in (B.36) is decreasing, and hence €4, (o) might decrease. However,
we show that with condition (B.34) this will not happen. Indeed, in view of (B.34) we have

ug,N(IN(2)) — tueN(IN(2)) > uen(IN(1)) — uan(IN(2)),
and thus, by (B.36), that for oy < o < o,

Eugn (@)
1 1 N
= 5 g NN (2)) = uenIn)] + 5 [uan(In(2) = uen(IN(2)] + 5 (@ —a1)
1 N
2 5 [uaN(IN(2)) = ue N (IN(1) +uen (In(1)) = ua N (IN(2)] + - (@ — 1)
N
> 5(0& — Oél) > 0.
For az < a < a3, a3 < @ < ay,..., we may prove that &, () is non-decreasing by
adopting the same computation, and this concludes the proof. ]

So far we have not assume any relation between the clean image u. y and the noise 7.
However, Theorem 4.13 does not hold for arbitrary ny, and the following assumptions have
to be enforced.

Assumption B.10. Let u. € BV (I) be monotone and let N € N be given. Here 1 < k <
N.

1. The observed noise changes sign consecutively, that is,

nn(In(k))nn(In(k + 1)) < 0; (B.37)

2. uy N is oscillating at least at half rate of uc N, that is, we require that

|un, N (In () = upn(In(k+ 1)) = % e, N (IN(K)) = teN(IN (K +1))]; (B.38)
3. if uy N changes the sign of jump of uc N, that is, if
(un,n (In (k) — unn(In(k + 1)) (te,n(In(F)) — uen(In(k +1))) <0,
then we require that
nn(In(k)) = —nn(In(k +1)). (B.39)
4. we assume that
un, N (In(1)) > (<Juen (In(1))
if ueN(IN(1)) > (<)uen(IN(2)), and
un NN (N)) > (<)tie,y(IN(N))
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if ue N(UIN(N)) > (e Nn(IN(N —1)). Lastly, we assume that

[n(In () = [n(In(N))] = %max{!??(fzv(’ﬁ))\, kr € Cr(uen)}- (B.40)

Proof of Theorem 4.13. We denote the local error by

L0 g ) (I (k) — o (I (),

1
Een(a) == 3 |-Z (av, up ) — Uc,N”i2(1N(k)) T oON

where 1 < k < N. We write that

N
En(@) =) & nl)= > EGrl@+ D Gul@+ D> Enla)
k=1

In(k)eP(a) In(k)eN (@) In(k)EZ(a)
where, for each o > 0, we say that a region In (k) is positive active of En (o) if & y(a) > 0,
negative active if £, \(a) < 0, and inactive if &, (a™) = 0. Moreover, we use N (c), P(a),
and Z(«) to denote the collections of such regions for each a > 0.

We will prove that
1
=~ n(1 B.41
0 = = I (1) (B.41)
is the desired minimizer of (4.7) by showing that
P(a) =@ for all @ < am, Z(ay,) ={In(k), 1 <k <N}, and N(a) = @ for all a > ay,.

Items 1 and 3 in Assumption B.10 implying that if Iy(k) € P(0) UN(0), then it is an
extreme region of ny. We claim that

Een(0) = —nnv(In(k))| < 0.

Indeed, without loss of generality, we assume that wu.y is monotone increasing. Then
In(1) € P(0) UN(0) is a low boundary region of u, x by item 4 in Assumption B.10, and
hence for o small enough

d1l1 d1l1
& (@) = oo~ lnw (v (D) = Na = uen(In (D) = 2= I (T (1)) - chrB "

that is,
E1.n(0) = = Inn(In(1))] <O.
The case in which Iy (V) is a high boundary region of u. y and hence a high boundary of

uy, N can be dealt similarly. Now we assume that In(k) € Cr(ucn) is a step region, that
is, we have

ue NN (k= 1)) S uen(IN(K)) < uen(In(k+1)).
We claim that if I (k) is a high extreme region of u,, y, then u, n(In(k)) > e N (IN(E)).
Suppose not. We have

e N(IN(K)) > upn(In(k)) > max {uy N(IN(E—1)),up Nn(In(E+1))}. (B.43)
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However, uc n(In(k)) > uy n(In(k)) implies that ny(In(k)) < 0, and thus by (B.37) we
have ny(In(k + 1)) > 0. Therefore, we have that

umN(IN(k—i-l)) = UC,N(IN(k+1))+77N(IN(k+1)) > Uc,N(IN(k"i'l)) > uQN(IN(k)) > Un,N(IN(k'))’

which contradicts to (B.43). Hence, by using the same computation as in (B.42), we deduce
that

En(0) = —nn(In (k)] < 0. (B.44)

The case in which Iy (k) is a low extreme region of w,y, and hence wu, ny(In(k)) <
ue,N(In(k)) and (B.44) holds, can be proved similarly.

Therefore, at @ = 0, we have P(0) = @ and

N
En0)=—= > |nn(In(k)] <0and EN(0) > & (0) == [nn(In (k)
In(k)eN(0) k=1

where &, is defined in (B.33) and (nn)r = 0 by (4.1).
We next claim that P(a) = @ if @ < a,, where a,, is defined in (B.41). Assume that
ue N(In(k+1)) and ue n(In(k 4 2)) are two step regions of u. y, that is,
e, N(IN(K)) S ueN(IN(k+1)) < uen(IN(k+2)) < uen(In(E+3)).
Without loss of generality, by (B.37) we assume that
nn(In(k)) <0, nn(In(k+1)) >0, ny(In(kE+2)) <0, and nn(In(k +3)) > 0. (B.45)
Two situations could hold within interval Iy (k + 1) and In(k + 2):

Case 1: if up n(In(k + 1)) < uyn(In(k +2)), then we have, by (B.45), that
un NN (k) <ten(UIN(k+1)) <upn{UINn(k+1)) <upn(In(k+2)) < upn(In(k+3)),
and hence u, ny(In(k + 1)) and u, n(In(k + 2)) are steps regions, which implies that
512+1,N(0) =0> gl,c+1,nN(0) and 512+2,N(0) =0> gllg+2,nN(0)-

That is, In(k + 1) and In(k + 1) € Z(0) and the noise ny(In(k + 1)) and ny(In(k + 2))
remain un-removed. Moreover, according to the argument in the Proposition B.3, the
region Iy (k + 1) remains in-active until a > 0 large enough such that

Z (e, un N)(IN(1)) = Z (0, upn)(In (k) = ue,n (In(K))-
However, according to (B.40) and (B.41), we have
2 (am, ug N)(IN (1) = uen(IN(1)) < uen(In(F)),

and hence we have

In(E+1) and In(k+ 1) € Z(a) for a < auy,. (B.46)
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Case 2: If uy y(In(k + 1)) > uyn(In(k +2)), then we have by (B.45) that
ty, N (IN(K)) < unn(In(k+ 1)),
up NUn(k+1)) > up n(In(k+2)), and
un N(Un(k+2)) < upn{UIn(k+3)),
and (B.39) implies that
IN(In(k+1)) = =y (In(k +2)). (B.47)

Hence, u, y(In(k + 1)) and u, y(In(k + 2)) are two extreme regions and, according to
Theorem 4.5, we have

ZL(a,upN)IN(k+1)) =un(In(E+1) +v(UIn(k+1)) —2Na
and

L(o,upN)UIN(E+2)) = uen(Un(E+2) +v(In(k+2)) +2Na.
Thus, by (B.47), at a = &1, where a1 is defined by

2Négq1 :=nn(In(k+1)) — % (ue, N(IN(k +2)) —uen(IN(k+1))) < [nnv(In(k+1))],
(B.48)

we have
LG ) I + 1) = L1, ) (I (k +2)) (B.49)
and both In(k+ 1) and In(k + 2) are step regions of £ (&1, Uy N)-

We observe that (B.49) not only causes a staircasing effect but also, together with (B.48),
leaves part of ny(In(k+ 1)) and ny(In(k 4 2)) un-removed. Moreover, we have

Erpin () = Eppy gy (@) <0 and &y n(a) = Eppa gy (@) <0 for o < (Qpr1)

but

512+1,N((54k+1)+) =0> 5llc+1,nN (Gg41) and 51/<;+2,N((dk+1)+) =0> gl/c+2,77N(6‘k+1)'

That is, Iy(k+1) and In(k+2) € N(a) for a < agi1, and In(k+1) and Iy(k+2) € Z(a)
for a = @41, and according to (B.40), we have axy1 < .

We next claim that if @41 < @, then In(k+1) and In(k+2) € Z(a) for ap1 < o < apy.
Indeed, let un,Nl = Z (041, unN). One can check that 7711\/ = un,Nl — uc, N satisfies all
assumptions in Assumption B.10. Then, since In(k+1) and Iy (k+2) are two step regions
of u, n' by (B.49), we may apply Case 1 above to u, y! and obtain that Iy (k + 1) and
In(k + 2) are inactive for at least 0 < a < a, — @41 because

L (a1, un,N)(IN(L)) = e, (In(1)) = (Inv(In(1))] = Névta).

Hence, we have

In(k+1) and In(k+2) € Z(«) for all axy1 < o < ap,. (B.50)
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Therefore, we conclude that
Z Ern(a) <0 for 0 <o < a:=max{ay, In(k)€Cr(ucn)} < am, (B.51)
[N(k)EC[(uC,N)
and, in the view of (B.46) and (B.50), we have that
Z En(a) =0 for & < a < ap,. (B.52)
In(k)ECT (uc,N)
In the end, since [ny(In(1))| = |nn(In(NV))], then we have, by item 4 in Assumption B.10,
that
g{’N(Oé) =+ (c/,]/\[,N(OZ) < 0 fOI' o < [677°%
and
Ei,N(am) + gJ/V,N(am) = 0.
Therefore, and taking into consideration of (B.51) and (B.52), we have that
0>&y(a)= > &nl)+ Y Enla) =& (a)
keN (o) keZ(a)
for 0 < a < ey, and Ex (o) = 0.

We next claim that .#(u, n,on,) is an acceptable deformation of u.y. Item 1 in As-
sumption B.8 is satisfied because of (B.40), and (B.34) is satisfied because of (B.38) and
(B.39). Hence, we may apply Proposition B.9, and deduce that

En(a) > 0 for am, < a < ag(uy,N)-

This, together with the fact that £ (o, u, n) is a constant for o > as(uy n), concludes the
argument. O

Remark B.11. We cannot reach full-recovery if u. is not a constant. As (B.49) holds,
the damage is permanent, since once two pieces of £ (o, uy n) merged together, they can
never be separated again.
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el 0.5

0.1+
0.2
03k

04|

0.6

-0.7

(A) Z(am,uy n) in blue, uc n in red.

(B) Ey(a) inred and & (a) in orange

FIGURE 12. Heavily staircasing effect is observed in Figure 12a, even if
with an ideal noise. In Figure 12b, £y (a) > &, (o) indicts that not all

noise are removed

LIST OF SYMBOLS

AT.: Ambrosio - Tortorelli approximation. 6
AT, .: Weighted Ambrosio - Tortorelli approximation. 7

uc: Clean data (signal in one dimension, image in two dimension). 3

upn: Corrupted image data (signal in one dimension, image in two dimension). 2

F: Fidelity term in image processing. 2
uc,N: Level N finite resolution clean image. 8

uy n: Level N finite resolution corrupted image. 9
En: Level N error function. 9

M S: Mumford-Shah image segmentation functional. 5

MS,,: Weighted Mumford-Shah image segmentation functional. 7

£: Reconstruction operator. 9
R: Regularization term (regularizer) in image processing. 2

SBV: Space of special bounded variation. 5

TGV*s: Fractional order total generalized variation. 4
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