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Abstract. In the first part (Chapter 2) of this thesis, a new fractional order seminorm,
TGV r, r 2 R, r � 1, is proposed in the one-dimensional setting, as a generalization of
the standard TGV k-seminorms, k 2 N. The fractional TGV r-seminorms are shown to be
intermediate between the standard TGV k-seminorms of integer order. A bilevel training
scheme is proposed, where under a box constraint a simultaneous optimization with respect
to the parameter ↵ and the order r is performed.

In the second part (Chapter 3) of this thesis, the Ambrosio-Tortorelli approximation
scheme with weighted underlying metric is investigated. It is shown that it �-converges
to a Mumford-Shah image segmentation functional depending on the weight ! dx, where
! 2 SBV (⌦), and on its value !�.

Some new ideas about bilevel training scheme and future works are collected in Chap-
ter 4-6.
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Chapter 1. Introduction

1.1. The image processing and bilevel training scheme. The mathematical treat-
ment of image processing is strongly hinged on variational methods, partial di↵erential
equation (PDE), and machine learning. Variational methods provide model-based ap-
proaches which are mathematically rigorous, yield stable solutions and error estimates.
However, the underlying techniques have shortcomings in the adaptation to real data. Al-
though machine learning provides data-based reconstruction approaches which are best
fitted to the given data, it neither guarantees the reconstruction results as the variational
method does, nor it o↵ers insights into the structural properties of the image model. Hence,
an unified approach that combines the advantages of a variational model with the data-
based approach is needed, and many contributions toward this goal have been presented
in recent articles (see [35, 54]). In particular, the bilevel training scheme is one of the most
popular.

We start with a brief historical summary of the state of the art of the bilevel training
scheme for model training. In machine learning, the bilevel training scheme is defined as a
semi-supervised training scheme that optimally adapts itself to the given “perfect data”.
For example, in [23, 24, 37, 38, 73, 74]) authors consider the bilevel training scheme in the
study of finite dimensional Markov random field models. In inverse problems, for instance
in [49, 48], authors discussed the optimal inversion and experimental acquisition in the
context of optimal model design. Recently, the bilevel training scheme framed, in the con-
text of functional variational regularization models, has also entered the image processing
community (see [35]), and our work will start from here.

The variational formulation of problems in image processing often has an underlying func-
tional

I(u) := F (u� u⌘,⌦) +R(u,↵,⌦),

where u⌘ is a given corrupted (noised) data, ⌦ = I = (0, 1) represents the domain of voice
signal and ⌦ = Q := (0, 1)⇥(0, 1) stands for the domain of a square image, F is the fidelity
term, ↵ > 0 is the tuning parameter, and R is the regularizer.

Image denoising is a fundamental task in image processing, as it is always a necessary
step prior to higher level image processing problems such as reconstruction and segmen-
tation. For a fixed regularizer R, the image denoising problem aims at computing an
image

u↵ 2 argmin
n

ku� u⌘k2L2
(Q)

+R(u,↵, Q) : u 2 XR
o

, (1.1)

where ↵ := (↵
1

,↵
2

, . . . ,↵N ), the tuning parameter, is a given parameter with ↵i > 0 for all
1  i  N , and N 2 N depends on R. An example is given by the ROF model ([68]), in
which the regularizer R(u,↵, Q) := ↵ |u|TV (Q)

, where |·|TV (Q)

is the total variation, and the
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tuning parameter ↵ 2 R+. That is, we are considering the following minimizing problem:

u↵ := argmin
n

ku� u⌘k2L2
(Q)

+ ↵ |u|TV (Q)

: u 2 BV (Q)
o

(1.2)

The quality of a reconstructed image u↵, generated in (1.1) or (1.2), highly depends ↵:
choosing it too large may result in losing important fine details, and if it is too small
then it may keep noise un-removed. Hence, the choice of the “optimal” tuning parameter
↵ becomes an important task. In [35] the authors proposed a training scheme by using
bilevel optimization. To be precise, we assume that we can decompose the corrupted image
u⌘ = uc + ⌘ where uc represents a noise-free clean image (the perfect data), and ⌘ encodes
noise. A typical bilevel training scheme can be formulated as follows, using the ROF model
as an example:

Level 1.

↵̃ 2 argmin
n

ku↵ � uck2L2 : ↵ > 0
o

, (1.3)

Level 2.

u↵ := argmin
n

ku� u⌘k2L2
(Q)

+ ↵ |u|TV (Q)

: u 2 BV (Q)
o

. (1.4)

Roughly speaking, this training scheme searches ↵ > 0 such that the recovered image
u↵, obtained from(1.4), best fits the given clean image uc, measured in terms of the L2-
distance in (1.3). In [35] it has been proved that (1.3) admits a positive solution ↵̃ > 0 if
TV (u⌘) > TV (uc). Some other choices of regularizers have also been proposed in [35], for
example, the second order total generalized variation TGV 2 which is defined as follows:

|u|TGV 2
↵0,↵1

(I) := inf
n

↵
0

�

�u0 � v
0

�

�

M
b

(I)
+ ↵

1

�

�v0
0

�

�

M
b

(I)
, v

0

2 BV (I)
o

, (1.5)

and the corresponding bilevel training scheme becomes:

Level 1.

↵̃ 2 argmin
n

ku↵ � uck2L2 : ↵ = (↵
0

,↵
1

) > 0
o

, (1.6)

Level 2.

u↵0,↵1 := argmin
n

ku� u⌘k2L2
(Q)

+ |u|TGV 2
↵0,↵1

(Q)

: u 2 BV (Q)
o

. (1.7)

TGV 2, defined in (1.5), may yield geometric structures as compared with TV , therefore,
we should expect that

inf
n

ku↵ � uck2L2 : ↵ > 0
o

6= inf
n

ku↵0,↵1 � uck2L2 : ↵
0

> 0,↵
1

> 0
o

(1.8)

where u↵ and u↵0,↵1 are defined in (1.4) and (1.7), respectively. It has been observed that
for image data uc, if uc has large flat areas, then TV performs better than TGV 2. That
is, the quantity on the left hand of (1.8) smaller than the quantity on the right hand side.
However, if uc has many smooth transitions and fine details, then TGV 2 performs better.
Other situations are also observed in the case one dimension signal. In addition, the higher
order seminorms TGV k, k � 2, have rarely been analyzed, and hence their performance is
largely unknown.
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1.2. The fractional order total generalized variation. In the existing literature a
regularizer is fixed a priori, and the biggest e↵ort is concentrated on studying how to iden-
tify the best parameters. In the case of the TGV k model, this amounts to set manually the
value of k first, and then to determine the optimal ↵ in (1.3) or (1.6). However, as we said
before, there is no evidence suggesting that TGV 2 will always perform better than TV (or
conversely). The main focus of Chapter 2 in this thesis is exactly to investigate how to
optimally tune both the tuning parameter ↵ and the order k of the TGV k

↵ -seminorm, in
order to achieve the best reconstructed image.

In Chapter 2 of this thesis we work in one dimension and generalize the bilevel train-
ing scheme introduced before so that it can not only do parameter training, but also it
can determine the optimal order k of the regularizer TGV k for image reconstruction. A
straightforward modification of (1.6) would be to just insert the order of the regularizer
inside the learning level 2 in (1.7). Namely,

Level 1.
(↵̃, k̃) 2 argmin

n

ku↵,k � uck2L2
(I) : ↵ > 0, k 2 N

o

,

Level 2.
u↵,k := argmin

n

ku� u
0

k2L2
(I) + |u|TGV k+1

↵

(I) : u 2 BV (I)
o

.

Often, in order to show the existence of a solution of the training scheme and also for the
numerical realization of the model, a box constraint is imposed (see, e.g. [12, 33]), i.e.,

(↵, k) 2 [A, 1/A]k+1 ⇥ [1,R], (1.9)

where 0 < A < 1 (called the index of box constraint) and R > 1 are fixed real numbers.
However, such constraint makes the above training scheme less interesting. To be precise,
restricting the analysis to the case in which k 2 N is an integer, the box constraint (1.9)
would only allow k to take finitely many values, and hence the optimized order k̃ of reg-
ularizer would simply be determined by performing scheme (1.6) finitely many times, at
each time with di↵erent values of k. In addition, finer texture e↵ects, for which an “inter-
mediate” reconstruction between the one provided by TGV k and TGV k+1 for some k 2 N
would be needed, might be neglected in the optimization procedure.

Therefore, a main challenge in the setup of such a training scheme is to introduce a mean-
ingful interpolation between the spaces TGV k+1 and TGV k, to guarantee that the family
of such spaces exhibits certain compactness and lower semicontinuity properties. For this
purpose, we modify the definition of the TGV k functionals by incorporating the theory of
fractional Sobolev spaces, and we introduce the notion of fractional order TGV k+s space
(see Definition 2.11), where k 2 N and 0 < s < 1. For k = 1, our definition reads as follows:

|u|TGV 1+s

(I) := inf
n

�

�u0 � sv
0

�

�

M
b

(I)
+ s(1� s) |v

0

|W s,1+s(1�s)
(I) :

v
0

2 W s,1+s(1�s)(I),

ˆ
I
v
0

(x) dx = 0

�

,
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and similarly, the TGV 1+s
↵ reads as follows, where ↵ = (↵

0

,↵
1

) 2 R+ ⇥ R+:

|u|TGV 1+s

↵

(I) := inf
n

↵
0

�

�u0 � sv
0

�

�

M
b

(I)
+ ↵

1

s(1� s) |v
0

|W s,1+s(1�s)
(I) :

v
0

2 W s,1+s(1�s)(I),

ˆ
I
v
0

(x) dx = 0

�

.

In addition, for every k 2 N and s 2 [0, 1] we introduce the classes of functions with
bounded infimal-convolution total variation seminorm

BGV k+s(I) :=
n

u 2 L1(I) : |u|TGV k+s

(I) < +1
o

.

In the expressions above, W s,1+s(1�s)(I) is the fractional Sobolev space of order s and
integrability 1 + s(1� s). In Theorem 2.12 we show that the TGV 1+s seminorm is indeed
intermediate between TV (TGV 1) and TGV 2, i.e., we prove that,

lim
s%1

|u|TGV 1+s

↵

(I) � |u|TGV 2
↵

(I) and lim
s&0

|u|TGV 1+s

↵

(I) = |u|TV .

Namely, for s % 1, the behavior of the TGV 1+s
↵ -seminorm is close to the one of the stan-

dard TGV 2

↵ -seminorm, whereas for s & 0 it approaches the TV functional. We additionally
prove (see Corollary 2.15) that analogous results hold for higher order TGV k+s

↵ -seminorms.

The advantage in working with such interpolation spaces is twofold. First, TGV k+s is
expected to inherit the advantages of fractional order derivatives, which have been shown
to reduce the staircasing and contrast e↵ects in noise removal problems (see, e.g. [22]).
Second, they allow us to introduce the following improved training scheme, which, under
(1.9), simultaneously optimizes both with respect to the parameter ↵ and to the order r
of derivation.

Level 1.

(↵̃, r̃) 2 argmin
n

ku↵,r � uck2L2
(I) , (↵, r) 2 [A, 1/A]brc+1 ⇥ [1, 2�A]

o

, (1.10)

Level 2.

u↵,r := argmin
n

ku� u
0

k2L2 + TGV r
↵ (u) : u 2 BGV r

↵ (I)
o

.

In the definition above, brc denotes the largest integer smaller than or equal to r. Note
that, according to the test noise-free image uc, the level 1 in our training scheme (1.10)
directly indicates the higher order regularizer providing the best image reconstruction, as
well as the associated corresponding optimal parameters.

The construction of TGV r in two dimensions is work in progress. We will not include
it in this thesis but instead refer to the upcoming paper [31].
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1.3. The weighted Ambrosio - Tortorelli approximation scheme. Another draw-
back of the training scheme in (1.3) is that it uses a constant tuning parameter which
provides an uniform regularization strength over the entire domain Q. It has been ob-
served in [25] that an uniform regularization strength is undesirable when both fine details
and large flat areas are present in an image, which is often the case in image denoising
problems. Ideally, we should try to instruct a weak regularization strength in fine details
area so that those details can be preserved, and to instruct a strong regularization strength
should be used over large flat areas so that the noise can be removed.

To this purpose, in Chapter 3 we propose a spatially dependent training scheme with
respect to the tuning parameter ↵. To write this precise, we introduce the following nota-
tion:

Notation 1.1. Recall that
0 < A << 1 (1.11)

is a fixed constant.

1. For any N 2 N, we set

QN (iN , jN ) := ((iN � 1)/N, iN/N)⇥ ((jN � 1)/N, jN/N)

for each 1  iN , jN  N ,

QN := {QN (iN , jN ), , 1  iN , jN  N} ,
and

QA := {L 2 QN , N  1/A} . (1.12)

2. L denotes a collection of finitely many L 2 QA such that

L :=
n

L 2 QA : L are mutually disjoint, Q ⇢
[

L
o

, (1.13)

3. VA, called the training ground, is the collection of all possible L. Note that we have

# {VA} < +1.

We propose a new bilevel training scheme which uses the scheme (1.3) in each subdomain of
Q, and searches for the best combination of di↵erent subdomains from which a recovered
image ũ, which best fits uc in certain sense, might be obtained. Moreover, in order to
explore more regularizers, in Chapter 3 we use the Mumford-Shah image segmentation
functional as the regularizer. The Mumford-Shah image segmentation functional is given
by

MS(u) := ↵

ˆ
⌦

|ru|2dx+ ↵HN�1(Su)

where u 2 SBV (⌦), Su stands for the jump set of u,
(1.14)

and was introduced in [67]. By minimizing the functional

ku� u⌘k2L2
(⌦)

+MS(u,K)
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one tries to find a “piecewise smooth” approximation of u
0

. The existence of such minimiz-
ers can be proved by using compactness and lower semicontinuity theorems in SBV (⌦) (see
[3]). Furthermore, regularity results in [32] assert that minimizers u satisfy u 2 C1(⌦ \Su)
and HN�1(Su \ ⌦ \ Su) = 0.

With the Mumford-Shah image segmentation functional as the regularizer, our new training
scheme can be presented as follows:

Level 1.

L̃ 2 argmin
n

kuc � uLk2L2
(Q)

: L 2 VA

o

(1.15)

Level 2.

↵L(x) := ↵L for x 2 L 2 L, and (1.16)

uL 2 argmin

⇢ˆ
Q
↵L |ru|2 dx+

ˆ
S
u

↵L(x)dHN�1 + ku� u⌘k2L2
(Q)

: u 2 SBV (Q)

�

Level 3.

↵L 2 argmin
n

ku↵ � uck2L2
(L) : ↵ 2 [A, 1/A]

o

u↵ 2 argmin
n

ku� u⌘k2L2
(L) + ↵MS(u) : u 2 SBV (L)

o

.
(1.17)

Scheme (1.15) allows us to perform the denoising procedure “pointwisely”, and it is an
improvement of the following training scheme

Level 1.

↵̃ 2 argmin
n

ku↵ � uck2L2 : ↵ > 0
o

, (1.18)

Level 2.

u↵ 2 argmin
n

ku� u⌘k2L2
(Q)

+ ↵MS(u,Q) : u 2 SBV (Q)
o

,

which is the MS version of training scheme (1.3). Note that since {Q} 2 VA, (1.15) must
perform better than (1.18). We remark that the most important step is (1.16) for the
following reasons:

1. (1.16) is the bridge connecting level 1 and level 2 in scheme (1.15);
2. since ↵L is defined by locally optimizing the parameter ↵L, we expect uL be “close” to

uc locally in L;
3. the last integrand in (1.16) keeps uL close to u⌘ globally, hence we may expect uL to

have a good balance between local optimization and global optimization.

We may view (1.16) as a weighted version of (1.14) by changing the underlying metric
from dx to ↵Ldx. By the construction of ↵L in (1.17), we know it is a piecewise constant
function and, since A > 0 is positive, the discontinuity set of ↵L has finite HN�1 measure.
However, ↵L is only defined LN -a.e., and hence the termˆ

S
u

↵L(x)dHN�1
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might be ill-defined.

In Chapter 3, we deal with the well-definedness of (1.16) by modifying ↵L accordingly,
and by building a sequence of functionals which �-converges to (1.16). To be precise, we
adopt the approximation scheme of Ambrosio and Tortorelli in [6] and change the underly-
ing metric properly. In (1.14) Ambrosio and Tortorelli considered a sequence of functionals
reminiscent of the Cahn-Hilliard approximation, and introduced a family of elliptic func-
tionals

AT"(u, v) :=

ˆ
⌦

↵ |ru|2 v2dx+

ˆ
⌦

↵



" |rv|2 + 1

4"
(v � 1)2

�

dx+

ˆ
⌦

(u� u⌘)
2 dx,

where u 2 W 1,2(⌦), (v � 1) 2 W 1,2
0

(⌦), and u⌘ 2 L2(⌦). The additional field v plays the
role of controlling variable on the gradient of u. In [6] a rigorous argument has been made to
show that AT" ! MS in the sense of �-convergence ([7, 27]), whereMS is defined in (1.14).

In view of (1.17), we fix a spatially dependent parameter, or a weight function, ! 2 SBV (⌦)
such that

! is positive and bounded away from 0, and HN�1(S!) < +1. (1.19)

Our new Mumford-Shah image segmentation functional with a spatially dependent param-
eter is defined as

MS!(u) :=

ˆ
⌦

|ru|2 ! dx+

ˆ
S
u

!� dHN�1,

and the Ambrosio - Tortorelli functionals with spatially dependent parameters are defined
as

AT!,"(u, v) :=

ˆ
⌦

|ru|2 v2! dx+

ˆ
⌦



" |rv|2 + 1

4"
(v � 1)2

�

! dx.

(Note that AT
1,"(u, v) and MS

1

(u) are the Ambrosio-Tortorelli approximation scheme and
Mumford-Shah functional studied in [6] with constant parameters, respectively). Moreover,
since A > 0 is positive and ↵L > A in (1.17) , it is not restricted to assume that

0 < A  ess inf {!(x) : x 2 ⌦}  ess sup {!(x) : x 2 ⌦} < +1, (1.20)

where A > 0 is given in (1.11).

The main result of Chapter 3 is the following:

Theorem 1.2. Let ⌦ ⇢ RN be open bounded with Lipschitz boundary, let ! 2 SBV (⌦)
satisfy (1.19) and (1.20), and let AT !,": L1(⌦)⇥ L1(⌦) ! [0,+1] be defined by

AT !,"(u, v) :=

(

AT!,"(u, v) if (u, v) 2 W 1,2(⌦)⇥W 1,2(⌦), 0  v  1 a.e.,

+1 otherwise.
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Then the functionals AT !," �-converge, with respect to the L1 ⇥ L1 topology, to the func-
tional

MS!(u, v) :=

(

MS!(u) if u 2 GSBV (⌦) and v = 1 a.e.,

+1 otherwise.

A direct inspection of the proof of Theorem 1.2 allows to also consider the case in which
! 2 C(⌦) and satisfies (1.20). To be precise:

Theorem 1.3. Let ⌦ ⇢ RN be open bounded with Lipschitz boundary, let ! 2 C(⌦) satisfy
(1.20). Then the functionals AT !," �-converge, with respect to the L1⇥L1 topology, to the
functional MS!(u).

We recall similar problems that have been studied for di↵erent types of weight functions !
(see, for example [9, 10, 43, 59, 76]). In particular, [9, 10] treated a uniformly continuous
and strong A1 (defined in [70]) weight function on Modica-Mortola and Mumford-Shah-
type functionals, respectively, and in [59] the authors considered a C1,�-continuous weight
function, with some other minor assumptions, in the one-dimensional Cahn-Hilliard model.
Also, in [43] the author studies the family of energy functionalsˆ

⌦

(v2 + ⌘")f(x, u,ru)dx+

ˆ
⌦



"

2
'2(rv) +

1

2"
(1� v)2

�

dx (1.21)

where ': RN ! [0,+1) is a norm, and (u, v) 2 W 1,2(⌦) ⇥W 1,2(⌦). Note that in (1.21)
'2(rv) is anisotropic and penalizing di↵erently di↵erent orientations of the gradient, but
spatially homogeneous, so it does not include the case where that term is replaced by
!(x) |rv|2. Moreover, [76] addresses the family of energiesˆ

⌦

|ru|2 v2 dx+

ˆ
⌦



"' (x,rv) +
1

4"
(v � 1)2

�

dx.

where ' is required to be continuous, and we cannot set '(x,rv) = !(x) |rv|2 with
! 2 SBV (⌦) as in our context. Lastly, we point out that in both [43, 76] the underlying
measure of integration is the Lebesgue measure LN , while in our model the underlying
measure is !(x)LN , which a↵ects all terms.

The proof of Theorem 1.2 consists of two steps. The first step is to prove the “lim inf
inequality” lim inf"!0

AT!,"(u", v") � MS!(u) for every sequence u" ! u, v" ! v. This is
obtained in Section 3.2 in the case N = 1 by using most of the arguments proposed in [6],
and extended to the case N > 1 by using a particular slicing argument (see Lemma 3.23).
The second step is the construction of a recovery sequence (u" ! u, v" ! 1) such that the
term ˆ

⌦



" |rv|2 + 1

4"
(v � 1)2

�

! dx (1.22)

only captures the information of !�, and this the main novelty of this chapter. We note
that for small " > 0, (1.22) only penalizes a "-neighborhood around the jump point of u.
By using fine properties of SBV functions (see Theorem 3.4), we are able to incorporate
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u and v in our model such that (1.22) will only penalize along the direction �⌫S
!

(see
Notation 3.3). This will be carried out in Proposition 3.26.

1.4. Some insights from finite resolution images. In [35] the existence of a minimizer
↵̃ > 0 of the error function

E(↵) := ku↵ � uck2L2
(Q)

, (1.23)

where u↵ is obtained from (1.3) with TV as the regularizer, has been established. Still,
some important properties like convexity and di↵erentiability have not yet been addressed,
and an e�cient numerical scheme to locate ↵̃ is in need (see, e.g., [60]). To develop such
e�cient scheme, we observe from numerical simulations that E(·) is likely to be strictly
quasi-convex 1 (see (1.26) for the definition), and if indeed it is, then a quasi-convex pro-
gramming method can be inserted (see, e.g., [53]), which has been proven to be computa-
tionally e�cient. Unfortunately, strict quasi-convexity of (1.23) is not easily established.
Successful attempts have been made in settings in which the regularization term is linear
and smooth, for example, using the W 1,2 Sobolev seminorm as the regularization term (see,
e.g., [55]). But, to the author’s knowledge, nothing of the kind has been investigated when
regularization term is non-linear and non-smooth such as the total variation seminorm.

In Chapter 4 we take the first small step in this direction and only the one-dimensional
case is investigated. Although it might relevant to the denoising of bar codes (see [77]), it
is of marginal interest within the context of image reconstruction. However, extending a
similar analysis to the two dimensional setting is quite challenge due to the lack of explicit
expression for the minimizer u↵, which is an important ingredient in the analysis of the
one dimensional case (see Theorem 4.5).

In this part of work we introduce a new way to represent the clean image and the noise,
which is compatible with a discrete computer image data, in the domain I := (0, 1), and
hence we may apply our PDEs and functional analysis tools on it. To be precise, we assume
that an ideal clean image uc 2 BV (I) can only be captured by a “super” camera which
has infinite resolution, and we assume that a finite N 2 N resolution level image captured
by a real world digital camera is a piecewise constant function uc,N , which is related to uc
via its averages

uc,N (x) :=

 
I
N

(k)
uc dy for x 2 IN (k), (1.24)

where IN (k) := ((k � 1)/N, k/N), 1  k  N . We also introduce the family

IN := {IN (k), 1  k  N} .

1

Note that this notation of quasi-convexity is not related in any way to the notation of quasiconvexity

as introduced by Morrey (see [26, 47]), which is used in Section 6.4.2
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and we use uc,N (IN (k)) to denote the value of uc,N (x) for x 2 IN (k). Similarly, in two
dimensions, we define

uc,N (x) :=

 
Q

N

(i
N

,j
N

)

uc dx for x 2 QN (iN , jN ) ,

where QN (iN , jN ) is defined in Notation 1.1 item 1.

Then, we may write scheme (1.3) with respect to a finite resolution image uc,N as fol-
lows:

Level 1.

↵̃ 2 argmin
n

ku↵ � uc,Nk2L2
(I) : ↵ > 0

o

,

Level 2.

u↵ := argmin
n

ku� u⌘,Nk2L2
(I) + ↵ |u|TV (I) : u 2 BV (I)

o

.

We present our first main result of Chapter 4 in Theorem 1.4. To be precise, we define the
reconstruction operator L by

L (↵, v, I) := argmin

⇢

1

2
ku� vk2L2

(I) + ↵TV (u, I)

�

, (1.25)

for v 2 L2(I) and ↵ 2 R+.

In Theorem 1.4 we discuss the quasi-convexity of (1.23) with finite resolution data uc,N pro-
vided that uc,N is monotone. We say that a function f : R+ ! R+ is strictly quasi-convex
([14], Section 3.4) if for all ↵

1

, ↵
2

2 R+ and � 2 (0, 1) we have

f(�↵
1

+ (1� �)↵
2

) < max {f(↵
1

), f(↵
2

)} . (1.26)

We show that under certain assumptions (see Assumption B.10) the following result holds
(see Theorem 4.13):

Theorem 1.4. Let I := (0, 1), let uc 2 BV (I) be monotone, and let a resolution level
N 2 N be given. Then the error function

EN (↵) :=
1

2
kL (↵, u⌘,N )� uc,Nk2L2

(I) , ↵ 2 R+, (1.27)

is strictly quasi-convex provided that u⌘,N satisfies Assumption B.10.

We remark that the Assumption B.10 cannot be relaxed, and in Section 4.3.1 we present
counterexamples to show that removing any of its conditions would result in losing the
quasi-convexity of EN (↵) nearby ↵̃N , which is the minimizer of (1.27).

However, Assumption B.10 is very restrictive and unlikely to be satisfied in concrete set-
tings, and requiring uc to be monotone renders Theorem 1.4 to be less interesting. There-
fore, we need an alternative way to locate ↵̃N without assuming Assumption B.10 nor the
monotonicity of uc. To overcome this drawback, we show in Chapter 4 that EN , defined in
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(1.27), is piecewise convex with finite many pieces both for one dimension and two dimen-
sions, and this is enough for our purpose. To do so, we define the stopping time ↵s(v) of a
function v 2 L1(Q) via the following definition.

Definition 1.5. Let v 2 L1(Q) be given. We say that ↵s(v) 2 [0,+1) is the stopping
time for v if

L (↵s, v,Q) = L (↵s + ↵, v,Q) =: C(v) and L (↵s, v,Q) 6= L (↵s � ↵, v,Q) (1.28)

for all ↵ > 0, where C(v) is a constant depends on v.

By its definition, if it exists then the stopping time is unique. In Section 4.4.1 we show
that the stopping time ↵s(u⌘,N ) exists where ↵s(u⌘,N ) is defined in (4.3) with Q replaced
by I := (0, 1). Next, in Proposition 4.16, using Theorem 4.5 repeatedly, we show that the
level N error function

EN (↵) :=
1

2

ˆ
I
|L (↵, u⌘,N , I)� uc,N |2 dx (1.29)

is continuous, and there exist finitely many 0 < ↵
1

< ↵
2

< · · · < ↵M = ↵s(u⌘,N ) < +1
such that in each interval [↵i,↵i+1

), EN (·) is convex and E 0
N (·) is linearly increasing. Hence,

a direct search, which we detail in Section 4.4.2, of a minimizer ↵m of (1.29) inside the fi-
nite interval [0,↵s(u⌘,N )] can be executed numerically and terminated within a finite time,
although it may take a long CPU time.

The behavior of (1.29) in the two dimensional setting is also discussed in Chapter 4. We
present a two dimensional version of Proposition 4.16 in Proposition 4.20. Although the
statement of Proposition 4.20 is weaker compared to that of Proposition 4.16, due to the
lack of the two dimensional version of Theorem 4.5, it is still su�cient to allow us to per-
form the same direct search to locate ↵̃ within a finite time.

In Chapter 4 in addition to (1.15) we also introduce another spatially dependent train-
ing scheme. We recall Notation 1.1 and introduce our new spatially training scheme as
follows:

Level 1.

L̃ 2 argmin
n

kuc � uLk2L2
(Q)

, L 2 VA

o

(1.30)

Level 2.

uL(x) := u↵̃
L

(x) for x 2 L and L 2 L, where

u↵̃
L

:= argmin
n

ku� u⌘k2L2
(L) + ↵̃ |u|TV (L) : u 2 BV (L)

o

(1.31)

Level 3. for any given L 2 QA, set

↵̃L 2 argmin
n

ku↵ � uck2L2
(L) : ↵ > 0

o

, where

u↵ := argmin
n

ku� u⌘k2L2
(L) + ↵ |u|TV (L) : u 2 BV (L)

o

(1.32)
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We prove in Chapter 4 that under a mild assumption on the noise ⌘N , the scheme (1.30)
is able to fully recover the clean image uc as the resolution level N goes to infinite and the
box constraint index A ! 0. To be precise, let

PN (A) := inf
n

kuc,N � uLk2L2
(Q)

, L 2 VA

o

and

P(N) := PN (1/N) = inf
n

kuc,N � uLk2L2
(Q)

, L 2 V
1/N

o

where uL is obtained by replacing u⌘ with u⌘,N in (1.31) and (1.32). In Theorem 4.24 we
prove the following result:

Theorem 1.6. Assume that the noise ⌘N2 has locally average 0, that is, 
L
⌘N2 = 0

for any L 2 Q
1/N defined in Notation 1.1. Then

lim
N!1

P(N2) = 0.

1.5. The comprehensive training scheme. Up to now we have introduced some new
ideas to improve the original training scheme (1.3), including a training scheme with re-
spect to regularizers in (1.10), and two spatially training schemes in (1.15) and (1.30) with a
fixed regularizer. In Chapter 5 we summarize those ideas and generalize them even further.

The skeleton of the bilevel training scheme for image processing problem can be stated
as follows:

Level 1.

Search for the best choice of ↵, R, and L so that A(u↵,R,L � uc, Q) attains its minimum

Level 2.

u↵,R,L 2 argmin {certain functional of u⌘, defined by using F , R, ↵, and L } ,
where the operator A, called the assessment operator, assesses the quality of a denoised
image. To be precise, we assume that the smaller is the value of A (uc � u↵,R,L) then
the higher is the quality of u↵,R,L . We also assume that the corrupted image u⌘ belongs
to a Hilbert space Y , which is usually taken to be L2 in image denoising and deblurring
problems.

Recall that the training ground VA defined in Notation 1.1 item 3 is only a finite collection
(in discrete space), which renders training schemes (1.15) and (1.30) less interesting. While
digitally acquired image data is discrete, the aim of high resolution image reconstruction
and processing is always to compute an image that is close to the real, that is, infinite
dimensional, and HD photography produces larger and larger images with a frequently in-
creasing number of megapixels. Thus, we should aim for training schemes that accentuate
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and preserve qualitative properties in images independent of the resolution of the image
itself.

To this purpose, we introduce a version of the training ground VA in continuum space.

1. HA is the family of rectangles such that

HA := {L ⇢ Q : L is an open rectangle with the shortest side length greater than or equal to A} ;

2. L is the collection of (finitely many) L 2 HA such that

L :=
n

L 2 HA : L are mutually disjoint, Q ⇢
[

L
o

, (1.33)

3. VA denotes the collection of all possible L, and we define, for any L, L0 2 VA,

dV
A

(L,L0) := max
n

min
n

k�L � �L0kL1
(Q)

: L0 2 L0
o

: L 2 L
o

where �L is the characteristic function over L.

Clearly, # {VA} = 1.

1.5.1. The parameter training scheme (PT ). The training scheme, stated in (1.3) and (1.6),
with respect to the tuning parameter, can be generalized as follows:

Level 1.

↵̃ 2 argmin {A (u↵ � uc, Q) : ↵ > 0} , (1.34)

Level 2.

u↵ := argmin {F (u� u⌘, Q) +R(u,↵, Q) : u 2 XR} ,
where the regularizer R is given by

R(u,↵, Q) :=
N
X

i=1

↵i |Riu|M(Q)

where ↵ = (↵
1

,↵
2

, . . . ,↵NR) 2 (R+)N , Ri are linear operators, and the values Riu are
penalized in the Radon norm |·|M. For example, we may take R(u,↵, Q) to be ↵TV (u)
as in (1.4), with N = 1 and ↵ 2 R+, or TGV 2

↵1,↵2
(u) with N = 2 and ↵ = (↵

1

,↵
2

) 2
(R+)2. Since the result of (1.34) is a parameter ↵̃, we call this training scheme “Parameter
Training scheme”, and hence the name (PT ). The scheme (PT ) has at least one solution
↵̃R 2 (0,+1]N provided some mild assumptions on uc and ⌘ are satisfied, and we refer
readers to [35] for details.

1.5.2. The regularizer training scheme (RT ). In Chapter 2 we introduced a bilevel training
scheme which trains the optimal regularizer. In Chapter 5 we generalize such training
scheme, named as “Regularizer Training scheme”, and hence (RT ), as follows:

Level 1.

�̃ 2 argmin
�A �uc,N � uR[�], Q

�

: � 2 ⇧
 

(1.35)



Page 18 Section 1.5

Level 2.

uR[�] := argmin
�F(u⌘,N � u,Q) +R[�](u,Q), u 2 XR[�]

 

,

where the indexing set ⇧ of the regularizer space R is defined as follows:

Definition 1.7 (The indexing set of R). Let ⇧ := �
1

⇥�
2

⇥ · · ·⇥�NR, where the indexing
dimension is NR 2 N, and each �i is a compact subset of Mn

i

⇥k
i (vector space of ni ⇥ ki

real valued matrices, ni, mi 2 N). We say that a space (set) of regularizers R is indexed
by ⇧ if each R 2 R can be uniquely represented by an element � = (�

1

, �
2

, . . . , �NR) 2 ⇧,
and we use R[�] to indicate that R is indexed by �. Moreover, we endow R with the norm
defined by

dR(R[�],R[�0]) :=
NR
X

i=1

�

��i � �0i
�

�

�

i

.

Definition 1.8. Given u⌘ 2 Y , we define the reconstruction map S: R ! XR by

Su
⌘

(R) := argmin {F(u⌘ � u,Q) +R(u,Q) : u 2 XR} .
Assumption 1.9 (A-l.s.c with respect to dR). We say that the operator Su

⌘

(R) is A-l.s.c.
with respect to dR if for every {R[�n]}1n=1

⇢ R with limn!1 dR(R[�n],R[�]) = 0,

lim inf
n!1 A(Su

⌘

(R[�n])� uc) � A(Su
⌘

(R[�])� uc).

Theorem 1.10. Let A be an assessment operator satisfying Assumption 5.3. If Su
⌘

is

A-l.s.c. with respect to dR, then problem (5.5) admits a solution R̃ 2 R.

1.5.3. Training scheme in regularizer and parameter spaces. We recall the definition of the
so-called box constraint.

Definition 1.11. We say that a vector ↵ = (↵
1

,↵
2

, . . . ,↵n) 2 Rn satisfies the box
constraint if there exist two positive numbers 0 < A < 1 such that ↵i 2 [A, 1/A] for
i = 1, 2, . . . , n.

From now on, we use ⇧R to denote the indexing set of the regularizer space R (see Defi-
nition 1.7).

Definition 1.12. We say that a space R has operator dimension nR 2 N if there exists a
set of operators
�

Ri(·, ·, ·) : Y ⇥ Y nR ⇥⇧ ! R+ for i = 1, . . . , nR
 

with Ri(tu, tv, ·) = tRi(u, v, ·), t 2 R+

such that each R[�] 2 R can be represented by

R[�](u,Q) = inf {R
1

(u, v, �) +R
2

(v, �) + . . .+RnR(v, �) : v 2 Y nR} . (1.36)

We define a scaled version of R[�] 2 R by adding a parameter ↵ = (↵
1

,↵
2

, . . . ,↵nR) 2
RnR , which satisfies the box constraint in Definition 5.14, in the following sense:

R[↵, �](u) := inf {R
1

(↵
1

u,↵
1

v, �) +R
2

(↵
2

v, �) + . . .+RnR(↵nRv, �) : v 2 Y nR} ,
(1.37)
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and we let

dA,R(R[↵, �],R[↵0, �0]) := dR(R[�],R[�0]) +
�

�↵� ↵0�
� .

We improve scheme (RT ) by inserting parameters in the way of (5.8), and hence (RT ) is
now able to train the parameters and regularizers, simultaneously.

Level 1.

(↵̃, �̃) 2 argmin
�A �uc � uR[↵,�], Q

�

: � 2 ⇧R , ↵ 2 [A, 1/A]nR
 

(1.38)

Level 2.

uR[↵,�] := argmin
�F(u⌘ � u,Q) +R[↵, �](u,Q), u 2 XR[�]

 

. (1.39)

We improve Assumption 5.12 to accommodate the parameter spaces [A, 1/A]nR .

Assumption 1.13 (A-A-l.s.c. with respect to dA,R). We say that the operator S(R) is
A-A-l.s.c. with respect to dA,R if for every {(↵n, �n)}1n=1

⇢ [A, 1/A]nR ⇥⇧ with

lim
n!1 dA,R(R[↵n, �n],R[↵, �]) = 0,

we have

lim inf
n!1 A(S(R[↵n, �n])� uc) � A(S(R[↵, �])� uc).

1.5.4. The comprehensive training scheme. We propose a Comprehensive Training scheme
(CT ) taking into consideration several options:

Level 1.

L̃ 2 argmin {A (uc � P(L)) : L 2 VA} , (1.40)

Level 2.

P(L) is built upon the information of {(↵̃L, �̃L)}L in each L 2 L,
Level 3.

{(↵̃L, �̃L)}L 2 argmin
�A �uc � uR[↵,�], L

�

: � 2 ⇧, ↵ 2 [A, 1/A]nR
 

, (1.41)

uR[↵,�] := argmin
�F(u⌘ � u, L) +R[↵, �](u, L), u 2 XR[�]

 

.

Here the operator P: VA ! Y acts as an assemble operator, using the local optimal
re-construction information obtained in Level 3 within each subdomain L to construct a
global re-constructed image uL, based on the partition domain L 2 VA.

Assumption 1.14. We say that the operator P: VA ! Y is A-l.s.c. with respect to dV
A

if for any sequence {Ln}1n=1

⇢ VA with limn!1 dV
A

(Ln,L) = 0,

lim inf
n!1 A(P(Ln)� uc) � A(P(L)� uc).

Theorem 1.15. If the assemble operator P is A-l.s.c. with respect to dV
A

, then problem
(5.24) admints a solution L̃ 2 VA.
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Two examples of assemble operator P(L) are presented in Chapter 5.

In the end, we would like to point out that, although the results obtained in this the-
sis are mainly motivated by problems from image processing, their applicability goes well
beyond that and are related to problems involves parameter estimation. The box constraint
we impose on (5.27), which is necessary to prove the existence of solutions, could be relaxed
for certain regularizer spaces R based on observations made in [35]. However, to further
open up the possibility to address more generalized regularizers, we proved our main result
with box constraint, so that the scheme (CT ) is compatible with more regularizer spaces.
Next steps from this work includes:

1. allow spatially dependent (weighted) tuning parameter ! 2 BV to be 0 or +1 in
subdomains;

2. new assessment operator A. For example, the assessment operator optimized for edges
enhancement and cancer detection;

3. construct new assemble operator P. It is ideal to have a corresponding P for di↵erent
assessment operators A optimized for di↵erent purposes;

4. design sophisticated numerical schemes to solve the optimal solution for scheme (CT ).

Chapter 2. The fractional order total generalized variation

In Chapter 2, we set I := (0, 1) is an unit interval.

2.1. The theory of fractional sobolev spaces. In what follows we will assume that
I = (0, 1). We first recall a few results from the theory of Fractional Sobolev spaces. We
refer to [36] for an introduction to the main results, and to [1, 56, 57, 65] and the references
therein for a comprehensive treatment of the topic.

Definition 2.1 (Fractional Sobolev spaces). For 0 < s < 1, 1  p < +1, and u 2 Lp(I),
we define the Gagliardo seminorm of u by

|u|W s,p

(I) :=

✓ˆ
I

ˆ
I

|u(x)� u(y)|p
|x� y|1+sp

dx dy

◆

1
p

. (2.1)

We say that u 2 W s,p(I) if

kukW s,p

(I) := kukLp

(I) + |u|W s,p

(I) < +1.

The following embedding results hold true ([36, Theorems 6.7, 6.10, and 8.2, and Corollary
7.2]).

Theorem 2.2 (Sobolev Embeddings - 1). Let s 2 (0, 1) be given.

1. Let p < 1/s. Then there exists a positive constant C = C(p, s) such that for every
u 2 W s,p(I) there holds

kukLq

(I)  CkukW s,p

(I) (2.2)

for every q 2 [1, p
1�sp ]. If q < p

1�sp , then the embedding of W s,1(I) into Lq(I) is also
compact.
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2. Let p = 1/s. Then the embedding in (2.2) holds for every q 2 [1,+1).
3. Let p > 1/s. Then there exists a positive constant C = C(p, s) such that for every

u 2 W s,p(I) we have
kukC0,↵

(I)  CkukW s,p

(I),

with ↵ := sp�1

p .

The additional embedding result below is proved in [71, Corollary 19].

Theorem 2.3 (Sobolev Embeddings - 2). Let s � r, p  q and s � 1/p � r � 1/q, with
0 < r  s < 1, and 1  p  q  +1. Then

W s,p(I) ⇢ W r,q(I)

and

|u|W r,q

(I) 
36

rs
|u|W s,p

(I)

The next inequality is a special case of [13, Theorem 1] and [64, Theorem 1].

Theorem 2.4 (Poincaré Inequality). Let p � 1, and let sp < 1. There exists a constant
C > 0 such that

�

�

�

�

u�
 
I
u(x) dx

�

�

�

�

p

L

p
1�sp

(I)

 Cs(1� s)

(1� sp)p�1

|u|pW s,p

(I) .

It is possible to construct a continuous extension operator from W s,1(I) to W s,1(R) (see,
e.g., [36, Theorem 5.4]).

Theorem 2.5 (Extension Operator). Let s 2 (0, 1), and let 1  p < +1. Then W s,p(I)
is continuously embedded in W s,p(R), namely there exists a constant C = C(p, s) such that
for every u 2 W s,p(I) there exists ũ 2 W s,p(R) satisfying ũ|I = u and

kũkW s,p

(R)  C kukW s,p

(I) .

The next two theorems ([75, Section 2.2.2, Remark 3, and Section 2.11.2]) yield an iden-
tification between fractional Sobolev spaces and Besov spaces in R, and guarantee the
reflexivity of Besov spaces Bs

p,q for p, q finite.

Theorem 2.6 (Identification with Besov spaces). If 1  p < +1 and s 2 R+ \ N, then
W s,p(R) = Bs

p,p(R)

Theorem 2.7 (Reflexivity of Besov spaces). Let �1 < s < +1, 1  p < +1 and
0 < q < +1. Then

(Bs
p,q(R))0 = B�s

p0,q0(R),
where (Bs

p,q(R))0 is the dual of the Besov space Bs
p,q(R), and where p0 and q0 are the con-

jugate exponent of p and q, respectively.

In view of Theorems 2.6 and 2.7 the following characterization holds true.
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Corollary 2.8 (Reflexivity of Fractional Sobolev spaces). Let 1 < p < +1 and s 2 R+\N.
Then the fractional Sobolev space W s,p(R) is reflexive.

We conclude this section by recalling two theorems describing the limit behavior of the
Gagliardo seminorm as s % 1 and s & 0, respectively. The first result has been proved in
[52, Theorem 3 and Remark 1], and [29, Theorem 1].

Theorem 2.9 (Asymptotic behavior as s % 1). Let u 2 BV (I). Then

lim
s%1

(1� s) |u|W s,1
(I) =

�

�u0
�

�

M
b

(I)
.

Similarly, the asymptotic behavior of the Gagliardo seminorm has been characterized as
s & 0 in [64, Theorem 3].

Theorem 2.10 (Asymptotic behavior as s & 0). Let u 2 [
0<s<1

W s,1(R). Then,

lim
s&0

s |u|W s,1
(R) = 2 kukL1

(R) .

2.2. The fractional order total generalized seminorm. In this section we define the
fractional order TGV 1+s seminorm, 0 < s < 1, and prove some useful properties.

Definition 2.11 (The Fractional TGV Space). Let 0 < s < 1, k 2 N, and let ↵ =
(↵

0

,↵
1

,↵
2

, . . . ,↵k) 2 Rk+1

+

. For every u 2 L1(I), we define its fractional TGV k+s semi-
norm as follows.

For k = 1 we set

|u|TGV 1+s

↵

(I) := inf
n

↵
0

�

�u0 � sv
0

�

�

M
b

(I)
+ ↵

1

s(1� s) |v
0

|W s,1+s(1�s)
(I) :

v
0

2 W s,1+s(1�s)(I),

ˆ
I
v
0

(x) dx = 0

�

.

For k > 1 we define

|u|TGV k+s

↵

(I) := inf
n

↵
0

�

�u0 � v
0

�

�

M
b

(I)
+ ↵

1

�

�v0
0

� v
1

�

�

M
b

(I)
+

· · ·+ ↵k�1

�

�v0k�2

� svk�1

�

�

M
b

(I)
+ ↵ks(1� s) |vk�1

|W s,1+s(1�s)
(I) :

vi 2 BV (I) for 0  i  k � 2, vk�1

2 W s,1+s(1�s)(I),

ˆ
I
vk�1

(x) dx = 0

�

.

For 0 < s < 1, k 2 N, ↵ = (↵
0

,↵
1

,↵
2

, . . . ,↵k) 2 Rk+1

+

, we say that u 2 BGV k+s
↵ (I) if

kukBGV k+s

↵

(I) := kukL1
(I) + |u|TGV k+s

↵

(I) < +1,

and we write u 2 BGV k+s(I) if there exists ↵ 2 Rk+1

+

such that u 2 BGV k+s
↵ (I). Note

that if u 2 BGV k+s
↵ (I) for some ↵ 2 Rk+1

+

, then u 2 BGV k+s
� (I) for every � 2 Rk+1

+

.

We observe that the TGV k+s seminorm is actually “intermediate” between the TGV k

seminorm and the TGV k+1 seminorm. To be precise, we have the following identification.
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Theorem 2.12. For every u 2 BV (I), there holds

lim inf
s%1

|u|TGV 1+s

↵

(I) � |u|TGV 2
↵

(I) and lim
s&0

|u|TGV 1+s

↵

(I) =
�

�u0
�

�

M
b

(I)
.

Before proving the theorem we state and prove an intermediate result that will be crucial
in determining the asymptotic behavior of the TGV 1+s seminorm as s % 1.

Proposition 2.13. Let u be a Lipschitz function. Then

lim sup
s%1

(1� s) |u|W s,1+s(1�s)
(I)  |u0|M

b

(I).

Proof. We first observe that for x, y 2 I there holds

|x� y|  |x� y|s .
Since u is Lipschitz, we have there exists a constant L > 0 such that for x, y 2 I there
holds

|u(x)� u(y)|  L |x� y|  L |x� y|s .
We observe that

|u|1+s(1�s)

W s,1+s(1�s)
(I)

=

ˆ
I

ˆ
I

|u(x)� u(y)|1+s(1�s)

|x� y|1+s(1+s(1�s))
dxdy =

ˆ
I

ˆ
I

|u(x)� u(y)|s(1�s) |u(x)� u(y)|
|x� y|1+s(1+s(1�s))

dxdy

 Ls(1�s)

ˆ
I

ˆ
I

|x� y|s2(1�s) |u(x)� u(y)|
|x� y|1+s(1+s(1�s))

dxdy = Ls(1�s)

ˆ
I

ˆ
I

|u(x)� u(y)|
|x� y|1+s dxdy

= Ls(1�s) |u|W s,1
(I) .

Therefore,

lim sup
s%1

(1� s) |u|W s,1+s(1�s)
(I)  lim sup

s%1

(1� s) |u|
1

1+s(1�s)

W s,1
(I)

L
s(1�s)

1+s(1�s) .

Thus, in view of Theorem 2.9 we conclude that

lim sup
s%1

(1� s) |u|W s,1+s(1�s)
(I)  lim sup

s%1

(1� s) |u|
1

1+s(1�s)

W s,1
(I)

lim sup
s%1

L
s(1�s)

1+s(1�s) =
�

�u0
�

�

M
b

(I)

as desired. ⇤

A crucial ingredient in the proof of Theorem 2.12 is a compactness and lower semicontinuity
result for maps with null averages and weighted W s,1+s(1�s)-seminorm.

Proposition 2.14. Let {sn} ⇢ (0, 1) be such that sn ! s̄, with s̄ 2 (0, 1]. For every n 2 N
let vn 2 W s

n

,1+s
n

(1�s
n

)(I) satisfy
´
I vn(x) dx = 0, and

sup
n�1

sn(1� sn) |vn|W s

n

,1+s

n

(1�s

n

)
(I) < +1. (2.3)
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Then, for s̄ 2 (0, 1), and up to the extraction of a (non-relabeled) subsequence, there exists
v̄ 2 W s̄,1+s̄(1�s̄)(I) such that

vn ! v̄ strongly in L1(I),

and

lim inf
n!1 sn(1� sn) |vn|W s

n

,1+s

n

(1�s

n

)
(I) � s̄(1� s̄) |v̄|W s̄,1+s̄(1�s̄)

(I) . (2.4)

The analogous statement holds for s̄ = 1, by replacing W s̄,1+s̄(1�s̄)(I) with BV (I), and
(2.4) with

lim inf
n!1 sn(1� sn) |vn|W s

n

,1+s

n

(1�s

n

)
(I) �

�

�v̄0
�

�

M
b

(I)
.

Proof. We first observe that for x, y 2 I, and s < t, we have |x� y|1+s > |x� y|1+t.
Hence, in view of (2.1) there holds

|u|W s,p

(I) < |u|W t,p

(I) (2.5)

for 1  p < +1, and for every u 2 W t,p(I).

Without loss of generality (and up to the extraction of a non-relabeled subsequence) we
can assume that the sequences {sn} and {sn(1 � sn)} converge monotonically to s̄ and
s̄(1� s̄), respectively. Therefore, according to the value of s̄ only 4 situations can arise:

Case 1: 0 < s̄ < 1

2

: sn & s̄ and sn(1� sn) & s̄(1� s̄);
Case 2: 1

2

 s̄ < 1: sn & s̄ and sn(1� sn) % s̄(1� s̄);
Case 3: 1

2

< s̄  1: sn % s̄ and sn(1� sn) & s̄(1� s̄);
Case 4: 0 < s̄  1

2

: sn % s̄ and sn(1� sn) % s̄(1� s̄).

We first consider Case 2. By (2.3) there exists a constant C such that

sup
n�1

|vn|W s

n

,1+s

n

(1�s

n

)
(I)  C.

We point out that the function f : (0, 1) ! R, defined as

f(x) := x� 1

1 + x(1� x)
for every x 2 (0, 1),

is strictly increasing on (0, 1). Thus, we can apply Theorem 2.3 with s = sn, r = s̄,
p = 1 + sn(1� sn), and q = 1 + s̄(1� s̄) and we obtain

|vn|W s̄,1+s̄(1�s̄)
(I)  C |vn|W s

n

,1+s

n

(1�s

n

)
(I)  C. (2.6)

Thus, by Theorem 2.4 and Corollary 2.8 there exists v̄ 2 W s̄,1+s̄(1�s̄)(I) such that, up to
the extraction of a (non-relabeled) subsequence, we have

vn * v̄ weakly in W s̄,1+s̄(1�s̄)(I).
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By the lower semicontinuity of the W s̄,1+s̄(1�s̄)(I) norm with respect to the weak conver-
gence, and by (2.6) we deduce the inequality

s̄(1� s̄) |v̄|W s̄,1+s̄(1�s̄)
(I)  lim inf

n!+1 s̄(1� s̄) |vn|W s

n

,1+s

n

(1�s

n

)
(I)

= lim inf
n!+1 sn(1� sn) |vn|W s

n

,1+s

n

(1�s

n

)
(I) .

In Case 1 we observe that the function g : (0, 1) ! R, defined as

g(x) :=
1

1 + x(1� x)
for every x 2 (0, 1),

is strictly decreasing in (0, 1
2

]. Since s
1

� sn � s̄ for every n, there holds

1

1 + s
1

(1� s
1

)
� 1

1 + s̄(1� s̄)
,

and by the properties of the functions f and g,

sn � 1

1 + sn(1� sn)
� s̄� 1

1 + s̄(1� s̄)
� s̄� 1

1 + s
1

(1� s
1

)
.

By (2.3) there exists a constant C such that

sup
n�1

|vn|W s

n

,1+s

n

(1�s

n

)
(I)  C.

Choosing s = sn, r = s̄, p = 1+ sn(1� sn), and q = 1+ s
1

(1� s
1

) in Theorem 2.3 we have

|vn|W s̄,1+s1(1�s1)
(I)  |vn|W s

n

,1+s

n

(1�s

n

)
(I)  C.

Thus, by Theorem 2.4 there exists a map v̄ such that, up to the extraction of a (non-
relabeled) subsequence, there holds

vn * v̄ weakly in W s̄,1+s1(1�s1)(I),

and by Theorem 2.2 also strongly in L1(I). In particular, Fatou’s Lemma yields

|v|1+s̄(1�s̄)

W s̄,1+s̄(1�s̄)
(I)

 lim inf
n
k

!+1 |vn
k

|1+s
n

k

(1�s
n

k

)

W s

n

k

,1+s

n

k

(1�s

n

k

)
(I)

,

which in turn implies the thesis.

We omit the proof of the result in Case 4, and in Case 3 for s̄ < 1, as they follow from
analogous arguments. Regarding Case 3 for s̄ = 1, by (2.3) and (2.5) there exists a constant
C such that

(1� sn) |vn|W s

n

,1
(I)  C,

for every n 2 N. The thesis follows then by [52, Theorem 4]. ⇤

We now prove Theorem 2.12.
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Proof of Theorem 2.12. Let " > 0 be given and v
0

2 BV (I) \ C1(R) be such that

|u|TGV 2
↵

(I) � ↵
0

�

�u0 � v
0

�

�

M
b

(I)
+ ↵

1

|v0
0

|M
b

(I) � ".

In view of Proposition 2.13 there holds

lim sup
s%1

|u|TGV 1+s

↵

(I)  lim sup
s%1

(

↵
0

�

�

�

�

u0 � sv
0

+ s

ˆ
I
v
0

(x) dx

�

�

�

�

M
b

(I)

+↵
1

s(1� s) |v
0

|W s,1+s(1�s)
(I)

o

 |u|TGV 2
↵

(I) + "+

�

�

�

�

ˆ
I
v
0

(x) dx

�

�

�

�

. (2.7)

For every s 2 (0, 1), let vs
0

2 W s,1+s(1�s)(I) be such that
´
I v

s
0

(x) dx = 0, and

↵
0

�

�u0 � svs
0

�

�

M
b

(I)
+ ↵

1

s(1� s) |vs
0

|W s,1+s(1�s)
(I)  |u|TGV 1+s

↵

(I) + (1� s). (2.8)

In view of (2.7) and Proposition 2.14, there exists v 2 BV (I) such that, up to the extraction
of a (non-relabeled) subsequence,

vs
0

! v strongly in L1(I),

and

lim
s%1

s(1� s) |vs
0

|W s,1+s(1�s)
(I) �

�

�v0
�

�

BV (I)
.

Passing to the limit in (2.8) we deduce the inequality

|u|TGV 2
↵

(I)  ↵
0

�

�u0 � v
�

�

M
b

(I)
+ ↵

1

�

�v0
�

�

BV (I)
 lim inf

s%1

|u|TGV 1+s

↵

(I) ,

which in turn implies the thesis.

To study the case s & 0, we first observe that

sup
s2(0,1)

|u|TGV 1+s

↵

(I)  |u0|BV (I). (2.9)

Thus we only need to prove the opposite inequality. To this aim, for every s 2 (0, 1) let
vs
0

2 W s,1+s(1�s)(I) be such that
´
I v

s
0

(x) dx = 0, and

↵
0

�

�u0 � svs
0

�

�

M
b

(I)
+ ↵

1

s(1� s) |vs
0

|W s,1+s(1�s)
(I)  |u|TGV 1+s

↵

(I) + s. (2.10)

Since s(1 + s(1� s)) < 1 for s 2 (0, 1), by (2.9) and in view of Theorem 2.4 there holds

svs
0

! 0 strongly in L1(I).

Passing to the limit in (2.10) we deduce the inequality
�

�u0
�

�

M
b

(I)
 lim sup

s&0

|u|TGV 1+s

↵

(I) .

The thesis follows owing to (2.9). ⇤
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Corollary 2.15. Let k � 2. For every u 2 BV (I), up to the extraction of a (non-relabeled)
subsequence there holds

lim inf
s%1

|u|TGV k+s

↵

(I) � |u|TGV k+1
↵

(I) and lim
s&0

|u|TGV k+s

↵

(I) = |u|TGV k

↵̂

(I) ,

where ↵̂ := (↵
0

, . . . ,↵k�1

) 2 Rk
+

.

Proof. The result follows by straightforward adaptations of the arguments in the proof of
Theorem 2.12. ⇤
We proceed by showing that the minimization problem in Definition 2.11 has a solution.

Proposition 2.16. If the infimum in Definition 2.11 is finite, then it is attained.

Proof. Let k = 1. Let ↵ 2 R2

+

, and let u 2 BGV k+s
↵ (I). We need to show that

|u|TGV 1+s

↵

(I) = min
n

↵
0

�

�u0 � sv
�

�

M
b

(I)
+ s(1� s)↵

1

|v|W s,1+s(1�s)
(I) :

v 2 W s,1+s(1�s)(I),

ˆ
I
v(x) dx = 0

�

. (2.11)

We first observe that u 2 BV (I).

Indeed, let ⌘ > 0, and let v 2 W s,1+s(1�s)(I) be such that
´
I v(x) dx = 0, and

↵
0

�

�u0 � sv
�

�

M
b

(I)
+ s(1� s)↵

1

|v|W s,1+s(1�s)
(I)  |u|TGV 1+s

↵

(I) + ⌘.

By Hölder inequality there holds

↵
0

�

�u0
�

�

M
b

(I)
 ↵

0

�

�u0 � sv
�

�

M
b

(I)
+ s↵

0

kvkL1
(I)

 ↵
0

�

�u0 � sv
�

�

M
b

(I)
+ s↵

0

|v|W s,1+s(1�s)
(I) + s↵

0

kvkL1+s(1�s)
(I)

 |u|TGV 1+s

↵

(I) + ⌘ + s(↵
0

� (1� s)↵
1

) |v|W s,1+s(1�s)
(I) + s↵

0

kvkL1+s(1�s)
(I) .

Let now {vn}1n=1

⇢ W s,1+s(1�s)(I) be a minimizing sequence for (2.11). Since s(1 + s(1�
s)) < 1 for s 2 (0, 1), by Theorem 2.2 there exists a constant C such that

sup
n2N

kvnkW s,1+s(1�s)
(I)  C.

Thus, by Corollary 2.8 there exists v̄ 2 W s,1+s(1�s)(I) such that, up to the extraction of a
(non-relabeled) subsequence, there holds

vn * v̄ weakly in W s,1+s(1�s)(I),

and hence by Theorem 2.2,

vn ! v̄ strongly in L1(I).

The thesis follows now by the lower semicontinuity of the total variation and theW s,1+s(1�s)

norm with respect to the L1 convergence and the weak convergence in W s,1+s(1�s)(I),
respectively.
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For k = 2, let {vn
0

}1n=1

⇢ BV (I) and {vn
1

}1n=1

⇢ W s,1+s(1�s)(I) with
´
I v

n
1

(x) dx = 0 for
every n 2 N be such that

lim
n!+1

n

↵
0

|u0 � vn
0

|M
b

(I) + ↵
1

|(vn
0

)0 � svn
1

|M
b

(I) + ↵
2

s(1� s)|vn
1

|W 1,s(1�s)
(I)

o

= TGV 2+s
↵ (I).

Since s(1+s(1�s)) < 1 for s 2 (0, 1), by Theorem 2.2 we obtain that {vn
1

}1n=1

is uniformly
bounded in W s,1+s(1�s)(I). Therefore, {vn

0

}1n=1

is uniformly bounded in BV (I), and there
exist v

0

2 BV (I) and v
1

2 W s,1+s(1�s)(I), with
´
I v1(x) dx = 0, such that, up to the

extraction of a (non-relabeled) subsequence,

vn
0

*⇤ v
0

weakly* in BV (I),

and
vn
1

* v
1

weakly in W s,1+s(1�s)(I).

In particular, by Theorem 2.2,

vn
1

! v
1

strongly in L1(I).

The minimality of v
0

and v
1

is a consequence of lower semicontinuity. The thesis for k > 2
follows by analogous arguments. ⇤
We observe that the TGV k+s seminorms are all equivalent to the total variation seminorm.

Lemma 2.17. For every k � 1 and 0 < s < 1, we have

BV (I) ⇠ BGV k(I) ⇠ BGV k+s(I) ⇠ BGV k+1(I).

Proof. We only show that

BV (I) ⇠ BGV 1+s(I) ⇠ BGV 2(I). (2.12)

The proof of the inequality for k > 1 is analogous. In view of (2.9), to prove the first
equivalence relation in (2.12) we only need to show that there exist a constant C and a
multi-index ↵ 2 R2

+

such that
�

�u0
�

�

M
b

(I)
 C |u|TGV 1+s

↵

(I) .

By Theorem 2.2 we have
�

�u0
�

�

M
b

(I)
 ��u0 � sv

0

�

�

M
b

(I)
+ s |v

0

|L1
(I)

 ��u0 � sv
0

�

�

M
b

(I)
+ Cs |v

0

|W s,1+s(1�s)
(I)

=
�

�u0 � sv
0

�

�

M
b

(I)
+

C

(1� s)
s(1� s) |v

0

|W s,1+s(1�s)
(I)

for every v
0

2 W s,1+s(1�s)(I). Thus
�

�u0
�

�

M
b

(I)
 C |u|TGV 1+s

1, C

(1�s)

(I)

for every s 2 (0, 1). This completes the proof of the first equivalence in (2.12). Property
(2.12) follows now by [17, Theorem 3.3]. ⇤
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We conclude this section with a proposition that will be crucial in establishing our new
training scheme.

Proposition 2.18. Let 0 < A << 1, k 2 N, {sn}1n=1

⇢ (0, 1), and {↵n}1n=1

⇢ Rk+1

+

, with
↵n = (↵n

0

,↵n
1

, . . . ,↵n
k) satisfying

0 < A < inf {↵n
i , n � 1, 0  i  k}  sup {↵n

i , n � 1, 0  i  k} < 1/A < +1. (2.13)

Let un 2 BGV k+s
n

↵n

(I) be such that

sup
n2N

n

kunkBGV k+s

n

↵

n

(I)

o

< +1. (2.14)

Then, up to the extraction of a (non-relabeled) subsequence, there exist s̄ 2 [0, 1], ↵ 2 Rk+1

+

and u 2 BGV k+s̄
↵ (I) such that sn ! s̄, ↵n ! ↵, and

un
⇤
* u in BV (I). (2.15)

In addition, if s̄ 2 (0, 1] there holds

|u|TGV k+s̄

↵

(I)  lim inf
n!+1 |un|TGV k+s

n

↵

n

(I)
. (2.16)

If s̄ = 0 we have
|u|TGV k

↵̂

(I)  lim inf
n!+1 |un|TGV k+s

n

↵

n

(I)
,

where ↵̂ 2 Rk
+

is the multi-index ↵̂ := (↵
0

, . . . ,↵k�1

), and

↵
0

�

�u0
�

�

M
b

(I)
 lim inf

n!+1 |un|TGV k+s

n

↵

n

(I)
, (2.17)

for k > 1 and k = 1, respectively.

Proof. We prove the statement for k = 1. The proof of the result for k > 1 follows via
straightforward modifications. For k = 1, we have {↵n}1n=1

⇢ R2, and by (2.13) up to the
extraction of a (non-relabeled) subsequence there holds

(↵n
0

,↵n
1

) ! (↵
0

,↵
1

) , where A < ↵
0

, ↵
1

< 1/A. (2.18)

In addition, since {sn}1n=1

is bounded, there exists s̄ 2 [0, 1] such that sn ! s̄. By
Proposition 2.16 we deduce that there exists vn

0

2 W s
n

,1+s
n

(1�s
n

)(I) such that

|u|TGV 1+s

n

↵

n

(I) = ↵n
0

�

�u0n � snv
n
0

�

�

M
b

(I)
+ ↵n

1

sn(1� sn) |vn
0

|W s

n

,1+s

n

(1�s

n

)
(I) .

Thus, by Theorem 2.4 and since
´
I v

n
0

(x) dx = 0, we have (note that sn < 1)
�

�u0n
�

�

M
b

(I)
 ��u0n � snv

n
0

�

�

M
b

(I)
+ sn |vn

0

|L1
(I)

 C
n

�

�u0n � snv
n
0

�

�

M
b

(I)
+ sn(1� sn) |vn

0

|W s

n

,1+s

n

(1�s

n

)
(I)

o

.

Hence, by (2.14) and (2.18),

sup
n2N

n

kunkBV (I)

o

 C sup
n2N

n

kunkBGV 1+s

n

↵

n

(I)

o

< +1
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which implies (2.15).

Note that for any 0 < s < 1,

1 + s(1� s)� 1

1� s
=

1

1� s
(�s+ s(1� s)2) < 0.

Hence by applying again Theorem 2.4 we obtain

kvn
0

kL1+s

n

(1�s

n

)
(I)  kvn

0

k
L

1
1�s

n

(I)
 Csn(1� sn) |vn

0

|W s

n

,1+s

n

(1�s

n

)
(I) ,

which by (2.13) implies

sn(1� sn) kvnkW s

n

,1+s

n

(1�s

n

)
(I)  kvn

0

kL1+s

n

(1�s

n

) + sn(1� sn) |vn
0

|W s

n

,1+s

n

(1�s

n

)
(I)

 Csn(1� sn) |vn
0

|W s

n

,1+s

n

(1�s

n

)
(I)  C kunkBGV 1+s

n

↵

n

(I) .

Therefore, by (2.14) we deduce the uniform bound

sup
n�1

sn(1� sn) kvnkW s

n

,1+s

n

(1�s

n

)
(I) < +1. (2.19)

We subdivide the remaining part of the proof of Proposition 2.18 into 2 cases.

Case 1: s̄ 2 (0, 1].

Assume first that s̄ < 1. By Proposition 2.14 there exists v
0

2 W s̄,1+s̄(1�s̄)(I) such that

vn
0

! v
0

strongly in L1(I), (2.20)

and
lim inf
n!1 sn(1� sn) |vn

0

|W s

n

,1+s

n

(1�s

n

) � s̄(1� s̄) |v
0

|W s̄,1+s̄(1�s̄)
(I) . (2.21)

By (2.20) and since 0 < s̄ < 1, there holds

lim inf
n!1 |un|TGV 1+s

n

↵

n

(I)

� lim inf
n!1 ↵n

0

�

�u0n � snv
n
0

�

�

M
b

(I)
+ lim inf

n!1 ↵n
1

sn(1� sn) |vn
0

|W s

n

,1+s

n

(1�s

n

)
(I)

� ↵
0

�

�u0 � s̄v
0

�

�

M
b

(I)
+ ↵

1

s̄(1� s̄) |v
0

|W s̄,1+s̄(1�s̄)
(I) � |u|TGV 1+s̄

↵

(I) , (2.22)

where in the last inequality we used the definition of the TGV 1+s̄
↵ -seminorm. In particular,

u 2 BGV 1+s̄
↵ (I), and (2.16) is satisfied. The proof of the proposition for s̄ = 1 follows via

the same argument, and by replacing s̄(1 � s̄) |v
0

|W s̄,1+s̄(1�s̄)
(I) in (2.21) and (2.22) with

|v0
0

|M
b

(I).

Case 2: s̄ = 0. In view of (2.19) and Theorem 2.4, up to the extraction of a (non-relabeled)
subsequence we deduce that

snvn ! 0 strongly in L1(I).

Hence, there holds

lim inf
n!1 |un|TGV 1+s

n

↵

n

(I)
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� lim inf
n!1 ↵n

0

�

�u0n � snv
n
0

�

�

M
b

(I)
+ lim inf

n!1 ↵n
1

sn(1� sn) |vn
0

|W s

n

,1+s

n

(1�s

n

)
(I)

� ↵
0

�

�u0
�

�

M
b

(I)
,

which in turn implies (2.17). This completes the proof of the proposition. ⇤

2.3. The bilevel training scheme with respect to parameter and regularizer. Let
r � 1 be given and let brc denote the largest integer smaller than or equal to r. We propose
the following training scheme (R) which takes into account the order r of the regularizer

and the parameter ↵ 2 Rbrc+1

+

simultaneously. We restrict our analysis to the case in which
↵ and r satisfy the box constraint

(↵, r) 2 [A, 1/A]brc+1 ⇥ [K,K + 1�A] (2.23)

where 0 < A << 1 and K 2 N.

Our new training scheme (R) is defined as follows:

Level 1.

(↵̄, r̄) := argmin

⇢ˆ
I
|u↵,r � uc|2 dx, (↵, r) 2 [A, 1/A]brc+1 ⇥ [K,K + S]

�

, (2.24)

Level 2.

u↵,r := argmin
u2BGV r

↵

(I)

⇢ˆ
I
|u� u

0

|2 dx+ |u|TGV r

↵

(I)

�

, (2.25)

where uc 2 L1(I) represents a noise-free test picture, and u
0

2 L1(I) is the noisy image.

Note that we only allow the parameters ↵ and the order r of regularizers to lie within
a prescribed finite range. This is needed for the numerical realization of our model and
also to force the optimal reconstructed image u↵̄,r̄ to remain inside our proposed space
BGV r̄

↵̄ (I) (see Proposition 2.18). In particular, if some of the components of ↵ blow up to
1, we might end up in the space W r,1(I), which is outside the purview of this chapter.
We point out that no upper bound on R is required. Thus, despite the box constraint our
analysis still incorporates a large class of image reconstruction regularizers, such as TV
and TGV 2 (see, e.g., [34]).

Before we state the main theorem of this section, we prove a technical lemma that will
guarantee the existence of a unique solution to (2.25).

Lemma 2.19. For every r 2 [1,R], and ↵ 2 Rbrc+1

+

there exists a unique u↵,r 2 BGV r
↵ (I)

solving the minimum problem (2.25).

Proof. Let {un}1n=1

⇢ BGV r
↵ (I) be a minimizing sequence for (2.25). By Lemma 2.17,

{un}1n=1

is uniformly bounded in BV (I). Thus there exists ū 2 BV (I) such that

un *⇤ ū weakly* in BV (I),
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and hence also strongly in L2(I). The thesis follows then by Proposition 2.18 and by the
strict convexity of the functional. ⇤
We are now in a position to prove existence and uniqueness of solutions to our training
scheme.

Theorem 2.20. Let u
0

, uc 2 BV (I) and 0 < A << 1 be given. Under the box constraint
(2.23), the training scheme (R) admits a unique solution (↵̄, r̄) 2 [A, 1/A]2⇥ [1, 2�A] and
provides an associated optimally reconstructed image u↵̄,r̄ 2 BGV r̄

↵̄ (I).

Proof. Let {(↵n, rn)}1n=1

be a minimizing sequence for (2.24), with (↵n, rn) ⇢ [A, 1/A]2 ⇥
[1, 2�A] for every n 2 N. Let u↵

n

,r
n

be the unique solution to (2.25) provided by Lemma
2.19. By (2.25), there holds

|u↵
n

,r
n

|BGV r

n

↵

n

(I)  |u
0

|TGV r

n

↵

n

(I) 
�

�u0
0

�

�

M
b

(I)

for every n 2 N. There exists r̄ 2 [1,R] such that, up to the extraction of a (non-relabeled)
subsequence, there holds rn ! r̄. Note that for n big enough rn = 1 + sn, with sn ! s̄,
and s̄ 2 [0, 1]. We distinguish two cases.

Case 1. r̄ /2 N. Then s̄ 2 (0, 1).
Case 2. r̄ = 1. Then s̄ = 0.

In both cases Proposition 2.18 yields the existence of a map u↵̄,r̄ 2 BGV r̄
↵̄ (I) such that

u↵
n

,r
n

⇤
* u↵̄,r̄ weakly* in BV (I), (2.26)

thus, in particular, strongly in L2(I). The existence of solutions follows then by lower
semicontinuity, whereas the uniqueness is a direct consequence of the strict convexity of
the L2-error norm.

To be precise, we claim that

u↵̄,r̄ = argmin
u2BGV r̄

↵̄

(I)

⇢ˆ
I
|u� u

0

|2 dx+ |u|TGV r̄

↵̄

(I)

�

. (2.27)

Define

ar := inf
u2BGV r

↵

(I)

⇢ˆ
I
|u� u

0

|2 dx+ |u|TGV r

↵

(I)

�

. (2.28)

Assume (2.27) does not hold, i.e., there exists another ũ, as the minimizer of (2.27), such
that

ar̄ =

ˆ
I
|ũ� u

0

|2 dx+ |ũ|TGV r̄

↵̄

(I) <

ˆ
I
|u↵̄,r̄ � u

0

|2 dx+ |u↵̄,r̄|TGV r̄

↵̄

(I) := a0.

In view of (2.26) we have
lim inf ar

n

� a0. (2.29)

Assume r̄ = 1. Then we have sn & s̄ = 0. By Theorem 2.12 we may write

lim
n!1 |ũ|TGV r

n

↵

n

(I) = |ũ|TGV r̄

↵̄

(I)
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and hence

lim
n!1

ˆ
I
|ũ� u

0

|2 dx+ |ũ|TGV r

n

↵

n

(I) = mr̄ < a0 (2.30)

Now, in view of (2.29), for n large enough we have

ar
n

� a0 � 1

4
(a0 � ar̄),

and hence, push r even larger if need to, together with (2.30) we haveˆ
I
|ũ� u

0

|2 dx+ |ũ|TGV r

n

↵

n

(I)  ar̄ +
1

4
(a0 � ar̄) < a0 � 1

4
(a0 � ar̄)  ar

n

which contradicts to the definition of mr
n

in (2.28). The case r̄ > 1, i.e., s̄ 2 (0, 1) can be
proved in the same way as above. ⇤
Remark 2.21. Theorem 2.20 hold with the box constraint [A, 1/A]K⇥[K,K+1�A], where
K 2 N and 0 < A << 1. The proof of the result for K > 1 follows via straightforward mod-
ifications. In practice, we may take the box constraint [A, 1/A]K ⇥ ([1, 1 + S] [ [2, 2 + S]),
which covers a large class of image reconstruction regularizers, such as TV and TGV 2.

Chapter 3. The weighted Ambrosio - Tortorelli approximation scheme

3.1. Definitions and preliminary results. Throughout this part, ⌦ ⇢ RN is an open
bounded set with Lipschitz boundary, and I := (�1, 1).

Definition 3.1. We say that u 2 BV (⌦) is a special function of bounded variation, and
we write u 2 SBV (⌦), if the Cantor part of its derivative, Dcu, is zero, so that (see [4],
(3.89))

Du = Dau+Dju = ruLNb⌦+ (u+ � u�)⌫uHN�1bSu. (3.1)

Moreover, we say that

1. u 2 SBV 2(⌦) if u 2 SBV (⌦) and ru 2 L2(⌦);
2. u 2 GSBV (⌦) if K ^ u _ �K 2 SBV (⌦) for all K 2 N.

Here we always identify u 2 SBV (⌦) with its approximation representative ū, where

ū(x) :=
1

2

⇥

u+(x) + u�(x)
⇤

,

with

u+(x) := inf

⇢

t 2 R : lim
r!0

LN (B(x, r) \ {u > t})
rN

= 0

�

,

and

u�(x) := sup

⇢

t 2 R : lim
r!0

LN (B(x, r) \ {u < t})
rN

= 0

�

.

We note that ū is Borel measurable (see [41], Lemma 1, page 210), and it can be shown
that ū = u LN -a.e. x 2 ⌦, and that

(ū)+(x) = u+(x) and (ū)�(x) = u�(x)
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for HN�1-a.e. x 2 ⌦ (see [41], Corollary 1, page 216). Furthermore, we have that

� < u�(x)  u+(x) < +1 (3.2)

for HN�1-a.e. x 2 ⌦ (see [41], Theorem 2, page 211). The inequality (3.2) uniquely
determines the sign of ⌫u in (3.1).

Definition 3.2. (The weight function) We say that !: ⌦ ! (0,+1] belongs to W(⌦) if
! 2 L1(⌦) and has a positive lower bound, i.e., there exists l > 0 such that

ess inf {!(x), x 2 ⌦} � l. (3.3)

Without loss of generality, we take l = 1. Moreover, in this chapter we will only consider
the cases in which ! is either a continuous function or a SBV function. If ! 2 SBV then,
in addition, we require that

HN�1(S!) < 1 and HN�1(S! \ S!) = 0.

We next fix some notation which will be used throughout this chapter.

Notation 3.3. Let � ⇢ ⌦ be a HN�1-rectifiable set and x 2 � be given.

1. We denote by ⌫
�

(x) a normal vector at x with respect to �, and Q⌫�(x, r) is the cube
centered at x with side length r and two faces normal to ⌫

�

(x);
2. Tx,⌫� stands for the hyperplane normal to ⌫

�

(x) and passing through x, and Px,⌫� stands
for the projection operator from � onto Tx,⌫� ;

3. we define the hyperplane Tx,⌫�(t) := Tx,⌫� + t⌫
�

(x) for t 2 R;
4. we introduce the half-spaces

H⌫�(x)
+ :=

�

y 2 RN : ⌫
�

(x) · (y � x) � 0
 

and
H⌫�(x)

� :=
�

y 2 RN : ⌫
�

(x) · (y � x)  0
 

.

Moreover, we define the half-cubes

Q±
⌫�
(x, r) := Q⌫�(x, r) \H⌫�(x)

±;

5. for given ⌧ > 0, we denote by R⌧,⌫�(x, r) the part of Q⌫�(x, r) which lies strictly between
the two hyperplanes Tx,⌫�(�⌧r) and Tx,⌫�(⌧r);

6. we set A� := {x 2 ⌦ : dist(x,A) < �} for every A ⇢ ⌦ and � > 0.

Theorem 3.4 ([41], Theorem 3, page 213). Assume that u 2 BV (⌦). Then

1. for HN�1-a.e. x
0

2 ⌦ \ Su,

lim
r!0

 
B(x0,r)

|u(x)� ū(x
0

)| N

N�1 dx = 0;

2. for HN�1-a.e. x
0

2 Su,

lim
r!0

 
B(x0,r)\H⌫

S

u

(x0)
±

�

�u(x)� u±(x
0

)
�

�

N

N�1 dx = 0;
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3. for HN�1 a.e. x
0

2 Su

lim
"!0

1

"N�1

ˆ
S
u

\Q
⌫

S

u

(x0,")

�

�u+(x)� u�(x)
�

� dHN�1(x) =
�

�u+(x
0

)� u�(x
0

)
�

� .

Lemma 3.5 (Lemma 5.2 and Remark 5.3 in [16]). If u 2 SBV 2(⌦) \ L1(⌦) then there
exists a sequence {un}1n=1

⇢ SBV 2(⌦) \ L1(⌦) such that the following hold:

1. kunkL1  kukL1 for all n 2 N;
2. un ! u in L1(⌦);
3. run ! ru strongly in L2(⌦;R2);
4. HN�1(Su

n

4Su) ! 0;
5. limn!1HN�1

�

Su
n

\ Su
n

�

= 0 (see Remark 5.3 in [16]).

Lemma 3.6. Let ! 2 SBV (I) be such that H0(S!) < 1. For every x 2 I the following
statements hold:

1. if {xn}1n=1

and {yn}1n=1

⇢ I are such that xn < x < yn, n 2 N, and limn!1 xn =
limn!1 yn = x, then

lim inf
n!1 ess inf

y2(x
n

,y
n

)

!(y) � !�(x); (3.4)

2.
lim
z
n

!x
{z

n

}1
n=1⇢H±

⌫

S

!

(x)

!̄(zn) = !±(x); (3.5)

3.
lim sup

dH(K
n

,x)!0

ess sup
z2K

n

K
n

⇢⇢H±
⌫

S

!

(x)

!(z) = !±(x), (3.6)

where Kn ⇢⇢ H±
⌫
S

!

(x) and dH denotes the Hausdor↵ distance (see Definition A.1).

Proof. If x /2 S!, then there exists � > 0 such that

S! \ (x� �, x+ �) = ?,

and so ! is absolutely continuous in (x � �, x + �), and (3.4)-(3.6) are trivially satisfied
with !(x) = !�(x) and with equality in place of the inequality in (3.4).

Let x 2 S! and, without loss of generality, assume that x = 0, and let xn, yn ! 0
with xn < 0 < yn for all n 2 N. Since H0(S!) < 1, choose r̄ > 0 such that

S! \ (0� r̄, 0 + r̄) = 0.

As !̄ is absolutely continuous in (�r̄, 0) and (0, r̄), we may extend !̄ uniquely to x = 0
from the left and the right (see Exercise 3.7 (1) in [58]) to define

!̄(0+) := lim
x&0

+
!̄(x) and !̄(0�) := lim

x%0

�
!̄(x). (3.7)

Assume that (the case !̄(0�) � !̄(0+) can be treated similarly)

!̄(0�)  !̄(0+). (3.8)
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We first claim that
lim inf
n!1 inf

x2(x
n

,y
n

)

!̄(x) � !̄(0�). (3.9)

Let " > 0 be given. By (3.7) find r̄ > � > 0 small enough such that
�

�!̄(x)� !̄(0�)
�

�  1

2
" for all x 2 (��, 0), and

�

�!̄(x)� !̄(0+)
�

�  1

2
" for all x 2 (0, �).

This, together with (3.8), yields

!̄(x) � !̄(0�)� 1

2
",

for all x 2 (��, �). Since xn ! 0 and yn ! 0, we may choose n large enough such that
(xn, yn) ⇢ (��, �) and hence

inf
x2(x

n

,y
n

)

!̄(x) � !̄(0�)� ".

Thus, (3.9) follows by the arbitrariness of " > 0.

We next claim that
!̄(0±) = !±(0). (3.10)

By Theorem 3.4 part 2 and the fact that !̄ = ! L1-a.e., we have

!�(0) = lim
r!0

1

r

ˆ
0

�r
!(t) dt = lim

r!0

1

r

ˆ
0

�r
!̄(t) dt = !̄(0�),

where at the last equality we used the properties of absolutely continuous function and the
definition of !̄(0�). The equation !̄(0+) = !+(0) can be proved similarly.

Therefore
lim inf
n!1 ess inf

x2(x
n

,y
n

)

!(x) = lim inf
n!1 inf

x2(x
n

,y
n

)

!̄(x) � !̄(0�) = !�(0),

which concludes (3.4), and (3.5) and (3.6) hold by (3.7) and (3.10). ⇤
Lemma 3.7. The space L2

! is a Hilbert space endowed with the inner product

(u, v)L2
!

:= (u, v !)L2 =

ˆ
u v ! dx. (3.11)

Proof. It is clear that (3.11) is an inner product. Also, (u, u)L2
!

= (u
p
!, u

p
!)L2 � 0, and

if (u, u)L2
!

= 0 then by (3.3) ˆ
⌦

u2! dx �
ˆ
⌦

u2dx = 0,

and thus u = 0 a.e.

To see that L2

! is complete, and therefore a Hilbert space, let {un}1n=1

be a Cauchy se-
quence in L2

! and notice that {un
p
!}1n=1

is a Cauchy sequence in L2. Hence, there is a
function v 2 L2 such that un

p
! ! v in L2. Defining u := v/

p
!, we have that u 2 L2

!

and un ! u in L2

!. ⇤
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Lemma 3.8. Let {un}1n=1

⇢ W 1,2
! (⌦) be such that un ! u in L1

! and

sup

ˆ
⌦

|run|2 ! dx < 1.

Then, for every measurable set A ⇢ ⌦

lim inf
n!1

ˆ
A
|run|2 ! dx �

ˆ
A
|ru|2 ! dx,

and u 2 W 1,2
! (⌦).

Proof. By (3.3) we have that {run}1n=1

is uniformly bounded in L2(⌦,RN ) and un ! u
in L1(⌦). Hence run * ru in L2(⌦;RN ), and using standard lower semi-continuity of
convex energies (see [45], Theorem 6.3.7), we conclude that

+1 > lim inf
n!1

ˆ
A
|run|2 ! dx �

ˆ
A
|ru|2 ! dx,

for every measurable subset A ⇢ ⌦. In particular, with A = ⌦ and using the fact that
1  ! a.e., we deduce that u 2 W 1,2

! (⌦). ⇤

Lemma 3.9. Let u 2 L1

!(⌦) be such that
ˆ
⌦

|ru|2 ! dx+

ˆ
S
u

! dHN�1 < +1. (3.12)

Then HN�1(Su) < +1 and u 2 GSBV!(⌦).

Proof. By (3.12) and (3.3)
ˆ
⌦

|ru|2 dx+HN�1(Su) < +1,

and hence by [6] we have that u 2 GSBV (⌦). To show that u 2 GSBV!(⌦), we only need
to verify that ˆ

S
u

K

�

�u+K � u�K
�

�! dHN�1 < +1

for every K 2 N and with uK := K ^ u _ �K. Indeed, by (3.12)
ˆ
S
u

K

�

�u+K � u�K
�

�! dHN�1  2K

ˆ
S
u

K

! dHN�1  2K

ˆ
S
u

! dHN�1 < +1.

⇤

3.2. The one dimensional case.
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3.2.1. The case ! 2 W(I) \ C(I).

Let ! 2 W(I) \ C(I) be given. Consider the functionals

AT!,"(u, v) :=

ˆ
I
v2
�

�u0
�

�

2

! dx+

ˆ
I



"

2

�

�v0
�

�

2

+
1

2"
(v � 1)2

�

! dx

for (u, v) 2 W 1,2
! (I)⇥W 1,2(I), and let

MS!(u) :=

ˆ
I

�

�u0
�

�

2

! dx+
X

x2S
u

!(x)

be defined for u 2 GSBV!(I) (Note that AT1,"(u, v) and MS
1

(u) are, respectively, the non-
weighted Ambrosio-Tortorelli approximation scheme and Mumford-Shah functional studied
in [6]).

Theorem 3.10 (�-Convergence). Let AT !,": L1(I)⇥ L1(I) ! [0,+1] be defined by

AT !,"(u, v) :=

(

AT!,"(u, v) if (u, v) 2 W 1,2(I)⇥W 1,2(I), 0  v  1,

+1 otherwise.

Then the functionals AT !," �-converge, with respect to the L1 ⇥ L1 topology, to the func-
tional

MS!(u, v) :=

(

MS!(u) if u 2 GSBV (I) and v = 1 a.e.,

+1 otherwise.

We begin with an auxiliary proposition.

Proposition 3.11. Let {v"}">0

⇢ W 1,2(I) be such that 0  v"  1, v" ! 1 in L1(I) and
pointwise a.e., and

lim sup
"!0

ˆ
I



"

2

�

�v0"
�

�

2

+
1

2"
(v" � 1)2

�

dx < 1.

Then for arbitrary 0 < ⌘ < 1 there exists an open set H⌘ ⇢ I satisfying:

1. the set I \H⌘ is a collection of finitely many points in I;
2. for every set K compactly contained in H⌘, we have K ⇢ B⌘

" for " > 0 small enough,
where

B⌘
" :=

�

x 2 I : v2"(x) � ⌘
 

. (3.13)

Proposition 3.11 is adapted from [6], page 1020-1021 (see Lemma A.3).

Proposition 3.12. (�-lim inf) For u 2 L1

!(I), let

MS�
! (u) := inf

n

lim inf
"!0

AT!,"(u", v") :

(u", v") 2 W 1,2(I)⇥W 1,2(I), u" ! u in L1, v" ! 1 in L1, 0  v"  1
 

.

We have
MS�

! (u) � MS!(u).
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Proof. If MS�
! (u) = +1 then there is nothing to prove. Assume that M := MS�

! (u) < 1.
Choose u" and v" admissible for MS�

! (u) such that

lim
"!0

AT!,"(u", v") = MS�
! (u) < 1,

and note that v" ! 1 in L1(I). Since infx2⌦ !(x) � 1, we have

lim inf
"!0

AT
1,"(u", v")  lim inf

"!0

AT!,"(u", v") < +1,

and by [6] we obtain that

u 2 GSBV (I) and H0(Su) < +1. (3.14)

Let "̄ > 0 be su�ciently small so that, for all 0 < " < "̄,

AT!,"(u", v")  M + 1.

We claim, separately, thatˆ
I

�

�u0
�

�

2

! dx  lim inf
"!0

ˆ
I

�

�u0"
�

�

2

v2" ! dx < +1, (3.15)

and
X

x2S
u

!(x)  lim inf
"!0

ˆ
I



1

2
"
�

�v0"
�

�

2

+
1

2"
(1� v")

2

�

! dx < +1. (3.16)

Note that (3.15), (3.16), and Lemma 3.9 will yield u 2 GSBV!(I).

Up to the extraction of a (not relabeled) subsequence, we have u" ! u and v" ! 1
a.e. in I with

lim sup
"!0

ˆ
I



1

2
"
�

�v0"
�

�

2

+
1

2"
(1� v")

2

�

dx  lim sup
"!0

ˆ
I



1

2
"
�

�v0"
�

�

2

+
1

2"
(1� v")

2

�

! dx < +1.

Therefore, up to the extraction of a (not relabeled) subsequence, we can apply Proposition
3.11 and deduce that, for a fixed ⌘ 2 (1/2, 1), there exists an open set H⌘ such that the set
I \H⌘ contains only a finite number of points, and for every compact subset K ⇢⇢ H⌘, K
is contained in B⌘

" for 0 < " < "(K), where B⌘
" is defined in (3.13). We haveˆ

K

�

�u0
�

�

2

! dx  lim inf
"!0

ˆ
K

�

�u0"
�

�

2

! dx

 1

⌘
lim inf
"!0

ˆ
K
v2"
�

�u0"
�

�

2

! dx  1

⌘
lim inf
"!0

ˆ
I
v2"
�

�u0"
�

�

2

! dx,
(3.17)

where we used Lemma 3.8 in the first inequality. By letting K % H⌘ on the left hand side
of (3.17) first and then ⌘ % 1 on the right hand side, we proved thatˆ

I

�

�u0
�

�

2

! dx  lim inf
"!0

ˆ
I
v2"
�

�u0"
�

�

2

! dx, (3.18)

where we used the fact that |I \H⌘| = 0.

We claim that Su ⇢ I \ H⌘. Indeed, if there is x
0

2 Su \ H⌘, since H⌘ is open there
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exists an open interval I 0
0

containing x
0

and compactly contained in H⌘ such that for
0 < " < "0

0 ˆ
I00

�

�u0"
�

�

2

dx 
ˆ
I00

�

�u0"
�

�

2

! dx  1

⌘

ˆ
I
v2"
�

�u0"
�

�

2

! dx  2(M + 1).

Thus u 2 W 1,2(I 0
0

), and hence is continuous at x
0

, which contradicts the fact that x
0

2 Su.

Let t 2 Su, and for simplicity assume that t = 0. We claim that there exist
�

t1n
 1
n=1

,
�

t2n
 1
n=1

, and {sn}1n=1

such that �1 < t1n < sn < t2n < 1,

lim
n!1 t1n = lim

n!1 t2n = lim
n!1 sn = 0,

and, up to the extraction of a subsequence of {v"}">0

,

lim
n!1 v"(n)(t

1

n) = lim
n!1 v"(n)(t

2

n) = 1, and lim
n!1 v"(n)(sn) = 0. (3.19)

Because I \H⌘ is discrete and 0 2 I \H⌘, we may choose �
0

> 0 small enough such that

(�2�
0

, 2�
0

) \ (I \H⌘) = {0} .
We claim that

lim sup
�!0

+
lim sup
"!0

+
inf
x2I

�

v"(x) = 0, (3.20)

where I� := (��, �). Assume that

lim sup
�!0

+
lim sup
"!0

+
inf
x2I

�

v"(x) =: ↵ > 0.

Then there exists 0 < �↵ < �
0

such that

lim sup
"!0

+
inf

x2I
�

↵

v"(x) � 2

3
↵ > 0.

Up to the extraction of a subsequence of {v"}">0

, there exists "�↵
0

> 0 such that

inf
x2I

�

↵

v"(x) � 1

2
↵ > 0,

for all 0 < " < "�↵
0

, and we haveˆ
I
�

↵

�

�u0
�

�

2

dx 
ˆ
I
�

↵

�

�u0
�

�

2

! dx

 lim inf
"!0

ˆ
I
�

↵

�

�u0"
�

�

2

! dx  lim inf
"!0

2

↵

ˆ
I
�

↵

�

�u0"
�

�

2

v2" ! dx

 lim inf
"!0

2

↵

ˆ
I

�

�u0"
�

�

2

v2" ! dx <
2

↵
(M + 1).

Hence u 2 W 1,2(I�
↵

) and so u is continuous at 0 2 Su, and we reduce a contradiction.
Therefore, in view of (3.20) we may find �n ! 0+, "(n) ! 0+, and sn 2 (��n, �n) such that

lim
n!1 sn = 0 and lim

n!1 v"(n)(sn) = 0.
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We claim that for all ⌧ 2 (0, 1/2),

lim
n!1



inf
x2(s

n

�⌧,s
n

)

(1� v"(n)(x)) + inf
y2(s

n

,s
n

+⌧)
(1� v"(n)(x))

�

= 0. (3.21)

To reach a contradiction, assume that there exists ⌧ 2 (0, 1/2) such that

lim sup
n!1



inf
x2(s

n

�⌧,s
n

)

(1� v"(n)(x)) + inf
x2(s

n

,s
n

+⌧)
(1� v"(n)(x))

�

=: � > 0.

Without loss of generality, suppose that

lim sup
n!1

inf
x2(s

n

�⌧,s
n

)

(1� v"(n)(x)) �
1

2
� > 0.

Then

lim inf
n!1 sup

x2(s
n

�⌧,s
n

)

v"(n)(x)  1� 1

2
�,

which implies that

sup
x2(s

n

k

�⌧,s
n

k

)

v"(n
k

)

(x)  1� 1

3
� (3.22)

for a subsequence {"(nk)}1k=1

⇢ {"(n)}1n=1

. However, (3.22) contradicts the fact that
v"(n

k

)

(x) ! 1 a.e. since for k large enough so that |sn
k

| < ⌧/4 it holds

(sn
k

� ⌧, sn
k

) �
✓

�3

4
⌧,�⌧

4

◆

.

Therefore, in view of (3.21) we may find t1m 2 (sn(m)

�1/m, sn(m)

) and t2m 2 (sn(m)

, sn(m)

+
1/m) such that

lim
n!1 t1m = lim

n!1 t2m = 0 and lim
n!1 v"(n(m))

(t1m) = lim
n!1 v"(n(m))

(t2m) = 1.

We next show that

lim inf
m!1

ˆ s
n(m)

t1
m



1

2
"(n(m))

�

�(v"(n(m))

)0
�

�

2

+
1

2"(n(m))
(1� v"(n(m))

)2
�

dx � 1

2
.

Indeed, we have

lim inf
m!1

ˆ s
n(m)

t1
m



1

2
"(n(m))

�

�(v"(n))
0�
�

2

+
1

2"(n(m))
(1� v"(n))

2

�

dx

� lim inf
m!1

ˆ s
n(m)

t1
m

(1� v"(n))
�

�

�

v0"(n)
�

�

�

dx � lim inf
m!1

�

�

�

�

�

ˆ s
n(m)

t1
m

(1� v"(n))v
0
"(n)dx

�

�

�

�

�

= lim inf
m!1

1

2

�

�

�

�

�

ˆ s
n(m)

t1
m

d

dt
(1� v"(n))

2dx

�

�

�

�

�

=
1

2
lim
n!1

⇥

(1� v"(n(m))

(sn(m)

))2 � (1� v"(n(m))

(t1m))2
⇤

=
1

2
,
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where we used (3.19). Similarly, we obtain

lim inf
m!1

ˆ t2
m

s
n(m)



1

2
"(n(m))

�

�(v"(n))
0�
�

2

+
1

2"(n)
(1� v"(n))

2

�

dx � 1

2
.

We observe that, since ! is positive,ˆ t2
m

t1
m



1

2
"(n)

�

�

�

v0"(n)
�

�

�

2

+
1

2"(n)
(1� v"(n))

2

�

!(x) dx

�
✓

inf
r2(t1

m

,t2
m

)

!(r)

◆

·
(ˆ s

n(m)

t1
m



1

2
"(n)

�

�

�

v0"(n)
�

�

�

2

+
1

2"(n)
(1� v"(n))

2

�

dx

+

ˆ t2
m

s
n(m)



1

2
"(n)

�

�(v"(n))
0�
�

2

+
1

2"(n)
(1� v"(n))

2

�

dx

)

,

(3.23)

and so

lim inf
m!1

ˆ t2
m

t1
m



1

2
"(n)

�

�

�

v0"(n)
�

�

�

2

+
1

2"(n)
(1� v"(n))

2

�

!(x) dx

�
✓

lim inf
m!1 inf

r2(t1
m

,t2
m

)

!(r)

◆

lim inf
n!1

(ˆ s
n(m)

t1
m



1

2"(n)
(1� v"(n))

2 +
"

2

�

�(v"(n))
0�
�

2

�

dx

+

ˆ t2
m

s
n(m)



1

2
"(n)

�

�

�

v0"(n)
�

�

�

2

+
1

2"(n)
(1� v"(n))

2

�

dx

)

�
✓

1

2
+

1

2

◆

!(0) = !(0),

where we used the fact that ! is continuous at 0.

Finally, since Su ⇢ I \ H⌘, by (3.14) we have that Su is a finite collection of points,
and we may repeat the above argument for all t 2 Su by partitioning I into non-overlaping
intervals where there is at most one point of Su, to deduce that

lim inf
"!0

ˆ
I



1

2
"
�

�v0"
�

�

2

+
1

2"
(1� v")

2

�

!(x) dx �
X

x2S
u

!(x). (3.24)

In view of (3.18) and (3.24), we conclude that

lim inf
"!0

AT!,"(u", v") � MS!(u).

⇤
Proposition 3.13. (�-lim sup) For u 2 L1(I) \ L1(I), let

MS+

! (u) := inf

⇢

lim sup
"!0

AT!,"(u", v") :

(u", v") 2 W 1,2(I)⇥W 1,2(I), u" ! u in L1, v" ! 1 in L1, 0  v"  1
 

.
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We have
MS+

! (u)  MS!(u). (3.25)

Proof. Without loss of generality, assume that MS!(u) < 1. Then by Lemma 3.9 we have
u 2 GSBV!(I) and H0(Su) < 1. To prove (3.25), we show that there exist {u"}">0

⇢
W 1,2

! (I) and {v"}">0

⇢ W 1,2(I) such that u" ! u in L1

!, v" ! 1 in L1, 0  v"  1, and

lim sup
"!0

AT!,"(u", v")  MS!(u). (3.26)

Step 1: Assume that Su = {0}.

Fix ⌘ > 0, and let T > 0 and v
0

2 W 1,2(0, T ) be such that

0  v
0

 1 and

ˆ T

0

h

(1� v
0

)2 +
�

�v0
0

�

�

2

i

dx  1 + ⌘, (3.27)

with v
0

(0) = 0 and v
0

(T ) = 1.

For ⇠" = o(") we define

v"(x) :=

8

>

<

>

:

0 if |x|  ⇠",

v
0

⇣ |x|�⇠
"

"

⌘

if ⇠" < |x| < ⇠" + "T,

1 if |x| � ⇠" + "T.

(3.28)

Since kv"kL1
(I)  1, by Lebesgue Dominated Convergence Theorem we have v" ! 1 in L1.

Let

u"(x) :=

(

u(x) if |x| � 1

2

⇠",

a�ne from u
��1

2

⇠"
�

to u
�

1

2

⇠"
�

if |x| < 1

2

⇠".
(3.29)

and we observe that (recall in assumption we have u 2 L1(I))

ku"kL1
(I)  kukL1

(I) ,

and ˆ
I
kukL1

(I) ! dx < 1.

Therefore, by Lebesgue Dominated Convergence Theorem we deduce that u" ! u in L1

!.
Moreover, by (3.28) and (3.29) we observe that

v2"
�

�u0"
�

�

2

=

(

v2" |u0|2 if x � |⇠"| ,
0 if x < |⇠"| ,

and so v2" |u0"|2  |u0|2. Since MS!(u) < 1 we have u0 2 L2

!(I), by Lebesgue Dominated
Convergence Theorem we obtain

lim
"!0

ˆ
I
v2"
�

�u0"
�

�

2

! dx =

ˆ
I

�

�u0
�

�

2

! dx.
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Next, since ! is positive we haveˆ
I



"

2

�

�v0"
�

�

2

+
1

2"
(v" � 1)2

�

!(x) dx

=

ˆ �⇠
"

�⇠
"

�"T



"

2

�

�v0"
�

�

2

+
1

2"
(v" � 1)2

�

!(x) dx

+

ˆ ⇠
"

+"T

⇠
"



"

2

�

�v0"
�

�

2

+
1

2"
(v" � 1)2

�

!(x) dx+
1

2"

ˆ ⇠
"

�⇠
"

!(x)dx


 

sup
t2(�⇠

"

�"T,⇠
"

+"T )

!(t)

!

·
⇢ˆ �⇠

"

�⇠
"

�"T



"

2

�

�v0"
�

�

2

+
1

2"
(v" � 1)2

�

dx

+

ˆ ⇠
"

+"T

⇠
"



"

2

�

�v0"
�

�

2

+
1

2"
(v" � 1)2

�

dx

�

+
⇠"
"
k!kL1 .

We obtain

lim sup
"!0

ˆ
I



"

2

�

�v0"
�

�

2

+
1

2"
(v" � 1)2

�

!(x) dx

 lim sup
"!0

 

sup
t2(�⇠

"

�"T,⇠
"

+"T )

!(t)

!

·

lim sup
"!0

⇢ˆ �⇠
"

�⇠
"

�"T



"

2

�

�v0"
�

�

2

+
1

2"
(v" � 1)2

�

dx+

ˆ ⇠
"

+"T

⇠
"



"

2

�

�v0"
�

�

2

+
1

2"
(v" � 1)2

�

dx

�

!(0)(1 + ⌘),

where we used (3.27).

We conclude that

lim sup
"!0

AT!,"(u", v") 
ˆ
I

�

�u0
�

�

2

! dx+ !(0)(1 + ⌘),

and (3.26) follows by the arbitrariness of ⌘.

Step 2: In the general case in which Su is finite, we obtain u" by repeating the construc-
tion in Step 1 (see (3.29)) in small non-overlapping intervals centered at each point in Su.
To obtain v", we repeat the construction (3.28) in those intervals and extend by 1 in the
complement of the union of those intervals. Hence, by Step 1 we have

lim sup
"!0

AT!,"(u", v") 
ˆ
I

�

�u0
�

�

2

! dx+ (1 + ⌘)
X

x2S
u

!(x),

and again (3.26) follows by letting ⌘ ! 0+. ⇤
Proof of Theorem 3.10. The lim inf inequality follows from Proposition 3.12. For the lim sup
inequality, we note that for any given u 2 GSBV! such that MS!(u) < +1, by Lebesgue
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Monotone Convergence Theorem we have that

MS!(u) = lim
K!1

MS!(K ^ u _ �K),

and hence a diagonal argument together with Proposition 3.13 conclude the proof. ⇤

3.2.2. The Case ! 2 W(I) \ SBV (I).

Consider the functionals

AT!,"(u, v) :=

ˆ
I

�

�u0
�

�

2

v2! dx+

ˆ
I



"

2

�

�v0
�

�

2

+
1

2"
(v � 1)2

�

! dx

for (u, v) 2 W 1,2(I)⇥W 1,2(I), and for u 2 GSBV!(I) let

MS!(u) :=

ˆ
I

�

�u0
�

�

2

! dx+
X

x2S
u

!�(x).

We note that if ! 2 W(I) \ SBV (I) and ! is continuous in a neighborhood of Su, for
u 2 GSBV!(I), then

X

x2S
u

!�(x) =
X

x2S
u

!(x)

and Theorem 3.10 still holds.

Here we study the case in which ! is no longer continuous on a neighborhood of Su.
We recall that ! 2 SBV (I) implies that ! 2 L1(I) and by definition of ! 2 W(I), we
have H0(S!) < 1. Also, we note that !� is defined H0-a.e, hence everywhere in I.

Theorem 3.14. Let MS": L1(I)⇥ L1(I) ! [0,+1] be defined by

AT !,"(u, v) :=

(

AT!,"(u, v) if (u, v) 2 W 1,2(I)⇥W 1,2(I), 0  v  1,

+1 otherwise.

Then the functionals AT !," �-converge, with respect to the L1 ⇥ L1 topology, to the func-
tional

MS!(u, v) :=

(

MS!(u) if u 2 GSBV (I) and v = 1 a.e.,

+1 otherwise.

The proof of Theorem 3.14 will be split into two propositions.

Proposition 3.15. (�-lim inf) For u 2 L1(I), let

MS�
! (u) := inf

n

lim inf
"!0

AT!,"(u", v") :

(u", v") 2 W 1,2(I)⇥W 1,2(I), u" ! u in L1, v" ! 1 in L1, 0  v"  1
 

.

We have
MS�

! (u) � MS!(u)
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Proof. Without lose of generality, assume that MS�
! (u) < +1. We use the same argu-

ments of the proof of Proposition 3.12 until (3.23). In particular, (3.14) and (3.15) still
hold, that is

H0(Su) < +1 and

ˆ
I

�

�u0
�

�

2

! dx  lim inf
"!0

ˆ
I

�

�u0"
�

�

2

v2" ! dx.

Invoking (3.23), we have

lim inf
m!1

ˆ t2
m

t1
m



1

2
"(n)

�

�

�

v0"(n)
�

�

�

2

+
1

2"(n)
(1� v"(n))

2

�

!(x) dx

�
✓

lim inf
m!1 ess inf

r2(t1
m

,t2
m

)

!(r)

◆

· lim inf
n!1

(ˆ s
n(m)

t1
m



1

2
"(n)

�

�(v"(n))
0�
�

2

+
1

2"(n)
(1� v"(n))

2

�

dx

+

ˆ t2
m

s
n(m)



1

2
"(n)

�

�(v"(n))
0�
�

2

+
1

2"(n)
(1� v"(n))

2

�

dx

)

� !�(0)
✓

1

2
+

1

2

◆

= !�(0),

where the last step is justified by (3.4).

Since Su is finite, we may repeat the above argument for all t 2 Su by partitioning I
into finitely many non-overlapping intervals where there is at most one point of Su, to
conclude that

lim inf
"!0

ˆ
I



1

2
"
�

�v0"
�

�

2

+
1

2"
(1� v")

2

�

!(x) dx �
X

x2S
u

!�(x),

as desired. ⇤

The construction of the recovery sequence uses a reflection argument nearby points of
S! \ Su.

Proposition 3.16. (�-lim sup) For u 2 L1(I) \ L1(I), let

MS+

! (u) := inf

⇢

lim sup
"!0

AT!,"(u", v") :

(u", v") 2 W 1,2(I)⇥W 1,2(I), u" ! u in L1, v" ! 1 in L1, 0  v"  1
 

.

We have

MS+

! (u)  MS!(u). (3.30)

Proof. To prove (3.30), we only need to explicitly construct a sequence {(u", v")}">0

⇢
W 1,2(I)⇥W 1,2(I) such that u" ! u in L1, v" ! 1 in L1, 0  v"  1, and

lim sup
"!0

AT!,"(u", v")  MS!(u). (3.31)
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Step 1: Assume that {0} = Su ⇢ S!.

Recall that we always identify ! with its approximation representative !̄, and by (3.5)
we may assume that (the converse situation may be dealt with similarly)

lim
t%0

�
!(t) = !�(0) and lim

t&0

+
!(t) = !+(0).

Fix ⌘ > 0. For " > 0 small enough, and with ⇠" = o("), as in (3.27), (3.28) let

ṽ"(x) :=

8

>

<

>

:

0 if |x|  ⇠"

v
0

⇣ |x|�⇠
"

"

⌘

if ⇠" < |x| < ⇠" + "T

1 if |x| � ⇠" + "T,

and define

v"(x) := ṽ"(x+ 2⇠" + "T ).

Note that from (3.28) v" ! 1 a.e., and since 0  v"  1, by Lebesgue Dominated Conver-
gence Theorem we have v" ! v in L1. We also note that

"

2

�

�v0"(x)
�

�

2

+
1

2"
(1� v"(x))

2 = 0 (3.32)

if x 2 (�1,�3⇠" � 2"T ) [ (�⇠", 1), and if x 2 (�3⇠" � "T,�⇠" � "T ) then

v"(x) = 0. (3.33)

Set

ũ"(x) :=

(

u(x) if x 2 (�1,�2⇠" � "T ) [ (0, 1),

u(�x) if x 2 [�2⇠" � "T, 0].

Observe that ũ"(x) is continuous at 0 since ũ+" (0) = ũ�" (0) = u+(0) by the definition of
ũ"(x), and ũ" may only jump at t = �2⇠" � "T but not at t = 0 where u jumps.

We define the recovery sequence

u"(x) :=
(

ũ"(x) if x 2 I \ [�2.5⇠" � "T,�1.5⇠" � "T ],

a�ne from ũ"(�2.5⇠" � "T ) to ũ"(�1.5⇠" � "T ) if x 2 [�2.5⇠" � "T,�1.5⇠" � "T ].

We claim that

lim
"!0

ˆ
I
|u" � u|! dx = 0 (3.34)

and

lim sup
"!0

ˆ
I

�

�u0"
�

�

2

v2" ! dx 
ˆ
I

�

�u0
�

�

2

! dx. (3.35)
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To show (3.34), we observe that

lim
"!0

ˆ
I
|u" � u|! dx  lim

"!0

ˆ
0

�2.5⇠
"

�"T
|u" � u|! dx  lim

"!0

2 kukL1 k!kL1 (2.5⇠" + "T ) = 0.

We next prove (3.35). By (3.32) we haveˆ
I

�

�u0"
�

�

2

v2" ! dx 
ˆ
I

�

�u0
�

�

2

! dx+ k!kL1

ˆ
0

�⇠
"

�"T

�

�u0(�x)
�

�

2

dx,

and so

lim sup
"!0

ˆ
I

�

�u0"
�

�

2

v2" ! dx 
ˆ
I

�

�u0
�

�

2

! dx,

since u0 2 L2(I), and we conclude that u0 2 L2(I).

On the other hand, by (3.32) and (3.33),ˆ
I



"

2

�

�v0"
�

�

2

+
1

2"
(v" � 1)2

�

!(x) dx

=

ˆ �⇠
"

�3⇠
"

�2"T



"

2

�

�v0"
�

�

2

+
1

2"
(v" � 1)2

�

!(x) dx


 

ess sup
t2(�3⇠

"

�2"T ,�⇠
"

)

!(t)

! ˆ �⇠
"

�3⇠
"

�2"T



"

2

�

�v0"
�

�

2

+
1

2"
(v" � 1)2

�

dx

=

 

ess sup
t2(�3⇠

"

�2"T ,�⇠
"

)

!(t)

! ˆ ⇠
"

+"T

�⇠
"

�"T



"

2

�

�ṽ0"
�

�

2

+
1

2"
(ṽ" � 1)2

�

dx.

Therefore,

lim sup
"!0

ˆ
I



"

2

�

�v0"
�

�

2

+
1

2"
(v" � 1)2

�

!(x) dx

 lim sup
"!0

 

ess sup
t2(�3⇠

"

�2"T ,�⇠
"

)

!(t)

!

⇢

lim sup
"!0

ˆ ⇠
"

+"T

�⇠
"

�"T



"

2

�

�ṽ0"
�

�

2

+
1

2"
(ṽ" � 1)2

�

dx

�

!�(0)(1 + ⌘),

where at the last inequality we used the definition of ṽ", (3.27), and (3.5).

We conclude that

lim sup
"!0

AT!,"(u", v") 
ˆ
I

�

�u0
�

�

2

! dx+ !�(0)(1 + ⌘),

and (3.31) follows due to the arbitrariness of ⌘.

Step 2: In the general case, we recall that Su is finite. We may obtain u" and v" by
repeating the construction in Step 1 in small non-overlapping intervals centered at every
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point of Su \ S!, and by repeating the construction in Step 1 in Lemma 3.13 in those
non-overlaping intervals centered at points of Su \ S!. Hence, we have

lim sup
"!0

AT!,"(u", v") 
ˆ
I

�

�u0
�

�

2

! dx+ (1 + ⌘)
X

x2S
u

!�(x),

and (3.31) follows due to the arbitrariness of ⌘. ⇤
Proof of Theorem 3.14. The proof follows that of Theorem 3.10, using Proposition 3.15
and Proposition 3.16, in place of Proposition 3.12 and 3.13, respectively. ⇤
3.3. The multi-dimensional case.

3.3.1. One-dimensional restrictions and slicing properties.

Let SN�1 be the unit sphere in RN and let ⌫ 2 SN�1 be a fixed direction. We set
8

>

>

>

<

>

>

>

:

⇧⌫ :=
�

x 2 RN : hx, ⌫i = 0
 

, ⌦⌫ := {x 2 ⇧⌫ : ⌦x,⌫ 6= ;} ,
⌦1

x,⌫ := {t 2 R : x+ t⌫ 2 ⌦} for x 2 ⇧⌫ ,

⌦x,⌫ := {y = x+ t⌫ : t 2 R} \ ⌦,

ux,⌫(t) := u(x+ t⌫), x 2 ⌦⌫ , t 2 ⌦1

x,⌫ .

(3.36)

Set x = (x0, xN ) 2 RN , where x0 2 RN�1 denotes the first N � 1 component of x 2 RN ,
and given �: RN�1 ! R and G ⇢ RN�1, we define the graph of � over G as

F (�;G) :=
�

(x0, xN ) 2 RN : x0 2 G, xN = l(x0)
 

.

If � is Lipschitz, then we call F (�;G) a Lipschitz - (N � 1) - graph.

Theorem 3.17 ([6], Theorem 3.3). Let ⌫ 2 SN�1 be given, and assume that u 2 W 1,2(⌦).
Then, for HN�1-a.e. x 2 ⌦⌫ , ux,⌫ belongs to W 1,2(⌦x,⌫) and

u0x,⌫(t) = hru(x+ t⌫), ⌫i .
Lemma 3.18. Let ! 2 W(⌦) and �: RN�1 ! R be a Lipschitz function. Then for every
Lebesgure measurable set G ⇢ RN�1 such that F (�; G) ⇢ ⌦, we haveˆ

F (�:G)

!�dHN�1 =

ˆ
G
!�(z,�(z))

q

1 + |r�(z)|2dz.

Proof. Since HN�1(S!) < 1, we have that µ := HN�1bS! is a nonnegative radon measure.
Moreover, as ! 2 L1(⌦) we deduce that !� 2 L1(⌦, µ), and the result now follows from by

Remark 8.3 in [51], where the Jacobian of F (� : G) is shown to be equal to
q

1 + |r�(z)|2
in Theorem 9.1 in [51]. ⇤
Lemma 3.19. Let ! 2 W(⌦) and u 2 W 1,p

! (⌦), for p 2 [1,1), be given. If ⌫ 2 SN�1 and
v 2 W 1,p(⌦) is nonnegative, thenˆ

⌦

|ru|p vp ! dx �
ˆ
⌦

⌫

ˆ
⌦

1
x,⌫

�

�u0x,⌫(t)
�

�

p
vpx,⌫(t)!x,⌫(t) dtdx.
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Proof. Since ess inf
⌦

! � 1, we have W 1,p
! (⌦) ⇢ W 1,p(⌦). Given ⌫ 2 SN�1 and a nonnega-

tive function v 2 W 1,p(⌦), by Fubini’s Theorem and Theorem 3.17 we haveˆ
⌦

|ru|p vp ! dx =

ˆ
⌦

⌫

ˆ
⌦

1
x,⌫

|ru|p vp ! dt dHN�1(x)

�
ˆ
⌦

⌫

ˆ
⌦

1
x,⌫

|hru(x+ tv), ⌫i|p vpx,⌫(t)!x,⌫(t) dtdHN�1(x)

=

ˆ
⌦

⌫

ˆ
⌦

1
x,⌫

�

�u0x,⌫(t)
�

�

p
vpx,⌫(t)!x,⌫(t) dtdHN�1(x),

where we used the fact that
�

�u0x,⌫(t)
�

� = |hru(x+ t⌫), ⌫i|  |ru(x+ t⌫)|
HN�1-a.e. x 2 ⌦⌫ . ⇤
Proposition 3.20. Let ⌫ 2 SN�1 be a fixed direction, � ⇢ RN be such that HN�1(�) < 1,
and P⌫ : RN ! ⇧⌫ be a projection operator, where by (3.36) ⇧⌫ ⇢ RN is a hyperplane in
RN�1. Then

HN�1(P⌫(�))  HN�1(�), (3.37)

and for HN�1-a.e. x 2 ⇧⌫ ,
H0(⌦x,⌫ \ �) < +1. (3.38)

Proof. Note that (3.37) follows immediately from Theorem 7.5 in [63] since P⌫ is a Lipschitz
map with Lipschitz constant less or equal to one. To show (3.38), we apply co-area formula
(see [4], Theorem 2.93) with P⌫ and again since P⌫ is a Lipschitz map with Lipschitz
constant less or equal to one, we are done. ⇤
Set x = (x0, xN ) 2 RN , where

x0 2 RN�1 denotes the first N � 1 component of x 2 RN ,

and given u: RN�1 ! R and G ⇢ RN�1, we define the graph of u over G as

F (u;G) :=
�

(x0, xN ) 2 RN : x0 2 G, xN = u(x0)
 

.

If u is Lipschitz, then we call F (u;G) a Lipschitz -(N � 1)-graph.

Lemma 3.21. Let � ⇢ RN be a HN�1-rectifiable set, and let Px,⌫�: RN ! Tx,⌫� be a
projection operator for x 2 �. Then

lim
r!0

HN�1(Px0,⌫�(� \Q⌫�(x0, r)))

rN�1

= 1 (3.39)

for HN�1-a.e. x
0

2 �.

Proof. By Proposition 3.20 we have

lim sup
r!0

HN�1(Px0,⌫�(� \Q⌫�(x0, r)))

rN�1

 lim sup
r!0

HN�1(� \Q⌫�(x0, r))

rN�1

= 1 (3.40)
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for a.e. x
0

2 �. By Theorem 2.76 in [4] we may write

� = �
0

[
1
[

i=1

�i

as a disjoint union with HN�1(�
0

) = 0, �i = (Ni, li(Ni)) where li : RN�1 ! R is of class
C1 and Ni ⇢ RN�1.

Let x
0

2 �i0 for some i
0

2 N and, without loss of generality, let (�rli0(x
0
0

), 1) = ⌫
�

(x
0

),
with x

0

a point of density one in �
0

(see Exercise 10.6 in [51]). Up to a rotation and a
translation, we may assume that rli0(x

0
0

) = (0, 0, . . . , 0) 2 RN�1, x
0

= (0, 0, . . . , 0), and
Px0,⌫� : �i0 ! RN�1 ⇥ {0}. Therefore, for r > 0 small enough,

�i0 \Q⌫�(x0, r) = (Px0,⌫� (�i0 \Q⌫�(x0, r)) , li0((Px0,⌫� (�i0 \Q⌫�(x0, r)))
0)),

and by Theorem 9.1 in [63] we obtain that,

HN�1(�i0 \Q⌫�(x0, r)) =

ˆ
P
x0,⌫�(�i0\Q⌫� (x0,r))

q

1 + |rli0(x
0)|2dHN�1(x0).

Since li0 is of class C1 and rli0(x0) = 0, for " > 0 choose r" > 0 such that |rli0(x)| < "
for all 0 < r < r". Therefore, we have that

HN�1(Px0,⌫� (� \Q⌫�(x0, r))) � HN�1(Px0,⌫� (�i0 \Q⌫�(x0, r)))

� 1p
1 + "2

ˆ
P
x0,⌫�(�i0\Q⌫� (x0,r))

q

1 + |rli0(x
0)|2dx0

=
1p

1 + "2
HN�1(�i0 \Q⌫�(x0, r)).

We obtain

lim inf
r!0

HN�1(Px0,⌫� (� \Q⌫�(x0, r)))

rN�1

� lim inf
r!0

1p
1 + "2

HN�1(�i0 \Q⌫�(x0, r))

rN�1

=
1p

1 + "2
.

By the arbitrariness of " > 0, we deduce that

lim inf
r!0

HN�1(Px0,⌫� (� \Q⌫�(x0, r)))

rN�1

� 1,

and, in view of (3.40), we conclude that

lim
r!0

HN�1(Px0,⌫� (� \Q⌫�(x0, r)))

rN�1

= 1.

⇤
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Lemma 3.22. Let Q := (�1, 1)N and let � ⇢ Q be a HN�1-rectifiable set such that
HN�1(�) < 1 and

H0(� \ ��x0 ⇥ (�1, 1)
�

) � 1 (3.41)

for HN�1-a.e. x0 2 (�1, 1)N�1. Then there exists a HN�1-measurable subset �0 ⇢ � such
that

H0(�0 \ ��x0 ⇥ (�1, 1)
�

) = 1. (3.42)

for HN�1-a.e. x0 2 (�1, 1)N�1.

Proof. By Lemma 3.20 we have

H0(�0 \ ��x0 ⇥ (�1, 1)
�

) < +1
for HN�1-a.e. x0 2 (�1, 1)N�1. Thus, for HN�1-a.e. x0 2 (�1, 1)N�1, the set

�x0 := � \ ��x0 ⇥ (�1, 1)
�

is a finite collection of singletons, hence closed, and by (3.41) is non-empty. Applying
Corollary 1.1 in [39], page 237, we obtain a HN�1 measurable subset �0 ⇢ � which satisfies
(3.42). ⇤
Lemma 3.23. Let ⌧ > 0 and ⌘ > 0 be given. Let u 2 SBV (⌦) and assume that
HN�1(Su) < 1. The following statements hold:

1. there exist a set S ⇢ Su with HN�1(Su\S) < ⌘, and a countable collection Q of mutually
disjoint open cubes centered on elements of Su such that

[

Q2Q
Q ⇢ ⌦,

and

HN�1

0

@S \
[

Q2Q
Q

1

A = 0;

2. for every Q 2 Q there exists a direction vector ⌫Q 2 SN�1 such that

H0(S \Qx,⌫
Q

) = 1,

for HN�1 a.e. x 2 Q \ S;
3. for every Q 2 Q, S \ Q is contained in a Lipschitz (N � 1)- graph �Q with Lipschitz

constant less than ⌧ .

Proof. Let ⌧, ⌘ > 0 be given. By Theorem 2.76 in [4], there exist countably many Lipschitz
(N � 1)- graphs �i ⇢ RN such that (up to a rotation and a translation)

�i =
�

(x0, xN ) : x0 2 Ni, xN = li(x
0)
 

with Ni ⇢ RN�1, li: RN�1 ! R of class C1, |rli| < ⌧ for all i 2 N, and

HN�1

 

Su \
1
[

i=1

�i

!

= 0. (3.43)
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Without lose of generality, we assume that

HN�1(�i \ �i0) = 0 if i 6= i0 2 N, and HN�1(�i) > 0. (3.44)

We denote by P the collection of Lipschitz (N � 1)-graphs �i in (3.43)-(3.44). By (3.44),
for HN�1- a.e. x 2 Su there exists only one � 2 P such that x 2 �, and we denote such �
by �x and we write

�x =
�

(y0, yN ) : y0 2 Nx ⇢ RN�1, yN = lx(y
0)
 

.

For simplicity of notation, in what follows we will abbreviate ⌫
�

x

(x) = ⌫S
u

(x) by ⌫(x),
Q⌫

S

u

(x, r) by Q(x, r), and Tx,⌫
S

u

by Tx.

We also note that HN�1(� \ Su) < HN�1(Su) < 1 for each � 2 P. Then HN�1- a.e.
x has density 1 in �x \ Su (see Theorem 2.63 in [4]). Denote by S

1

the set of points such
that Su has density 1 at x and

lim
r!0

HN�1(Su \ �x \Q⌫�
x

(x, r))

rN�1

= 1. (3.45)

Then HN�1(Su \ S
1

) = 0.

Define

fr(x) :=
HN�1(S

1

\Q(x, r))

rN�1

.

Since fr(x) ! 1 as r ! 0+ for x 2 S
1

, by Egoro↵’s Theorem there exists a set S
2

⇢ S
1

such that HN�1(S
1

\ S
2

) < ⌘/4 and fr ! 1 uniformly on S
2

. Find r
1

> 0 such that

HN�1(S
1

\Q(x, r))

rN�1

� 1

2
,

i.e.,

HN�1(S
1

\Q(x, r)) � 1

2
rN�1 (3.46)

for all 0 < r < r
1

and x 2 S
2

. Since S
2

⇢ S
1

, S
2

is also HN�1-rectifiable and so HN�1 a.e.
x 2 S

2

has density one. Without loss of generality, we assume that every point in S
2

has
density one and satisfies (3.39) in Lemma 3.21.

Let x
0

2 S
2

be given and recall (3.36). We define

Tb(x0, r) :=
n

x 2 Q(x
0

, r) \ Tx0 : H0([Q(x
0

, r)]x,⌫(x0)
\ S

2

) � 2
o

,

Tg(x0, r) :=
n

x 2 Q(x
0

, r) \ Tx0 : H0([Q(x
0

, r)]x,⌫(x0)
\ S

2

) = 1
o

,

Sb(x0, r) :=
[

x2T
b

(x0,r)

⇣

S
2

\ [Q(x
0

, r)]x,⌫(x0)

⌘

,

Sg(x0, r) :=
[

x2T
g

(x0,r)

⇣

S
2

\ [Q(x
0

, r)]x,⌫(x0)

⌘

.

(3.47)
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Note that
Tb(x0, r) \ Tg(x0, r) = ; and Sb(x0, r) \ Sg(x0, r) = ;, (3.48)

and by Proposition 3.20 we have

HN�1(Sg(x0, r)) � HN�1(Tg(x0, r)). (3.49)

We claim that
HN�1(Sb(x0, r)) � 2HN�1(Tb(x0, r)). (3.50)

By Lemma 3.22 there exists a measurable selection S1

b ⇢ Sb(x0, r) such that

HN�1(S1

b (x0, r) \ [Q(x
0

, r)]x,⌫(x0)
) = 1

for HN�1-a.e. x 2 Tb(x0, r). We define

S2

b (x0, r) := Sb(x0, r) \ S1

b (x0, r).

By the definition of Sb(x0, r) in (3.47), we have

H0([Q(x
0

, r)]x,⌫(x0)
\ S1

b (x0, r)) � 1 and H0([Q(x
0

, r)]x,⌫(x0)
\ S2

b (x0, r)) � 1

for all x 2 Tb(x0, r). We observe that

HN�1(Sb(x0, r)) = HN�1(S1

b (x0, r)) +HN�1(S2

b (x0, r)) � 2HN�1(Tb(x0, r))

by Proposition 3.20 and we deduce (3.50).

We next show that

lim
r!0

HN�1(Sb(x0, r))

rN�1

= 0. (3.51)

Indeed, since Tx0 is the tangent hyperplane to S
2

at x
0

,

Tb(x0, r) [ Tg(x0, r) = Px0,⌫
S

u

(S
2

\Q(x
0

, r)),

and by Lemma 3.21 it follows that

lim
r!0

HN�1(Tb(x0, r) [ Tg(x0, r))

rN�1

= 1. (3.52)

On the other hand, in view of (3.48), (3.49), and (3.50), we deduce that

HN�1(Sb(x0, r) [ Sg(x0, r)) = HN�1(Sb(x0, r)) +HN�1(Sg(x0, r))

� 2HN�1(Tb(x0, r)) +HN�1(Tg(x0, r)).

That is,

HN�1(Tb(x0, r))  HN�1(Sb(x0, r) [ Sg(x0, r))�
⇥HN�1(Tb(x0, r)) +HN�1(Tg(x0, r))

⇤

= HN�1(Sb(x0, r) [ Sg(x0, r))�HN�1(Tb(x0, r) [ Tg(x0, r)). (3.53)

Since x
0

2 S
2

has density 1, we have

lim
r!0

HN�1(Sb(x0, r) [ Sg(x0, r))

rN�1

= lim
r!0

HN�1(S
2

\Q(x
0

, r))

rN�1

= 1. (3.54)
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In view of (3.52), (3.53), and (3.54), we conclude that

lim sup
r!0

HN�1(Tb(x0, r))

rN�1

 lim
r!0

HN�1(Sb(x0, r) [ Sg(x0, r))

rN�1

� lim
r!0

HN�1(Tb(x0, r) [ Tg(x0, r))

rN�1

= 0,

which implies that

lim
r!0

HN�1(Tb(x0, r))

rN�1

= 0.

This, together with (3.48) and (3.52), yields

lim
r!0

HN�1(Tg(x0, r))

rN�1

= 1,

and so by (3.49) we have

lim inf
r!0

HN�1(Sg(x0, r))

rN�1

� lim
r!0

HN�1(Tg(x0, r))

rN�1

= 1,

while by (3.54)

lim sup
r!0

HN�1(Sg(x0, r))

rN�1

 lim
r!0

HN�1(Sb(x0, r) [ Sg(x0, r))

rN�1

= 1,

and we conclude that

lim
r!0

HN�1(Sg(x0, r))

rN�1

= 1.

Now, also in view of (3.48) and (3.54), we deduce (3.51).

We define, for x 2 S
2

,

gr(x) :=
HN�1(Sb(x, r))

rN�1

.

By (3.51) we have limr!0

gr(x) = 0 for all x 2 S
2

, therefore by Egoro↵’s Theorem there
exists a set S

3

⇢ S
2

such that

HN�1(S
2

\ S
3

) <
⌘

4
and gr ! 0 uniformly on S

3

. Choose 0 < r
2

< r
1

such that

HN�1(Sb(x, r))

rN�1

<
⌘

16

1

HN�1(Su)
(3.55)

for all x 2 S
3

and 0 < r < r
2

. We claim that, for x 2 S
3

and the corresponding �x 2 P,

lim
r!0

HN�1 (Sg(x, r) \ [Su \ �x \Q(x, r)])

rN�1

= 0. (3.56)

Suppose that

0 < lim sup
r!0

HN�1 (Sg(x, r) \ [Su \ �x \Q(x, r)])

rN�1

=: �.
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By (3.45), and the fact that �x ⇢ Su, we have that

1 = lim
r!0

HN�1(Su \Q(x, r))

rN�1

= lim
r!0

HN�1 (([Su \Q(x, r)] \ [Su \ �x \Q(x, r)]) [ [Su \ �x \Q(x, r)])

rN�1

� lim sup
r!0

HN�1 ([Sg(x, r)] \ [Su \ �x \Q(x, r)])

rN�1

+ lim
r!0

HN�1[Su \ �x \Q(x, r)]

rN�1

= � + 1 > 1,

which is a contradiction.

We define, for x 2 S
3

,

hr(x) :=
HN�1 (Sg(x, r) \ [Su \ �x \Q(x, r)])

rN�1

.

By (3.56) limr!0

hr(x) = 0 for all x 2 S
3

, therefore by Egoro↵’s Theorem there exists a
set of S

4

⇢ S
3

such that

HN�1(S
3

\ S
4

) <
⌘

4
,

and hr ! 0 uniformly on S
4

. Choose 0 < r
3

< r
2

such that

HN�1 (Sg(x, r) \ [Su \ �x \Q(x, r)])

rN�1

<
⌘

16

1

HN�1(Su)
(3.57)

for all x 2 S
4

and 0 < r < r
3

, and let

Q0 := {Q(x, r) : x 2 S
4

, 0 < r < r
3

} .
By Besicovitch’s Covering Theorem we may extract a countable collection Q of mutually
disjoint cubes from Q0 such that

[

Q2Q
Q ⇢ ⌦ and HN�1

0

@S
4

\
0

@

[

Q2Q
Q

1

A

1

A = 0.

Define

S := S
4

\
2

4

0

@

[

Q2Q
Sb(xQ, rQ)

1

A [
0

@

[

Q2Q

⇥

Sg(xQ, rQ) \
�

Su \ �x
Q

\Q
�⇤

1

A

3

5 , (3.58)

where xQ is the center of cube Q and rQ is the side length of Q. Note that the set S
satisfies properties 2 and 3 in the statement of Lemma 3.23. Finally, we show that

HN�1(Su \ S) < ⌘.
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Indeed, in view of (3.55) and (3.57), and using the fact that the cubes Q 2 Q are mutually
disjoint, we have

HN�1

0

@

[

Q2Q
Sb(xQ, rQ)

1

A =
X

Q2Q
HN�1(Sb(xQ, rQ))  ⌘

16HN�1(Su)

X

Q2Q
rN�1

Q , (3.59)

and

HN�1

0

@

[

Q2Q

⇥

Sg(xQ, rQ) \
�

Su \ �x
Q

\Q
�⇤

1

A (3.60)

=
X

Q2Q
HN�1(Sg(xQ, rQ) \

�

Su \ �x
Q

\Q
�

)  ⌘

16HN�1(Su)

X

Q2Q
rN�1

Q .

By (3.46) we obtain

X

Q2Q

1

2
rN�1

Q 
X

Q2Q
HN�1(S

1

\Q) = HN�1

0

@

[

Q2Q
Su \Q

1

A  HN�1(Su). (3.61)

Using (3.59), (3.60), and (3.61), we deduce that

HN�1

0

@

[

Q2Q
Sb(xQ, rQ)

1

A  ⌘

8
,

and

HN�1

0

@

[

Q2Q

⇥

Sg(xQ, rQ) \
�

Su \ �x
Q

\Q
�⇤

1

A  ⌘

8
,

and so by (3.58) we get

HN�1(S
4

\ S)  ⌘

4
.

Since S ⇢ S
4

⇢ S
3

⇢ S
2

⇢ S
1

⇢ Su, we conclude that

HN�1(Su \ S)
HN�1(Su \ S

1

) +HN�1(S
1

\ S
2

) +HN�1(S
2

\ S
3

) +HN�1(S
3

\ S
4

) +HN�1(S
4

\ S)
⌘

4
+

⌘

4
+

⌘

4
+

⌘

4
= ⌘

as desired. ⇤

3.3.2. �-lim inf Inequality: The Multi-Dimensional Case. In this section we prove the �-
lim inf inequality which is stated in the following proposition.

Proposition 3.24. (�-lim inf) For ! 2 W(⌦) and u 2 L1(⌦), let

MS�
! (u) := inf

n

lim inf
"!0

AT!,"(u", v") :
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(u", v") 2 W 1,2(⌦)⇥W 1,2(⌦), u" ! u in L1, v" ! 1 in L1, 0  v"  1 a.e.
 

.

We have MS�
! (u) � MS!(u).

To prove Proposition 3.24 we reduce the statement to the case N = 1 by a special slicing
argument (Lemma 3.23), and we use the result from case N = 1.

Proof of Proposition 3.24. Without lose of generality we may assume thatM := MS�
! (u) <

1. Let {(u", v")}">0

⇢ W 1,2(⌦)⇥W 1,2(⌦) be such that u" ! u in L1, v" ! 1 in L1, and
lim"!0

AT!,"(u", v") = MS�
! (u). Since infx2⌦ !(x) � 1, we have

lim inf
"!0

AT
1,"(u", v")  lim inf

"!0

AT!,"(u", v") < 1,

and by [6] we deduce that u 2 GSBV (⌦) and HN�1(Su) < 1. We prove separately that

lim inf
"!0

ˆ
⌦

|ru"|2 v" ! dx �
ˆ
⌦

|ru|2 ! dx, (3.62)

and

lim inf
"!0

ˆ
⌦

✓

" |rv"|2 + 1

4"
(1� v")

2

◆

! dx �
ˆ
S
u

!�dHN�1. (3.63)

Let A be an open subset of ⌦. Fix ⌫ 2 SN�1, and define Ax,⌫ , A1

x,⌫ , and A⌫ as in (3.36).
For K 2 R+, set uK := K^u_�K, and we observe, by Fubini’s Theorem, Fatou’s Lemma,
Theorem 3.17, equation (3.15), and Theorem 2.3 in [6], that

lim inf
"!0

ˆ
A
|ru"|2 v2" ! dx

�
ˆ
A

⌫

lim inf
"!0

ˆ
A1

x,⌫

�

�(u")
0
x,⌫

�

�

2

(v")
2

x,⌫ !x,⌫ dt dHN�1(x)

�
ˆ
A

⌫

ˆ
A1

x,⌫

�

�(uK)0x,⌫
�

�

2

!x,⌫ dt dHN�1(x) �
ˆ
A
|hruK(x), ⌫i|2 ! dx.

(3.64)

Letting K ! 1 and using Lebesgue Monotone Convergence Theorem we have

lim inf
"!0

ˆ
A
|ru"|2 v2" ! dx �

ˆ
A
|hru(x), ⌫i|2 ! dx. (3.65)

Let �n(x) := |hru(x), ⌫ni|2 ! for LN -a.e. x 2 ⌦, where {⌫n}1n=1

is a dense subset of SN�1,
and let µ(A) := lim inf"!0

´
A |ru"|2 v2" ! dx. Then µ is a positive function, super-additivity

on open sets A, B, with disjoint closures, and hence by Lemma 15.2 in [15], together with
(3.65), we conclude (3.62). Now we prove (3.63). By Fubini’s Theorem, Fatou’s Lemma,
(3.38), and (3.16), and using a similar calculation as in (3.64) we have

lim inf
"!0

ˆ
A

✓

" |rv"|2 + 1

4"
(1� v")

2

◆

! dx �
ˆ
A

⌫

2

4

X

t2S
u

x,⌫

\A1
x,⌫

!�
x,⌫(t)

3

5 dHN�1(x). (3.66)
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Next, given arbitrary ⌧ > 0 and ⌘ > 0 we choose a set S ⇢ Su and a collection Q of
mutually disjoint cubes according to Lemma 3.23 with respect to Su. Fix one such cube
Q⌫

S

(x
0

, r
0

) 2 Q. By Lemma 3.23 we have, up to a rotation and a translation,

�x0 =
�

(y0, lx0(y
0)) : y 2 Tx0,⌫

S

\Q⌫
S

(x
0

, r
0

)
 

and krlx0kL1 < ⌧.

In (3.66) set A = Q⌫
S

(x
0

, r
0

) and ⌫ = ⌫S(x0) and, using the same notation as in the proof
of Lemma 3.23, we obtain

ˆ
[Q

⌫

S

(x0,r0)]
⌫

S

(x0)

0

B

@

X

t2S
u

x,⌫

S

(x0)
\[Q

⌫

S

(x0,r0)]
x,⌫

S

(x0)

!�
x,⌫

S

(x0)
(t)

1

C

A

dHN�1(x)

�
ˆ
T
g

(x0,r0)
!�(x) dHN�1(x) =

ˆ
T
g

(x0,r0)
!�(x0, lx0(x

0))dLN�1(x0). (3.67)

where in the first inequality we used the fact that !�
x,⌫(t) = !�(x+ t⌫) (see Remark 3.109

in [4]). Next, in view of Lemma 3.18, we have thatˆ
Q

⌫

S

(x0,r0)\S
!� dHN�1 =

ˆ
T
x0,⌫

S

\Q
⌫

S

(x0,r0)
!�(x0, lx0(x

0))
q

1 + |rlx0(x
0)|2dx0


p

1 + ⌧2
ˆ
T
x0,⌫

S

\Q
⌫

S

(x0,r0)
!�(x0, lx0(x

0))dx0,

which, together with (3.66) and (3.67), yields

lim inf
"!0

ˆ
⌦



" |rv"|2 + 1

4"
(1� v")

2

�

! dx

� lim inf
"!0

ˆ
[
Q2QQ



" |rv"|2 + 1

4"
(1� v")

2

�

! dx

� 1p
1 + ⌧2

X

Q2Q

ˆ
S\Q

!� dHN�1 � 1p
1 + ⌧2

✓ˆ
S
u

!� dHN�1 � k!kL1 ⌘

◆

,

(3.68)

and (3.63) follows from the arbitrariness of ⌘ and ⌧ , and the fact that ⌘ and ⌧ are inde-
pendent. ⇤
Remark 3.25. The assumption ! 2 L1 can be removed by applying (3.68) to !K :=
K ^ ! _ �K and letting K % 1 and using Lebesgue Monotone Convergence Theorem.

3.3.3. The �-lim sup Inequality. This section is devoted to the proof of the �-lim sup in-
equality and the proof of Theorem 1.2. The main task is to prove the following proposition.

Proposition 3.26. (�-lim sup) For ! 2 W(⌦) and u 2 L1(⌦) \ L1(⌦), let

MS+

! (u) := inf

⇢

lim sup
"!0

AT!,"(u", v") :

(u", v") 2 W 1,2(⌦)⇥W 1,2(⌦), u" ! u in L1, v" ! 1 in L1, 0  v"  1
 

.
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We have MS+

! (u)  MS!(u).

Proposition 3.26 will be proved in several propositions. To get start, we recall Q⌫
S

!

(x
0

, r)
and Tx0,⌫

S

!

(l) from Notation 3.3 1 and 2, and define I(t
0

, t) := (t
0

�t, t
0

+t) ⇢ R for t
0

2 R
and t 2 R+.

Proposition 3.27. Let ! 2 W(⌦) and ⌧ 2 (0, 1/4) be given. Then for HN�1 a.e. x
0

2 S!,
a point of density one, there exists r

0

:= r
0

(x
0

) > 0 such that for each 0 < r < r
0

there
exist t

0

2 (2.5⌧r, 3.5⌧r) and 0 < t
0,r = t

0,r(t0, ⌧, x0, r) < t
0

such that I(t
0

, t
0,r) ⇢ (2⌧r, 4⌧r)

and

sup
0<tt0,r

1

|I(t
0

, t)|
ˆ
I(t0,t)

ˆ
Q

⌫

S

!

(x0,r)\Tx0,⌫
S

!

(�l)
!(x)dHN�1(x)dl


ˆ
S
!

\Q
⌫

S

!

(x0,r)
!�(x) dHN�1 +O(⌧)rN�1.

(3.69)

Proof. For simplicity of notation, in what follows we abbreviate Q⌫
S

!

(x
0

, r) as Q(x
0

, r),
Tx0,⌫

S

!

as Tx0 , and Tx0,⌫
S

!

(l) as Tx0(l). Since HN�1(S!) < 1, and so µ := HN�1bS!

is a nonnegative Radon measure, and since !� 2 L1(⌦, µ), it follows that for HN�1 a.e.
x
0

2 S!

lim
r!0

 
Q(x0,r)\S!

�

�!�(x)� !�(x
0

)
�

� dHN�1(x) = 0, (3.70)

Choose one such x
0

2 S!, also a point of density 1 of S!, and let ⌧ > 0 be given. Select
r
1

> 0 such that for all 0 < r < r
1

,

1

1 + ⌧2
 HN�1(S! \Q(x

0

, r))

rN�1

 1 + ⌧2. (3.71)

Let 0 < r
2

< r
1

be such that, in view of (3.70),ˆ
Q(x0,r)\S!

�

�!�(x)� !�(x
0

)
�

� dHN�1  ⌧2rN�1 (3.72)

for all 0 < r < r
2

, and observe that, in view of (3.71),

!�(x
0

)HN�1 [Q(x
0

, r) \ Tx0(�t
0

)]  (1 + ⌧2)!�(x
0

)HN�1 [Q(x
0

, r) \ S!] . (3.73)

By Theorem 3.4 we may choose 0 < r
3

< r
2

such that, for all 0 < r < r
3

, 
Q�

(x0,r)

�

�!(x)� !�(x
0

)
�

� dx  ⌧2, (3.74)

and so, since 3.5⌧r < r, we haveˆ
3.5⌧r

2.5⌧r

ˆ
Q�

(x0,r)\Tx0 (�t)

�

�!(x)� !�(x
0

)
�

� dHN�1(x)dt


ˆ
Q�

(x0,r)

�

�!(x)� !�(x
0

)
�

� dx  1

2
⌧2rN .
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Therefore, there exists a set A ⇢ (2.5⌧r, 3.5⌧r) with positive one dimension Lebesgure
measure such that for every t 2 A,ˆ

Q�
(x0,r)\Tx0 (�t)

�

�!(x)� !�(x
0

)
�

� dHN�1(x)  1

2

⌧2rN

⌧r
 ⌧rN�1, (3.75)

and we choose t
0

2 A a Lebesgue point so that

lim
t!0

1

|I(t
0

, t)|
ˆ
I(t0,t)

ˆ
Q�

(x0,r)\Tx0 (�l)
!(x)dHN�1(x)dl

=

ˆ
Q�

(x0,r)\Tx0 (�t0)
!(x)dHN�1(x).

Hence, there exists t
0,r > 0, depending on t

0

, ⌧ , r, and x
0

, such that I(t
0

, t
0,r) ⇢

(2.5⌧r, 3.5⌧r) and

sup
0<tt0,r

1

|I(t
0

, t)|
ˆ
I(t0,t)

ˆ
Q�

(x0,r)\Tx0 (�l)
!(x)dHN�1(x)dl


ˆ
Q�

(x0,r)\Tx0 (�t0)
!(x)dHN�1 + ⌧rN�1.

(3.76)

In view of (3.76), (3.75), (3.73), and (3.72), in this order, we have that for every 0 < r < r
3

there exist t
0

2 (2.5⌧r, 3.5⌧r) and 0 < t
0,r < t

0

such that

sup
0<tt0,r

1

|I(t
0

, t)|
ˆ
I(t0,t)

ˆ
Q�

(x0,r)\Tx0 (�l)
!(x)dHN�1(x)dl


ˆ
Q�

(x0,r)\Tx0 (�t0)
!(x)dHN�1 + ⌧rN�1


ˆ
Q�

(x0,r)\Tx0 (�t0)

�

�!(x)� !�(x
0

)
�

� dHN�1

+ !�(x
0

)HN�1

⇥

Q�(x
0

, r) \ Tx0(�t
0

)
⇤

+ ⌧rN�1

O(⌧)rN�1 + (1 + ⌧2)!�(x
0

)HN�1 [Q(x
0

, r) \ S!]

O(⌧)rN�1 + (1 + ⌧2)

ˆ
Q(x0,r)\S!

!�(x)dHN�1.

Since ! 2 L1(⌦), we have !� 2 L1(⌦) and thus, invoking (3.71),

⌧2
ˆ
Q(x0,r)\S!

!�(x)dHN�1  O(⌧) k!kL1 HN�1 [Q(x
0

, r) \ S!]  O(⌧)rN�1,

and we conclude (3.69). ⇤
Proposition 3.28. Let ! 2 W(⌦) and ⌧ 2 (0, 1/4) be given. There exist a set S ⇢ S! and
a countable family of disjoint cubes F =

�

Q⌫
S

!

(xn, rn)
 1
n=1

with rn  ⌧ , for all n 2 N,
such that the following hold:

1. HN�1(S! \ S) < ⌧ and S ⇢ S1
n=1

Q⌫
S

!

(xn, rn) ⇢ ⌦;
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2. (1 + ⌧2)�1rN�1  HN�1

�

S \Q⌫
S

!

(xn, r)
�  (1 + ⌧2)rN�1 for all 0 < r < rn;

3. S \Q⌫
S

!

(xn, rn) ⇢ R⌧/2,⌫
S

!

(xn, rn) (recall R⌧/2,⌫
S

!

from Notation 3.3);
4. if 0 <  < 1 then for every n 2 N there exist tn 2 (2.5⌧rn, 3.5⌧rn) and 0 < tx

n

,r
n

<
|tn|, depending on ⌧ , xn, and rn, such that

sup
0<tt

x

n

,r

n

1

|I(tn, t)|
ˆ
I(t

n

,t)

ˆ
Q�

⌫

S

!

(x
n

,r
n

)\T
x

n

,⌫

S

!

(�l)
!�(x)dHN�1dl (3.77)


ˆ
S
!

\Q
⌫

S

!

(x
n

,r
n

)

!�(x)dHN�1 + (1 + !�(xn))O(⌧)(rn)
N�1.

Proof. Let ⌧ 2 (0, 1/4) and  2 (0, 1) be given. Since HN�1(S!) < 1, there exists
S
1

⇢ S! such that HN�1(S! \ S
1

) < ⌧/3, S
1

is compact and contained in a finite union
of (N � 1)-Lipschitz graphs �i, i = 1, . . . ,M , with Lipschitz constants less than ⌧/(2

p
N).

Moreover, since HN�1 a.e. x 2 S
1

a point of density one, by Egorov’s Theorem, we may
find S

2

⇢ S
1

compact such that HN�1(S
1

\ S
2

) < ⌧/3 and there exists r
1

> 0 such that
(1 + ⌧2)�1rN�1  HN�1

�

S
1

\Q⌫
S

!

(x, r)
�  (1 + ⌧2)rN�1 for all 0 < r < r

1

and x 2 S
2

.

Let Li := S
2

\ �i and without lose of generality we assume that Li are mutually disjoint.
Let L0

i ⇢ Li be such that HN�1(Li \ L0
i) < ⌧/

�

3 · 2i� and dij := dist(L0
i, L

0
j) > 0 for i 6= j.

We observe that

HN�1

 

S
2

\
M
[

i=1

L0
i

!

<
⌧

3
and d := min

i 6=j
{dij} > 0.

Define S :=
SM

i=1

L0
i. Note that there exists 0 < r

2

< min
�

⌧2, d/2, r
1

 

such that for every

0 < r < r
2

and every x, y 2 S with |x� y| < p
Nr we have S\Q⌫

S

!

(x, r) ⇢ R⌧/2,⌫
S

!

(x, r),

where we are using the notation introduced in Notation 3.3. Next, for HN�1-a.e. x 2 S
we may find r

2

(x) > 0 such that Q⌫
S

!

(x, r
2

(x)) ⇢ ⌦ and r
2

(x)  r
0

(x) where r
0

(x)
is determined in Proposition 3.27. Let r̄

0

(x) := min {r
1

, r
2

(x)}. The collection F 0 :=
�

Q⌫
S

!

(x, r) : x 2 S, r < r̄
0

(x)
 

is a fine cover for S, and so by Besicovitch’s Covering
Theorem we may obtain a countable sub-collection F ⇢ F 0 with pairwise disjoint cubes
such that S ⇢ SQ

⌫

S

!

(x
n

,r
n

)2F Q⌫
S

!

(xn, rn) ⇢ ⌦.

Finally, for eachQ⌫
S

!

(xn, rn) 2 F we apply Proposition 3.27 to obtain tn 2 (2.5⌧rn, 3.5⌧rn)
and tx

n

,r
n

> 0, depending on tx
n

, ⌧ , rn, and xn, such that (3.77) hold. We complete this
proof by observing that

HN�1(S! \ S)  HN�1(S! \ S
1

) +HN�1(S
1

\ S
2

) +HN�1(S
2

\ S)  ⌧.

⇤
Proposition 3.29. Let ! 2 W(⌦) and ⌧ 2 (0, 1/4) be given. There exist a set S ⇢ S!

and a countable family of disjoint cubes F =
�

Q⌫
S

!

(xn, rn)
 1
n=1

, with rn < ⌧ , such that
the following hold:

1. HN�1(S! \ S) < ⌧ and S ⇢ S1
n=1

Q⌫
S

!

(xn, rn) ⇢ ⌦;
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2. dist(Q⌫
S

!

(xn, rn), Q⌫
S

!

(xn0 , rn0)) > 0 for n 6= n0;
3. S \Q⌫

S

!

(xn, rn) ⇢ R⌧/2,⌫
S

!

(xn, rn);

4. (1 + ⌧2)�1rN�1

n  HN�1

�

S \Q⌫
S

!

(xn, rn)
�  (1 + ⌧2)rN�1

n ;
5.
P1

n=1

rN�1

n  4HN�1(S!);
6. for each n 2 N, there exists tn 2 (2.5⌧rn, 3.5⌧rn) and 0 < tx

n

,r
n

< tn, depending
on ⌧ , rn, and xn, such that Tx

n

,⌫
S

!

(�tn ± tx
n

,r
n

) \ Q⌫
S

!

(xn, rn) ⇢ Q�
⌫
S

!

(xn, rn) \
R⌧/2,⌫

S

!

(xn, rn) and, where we recall I(tn, t) := (�tn � t,�tn + t),

sup
0<tt

x

n

,r

n

1

|I(tn, t)|
ˆ
I(t

n

,t)

ˆ
Q

⌫

S

!

(x
n

,r
n

)\T
x

n

,⌫

S

!

(�l)
!�(x)dHN�1dl


ˆ
S\Q

⌫

S

!

(x
n

,r
n

)

!� dHN�1 +O(⌧)rN�1

n .
(3.78)

Proof. By Proposition 3.28, we obtain a countable collection
�

Q⌫
S

!

(xn, r0n)
 1
n=1

and a set

S0 ⇢ S! such that HN�1(S! \ S0) < ⌧
2

, S0 ⇢ S1
n=1

Q⌫
S

!

(xn, r0n), S0 \ Q⌫
S

!

(xn, r0n) ⇢
R⌧/2,⌫

S

!

(xn, r0n), and (1 + ⌧2)�1rN�1

n  HN�1

�

S \Q⌫
S

!

(xn, r)
�  (1 + ⌧2)rN�1 for all

0 < r < r0n. Find 0 <  < 1 such that

HN�1

 

S0 \
1
[

n=1

Q⌫
S

!

(xn,r
0
n)

!

<
⌧

2
, and let S := S0 \

 1
[

n=1

Q⌫
S

!

(xn,r
0
n)

!

.

Then S ⇢ S1
n=1

Q⌫
S

!

(xn,r0n) andHN�1(S!\S)  HN�1(S!\S0)+HN�1(S0\S)  ⌧ . Note

that S satisfies Proposition 3.29 (1), (3), (4), and (5), and the collection
�

Q⌫
S

!

(xn,r0n)
 1
n=1

satisfies Proposition 3.29 (2). Next, we apply Proposition 3.28 (4) with such  > 0
to find tn, tx

n

,r0
n

such that (3.77) holds. It su�ces to set rn := r0n, tn := tn, and
tx

n

,r
n

:= tx
n

,r0
n

. ⇤

The next lemma provides an approximation of u 2 SBV 2(⌦) \ L1(⌦) with functions un
whose jump sets are more regular than that of u.

Lemma 3.30. Let u 2 SBV 2(⌦) \ L1(⌦) with HN�1(Su) < +1, and let ! 2 W(⌦) be
given. Then there exists a sequence {un}1n=1

⇢ SBV 2(⌦) \ L1(⌦) such that the following
hold:

1. kunkL1  kukL1 ;
2. HN�1(Su

n

) < +1 for each n 2 N and

lim
n!1HN�1(Su

n

\ Su
n

) = 0;

3.

lim
n!1

"ˆ
⌦

|run|2 ! dx+

ˆ
S
u

n

!�dHN�1

#

=

ˆ
⌦

|ru|2 ! dx+

ˆ
S
u

!�dHN�1. (3.79)
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Proof. We apply Lemma 3.5 to obtain a sequence {un}1n=1

such that Lemma 3.5 (2 - 5)
hold. Since HN�1(Su) < +1 by assumption and in view of Lemma 3.5 (4) and (5), we
have HN�1(Su

n

) < +1 for each n 2 N.
We writê

S
u

n

!�dHN�1 =

ˆ
S
u

n

\S
u

!�dHN�1 +

ˆ
S
u

!�dHN�1 �
ˆ
S
u

\S
u

n

!�dHN�1.

This, together with Lemma 3.5 (4) and the fact that k!kL1 < +1, yields

lim
n!1

ˆ
S
u

n

!�dHN�1 =

ˆ
S
u

!�dHN�1.

Moreover, by Lemma 3.5 (3), and again in view of k!kL1 < +1, we conclude (3.79). ⇤
The next proposition is key to proving Proposition 3.26. In Proposition 3.31 we construct
a recovery sequence which converges to a function u 2 SBV 2(⌦) \ L1(⌦) with a regular
enough jump set, such as those approximating function obtained in Lemma 3.30.

We summarize here the main ideas: We will modify most of Su by replacing it with (N�1)
polyhedral sets located in the �⌫S

!

side of S!, while ensuring that the L1-norm of u and
the L2-norm of ru do not change much. This will be done by using a reflection argument
around suitable hyperplanes (see (3.90)). We will cover the rest of Su by using a finite
collection of cubes, and change the value of u to 0 in those cubes (see (3.87)). Hence, in
this way we replace the jump set of Su by a finite union of (N � 1) - polyhedral sets.

Proposition 3.31. Let ! 2 W(⌦) and let u 2 SBV 2(⌦) \ L1 with HN�1(Su) < +1.
Then there exists a sequence {(u", v")}">0

⇢ W 1,2(⌦) ⇥W 1,2(⌦) such that u" ! u in L1,
v" ! 1 in L1, 0  v"  1 a.e., and

lim sup
"!0

AT!,"(u", v")  MS!(u) +O(HN�1(Su \ Su)).

Proof. Without lose of generality we assume that MS!(u) < +1.

Step 1: Assume that HN�1(S! �Su) = 0. Fix ⌧ 2 (0, 1/4). Applying Proposition 3.29

to ! we obtain a set S⌧ , a collection F⌧ =
�

Q⌫
S

!

(xn, rn)
 1
n=1

, and corresponding tn 2
(2.5⌧rn, 3.5⌧rn) and tx

n

,r
n

for which (3.78) holds. Extract a finite collection T⌧ =
�

Q⌫
S

!

(xn, rn)
 M

⌧

n=1

from F⌧ with M⌧ > 0 large enough such that

HN�1

"

S⌧ \
M

⌧

[

n=1

Q⌫
S

!

(xn, rn)

#

< ⌧,

we define F⌧ := S⌧ \
h

SM
⌧

n=1

Q⌫
S

!

(xn, rn)
i

, and note that

HN�1 (Su \ F⌧ )  HN�1(Su \ S⌧ ) +HN�1(S⌧ \ F⌧ ) < 2⌧. (3.80)

Let ⌦̃ be an open bounded set such that ⌦ ⇢⇢ ⌦̃ and, since @⌦ is Lipschitz, using a
reflection argument as in Lemma 7.1 in [? ] we can extend u and ! to ũ 2 SBV 2(⌦̃)\L1(⌦̃)
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and !̃ 2 W(⌦̃), respectively, in a way that HN�1(Sũ \ @⌦) = HN�1(S!̃ \ @⌦) = 0. Taking
dist(@⌦, @⌦̃) small enough, it is not restrictive to assume that

HN�1

⇣

(Sũ \ Sũ) \ (⌦̃ \ ⌦)
⌘

 HN�1(Su \ Su) (3.81)

and ˆ
˜

⌦\⌦

⇣

|rũ|2 + |ũ|2
⌘

dx+HN�1(Sũ \ Su)  O(⌧). (3.82)

Define A⌧ := Sũ \ F⌧ and recall R⌧/2,⌫
S

!

(xn, rn) from Notation 3.3 (5). We show that the

set A⌧ \
SM

⌧

n=1

R⌧/2,⌫
S

!

(xn, rn) can be covered by a finite collection of cubes such that the

sum of the HN�1 measure of the boundary of those cubes is at most O(⌧). We first note
that, in view of (3.80), (3.81), and (3.82),

HN�1(A⌧ )

 HN�1(Sũ \ Sũ) +HN�1(Sũ \ F⌧ )

 HN�1

⇣

(Sũ \ Sũ) \ (⌦̃ \ ⌦)
⌘

+HN�1

⇣

(Sũ \ Sũ) \ (⌦̃ \ ⌦)
⌘

+HN�1(Sũ \ F⌧ )

 HN�1(Su \ Su) +HN�1

��

Sũ \ Sũ

� \ ⌦
�

+HN�1(Sũ \ Su) +HN�1(Su \ F⌧ )

 HN�1(Su \ Su) +HN�1

��

Sũ \ Sũ

� \ ⌦
�

+HN�1

⇣

Sũ \ (⌦̃ \ ⌦)
⌘

+ 2⌧

 2HN�1(Su \ Su) +O(⌧).

(3.83)

Let a0⌧ denote the minimum distance between all cubes in T⌧ and

a⌧ :=
1

4
min

n

dist(@⌦, @⌦̃), a0⌧ , ⌧, rn, 1  n  M⌧

o

. (3.84)

In view of (3.83), and using the definition of Hausdor↵ measure, there exists a countable
collection of balls {B(ym, dm/2)}1m=1

, with center ym 2 A⌧ and diameter dm > 0, such
that A⌧ ⇢ Sm2NB(ym, dm/2), maxm2N {dm}  ⌧2a⌧/2

p
N , and

1
X

m=1

↵(N � 1)

✓

dm
2

◆N�1

 HN�1(A⌧ ) + ⌧  2HN�1(Su \ Su) +O(⌧)

where ↵(N � 1) is a constant dependenting only on the dimension N (see [41], page 60),
and in the last inequality we used (3.83).

We note that for each m 2 N, since dm  ⌧2a⌧/2
p
N and a⌧ is at most one quarter of the

minimum distance between all cubes in T⌧ , there exists at most one index nm 2 {1, . . . ,M⌧}
such that Q⌫

S

!

(xn
m

, rn
m

) 2 T⌧ and

Q⌫
S

!

(xn
m

, rn
m

) \B(ym, 2dm) 6= ;.
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(It is of course possible that for some m 2 N no such nm exist). For every B(ym, dm/2),
m 2 N, define

Qm :=

(

Q⌫
S

!

(x
n

m

)
(ym, dm/2) if there exists such nm 2 {1, . . . ,M⌧}

Q⌫(ym, dm) otherwise,

where ⌫ 2 SN�1 is an arbitrary direction (recall the notation from (3.36)). We have
B(ym, dm/2) ⇢ Qm and

1
X

m=1

HN�1(@Qm)  2NdN�1

m  2N (O(⌧) +HN�1(Su \ Su)).

In view of Proposition 3.29 3,

F⌧ \Q⌫
S

!

(xn, rn) ⇢ R⌧/2,⌫
S

!

(xn, rn),

which, together with the fact that F⌧ ⇢ SM
⌧

n=1

Q⌫
S

!

(xn, rn), implies that

A⌧ \
M

⌧

[

n=1

R⌧/2,⌫
S

!

(xn, rn) = Su \
M

⌧

[

n=1

R⌧/2,⌫
S

!

(xn, rn), (3.85)

and hence, in view of (3.85) A⌧ \
SM

⌧

n=1

R⌧/2,⌫
S

!

(xn, rn) is compact, as well as

A⌧ \ ⌦ \
M

⌧

[

n=1

R⌧/2,⌫
S

!

(xn, rn).

Therefore, we may extract a finite collection {Qm}Y⌧

m=1

, where Y⌧ 2 N, such that

A⌧ \
M

⌧

[

n=1

R⌧/2,⌫
S

!

(xn, rn) ⇢
Y
⌧

[

m=1

Qm,

and further a {Qm}Y 0
⌧

m=1

⇢ {Qm}Y⌧

m=1

, Y 0
⌧  Y⌧ , such that

A⌧ \ ⌦ \
M

⌧

[

n=1

R⌧/2,⌫
S

!

(xn, rn) ⇢
Y 0
⌧

[

m=1

Qm. (3.86)

We define ū as follows:

ū(x) :=

(

0 if x 2 Qm, 1  m  Y⌧ ,

ũ(x) otherwise.
(3.87)

We remark that

Y
⌧

X

m=1

HN�1(@Qm)  2N (2⌧ +HN�1(Su \ Su)) and
Y
⌧

X

m=1

LN (Qm)  O(⌧). (3.88)
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Next, let Un be the part of Q⌫
S

!

(xn, rn) which lies between Tx
n

,⌫
S

!

(±tn), U+

n be the part
above Tx

n

,⌫
S

!

(tn), and U�
n be the part below Tx

n

,⌫
S

!

(�tn). We observe that, for each
1  n  M⌧ fixed, since rn < ⌧ in Proposition 3.29,

LN (Un) = rN�1

n · 2tn  7⌧rn · rN�1

n  7⌧2rN�1

n . (3.89)

We define ū⌧ as follows (see Figure 1a in page 66):

ū⌧ (x) :=

(

ū
�

x+ 2dist(x, Tx
n

,⌫
S

!

(tn))⌫S
!

(xn)
�

if x 2 Un,

ū(x) otherwise,
(3.90)

and, for 1  m  Y⌧ (see Figure 1b), where Rmn := Qm \ Un and R+

mn := Qm \ U+

n ,

Rm :=

8

>

>

>

<

>

>

>

:

R+

mn � (dm/2� dist(xm, Tx
n

,⌫
S

!

(tn)))⌫S
!

(xn) if LN (Rmn) > LN (R+

mn) > 0,

R+

mn � (dm/2 + dist(xm, Tx
n

,⌫
S

!

(tn)))⌫S
!

(xn) if LN (R+

mn) > LN (Rmn) > 0,

R+

mn � 2(dist(xm, Tx
n

,⌫
S

!

(tn)))⌫S
!

(xn) if LN (R+

mn) > LN (Rmn) = 0,

; otherwise.

(a) Reflection construction in (3.90) (b) Recovery area

Figure 1. (A) depicts the construction in (3.90), with ū in the light gray
region, marked with color fill fainting toward above, reflected into the dark
gray region, marked with color fill fainting toward below; the rectangle
R⌧/2,⌫

S

!

(xn, rn) is represented by the solid gray region in the middle of
Q⌫

S

!

(xn, rn).

In (B), the recovery region (P⌧ )" is plotted by (dark, light) gray and
black strips with dashed border. The region Ln(") in which the core of
the construction is undertaken is plotted as a dark strip. The small cubes
Q

1

(") and Q
2

(") are plotted by light white cubes on (Ln)".
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We observe that

LN ({x 2 ⌦, ū(x) 6= ū⌧ (x)}) = LN

 

M
⌧

[

n=1

Un

!


M

⌧

X

n=1

LN (Un)  7⌧2
M

⌧

X

n=1

rN�1

n  O(⌧),

where in the second last inequality we used (3.89), and in the last inequality we used
Proposition 3.29 (5). We note that:

1. ū⌧ is a reflection of ū within the set with measure less than O(⌧);
2. LN ({ū 6= u}) PY

⌧

m=1

LN (Qm)  O(⌧);
3. ū 2 SBV 2(⌦) \ L1(⌦).

We conclude that

lim
⌧!0

ˆ
⌦

|ū⌧ � u| dx = 0 and lim
⌧!0

ˆ
⌦

|rū⌧ �ru|2 dx = 0. (3.91)

For simplicity of notation, in the rest of the proof of this proposition we shall abbreviate
Q⌫

S

!

(xn, rn) by Qn, Tx
n

,⌫
S

u

by Tx
n

, and Tx
n

,⌫
S

u

(�tn) by Tx
n

(�tn). Note that the jump
set of ū⌧ is contained in

P⌧ :=
M

⌧

[

n=1

[Tx
n

(�tn) \Qn] [
M

⌧

[

n=1

@Qn \ Un [
Y
⌧

[

m=1

@Qm [
Y
⌧

[

m=1

@Rm,

and note also that Sū
⌧

⇢ P⌧ , with P⌧ a union of finitely many (N � 1) - polyhedral sets.
We also observe that, with cl(·) denoting the closure of a set,

HN�1

"

cl

  

M
⌧

[

n=1

@Qn \ Un

!

[
 

Y
⌧

[

m=1

@Qm

!

[
 

Y
⌧

[

m=1

@Rm

!!#


M

⌧

X

n=1

HN�1(@Qn \ Un) +
Y
⌧

X

m=1

HN�1(@Qm) +
Y
⌧

X

m=1

HN�1(@Rm)

 2⌧ + C⌧
1
X

n=1

rN�1

n ⌧ + 2HN�1(Sũ \ Sũ)  O(⌧) + 4HN�1(Su \ Su) < +1,

(3.92)

where we used Proposition 3.29 (5), (3.80), (3.81), (3.88), and the assumption thatHN�1(Su) <
+1.
Recall a⌧ from (3.84), and let " > 0 be such that

"2 +
p
" << min { a⌧ , tx

n

,r
n

for 1  n  M⌧} . (3.93)

By Proposition 3.29 (6) we have

"2 +
p
" < tx

n

,r
n

< tn <
1

4
⌧rn < rn.

We set u⌧," := (1 � '")ū⌧ , where '" is such that '" 2 C1
c (⌦; [0, 1]), '" ⌘ 1 on (Sū

⌧

)"2/4,

and '" ⌘ 0 in ⌦ \ (Sū
⌧

)"2/2. By (3.92) we have HN�1(Sū
⌧

) < +1 and hence {u⌧,"}">0

⇢
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W 1,2(⌦). Moreover, using Lebesgue Dominated Convergence Theorem and (3.91), we con-
clude that u⌧," ! u in L1(⌦).

Consider the sequence {v⌧,"}">0

⇢ W 1,2(⌦) given by v⌧,"(x) := ṽ"(d⌧ (x)) where d⌧ (x) :=

dist(x, P⌧ ), and ṽ" 2 W 1,2
loc

(R) is defined by

ṽ"(t) :=

8

>

>

<

>

>

:

0 if t  "2,

�e�
1
2

t�"

2

" + 1 if "2  t  p
"+ "2,

1� e
� 1

2
p
" if t >

p
"+ "2.

(3.94)

An explicit computation shows that

ṽ0"(t) =
1

2"
(1� ṽ"(t)) (3.95)

for "2  t  p
"+ "2, and we remark that

lim
"!0

1

"
e
� 1

2
p
" = 0, (3.96)

and

� d

dt

✓

1

2
(1� ṽ"(t))

2

◆

= (1� ṽ"(t)) ṽ
0
"(t) � 0. (3.97)

Moreover, since Su
⌧

⇢ P⌧ , by (3.91) we conclude thatˆ
⌦

|ru⌧,"|2 v2⌧," ! dx 
ˆ
⌦

|rū⌧ |2 ! dx 
ˆ
⌦

|ru|2 ! dx+O(⌧). (3.98)

Define Ln := Tx
n

(�tn) \Qn and Ln(") := (Tx
n

(�tn) \Qn)" and, without loss of generality,
assume that there exists only one Rm such that HN�1(Tx

n

(�tn) \ Qn \ Rm) > 0 (recall
Y⌧ < +1). We claim thatˆ

L
n

("2+
p
")\Q

n



" |rv⌧,"|2 + 1

4"
(1� v⌧,")

2

�

! dx


ˆ
L
n

("2+
p
")\Q

n



" |rvL
n

,"|2 + 1

4"
(1� vL

n

,")
2

�

! dx+O(")rN�1

n

(3.99)

where vL
n

,"(x) := ṽ"(dist(x, Ln)). Indeed, let {y0, y1} := Tx
n

(�t) \Qn \ @Rm and observe

that, where we abbreviate
h

"
�

�rv
(·),"
�

�

2

+ 1

4"(1� v
(·),")2

i

by '
(·),", and Q⌫

S

!

(x
n

)
(yi, "2+

p
")

by Qi("), i = 1, 2 (see Figure 1b where Qi(") is represented by a white cube),

'⌧,"(x) = 'L
n

,"(x) for x 2 Ln("
2 +

p
") \Qn \ (Q

1

(") [Q
2

(")),

and ˆ
L
n

("2+
p
")\Q

n

'⌧," ! dx

=

ˆ
L
n

("2+
p
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ˆ
L
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("2+
p
")\Q

n

'L
n

," ! dx+

ˆ
Q

n

\(Q1(")[Q2("))
'⌧," ! dx.

Invoking Proposition 5.1 in [6] we have, for "
0

> 0 fixed,

lim sup
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)) \ (Ln [ @Rm))  2 k!kL1 2N"N�1
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,

and, by letting "
0

& 0 on the right hand side, we conclude (3.99).

Next, for each 1  n  M⌧ fixed, we observe that, using Fubini’s Theorem,
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L
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(3.100)

where

An
!(t) :=

1

2"
(1� ṽ"(t))

2

ˆ
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⌧

(x)t}\L
n
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n

!(y) dy.
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2
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Recalling the notation from Proposition 3.29 and the fact that !�(xn)  k!kL1 , we have
for l 2 ("2, "2 +

p
")

1

2l

ˆ
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⌧
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where, in view of (3.93), we used (3.78) in the last inequality. Therefore, by (3.97) we
obtain
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(3.102)

An integration by parts, and using (3.95), yields
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(1� ṽ"("

2))2

=
1

2

⇣

1� e
� 1p

"

⌘

+
"

2
(1� ṽ"("
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which, together with (3.102) and Proposition 3.29 (4), gives
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Page 72 Section 3.3

Hence, in view of (3.99), (3.100), (3.101), (3.103), and since A!("2) � 0, we obtain that
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Next we define L
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Then, invoking Proposition 5.1 in [6] and the calculations within, we conclude that
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where in the last inequality we used (3.92) and in the last equality we used Theorem 3.2.39
in [42]. Hence, we haveˆ
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Furthermore, by (3.94) and (3.96) we have thatˆ
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We note that, for each 1  n  M⌧ fixed,
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and in view of Proposition 3.29 (5), (3.104), (3.105), and (3.106), we have that
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Recall that Sū
⌧

⇢ P⌧ . Hence, also by (3.98) and (3.107), for each ⌧ > 0 we may choose
"(⌧) such that ˆ
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It su�ces to define the recovery sequence {(u⌧ , v⌧ )}⌧>0

by u⌧ := u⌧,"(⌧) and v⌧ := v⌧,"(⌧).

Step 2: In the general case in which HN�1(S! �Su) > 0, we may apply the same construc-
tion in Step 1 to Su, since it su�ces to notice that !�(x) = !(x) if x 2 Su \ S!. ⇤

Proof of Proposition 3.26. If u 2 L1(⌦) \ L1(⌦) is such that MS!(u) = +1, then there
is nothing to prove. Suppose that MS!(u) < +1. Then u 2 SBV 2(⌦) \ L1(⌦) and
HN�1(Su) < +1. We apply Lemma 3.30 to obtain a sequence {un}1n=1

⇢ SBV 2(⌦) \
L1(⌦) such that Lemma 3.30 (1), (2), and (3) hold. Then,
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\ Su
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and
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By Proposition 3.31, for every n 2 N we may construct a sequence {un,", vn,"}">0

⇢
W 1,2(⌦)⇥W 1,2(⌦) such that un," ! un, vn," ! 1, 0  vn,"  1, and

lim sup
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AT!,"(un,", vn,")  MS!(un) + k!kL1 O(HN�1(Su
n
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n

)).

A diagonal argument, together with (3.108) and (3.109), concludes the proof. ⇤
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Proof of Theorem 1.2. The lim inf inequality follows from Proposition 3.24. On the other
hand, for any given u 2 GSBV (⌦) such that MS!(u) < 1, we have, by the Lebesgue
Monotone Convergence Theorem,

MS!(u) = lim
K!1

MS!(K ^ u _ �K),

and a diagonal argument, together with Proposition 3.26, concludes the proof. ⇤
A direct inspection of the proof of Theorem 1.2 shows that the properties of SBV functions,
more specifically, of the distributional derivative of !, are only needed to ensure that
Theorem 3.4 holds. Indeed, if ! 2 C(⌦), then for all x

0

2 �, where � is any given HN�1 -
rectifiable set,

lim
r!0
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)| dHN�1(x) = 0.

Proof of Theorem 1.3. Here we only highlight the main modifications needed in the proofs
of Proposition 3.24 and Proposition 3.26.

Indeed, to prove Proposition 3.24 with ! 2 C(⌦) we only need the following modification:

1. In (3.23) we have
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because for ! 2 C(I),
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,t2
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)

!(r) = !(0).

2. The proof of Lemma 3.18 with ! 2 C(⌦) can be obtained directly from Theorem 9.1 in
[51].

By adapting to above modifications, the version of Proposition 3.24 with ! 2 C(⌦) can be
now obtained following the argument provided in Section 3.2 mutatis mutandis, taking (1)
and (2) into consideration.

Regarding the proof of Proposition 3.26 with ! 2 C(⌦), the only modification we need to
make is (3.69). We must show that for any u 2 SBV (⌦) such that MS!(u) < +1, the
following holds:
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This can be obtained using the proof of Proposition 3.27 with (3.74) is replaced by 
Q�

(x0,r)
|!(x)� !(x

0

)| dx  ⌧2.

We conclude Theorem 1.3 by using the same arguments as in the proof of Theorem 1.2,
taking the above modifications into consideration. ⇤

Chapter 4. Some insights from finite resolution images

In Chapter 4 we collect some results which were investigated in the early stage of my
research in image processing.

4.1. The finite resolution image and the unavoidable noise during acquisition.
As we stated in the Introduction, in one dimension a finite N 2 N resolution level image
captured by a real world digital camera is a piecewise constant function uc,N which is
related to uc via its averages

uc,N (x) :=

 
I
N

(k)
uc dx for x 2 IN (k),

where IN (k) := ((k � 1)/N, k/N), for 1  k  N , and where we set

IN := {IN (k), 0  k  N} .
Definition 4.1. We say that a piecewise constant function is an image with resolution
level N if it is constant in each IN (k) 2 IN .

The principal sources of noise in digital images are introduced during acquisition, for
example, the sensor noise caused by poor illumination, high temperature, and circuity
of a scanner. Other possible sources could be digital error during the transmission, and
the unavoidable shot noise of an photon detector. The noise is only generated during the
acquiring of the image, i.e., it is only added to uc,N ; and each time we acquire an image, we
produce a di↵erent noise ⌘N . Therefore, we propose to use a piecewise constant function
⌘N over IN to represent the noise at the resolution level N 2 N, and we write

u⌘,N := uc,N + ⌘N .

That is, when a image is taken with resolution N 2 N, although we only wish to observe
uc,N , the noise ⌘N is an unavoidable by-product, and hence the corrupted image u⌘,N is
produced.

Since u⌘,N represents an image data, we may assume (after rescaling) that

ku⌘,NkL1  1.

When N ! 1, uc,N ! uc in L2, but since ⌘N is randomly generated, although for a
fixed N , uc,N is fixed, ⌘N would vary. As it often assumed in the literatures in image
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reconstruction papers (see, e.g., [21]), we also assume that
ˆ
Q
⌘N dx = 0. (4.1)

Moreover, we use ⌘N (IN (k)) to denote the value of ⌘N (x) for x 2 IN (k).

4.2. The total variation and some preliminary results. We start by introducing
notations that will be used in the sequel.

Notation 4.2. Recall that I := (0, 1) ⇢ R and M 2 N is a positive integer.

1. we say a function w is a piecewise constant function with M pieces if there exist M
intervals IM (j) := (xj , xj+1

), where 0 = x
1

< · · · < xj < · · · < xM = 1, such that w is
a constant in each IM (j). Moreover, we use w(IM (k)) to denote the value of w(x) for
x 2 IM (j), 1  j  M ;

2. given a piecewise constant function ! with M pieces, we say that IM (j), 1 < j < M , is
a step region of w if

w(IM (j � 1))  w(IM (j))  w(IM (j + 1)) or w(IM (j � 1)) � w(IM (j)) � w(IM (j + 1));

and (IM (j)) is a high extreme region of ! if

w(IM (j)) > max {w(IM (j � 1)), w(IM (j + 1))}
and (IM (j)) is a low extreme region of ! if

w(IM (j)) < min {w(IM (j � 1)), w(IM (j + 1))} . (4.2)

3. we say IM (1) is a high (low) boundary regions of ! if w(IM (1)) > (<)w(IM (2)), and
IM (M) is a high (low) boundary regions of ! if w(IM (M)) > (<)w(IM (M � 1)), respec-
tively.

4. we use CE(w) to denote the collection of extreme regions, CB(w) the collection of bound-
ary regions, and CI(w) the collection of step regions.

Note: By (1.24), uc,N is indeed a piecewise constant function with N pieces.

Definition 4.3. We say a piecewise constant function is an image with resolution level
N if it is a constant in each IN (k) 2 IN (QN (i, j) in two dimensions).

Recall the reconstruction operator L from (1.25).

Definition 4.4. Let v 2 L1(I) be given. We say that ↵s(v) 2 [0,+1) is the stopping
time for v if

L (↵s, v) = L (↵s + ↵, v) =: C(v) and L (↵s, v) 6= L (↵s � ↵, v) (4.3)

for all ↵ > 0, where C(v) is a constant depends on v.
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Theorem 4.5 ([72], Theorem 2). Suppose that the function u
0

is piecewise constant with
M pieces, and let ↵ be small enough. Then the unique solution u↵ := L(↵, u

0

) is also
piecewise constant with the same number of pieces of u

0

, and we have

u↵(IM (j)) = u
0

(IM (j))⌥ 2

|IM (j)|↵, if IM (j) is a high (low) extremum region,

u↵(IM (j)) = u
0

(IM (j)), if IM (j) is a step region,

u↵(IM (j)) = u
0

(IM (j))⌥ 1

|IM (j)|↵, if IM (j) is a high (low) boundary region.

Moreover, for ↵ is large enough, the function u↵ is a constant.

Notation 4.6. Let v 2 BV (I) be given.

1. we denote by

(v)I :=

 
I
v(x) dx,

i.e., the average of v over I;
2. we denote by Jv the jump set of v and for x

0

2 Jv,

v(x�
0

) := lim
x%x0

v(x) and v(x+
0

) := lim
x&x0

v(x);

Lemma 4.7 ([60], Lemma 3.1 and Lemma 4.1). Let w be a piecewise constant function
with M pieces where M > 1 large is a positive integer, then there exists a positive integer
M 0  M and

0 = ↵
0

< ↵
1

< ↵
2

< · · · < ↵M 0 < +1 (4.4)

such that

1. L (↵i, w) has at least one more constant piece than L (↵i+1

, w) for i = 0, 1, . . . ,M 0� 1;
2. L (↵i + ↵, w) has the same number of constant pieces of L (↵i, w), for any 0  ↵ <

↵i+1

� ↵i where 0  i  M 0 � 1;
3. L (↵, w) = (w)I for all ↵ � ↵M 0.

Moreover, the function t: [0,+1) ! [0,+1) defined as

t(↵) := kL (↵, w)k2L2
(I)

is continuous, and in each interval [↵j ,↵j+1

), t0 is linearly increasing and t is convex.

Proposition 4.8 ([60], Proposition 3.2). For any given corrupted image u⌘,N and clean
image uc,N , there exists an integer N 0 < N and

0 = ↵
0

< ↵
1

< ↵
2

< · · · < ↵N 0 = ↵s(u⌘,N ) < +1 (4.5)

such that item 1, 2, and 3 of Lemma 4.15 holds. Moreover, in each interval (↵i,↵i+1

)
EN (·) is convex and E 0

N (·) is linearly increasing, where EN is defined in (1.27).

Theorem 4.9 ([69], Theorem 10.10). Let v 2 L1(I) and ↵
1

,↵
2

2 R+ be given. Then the
semigroup property

L (↵
1

+ ↵
2

, v) = L (↵
2

,L (↵
1

, v)) = L (↵
1

,L (↵
2

, v)) (4.6)
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holds for the one dimensional scalar total variation problem.

Theorem 4.10 ([20], Theorem 3.4). Let v 2 BV (I) be given. Then

JL (↵,v) ⇢ Jv

for any ↵ > 0, where Jv denotes the jump set of v. Moreover, the same result holds if we
replace Q by I.

Remark 4.11. It follows from Theorem 4.9 and Theorem 4.10 that

JL (↵2,v,I) ⇢ JL (↵1,v,I)

for any ↵
1

 ↵
2

. Indeed, by Theorem 4.9

L (↵
2

, v, I) = L (↵
2

� ↵
1

+ ↵
1

, v, I) = L (↵
2

� ↵
1

,L (↵
1

, v, I), I),

and hence by Theorem 4.10 with ↵ := ↵
2

� ↵
1

, we obtain the result.

Proposition 4.12 ([11], Theorem 3). Let v 2 L2(Q) be given. Then L (·, v,Q) 2 C([0,+1); L2(Q)).
The same result holds for one dimension case, i.e., L (·, v, I) 2 C([0,+1); L2(I)).

4.3. The quasi-convexity of bilevel training scheme. Theorem 4.5 allows us analyti-
cally predict the e↵ects of TV regularization applied to any piecewise constant function in
R. Together with Theorem 4.9, we can completely obtain the explicit solution of L (↵, v, I)
for all ↵ 2 R+. By using such result, we may prove the following theorem:

Theorem 4.13. Let uc 2 BV (I) be monotone and let N 2 N be given. Then the error
function

EN (↵) :=
1

2
kL (↵, u⌘,N )� uc,Nk2L2

(I) , ↵ 2 R+ (4.7)

is strictly quasi-convex under Assumption 4.14.

The Assumption 4.14 is stated as follows:

Assumption 4.14. Let uc 2 BV (I) be monotone and N 2 N be givne. Here 1  k  N .

1. The observed noise changes sign consecutively, that is,

⌘N (IN (k))⌘N (IN (k + 1))  0;

2. u⌘,N is oscillating at least at the half rate of uc,N . That is, we require that

|u⌘,N (IN (k))� u⌘,N (IN (k + 1))| � 1

2
|uc,N (IN (k))� uc,N (IN (k + 1))| ; (4.8)

3. if u⌘,N changes the sign of of jump of uc,N , that is, if

(u⌘,N (IN (k))� u⌘,N (IN (k + 1))) (uc,N (IN (k))� uc,N (IN (k + 1)))  0,

we require that

⌘N (IN (k)) = �⌘N (IN (k + 1)). (4.9)
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4. we assume that
u⌘,N (IN (1)) > (<)uc,N (IN (1))

if uc,N (IN (1)) > (<)uc,N (IN (2)), and

u⌘,N (IN (N)) > (<)uc,N (IN (N))

if uc,N (IN (N)) > (<)uc,N (IN (N � 1)). Lastly, we assume that

|⌘(IN (1))| = |⌘(IN (N))| � 1

2
max {|⌘(IN (kI))| , kI 2 CI(uc,N )} . (4.10)

As we can see, Assumption 4.14 is very restrictive and unlikely to be satisfied in the concrete
setting, and requiring uc to be monotone renders Theorem 4.13 to be less interesting. Also,
since the proof of Theorem 4.13 is purely technical, we leave it in Appendix B and move
on to construct counterexamples directly.

4.3.1. Counterexamples. We first show that removing (4.10) results in losing quasi-convexity,
although the perturbation is relatively small. An explicit example is provided in Figure 2
below, but here let us draw some theoretical analysis first. Let uc,N be monotone increasing,
and we assume that

|⌘N (IN (N))| > |⌘N (IN (1))| � max {|⌘N (IN (k))| , 1 < k < N} ,
i.e., (4.10) is no longer satisfied. Moreover, to simplify our computation, we assume that
⌘N (IN (2)) = 0.

By using the same argument of the proof of Theorem 4.13, at ↵d := |⌘N (IN (1))| /N ,
we have E 0

1,N (↵d) = 0, IN (k) 2 I(↵d), 1 < k < N , but

E 0
N,N (↵d) = N (|⌘N (IN (1))|� |⌘N (IN (N))|) < 0.

On the other hand, for any ↵ > 0 small such that

0 < ↵ < ↵
1

:=
1

N
(L (↵d, u⌘,N )(IN (1))� uc,N (IN (1))) ,

we have
E 0
1,N (↵d + ↵) = N↵ > 0.

Moreover, according to (B.31) and (B.32), and ⌘N (IN (2)) = 0, we have that

E 0
1,N ((↵d + ↵

1

)�) > E 0+
1,N ((↵d + ↵

1

)+) + E 0+
2,N ((↵d + ↵

1

)+). (4.11)

Then by choosing ⌘N (IN (N)) properly and using (4.11), the following inequalities could
hold:

E 0
N ((↵d + ↵

1

)�) = E 0
N,N (↵d + ↵

1

) + E 0
1,N ((↵d + ↵

1

)�) (4.12)

= N [⌘N (IN (N))� (↵d + ↵
1

)] + E 0
1,N ((↵d + ↵

1

)�) > 0,

but

E 0
N ((↵d + ↵

1

)+) =E 0
N,N (↵d + ↵

1

) + E 0+
1,N ((↵d + ↵

1

)+) + E 0+
2,N ((↵d + ↵

1

)+) (4.13)
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=N [⌘N (IN (N))� (↵d + ↵
1

)] + E 0+
1,N ((↵d + ↵

1

)+) + E 0+
2,N ((↵d + ↵

1

)+) < 0,

and hence we lose quasi-convexity. We refer to Figure 2 for an explicit construction. In
Figure 2a we see EN (↵) is almost quasi-convex, but Figure 2b shows a small perturbation
around the red point in Figure 2a, as we zoom in su�cient enough.

0 100 200 300 400 500 600 700 800 900 1000

20

40

60

80

100

120

140

(a) EN (↵) looks almost quasi-convex
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35.4

(b) a small perturbation around red point.

Figure 2. N = 100. uc,N (IN (i)) = (i � 1)/N , 1  i  N . ⌘N (IN (1)) =
�1/100, ⌘N (IN (100)) = 1.8/100, ⌘N (IN (3)) = 0.5/100, ⌘N (IN (4)) =
�0.1/100, ⌘N (IN (5)) = 0.5/100, ⌘N (IN (6)) = �0.1/100, and ⌘N (IN (k)) =
0 for all other intervals.

Moreover, removing either (4.9) or (4.8) will both result in losing (B.34) and hence some
perturbation would happen shortly after ↵m. By using the similar idea of (4.12) and (4.13),
we may build the counterexamples as shown in Figure 3a to Figure 3b.

4.4. A direct search for a minimizer of error function.

4.4.1. The one dimensional case. In Section 4.4.1 we will abbreviate L (↵, v, I) as L (↵, v)
and TV (v, I) as TV (v).

Lemma 4.15. Let w be a piecewise constant function with M pieces where M > 1 large
is a positive integer, then there exists a positive integer M 0  M and

0 = ↵
0

< ↵
1

< ↵
2

< · · · < ↵M 0 < +1 (4.14)

such that

1. L (↵i, w) has at least one more constant piece than L (↵i+1

, w) for i = 0, 1, . . . ,M 0� 1;
2. L (↵i + ↵, w) has the same number of constant pieces of L (↵i, w), for any 0  ↵ <

↵i+1

� ↵i where 0  i  M 0 � 1;
3. L (↵, w) =: C(v) for all ↵ � ↵M 0, where C(v) is a constant depends on v.



Page 81 Section 4.4
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(a) violating of Assumption B.8
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(b) EN (↵) is not quasi-convex

Figure 3. N = 4. uc,4(I4(1)) = 0, uc,4(I4(2)) = 0.2, uc,4(I4(3)) = 0.8, and
uc,4(I4(4)) = 1. ⌘

4

(I
4

(1)) = �0.1, ⌘
4

(I
4

(2)) = �0.18, ⌘
4

(I
4

(3)) = 0.18, and
⌘
4

(I
4

(4)) = 0.1.

Moreover, the function t: [0,+1) ! [0,+1) defined as

t(↵) := kL (↵, w)k2L2
(I)

is continuous, and in each interval [↵j ,↵j+1

), t0 is linearly increasing and t is convex.

Proof. According to Theorem 4.5, for each 1 < j < M and ↵ > 0 small enough, we have

(L (↵, w))(IM (j)) = w(IM (j))⌥ 2

|IM (j)|↵, if IM (j) is a high (low) extremum region of w,

(L (↵, w))(IM (j)) = w(IM (j))⌥ 1

|IM (j)|↵, if IM (j) is a high (low) boundary region of w.

Therefore, we have

kL (↵, w)k2L2
(I

M

(j)) =

�

�

�

�

w(IM (j))⌥ 2

|IM (j)|↵
�

�

�

�

2

L2
(I

M

(j))

provided that IM (j) is a high (low) extremum region of !. We obtain

1

2

d

d↵
kL (↵, w)k2L2

(I
M

(j)) = 2

✓

2

|IM (j)|↵⌥ w(IM (j))

◆

,

which is continuous and linearly increasing in ↵, and

1

2

d2

d↵2

⇣

kL (↵, w)k2L2
(I

M

(j))

⌘

=
4

|IM (j)|
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which is strictly positive. A similar result holds if IM (j) is a boundary region. Moreover,
since

t(↵) := kL (↵, w)k2L2
(I) =

M
X

j=1

kL (↵, w)k2L2
(I

M

(j)) ,

which is a finite summation of kL (↵, w)k2L2
(I

M

(j)), we conclude that t0(↵) is continuous

increasing and t00(↵) > 0 for ↵ > 0 small.

We claim that there exists an unique ↵
1

> 0 such that for all ↵ 2 (0,↵
1

)

L (↵
1

� ↵, w) has M pieces, but L (�, w) have at most M � 1 pieces, (4.15)

for all � � ↵
1

.

We first show the uniqueness. Assume there exist distinct ↵
1

and ↵0
1

> 0 such that
(4.15) holds for both ↵

1

and ↵0
1

. Without lose of generality we assume that ↵
1

< ↵0
1

. Let
↵00
1

> 0 be such that ↵
1

< ↵00
1

< ↵0
1

. Then, on the one hand, by (4.15) and Remark 4.11 we
have

L (↵00
1

, w) = L (↵
1

+ (↵00
1

� ↵
1

), w) = L (↵00
1

� ↵
1

,L (↵
1

, w))

has at most M �1 pieces, on the anther hand we have, again by (4.15), that L (↵0
1

� (↵0
1

�
↵00
1

), w) has M pieces since ↵0
1

� ↵00
1

> 0, and we have a contradiction.

We define the set

A :=
�

↵0 > 0, L (↵0, w) has at most M � 1 pieces
 

and we claim that
� := inf

↵>0

{↵ 2 A} (4.16)

has the properties required by (4.15). First, we have that � < +1 since by Theorem
4.5 there exists ↵0 > 0 large enough such that L (↵, w) is a constant, i.e., it has only one
constant piece, and hence A 6= ?. Next, let {↵n}1n=1

⇢ A be such that ↵n & �. We have
L (�, w) = limn!1 L (↵n, w) by Proposition, 4.12 and hence L (�, w) has at most M � 1
pieces. Finally, we claim that L (� � ↵, w) has M constant pieces for any ↵ > 0. If not,
then there would be ↵00 > 0 such that L (� � ↵00, w) has at most M � 1 constant pieces,
but this contradicts (4.16).

We have shown that the function t has the required properties for 0  ↵ < ↵
1

where
↵
1

is obtain via (4.16) (↵
1

:= �), and ↵
1

satisfies items 1 and 2 in Lemma 4.15. Next, by
(4.6) we may write, for ↵ � ↵

1

, that

L (↵, w) = L (↵
1

+ ↵� ↵
1

, w) = L (↵� ↵
1

, w
1

)

where w
1

:= L (↵
1

, w) is a piecewise constant function with M
1

pieces and M
1

 M � 1.
We can repeat the above argument to obtain ↵0

2

such that w
2

:= L (↵0
2

,!
1

) has at most M
2

constant pieces where M
2

 M
1

� 1, and we define ↵
2

:= ↵
1

+ ↵0
2

. A recursive argument
will lead to wM 0 a constant for M 0 su�ciently large. Since w only has M pieces, M 0 2 N is
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finite and ↵M 0 < +1 and so we obtain (4.14) as desired. Finally, since wM 0 := L (↵M 0 , w)
has only one piece, wM 0(x) =: C for all x 2 I and C is a constant. We conclude that for
all ↵ > ↵M 0

L (↵, w) = L (↵� ↵M 0 , wM 0) = wM 0 .

⇤
Proposition 4.16. For any given corrupted image u⌘,N and clean image uc,N , there exists
an integer N 0 < N and

0 = ↵
0

< ↵
1

< ↵
2

< · · · < ↵N 0 = ↵s(u⌘,N ) < +1 (4.17)

such that item 1, 2, and 3 of Lemma 4.15 holds. Moreover, in each interval (↵i,↵i+1

)
EN (·) is convex and E 0

N (·) is linearly increasing, where EN is defined in (1.29).

Proof. Since uc,N is a fixed piecewise constant function, we may apply Lemma 4.15 to u⌘,N
to obtain (4.17), and that EN (·) is convex and E 0

N (·) linearly increasing within each interval
(↵i,↵i+1

). Moreover, we conclude that ↵N 0 = ↵s(u⌘,N ) by applying items 1, 2, and 3 in
Lemma 4.15 with i = N 0. ⇤
4.4.2. The direct search for a minimizer ↵m of level N error function. Proposition 4.16
allows us to perform a direct search to find a minimizer ↵m of (1.29). Indeed, recall that
in each interval [↵i,↵i+1

), EN (·) is convex and E 0
N (·) is linearly increasing. Hence, we may

apply Newton descent (see, e.g., [8]) algorithm to locate the unique local minimizer ↵i,m for
EN (↵) in [↵i,↵i+1

], and repeat over all intervals provided by (4.17). Since there are only
finitely many intervals [↵i,↵i+1

), we can locate all possible local minimizers ↵i,m within a
finite time. Finally, the finite stopping time ↵s(u⌘,N ) provides a natural stopping criterion
for our searching algorithm. That is, we terminate our searching progress once we reach
the point when EN (·) is a constant. After we terminate our searching progress, we only
need to find the smallest local minimizer ↵i,m and that is our ↵m as desired. Lastly, if
there is a tie, i.e., two local minimizer ↵i,m < ↵i0,m such that both gave the smallest value
of EN (·), we choose ↵i,m as our minimizer ↵m and ignore ↵i0m.

4.4.3. The two dimensional case. In this section we present a two dimensional (weaker)
version of Lemma 4.15 and Proposition 4.16 in Proposition 4.20. In particular, items 1 and
2 in Lemma 4.15 will be absent due to the lack of a two dimensional version of Theorem
4.5. We remark that so far we only have a weaker version of Theorem 4.5 in two dimensions
and we refer readers to our follow up work [62].

We start by recalling the following theorem in [19].

Theorem 4.17 ([19], Theorem 4 and 5). Let v 2 L1(Q) be given and let @TV denote the
subgradient of the TV seminorm. Considering the gradient flow defined as

(

�@tG(t, v) 2 @TV (G(t, v)),
G(0, v) := v.

(4.18)

Then following hold:
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1. the solution G(t, v) is uniquely defined;
2. the solution G(t, v) satisfies G(t, v) = L (↵, v) for t = ↵;
3. there exist finitely many 0 = t

0

< t
1

< t
2

< · · · < tK  1 such that the solution of
(4.18) is given by

G(t, v) = G(ti, v)� (t� ti)SG(ti+1

)

for t 2 [ti, ti+1

), where SG(ti+1

) 2 @TV (G(ti, v)).
We now prove the following two dimensional “semi-group” property.

Proposition 4.18. Let v 2 L1(Q) and let 0 < ↵
1

< ↵
2

< +1 be given. Then

L (↵
2

, v) = L (↵
2

� ↵
1

,L (↵
1

, v)). (4.19)

Proof. Let v
1

:= L (↵
1

, v), and define a new gradient flow by

�@tG1(t, v
1

) 2 @TV (G1(t, v
1

)), G1(0, v
1

) := v
1

,

and we have G1(t, v
1

) is uniquely defined. By Theorem 4.17 we have that

G1(↵
2

� ↵
1

, v
1

) = L (↵
2

� ↵
1

,L (↵
1

, v)),

and

G(↵
2

, v) = L (↵
2

, v).

Moreover, by the property of gradient flow, we have

G(↵
2

, v) = G1(↵
2

� ↵
1

, v
1

),

and hence (4.19) hold. ⇤

We recall that the stopping time ↵s was defined in Definition 4.4 and

L (↵, v,Q) := argmin
u2SBV (Q)

⇢

1

2

ˆ
Q
|u� v|2 dx+ ↵TV (u,Q)

�

. (4.20)

Lemma 4.19. Let v 2 L1(Q) be given. Then ↵s(v) < +1 and L (↵s(v), v) is a constant.

Proof. We note that the null space of total variation seminorm

N (TV ) =
�

v 2 L1(Q), TV (v) = 0
 

, (4.21)

is the space of constant function (see, e.g., [4]), and hence a linear subspace of L1(Q).

By Proposition 2.1 in [21], the optimality condition of (4.20), with v in place of u⌘, is

1

↵
(L (↵, v)� v) 2 @TV (L (↵, v)).

Let PTV denote the projection operator onto N (TV ). Hence PTV (v) is a constant by
(4.21). We claim that

1

↵
(v � PTV (v)) 2 @TV (0) (4.22)
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for ↵ > 0 large enough. Indeed, since @TV (0) has nonempty relative interior in N (TV )
(see, e.g., [66]), we have that (4.22) holds for ↵ > 0 su�cient large since v 2 L1(Q) and
PTV (v) is a constant. Let ↵S > 0 be large enough such that (4.22) hold. Then we have

1

↵S
(v � PTV (v)) 2 @TV (0) = @TV (PTV (v))

where in the last inequality we used again the fact that PTV (v) is a constant. That is, we
have

1

↵S
(v � PTV (v)) 2 @TV (PTV (v)),

and hence PTV (v) is a solution of (4.20). Since the minimizer of (4.20) is unique, we
conclude that

PTV (v) = L (↵S , v) (4.23)

and thus L (↵S , v) is a constant.

Define
↵s := inf {↵ > 0, L (↵, v) = PTV (v)} .

Let {↵n}1n=1

⇢ {↵ > 0, L (↵, v) = PTV (v)} and ↵n & ↵s. We claim that ↵s is indeed the
stopping time of v. First, ↵s is unique by its definition, and ↵s is finite since there exists
at least one ↵S < +1 such that (4.23) hold. Next, by Proposition 4.12 we have

L (↵s, v) = lim
n!1L (↵n, v) = PTV (v).

Therefore, for all ↵ > 0, we have

L (↵s + ↵, v) = L (↵,L (↵s, v)) = L (↵, PTV (v)) = PTV (v),

where in the first equality we used Proposition 4.18. This concludes the proof. ⇤
Proposition 4.20. For any given corrupted image u⌘,N and clean image uc,N , there exists
an integer N 0 2 N and

0 = ↵
0

< ↵
1

< ↵
2

< · · · < ↵N 0 = ↵s(u⌘,N ) < +1
such that, in each interval (↵i,↵i+1

), EN (·) is convex and E 0
N (·) is linearly increasing, where

EN (↵) :=
1

2

ˆ
Q
|L (↵, u⌘,N )� uc,N |2 dx. (4.24)

Proof. Applying Theorem 4.17 to u⌘,N , we obtain finitely many

0 := ↵
0

< ↵
1

< ↵
2

< · · · < ↵N 0  +1
such that

L (↵, u⌘,N ) = L (↵i, u⌘,N )� (↵� ↵i)SG(↵i+1

) (4.25)

for ↵ 2 (↵i,↵i+1

), where SG(↵i+1

) 2 @TV (L (↵i, v)). By Lemma 4.19 we have L (↵s(u⌘,N ), u⌘,N )
is a constant and hence SG(↵s(u⌘,N )) = 0. Therefore, invoking (4.25) we deduce that
↵N 0  ↵s(u⌘,N ) < +1 and L (↵, u⌘,N ) = L (↵s(u⌘,N ), u⌘,N ) for all ↵ � ↵s(u⌘,N ). More-
over, by (4.25) and the fact that uc,N is a fixed function, we conclude that in each interval
(↵i,↵i+1

), EN (·) is convex and E 0
N (·) is linearly increasing, as desired. ⇤
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4.5. Another spatially dependent bilevel training scheme with respect to TV .
One significant drawback of TV denoising is the staircasing e↵ect, and many attempts
have been made to avoid such e↵ect by, for example, introducing a higher level of deriva-
tive [28, 18], or by introducing a spatially dependent denoising parameter ↵(x) (see, e.g.,
[50]). In this section we present a new training scheme which is adapted from the bilevel
training scheme (1.3).

Before we introduce our new training scheme, we prove a useful lemma.

Lemma 4.21. Let v 2 L1(Q) be given. Then

L (↵, v) =: u↵ ! (v)Q :=

 
Q
v dx a.e..

Proof. Recalling the definition of L (↵, v) from (4.20) and using (v)Q as test function, we
have ˆ

Q
|u↵ � v|2 dx+ ↵TV (u↵) 

ˆ
Q
|(v)Q � v

0

|2 dx < +1.

Hence, {u↵}↵>0

is bounded in L2, and (up to a not relabeled subsequence) there exists a
u1 2 L2 such that u↵ * u1 in L2 as ↵ ! 1. In turn, TV (u↵) is bounded, i.e., {u↵}↵>0

is bounded in BV . Hence u1 2 BV and

TV (u1)  lim inf
↵!1 TV (u↵)  lim

↵!1
1

↵

ˆ
Q
|(v)Q � v

0

|2 dx = 0,

which implies that u1 =: c is a constant. Invoking the compactness embedding in BV
space, we have u↵ ! c in L1, and we have (up to a not relabeled subsequence) u↵ ! c a.e..
Moreover, by Fatou’s Lemma,ˆ

Q
|v � c|2 dx 

ˆ
Q

�

�

�

v � (v)Q

�

�

�

2

dx. (4.26)

Note that
d

d�

ˆ
Q
|v � �|2 dx = 2

ˆ
Q
(v � �) dx,

and hence the left hand side of (4.26) reaches the minimum value at � = (v)Q. We conclude
that c = (v)Q, and the proof is completed. ⇤
Remark 4.22. Combining the results from Lemma 4.21 and Lemma 4.19, we deduce that
for ↵ > ↵s(v), L (↵, v) = (v)Q, which is in agreement with Theorem 4.5.

4.5.1. A spatially dependent construction. Let N 2 N, uc,N , and ⌘N be given. For K 2 N,
QK ⇢ R2 denotes a cube with its faces normal to the orthonormal basis of R2, and with
side-length greater than or equal to 1/K. LK will be a collection of finitely many QK such
that

LK :=
n

QK ⇢ Q : QK are mutually disjoint, Q ⇢
[

QK

o

, (4.27)

and VK denotes the collection of all possible LK . For K = 0 we set Q
0

:= Q, hence
L
0

= {Q}. We define our improved training scheme (P) in resolution level N as:
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Level 1.

uP,N := argmin

⇢ˆ
⌦

|uc,N � uL
K

|2 dx, K � 0, LK 2 VK

�

(4.28)

Level 2.
uL

K

(x) := L (↵Q
K

, u⌘,N , QK) for x 2 QK and QK 2 LK , (4.29)

where ↵Q
K

:= argmin
↵>0

ˆ
Q

K

|L (↵, u⌘,N , QK)� uc,N |2 dx.

The training scheme (P) performs the training scheme (B) in each subdomain and combines
it all together to achieve an improved global result. Let

PN (K) := inf
L
K

2V
K

⇢ˆ
⌦

|uc,N � uL
K

|2 dx
�

where uL
K

is defined in (4.29), and

P(N) :=

ˆ
Q
|uc,N � uP,N |2 dx

where uP,N is obtained from (4.28). Since VK ⇢ VK+1

, we have PN (K) � PN (K + 1) and
hence

lim
K!1

PN (K) exists

and is equal to infK2N0 PN (K). Note that when K = 0, PN (0) = EN (↵m) where EN (·) is
defined in (4.24) and ↵m is the minimizer. That is, the improved scheme (P) does make
an improvement since P(N)  PN (0) = EN (↵m).

The assumption that u⌘,N is a piecewise constant function attaining finitely many val-
ues yields a natural stop criterion of scheme (P) and prevents us from letting K ! 1.
Indeed, since u⌘,N is constant in each QN 2 QN where QN is defined in (1.12), searching
in cubes QK such that K > N would not benefit us anymore since L (↵, v,QK) = v for
any ↵ � 0 if v is constant in QK .

4.5.2. The staircasing e↵ect. In this section we first illustrate with a simple example how
(P) avoids the staircasing e↵ect. Figure 4a shows the given corrupted image u⌘,N and
the clean image uc,N , with N = 4. Scheme (B) results in L (↵m, u⌘,N , I)(I

4

(2)) =
L (↵m, u⌘,N , I)(I

4

(3)) and hence the staircasing e↵ect occurs, as Figure 4b indicates.
Scheme (P) operates in the subintervals I 0 := (0, 0.5) and I 00 := (0.5, 1) separately, and
hence L (↵, u⌘,N , I 0)(I

4

(2)) and L (↵, u⌘,N , I 00)(I
4

(3)) are able to break up the staircase
produced in Figure 4b and go across each other, as shown in Figure 4c, and finally achieve
a better result, as Figure 4d indicates. Moreover, as shown in the end of this chapter for
the two dimensional case, where Figure 7 and 8 represents the clean image uc,N and cor-
rupted image u⌘,N , respectively. We see in Figure 10, the reconstructed image by scheme
(P) results in smaller error value, mitigated staircasing e↵ect (upper right corner), and
sharped edge (around the middle area), compare with the reconstructed image by scheme
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(B) in Figure 9.
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(a) u⌘,N and uc,N
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(b) L (↵m, u⌘,N , I) produces staircase
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(c) Scheme (4.28) avoids staircasing
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(d) uP,N and uc,N overlap, a perfect recovery

Figure 4. I
4

(1) = (0, 0.25), I
4

(2) = (0.25, 0.5), I
4

(4) = (0.5, 0.75), I
4

(4) =
(0.75, 1)

We remark that the ability to create a new jump point in L (↵, u⌘,N ), as shown in Figure
4c, is key to avoid the staircasing e↵ect. In [50], the authors proposed a method to avoid
the staircasing e↵ect by letting ↵ = 0 in certain points and hence at those points new jump
points could be created in L (↵, u⌘,N ). In Section 5.2 in [50] they showed that if ⌘N has

average 0 in each subinterval Ii, where I =
SM

i=1

Ii, and if uc,N is constant in each Ii, then
they can achieve a perfect recovery (See Figure 5a to 5c). We remark that our scheme
(P) can produce the same perfect recovery result by choosing K large enough such that
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{I
1

, . . . , IM} ⇢ LK . Indeed, invoking Lemma 4.21 we have that, for ↵ > 0 large enough,

L (↵, u⌘,N , Ii) =

 
I
i

u⌘,N dx =

 
I
i

(uc,N + ⌘N ) dx =

 
I
i

uc,N dx = uc,N (Ii)

for any 1  i  M , where in the last two equalities we used the assumptions that ⌘N has
average 0 in Ii and that uc,N is constant in Ii.
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(a) ⌘N has average 0 in I1 and
I2
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(b) perfect recovery by [50]
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(c) perfect recovery by scheme
(4.28)

Figure 5. M = 2. I
1

= (0, 0.5), I
2

= (0.5, 1)

Finally, we remark that scheme (P) can deal with more generalized situations which cannot
be dealt by the method proposed in [50]. For example, in Figure 6a, uc(x) := x and hence
uc,N (IN (i)) = i/N for x 2 IN (i), 1  i  N (recall IN (i) from (1.24)). We define
⌘N (2i � 1) = �⌘N (2i), 1  i  N/2. That is, ⌘N does not have average 0 in each
subinterval IN (i) and so Proposition 5.5 in [50] can not be applied. However, scheme (P)
can still provide a perfect recovery result, as shown in Figure 4d, by choosing K large
enough such that {I

2i�1

[ I
2i, 1  i  N/2} ⇢ LK . Moreover, we observe that scheme (B)

produces, again, the staircasing e↵ect, as shown in Fig 6b.

4.5.3. Approximation of the clean image. In the last section of this chapter, we show that,
under mild assumptions on the noise ⌘N , the scheme (4.28) can produce a perfect recovery
result for an arbitrary clean image uc, as the resolution level N goes to 1.

We recall a useful corollary for Lusin’s Theorem.

Corollary 4.23 ([40], Corollary 1, page 16. Also see [44], 7.10). Let µ be a Borel regular
measure on RN and let f : RN ! RM be µ-measurable and bounded. Assume A ⇢ RN

is µ-measurable and µ(A) < +1. Fix " > 0. Then there exists a continuous function f̄ :
RN ! RM such that

�

�f̄
�

�

L1  kfkL1 and µ
�

x 2 A : f̄(x) 6= f(x)
 

< ".

The main theorem of this section is as follows.
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(a) u⌘,N and uc,N
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(b) L (↵m, u⌘,N ) by scheme
(1.3)
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(c) uP,N by scheme (4.28)

Figure 6. N = 100. The noise ⌘N is designed such that ⌘N (i) = �⌘N (i+
1). Note that in Figure 6b, scheme (1.3) produces staircasing; in Figure 6c,
scheme (4.28) produces an almost perfect recovery

Clean Image

Figure 7. Clean image uc,N

Theorem 4.24. Assume that the noise ⌘K2 has locally average 0, that is
 
Q

K

⌘K2 = 0 (4.30)
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Noisy Image

Figure 8. Corrupted image u⌘,N , where the artificial noise is added by
using a Gaussian noise distribution

for any QK 2 QK and all k 2 N. Then

lim
K!1

P(K2) = 0.

Proof. Let K 2 N be fixed. Note that QK 2 VK . Then, according to (4.29) and invoking
Lemma 4.21, for each QK 2 QK we have

�

�L (↵Q
K

, u⌘,K2 , QK)� uc,K2

�

�

2

L2
(Q

K

)


�

�

�

�

 
Q

K

u⌘,K2dx� uc,K2

�

�

�

�

2

L2
(Q

K

)

=

�

�

�

�

 
Q

K

uc,K2 dx� uc,K2

�

�

�

�

2

L2
(Q

K

)

,

where in the last equality we used (4.30).

Hence, we have

P(K2) 
X

Q
K

2Q
K

�

�L (↵Q
K

, u⌘,K2 , QK)� uc,K2

�

�

2

L2
(Q

K

)


X

Q
K

2Q
K

�

�

�

�

 
Q

K

uc,K2(x)dx� uc,K2

�

�

�

�

2

L2
(Q

K

)

.
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Denoised Image sigle alpha

Figure 9. The reconstructed image by scheme (B). The training error is
931.667. Note that the staircasing e↵ect is observed, upper left and right
corner.

We claim that

lim
K!1

X

Q
K

2Q
K

�

�uc,K2 � uc
�

�

2

L2
(Q

K

)

= lim
K!1

�

�uc,K2 � uc
�

�

2

L2
(Q)

= 0. (4.31)

It is clear that (4.31) holds if uc is continuous and using Lebesgue Dominated Convergence
Theorem. We prove that (4.31) still hold if uc 2 L1(Q). For simplicity, assume that
kuckL1

(Q)

 1. Fix " > 0. By Corollary 4.23 there exists a compact set W ⇢⇢ Q

and a continuous function v such that vbW = ucbW , kvkL1  kuckL1 , and L2 (W ) �
L2 (Q)� " = 1� ", where L2 stands for the two dimensional Lebesgure measure. Then we
immediately have ˆ

Q
|v � uc|2 dx < ". (4.32)

Let vK2 be defined similarly to uc,K2 and we observe that vK2 ! v in L2(Q). That is,

lim
K!1

kvK2 � vk2L2
(Q)

= 0. (4.33)
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Denoised Image decomp alpha

Figure 10. The reconstructed image by scheme (P). The training error is
900.325. Note that the staircasing e↵ect is reduced, and edges are sharper

We obtainˆ
⌦

�

�vK2 � uc,K2

�

� dx =
X

1i,jK2

ˆ
Q

K

2 (i,j)

�

�

�

�

�

K2

ˆ
Q

K

2 (i,j)
(v � uc) dx

�

�

�

�

�

dy


X

1i,jK2

K2

ˆ
Q

K

2 (i,j)

ˆ
Q

K

2 (i,j)
|v � uc| dxdy

=
X

1i,jK2

ˆ
Q

K

2 (i,j)
|v � uc| dx = kv � uckL1

(Q)

 2".

Since
�

�vK2 � uc,K2

�

�  2 uniformly in W we deduce thatˆ
⌦

�

�vK2 � uc,K2

�

�

2

dx  2

ˆ
⌦

�

�vK2 � uc,K2

�

� dx  4". (4.34)

Hence, for K 2 N large enough, and in view of (4.34), (4.33), and (4.32), in this order, we
observe that
�

�uc,K2 � uc
�

�

2

L2
(Q)

=
�

�uc,K2 � vK2 + vK2 � v + v � uc
�

�

2

L2
(Q)

 3
�

�uc,K2 � vK2

�

�

2

L2
(Q

K

)

+ 3 kvK2 � vk2L2
(Q

K

)

+ 3 kv � uck2L2
(Q

K

)
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 12"+ 3"+ 3" = 18"

and (4.31) is verified.

Similarly, we could show that (note below we have uc,K , but in (4.31) we have uc,K2)

lim
K!1

X

Q
K

kuc,K � uck2L2
(Q

K

)

= 0. (4.35)

Note that  
Q

K

uc,K2(y)dy = uc,K(x) for x 2 QK .

Then, in view of (4.31) and (4.35),

X

Q
K

2Q
K

�

�

�

�

 
Q

K

uc,K2(x)dx� uc,K2

�

�

�

�

2

L2
(Q

K

)

=
X

Q
K

2Q
K

�

�uc,K � uc + uc � uc,K2

�

�

2

L2
(Q

K

)


X

Q
K

2Q
K

kuc,K � uck2L2
(Q

K

)

+
X

Q
K

2Q
K

�

�uc,K2 � uc
�

�

2

L2
(Q

K

)

! 0

as K ! 1.

Therefore, we deduce that

lim
K!1

P(K2)  lim
K!1

X

Q
K

2Q
K

�

�

�

�

 
Q

K

uc,K2(x)dx� uc,K2

�

�

�

�

2

L2
(Q

K

)

= 0,

and the proof is concluded. ⇤
Remark 4.25. The noise ⌘K2 in Theorem 4.24, which has locally zero average, can be
produced by using the compound camera which is the leading technology in robotic vision.
Roughly speaking, the compound camera captures a corrupted image u⌘,K2 with resolution
K2 by capturing withK2 number of small cameras, each has resolution levelK and captures
a part of uc in the subdomain QK , and these put together yield u⌘,K2 . It is usually assumed
that each individual camera produces noise with zero average (see, e.g., [21]), which implies
that the nose ⌘K2 has average zero in each QK as required.

Chapter 5. The comprehensive training scheme

5.1. Notations and basic assumptions. Let Q := (0, 1) ⇥ (0, 1) be the unit square.
This will be the domain of our image data. Generally we may take Q ⇢ R2 to be an
open bounded domain with Lipschitz boundary, although such generalization would not
be useful in image processing problems. The corrupted image u⌘ and the associated clean
image uc are assumed to lie in a Banach space Y , which is usually taken to be L2 or L1 in
image denoising and deblurring problem.
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We next describe the basic assumptions on the assessment operators A, fidelity operator
F , and regularizer R, and we will provide some examples to illustrate these assumptions.

Definition 5.1. We say that an operator R: Y ! R+ is a regularizer if it satisfies the
following conditions:

1. R is convex;
2. the set

XR := {u 2 Y : R(u) < +1}
equipped with the norm

kukXR := kukY +R(u).

is a normed subspace of Y .

Definition 5.2. We say an operator F : Y ! [0,+1] is a fidelity operator if it is proper
and strictly convex.

Definition 5.3. We say that an operator A: Y ! [0,+1] is an assessment operator if it
is both continuous and weakly lower semicontinuous in Y .

Assumption 5.4 (imaging-ready operator). Let {un}1n=1

⇢ Y be such that

sup {F(un � u⌘) +R(un) : n � 1} < +1. (5.1)

We say that the operators F and R are satisfy Assumption imaging-ready if, up to the
extraction of a (non-relabeled) subsequence, there exists ũ 2 XR such that

un * ũ in Y and lim inf
n!1 R(un) � R(ũ).

Remark 5.5. In the context of existing literature, the fidelity operator F is usually as-
sumed to be coercive in the sense that

F(v) ! +1 as kvkY ! 1. (5.2)

We remark that (5.2), together with Definition 5.1 and Definition 5.2, implies Assumption
5.4 provided that the Banach space Y is assumed to be reflexive.

To sketch the proof, note that for any sequence {un}1n=1

⇢ Y such that (5.1) holds, by
(5.2) we have

sup
�kun � u⌘kY

 

< +1.

Since Y is reflexive, by Banach - Alaoglu theorem there exists ũ 2 Y such that, up to
the extraction of a subsequence, un * ũ in Y . Finally, since R is convex, we have R is
s.w.l.s.c. and hence

+1 > lim inf
n!1 R(un, Q) � R(ũ, Q),

and ũ 2 XR.
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Lemma 5.6. Let R and F satisfy Definition 5.1 and Definition 5.2, respectively, and 5.4.
Then the minimizing problem

uR 2 argmin {F(u⌘ � u,Q) +R(u,Q) : u 2 XR}
has a unique solution.

Proof. Let

m := inf {F(u⌘ � u,Q) +R(u,Q) : u 2 XR} . (5.3)

Since F and R are non-negative, we have m � 0. Let {un}1n=1

⇢ XR be a minimizing
sequence. Then, for n large enough, we have

F(un � u⌘, Q) +R(un, Q)  m+ 1.

In view of Assumption 5.4, up to a subsequence, we have there exists ũ 2 XR such that

un * ũ in Y and lim inf
n!1 R(un) � R(ũ).

Since F is strictly convex, and hence weakly l.s.c., we have

m = lim inf
n!1 F(un � u⌘, Q) +R(un, Q) � F(ũ� u⌘, Q) +R(ũ, Q),

which, together with (5.3), implies that

F(ũ� u⌘, Q) +R(ũ, Q) = m.

Finally, since R(·) is convex and F(·) is strongly convex, we conclude that ũ is unique and
we set uR := ũ. ⇤

We present a few examples to illustrate the abstract framework above.

Example 5.7 (Squared L2 assessment and fidelity operator & (non)-smooth regularizer).
Let Y = L2 with

A(·, Q) = F(·, Q) = k·k2L2
(Q)

,

we recover the standard L2-squared fidelity and assessment operators (the role of A will
be explained in Section 1.5).

An example of a smooth regularizer is given by R(·, Q) = |·|W 1,2
(Q)

. In this case, XR =

W 1,2(Q) and we have

F(u� u⌘) +R(u) = ku� u⌘k2L2 + |u|W 1,2 . (5.4)

It is clear that F and R in (5.4) satisfy Assumption 5.4.

An example of a non-smooth regularizer is given by R(·, Q) := |·|TV (Q)

, the total vari-

ation, and we define XR = BV (Q) \ L2(Q). Since the domain Q has Lipschitz boundary,
and the dimension is either 1 (signal) or 2 (image), we have that the operators F and R
in this example satisfy Assumption 5.4.
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5.2. The regularizer training scheme. For the convenience of the reader, we re-state
the definition of indexing set introduced in Chapter 1.

Notation 5.8. We use Mn⇥k to denote the vector space of n ⇥ k real valued matrices,
where n, k 2 N

Definition 5.9 (The indexing set of R). Let ⇧ := �
1

⇥�
2

⇥ · · ·⇥�NR, where the indexing
dimension is NR 2 N, and each �i is a compact subset of Mn

i

⇥k
i. We say that a space

(set) of regularizers R is indexed by ⇧ if each R 2 R can be uniquely represented (see
Example 5.11 below) by an element � = (�

1

, �
2

, . . . , �NR) 2 ⇧, and we use R[�] to indicate
that R is indexed by �. Moreover, we endow R with the norm defined by

dR(R[�],R[�0]) :=
NR
X

i=1

�

��i � �0i
�

�

�

i

.

We introduce the following Regularizer Training scheme (RT ).

Level 1.

�̃ := argmin
�A �uc � uR[�], Q

�

: � 2 ⇧
 

(5.5)

Level 2.

uR[�] := argmin
�F(u⌘ � u,Q) +R[�](u,Q), u 2 XR[�]

 

.

Definition 5.10 (The reconstruction map). Given u⌘ 2 Y , we define the reconstruction
map S: R ! XR by

Su
⌘

(R) := argmin {F(u⌘ � u,Q) +R(u,Q) : u 2 XR} .
Note that by Lemma 5.6, the operator Su

⌘

is well defined. Moreover, for simplicity of
notation, we abbreviate Su

⌘

(R) as S(R) in the rest of this chapter.

Example 5.11. We present two examples to illustrate Definition 5.9.

1. Let ⇧ := �
1

⇥ �
2

where �
1

:= [1, 2] and �
2

:= [2, 4]. Then we may define a space R
based on the indexing set ⇧ via

R := {W s,p : s 2 �
1

, p 2 �
2

} ,
and we have R[(s, p)] = W s,p and

dR(R[(s, p)],R[(s0, r0)]) :=
�

�s� s0
�

�+
�

�p� p0
�

� .

2. Let ⇧ := �
1

= [1, S] where S 2 (1,+1). The fractional order total generalized variation
TGV s ([31]) is defined as follows:

TGV s(u) = min

⇢

|ru�mod(s, 1)v
0

|M
b

+mod(s, 1)
�

�

�

Emod(s,1)v
0

�mod(s, 2)v
1

�

�

�

M
b

+ · · ·

+mod(s, l)
�

�

�

Emod(s,l)vk�2

�mod(s, l + 1)vl
�

�

�

M
b

+

· · ·+mod(s, bSc � 1)
�

�

�

Emod(s,bSc�1)vk�2

�mod(s, bSc)vbSc�1

�

�

�

M
b

+
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+mod(s, bSc)
�

�

�

Emod(s,bSc)vbSc
�

�

�

M
b

: vl 2 BV (Q, Syml(R2)), l = 0, . . . , bSc � 1

�

,

where mod(s,N) := 0 _ (s�N) ^ 1. We introduce a regularizer space R via

R := {TGV s : s 2 �
1

} ,
and we have R[s] = TGV s and

dR(R[s],R[s0]) :=
�

�s� s0
�

� .

Assumption 5.12 (A-l.s.c with respect to dR). We say that the operator S(R) is A-l.s.c.
with respect to dR if for every {R[�n]}1n=1

⇢ R with limn!1 dR(R[�n],R[�]) = 0,

lim inf
n!1 A(S(R[�n])� uc) � A(S(R[�])� uc).

Theorem 5.13. Let A be an assessment operator satisfying Assumption 5.3 and let Y be
a Hilbert space. If S is A-l.s.c. with respect to dR, then problem (5.5) admits a solution
R[r̃] 2 R.

Proof. Since the assessment operator is non-negative, we may extract a minimizing se-
quence {R[�n]}1n=1

⇢ R such that

lim
n!1A (uc,N � S(R[�n]), Q) = inf {A (uc,N � S(R[�]), Q) : R[�] 2 R} =: m � 0. (5.6)

We claim that there exists a regularizer R[r̃] 2 R such that

A(uc � S(R[r̃])) = m.

Recall from Definition 5.9 the indexing dimension NR 2 N. Then we may write �n in (5.6)
by

�n = (�
1,n, �2,n, . . . , �NR,n), {�i,n}1n=1

⇢ �i for i = 1, . . . , NR .

Since each �i is closed and compact, by a diagonal argument we find �̃ = (�̃
1

, �̃
2

, . . . , �̃NR) 2
⇧ such that, up to a subsequence,

�̃i = lim
n!1 �i,n

for each i = 1, . . . , NR . Now, in view of Assumption 5.12 we have

m = lim inf
n!1 A(S(R[�n])� uc) � A(S(R[�̃])� uc).

Since �̃ 2 ⇧ and hence R[�̃] 2 R, we have

A(S(R[�̃])� uc) = m

as desired. ⇤
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5.2.1. Training scheme in regularizer and parameter spaces. In order to add parameters
into the regularizer, we specific a more detailed structure of the set R. Recall from Defi-
nition 5.9 that we require a set R to be indexed by a set ⇧, a product of compact subset
of M, so that we can define the distance between two regularizers. Here, in addition, we
define the dimension of R so that we may specify the structure of R. First, we give the
definition of box constraint.

Definition 5.14. We say that a vector ↵ = (↵
1

,↵
2

, . . . ,↵n) 2 Rn satisfies the box
constraint if there exist a positive number 0 < A << 1 such that ↵i 2 [A, 1/A] for
i = 1, 2, . . . , n.

Definition 5.15. We say that a space R has operator dimension nR 2 N if there exists a
set of operators
�

Ri(·, ·, ·) : Y ⇥ Y nR ⇥⇧ ! R+ for i = 1, . . . , nR
 

with Ri(tu, tv, ·) = tRi(u, v, ·), t 2 R+,

such that each R[�] 2 R can be represented by

R[�](u,Q) = inf {R
1

(u, v, �) +R
2

(u, v, �) + . . .+RnR(u, v, �) : v 2 Y nR} . (5.7)

We define a scaled version of R[�] 2 R by adding a parameter ↵ = (↵
1

,↵
2

, . . . ,↵nR) 2
RnR , which satisfies the box constraint in Definition 5.14, in the following sense:

R[↵, �](u) (5.8)

:= inf {R
1

(↵
1

u,↵
1

v, �) +R
2

(↵
2

u,↵
2

v, �) + . . .+RnR(↵nRu,↵nRv, �) : v 2 Y nR} ,
and we set

dA,R(R[↵, �],R[↵0, �0]) := dR(R[�],R[�0]) +
�

�↵� ↵0�
� .

Lemma 5.16. If ↵ satisfies the box constraint, then XR[↵,�] = XR[�].

Proof. We only show that
XR[↵,�] ⇢ XR[�]

The proof in the other direction is analogous.

Let u 2 XR[↵,�] be given. Then by Definition 5.15 we have u 2 Y and

R[↵, �](u)

= inf {R
1

(↵
1

u,↵
1

v, �) +R
2

(↵
2

u,↵
2

v, �) + . . .+RnR(↵nRu,↵nRv, �) : v 2 Y nR} < +1,

where ↵ = (↵
1

,↵
2

, . . . ,↵nR) 2 RnR . Let v
0

2 Y nR be such that

R
1

(↵
1

u,↵
1

v
0

, �) +R
2

(↵
2

u,↵
2

v
0

, �) + . . .+RnR(↵nRu,↵nRv
0

, �)  R[↵, �] + 1. (5.9)

Since ↵ satisfies the box constraint, i.e., A  ↵i, i = 1, . . . , nR , we have

R
1

(u, v
0

, �) +R
2

(u, v
0

, �) + . . .+RnR(u, v
0

, �)

=
1

A
R

1

(Au,Av
0

, �) +
1

A
R

2

(Au,Av
0

, �) + . . .+
1

A
RnR(Au,Av

0

, �)
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 1

A
[R

1

(↵
1

u,↵
1

v
0

, �) +R
2

(↵
2

u,↵
2

v
0

, �) + . . .+RnR(↵nRu,↵nRv
0

, �)]

 1

A
R[↵, �] +

1

A
< +1.

Thus, in view of (5.9), we have

R[�](u)  R
1

(u, v
0

, �) +R
2

(u, v
0

, �) + . . .+RnR(u, v
0

, �) < +1,

and hence u 2 XR[�]. ⇤
Example 5.17. Recall the fractional order total variation TV s from [78].

1. We define a space of regularizers R by using the indexing set ⇧ := �
1

= [1/2, 1] and
setting

R := {TV s : s 2 [0, 1]} ,
where TV s can be written in the form of (5.7), to be precise,

TV s = inf
�

TV s(u) : v 2 L2

 

.

That is, the operator R
1

in (5.7) is defined to be independent of the auxiliary variation
v. Then, we have

R [↵, s] (u) = ↵TV s, where ↵ 2 [A, 1/A].

2. Recalling Example 5.11, in terms of (5.8) we have

TGV s[↵](u) = min

⇢

↵
0

|ru�mod(s, 1)v
0

|M
b

+ ↵
1

mod(s, 1)
�

�

�

Emod(s,1)v
0

�mod(s, 2)v
1

�

�

�

M
b

· · ·+ ↵
2

mod(s, l)
�

�

�

Emod(s,l)vk�2

�mod(s, l + 1)vl
�

�

�

M
b

+

· · ·+ ↵l mod(s, bSc � 1)
�

�

�

Emod(s,bSc�1)vk�2

�mod(s, bSc)vbSc�1

�

�

�

M
b

+

+↵bScmod(s, bSc)
�

�

�

Emod(s,bSc)vbSc
�

�

�

M
b

: vl 2 BV (Q, Syml(R2)), l = 0, . . . , bSc � 1

�

,

where ↵̄ = (↵
0

, . . . ,↵k) satisfies the box constraint. In [31] we proved that the regularizer
space R constructed using TGV k+s

↵̄ satisfies Assumption 5.18.

We improve scheme (RT ) by inserting parameters as in (5.8), so that (RT ) is now able to
train the parameters and regularizers, simultaneously. The scheme (R) can be viewed as
the generalization of the scheme defined (2.24).

Level 1.

(↵̃, �̃) 2 argmin
�A �uc � uR[↵,�], Q

�

: � 2 ⇧R , ↵ 2 [A, 1/A]nR
 

, (5.10)

Level 2.

uR[↵,�] := argmin
�F(u⌘ � u,Q) +R[↵, �](u,Q), u 2 XR[�]

 

. (5.11)

We improve Assumption 5.12 to accommodate the parameter spaces [A, 1/A]nR .
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Assumption 5.18 (A-A-l.s.c. with respect to dA,R). We say that the operator S(R) is
A-A-l.s.c. with respect to dA,R if for every {(↵n, �n)}1n=1

⇢ [A, 1/A]nR ⇥⇧ with
limn!1 dA,R(R[↵n, �n],R[↵, �]) = 0,

lim inf
n!1 A(S(R[↵n, �n])� uc) � A(S(R[↵, �])� uc).

Remark 5.19. In most cases Assumption 5.18 on R[↵, �] is redundant once Assumption
5.12 holds on R[�] since ↵ satisfies the box constraint defined in Definition 5.14.

Theorem 5.20. Suppose that Assumption 5.18 holds. Then problem (5.10) admits a so-
lution (↵̃, �̃).

Proof. The proof can be carried out by using an argument similar to that adopted in the
proof of Theorem 5.13 and Assumption 5.18. ⇤
Corollary 5.21. Recall the notations from (5.10) and (5.11). The set

{(↵, �)}
opt

:= argmin
�A �uc,N � uR[↵,�], Q

�

: � 2 ⇧, ↵ 2 [A, 1/A]nR
 

is closed.

Proof. If #{(↵, �)}
opt

< +1, we have nothing to prove. If not, in view of the box constraint
we have that for any sequence {(↵n, �n)}1n=1

⇢ {(↵, �)}
opt

there exist ↵̃ and �̃ such that,
up to a subsequence,

↵n ! ↵̃ and �n ! �̃.

We claim that (↵̃, �̃) 2 {(↵, �)}
opt

. Since {(↵n, �n)}1n=1

⇢ {(↵, �)}
opt

, we have

A(S(R[↵n, �n])� uc) = m := inf
�A �uc,N � uR[↵,�], Q

�

: � 2 ⇧, ↵ 2 [A, 1/A]nR
 

,

and in view of Assumption 5.18, we have

m � lim inf
n!1 A(S(R[↵n, �n])� uc) � A(S(R[↵̃, �̃])� uc). (5.12)

Since (↵̃, R̃) 2 [A, 1/A]nR ⇥ R, we have

A(S(R[↵̃, �̃])� uc) � m,

and together with (5.12), this conclude the proof. ⇤

5.3. The comprehensive bilevel training scheme.

5.3.1. The construction. We first review the following notations from (1.33) (recall that
0 < A < 1 from Definition 5.14):

1. HA is the collection of rectangles such that

HA := {L ⇢ Q : L is an open rectangle with the shortest side-length greater than or equal to A} ;

2. L stands for a collection of finitely many L 2 HA such that

L :=
n

L 2 HA : L are mutually disjoint, Q ⇢
[

L
o

, (5.13)
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3. VA is the collection of all possible L, and we define, for any L, L0 2 VA,

dV
A

(L,L0) := max
�

min
�

dH
A

(L,L0) : L0 2 L0 : L 2 L ,
and

dH
A

(L,L0) := k�L � �L0kL1
(Q)

(5.14)

where �L is the characteristic function over L.

Next, we introduce a comprehensive training scheme (CT ) as follows:

Level 1.

L̃ 2 argmin {A (uc,N � P(L)) : L 2 VA} , (5.15)

Level 2.

P(L) is built upon the information of {(↵̃L, �̃L)}L in each L 2 L,
Level 3.

{(↵̃L, �̃L)}L := argmin
�A �uc,N � uR[↵,�], L

�

: � 2 ⇧, ↵ 2 [A, 1/A]nR
 

, (5.16)

uR[↵,�] := argmin
�F(u⌘,N � u, L) +R[↵, �](u, L), u 2 XR[�]

 

.

Here the operator P: VA ! Y acts as an assemble operator, using the local optimal
re-construction information obtained in Level 3 within each subdomain L to construct a
global re-constructed image uL, based on the partition domain L 2 VA.

The delicate part of the training scheme (CT ) is the construction of an assemble oper-
ator P. We will provide two constructions in Section 5.3.2. Here we first give a su�cient
condition for an assemble operator so that the scheme (CT ) admits a solution.

Assumption 5.22. We say that the operator P: VA ! Y is A-l.s.c. with respect to dV
A

if for any sequence {Ln}1n=1

⇢ VA with limn!1 dV
A

(Ln,L) = 0,

lim inf
n!1 A(P(Ln)� uc) � A(P(L)� uc).

Theorem 5.23. If the assemble operator P is A-l.s.c. with respect to dV
A

, then problem
(5.24) admits a solution L̃ 2 VA.

To prove Theorem 5.23, we first establish two compactness results in the space HA and on
training ground VA.

Lemma 5.24. Let a sequence of {Ln}1n=1

⇢ HA be given. Then, up to a subsequence,
there exists L̃ 2 HA such that

lim
n!1 dH

A

(Ln, L̃) = 0.

Proof. Select Ln from Ln for each n 2 N and define �n := IL
n

, the characteristic function
of Ln. Since {Ln}1n=1

⇢ HA, we have

k�nkBV (Q)

 |Ln|+ |�n|TV  |Q|+ 4  5,

and hence
sup

n

k�nkBV (Q)

: n 2 N
o

< +1.
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Therefore, by weak⇤-compactness in BV , up to a subsequence (not relabeled), there exists
� 2 BV such that

�n
⇤
* � in BV. (5.17)

We claim that � is the characteristic function for a set S ⇢ Q such that S 2 HA. Indeed,
since �n ! � in L1 strong, we have � is a characteristic function of certain set S, and we
only need to prove that S 2 HA.

Next, let the four vertices of Ln be an = (a
1,n, a2,n), bn = (b

1,n, b2,n), cn = (c
1,n, c2,n),

dn = (d
1,n, d2,n) 2 [0, 1] ⇥ [0, 1]. Upon a further extract subsequence, there exist ã =

(ã
1

, ã
2

), b̃ = (b̃
1

, b̃
2

), c̃ = (c̃
1

, c̃
2

), and d̃ = (d̃
1

, d̃
2

) 2 [0, 1]⇥ [0, 1] such that

an ! ã, bn ! b̃, cn ! c̃, and dn ! d̃. (5.18)

We claim that S is a rectangle with vertices ã, b̃, c̃, and d̃. Indeed, let �0 be the characteristic
function of rectangle with vertices ã, b̃, c̃, and d̃, we show that �n ! �0 in L1. We observe
that

lim
n!1

ˆ
Q

�

��n � �0�
� dx

 lim sup
n!1

� |a
1,n � ã

1

| |a
2,n � b

2,n|+
�

�

�

b
2,n � b̃

2

�

�

�

|b
1,n � c

1,n|

+ |a
2,n � ã

2

|
�

�

�

ã
1

� d̃
1

�

�

�

+ |c
1,n � c̃

1

|
�

�

�

ã
2

� b̃
2

�

�

�

�

 lim sup
n!1

|a
1,n � ã

1

|+ lim sup
n!1

�

�

�

b
2,n � b̃

2

�

�

�

+ lim sup
n!1

|a
2,n � ã

2

|+ lim sup
n!1

|c
1,n � c̃

1

| = 0.

Hence, we have �n ! �0 in L1 which forces �0 = � since by (5.17) we have �n ! � in
L1, too. Therefore, we have S is a rectangle with vertices ã, b̃, c̃, and d̃, and by (5.18) we
conclude that S 2 HA and we set L̃ := S. ⇤

Lemma 5.25. Let a sequence of {Ln}1n=1

⇢ VA be given. Then, up to a subsequence, there
exists L̃ 2 VA such that

lim
n!1 dV

A

(Ln, L̃) = 0.

Proof. Select Ln from Ln for each n 2 N. By Lemma 5.24, up to a subsequence, there
exists S

1

2 HA such that

lim
n!1 dH

A

(Ln, S1

) = 0.

Define

L1

n := {L 2 Ln : L \ S
1

= ?} for each n 2 N. (5.19)

Repeating the argument above with L1

n, we may obtain a rectangle S
2

2 HA, and, in view
of (5.19), we have S

2

\ S
1

= ?. We next define

L2

n :=
�

L 2 L1

n : L \ S
2

= ?
 

for each n 2 N.
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Recursively, we obtain S
1

, S
2

, .... Since |L| � A2 for arbitrary L 2 HA, we have

M := sup {# {Ln} : n 2 N}  1

A2

< +1.

Therefore, the above argument can only be repeated finitely many times, and we obtain a
set

S := {S
1

, S
2

, . . . , ST } (5.20)

where T  M and each Si 2 HA. We finally claim that S 2 VA. To do so, we only need to
prove that

T
[

i=1

S̄i � Q.

Suppose not, i.e.,
�

�

�

�

�

Q \
T
[

i=1

Si

�

�

�

�

�

> 0.

Since Si are all rectangles, there exists a rectangle

L0 ⇢ Q \
T
[

i=1

Si (5.21)

(Note that L0 might be small and L0 /2 HA). In view of (5.13), for each n 2 N there exists
L0
n 2 Ln such that

�

�L0 \ L0
n

�

� � 1

M

�

�L0�
� .

Let L00 be the limit of L0
n, up to a subsequence, in the sense of (5.17). We have

�

�L0 \ L00�
� � 1

M

�

�L0�
� . (5.22)

Hence, using {L0
n}1n=1

in step one (5.19) above, we have L00 2 S where S is defined in
(5.20). That is, in view of (5.22),

�

�

�

�

�

L0 \
 

Q \
T
[

i=1

Si

!

�

�

�

�

�

 ��L0 \ L00�
� <

�

�L0�
� . (5.23)

However, (5.21) implies that
�

�

�

�

�

L0 \
 

Q \
T
[

i=1

Si

!

�

�

�

�

�

=
�

�L0�
� ,

which contradicts to (5.23). ⇤

We are now ready to proof Theorem 5.23
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Proof of Theorem 5.23. Let {Ln}1n=1

⇢ VA be a minimizing sequence such that A(uc �
P(Ln)) ! m, where

m := inf {A (uc,N � P(L)) : L 2 VA} .
Applying Lemma 5.25 to {Ln}1n=1

, there exists L̃ 2 VA such that

lim
n!1 dV

A

(Ln, L̃) = 0.

In view of Assumption 5.22, we have

m � lim inf
n!1 A(P(Ln)� uc) � A(P(L̃)� uc).

Since L̃ 2 VA, we obtain
A(P(L̃)� uc) � m,

and this concludes the proof. ⇤

5.3.2. Construction of assemble operators. In view of Theorem 5.20 and Theorem 5.23 we
observe that the existence of a solution to the training scheme (RT ) and (CT ) depends on
the l.s.c. of the solution operators, such as S(↵, �) in (RT ) and P(L) in (CT ).

It is usually not easy to prove that S(↵, �) and P(L) satisfying the l.s.c. properties, as
required in Assumption 5.18 and Assumption 5.22, respectively. In Chapter 2 we showed
that to prove TGV 1+s satisfies Assumption 5.18, even in one dimension, a serious amount
of knowledge in PDEs and calculation of variations are required. However, the construc-
tion of the assemble operator P(L), which is closer to a data-based approach, need to use
knowledge other than that used in the analysis of regularizers, for example, deep learning
techniques introduced in Machine Learning, but this is beyond the scope of this thesis.
Here, we will only present two elementary level constructions.

5.3.3. Assemble operator directly from a local optimization result. This construction is the
generalization of the training scheme (1.30).

Notation 5.26. Let a partition domain L 2 VA be given.

1. Fix L 2 L. We denote by E(L) the space of functions u, defined only in L, such that
kukY (L) < +1.

2. We use E(L) to denote the collection of functions

E(L) := {u : ubL2 E(L) for each L 2 L} .
The training scheme (CT ) will read as follows:

Level 1.

L̃ 2 argmin {A (uc � P(L)) : L 2 VA} (5.24)

Level 2.

P(L) := argmin {A(u� uc, Q) : u 2 E(L)} (5.25)

where E(L) is built by using E(L) := {S(↵̃L, �̃L) : (↵̃L, �̃L) 2 {(↵̃L, �̃L)}L} , (5.26)
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Level 3.

{(↵̃L, �̃L)}L := argmin
�A �uc � uR[↵,�], L

�

: � 2 ⇧, ↵ 2 [A, 1/A]nR
 

(5.27)

uR[↵,�] := argmin
�F(u⌘ � u, L) +R[↵, �](u, L), u 2 XR[�]

 

.

Lemma 5.27. The collection E(L) defined in (5.26) is closed.

Proof. This is a direct consequence of Corollary 5.21. Moreover, we have P(L) 2 E(L). ⇤
To show that P(L) defined in (5.25) satisfies Assumption 5.22, the following assumption
on R

⇧

is needed.

Assumption 5.28. Let a regularizer space R
⇧

, a fidelity operator F , and v, ṽ 2 Y be
given.

1. Let {(↵n, �n)}1n=1

⇢ [A, 1/A]nR ⇥ ⇧ and {vn}1n=1

⇢ Y be such that (↵n, �n) ! (↵̃, �̃)
and vn ! ṽ in Y , and define

un := argmin
�F (u� vn, Q) +R[↵n, �n](u,Q) : u 2 XR[�

n

]

 

. (5.28)

Then, up to a subsequence, there exists ũ 2 Y such that un ! ũ in Y and

ũ = argmin
�F (u� ṽ, Q) +R[↵̃, �̃](u,Q) : u 2 XR[�̃]

 

. (5.29)

2. Let a sequence {Ln}1n=1

⇢ HA and L 2 HA be such that Ln ! L in the sense of (5.14),
and define

wn := argmin
�F (u� ṽ, Ln) +R[↵n, �n](u, Ln) : u 2 XR[�

n

]

 

.

Moreover, let {'n}1n=1

be a sequence continuously di↵erentiable bijective maps from L
into Ln. Then, we have

lim
n!1A(wn � v, Ln) = lim

n!1A(w̃n � v, L),

where
w̃n := argmin

�F (u� ṽ � 'n, L) +R[↵̃, �̃](u, L) : u 2 XR[�̃]

 

.

Lemma 5.29. Let two sequences {wn}1n=1

and {vn}1n=1

⇢ Y be given such that wn ! w̃
and vn ! ṽ in Y . Let (↵n, �n) be a solution of training scheme (5.10) in which we set
uc := wn and u⌘ := vn. Then there exists (↵̃, �̃), a solution of (5.10) with uc = w̃ and
u⌘ = ṽ, such that (↵n, �n) ! (↵̃, �̃).

Proof. In view of the box constraint and the compactness of ⇧, there exists (↵̃, R̃) such
that, up to a subsequence,

(↵n, �n) ! (↵̃, �̃).

We claim that (↵̃, �̃) is a solution of (5.10) with uc = w̃ and u⌘ = ṽ.

Let un and ũ be defined by (5.28) and (5.29), respectively. By Assumption 5.28, we
have that, up to a subsequence, un ! ũ in Y and, by Assumption 5.3,

A(un � wn, Q) ! A(ũ� w̃, Q). (5.30)
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Suppose that (↵̃, �̃) is not a solution of (5.10) with uc = w̃ and u⌘ = ṽ. That is, there exist
(↵0, �0) and " > 0 such that

A(ũ� w̃, Q) > A(u0 � w̃, Q) + ". (5.31)

Let u0n and u0 be defined by letting (↵n, �n) = (↵0, �0) and (↵̃, �̃) = (↵0, �0) in (5.28) and
(5.29), respectively. Then, in view of Assumption 5.28 item 1 again we have, up to a
subsequence, u0n ! u0 and

A(u0n � wn, Q) ! A(u0 � w̃, Q),

which implies that for n large enough

A(u0n � wn, Q)  A(u0 � w̃, Q) +
1

4
"  A(ũ� w̃, Q)� 3

4
"  A(un � wn, Q)� 1

2
".

where at the second inequality we invoked (5.31) and at the last inequality we used (5.30).
Finally, we conclude that

A(u0n � wn, Q) < A(un � wn, Q)

which contradicts the definition of (↵n, �n). ⇤
Theorem 5.30. The assemble operator P(L) defined in (5.25) satisfies Assumption 5.22.

Proof. Let a sequence {Ln}1n=1

⇢ VA be such that

lim
n!1 dV

A

(Ln,L) = 0, (5.32)

where L 2 VA. Let P(Ln) be defined as in (5.25). By Lemma 5.27, for each Ln 2 Ln we
have there exists (↵n,L

n

, �n,L
n

) such that

P(Ln)(x) = S(↵n,L
n

, �n,L
n

)(x), if x 2 Ln.

In view of (5.32), for arbitrary L 2 L there exists a sequence {Ln}1n=1

, Ln 2 Ln for each
n 2 N, such that Ln ! L. Since {(↵n,L

n

, �n,L
n

)}1n=1

satisfies the box constraint, up to a
subsequence, we have

(↵n,L
n

, �n,L
n

) ! (↵̃L, �̃L). (5.33)

Now, for a fixed Ln 2 {Ln}1n=1

we may find a continuously di↵erentiable bijective map 'n

of L onto Ln, such that '�1

n is also continuously di↵erentiable. Let

uc,n(x) := uc('n(x)) and u⌘,n(x) := u⌘('n(x)) for x 2 L.

We have
lim
n!1 kuc,n � uckY (L) = lim

n!1 ku⌘,n � u⌘kY (L) = 0.

Define

un := argmin
n

F (u� u⌘,n, L) +R[↵n,L
n

, �n,L
n

](u, L) : u 2 XR[�
n,L

n

]

o

,

and
uL := argmin

�F (u� u⌘, L) +R[↵̃L, �̃L](u, L) : u 2 XR[�̃
L

]

 

. (5.34)
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By Assumption 5.28, up to a subsequence, un ! uL in Y , and so

lim
n!1A(un � uc, L) = A(uL � uc, L). (5.35)

Moreover, since {'n}1n=1

is a sequence of continuously di↵erentiable bijective maps, again
by Assumption 5.28, we have

lim
n!1A(P(Ln)� uc, Ln) = lim

n!1A(un � uc, L),

which, together with (5.35), implies that

lim
n!1A(P(Ln)� uc, Ln) = A(uL � uc, L). (5.36)

Next, in view of (5.33), (5.34), and Lemma 5.29, we have uL 2 E(L) for each L 2 L, where
E(L) is defined in (5.26). Hence, the function

ũ(x) := uL(x) for x 2 L 2 L
belongs to E(L). Therefore, we conclude that

A(ũ� uc, Q) � inf {A(u� uc, Q) : u 2 E(L)} . (5.37)

Finally, since sup# {Ln} < +1, we obtain

lim
n!1A(P(Ln)�uc, Q) =

X

L
n

2L
n

lim
n!1A(P(Ln)�uc, Ln) =

X

L2L
A(uL�uc, L) = A(ũ�uc, Q),

where on the second equality we invoked (5.36). Together with (5.37), we conclude that

lim inf
n!1 A (P(Ln)� uc, Q) � inf {A(u� uc, Q) : u 2 E(L)} = A(P(L)� uc, Q)

as desired. ⇤

5.3.4. Assemble operator with spatially dependent tuning parameter. The operator P(L)
defined in (5.25) has one natural drawback: the construction is too local. To be precise,
for two adjacent rectangles L

1

and L
2

, the construction of P(L) in L
1

is independent of
P(L) in L

2

, what may cause overfitting and edging problems, especially when the constant
A goes smaller.

In this section we propose another assemble operator which provides a good balance be-
tween local and global optimization. We remark that this new P(L) only works with a
fixed regularizer. That is, we need to fix a regularizer R[�] 2 R at the beginning. For
simplicity of the notation, in Section 5.3.4 we will abbreviate R[↵, �] by R[↵] since � is
fixed and we will not train with respect to �.

Notation 5.31. Let a partition domain L 2 VA be given.

1. Fix L 2 L. We denote by AL a collection of positive vectors ↵ 2 [A, 1/A]nR , and AL a
collection of AL i.e., AL := {AL : L 2 L};
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2. We denote by WAL a collection of weighted (spatially dependent) parameters based on
the collection AL. We say !L 2 WAL if !L(x) is constant in each L 2 L, and !L(x) 2 AL

if x 2 L. Moreover, we use WV
A

to denote

WV
A

:=
[

L2V
A

WAL .

3. We say WAL is a collection of weighted reconstructed images

WAL := {u! : ! 2 WAL} ,
where

u! := argmin {F(u� u⌘, Q) +R[!](u,Q) : u 2 XR} (5.38)

The following training scheme is generalized from scheme (1.15).

Level 1.

L̃ 2 argmin {A (uc � P(L), Q) : L 2 VA} ,
Level 2.

P(L) := argmin {A(u� uc, Q) : u 2 WAL} (5.39)

where AL := {AL : L 2 L} and AL is defined in (5.40),

Level 3.

AL := argmin {A (uc � u↵, L) : ↵ 2 [A, 1/A]nR} (5.40)

u↵ := argmin {F(u⌘ � u, L) +R[↵](u, L), u 2 XR} .
Lemma 5.32. The set WV

A

is a closed set under the L2 norm.

Proof. By Corollary 5.21 we have that the set AL defined in (5.40) is closed, and hence the
collection WAL is closed under the L2 norm.

Let {!n}1n=1

⇢ WV
A

be given. By definition of !n, there exists sequence {Ln}1n=1

⇢ VA

such that !n 2 WAL
n

for each n 2 N. By Lemma 5.25 there exists L̃ 2 VA such that, up to

a subsequence, Ln ! L̃. Fixing an arbitrary L̃ 2 L̃, we may extract a sequence {Ln}1n=1

from {Ln}1n=1

such that �L
n

! �
˜L. Since !n is constant on Ln, we have !nbL

n

! a
˜L where

a
˜L 2 [A, 1/A]nR , and by Lemma 5.29 we have a

˜L 2 A
˜L.

In the end, since there are only finitely many L̃ inside L̃, we may repeat the above argu-
ment only finitely many times and conclude that !n ! !̃ in L2, where !̃(x) := a

˜L for x 2
L̃ 2 L̃. ⇤
Assumption 5.33. Let {!n}1n=1

be a sequence of piecewise constant function such that
!n ! ! in L2. Then u!

n

! u! in Y , where u!
n

and u! are defined in (5.38).

Theorem 5.34. The assemble operator P(L) defined in (5.39) satisfies Assumption 5.22.
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Proof. Let {Ln}1n=1

and L be such that

dV
A

(Ln,L) = 0.

By Lemma 5.32 there exist !n 2 WAL
n

such that

P (Ln) = argmin {F(u� u⌘, Q) +R[!n](u,Q) : u 2 XR} .
Since {!n}1n=1

satisfies the box-constraint, and finitely piece-wise constant, there exists !,
a finitely piecewise constant function, such that !n ! ! in L2, and by Lemma 5.32 we
have

! 2 WAL . (5.41)

Next, in view of Assumption 5.33 we obtain P(Ln) ! ũ, where

ũ = argmin {F(u� u⌘, Q) +R[!](u,Q) : u 2 XR} .
Since ! 2 WAL , we have ũ 2 WAL , an hence, in view of Assumption 5.4, (5.41), and (5.39),
we deduce that

lim inf A(uc � P(Ln)) � A(uc � ũ) � A(uc � P(L))
as desired. ⇤

Chapter 6. Work in progress and future projects

In Chapter 5, we studied necessary conditions for regularizer spaces and assemble operators,
such that the scheme (CT ), admit a solution. As a next step of my work in this direction,
I will derive more meaningful constructions of regularizer spaces and assemble operators.

6.4. The arsenal of regularizer spaces. Concerning regularizer spaces, one example
has been provided in Chapter 2, but only the one-dimensional case was investigated, and
this may be of marginal interest within the context of image reconstruction.

The two dimensional setting of fractional order generalized total variation is proposed
below and is being currently undertaken in [31].

6.4.1. The TGV r regularizers with Riemann-Liouville (R-L) fractional derivative. For x 2
(0, 1), k 2 N

0

, and 0 < s < 1, we define the order s left-sided Riemann-Liouville derivative
by:

dk+s
[0,x]u(x) =

1

�(k + 1� s)

✓

d

dx

◆k+1

ˆ x

0

u(y)

(x� y)s
dy

where �(s) :=
´1
0

e�tts�1dt. For example, k = 0, then ds
[0,x] is defined a.e. and we can use

the fractional order derivative in the same manner of usual integer order derivative. That
is, we may define rsu by

rsu :=
⇣

ds
[0,x]u, d

s
[0,y]u

⌘

.

We introduce TGV k+s, k 2 N and 0 < s < 1, as

TGV k+s(u) = min
n

|ru� v
0

|M
b

+ |Ev
0

� v
1

|M
b

+ · · ·+ |Evk�2

� svk�1

|M
b

+ s |Esvk�1

|M
b

:
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vl 2 BV (Q, Syml(R2)), l = 0, . . . , k � 1
o

where Es denotes the fractional order symmetric derivative. Hence, we can define a regu-
larizer space R by R := {TGV r : r 2 [1, R]}, where R > 1.

The proof that R satisfies Assumption 5.12 is undertaking in [31].

6.4.2. A -B Morrey-quasiconvex regularizer [30]. A more generalized regularizer space can
by constructed by using the A -B (Morrey)-quasiconvex operator theory (see [26, 47]).2

To be precise, let 0  s  1 be given and let A be a di↵erential operator of the form

A u :=
X

i,j=1,2

Aij @1+s

@xi@xj
u for every u 2 L1

loc

(Q;R3),

where @1+s is the fractional order derivative, and Aij 2 M3⇥3 (see Notation 5.8), i, j = 1, 2.
Let B be a first order di↵erential operator such that

Bu :=
X

k=1,2

Bk @

@xk
u for every u 2 L1

loc

(Q),

where Bk 2 R3 for k = 1, 2. We define the regularizer (seminorm)

ABQ1+s
A,B(u)

:= inf
n

kru� vkM(Q;R3
)

+

ˆ
Q
QA f(Bv(x)) dx : v 2 L1(Q;R3), Bv 2 L1(Q;R3)

o

, (6.1)

where QA f represents the A -quasiconvex envelope of f , in the sense of Definition 3.2 in
[47], with f : M3⇥3 ! [0,+1) is Lipschitz continuous, and there exists C > 0 such that
C�1|⇠|  f(⇠)  C|⇠| for every ⇠ 2 M3⇥3 and same C > 0.

The proof that R, composed by ABQ1+s
A,B defined in (6.1), satisfies Assumption 5.12 is

undertaken in [30].

6.4.3. Generalized Mumford-Shah functional. For k 2 N, we set

MSk
↵̃,˜�

(u) :=

inf

⇢

↵
0

ˆ
⌦

|ru� v
0

|2 dx+ ↵
1

ˆ
⌦

|Ev
0

� v
1

|2 dx+ · · ·+ ↵k�1

ˆ
⌦

|Evk�2

� vk�1

|2 dx

+↵k

ˆ
⌦

|Evk�1

|2 dx+ �
0

HN�1(Su) + �
1

HN�1(Sv10
[ Sv20

) + �l+1

HN�1

 

C
l

[

i=1

Svi
l

!

+

· · ·+ �kHN�1

 

C
k

[

i=1

Svi
k�1

!

: vl 2 GSBV (⌦, Syml(R)), l = 0, . . . , k � 1

)

, (6.2)

2

The notation of quasiconvexity is unrelated to the concept of quasi-convexity introduced in (1.26)
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where ↵̃ := (↵
0

, . . . ,↵k), �̃ := (�
0

, . . . ,�k) 2 Rk+1, Cl denotes the number of components
in vl, E the symmetric derivative, and Symk the space of symmetric tensors of order k.
Moreover, an approximation scheme of (6.2) based on the framework of the Ambrosio -
Tortorelli functionals, as well as the relevant numerical scheme, are undertaken in [61].

6.5. �-convergence with non-negative spatially dependent parameters. It has
been observed that, at least in one dimension we may reduce the staircasing e↵ect by
allowing the weight function ! to be 0 in certain subdomains (see [50]). It is then inter-
esting to investigate precisely whether the same holds in two dimensions, and to study the
corresponding �-convergence problem.

We introduce some notations and definitions in order to precisely state the problem.

Notation 6.1. Let ⌦ ⇢ RN be an open bounded Lipschitz domain, and let ! 2 SBV (⌦)
be a non-negative function. Let S ⇢ ⌦ be given.

1. We say that S 2 R(⌦) if S̄ (the closure of S) is HN�1-rectifiable and HN�1(S̄ \ S) = 0
(Note that if S̄ isHN�1-rectifiable then S isHN�1-rectifiable (See [4], Proposition 2.76)).

2. We set P t(!) := {x 2 ⌦ : !(x) > t}, for t > 0, and

P1(!) :=
\

t>0

P t(!) and P 0(!) :=
\

t>0

�

⌦ \ P t(!)
�

.

3. We set S� := {x 2 ⌦ : dist(x, S) < �} for A ⇢ ⌦ and � > 0.

We allow ! to be 0 in certain subdomains as follows:

Definition 6.2. Let !: ⌦ ! [0,+1] belong to SBV (⌦).

1. We say that ! 2 P(⌦) if HN�1(S!) < +1 and P 0(!) [ P1(⌦) 2 R(⌦).
2. We say that ! 2 Pr(⌦) if ! 2 P(⌦) and

lim
�!0

"ˆ
@((P1

(!))
�

)

! dHN�1 +

ˆ
@((P 0

(!))
�

)

! dHN�1

#

= 0.

3. We say that ! 2 Pb(⌦) if ! 2 P(⌦) and satisfies (3.3).

We also define the function spaces SBV! and GSBV!.

Definition 6.3. Let ! 2 P(⌦) be given. We say that u 2 SBV!(⌦) if u 2 L1(⌦),
u 2 SBV (⌦ \ (P 0(!))�) for every � > 0, andˆ

⌦

|ru|2 ! dx+

ˆ
S0
u

�

�u+ � u�
�

�! dHN�1 < +1,

where the jump set S0

u of u 2 SBV!(⌦), with a vanishing parameter !, is defined by

S0

u :=

 

[

�>0

S�
u

!

[ P 0(!)

where S�
u denotes the jump set of u in SBV (⌦ \ (P 0(!))�). Moreover, we say that u 2

GSBV!(⌦) if K ^ u _ �K 2 SBV!(⌦) for all K 2 N.
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The proof of following theorem is undertaken in [46].

Theorem 6.4. Let ⌦ ⇢ RN be an open bounded Lipschitz domain, let ! 2 Pr(⌦), and for
k 2 N, " > 0, let AT k

!,": L1(⌦)⇥ L1(⌦) ! [0,+1] be defined by

AT k
!,"(u, v) :=

(

AT k
!,"(u, v) if (u, v) 2 W 1,2(⌦)⇥W 1,2(⌦), 0  v  1,

+1 otherwise.

Then the functionals AT k
!," �-converge, with respect to the L1 ⇥ L1 topology, to the func-

tional

MS!(u, v) :=

(

MS!(u) if u 2 GSBV!(⌦) and v = 1 a.e.,

+1 otherwise.

We remark that the techniques we developed here can be adapted to other functional
models. For example,

1. the weighted Cahn-Hilliard model defined as

CH!,"(u) :=

ˆ
I



" |ru(x)|2 + 1

"
W (u)

�

! dx,

for u 2 W 1,2(⌦) and with a double well potential function W : R ! [0,+1) such that
{W = 0} = {0, 1} with the �-limit CH!(u) := cWP!(u) defined for u = �E 2 BV!(⌦),
where

cW := 2

ˆ
1

0

p

W (s) ds and P!(u) :=

ˆ
S
u

!�dHN�1;

2. the weighted version of functionals involving the L1-norm of the gradient [2].

G!(u) :=

ˆ
⌦

|ru|! dx+

ˆ
S
u

1

2

⇥

!(x�)
⇤

g(
�

�u+ � u�
�

�)dHN�1,

where u 2 SBV!(⌦), v = 1 a.e.;

G!,"(u, v) :=

ˆ
⌦

'(v) |ru|! dx+

ˆ
⌦



1

"
W (v) + " |rv|2

�

! dx, u 2 W 1,2
! (⌦), v 2 W 1,2(⌦).

Appendix A.

Definition A.1 ([5], Definition 4.4.9). Let X be a metric space. We denote by CX the
family of all nonempty closed subsets of X. Then

dH(C,D) := min {1, h(C,D)} , C,D 2 CX ,
where

h(C,D) := inf {� 2 [0,+1] : C ⇢ D� and D ⇢ C�} ,
is a metric on CX , and is called the Hausdor↵ distance between the set C and D (see
Notation 3.3 for definition of D� and C�).
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Consider X to be the interval (0, 1) with the Euclidian distance. We remark that for two
intervals [a

1

, b
1

] and [a
2

, b
2

] in (0, 1),

dH([a1, b1], [a2, b2]) = min {1, max {|a
1

� a
2

| , |b
1

� b
2

|}} . (A.1)

Indeed, the �-neighborhood of [a
1

, b
1

] is [a
1

� �, b
1

+ �], and contains [a
2

, b
2

] if and only if

� � max {a
1

� a
2

, b
2

� b
1

} .
Similarly, the �-neighborhood of [a

2

, b
2

] contains [a
1

, b
1

] if and only if

� � max {a
2

� a
1

, b
1

� b
2

} ,
and we conclude (A.1).

Lemma A.2. Let In := [an, bn] ⇢ (�1, 1). Then, up to the extraction of a subsequence,

In
H! I1 ⇢ (�1, 1),

where I1 is connected and closed in (�1, 1), and

L1(I1) = lim
n!1L1(In).

Moreover, for arbitrary K ⇢⇢ I1, K must be contained in In for n large enough.

Proof. Because In ⇢ (�1, 1), we have that {an}1n=1

and {bn}1n=1

are bounded and so, up
to the extraction of a subsequence, there exist

a1 := lim
n!1 an and b1 := lim

n!1 bn, (A.2)

where �1  a1  b1  1. We define I1 := [a1, b1] if �1 < a1  b1 < 1, I1 := (�1, b1]
if a1 = �1, and I1 := [a1, 1) if b1 = 1. Hence I1 is connected and closed in (�1, 1) (in
the case in which a1 = b1 = �1, or a1 = b1 = 1, we have I1 = ? and it is still closed
in (�1, 1)).

Therefore

lim
n!1 dH(In, I1) = lim

n!1max {|an � a1| , |bn � b1|} = 0,

and we have for I1 6= ?,

L1(I1) = b1 � a1 = lim
n!1(bn � an) = lim

n!1L1(In),

as desired.

Next, if K ⇢⇢ I1 then K ⇢ (↵,�) for some ↵, � such that a1 < ↵ < � < b1. By
(A.2) choose N large enough such that for all n � N ,

an < ↵ < � < bn,

so that K ⇢ In for all n � N . ⇤
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Lemma A.3. Let {v"}">0

⇢ W 1,2(I) be such that 0  v"  1, v" ! 1 in L1(I) and
pointwise a.e., and

lim sup
"!0

ˆ
I



"

2

�

�v0"
�

�

2

+
1

2"
(v" � 1)2

�

dx < 1. (A.3)

Then for arbitrary 0 < ⌘ < 1 there exists an open set H⌘ ⇢ I satisfying the following
properties:

1. the set I \H⌘ is a collection of finitely many points in I;
2. for every set K compactly contained in H⌘, we have K ⇢ B⌘

" for " > 0 small enough,
where

B⌘
" :=

�

x 2 I : v2"(x) � ⌘
 

.

Proof. Choose a constant M > 0 such that

M � lim sup
"!0

ˆ
I



"

2

�

�v0"
�

�

2

+
1

2"
(v" � 1)2

�

dx � lim sup
"!0

ˆ
I

�

�v0"
�

� |1� v"| dx = lim sup
"!0

1

2

ˆ
I

�

�c0"
�

� dx,

where c"(x) := (1� v"(x))2. Note that by (A.3), c" ! 0 in L1(I). Fix �, � with

0 < � < � < 1.

By the co-area formula, for 0 < " < "
0

with "
0

su�ciently small, we have

2M + 1 �
ˆ
I

�

�c0"(x)
�

� dx =

ˆ 1

�1
H0({x : c"(x) = t}) dt �

ˆ �

�
H0({x : c"(x) = t}) dt.

Hence, for each " > 0 there exists �" 2 (�, �) such that

2M + 1

� � �
� H0({x : c"(x) = �"}). (A.4)

Define, for a fixed r > 0,
Ar

" := {x 2 I : c"(x)  r} .
Since v" 2 W 1,2(I), v" is continuous and so is c", therefore A�

"

" is closed and has at most
(2M +1)/(���)+1 connected components because of (A.4) and in view of the continuity
of c". Note that the number (2M + 1)/(� � �) does not depend on " > 0.

For " 2 (0, "
0

) and k 2 N depending only on � � � and M , we have

1. A�
"

" =
Sk

i=1

Ii", where each Ii" is a closed interval or ?;

2. for all i < j, max
�

x : x 2 Ii"
 

< min
n

x : x 2 Ij"
o

.

By Lemma A.2, up to the extraction of a subsequence, for each i 2 {1, 2, . . . , k} let Ii
0

be

the Hausdor↵ limit of the Ii" as " ! 0, i.e., Ii"
H! Ii

0

, with Ii
0

is connected and closed in I,

and for all i < j, max Ii
0

 min Ij
0

.

Set

T� :=
k
[

i=1

(Ii
0

)� and T�," :=
k
[

i=1

(Ii")
�, (A.5)
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where by (·)� we denote the interior of a set. Since

I \A�
"

" ⇢ {x 2 I : c"(x) � �}
and c" ! 0 in L1(I), by Chebyshev’s inequality we have

lim
"!0

L1(T�,") = lim
"!0

L1(A") = 2.

Moreover, since T�,"
H! T�, by Lemma A.2 we have

L1(T�) =
k
X

i=1

L1(Ii
0

)� =
k
X

i=1

lim
"!0

L1(Ii")
� = lim

"!0

k
X

i=1

L1(Ii")
� = lim

"!0

L1(T�,") = 2.

Thus |I \ T�| = 0. Moreover, since T� has at most k connected components, I \ T� is a
finite collection of points in I.

Next, let K ⇢⇢ T� be a compact subset. We claim that K must be contained in A�
"

" for
" > 0 small enough. Recall Ii

0

and Ii" from (A.5). Define Ki := K \ (Ii
0

)� for i = 1, . . . , k.
Then Ki ⇢⇢ (Iio)

� for each i, and so by Lemma A.2 there exists "i > 0 such that for all
0 < " < "i, Ki ⇢ Ii". Define

"0 := min
i2{1,...,k}

{"i} .

For 0 < " < "0 we have Ki ⇢ Ii", and so

K =
k
[

i=1

Ki ⇢
k
[

i=1

Ii" = A�
"

" .

Finally, given ⌘ 2 (0, 1), set � :=
�

1�p
⌘
�

2

with H⌘ := T
(1�p

⌘)2 and B⌘
" := A

(1�p
⌘)2

" , and
properties 1 and 2 are satisfied. ⇤

Appendix B.

B.1. The forward and backward properties of L . Let operator L be defined as in (1.25)
and v 2 L2 be given. We define the forward error by

F (↵) := kv � L (v,↵)k2L2
(I) , (B.1)

and the backward error by

B(↵) :=
1

2
kL (v,↵)� (v)Ik2L2

(I) (B.2)

where

(v)I :=

 
I
v dx.

In Proposition B.1 and B.2 we establish some basic properties of (B.1) and (B.2).

Proposition B.1. Let v 2 L1(I) be given. Then the forward error F (·) is non-decreasing.
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Proof. Let 0  ↵
1

< ↵
2

be given. We observe that

1

2
kL (↵

1

, v)� vk2L2
(I) + ↵

1

TV (L (↵
1

, v))  1

2
kL (↵

2

, v)� vk2L2
(I) + ↵

1

TV (L (↵
2

, v))

(B.3)
and
1

2
kL (↵

2

, v)� vk2L2
(I) + ↵

2

TV (L (↵
2

, v))  1

2
kL (↵

1

, v)� vk2L2
(I) + ↵

2

TV (L (↵
1

, v)) .

Adding up the previous two inequalities yields

↵
1

TV (L (↵
1

, v)) + ↵
2

TV (L (↵
2

, v))  ↵
1

TV (L (↵
2

, v)) + ↵
2

TV (L (↵
1

, v)) ,

that is,
(↵

2

� ↵
1

)TV (L (↵
2

, v))  (↵
2

� ↵
1

)TV (L (↵
1

, v))

which implies that
TV (L (↵

2

, v))  TV (L (↵
1

, v)) . (B.4)

Hence, in the view of (B.3) and (B.4) we have

1

2
kL (↵

1

, v)� vk2L2
(I) + ↵

1

TV (L (↵
1

, v))

 1

2
kL (↵

2

, v)� vk2L2
(I) + ↵

1

TV (L (↵
2

, v))

 1

2
kL (↵

2

, v)� vk2L2
(I) + ↵

1

TV (L (↵
1

, v))

which implies that f(↵) is non-decreasing as desired. ⇤
Proposition B.2. Let w 2 BV (I) be a piecewise constant function with M pieces as
defined in Notation 4.6. Then the backward error B(↵), defined in (B.2), is continuous,
piecewise convex, and strict decreasing to 0.

Proof. According to Lemma 4.15 there exist M 0  M positive numbers

0 = ↵
0

< ↵
1

< · · ·↵M�1

< ↵M < +1 (B.5)

such that items 1-3 in Lemma 4.15 hold. Without loss of generality, we assume that

(w)I = 0. (B.6)

We claim that for arbitrary 0  i < M 0, i 2 N, we have that B0(↵) < 0 for all ↵ 2 [↵i,↵i+1

).
We first deal with 0  ↵ < ↵

1

. Let

A := {IM (j), IM (j) 2 CE(w) [ CB(w), 1  j  M} .
Case 1: if IM (j) is a low (high) extreme (boundary) region and w(IM (j)) < (>)0 for all
IM (j) 2 A, we are done. Indeed, we observe that, for each region IM (j) 2 A and in view
of (B.6),ˆ

I
M

(j)
|L (↵, w)� (w)I |2 dx =

ˆ
I
M

(j)
|L (↵, w)(x)|2 dx
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=

8

<

:

|IM (j)|
⇣

|w(IM (j))|� 2↵
|I

M

(j)|
⌘

2

, if IM (j) 2 CE(w),
|IM (j)|

⇣

|w(IM (j))|� ↵
|I

M

(j)|
⌘

2

, if IM (j) 2 CB(w).
and hence

1

2

d

d↵

 ˆ
I
M

(j)
|L (↵, w)� (w)I |2 dx

!

=

8

<

:

2
⇣

2↵
|I

M

(j)| � |w(IM (j))|
⌘

< 0, if IM (j) 2 CE(w),
⇣

↵
|I

M

(j)| � |w(IM (j))|
⌘

< 0, if IM (j) 2 CB(w),
as long as 2↵ < |IM (j)| |w(IM (j))| if IM (j) 2 CE(w), or ↵ < |IM (j)| |w(IM (j))| if IM (j) 2
CB(w). Therefore, we have B0(↵) < 0 if 0  ↵ < ↵0, where

↵0 := (B.7)

min

⇢

1

2
|IM (j)| |w(IM (j))| , ��IM (j0)

�

�

�

�w(IM (j0))
�

� , IM (j) 2 A \ CE(w), IM (j0) 2 CB(w)
�

.

The case ↵ � ↵0 will be dealt with later.

Case 2: there exists j
0

2 A such that IM (j
0

) is a low extreme region but w(IM (j
0

)) � 0
(the case IM (j

0

) is a high extreme region but w(IM (j
0

))  0 could be dealt in a similar
way). Then we haveˆ

I
M

(j0)
|L (↵, w)(x)|2 dx = |IM (j

0

)|
✓

w(IM (j
0

)) +
2↵

|IM (j
0

)|
◆

2

,

and hence

1

2

d

d↵

 ˆ
I
M

(j0)
|L (↵, w)|2 dx

!

= 2

✓

2↵

|IM (j
0

)| + w(IM (j
0

))

◆

> 0, (B.8)

which might cause B0(↵) > 0.

However, in view of (4.2), if IM (j
0

) is a low extreme region, there must exist two indexes
1  j0

0

, j00
0

 M such that

0  w(IM (j
0

)) < min
�

w(IM (j0
0

)), w(IM (j00
0

))
 

, (B.9)

and hence one of the following three situations must hold:

1. IM (j0
0

) and IM (j00
0

) are two high extreme regions, or
2. IM (j0

0

) is a high extreme region and IM (j00
0

) is a high boundary region (that is, j00
0

= 1
or M), or

3. j0
0

= 1 and j00
0

= M , i.e., two high boundary regions.

(if not, IM (j
0

) would not be a low extreme region).

We treat situation 1 first. We first assume that j0
0

= j
0

+ 1, j00
0

= j
0

� 1, and

(|IM (j
0

)|+ |IM (j
0

+ 1)|) |w(IM (j
0

))� w(IM (j
0

+ 1))|
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 (|IM (j
0

)|+ |IM (j
0

� 1)|) |w(IM (j
0

))� w(IM (j
0

� 1))| . (B.10)

We note that, in view of (B.9),

w(IM (j
0

)) +
2↵

|IM (j
0

)| < w(IM (j
0

+ 1))� 2↵

|IM (j
0

+ 1)| , (B.11)

for ↵ < ↵̄, where ↵̄ is defined that that

w(IM (j
0

)) +
2↵̃

|IM (j
0

)| = w(IM (j
0

+ 1))� 2↵̃

|IM (j
0

+ 1)| .

By (B.10) we have that

1

2

d

d↵

ˆ
I
M

(j0+1)

|L (↵, w)|2 dx

=
1

2

d

d↵

"

|IM (j
0

+ 1)|
✓

w(IM (j
0

+ 1))� 2↵

|IM (j
0

+ 1)|
◆

2

#

= 2

✓

2↵

|IM (j
0

+ 1)| � w (IM (j
0

+ 1))

◆

for all ↵ < ↵̄. Hence, in the view of (B.8) and (B.11), we have that

1

2

d

d↵

 ˆ
I
M

(j0)
|L (↵, w)|2 dx

!

+
1

2

d

d↵

 ˆ
I
M

(j0+1)

|L (↵, w)|2 dx
!

(B.12)

= 2

✓

2↵

|IM (j
0

)| + w(IM (j
0

))

◆

+ 2

✓

2↵

|IM (j
0

+ 1)| � w (IM (j
0

+ 1))

◆

= 2

✓

w(IM (j
0

)) +
2↵

|IM (j
0

)|
◆

�
✓

w(IM (j
0

+ 1))� 2↵

|IM (j
0

+ 1)|
◆�

< 0

for all ↵ < ↵̄. Note that at ↵ = ↵̄, we have

L (↵̄, w)(IM (j
0

)) = L (↵̄, w)(IM (j
0

+ 1)),

which means that L (↵̄, w) has at most M �1 constant pieces. Therefore, we have ↵̄ � ↵
1

,
where ↵

1

is obtained in (B.5). If (B.10) does not hold, we use the region IM (j
0

�1) instead
of IM (j

0

+ 1) in (B.11) all the way to (B.12), and obtain the same result.

For the case in which IM (j0
0

) is not adjacent to IM (j
0

), we may obtain a chain such that

w(IM (j
0

)) < w(IM (j
0

+ 1)) < · · · < w(IM (j0
0

� 1)) < w(IM (j0
0

)), (B.13)

and we again have ↵
1

< ↵̄ where ↵̄ is defined in (B.11) (actually, ↵
1

in this case would be
much smaller than ↵̄ since the value of L (↵, w)(IM (j

0

)) will reach the value of w(IM (j
0

+1))
early than w(IM (j0

0

))). Moreover, for j such that j
0

+ 1  j  j0
0

� 1, we have IM (j) are
step regions and we don’t need to worry about them.

Note that in the above argument, we only used the strength of IM (j0
0

) but not yet IM (j00
0

).
Moreover, we can deal with situation 2 similarly by choosing j0

0

to be the extreme region
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but not a boundary region since, according to Theorem 4.5, a boundary region only moves
with half speed compare with extreme region.

Now we deal with situation 3. First we assume that j0
0

= 1, j
0

= 2, and j00
0

= 3. That is,
M = 3. We also assume that

(|I
3

(1)|+ |I
3

(2)| /2) (w(I
3

(1))� w(I
3

(2)))  (|I
3

(3)|+ |I
3

(2)| /2) (w(I
3

(3))� w(I
3

(2))) .
(B.14)

According to Theorem 4.5, we have

1

2

d

d↵

ˆ
I3(1)

(L (↵, w))2 dx =
d

d↵

"

|I
3

(1)|
✓

w(I
3

(1))� ↵

|I
3

(1)|
◆

2

#

=

✓

↵

|I
3

(1)| � w (I
3

(1))

◆

,

and

1

2

d

d↵

ˆ
I3(3)

(L (↵, w))2 dx =
d

d↵

"

|I
3

(3)|
✓

w(I
3

(3))� ↵

|I
3

(3)|
◆

2

#

=

✓

↵

|I
3

(3)| � w (I
3

(3))

◆

.

Let ↵̄0 be such that

w (I
3

(1))� ↵̄0

|I
3

(1)| = w (I
3

(2)) +
2↵̄0

|I
3

(2)| , (B.15)

and we observe that for 0  ↵ < ↵̄,

1

2

d

d↵

ˆ
I3(1)

(L (↵, w))2 dx+
1

2

d

d↵

ˆ
I3(2)

(L (↵, w))2 dx+
1

2

d

d↵

ˆ
I3(3)

(L (↵, w))2 dx

=

✓

↵

|I
3

(1)| � w (I
3

(1))

◆

+

✓

↵

|I
3

(3)| � w (I
3

(3))

◆

+ 2

✓

w (I
3

(2)) +
2↵

|I
3

(2)|
◆

 2

✓

↵

|I
3

(1)| � w (I
3

(1))

◆

+ 2

✓

w (I
3

(2)) +
2↵

|I
3

(2)|
◆

< 0,

where on the first inequality we used (B.14), and (B.15) in the last inequality. In the
general case that M > 0, we may obtain a chain as in (B.13), and the same result holds
since step regions do not count. Moreover, we have ↵̄0 � ↵

1

according to (B.15).

In the general case, where there is a collection

S = {IM (j) 2 A, IM (j) is low extreme region and w(IM (j)) > 0, 1  j  m}
such that # (S) > 1, there must exists a collection H of regions IM (j) such that # (H) �
#(S) + 1 and for each IM (j) 2 S, there exist IM (j0) and IM (j00) 2 H such that one of
situations above is satisfied. Therefore, since B(↵) is a finite summation over each region
IM (j), we conclude that B0(↵) < 0 for 0  ↵ < ↵

1

and we finish Case 2.

Now we deal with what we left below (B.7). Let

↵0 :=
1

2
min {|IM (j)| |w(IM (j))| , j 2 A} ,
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and define w0 = L (↵0, w). Then we may treatL (↵, w) for ↵ > ↵0 by looking at L (↵ �
↵0, w0) and applying Case 2 above.

Hence, we have shown that B0(↵) < 0 for all 0  ↵ < ↵
1

. To show that B0(↵) < 0
for ↵

1

 ↵ < ↵
2

, we set w
1

:= L (↵
1

, w) and apply the same argument above to
0  ↵ < ↵

2

� ↵
1

on w
1

to obtain that

d

d↵

✓

1

2
kL (w

1

,↵)k2L2
(I)

◆

< 0, 0  ↵ < ↵
2

� ↵
1

and this yield

B0(↵) =
d

d↵

✓

1

2
kL (w,↵)k2L2

(I)

◆

< 0, ↵
1

 ↵ < ↵
2

.

Note that (w
1

)I = 0 since, if not,

lim
↵!1L (↵, w) = lim

↵!1L (↵� ↵
1

, w
1

) = (w
1

)I 6= 0,

contradicting (B.6).

Since B(↵) is continuous according to Lemma 4.15, we conclude that B(↵) is strictly
decreasing for 0  ↵ < ↵M and B(↵M ) = 0 since (w)I = L (↵M , w), by Lemma 4.15
again. ⇤

Proposition B.3. Let v 2 BV (I) be a monotone function and recall vN from Notation
4.6. Then the following statements hold:

1. (vN )I = (v)I ;
2.

↵s(vN ) =
1

2

ˆ
I
|vN (x)� (vN )I | dx; (B.16)

3. ˆ
I
|vN (x)� L (↵, vN )(x)| dx = 2↵, for 0  ↵  1

2

ˆ
I
|vN (x)� (vN )I | dx. (B.17)

Proof. Without loss of generality, we assume that v is monotone increasing. Let N > 0 be
fixed and define vN as in (1.24). Then, by definition of vN we have (vN )I = (v)I .

We now prove (B.16) and (B.17). First we assume that there exists a region IN (mN ),
1  mN  N , such that

(vN )I = vN (IN (mN )). (B.18)

Define the subintervals (see Figure 11a)

Il :=
[

1k<m
N

IN (k) and Ih :=
[

m
N

<kN

IN (k),
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and we first focus on the subinterval Il.

Since vN is monotone increasing, we have

IN (k) 2 CS(vN ), 1 < k < mN ,

and for
0  N↵ < vN (IN (2))� vN (IN (1)),

we obtain, according to Theorem 4.5,

L (↵, vN )(IN (1)) = v(IN (1)) +N↵, and (B.19)

L (↵, vN )(IN (k)) = v(IN (k)), 1 < k  mN .

There,
↵
1

:= (vN (IN (2))� vN (IN (1)))/N, (B.20)

and
L (↵

1

, vN )(IN (1)) = vN (IN (2)).

Moreover, from (B.19) we have, for 0  ↵  ↵
1

,ˆ
I
l

|vN (x)� L (↵, vN )(x)| dx =

ˆ
I
l

(L (↵, vN )(x)� vN (x)) dx =
1

N
(N↵) = ↵. (B.21)

Next, set v1N := L (↵
1

, vN ) and observe that, for

0  ↵ < ↵0
2

:=
N

2
(vN (IN (3))� vN (IN (2))) ,

we have

L (↵, v1N )(IN (1)) = L (↵, v1N )(IN (2)) = v(IN (2)) +
N

2
, and (B.22)

L (↵, v1N )(IN (k)) = v(IN (k)), 2 < k  mN .

Hence for ↵ = ↵0
2

we obtain

L (↵0
2

, v0N )(IN (1)) = L (↵0
2

, v0N )(IN (2)) = vN (IN (3)),

and for

↵
2

:= ↵
1

+ ↵0
2

=
1

N
(vN (IN (2))� vN (IN (1))) +

2

N
(vN (IN (3))� vN (IN (2))) , (B.23)

we have that
L (↵

2

, vN )(IN (1)) = L (↵
2

, vN )(IN (2)) = vN (IN (3)).

Moreover, we observe that for ↵
1

 ↵  ↵
2

,ˆ
I
l

(L (↵, vN )� vN ) dx =

ˆ
I
l

(L (↵
1

, vN )� vN ) dx+

ˆ
I
l

(L (↵, vN )� L (↵
1

, vN )) dx

=

ˆ
I
N

(1)

(vN (IN (2))� vN (IN (1))) +

ˆ
I
N

(1)[I
N

(2)

(L (↵� ↵
1

,L (↵
1

, vN ))� L (↵
1

, vN )) dx
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=↵
1

+
2

N

N

2
(↵� ↵

1

) = ↵,

where on the last equality we used (B.21) and (B.22).

Similarly, for

↵0
3

=
3

N
(vN (IN (4))� vN (IN (3))) ,

we have that

L (↵
2

+↵0
3

, vN )(IN (1)) = L (↵
2

+↵0
3

, vN )(IN (2)) = L (↵
2

+↵0
3

, vN ).(IN (3)) = vN (IN (4))

Recursively, we obtain

↵0
m

N

�1

=
mN � 1

N
(vN (IN (mN ))� vN (IN (mN � 1))) , (B.24)

and at ↵ = ↵m
N

�1

, where

↵m
N

�1

:=
m

N

�1

X

k=1

↵0
k =

m
N

�1

X

k=1

k

N
(vN (IN (k + 1))� vN (IN (k))) (B.25)

=
m

N

�1

X

k=1

1

N
(vN (mN )� vN (IN (k))) ,

it holds

L (↵m
N

�1

, vN )(IN (1)) = L (↵m
N

�1

, vN )(IN (2)) =

· · · = L (↵m
N

�1

, vN )(IN (mN � 1)) = L (↵m
N

�1

, vN )(IN (mN )) = vN (IN (mN )). (B.26)

Moreover, by using a similar computation as above we deduce thatˆ
I
l

(L (↵, vN )� vN ) dx = ↵ for 0  ↵  ↵m
N

�1

(B.27)

and ˆ
I
l

(L (↵m
N

�1

, vN )(x)� vN (x)) dx =

ˆ
I
l

((vN )I � vN (x)) dx.

Next, we claim that

L (↵m
N

�1

, vN )(IN (N)) = L (↵m
N

�1

, vN )(IN (N � 1)) =

· · · = L (↵m
N

�1

, vN )(IN (mN + 1)) = L (↵m
N

�1

, vN )(IN (mN )) = vN (IN (mN ))

and ˆ
I
h

(vN � L (↵, vN )) = ↵. (B.28)

Indeed, in order to reach a contradiction we assume that L (↵m
N

�1

, vN )(IN (mN )) >
vN (IN (mN )). In view of (B.26), we have

(L (↵m
N

�1

, vN ))I > L (↵m
N

�1

, vN )(IN (mN )) = vN (IN (mN ))
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and hence by (B.18), Proposition 4.12, and Theorem 4.9, we obtain

(vN )I = vN (IN (mN )) = lim
↵!1L (↵, vN )

= lim
↵!1L (↵,L (↵m

N

�1

, vN )) = (L (↵m
N

�1

, vN ))I > vN (IN (mN )) = (vN )I , (B.29)

a contradiction. Moreover, using the same argument as in (B.19) and (B.21), we may
deduce (B.28).

That is, we have that L (↵m
N

�1

, vN ) = vN (IN (mN )) is a constant, and we conclude that

↵s(vN ) =

ˆ
I
l

(vN � (vN )I) dx =
1

2

ˆ
I
|vN � (vN )I | dx, (B.30)

where ↵s(vN ) := ↵m
N

�1

. The behavior of L (↵, vN ) in subinterval the Ih exactly mirrors
its behavior in Il. That is, L (↵, vN ) behaves “symmetrically” with respect to the average
value (v)I . See Figure 11a to Figure 11c for an illustration. Moreover, we remark that the
set {↵

1

, . . . ,↵m
N

�1

} are only a subset of (4.14) in Lemma 4.15. We refer to Remark B.5
for details.
For the general case that there is no index mN such that (B.18) holds, but an index mN

such that

vN (IN (mN )) < (vN )I < vN (IN (mN + 1)),

we only need one more step to obtain (B.30).

Indeed, using the same argument until (B.24), we have that there exist ↵l = ↵h > 0
such that (see Figure 11d)

L (↵l, vN )(IN (1)) = · · · = L (↵l, vN )(IN (mN )) < (vN )I

and

L (↵h, vN )(IN (N)) = · · · = L (↵h, vN )(IN (mN + 1)) > (vN )I .

Also, we have

L (↵l + ↵, vN )(IN (1)) = · · · = L (↵l + ↵, vN )(IN (mN )) = vN (IN (mN )) +
N

mN
↵

for

0  ↵  ↵0
m

N

:=
mN

N
((vN )I � vN (IN (mN ))) .

Hence,

L (↵m
N

, vN )(IN (k)) = (vN )I for 1  k  mN ,

where ↵m
N

:= ↵l + ↵0
m

N

, and again we have (B.30) with ↵s(vN ) := ↵m
N

.

Note that we also obtain

L (↵m
N

, vN )(IN (k)) = (vN )I for mN + 1  k  N,
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(a) Il = (0, 0.49), Ih = (0.51, 1), IN (mN ) =
(0.49, 0.51)
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(b) L (5, vN ) in blue
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(c) L (10, vN ) in blue
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(d) L (50, vN ) in blue

Figure 11. N = 100. vN is plotted in red dashed line, and the constant
(v)I is plotted in green. Moreover, in Figure 11b to 11d, ↵ equals to the
area of the triangles formed by the blue line and the red line (left lower
corner and right upper corner)

since L (↵s(vN ), vN ) = (vN )I and use the same contradiction argument as in (B.29).

Finally, in view of (B.27) and (B.28), we observe that

↵ =

ˆ
I
l

(L (↵, vN )� vN ) dx =

ˆ
I
h

(vN � L (↵, vN )) dx

=
1

2

ˆ
I
|vN � L (↵, vN )| , for 0  ↵ <

1

2

ˆ
I
|vN � (vN )I | dx,
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and this conclude the proof. ⇤
Remark B.4. By (B.16), and invoking Lebesgue Dominated convergence theorem, we
have that

lim
N!1

↵s(vN ) = lim
N!1

1

2

ˆ
I
|vN � (vN )I | dx =

1

2

ˆ
I
|(v)I � v(t)| dt,

and thus ↵s(vN ) is bounded and convergence.

Remark B.5. Since vN is a piecewise constant function with N pieces, we may apply
Lemma 4.15 to get a chain

0 = ↵
0

< ↵
1

< · · · < ↵N 0 < +1
such that items 1-3 in Lemma 4.15 are satisfied, where N 0  N . We use

0 = ↵
0

< ↵l
1

< ↵l
2

< · · · < ↵l
m

N

�1

< +1
to denote those ↵’s we found in (B.20), (B.23), and (B.25). Then,

n

↵l
i, 1  i  mN � 1

o

⇢ �↵i, 1  i  N 0 

since at each ↵l
i we have L (↵l

i, vN )(IN (i)) = vN (IN (i+1)), and hence L (↵, vN ) loses one
piece in Il. Moreover, we may repeat the argument from (B.18) to (B.25) on the subinterval
Ih and obtain

0 < ↵h
N < ↵l

N�1

< · · · < ↵h
m

N

+1

< +1
such that L (↵h

k , vN )(IN (k)) = vN (IN (k � 1)) at each ↵h
k , and hence L (↵, vN ) loses one

piece in Ih, and this
n

↵h
k , N � k � mN + 1

o

⇢ �↵i, 1  i  N 0 .

Moreover, we have
n

↵l
i, 1  i  mN � 1

o

[
n

↵h
k , N � k � mN + 1

o

=
�

↵i, 1  i  N 0 .

Proposition B.6. Let v 2 BV (I) be a monotone function and define

Ev
N

(↵) :=
1

2

ˆ
I
|L (↵, vN )� vN |2 dx.

Then E 0
v
N

(0) = 0, and E 0
v
N

(↵) is piecewise linear and increasing in each linear piece. More-
over, if ↵̃ 2 JE 0

v

N

(↵), then

E 0
v
N

(↵̃�) > E 0
v
N

(↵̃+).

Proof. Following the same argument as in Proposition B.3, we have for

0  ↵ < ↵
1

:=
1

N
(vN (IN (2))� vN (IN (1))) ,

that

L (↵, vN ) = vN (IN (1)) +N↵ and Ev
N

(↵) =
1

2

ˆ
I
|L (↵, uc)� vN |2 dx =

1

2

1

N
(N↵)2.
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Therefore, for 0  ↵ < ↵
1

, we have E 0
v
N

(↵) = N↵, and hence

E 0
v
N

�

↵�
1

�

= lim
↵%↵1

E 0
v
N

(↵) = (vN (IN (2))� vN (IN (1))) . (B.31)

However, at ↵ = ↵
1

, L (↵
1

, vN )(IN (1)) = vN (IN (2)), and thus for

↵
1

 ↵ < ↵
2

:= ↵
1

+
2

N
(vN (IN (3))� vN (IN (2)))

we obtain

Ev
N

(↵) =
1

2

"

1

N

✓

N

2
(↵� ↵

1

) + vN (IN (2))� vN (IN (1))

◆

2

+
1

N

✓

N

2
(↵� ↵

1

)

◆

2

#

,

therefore

E 0
v
N

(↵) =
N

2
(↵� ↵

1

) +
1

2
(vN (IN (2))� vN (IN (1))) .

We deduce that

E 0
v
N

�

↵+

1

�

= lim
↵&↵1

E 0
v
N

(↵) =
1

2
(vN (IN (2))� vN (IN (1))) (B.32)

and

E 0
v
N

�

↵�
2

�

= lim
↵%↵2

E 0
v
N

(↵) =
1

2
(vN (IN (2))� vN (IN (1))) + (vN (IN (3))� vN (IN (2))).

Following a similar computation, we have

E 0
v
N

�

↵�
2

�

=
1

2
(vN (IN (2))� vN (IN (1))) + (vN (IN (3))� vN (IN (2))),

E 0
v
N

�

↵+

2

�

=
1

3
(vN (IN (3))� vN (IN (1))) +

1

3
(vN (IN (3))� vN (IN (2))),

and

E 0
v
N

�

↵�
3

�

=
1

3
(vN (IN (3))� vN (IN (1))) +

1

3
(vN (IN (3))� vN (IN (2))) + (vN (IN (4))� vN (IN (3))),

E 0
v
N

�

↵+

3

�

=
1

4
(vN (IN (4))� vN (IN (1))) +

1

4
(vN (IN (4))� vN (IN (2))) +

1

4
(vN (IN (4))� vN (IN (3))),

...

and

E 0
v
N

�

↵�
l

�

=
1

l

"

l�1

X

k=1

vN (IN (l))� vN (IN (k))

#

+ vN (IN (l + 1))� vN (IN (l)),
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E 0
v
N

�

↵+

l

�

=
1

l + 1

l
X

k=1

(vN (IN (l + 1))� vN (IN (k))),

for any l such that 1  l < mN . That is, we conclude that
�

�

�

JE 0
v

N

(↵)

�

�

�

 N

and for each ↵̃ 2 JE 0
v

N

(↵),

E 0
v
N

�

↵̃�� > E 0
v
N

�

↵̃+

�

.

⇤
B.2. The uniqueness of solution of bilevel training scheme. In this section we prove Theo-
rem 4.13. To do so, we introduce several definitions, assumptions, and propositions first.

Definition B.7. For a given clean image uc 2 BV , we define the deformation error by

Eu
c

(↵) :=
1

2
kL (↵, uc)� uck2L2

(I) ,

and the level N deformation error by

EC
N

(↵) :=
1

2
kL (↵, uc,N )� uc,Nk2L2

(I) .

Moreover, we define the denoising error by

E⌘
N

(↵) :=
1

2

�

�

�

�

L (↵, ⌘N )�
 
I
⌘N

�

�

�

�

2

L2
(I)

. (B.33)

Note that by Proposition B.1 we have that Eu
c

(↵) and EC ,N (↵) are monotone increasing
and, according to Proposition B.3, we have that Eu

c

(↵) (EC ,N (↵)) is a constant for all
↵ � ↵s(uc), with

Eu
c

(↵s(uc)) =
1

2

�

�

�

�

 
I
uc dx� uc

�

�

�

�

2

L2
(I)

.

Moreover, we have E⌘
N

(↵) is strictly decreasing to 0 by Proposition B.2 with w = ⌘N .

Assumption B.8. Let uc 2 BV (I) and N 2 N be given. We say that an image ud,N with
resolution N is an acceptable compressed deformation of uc,N if the following conditions
are satisfied:

1. if IN (k) is a high (low) boundary (extreme) region of uc,N , then it is also a high (low)
boundary (extreme) region of ud,N and

uc,N (IN (k)) � ()ud,N (IN (k));

2. if IN (k) is a step region of uc,N , it is also a step region of ud,N and we have

1

2
(uc,N (IN (k � 1)) + uc,N (IN (k)))  ud,N (IN (k)) (B.34)

 1

2
(uc,N (IN (k)) + uc,N (IN (k + 1))) .
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Proposition B.9. Let uc,N be monotone and ud,N satisfying Assumption B.8. Then

Eu
d,N

(↵) :=
1

2
kL (↵, ud,N )� uc,Nk2L2

is non-decreasing as ↵ ! 1.

Proof. Without loss of generality, we assume that uc,N is monotone increasing. That is,

uc,N (IN (1)) < uc,N (IN (2)) < · · ·uc,N (IN (N � 1)) < uc,N (IN (N)),

and hence by Assumption B.8 we have

uc,N (IN (1))  ud,N (IN (1))  ud,N (IN (2))  · · ·
 ud,N (IN (N � 1))  ud,N (IN (N))  uc,N (IN (N)).

Therefore, in the same spirit of the argument used in the proof of Proposition B.3, we have
for

0  ↵ < ↵
1

:=
1

N
[ud,N (IN (2))� ud,N (IN (1))] ,

that

L (↵, ud,N )(IN (1)) = DN (IN (1)) +N↵,

and

Eu
d,N

(↵) =
1

2
kL (↵,DN )� uc,Nk2L2

(I) (B.35)

=
1

2

1

|IN (1)| [DN (IN (1)) +N↵� uc,N (IN (1))]2 ;

and for

↵
1

 ↵ < ↵
2

:=
2

N
[ud,N (IN (3))� ud,N (IN (2))] + ↵

1

,

that

L (↵, ud,N )(IN (1)) = L (↵, ud,N )(IN (2)) = DN (IN (2)) +
N

2
(↵� ↵

1

),

and

Eu
d,N

(↵) =
1

2

1

N



DN (IN (2)) +
N

2
(↵� ↵

1

)� uc,N (IN (1))

�

2

(B.36)

+
1

2

1

N



DN (IN (2)) +
N

2
(↵� ↵

1

)� uc,N (IN (2))

�

2

.

We note that (B.35) is increasing for ↵ 2 [0,↵
1

) since DN (IN (1)) � uc,N (IN (1)) by as-
sumption. We discuss the monotonicity of (B.36) in two cases:

Case 1: if

uc,N (IN (1))  ud,N (IN (1))  uc,N (IN (2))  ud,N (IN (2)),
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then both (B.35) and (B.36) are increasing, and so ED
N

(↵) is increasing for 0  ↵ < ↵
2

.

Case 2: if

uc,N (IN (1))  ud,N (IN (1))  ud,N (IN (2))  uc,N (IN (2)),

then the second term in (B.36) is decreasing, and hence ED
N

(↵) might decrease. However,
we show that with condition (B.34) this will not happen. Indeed, in view of (B.34) we have

ud,N (IN (2))� uc,N (IN (2)) � uc,N (IN (1))� ud,N (IN (2)),

and thus, by (B.36), that for ↵
1

 ↵ < ↵
2

,

E 0
u
d,N

(↵)

=
1

2
[ud,N (IN (2))� uc,N (IN (1))] +

1

2
[ud,N (IN (2))� uc,N (IN (2))] +

N

2
(↵� ↵

1

)

� 1

2
[ud,N (IN (2))� uc,N (IN (1)) + uc,N (IN (1))� ud,N (IN (2))] +

N

2
(↵� ↵

1

)

� N

2
(↵� ↵

1

) � 0.

For ↵
2

 ↵ < ↵
3

, ↵
3

 ↵ < ↵
4

, . . . , we may prove that E 0
u
d,N

(↵) is non-decreasing by
adopting the same computation, and this concludes the proof. ⇤

So far we have not assume any relation between the clean image uc,N and the noise ⌘N .
However, Theorem 4.13 does not hold for arbitrary ⌘N , and the following assumptions have
to be enforced.

Assumption B.10. Let uc 2 BV (I) be monotone and let N 2 N be given. Here 1  k 
N .

1. The observed noise changes sign consecutively, that is,

⌘N (IN (k))⌘N (IN (k + 1))  0; (B.37)

2. u⌘,N is oscillating at least at half rate of uc,N , that is, we require that

|u⌘,N (IN (k))� u⌘,N (IN (k + 1))| � 1

2
|uc,N (IN (k))� uc,N (IN (k + 1))| ; (B.38)

3. if u⌘,N changes the sign of jump of uc,N , that is, if

(u⌘,N (IN (k))� u⌘,N (IN (k + 1))) (uc,N (IN (k))� uc,N (IN (k + 1)))  0,

then we require that

⌘N (IN (k)) = �⌘N (IN (k + 1)). (B.39)

4. we assume that

u⌘,N (IN (1)) > (<)uc,N (IN (1))

if uc,N (IN (1)) > (<)uc,N (IN (2)), and

u⌘,N (IN (N)) > (<)uc,N (IN (N))
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if uc,N (IN (N)) > (<)uc,N (IN (N � 1)). Lastly, we assume that

|⌘(IN (1))| = |⌘(IN (N))| � 1

2
max {|⌘(IN (kI))| , kI 2 CI(uc,N )} . (B.40)

Proof of Theorem 4.13. We denote the local error by

Ek,N (↵) :=
1

2
kL (↵, u⌘,N )� uc,Nk2L2

(I
N

(k)) =
1

2N
|L (↵, u⌘,N )(IN (k))� uc,N (IN (k))|2 ,

where 1  k  N . We write that

E 0
N (↵) =

N
X

k=1

E 0
k,N (↵) =

X

I
N

(k)2P(↵)

E 0
k,N (↵) +

X

I
N

(k)2N (↵)

E 0
k,N (↵) +

X

I
N

(k)2I(↵)
E 0
k,N (↵),

where, for each ↵ > 0, we say that a region IN (k) is positive active of EN (↵) if E 0
k,N (↵) > 0,

negative active if E 0
k,N (↵) < 0, and inactive if E 0

k,N (↵+) = 0. Moreover, we use N (↵), P(↵),
and I(↵) to denote the collections of such regions for each ↵ > 0.

We will prove that

↵m =
1

N
|⌘N (1)| (B.41)

is the desired minimizer of (4.7) by showing that

P(↵) = ? for all ↵  ↵m, I(↵m) = {IN (k), 1  k  N} , and N (↵) = ? for all ↵ � ↵m.

Items 1 and 3 in Assumption B.10 implying that if IN (k) 2 P(0) [ N (0), then it is an
extreme region of ⌘N . We claim that

E 0
k,N (0) = � |⌘N (IN (k))| < 0.

Indeed, without loss of generality, we assume that uc,N is monotone increasing. Then
IN (1) 2 P(0) [N (0) is a low boundary region of u⌘,N by item 4 in Assumption B.10, and
hence for ↵ small enough

E 0
1,N (↵) =

d

d↵

1

2

1

N
|u⌘,N (IN (1))�N↵� uc,N (IN (1))|2 = d

d↵

1

2

1

N
|⌘N (IN (1))�N↵|2 ,

(B.42)
that is,

E 0
1,N (0) = � |⌘N (IN (1))| < 0.

The case in which IN (N) is a high boundary region of uc,N and hence a high boundary of
u⌘,N can be dealt similarly. Now we assume that IN (k) 2 CI(uc,N ) is a step region, that
is, we have

uc,N (IN (k � 1))  uc,N (IN (k))  uc,N (IN (k + 1)).

We claim that if IN (k) is a high extreme region of u⌘,N , then u⌘,N (IN (k)) > uc,N (IN (k)).
Suppose not. We have

uc,N (IN (k)) > u⌘,N (IN (k)) > max {u⌘,N (IN (k � 1)), u⌘,N (IN (k + 1))} . (B.43)
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However, uc,N (IN (k)) > u⌘,N (IN (k)) implies that ⌘N (IN (k)) < 0, and thus by (B.37) we
have ⌘N (IN (k + 1)) > 0. Therefore, we have that

u⌘,N (IN (k+1)) = uc,N (IN (k+1))+⌘N (IN (k+1)) > uc,N (IN (k+1)) � uc,N (IN (k)) > u⌘,N (IN (k)),

which contradicts to (B.43). Hence, by using the same computation as in (B.42), we deduce
that

E 0
k,N (0) = � |⌘N (IN (k))| < 0. (B.44)

The case in which IN (k) is a low extreme region of u⌘,N , and hence u⌘,N (IN (k)) <
uc,N (IN (k)) and (B.44) holds, can be proved similarly.

Therefore, at ↵ = 0, we have P(0) = ? and

E 0
N (0) = �

X

I
N

(k)2N (0)

|⌘N (IN (k))| < 0 and E 0
N (0) � E 0

⌘
N

(0) = �
N
X

k=1

|⌘N (IN (k))| ,

where E⌘
N

is defined in (B.33) and (⌘N )I = 0 by (4.1).

We next claim that P(↵) = ? if ↵ < ↵m where ↵m is defined in (B.41). Assume that
uc,N (IN (k + 1)) and uc,N (IN (k + 2)) are two step regions of uc,N , that is,

uc,N (IN (k))  uc,N (IN (k + 1))  uc,N (IN (k + 2))  uc,N (IN (k + 3)).

Without loss of generality, by (B.37) we assume that

⌘N (IN (k))  0, ⌘N (IN (k + 1)) � 0, ⌘N (IN (k + 2))  0, and ⌘N (IN (k + 3)) � 0. (B.45)

Two situations could hold within interval IN (k + 1) and IN (k + 2):

Case 1: if u⌘,N (IN (k + 1)) < u⌘,N (IN (k + 2)), then we have, by (B.45), that

u⌘,N (IN (k)) < uc,N (IN (k+1)) < u⌘,N (IN (k+1)) < u⌘,N (IN (k+2)) < u⌘,N (IN (k+3)),

and hence u⌘,N (IN (k + 1)) and u⌘,N (IN (k + 2)) are steps regions, which implies that

E 0
k+1,N (0) = 0 > E 0

k+1,⌘
N

(0) and E 0
k+2,N (0) = 0 > E 0

k+2,⌘
N

(0).

That is, IN (k + 1) and IN (k + 1) 2 I(0) and the noise ⌘N (IN (k + 1)) and ⌘N (IN (k + 2))
remain un-removed. Moreover, according to the argument in the Proposition B.3, the
region IN (k + 1) remains in-active until ↵ > 0 large enough such that

L (↵, u⌘,N )(IN (1)) = L (↵, u⌘,N )(IN (k)) = uc,N (IN (k)).

However, according to (B.40) and (B.41), we have

L (↵m, u⌘,N )(IN (1)) = uc,N (IN (1)) < uc,N (IN (k)),

and hence we have

IN (k + 1) and IN (k + 1) 2 I(↵) for ↵  ↵m. (B.46)
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Case 2: If u⌘,N (IN (k + 1)) � u⌘,N (IN (k + 2)), then we have by (B.45) that

u⌘,N (IN (k)) < u⌘,N (IN (k + 1)),

u⌘,N (IN (k + 1)) � u⌘,N (IN (k + 2)), and

u⌘,N (IN (k + 2)) < u⌘,N (IN (k + 3)),

and (B.39) implies that

⌘N (IN (k + 1)) = �⌘N (IN (k + 2)). (B.47)

Hence, u⌘,N (IN (k + 1)) and u⌘,N (IN (k + 2)) are two extreme regions and, according to
Theorem 4.5, we have

L (↵, u⌘,N )(IN (k + 1)) = uc,N (IN (k + 1)) + ⌘N (IN (k + 1))� 2N↵

and

L (↵, u⌘,N )(IN (k + 2)) = uc,N (IN (k + 2)) + ⌘N (IN (k + 2)) + 2N↵.

Thus, by (B.47), at ↵ = ↵̃k+1

, where ↵̃k+1

is defined by

2N ↵̃k+1

:= ⌘N (IN (k + 1))� 1

2
(uc,N (IN (k + 2))� uc,N (IN (k + 1))) < |⌘N (IN (k + 1))| ,

(B.48)
we have

L (↵̃k+1

, u⌘,N )(IN (k + 1)) = L (↵̃k+1

, u⌘,N )(IN (k + 2)) (B.49)

and both IN (k + 1) and IN (k + 2) are step regions of L (↵̃k+1

, u⌘,N ).

We observe that (B.49) not only causes a staircasing e↵ect but also, together with (B.48),
leaves part of ⌘N (IN (k + 1)) and ⌘N (IN (k + 2)) un-removed. Moreover, we have

E 0
k+1,N (↵) = E 0

k+1,⌘
N

(↵) < 0 and E 0
k+2,N (↵) = E 0

k+2,⌘
N

(↵) < 0 for ↵  (↵̃k+1

)�,

but

E 0
k+1,N ((↵̃k+1

)+) = 0 > E 0
k+1,⌘

N

(↵̃k+1

) and E 0
k+2,N ((↵̃k+1

)+) = 0 > E 0
k+2,⌘

N

(↵̃k+1

).

That is, IN (k+1) and IN (k+2) 2 N (↵) for ↵ < ↵̃k+1

, and IN (k+1) and IN (k+2) 2 I(↵)
for ↵ = ↵̃k+1

, and according to (B.40), we have ↵̃k+1

 ↵m.

We next claim that if ↵̃k+1

< ↵m, then IN (k+1) and IN (k+2) 2 I(↵) for ↵̃k+1

< ↵  ↵m.
Indeed, let u⌘,N 1 := L (↵̃k+1

, u⌘,N ). One can check that ⌘1N := u⌘,N 1 � uc,N satisfies all
assumptions in Assumption B.10. Then, since IN (k+1) and IN (k+2) are two step regions
of u⌘,N 1 by (B.49), we may apply Case 1 above to u⌘,N 1 and obtain that IN (k + 1) and
IN (k + 2) are inactive for at least 0 < ↵ < ↵m � ↵̃k+1

because

L (↵̃k+1

, u⌘,N )(IN (1)) = uc,N (IN (1))� (|⌘N (IN (1))|�N ↵̃k+1

).

Hence, we have

IN (k + 1) and IN (k + 2) 2 I(↵) for all ↵̃k+1

< ↵  ↵m. (B.50)
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Therefore, we conclude that
X

I
N

(k)2C
I

(u
c,N

)

E 0
k,N (↵) < 0 for 0  ↵ < ↵̃ := max {↵̃k, IN (k) 2 CI(uc,N )}  ↵m, (B.51)

and, in the view of (B.46) and (B.50), we have that
X

I
N

(k)2C
I

(u
c,N

)

E 0
k,N (↵) = 0 for ↵̃  ↵  ↵m. (B.52)

In the end, since |⌘N (IN (1))| = |⌘N (IN (N))|, then we have, by item 4 in Assumption B.10,
that

E 0
1,N (↵) + E 0

N,N (↵) < 0 for ↵ < ↵m

and
E 0
1,N (↵m) + E 0

N,N (↵m) = 0.

Therefore, and taking into consideration of (B.51) and (B.52), we have that

0 > E 0
N (↵) =

X

k2N (↵)

E 0
k,N (↵) +

X

k2I(↵)
E 0
k,N (↵) � E 0

⌘
N

(↵)

for 0  ↵ < ↵m, and E 0
N (↵m) = 0.

We next claim that L (u⌘,N ,↵m) is an acceptable deformation of uc,N . Item 1 in As-
sumption B.8 is satisfied because of (B.40), and (B.34) is satisfied because of (B.38) and
(B.39). Hence, we may apply Proposition B.9, and deduce that

E 0
N (↵) > 0 for ↵m  ↵ < ↵s(u⌘,N ).

This, together with the fact that L (↵, u⌘,N ) is a constant for ↵ > ↵s(u⌘,N ), concludes the
argument. ⇤
Remark B.11. We cannot reach full-recovery if uc is not a constant. As (B.49) holds,
the damage is permanent, since once two pieces of L (↵, u⌘,N ) merged together, they can
never be separated again.
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(a) L (↵m, u⌘,N ) in blue, uc,N in red.
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Figure 12. Heavily staircasing e↵ect is observed in Figure 12a, even if
with an ideal noise. In Figure 12b, E 0

N (↵) � E⌘
N

(↵) indicts that not all
noise are removed

List of Symbols

AT": Ambrosio - Tortorelli approximation. 6
AT!,": Weighted Ambrosio - Tortorelli approximation. 7

uc: Clean data (signal in one dimension, image in two dimension). 3
u⌘: Corrupted image data (signal in one dimension, image in two dimension). 2

F : Fidelity term in image processing. 2
uc,N : Level N finite resolution clean image. 8
u⌘,N : Level N finite resolution corrupted image. 9

EN : Level N error function. 9

MS: Mumford-Shah image segmentation functional. 5
MS!: Weighted Mumford-Shah image segmentation functional. 7

L : Reconstruction operator. 9
R: Regularization term (regularizer) in image processing. 2

SBV : Space of special bounded variation. 5

TGV 1+s: Fractional order total generalized variation. 4
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