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Abstract 

Recent sustainability research has focused on urban systems given their high share of 

environmental impacts and potential for centralized impact mitigation.  Most previous works 

rely on descriptive statistics obtained from place-based case studies representing major cities, 

metropolitan areas, and counties using emissions inventories that may have inconsistent and/or 

limited scope (e.g., transportation and residential emissions only).  This limits the potential for 

general insights and decision support related to the role of urbanization in CO2 emissions 

reduction.   

Here, I implement generalized linear and multiple linear regression analyses to obtain 

robust insights on the relationship between urbanization and CO2 emissions in the U.S.  I used 

consistently derived county-level scope 1 & 2 CO2 inventories for my response variable while 

predictor variables included dummy-coded variables for county geographic type (central, 

outlying, and non-metropolitan), median household income, population density, and climate 

indices (heating degree days (HDD) and cooling degree days (CDD)).  There is statistically 

significant difference in per capita emissions by sector for different county types, with 

transportation and residential emissions highest in nonmetropolitan (rural) counties, 

transportation emissions lowest in central (most urbanized) counties, and commercial sector 

emissions highest in central counties.  More importantly, contrary to most previous findings, 

there is not enough statistical evidence indicating that per capita scope 1 & 2 emissions differ by 

geographic type, ceteris paribus.  These results are robust for different assumed electricity 

emissions factors.  Given that emissions production rate in more urban counties are not 

significantly different from that of less urban ones and population is concentrated in urban 

counties, significant national emissions reduction could be achieved if efforts are focused on 

central counties.   
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There are various climate mitigation techniques – both from the supply and demand 

side.  Given the large contribution of transportation in total county emissions and the fact that 

this technology bridges the transportation and electricity sector which is currently the biggest 

contributor to CO2 emissions, I investigated the emission reduction benefits from driving 

electric instead of gasoline vehicles.  Vehicle electrification has also received sustained support 

from the local to the supranational level and is seeing an optimistic market trend.  I characterize 

and assess the uncertainty in CO2 emissions per mile travelled for vehicles in the U.S. given 

regional variation and uncertainty in electricity emissions factor (marginal vs average, 

generation- vs consumption-based, different regional boundaries), driving pattern, and daily 

vehicle miles traveled (DVMT).  I also investigate vehicle emissions estimates under 

convenience (vehicle starts charging when it arrives at home) and delayed (vehicle starts 

charging at 12am) charging.  Using marginal emissions factors results in electric vehicle 

emissions estimate that are higher than average emissions estimates in the northeastern and 

north central U.S., and lower emissions in the south central U.S.  In other regions, using 

marginal emissions versus average emissions factors may lead to differences in emissions 

estimates by as much as 28%.  Delayed charging leads to higher emissions, given that off-peak 

electricity demand is supplied by fossil generators in most regions (e.g., coal).  Using marginal 

emissions estimates, the Nissan Leaf electric vehicle has lower operation emissions compared to 

the Toyota Prius (the most efficient US gasoline vehicle) in western U.S., and the Leaf has higher 

operation emissions in the north central, regardless of assumed charging scheme and estimation 

method.  In other regions the comparison is uncertain because of regional variation and 

uncertainty in emission factor estimates.  Consumption- and generation-based marginal 

emissions also significantly (5 % - 28%), enough to result unclear comparison results.   Average 

vehicle emissions estimates under different regional boundary definitions also differ 

significantly (e.g.,  state-based estimates deviate from National Electricity Reliability 

Commission (NERC) region-based estimates by as much as 122%). 



 iv 

Other factors such as driving pattern and daily vehicle miles traveled also influence 

vehicle emissions.    I conduct a locational comparison of electric and gasoline vehicle life cycle 

emissions in the U.S. taking into consideration the regional variation in the joint effect of 

consumption-based marginal electricity emission factors, driving pattern (city, highway or 

combined), and daily vehicle miles traveled (DVMT) distribution.  I find that electricity 

generation emissions rate, determined by grid mix and charging scheme, has the largest 

influence on electric vehicle emission levels and the emissions differences of gasoline and 

electric vehicles. Secondary to this is urbanization level, especially for PHEVs, as it influences 

driving pattern and daily vehicle miles traveled.  Highest CO2 emission reductions from electric 

vehicles can be attained in metropolitan counties in CA, TX, FL, NY, and New England states.  

Policies for wider adoption of electric vehicles such as incentives and other adoption facilitating 

mechanisms including investments in public charging infrastructure are encouraged in 

metropolitan counties, especially the denser ones.  On the other hand, these policies are 

discouraged in north central states where electric vehicles would only increase emissions 

because of a relatively carbon-intensive grid.  These findings reflect the pivotal role of the 

electricity and transportation sectors nexus in achieving national goals of CO2 emission 

reductions.  Unless the U.S. decarbonizes its electricity system further, electric vehicles will only 

be beneficial in climate mitigation efforts in certain locations in the country.  
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1 Introduction 

According to the most recent Intergovernmental Panel for Climate Change report (IPCC 

2013), the certainty of climate change due to anthropogenic activities has increased, from 90% 

in 2007 to 95% in 2013.  The U.S., which contributes about 36% of global greenhouse gas (GHG) 

emissions, has a significant opportunity in mitigating climate change.  

The U.S. population has grown by about 10% in the past decade and most of the growth 

occurred in already populous areas (US Census Bureau 2011). As of 2010, over 4/5 of the U.S. 

population live in metropolitan areas. Geographic distribution of population data between 

2000-2010 shows that population has grown more rapidly in most metropolitan areas than the 

national average, implying increased concentration of people in metropolitan areas. However, 

this population increase has become more spatially dispersed within the metropolitan areas 

since population growth occurred mostly in areas outside the metropolitan core areas. 

In Chapter 1, I investigate how urbanization level is related to aggregate and sectorial 

scope 1 and scope 2 GHG emissions at the county level in the U.S. through regression analysis. 

Scope 1 emissions include emissions produced form activities done within the physical boundary 

of the system under study. Scope 2 emissions correspond to emissions relating to electricity 

consumed by the system, whether or not the electricity was produced within the physical 

boundary of the system.  

Meanwhile, mass electrification of vehicles has been seen as a promising solution to the 

problems of reducing greenhouse gas (GHG) emissions, air pollution, and energy security 

concerns in the U.S.. Hybrid electric vehicles (HEV), compared to conventional internal 

combustion (IC) vehicles, offer the benefit of increased fuel efficiency, therefore lower emissions 

from petroleum combustion. Plug-in hybrid electric vehicles (PHEV) also offer the increased 

fuel efficiency as well as the reduction of tail-pipe emissions corresponding to miles traveled 

using grid  electricity.  However, studies comparing emissions related to these different vehicle 

types show different results.  
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In the succeeding chapters, I investigate the life cycle emissions of electric vehicles 

throughout the U.S. to verify the claim that electric vehicles reduce transportation CO2 

emissions, especially in urban areas.  Ultimately, with the locational life cycle assessment 

results, I aim to determine where in the U.S. can electric vehicles contribute to bigger CO2 

emissions reductions.   

In Chapter 3, I provide a background on existing policies on electric vehicle development 

and adoption in the U.S.. In Chapter 4, I estimate life cycle EV emissions given uncertainty and 

regional variation in electricity emission estimates and compare these with gasoline vehicle 

emissions estimates.  In Chapter 5, I factor in in urbanization level into my model for estimating 

and comparing EV and gasoline vehicle emissions by differentiating emissions in different 

driving patterns and daily vehicle miles traveled.  In Chapter 6, I summarize the major 

conclusions of this work and provide congruent policy recommendations.
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2 Urbanization and Local Emissions in the U.S.:  Do U.S. 

Metropolitan Core Counties Have Lower Scope 1 & 2 CO2 

Emissions Than Less Urbanized Counties?1 

2.1 Introduction  

At the confluence of both a changing climate and increased urbanization, cities have 

become a focal point for measuring and mitigating greenhouse gas (GHG) emissions [ICLEI 

2012; UN 2012].  However, there exists considerable uncertainty about the link between 

geographic variation and GHG emissions.  These uncertainties confound a richer understanding 

of the relationships between GHG emissions, emissions mitigation, and geographic change.  

Early research on energy use and urban systems focused mainly on the transportation 

sector, where studies suggest reduced transportation energy requirements are associated with 

increased density, access to non-vehicle modes, and mixed land use planning [for examples see 

Newman and Kenworthy 1989; Cervero and Kockelman 1997; Frank and Pivo 1997; Pushkarev 

and Zupan 1977].  

With increasing empirical information on local GHG emissions, researchers started to 

include in-city (“territorial”) emissions from additional end-uses in the late 2000’s.  Comparing 

residential plus personal transportation emissions from 66 major U.S. metropolitan area, 

Glaeser and Kahn (2010) suggest that a household would produce lower GHG if it was in an 

urban area of higher population density, near city centers, in a location with moderate climate 

(i.e., warmer winter and cooler summer), and is serviced by cleaner electric utilities (i.e., less 

coal used for power production).  Brown et al. (2008) similarly found that the average 

metropolitan resident has lower per capita residential plus personal transportation emissions 

(2.24 tons/yr) than the average American (2.60 tons/yr), which the authors attribute to less car 
                                                           
1  Accepted for publication in Environmental Research Letters (August 2014), co-authored with M F 
Blackhurst and H S Matthews. 
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travel and electricity use.   Expanding the scope of in-city emissions to include all buildings, on- 

and off-road transportation, and fugitive emissions from industry and waste management, 

Kennedy et al (2009) contrasted emissions for ten global cities, finding a five-fold difference in 

emissions per capita that was attributed to a combination of geophysical (climate and access to 

resources), socio-economic (population density and per capita income) and infrastructure 

factors (power generation and urban design).  Meanwhile, several studies have been performed 

regarding the relationship between transportation emissions and population density [Newman 

and Kenworthy (1988), Manville and Shoup (2005),  and Chatman (2013)].  In their original 

work where they did not correct for income, fuel prices, or transportation costs in determining 

the relationship between energy use for travel per inhabitant and urban density, Newman and 

Kenworthy (1988) found a native relationship.  After updating their work, they found density to 

be less significant.  Meanwhile, Chatman (2013) argues that higher urban density is often 

related with lower per capita travel energy needs because not so much because of higher 

availability of public transit but due to lower auto ownership. Manville and Shoup (2005) also 

point out the influence of automobile ownership, availability of roadways, and parking spaces in 

major U.S. cities; they find that cities generally have lower ratio of street per person contributing 

to lower travel per person but higher congestion. 

More recent research has emphasized the challenge of isolating the effect of urbanization 

on local GHG emissions.  Analyzing in-city emissions for 62 European cities, Baur et al. 2014 

challenged established correlations between emissions and population density, finding such 

correlations were highly sensitive to the geographic scale of the analysis as well as household 

occupancy and income.  York et al. (2003) apply simple linear regression to an expanded, log-

log format of the IPAT identity (Impact = Population x Affluence x Technology) for 138 

countries, showing emissions increase both with increasing urban populations and gross 

domestic product, with a possible Kuznets relationship between urbanization and emissions.    



 

 5 

The impact of wealth creation and re-spending on urban emissions has recently been 

emphasized by researchers aiming to include emissions embodied in goods and services 

imported and exported across city boundaries.  As summarized in Table 1, emissions embodied 

in imports and exports are classified as scope 3, which differ from emissions that occur directly 

within a city boundary (scope 1 or “territorial” emissions) and those directly associated with city 

energy demands but emitted outside the city boundary (scope 2).  The allocation of scope 3 

emissions to cities is estimated to increase their global emissions share to as much as 80% 

[Satterthwaite 2008]; though other researchers caution that attributing such allocations purely 

to urbanization is likely misleading [Dodman 2009; Hoornweg et al. 2011]. 

 

 

Table 1. Source Fuels, Energy End-uses, and Estimation Methods Per Emissions Scope 

Emissions 
Scope 

Definition Typical Source Fuels 
of Emissions 

Typical energy end-
uses 

1 Emissions from direct 
combustion of fuels within a 
geographic boundary 
(“territorial” emissions) 

Natural gas, gasoline, 
diesel, jet fuel  

Home heating, cooking, 
on- and off-road 
transportation 

2 Emissions from energy 
consumed within a geographic 
boundary generator elsewhere 

Varies across the 
electrical grid 

Lighting, air 
conditioning, appliances 

3 Emissions embodied in 
imported goods and services 
and exported wastes  

Varies within the supply 
chain of imported goods 
and services 

N/A (energy embodied 
in the supply chain of 
imported good or 
service)  

 

The inclusion of scope 3 emissions in local inventories has precipitated “trans-boundary” 

and “consumption-based ” accounting schemes.  Trans-boundary schemes include emissions 

estimates associated with imports of energy (scope 2) and select basic provisions such as 

example food, water, and building materials (Ramaswami et al. 2011, Chavez & Ramaswami 

2011, and Hillman & Ramaswami 2010).  Consumption-based inventories attempt to include 

emissions embodied in all imports and exports that cross geographic boundaries (Larsen and 

Hertwich 2009; Minx et al. 2009).    
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Trans-boundary and consumption-based accounts use environmental life cycle 

assessment techniques to estimate scope 3 emissions attributed to imports and exports.  Most 

studies emphasize case studies that include summary statistics of local GHG’s by emissions 

scope.  In a more comprehensive consumptive-based study, Minx et al. (2013) utilize a multi-

regional input-output model to estimate consumption-based emissions for all 434 

municipalities in the United Kingdom (UK). They identify correlations between per capita 

footprints and occupancy, car ownership, and education.  Minx et al. find that scope 3 emissions 

are generally higher than territorial emissions (scopes 1 and 2) for most municipalities in the 

UK, independent of urban or rural geography and emphasize that consumption-based 

accounting has the effect of geographically homogenizing point emissions sources, namely 

industrial plants.  

While the literature generally treats all emissions scopes equally, we emphasize a few 

important distinctions in the context of measurement and mitigation.  First, policy actors – 

particularly local governments  – have much less jurisdiction over scope 3 emissions than scopes 

1 and 2.  Second, emissions scopes 2 and 3 are scope 1 for producers located upstream in the 

supply-chain.  The implications for this are twofold. It means no emissions can be reduced if all 

actors in the supply chain focus exclusively on scope 3 emissions.  Perhaps more importantly, it 

means that any and all features of scope 1 emissions – such as uncertainty and variation – are 

represented in emissions scopes 2 and 3, which is currently not yet reflected in mitigation 

planning (Blackhurst et al. 2011).   

In addition to uncertainty and variation in scopes 1 and 2 (see Blackhurst et al. 2011, 

Weber et al. 2010, Siler-Evans et al. 2012), scope 3 emissions also include uncertainty and 

variation introduced by incomplete empirical data describing supply chains (Bullard 1977; 

Basket et al 1997); factors used to allocate final demand in space and time and by productive 

sector (Wilting 2012); an incomplete representation of international trade (Andrew et al. 2009; 

Lenzen et al. 2010; Weber 2008); representing production technologies and factor inputs as 
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national and sector averages (Blair and Miller 2009; Weber et al. 2010; Siler-Evans et al. 2012); 

static supply chains (Bullard 1977; Wood 2011); and price and currency conversions (Weber  

2008).  Since only several of these assumptions have been discretely tested in the literature, the 

uncertainty and variation in currently reported scope 3 estimates is likely underreported, 

complicating a clear understanding of the relationship between urbanization and scope 3 

emissions and confounding efforts to measure baseline scope 3 emissions, plan mitigation 

targets, and measure progress.    

Finally, Kennedy and Corfee-Morlot (2013) indicate that additional capital expenditures 

in low-carbon infrastructure – which increases scope 3 emissions – has led to an observed 

decrease in emissions scopes 1 and 2.  Such trade-offs have been established for many sources of 

discrete technical change in LCA (for examples see Keoleian et al. 2000; Pacca et al. 2007; 

Chester and Horvath 2009; Blackhurst et al. 2010).  However, these connections have not yet 

been integrated into city-scale GHG measurement and respective decision-making, further 

challenging the approach of treating emissions scopes equally with respect to mitigation 

planning.   

Further confounding insights into the connection between geographic variation and 

GHG emissions are differing and changing definitions of “urban” and variation in the dynamics 

contributing to urbanization (Morrill et al. 1999; Schneider and Woodcock 2008; Anderson et 

al. 1996) as well as a lack of clarity in how metropolitan scale dynamics – such as regional land 

use planning and commuting – should be reflected in territorial emissions and respective 

mitigation planning.   

As a result of the above uncertainties, differing definitions, and empirical limitations, the 

connection between geographic change and GHG emissions remains unclear.  With this in mind, 

my objective is to identify any statistically significant variation in scope 1 and 2 emissions that 

can be explained by county-level geographic variation, using consistent geographic descriptors, 

controlling for previously identified sources of variation in emissions. This method is intended 
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to serve as additional technical support behind future efforts with robust consideration of 

uncertainty for scope 1, 2, or 3 boundaries.  

2.2 Methods  

2.2.1 Geographic Definitions  

The U.S. Census Bureau classifies counties as central, outlying, and nonmetropolitan (US 

Census Bureau 2011).  Central counties are the most urbanized core in a Metropolitan Statistical 

Area (MSA).  A central county is defined as having at least 50% of its population in urban areas 

with population of at least 10,000 or containing at least 5,000 residents in a single urban area 

with population of at least 10,000.  Meanwhile, Outlying counties are located in an MSA if they 

meet certain requirements of social and economic integration with one or more of the central 

counties in the MSA, such as regional commuting to central counties.  Counties not included in 

an MSA are classified as nonmetropolitan counties (generally rural areas).  Detailed definitions 

for these designations are available from the US Census Bureau (2011).  A map of the U.S. 

showing the different MSA types is provided in Appendix I.  

2.2.2 County Level CO2 Data 

The emissions inventories used here include direct emissions (scope 1) and indirect 

emissions from electricity consumption (scope 2).  Scope 1 GHG emissions estimates for the 

3,141 counties in the US for 2002 were obtained from Project Vulcan, a database that provides a 

county-level resolution of production-based emissions from fossil fuel combustion by 

aggregating publically available data from EPA, DOE, etc.  Gurney et al (2009) provides a 

discussion of the methodology in deriving this database, which has predominantly been used for 

much finer resolution modeling of individual facilities.  Scope 1 emissions are reported by 

sector: residential, industrial, commercial, and onroad, nonroad, and air transportation.  

Emissions from agriculture and waste management were not included in this analysis. 
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Scope 2 emissions were computed as the product of county-level electricity consumption 

and electricity emissions factors.  We used multiple regression model to estimate electricity 

consumption, ci, for each county i with general form shown in (1).  Predictor variables included 

population (Pop), population density (Pop_Density), economic indicators (Econ_Ind) (e.g., 

total payroll, household aggregated income, number of employees, number of establishments, 

total sales), climate indices (Climate_Ind) (e.g., heating degree days (HDD) and cooling degree 

days (CDD)), and the interaction between population climate indices (Pop_Clim).  The model 

that resulted in the most accurate prediction of electricity consumption is shown in (1), where i 

is the country identifier,   , is the electricity consumption, Pop is population, Pop*HDD is the 

interaction between Population and HDD).  County level electricity consumption data used for 

modeling include publicly available data constituting all California counties (2006-2009), all 

Vermont counties (2006-2009), five Illinois counties (2005), and King County, Washington 

(2005-2009).  The main criterion for final model selection is accuracy of electricity consumption 

prediction.  A more detailed discussion of the modeling method is found in Appendix II.                                                                                   
 (1) 

The electricity emissions factor is a function of the fuels used to generate electricity 

consumed at the county scale.  It is non-trivial (some authors suggest not possible) to associate a 

given county’s electricity consumption with specific generation assets to derive an emissions 

factor (Weber et al. 2008).   Electricity generally flows freely within operating regions defined by 

the North American Electric Reliability Corporation, often referred to as the “NERC regions,” 

but little electricity generally crosses these regions (Marriott and Matthews 2008).  In this 

chapter, it is reasonable to use average emissions factors for NERC regions as my base case since 

dealing with aggregate county electricity emissions.  I perform a sensitivity analysis using 

average emissions factors defined for eGRID subregions (eGRID 2004) and U.S. states (eGRID 
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2004) to show differences in these different regional boundaries.  In Chapter 3, I provide a more 

detailed discussion electricity emission factors. 

A total of 618 counties, about 6% of the U.S. population, (Outlying = 6, Nonmetropolitan 

= 612) were omitted as outliers during model diagnostics and selection for electricity 

consumption prediction.   

2.2.3 Regressing Emissions vs. Urbanization Level 

The most general form of the model describing predictors of county GHG is shown in 

Equation 2.  Regressions were performed for both total and capita emissions using Equation 2                                                                                                     (2) 

where                           is total or per capita scope 1 and 2 emissions for county i for either 

all sectors or by sector j   residential, commercial, industrial, onroad, nonroad, and air 

transportation, and electricity consumption,         is the median household 

income,             is the population density,      is the heating degree days,      is the 

cooling degree days, and       and       are the dummy codes for county geographic types - 

central, outlying, and nonmetropolitan.  I controlled for other variables (i.e., HDD/CDD, 

population density, and income), which have been shown in previous works to have a significant 

relationship with energy consumption [e.g., Quayle and Diaz 1980, Eto 1988, Sailor & Munoz 

1997, Zhang 2004, and Carson et al. 1997 to name a few].  By varying the reference geographic 

type, I used this model to determine whether there is significant difference between mean 

emissions (i.e., coefficients are significant) stemming from geographic variation.  For example, 

with type “central” as the reference, Geo1 = outlying and Geo2 = rural, and regression results for           and        indicate differences between emissions levels associated with outlying and 
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rural counties relative to central counties, all else equal.  The coefficients were evaluated at 5% 

significance level.  

Model screening indicated the assumptions for ordinary least squares (OLS) do not hold.  

I did not transform variables to enable an intuitive interpretation of the relationship between 

geographic type and local emissions.  Best models were found using both linear regression 

model (using robust regression) and generalized linear model (GLM) techniques, using the 

Inverse Gaussian family. 

Due to observed correlations between independent variables, some were dropped from 

Equation 1.  I found weak correlations between geographic type and both median household 

income and population density.  This is likely because the MSA classification I used, as defined 

by the U.S. Census Bureau (2011), is partly based on population density.  Previous works suggest 

a positive relationship between urbanization and income [Jones and Kone 1996, Bloom et al 

2008, Glaeser 2011].  But Bloom et al (2008) provides the caveat that nascent stages of 

urbanization are not correlated with income growth, which may explain the weak correlation I 

found.  I also found weak correlation between median HH income and population density, 

indicating a relationship between urbanization, income, and population density.  Meanwhile, 

moderate negative correlation between HDD and CDD was observed.  In model selection, I 

dropped some of these variables to avoid multicollinearity.  I retained variables based on 

maximizing goodness-of-fit (Adjusted R2 and Akaike Information Criterion (AIC)).  I provide 

additional information on data used in Appendix III and further discussion on model fitting, 

diagnostics, and selection are presented in Appendix IV. 

2.3 Results and Discussion 

Regression results for per capita scope 1&2 emissions for all sectors are summarized in 

Table 2.  The intercept is interpreted as the average per capita emissions in central counties 

while the coefficients for the other geographic types indicate differences from central counties 
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(e.g., avg. nonmetropolitan per capita scope 1&2 emissions (last column) is central county avg. 

per capita scope 1&2 emissions (22.81) plus nonmetropolitan coefficient (0.11) which is equal to 

22.92 tons CO2/persons –year).  Regression results presented here correspond to a reduced (less 

predictor variables, outliers and influential variables excluded) model, which I deem is most 

appropriate to use in this analysis, as in the case of Minx, et al. (2013).  

In the residential and transportation (onroad, nonroad, and air) sectors, per capita 

emissions in nonmetropolitan counties are the highest. Mean per capita direct residential 

emissions are about 4% ((1.67 tons CO2 per capita – 1.6 tons CO2 per capita/1.67 tons CO2 per 

capita) higher in central counties than outlying counties, ceteris paribus.  The opposite is true in 

the onroad and nonroad transportation sectors, where outlying counties have higher per capita 

emissions by about 45% and 33%, respectively.  Potential reasons for this observation are 

varying land use patterns, density, and access to transit and non-motorized modes (Newman 

and Kenworthy 1989; Cervero and Kockelman 1997; Frank and Pivo 1997; Pushkarev and Zupan 

1977).  

In the commercial sector, outlying counties were found to have the lowest average per 

capita emissions, ceteris paribus – about 36% and 43% lower than central and nonmetropolitan 

counties, respectively.  Central counties were found to have the highest commercial sector 

emissions, although at only 2% higher than nonmetropolitan counties, ceteris paribus.  This 

could be due to the role of central counties serving as regional centers of commerce, with 

neighboring outlying counties as likely beneficiaries. 

I did not find enough statistical evidence to say that industrial emissions differ by 

urbanization level.  For scope 2, I find per capita emissions in central counties to be similar to 

outlying counties but 40% higher in non-metropolitan counties.  That is, I find metropolitan 

residents to have more emissions from electricity consumption than rural residents.  For 

electricity, these results are robust with parametric variation in emissions factors assuming 

different electricity grid regions (states, NERC regions, or eGRID regions).  
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Importantly, contrary to previous findings, I find no statistically significant relationship 

between geographic variation and total scopes 1 plus 2 per capita emissions.  These results are 

robust across parametric variation in the emissions factor and regression methods.  Even if I 

relax the need for statistical significance to 10%, the predicted values indicate a maximum of 3% 

difference by geographic type.   
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Table 2. Sector Per Capita Emissions Regression Analyses Results (Y2002) 

Variable Industrial Residential Commercial Transportation 
Onroad 

Transportation 
Nonroad 

Transportation 
Air 

Scope 1 Scope 2 
NERC 

Scope 1+ 2 
NERC 

Intercept 3.28*** 
(0.08) 

1.67*** 
(0.07) 

1.13*** 
(0.16) 

4.62*** 
(0.14) 

0.32*** 
(0.06) 

0.13* 
(0.06) 

11.62*** 
(0.95) 

10.91*** 
(0.52) 

22.81*** 
(1.06) 

Nonmetro 0.49 
(0.03) 

0.17*** 
(0.03) 

-0.16* 
(0.06) 

2.09*** 
(0.12) 

0.64*** 
(0.03) 

0.06 . 
(0.03) 

3.38*** 
(0.39) 

-3.27*** 
(0.22) 

0.11 
(0.44) 

Outlying -0.35 
(0.41) 

-0.07 . 
(0.04) 

-0.43*** 
(0.08) 

1.45*** 
(0.20) 

0.15*** 
(0.03) 

-0.07 . 
(0.04) 

0.89 . 
(0.51) 

-0.34 
(0.28) 

0.59 
(0.57) 

Med. HH 
Inc. 

-2.02e-05 
(1.40e-05) 

8.57e-06*** 
(1.23e-06) 

6.26e-06* 
(2.84e-06) 

 6.55e-06* 
(1.21e-06) 

3.94e-06** 
(1.23e-06) 

-7.80e-06 
(1.73e-05) 

-3.53e-
06 

(9.47e-
06) 

-1.60e-05 
(1.92e-05) 

Pop. 
Dens. 

   -1.80e-04*** 
(1.32e-05) 

     

CDD 4.32e-04 
(1.59e-04) 

-5.22e-04*** 
(1.39e-05) 

-3.20e-04*** 
(3.22e-05) 

3.70e-04*** 
(7.95e-05) 

-2.06e-04*** 
(1.23e-05) 

 -1.09e-04 
(1.96e-04) 

-1.44e-
04 

(1.07e-
04) 

-3.27e-04 
(2.16e-04) 

HDD      -1.56e-05** 
(5.77e-06) 

   

AIC 15523 3465.1 7632.9 11178 2946.8 3740.9 16567 13586 16444 

Adj. or 
Pseudo 

R
2
 

0.01 0.44 0.06 0.09 0.13 0.01 0.04 0.13 0.05 

Model LRM LRM LRM GLM 
 

LRM LRM GLM 
 

LRM GLM  

Significance Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 
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As shown in Table 2, I controlled for income instead of dropping it entirely, noting that I 

found very weak correlation between urbanization and income; also, previous works suggest 

caution in emphasizing this relationship (Bloom et al. 2008).  But to further check the 

robustness of my conclusions, I looked at the results when income is dropped from the equation.  

The coefficients for the geographical types changed (i.e., estimates for per capita emissions by 

MSA level changed) but I still did not find enough statistical evidence to suggest relationship 

between urbanization and total scope 1&2 emissions. 

Figure 1 summarizes predicted per capita emissions by sector using models specified in 

Table 2.  As shown, the mean total scope 1&2 in central counties, 22.8 tons CO2/year, is slightly 

lower than that of outlying and nonmetropolitan counties – 23.4 and 22.9 tons CO2/year, 

respectively – but the spread of central county emissions values is much wider.  Table 3 

summarizes ratios of estimated per capita emissions by both sector and geographic type. 

 

 
Figure 1. Total Scope 1+2 and Sector Per Capita Emissions by Urbanization Level in the U.S. 

(Y2002). Bars show mean per capita emissions while error bars show 95% confidence interval values 
obtained using reduced GLM (GLM 2). [Central (N = 488), Outlying (N = 300), Nonmetropolitan (N = 

1686)]. Per capita air transportation emissions were omitted due their very low values (< 0.2 for all county 
types). 
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Table 3. Comparison of Per Capita Emissions by Urbanization Level [Cell Values = ratio (row/column) of 

average county type emissions; Red: Row > Col, Green: Row < Col; Grey: NS difference]  

  

 

At the aggregate level, more urban counties have significantly higher emissions for all 

sectors with the biggest difference between urbanization levels in electricity consumption, 

commercial, and transportation.  Electricity consumption (36% to 50%) and onroad 

transportation (22% to 29%) constitute over half of total scope 1&2 emissions.  Per capita 

emissions exhibit a different profile for the different geographic type as discussed above, with 

central county per capita onroad transportation emissions about 0.7 – 0.8 that of less urban 
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counties while electricity consumption in metropolitan counties (central and outlying) have 

electricity consumption per capita emissions about 1.4 times that of rural counties.  

Figure 2 shows variation in per capita emissions given population density.  Similar to the 

empirical findings, these trends generally show a decrease in per capita transportation 

emissions with increasing density; however, emissions per capita for buildings trend upward 

with increasing density.   Marginal changes for the transportation and buildings sectors decrease 

significantly around 300 persons/sq. mi. (log(300) ~ 2.5) and 100 persons/sq. mi. (log(100) = 

2).  I did the same for scope 1&2 per-capita emissions versus population density and found that 

decrease in marginal emissions become marginal at about 600 persons/sq. mi.  While the 

uncertainty and variation in these data are large, these trends indicate there could be 

diminishing marginal changes to emissions with increasing population density and such 

changes vary by end-use sector.  Fragkias et al. (2013) recently reached similar conclusions with 

respect to total MSA size, where total emissions and population were found to scale 

proportionally for a cross-sectional analysis of MSA emissions from 1999-2008.  This evidence 

calls for further investigation and more work on figuring out the extent and form of urbanization 

that is sustainable. 

These results highlight the importance of considering metropolitan dynamics in the 

context of local climate action planning.  Central counties often serve as regional centers of 

commerce (higher commercial sector emissions), which induces regional transportation 

demands from trips originating in outlying and non-metropolitan counties.  Regional land use 

planners may be interested in shifting commerce to outlying and non-metropolitan counties 

with the intent of reducing transportation demands in these counties.  However, this may 

increase commercial sector emissions in outlying counties with unclear implications for 

transportation and commercial emissions in central counties.  The data I used are limited to 

cross-sectional analyses for a single year; thus the temporal dynamics of such land use change 
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remain unclear.  Significantly more empirical data would be required for a time-series (panel) 

regression. 

 

 

Figure 2. Population Density versus a. transportation sector scope 1 emissions and b. emissions from the 
buildings sectors plus all scope 2 emissions (excluded Wilcox County, AL because of outlier per capita 

emissions value > 2, 000 tons/year) 

 

I also emphasize the importance of uncertainty in local emissions estimates (“GHG 

inventories”) for planning emissions reductions.   Assigning the various reported emissions 

factors at the county level, I found an average change from the base case (using NERC emissions 

factors) of about 13 to 15%.  Thus, similar to other studies, I find using inappropriate emissions 

factors may be misleading when measuring and planning emissions reductions at the local scale 

(Ackerman and Sundquist 2008, Weber, et al 2010, and Marriott and Matthews 2008; 

Blackhurst, et al 2010). This partial accounting of uncertainty in total emissions is well within 

the range of planned GHG reduction targets (ICLEI 2012), thus complicating planners' ability to 

set representative baseline emissions and to benchmark changes to emissions.  Thus, planning 

methods that do not reflect inherent uncertainty in baseline or expected emissions factors may 

be misleading.  
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Future work could include estimates of Scope 3 emissions to provide a more 

comprehensive estimate of the GHG implications of urbanization; however, estimates of 

scope 3 emissions of similar empirical quality or missing and unlikely to be available 

soon.  Nevertheless, one would expect total scope 3 emissions to be higher for urban 

systems given the more intensive material requirements for urban infrastructure (Minx, 

et al. 2013).  My regression results show that per capita scope 1&2 emissions do not differ 

by urbanization level; it is likely that when scope 3 emissions are included, per capita 

emissions in more urbanized counties could actually be much higher, on average, 

compared to less urban counties.  

Given that scope 1&2 emissions production rate in more urban counties are not 

significantly different from that of less urban ones and population is concentrated in 

urban counties, significant national emissions reduction could be achieved if efforts are 

focused on the 500 U.S. central counties.  

There are several ways to reduce CO2 emissions – both from the supply and 

demand side.  I choose to focus on estimating CO2 emissions of electric vehicles further 

for the following reasons.  About 22% of emissions come from transportation.  However, 

the electric vehicles link the transportation emissions to electric consumption emissions, 

with the latter currently making up about 50% of central county emissions, on average.  

Electric vehicle use moves transportation emissions from scope 1 to scope 2.   So I want 

to investigate whether switching form gasoline to electric vehicles will help reduce 

transportation CO2 emissions.  Moreover, electric vehicle development and wider 

adoption have received sustained policy support from the local to the supranational level 

as well as substantial investment from the private sector (e.g., automobile 

manufacturers, battery manufacturers).  Because of this support, electric vehicle sales 

have been increasing consistently since introduction in 2010.  It is one of the major 
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alternative fuel vehicles that are in widest use today along with E85, propane, and 

compressed natural gas.   

In the following chapters, I investigate the locational life cycle emissions of 

electric vehicles throughout the U.S. to verify the claim that electric vehicles reduce 

transportation CO2 emissions, especially in urban areas.  With the locational life cycle 

assessment results, I aim to determine where in the U.S. can electric vehicles contribute 

to bigger CO2 emissions reductions.  
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3 Policy and Market Background on Electric Vehicles in the 

U.S. 

 Policies relevant to vehicle electrification in the U.S. include those that facilitate 

research and development of electric vehicle technology, battery research and 

development (particularly to reduce cost), promote infrastructure readiness for electric 

vehicle adoption, and reduce cost of purchase or ownership of EVs.  A highly intertwined 

policy area is the decarbonization of the U.S. electricity grid.  In this section, I provide a 

general discussion of the state of policy support for vehicle electrification in the U.S., 

historical background and future vehicle electrification related policies.  I also present 

electric vehicle sales data from December 2010 to July 2014 and forecast trajectory of 

electric vehicle adoption until 2020.  

3.1   Major Policies  

 About four decades ago, the U.S. Congress passed a law to expedite wider use of 

electric and hybrid vehicle technology, called the “Electric and Hybrid Vehicle Research, 

Development, and Demonstration Act of 1976” mainly in the interest of national security, 

stability in foreign policy, and economic well-being of the country (U.S. Government 

Printing Office 2014).  The Congress further justified this Act by citing additional 

advantages of the electric and hybrid vehicle technology such as reduced air and noise 

pollution from cars, use of existing electric generating capacity if vehicles are charged 

during off-peak hours, and concentrated source of pollution (i.e., electric plants), making 

pollution more tractable and easier to control.   

 In the same decade, the Clean Air Act (CAA) of 1970/1977, amended in 1990, 

conferred power and responsibility to the Environmental Protection Agency to reduce air 

emissions form stationary (includes power plants) and mobile sources (U.S. Government 

Printing Office 2014).  While electricity production and transportation made up about 
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32% and 28% of U.S. 2012 emissions, respectively, emissions level from these two 

sources have decreased sharply since the implementation of the CAA (EPA 2014).  The 

EPA recently proposed the Clean Power Plan which provides guidelines at the state level 

for reducing CO2 emissions from fossil-fueled power plants with the goal of reducing 

power sector CO2 emissions by 30% as well as smog levels by over 25% by 2030 from 

2005 levels (EPA 2014).   

 Policies such as the Clean Air Act, which is designed to control emissions from 

both stationary and mobile sources, have been instrumental in reducing emissions from 

new power plants and prove the ease of control through regulation of emissions related 

to electricity consumption.  On the other hand, the Corporate Average Fuel Economy 

(CAFÉ) has also achieved success in reducing tailpipe emissions by inducing the increase 

in U.S. average fleet energy efficiency.  This policy is also expected to induce the 

production of electric vehicles to meet vehicle efficiency targets.  

3.2   Federal, state, and local policies on electric vehicles 

  Subsidies and programs to promote increased use of electric vehicles are in place 

at the federal, state , and local levels.  At the federal level, a tax credit is provided for new 

qualified plug-in electric drive motor vehicle that draws propulsion using a traction 

battery that has at least five kilowatt hours (kWh) of capacity, uses an external source of 

energy to recharge the battery, has a gross vehicle weight rating of up to 14, 00 pounds, 

and meets specified emission standards.  The minimum credit amount is $ 2, 500 and 

the credit may be up to $ 7, 500, based on each vehicle’s traction battery capacity and the 

gross vehicle weight rating.  The credit will begin to be phased out for each manufacturer  

In the second quarter following the quarter in which a minimum of 200, 000 qualified 

plug-in electric drive vehicles have been sold by that manufacturer for use in the United 

States.  The tax credit applies to vehicles acquired after December 31, 2009, through the 
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American Taxpayer Relief Act 2012,  (U.S. GPO 2014).   

  A map of subsidies for electric vehicle ownership by state is shown in Figure 3.  

State subsidies range from $ 389 (Iowa) to $ 7, 500 (West Virginia).  Federal and local 

government partnership is shown through the Clean Cities Project of the Department of 

Energy received over $ 8.5 M of funding to help communities in planning for wider 

adoption of plug-in hybrid electric vehicles (PHEV).  The Clean Cities Program aims to 

facilitate access to PHEV charging infrastructure.  Participating states are shown in 

Figure 4.   

 
Figure 3.  State Incentives for Electric Vehicles (Source: DOE Alternative Fuels Data Center 

(AFDC) 2014) 
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Figure 4.  Clean Cities Project Fund Recipient for PHEV Adoption (Source: DOE 2011) 

  A complete list for both federal and state laws and regulation, programs, and 

subsidies that support vehicle electrification can be accessed in DOE AFDC 2014.   

  This list shows that CA and other states in the above maps have the most 

aggressive vehicle electrification policies ranging from incentives, increased charging 

infrastructure, access to HOV lanes, to parking permits. 

3.3  Market Background 

 Plug-in hybrid electric vehicle (PHEV) and battery electric hybrid (BEV) sales 

data start in December 2010 with the Nissan .  The Argonne National Laboratory (2014) 

reported rapid increase in electric vehicle sales from December 2010 through April 2014 

(see Figure 5).  The Chevrolet Volt, Toyota Prius PHEV, Nissan Leaf, Tesla Model S, and 

Ford Fusion Energy (in order of percentage sales) constitute over 95% of all sales as of 
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20142.  Current electric vehicle owners indicate high level of satisfaction with high 

inclination for purchasing another electric vehicle at a level higher than other vehicle 

types (JD Power 2012).  Although electric vehicles only constitute about 1.3% (3.4% with 

HEVs) of total car sales as of date (ANL 2014), data point to an optimistic outlook for 

mass electrification of vehicles.  

                                                           
2 Complete electric vehicle sales data can be requested from ANL (ANL 2014). 
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(a) Electric Vehicle Sales 

 

(b) Electric Vehicle Market Share 

Figure 5. a) Electric Vehicle Sales from December 2010 - April 2014 (Source:  ANL 2014 with 
labels revised for legibility)  b) Market share by electric vehicle from December 2010 – April 2014 

(Data Source:  ANL 2014) 

 

Ford C-Max/Fusion Energi (14%) 

Toyota Prius PHEV (12%) 

Nissan Leaf (23%) 

Chevrolet Volt (14%) 
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Figure 6. Light duty vehicle sales data (1999 - 2013) and forecast methods (Data source:  ANL 

2014) 

 

Meanwhile, Figure 6 shows historical data (1999 – 2013) and forecasting 

methods (2014 – 2020) on light-duty vehicle sales.  I estimated light-duty vehicle (LDV) 

sales for three cases – low, mid, and high. In the mid case, I assume that LDV sales will 

replicate the stable annual sales exhibited before the U.S. financial crisis of 2007 – 2009, 

which hovered around 17 M units per year.  For a high sales scenario, I assume that the 

growth from 2010 – 2013 will continue until 2020 and for this, I use a fitted line for data 

from 2009 – 2013.  For the low case, I assumed that the average percentage change in 

LDV sales (i.e., ~ 8%) from 1970 - 2013 will hold true from 2014 – 2020. 

Based on car sales data from ANL 2014, car sales, has been, on average, 50% of 

total LDV sales from 1999 to 2013.  Moreover, car and LDV sales as of first half of 2014 is 

higher than it was the same period in 2013.  Unless a sudden market disturbance 

happens, 2014 car sales is likely to hit an 8M mark (i.e., LDV sales will likely be close to 

16M).  Data for the past 5 years exhibit a pattern different to sales pattern from 1990 to 

2013 where there seems to be a seven-year parabolic trend in car sales with 7-year 

average decreasing since 1990 by an average of 8%.  If we were to project this pattern 

LOW Forecast: Avg. % Change in LDV 
Sales ~ 0.1% Dec. 

HIGH forecast:  Fitted line from 

2009 - 2013 

MID forecast:  16.8 M/yr 
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from 2014 to 2020, sales at the end of 2014 should be lower than 2013, with car sales 

down to 6.5M and LDV sales to about 13M by 2020.  However, given the optimistic trend 

from recent years, policy support, and lower deliquency rates in loan payments, and  new 

developments in the car industry, I think that in the next seven years, the mid case of 

levelling off at ~ 17 M and the high case of continued car sales increase are more likely, 

with the latter having a higher likelihood.  The resulting LDV sales forecasts are shown in 

Figure 7. 

 

Figure 7.  LDV sales forecast (2014 - 2020) 

 

To forecast electric vehicle sales, I assume three levels of average electric vehicle 

annual sales as a percentage of LDV sales for the period of 2014 - 2020 – High:  4% per 

year (Deutsche Bank 2008);  Mid: 2% per year (Boston Consulting Group 2010); and 

Low: 0.6% per year (JD Power 2009).   Cumulative electric vehicle sales for these three 

cases and the three LDV sales forecasts are illustrated in Figure 8.  Based on these 

estimates, electric vehicle sales in the high case will hit close to the 1M unit goal declared 

Fitted Line (2009 – 2013) 

Avg. of 16.8 M units/year 

8% Avg. Annual Sales Dec.  
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by President Obama in his 2011 State of the Nation Address in 2016, a year later than the 

2015 target.  These sales are subject to many factors such as a potential car bubble that 

may burst soon because of the low interest rates that autodealers have been giving out to 

buyers.  This may result in future EV sales that are even lower than my low scenario.  On 

the flip side, the economy has been growing and sustained incentives and increased 

policy support for facilitating EV adoption such as charging infrastructure investments, 

parking and HOV lane privileges may boost EV sales even higher than my high case.  The 

growth in EV use is currently not as fast as was desired but evidence points to a more 

optimistic market trajectory.  

 

Figure 8. Cumulative electric vehicles sales (2014 - 2020) - High:  high LDV sales and 4% annual 

increase in electric vehicle sales; Mid: mid LDV sales (i.e., level off at 17M) and 2% annual 

electric vehicle sales increase; and Low: low LDV sales and 0.6% annual electric vehicle sales 

increase. 

 

HIGH:   4 M 

MID:     .8 M 

LOW:   .8 M 
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4 A Characterization of Regional Variation in CO2 Emissions 

Across the United States:  Where should we have electric 

vehicles?3 

4.1 Introduction  

Much attention has been provided to comparisons between electric vehicle (EV) 

and gasoline vehicles greenhouse gas (GHG) emissions e.g.: [Zivin et al (2014), Faria, R. 

et al (2013), Marshall, B. M. et al (2013), Sharma, R. et al (2013), Yawitz et al. (2013), 

Anair & Mahmassani (2012), Hawkins et al. (2012), Ma et al (2012), Kelly, J. et al (2012), 

Raykin, L. (2012), Michalek et al. (2011), Axsen et al (2011), Peterson et al (2011), Huo, 

H. (2010), Siosanshi & Denholm (2009), Elgowainy et al. (2009), Samaras & Meisterling 

(2008), EPRI (2007), Parks et al. (2007), Stephan and Sullivan (2007) and Matsuhasi et 

al. (2000)].  Most of these works suggest that a significant factor when comparing plug-

in electric vehicles and gasoline vehicles is the magnitude of emissions associated with 

electricity production.  

Most of the literature relies on a single electricity production emissions factor, or 

conducts sensitivity analyses to grid emissions factor over a range of power plant types 

[Michalek et al. (2011) and Samaras & Meisterling (2008), EPRI (2007)]. EVs may have 

higher or lower emissions than gasoline vehicles depending on what type of power plants 

respond to the increased demand, which varies by charging location and time of day. 

These studies covered varying life cycle scopes.  Yawitz et al 2013 covered vehicle 

and battery manufacturing as well as vehicle use while Anair & Mahmassani 2012 and 

EPRI 2007 only covered vehicle operation energy use.  Different assumptions were made 

                                                           
3 Submitted to Transportation Research Board (TRB) for presentation, co-authored with J 
Michalek, C Hendrickson, and I Azevedo 
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on plug-in hybrid electric vehicles (PHEV) utility factors, or the average portion of 

distance traveled on electricity. 

  
                                  (a)             (b) 
Figure 9. (a) EV Ratings comparing Nissan Leaf to gasoline vehicle using 2009 eGRID subregion 
avg. emission factors [Violet = EV is comparable to gasoline vehicle with 31-40 mpg); Blue = EV 
is comparable to gasoline vehicles with 41-50 mpg; and Light Blue = EV is comparable to 
gasoline vehicles with >51 mpg)] (Anair & Mahmassani (2012)); (b) Leaf vs Toyota Prius HEV 
using 2010 State Average Emissions Factor (Green: Leaf is lower emitting), Source: Yawitz, et al. 
(2013)) 

 

 

Table 4 summarizes published reports that have focused on a regional 

comparative analysis of electric and gasoline vehicle emissions in the U.S., and Figure 6 

shows maps highlighting how different the implications are from different analyses.  

These studies covered varying life cycle scopes. Yawitz et al 2013 covered vehicle and 

battery manufacturing as well as vehicle use while Anair & Mahmassani 2012 and EPRI 

2007 only covered vehicle operation energy use.  Different assumptions were made on 

plug-in hybrid electric vehicles (PHEV) utility factors, or the portion of distance traveled 

on electricity on average.  
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Table 4. Summary of Studies Comparing the GHG Emissions of EVs and Gasoline Vehicles in U.S. Regions 

 Zivin et al (2014) Yawtiz et al. (2013) Anair & Mahmassani 
(2012) 

EPRI (2007) 

Regional definition 
used: 

NERC Regions 50 States 26 eGRID subregions 13 NERC regions 

Electricity emissions 
factor: 

Marginal regional 
consumption 

Average regional generation  Average regional generation 
covering transmission and 
upstream loss (286 - 983 g 
CO2e/kWh) 

Regional bottom-up model 
(573 g CO2e/kWh in 2010; 
97 – 412 g CO2e/kWh in 
2050) 

Electric vehicles 
considered: 

2012 Nissan Leaf (0.34 
kWh/mi) and 2012 
Chevrolet Volt (0.36 
kWh/mi) 

2013 Nissan Leaf 
(0.29 kWh/mi); other EVs in 
the market (EPA 2013) 

2012 Nissan Leaf 
(0.34 kWh/mi); Mitsubishi “i” 
(0.3 kWh/mi); Chevrolet Volt 
(0.36 kWh/mi, 37 mpg) 
 

2010 PHEV (10, 20, 40): 
(0.312 kWh/mi, 37.9 mpg) 
 

Electric vehicles 
utility factor: 

Not stated PHEV: 0.5 Chevrolet Volt: 0.64 PHEV10: 0.12 
PHEV20: 0.49 
PHEV40:  0.66 

Gasoline emissions 
factor 

8.9 kg CO2/mi 11.8 kg CO2e/gal 11.2 kg CO2e/gal 11.1 CO2e/gal 

Gasoline or hybrid 
vehicles considered: 

Avg. gasoline (21.7 mpg); 
Avg. comparable economy 
car (31 mpg); 2012 Toyota 
Prius Hybrid (50 mpg) 

Toyota Prius Hybrid (50 
mpg);  
Ave. new gasoline cars (25 
mpg); other gasoline cars in 
market (EPA 2013) 

Toyota Prius Hybrid (50 
mpg); Ave. new gasoline 
vehicle (27 mpg); other 
gasoline cars in market 
(combined city/highway fuel 
economy from EPA 2012) 

Ave. 2010 ICEV: 24.6 mpg 
Ave. 2010 HEV: 37.9 mpg 
 

VMT: 35 mi/day 50,000 and 100,000 
mile/vehicle 

166, 000 mi/vehicle 12, 000 mi/yr 

Scope of emissions 
covered: 

Gasoline combustion; 
production of electricity 

WTW for gasoline; 
upstream and production for 
electricity; and Life Cycle 

Well-to-Wheels (WTW) for 
gasoline; upstream and 
production for electricity 

WTW for gasoline; 
upstream and production for 
electricity 

Year of emissions 
estimates: 

2007-2009 2010, 2012 2009 2010-2050 

Data sources: CEMS, EPA EIA, GREET 2009 eGRID, GREET NEMS, MOBILE6 

Findings:  PEV is lower emitting only 
in WECC and Texas and 
higher emitting than the 
Toyota Prius in MRO.  
PEVs have higher 
emissions when charged 
from midnight – 5 am. 

The HEV (Prius) has lower 
emissions than the BEV 
(Honda Fit) in 39 states 
over the first 50, 000 miles. 
Over 100, 000 miles, the 
BEV is better in ID, OR, VT, 
and WA. 

The EV (Leaf) is lower 
emitting than the average 
gasoline vehicle throughout 
U.S.. The EV is better than 
the Prius in about half of 
populated America.  

In low to high GHG grid mix 
and market penetration 
levels, PHEVs have lower 
emissions than both hybrid 
(by 7%-46%) and 
conventional gasoline 
vehicle (by 40%-605%). 
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The key issues in assessing regional variation are (a) regional boundaries of 

analysis, (b) whether generation or consumption based emissions factors are used, and 

(c) whether marginal emissions factors for electricity (MEFs) or average emissions 

factors (AEFs) are used. Here, I describe the concerns associated with each of these 

issues. The electricity emissions factors assumed for analyses will depend heavily on the 

regional boundaries assumed. For example, Weber et al. (2009) emphasize that studies 

assessing regional emissions should assess robustness of findings to different regional 

definitions. However, there is yet no good way to track exactly the emissions associated 

with generation at different regional scales. Regional studies tend to model emissions 

associated with electricity using data on average regional generation, since data are 

readily available on generation and emissions and because of the policy jurisdiction of 

decision makers, e.g.: [Yawitz et al 2013, Anair & Mahmassani 2012].  However, given 

the electricity trades across regions, consumption of electricity in a location may lead to 

an increase in emissions in a different location. Zivin et al. (2014) compared electricity 

generation and demand per NERC region and showed that the MRO, NPCC, FRCC, 

WECC, and TRE consume more than they produce while SERC, RFC, and SPP are net 

exporters.  Most existing studies use average emissions factors for electricity, with the 

exception of EPRI (2007) and Zivin et al. (2014).  

To assess the emissions implications of adding new electric vehicle (EV) charging 

load in a particular region of the US electricity grid at a particular time, one would 

estimate marginal emissions associated with increased generation at the power plants 

that respond to meet the new demand.  This is difficult to do in practice because the 

electricity grid is a complex network, moving supply from geographically diverse 

generators to geographically diverse demand locations within and between regions 

dynamically while responding to economic signals and technical factors such as ramp 

rates, downtime, frequency regulation, and transmission constraints.  It is generally 
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impossible to know in practice which power plant(s) will ramp up production in 

response to a new load at a given time. 

Given this difficulty, several studies of regional EV emissions employ readily 

available estimates of average regional generation mix instead (see Table 5): Anair and 

Mahmassani (2012) use average generation emissions within each NERC subregion, and 

Yawitz et al. (2013) use average generation emissions within each state.  But average 

emissions rates in a region vary substantially from the change in emissions that a new 

load will create for two reasons: (1) many baseload plants and non-dispatchable 

renewable generators, which make up a substantial portion of average generation, will 

not change output in response to new load, and (2) electricity is traded across regional 

boundaries, so the profile of emissions produced in a region is not necessarily a good 

measure of the emissions produced to satisfy demand in that region. 

Figure 7 illustrates both of these issues for a snapshot in time.  This simplified 

example includes two regions, each with generators that produce enough supply to 

satisfy the baseload demand. In region 1 the nuclear generator is fully utilized and the 

coal generator is partly utilized to satisfy baseload demand. If new EV load were added in 

this region, the coal generator would increase production to satisfy the new load. While 

average generation in this region is a mix of nuclear and coal power sources, the 

marginal generation associated with supplying new EV load is 100% coal.  

Region 2 has only a nuclear generator that is fully utilized in supplying the 

baseload demand, so any new EV load would need to be satisfied by importing electricity 

from a neighboring region. While region 2’s average generation emissions factor would 

be near zero, marginal emissions associated with supplying new EV load in the region 

are those associated with coal generation from the neighboring region. These examples 

show why emissions associated with marginal consumption in a region may differ 
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substantially from emissions associated with average generation in that region per 

additional unit of electricity demand. 

 

Figure 10: Illustration of the differences between emissions associated with average generation, 

marginal generation, and marginal consumption 

 

 

Table 5: Studies assessing regional variation in electric vehicle charging emissions in the US  

(Siler-Evans et al. (2012) study added for comparison) 

 

There are two broad approaches to assessing marginal consumption emissions 

factors: bottom up and top down. A bottom up approach models power plant operations 

and computes how generators should behave in response to a load profile in order to best 

respond to economic signals (e.g.: minimize cost). Such studies include simple dispatch 

supply curves or complex optimization models [Axsen et al (2011), Peterson et al (2011), 

Siosanshi & Denholm (2009), Hadley & Tsvetkova (2008), Dallinger et al (2013), Foley 

et al (2013), and Weis et al (2014)] to model generator response to load profiles. 

Region 1

Baseload

Marginal 

generation

Existing 

generation 

mix

Demand Supply

Region 2

Baseload

Existing 

generation 

mix

Demand Supply

Marginal 

generationNew 

Load

New 

Load

Marginal 

consumption

Marginal 

generation

Average 

generation

NERC 

Regions

Zivin et al. 

(2014)

Siler-Evans et al. 

(2012)

NERC 

Subregions

Anair and 

Mahmassani 

(2012)

States
Yawitz et al. 

(2013)

W
it

h
in

 r
e

g
io

n

Emissions associated with



 

 36 

However, it is difficult to correctly model all of the factors that determine plant behavior 

in practice (e.g.: transmission constraints, ramping constraints, unscheduled 

maintenance, weather, regulation, etc.) for a region large enough to capture all relevant 

factors in such an interconnected system, and there is generally a gap between model 

predictions and plant operation in practice  

The top down approach applies regression models to assess how generation has 

changed historically in response to changing load. Zivin et al. (2014) regresses 

generation in each interconnect (Eastern Interconnect, Western Interconnect, and 

ERCOT) as a function of load in each NERC region for each hour of the day.  This 

approach has the advantages of avoiding error in estimating the portion of power 

generated by each plant that is not sold (e.g.: used on site) as well as regional variation in 

transmission losses.  However, it also captures all changes in generation that co-occur 

with changes in load, including some non-dispatchable renewable units (wind and solar 

generators), which generally produce the same output regardless of demand, and some 

buffered renewable units (hydroelectric generators), which can make limited shifts of 

generation timing in response to changes in load but generally produce the same total 

output regardless of marginal changes in load.  These factors may introduce bias to the 

marginal consumption emission factor estimates by attributing marginal generation to 

units that would not in practice change generation in response to new load. 

Siler-Evans et al. (2012) avoid this issue by considering only fossil fuel generators 

as marginal generators.  They regress change in emissions as a function of change in 

CEMS fossil generation for each hour and season in each NERC region.  However, the 

focus on marginal generation rather than marginal consumption misses the effect of 

trade between regions and the different transmission losses associated with marginal 
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load in each region, and the use of CEMS ignores generation from fossil generators 

smaller than 25 MW. 

In summary, to properly assess the emissions implications of adding new EV 

charging demand in a particular region, one should estimate marginal consumption 

emission factors. Zivin et al. (2014) attempt to do this directly for each interconnect, 

with some potential for bias due to the effects of renewable generators, and Siler-Evans 

et al. (2012) avoid renewable generators but focus on marginal generation rather than 

marginal consumption, ignoring interregional trade and regional variation in 

transmission losses.  Both estimates have potential sources of error, and we apply both 

to assess robustness of findings and compare to implications of prior studies using 

average generation emission factors. 

In this chapter, I assess the regional variation in electric and conventional vehicles 

CO2 emissions under a range of assumptions for regional boundaries, electricity 

emissions factors, and charging patterns.  Other factors that may influence vehicle 

emissions estimates are investigated in the next chapter. 

4.2 Data and Methods 

In this section, I explain the assumptions and data sources for daily vehicle miles 

travelled, vehicles considered and relevant parameters, charging time, and electricity 

emission factor.  Since I am performing a comparative life cycle assessment of the 

vehicles, I only included parts of the vehicle life cycle that differ for the vehicle types. 

These include vehicle upstream, parts assembly, and manufacturing; lithium-ion battery 

upstream and manufacturing4; gasoline upstream and combustion; and electricity 

                                                           
4 Lead acid battery is used in all vehicle types; thus, we excluded lead-acid battery manufacture 
and disposal from our analysis. 
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upstream, generation, transmission, and distribution.  I discuss here my method for 

estimating vehicle emissions per mile with focus on vehicle operation emissions.  For 

other life cycle stages, I obtained emissions rate data from veritable data sources such as 

published works, EPA, and GREET.  I summarize these data sources in Appendix V.   

4.2.1 Vehicles considered and key vehicle parameters 

For EVs, we focused on the Nissan Leaf (BEV) and Chevrolet Volt (PHEV) 

because they are the highest selling in their categories as of 2013 constituting 23% and 

12% of all 2013 EV sales, respectively and they have been in the market the longest 

(Argonne National Laboratory 2014).  Nissan Leaf also has the highest energy efficiency, 

at 0.29 kWh/mi, among EVs in the market (U.S. DOE 2014).  I compare these with the 

Toyota Prius HEV, the most efficient gasoline vehicle (at 50 mpg) and highest selling 

HEV (~44% of 2013 HEV sales) (ANL 2014).  I also compared the EVs to the sales 

weighted average car with fuel economy of 24.6 mpg (University of Michigan 

Transportation Institute 2013).  Relevant vehicle parameters such as all electric range 

(AER) and energy use as well as battery charge acceptance rate and capacity are 

summarized in Appendix VI.  

I assumed life cycle mileage to range from 100k to 150k miles with best estimate 

of 125k miles used for the base case analysis after considering estimates on battery and 

vehicle lifetime5.  I used a functional unit of distance traveled (mi).   

                                                           
5 Vehicle and battery lifetime depend on several factors such as use intensity, operating 
temperature conditions, and charging frequency [Axsen, J. et al (2008), Zhang et al (2006)].   
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4.2.2 Distance traveled 

Daily vehicles miles travelled (DVMT) were obtained from the National 

Household Travel Survey (NHTS) 2009 data set (NHTS 2009). These data were obtained 

through a sample of 26,000 households throughout the U.S. who were surveyed between 

March 2008 and May 2009. I extracted the DVMTs for over 76,800 automobile entries6.  

We show an empirical cumulative probability distribution (ECDF) of this Figure 8 and 

the AERs of the electric vehicles considered. The NHTS DVMT data set has an average of 

34.5 mi with a 5th and 95th percentile of 2.6 mi and 104 mi, respectively. As shown, about 

93% of the data have DVMT less than or equal to the Nissan Leaf AER (~ 84 mi). 

 

Figure 11. Empirical cumulative distribution function of DVMT by US automobiles 

 

4.2.3 Vehicle emissions per mile 

The average use-phase CO2 emissions per vehicle mile traveled,  [    ], (g CO2 

per mile) of vehicle type   using emissions factors set j in region   is computed as:  

                                                           
6 Part of NHTS 2009 used in this study was initially processed by Traut et al (2013) using data 
from U.S. Department of Transportation (2011). 
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 [ ̂   ]  ∑ [        ̂               (          )  ̂        ] ∑     

 ̂         is the hourly weighted electricity emissions factor for vehicle entry i  under vehicle 

type v using an electricity emissions factor j in region  ,  ̂    is the emissions factor for 

gasoline,    is the distance traveled by vehicle entry  ,          is the distance that vehicle 

entry i under vehicle type   travels using electric power,         is the energy use of 

vehicle   when driving on electricity (kWh/mi),       is the fuel economy of vehicle   

when driving on gasoline (miles per gallon), and       is the reciprocal of   . For gasoline 

vehicles,              .   

Miles traveled on electricity,        , for vehicle entry i of vehicle type v, are given 

by the following equations: 

        {                        

      is the AER for vehicle type v and    is the DVMT for vehicle entry i.   

4.2.4 Electricity emission factors 

I use several of emissions factors for electricity, and discuss how these 

assumptions affect our results. These are: 1) hourly consumption-based MEFs from 

Zivin, et al. (2014); 2) hourly generation-based marginal emissions factors (MEF) from 

Siler-Evans, et al.  (2012); 3) 2009 NERC regional average emissions factors (AEF); 4) 

2009 eGRID sub-region average emissions factors; and 5) 2009 state average emissions 

factors. All AEFs were obtained from eGRID (2011), and aggregated at the needed 

regional boundary levels.  
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A comparison of the electricity emission factors by time of day and for each 

NERC region is shown in Appendix VII.  Table 2 highlights key differences in the 

different emissions factors used. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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(g) 

 

(h) 

 

Figure 12.  Hourly Consumption-based (Zivin_MEF) and generation-based (SE_MEF) marginal 

emission factors by NERC region.  Lines show minimum and maximum eGRID subregion and 

state average emission factors (mineGRID, minST, maxeGRID, and maxST) in each NERC 

region as indicated by chart headings (e.g., Western Electricity Coordinating Council (WECC)).  

Error bars shw 95% confidence intervals of hourly MEFs. 

  

Table 6. Electricity emission factors considered in the analysis 

 
MEF from 

Zivin, et al. 
(2014) 

MEF from 
Siler-Evans, 
et al. (2012) 

2009 AEF 
(NERC) 

2009 AEF 
(eGRID 

Subregion) 

2009 AEF 
(State) 

Region: 
NERC 
regions 

NERC 
regions 

NERC regions 
eGRID 

Subregions 
State 

Consumption/ 
generation 

based 
emissions: 

Consumption Generation Generation Generation Generation 

Marginal or 
average 

emissions 
factors for 
electricity: 

Marginal Marginal Average Average Average 

 

In most cases, MEFs are lower than AEFs during peak load times, where natural 

gas is often the fuel used at the margin (Siler-Evans et al. (2012)). Also, hourly estimates 

for the consumption-based MEFs (Zivin, et al. 2014) vary more by hour and have wider 

uncertainty ranges, especially for the regions within the eastern interconnect, than the 

generation-based MEFs (Siler-Evans et al. 2012). This is presumably due to flow 

between regions but could also be biased by operation of renewable plants. 
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Discrepancies between generation- and consumption-based MEF values are least 

in the WECC and TRE regions where trading with other regions is limited.  It is 

contentious that MRO consumption-based values are much higher than generation-

based values (by up to 66%) when MRO is a net importer from regions that are less 

carbon-intensive. A potential explanation is that majority of the energy that MRO 

imports is supplied by coal power plants in neighboring regions (Zivin et al 2014).  

Using the MEFs, I computed the hourly weighted MEFs (WEF) for both 

convenience and delayed charging.  The WEF takes into account the time of the day and 

the duration that an EV is charged.  To determine the WEFs,          , we performed a 

Monte Carlo simulation (N=10,000) using the following formula and the marginal 

emission factor distribution summarized in Appendix VII, 

 ̂         ∑                 ̂            

where                 is the fraction of hour t that vehicle entry i of vehicle type v charges;  ̂        is the MEF for hour t, region r, using MEF set j; and     is the total charge time for 

vehicle entry i under vehicle type v. 

Both sets of MEFs only included emissions during power plant operation.   To 

compute upstream emissions, I extrapolated hourly marginal grid mix from Siler-Evans 

2012 and used emissions rate from GREET 2013 and NETL (2013).  Note that marginal 

grid mix was not available for consumption-based MEFs; thus, I estimate upstream 

emissions using generation-based marginal grid mix.  Details of this computation are 

provided in Appendix VIII. 
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4.2.5 Charging schemes and charge times 

I consider two charging schemes - convenience and delayed charging.  Under 

convenience charging scheme, we assume that vehicles start to be charged upon arrival 

to the home.  I obtained data on arrival time for each vehicle entry from NHTS (2009). 

For the delayed charging scenario, I assume that the vehicles start charging at 12am.  

The vehicle charge time,    , for vehicle type v if it were to travel the same miles 

as vehicle entry i, is given by: 

    {                                         

         is the time it takes to fully re-charge vehicle type v, assuming combined (45% 

city, 55% highway) vehicle fuel efficiency (DOE 2014). 

The national distribution of charging times under the convenience charging 

scheme assumption and the corresponding hourly MEFs are shown in Figure 10.  The 

left y-axis shows the percentage of charge time that occurs within each hour, as indicated 

on the x-axis.  The right y-axis shows the MEFs in kg CO2/kWh.  Under the convenience 

charging scenario, most of the charging (~80%) would occur within the period of 

4:00PM to 11:00PM.  
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Figure 13. Charge Time Distributions and Hourly Marginal Emissions Factors. Lines correspond 

to NERC regions while blue bar shows % of total charge time per hour. 

4.2.6 Monte carlo simulation and statistical analyses on vehicle emissions 

estimates 

I ran a monte carlo simulation (N=10,000) to estimate the vehicle emissions 

under different MEF estimation methodologies, charging scheme, marginal vs average, 

and regional boundary definitions. I summarize these scenarios in Table 7.   

Table 7. Summary of scenarios considered. 

 MEF versus 
AEF for 

electricity 

Consumption versus 
Generation 

Region Charging Scheme 

1 MEF Consumption NERC Convenience  

2 MEF Consumption NERC Delayed 

3 MEF Generation NERC Convenience  

4 MEF Generation NERC Delayed  

5 AEF Generation NERC NA 

6 AEF Generation eGRID NA 

7 AEF Generation State NA 

After estimating the vehicle emissions under the seven scenarios described above, 

I performed statistical comparisons of the vehicle emissions estimates to test whether 

 

5a) Siler-Evans et al. (2012) 

 

5b) Zivin et al. (2014) 
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the results are significantly different at 5% significance levels.   I summarize the 

hypotheses and the corresponding tests in Table 8. 

Table 8.  Statistical comparison of vehicle emissions estimates 

 Null Hypothesis Alternative 
Hypothesis 

Test 

1a Convenience - Delayed = 0 
(Consumption-based marginal 
emissions estimates) 

Convenience – 
Delayed < 0;  

Convenience – 
Delayed > 0 

Paired one-tailed t-
test 

1b Convenience – Delayed = 0 
(Generation-based marginal 
emissions estimates) 

Convenience – 
Delayed < 0;  

Convenience – 
Delayed > 0 

Paired one-tailed t-
test 

2a Consumption-based  Generation 
-based = 0 (Convenience 
charging) 

Consumption-based - 
Generation-based ≠ 0  

Paired two-tailed t-
test 

2b Consumption-based – 
Generation -based = 0 (Delayed 

charging) 

Consumption-based - 
Generation-based ≠ 0  

Paired two-tailed t-
test 

3a-d NERC Average Emissions 
Estimates = Marginal Emissions 

Estimates (Generation- and 
consumption-based for both 
delayed and convenience 

charging) 

NERC Average ≠ 
Generation-based 

One-sample two-
tailed t-test 

4a-d eGRID Average Emissions 
Estimates = Marginal Emissions 

Estimates (Generation- and 
consumption-based for both 
delayed and convenience 

charging) 

eGRID Average ≠ 
Generation-based 

One-sample two-
tailed t-test 

5a-d State Average Emissions 
Estimates = Marginal Emissions 

Estimates (Generation- and 
consumption-based for both 
delayed and convenience 

charging) 

State Average ≠ 
Generation-based 

One-sample two-
tailed t-test 

 

4.3 Results and Discussion 

Marginal life cycle emissions estimates, as summarized in Table 9, indicate 

significant variation in EV emissions by region.  For example, Nissan Leaf average life 

cycle emissions range from 171 – 213 g CO2/mi in WECC to 298 – 400 g CO2/mi in 

MRO.   
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Table 9.  Summary of Nissan Leaf marginal life cycle emission estimate statistics (normally 
distributed with mean and standard deviation, N=10,000) by region and estimation method 

 

Comparison results to the lowest emitting gasoline vehicle, Toyota Prius HEV, 

and sales-weighted average ICEV, thus, vary by region. 

For each NERC region, Figures 6a to 6h show the life cycle emissions estimates 

for the Nissan Leaf CO2 emissions per mile traveled, under different scenarios (colored 

bars) compared to that of Toyota Prius HEV (green line, 238 g CO2/mi) and sales-

weighted average ICEV (red line, 468 g CO2/mi).  The bars represent the mean Leaf life 

cycle emissions for different estimation methods and charging times.  The marginal 

emission estimate error bars show the 25th and 75th percentiles reflecting the uncertainty 

in MEF values, battery emission rates, vehicle, and fuel upstream emissions.  Average 

emission bars show average Leaf emissions by NERC region while error bars for 

subgerion and state correspond to lowest and highest eGRID subregion and state Leaf 

emissions estimate for each NERC region. 

Region 
Consumption, 
Convenience 

Consumption, 
Delayed 

Generation, 
Convenience 

Generation, 
Delayed 

FRCC 220 (42) 244 (24) 214 (16) 228 (13) 

MRO 352 (45) 400 (49) 298 (18) 344 (13) 

NPCC 245 (31) 200 (37) 210 (15) 206 (13) 

RFC 219 (25) 278 (21) 274 (16) 297 (13) 

SERC 218 (21) 238 (16) 264 (19) 285 (15) 

SPP 188 (37) 196 (46) 230 (16) 257 (22) 

TRE 185 (13) 205 (14) 212 (15) 228 (15) 

WECC 171 (14) 174 (15) 210 (14) 213 (14) 
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(6a) 

  
(6b) 

  
(6c) 

  
(6d) 
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(6e) 

  
(6f) 

  
(6g) 

  
(6h) 

Figure 6.  Nissan Leaf life cycle emissions (g CO2/mile) using alternative grid emission factors.  
Life cycle stages covered include:  Electricity production (blue);  Electricity upstream (red);  
Vehicle assembly & mnfg. (green); and Battery upstream & production (violet).  Error bars for 
marginal emissions show the 25

th
 and 75

th
 percentile values. Probability density plots for marginal 

emissions estimates are shown in Appendix IX.  Average generation bar heights show NERC 
region average emissions estimates while subregion and state error bars show lowest and 
highest eGRID subregion and state emissions estimates for each NERC region.  Green and red 
horizontal lines show average Toyota Prius Hybrid and Sales-weighted average emissions 
estimates.  Combined driving pattern (45% city and 55% highway) energy use from EPA 2014 
was used for all vehicles.  Values used to generate these graphs are shown in Appendix X. 

 

After performing t-tests to determine whether there is significant difference 

between electric and gasoline vehicles, I found that emissions estimates between vehicles 
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are significantly different in all cases but results under different estimation methods lend 

comparisons inconclusive in some regions (i.e., FRCC under delayed charging, NPCC 

under convenience charging, RFC under convenience charging, SERC under both 

charging conditions, and SPP under delayed charging).  I consider results to be 

inconclusive when consumption- and generation-based marginal emissions under the 

same charging scheme do not lead to the same conclusion.  For example, in the FRCC 

region, consumption-based delayed charging emissions estimate indicate that Leaf is 

higher emitting than the Prius Hybrid by 3%, on average, but generation-based delayed 

charging emissions estimates indicate that the Leaf is lower emitting by 4%, on average.  

Table 10 summarizes the results for Nissan Leaf comparisons with the Toyota Prius 

Hybrid and the sales-weighted ICEV.  Values indicate percentage differences in mean 

emissions estimates while colors indicate which vehicle was found to be lower emitting – 

green for Leaf and red for gasoline vehicle.   Statistical results for both consumption-and 

generation-based emissions estimates indicate that the Nissan Leaf is lower emitting 

than both the Prius Hybrid and sales-weighted average ICEV in Texas (TRE, 4% – 22%) 

and western states (WECC, 10% - 28%).   On the other hand, t-tests indicate that the Leaf 

is higher emitting than the Prius Hybrid under both convenience and delayed charging 

in northern central states (MRO, 25% - 68%), on average.   

Table 10.  Summary of average percentage emissions difference by region and estimation 

method computed as vehicle emissions difference divided by gasoline vehicle emissions.  Green 

indicates that the Nissan Leaf is lower emitting while red means that the gasoline vehicle (Toyota 

Prius Hybrid or sales-weighted ICEV) is lower emitting.  All comparisons are significant at 5% 

significance level. 

NERC 
Region 

Nissan Leaf vs. Toyota Prius Hybrid Nissan Leaf vs. Avg. ICEV 

Cons_ 
Conv 

Cons_ 
Del 

Gen_ 
Conv 

Gen_ 
Del 

Cons_ 
Conv 

Cons_ 
Del 

Gen_ 
Conv 

Gen_ 
Del 

FRCC 8% 3% 10% 4% 53% 48% 54% 51% 

MRO 48% 68% 25% 44% 25% 15% 36% 27% 

NPCC 3% 16% 12% 13% 48% 57% 55% 56% 

RFC 8% 17% 15% 25% 53% 41% 41% 37% 
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SERC 8% 0% 11% 20% 53% 49% 44% 39% 

SPP 21% 18% 3% 8% 60% 58% 51% 45% 

TRE 22% 14% 11% 4% 60% 56% 55% 51% 

WECC 28% 27% 12% 10% 64% 63% 55% 55% 

 

The t-tests summarized in Table 8 were performed to determine whether there is 

significant difference between results under different vehicle estimation methods.  Test 

results for the Nissan Leaf are summarized in Appendix XI.  Nissan Leaf comparisons 

were all found to be significantly different at 5% significance level, providing evidence for 

the following claims: 

1) Delayed charging (12am until vehicle is fully recharged) results in higher electric 

vehicle emissions except in the northeast (NPCC region) where the opposite is 

true; 

2) Generation- and consumption-based marginal emissions estimates are 

significantly different indicating the importance of considering electricity trading 

between regions in emissions factor emission estimates 

3) Marginal and average emissions estimates result in significantly different vehicle 

emissions estimates indicating the importance of considering temporal and 

spatial variation in electricity emissions as influenced by fluctuations in 

electricity demand; and 

4) Average emissions estimates differ significantly for different regional boundaries 

providing additional evidence for the importance of regional boundary definition 

even without considering temporal variation in electricity emissions. 

Convenience vs Delayed Charging.  Results show that conclusions may vary depending 

on the charging scheme. Under convenience charging, most charging occurs during peak 

system load times within which more expensive but cleaner energy sources are on the 
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margin. With the exception of NPCC, delayed charging (starting 12am until vehicle is 

fully charged) results in higher emissions ranging from 6% - 15% for generation-based 

and 2% - 28% for consumption-based emissions.  In the NPCC delayed charging results 

in lower emissions by up to 2% - 19%. In 2009, NPCC was composed of about 48% 

nuclear and hydro power (NPCC 2009, NPCC 2010). These sources have lower operating 

costs, thus, are used for base load. As a result, the more carbon-intensive energy sources 

is increased during peak hours, making convenience charging emissions higher in this 

region. 

Consumption- vs Generation-Based MEFs.  I found significant difference in the 

emissions estimates under consumption- and generation-based MEFs. Consumption-

based MEFs yield higher Leaf emissions in the FRCC (3% -7 %) and MRO (14% - 16%) 

while lower in other regions with percentage difference ranging from 3% – 31% 

(consumption-based values were used as denominator).  Estimates under two MEF sets 

are different enough to result in contradicting results as discussed above.  

Marginal vs Average emissions.  Marginal and average emissions estimates differ 

significantly.  Marginal estimates are higher in the MRO (7-34%) and NPCC (39-46%) 

regions while always lower in SPP (11-87%). In other regions, marginal emissions may be 

as much as 24% higher (SERC) or 28% lower (TRE), depending on assumptions for 

charging scheme and marginal emission factor method estimation.  These results 

provide evidence to the claim that the difference between marginal and average 

emissions is substantial and the magnitude and direction of difference vary across 

regions, but marginal emissions are also uncertain. EPRI (2007), which also used 

marginal emissions rates, found that PHEVs are lower emitting than the average HEV by 

7-46% and the average ICEV by 40-65% depending on assumed market penetration and 

grid carbon intensity.   EPRI 2007, however, did not provide a discussion of regional 
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emissions variation.  Anair & Mahmassani 2013 who estimated average Leaf emissions 

by eGRID subregion7, suggest that the Leaf is lower emitting in NPCC and eGRID 

subregions in SERC whereas I find that results in these regions are uncertain at best. 

Regional boundary definition.  I also find that average emissions estimates are sensitive 

to regional boundary definitions, similar to Weber et al (2010).  For example, state-

based Leaf emissions in WECC vary from 16 to 288 kg CO2/mi for Idaho and Wyoming, 

respectively, compared to NERC AEF estimates of 130 kg CO2/mi.  Similarly, estimates 

using eGRID subregion AEFs vary significantly from NERC regional AEF estimates. 

Using the former, Leaf emissions range from 90 to 248 kg CO2/mi in CAMX and RMPA, 

respectively.  This is a key reason why conclusions from existing locational comparisons 

of EVs and CVs vary significantly.  Yawitz et al 2014, using 2010 state EFs, conclude that 

the Leaf is better than the Prius in 14 states while Anair & Mahmassani 2013, which used 

eGRID subregion 2009 emissions rates, declared Prius to be lower emitting in more but 

sometimes different states.  Yawitz et al 2014 indicate that the Leaf is lower emitting in 

SD while I find the opposite since SD is serviced by the MRO region.  

I found the Chevrolet Volt is higher emitting in northern Midwest and FL and 

uncertain to reduce emissions in other regions.  Compared to the sales-weighted average 

ICEV8 the Volt can reduce emissions, on average by 27% (MRO) to 50% (WECC).  This is 

comparable to estimates by Samaras & Meisterling (2008) of 38% - 41%.  Results from 

Zivin et al 2014 indicate that the Volt is conclusively lower emitting than the average car 

and comparable economy car (at 31 mpg) in all regions except in MRO and only lower 

than the Prius Hybrid in the WECC region.  These results do not include other life cycle 

                                                           
7 eGRID subregions are subsets of NERC regions (EPA 2014).  List of eGRID subregions under 
each region are provided in Appendix 4. 
8 We used fuel economy of 24.6 mpg for the sales-weighted average light duty vehicles which was 
computed including cars, SUVs, vans, and pickup trucks (University of Michigan Transportation 
Institute 2014).   
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stages that are shown in this work to be significant and only compare consumption-

based marginal estimates to Toyota Prius Hybrid operation emissions point estimate.  

Further, I find that the Toyota Prius PHEV is lower emitting than the Prius Hybrid in FL, 

TX, and northeastern and western states.  The Prius PHEV is higher emitting in northern 

Midwest and unclear to reduce emissions in the rest of the country.  Summaries of the 

comparison results for the Chevrolet Volt and Toyota Prius PHEV versus the Prius 

Hybrid and sales-weighted average ICEV are provided in Appendix XI. All comparison 

results were significant at 1% significance level. 

Vehicle operation constitutes the largest part of life cycle emissions for all 

vehicles as shown in Figure 14.  Lithium-ion battery production emissions is significant 

for EVs, constituting 6% – 21% of total life cycle. Electricity upstream and vehicle 

assembly and manufacturing emissions have similar magnitudes.  Electricity related 

emissions for electric vehicles, thus, constitutes at least 75% of EV emissions. These 

numbers are comparable to past estimates (Samaras & Meisterling 2008,  Michalek et al 

2011,  Hawkins et al (2013)).  

 

Figure 14.  Life cycle emissions by vehicle type using marginal emission factors for Evs. 
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4.3.1 Summary of Results: EV vs gasoline vehicle comparison under regional 

varied and uncertain electricity emission factors 

In summary, I found that the emissions reduction potential of EVs is location-

dependent because of the regional differences in electricity emission rates due to grid 

mix variation.  I also found that for the same geographic location, emissions estimates 

may vary under different EF assumptions – regional boundary, MEF estimation method, 

charging scheme. Consumption-based estimates are higher in the north-eastern and 

north-central U.S. and lower in the rest of the country. Emissions using delayed charging 

(starting midnight) are higher due to more carbon-intensive marginal grid mix during 

non-peak hours.   

The uncertainty in emissions estimates can lend comparison of electric and 

gasoline vehicle inconclusive in some areas.  Considering the life cycle emissions, 

statistical tests indicate that the Nissan Leaf is lower emitting than the Toyota Prius 

Hyrbid in TX, CA, and other western states within the WECC region while the opposite is 

true in northern Midwest states.  In other regions, comparisons are inconclusive.  Both 

the Chevrolet Volt and the Prius PHEV were also found to be significantly higher 

emitting than the Prius Hybrid in the northern Midwest.  Results also indicate that the 

Prius PHEV is lower emitting than the Prius Hyrbid in most areas in the U.S.. 
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5 Sensitivity of Electric Vehicle CO2 Reduction to Urbanization 

5.1 Introduction  

 Studies mentioned in the previous chapter comparing emissions of electric and 

gasoline vehicles show different results as to the carbon reduction potential of electric 

vehicles.  These studies have differing assumptions on important factors such as 

electricity grid mix, driving pattern, vehicle miles traveled, and charging time.  In 

agreement with previous studies, I have showed in the previous chapter that the 

variation in emissions estimates due to differing electricity grid mix in the U.S. results in 

regionally different results and that uncertainty in electricity emission rates within in 

each region may lend unclear conclusions on the EV and gasoline vehicle comparison.  I 

kept driving pattern and DVMT distribution uniform across the country.  In reality, this 

is likely not the applicable.   

In this chapter, I factor in locational variation in driving pattern and DVMT 

distribution across the U.S. to computation of both EV and gasoline vehicle emissions 

estimates and determine how this changes conclusions on vehicle comparisons.  I relate 

the variation of these two parameters to geographic type (i.e., level of urbanization).  In 

the next chapter, I will tie the results from this chapter to findings in chapter 1 as a basis 

for policy recommendations.  

Emissions comparisons also differ depending on driving patterns, with PHEVs in 

urban driving conditions potentially reducing emissions by up to 60% relative to gasoline 

vehicles while resulting in marginal reductions in rural driving conditions [Karabasoglu 

and Michalek 2013].   However, most studies use data at the national scale and assume a 

uniform driving pattern and DVMT distribution.  Elgowainy et al 2009 performed a 
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analysis for both UDDS and HWFET9 driving patterns while others conduct sensitivity 

analysis but usually on electricity intensity (e.g., low, average, and high carbon 

electricity) [Michalek et al. (2011), Samaras, et al. (2008)].  Using data at the national 

scale may mask important insights that could be obtained at finer geographic scales 

where there is enough policy control for further development and adoption of electric 

vehicles.  A summary of important assumptions and data used in previous studies as well 

as the intended contribution of this chapter is provided in Table 8.  

I perform a locational comparison of electric and gasoline vehicle life cycle 

emissions in the U.S. at the county level, taking into consideration the combined effect of 

locational variation of electricity emission factors, driving pattern (city, highway or 

combined), vehicle miles traveled (VMT), and charging time.  

 

                                                           
9 UDDS = Urban Dynamometer Driving Schedule; and HWFET = Highway Fuel Economy Test; 
FUDS = Federal Urban Driving Schedule. The U.S. DOE 2013 defines City Driving as “…urban 
driving, in which a vehicle is started with the engine cold and driven in stop-and-go rush hour 
traffic.” and Highway Driving as “… a mixture of rural and Interstate highway driving with a 
warmed-up engine, typical of longer trips in free-flowing traffic.” 
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Table 8. Literature Review Summary on Electric Vehicle Emissions Reduction Benefits 

Work Geographic 
Scale of 

Comparison 

Electricity 
Emission 
Factors 

VMT Miles Traveled 
on Electricity 

Driving 
Pattern 

Life Cycle 
Scope 

Yawitz et al 
2013,  

State State 
Emissions 
Factors 
(Generation-
based) 

50, 000 miles 
and 100, 000 
miles 

50% EPA 2013 Vehicle 
Manufacturing 
and Use 

Michalek et 
al 2011,  

National U.S. Average 
weighted by 
power plant 
output and 5

th
, 

50
th
, and 95

th
 

percentile by 
power plant 
damage 
intensity 

National 
distribution 
based on 
NHTS 2001 
Data 

National 
Average 
computed from 
NHTS 2001 

UDDS Vehicle and 
Battery 
Upstream, 
Manufacturing
, and Use 

Siosanshi & 
Denholm 
2009,  

National Input Emission 
Rates for 
Texas 

Not specified Not Specified Not specified Vehicle Use 
(WTW) 

Elgowainy 
et al 2009,  

Regional and 
U.S. Average 

Generation per 
Region and 
U.S. Average 

National 
distribution 
based on 
NHTS 2001 
Data 

Utility Factors 
based on 
NPTS 1999 

UDDS and 
HWFET 

Vehicle Use 
(WTW) 

Samaras & 
Meisterling 
2008,  

National 3 Cases:  

U.S. Ave (670 
g CO2e/kWh) 

Carbon-
intensive (950 
g CO2e/kWh) 

Low-carbon 
(200 g 

National 
distribution 
based on 
NHTS 2001 
Data 

47% to 76% 
(based on 
NHTS 2001) 

FUDS Vehicle 
Upstream, 
Manufacturing, 
and Use 
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CO2e/kWh) 

EPRI 2007,  NERC regions NERC 
Marginal 
Emission 
Factors 

12,000 mi/yr Utility Factors 
based on 
NPTS 1999 

FUDS Vehicle Use 
(WTW) 

Parks et al 
2007,  

Colorado Generation in 
Colorado 

St. Louis GPS-
based data; ~ 
38 mi/day and 
13, 700 mi/yr 
on average 

39% to 52% 
depending on 
charging 
scenario 

GPS-based 
data 

Vehicle Use 
(WTW) 

Matsuhasi 
et al 2000 

Tokyo Not Specified 10, 000 km/yr Not specified 10 Tokyo 
driving modes 
(different 
average 
velocities)  

and 1 at 
constant 
velocity (40 
km/h) 

Vehicle 
Upstream, 
Manufacturing, 
and Use 

This Work County Hourly-
weighted 
consumption-
based 
marginal 
emission 
factors by 
NERC regions 
under both 
convenience 
and delayed 
charging 
schemes 

DVMT 
distribution by 
state and 
urbanization 
level extracted 
from NHTS 
2009 data 

Computed by 
state, 
urbanization 
level and EV 
type using 
NHTS 2009 

One of three 
driving 
patterns – 
city, 
combined, 
and highway – 
related to 
county 
urbanization 
level  

Vehicle 
Assembly and 
Manufacturing
, Battery 
Upstream and 
Manufacturing
, Gasoline 
upstream and 
combustion, 
Electricity 
Upstream and 
Production 
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5.2 Materials and Methods 

In the previous chapter, I focused on the Nissan Leaf and Chevrolet Volt.  In this 

chapter, I include the Toyota Prius PHEV and Ford Fusion Energi, both of which are top-

selling PHEVs as shown in Chapter 1, Figure 5.  These vehicles are included to represent 

PHEVs with lower AERS.  I compare these four EVs to gasoline vehicles in the market 

that have similar body, size, and aerodynamics.  Vehicle buyers may not necessarily have 

vehicle choices that are comparable in the same way and the vehicle options may not be 

limited to light-duty vehicles.  However, I think that the assumption that vehicle buyers 

first pick a vehicle type (e.g., light-duty) and then choose comparable vehicle models is 

reasonable.  Consumer choice modeling is another research area on its own and is 

beyond the scope of this research.  Moreover, I also compare the dominant EVs and 

Prius HEV, the most efficient gasoline vehicle and top-selling HEV in the market today.  

Table 9. EV and gasoline vehicles compared 

Electric Powered Gasoline Powered 

Toyota Prius (PHEV10) Toyota Prius (HEV) 

Ford Fusion Energi 
(PHEV20) 

Ford Fusion FWD (HEV) 

Chevy Volt (PHEV40) Chevy Cruze Eco (CV) 

Nissan Leaf (BEV73) Nissan Versa (CV) 

 

As in the previous chapter, I estimated life cycle emissions with a functional unit 

of g CO2 per mile traveled.  I included emissions from vehicle upstream, assembly and 

manufacturing (VAM), battery upstream and manufacturing, gasoline upstream and 

combustion, and electricity upstream and production.  I excluded emissions related to 

lead acid battery since it is present in all vehicle types.  I assumed a life cycle mileage to 

range from 100k to 150k mi with best estimate of 125k mi used for the base case analysis.  

These values are comparable to those assumed in existing studies mentioned above. 

To compute the average life cycle GHG emissions per vehicle mile traveled,  ̅  , of 

vehicle type   in county c, I used the following equation  
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   ̅̅ ̅̅       ̂                     ̂          

where     is the utility factor for vehicle v in county c,  ̂        is the hourly-weighted 

electricity emissions factor for vehicle entry i of vehicle type v in county c,         is the 

electricity use (kWh/mi) of vehicle   when driving in county c,  ̂    is the emissions 

factor for gasoline, and        is the fuel economy of vehicle   in county c.  The utility 

factor     is computed as 
∑          ∑     , where     is the daily vehicle miles traveled (DVMT) by 

vehicle entry i in county c and                       is the distance traveled on 

electricity.  All electric range (AER) is the maximum miles an electric vehicle can drive 

on electricity.  For gasoline vehicles,                  (i.e.,             ).  I interpret  ̅   

as the average life cycle emissions of vehicle type v for each randomly selected mile in 

county c. 

In this chapter, I estimated vehicle emissions and performed statistical 

comparisons at the county level to investigate the aggregate effect of the locational 

differences in driving pattern, vehicle miles traveled, electricity grid mixes, and different 

charging times.  This is the smallest geographic resolution for which I have data to 

differentiate driving patterns.  I assigned an approximate driving pattern to each county 

based on its urbanization level following the geographic type classification I used in 

Chapter 1.  I assumed that large central counties and nonmetropolitan counties would 

predominantly have city driving pattern and highway driving pattern, respectively.  

Outlying counties were assumed to have combined driving patterns (45% city, 55% 

highway) which is reasonable to assume because outlying counties have a high level of 

socio-economic integration with central counties, where city driving is expected to be 

predominant but this integration induces travel through road networks that is assumed 

to be predominantly entail highway driving patterns.  I use estimates of vehicle energy 
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use at different driving patterns form U.S. DOE (2014).  

As for vehicle miles traveled, I extracted DVMT distribution by urbanization level 

and state from the NHTS (2009) data.  I matched urban VMT distributions with 

metropolitan counties and rural VMT with nonmetropolitan counties.  I provide a table 

of summary statistics for the DVMT distributions is provided in Appendix X.  Average       in rural areas are higher by over 45% except in Colorado, Mississippi, Oregon, 

and West Virginia.  Table 10 summarizes the assigned driving pattern and DVMT 

distribution by geographic type.  

Table 10.  Driving pattern and DVMT distribution by geographic type 

Code Driving Pattern VMT 
Distribution 

Central Metropolitan 
Counties 

City
10

 driving Urban 

Outlying Metropolitan Combined driving Urban 

Nonmetropolitan Highway driving Rural 

 

In Chapter 4, I found that conclusion regarding which vehicle is lower emitting is 

highly influenced by assumptions made on electricity emission factors.  The difference 

depends further in regional boundary definition, method for computing the marginal 

emission factor and charging scheme.  In this chapter, I use consumption-based 

marginal emission factors (Zivin et al. 2014) for NERC regions under the convenience 

                                                           

10 The U.S. Department of Energy provides three energy use rates:  1) City estimates represent 
“urban driving, in which a vehicle is started in the morning (after being parked all night) and 
driven in stop-and-go traffic”; 2) Highway estimates represent “a mixture of rural and interstate 
highway driving in a warmed-up vehicle, typical of longer trips in free-flowing traffic”; 3) 
Combined estimates represent a “combination of city driving (55%) and highway driving (45%)”.  
These estimates were obtained form standardized laboratory tests.  [U.S. DOE (2014)] 
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charging scheme for my base case.  I matched each county with its corresponding NERC 

region and used the region’s hourly marginal emission factor estimates from Zivin et al. 

(2014).  I also extracted vehicle arrival time data (i.e., time vehicle gets home on the day 

survey was conducted) for each urbanization level and state from NHTS (2009), which is 

needed for computing hourly-weighted marginal emissions under the convenience 

charging scenario.  

The emissions estimation model in Chapter 4 was modified slightly.  To 

determine the hourly-weighted MEFs,  ̂       , I used the following formula, 

 ̂        ∑                  ̂            

where                  is the fraction of hour t that vehicle entry i under vehicle type v 

charges;  ̂       is the MEF for hour t in county c; and      is the total charge time for 

vehicle entry i of vehicle type v.  To compute charge time,     , for vehicle type v if it were 

to travel the same miles as vehicle entry i, we used the following formula: 

     {                                                

where          is the time it takes to fully re-charge vehicle type v [DOE 2014].  I 

illustrate the relationship between the different parameters I discussed in Figure 14. 
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Figure 14. Vehicle emissions influence diagram 
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For other life cycle stages, I obtained emissions rate data from veritable sources 

such as published works, EPA, and GREET as in Chapter 4. 

5.3 Results and Discussion 

I first present the base case county emissions estimates and estimates under a 

delayed charging scheme. Next, I summarize conclusions considering uncertainty of 

MEFs by looking at comparisons under both consumption- and generation-based MEFs 

for convenience and delayed charging.  And then I provide a sensitivity analysis of the 

emission estimates to changes in marginal emissions, charging scheme, driving scheme, 

and VMT distribution.  In the succeeding chapter, I discuss these results along with 

results from previous chapters in the context of climate policies related to vehicle 

electrification presented in Chapter 3.
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5.3.1 Base Case Emissions by County 

I show in Figure 13-a the Nissan Leaf emissions estimates using base case 

assumptions – consumption-based marginal emissions factors, convenience charging 

scheme (i.e., vehicle is charged upon getting home), assigned driving pattern and DVMT 

distribution (see Table 11) - at the county level. Base case life cycle marginal emissions 

estimates for the Nissan Leaf range from 157 – 359 g CO2/mi with lowest values in the 

WECC region and in most metropolitan counties in the rest of the country. The Leaf is 

most carbon intensive in the MRO region and rural areas in eastern states. 

 

(13-a) 
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(13-b) 

Figure 15. Nissan Leaf Emission Estimates by County.  Counties colored red are where the Leaf 

is higher emitting than each gasoline vehicle as indicated in the legend.  Emissions were 

computed considering differences in driving pattern, VMT distribution, electricity emission rates, 

and charging time.  a) Base Case – consumption-based marginal emission factors, convenience 

charging scheme, assigned driving pattern and DVMT distribution (see Table 2); b) delayed 

charging scheme, other factors similar to Base Case.  The Leaf is lower emitting than the lowest 

emitting gasoline vehicle (Toyota Prius HEV) in green-colored counties.   

 

Figure 13-b shows Leaf estimates under delayed charging.   As shown, emissions 

estimates are higher when the Leaf is charged during off-peak hours (e.g., 12 AM – 5 

AM) except in the NPCC region.  In the rest of the country, base load grid mix is more 

carbon-intensive due to higher level of reliance on coal power plants.  Increase in 
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emissions relative to the base case convenience charging is more pronounced in the 

MRO and RFC region, which have the highest share of coal power plants. 

5.3.2 Summary of Comparisons under Uncertainty 

In this section, I summarize the paired t-test comparison results for 

consumption- and generation-based emissions estimates for both charging schemes.  I 

first discuss results for comparable EV and gasoline and then compare the top-selling 

BEV, PHEV, and HEVs.  Results for gasoline vehicles reflect assigned driving patterns 

and VMT distributions by county to provide a consistent comparison with EV emission 

estimates. 

5.3.2.1 Top-selling BEV, PHEV, and HEV:  Which is less emitting? 

Looking at both consumption- and generation-based marginal emission 

estimates, I compare the Nissan Leaf, Chevrolet Volt, and Toyota Prius Hybrid.  In each 

case, map color schemes denote: green – EV is lower emitting; red – gasoline vehicle is 

lower emitting; and yellow – results are inconclusive (i.e., consumption- and generation-

based emissions have contradicting results).  I found that the Leaf, compared to the 

Prius HEV, is lower emitting in western states, TX, Florida, and NPCC region (NY and 

New England states), regardless of MEF and charging scheme.   The Leaf can be lower 

emitting in the south central as well, when charged as the vehicle gets home (i.e., 

convenience charging).  The Prius HEV is lower emitting under both charging schemes 

in the MRO region; when charged at midnight until it is fully recharged, the Leaf 

becomes higher emitting in northeastern states as well.  On the other hand, the Volt is 

higher emitting than the Prius HEV in except for metropolitan counties in western 

states, where results are inconclusive.   

These results are different from what was found in Chapter 4, indicating that 

locational differentiation of driving pattern and DVMT distribution matters.   
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(14-a) 

 

(14-b) 

 

(14-c) 

 

(14-d) 

Figure 16.  Base Case Marginal Emission Comparison for Toyota Prius HEV, Chevrolet Volt 

PHEV, and Nissan Leaf BEV. a) Leaf vs Prius (Convenience Charging);  b) Leaf vs Prius 

(Delayed Charging);  c) Volt vs Prius (Convenience Charging); and d) Volt vs Prius (Delayed 

Charging).  Color schemes indicate comparison result between vehicles considering 

consumption- and generation-based emissions results: GREEN - EV is LOWER emitting under 

both MEFs; RED – EV is HIGHER emitting under both MEFs; and YELLOW – Inconclusive (i.e., 

MEFs results are contradictory).  

5.3.2.2 Comparable EV and gasoline vehicles:  Which is less emitting? 

Next, I look at comparable EV and gasoline vehicles and summarize the general 

conclusions in Table 11.  Maps are also provided for each comparison to provide visual 

representations of the conclusions.  Map color schemes are the same as in previous 

section.  A prevailing pattern, except for the Nissan Leaf and Nissan Versa comparison, is 

that the electric vehicle is lower emitting in metropolitan counties (except in north 
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central U.S.) and higher emitting in rural counties (except in some western states where 

results are inconclusive).   

Table 11.  Summary of results for comparable EV and gasoline vehicles under uncertain MEFs 

EV vs Gasoline Vehicle Comparison Results 

Toyota Prius PHEV vs Toyota Prius HEV 
a) Convenience charging

 
 
b) Delayed Charging 

 

Under convenience charging, the Prius PHEV 
is lower emitting in metropolitan counties 
(central and outlying) and higher emitting in 
the MRO (both metro and nonmetropolitan 
counties) region regardless of MEFs and 
charging scheme assumptions.  The Prius 
PHEV is higher emitting in nonmetropolitan 
counties except in most of the western states 
where results are inconclusive.  This 
difference is mainly because of less carbon 
intensive WECC grid mix.  Within the WECC, 
the Prius PHEV is higher emitting in 
nonmetropolitan counties of a few states (AZ, 
NV, and ID).  This difference is due to 
variation in distribution of DVMT and arrival 
time, which affect weighted electricity 
emission factor.  
Under delayed charging, the Prius PHEV 
become higher emitting in nonmetropolitan 
areas of the WECC region while the results 
become inconclusive in urban parts of the 
SERC region.  Moreover, the Prius PHEV 
becomes higher emitting in the entire RFC 
region as well.  

Ford Fusion Energi PHEV vs Ford Fusion HEV  
a) Convenience charging 

 
 
b) Delayed charging 

 
Under both convenience and delayed 
charging, the Fusion PHEV is lower emitting 
in metropolitan areas and higher emitting in 
nonmetropolitan areas. 
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Chevrolet Volt PHEV vs Chevrolet Cruze Eco 
ICEV  
 
a) Convenience charging 

 
b) Delayed charging 

 

 
 
 
Due to the significant difference in vehicle 
energy use for this pair, the Volt is lower 
emitting in metropolitan areas even in the 
MRO region.  The Volt is still higher emitting 
in rural areas except in western states where 
conclusions are unclear.   
Under delayed charging, results become 
unclear in urban north central US and the Volt 
is higher emitting in rural western states. 
 
 
 
 
 
 
 
 
 
 
 
  

Nissan Leaf BEV vs Nissan Versa ICEV  
a) Convenience charging 

 
 
b) Delayed charging 

 
 
Compared to ICEVs similar to the Versa, 
there is good amount of evidence to indicate 
that the Leaf is lower emitting than its gasoline 
vehicle counterpart in the U.S. under both 
charging schemes. 
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5.3.3 Sensitivity of emission estimates MEFs, charging scheme, driving 

pattern, VMT distribution, and vehicle type   

In Chapter 4, I found that there is significant variation in EV emissions estimates 

depending on how electricity emission factors are derived.  I found that even given the 

uncertainty of electricity emission factors, life cycle emission estimates indicate that the 

Leaf is higher emitting in MRO compared to the Prius hybrid.  In other parts, 

comparisons are inconclusive (i.e.,  results under consumption- and generation-based 

marginal emissions factors do not lead to the same conclusion regarding which vehicle is 

lower emitting).  In this chapter, I found that factoring in locational variation of driving 

pattern and DVMT distribution changes results.  The next question to answer is how 

much do these factors affect emissions estimates?  

I measured the change in emissions by vehicle with respect to a reference case, 

where I used consumption-based MEF, convenience charging, combined driving energy 

use, and national DVMT distribution.  I summarize the change with respect to this 

reference case with the tornado diagrams in Figure 14.  I found that life cycle vehicle 

emission estimates are most sensitive to regional grid mix variation and uncertainty.  

The Nissan Leaf, which fully relies on electricity, is expectedly the most sensitive to 

electricity emission changes, lowest being in the WECC region.  Secondary to MEF 

uncertainty and regional variation, PHEV emissions are most sensitive to geographic 
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type (i.e., urbanization level).  PHEV emissions in rural counties can be over 30% higher 

than in metropolitan counties.  The Leaf is much less sensitive to urbanization (~±5%).  

Urbanization has such effect because it influences the energy consumption of both 

electric and gasoline vehicles.  Electric vehicles are more efficient in urban than highway 

driving while the opposite is true for gasoline vehicles.  In addition to this, urbanization 

level also affects vehicle miles distribution, where rural DVMT is higher, on average.  All 

vehicles are also mildly sensitive to assumed battery emission rate and lifetime mileage.  

Emissions are least sensitive to vehicle assembly and manufacture emission rates.  

 

 
(15-a) 

 
(15-b) 

 
(15-c) 

 
(15-d) 

Figure 17.  Vehicle emissions sensitivity analysis for a) Nissan Leaf, b) Toyota Prius PHEV, c) Ford Fusion 

Energi PHEV, and d) Chevrolet Volt PHEV.  Percent change from the reference case (i.e., consumption-

based MEF, convenience charging, combined driving pattern, national VMT distribution) is shown along 

the x-axis.  Parameters that influence vehicle emissions are shown on the y-axis.  
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5.3.4 Summary of Results:  Locational EV vs gasoline vehicle comparison   

In summary, considering the combined effect of the locational variation of MEFs, 

driving pattern, and DVMT, highest CO2 reduction from EVs can be gained in 

metropolitan WECC, TX, FL, NY, and New England states.  Unless major changes are 

done to decarbonize the electricity system in the north central U.S., EV adoption in this 

area will not help in CO2 reduction, although urban areas can be an exception.  This is 

because the biggest factor influencing emissions levels and comparison results is 

electricity grid mix and MRO is highly reliant on coal power plants, making it highly 

carbon-intensive.   

Urbanization level, which is related to driving pattern and VMT distribution, 

matters especially in making comparisons under delayed charging where EVs can 

sometimes become higher emitting in rural areas of states where EVs are lower emitting 

under convenience charging.  These results indicate a need for locational differentiation 

of policies with respect to adoption of vehicle electrification facilitating mechanisms 

(e.g., incentives, charge station provision).   

For future work, empirical data on energy use differences under different driving 

patterns as well as more localized data on miles traveled and driving pattern could 

improve the accuracy of locational analyses.
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6 Conclusions and Policy Recommendations 

6.1 Summary of Results 

Contrary to previous findings, I find no statistically significant relationship between 

geographic variation and county scopes 1&2 per capita emissions.  Per capita emissions are 

statistically different for residential, commercial, transportation, and electricity consumption, 

with central county per capita onroad transportation emissions about 0.7 – 0.8 that of less 

urban counties while per capita electricity consumption emissions in metropolitan counties 

(central and outlying) is about 1.4 times that of rural counties. 

At the aggregate level, more urban counties have significantly higher emissions for all 

sectors with the biggest difference between urbanization levels in electricity consumption, 

transportation, and commercial.  Electricity consumption (36% to 50%) and onroad 

transportation (22% to 29%) constitute over half of total scope 1&2 emissions.  

These results along with the fact that over 75% of the U.S. population concentrated in 

metropolitan counties, support more focused effort on reducing per capita emissions related to 

U.S. metropolitan counties, especially larger ones.   

I investigated vehicle electrification as a strategy for this, given other benefits that can be 

gained from the said technology and increasing public and private support.  I found that the 

emissions reduction potential of EVs vary significantly under electricity emission factor 

assumptions, driving pattern, DVMT distribution, and charging scheme.  I considered these four 

factors to estimate EV emissions at the county level in the U.S..  

I found that CO2 reduction benefits from EVs could be attained in urban counties in CA 

and other western states, TX, FL, NY, and New England states.  
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EV adoption in north central U.S., which is highly reliant on coal power plants, will only lead to 

higher transportation CO2 emissions. 

Marginal EV emissions using delayed charging (starting midnight) are higher due to 

more carbon-intensive marginal grid mix during non-peak hours, except for NPCC region.  

6.2 Conclusions and Policy Recommendations 

Federal as well as local climate policies and programs targeted on metropolitan areas 

should be further strengthened.  In the U.S., over 235 cities and counties, representing 20% of 

the country’s population, are participants of the Cities for Climate Protection Program (CCP) 

(Linstroth and Bell, 2007) and about 600 local governments are members of the International 

Council for Local Environmental Initiative (ICLEI) (ICLEI, 2009).  Local governments also 

exhibit collaborative efforts manifested for instance by 500 mayors who signed the U.S. 

Conference of Mayors Climate Protection Agreement (CPA) (The US Conference of Mayors, 

2007).  Given the alignment of environmental, health, and energy security goals of targeting EV 

adoption in metropolitan U.S., this may be a strategy of focus in metropolitan counties.  

However, EVs are best suited in certain areas in the U.S., given current the country’s 

current electricity system and are discouraged in some.  Policy pushing EV adoption in 

metropolitan counties, especially central ones, is encouraged in CA (and other western states), 

TX, FL, NY, and New England states.  These states also happen to have the highest annual 

vehicle miles traveled as for the past thirty years.  Thus, reduction in transportation emissions in 

these states would be significant at the national level (U.S. Department of Transportation 2013). 

Further, based on comparisons made between the top-selling BEV (Nissan Leaf), PHEV 

(Chevrolet Volt), and HEV (Toyota Prius Hybrid), policies pushing for the adoption of BEVs 

comparable to the Nissan Leaf should be encouraged in the U.S. except in the MRO region.   The 

Toyota Prius Hybrid is better encouraged over the Chevrolet Volt, in most parts of the country, 

especially in north central, central, and eastern states.  It is not certain whether the Volt or the 
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Prius is lower emitting in western states.  In more carbon-intensive regions such as the RFC and 

SERC, delayed charging should be discouraged for EVs.   

The Toyota Prius PHEV, which has the same energy use rate as the Leaf under CD mode 

and a fuel economy equal to the most efficient gasoline vehicle in the market, Prius Hybrid, 

under CS-mode is the better option in eastern states.   With increased provision of charging 

infrastructure in urban areas, the Prius PHEV, may be charged more frequently to allow the 

vehicle to operate on electricity for urban daily travel demands (with avg. DVMT of 30 mi), 

thereby avoiding tailpipe emissions while still reducing CO2 emissions.  Otherwise, it could run 

on CS-mode which compared to the more popular Chevrolet Volt, will still be lower emitting in 

terms of CO2. 

Unclear results in other parts of the country, mainly due to electricity grid CO2 intensity, 

provides another reason for further decarbonization of the U.S. electricity grid, especially in the 

north central and eastern U.S..   

6.2.1 EV emissions estimates in the context existing policies promoting EV adoption 

Figure 15 shows a map of incentives for EVs, the presence of Clean Cities PHEV 

Readiness Program, new vehicle registrations (2009-2012), and major city population by state.  



 

 78 

  

 

 

 

Figure 18.  Incentives, Presence of Clean Cities PHEV Readiness Program, New Vehicle Registrations 

(2009-2012), and Major City Populations 

 

This map shows that at present, the biggest incentives are given in eastern states with the 

highest in WV at $ 7, 500. Most of these states also have the Clean Cities Program in place, 

which has the objective of increasing the accessibility of charging infrastructures to facilitate 

adoption of EVs.  However, based on our results, CO2 reduction from EVs in most of these 

states, especially in rural areas and the RFC region where WV is located, are the least.  Based on 

our results, there is more evidence to say that the most efficient gasoline vehicle in the market, 

the Toyota Prius HEV, performs better in reducing CO2 emissions in most of these states, 

especially in the RFC region where WV is located.  These areas have a higher level of new car 

Incentives per vehicle 

Light-duty vehicle sales 

Population 

Clean Cities Program (EV Charging 
Infrastructure) 
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registrations compared to the rest of the country and so incentivizing adoption of EVs without 

increased effort in decarbonizing the electricity grid mix is likely to increase transportation 

emissions.  Some of the most populated cities are located in these same areas and so reducing 

tailpipe emissions to reduce air pollution related health problems is a compelling reason to 

continue pushing for EV adoption in these areas.  Indeed, environmental, health, and energy 

security objectives align in the adoption of EVs that are comparable to the Nissan Leaf and 

Toyota Prius PHEV in urban U.S.
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6.2.2 Stakeholders in EV adoption 

Several major players must work hand-in-hand to make vehicle electrification align with 

environmental, health, energy security, and economic objectives.  In Table 12, I provide a 

summary of the parameters that influence EV emissions and the stakeholder that has control 

over each.  As I have shown in Chapter 5, the biggest influencing factor in EV emissions is the 

variation and uncertainty of carbon intensity of the U.S. electricity system.   I identify the major 

stakeholders that have primary control over this parameter to be the government (federal, state, 

and local) and the vehicle owners.  Government policies that aid in decarbonizing the grid (e.g., 

Clean Air Act, proposed Clean Power Plan, Renewable Portfolio Standards, Carbon Cap and 

Trade) can further increase the environmental benefits of vehicle electrification and may lend 

EV environmentally beneficial in areas where EV CO2 reduction potential are either uncertain 

(e.g. SERC region) or non-existent (e.g. north central U.S.).   Electricity generators, meanwhile, 

have direct control over technological and operational changes that could decrease their 

operational carbon intensity.  Vehicle owners also influence electricity emission rate through 

their charging pattern.  As shown in previous sections, given current grid infrastructure and 

electricity market behavior, convenience charging generally results in lower weighted marginal 

electricity emissions compared to delayed charging.  This is however in conflict with economic 

ends given that electricity prices are on average lower during off-peak hours (i.e., delayed 

charging), vehicle owners may opt, and are actually currently encouraged by some local policies 

such as the Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric of MN 

(which is serviced by MRO region), to charge during these hours.  This program is promoted 

based on the general claim that EVs reduce CO2 emissions (Dakota Electric Residential Services 

2014).  Our results prove this local program to be misguided.   

Driving pattern and driving intensity, which are related with urbanization level, have 

also been shown to influence EV emissions level.  I performed an analysis based on three 
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standardized classifications of driving patterns – city, combined, and highway – and provided 

evidence that city driving combined with urban DVMT distribution is associated with lower EV 

emissions levels.  Vehicle owners, of course, have direct control over their driving pattern and 

intensity but they are also constrained by the transportation networks available to them, which 

can be influenced by metropolitan planning authorities.   Results from chapter 1 highlight the 

significance of taking metropolitan dynamics into account in the context of local climate action 

planning.  Central counties that often serve as regional centers of commerce may induce 

regional transportation demands due to trips originating from outlying and non-metropolitan 

counties.   Regional land use planners may explore shifting some commercial and other 

transportation inducing activities from central to outlying and non-metropolitan counties with 

the goal of decreasing aggregate transportation demands.  However, it is uncertain how this may 

affect emissions in commercial and other sectors in outlying and nonmetropolitan counties.   

Energy use, which is mainly dictated by vehicle design and is under the control of vehicle 

manufacturers, directly influences EV emissions.   Vehicles have different energy use rates 

under different driving patterns.  Thus, vehicle owners and metropolitan planning authorities 

also have indirect control over these parameters.  
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Table 12.  Stakeholder control of EV emissions reduction 

Positive Action Stakeholder Parameter 
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Policies on grid 
decarbonization, promoting 
vehicle energy use efficiency 

Government ✓   ✓ ✓ 

Technologies/ Systems to 
lower operation carbon 
intensity  

Generators ✓     

Charge during hours of lower 
electricity carbon intensity 
(i.e., midnight onwards); 
minimize driving distance 

Vehicle Owners ✓ ✓ ✓ ✓ ✓ 

Design of more efficient 
vehicles 

Manufacturers    ✓ ✓ 

Design transportation 
networks that lower driving 
intensity and city-like driving; 
promote metropolitan 
dynamics that decrease 
induced transportation from 
outlying and nonmetropolitan 
counties to central counties 

Metropolitan 
Planning 
Authorities/Urba
n Planners 

 ✓ ✓ ✓ ✓ 

 

Lastly, vehicle assembly and manufacturing and battery production contribute a 

significant portion of life cycle emissions for EVs.  Thus, automobile and battery manufacturers 

also have a pivotal role in helping EVs become a tool for CO2 reduction. 

Recall, however, that metropolitan counties already have significantly higher electricity 

consumption, both at the per capita and aggregate levels, constituting about 38% - 50% of total 

scope 1&2 emissions.  With population concentration in metropolitan areas, this translates to 

concentrated electricity demand in metropolitan areas.  Increasing electric vehicle adoption in 

urban areas would further increase this demand level; thus, electricity infrastructural feasibility 

as well as ways to curb transmission losses should be considered.  
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 However, the U.S. PIRG reports that per capita travel in the U.S. from 2005 – 2009 has 

decreased significantly (U.S. PIRG 2013).  Thus, if this trend continues, then the increase in 

electricity consumption due to EV use may not be that much (try to quantify).  On the other 

hand, there are unclear implications of how switching to EV may have a rebound effect on 

driving distance.   Policies that promote energy efficiency are suggested in conjunction with 

electric vehicle adoption to curb urban electricity demand.
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Appendix I. MSA Types and Aggregate Population 

We show the U.S. Census Bureau classification of the 3,141 counties in the U.S. - central, 

outlying, and nonmetropolitan – in Figure 16. 

 

Figure 19. U.S. MSA Types - Central, Outlying, and Nonmetropolitan 

 

A shown in Table 13, 500 were central, 317 were outlying, and 2, 324 were nonmetropolitan 

consisting of 67%, 7%, and 26% of the total U.S. population, respectively.  

Table 13. Population by County Type 

County Type Count Aggregate Population 

Central 500 197, 570, 371 (67%) 

Oultying 317 21, 956, 536 (7%) 

Nonmetropolitan 2, 324 68, 270, 457 (26%) 

Total 3141 287, 797, 364 
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Appendix II. Estimating Electricity Consumption 

To estimate indirect emissions, county-level electricity consumption and the corresponding 

county electricity emissions factors were multiplied, as shown in the second term of the RHS of 

equation 1. Electricity consumption data at the county level is scarce; only California has a 

complete published database of county-level electricity consumption. Thus, a model was 

developed to estimate annual county-level electricity consumption from the data available.  

Regression models employing the ordinary least squares method were investigated. The 

response variable for all these models is electricity consumption per county. County level 

electricity consumption data used for modeling include data from all California counties, all 

Vermont counties, five Illinois counties, and King County, Washington. The main goal was to 

obtain a model that was best at predicting annual electricity consumption. Several predictor 

variables and their combinations were used in different models. These set of predictor variables, 

K, include population, total payroll, household aggregated income, number of employees, 

number of establishments, total sales, heating degree days (HDD), cooling degree days (CDD), 

interaction between population and HDD, interaction between population and CDD, and 

metropolitan statistical area (MSA) code. The latter is a categorical variable while the rest are 

quantitative variables. The general form of the equation is shown in Equation 3. 

                                                ∑          (3) 

Description and data sources for data used in modeling are summarized in Table 14.  

Table 14. Electricity Consumption Modelling and Validation Data Sources 

Parameter No. of 

Observations 

Unit Year Geographical 

Resolution 

Temporal 

Resolution 

Coverage Source 

Total 

Emissions 

3, 141 

(counties) x  8 

(sectors) 

tons C 2002 County Annual All 50 US 

states 

Vulcan 

Project 

Population by 

State 

50 (states) x 9 

(years) 

 2002-2010 State Annual All 50 US 

states 

U.S. Census 

Bureau 

Population by 

County 

3, 141 

(counties) x 9 

(years) 

 2002-2010 County Annual All 

counties 

in 50 US 

states 

U.S. Census 

Bureau 

Heating 

Degree Days 

360 (cities) x 2 

(month) x 10 

 2001-2010 City Monthly 

(December 

AZ, CA, IL, 

MD,  VT, 

NOAA 

National 
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(years) and June) WA  Weather 

Service 

Cooling 

Degree Days 

360 (cities) x 1 

(month) x 10 

(years) 

 2001-2010 City Monthly 

(December) 

AZ, CA, IL, 

MD,  VT, 

WA 

NOAA 

National 

Weather 

Service 

Heating 

Degree Days 

50 (states) x 2 

(month) x 1 

(year) 

 2002 State Monthly 

(December 

and June) 

All 50 US 

states 

NOAA 

National 

Weather 

Service 

Cooling 

Degree Days 

50 (states) x 1 

(month) x 1 

(year) 

 2002 State Monthly 

(December) 

All 50 US 

states 

NOAA 

National 

Weather 

Service 

Aggregate HH 

Income 

 

81 (counties) x 

6 (years) 

Dollars 2010 

2006-2009 

2002 

County 

County 

County 

5-year 

Annual 

3-year 

CA, IL, VT, 

WA 

American 

Community 

Survey 

Number of 

Housing Units  

81 (counties) x 

6 (years) 

 2010 

2006-2009 

2002 

American 

Community 

Survey 

Number of 

Employees 

81 (counties) x 

6 (year) 

 2010 

2006-2009 

2002 

American 

Community 

Survey 

Number of 

Establishments 

81 (counties) x 

2 (year) 

 2005 

2007 

County 

Business 

Patterns 

Total Sales 81 (counties) x 

2 (year) 

Thousand 

dollars 

2007 

 

US Census 

Bureau 

Total Payroll 81 (counties) x 

6 (year) 

Thousand 

dollars 

2005 

2007 

County 

Business 

Patterns 

Land Area (sq. 

mile) 

Source:  

1, 3141 

(counties) 

sq. mile  County  All 

counties 

in 50 US 

states 

US Census 

Bureau 

State 

Electricity 

Consumption 

 GWh 2002,2004,2006 - 2009 State   eGRID 

Electricity 

Consumption 

(CA) 

 GWh 2002,2004,2006 - 2010 County Annual  ECDMS 

Electricity 

Consumption 

(Vermont) 

13 (counties) x 

7 (years) 

kWh 2004 - 2010 County   VEIC 

Electricity 

Consumption 

(IL) 

5 (counties) x 

1 (year) 

GWh 2005 County    

Electricity 

Consumption 

(WA) 

1 (county) x 5 

(years) 

GWh 2005-2009 County    

Direct 

Emissions 

1, 3141 

(counties) 

tons C 2002 County  US Vulcan 

Project 

2004 Emission 

Factors 

(eGRID, State, 

NERC) 

1, 647 tons/MWh 2004 County county   

MSA Type    2000 County  US US Census 

Bureau 

 



 

 98 

Equation 3 shows the general form of the regression models explored. The first two terms 

correspond to the dummy coded categorical variable corresponding to MSA type.  The value of 

the coefficient βi stands for the difference between the mean values of electricity consumption 

for counties under MSA type i and the reference category j, ceteris paribus. The third term is the 

summation of the product between the values of the quantitative variables and their 

corresponding coefficients.  

Over 20 regression models were investigated and those that were statistically significant in 

explaining the variation in electricity consumption at a significance level of 5% were further 

screened based on their adjusted R2 and Akaike Information Criterion (AIC) goodness-of-fit 

values.  Table 15 shows eight of the best models explored. A model with all explanatory variables 

was not considered for further analysis due to strong correlation between most of the economic 

variables.  

Two models were considered for final use because they had the best combination of the lowest 

AIC goodness-of-fit values and highest adjusted R2  (see Table 16). One (Model 3 - California) 

was derived using CA data only; thus, a reasonable adjustment factor was needed to calibrate 

the California model estimates to the rest of the US as it is known that California has the lowest 

per capita electricity consumption in the country. The adjustment factor was the ratio between 

per capita electricity consumption in each state and that of California. The second model (Model 

8 – All Counties), on the other hand, has the advantage of making use of data from other states. 

It should however be noted that all Vermont counties are nonmetropolitan counties.  

Table 15. Sample of Regression Models Explored for Electricity Consumption Estimation 

Model County Data Used Explanatory Variables 

Model 1 all 58 CA counties (2006 – 2009), 5* IL 

counties (2005), King County), WA (2005-

2009) 

Population, Population*HDD, Population*CDD 

Model 2 30 central counties from CA (2006-2009), 

5 IL counties (2005), King County**, WA 

(2005-2009) 

Model 3 (California) all 58 CA counties (2006 - 2009) only 

Model 4 30 central counties from CA (2006-2009) 

only 
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Model 5 all 58 CA (2006 - 2009) only Aggregate HH Income, CDD, HDD, Population Density 

Model 6 Household Units, CDD, HDD, Population Density 

Model 7 Employees, CDD, HDD, Population Density 

Model 8 (All 

Counties) 

all 58 CA counties (2006 - 2009), 5* IL 

counties (2005), King County**, WA 

(2005-2009), VT*** (2006-2009) 

Population, Populaiton*HDD, Population*CDD 
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Table 16. Electricity Consumption Regression Model Results 

Explanatory 

Variable 

Model 1 

(CA1, IL3, 

WA4; 

Population-

based) 

Model 2 (CA2, IL3, 

WA4; Population-

based, Central 

Counties, 

Population>1M) 

Model 3 (CA1; 

Population-

based) 

Model 4 (CA1; 

Population-

based, Central 

Counties, 

Population>1M) 

Model 5 (CA1; Agg 

HH Inc, Pop Dens, 

HDD, CDD) 

Model 6 (CA1; HH 

Units, Pop Dens, 

HDD, CDD) 

Model 7 

(CA1;Employees, 

Pop Dens, HDD, 

CDD) 

Model 8 (CA1, 

VT2, IL3, WA4; 

Population-

based) 

Population 

(2006-2009) 

0.00596*** 

(0.000202) 

0.00606*** 

(0.000198) 

0.00548*** 

(0.000341) 

0.00534*** 

(0.000329) 

   0.00555*** 

(0.000331) 

HDD (2006-

2009) 

    1.522*** 

(0.335) 

0.612** 

(0.261) 

0.423* 

(0.217) 

 

CDD (2006-

2009) 

    1.682*** 

(0.201) 

0.513*** 

(0.181) 

1.050*** 

(0.346) 

 

Population x 

HDD 

8.63e-07*** 

(1.14 e-07) 

8.50e-07*** 

(1.29e-07) 

1.19e-06*** 

(2.03e-07) 

1.30e-06*** 

(2.00e-07) 

   1.14e-06*** 

(1.97e-07) 

Population x 

CDD 

1.64e-07** 

(6.39e-08) 

5.21e-08 

(6.57e-08) 

2.30e-07*** 

(7.91e-08) 

2.56e-07*** 

(7.50e-08) 

   2.31e-07*** 

(8.03 e-08) 

Aggregate HH 

Income (2006-

2009) 

    2.90e-07*** 

(4.79e-09) 

   

Number of 

Housing Units 

(2006-2009) 

     0.0213*** 

(0.000248) 

  

No. of 

Establishments 

(2007) 

      0.285*** 

(0.00409) 

 

Population 

Density (2006-

2009) 

    -0.183*** 

(0.0303) 

-0.0898*** 

(0.0165) 

-0.137*** 

(0.0335) 

 

Constant 62.06 

(91.84) 

34.36 

(524.7) 

-87.40* 

(49.85) 

-238.79 

(150.83) 

-6, 068*** 

(1, 076) 

-2, 078** 

(854.1) 

-1, 836** 

(882.0) 

-139.9051*** 

(40.36807) 

Adj. R2 0.98 0.99 0.98 0.98 0.97 0.97 0.96 0.98 

Number of 

Observations 

245 43 232 124 160 160 58 302 

AIC 17.56  17.97  17.32 17.97  18.17 17.99 18.29 17.07 

BIC 6.15e+08  4.78e+08 4.38e+08 4.34e+08 6.82e+08 5.71e+08 2.51e+08  4.47e+08 
1
 All CA Counties (2006-2009); 

2
 All VT Counties (2006-2009); 

3
Cook County, DuPage County, Lake County, Will County, Kane County, Mc Henry County, and Kendall County (2005); 

4
 King County (2002, 

2005-2009) 

p-value: * < 0.1; ** <0.05; ***<0.001 
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To decide between Models 1 and 2, the percentage errors resulting from their use were analyzed 

in two ways  - 1) comparing 2002 and 2004 California county estimates to reported county-level 

electricity consumption and 2) comparing state aggregated county estimates to published state-

level electricity consumption. For the county comparison, Figure 17 was generated to show the 

estimation errors by urbanization level. Alpine and Sierra county, both of which are 

nonmetropolitan counties, resulted in outlier error (i.e., > |100%|). All other counties had error 

less than |100%| with an average of -7%.  

 

Figure 20. California Model Electricity Consumption Estimate Errors by Urbanization Level 

 

For the state aggregate comparison, the state-level aggregates for all county electricity 

consumption estimates were compared with EIA state data for 2002 (n=50). Summary statistics 

for percentage errors are shown in Table 17. Similar to the trend for errors from allocation by 

population, the range of errors from the two models is narrower for metropolitan counties even 

with the introduction of climate index variables.  

 
Table 17. Estimate Error Comparisons for California and All County Models (US, 2002) 

 County Comparison State Aggregate Comparison 

Model Mean of % 

Error 

Std. Dev. of % Error Mean of % Error Std. Dev. of % Error 

California Model x Adj. 

Factor 

- 7 33 - 11 32 

All County Model 11 33 28 41 
Outliers (i.e., errors > |100%|) were excluded from the calculation: 1) County Comparison: Alpine County and Sierra County for California 

Model, Alpine County, Sierra County, Mono County, and Modoc County for All County Model; 2) State Comparison: Alaska, Montana, 

Nebraska, North Dakota, and South Dakota. 
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Since the California model results in average percentage error closer to zero with narrower error 

spread, it was chosen for computing electricity consumption. For the uncertainty analysis, the 

5th and 95th percentile of the errors are -68% and 42%, respectively.   

Negative electricity consumption estimates for year 2002 were excluded from further 

analysis (i.e., scope 2 emissions estimates). This resulted in over 2, 500 county electricity 

consumption and scope 2 emissions estimates.  These counties represent over 94% of the total 

U.S. population in 2002.
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Appendix III. Emissions Data  

AIII.1 Descriptive Statistics 

Descriptive statistics for the full data set are summarized in Figure 18.  Looking only at these 

numbers would suggest that central counties may have lower scope 1&2 per capita emissions 

than both outlying and nonmetropolitan counties, which do not seem to differ.  

 

Figure 21. Mean Per Capita Emissions (Full Data Set) 

 

However, it is important to look at the distribution of the data to obtain a better 

understanding of per capita emissions differences by geographical type. To provide an idea of 

the distribution of per capita emissions per sector by geographical type, we generated the 

histograms as shown in Figure 5 a and b. Only the residential, onroad, and nonroad sectors 

seemed to demonstrate normal distribution. This was due to the inherent spread of the data and 

a few outliers. 
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Figure 6a. Histograms by Sector and Geographical Type for Full Data Set – Industrial, Residential, 

Commercial, and Onroad 
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Figure 6b. Histograms by Sector and Geographical Type for Full Data Set – Nonroad, Air, Scope 1, and 

Scope 1&2 

AIII.2 Predictor Variables – Distribution and Collinearity 
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A visualization of the distribution of the predictors and the correlation between the predictor 

variables is provided in Figure 6. 

 

Figure 7. Scatterplot Matrix of Predictors 

 

We investigated for collinearity of predictor variables to determine whether dropping some of 

the variables would be necessary. We found moderate correlation between the climate indices 

and weak correlation between median HH income and two variables - population density and 

CDD. Thus, in succeeding model selection, we opted to drop one of CDD and HDD as well as 

PopDens and MedHHinc to avoid multicolinearity.  

Table 18. Predictor Variables Pearson Coefficients 

 PopDens MedHHInc HDD CDD MSA 

PopDens 1.00 0.11 0.05 -0.05 -0.19 

MedHHInc 0.11 1.00 0.11 -0.29 -0.06 

HDD 0.05 0.11 1.00 -0.48 0.05 

CDD -0.05 -0.29 -0.48 1.00 0.02 

MSA -0.19 -0.06 0.05 0.02 1.00 
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Appendix IV. Model Fitting, Diagnostics and Selection 

Using R, we used the general LRM equation for model fitting. The results of the said analysis are 

summarized below. After model fitting using the general LRM presented in Section 2.3, we 

performed a series of model diagnostics mainly to determine whether the assumptions of OLS 

hold. Diagnostic graphs are shown after the regressions results summary. 

We found that the OLS assumptions do not hold. In terms of normality of residuals, the 

residential, onroad, and nonroad sectors appear to be least problematic. Moreover, several 

outlier and influential data points were found. After removing outlier and influential data 

points, our final sample includes Central = 488, Outlying = 300, Nonmetropolitan = 1,686. Most 

of these counties have relatively very high industrial and commercial emissions. The final 

sample covers over 91% of the U.S. Population. All omitted counties had scope 1&2 per capita 

emissions higher than the national average, except for three – Bronx (9.2 tons CO2/capita), 

Kings (8.6 tons CO2/person), and New York (12.6 tons CO2/person) – which are all central 

counties in NY state with population greater than 1M.  

The most problematic data sets correspond to the industrial and commercial sectors because of 

the distribution of the data. In addition to omitting outliers and influential data points, we tried 

to fit GLM using Inverse Gaussian Family, which is usually used for response variables having 

only positive real values. Histograms of the final data set are shown in Figure 7. We went 

through several iterations of variable selection and chose the models that resulted in the lowest 

AIC or pseudo/Adj. R2. In addition, we performed visual comparison of the fitted versus 

observed values to decide on models that have very close AIC or R2 values. Except for the 

original (full data set and all predictors included) LRM, all models indicate no significant 

difference in scope 1&2 per capita emissions across different geographic type. Coefficients for 

the geographic types (i.e., mean emissions values for each geographic type), changed across 

different models but ratios of emissions values did not vary much. To provide a specific 
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comparison, we summarize in Table 10 the regression results for the best models under LRM 

(robust regression). 

The model diagnostic results for per capita scope 1&2 emissions – both original and final models 

– are shown in Figure 8. The same diagnostics were conducted for each sector. Although our 

models are statistically significant in explaining the variation in the values of per capita 

emissions, much can be done to improve the accuracy of the models in predicting emissions 

values. Nonetheless, we are confident of the model results in terms of determining whether 

there is statistically significant difference in emissions by geographical type, which is what we 

aimed to answer in this study.   
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Figure 8a. Histograms by Sector and Geographical Type for Reduced Data Set – Industrial, Residential, 

Commercial, and Onroad 
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Figure 8b. Histograms by Sector and Geographical Type for Reduced Data Set – Nonroad, Air, Scope 1, 

and Scope 1&2 

 

Figure 9a. Model Diagnostics for Per Capita Scope 1&2:LRM Using Full Data Set, All Predictor Variables 
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Figure 9b. Model Diagnostics for Per Capita Scope 1&2:GLM Using Reduced Data Set, Select Variables 

(MSA, MedHHInc, CDD) 
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Table 19. Summary of Best LRM Results  

Variable Industrial Residential Commercial Onroad Nonroad Air Scope 1 Scope 1+ 2 

NERC 

Intercept 2.016e+00*** 

(1.950e-01) 

1.875e+00***   

(7.435e-02) 

8.255e-01*** 

(4.841e-02) 

4.902e+00*** 

(1.049e-01) 

3.536e-01*** 

(4.301e-02) 

1.887e-01*** 

(1.808e-02) 

1.095e+01*** 

(5.376e-01) 

2.211e+01*** 

(8.665e-01) 

Nonmetro 5.323e-02 

(8.675e-02) 

1.206e-01*** 

(2.786e-02) 

-1.636e-01*** 

(2.022e-02) 

1.126e+00*** 

(9.047e-02) 

3.227e-01*** 

(1.916e-02) 

-3.750e-02*** 

(9.133e-03) 

 

2.359e+00*** 

(2.094e-01) 

-6.270e-01 . 

(3.673e-01) 

Outlying -9.114e-02 

(9.366e-02) 

-8.906e-02** 

(2.968e-02) 

-2.817e-01*** 

(2.177e-02) 

1.052e+00*** 

(1.405e-01) 

1.506e-01*** 

(1.809e-02) 

-7.432e-02*** 

(1.059e-02) 

9.772e-01*** 

(2.519e-01) 

6.943e-01 

(4.303e-01) 

Pop. 

Density 

   -2.183e-04*** 

(6.519e-05) 

    

Med. HH 

Inc. 

-1.007e-05** 

(3.371e-06) 

6.373e-06*** 

(1.276e-06) 

5.459e-06*** 

(9.083e-07) 

 5.567e-06*** 

(8.603e-07) 

4.546e-07 

(3.866e-07) 

-6.596e-06 

(-6.596e-06) 

-1.282e-05 

(1.498e-05) 

HDD      -5.711e-06** 

(1.967e-06) 

  

CDD 8.292e-06 

(4.242e-05) 

-5.731e-04*** 

(1.397e-05) 

-2.121e-04*** 

(8.266e-06) 

2.408e-04*** 

(5.005e-05) 

-4.011e-05*** 

(1.029e-05) 

 -3.611e-04** 

(1.202e-04) 

-3.082e-04 

(1.955e-04) 

Adj. R
2
 0.006796 0.5121 0.3365 0.1111 0.1322 0.02479 0.0669 0.00411 
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Appendix V. Data Sources and Values by Life Cycle Stage 

 

Table 23 summarizes the data sources for emissions rate used to compute emissions for 

each life stage – Vehicle upstream, manufacture, and assembly; battery upstream and 

manufacturing (Lithium-ion);  gasoline upstream and distribution; gasoline combustion; 

electricity upstream; and electricity production.  

Table 23.  Summary of data sources by life stage 

Stage Method/Source Values 

Vehicle Upstream, Manufacture and 
Assembly – ICEV 

Upstream: resource extraction and 
production of materials needed for 

vehicle assembly 
Mnfg. And Assembly: covers all material 

and energy needed during vehicle 
assembly 

Avg.: GREET estimate 
for Generic 1532 kg 
(find sources for low 

and High) 

Normal(Mean~2169, 
SE~230) 

 
 

Vehicle A&M – HEV 
GREET estimate for 

HEV 1683 kg 
Normal(Mean~2002,SE~17) 

Vehicle A&M – PHEV 

GREET estimate for 
PHEV20 1746 kg; 

GREET estimate for 
PHEV40 1959 kg 

 

PHEV20=1995 
PHEV40=2165 

Vehicle A&M – BEV 
GREET estimate for 

BEV 2104 kg 
2, 244 

Battery Upstream and Manufacturing 
(Lithium-ion) – PHEV/BEV 

Battery Capacity, 
Specific Energy, and 

EV AER: 
fueleconomy.gov 
Battery mnfg. And 
assembly emission 

rate: Hart et al. (2013), 
Zackrisson et al. 

(2010), Notter et al. 
(2010), and Majeau-
Bettez et al. (2011) 

 

Normal(Mean~15,SE~5) 
 

Gasoline Upstream and Distribution: 
extraction, refining, and distribution from 

refineries to gasoline stations 

Low: Venkatesh et al 
2011 

Avg.: Low and High 
Avg. 

High: GREET 2013 

Normal(Mean~2.4,SE~0.01) 
 

Gasoline Combustion 

Low: EPA 2014 
Avg.: Low and High 

Avg. 
High: Venkatesh et al 

2011 

Normal(Mean~87,SE~0.2) 
 

Electricity Life Cycle: See Appendix 6  
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Upstream: fossil fuel extraction, 
production, and transportation to power 

plants 
Generation: fossil fuel combustion 

during generation (includes electricity 
consumed and onsite, transmission, and 

distribution 
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Appendix VI.  Vehicle and Battery Parameters 

 

I summarize in Tables 6 and 7 the vehicle and battery parameters used in computations 

as described in the Methods section. 

  

Table 21. Summary of vehicle all electric range (AER) and energy use 

 

 

 

 

 

All Values are from fueleconomy.gov except for sales-weighted average light-duty vehicle, which 

was obtained from Eco-driving Index (University of Michigan Transportation Institute 2013). 

Gasoline fuel economy values correspond to combined driving. All vehicles are model year 2014. 

 

Table 22. Battery parameters (Lithium Ion) 

Source: Barrett (2013) 

 

Vehicle Model AER (mi) 
 

Combined 
Energy Use 

(kWh/mi) 

Combined Fuel 
Economy 

(mpg) 

2014 Chevrolet Volt (PHEV) 38 0.35 37 

2014 Nissan Leaf (BEV) 84 0.29  

2014 Toyota Prius HEV   50 

Sales Weighted Ave. CV  24.6  

Vehicle 
Model 

Battery 
Capacity (kWh) 

Battery 
Specific 
Capacity 
(kWh/kg) 

Acceptance 
Rate (kW) 

Charge Time 
(hrs) 

Chevrolet 
Volt 

16 0.080 3.3 4 

Nissan Leaf 24 0.0873 3.3 8 
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Appendix VII. Summary of Electricity Emissions Factors 

 

I show representative maps of the NERC and eGRID subregions in Figures 3 and 4. The tables 

that follow summarize the emission factors corresponding to each region and state. 

 

Figure 23. Representational Map of eGRID Subregions (Source: eGRID 2012) 

 

Figure 23. Representational Map of U.S. NERC Regions (Source: eGRID 2012) 
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Table 23. Regional Average Emission Factors (Source: eGRID 2012) 

NERC 
region 

acronym 
associated 

with the 
eGRID 

subregion 
acronym 

NERC region name  NERC 
Region 
annual 

CO2 total 
output 

emission 
rate 

(kg/MWh) 

eGRID 
subregion 
acronym 

eGRID 
subregion 

name  

eGRID 
subregion 

annual 
CO2 total 

output 
emission 

rate 
(kg/MWh) 

FRCC Florida Reliability 
Coordinating 
Council 

534 FRCC FRCC All 534 

MRO Midwest Reliability 
Organization 

736 MROE MRO East 722 

MROW MRO West 739 

NPCC Northeast Power 
Coordinating 
Council 

297 NYLI NPCC 
Long 
Island 

611 

NEWE NPCC 
New 
England 

330 

NYCW NPCC 
NYC/West
chester 

277 

NYUP NPCC 
Upstate 
NY 

226 

RFC Reliability First 
Corporation 

621 RFCE RFC East 430 

RFCM RFC 
Michigan 

753 

RFCW RFC West 690 

SERC SERC Reliability 
Corporation 

566 SRMW SERC 
Midwest 

794 

SRMV SERC 
Mississippi 
Valley 

455 

SRSO SERC 
South 

601 

SRTV SERC 
Tennesse
e Valley 

616 

SRVC SERC 
Virginia/Ca
rolina 

470 

SPP Southwest Power 
Pool 

756 SPNO SPP North 824 

SPSO SPP South 725 

TRE Texas Regional 
Entity 

536 ERCT ERCOT All 536 

WECC Western Electricity 
Coordinating 
Council 

432 CAMX WECC 
California 

299 

NWPP WECC 
Northwest 

372 

RMPA WECC 
Rockies 

828 
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AZNM WECC 
Southwest 

540 

 

Table 24. Hourly generation-based marginal emission factors, kg/ MWh  

(Source: Siler-Evans et al 2011). 

Hour FRCC MRO NPCC RFC SERC SPP TRE WECC 

1AM 503 908 459 695 625 474 478 473 

2AM 490 949 474 770 711 665 545 491 

3AM 496 959 508 803 778 765 577 543 

4AM 554 940 522 798 816 796 653 560 

5AM 565 918 522 794 816 791 657 574 

6AM 567 891 499 782 794 638 583 574 

7AM 572 861 473 725 707 726 561 561 

8AM 541 820 486 704 768 668 628 486 

9AM 603 758 503 690 661 613 522 489 

10AM 554 700 500 657 589 489 481 458 

11AM 527 714 493 648 574 483 474 469 

12PM 452 699 482 642 596 510 467 478 

1PM 453 695 486 621 609 519 447 472 

2PM 462 691 476 633 620 511 451 501 

3PM 484 702 461 635 658 525 444 505 

4PM 472 740 478 671 622 512 455 522 

5PM 459 745 481 697 618 512 459 529 

6PM 394 708 496 650 599 544 480 523 

7PM 371 683 494 648 622 549 499 502 

8PM 468 700 494 636 660 555 484 485 

9PM 520 688 514 668 649 543 488 509 

10PM 513 613 497 637 562 484 473 486 

11PM 503 665 502 581 463 450 418 453 

12AM 545 834 450 633 512 428 398 449 

 

Table 25. Hourly consumption-based marginal emission factors, kg/MWh  

(Source: Zivin et al 2014). 

Hour FRCC MRO NPCC RFC SERC SPP TRE WECC 

1AM 608 1175 481 685 558 340 463 381 

2AM 603 866 331 785 581 612 490 376 

3AM 553 1284 599 635 653 417 503 381 

4AM 540 1279 640 621 658 503 513 381 

5AM 549 1275 662 626 649 562 508 363 

6AM 572 1275 612 667 590 653 485 349 

7AM 653 1211 535 717 476 794 454 322 



 

119 

8AM 671 1270 617 640 395 789 431 299 

9AM 689 1066 562 662 345 789 426 308 

10AM 794 975 549 662 358 640 426 349 

11AM 821 1075 644 567 449 526 417 386 

12PM 748 1129 680 490 544 440 417 399 

1PM 603 1102 689 449 599 413 413 399 

2PM 508 1080 658 449 599 390 417 390 

3PM 440 1034 640 458 576 395 417 376 

4PM 404 984 658 458 549 431 417 372 

5PM 404 989 635 467 535 417 417 363 

6PM 422 903 603 494 526 404 413 358 

7PM 472 807 594 517 503 435 408 358 

8PM 522 767 526 553 485 417 408 363 

9PM 558 744 503 576 472 408 404 367 

10PM 581 821 581 549 485 395 404 363 

11PM 612 921 476 612 476 349 413 367 

12AM 662 1030 481 649 508 327 431 372 

 

Table 26. 2009 State average emission factors (Source: eGRID 2012) 

State Average State EF 
(kg/MWh) 

AL 472 

AK 511 

AZ 492 

AR 505 

CA 252 

CO 788 

CT 262 

DE 814 

DC 1127 

FL 541 

GA 583 

HI 693 

ID 54 

IL 484 

IN 922 

IA 737 

KS 759 

KY 928 

LA 512 

ME 227 

MD 559 

MA 505 

MI 691 

MN 634 
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MS 500 

MO 820 

MT 653 

NE 725 

NV 481 

NH 272 

NJ 249 

NM 826 

NY 264 

NC 525 

ND 933 

OH 808 

OK 678 

OR 165 

PA 517 

RI 406 

SC 374 

SD 414 

TN 486 

TX 564 

UT 841 

VT 1 

VA 451 

WA 130 

WV 912 

WI 687 

WY 960 
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Appendix VIII.  Vehicle emission estimates probability density plots 

 

Table 30.  Probability density plots of estimated Nissan Leaf marginal emissions, Toyota Prius Hybrid emissions, and sales-weighted average 
ICEV emissions 

 
a) FRCC 

 
b) MRO 

 
c) NPCC 

 
d) RFC 
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e) SERC 

 
f) SPP 

 
g) TRE 

 
h) WECC 
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Appendix IX. Emission estimates by life cycle stage (kg CO2/mi)  

 

The following tables summarize the emissions estimates in kg CO2/mi for each life cycle stage.  Electricity related emissions shown 

here correspond to the 2013 Nissan Leaf electricity use.  Siler-Evans et al (2011) provide data on marginal grid mix – percentage of 

coal, gas, and oil – at 20 electricity load values.  They also provide average load estimates for each hour of the day.  To determine 

generation-based marginal grid mix by hour of the day, we extrapolated values from the load-grid mix data set and the hour-load data 

set using the following equation: 

                                      

 

where        is the percentage of fossil fuel type                  , for hour t in region                                         ,     is the estimated load in region r at hour t form Siler-Evans et al (2011), and 

the range           are values from the load-grid mix data set that include    .  To compute upstream electricity emissions by 

hour,  ̂                 (j=generation-based from Siler-Evans et al 2011), I used the following formula, where I assumed 

distributions/values shown in Table 31.   ̂                 ∑         ̂               
Table 31.  Upstream fossil fuel emissions estimates (g CO2/kWh) 

Fossil Fuel Upstream Fuel Emissions  ̂              
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Coal Normal(mean = 32, std. error = 13) 

Gas Normal(mean = 115, std. error = 44) 

Oil 43 

 

Zivin et al (2014) do not provide a grid mix or load data that can be used to estimate hourly marginal grid.  As an approximation of 

hourly consumption-based upstream electricity emission,  ̂                                    , we used the following formula: 

 ̂                                       ̂                                                                                      
where           is the vehicle operation electricity emissions estimate for vehicle sample i, vehicle type  , using emissions factors set j in 

region   in g CO2. 

Table 32. Nissan Leaf electricity upstream and production emissions estimates (kg CO2/mi) by region (eGRID Subregion and state values 

correspond to minimum and maximum values within the NERC region) 

Region Emission Factor 
Type 

Charging Marginal Electricity Upstream 
Emissions (kg CO2/mi) 

Marginal Electricity Production 
Emissions (kg CO2/mi) 

5th Mean
 

95
th

 5th Mean
 

95th 

FRCC Marginal 
Consumption (Zivin) 

Convenience 13 17 22 120 162 204 

Delayed  12 16 20 132 177 222 

Marginal Generation 
(Siler-Evans) 

Convenience 16 16 17 151 154 158 

Delayed  11 14 18 158 163 167 

Average Generation 
(NERC) 

Subregion 43 43 43 161 161 162 

State 43 43 43 160 161 161 

MRO Marginal 
Consumption (Zivin) 

Convenience 7 9 11 226 280 334 

Delayed 5 7 9 262 348 434 
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Marginal Generation 
(Siler-Evans) 

Convenience 8 8 8 237 241 244 

Delayed 5 5 6 270 273 276 

Average Generation 
(NERC) 

Subregion 11 13 13 217 222 222 

State 7 13 14 124 222 280 

NPCC Marginal 
Consumption (Zivin) 

Convenience 13 147 26 108 164 220 

Delayed  9 147 28 76 155 234 

Marginal Generation 
(Siler-Evans) 

Convenience 17 167 18 144 147 149 

Delayed  17 149 18 144 147 149 

Average Generation 
(NERC) 

Subregion 0.1 90 58 68 90 183 

State 28 90 41 0.3 90 152 

RFC Marginal 
Consumption (Zivin) 

Convenience 6 7 7 149 171 192 

Delayed  5 6 7 171 205 240 

Marginal Generation 
(Siler-Evans) 

Convenience 8 8 8 209 211 214 

Delayed  7 7 7 227 229 231 

Average Generation 
(NERC) 

Subregion 15 15 18 129 188 226 

State 15 15 43 75 188 338 

SERC Marginal 
Consumption (Zivin) 

Convenience 7 8 9 140 156 173 

Delayed  6 6 7 157 176 195 

Marginal Generation 
(Siler-Evans) 

Convenience 10 10 10 195 197 200 

Delayed 8 8 8 221 223 225 

Average Generation 
(NERC) 

Subregion 35 20 13 136 171 238 

State 12 20 16 112 171 278 

SPP Marginal 
Consumption (Zivin) 

Convenience 5 10 15 59 123 188 

Delayed  3 8 13 64 153 242 

Marginal Generation 
(Siler-Evans) 

Convenience 14 14 14 168 170 173 

Delayed  11 11 11 197 201 204 

Average Generation 
(NERC) 

Subregion 17 27 32 218 228 247 

State 38 27 15 203 228 228 
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TRE Marginal 
Consumption (Zivin) 

Convenience 14 15 16 121 127 134 

Delayed  12 13 14 135 145 155 

Marginal Generation 
(Siler-Evans) 

Convenience 17 18 18 149 152 155 

Delayed  15 15 16 166 170 174 

Average Generation 
(NERC) 

Subregion 38 38 38 161 161 161 

State 38 38 38 161 161 169 

WECC Marginal 
Consumption (Zivin) 

Convenience 12 13 15 97 110 123 

Delayed  10 12 14 90 111 132 

Marginal Generation 
(Siler-Evans) 

Convenience 18 18 18 145 147 149 

Delayed  16 17 17 152 155 159 

Average Generation 
(NERC) 

Subregion  38 26 27 90 130 248 

State  9 26 38 16 130 288 
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Figure 25.  Lithium-ion Battery upstream and manufacturing emissions estimate for Chevrolet 

Volt, Toyota Prius PHEV, and Nissan Leaf 

 

Mean:  33 g CO2/mi 

SDev:   12 g CO2/mi 

 

Mean:  5 g CO2/mi 

SDev:  2 g CO2/mi 

 

Mean:  24 g CO2/mi 

SDev:    9 g CO2/mi 
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Figure 26.  Vehicle upstream and manufacturing emissions estimates by vehicle t–pe - Battery 

electric vehicle (BEV),  Plug-in hybrid electric vehicle (PHEV), Hybrid electric vehicle (HEV), and 

Internal combustion engine vehicle (ICEV).

Mean:  18 g CO2/mi 

SDev:    2 g CO2/mi 

 

 

Mean:  17 g CO2/mi 

SDev:    2 g CO2/mi 

 

 

Mean:  16 g CO2/mi 

SDev:    2 g CO2/mi 

 

 

Mean:  18 g CO2/mi 

SDev:    3 g CO2/mi 
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Appendix X.  Nissan Leaf t-test results for comparing results under different estimation methods 

Table 33.  T-test results for Nissan Leaf emissions estimates under different marginal emissions estimation methods 

Region 

Convenience Minus Delayed Charging Consumption-based Minus Generation-based 

Consumption-based Generation-based Convenience Charging Delayed Charging 

p-value % Mean Diff. p-value % Mean Diff. p-value % Mean Diff. p-value % Mean Diff. 

FRCC < 1% -11% < 1% -6% < 1% -3% < 1% -7% 

MRO < 1% -13% < 1% -15% < 1% -16% < 1% -14% 

NPCC < 1% 19% < 1% 2% < 1% 14% < 1% 3% 

RFC < 1% -28% < 1% -8% < 1% 26% < 1% 7% 

SERC < 1% -9% < 1% -8% < 1% 21% < 1% 20% 

SPP < 1% -4% < 1% -11% < 1% 23% < 1% 31% 

TRE < 1% -11% < 1% -7% < 1% 15% < 1% 11% 

NPCC < 1% -2% < 1% -1% < 1% 23% < 1% 23% 
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Appendix XI.  Comparison Results for Chevrolet Volt and Toyota Prius PHEV versus the Toyota Prius Hybrid and 

sales-weighted average ICEV 

 

Table 34. Comparison results for the Chevrolet Volt versus the Toyota Prius Hybrid and sales-weighted average ICEV by region and marginal 

emissions estimation method.  Values are mean percentage differences while cell colors indicate which vehicle is lower emitting – green:  

Chevrolet Volt and red:  gasoline vehicle. 

NERC 
Region 

Chevrolet Volt vs Toyota Prius Hybrid Chevrolet Volt vs. Avg. ICEV 

Cons_ Cons_ Gen_ Gen_ Cons_ Cons_ Gen_ Gen_ 

Conv Del Conv Del Conv Del Conv Del 

FRCC 5% 14% 2% 8% 47% 42% 48% 45% 

MRO 62% 83% 39% 59% 18% 7% 30% 19% 

NPCC 15% 3% 0% 1% 41% 51% 49% 50% 

RFC 4% 30% 28% 39% 47% 34% 35% 29% 

SERC 4% 13% 24% 34% 47% 42% 37% 32% 

SPP 9% 4% 9% 23% 54% 51% 44% 37% 

TRE 11% 1% 1% 9% 55% 50% 49% 45% 

WECC 17% 16% 0% 3% 58% 57% 49% 48% 
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Table 35.  Comparison results for the Toyota Prius PHEV versus the Toyota Prius Hybrid and sales-weighted average ICEV by region and 

marginal emissions estimation method.  Values are mean percentage differences while cell colors indicate which vehicle is lower emitting – green:  

Chevrolet Volt and red:  gasoline vehicle. 

NERC 
Region 

Toyota Prius PHEV vs Toyota Prius Hybrid Toyota Prius PHEV vs Avg. ICEV 

Cons_ Cons_ Gen_ Gen_ Cons_ Cons_ Gen_ Gen_ 

Conv Del Conv Del Conv Del Conv Del 

FRCC 12% 5% 13% 10% 55% 52% 56% 54% 

MRO 19% 28% 6% 17% 23% 10% 35% 25% 

NPCC 5% 18% 14% 16% 52% 58% 56% 57% 

RFC 13% 3% 1% 6% 56% 48% 49% 46% 

SERC 12% 9% 1% 2% 54% 56% 53% 52% 

SPP 19% 19% 9% 6% 59% 59% 54% 52% 

TRE 20% 16% 14% 11% 59% 57% 56% 55% 

WECC 23% 22% 14% 14% 61% 61% 56% 56% 
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