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Abstract

The appearance of an outdoor scene is determined to a great extent by the prevailing

illumination conditions. However, most practical computer vision applications treat illumi-

nation more as a nuisance rather than a source of signal. In this dissertation, we suggest

that we should instead embrace illumination, even in the challenging, uncontrolled world of

consumer photographs.

Our first main contribution is an understanding of natural illumination from images.

This is, in general, a hard problem given the wide appearance variation in scenes. For-

tunately, natural illumination, while complex, is far from being completely arbitrary. It

has a structure that is well understood in atmospheric optics, but which has hardly been

exploited in vision and graphics. We introduce methods for automatically estimating the

illumination conditions from two types of uncontrolled outdoor image datasets: webcams

and single images. The variation in sun position and sky appearance over time can be

exploited to obtain viewing and illumination geometry in webcam sequences. For single

images, the sky is combined in a probabilistic way with other scene features such as cast

shadows and shading on vertical surfaces and convex objects, as well as with illumination

priors from large image collections.

Our second main contribution is to exploit the knowledge of illumination in order to

synthesize novel, realistic visual content. Instead of creating appearance using the tradi-

tional computer graphics pipeline, we propose to borrow the appearance of the world that is

contained in existing photo collections and webcam datasets. We also demonstrate realistic

3-D object insertion by creating plausible high-dynamic range environment maps. This can

be done in image sequences, and even in single images, completely automatically. Address-

ing such questions has implications in a broad range of applications including intelligent

transportation, surveillance, human-robot interaction, and digital entertainment.
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Chapter 1

Introduction

The journey of a thousand leagues begins

with a single step.

Lao Tzu (600–531 BC)

(a) (b) (c) (d)

Figure 1.1: Natural illumination creates beautiful effects, much coveted by photographers.
Whether it is sunny (a), overcast (b), at sunset (c) or at the golden hour (d), natural illu-
mination creates challenging cases for computer vision and graphics researchers alike.

The appearance of an outdoor scene is determined to a great extent by the prevailing

illumination conditions, as illustrated in Fig. 1.1. Is it sunny or overcast, morning or noon,

clear or hazy? Claude Monet, a fastidious student of light, observed: “A landscape does

not exist in its own right . . . but the surrounding atmosphere brings it to life . . . For me,

it is only the surrounding atmosphere which gives subjects their true value.” Within the

Grand Vision Problem, illumination is one of the key variables that must be untangled in

order to get from pixels to image understanding. But while a lot of work has been done

on modeling and using illumination in a laboratory setting, relatively little is known about

1



it “in the wild”, i.e., in a typical outdoor scene. In fact, most practical vision applications

treat illumination more as a nuisance—something that one strives to be invariant to—

rather than a source of signal. Examples include illumination adaptation in tracking and

surveillance (e.g., [Stauffer, 1999]), or contrast normalization schemes in popular object

detectors (e.g., [Dalal and Triggs, 2005]). Alas, the search for the ultimate illumination

invariant might be in vain [Chen et al., 2000].

In this dissertation, we suggest that we should instead embrace illumination, even in

the challenging, uncontrolled world of consumer photographs. Our first main contribution1

is:

Understanding of natural illumination We propose algorithms to automatically

estimate the illumination conditions in 1) time-lapse videos captured by static cam-

eras, and 2) single images. We capture the position of the sun with respect to the

camera, sun visibility, and sky color.

Understanding illumination from images is a hard problem which has received significant

attention [Ramamoorthi and Hanrahan, 2001; Tappen et al., 2005]. What makes it espe-

cially hard is that light undergoes a series of complex interactions with the scene, which de-

pend on its geometry and reflectance properties, before being captured by a camera to form

an image. Fortunately, natural illumination, while complex, is far from being completely

arbitrary. It has a structure that is well understood in atmospheric optics [Judd et al., 1964;

Perez et al., 1993], but which has hardly been used in vision and graphics (notable excep-

tions being [Sato and Ikeuchi, 1995; Sato et al., 2003; Preetham et al., 1999]). Here we

propose to take advantage of its structure, and use the sky appearance as well as other cues

such as shadows and shading as sources of information.

This knowledge of illumination in images also enables a new class of computer graph-

ics applications. One of the ultimate goals of computer graphics is to make the creation

and manipulation of novel, photo-realistic imagery simple and intuitive to the casual user.

Despite the recent advances, visual realism in complex, real-world scenes remains largely

elusive for traditional computer graphics. The main culprit appears to be the sheer com-
1Originally introduced in [Lalonde et al., 2008b; Lalonde et al., 2009a; Lalonde et al., 2010a; Lalonde et

al., 2010c]
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plexity of our visual experience—a realistic scene requires much more detailed geometry

and lighting than could possibly be provided by hand.

In this thesis, we propose an alternative approach to traditional computer graphics tech-

niques for creating realistic, lighting-consistent visual content—by leveraging the enormous

amount of photographs that have already been captured, and analyzing them using our novel

illumination estimation techniques. We now state our second main contribution2:

Data-driven, illumination-consistent synthesis of novel visual content In-

stead of creating appearance with the usual computer graphics pipeline, we propose to

borrow the appearance of the world that is contained in existing pictures, while keep-

ing the illumination conditions consistent. Whereas image-based rendering techniques

use photographs of a specific, confined space, our ultimate goal is to use unconstrained

photographs of the entire world.

In “traditional” computer graphics, the main problem is not the lack of good algo-

rithms—recent advances in global illumination, material modeling, rendering and lighting

have allowed for synthesis of beautifully realistic and detailed imagery. Instead, the biggest

obstacle is the sheer richness and complexity of our visual world. Every object to be

rendered requires painstaking work by a skilled artist to specify detailed geometry and

surface properties. And while there are a few databases of pre-made object models, typically

the number of objects is quite small and the quality is far from photo-realistic. Various

image-based approaches can also be used to acquire object models, but the data acquisition

process is not straightforward and is typically not suitable for relatively large, outdoor,

potentially moving objects (cars, pedestrians, etc). While it is possible to add synthetic

objects into real scenes [Debevec, 1998], this requires estimating camera orientation and

capturing environment maps—tasks too difficult for a casual user.

Instead of restricting ourselves to small datasets, what about exploiting all the avail-

able visual data in the world, no matter where it was captured? to build a universal

photo clip art library that can be used for manipulating visual content “on the fly”, in an

illumination-consistent fashion? While this is a very ambitious goal, the recent emergence

2Originally introduced in [Lalonde et al., 2007; Lalonde and Efros, 2007; Lalonde et al., 2009b]
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of large, peer-labeled object datasets [Russell et al., 2008; von Ahn et al., 2006], advances

in geometric scene interpretation [Hoiem et al., 2005; Hoiem et al., 2006], as well as our

novel understanding of illumination in images suggest that efforts in this direction are very

timely.

1.1 Our Approach

Our ultimate goals are to 1) estimate natural illumination; and 2) synthesize realistic con-

tent, both from single images captured in the real world, so we need to find ways to deal with

the inherent uncertainty in the data. This uncertainty may come from multiple sources: the

geometric and radiometric properties of the camera (orientation, zoom, response function,

dynamic range, etc.), the scene structure (scene geometry, material properties, object iden-

tities, depth discontinuities, occlusions, etc.) and the illumination conditions (sun position,

weather, etc.) all interact in highly complex ways to form an image. We now present the

key ideas which allows us to deal with such ill-posed problems.

Our first key idea is to constrain the problem by analyzing the case of time-lapse image

sequences, where the scene is kept constant while the illumination conditions vary over time.

This allows us to de-couple the effects due to illumination from those due to scene changes.

An unexpected result of this analysis reveals that the visible portion of the sky, when

observed over time, is sufficient to recover the natural illumination conditions in each frame

in the sequence. Our approach combines physically-based modeling with robust non-linear

parameter fitting to deal with common sources of distortion such as vignetting, non-linear

camera response functions, and sensor noise.

While useful to understand the sky, physical models are unfortunately of limited use

when estimating illumination in single images. For example, existing physical models for

detecting cast shadows—strong cues for illumination understanding—fail when applied to

consumer-quality images. In this case, the models are not robust enough to compensate

for the strong sources of distortion in the capture process. Other illumination cues such as

shading on flat and convex objects also cannot be estimated using physics-based models be-

cause of the uncertainty in scene structure recovery. To compensate for these shortcomings,
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our second key idea is to use data-driven, machine learning methods to model the statistics

of the world. For this, we introduce novel datasets of image sequences and single images,

in which the illumination is manually (or automatically) labelled. We use these datasets to

train classifiers on novel illumination-sensitive features, and show that their performance is

surprisingly good on a wide range of challenging images.

These illumination estimation techniques can subsequently be used to generate novel,

illumination-consistent images. Instead of trying to generate appearance from the ground

up as in the traditional computer graphics pipeline, our third key idea is to borrow visual

content from existing images, and transfer them onto other images. Our illumination un-

derstanding tools are used to create novel databases of single or time-lapse objects which

are aware of their illumination conditions (and other parameters such as camera geometry,

depth, etc.).

1.2 Overview

This thesis is divided into two main parts that mirror the natural progression from image

sequences to single images. Each part follows the same structure: natural illumination is

first estimated; then used to synthesize realistic, illumination-consistent images.

Part I considers the case of image sequences captured by static cameras. First, Ch. 3

shows that the natural illumination conditions can be estimated by analyzing the sky region

only. Subsequently, Ch. 4 demonstrates how this knowledge of illumination can be used to

synthesize new image sequences where illumination effects such as reflections, shading, and

cast shadows can accurately be transferred and generated.

Part II then explores the case of a single image. First, because shadows are such

an important cue in illumination understanding [Koenderink et al., 2004], we present in

Ch. 5 a method for automatically detecting shadow boundaries in single, consumer-quality

photographs. Ch. 6 shows how to estimate the natural illumination conditions from a single

image by combining several cues computed over different portions of the image. Ch. 7 then

presents a system for creating novel, illumination-consistent images in a data-driven way.

Ch. 8 concludes this part of the dissertation by presenting an analysis of the role of color
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in assessing the realism of image composites created by such a system.

Just before Part I commences, Ch. 2 presents an overview of the existing representa-

tions for natural illumination. We then contrast them with our own, which we will keep

throughout this document.

1.3 Background

We first provide a short review of related work for the tasks of estimating illumination, and

data-driven methods for image compositing. In addition to this section, each chapter will

also provide supplementary relevant background references as needed.

1.3.1 Natural Illumination Estimation

The color and geometry of illuminants can be directly observed by placing probes, such

as mirror spheres [Stumpfel et al., 2004], color charts or integrating spheres, within the

scene. But, alas, most of the photographs captured do not contain such probes and thus,

we are forced to look for cues within the scene itself. There is a long and rich history

in computer vision about understanding the illumination from images. We will briefly

summarize relevant works here, but also talk about relevant references in each subsequent

chapter of this thesis.

Color constancy These approaches strive to extract scene representations that are insen-

sitive to the illuminant color. For this, several works either derive transformations between

scene appearances under different source colors (e.g., [Finlayson et al., 1993]), or transform

images into different color spaces that are insensitive to illuminant colors (e.g., [Zickler et

al., 2006]). Our work focuses on a complementary representation of outdoor illumination

(see Ch. 2).

Model-based reflectance and illumination estimation Several works estimate illumina-

tion (light direction and location), in conjunction with model-based estimation of object

shape and reflectances (Lambertian, Dichromatic, Torrance-Sparrow), from one or more

images of the scene [Sato et al., 2003; Basri et al., 2007]. Of particular interest, Sun et
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al. [2009] estimate illumination conditions in complex urban scenes by registering the pho-

tographs to 3-D models of the scene. Our work does not rely on specific reflectance models

of outdoor surfaces or exact estimation of 3-D geometry.

Shadow extraction and analysis Many works detect and remove shadows using one or

more images [Weiss, 2001; Finlayson et al., 2002; Wu and Tang, 2005]. The extracted

shadows have also been used to estimate the sun direction in constrained settings [Kim

and Hong, 2005] or in webcams [Junejo and Foroosh, 2008]. But shadows are only weakly

informative about illumination when their sizes in the image are too small or their shapes

are complex or blurred. Our work, for the first time, combines such weak cues with other

semi-informative cues to better estimate illumination from a single image.

Illumination estimation from time-lapse sequences Narasimhan et al. [2002] introduced

a dataset of high quality registered and calibrated images of a fixed outdoor scene captured

every hour for a year. By fixing the scene and viewing geometry, it is possible to analyze

the effect of illumination, weather and aging conditions more directly. This idea has re-

cently been exploited by several researchers. For example, Koppal and Narasimhan [2006]

showed that scene points can be clustered according to their surface normals, irrespective

of material and lighting, by observing their appearance over time, as illumination changes.

On a global scale, Jacobs et al. [2007a] observed that the main variations in scene appear-

ance are common across scenes by applying PCA on a large dataset of webcam sequences.

Sunkavalli et al. [2008] have also demonstrated impressive color constancy results, by fitting

an illumination model to such an image sequence.

Sun position analysis The sun position has been exploited mostly in the robotics com-

munity. Cozman and Krotkov [1995] extract sun altitudes from images and use them to

estimate camera latitude and longitude. Trebi-Ollennu et al. [2001] describe a system that

estimates camera orientation in a celestial coordinate system, that is used to infer the

attitude of a planetary rover. Both these techniques yield precise estimates, but require ex-

pensive additional hardware (digital inclinometer [Cozman and Krotkov, 1995] and custom

sun sensor [Trebi-Ollennu et al., 2001]). In comparison, our method recovers the viewing
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geometry from the sun position annotated in images captured by any ordinary camera.

Sky appearance analysis The sky appearance has long been studied by physicists. One of

the most popular physically-based sky model was introduced by Perez et al. [1993], and was

built from measured sky luminances. This model has been used in graphics for relighting

architectural models [Yu and Malik, 1998], and for developing an efficient sky rendering

algorithm [Preetham et al., 1999]. Alternatively, Stumpfel et al. [2004] proposed to capture

the sky directly into an HDR environment map format, and used it for both rendering and

relighting [Debevec et al., 2004]. Surprisingly however, very little work has been done on

extracting information from the visible sky. One notable exception is the work of Jacobs et

al. [Jacobs et al., 2008] where they use the Perez sky model to infer the camera azimuth by

using a correlation-based approach. In our work, we address a broader question: what does

the sky tell us about the camera? We show how we can recover three camera extrinsic and

intrinsic geometric properties simultaneously, from the sun position and the sky appearance.

1.3.2 Data-driven Image Synthesis

A number of papers have dealt with issues involved in compositing an object into an image

in a visually pleasing way [Porter and Duff, 1984; Pérez et al., 2003; Jia et al., 2006;

Wang and Cohen, 2006]. However, they all assume that the user has already chosen the

object that would be a good fit (geometrically and photometrically) for the target image.

For instance, most blending techniques [Pérez et al., 2003; Rother et al., 2004; Li et al., 2004;

Jia et al., 2006] rely on the assumption that the area surrounding the object in the source

and target images are similar. Playing with these methods, one quickly realizes how very

important the selection of a good source object is to the quality of the result and how

difficult it is to get it right if one is not artistically gifted.

The work closest to our own is Semantic Photo Synthesis [Johnson et al., 2006] (which

itself has been inspired by [Diakopoulos et al., 2004]). This paper develops a very ambitious

approach for letting the user “design a new photograph” using textual and sketch queries

into a database of real, automatically annotated images. Graphcut optimization [Boykov

et al., 2001] is used to stitch together parts of different retrieved photographs to get the
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final resulting image. While this work is very sophisticated technically and loaded with

good, novel ideas, unfortunately, the visual results are not very compelling. We believe

that the reasons for this are three-fold: 1) the synthesis process is done purely in the 2D

image plane, without regard to scene geometry; 2) the image parts being stitched together

are often not well defined, i.e., not corresponding to physical objects; 3) there is no attempt

to match illumination conditions between image parts. Our present work addresses all of

the above issues. We employ a more incremental approach to image synthesis. Instead of

starting from scratch and hoping to get a photo-realistic picture in the end, we begin with

an image that is already real and try to alter it in ways that change the content without

breaking this “realness”. Some surprisingly successful applications of this simple idea have

since then [Lalonde et al., 2007] been demonstrated [Hays and Efros, 2007; Bitouk et al.,

2008; Chen et al., 2009]. Closely related are efforts that perform “appearance mining” of

photo collections to recover visual content like virtual walk-throughs [Snavely et al., 2008],

skies [Tao et al., 2009] and even 3D models [Goesele et al., 2007].

1.4 Links to Online Material

To facilitate further progress in this area and encourage transparency in the research process,

we provide Matlab code, data, and demos for all of the main chapters of this thesis. Please

refer to the URLs provided in Table 1.1.

Ch. Content URL
3 Code http://graphics.cs.cmu.edu/projects/sky

4 Webcam dataset http://graphics.cs.cmu.edu/projects/webcamclipart

5 Code, shadow dataset http://graphics.cs.cmu.edu/projects/shadows

6 Code, dataset http://graphics.cs.cmu.edu/projects/outdoorillumination

7 Live demo http://graphics.cs.cmu.edu/projects/photoclipart

8 Color realism dataset http://graphics.cs.cmu.edu/projects/realismcolor

Table 1.1: Links to online material available for each chapter of this thesis.
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Chapter 2

Representations for

Natural Illumination

And not by eastern windows only,

When daylight comes, comes in the light,

In front the sun climbs slow, how slowly,

But westward, look, the land is bright.

Arthur Hugh Clough (1819–1861)

Because of its predominant role in any outdoor setting, it has been of critical importance to

understand natural illumination in many fields such as computer vision and graphics, but

also in other research areas such as biology [Hill, 1994], architecture [Reinhart et al., 2006],

solar energy [Mills, 2004], and remote sensing [Healey and Slater, 1999]. Consequently,

researchers have proposed many different representations for natural illumination adapted

to their respective applications. In this chapter, we present an overview of popular rep-

resentations divided into three main categories: “physically-based”, “environment maps”,

and “statistical”. We conclude this chapter by describing the representation that we use in

this work.
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2.1 Physically-based Representations

The type of representation that is probably the most popular in the literature is what we

name here “physically-based” representations: mathematical expressions that model the

physics of natural illumination. They typically stem from the following equation (adapted

from [Slater and Healey, 1998]), which models the ground spectral irradiance L(λ) as a

function of the sun and sky radiances Esun and Esky respectively:

L(λ) = KEsun(θs, φs, λ) cos(θs) +
� 2π

φ=0

� π
2

θ=0
Esky(θ,φ,λ) cos(θ) sin(θ)dθdφ , (2.1)

where K is a binary constant which accounts for occluding bodies in the solar to surface

path, and Esky is integrated over the entire sky hemisphere. While (2.1) may look simple,

its complexity lies in the characterization of the sun and sky radiance components which

depend on the form and amount of atmospheric scattering. As a result, a wide variety of

ways to model the sun and the sky have been proposed; we summarize a few here that are

most relevant to our work.

Being the dominant light source outdoors, the sun has been studied extensively. For

example, in architectural design, the relative position of the sun is an important factor

in calculating the heat gain of buildings and in radiance computations that determine the

quantity of natural light received inside each of the rooms [Ward, 1994]. Understanding

the quantity of energy delivered by the sun at ground level is also critical to predict the

quantity of electricity that can be produced by photovoltaic cells [Mills, 2004]. As such,

highly precise physical models for sunlight transport through the atmosphere (Esun in (2.1))

have been proposed [Bird, 1984; Kasten and Young, 1989].

The second main illuminant outdoors, the sky, has also long been studied by physicists.

One of the first parametric models of the sky was introduced by Pokrowski [1929], based on

theory and sky measurements. The model was improved by Kittler [1967], and subsequently

adopted as a standard by the Commission Internationale de l’Éclairage (CIE) [CIE, 1994].

The CIE model has found applications in computer graphics [Ward, 1994]. One of the

most popular physically-based sky model was introduced by Perez et al. [1993], and was

built from measured sky luminances. It is a generalization of the CIE formula, and it has
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been found to be more accurate for a wider range of atmospheric conditions [Ineichen et

al., 1994]. This model has been used in graphics for relighting architectural models [Yu

and Malik, 1998], and for developing an efficient sky rendering algorithm [Preetham et al.,

1999]. This is also the model we will ourselves use to understand the sky appearance (see

Secs 2.4.2 and 3.3).

In computer vision, Sato and Ikeuchi [1995] use a model similar to (2.1) along with simple

reflectance models to estimate the shape of objects lit by natural illumination. This has

led to applications in outdoor color representation and classification [Buluswar and Draper,

2002], surveillance [Tsin et al., 2001], and robotics [Manduchi, 2006]. A similar flavor of

the same model has also been used in the color constancy domain by [Maxwell et al., 2008].

Because physical models possess many parameters, recovering them from images is not an

easy task. Therefore, researchers have resorted to simplifying assumptions, approximations,

or to the use of image sequences [Sunkavalli et al., 2008] to make the estimation problem

more tractable.

2.2 Environment Map Representations

An alternative representation is based on the accurate measurement and direct storage of

the quantity of natural light received at a point that comes in from all directions. As op-

posed to “physically-based” representations, here no compact formula is sought and all the

information is stored explicitly. Originally introduced in the computer graphics community

by Blinn and Newell [1976a] to relight shiny objects, the representation (also dubbed “light

probe” in the community) was further developed by Debevec [Debevec, 1998; Debevec and

Malik, 1997] to realistically insert virtual objects in real images. It is typically captured

using a high-quality, high-dynamic range camera equipped with an omni-directional lens

(or a spherical mirror), and requires precise calibration. Stumpfel et al. [2004] more re-

cently proposed to employ this representation to capture the sky over an entire day into

an environment map format, and used it for both rendering and relighting [Debevec et al.,

2004].

In comparison to its “physically-based” counterpart, the “environment map” represen-
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tation has no parameters to estimate: it is simply measured directly. However, its main

drawback—aside from large memory requirements—is that physical access to the scene of

interest is necessary to capture it. Thus, it cannot be used on images which have already

been captured.

2.3 Statistical Representations

The third type of representation for natural illumination has its roots in data mining and

dimensionality reduction techniques. The idea is to extract the low-dimensional trends

from datasets of measurements of natural illumination. This “statistical”, or “data-driven”

representation is typically obtained by gathering a large number of observations—either

from physical measurements of real-world illumination captured around the world [Judd et

al., 1964], or by generating samples using a physical model [Slater and Healey, 1998]—and

performing a dimensionality reduction technique (e.g., PCA) to discover which dimensions

explain most of the variance in the samples.

One of the first to propose such an idea was Judd et al. [1964], and is still to this date

considered as one of the best experimental analysis of daylight [Slater and Healey, 1998].

Their study considered 622 samples of daylight measured in the visible spectrum, and

observed that most of them could be approximated accurately by a linear combination of

three fixed functions. Subsequently, Slater and Healey [1998] reported that a 7-dimensional

PCA representation capture 99% of the variance of the spectral distribution of natural

illumination in the visible and near-infrared spectra, based on a synthetically-generated

dataset of spectral lighting profiles. Dror et al. [2004] performed a similar study by using a

set of HDR environment maps as input.

Linear representations for illumination have been successful in many applications, no-

tably in the joint estimation of lighting and reflectance from images of an object of known

geometry. Famously, Ramamoorthi and Hanrahan [2001] used a spherical harmonics rep-

resentation (linear in the frequency domain) of reflectance and illumination and expresses

their interaction as a convolution. More recently, Romeiro and Zickler [2010] also use a

linear illumination basis to infer material properties by marginalizing over a database of
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real-world illumination conditions.

Linear representations have also been used in graphics, to render skies much faster than

with computationally expensive physical simulations. For example, Dobashi et al. [1995]

employed a series of Legendre basis functions for specific sky data, and Nimeroff et al. [1996]

employed steerable basis functions to fit multiple sky models, including the CIE [CIE, 1994].

Finally, we mention the work of Preetham et al. [1999], who optimized a simple linear model

on the Perez sky formula [Perez et al., 1993], which we will ourselves use in this thesis.

2.4 An Intuitive Representation for Natural Illumination

All the previous representations assume that the camera (or other sensing modalities) used

to capture illumination are of very high quality—there must be a linear relationship between

the illumination radiance and sensor reading, they have high dynamic range, etc.—and

that the images contain very few, easily recognizable objects. However, most consumer

photographs that are found on the Internet do not obey these rules, and we have to deal with

acquisition process issues like non-linearity, vignetting, compression and resizing artifacts,

limited dynamic range, out-of-focus blur, etc. In addition, scenes contain occlusions, depth

discontinuities and distortions due to perspective projection. Finally, the representations

presented above assume that the entire sky hemisphere can be directly observed by hyper-

spectral sensors or wide-angle cameras. This of course does not correspond to the capture

conditions of regular cameras, which have narrow fields of view—the sky typically occupies

only a restricted portion of the image (if any). In general, these issues make the previous

illumination representations mathematically impossible to estimate from single, real-world

images.

We propose to use a hybrid representation that is more amenable to understand this

type of images. As in (2.1), we also model the sun and the sky separately, but we do so

using the intuitive parameters shown in Fig. 2.1.

2.4.1 Sun Component

We model the sun component (Fig. 2.1a) using two variables:
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Figure 2.1: Graphical illustration of the natural illumination model used in this thesis. The sun
(a) is described by its angular position (∆θs,∆φs) with respect to the camera, and its visibility
V . The sky (b) is represented by its turbidity t (degree of scattering in the atmosphere) and
cloud cover C.

V its visibility, or whether or not it is shining on the scene;

S its angular position relative to the camera. In spherical coordinates, S = (∆θs,∆φs),

where ∆θs = θs − θc is the sun relative zenith angle with respect to the camera;

and ∆φs = φs − φc the sun relative azimuth angle with respect to the camera (see

Fig. 2.1a). The s and c indices denote the sun and camera respectively. S is specified

only if V = 1, and undefined if V = 0.

In contrast to existing approaches, this representation for natural illumination is more

simple and intuitive, therefore making it better-suited for single image interpretation. For

example, if the sun visibility V is 0 (for example, when the sky is overcast), then the sun

relative position S is undefined. Indeed, if the sun is not shining on the scene, then all the

objects in the scene are lit by the same area light source that is the sky. It is not useful to

know (or recover) the sun direction in this case. If V is 1 however, then knowing the sun

position S is important since it is responsible for illumination effects such as cast shadows,

shading, specularities, etc. which might strongly affect the appearance of the scene.
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2.4.2 Sky Component

For the sky component (Fig. 2.1b)), we employ the Perez sky model [Perez et al., 1993], of

which we provide a brief overview here (please refer to Sec. 3.3.1 for a more comprehensive

presentation). This model expresses the relative luminance lp of a sky element as a function

of its zenith angle θp and angle γp with respect to the sun:

lp = f(θp, γp) = [1 + a exp(b/ cos θp)]×
�
1 + c exp(dγp) + e cos2 γp

�
. (2.2)

Here, the weather coefficients a, b, c, d, e quantify the atmospheric conditions, which can

range from clear to overcast. Following Preetham et al. [1999], we parameterize the model

using a single variable: the turbidity t. Intuitively, the turbidity encodes the amount of

scattering in the atmosphere, and replaces the weather coefficients in (2.2) like so: a =

fa(t), b = fb(t), . . ., where the functions f(t) are simple linear transformations (see Sec. 3.6

for more details).

Even though its “physically-based” nature will require us to carefully analyze the image

to compensate for some sources of distortion like the non-linear response function, there are

several advantages to using this physical model to represent the sky. First, because there is

a single parameter to estimate (t), this can be done from only the observed portion of the

sky in an image: the entire sky dome needs not be visible. Moreover, once the turbidity

t is recovered, the sky appearance can be extrapolated outside of the field of view of the

camera, so the full sky dome can be generated. Third, it can be used to extract the visible

cloud cover C (Fig. 2.1b, see Sec. 3.6) in order to obtain a rich description of the natural

illumination conditions.

To summarize, we use two additional variables to model the sky component (Fig. 2.1b):

t its turbidity, which encodes the amount of scattering in the atmosphere, so the lower

the t, the clearer the sky;

C its cloud cover, which we represent as the difference between the observed and pre-

dicted sky under the physical model.

Naturally, the sky component can only be represented if the sky is actually visible in the
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image. If it is not, we retain only the sun component to characterize the natural illumination

conditions.
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In the first part of this thesis, we consider sequences of images acquired by a static outdoor

camera. Assuming the scene itself is mostly static, the main variations in appearance are

due to changes in the natural illumination conditions. Studying such sequences, commonly

available worldwide via online webcams, will allow us to gain insight on an important source

of information about illumination seldom explored in computer vision and graphics: the sky.

Part I

Image Sequences
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Chapter 3

Estimating Illumination

in Image Sequences

The sky is that beautiful old parchment in

which the sun and the moon keep their

diary.

Alfred Kreymborg (1883–1966)

When presented with an outdoor photograph (such as the images on Fig. 3.1), an average

person is able to infer a good deal of information just by looking at the sky. Is it morning

or afternoon? Do I need to wear a sunhat? Is it likely to rain? A professional, such as a

sailor or a pilot, might be able to tell even more: time of day, temperature, wind conditions,

likelihood of a storm developing, etc. As the main observed illuminant in an outdoor image,

the sky is a rich source of information about the scene. However it is yet to be fully explored

in computer vision. The main obstacle is that the problem is woefully under-constrained.

The appearance of the sky depends on a host of factors such as the position of the sun,

weather conditions, photometric and geometric parameters of the camera, and location and

direction of observation. Unfortunately, most of these factors remain unobserved in a single

photograph; the sun is not often visible in the picture, the camera parameters and location

are usually unknown, and worse yet, only a small fraction of the full hemisphere of sky

is actually seen. However, if we observe the same small portion of the sky over time, we
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3.1 Overview

Figure 3.1: The sky appearance is a rich source of information about the scene illumination.

would see changes in sky appearance due to the sun and weather that cannot be perceived

within a single image. In short, this is exactly the type of problem that might benefit from

analyzing a time-lapse image sequence, which is acquired by a static camera observing the

same scene over a period of time.

3.1 Overview

information about the natural illumination conditions is available in the visible portion of

the sky in a time-lapse image sequence, and how to extract it. For this, we exploit two

important cues: the sun position and the appearance of the sky. Our analysis demonstrates

that it is possible to recover our full illumination model from Sec. 2.4—the relative angular

direction of the sun with respect to the camera, the sun visibility, the sky turbidity and

cloud cover—just by looking at the sky region in an image sequence.

In particular, we will demonstrate that for a static camera, if the GPS coordinates

(latitude and longitude) of the camera, as well as the date and time of capture of each

image are given as input, then recovering the angular sun direction (θs,∆φs) with respect

to the camera is equivalent to estimating the following camera parameters: its focal length

fc, its zenith (with respect to vertical) and azimuth (with respect to North) angles θc and φc

respectively. Note that the GPS coordinates and the date and time of capture are commonly

available in online webcams. As a result, we will first focus on showing how the sun and

the sky can be used to recover these 3 camera parameters, and then describe how the sun

visibility, sky turbidity and cloud cover are estimated.

We present an overview of the 2 main results of this chapter in Table 3.11. Algorithm 1,

1Code is available at http://graphics.cs.cmu.edu/projects/sky.
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Algorithm Section Inputs Outputs

Alg. 1 Sec. 3.2
Sun position

GPS coordinates
Date and time

Camera parameters (fc, θc, φc)

Alg. 2 Sec. 3.3
Clear sky images
GPS coordinates
Date and time

Camera parameters (fc, θc, φc)

Alg. 3 App. A.1
Clear sky images

Sun position
Date and time

Camera parameters (fc, θc, φc)
GPS coordinates

Table 3.1: Overview of the different algorithms introduced in this chapter, which extract various
information about the camera from the sun and the sky.

introduced in Sec. 3.2, computes the focal length, zenith and azimuth angles of the camera

given as input the sun coordinates in some images, the GPS coordinates (latitude and

longitude) of the camera, as well as the date and time of capture of each image. This

algorithm requires the sun to be manually identified in a few frames throughout the entire

sequence, a process which takes only a few minutes per sequence.

Algorithm 2, presented in Sec. 3.3, uses the sky appearance as its only input. From

several images of the clear sky, GPS coordinates, date and time of capture of the images,

the same camera parameters can also be estimated, this time without requiring any user

input. Thus, the sky alone can be used to estimate the angular sun direction with respect

to the camera in each frame in an image sequence.

Finally, we include in Appendix A.1 Algorithm 3, which demonstrates that by combining

the sun position with the sky appearance, the GPS coordinates can also be estimated, along

with the camera focal length, zenith and azimuth angles. In short, the sun and the sky can

be used to locate and calibrate the camera.

An immediate practical result of our work is the recovery of the camera orientation and

zoom level, even if we do not have physical access to the camera. We validate Algorithms 1

and 2 on a sequence where the ground truth camera parameters are known, and demonstrate

that our methods make error of less that 1% in focal length, at most 3◦ in zenith angle,

and at most 1◦ in azimuth angle. In addition, we also evaluate these algorithms on 22

real, low-quality webcam sequences from the AMOS (Archive of Many Outdoor Scenes)
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3.2 Camera Geometry from the Sun Position

database [Jacobs et al., 2007a], which contains image sequences taken by static webcams

over more than a year. The selected sequences cover a wide range of latitudes (28◦ – 48◦)

and longitudes (74◦ – 124◦), and are composed of a total of over a quarter of a million

daytime images which were given as input to our algorithms. Unfortunately, ground truth

is not available for these sequences, and we do not have physical access to the cameras.

Instead, we analyze the consistency between parameters obtained from Algorithms 1 and

2, and show that the mean deviation is 4% for the focal length, and less than 1.5◦ and 3◦

for the zenith and azimuth angles respectively.

For all these algorithms, we assume that a static camera is observing the same scene over

time, with no roll angle (i.e., the horizon line is parallel to the image horizontal axis). We also

assume that the sky region has been segmented, either manually or automatically [Jacobs

et al., 2007a; Hoiem et al., 2007], and that the sun position has already been identified

in images. For the algorithms that exploit the sky appearance (2 and 3), we also assume

that the camera has been radiometrically calibrated, an important step for which we have

evaluated several existing approaches. The method of Kuthirummal et al. [2008] cannot be

used in our context since they assume a random sampling of scenes. The technique proposed

by Kim et al. [2008] also cannot be applied on all sequences since it relies on lambertian

surfaces. Instead, we use the method of Lin et al. [2004] which was designed to estimate the

inverse camera response function by using color edges gathered from a single image. For

robustness, we detect edges across several images, and run the optimization on all of them.

As we mentioned earlier on, estimating the camera parameters effectively results in the

recovery of the direction of main illumination (the sun) with respect to the camera. Once

these parameters are estimated, we then show how we can estimate the other parameters

in our natural illumination model: the sun visibility V , the sky turbidity t as well as the

cloud cover C from each image in a sequence.

3.2 Camera Geometry from the Sun Position

We begin by introducing our sun-based algorithm, where the camera parameters are esti-

mated from the sun position (i.e., its pixel coordinates) in a sequence of images. For this
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3.2 Camera Geometry from the Sun Position

section, we assume that the sun position has already been identified in images.

3.2.1 Sun Position Model

Let us illustrate the geometry of the problem in Fig. 3.2. The sun, indicated by its zenith

and azimuth angles (θs, φs), is observed by a camera and its center is projected at pixels

(us, vs) in the image. The camera, whose local reference frame is denoted by (xc,yc, zc),

is rotated by angles (θc, φc) and centered at the world reference frame (xw,yw, zw). We

assume that the camera has no roll angle, i.e., its horizon line is parallel to the image

u-axis.

The coordinates of the sun in the image (us, vs) can be obtained by multiplying its 3-D

coordinates s by the camera projection matrix M, where

s =





xs

ys

zs

1




=





sin θs cos φs

sin θs sin φs

cos θs

1




, (3.1)

in homogeneous coordinates and M has the form

M = K



 R t

0
T 1



 . (3.2)

Here t = 0 =
�

0 0 0
�T

since the center of projection is located at the origin. The

rotation matrix R is given by:

R =





cos(θc − π
2 ) 0 − sin(θc − π

2 )

0 1 0

sin(θc − π
2 ) 0 cos(θc − π

2 )









cos φc sin φc 0

− sin φc cos φc 0

0 0 1




, (3.3)

and assuming a simple camera model (no skew, square pixels), we can express the intrinsic
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3.2 Camera Geometry from the Sun Position

Figure 3.2: Geometry of the sun labeling problem. When the sun is visible in an image, its center
gets projected at coordinates (us, vs), which correspond to angles (θs, φs) with respect to the
world reference frame (xw,yw, zw). The camera has zenith and azimuth angles (θc, φc), and its
focal length fc, not shown here, is the distance between the origin (center of projection), and
the image center. The camera local reference frame is denoted by (xc,yc, zc) and is centered
at the world reference frame.

parameters matrix K as:

K =





0 −fc 0

0 0 fc

1 0 0




. (3.4)

With these definitions in hand, we now see how we can recover the parameters (fc, θc, φc)

of a camera that is observing the sun over time.

3.2.2 Recovering Camera Parameters from the Sun Position

This process is akin to general camera calibration (see [Forsyth and Ponce, 2003] for more

details), except that M is constrained to be of the form in (3.2). Suppose the sun is visible

in N images taken from a sequence, and that we know the coordinates p =
�

us vs

�T
of
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3.2 Camera Geometry from the Sun Position

its center in the images. From the GPS location and the time of capture of each image,

we can also obtain the corresponding sun angular positions (θs, φs) by using [Reda and

Andreas, 2005].

If mi is the ith row of M, then following the standard camera calibration proce-

dure [Forsyth and Ponce, 2003] we get that each image defines two equations:

�
m1 − u(i)

s m3

�
· s(i) = 0 ,

�
m2 − v(i)

s m3

�
· s(i) = 0 .

(3.5)

As detailed in Appendix A.2, this results in a system of 2N equations and 8 unknowns.

When N ≥ 4, homogeneous linear least-squares can be used to compute the value of the

matrix M as the solution of an eigenvalue problem. The camera parameters can then be

retrieved from the individual entries of M (see Appendix A.2 for details).

We observe that we can improve the results quality by using these estimates as initial

guess in a non-linear minimization which optimizes the camera parameters directly:

min
fc,θc,φc

N�

i=1

�
(m1 − u(i)

s m3) · s(i)
�2

+
�
(m2 − v(i)

s m3) · s(i)
�2

. (3.6)

This non-linear least-squares minimization can be solved iteratively using standard opti-

mization techniques such as Levenberg-Marquadt or fminsearch in Matlab.

The entire sun-based calibration process is summarized in Algorithm 1: from a set of

sun positions in images, with the corresponding GPS location and date and time of capture

of each image, the algorithm recovers the camera parameters (fc, θc, φc).

3.2.3 Validation Using Synthetic Data

In order to thoroughly validate our approach, we test it under a very wide variety of con-

ditions using synthetically-generated data.

3.2.3.1 Synthetic Data Generation

For a given set of camera parameters, sun coordinates p are generated by uniformly sampling

the visible sky area (above the horizon line). Their corresponding 3-D sun vectors s are
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3.2 Camera Geometry from the Sun Position

Algorithm 1: Camera geometry from the sun position
Input: Sun position in images: (us, vs);
Input: GPS location of the camera;
Input: Date and time of capture of each image.

Compute the sun angles (θs, φs) from the GPS, date and time of capture using [Reda1

and Andreas, 2005];
Build matrix M;2

Solve linear system (A.7);3

Refine estimate by minimizing (3.6).4

Output: Camera parameters: (fc, θc, φc).

Variable name Range Default value Comments
Focal length fc [100, 2000] px 1000 px 18◦ field of view
Zenith angle θc [80◦, 100◦] 90◦ Looking straight

Azimuth angle φc [−180◦, 180◦] 0◦ Facing North
Number of images N [5, 50] 20 –

Sun detection noise σ2 [0, 10] px – –

Table 3.2: Range and default values for each variable used in the experiments on synthetic data.
Note that the range for θc is limited such that the horizon line remains visible at the given focal
length.

then found by applying the sequence of equations opposite to the one shown in the previous

section. Gaussian noise is added to p to simulate error in sun center detection. All images

have dimension 320× 240 pixels.

We evaluate the influence of five variables on the quality of the results: the three camera

parameters (fc, θc, φc), the number of available images N , and the labeling noise variance

σ2. From this space of variables, we sample 213 different combinations by varying each one

at a time, while maintaining the others constant at a default value, shown in Table 3.2. The

range of each variable is also shown in that table. In order to account for the randomness

in point selection, each experiment is performed 20 times.

3.2.3.2 Quantitative Evaluation

Fig. 3.3 shows error curves for 6 different scenarios, illustrating the effect of varying each

parameter presented in the previous section on estimating the camera parameters. Figs 3.3a

and 3.3b show that small focal lengths (or, alternatively, wide fields of view) result in larger

28



3.2 Camera Geometry from the Sun Position

estimation error, although it still remains below 3% error for fc, and below 0.7◦ for θc, even

in the high noise case (σ2 = 10) Similar results are obtained for φc (not shown here). As

expected, increasing N also decreases estimation error, as shown in Fig. 3.3d and 3.3f.

Plots obtained from varying θc and φc are shown in Fig. 3.3c and 3.3e, and result in

mostly constant curves over the parameter range. θc is varied such that the horizon line

remains visible in the image at the given focal length (from Table 3.2). In short, Fig. 3.3

demonstrates that this algorithm can simultaneously recover the focal length, zenith and

azimuth angles of a very wide set of cameras, given a sequence of sun positions.

3.2.4 Validation Using Ground Truth Camera Geometry

In addition to synthetic data, we also evaluate our algorithm on a sequence of images of the

sky, captured by a calibrated camera with ground truth parameters: focal length, zenith

and azimuth angles. We first present the acquisition and calibration setup, then show that

both algorithms estimate camera parameters that are very close to ground truth.

3.2.4.1 Acquisition Setup

We captured a high-quality sequence of the sky by placing a Canon Digital Rebel XT

equipped with a 18mm lens outdoors during an entire day (see Fig. 3.4a). Using a computer-

controlled script, the camera continuously captured images at 5-minute intervals between

10:45 until 20:25, on April 17th, 2009. Fig. 3.4b shows example images from the resulting

sequence. The camera was placed at the GPS coordinates of 40.367◦ of latitude, and

−80.057◦ of longitude. The images were captured in RAW mode, which allows us to convert

them to the JPEG format with a linear response function. We kept 8-bit dynamic range to

simulate the behavior of a typical webcam.

The intrinsic camera parameters were recovered using the Matlab R� camera calibration

toolbox. The ground truth focal length was determined to be 2854 pixels. To compute the

ground truth zenith angle, we placed a leveled calibration target in the field of view of the

camera, and computed the intersection of parallel lines from the target. This intersection

point indicates the horizon line in the image, from which the zenith angle can be computed

using (3.18). The resulting zenith angle is 71.3◦. The ground truth azimuth angle was
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(c) θc → fc
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(d) N → fc

84 86 88 90 92 94 96
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Zenith angle (deg)

Fo
ca

l l
en

gt
h 

er
ro

r (
%

)

Reprojection error in focal length estimation

 

 
σ2 = 0.0
σ2 = 5.0
σ2 = 10.0

(e) φc → fc
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Figure 3.3: Synthetic data evaluation of camera parameters estimation from the sun position. A
representative sample of the entire set of experiments performed is shown, the remaining plots
can be found in [Lalonde et al., 2008a].
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3.3 Camera Geometry from the Sky Appearance

(a) (b)

Figure 3.4: Ground truth data acquisition. (a) Acquisition setup. The calibration target, placed
on a tripod in front of the camera and leveled with the ground, is used to recover the camera
zenith angle. (b) Example images from 12:00 (top-left) to 20:00 (bottom-right), in one-hour
increments. The images are shown with a linear camera response function.

Parameter Ground truth Sun estimate Error
Focal length fc 2854 px 2881 px 0.9%
Zenith angle θc 71.3◦ 70.2◦ 1.1◦

Azimuth angle φc 93.5◦ W 94.3◦ W 0.8◦

Table 3.3: Comparison with ground truth.

computed using a satellite map of the capture location and was found to be 93.5◦ West.

3.2.4.2 Calibration Results

After manually labeling the sun in all the frames in which it is visible, the sun-based

calibration algorithm was applied to recover the camera parameters. The results, shown in

Table 3.3, demonstrate that the focal length can be recovered within 0.9% of its true value,

and the zenith and azimuth angles are obtained within 1.1◦ and 0.8◦ of their true values

respectively.

3.3 Camera Geometry from the Sky Appearance

Unfortunately, the sun might not always be visible in image sequences, so the previous

algorithm applicability might be limited in practice. Therefore, we now focus our attention
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3.3 Camera Geometry from the Sky Appearance

on a different source of information more widely available: the sky appearance. We will

consider clear skies only, and address the more complicated case of clouds at a later point.

3.3.1 Physically-based Model of the Sky Appearance

First, we introduce the physically-based model of the sky that lies at the foundation of our

approach. We will first present the model in its general form, then in a useful simplified

form, and finally demonstrate how it can be written as a function of camera parameters.

3.3.1.1 Perez Sky Model

The Perez sky model [Perez et al., 1993] describes the luminance of any arbitrary sky

element as a function of its elevation, and its relative orientation with respect to the sun.

It is a generalization of the CIE standard clear sky formula [CIE, 1994], and it has been

found to be more accurate for a wider range of atmospheric conditions [Ineichen et al.,

1994]. Consider the illustration in Fig. 3.5. The relative luminance lp of a sky element is a

function of its zenith angle θp and the angle γp with the sun:

lp = f(θp, γp) = [1 + a exp(b/ cos θp)]×
�
1 + c exp(dγp) + e cos2 γp

�
, (3.7)

where the 5 constants a, b, c, d, e specify the current atmospheric conditions, and all angles

are expressed in radians. As suggested in [Preetham et al., 1999], those constants can also

be approximated by a linear function of a single parameter, the turbidity t. Intuitively, the

turbidity encodes the amount of scattering in the atmosphere, so the lower the t, the clearer

the sky. For clear skies, the constants take on the following values: a = −1, b = −0.32,

c = 10, d = −3, e = 0.45, which corresponds approximately to t = 2.17.

The model expresses the absolute luminance Lp of a sky element as a function of another

arbitrary reference sky element. For instance, if the zenith luminance Lz is known, then

Lp = Lz
f(θp, γp)
f(0, θs)

, (3.8)

where θs is the zenith angle of the sun. Fig. 3.6 illustrates the luminance predicted by the

Perez sky model for different values of t and θs.
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3.3 Camera Geometry from the Sky Appearance

Figure 3.5: Geometry of the problem when a camera is viewing a sky element (blue patch in
the upper-right). The sky element is imaged at pixel (up, vp) in the image, and the camera is
rotated by angles (θc, φc). The camera focal length fc, not shown here, is the distance between
the origin (center of projection), and the image center. The sun direction is given by (θs, φs),
and the angle between the sun and the sky element is γp. Here (up, vp) are known because the
sky is segmented.

3.3.1.2 Azimuth-independent Sky Model

By running synthetic experiments, we were able to determine that the influence of the second

factor in (3.7) becomes negligible when the sun is more than 100◦ away from a particular

sky element (see Appendix A.4). In this case, the sky appearance can be modeled by using

only the first term from (3.7):

l�p = f �(θp) = 1 + a exp(b/ cos θp) . (3.9)
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θs = 90◦ θs = 60◦ θs = 30◦ θs = 0◦
t
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Figure 3.6: Perez sky model (3.7), plotted for different turbidities t (rows), for different sun
positions θs (columns). Each plot represents the entire hemisphere, centered at the zenith (i.e.,
looking straight up). For example, the sun is at the horizon in the left-most column (θs = 90◦),
and at the zenith in the right-most column (θs = 0◦).

This equation effectively models the sky gradient, which varies from light to dark from

horizon to zenith on a clear day. L�
p is obtained in a similar fashion as in (3.8):

L�
p = Lz

f �(θp)
f �(0)

. (3.10)
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3.3.1.3 Expressing the Sky Model as a Function of Camera Parameters

Now suppose a camera is looking at the sky, as in Fig. 3.5. We can express the general (3.7)

and azimuth-independent (3.9) models as functions of camera parameters. Let us start with

the simpler azimuth-independent model.

From (3.9), we see that we only need to find an expression for θp, since a and b are

fixed. We obtain the following relation (see Appendix A.3 for the full derivation):

θp = arccos



vp sin θc + fc cos θc�
f2

c + u2
p + v2

p



 , (3.11)

where up and vp are the image coordinates of a sky element, fc is the camera focal length,

and θc is its zenith angle (see Fig. 3.5). We substitute (3.11) into (3.9) to obtain the final

equation. Throughout this chapter, we will refer to this model using:

l�p = g�(up, vp, fc, θc) . (3.12)

In the general sky model case (3.7), we also need to express γp as a function of camera

parameters:

γp = arccos (cos θs cos θp + sin θs sin θp cos(φp − φs)) , (3.13)

where θs and φs are the sun zenith and azimuth angles. We already found the expression

for θp in (3.11), so the only remaining unknown is φp, the azimuth angle of the sky element.

Following the derivation from Appendix A.3, we obtain:

φp = arctan
�

fc sin φc sin θc − up cos φc − vp sin φc cos θc

fc cos φc sin θc + up sin φc − vp cos φc cos θc

�
. (3.14)

We substitute (3.11), (3.13), and (3.14) into (3.7) to obtain the final equation. For suc-

cinctness, we omit writing it in its entirety, but present its general form instead:

lp = g(up, vp, θc, φc, fc, θs, φs) . (3.15)

Before we present how we use the models presented above, recall that we are dealing
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with ratios of sky luminance, and that a reference element is needed. Earlier, we used the

zenith luminance Lz as a reference in (3.8) and (3.10), which unfortunately is not always

visible in images. Instead, we can treat this as an additional unknown in the equations.

Since the denominators in (3.8) and (3.10) do not depend on camera parameters, we can

combine them with Lz into a single unknown scale factor k.

3.3.2 Recovering Camera Parameters from the Sky Appearance

In the previous section, we presented a physically-based model of the clear sky that can be

expressed as a function of camera parameters. Now, if we are given a set of images taken

from a static camera, can we use the clear sky as a calibration target and recover the camera

parameters from the sky appearance only?

3.3.2.1 Recovering the Focal Length and Zenith Angle

Let us first consider the simple azimuth-independent model (3.12). If we plot the predicted

luminance profile for different focal lengths as in Fig. 3.7a (or, equivalently, for different

fields of view), we can see that there is a strong dependence between the focal length fc and

the shape of the luminance gradient. Similarly, the camera azimuth θc dictates the vertical

offset, as in Fig. 3.7b.

From this intuition, we devise a method of recovering the focal length and zenith angle

of a camera from a set of images where the sun is far away from its field of view (i.e., at

least 100◦ away). Suppose we are given a set I of such images, in which the sky is visible

at pixels in set P, also given. We seek to find the camera parameters (θc, fc) that minimize

min
θc,fc,k(i)

�

i∈I

�

p∈P

�
y(i)

p − k(i)g�(up, vp, θc, fc)
�2

, (3.16)

where y(i)
p is the observed intensity of pixel p in image i, and k(i) are unknown scale factors

(Sec. 3.3.1.3), one per image. fc is initialized to a value corresponding to a 35◦ field of view,

and θc is set such that the horizon line is aligned with the lowest visible sky pixel. All k(i)’s

are initialized to 1. This process is used to initialize Algorithm 2.
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Figure 3.7: Luminance profiles predicted by the azimuth-independent model (3.12). For clear
skies, intensity diminishes as pixel height above the horizon (x-axis) increases. (a) The camera
zenith angle is kept constant at θc = 90◦, while the field of view is varied. (b) The field of view
is kept constant at 80◦, while the camera zenith angle is varied. Both parameters have a strong
influence on the shape and offset of the predicted sky gradient. Note that the curves in (b) are
not translations of the same curve along the x-axis, because they are expressed in pixels in the
image, not angles.

3.3.2.2 Recovering the Azimuth Angle

From the azimuth-independent model (3.12) and images where the sun is far from the

camera field of view, we were able to estimate the camera focal length fc and its zenith

angle θc. If we consider the general model (3.15) that depends on the sun position, we can

also estimate the camera azimuth angle using the same framework as before.

Suppose we are given a set of images J where the sky is clear, but where the sun is now

closer to the camera field of view. Similarly to (3.16), we seek to find the camera azimuth

angle which minimizes

min
φc,k(j)

�

j∈J

�

p∈P

�
y(j)

p − k(j)g(up, vp, θc, φc, fc, θs, φs)
�2

. (3.17)

We already know the values of fc and θc, so we do not need to optimize over them. Ad-

ditionally, if the GPS coordinates of the camera and the time of capture of each image

are known, the sun zenith and azimuth (θs, φs) can be computed using [Reda and An-
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dreas, 2005]. Therefore, the only unknowns are k(j) (one per image), and φc. Since this

equation is highly non-linear, we have found that initializing φc to several values over the

[−180◦, 180◦] interval and keeping the result that minimizes (3.17) works the best. This

process is summarized in Algorithm 2.

Algorithm 2: Camera geometry from the sky appearance
Input: Clear sky images;
Input: GPS location of the camera;
Input: Date and time of capture of each image.

Find set I of images where the sun is far away from the field of view;1

Solve the non-linear minimization (3.16) to recover fc and θc;2

Find set J of images where the sun is close to the field of view;3

Compute the sun angles (θs, φs) from the GPS, date and time of capture using [Reda4

and Andreas, 2005];
Solve the non-linear minimization (3.17).5

Output: Camera parameters: (fc, θc, φc).

3.3.3 Validation Using Synthetic Data

In order to thoroughly evaluate our model, we have performed extensive tests on synthetic

data generated under a wide range of operating conditions. We now present our data gen-

eration algorithm, followed by plots showing that we can effectively recover the parameters

of a diverse set of cameras.

3.3.3.1 Synthetic Data Generation

We evaluate the influence of seven variables on the quality of the results: the three camera

parameters (fc, θc, φc), the number of available clear sky images N , the sky visibility (per-

centage of unoccluded sky above the horizon), the camera latitude, and the noise variance

σ2. Given a set of camera parameters and sun positions, we generate synthetic images by

using our sky model (3.15). Sun positions are generated by sampling every hour over an

entire year at a given latitude, and applying [Reda and Andreas, 2005]. Note that longitude

does not affect the results since daytime images can be chosen such that θs < 90◦. We

simulate limited visibility by occluding the sky from the horizon line, one row at a time.
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3.3 Camera Geometry from the Sky Appearance

Variable name Symbol Default value Comments
Focal length fc 750 px 24◦ field of view
Zenith angle θc 90◦ Looking straight

Azimuth angle φc 0◦ Facing North
Number of images N 15

Sky visibility – 100% No occlusion
Latitude – 0◦ Equator

Table 3.4: Default values for each variable used in the experiments on synthetic data.

We build set I by randomly picking N sun positions that are at least 100◦ away from

the camera field of view. If no such point is available given the geometry, we select those

that are furthest away from the camera. We build set J by randomly selecting N sun

positions. In both cases, we make sure that the sun is never directly visible by the camera.

1000 points are then randomly picked for each image, and used in the optimization. In

order to evaluate the influence of each variable independently, we vary one at a time, while

keeping the others at their default values shown in Table 3.4. Each experiment is performed

15 times to account for the randomness in point and sun position selection.

3.3.3.2 Quantitative Evaluation

Fig. 3.9 shows the effect of varying the variables on the camera parameters estimation error.

As expected, Fig. 3.9a shows that increasing the visible portion of the sky decreases the

estimation error.

Fig. 3.9b represents the influence of the camera azimuth angle φc on the estimation

error of the same parameter, and shows that error is typically higher when φc = 0◦ (North)

or φc = 180◦ (South) in noisy conditions. In this configuration, the sun is always relatively

far from the camera, so its influence is not as visible, see Fig. 3.8 for a graphical illustration

of the situation.

Figs 3.9c and 3.9d shows the effect of varying focal length fc on estimating fc and θc

respectively. We note the higher the fc (or, equivalently, the narrower the field of view),

the larger error. In this situation, the visible portion of the sky hemisphere is smaller, and

variations in intensity more subtle to capture.

Finally, we note that the latitude does not seem to affect the estimation error, as varying
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3.4 Calibrating the Webcams of the World

Figure 3.8: Graphical illustration of the influence of camera azimuth. If the camera is at the
Equator (latitude=0◦) and facing North (or South, equivalently), the sun path is further away
from the camera than if it was facing East (or West). Its influence is less noticeable, therefore
it is harder to recover the camera azimuth.

Parameter Ground truth Sky estimate Error
Focal length fc 2854 px 2845 px 0.3%
Zenith angle θc 71.3◦ 74.4◦ 3.1◦

Azimuth angle φc 93.5◦ W 94.4◦ W 0.9◦

Table 3.5: Comparison with ground truth for the sky-based algorithm.

it over the [0◦, 90◦] range yields mostly constant curves as shown in Fig. 3.9f. The same

behavior is also observed in Fig. 3.9e for θc, which is varied such that the horizon line

remains visible in the image at the given focal length.

3.3.4 Validation Using Ground Truth Camera Geometry

In addition to synthetic data, we also evaluate our algorithm on the same sequence of images

of the sky as in Sec. 3.2.4, captured by a calibrated camera with ground truth parameters.

After manually segmenting the sky, we applied our sky-based calibration algorithm

which yielded the camera parameters estimates shown in Table 3.5. The algorithm is able

to recover, entirely automatically : the focal length within 0.3% of the true value, the zenith

angle within 3.1◦, and the azimuth angle within 0.9◦.

3.4 Calibrating the Webcams of the World

We have already shown that our algorithms achieve good estimation results on synthetic

data and on one set of high-quality images. In this section, we demonstrate how our
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Figure 3.9: Synthetic data evaluation of camera parameters estimation from the sky appearance.
Each of the 6 representative plots are shown at three different noise levels.
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3.4 Calibrating the Webcams of the World

algorithms perform on a wide range of operating conditions, by testing them on a large set of

real, typical low-quality webcam data such as the ones found in the AMOS database [Jacobs

et al., 2007a]. We first evaluate each technique independently, and then compare their

results together to establish their consistency, which confirms that both can reliably be

used in a real application setting.

We test our algorithms on 22 webcam sequences from the AMOS database in which the

sun is visible, which amounts to a total of approximately a quarter of a million individual

daytime images. The selected webcams are located in the continental United States, their

individual GPS locations are shown in Fig. 3.10. Although they are all in the same country,

they cover a wide range of latitudes (28◦ – 48◦) and longitudes (74◦ – 124◦).

3.4.1 Using the Sun Position

We first present results obtained by using the sun position to recover the camera parameters.

Although no ground truth is available, we can assess the estimation quality by displaying

the predicted sun position on every image, as well as the estimated horizon line vh, and

inspect the results visually. vh is obtained by:

vh = −fc tan (90◦ − θc) . (3.18)

Fig. 3.11 shows examples of sun position and horizon line prediction on several frames for

different image sequences, where the sun was not manually labeled. The predicted and

actual sun positions overlap, which indicates that the camera parameters are recovered

successfully.

A useful by-product of our approach is that the sun position can be predicted for all

frames in the sequences, even if it is not visible. For example, in Fig. 3.11 Seq. 347, the

sun position in the second and fourth frames can be predicted even if it is occluded by the

scene.
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Figure 3.10: Map of GPS coordinates of each webcam used in the consistency evaluation. Since
the sequences selected from the AMOS database come from the US, only this area of the world
is shown. However, as we have shown in the synthetic evaluation, the algorithms are not limited
to this area. Each webcam is represented by a different color.

3.4.2 Using the Sky Appearance

We now present results obtained by using the sky appearance to recover the camera param-

eters from real image sequences. Intensity information can be corrupted in several ways in

low-quality webcam sequences: non-Gaussian noise, slight variations in atmospheric condi-

tions, vignetting, saturation, under-exposure, etc. Most importantly however, the camera

response function may be non-linear, yielding significant distortions in the sky appearance,

thus leading our estimation process astray. We rely on [Lin et al., 2004] which estimates the

inverse response function by using color edges gathered from a single image. For additional

robustness, we detect edges across several frames.

Additionally, recall that the optimization procedures (3.16) and (3.17) require clear sky

image sets I and J , where the sun is far and close to the camera respectively. We first give

more details about how this is done, and then present results on real image sequences.
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Figure 3.11: Visual evaluation of our camera calibration algorithm from the sun position. The
camera parameters determined by our method are used to predict where the sun (red star) and
the horizon (red line) will appear in images. Note that the sun position can be predicted even
if it is occluded by the scene protruding above the horizon. The images shown here were not
used in the optimization.

3.4.2.1 Finding Clear Sky Images Automatically

The algorithm presented in Sec. 3.3.2 uses clear sky images as input. In order to avoid

having to painstakingly select such images by hand from a long image sequence, we propose
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3.4 Calibrating the Webcams of the World

an algorithm which does not require any knowledge of the camera parameters to do so

automatically.

To build set I, we mentioned that the sun should be at least 100◦ away from the camera

field of view. Unfortunately, this is impossible to know a priori, so we propose an algorithm

that finds clear sky images that do not seem affected by the sun. To do so, we approximate

the sky model (3.12) by a vertical quadratic of the form:

α(vp − vmin)2 + β = 0 , (3.19)

where vmin is the lowest visible sky pixel, and α and β are the quadratic coefficients. We

then fit this simple model to all the images in the sequence using linear least-squares.

Images with low residual error and α < 0 should exhibit a smooth vertical gradient that

correspond to a clear sky, since it varies from light to dark from horizon to zenith. We

found that retaining the top 10% of images with α < 0 based on their residual error, and

then keeping the top N by sorting them in decreasing order of |α| yields consistently good

results across image sequences. Note that if the sun was close to the camera, it would most

likely create a horizontal gradient in the image, thereby reducing the quality of a fit to a

vertical quadratic. We show example images recovered by this algorithm in Fig. 3.12a.

Building set J requires finding images where the sun influence is visible at varying

degrees. This is a harder problem than before for three main reasons: 1) the sun might

never be very close to the camera (see Fig. 3.8), so its influence might be subtle; 2) it is

hard to model the appearance of the sun influence on individual images because it may

come from different directions, unlike the sky gradient that is always vertical (3.19); and 3)

J needs to contain images where the sun is at different positions to insure robustness in the

estimation. Therefore, we must enforce that the recovered images be taken at different times

of day. Instead of trying to find individual clear images, our strategy is to find clear days.

We score each day in a sequence by counting how many images with α < 0, and select the

top 4 days, which should contain mostly clear skies. To filter out clouds that may appear,

we then select the N smoothest images, based on their average u and v gradients (we use

finite differences). Example images recovered by this algorithm are shown in Fig. 3.12b.
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(a)

(b)

Figure 3.12: Clear sky images recovered automatically for sequence 414. Samples from the sets
(a) I, where the sun influence is not noticeable, and from (b) J , where the sun induces changes
in the sky appearance throughout the set. The actual sun position, relative to the camera, is
shown in the bottom rows. Note that the relative sun position is never explicitly known to our
image selection algorithm.

3.4.2.2 Visualizing a Webcam Dataset

Since the sun position might not be visible in the sequence, we cannot apply the same

method for validation as we did when the sun is visible. Instead, we must rely on visible

cues in the images, such as the horizon line, shadows, differently-lit building surfaces, etc.

Fig. 3.13 shows qualitative results obtained by applying our method on 6 different sequences

taken from AMOS database. The recovered camera parameters are consistent with the sky

appearance. For instance, the sun appears to be just to the right of the image in Fig. 3.13c-

(e), which is reflected in the diagrams. In Fig. 3.13d, the buildings are brightly lit, which

indicates that the sun must be behind the camera. Similarly, the tower in Fig. 3.13f is

front-lit by the sun, but it has an orange hue, so the sun must be near the horizon line,
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3.4 Calibrating the Webcams of the World

(a) Seq. 257 (b) Seq. 351 (c) Seq. 466

(d) Seq. 569 (e) Seq. 601 (f) Seq. 634

Figure 3.13: Camera parameters recovered from the sky appearance. The horizon line is repre-
sented by the red line on the images. Below each image is a drawing illustrating the recovered
camera-sun geometry. The sun is drawn at the location corresponding to the date and time of
the image. The brown plane is horizontal, and intersects with the image plane at the horizon
line.

and behind the camera as well. Shadows also hint to the sun position: right of the camera

in Fig. 3.13a, and behind in Fig. 3.13b. We also note that the recovered horizon lines are

aligned with the real one when visible, as in Fig. 3.13e-(f). The horizon line position in the

image is predicted by (3.18).
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3.5 Estimating the Sun Visibility

3.4.3 Validation by Consistency Between the Two Approaches

When the sun is visible, we can run both algorithms on the same sequence and compare

their estimates. Since both methods rely on two different sources of data (sun position and

sky appearance), we quantify their performance by analyzing their consistency.

Numerical results of the estimates for the sun-based algorithm (fsun, θsun, φsun), the sky-

based algorithm (fsky, θsky, φsky), and their agreement (∆f, ∆θ,∆φ) for all 22 sequences are

shown in Table 3.6. Results for sequences indicated by ∗∗ are obtained entirely automat-

ically. Automatic sky segmentation is performed by running the geometric context algo-

rithm [Hoiem et al., 2005] on 40 randomly chosen images from the sequence, and averaging

the sky probability map. The other sequences require some degree of manual intervention,

either for specifying the sky segmentation, or for retrieving images for set J. In the lat-

ter case, the intervention consists of manually choosing 3 or 4 mostly clear days from the

sequence (see Sec. 3.7 for more details).

Consistency in focal length is evaluated by using ∆f = |fsky−fsun|
fsun

× 100, and is found

to be at most 9.3%, but typical values range from 1.8% to 6.2%. Consistency in zenith

and azimuth angles is evaluated by computing the angular deviation. For the zenith angle,

deviation is at most 6.5◦, with typical values from 0.3◦ to 2.5◦. For the azimuth angle, it is

at most 8.1◦, with typical values ranging from 1.2◦ to 4.3◦.

Fig. 3.14 shows all the cameras drawn on the same plot, illustrating their difference

in focal length, zenith and azimuth angles. The horizontal plane is shown in brown, and

crosses each image at the horizon line. The parameters used to generate this drawing are

recovered from the sky appearance algorithm. Since the sun is visible in all of them, the

cameras either face East (sunrise) or West (sunset). This visualization provides an intuitive

way to explore the cameras of a large dataset.

3.5 Estimating the Sun Visibility

While the approach presented so far gives robust estimates of the sky and camera parame-

ters, it is not enough to describe the illumination conditions of the scene. This is because

the visible portion of the sky is typically a small fraction of the entire sky hemisphere, and

48



3.5 Estimating the Sun Visibility

Sequence name
and location

Focal length fc (px) Zenith angle θc (◦) Azimuth angle φc (◦)
fsun fsky ∆f (%) θsun θsky ∆θ φsun φsky ∆φ

207
(Cherokee, KS) 447.1 430.2 3.8 97.9 97.6 0.3 88.8 90.5 1.7

257∗∗
(Riva, MD) 941 951.4 1.1 96.9 93.4 3.5 257.9 260.5 2.6

279
(Lafayette, MI) 713.4 684.9 4 91.5 91.7 0.2 114.7 118.3 3.6

291
(Minneapolis, MN) 356.8 338.7 5.1 88.8 90.3 1.5 38.9 32.3 6.6

305
(Neosho, MO) 1039.5 973.3 6.3 98.1 98.7 0.6 108.8 109.3 0.5

347∗∗
(Butler, NJ) 387.5 372.3 3.9 96.3 97.5 1.4 80.2 81.8 1.6

351∗∗
(New Milford, NJ) 381.7 393.9 3.2 97.4 97.2 0.2 104.7 107.4 2.7

414∗∗
(Elburz, NV) 1067.4 1032.4 3.3 95.9 97.1 1.2 240.6 239.1 1.5

455
(Marathon, NY) 757.3 816.3 7.8 98.3 95.8 2.5 134.1 131.8 2.3

466
(Elmira, NY) 651.6 669.4 1.1 1.45 -0.06 0.1 93.4 95.5 2.1

513
(Hunker, PA) 1204 1134 5.8 92.3 92 0.3 73 71.9 1.1

524
(N. Bloomfield, PA) 670.3 664.7 0.8 95.4 95.3 0.1 71.2 68.6 2.6

529
(Mifflinburg, PA) 884.9 918.9 3.9 89.9 90.5 0.6 56 60.3 4.3

569
(Rapid City, SD) 1389.1 1362.6 1.9 93.4 92.8 0.6 84.2 85.1 0.9

601
(Mesquite, TX) 442.8 484.3 9.3 93.3 94.1 0.8 105.8 109.4 3.6

608∗∗
(Tyler, TX) 355.9 357.4 0.4 95.3 97.5 2.4 47.6 52 4.4

630
(Pleasanton, TX) 474.7 473.6 0.2 90.5 91.9 1.4 100.9 102.1 1.2

634
(San Antonio, TX) 665.8 706.6 6.1 98.2 95.2 3 242.4 244.4 2

652
(Delta, UT) 363.6 395.5 8.8 103.6 100.7 2.9 265.2 265.3 0.1

655
(Tropic, UT) 1430.8 1363.6 4.7 94.2 95.4 1.2 289.9 292.2 2.3

695∗∗
(Danville, VA) 700 714.8 2.1 92.4 92.4 0 59.3 51.3 8

701
(Darrington, WA) 632.2 652.2 3.2 105.2 98.7 6.5 124.8 130.4 5.6

Table 3.6: Quantitative comparison of camera calibration results obtained by the two methods
presented in this chapter: the sun position and the sky appearance. For each method, estimated
values for fc, θc and φc are shown and indicated by their corresponding subscripts. Consistency
is evaluated by comparing the values together and is indicated by ∆. Worst consistency results
are indicated in bold. All images have 320× 240 pixels dimension. Results were automatically
recovered for sequences indicated by ∗∗, the others required manual intervention at some stage
in the process, either to define the sky region, or to select images for set J .
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Figure 3.14: All the 22 cameras used in the consistency evaluation shown on the same display.
The parameters used to generate the figure were obtained by using the sky-based algorithm. All
cameras are either facing East or West, so the sun is visible at dawn or dusk respectively. The
inset shows a top-down view for better visualization of the cameras azimuths.

Figure 3.15: An example of similar sky appearance, but very different scene illumination. We
rely on scene-based features to determine whether the sun is visible or not.
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much of it remains unobserved within the field of view. For instance, Fig. 3.15 shows two

similarly-looking cloudy skies with scenes illuminated differently: in the first, the sun shines

from the right of the camera on the scene, but not in the second. How can we then deter-

mine whether the sun is occluded by clouds or other objects when the full sky hemisphere

is not observed? For this, we must rely on cues provided by the visible scene itself.

Consider the mean image of a large webcam sequence: it shows no preferred illumination

direction and resembles a scene captured under overcast skies (where sun is hidden behind

clouds). Only small deviations from this mean image are likely when the sun is not visible

to the scene. But larger deviations (bright or dark) from the mean are more likely when

the sun is visible. Based on this observation, we compute scene features that can be used

as a measure of sun visibility. In order to avoid the scene-dependent hue, the features are

computed in the saturation-value space. We first compute the ratios of saturation and value

of the current image w.r.t the mean image, and then compute a 2-D joint histogram of these

ratio images. For an image where the sun is not visible, the joint histogram will have a

dominant peak near (1,1). On the other hand, when the sun is visible, the shadow regions

result in multiple peaks or a wider spread in the joint histogram.

We validated the effectiveness of our representation by evaluating it on a set of 400

randomly chosen images that cover a wide range of scene and sky appearances. We manually

labelled each image as to whether or not the scene appears to be sunny. We compare the

performance of our features against three others, also computed over the saturation-value

space—(a) 2-D joint histogram of saturation and value of a single image; (b) Histogram of

gradients of an image as a measure of local contrast, computed on the strong edges only

(determined by canny edge detector with high threshold of 0.1); (c) first four moments of

each of the marginal histograms of the previous features. A k-NN classifier is used to test the

performance of the features, where the optimal k is determined by 10-fold cross-validation.

The k nearest neighbors are found by using the χ2 distance for the histogram-based features,

and L2 for the moments. The visibility classification accuracy for each of these features are

shown in Fig. 3.16. Our features are computed relative to the mean image and outperform

the others.

This nearest-neighbor approach results in a binary estimate for V : the sun is either
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Figure 3.16: Classification accuracy (in %) for each feature tested on our training set, using a
k nearest neighbor algorithm. Each feature is evaluated by varying k and performing 10-fold
cross validation on the training set.

completely visible, or completely occluded. We can also use the same approach to provide an

estimate of the partial sun visibility, i.e., how much is the sun being occluded. We estimate

the sun visibility coefficient V by taking the ratio of the number of nearest neighbors with

fully visible suns divided by k. Note that we currently cannot evaluate our partial visibility

estimation method quantitatively since obtaining ground truth would require knowing the

thickness of occluding clouds even if they are not visible. Qualitatively however, results are

satisfying: the shadows generated under a partially-occluded sun match those of the scene

(see Fig. 4.9a for example).

3.6 Estimating the Sky Turbidity and Cloud Cover

Now that we have recovered camera parameters, either from the sun position or sky ap-

pearance, we demonstrate how to use the same physically-based model to estimate the

last remaining parameters in our natural illumination model—the sky turbidity and cloud
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cover—even in challenging weather conditions. Until now, we have only dealt with clear

skies, but alas, this is not always true! In this section, we present a novel cloud segmentation

algorithm which will allow us to deal with any type of weather.

Clouds exhibit a wide range of textures, colors, shapes, and even transparencies. Seg-

menting the clouds from the sky cannot be achieved with simple heuristics such as color-

based thresholding as they are easily confounded by the variation in their appearances. On

the other hand, our physically-based model predicts the sky appearance, so any pixel that

differs from it is an outlier and is likely to correspond to a cloud. Using this intuition, we

now consider two ways of fitting our model to skies that may contain clouds. We perform

all processing in the xyY color space because it was determined that it offers the best

agreement with the Perez sky model in [Preetham et al., 1999].

3.6.1 Least-squares Fitting

The first idea is to follow a similar approach as we did previously and fit the model (3.15) in

a non-linear least-squares fashion by adjusting the coefficients a, b, c, d, e and the unknown

scale factor k independently in each color channel. This approach was proposed in [Yu and

Malik, 1998], and works quite well in the absence of clouds. When clouds are present, we

observe that fitting 5 coefficients gives too much freedom to the model, so we constrain the

optimization and reduce the number of variables by following [Preetham et al., 1999] and

expressing the five weather coefficients as a linear function of a single value, the turbidity

t. Strictly speaking, this means minimizing over x =
�
t k(1) k(2) k(3)

�
:

min
x

3�

l=1

�

p∈P

�
y(l)

p − k(l)g(up, vp, θs, φs, τ
(l)(t))

�2
, (3.20)

where l indexes the color channel. Here the camera parameters are fixed, so we omit them

for clarity. The vector τ (l)(t) represents the coefficients (a, . . . , e) obtained by multiplying

the turbidity t with the linear transformation M (l): τ (l)(t) = M (l)[t 1]T. The entries

of M (l) for the xyY space are given in the appendix in [Preetham et al., 1999]. The

k(l) are initialized to 1, and t to 2 (low turbidity). Unfortunately, solving this simplified

minimization problem yields unsatisfying results. The L2-norm is not robust to outliers, so
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3.6 Estimating the Sky Turbidity and Cloud Cover

even a small amount of clouds will bias the results.

3.6.2 Regularized Fitting

In order to increase robustness to outliers, we compute a data-driven prior model of clear

skies xc, which we use to add 2 terms to (3.20): 1) we assign more weight to pixels we

believe are part of the sky; and 2) we penalize parameters with a large L2 divergence from

the prior. Equation (3.20) becomes

min
x

3�

l=1

�

p∈P
wp

�
y(l)

p − k(l)g(up, vp, θs, φs, τ
(l)(t))

�2
+ β�x− xc�2 , (3.21)

where, wp ∈ [0, 1] is a weight given to each pixel, and β = 0.05 controls the importance of

the prior term in the optimization. We initialize x to the prior xc.

Let us now look at how xc is obtained. We make the following observation: clear skies

should have low turbidities, and they should be smooth (i.e., no patchy clouds). Using this

insight, if minimizing (3.20) on a given image yields low residual error and turbidity, then

the sky must be clear. We compute a database of clear skies by keeping all images with

turbidity less than a threshold (we use 2.5), and then keep the best 200 images, sorted by

residual error. Given an image, we compute xc by taking the mean over the K nearest

neighbors in the clear sky database, using the angular deviation between sun positions as a

distance measure (we use K = 2). This allows us to obtain a prior model of what the clear

sky should look like at the current sun position. Note that we simply could have used the

values for (a, . . . , e) from Sec. 3.3.1.1 and fit only the scale factors k(l), but this tends to

over-constrain, so we fit t as well to remain as faithful to the data as possible. For example,

the mean estimated turbidity is t = 2.06 for Sequence 257, very close to the clear sky model

t = 2.17 used in Sec. 3.3.1.1.

To obtain the weights wp in (3.21), the color distance λ between each pixel and the

prior model is computed and mapped to the [0, 1] interval with an inverse exponential:

wp = exp{−λ2/σ2} (we use σ2 = 0.01 throughout this chapter). After the optimization

is over, we re-estimate wp based on the new parameters x, and repeat the process until

convergence, or until a maximum number of iterations is reached. The process typically
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3.6 Estimating the Sky Turbidity and Cloud Cover

Figure 3.17: Sky-cloud separation example results. First row : input images (radiometrically
corrected). Second row : sky layer. Third row : cloud segmentation. The clouds are color-coded
by weight: 0 (blue) to 1 (red). Our fitting algorithm is able to faithfully extract the two layers
in all these cases.

converges in 3 iterations, and the final value for wp is used as the cloud segmentation. Cloud

coverage is then computed as 1
|P|

�
p∈P wp.

3.6.3 Results

Fig. 3.17 shows typical results of cloud layers extracted using our approach. Note that

unweighted least-squares (3.20) fails on all these examples because the clouds occupy a

large portion of the sky, and the optimization tries to fit them as much as possible, since

the quadratic loss function is not robust to outliers. A robust loss function behaves poorly

because it treats the sky pixels as outliers in the case of highly-covered skies, such as

the examples shown in the first two columns of Fig. 3.18. Our approach injects domain

knowledge into the optimization by using a data-driven sky prior, forcing it to fit the visible

sky. Unfortunately, since we do not model sunlight, the estimation does not converge to a

correct segmentation when the sun is very close to the camera, as illustrated in the last two

columns of Fig. 3.18.
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Figure 3.18: More challenging cases for the sky-cloud separation, and failure cases. First row :
input images (radiometrically corrected). Second row : sky layer. Third row : cloud layer. The
clouds are color-coded by weight: 0 (blue) to 1 (red). Even though the sky is more than 50%
occluded in the input images, our algorithm is able to recover a good estimate of both layers.
The last two columns illustrate a failure case: the sun (either when very close or in the camera
field of view) significantly alters the appearance of the pixels such that they are labeled as clouds.

3.7 Discussion

We discuss three important problems related to the sky-based calibration algorithm that

arise in practice, namely radiometric issues, varying weather conditions, and the need for

date and time of capture. It is important to understand the various elements other than

the camera parameters that may also affect the sky appearance, in order to factor out their

influence and isolate the effects solely due to camera parameters.

3.7.1 Radiometric Issues

Our sky-based algorithm relies on the sky pixel intensities and assumes that they faithfully

represent the real sky radiance. Unfortunately, radiance undergoes a series of unknown

transformations [Kim and Polleyfeys, 2008] before being observed as pixel intensities. In

particular, we must consider gain, dynamic range, camera response function, vignetting, and

sensor noise. In this section, we discuss how each one of these unknown transformations
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are dealt with in this work.

Gain is an unknown scale factor which is applied to radiance, and can vary from one

image to the next because of Automatic Gain Control (AGC). Our approach is insensitive

to AGC because it estimates an unknown scale factor k at each image (see Sec. 3.3.1.3), in

which the gain gets incorporated.

The exposure controls the amount of light that is captured by the camera, and may or

may not vary across images depending on the camera. A particular exposure may result in

under-exposed or saturated pixels when the corresponding scene is too dark or too bright,

respectively. These incorrectly-exposed pixel values have been truncated to fit the dynamic

range of the camera, therefore are not accurate representations of the scene radiance. This

problem can be solved by ignoring pixels that have intensity less than 2/255 or higher than

254/255 in the optimizations.

The camera response function is a (typically non-linear) transformation that maps ra-

diance values to pixel intensities. This is usually computed by acquiring several images of

the same scene at different exposures [Debevec and Malik, 1997]. Unfortunately, we cannot

assume this is the case in an image sequence because the frequency of acquisition might be

too low, and illumination conditions might be different from one frame to the next which

breaks the constant radiance assumption of such methods. Instead, we mentioned that we

rely on [Lin et al., 2004], which estimates the response function from color edges computed

over several images. This method suffers from two important drawbacks: 1) selection of the

weight λ, which controls the relative importance between the data and prior terms in the

optimization, has to be done empirically; and 2) the images might not have enough different

colors to cover the entire RGB cube, so the set of available edges might be restricted to a

small region in the color space. Future work includes recovering the camera response func-

tion from techniques which are geared towards using multiple images from the same [Kim

et al., 2008] or different [Kuthirummal et al., 2008] scenes as input.

Vignetting is a common issue that arises when dealing with low-quality, wide-angle

lenses typical of webcams. It can significantly alter the intensity of pixels located near

the corners of the image. Although elegant vignetting removal solutions have been pro-

posed [Kim and Polleyfeys, 2008; Kuthirummal et al., 2008; Zheng et al., 2006], we simply
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ignore pixels that are far from the image center (e.g., 120 pixels for a 320×240 pixel image),

and have found this approximation to be sufficient with our test sequences.

The last issue is the one of sensor noise, which can be significant in low-quality webcam

images. Because our algorithm operates on several randomly-chosen sky pixels gathered

across many images, and the Gaussian noise assumption underlying our least-squares min-

imization approach, we have found our algorithm to be robust to the noise level present

in our test sequences, which is also confirmed by the synthetic experiments performed in

Sec. 3.3.3.2.

3.7.2 Weather Conditions

Although we already presented in Sec. 3.6 how we can represent challenging weather con-

ditions once the camera parameters have been recovered, recall that finding these very

parameters relied on clear sky images in the first place. We presented in Sec. 3.4.2.1 two

algorithms that automatically select clear skies to build sets I and J from a large set of

images. Unfortunately, because camera parameters are unknown initially, we had to rely

on image-based heuristics to guide these algorithms. We now discuss how these algorithms

are affected by slight variations in weather conditions, which in turn has an effect on the

camera parameters estimation. Luckily, both of them need not be perfect, and we observe

that they are robust to clouds being present in roughly 10− 15% of their respective input

image sets.

Empirically, we observe that building set I (clear skies where the sun does not affect the

sky appearance) succeeds in approximately 90% of the time. The main failure case is when

a thin layer of semi-transparent clouds cover the entire image, and smoothly modify the

vertical sky gradient. Additionally, presence of large amounts of haze close to the horizon

is another source of noise because it is not predicted by the clear sky model. For the set J

(clear skies where the moving sun effect is visible), performance decreases and the automatic

method is used in only 25% of the sequences in Table 3.6. The algorithm typically fails

when the sun is very close to the camera field of view, and induces very large changes in

the sky appearance. Unfortunately, these failure cases can only be detected by manually

inspecting the resulting images, so future work includes determining a better way of finding
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clear sky images that is more robust to stronger variations in weather.

3.7.3 Are Date and Time of Capture Necessary?

We show in Appendix A.1 that, given only clear sky images and date and time of capture,

it is possible to estimate the camera focal length, zenith and azimuth angles, and even GPS

coordinates. But can we go further? Could we also recover all this information, given just

the images as input?

One possibility would be to have a webcam which captures at precise regular intervals,

closely spaced in time (e.g., every minute), over a very long period of time (e.g., one year).

In short, this regular time spacing gives their time of capture up to translation and scale.

From only the images of such a webcam, it should be possible to track the sun position and

get a good estimate of sunset and sunrise (i.e., when the predicted θs given θc and fc is

equal to 90◦). Given many sunset or sunrise estimates, it might be possible to recover the

time translation and scale factor by correlating their relative sunset/sunrise times with real

times gathered from an astronomical almanac. This could be used to recover the actual

date and time of capture of each image.

Unfortunately, real webcams are not so regular: their capture frequency may vary

slightly, they might become unavailable for a period of time, etc. Dropping a single frame

would adversely effect the algorithm, so the feasibility of such an approach imposes un-

due restrictions on data capture. The date and time of capture are stored with virtually

all captured images and hence can be exploited, thus avoiding such restrictions on image

acquisition.

3.8 Conclusion

In this chapter, we analyze two sources of information available within the visible portion

of the sky region: the sun position, and the sky appearance. In particular, we show how to

use them to estimate our entire natural illumination model of Sec. 2.4 in image sequences:

the sun angular direction with respect to the camera, the sun visibility, the sky turbidity

and cloud cover. From the sun coordinates in images, we show how we can extract the
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camera focal length and its zenith and azimuth angles. For the sky appearance, we express

a well-known physically-based sky model in terms of these camera parameters and fit it

to clear sky images using standard minimization techniques. We test our methods on a

high-quality image sequence with known camera parameters, and obtain errors of less that

1% for the focal length, 1◦ for azimuth angle and 3◦ for zenith angle. We then show

that both these techniques consistently recover the same parameters on synthetic and real

image sequences. We evaluate their performance by calibrating 22 real, low-quality image

sequences distributed over a wide range of latitudes and longitudes. Finally, we demonstrate

that by combining the information available within the sun position and the sky appearance,

we can also estimate the camera geolocation, as well as its geometric parameters. Our

method achieves a mean localization error of 110km on real, low-quality Internet webcams.

Once the camera parameters are estimated, we show how we can use the same model to

segment out clouds from sky and build a novel bi-layered representation. In the next chapter,

we will see how this newfound knowledge about illumination allows us to synthesize image

sequences with consistent lighting.
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Chapter 4

Synthesizing Illumination-Consistent

Sequences

Always remember, sir, that light and

shadow never stand still.

Benjamin West (1738–1820)

In this chapter, we exploit the illumination model estimated from image sequences presented

in Ch. 3, in computer graphics. For the first time, we demonstrate how objects can be

transferred across webcams in a lighting-consistent manner, and even how the lighting

conditions of an image can be used to realistically relight a virtual 3-D model.

4.1 Background

Despite the recent advances, visual realism in complex, real-world scenes remains largely

elusive for traditional computer graphics. The main culprit appears to be the sheer com-

plexity of our visual world—a realistic scene requires much more detailed geometry and

lighting than could possibly be provided by hand. Of course, if one happens to have access

to the physical site to be modeled (e.g., a monument or a movie set), then image-based

modeling and rendering techniques can be employed in situ, producing excellent results

(e.g., [Arnold et al., 2003]). However, often it is not possible to travel “on location” in order
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Figure 4.1: 180 images randomly selected from our dataset of 1.2 million images from 1350
webcams.

to capture the needed geometric and photometric data in person. Fortunately, over the last

few years, the Internet has developed into a gargantuan depository of visual data (photos,

videos, webcams, annotations, etc) captured by people all over the globe. A pressing re-

search question is how this data could be useful in graphics as a way of “crowd-sourcing”

visual realism.

Recently, the concept of appearance transfer has been proposed as a way of employing

large datasets for synthesizing novel imagery. The basic idea is to: match various aspects

of the given scene to one or more previously seen examples from the dataset; and transfer

the appearance information associated with the examples onto the scene. Compared to

more traditional techniques, the main difference is that the algorithmic burden is shifted

from a synthesis task to a (hopefully easier) matching task. Some surprisingly successful

applications of this simple idea have been demonstrated for several types of data such as

unordered photo collections [Hays and Efros, 2007; Bitouk et al., 2008; Chen et al., 2009].

Closely related are efforts that perform “appearance mining” of photo collections to recover

visual content like virtual walk-throughs [Snavely et al., 2008], skies [Tao et al., 2009] and

even 3D models [Goesele et al., 2007].

One intriguing source of visual data that has yet to be fully explored are Internet web-

cams. A webcam is a stationary camera that continuously captures a time-lapse sequence,

typically at one frame every 5-10 minutes. There are tens of thousands of such webcams

all over the world, providing a rich round-the-clock visual record of some of the most inter-

esting, as well as some of the most mundane, places on the planet. The big advantage of

webcam data is that, by observing the same scene under many different lighting and weather
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conditions, it contains much more information than can be extracted from either a single im-

age or an unstructured video. As a result, working with this kind of data allows for the use

of more principled physics-based methods to complement the mostly heuristic data-driven

approaches. Several research groups have explored this source of information, recovering

various scene properties including scene geometry, surface reflectance, shadows, illumina-

tion, camera parameters, and even camera geo-location [Koppal and Narasimhan, 2006;

Sunkavalli et al., 2007; Weiss, 2001; Sunkavalli et al., 2008; Kim et al., 2008; Jacobs et al.,

2007b]. These efforts have prepared the ground for the next step: actually using the wealth

of webcam data as a source of visual realism for computer graphics applications.

4.2 Overview

In this chapter, we propose a combined data-driven / physics-based approach for using a

library of calibrated outdoor webcams as a “Webcam clip art”—to inject varied, realistic ap-

pearance into the user’s own scenes. These scenes could themselves be time-lapse sequences,

as well as 3D models, 2D Light Stage objects, or, in some cases, even single photographs.

Our aim is to transfer the right data from the appropriate source images while avoiding, as

much as possible, synthesizing new appearance and illumination. In this chapter, we focus

on a single aspect of appearance—illumination—where time-lapse data can provide much

more information than a single image, allowing for a more physics-based approach as well

as a much richer set of applications. In Ch. 7, we will see how to match other important

parameters, such as geometry, scale, and local context of an object in the case of creating

single images. For now, we divide these applications into two broad categories:

Illumination-consistent appearance transfer: Webcams see and record the visual

life of many interesting things—buildings, monuments, mountains, beautiful skies, etc. We

would like to be able to insert an object from our Webcam Clip Art library directly into a

user’s own time-lapsed sequence in such a way that the lighting of the object is consistent

with the overall illumination of the scene at each time instance. For instance, using a Paris

webcam, one could create a time-lapse Eiffel Tower clip art object which, when inserted

into a new scene, will automatically become correctly lit.
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Illuminant transfer: A webcam library could also act as a rich source of realistic, time-

varying natural illumination for relighting the user’s own virtual objects. By estimating the

sun and sky light from the webcam, we can create a library of sky probe sequences, to be

used for relighting scenes under many different illumination and weather/cloud conditions.

Moreover, by hypothesizing full environment maps for a given sequence, virtual objects can

be seamlessly inserted into real scenes. For instance, an architect or a sculptor wishing to

see how their proposed creations will harmonize with the existing surroundings could simply

install a webcam at the site (or several alternative sites), and visualize their model in situ,

lit by a wide range of real-world illumination conditions.

These are demanding goals. To succeed will require addressing three major challenges:

1) Building a high-quality, calibrated webcam database. Current webcam collec-

tions such as the one introduced in [Jacobs et al., 2007a] are either much too small or too

low-resolution to be suitable for graphics applications. Building a truly large dataset will

require that Internet crawling and camera calibration all be done completely automatically.

2) Matching illumination conditions across different webcams. This is hard be-

cause the webcams can depict completely different scenes in terms of geometric structure,

color, and materials and weather, making a purely data-driven approach unlikely to suc-

ceed. 3) Estimating sky probes from a webcam. The small field of view of a typical

camera means that webcams show only a tiny part of the scene, from which the algorithm

must recreate its global lighting environment.

Our approach to addressing these challenges combines the use of data-driven appearance

transfer paradigm with a physics-based model of outdoor illumination. We will assume that

all our webcams have only natural (daylight) illumination, that they are filmed by static

cameras, and that their GPS locations are known.

While illumination has been analyzed extensively in laboratory settings, little has been

done on outdoor illumination in unconstrained scenes observed in the real world by off-the-

shelf cameras. [Lalonde et al., 2007] also model illumination within a data-driven framework,

but they do it in a purely heuristic way—via color histogram of the sky region. This coarse

representation loses spatial information and can only match the global “feel” of the scene

(e.g., sunny vs. overcast). A similar behavior is obtained by the sky matching approach
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of [Tao et al., 2009]. A physics-based illumination model has been proposed by [Bitouk et

al., 2008] but only for the specific domain of faces (which are assumed to be Lambertian)

and does not generalize to arbitrary outdoor scenes. [Haber et al., 2009] apply inverse

rendering on several images of the same object to estimate reflectance and illumination, but

require a priori knowledge of object shape.

This chapter is organized as follows. We first discuss how we collected our webcam

library (Sec. 4.3). The remainder is devoted to deriving algorithms for our two main appli-

cations, appearance transfer (Sec. 4.4) and illuminant transfer (Sec. 4.5).

4.3 Building the Webcam Clip Art Database

Creating a webcam database suitable for our needs poses several challenges. The database

must be large enough to contain a wide range of appearances and illumination conditions

as to be useful for graphics applications. The webcams must be of high resolution and

stationary (e.g., no excessive shaking due to wind). Furthermore, all cameras within the

database must be calibrated, both geometrically and radiometrically. Geometric calibration

is crucial for determining the illumination direction with respect to the camera. Radiomet-

ric calibration is needed to linearize camera responses in order to fit the sky appearance

model. In this section, we will briefly describe our approach for automatically collecting

and calibrating our webcam database, the first of its kind in computer graphics1.

4.3.1 Data Collection

While the number of Internet webcams is vast, many are not suitable as sources of inter-

esting appearance data (e.g., TrafficCams, OfficeCams, SportsCams). Additionally, many

(especially older) webcams use cheap cameras and offer poor resolution and image quality.

For example, we initially experimented with Archive of Many Outdoor Scenes (AMOS) [Ja-

cobs et al., 2007a], the only existing dataset containing over 1,000 webcams, but rejected it

due to low image resolution (320 × 240 for most sequences). Luckily, webcam quality and

resolution have been steadily going up in recent times. For our task, we have been able

1Dataset available at http://graphics.cs.cmu.edu/projects/webcamclipart.
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Webcam

Figure 4.2: World map showing the location of all 1350 webcams in the dataset. The main
concentration is in Europe and North America, but there are also several in Asia and Oceania.

to identify a source of high-quality webcams—the “webcams.travel” website [Opperman et

al., 2009], which contains a set of live links to 11,500 geo-tagged webcams worldwide at the

time of writing.

We have developed a system that crawls the entire website and automatically finds we-

bcam sequences where 1) the resolution is sufficient, 2) the sky is visible, and 3) the camera

is static. To determine if the sky is visible, we use the geometric context algorithm [Hoiem

et al., 2005] and average the segmentations over several images to yield a robust sky mask.

To determine if the camera is static, we first extract features (using SIFT [Lowe, 2004])

from each image of a webcam. We select only those webcams with no translation between

the feature locations across frames, as in [Jacobs et al., 2008].

After the crawling, we ended up with 1350 suitable webcams, for a total of over 1.2

million images (so far). The images were downloaded every 15 minutes from sunrise to

sunset over at least two months, and more than one year in some cases (we continue the

downloads, aiming to have at least 6 months of data from every webcam). For all webcams

the location information (GPS) is provided, and every image is tagged with time-of-capture.

All of our sequences have at least 640× 480 pixel spatial resolution, with 10% of them with
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Figure 4.3: Our calibrated webcam dataset. It comprises 1350 webcams downloaded from the
Internet, and calibrated using the technique introduced in Ch. 3. The display depicts their fields
of view and orientations.

greater than 1024× 768 resolution.

Fig. 4.1 shows a random sample of 180 sequences from our dataset. It illustrates the

wide variety of scenes that are being captured: mountains, cities, landmarks, buildings,

public spaces, parks, beaches, fields, airfields, streets, etc. The webcams are distributed

throughout a wide range of geographic locations, as illustrated in Fig. 4.2. While the main

concentrations are in Europe and North America, all five continents (except Antarctica)

are represented.

4.3.2 Recovering the Natural Illumination Conditions

In addition to the raw image data, we employ the method presented in Ch. 3 to estimate

the natural illumination conditions for each image in each webcam sequence. This results

in a rich database of images for which we know the relative angular position of the sun with
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respect to the camera (∆θs,∆φs), the sun visibility V , the turbidity t in the atmosphere, and

the cloud layer C. In addition, we also have camera parameters for each sequence, namely

the focal length fc, zenith and azimuth angles (θc, φc). The resulting camera parameters

are shown in Fig. 4.3.

4.4 Appearance Transfer Across Image Sequences

The world’s webcams record the visual appearance of cities, mountains, beaches, forests

and skies, under a variety of illumination and weather conditions. But while the space of

all possible scenes may well be infinite, the space of illumination conditions they experience

might not be that large. Indeed, given a large-enough database of scenes it is extremely

likely that many will share similar orientation with respect to the sun and, given long-

enough recording time, similar skies and weather. And if a similar scene can be found, then

appearance can simply be transferred from it to the target scene, without having to explicitly

model the complex physics and material properties. Thus, the collection of webcams can

be treated as a “clip art” from which users can insert objects into their own time-lapse

photographs in an illumination-consistent way. As with any data-driven approach, just

growing the number of webcams in the clip art library will further improve performance by

increasing the number of illumination matches for transfer. In this section, we describe our

techniques for matching illumination and transferring objects from one webcam to another.

4.4.1 Matching Illumination Across Scenes

Matching illuminations of completely different scenes is a challenging problem. One scene

may be a natural landscape and the other may consist of skyscrapers. In this case, simple

image-based heuristics will not suffice because they do not take into account either the

viewing and illumination geometry, the type of weather, or the sun visibility. However, this

is exactly the type of information we can estimate from webcam sequences, as described in

Sec. 4.3.2.

Consider two images captured by different webcams. In order to test whether the

appearance of an object in one can be transferred to another, we must match:
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1. the camera azimuth angle relative to the sun ∆φs, which ensures, for example, whether

the sun is either to the left or right or behind the cameras;

2. the camera zenith angles θc, which measures the orientation of the camera with respect

to the ground plane, thereby accounting for variations in viewpoint for objects;

3. the sun zenith angle θs which effects sky color especially during sunrise and sunset;

4. the visibility V of the sun, captured by the features from Sec. 3.5;

5. turbidity t in the atmosphere;

6. the cloud coverage denoted by the norm ||C|| of the cloud layer.

Since we do not expect different webcams to exactly match all of these five quantities, we

define an aggregate matching function M between the skies of source and destination images

i and j, as the weighted linear combination:

M = w1∠(∆φi
s,∆φj

s) + w2∠(θi
c, θ

j
c) + w3wz∠(θi

s, θ
j
s)+

w4χ
2(V i, V j) + w5||(Ci, Cj)||2 + w6||(ti, tj)||2 ,

(4.1)

where, ∠(·, ·) is the angular difference, and χ2(·, ·) the chi-square distance between two

histograms.

The weights w1 = 2, w2 = 1.5, w3 = 1.5, w4 = 1.5, w5 = 1, and w6 = 1 are used in

all the examples shown in the chapter. Note that errors in sun and camera angles or sun

visibility are more easily perceived that turbidity or cloud cover, hence their larger relative

weights. Furthermore, matching the colors of the sky during sunrise or sunset is critical

for perception. We set an additional weight wz = sin(θi
s) that increases the importance

of the term when the sun is close to the horizon (θi
s = 90◦). Each of the terms in the

above functions are equalized by normalizing them to a range of [0–1]. A nearest neighbor

algorithm is used to match the function M of one webcam against the library of source

webcams.

Fig. 4.4 compares our new illumination matching function M with the one proposed by

Lalonde et al. [2007]. While their approach is good at representing the general scene mood
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(a) Input image (b) [Lalonde et al., 2007] (c) Ours

Figure 4.4: Sky matching comparison against [Lalonde et al., 2007]. The input image from the
Vatican sequence (a) is matched against frames from the Visby sequence using Photo Clip Art
(b) and our technique (c). While Photo Clip Art can capture the overall “feel” of the scene
(sunny, in this case), note that the shadow direction is completely wrong.

(e.g., sunny vs. cloudy), it does not accurately capture the sun position, so it cannot be used

to transfer the appearance of objects and scenes across webcams in a physically-consistent

way.

4.4.2 2-D Appearance Transfer Across Webcams

Once the illuminations of the source and destination webcams are matched, the object

of interest can be matted from the source webcam and composited into the destination.

Fig. 4.5 shows three different appearance transfer results: 1) skyscrapers from Tokyo are

placed into an image sequence in Berkeley, CA (Fig. 4.5a); 2) the Eiffel Tower in Paris is

composited into the Berlin skyline (Fig. 4.5b); and 3) the sky (it’s just another object!)

can likewise be transferred, here from Berkeley to Portugal (Fig. 4.5c). To compensate

for color differences that might exist between cameras, we post-process the object by re-

coloring according to the scene colors, following [Reinhard et al., 2001]. When the sky is

transferred as in Fig. 4.5c, pixels are automatically warped according to the field of view

of the cameras. Notice the beautiful sunset effect in Fig. 4.5a where the reflection of the

sun, the colors of the buildings and the sky appearance are all consistent. The consistency

between the illumination conditions of the transferred object and those of the destination

scene is what makes the results appear so realistic.

Illumination can be matched for each frame of the source / destination webcam. How-
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ever, in order to ensure smooth transitions between frames adjacent in time, we add a

constraint which penalizes large changes in appearance in the resulting video. We first

compute the mean histogram of scene intensity differences over all pairs of adjacent frames

in the sequence containing the source object. We then penalize images whose histogram

of object intensity differences with respect to the previous frame differs from the mean

histogram (using the χ2 distance measure). We ensure global consistency using dynamic

programming as in [Schöld et al., 2000].

The success of appearance transfer depends on the quality of matches recovered from

the database. Rare illumination conditions such as storms and dense fog for example, are

harder to find and may result in erroneous relighting results. Since not every webcam can

be matched to every other webcam (e.g., sun positions at the earth’s equator and pole

do not overlap), we assume that the webcams are distributed across the entire globe. As

with other data-driven approaches, many current limitations will be addressed by simply

adding more data. In addition, while this type of compositing maintains consistency in the

appearance of the object, shadows cast by the object onto others (or vice versa) are hard to

simulate without knowing 3D geometry of the scene. While shadow detection and transfer

solutions have been proposed [Weiss, 2001; Lalonde et al., 2007], they may not work in

arbitrarily complex scenes with occlusions, moving objects, etc. While this topic is part of

our future investigations, in the following section we present a different way to accurately

handle object shadows—by using 3D virtual object models.

4.5 Illuminant Transfer in Image Sequences

Webcam sequences can be used to transfer pixel data across scenes, as we demonstrated

earlier, but we would also like to move beyond pixels, and capture as much of the illumi-

nation information as we can. This will allow us to insert synthetic 3D objects seamlessly

into a webcam sequence, and also to use the natural light from a webcam to relight a novel

3D scene. In this case, knowledge of geometry will result in physically-consistent shadows.

The way that the relighting problem is typically addressed in graphics is by capturing

natural light from the real scene and using it as an environment map to light virtual ob-
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(a) Object transfer (building)

(b) Object transfer (Eiffel tower)

(c) Sky transfer

Figure 4.5: Appearance transfer between webcams. The first column shows example frames
from the webcams corresponding to the object (top) and destination (bottom). The other three
columns show (a) buildings transferred from Tokyo to Berkeley and “re-lit” by finding an image
in the Tokyo sequence with illumination that matches that of Berkeley; (b) the Eiffel Tower
transferred in Berlin, notice how the shading effects are consistent across the scene; (c) the sky
transferred from Berkeley to Portugal, in which case the scene can be automatically “re-lit” in
an illumination-consistent way, observe how the reflections on the water are consistent with the
sun position.

Figure 4.6: Rain or shine, the knight stands guard at the castle. Our technique can be used to
render objects captured in a Light Stage [Debevec et al., 2002].
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jects [Blinn and Newell, 1976b; Debevec, 1998]. An environment map is a sample of the

plenoptic function at a single point in space capturing the full sphere of light rays inci-

dent at that point. It is typically captured by either taking a high dynamic range (HDR)

panoramic photograph from the point of view of the object, or by placing a mirrored ball

at the desired location and photographing it. Such an environment map can then be used

as an extended light source for rendering synthetic objects.

Given only an image or a webcam sequence however, it is generally impossible to re-

cover the true environment map of the scene, since an image will only contain a small

visible portion of the full map (and from the wrong viewpoint besides). However, there is

psychophysical evidence suggesting that an approximation to the environment map which

is consistent with the target image is typically enough to create believable lighting ef-

fects [Dror et al., 2004]. Consequently, a simple technique for environment map estimation

from a single image has been proposed by Khan et al. [2006] that work reasonably well for

its intended setting. However, we have found it inadequate for our task mainly due to its

low dynamic range and inability to estimate even approximate illumination direction. Both

problems stem from the fact that the sun and the sky—the main illuminants in an outdoor

environment—are not being explicitly modeled. Coincidentally, this is exactly the informa-

tion that we can reliably recover from webcam sequences (Sec. 4.3.2). Here we propose to

use our model of natural illumination to estimate high dynamic range environment maps at

each frame. Since we are dealing with outdoor images, we can divide the environment map

into two parts: the sky probe and the scene probe. We now detail the process of building a

realistic approximation to the real environment map for these two parts.

4.5.1 Creating a Sky Probe

Our sky probe is composed of the sky layer, the sun layer, and the cloud layer. The sky

layer is generated in a straightforward way from the sky parameters that were computed

in Sec. 4.3.2. The estimated turbidity and camera parameters allow us to use (3.8) and

extrapolate the sky appearance on the entire hemisphere, even though only a small portion

of it was originally visible to the camera.

The camera calibration procedure also yields the relative position of the sun with respect
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Color channel α β
R 1.4243× 1010 0.2187
G 1.4463× 1010 0.2399
B 1.3× 1010 0.2889

Table 4.1: Recovered parameters after fitting our parametric model to the sun data from the
HDR sky database of Stumpfel et al. [2004].

to the camera. For the sun layer, we can use this to position a synthetic sun at the desired

location. But how should it look, and how bright should it be? We rely on the HDR sky

dataset of Stumpfel et al. [2004] to estimate sun appearance and brightness. In all frames

of the dataset where the sun is not occluded by clouds, we can automatically detect the

location of its center by fitting a 2-D Gaussian in log-intensity space. We compute the sun

appearance by rotating the sky probe so that all the sun locations are at the origin, and

averaging them.

We also compute the sun brightness in each color channel across the full database as a

function of its height and fit a parametric model of the form α exp(−βm(θs)), where m(θs)

is relative optical path length through Earth’s atmosphere [Kasten and Young, 1989]:

m(θs) =
1

cos(θs) + 0.50572(96.07995− 180
π θs)−1.6364

. (4.2)

Here, α is an arbitrary scale factor and β is a scattering coefficient. Table 4.1 shows the

recovered values for parameters (α,β) for the RGB color channels, and Fig. 4.7 illustrates

that the model provides a good fit to the sun data.

The final sun appearance placed in the sun layer of the sky probe is generated by taking

the mean sun image and rescaling it by s(θs) which will take care of both sun height and

sun occlusion by clouds:

s(θs) = smaxV
α exp(−βm(θs))

α exp(−β)
, (4.3)

since m(0) = 1, and where V is the partial sun visibility coefficient (defined in Sec. 3.5)

and smax is the maximum sun brightness value, reached when the sun is at zenith θs = 0

(smax = 1× 105 in all our experiments).
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Figure 4.7: Sun intensity as a function of sun zenith angle. The data points are obtained from
the HDR sky database [Stumpfel et al., 2004], and the solid lines indicate the prediction by our
low-dimensional parametric model (4.3).

Finally, we must define the cloud layer. Its role is mostly decorative (since we have

already taken care of sun occlusion by clouds), useful mainly for relighting mirror-like

objects which can reflect the sky. We make an assumption that the cloud cover of the full

sky is statistically similar to the cloud cover of the visible sky. Therefore, we can use texture

synthesis to create plausible cloud cover for the missing portion of the sky. We use Image

Quilting [Efros and Freeman, 2001] to synthesize more of the cloud layer C, but we run it

in the gradient domain to preserve the color of the clear sky layer underneath. Quilting

proceeds along the longitude first, and then the “north cap” of the map is filled in by planar

projection at the pole. The final sky probe is the sum of the clear sky, sun, and the cloud

layers. It captures the approximate illuminant of the scene in high dynamic range and can

be used directly in rendering programs.

4.5.2 Estimating the Environment Map

To insert a synthetic 3D object into an image from a given webcam, we need the full

spherical environment map. We have already estimated the main illuminant in the scene —

the sky probe, and the rest will be filled-in from the input image directly. First, we use the
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approach of Khan et al. [2006] to map the pixels below the horizon line in the image onto

the bottom hemisphere. This way, we create a map with the sky in the top hemisphere and

the mirrored spherical projection of the ground in the bottom hemisphere. However, we

have not yet accounted for objects that protrude above the horizon line and occlude part of

the sky from view. For this we use another simple approximation—find all non-sky objects

above the horizon (using the sky mask defined previously) and project them onto a cylinder

around the equator of the environment map. Our experiments [Lalonde and Efros, 2010]

have shown that, unless highly-reflective objects are inserted, this approximation results in

renderings that are perceptually indistinguishable compared to employing a more accurate

representation of the scene surrounding the inserted object (e.g., flat ground plane).

4.5.3 Relighting Virtual Objects

We can now insert virtual objects into a real scene under various illuminations. First, we

show how a light-field object captured in a Light Stage apparatus [Debevec et al., 2002] can

easily be inserted with the correct lighting. The object is synthesized by summing images

of the object taken under 256 different light directions, and weighting them according to

the light intensities specified in our estimated environment maps. Fig. 4.6 shows the result

of inserting a light-field knight into a castle scene. To insert 3-D objects, we follow the

image-based lighting method of Debevec [1998]. This assumes knowledge of the geometry

of the scene, which can be acquired in several ways, using photometric stereo [Sunkavalli

et al., 2007], or manual intervention [Debevec et al., 1996; Horry et al., 1997] for example.

We approximate the scene with a ground plane surrounding the object. Since geometry is

known, complex shadow effects can be generated by most off-the-shelf rendering packages.

We now demonstrate practical examples of our approach. Fig. 4.9 shows a scenario

where architects wish to know how their newest design will look in three different settings:

on a beachfront property (Fig. 4.9a), on a farm (Fig. 4.9b), or in the Swiss mountains

(Fig. 4.9c). Our large database provides a wide variety of such environments, which can be

used to preview how an object would appear at different times of day and under different

weather conditions. Alternatively, one can also visualize how an object will harmonize with

existing surroundings by installing a webcam at that site. For example, Fig. 4.10 illustrates
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(a) [Khan et al., 2006]

(b) Our result

Figure 4.8: Comparison between objects relit by environment maps obtained with (a) the method
of Khan et al. [2006], and (b) ours. The dynamic range and sun orientation captured by our
method make the inserted object appear much more realistic.

what would happen if the Madrid city planners chose to insert a statue of Venus de Milo in a

public square. The statue can be visualized in situ, lit by real-world illumination conditions

specific to that location.

We compare our approach to that of Khan et al. [2006] in Fig. 4.8. The dynamic range

and sun orientation captured by our method make the inserted object appear much more

realistic.
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(a) (b) (c)

Figure 4.9: An architect wants to show what his architectural model will look like in different
settings: (a) on the beach, (b) on a farm, and (c) in the mountains; and under different
illumination conditions. It is easy to do so using our rich webcam dataset and our automatic
environment map extraction algorithm. The corresponding environment maps are shown as
insets.

Figure 4.10: The Madrid city planners are considering adding a Venus de Milo statue to this
square. Using our approach, it is easy to visualize what it will look like in that environment.
Notice how the cast shadows on the ground follow the shadows of the other objects in the
scene, and how the sun visibility is estimated properly. Shadows can be inserted behind objects
by manual layering (as in the left-most image). The corresponding environment maps are shown
as insets.
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Figure 4.11: Single image relighting. The overcast input image (left) is relit by a clear Berkeley
sky and shown here in the morning, noon, and evening.

4.5.4 Relighting in a Single Image

Finally, we demonstrate an application of illuminant transfer for relighting a scene from

a single image (provided it was taken on overcast day). We start by modeling the ge-

ometry of the scene. For simplicity, we used a slightly modified “Tour into the Picture”

approach [Horry et al., 1997] in which there is no ceiling, but any other single view modeling

approach may be used. The geometry allows us to compute a sky visibility map for each

pixel. Since there are no shadows present in the overcast image, the albedo of every scene

point can be estimated using the known illumination and scene geometry, based on the

Lambertian reflectance model. We transfer a new sky probe as described above into the

scene. Using a simple ray tracing algorithm we are then able to relight the scene with the

new sky probe, as shown in Fig. 4.11.

4.6 Discussion

We now discuss two important problems which arise when synthesizing appearance in im-

age sequences: the availability of good matches in a large database and the challenge of

transferring cast shadows.

4.6.1 Matching Illumination in Image Sequences

The success of appearance transfer depends on the quality of matches recovered in the

database. Since not every webcam can be matched to every other webcam, the number

of object candidates to be transferred depends on the number of cameras with similar

illumination directions. One practical way of recovering potential objects to be inserted in

a given webcam is to first match the zenith and azimuth angles of the camera (i.e., only
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keeping the first two terms of (4.1) for matching). This effectively sorts the cameras by how

likely it will be to find similar sun directions.

If the object to be inserted is vertically symmetric, it is also possible to artificially

increase the number of available webcams by a factor of two by flipping the image along its

vertical axis, and reversing the sun azimuth (−∆φs).

Finally, one future exciting research direction is to retrieve matches that are perceptually

consistent, as opposed to physically correct. The weights wi could be correlated to match our

perception of illumination consistencies. For example, Koenderink et al. [2004] have shown

that we are much more sensitive to disparities in sun azimuth than zenith. Is this always

the case? For example, matching the sun zenith was important at specific configurations,

like the reflection at sunset in Fig. 4.5a. Further research is required to determine how

sensitive humans are to illumination inconsistencies, in real-world imagery.

4.6.2 Transferring Cast Shadows

One of the limitations of the appearance transfer application introduced in Sec. 4.4 is the

handling of cast shadows. Although there already exists methods for detecting shadows in

image sequences [Weiss, 2001], our current implementation does not actually transfer cast

shadows to the destination image. The main challenge here is due to the fact that large

objects may cast shadows on other objects in the scene (see Fig. 4.12, so unless the geometry

in the target image is similar to that of the source, transferring cast shadows would generate

uncanny artifacts.

One potential solution to this problem is to estimate the geometry of the object to

be transferred, either automatically [Sato et al., 2003; Jacobs et al., 2010] or with user-

guided modeling tools [Debevec et al., 1996], and realistically synthesize the cast shadow

onto the target image. Once the geometry of the object is acquired, the rendering process

for shadows is akin to the one presented in Sec. 4.5, for inserting virtual 3-D objects. In

both cases, the scene geometry in the target image needs to be modeled as well. Fig. 4.13

presents a behind-the-scenes view of the process. In order to generate realistic cast shadow

interactions, such as the one in Fig. 4.13a, we model the target scene using a simple ground

plane model (Fig. 4.13b). We could achieve even more complex results, such as the statue
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Figure 4.12: Challenging case for transferring cast shadows. In this example, the left building
casts a shadow onto the right one, so transferring the shadow would require extracting, and
reasoning about the scene geometry.

casting its shadow on the gazebo, by including more details on the geometric model.

(a) (b)

Figure 4.13: Behind-the-scenes look at object insertion. To generate the realistic cast shadow
effect in (a), a virtual 3-D model of the scene is needed. In this case, a simple ground plane (b)
was used.

4.7 Conclusion

We have shown how to exploit the abundance of Internet webcam data that is available to

us for relighting applications. Achieving visual realism by synthesizing appearance is a hard

problem. Instead, for the first time, we are able to transfer appearances (sky, objects) from
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one scene into another and achieve a wide range of relighting effects using webcam data.

The large repository of webcams serves as a new form of ”clip art” from which objects can

be inserted into a user’s time-lapse sequence or even a single photograph in an illumination-

consistent way. We have shown several applications of relighting and appearance transfer

between two webcams, and webcams and single images. We believe this work presents a

first step in a promising new direction—using the webcams of the world as a viable source

of computer graphics content.
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Aside from the availability of temporal information, webcam sequences are inherently dif-

ferent than single images. Webcams are typically installed at high vantage points, giving

them a broad overlook on large-scale panoramas such as natural or urban landscapes. On

the other hand, single images are most often taken at human eye level, where earthbound

“objects” like cars, pedestrians, bushes or trees, occupy a much larger fraction of the im-

age. In the second part of this dissertation, we will present approaches to estimate natural

illumination, and synthesize illumination-consistent content, from a single image alone.

Part II

Single Images
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Chapter 5

Detecting Shadows in a Single Image

Shadow is a color as light is, but less

brilliant; light and shadow are only the

relation of two tones.

Paul Cézanne (1839–1906)

When the sun is shining on a scene, the most prominent result is probably the cast

shadows that it creates. Take a look at some of the images in this document: shadows are

everywhere! Yet, the human visual system is so adept at filtering them out [Rensink and

Cavanagh, 2004], that we never give shadows a second thought. However, they typically

provide strong indication about the illumination conditions of an image. We begin, in this

chapter, by addressing the challenging problem of detecting shadows in single images.

5.1 Background

Since the very beginning of computer vision, the presence of shadows has been responsi-

ble for wreaking havoc on a wide variety of applications, including segmentation, object

detection, scene analysis, stereo, tracking, etc. On the other hand, shadows play a cru-

cial role in determining the type of illumination in the scene [Sato et al., 2003] and the

shapes of objects that cast them [Matsushita et al., 2004]. But while standard approaches,

software, and evaluation datasets exist for a wide range of important vision tasks, from

edge detection to face recognition, there has been comparatively little work on shadows in

85



5.1 Background

the last 40 years. Approaches that use multiple images [Finlayson et al., 2007], time-lapse

image sequences [Weiss, 2001; Huerta et al., 2009] or user inputs [Wu and Tang, 2005;

Bousseau et al., 2009; Shor and Lischinski, 2008] have demonstrated impressive results, but

detecting shadows reliably and automatically from a single image remains an open prob-

lem. This is because the appearances and shapes of shadows outdoors depend on several

hidden factors such as the color, direction and size of the illuminants (sun, sky, clouds), the

geometry of the objects that are casting the shadows and the shape and material properties

of objects onto which the shadows are cast.

Most works for detecting shadows from a single image are based on computing illumi-

nation invariants that are physically-based and are functions of individual pixel values [Fin-

layson et al., 2002; Finlayson et al., 2004; Finlayson et al., 2009; Maxwell et al., 2008;

Tian et al., 2009] or the values in a local image neighborhood [Narasimhan et al., 2005].

Unfortunately, reliable computations of these invariants require high quality images with

wide dynamic range, high intensity resolution and where the camera radiometry and color

transformations are accurately measured and compensated for. Even slight perturbations

(imperfections) in such images can cause the invariants to fail severely (see Fig. 5.4). Thus,

they are ill-suited for the regular consumer-grade photographs such as those from Flickr

and Google, that are noisy and often contain compression, resizing and aliasing artifacts,

and effects due to automatic gain control and color balancing. Since much of current com-

puter vision research is done on consumer photographs (and even worse-quality photos

from mobile phones), there is an acute need for a shadow detector that could work on such

images.

Our goal is to build a reliable shadow detector for consumer photographs of outdoor

scenes. While detecting all shadows is expected to remain hard, we explicitly focus on

the shadows cast by objects onto the ground plane. Fortunately, the types of materials

constituting the ground in typical outdoor scenes are (relatively) limited, most commonly

including concrete, asphalt, grass, mud, stone, brick, etc. Given this observation, our key

hypothesis is that the appearances of shadows on the ground are not as widely varying

as the shadows everywhere in the scene and can be learned from a set of labelled images

of real world scenes. This restriction by no means makes the problem trivial: the ground
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shadow detector still needs to contend with myriad other non-shadow visual manifestations

such as markings and potholes on the roads, pavement/road boundaries, grass patterns on

lawns, etc. Further, since many objects (pedestrians, vehicles, traffic signs, etc) of interest

to vision applications, are attached to the ground and cast shadows onto the ground, we

believe such a ground shadow detector will find wide applicability.

5.2 Overview

Our approach consists of three stages depending on the information in the image used.

In the first stage, we will exploit local information around edges in the image. For this,

we compute a set of shadow sensitive features that include the ratios of brightness and

color filter responses at different scales and orientations on both sides of the edge. These

features are then used with a trained decision tree classifier to detect whether an edge is a

shadow or not. The idea is that while any single feature may not be useful for detecting

all ground shadows, the classifier is powerful enough to choose the right features depending

on the underlying edge region. In order to make the classifier robust to non-shadow edges,

a negative training set is constructed from a set of edges not on the ground and those

arising due to road markings, potholes, grass/mud boundaries, etc. Surprisingly, this simple

procedure yields 80% classification accuracy on our test set of images randomly chosen from

Flickr and LabelMe [Russell et al., 2008].

In the second stage, we enforce a grouping of the shadow edges using a Conditional

Random Field (CRF) to create longer contours. This is similar in spirit to the classical

constrained label propagation used in mid-level vision tasks [Freeman et al., 2000]. This

procedure connects likely shadow edges, discourages T-junctions which are highly unlikely

on shadow boundaries, and removes isolated weak edges. But how do we detect the ground in

an image? For this, in the third stage, we incorporate a global scene layout descriptor within

our CRF, such as the 3-way ground-vertical surface-sky classifier by Hoiem et. al [Hoiem et

al., 2007]. Since the scene layout classifier is trained on the general features of the scene and

not the shadows, we are able to reduce the number of false-positive (non-shadow) detections

outside the ground. Our results show that accuracy improves by 5% with this step.
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(a) Input image (b) Boundaries (c) Strong boundaries (d) Output

Figure 5.1: Processing stages for the local classifier. The input image (a) is over-segmented
into thousands of regions to obtain boundaries (b). Weak boundaries are filtered out by a Canny
edge detector [Canny, 1986] (c), and the classifier is applied on the remainder. (d) shows the
boundaries i for which P (yi = 1|x) > 0.5. Note the correct classification of occlusion contours
around the person’s legs and the reflectance edges in the white square between the person’s
feet.

We demonstrate successful shadow detection on several images of natural scenes that

include beaches, meadows and forest trails, as well as urban scenes that include numerous

pedestrians, vehicles, trees, roads and buildings, captured under a variety of illumination

conditions (sunny, partly cloudy, overcast). Similarly to the approach of Zhu et al. [Zhu

et al., 2010], our method relies on learning the appearance of shadows based on image

features, but does so by using full color information. We found that using color features

and incorporating knowledge of the ground location improve classification results as much

as 10% on our test set. While our technique can be used as a stand-alone shadow detector,

we believe it can also be tightly integrated into higher level scene understanding tasks.

5.3 Learning Local Cues for Shadow Detection

Our approach relies on a classifier which is trained to recognize ground shadow edges by

using features computed over a local neighborhood around the edge. We show that it is

indeed possible to obtain good classification accuracy by relying on local cues, and that it

can be used as a building block for subsequent steps. In this section, we describe how to

build, train, and evaluate such a classifier.
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5.3.1 From Pixels to Boundaries

We first describe the underlying representation on which we compute features. Since work-

ing with individual pixels is prone to noise and computationally expensive, we propose to

instead reason about boundaries, or groups of pixels along an edge in the image. To obtain

these boundaries, we first smooth the image with a bilateral filter [Tomasi and Manduchi,

1998], compute gradient magnitudes on the filtered image, and then apply the watershed

segmentation algorithm on the gradient map. Fig. 5.1b shows a close-up example of such

boundaries.

An undesirable consequence of the watershed segmentation is that it generates bound-

aries in smooth regions of the image (Fig. 5.1b). To compensate for this, we retain only

those boundaries which align with the strong edges in the image. For this, we use the Canny

edge detector [Canny, 1986] at 4 scales to account for blurry shadow edges (σ2 = {1, 2, 4, 8}),

with a high threshold empirically set to t = 0.3. Under these conditions, we verified that

the initial set of boundaries contain more than 97% of the true shadow edges in our dataset.

For example, Fig. 5.1c shows the set of boundaries on which our classifier is evaluated for

that image.

5.3.2 Local Shadow Features

We now describe the features computed over each boundary in the image. A useful feature

to describe a shadow edge is the ratio of color intensities on both sides of the edge (e.g., min

divided by max) [Barnard and Finlayson, 2000]. The intuition is that shadows should have

a specific ratio that is more or less the same across an image, since it is primarily due to the

differences in natural lighting inside and outside the shadow. Since it is hard to manually

determine the best color space [Khan and Reinhard, 2005] or best scale to compute features,

we use 3 different colors spaces (RGB, LAB, [Chong et al., 2008]) and 4 different scales,

and let the classifier automatically select the relevant features during the training phase.

Although color-based features are bound to be affected by camera non-linearities, we found

these ratios to work well across a wide range of cameras and capture conditions.

For a pixel along a boundary, we compute the intensity on one side of the edge (say,

the left) by evaluating a weighted sum of pixels on the left of the edge. But which pixels
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to choose? We could use the watershed segments, but they do not typically extend very

far. Instead, we use an oriented gaussian derivative filter of variance σ2, but keep only its

values which are greater than zero. We align the filter with the boundary orientation such

that its positive weights lie on the left of the boundary and convolve it with the image to

obtain fl. The same operation is repeated with the filter rotated by 180◦ to obtain the

weighted mean of pixels on its right fr. Color ratios can then be computed at pixel p by
min(fl(p),fr(p))
max(fl(p),fr(p)) . This is done independently for each color channel of the RGB, LAB, and

illumination-invariant [Chong et al., 2008] color spaces. To account for edge sharpness, we

compute each filter at 4 different scales σ2 = {1, 2, 4, 8} and size 2σ2, to obtain 36 ratios in

total.

We also employ two features suggested in [Zhu et al., 2010] which capture the texture

and intensity distribution differences on both sides of a boundary. The first feature computes

a histogram of textons at 4 different scales, and compares them using the χ2-distance. The

texton dictionary was computed on a non-overlapping set of images. The second feature

computes the difference in skewness of pixel intensities, again at the same 4 scales.

Finally, we concatenate the minimum filter response min(fl(p), fr(p)) computed over

the intensity channel to obtain the final, over-complete, 48-dimensional feature vector at

every pixel. Boundary feature vectors are obtained by averaging the features of all pixels

that belong to it.

5.3.3 Classifier

Having computed the feature vector xi at each strong boundary in the image, we can now

use them to train a classifier to learn the probability P (yi|xi) that boundary i is due to

a shadow (which we denote with label yi). We estimate that distribution using a logistic

regression version of Adaboost [Collins et al., 2002], with twenty 16-node decision trees

as weak learners. This classification method provides good feature selection and outputs

probabilities, and has been successfully used in a variety of other vision tasks [Hoiem et al.,

2007; Hoiem et al., 2010].

To train the classifier, we selected 170 images from LabelMe [Russell et al., 2008], Flickr,

and the dataset introduced in [Zhu et al., 2010], with the only conditions being that the
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(a) (b)

Figure 5.2: Creating shadow contours by enforcing local consistency. Our CRF formulation
may help to (a) bridge the gap across X-junctions where the local shadow classifier might be
uncertain, and (b) remove spurious T-junctions which should not be caused by shadows.

ground must be visible, and there must be shadows. The positive training set contains

manually labelled shadow boundaries, while the negative training set is populated with an

equal amount of strong non-shadow boundaries on the ground (e.g., street markings) and

occlusion boundaries.

We obtain a per-boundary classification accuracy of 79.7% (chance is 50%, see Fig. 5.5

for a breakdown per class). See Fig. 5.1d for an example. This result support out hypoth-

esis: while the appearance of shadows on any type of material in any condition might be

impossible to learn, the space of shadow appearances on the ground in outdoor scenes may

not be that large after all!

5.4 Creating Shadow Contours

Despite encouraging results, our classifier is limited by its locality since it treats each bound-

ary independently of the next. However, the color ratios of a shadow boundary should be

consistent with those of its neighbors, since the sources illuminating nearby scene points

should also be similar. Thus, we can exploit higher order dependencies across local bound-

aries to create longer shadow contours as well as remove isolated/spurious ones.

To model these dependencies, we construct a graph with individual boundaries as nodes

(such as those in Fig. 5.1b) and drawing an edge across boundaries which meet at a junction

point. We then define a CRF on that graph, which expresses the log-likelihood of a particular

labeling y (i.e., assignment of shadow/non-shadow to each boundary) given observed data
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x as a sum of unary φi(yi) and pairwise potentials ψi,j(yi, yj):

− log P (y|x;λ, β) = λ
�

i∈B
φi(yi) +

�

(i,j)∈E

ψi,j(yi, yj)− log Zλ,β , (5.1)

where B is the set of boundaries, E the set of edges between them, and λ and β are model

parameters. In particular, λ is a weight controlling the relative importance of the two

terms. Zλ,β is the partition function that depends on the parameters λ and β, but not on

the labeling y itself.

Intuitively, we would like the unary potentials to penalize the assignment of the “shad-

ow” label to boundaries which are not likely to be shadows according to our local classifier.

This can be modeled using

φi(yi) = − log P (yi|xi) . (5.2)

We would also like the pairwise potentials to penalize the assignment of different labels

to neighboring boundaries that have similar features, which can be written as

ψi,j(yi, yj) = 1(yi �= yj) exp(−β�xi − xj�22) , (5.3)

where 1(·) is the indicator function, and β is a contrast-normalization constant as suggested

in [Boykov and Jolly, 2001]. In other words, we encourage neighboring shadows which have

similar features and strong local probabilities to be labelled as shadows.

The negative likelihood in (5.1) can be efficiently minimized using graph cuts [Boykov et

al., 2001; Kolmogorov and Zabih, 2004; Boykov and Kolmogorov, 2004]. The free parameters

were assigned the values of λ = 0.5 and β = 16 obtained by 2-fold cross-validation on a

non-overlapping set of images.

Applying the CRF on our test images results in an improvement of roughly 1% in

total classification accuracy, for a combined score of 80.5% (see Fig. 5.5-(b)). But more

importantly, in practice, the way the CRF is setup encourages continuity, crossing through

X-junctions, and discourages T-junctions as shown in Fig. 5.2. Since shadows are usually

signaled by the presence of X-junctions and the absence of T-junctions [Sinha and Adelson,

1993], this reduces the number of false positives.
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(a) Input (b) Local classifier (c) Shadow contours

(d) Ground likelihood [Hoiem et al.,
2007]

(e) Combining (c) and (d)

Figure 5.3: Incorporating scene layout for detecting cast shadows on the ground. Applying our
shadow detector on a complex input image (a) yields false detections in the vertical structures
because of complex effects like occlusion boundaries, self-shadowing, etc. (b) & (c). Recent
work in scene layout extraction from single images [Hoiem et al., 2007] can be used to estimate
the location of the ground pixels (d). We show how we can combine scene layout information
with our shadow contour classifier to automatically detect cast shadows on the ground (e).

5.5 Incorporating Scene Layout

Until now, we have been considering the problem of detecting cast shadow boundaries on

the ground with a classifier trained on local features and a CRF formulation which defines

pairwise constraints across neighboring boundaries. While both approaches provide good

classification accuracy, we show in Fig. 5.3 that applying them on the entire image generates

false positives in the vertical structures of the scene. Reflections, transparency, occlusion

boundaries, self-shadowing, and complex geometry [Sinha and Adelson, 1993] are common

phenomena that can confuse our classifier. This results in image-wide classification results

which might not be useful for complex scenes (see Figs 5.3b-(c)).

The advent of recent approaches which estimate a qualitative layout of the scene from

a single image (e.g., splitting an image into three main geometric classes: the sky, vertical
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surfaces, and ground [Hoiem et al., 2007]) may provide explicit knowledge of where the

ground is. Since such a scene layout estimator is specifically trained on general features of

the scene and not the shadows, combining its output with our shadow detector should reduce

the number of false positive (non-shadow) detections outside the ground. We now consider

how such high-level scene reasoning can be used within our shadow detection framework.

5.5.1 Combining Scene Layout With Local Shadow Cues

To combine the scene layout probabilities with our local shadow classifier, we can marginal-

ize the probability of shadows over the three geometric classes sky S, ground G, and vertical

surfaces V:

Pcomb(yi|x) =
�

c∈{G,V,S}

P (yi|ci,xi)P (ci|xi) , (5.4)

where ci is the geometric class label of boundary i, P (yi|ci,xi) is given by our local shadow

classifier, and P (ci|xi) by the scene layout classifier (we use the geometric context algo-

rithm [Hoiem et al., 2007]). Unfortunately, this approach does not actually improve classi-

fication results because while it gets rid of false positives in the vertical structures, it also

loses true positives on the ground along the way. This is due to the fact that shadow like-

lihoods get down-weighted by low-confidence ground likelihoods. Thus, we need a different

approach.

5.5.2 Combining Scene Layout With Shadow Contours

Intuitively, we would like to penalize an assignment to the shadow class when the probability

of being on the ground is low. When it is high, however, we should let the shadow classifier

decide. We can encode this behavior simply by modifying the unary potentials φi(yi) from

(5.2) in our CRF formulation:

φi(yi) =






− log P (ci = G|xi)− log P (yi = 1|xi) if yi = 1 (shadow)

(1− P (ci = G|xi))− log P (yi = 0|xi) if yi = 0 (non-shadow) .
(5.5)

Here, λ = 0.5 and β = 16 was found by cross-validation. They yield a good compromise

between local evidence and smoothness constraints.
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This approach effectively combines local and mid-level shadow cues with high-level

scene interpretation results, and yields an overall classification accuracy of 84.8% on our

test set (see Fig. 5.5) without adding to the complexity of training our model. Observe

how the results are significantly improved in Fig. 5.3e as compared to the other scenarios

in Fig. 5.3b-(c).

5.6 Experimental Results

We evaluate our approach on 135 consumer photographs downloaded from LabelMe [Russell

et al., 2008], Flickr, and images from the dataset introduced in [Zhu et al., 2010]. In all

cases, we have no control over the acquisition settings, so images contain the typical sources

of distortions [Chakrabarti et al., 2009] such as jpeg compression, sharpening, sampling due

to resizing, non-linear response functions, image noise, etc. We first compare our method

with the current state of the art [Finlayson et al., 2009], then show shadow detection and

removal results on several challenging images.

5.6.1 Comparison With Previous Work

The current state of the art in color-based shadow detection and removal in single images

is the approach of Finlayson et al. [Finlayson et al., 2009], which relies on a physics-based

model of shadows to compute an illumination-invariant image. Shadows are then obtained

by finding edges in the original image which are not present in the invariant image. The

first row of Fig. 5.4 shows that our implementation of their approach successfully recovers a

shadow-free invariant image from the same high-quality, linear image used in their original

paper [Finlayson et al., 2002]. Note that our approach is able to extract similar results

to theirs (Fig. 5.4d). When applying their method on an image from our set, the perfor-

mance degrades because the invariant still contains strong traces of shadows (second row

of Fig. 5.4).

This is also demonstrated in the quantitative comparison shown in Fig. 5.5-(a), which

compares our approach with the original shadow detection technique of [Finlayson et al.,

2004], and the most recent version [Finlayson et al., 2009]. Note here that we cannot
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(a) Original image (b) Invariant img.
[Finlayson et al., 2009]

(c) Result with
[Finlayson et al., 2009]

(d) Our result

Figure 5.4: Comparison with the shadow detection method of [Finlayson et al., 2009]. First row :
Using a high-quality linear image as input (a), our implementation of their method successfully
recovers a shadow-free 1-D invariant image (b), which is used to detect shadow edges (c).
Second row : However, if the input is not linear and corrupted by noise or jpeg compression
typical of consumer photographs, the 1-D invariant image still contains some shadows (b),
making it hard to tell them apart from other types of edges (c). Our method detects shadows
both in high and low quality images (d).

generate an ROC curve with the results of our CRF formulation, since the output is binary,

so we plot a point at its classification accuracy. To obtain ROC scores for the competing

methods, we first estimate the invariant image, and compute the difference of gradient

magnitudes between the original and the invariant images. For fairness, we evaluate this

score only at the strong boundaries in the image. The ROC curve shows that our results

greatly outperform the previous work. This is most likely due to the use of features which

are robust to artifacts common in consumer photographs.

5.6.2 Ground Shadow Detection and Removal

We summarize the quantitative results obtained by the technique presented in this chapter

on our test set in Fig. 5.5-(b), which shows results obtained on the entire image by the local

classifier and the boundary CRF (Secs 5.3 and 5.4), and those obtained by combining the

geometric context ground likelihoods (Sec. 5.5). The best performance (84.8% accuracy) is

obtained by our CRF formulation which combines the scene layout results with our local
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(a) ROC curve comparison with previous work

Shadows Non-shadows Combined
Local
CRF

CRF + scene layout

78.3% 81.0% 79.7%
78.7% 82.3% 80.5%

84.8%96.4%73.1%

(b) Quantitative ground shadow classification results

Figure 5.5: Quantitative results. We compare our local classifier with the methods proposed by
Finlayson et al. [Finlayson et al., 2004; Finlayson et al., 2009] (a). The table in (b) show the
results obtained with the approaches presented in Secs 5.3 (local), 5.4 (CRF) and 5.5 (CRF +
scene layout). Integrating scene layout information from [Hoiem et al., 2007] results in ground
shadow classification accuracy of 84.8%.

shadow boundary classifier.

Fig. 5.7 shows ground shadow detection results on several images from our dataset. It

demonstrates that our method works on challenging outdoor images with varying illumina-

tion conditions, ground colors and textures, and clutter.

The typical errors made by our method are shown in Fig. 5.6. It may fail to detect

shadows cast by thin structures like the lamppost in Fig. 5.6a. Another failure case arises

when the ground has a color that is vastly different from all the other images in the training

set, as in Fig. 5.6b. This can likely be improved by increasing the size and diversity of the

training set. A third failure mode is due to errors in the estimated scene layout probabilities

as in Fig. 5.6c.

Once we have detected shadow boundaries, we can, as an application, use the technique

introduced in [Finlayson et al., 2002] to remove them and recover a shadow-free image.

There have been improvements proposed since then [Fredembach and Finlayson, 2006], but

we chose the original method for its simplicity. This approach involves setting the derivatives

of the image at shadow boundaries to zero, and reintegrating the result by solving the

Poisson equation with Neumann boundary conditions. Fig. 5.8 shows shadow-free images

that were computed using the boundaries detected by our method.
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(a) Very thin and blurry shadows (b) Unusual ground color

(c) Ground estimation errors

Figure 5.6: Failure cases. The downside of using boundaries from an over-segmentation is the
trade-off between spatial support obtained from longer boundaries and the size of shadow regions
that can be detected. In our current setting, it may miss thin and blurry edges, like the lamppost
in (a). Our approach is also sensitive to vastly different ground colors, which have never been
seen by the classifier (b). Although our ratio-based features are somewhat color independent,
they are not able to compensate for such drastic differences. Increasing the variety of ground
colors in the training set would likely improve performance on such extreme cases. (c) Errors in
the scene layout probabilities can lead to false positives.

5.7 Discussion

Before seeing how this novel knowledge about shadows in single images can help us reason

about the illumination conditions, we first discuss a few caveats of detecting shadows using

our approach. In this section, we consider the challenge of detecting non-ground shadow

boundaries, achieving robustness to varying camera parameters, and the case for detecting

shadow boundaries as opposed to regions.

5.7.1 Non-ground Shadow Boundaries

The insight behind our approach is to learn the statistical distribution of the appearance of

shadow boundaries from data. Our assumption is that the appearance of shadows on the

ground lives in a restricted space of color ratios, which is compact enough to be learned
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Figure 5.7: Ground shadow detection results on images downloaded from the web (Flickr,
LabelMe [Russell et al., 2008]), and the dataset from [Zhu et al., 2010]. First and third columns:
input images; second and fourth columns: detected ground shadows. Our approach successfully
detects ground shadows in many challenging, real-world conditions.
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Figure 5.8: Automatic ground shadow removal from a single image. We apply the original
gradient reintegration method of [Finlayson et al., 2002] on the boundaries detected by our
method. The shadows are either completely removed or greatly attenuated, with few visual
artifacts.

by a classifier. Because our approach relies on such an assumption, it is likely to fail when

presented with an image completely different from the training set (such an example is

shown in Fig. 5.6b). Typically, such cases can be handled by adding more training data.

One interesting future research direction is to explore the problem of detecting shadows

everywhere in an image, not just on the ground. This task is very challenging because there

are several other types of boundaries which might confuse such a local classifier: material

changes, occlusion boundaries, and geometry (normal) discontinuities all create strong edges

in the scene. Future work in this area will likely have to jointly consider all these types of

edges, and reason about them all simultaneously. As a starting point, one could start by

trying to integrate a shadow-specific detector, such as the one presented in this chapter, to

an occlusion boundary classifier, such as the one in [Hoiem et al., 2010].
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5.7.2 Robustness to Camera Parameters

The appearance of an image depends strongly on the parameters of the camera that is cap-

turing it. Manual and automatic settings such as the non-linear response function [Gross-

berg and Nayar, 2004; Lin et al., 2004; Mitsunaga and Nayar, 1999], white balance [Hsu et

al., 2008; Kawakami et al., 2005], gain, ISO setting [Hasinoff et al., 2010], exposure [Hasinoff

and Kutulakos, 2008], etc. are all responsible for determining the intensity of the pixels in

the resulting image. Our approach already demonstrates robustness to changes in some of

these camera parameters—the images in our training and test sets were taken from inde-

pendent sources, such as LabelMe [Russell et al., 2008], Flickr, and the dataset of Zhu et

al. [2010], and we had no control over the capture conditions. Unfortunately, given the sheer

number of camera models and their capacity to adapt to varying illumination conditions, it

is very challenging to capture the space of all possible camera parameters [Grossberg and

Nayar, 2004; Chakrabarti et al., 2009].

Shadow detection, as with most computer vision tasks, would certainly benefit from

canceling the effects of camera parameters and normalizing all the images to a common

color reference frame. Unfortunately, estimating these parameters from a single image is

very much under-constrained, and while ideas have already been proposed [Lin et al., 2004;

Dale et al., 2009], this largely remains an unsolved problem in vision.

One key observation to note here is that while they can vary across images, most of these

parameters stay constant over an image (one notable exception being vignetting [Zheng et

al., 2006]). In addition, shadows should share similar characteristics in a given image: the

sun and the sky colors also remain constant (only their respective ratios change because

of occlusion). Therefore, one interesting future research direction would be to study what

properties do shadow boundaries have in common within a single image. What makes

a shadow boundary similar to other shadow boundaries, but different than, say, material

boundaries? Answering this question would provide robustness to varying camera parame-

ters, without having to explicitly recover them.
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(a) (b)

Figure 5.9: Estimating sunny regions on the ground. From our detected shadow boundaries (a),
we generate a map of the ground region that is in sunlight by reintegrating the shadow boundaries
only (b).

5.7.3 Shadow Boundaries vs Regions

In the literature, researchers have proposed ways to detect both shadow boundaries [Barnard

and Finlayson, 2000; Figov et al., 2004; Finlayson et al., 2002] as well as regions [Zhu et

al., 2010; Tian et al., 2009; Shor and Lischinski, 2008]. While neither has shown tremen-

dous advantages over the other, our decision of focusing on boundaries has its roots in

psycho-physical studies which have shown that humans are more sensitive to variations in

luminance (i.e., contrast) than to absolute values [Campbell and Robson, 1968]. There-

fore, it is perceptually more important to interpret edges as opposed to regions of similar

intensities, and our work provides a computational way of doing so.

On the other hand, the spatial support obtained by computing shadow regions provide

advantages over their boundaries only. For instance, consistency checks can be performed

on an entire region (i.e., an entire shadow region must be darker than its surroundings).

In addition, while retrieving boundaries from regions is an easy task, the opposite problem

is significantly more challenging. However, we believe there is still hope. Fig. 5.9 shows a

preliminary result of using the shadow boundaries detected by our approach to obtain an

estimate of the ground region that is lit by sunlight. The region is obtained by reintegrat-

ing [Finlayson et al., 2002] the ground shadow boundaries only.

In addition, the definition of a cast shadow region is sometimes ill-defined: if a large
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building casts a shadow on the ground as in Fig. 5.6c, where does the shadow region begin

and end? Should it encompass the entire building facade in the shade, or should it stop at

its boundary with the ground? High-level scene reasoning might be necessary to obtain a

coherent shadow segmentation of the image.

5.8 Conclusion

While our technique succeeds in detecting ground shadows with good accuracy, shadows

that are not on the ground exhibit significantly larger appearance variations, so detecting

them will be challenging. The method introduced in this chapter can directly be used as an

off-the-shelf, stand-alone shadow detector1, but we believe it can also be tightly integrated

into higher level scene understanding tasks. In the next chapter, we will show how this

detector, in combination with others, is used to estimate our natural illumination model

from Sec. 2.4 from a single image.

1Data and code are available at http://graphics.cs.cmu.edu/projects/shadows.
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Chapter 6

Estimating Illumination

in Single Images

Of all creatures in this visible world, light is

the most glorious; of all light, the light of

the sun without compare excels the rest.

William Burnall (1617–1679)

In this chapter, we propose a method for estimating natural illumination from a single

outdoor image, that will rely on the shadows detected in the preceding chapter, but on other

scene cues as well. To be sure, this is an extremely difficult task, even for humans [Cavanagh,

2005]. In fact, the problem is severely under-constrained in the general case—while some

images might have enough information for a reasonably precise estimate, others will be

completely uninformative. Therefore, we will take a probabilistic approach, estimating

illumination parameters using as much information as may be available in a given image

and producing the maximum likelihood solution.

6.1 Introduction

What information about illumination is available in a single image? Unfortunately, there

is no simple answer. When we humans perform this task, we look at different parts of

the image for clues. The appearance of the sky can tell us if it is clear or overcast (i.e.,
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(a) (b)

Figure 6.1: Example of the results obtained in this chapter. From a single input image (a), we
estimate the probability of the relative sun position P (θs,∆φs) with respect to the camera (b).
Throughout the paper, the sun position probability is displayed as if the viewer is looking straight
up (center point is zenith), with the camera field of view drawn at the bottom. Probabilities
are represented with a color scale that vary from blue (low probability) to red (high probability).
In this example, the maximum likelihood sun position (yellow circle) is estimated to be at the
back-left of the camera. We sometimes illustrate the results by inserting a virtual sun dial (red
stick in (a)) and drawing its shadow corresponding to the most likely sun position.

is the sun visible?). On a clear day, the sky might give some weak indication about the

sun position. The presence of shadows on the ground plane can, again, inform us about

sun visibility, while the direction of shadows cast by vertical structures can tell us about

sun direction. The relative shading of surfaces at differing orientations (e.g., two building

facades at a right angle), can also give a rough indication of sun direction, and so can the

shading effects on convex objects populating the scene (e.g., pedestrians, cars, poles, etc.).

Our approach is based on implementing some of these intuitions into a set of illumi-

nation cues. Of course, each one of these cues by itself is rather weak and unreliable.

The sky might be completely saturated, or might not even be present in the image. The

ground might not be visible, be barren of any shadow-casting structures, or be deprived

of any recognizable objects. Shading information might, likewise, be inaccessible due to

lack of appropriate surfaces or large differences between surface reflectances. Furthermore,

computing these cues will inevitably lead to more noise and error (misdetected shadows,

poor segmentation, incorrect camera parameters, etc). Hence, in this work, we combine

the information obtained from these weak cues together, while applying a data-driven prior
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computed over a set of 6 million Internet photographs.

The result sections (Secs 6.2.2 and 6.5) will show that the sun visibility can be estimated

with 83.5% accuracy, and the combined estimate is able to successfully locate the sun within

an octant (quadrant) for 40% (55%) of the real-world images in our very challenging test set,

and as such outperforms any of the cues taken independently. Fig. 6.1 shows an example

taken from our test set. While this goes to show how hard the problem of illumination

from single images truly is, we believe this can still be a useful result for a number of

applications1. For example, just knowing that the sun is somewhere on your left might be

enough for a point-and-shoot camera to automatically adjust its parameters, or for a car

detector to be expecting cars with shadows on the right.

6.2 Is the sun visible or not?

Using the above representation, we estimate P (I|I), the probability distribution over the

illumination parameters I, given a single image I. Because our representation defines the

sun position S only if it is visible, we propose to first estimate the sun visibility V :

P (I|I) = P (S, V |I) = P (S|V, I)P (V |I) . (6.1)

In this section, we present how we estimate the distribution over the sun visibility variable

given the image P (V |I). The remainder of the chapter will then focus on how we estimate

P (S|V = 1, I), that is, the probability distribution over the sun position if it was determined

to be visible. We propose a supervised learning approach to learn P (V |I), where a classifier

is trained on features computed on a manually-labelled dataset of images. We first describe

the features that were developed for this task, then provide details on the classifier used.

6.2.1 Image cues for predicting the sun visibility

When the sun is shining on the scene, it usually creates noticeable effects in the image.

Consider for a moment the first and last images of Fig. 6.2. When the sun is visible

(Fig. 6.2a), it creates hard cast shadow boundaries, bright and dark areas corresponding to
1Dataset and code available at http://graphics.cs.cmu.edu/projects/outdoorIllumination.
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(a) P (V |I) = 0.95 (b) P (V |I) = 0.75 (c) P (V |I) = 0.50 (d) P (V |I) = 0.25 (e) P (V |I) = 0.05

Figure 6.2: Results of applying the sun visibility classifier on single images to estimate P (V |I),
sorted by decreasing order of probability.

sunlit and shadowed regions, highly-saturated colors, and clear skies. On the other hand,

when the sun is occluded (Fig. 6.2e), the colors are dull, the sky is gray or saturated, and

there are no visible shadows.

We devise sun visibility features based on these intuitions. We first split the image into

three main geometric regions: the ground G, the sky S, and the vertical surfaces V using the

geometric context classifier of Hoiem et al. [2007]. We use these regions when computing

the following set of features:

Bright and dark regions: We compute the mean intensity of the brightest of two clusters

on the ground G, where the clustering is performed with k-means with k = 2; The

same is done for the vertical surfaces V;

Saturated colors: We compute 4-dimensional marginal histograms of the scene (G∪V) in

the saturation and value color channels; To add robustness to variations in exposure,

white balance, and gamma response functions across cameras, we follow [Dale et al.,

2009] and also compute a 4-dimensional histogram of the scene in the normalized

log-RGB space;

Sky: If the sky is visible, we compute its average color in RGB;

Contrast: We use the contrast measure proposed in [Ke et al., 2006] (a measure of the

histogram spread), computed over the scene pixels only (G ∪ V);

Shadows: We apply the shadow detection method of Ch. 5, and count the fraction of pixels

that belong to the ground G and scene (G ∪ V) and are labelled as shadows.
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Not visible Visible
Not visible 87.6% 12.4%

Visible 20.5% 79.5%

Table 6.1: Confusion matrix for the sun visibility classifier. Overall, the class-normalized classi-
fication accuracy is 83.5%.

These features are concatenated in a 20-dimensional vector which is used in the learning

framework described next.

6.2.2 Sun visibility classifier

We employ a classical supervised learning formulation, in which the image features are first

pre-computed on a set of manually-labelled training images, and then fed to a classifier.

We now provide more details on the learning setup used to predict whether or not the sun

is visible in an image.

We selected a random subset of outdoor images from the LabelMe dataset [Russell et al.,

2008], split into 965 images used for training, and 425 for testing. Because LabelMe images

taken from the same folders are likely to come from the same location or taken by the same

camera, the training and test sets were carefully split to avoid folder overlap. Treating V

as a binary variable, we then manually labelled each image with either V = 1 if the sun is

shining on the scene, or V = 0 otherwise. Notice that this binary representation of V is only

a coarse approximation of the physical phenomenon: in reality, the sun may have fractional

visibility (e.g., due to partially-occluding clouds, for example). In practice, however, we find

that it is extremely difficult, even for humans, to reliably estimate a continuous value for

the sun visibility from a single image. Additionally, precisely measuring this value requires

expensive equipment that is not available in databases of existing images.

We then train a binary, linear SVM classifier using this training dataset, and evaluate its

performance on the test set. We use the libsvm package [Chang and Lin, 2001], and convert

the SVM scores to probabilities using the sigmoid fitting method of Platt [1999]. Overall,

we have found this method to work quite well on a variety of images, with a resulting class-

normalized test classification accuracy obtained is 83.5%, and the full confusion matrix is

shown in Table 6.1. Qualitative results are also shown in Fig. 6.2.
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6.3 Image cues for predicting the sun direction

Now that we have a classifier that determines whether or not the sun is visible in the

image P (V |I), we consider how we can estimate the remaining factor in our representation

(6.1): the distribution over sun positions S given that the sun is visible P (S|V = 1, I).

6.3 Image cues for predicting the sun direction

When the sun is visible, its position affects different parts of the scene in very different ways.

In our approach, information about the sun position is captured from four major parts of

the image—the sky pixels S, the ground pixels G, the vertical surface pixels V and the pixels

belonging to pedestrians P—via four cues. To partition the image in this way, we use the

approach of Hoiem et al. [2007], which returns a pixel-wise labeling of the image, together

with the pedestrian detector of Felzenszwalb et al. [2010] which returns the bounding boxes

of potential pedestrian locations. Both these detectors also include a measure of confidence

of their respective outputs.

As introduced in Sec. 2.4, we represent the sun position S = {θs,∆φs} using two

parameters: θs is the sun zenith angle, and ∆φs the sun azimuth angle with respect to the

camera. This section describes how we compute distributions over these parameters given

the sky, the shadows, the shading on the vertical surfaces, and the detected pedestrians

individually. Afterwards, in Sec. 8.5, we will see how to combine these cues to estimate the

sun position given the entire image.

6.3.1 Sky

In order to estimate the sun position angles from the sky, we take inspiration from the

insight we gained by looking at image sequences (Ch. 6), and see how we can use the same

physically-based model of the sky [Perez et al., 1993] in the context of a single image. If

we, for now, assume that the sky is completely clear, our solution is then to discretize the

parameter space and try to fit the sky model for each parameter setting. For this, we assume

that the sky pixel intensities si ∈ S are conditionally independent given the sun position,

and are distributed according to the following generative model, function of the Perez sky
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(a) Image and
estimated horizon

(b) Sky mask
[Hoiem et al., 2007]

(c) P (θs, ∆φs|S) (d) Inserted sun dial

Figure 6.3: Illumination cue from the sky only. Starting from the input image (a), we compute
the sky mask (b) using [Hoiem et al., 2007]. The resulting sky pixels are then used to estimate
P (θs,∆φs|S) (c). The maximum likelihood sun position is shown with a yellow circle. We use
this position to artificially synthesize a sun dial in the scene (d).

model g(·) [Perez et al., 1993], the image coordinates (ui, vi) of si, and the focal length fc:

si ∼ N (k g(θs,∆φs, ui, vi, fc), σ2
s) , (6.2)

where N (µ,σ2) is the normal distribution with mean µ and variance σ2; and k is an un-

known scale factor (see Ch. 3 for details). We obtain the distribution over sun positions by

computing

P (θs,∆φs|S) ∝ exp




�

si∈S

−(si − k g(θs,∆φs, ...))2

2σ2
s



 (6.3)

for each bin in the discrete (θs,∆φs) space, and normalizing appropriately. Note that since k

in (6.2) and (6.3) is unknown, we first optimize for k for each sun position bin independently

using a non-linear least-squares optimization scheme similar to the one introduced in (3.20)

from Sec. 3.6, but optimizing over k instead of x.

As it is indicated in (6.2), the sky model g(·) also requires knowledge of two important

camera parameters: its zenith angle θc (needed to compute θs and its focal length fc. If we

assume that fc is available via the EXIF tag of the photograph, then θc can be computed
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6.3 Image cues for predicting the sun direction

by finding the horizon line vh in the image (assuming the camera has no roll angle). We

circumvent the hard problem of horizon line estimation by making a simple approximation:

select the row midway between the lowest sky pixel and the highest ground pixel as horizon.

Note that all the results shown in this chapter have been obtained using this approximation,

which we have found to work quite well in practice. Fig. 6.3 demonstrates the distribution

over sun positions obtained using the sky cue.

So far, we have assumed that the sky is completely clear, which might not always be

the case! Even if the sun is shining on the scene, the sky might be covered with clouds,

thus rendering the physical model g(·) useless. To deal with this problem, we classify the

sky into one of three categories: clear, partially cloudy, or completely overcast. For this,

we build a small database of representative skies for each category from images downloaded

from Flickr, and compute the illumination context feature [Lalonde et al., 2007] on each.

We then find the k nearest neighbors in the database, and assign the most common label

(we use k = 5). If the sky is found to be overcast, the sun position distribution P (θs,∆φs|S)

is left uniform. For partly cloudy scenes, we remove the clouds with a simple binary color

segmentation of the sky pixels (keeping the cluster that is closer to blue) and fit the sky

model described earlier only to the clear portion of the sky.

6.3.2 Ground shadows cast by vertical objects

Shadows cast on the ground by vertical structures can essentially serve as ”sun dials”

and are often used by humans to determine the sun direction [Koenderink et al., 2004].

Unfortunately, it is extremely hard to determine if a particular shadow was cast by a

vertical object. Luckily, it turns out that due to the statistics of the world (gravity makes a

many things stand-up straight), the majority of long shadows should be, in fact, produced

by vertical things. Therefore, if we can detect a set of “long and strong” shadow lines

(edges), we can use them in a probabilistic sense to determine a likely sun azimuth (up

to the directional ambiguity). While shadows have also been used to estimate the sun

direction with user input [Kim and Hong, 2005] or in webcams [Junejo and Foroosh, 2008],

no technique so far has proposed to do so automatically from a single image.

We use the technique presented in Ch. 5 to detect the ground shadow boundaries in the
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6.3 Image cues for predicting the sun direction

image. From the resulting boundaries, we detect the long shadow lines on the ground li ∈ G

by applying the line detection algorithm of [Košecká and Zhang, 2002]. Let us consider one

shadow line li. If its orientation on the ground plane is denoted αi, then the angle between

the shadow line orientation and the sun azimuth angle is

∠(αi, φs) = min {∠(αi, φs),∠(αi + 180◦, φs)} , (6.4)

with the 180◦ ambiguity due to our assumption that we do not know which object is casting

this shadow. Here where ∠(·, ·) denotes the angular difference. We obtain a non-parametric

estimate for P (φs|αi) by detecting long lines on the ground truth shadow boundaries in

74 images from our shadow boundary dataset [Lalonde et al., 2010b], in which we have

manually labeled the sun azimuth. The distribution obtained from the resulting 1,700

shadow lines found is shown in Fig. 6.4a. The strongest peak, at ∠(αi, φs) < 5◦, confirms

our intuition that long shadow lines align with the sun direction. Another, smaller peak

seems to rise at ∠(αi, φs) > 85◦. This is explained by the roof lines of buildings, quite

common in our database, which cast shadows that are perpendicular to the sun direction

(Fig. 6.4b).

All the shadow lines are combined by making each one vote for its preferred sun direc-

tion:

P (∆φs|G) ∝
�

li∈G
P (∆φs|αi) . (6.5)

Of course, computing the shadow line orientation αi on the ground requires knowledge of

the zenith angle θc and focal length fc of the camera. For this we use the estimates obtained

in the previous section. Fig. 6.5 illustrates the results obtained using the shadow cue only.

6.3.3 Shading on vertical surfaces

If the rough geometric structure of the scene is known, then analyzing the shading on the

main surfaces can often provide an estimate for the possible sun positions. For example, a

brightly lit surface indicates that the sun may be pointing in the direction of its normal, or at

least in the vicinity. Of course, this reasoning also assumes that the albedos of the surfaces

are either known or equal, neither of which is true. However, we have experimentally found
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Figure 6.4: How do shadow lines predict the sun azimuth? We use our shadow boundary
dataset [Lalonde et al., 2010b] to compute a non-parametric estimate for P (∆φs|∠(αi, φs)) (a).
A total of 1,700 shadow lines taken from 74 images were used to estimate the distribution.
(b) Example image from the shadow dataset which contains shadows both aligned with and
perpendicular to the sun (lamppost and roof line respectively). For visualization, the ground
truth sun direction is indicated by the red stick and its shadow.

that, within a given image, the albedos of the major vertical surfaces are often relatively

similar (e.g., different sides of the same house, or similar houses on the same street), while

the ground is quite different. Therefore, we use the three coarse vertical surface orientations

(front, left-facing, and right-facing) computed by Hoiem et al. [2007] and attempt to estimate

the azimuth direction only.

Intuitively, we assume that a surface wi ∈ V should predict that the sun lies in front

of it if it is bright. On the contrary, the sun should be behind it if the surface is dark.

We discover the mapping between the average brightness of the surface and the relative

sun position with respect to the surface normal orientation βi by manually labeling the sun

azimuth in the Geometric Context dataset [Hoiem et al., 2007]. In particular, we learn the

relationship between surface brightness bi and whether the sun is in front of or behind the

surface, i.e., whether ∠(βi,∆φs) is less, or greater than 90◦. This is done by computing the

average brightness of all the vertical surfaces in the dataset, and applying logistic regression

to learn P (∠(βi,∆φs|bi) < 90◦). This effectively models the probability in the following

fashion:

P (∠(βi,∆φs) < 90◦|bi) =
1

1 + e−(x1+x2bi)
, (6.6)
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(a) Image and
estimated horizon

(b) Ground [Hoiem et al., 2007]
and shadows boundaries

(c) P (θs, ∆φs|G) (d) Inserted sun dial

Figure 6.5: Illumination cue from the shadows only. Starting from the input image (a), we
compute the ground mask using [Hoiem et al., 2007], estimate shadow boundaries using [Lalonde
et al., 2010a] (shown in red), and finally extract long lines [Košecká and Zhang, 2002] (shown in
blue) (b). The long shadow lines are used to estimate P (θs,∆φs|G) (c). Note that shadow lines
alone can only predict the sun relative azimuth angle up to a 180◦ ambiguity. For visualization,
the two most likely sun positions (shown with yellow circles) are used to artificially synthesize a
sun dial in the scene (d).

where, after learning, x1 = −3.35 and x2 = 5.97. Fig. 6.6 shows the computed data points

and fitted model obtained with this method. As expected, a bright surface (high bi) predicts

that the sun is more likely to be in front of it than behind it, and vice-versa for dark surfaces

(low bi). In practice, even if the sun is shining on a surface, a large portion of it might be

in shadows because of occlusions. Therefore, bi is set to be the average brightness of the

brightest cluster, computed using k-means with k = 2.

To model the distribution of the sun given a vertical surface of orientation βi, we use:

P (∆φs|wi) ∼






N (βi, σ2
w) if (6.6) ≥ 0.5

N (βi + 180◦, σ2
w) if (6.6) < 0.5

, (6.7)

where σ2
w is such that the fraction of the mass of the gaussian N that lies in front of (behind)

the surface corresponds to P (∠(βi,∆φs) < 90◦|bi) if it is greater (less) than 0.5. Note that

βi ∈ {−90◦, 90◦, 180◦} since we assume only 3 coarse surface orientations. We combine each
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Figure 6.6: How do the vertical surfaces predict the sun? From the Geometric Context
dataset [Hoiem et al., 2007], the mapping between the probability of the sun being in front
of a surface and its average brightness bi is learned using logistic regression. Bright surfaces
(high bi) predict that the sun is in front of them (high probability), and vice-versa for dark
surfaces (low bi).

surface by making each one vote for its preferred sun direction:

P (∆φs|V) ∝
�

wi∈V
P (∆φs|wi) . (6.8)

Fig. 6.7 shows the sun azimuth prediction results obtained using the shading on vertical

surfaces only. We find that this cue can often help resolve the ambiguity arising with shadow

lines.

6.3.4 Pedestrians

When convex objects are present in the image, their appearance can also be used to predict

where the sun is [Langer and Büelthoff, 2001]. One notable example of this idea is the

work of Bitouk et al. [2008] which uses faces to recover illumination in a face swapping

application. However, front-looking faces are rarely of sufficient resolution in the type of
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(a) Image and
estimated horizon

(b) Vertical surfaces
[Hoiem et al., 2007]

(c) P (θs, ∆φs|V) (d) Inserted sun dial

Figure 6.7: Illumination cue from the vertical surfaces only. Starting from the input image (a),
we compute the vertical surfaces mask (b) using [Hoiem et al., 2007] (blue = facing left, green
= facing right, red = facing forward). The distribution of pixel intensities on each of these
surfaces are then used to estimate P (θs,∆φs|V) (c). Note that in our work, vertical surfaces
cannot predict the sun zenith angle θs. In these examples, the sun zenith is set to 45◦ for
visualization. We then find the most likely sun position (shown with a yellow circle), which is
used to artificially synthesize a sun dial in the scene (d).

images we are considering (they were using mostly high resolution closeup portraits), but

entire people more often are. As shown in Fig. 6.8, when shone upon by the sun, pedestrians

also exhibit strong appearance characteristics that depend on the sun position: shadows

are cast at the feet, a horizontal intensity gradient exists on the persons body, the wrinkles

in the clothing are highlighted, etc. It is easy for us to say that one person is lit from the

left (Fig. 6.8a), or from the right (Fig. 6.8b).

Because several applications require detecting pedestrians in an image (surveillance or

safety applications in particular), they are a class of objects that has received significant

attention in the literature [Dalal and Triggs, 2005; Dollár et al., 2009; Park et al., 2010;

Felzenszwalb et al., 2010], and as such many efficient detectors exist. In this section, we

present a novel approach to estimate the azimuth angle of the sun with respect to the camera

given detected pedestrian bounding boxes in an image. In our work, the pedestrians are

detected using [Felzenszwalb et al., 2010] which uses the standard Histogram of Gradients

(HOG) features [Dalal and Triggs, 2005] for detection. The detector is operated at a high-
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(a) (b)

Figure 6.8: Looking at these pedestrians, it is easy to say that (a) is lit from the left, and (b)
from the right. In this work, we train a classifier that predicts the sun direction based on the
appearance of pedestrians.

precision, low-recall setting to ensure that only very confident detections are used.

We employ a supervised learning approach to the problem of predicting the sun loca-

tion given the appearance of a pedestrian. In particular, a set of 2,000 random images were

selected from the LabelMe dataset [Russell et al., 2008], which contain the ground truth lo-

cation of pedestrians, and for which we also manually labelled the ground truth sun azimuth.

To make the problem more tractable, the space of sun azimuths ∆φs ∈ [−180◦, 180◦] is dis-

cretized into four bins of 90◦ intervals: [−180◦,−90◦], [−90◦, 0◦], and so forth. We then train

a multi-class SVM classifier which uses the same HOG features used for detection. However,

the difference now is that the classifier is conditioned on the presence of a pedestrian in the

bounding box, so it effectively learns different feature weights that capture effects only due

to illumination. In practice, the multi-class SVM is implemented as a set of four one-vs-all

binary SVM classifiers. The SVM training is done with the libsvm library [Chang and Lin,

2001], and the output of each is normalized via a non-linear least-squares sigmoid fitting

process [Platt, 1999] to obtain a probability for each class.

Of course, the illumination effects on pedestrians shown in Fig. 6.8 and captured by the

classifier only arise when a pedestrian is actually lit by the sun. However, since buildings

or scene structures frequently cast large shadows upon the ground, pedestrians may very

well be in the shade. To account for that, we train another binary SVM classifier to predict
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(a) Image (b) Detected pedestrians
[Felzenszwalb et al., 2010]

(c) P (θs, ∆φs|P) (d) Inserted sun dial

Figure 6.9: Illumination cue from the pedestrians only. Starting from the input image (a), we
detect pedestrians using the detector of Felzenszwalb et al. [2010] (b). Each of these detections
is used to estimated P (∆φs|P) (c) by running our pedestrian-based illumination predictor, and
combining all predictions via a voting framework. The most likely sun azimuth (shown with a
yellow circle) is used to artificially synthesize a sun dial in the scene (d). For display purposes,
the most likely sun zenith is set to be 45◦.

whether the pedestrian is in shadows or not. This binary classifier uses simple features

computed on the bounding box region, such as coarse 5-bin histograms in the HSV and

RGB colorspaces, and a histogram of oriented gradients within the entire bounding box

to capture contrast. This simple “sunlit pedestrian” classifier results in more than 82%

classification accuracy. Fig. 6.9 shows the sun azimuth estimation results obtained using

the automatically-detected sunlit pedestrians only.

As with the previous cues, we compute the probability P (∆φs|pi) of the sun azimuth

given a single pedestrian pi by making each one vote for its preferred sun direction:

P (∆φs|P) ∝
�

pi∈P
P (∆φs|pi) (6.9)
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6.4 Estimating the sun position

Now that we are equipped with several features that can be computed over an image, we

show how we combine them in order to get a more reliable estimate. Because each cue can

be very weak and might not even be available in any given image, we combine them in a

probabilistic framework that captures the uncertainty associated with each of them.

6.4.1 Cue combination

We are interested in estimating the distribution P (S|V = 1, I) over the sun position S =

{θs,∆φs} , given the entire image I and assuming the sun is visible (see Sec. 6.2). We saw

in the previous section that the image I is divided into features computed on the sky S,

the shadows on the ground G, the vertical surfaces V and pedestrians P, so we apply Bayes

rule and write

P (S|S,G,V,P) ∝ P (S,G,V,P|S)P (S) . (6.10)

We make the Naive Bayes assumption that the image pixels are conditionally independent

given the illumination conditions, and that the priors on each region of the image (P (S),

P (G), P (V), and P (P)) are uniform over their own respective domains. Applying Bayes

rule twice, we get

P (S|S,G,V,P) ∝ P (S|S)P (S|G)P (S|V)P (S|P)P (S) . (6.11)

The process of combining the cues according to (6.11) for the sun position is illustrated in

Fig. 6.10. We have presented how we compute the conditionals P (S|S), P (S|G), P (S|V),

and P (S|P) in Sec. 6.3.1, 6.3.2, 6.3.3 and 6.3.4 respectively. We now look at how we can

compute the prior P (S) on the sun position themselves.

6.4.2 Data-driven illumination prior

The prior P (S) = P (θs,∆φs) captures the typical sun positions in outdoor scenes. We now

proceed to show how we can compute it given a large dataset of consumer photographs.

The sun position (θs,∆φs) depends on the latitude L of the camera, its azimuth angle
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(a) Input image (b) P (θs, ∆φs|I)

(c) P (θs, ∆φs|S) (d) P (θs, ∆φs|G) (e) P (θs, ∆φs|V) (f) P (θs, ∆φs|P) (g) P (θs, ∆φs)

Figure 6.10: Combining illumination features computed from image (a) yields a more confident
final estimate (b). We show how (c) through (f) are estimated in Sec. 6.3, and how we
compute (g) in Sec. 6.4.2. To visualize the relative confidence between the different cues, all
probability maps in (c) through (g) are drawn on the same color scale.

φc, the date D and the time of day T expressed in the local timezone:

P (θs,∆φs) = P (f(L, D, T, φc)) , (6.12)

where f(·) is a non-linear function defined in [Reda and Andreas, 2005]. To estimate

(6.12), we can sample points from P (L, D, T, φc), and use f(·) to recover θs and ∆φs. But

estimating this distribution is not currently feasible since it requires images with known

camera orientations φc, which are not yet available in large quantities. On the other hand,

geo- and time-tagged images do exist, and are widely available on photo sharing websites

such as Flickr. The database of 6 million images from Hays and Efros [2008] is used to

compute the empirical distribution P (L, D, T ). We compute (6.12) by randomly sampling
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1 million points from the distribution P (L, D, T )P (φc), assuming P (φc) to be uniform in

the [−180◦, 180◦] interval. As a consequence, (6.12) is flat along the ∆φs dimension and is

marginalized.

Fig. 6.11c shows 4 estimates for P (θs), computed with slightly different variations. First,

a uniform sampling of locations on Earth and times of day is used as a baseline comparison.

The three other priors use data-driven information. Considering non-uniform date and

time distributions decrease the likelihood of having pictures with the sun taken close to the

horizon (θs close to 90◦). Interestingly, the red and green curve overlap almost perfectly,

which indicates that the three variables L, D, and T seem to be independent.

This database captures the distribution of where photographs are most likely to be

taken on the planet, which is indeed very different than considering each location on Earth

as equally likely (as shown in Figs 6.11a and 6.11b). We will show in the next section

that this distinction is critical to improve our estimation results. Finally, note that the

assumption of uniform camera azimuth is probably not true in practice since a basic rule of

thumb of good photography is to take a picture with the sun to the back. With the advent

of additional sensors such as compasses on digital cameras, this data will surely become

available in the near future.

6.5 Evaluation and results

We evaluate our technique in three different ways. First, we quantitatively evaluate our sun

estimation technique for both zenith and azimuth angles using images taken from calibrated

webcam sequences. Second, we show another quantitative evaluation this time for the sun

azimuth only, but performed on a dataset of manually labelled single images downloaded

from Internet. Finally, we also provide several qualitative results on single images that

demonstrate the performance of our approach. These results will show that, although far

from being perfect, our approach is still able to exploit visible illumination cues to reason

about the sun.
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Figure 6.11: Illumination priors (6.12) on the sun zenith angle. The Earth visualizations illustrate
the (a) uniform and (b) data-driven sampling over GPS locations that are compared in this
work. The data-driven prior is learned from a database of 6M images downloaded from Flickr.
(c) The priors are obtained by sampling 1 million points (1) uniformly across GPS locations
and time of day (cyan); from (2) the marginal latitude distribution P (L) only (blue); (3) the
product of independent marginals P (L)P (D)P (T ) obtained from data (green); and (4) the
joint P (L, D, T ), also obtained from data (red). The last two curves overlap, indicating that
the three variables L, D, and T indeed seem to be independent.

6.5.1 Quantitative evaluation using webcams

We select 984 images taken from 15 different time-lapse image sequences from our webcam

dataset [Lalonde et al., 2009c]. Each webcam is calibrated using the technique presented

in Ch. 3. Two example images from our dataset are shown in Fig. 6.12a and 6.12b. Our

algorithm is applied to every image from the sequences independently and the results are

compared against ground truth.
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Fig. 6.12 reports the cumulative histogram of errors in sun position estimation for

different scenarios: chance, making a constant prediction of θs = 0 (straight up), using only

the priors from Sec. 6.4.2 (we tested both the data-driven and Earth uniform priors), scene

cues only, and using our combined measure P (θs,∆φs|I) with both priors as well. Fig. 6.12

highlights the performance at errors of less than 22.5◦ (50% of images) and 45◦ (71% of

images), which correspond to accurately predicting the sun position within an octant (e.g.,

North vs. North-West), or a quadrant (e.g., North vs West) respectively.

The cues contribute to the end result differently for different scenes. For instance, the

sky in Fig. 6.12a is not informative, since it is small and the sun is always behind the

camera. It is more informative in Fig. 6.12b, as it occupies a larger area. Pedestrians may

appear in Fig. 6.12a and may be useful; however they are too small in Fig. 6.12b to be of

any use.

6.5.2 Quantitative azimuth evaluation on single images

When browsing popular publicly available webcam datasets [Lalonde et al., 2009b; Jacobs

et al., 2007a], one quickly realizes that the types of scenes captured in such sequences are

inherently different than those found in single images. Webcams are typically installed at

high vantage points, giving them a broad overlook on large-scale panoramas such as natural

or urban landscapes. On the other hand, single images are most often taken at human eye

level, where earthbound “objects” like cars, pedestrians, bushes or trees, occupy a much

larger fraction of the image.

In addition, the scene in a webcam sequence does not change over time (considering

static cameras only), it is the illumination conditions that vary. In single images, however,

both the scenes and illumination conditions differ from one image to the next. In this

section, we evaluate our method on a dataset of single images. Admittedly, this task is

much harder than the case of webcams, but we still expect to be able to extract meaningful

information across a wide variety of urban and natural scenes.

The main challenge we face here is the unavailability of ground truth sun positions in

single images: as of this day, there exist no such publically available dataset. Additionally,

as discussed in Sec. 6.4.2, while the GPS coordinates and time of capture of images are
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Figure 6.12: Quantitative evaluation using 984 images taken from 15 webcam sequences, cal-
ibrated using the method presented in Ch. 3. Two example images, from (a) Madrid and (b)
Vatican City, compare sun dials rendered using our estimated sun position (gray), and the ground
truth (red). (c) Cumulative sun position error (angle between estimate and ground truth direc-
tions) for different methods. Our result, which combines both the scene cues and the data-driven
illumination prior, outperforms the others. The data-driven prior surpasses the Earth-uniform
one (both alone and when combined with the scene cues), showing the importance of being
consistent with likely image locations. Picking a constant value of θs = 0 results in error of at
least 20◦.

commonly recorded by modern-day cameras, the camera azimuth angle φc is not. We

randomly selected 300 outdoor images from the LabelMe dataset [Russell et al., 2008] where

the sun appears to be shining on the scene (i.e., is not occluded by a cloud or very large
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building), and manually labelled the sun position in each one of them. The labeling was

done using an interactive graphical interface that resembled the “virtual sun dials” used

throughout this chapter (see Fig. 6.4b for example), where the task of the human labeler

was to orient the shadow so that it aligned with the perceived sun direction. If the labeler

judged that he or she cannot identify the sun direction with sufficient accuracy in a given

image, that image was discarded from the dataset. After the labeling process, 239 images

were retained for evaluation. In addition, we have found that reliably labeling the sun

zenith angle θs is very hard to do in the absence of objects of known heights [Koenderink

et al., 2004], so we ask the user to label the sun relative azimuth ∆φs only.

Fig. 6.13 reports the cumulative histograms of errors in sun azimuth estimation for each

of the cues independently (Figs 6.13a through 6.13d), and jointly (Fig. 6.13e). We also

report the percentage of images which have less than 22.5◦ and 45◦ errors, corresponding

to correctly estimating the sun azimuth within an octant and quadrant, respectively. Since

each cue is not available in all images, we also report the percentage of images for which

each cue is available.

Let us point out a few noteworthy observations. First, since the shadow lines alone

(Fig. 6.13b) have a 180◦ ambiguity in azimuth estimation, therefore we keep the minimum

error between each predicted (opposite) direction and the ground truth sun azimuth. This

explains why the minimum error is 90◦, and as such should not be compared directly with

the other cues. A second note is that the vertical surfaces (Fig. 6.13c) are available in

99% of the images in our dataset, which indicates that our dataset might be somewhat

biased towards urban environments, much like LabelMe currently is. Also observe how the

pedestrians are, independently, one of the best cues when available (Fig. 6.13d). Their

performance is the best of all cues. As a side note, we also observed that there is a direct

correlation between the number of pedestrians visible in the image and the quality of the

azimuth estimate: the more the better. For example, the mean error is 41◦ when there is

only one pedestrian, 22◦ with two, and 20◦ with three or more. Finally, the overall system

(Fig. 6.13e) estimates the sun azimuth angle within 22.5◦ for 40.2% of the images, and within

45◦ for 54.8% of the images, which is better than any of the cues taken independently.
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(b) Shadows only (86% of images)
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(c) Vertical surfaces only (99% of images)
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(d) Pedestrians only (34% of images))
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Figure 6.13: Cumulative sun azimuth error (angle between estimate and ground truth directions)
on a set of 239 single images taken from the LabelMe dataset [Russell et al., 2008], for the
individual cues presented in Sec. 6.3: (a) the sky, (b) the shadows cast on the ground by
vertical objects, (c) the vertical surfaces, and (d) the pedestrians. The plot in (e) shows the
result obtained by combining all cues together with the sun prior, as discussed in Sec. 8.5.
The percentages indicated represent the fraction of images in the test set for which the cue is
available.
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6.5.3 Qualitative evaluation on single images

Fig. 6.14 shows several example results of applying our algorithm on typical consumer-

grade images taken from our test set introduced in Sec. 6.5.2. The rows are arranged in

order of decreasing order of estimation error. Notice how our technique recovers the entire

distribution over the sun parameters (θs,∆φs) which also captures the degree of confidence

in the estimates. High confidence cases are usually obtained when one cue is very strong

(i.e., large intensity difference between vertical surfaces of different orientations in the 5th

row, 2nd column), or when all 4 cues are correlated (as in Fig. 6.10). On the other hand,

highly cluttered scenes with few vertical surfaces, shadowed pedestrians, or shadows cast

by vegetation (4th row, 2nd column of Fig. 6.14) usually yield lower confidences, and the

most likely sun positions might be uncertain. This is emphasized in Fig. 6.15, which shows

two typical failure cases.

6.6 Discussion

We now discuss three important aspects of our approach: the distribution over the sun

positions, how we can exploit additional sources of information when available, and higher-

order interactions between cues.

6.6.1 Distribution Over Sun Positions

The quantitative evaluation presented in Sec. 6.5.2 revealed that our method successfully

predicts the sun azimuth within 22.5◦ for 40% of the images in our test set, within 45◦

for 55% of them, and within 90◦ for 80% (see Fig. 6.13e). Admittedly, this is far from

perfect, and we provide ideas on how to improve upon these results in Ch. 9. However, we

believe this is still a very useful result for applications which might not require a very precise

estimate. For instance, all that might be required in some cases is to correctly identify the

sun quadrant (< 45◦ error), or distinguish between left and right, or front and back (< 90◦

error). In these cases, our method obtains very reasonable results. But these most likely

sun positions used to generate these results actually hide an important result of our method

which is not captured by this evaluation.
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Figure 6.14: Sun direction estimation from a single image. A virtual sun dial is inserted in each
input image (first and third columns), whose shadow correspond to the MAP sun position in the
corresponding probability maps P (θs,∆φs|I) (second and fourth columns). The ground truth
sun azimuth is shown in cyan, and since it is not available, a zenith angle of 45◦ is used for
visualization.
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(a) Shadows cast by non-vertical objects (b) Wrong shadow direction selected

Figure 6.15: Typical failure cases. (a) First, the dominating shadow lines are not cast by thin
vertical objects, and are therefore not aligned with sun direction. (b) Mislabeling the vertical
surfaces orientation causes the wrong shadow direction to be selected. Note that the pedestrian
visible in this example was not a high-confidence detection, thus unused for the illumination
estimate. In both cases, none of the other cues were confident enough to compensate, thus
yielding erroneous estimates.

While it makes intuitive sense to report the results in terms of angular errors in sun

position estimation, the real “output” of our system is the probability distribution over the

sun position. Throughout this chapter, we have displayed those using colored circles, indi-

cating the likelihood of the sun being at each position, but without paying much attention

to them. A closer look at the distributions themselves reveal very interesting observations

about the degree of certainty of the estimate, which itself should be a very useful result.

Fig. 6.16 shows examples of common scenarios that arise in practice. In Fig. 6.16a, we

observe that strong cues in the scene—bright surfaces, strong cast shadows, visible illumi-

nation effects on pedestrians—result in an estimate that is peaked around a sun position

which aligns well with the ground truth. When the scene is cluttered as in Fig. 6.16b, the

cues become harder to detect, and the resulting estimate is less confident, as evidenced by

the bluer colors in the probability map (all the colors in the figure are on the same scale,

making it easy to compare them).

When there are strong cast shadows but the other cues are weaker, the shadow ambigu-

ity remains present in the sun probability distribution as in Figs 6.16c and 6.16d. Finally,

when the cues are altogether too difficult to detect or simply uninformative as in Figs 6.16e

and 6.16f, the resulting estimate is of more or less constant probability. In this case, the

maximum likelihood sun position, used to generate the quantitative evaluation plots of

Sec. 6.5.2 and the virtual sun dials used for visualization, is meaningless. A more repre-
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sentative way of evaluating the results could employ a measure of the confidence of the

distribution (e.g., variance).

(a) Strong cues, confident estimate (b) Cluttered scene, less confident

(c) Shadow ambiguity, correct direction (d) Shadow ambiguity, wrong direction

(e) Weak cues, low confidence (f) Weak cues, very low confidence

Figure 6.16: Different scenarios result in different confidences in the illumination estimate. When
the cues are strong and extracted properly, the resulting estimate is highly confident (a). A scene
with more clutter typically results in lower confidence (b). The ambiguity created by shadows
is sometimes visible when the other cues are weaker (c)–(d). When the cues are so weak (e.g.,
no bright vertical surfaces, no strong cast shadows, pedestrians in shadows, etc.), the resulting
estimate is not confident, and the maximum likelihood sun position is meaningless (e)–(f). All
probability maps are drawn on the same color scale, so confidences can be compared directly.

6.6.2 Complementary Sources of Information

It is sometimes the case that additional sources of information about the camera are avail-

able. For example, the EXIF header in image files commonly contain information like the

focal length (used in this work), the date and time of capture of the image, and the GPS
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location. We now discuss what the availability of this information means in the context of

our work.

If the date and time of capture of the image as well as the GPS location are avail-

able, then it is possible to compute the zenith angle of the sun by using atmospherical

formulas [Reda and Andreas, 2005]. Since the camera azimuth is unknown, this effectively

restricts the sun to be in a band of constant zenith, so the probability of the sun to be

anywhere else can readily be set to zero.

Recently, newer models of smartphone sport an additional sensor which readings are also

available via EXIF: a digital compass. This compass records the absolute orientation of the

camera, and has been shown to be useful in rudimentary augmented reality applications. In

recording the camera azimuth angle, we now have everything we need to actually compute

the sun position with respect to the camera. Of course, this does not indicate whether

the sun is visible or not (Sec. 6.2), nor does it provide information about the weather

conditions, but could be a tremendous tool to capture datasets of images with ground truth

sun positions. The availability of large amounts of images with annotated information will

surely play an important role in improving our understanding of the illumination in real

outdoor images.

6.6.3 Higher-order Interactions Between Cues

In Sec. 8.5, we saw how we can combine together the predictions from multiple cues to

obtain a final, more confident estimate. To combine the cues, we rely on the Naive Bayes

assumption, which states that all cues conditionally independent given the sun direction.

While this conditional independence assumption makes intuitive sense for many cues—

for example, the appearance of the sky is independent from the shadow directions on the

ground if we know the sun direction—it does not apply for all cues. Here we discuss a

few dependencies that arise in our framework, and how we could leverage them to better

capture interactions across cues.

Even if the sun direction is known, there is still a strong dependency between objects

and their shadows. Knowing the position of vertical objects (e.g., pedestrians) tell us that

cast shadows should be near their point of contact with the ground. Similarly, knowing the
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Figure 6.17: Capturing higher-level interactions across cues. The current approach uses a
Naive Bayes model (a), which assumes that all cues are conditionally independent given the sun
position. Capturing higher-order interactions across cues would require a more complex model
(b), with less restrictive independence assumptions..

location of shadow boundaries on the ground constrain the possible locations of pedestrians,

since they must cast a shadow (if they are in sunlight). Capturing this interaction between

pedestrians and shadows would be very beneficial: since we know pedestrians are vertical

objects, simply finding their shadows would be enough to get a good estimate of the sun

position, and the ambiguity in direction from Sec. 6.3.2 could even be resolved.

There is also a dependency, albeit a potentially weaker one, between vertical surfaces

and cast shadows on the ground. The top, horizontal edge of vertical surfaces (e.g., roof

of buildings) also cast shadows on the ground. Reasoning about the interaction between

buildings and shadows would allow us to discard their shadows, which typically point away

from the sun (Sec. 6.3.2).

Another interesting cross-cue dependency arises between pedestrians and vertical sur-

faces. Since large surfaces may create large shadow regions, if the sun comes from behind

a large wall, and a pedestrian is close to that wall, it is likely that this pedestrian is in

shadows, therefore unpredictive of the sun position.

Capturing these higher-level interactions across cues, while beneficial, would also in-

crease the complexity in the probabilistic model used to solve the problem. Fig. 6.17

shows a comparison between the graphical model that corresponds to our current approach

(Fig. 6.17a) and a new one that would capture these dependencies (Fig. 6.17b). The caveat

here is that the complexity of the model is exponential in the clique size, which is determined

by the number of cues in the image (e.g., number of shadow lines, number of pedestrians,

etc). Learning and inference in such a model will certainly be more challenging.
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6.7 Conclusion

Outdoor illumination affects the appearances of scenes in complex ways. Untangling illu-

mination from surface and material properties is a hard problem in general. Surprisingly,

however, numerous consumer-grade photographs captured outdoors contain rich and infor-

mative cues about illumination, such as the sky, the shadows on the ground and the shading

on vertical surfaces. Our approach extracts the ”collective wisdom” from these cues to es-

timate the sun visibility and, if deemed visible, its position relative to the camera. Even

when the lighting information within an image is minimal, and the resulting estimates are

weak, we believe it can still be a useful result for a number of applications. For example,

just knowing that the sun is somewhere on your left might be enough for a point-and-shoot

camera to automatically adjust its parameters, or for a car detector to be expecting cars

with shadows on the right. Several additional pieces of information can also be exploited

to help in illumination estimation. For instance, GPS coordinates, time of day and camera

orientation are increasingly being tagged in images. Knowing these quantities can further

constrain the position of the sun and increase confidences in the probability maps that we

estimate. We will explore these avenues in the future.
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Chapter 7

Synthesizing Illumination-Consistent

Images

All photos are accurate. None of them is the

truth.

Richard Avedon (1923–2004)

We now explore what we can do with the novel knowledge of illumination from single images

acquired in Ch. 6. In particular, we present an entire system for realistic image creation, in

which lighting-consistent images can be created as easily as three mouse clicks.

7.1 Background

One of the biggest achievements of photography has been in bringing the joy of visual

expression to the general public. The ability to depict the world, once the exclusive domain

of artists, is now available to anyone with a camera. The sheer number of photographs

being taken every day, as evidenced by the explosive growth of websites like Flickr, attests

to people’s need to express themselves visually. However, the creation of novel visual content

is still the monopoly of a small select group: painters, computer graphics professionals, and

Photoshop artists. One of the “Grand Goals” of computer graphics is to make the creation

and manipulation of novel photo-realistic imagery as simple and effortless as using a word-

processor to create beautifully typeset text is today.
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Figure 7.1: Starting with a present day photograph of the famous Abbey Road in London (left),
a person using our system was easily able to make the scene much more lively. There are 4
extra objects in the middle image, and 17 extra in the right image. Can you spot them all?

However, there are a number of formidable challenges on the way toward this ambi-

tious goal. For “traditional” computer graphics, the main problem is not the lack of good

algorithms—recent advances in global illumination, material modeling, and lighting have

allowed for synthesis of beautifully realistic and detailed imagery. Instead, the biggest ob-

stacle is the sheer richness and complexity of our visual world. Every object to be rendered

requires painstaking work by a skilled artist to specify detailed geometry and surface prop-

erties. And while there are a few databases of pre-made object models, typically the number

of objects is quite small and the quality is far from photo-realistic. Various image-based

approaches can also be used to acquire object models, but the data acquisition process is

not straightforward and is typically not suitable for relatively large, outdoor, potentially

moving objects (cars, pedestrians, etc). In this chapter, we are particularly interested in

being able to insert new objects into existing images (e.g., creating a movie storyboard or

adding street life to a newly built city-block). While it is possible to add synthetic objects

into real scenes [Debevec, 1998], this requires estimating camera orientation and capturing

environment maps—tasks too difficult for a casual user.

In this work, we advocate an alternative approach for creating novel visual content—

by leveraging the enormous amount of photographs that has already been captured. A

number of recent papers, such as Interactive Digital Photomontage [Agarwala et al., 2004],

have demonstrated the power of using stacks of registered photographs to create novel

images combining information from the entire stack. The Photo Tourism work [Snavely

et al., 2006] showed how hundreds of photographs acquired from the Internet can be used
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as a novel way to explore famous architectural landmarks in space as well as in time.

However, these are all examples of using images taken at the same physical location—a

necessarily limited set. What about exploiting all the available visual data in the world,

no matter where it was captured, to build a universal photo clip art library that can be

used for manipulating visual content “on the fly”? While this is a very ambitious goal,

the recent emergence of large, peer-labeled object datasets [Russell et al., 2008; von Ahn

et al., 2006], as well as advances in geometric scene understanding [Hoiem et al., 2005;

Hoiem et al., 2006] suggest that efforts in this direction are very timely.

7.2 Overview

In this chapter we propose a system for inserting new objects into existing photographs in

an illumination-consistent way by querying a vast image-based object library, pre-computed

using publicly available Internet object datasets1. The central goal is to shield the user from

all of the arduous tasks typically involved in image compositing—searching for a good object

to cut out, manual cropping and resizing, color and contrast adjustment, edge blending, etc.

The user is only asked to do two simple things: 1) pick a 3D location in the scene to place

a new object; 2) select an object to insert using a hierarchical menu.

In addition to the illumination estimation method introduced in Ch. 6, there are two

additional critical elements that form the cornerstone of our approach to solving this chal-

lenging task:

Data-driven Object Placement. The difficulty in placing an image of an object

(object sprite) into another image is that the camera orientation with respect to the object

as well as the lighting conditions must match between the two images. One simple but key

intuition is that while placing a particular object (e.g., my brown Volvo seen from the side)

into a given image is a very difficult task, finding some instance of an object class (e.g., a

car) that fits well is much easier. The idea, then, is to pose the problem of object insertion as

a data-driven, context-sensitive object retrieval task. Instead of attempting to manipulate

the object to change its orientation and/or color distribution, we simply retrieve an object

of a specified class that has all the required properties (camera pose, lighting, resolution,
1Live demo available at http://graphics.cs.cmu.edu/projects/photoclipart.
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(a) (b) (c)

Figure 7.2: Automatic object height estimation. Objects taken from a typical image in LabelMe
dataset (a) are first shown in their original pixel size (b), and after being resized according to
their automatically estimated 3D heights (c). Image courtesy of D. Hoiem.

etc) from our large object library. This turns an impossibly hard problem into a solvable

one, with the results steadily improving as more and more data becomes available.

3D Scene-based Representation: One of the major weaknesses of most current

image compositing approaches is that they treat it as a 2D Photoshop-like problem. We

believe that any image manipulation must be done in the 3D space of the scene, not in

the 2D space of the image. This does not mean that a complete 3D depth representation

of a scene is required—only some rough qualitative information about surfaces and their

orientations with respect to the camera, plus basic depth ordering. First, this allows the

user some intuitive 3D control of the object placement process—placing the car further

down the road will automatically make it smaller. More importantly, the 3D information is

needed to build the photo clip art library. Each object in the library must be annotated with

relative camera pose, whether it’s occluded by other objects, whether it’s on the ground

plane, etc. In the current version, due to the limitations of the object dataset, all of our

objects are assumed to reside on the ground plane.

7.2.1 Key Challenges

The main challenge of our proposed system is to make the resulting images look as real as

possible. Here we highlight the issues that are critical for the success of this endeavor and

summarize our approach for addressing them.

138



7.2 Overview

Rich Object Library The data-driven nature of our approach requires a library with very

large number of labeled objects. After examining a number of available on-line object

datasets, we have chosen LabelMe [Russell et al., 2008] as providing a good mix of object

classes, large numbers of objects in each class, and reasonably good initial object segmen-

tations. After post-processing and filtering the data, we end up with an object library

currently containing 18 categories of objects with over 13,000 object instances.

Object Segmentation Getting clean object boundaries is critical for seamless object inser-

tion. While the object dataset we use provides rough polygonal object outlines, this is rarely

good enough for compositing. To address this problem, we use the automatic segmentation

and blending approach of Rother [2007]. It extends the popular graph-cut/Poisson blend-

ing framework by introducing a new shape-sensitive prior, adding a crucial local context-

matching term for blending, detecting shadows, and modifying the blending process to

prevent severe discoloration.

Estimating true Object Size and Orientation A 2D object boundary tells us nothing

about the size of the object in the world or its orientation to the viewer. For example,

given an outline of a person, we cannot tell if it’s a tall man standing far away, or a small

boy standing nearby; or whether we are viewing him from street level or from a third-

story balcony. But without this information one cannot hope for realistic object insertion.

For this, we leverage recent work in scene understanding [Hoiem et al., 2006] and use an

automatic algorithm that considers all the objects labeled in the dataset to estimate the

camera height and pose with respect to the ground plane in each of the images. For objects

resting on the ground (our focus in this chapter), these two parameters are enough to

compute object size and orientation.

Estimating Lighting Conditions One of the central contributions of this thesis, consistency

in lighting is another very important cue for realistic compositing. A picture of a car taken at

sunset will most likely not look right when placed into a midday scene. Unfortunately, we do

not have enough information to compute a full environment map for each object. However,

such accuracy might not be necessary. It is well-known that painters can often get away with

139



7.3 Creating the Photo Clip Art Library

substantially inconsistent lighting [Cavanagh, 2005], and in graphics applications simple

approximations have been shown to perform well [Khan et al., 2006]. In this chapter, we use

our illumination estimate obtained in Ch. 6, as well as a simpler illumination model based on

automatically computing color distributions of major surfaces (e.g., ground, vertical planes,

sky) in the scene that is sufficient in some cases.

Intuitive User Interface While not the central focus of this chapter, a good UI is critical

for achieving the goal of making our system simple and intuitive. We have designed and

implemented a full-functioning GUI that allows for easy browsing of the object library and

lets users insert objects with a single click.

The remainder of the chapter is devoted to describing each of these components in more

detail. We first discuss our approach for creating the photo clip art object library (Sec. 7.3).

We then present our system for inserting objects into existing user photographs (Sec. 7.4).

Finally, we demonstrate some results (Sec. 7.5).

7.3 Creating the Photo Clip Art Library

The first issue in creating a photographic clip art library is finding a large dataset of labeled

images of objects. Fortunately, the growth of the Internet and the need for large object

recognition testbeds for computer vision research have produced a large number of freely

available object datasets that we can choose from.

Most datasets (such as Caltech-101 [Fei-Fei et al., 2004], MSRC [Shotton et al., 2006],

and PASCAL [Everingham et al., 2006]) have been collected and annotated by small groups

of researchers and are therefore limited in size and/or annotation detail (most lack segmen-

tations). Recently, there appeared a new breed of peer-labeled datasets. The most famous

example is Flickr, where people can submit photographs and annotate them with semantic

image and region tags. A creative approach is presented in an on-line game called Peeka-

boom [von Ahn et al., 2006], where humans communicate with each other by segmenting

objects in images. Finally, LabelMe [Russell et al., 2008] provides as on-line tool for vision

researchers to submit, share, and label images.

After experimenting with all these datasets, we decided that LabelMe is the best-suited
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for our purposes. Its advantages include a large number of images (over 30,000 at present),

containing many different objects (over 2,000 object classes) as well as reasonably good

segmentations. Also important for us is that most photographs are not close-ups of one in-

dividual object but depict scenes containing multiple objects, which enables us to estimate

camera orientation. Finally, since this dataset is very popular in the vision community, it

is constantly growing in size. At the same time, vision researchers are developing auto-

matic methods for supervised recognition (e.g., [Shotton et al., 2006]) and object discovery

(e.g., [Russell et al., 2006]) that should, some day, take over the labeling chore. Success

has already been reported on specialized tasks (e.g., an automatically collected database of

celebrity faces [Berg et al., 2004]), but further research is needed for more general domains.

The main downside of LabelMe is substantial variation between individual labeling

styles as well as semantic tags. Some people include cast shadows, others don’t; some

people include occluded parts of an object, others don’t. Since a semantic tag can be any

text string, the same object could be labeled as: “person”, “human”, “pedestrian”, “man

smiling”, etc. Therefore, one of our tasks in processing the dataset was to deal with such

inconsistencies. Additionally, for every object in our library, we need to estimate its size

and orientation in the real world as well as its illumination. We will now describe each of

these steps in detail.

7.3.1 Estimating Object Size and Orientation

To match and scale objects in our database to the background scene provided by the user,

we need to know the true size of the objects in the world and the pose of the camera. As

shown by [Criminisi et al., 2000], if we know the vanishing line of the ground plane, we

can determine the relative heights of objects that rest on the ground plane. To annotate

our database using this method, however, would require painstaking (and often inaccu-

rate) annotation of vanishing lines in thousands of images. Instead, we use the method of

Hoiem [2007] (a co-author in this work) to gradually infer camera pose and object heights

across our database when provided with only the height distribution for one object class.

We summarize the method here for completeness, but this does not represent one of the

contribution of this thesis.
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7.3 Creating the Photo Clip Art Library

(a) Input image (b) Well matched objects (c) Poorly matched objects (d) Sources

Figure 7.3: Lighting plays crucial role in object insertion. Given an input image (a), objects that
are similarly illuminated fit seamlessly into the scene (b), while these with substantially different
illumination appear out of place (c). By considering the source image from which an object was
taken (d) in relation to the input image (a), our algorithm can predict which objects will likely
make a realistic composite.

Let yi be the 3D height of an object with a 2D height of hi and a vertical position of vi

(measured from the bottom of the image). The camera pose is denoted by yc and v0, which

correspond roughly to the camera height and the horizon position. Following [Hoiem et al.,

2006], their inference is based on the relationship yi = hiyc
v0−vi

, assuming that objects stand

on the ground and that ground is not tilted from side to side and roughly orthogonal to the

image plane. Thus, given the position and height of two objects of known type in the image,

we can estimate the camera pose without heavily relying on a prior distribution and use it

to compute the 3D height of other objects in the scene. If we know the prior distribution

over camera pose, we can provide a good estimate of it, even if only one instance of a known

object is present [Hoiem et al., 2006].

The procedure [Hoiem, 2007] is as follows. We first compute the most likely camera

pose for images that contain at least two known objects (instances of an object class with a

known height distribution). From these, we estimate a prior distribution over camera pose.

Using this distribution, we infer the likely camera pose for images that contain only one

known object. Finally, we compute heights of objects in the images for which camera pose

is known and estimate the height distributions of new classes of objects. We then iterate

this process. As the height distributions of new object classes are discovered, they can be

used to estimate the camera pose in additional images, which, in turn, allow the discovery

of new objects. Fig. 7.2 shows an example of automatically estimate 3D heights for various

objects from the same image.
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7.3.2 Estimating Lighting Conditions

The appearance of an object is determined by the combination of its reflectance properties

and the illumination from the surrounding environment. Therefore, an object taken from

one image and inserted into another will look “wrong” if the two scenes have large differences

in illumination (see Fig. 7.3). The standard solution of measuring the incident illumination

by capturing the object environment map (typically using a mirrored sphere at the object

location [Debevec, 1998]), is not possible here since we only have access to a single photo-

graph of the object. We have already described how to estimate the illumination conditions

from a single image in Ch. 6, but we provide here another, coarser representation dubbed

“illumination context” which was introduced in an earlier version of this work [Lalonde et

al., 2007], and used to generate some of the results in Sec. 7.5.

We propose to use scene understanding techniques to compute a very coarsely sampled

environment map given a single image as input. The basic idea is to come up with a

rough 3D structure of the depicted scene and use it to collect lighting information from the

three major zenith angle directions: from above, from below, and from the sides (azimuth

direction is not used since there is not enough data in a single image). Our implementation

uses the geometric context of [Hoiem et al., 2007] to automatically estimate 3 major surface

types: ground plane, vertical planes, and the sky. The distribution of illuminations within

each surface type is computed as a joint 3D histogram of pixel colors in the CIE L*a*b*

space, for a total of 3 histograms to form our scene illumination context. It is important

to note that while [Khan et al., 2006] use high dynamic range images, we only have access

to regular low dynamic range photographs so cannot capture true luminance. But since

we don’t use the illumination context to relight a new object, only to compare lighting

conditions between images, this has not been a problem.

The illumination context is too global and cannot encode location-specific lighting within

the scene, i.e., whether a given object is in shadow. Therefore, for each object we also

compute a local appearance context—a simple color template of its outline (30% of object

diameter outward from the boundary, and 5% inward). The local context is used as an

additional cue for object placement.

Is it enough to encode only the global “feel” of the scene to generate realistic image
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composites? In many cases, it seems like this may be sufficient (see Figs 7.9, 7.10 and

7.11). However, when cast shadows are visible such as in Fig. 7.4a, then matching the sun

direction actually becomes very important. Although there appears to be some level of

disagreement in the visual perception community regarding the physiological process that

is responsible for shadow perception [Rensink and Cavanagh, 2004; Elder et al., 2004], it has

been shown that illumination consistency is very important to achieve realism [Johnson and

Farid, 2007]. For example, Fig. 7.4b shows the compositing result obtained by transferring a

person coming from the nearest neighbor image using the the coarse “illumination context”

representation described above, which does not match the sun direction. In this case, the

best match happens to have the sun in the exactly opposite direction! The resulting com-

posite is therefore noticeably wrong. Instead, matching the sun direction estimated using

the technique presented in Ch. 6 results in a composite where the shadows are consistent

(Fig. 7.4c), thereby making the result much more realistic.

7.3.3 Filtering and Grouping Objects

While the LabelMe dataset has a rich collection of objects and object classes, many are

simply not useful for our purposes. A lot of the labeled objects are occluded or are actually

object parts (e.g., a wheel, a car window, a head), while others are amorphous (e.g., sky,

forest, pavement). The types of objects best suited for a clip art library are semantically

whole, spatially compact, with well-defined contact points (i.e., sitting on the ground plane).

We attempt to filter out the unsuitable objects from the dataset in a semi-automatic way.

As a first step, we try to remove all non-whole objects by searching the tag strings for

words “part”, “occlude”, “region”, and “crop”. We also remove any objects that have a

boundary right at the image border (likely occluded). Second, we estimate the 3D heights

of all objects using the iterative procedure outlined in Sec. 7.3.1. As a by-product, this

gives us a list of object classes that have been found useful for camera pose estimation (i.e.,

having relatively tight height distributions): “bench”, “bicycle”, “bus”, “car” (various ori-

entations), “chair”, “cone”, “fence”, “fire hydrant”, “man”, “motorcycle”, “parking meter”,

“person”, “sofa”, “table”, “trash can”, “truck”, “van”, “wheel”, “woman”. Of these, we

discard small or unsuitable classes (e.g., “wheel”), and merge others (e.g., “man”, “woman”,
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7.3 Creating the Photo Clip Art Library

(a) Input image

(b) Nearest neighbor (left) and composited result (right), illumination context [Lalonde et al., 2007]

(c) Nearest neighbor (left) and composited result (right), matching sun angles (this thesis)

Figure 7.4: Comparison between image synthesis results obtained with the “illumination context”
representation from an earlier version of our work [Lalonde et al., 2007] (b) and the representation
introduced in this thesis (c). The objects to transfer (pedestrian) are manually selected in the
top nearest neighbor from our Photo Clip Art database. Our technique presented in Ch. 6 is
able to match shadow directions, crucial for realistic object insertion.
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and “person”) into consistent groups. We also manually add a few fun classes that were

either too small or not very consistent: “plant”, “flowers”, “tree”, and “manhole”. Note

that most of the recovered classes are of outdoor objects. This mainly reflects the bias in

the dataset toward outdoor scenes, but also due to ground-based objects mostly appearing

outdoors.

In most cases the variance between objects within the same object class is still too high

to make it a useful way to browse our clip art collection. While a few of the object classes

have hand-annotated subclass labels (e.g., cars are labeled with their orientation), most do

not. In these cases, clustering is used to automatically find visually similar subclasses for

each object class. First, all objects are rescaled to their world 3D height (as calculated

earlier), so that, for instance, a tree and a bush don’t get clustered together. Next, k-means

clustering using L2 norm is performed on the binary object outlines. This is done so that

object will cluster solely based on shape, and not on their (lighting dependent) appearance.

Results show successful subclasses being formed for most of the objects (e.g., see Fig. 7.5).

7.4 Object Insertion

Now that we have built our photo clip art object library, we can describe how to insert

objects into user photographs. Given a new photograph, the first task is to establish its

camera orientation with respect to the ground plane. To do this, the user is asked to pick

the location of the horizon with a simple line interface. Other relevant camera parameters

(camera height, focal length, pixel size) are set to their most likely values, or extracted

from the EXIF tag, if available. Alternatively, the user can specify the height of one or

more known objects in the scene, from which the camera parameters can be estimated as

in Sec. 7.3.1. It is also possible to let the user resize a known “reference object”, such

as a person, placed at different locations in the image, to compute the camera pose and

height, although we haven’t found this necessary. In addition, lighting conditions must be

estimated for the new scene, which is done in the same way as described in Sec. 7.3.2. With

the critical parameters of the new photograph successfully estimated, we are now ready for

object insertion.
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Figure 7.5: User Interface for our system. The two-level menu on the top panel allows users to
navigate between different classes and subclasses of the photo clip art library. The side panel
on the right shows the top matched objects that can be inserted into the scene.

7.4.1 User Interface

First, we will briefly describe the design of our User Interface. Its job is to let the user 1)

easily navigate the entire photo clip art library, and 2) paste an object of choice into the

photograph with a single click.

The screenshot of our UI is depicted on Fig. 7.5. The user photograph is loaded in the

central panel. The top row of icons shows all the object classes available in the library.

The second row of icons shows all object subclasses for a chosen class. The subclasses

are generated either from the object annotations, if available, or by automatic clustering

(as described previously). The subclass icons are average images of all the objects in the

subclass, a technique inspired by [Torralba and Oliva, 2003]. The right-hand-side panel

displays the object instances. Initially it contains all the objects in the library, but as the

user picks a class of objects, only these instances remain in the panel. The same happens

for a subclass. Moreover, the objects in the panel are sorted by how well they match this
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particular scene.

To insert an object into the scene, the user first chooses an object class (and optionally

a subclass), and then picks one of the top matches from the object panel. Now, as the

user moves the mouse around the photograph, the outline of the picked object is shown,

becoming bigger and smaller according to the correct perspective. A single click pastes the

object at the current mouse position, and full segmentation and blending is performed on

the fly. Alternatively, the user can first pick a location to paste an object, and then choose

among the objects that best fit that particular location. Note that all inserted objects (as

well as any labeled ones in the image) preserve their 3D depth information and are rendered

back-to-front to accurately account for known occlusions.

7.4.2 Matching Criteria

Given a scene, we need to order all the objects in the library by how natural they would

look if inserted into that scene. This way, a user picking an object from near the top of the

list would be pretty confident that the compositing operation would produce good results.

The ordering is accomplished as a weighted linear combination of several matching criteria,

dealing with different aspects of object appearance.

Camera Orientation: The camera orientation with respect to the object’s supporting

surface has been pre-computed for every object in the library. We also have the estimate

for the ground plane orientation for the user’s photograph. Geometrically, an object would

fit well into the scene if these camera orientation angles are close, and poorly otherwise.

If the object placement location is not specified explicitly by the user, a simple difference

between the vanishing line heights of the ground planes of the source and destination scenes

is used instead.

Global Lighting Conditions: Each object in the library has an associated scene

illumination context that was computed from the object’s original source image. An object

is most likely to appear photometrically consistent with the new scene if its original scene

illumination context match that of the new scene. The distance between the illumination

contexts is computed as a weighted linear combination of χ2-distances between the L*a*b*

histograms for sky, vertical, and ground. Experimenting with the weights, we have found
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(unsurprisingly) that the sky portion of the context is the most important, followed by the

ground portion. The vertical portion seems to have little effect. When the sun position

(θs,∆φs) is available, matches can be found by sorting them according to the angular

difference in sun angles. Matching the sun visibility V can also be done by keeping only

images with the same V as the input.

Local Context: If a user has also specified the location where he wants the object

to be placed, local appearance context around (and under) the placement area can also be

used as a matching criterion. The context is matched to the corresponding pixels at the

placement area using SSD measure. This cue is used primarily as an aid to blending difficult

objects, as described in Sec. 7.4.3, and for matching locally-varying lighting effects.

Resolution: Again, if the placement location in the image is given, it is easy to

compute the desired pixel resolution for the object so as to minimize resizing.

Segmentation Quality: The initial segmentation quality of objects in our library

is highly variable. Various approaches can be used to try separating the good ones from

the bad (e.g., alignment with brightness edges, curvature, internal coherence, etc). In

this implementation, we use a very simple but effective technique, ordering objects by the

number of vertices (i.e., labeling clicks) in their boundary representation.

7.4.3 Object Segmentation and Blending

Once the user picks an object to insert into a given scene, the most important task to insure

a quality composite is object matting. Unfortunately, automatic alpha-matting without a

user in the loop is not guaranteed to work reliably for all scenarios, despite a lot of recent

advances in this field e.g., [Levin et al., 2006]. On the other hand, blending techniques [Pérez

et al., 2003; Jia et al., 2006] have shown that impressive results can be achieved without an

accurate extraction of the object, assuming that the material surrounding the object and

the new background are very similar (e.g., a sheep on a lawn can be pasted onto another

lawn, but not on asphalt).

The idea of combining the advantages of blending and alpha-matting have been intro-

duced to hide matting artifacts as much as possible [Wang and Cohen, 2006; Jia et al., 2006].

The key advantage of our system is that the local context criteria (introduced above) has
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(a) (b) (c) (d)

Figure 7.6: Object extraction. Given an image (a), the task is to improve the crude polygon-
shaped LabelMe segmentation (b). Standard GrabCut (restricted to a red band in (b)) suffers
from a ”shrinking” bias (c). This can be overcome by introducing flux, a shape-sensitive prior,
into the GrabCut framework (d). Figure courtesy of C. Rother.

already retrieved appropriate objects which match to some degree the given background,

so blending and segmentation have a good chance of supporting each other.

Our compositing method is contributed by our collaborator C. Rother and presented in

further details in [Rother, 2007], and as such does represent a contribution of this thesis.

We however provide some details here for completeness. It runs, as in [Jia et al., 2006], in

three steps: first object extraction, then blending mask computation, and finally Poisson

image blending. The novel ideas over existing approaches are: a crucial shape prior for

segmentation, a new context-matching term for blending mask extraction, and a way to

prevent severe discoloration during blending.

7.4.3.1 Object Segmentation With a Shape Prior

Object segmentations provided in the LabelMe dataset have only crude, polygonal bound-

aries. The task is to find a more faithful outline of the object along with a good alpha

mask. For this we extend the popular graph-cut based segmentation approaches [Rother

et al., 2004; Li et al., 2004] with a prior for the given shape. Fig. 7.6 gives an example,

where the cut is restricted to lie in a small band (red in Fig. 7.6b) around the prior polygon

shape. Applying GrabCut without shape prior results in Fig. 7.6c. The tree outline looks

convincing, however the tree trunk is lost. This happens because a short expensive bound-
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(a) (b) (c) (d) (e) (f) (g)

Figure 7.7: Example of image compositing. Source input image (a) and compositing results with
different approaches (b), (c), (e)–(g), where red arrows point out problems. Figure courtesy of
C. Rother.

ary has a lower cost than a very long cheap one, sometimes called the ”shrinking” bias. To

overcome this problem different forms of shape priors, such as shape-based distance trans-

form [Boykov et al., 2006], have been suggested in the past. We use the flux shape prior as

introduced in the theoretical work of Kolmogorov and Boykov [2005]. The main advantage

over other methods is that it overcomes the shrinking bias while not over-smoothing the

whole segmentation. The key idea is that the gradient of the computed contour is similar

to the gradient of the given shape. Details on how this is implemented in our context are

provided in [Rother, 2007]. The result in Fig. 7.6d shows that the tree trunk is recovered

nicely.

7.4.3.2 Context-sensitive Blending

Consider the image compositing task in Fig. 7.7. Given the input image 7.7a, Grab-

Cut [Rother et al., 2004] (based on a rough polygonal outline around the object) produced

an alpha matte which is used to paste the object onto a new background in Fig. 7.7b. Here

conservative border matting [Rother et al., 2004] was not able to extract the hair perfectly.

On the other hand, standard Poisson image blending [Pérez et al., 2003] (with the boundary

constraint applied at the green line in 7.7d—a dilation of the GrabCut result) blends the

hair correctly 7.7c. However, it produces two artifacts: a severe discoloration due to large

differences at the boundary constraint, and a blurry halo around the object where fore-

ground and background textures do not match. The key idea is to find a binary blending

mask which either blends in the background color or leaves the segmentation unaltered.

Fig. 7.7d shows the blending mask computed by our technique. In places where the mask
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(a) (b) (c)

(d) (e) (f)

Figure 7.8: Shadow transfer. On the top row, we show the source image (a) for a car with
initial (b) and final (c) shadow estimates. Our initial estimate, simply based on intensity relative
to surrounding area, is refined by enforcing that the shadow is darker closer to the contact points
(red ’+’). On the bottom row, we show the background patch with the object (d), with the
matted shadow (e), and the combination (f), before blending. Image courtesy of D. Hoiem.

coincides with the object (red line) no blending is performed and when the mask is outside

the object (at the hair) it blends in the background. This gives a visually pleasing result

(Fig. 7.7e). To achieve this, we extend the approach of Jia et al. [2006] by adding an ad-

ditional regional term that measures the similarity of foreground and background statistics

(see [Rother, 2007] for details). This allows the white mask Fig. 7.7d to grow outside the

red mask at places with high similarity. In comparison, results using digital photomon-

tage [Agarwala et al., 2004] and drag-and-drop pasting [Jia et al., 2006] (both using our

implementation) show more artifacts as seen on Figs 7.7f and 7.7g.

7.4.4 Transferring Shadows

While psychologists have shown that humans are not very sensitive to incorrect cast shadow

direction [Cavanagh, 2005], the mere presence of a shadow is a critical cue for object/surface

contact [Kersten et al., 1996]. Without it, objects appear to be floating in space. Shadow
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extraction is a very challenging task and most existing work either requires controlled light-

ing conditions, e.g., [Chuang et al., 2003], or makes restrictive assumptions about camera,

lighting, and shadow properties (e.g., [Finlayson et al., 2006]).

Because we do not know the 3D structure of our objects, synthetically generated shadows

rarely look convincing. Instead, we take an image-based approach, transferring plausible

shadows from the source image to the background image (illustrated in Fig. 7.8). Unfortu-

nately, we cannot systematically use our single image shadow boundary detection method

introduced in Ch. 5 because hard cast shadow boundaries do not always exist below objects.

Instead, we employ the simple heuristic described in [Lalonde et al., 2007] which detects

dark regions below the objects.

7.5 Appearance Transfer Across Single Images

Figs 7.9, 7.10 and 7.11 show more object insertion results that a user was able to create

with our system. One needs to look very carefully to notice all the objects that have

been added—there are several that are quite difficult to spot. As can be seen, the system

handles input images with wide variation in scene geometry as well as lighting conditions.

In addition to photographs, our approach can successfully be applied to paintings (Fig. 7.9,

bottom center) and CG renderings (Fig. 7.11). The important thing to note is that all these

examples were produced in a few minutes by users who are not at all artistically skilled.

In this chapter, we have argued for a philosophically different way of thinking about

image compositing. In many situations, it is not important which particular instance of an

object class is pasted into the image (e.g., when generating realistic architectural renderings

as shown on Fig. 7.11). In such cases, what is desirable is a kind of photo-realistic clip art

library. Of course, regular clip art is a simple 2D iconic drawing, whereas the real 3D

world-based clip art is necessarily more complex. However, we have shown that with the

right approach, and a lot of data, this complexity could be successfully hidden from the end

user, making it seem as simple and intuitive as regular clip art.
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Figure 7.9: Some example images that were created by a user with our system. Can you find
all the inserted objects?
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Figure 7.10: Our system can handle a variety of input lighting conditions, from midday (left)
to sunset (middle), and can even work on black&white photographs (right). In the latter case
the objects have been converted to grayscale after insertion.

7.6 Illuminant Transfer in Single Images

As an additional application, we now demonstrate how to use our technique to insert a 3-D

object into a single photograph with realistic lighting. This requires generating a plausible

environment map [Debevec, 1998] from the image. When the sky is clear, we can estimate

the full illumination model from Sec. 2.4. We can then use the same approach as the one

introduced in Sec. 4.5 to synthesize entire environment maps from a single image, and use

(a) (b)

Figure 7.11: Application to architectural renderings. Here, a rendered view of the future Gates
Center at CMU (a) is made to look more natural using our system (b). Note that the photo
clip art people look much better than the white cutout people of the original rendering. Image
used by permission from Mack Scogin Merrill Elam Architects.
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(a)

(b)

Figure 7.12: Typical failure modes of our system. For input scenes with unusual illumination,
the object library may not contain illumination conditions that are similar enough, making even
the best-matched objects look wrong (a). Additionally, our blending algorithm may fail to
blend complex and porous objects (e.g., tree and bicycle, (b)). Shadow transfer may also yield
undesirable results (e.g., car, (b)).

it to relight a virtual 3-D object as shown in Fig. 7.13. Notice how the shadows on the

ground, and shading and reflections on the objects are consistent with the image.

7.7 Conclusion

The chapter presents a complete system, from database preprocessing to cutting and blend-

ing to the graphical user interface. Along the way, we had to solve many difficult issues,

resulting in a number of novel algorithms and techniques. Since this is a complex system,

failures can occur in several stages of processing. Fig. 7.12 illustrates the three most com-
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(a) (b) (c)

Figure 7.13: 3-D object relighting examples. From a single image (a), we render the most likely
sky appearance (b) using the sun position computed with our method, and then fitting the sky
parameters using the approach introduced in Sec. 3.6. We can realistically insert a 3-D object
into the image (c).

mon causes of encountered failures. First, input scenes with unusual illumination are not

similar to any of the images in our library. Therefore, even the best-matched objects will

look unrealistic. Second, blending and automatic segmentation errors may occur when ob-

jects are porous or of complex shape (e.g., trees and bicycles). These objects contain holes

through which their original background is visible. Finally, the shadow transfer algorithm

may fail when the object/ground contact points are not estimated correctly, or when some-

thing else in the scene is casting a shadow onto the object. Since most of these issues are

data-related, it is reasonable to believe that as the underlying image datasets improve, so

will our system. This, once again, underscores one of the main themes of this thesis that the

use of large-scale image databases is a promising way to tackle some of the really difficult

problems in computer graphics.
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Chapter 8

Determining the Realism

of Image Composites

Reality is merely an illusion, albeit a very

persistent one.

Albert Einstein (1879–1955)

In the previous chapter, we introduced an end-to-end system for generating image com-

posites by transferring objects across images in an lighting-consistent manner. But how

can we tell whether the resulting composite will look realistic or not? In this chapter, we

present a study of the influence of color on the realism of images.

8.1 Introduction

Consider the images shown on Fig. 8.1. Only two of them are real. The rest are composite

images—created by taking an object from one image and pasting it into a different one. The

four synthetic images have been picked from a set of automatically generated composites

and, as you can see, some look reasonably real while others appear quite fake. What is

it, then, that makes a composite image appear real? As we saw in Ch. 7, scene semantics

and geometry play a key role [Biederman, 1981]—a car floating in midair or twice as big as

other cars would instantly appear out of place. In this chapter, we will assume that these
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Figure 8.1: There are only two real images in this montage. Can you identify them?

high-level scene structural issues have been dealt with. We are interested in investigating

the more subtle artifacts that appear even if the semantic composition of the scene is correct

(e.g., right column of Fig. 8.1).

Difference in scene lighting between the source and destination images is one important

consideration. The same object photographed under two different types of illumination (in a

thick forest vs. a sunny beach) will usually have a strikingly different appearance. But does

this mean that differently-lit objects will always appear inconsistent to a human observer

when placed in the same image? Not necessarily. Cavanagh [2005] uses examples from

art to demonstrate that humans are curiously unaware of the great liberties that artists

often take with physics, including impossible lighting, inconsistent shadows, and incorrect

reflections. Actually, this is not too surprising, considering that it is extremely difficult

for both human and computers to estimate the true lighting direction from a single image,

unless very strong cues like cast shadows are available (Fig. 7.4). In this chapter, we will

assume that there are no such strong cues in the image, and aim for a more global effect

of illumination: color. Indeed, the experience of Photoshop artists confirms that “getting

color right” is one of the most important tasks for good image composites [Adelson, 2006].
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Therefore, in this chapter, we concentrate on the role of color in image compositing.

8.1.1 The Role of Color

The first question one must ask is whether color itself is the important cue for visual

compatibility or just a manifestation of some higher-order semantic relationships? Do we

prefer certain shades of green with certain shades of blue, or do we just like to see grass and

sky together? This is a very difficult question. While the experience of graphic designers as

well as recent work on color harmony [Cohen-Or et al., 2006] suggest that humans do prefer

palettes of certain colors over others, it is likely that object identity also plays a role. In this

chapter, we investigate how far we can get without the use of explicit semantic information.

Our second question relates to the nature of color compatibility. Do different pairs of

colors simply appear to be more or less compatible with each other? Or perhaps compatibil-

ity is evaluated over entire color distributions rather than individual colors? In this thesis,

we will take a first step in trying to answer some of these questions.

8.1.2 Prior Work

In computer graphics, people have long been interested in methods for adjusting the colors

of one image to make it match the “color mood” of another image. In a much-cited work,

Reinhard et al. [2001] propose a very simple technique based on matching the means and

variances of marginal color distributions between images using the Lαβ color space. The

central assumption of the method is that the marginal color distributions of the object

and its background should match. This technique was applied to compositing of synthetic

objects into real videos [Reinhard et al., 2004], although no quantitative evaluation of the

method’s effectiveness was presented. While this makes sense for some cases, often you

find an object becoming very greenish due to being pasted into a forest scene. To address

this problem, Chang et al. [2005] proposed to first assign each pixel to one of 11 “basic

color categories” obtained from psycho-physical experiments and relating to universal color

naming in languages. The color adjustment is then performed only within each category.

This method produces much more pleasing results (on the 7 images shown) but, again,

no quantitative evaluation is performed. The Color Harmonization approach [Cohen-Or
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et al., 2006] adjusts the hue values of the image color-map according to a predefined set

of templates that are thought to encode color harmony. Alternatively, Pérez et al. [2003]

propose to copy the object gradients and reintegrate to get the colors. While this approach

results in a seamless insertion, it often generates noticeable artifacts such as color bleeding

or severe discoloration when the object and background have dissimilar color distributions

(again, these works are difficult to evaluate since no quantitative results are shown).

Computer vision researchers are more interested in the task of classifying images based

on various characteristics. Farid and colleagues have done extensive work on using higher-

order image statistics for a variety of tasks, including distinguishing between computer

renderings and photographs [Lyu and Farid, 2005], detecting digital tampering, finding art

fakes [Lyu et al., 2004], etc. However, their efforts are directed towards detecting differences

that are not perceptible to a human observer, whereas our goals are the opposite. Cutzu

et al. [2003] present a neat technique for distinguishing paintings from photographs based

on the color distribution of the image. Their insight is that paintings are likely to exhibit

more color variation than photographs because it is difficult to mix paints that have the

same chromaticity but different intensity. Ke et al. [2006] propose a set of high-level image

features for assessing the perceived artistic quality of a photograph. Their color features

include a measure of histogram similarity to a set of high-quality photographs, as well as

an estimate of hue variation in the image (apparently, professional photos have fewer hues).

The classic paper by Forsyth [1990] has spawned a large body of work in color constancy.

However, their goals are different: retrieve the illuminant under which a given scene was

lit, from a list of known illuminants. One method related to the present work has been

introduced by Finlayson et al. [2001], in which they determine the illumination based on

nearest-neighbor matching to a set of illumination palettes.

8.1.3 Overview

Our goal is to use color information to automatically predict whether a composite image

such as the ones in Fig. 8.1 will look realistic or not to a human observer. In the pursuit of

this endeavor, two different and complementary approaches are evaluated.

The first approach utilizes the fact that phenomena that happen in the real world are,
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Figure 8.2: Example images randomly selected from our test set. Top row: Real images. Middle
row: Realistic synthetic images. Bottom row: Unrealistic synthetic images. The entire test
database used to produce the results presented in this chapter contains a total of 1000 images
and was semi-automatically generated from images taken from the LabelMe database [Russell
et al., 2008].

by definition, natural. This translates to the hypothesis that colors in an image will look

realistic if they appear in real images with high probability [Lotto and Purves, 2002]. We

pose the problem as follows: given a set of colors (a palette), what are the other color

palettes that are likely to co-occur in the same image? In Sec. 8.3, we propose several ways

to estimate color palette co-occurrences.

Our second approach does not consider global color statistics and makes the assumption

that a composite image will look realistic if the object and background colors have similar

distributions. This idea is directly inspired by the work of Reinhard et al. [2004], which has

never been evaluated rigorously on a large number of examples. We propose to extend the

work using a better color representation and provide an extensive comparative evaluation

in Sec. 8.4.

Finally, from the intuitions gathered while evaluating the global and local approaches,

we suggest a way of combining them into a single classifier. Sec. 8.5 presents this combined

approach and compares it to using either technique by itself. As an additional application,

we show in Sec. 8.6 how to automatically shift the colors of an unrealistic object to make

it look more realistic in its new scene.
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8.2 Generating the Composite Image Dataset

In order to compare the different approaches proposed, a dataset of synthetic images was

generated semi-automatically1. Since the process of manual image compositing can be

long and tedious, we seek to automatically generate composite images that will look right

semantically, i.e., objects should be at the appropriate locations in the resulting images.

We propose a very simple algorithm to generate semantically correct images by utilizing

a large segmentation dataset. We use the popular LabelMe image database [Russell et

al., 2008] which contains roughly 170,000 labeled objects. We first remove all incomplete

objects by searching the label strings for words “part”, “occlude”, “regions” and “crop”.

We then manually group objects that have similar labels, and end up with the following

15 most frequently-occurring objects in the dataset: “building”, “bush”, “car”, “field”,

“foliage”, “house”, “mountain”, “person”, “road”, “rock”, “sand”, “sky”, “snow”, “tree”,

and “water”.

Because segmentations are available, we can create a synthetic composite by starting

with an image, and replacing one of its objects by another one of the same semantic type

and shape. The algorithm only selects the objects that occupy at least 5% and at most 60%

of their corresponding image area. The shape matching is done by computing the SSD over

blurred and subsampled object masks, allowing for translations. Once the best matching

object is found, we paste it onto the original image and apply linear feathering along the

border to mask out potential seams. Even though this algorithm is very simple, it performs

surprisingly well (see Figs 8.1 and 8.2), because it exploits the richness of the dataset.

Some of the automatically generated composite images happen to have matching colors

and appear quite realistic, while others have color distributions that make them look un-

realistic. Sometimes, however, the automatic procedure fails completely, producing results

that are structurally inconsistent and obviously wrong. We label those as unsuccessful and

manually remove from the test data. We asked three human observers with normal color

vision to label the remaining images as either realistic or unrealistic. The realistic class is

augmented with randomly selected real images from the dataset. For real images, a ran-

dom object in that image is selected to be the tested inserted object. Our final test set is
1The dataset is publicly available at http://graphics.cs.cmu.edu/projects/realismcolor.
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Figure 8.3: Most and least realistic images ranked by the universal palette algorithm. Top row:
7 most realistic images in the test database. Bottom row: 7 least realistic images. Note that
this first-order analysis is completely unable to tell apart realistic images from unrealistic ones.

composed of 360 unrealistic, 180 real, and 180 realistic images. Fig. 8.2 shows examples of

typical real and synthetic (realistic and unrealistic) images in our test set, which remained

identical for all the experiments performed in this chapter. We also employ a much larger

and non-overlapping part of the LabelMe dataset containing 20,000 images to compute the

natural color statistics in the following experiments.

8.3 Global Natural Color Statistics

In this section, our aim is to find a way to test the naturalness of colors in a given image by

computing their similarity with global color statistics accumulated over a large set of real

images. We propose three ways of doing so.

8.3.1 Universal Color Palette

The simplest way of modeling the joint natural color distribution is to assume that an image

is generated according to a single, global distribution, which is the same for all images. This

assumes the existence of a universal palette, from which all natural images are generated.

While this first-order assumption is restrictive, we can easily estimate the joint distribution

of all training images by computing a global 3-dimensional joint histogram in CIE L*a*b*

color space. Given a new image, we compute its color histogram, and compare it to the

global model. Unless otherwise noted, all experiments in this chapter are performed in the

CIE L*a*b* color space using 3-D joint histograms with 1003 bins. Fig. 8.3 presents images
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that are close (top row) and far (bottom row) from this global distribution, using the χ2-

distance metric for histogram comparison. It illustrates that the universal palette has the

tendency to (falsely) predict that images with a single, saturated color are less likely to

be realistic. Whereas this approach is clearly not useful in our image realism classification

setting, it might still have interesting applications, such as finding striking and unusual

color photographs in a large dataset (see Fig. 8.3, bottom row).

8.3.2 Expected Color Palette

While the universal palette is easy to compute, it appears not to be powerful enough to

model the complexity of natural images because it only models first-order color statistics.

A better approach would be to consider pairs of colors that appear together in the same

image. Given a 3-dimensional color space, this is a 6-dimensional function that represents

the probability of observing a color distribution given a single color. Stated differently, it

is modeling the palette that is likely to co-occur together with a particular color in a real

image.

We represent this distribution by a 6-dimensional histogram of 166 bins. For every

color in every object in the entire training dataset, we compute the histogram of all the

colors occurring in that objet’s background region. For testing: given a composite image

composed of an object and its background, we sample the 6-D histogram by marginalizing

over all the colors in the object and compare it with the histogram of the background.

Unfortunately, this method performs only marginally better than the first-order approx-

imation, and still does not yield satisfying results on our test dataset. To quantitatively

compare the different techniques, we use the χ2-distance metric to assign a realism score to

every image in our test dataset and construct ROC curves; the same procedure is used in

the remainder of the chapter. In our experiments, the area under the ROC curve for the

universal palette is 0.59, and 0.61 for the second-order. Several reasons explain this poor

performance: the 6-dimensional histogram is likely too coarse and smoothes over important

color shades. More importantly, this model only represents a single expected palette given

a single color, which is not enough to capture the complexity of our visual world. For

instance, blue sky co-occurs with grass, roads, seas, cities, etc. each of which might exhibit
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very different color palettes. Since this method is computing the average over all observed

instances, it is not powerful enough to model each of them jointly.

8.3.3 Data-Driven Color Palette

To address the limitations of the previous method, we would ideally need to know the co-

occurrences of all possible color palettes. Since this number is huge, we would require a

prohibitively large number of images and computing power to compute them.

Although it might be possible to employ the method of Yang et al. [2007] to extract a

more powerful co-occurrence feature, we note instead that because we have large amounts of

real data with labelled objects, we can use a nearest-neighbor approach to approximate this

distribution directly. Given the object color palette, we find a set of k most similar-looking

objects based on color (k-NN), and approximate its expected co-occurring palette by the

best-matching background in this k set. This method yields an area under the ROC curve

of 0.74, a significant improvement over the previous techniques.

Can we improve its performance further? Let’s consider an example. When determining

if a tree matches a particular forest scene, it might be more important to look for similar

forest images, which typically have very consistent color palettes, than for green buildings

which might exhibit different shades of green and still look realistic. Clearly, incorporating

object recognition could greatly help in matching similar scenes. Here, we experiment with

a weak recognition cue by using texture matching between images.

First, a texton dictionary of 1000 instances is learned by clustering 32-dimensional

oriented filter responses on our 20,000 training images. A texton histogram can then be

computed for each object and associated background in the training data and be used in the

k-NN process. To evaluate the distance between two objects, we take a linear combination of

their color and texton histograms χ2-distances. A parameter α is used to control the relative

importance of color and texture, where α = 0 indicates only texture, and α = 1 means only

color. In Table 8.1, we provide a comparative evaluation using α = {0, 0.25, 0.5, 0.75, 1},

progressively increasing the influence of color. We observe that texture information improves

upon results obtained with color only, but is ineffective when used alone, which seems to

confirm our intuition.
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α 0 0.25 0.5 0.75 1
ROC AUC 0.59 0.69 0.74 0.79 0.74

Table 8.1: Influence of color and texture on the nearest-neighbor retrieval. Using texton only
(α = 0) fails to return good nearest neighbors, and maximum performance is obtained when
α = 0.75 (in bold). Scores are obtained by computing the ROC area under the curve (AUC) on
our test set.

The limitations of such an approach is that it wholly depends on the training data.

Given the huge dimensionality of the space of all scenes, we cannot expect to find a matching

scene for any given image, even with a dataset of 20,000 images. We will now investigate a

different, more local class of techniques, which can hopefully compensate when the training

data cannot help.

8.4 Local Color Statistics

Reinhard et al. [2004] have demonstrated a very simple way of making an object match

its background by shifting its colors to make them closer to the background colors. The

intuition behind this idea is that this shift appears to be increasing the correlation between

the object and background illuminants. For example, the reddish hue of a sunset sky should

appear on all objects in the scene. An object taken from a bright day scene can be made

to look better in the new sunset background by shifting its colors towards red. While their

application is in image recoloring, it can also be used in our context by computing the

distance between the object and its new background colors.

The color description used in [Reinhard et al., 2004] is a simple marginal histogram in

Lαβ color space. A straightforward improvement is to use the full 3-D joint histograms

instead of marginals because color components are still quite correlated even in Lαβ. In-

terestingly, this yields substantial improvement, going from an area under the ROC curve

of 0.66 for marginals to 0.76 for joint on our test data, at the cost of a higher-dimensional

representation. The same intuition of using texture as mentioned in the previous section

also applies here, and improves performance as well, as shown in Table 8.2.
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technique marginals joint joint with texture
ROC AUC 0.66 0.76 0.78

Table 8.2: Summary of local techniques. The best performance (bold) is obtained by combining
a joint histogram representation with texture matching using texton histograms. Scores are
obtained by computing the ROC area under the curve (AUC) on our test set.

8.5 Combining Global and Local Statistics

Let us consider for a moment the two techniques introduced in the previous sections. When

the global method yields a high realism score, we can be confident that it is correct because

it relies on matches to actual real scenes. However, when it is uncertain, it means that no

good match was found, and the results are not reliable. We can then only rely on the local

approach. This suggests that we can combine both global and local ideas into one coherent

classifier.

We propose a two-stage cascade. First, the algorithm computes the distance to the

nearest-neighbor according to the best global measure from Sec. 8.3. If the match is good

enough (as determined by a threshold τ), it classifies this image as realistic. Otherwise,

it uses the local method from Sec. 8.4 to assign a realism score. We use 10-fold cross-

validation on our labeled dataset to determine the best parameter τ (0.35 in our case)

which will maximize the area under the ROC curve.

Fig. 8.4 shows the ROC curves for the best techniques presented here. We compare our

techniques against the baseline proposed by Reinhard et al. [2004]. The results clearly show

that combining the global and local techniques results in performance superior to any single

one. In another paper [Reinhard et al., 2001], they make a point of using Lαβ color space.

We performed each experiment by using the Lαβ, CIE L*a*b*, HSV and RGB color spaces

and found that the CIE L*a*b* color space performs the best, closely followed by Lαβ.

In Fig. 8.5, we show a visual representation of the rankings produced by our combined

classifier on our test set. Images are shown ranging from least (top) to most (bottom)

realistic. Ground truth labels are illustrated by color borders: a red border indicates an

unrealistic image, green and blue indicates realistic and real respectively. It is interesting

to observe the output of the algorithm at mid-range where confusion is higher: even for
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Figure 8.4: The ROC curves comparing the best approaches of the global and local categories,
as well as the combination of both, shown against the baseline method, suggested by Reinhard
et al. [2004]. The combination of both local and global methods outperforms any single method
taken independently, and is significantly better than the baseline approach.

humans, assessing image realism is much less obvious and requires a more careful inspection

than for images at both ends of the spectrum.

8.6 Application to Automatic Image Recoloring

An interesting application as well as a visual evaluation of this technique is the recoloring

of an image to make it appear more realistic. The idea is to first classify the image using

our proposed method and retrieve either a nearest scene (if the global method is used), or

the determination that no matching global scene is available. In the first case, we need to

recolor the object to match the colors of similar objects in that nearest scene. In the second

case, we can only try to make the object more similar to its surroundings, as in [Reinhard

et al., 2004].

The goal of recoloring is to modify a source color distribution Ds in order to match a

target color distribution Dt. In our setting, Ds represents the object colors, and Dt is the

nearest neighbor object if the global method is used, or the background otherwise. Our
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Figure 8.5: Images ranked according to their realism score, determined by combining the best
global and local methods. The border color indicates the labeled class for each image (red:
unrealistic synthetic; green: realistic synthetic; blue: real). Each row corresponds to the per-
centile interval shown on the left, and images are randomly selected within each interval. Row
1: 0-5% interval (most unrealistic), 2: 12-17%, 3: 25-30% , 4: 42-47%, 5: 52-57%, 6: 70-75%,
7: 82-87%, 8: 95-100% (most realistic).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.6: Automatic image recoloring. The input images (a)–(d) are recolored by using the
local (e)–(f) and the global statistics (g)–(h). Recoloring these unrealistic input images increases
their realism.

color matching procedure is an automatic extension of the interactive recoloring approach

from [Reinhard et al., 2001], where they propose to represent both Ds and Dt by k color

clusters, with k being manually chosen to be the number of major colors in the scene. Each

cluster in Ds is matched to a cluster in Dt by comparing their means and variances.

Instead, we propose an entirely automatic algorithm. Each color distribution is repre-

sented by a mixture of k spherical gaussians (k = 100 and remains constant for all images),

and the distributions are matched in a soft way using the solution to the well-known trans-

portation problem. The algorithm is divided in three steps. First, we use the Earth Mover’s

Distance algorithm [Rubner et al., 2000] to compute the best assignment between the clus-

ters in Ds and Dt. Second, color shift vectors for each cluster in Ds are computed as a

weighted average of its distance in color space to each of its assigned clusters in Dt. Finally,

every pixel in Ds can be recolored by computing a weighted average of clusters shifts, with

weights inversely proportional to the pixel-cluster distance. These three steps are performed

in the CIE L*a*b* color space, and the results are converted back to RGB for visualization.
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Examples of recoloring using the global and local models are illustrated in Fig. 8.6, and

show that we can automatically improve the realism of composite images by using the same

general approach.

8.7 Conclusion

In this chapter, we study the problem of understanding color compatibility using image

composites as a useful application domain. We propose two measures for assessing the

naturalness of an image: 1) a global, data-driven approach that exploits a large database

of natural images, and 2) a local model that depends only on colors within the image. We

show that while both techniques provide substantial improvement over previous work, the

best approach needs to use both techniques for different types of images.

We evaluate our approach on a large test dataset of synthetic images, generated by a

novel semi-automatic technique. We are the first work in this field to provide a quantita-

tive evaluation and we demonstrate performance superior to the state of the art method

[Reinhard et al., 2004]. We also qualitatively validate our approach using a novel image

recoloring method that makes composite images look more realistic.

A number of issues, such as position of objects in the image, object semantics, material

properties, and more explicit illumination parameters still need to be addressed. For in-

stance, it will be important to evaluate the influence of correctly matching the sun position

estimated in Ch. 6 on image realism. We are planning to explore these issues in future

work.

While the ideas presented in this chapter are only a first step, lessons learned from these

experiments should be extremely useful to steer this area towards a better understanding

of natural color statistics and color perception.
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Chapter 9

Discussion and Future Work

And now for something completely different.

Monty Python (1969–1983)

Our work represents only a small step towards providing a full understanding of natural

illumination in image sequences and single images. In order to reach that goal, we believe

there is still much to be done to improve upon and extend the proposed framework, and to

move beyond. In this final chapter, we discuss the combination of data-driven techniques

with physical models, talk about the challenges of dealing with image sequences and single

images, explore interactions between lighting and objects, present future research directions,

and finally consider further steps towards illumination-aware scene understanding.

9.1 Physical Models vs. Data-driven Techniques

Throughout this thesis, we have proposed to use both physically-based methods—physical

model of the sky appearance, color ratios for shadow detection, geometric matching of the

sun position—and data-driven techniques—nearest-neighbor classifier for image synthesis

and realism assessment, SVM classifier for shadow detection—with the goal of understand-

ing and exploiting natural illumination in images. We now discuss some challenges related

to these two broad categories of techniques, and the benefit of using them jointly.
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Physical Models Physically-based models provide a deep, mathematical understanding of

the variables that come into play in creating a physical phenomenon, and how they interact

together to produce the results observed in images. Their main advantage is that they

can predict complex appearance effects, such as the appearance of the sky, from a limited

number of parameters. They can also be useful to predict cases that have never been seen a

priori. However, their main drawbacks are that they assume high-quality images with very

little distortions due to noise and non-linearities, and their parameters can be very hard—

sometimes even mathematically impossible—to estimate from single images. How far can

we go using only physical models? Unfortunately, we cannot go very far in single images

unless we assume some of the variables (e.g., geometry, lighting, or camera parameters) to

be known.

Data-driven Techniques In contrast, data-driven techniques have many more parameters

to estimate, and these parameters do not typically correspond to physical interpretations of

the phenomena at hand. Because of that, it may be hard to obtain an intuitive explanation

of their results. Their main advantage, however, is that the parameters can be automatically

learned from labelled—and, in some cases, unlabeled—data, provided the training database

is sufficiently large and varied. This makes such techniques ideal for dealing with the

inherent uncertainty of single images, but their expressiveness is limited by the examples in

the training data. How far can we go using purely data-driven techniques? Unfortunately,

we can only go as far as the data will go. So before we can capture the entire world, we

need to keep working on extracting trends from limited, representative datasets.

We have shown in Ch. 6 that combining physical models with data-driven techniques in

a probabilistic manner results in a framework which overcomes the limitations of both meth-

ods, and takes advantage of their strengths. We believe that by striving to combine physical

models with data-driven techniques, we should be able to achieve better performance than

by considering them independently.
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9.2 Image Sequences vs. Single Images

This thesis has considered the tasks of estimating the illumination conditions and synthesiz-

ing novel, lighting-consistent appearance in two situations: 1) in image sequences (Part I),

and 2) in single images (Part II). We briefly discuss here important insights learned from

considering these two sources of data.

Image Sequences Capturing a sequence of images over time, from a static camera, con-

strains several variables to a fixed value so it becomes easier to estimate the others. Part I

showed how the temporal information available in such image sequences can be used to

estimate the illumination conditions. In particular, doing so has allowed us to discover that

the sky, when observed over time, is a trove of information that had yet to be tapped into.

Single Images In the end however, our ultimate goal is to be able to reason about single

images, in which temporal information is not available (Part II). One of the key ideas of this

thesis has been to show how we the insights learned from image sequences can be applied to

this challenging case. In the case of the sky, we have shown that by using the same physical

model in a probabilistic framework, it can also be exploited in single images. But we believe

we can go much further by exploiting the novel dataset of webcam sequences presented in

Ch. 4. Using the temporal information available, we can robustly and automatically extract

the illumination conditions at each frame. If we ignore temporal information, this effectively

results in a database of millions of single images where the lighting conditions are known.

This should prove to be an invaluable tool for learning how the appearance of real-world

images vary as a function of illumination, and we hope that the public availability of such

a dataset1 will spur research in this area.

9.3 Illumination-Aware Pedestrian Detection

One pressing research question that rises from our work is: can our explicit knowledge of

illumination be used to improve existing computer vision tasks? We have obtained some

1Freely available at http://graphics.cs.cmu.edu/projects/webcamdataset.
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promising preliminary results in the context of outdoor pedestrian detection, and report

them here.

9.3.1 Overview

It has been shown that it is sometimes beneficial to separate an object class into subclasses,

and train separate detectors for them independently. The main reason explaining an increase

in performance is that when there is too much variation in appearance within a class, it puts

a large burden on the classifier which must somehow group together objects that have very

different features. By splitting the data into more homogeneous groups, the classification

task becomes easier, and recognition performance increases. The critical point here is

to split the data into coherent subgroups of similar appearance. For instance, Hoiem et

al. [2006] have observed increased performance in pedestrian detection when their training

set was split into subgroups according to scale: large and small people should be trained on

(and detected) independently. Another common way to split classes is by orientation: cars

appear widely different whether they are seen from the side or from the front [Savarese and

Fei-Fei, 2007].

We propose the hypothesis that strong changes produced by varying illumination could

be harming the performance of an object detector. By exploiting illumination as an explicit

variable, it might be possible to improve detection performance. This intuition has been

explored in the context of faces. Faces have the advantage that the main variation in

their appearance is due to lighting, and not to intra-class variations [Moses et al., 1994].

Indeed, PCA analysis on registered faces has shown that the first few principal components

encode specific lighting directions [Ramamoorthi, 2002] (assuming a lambertian reflectance

model). Even with such properties though, recognizing faces under varying illumination is

still a very hard problem [Nishino et al., 2005; Han et al., 2010], especially when there is a

single dominant light source, as is the case outdoors with the sun [Lee et al., 2001].

On the other hand, for many other objects such as cars or people, the largest source

of variation lies in the within-class deformations (e.g., brands of cars), so lighting becomes

much harder to capture. However, now that we can directly observe the usually hidden

lighting variable, we can bypass lighting invariance, essential in recognition, and hopefully
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increase performance for many different types of objects observed in natural settings. This

is akin to the work of Nishino et al. [2005], in which they explicitly estimate the illumina-

tion conditions based on the reflections on the eyes. This results in much improved face

recognition performance.

9.3.2 Our Approach

In our work, we experimented with a manual split of the training and test set into four

bins, based on the sun direction: back-left [−180◦,−90◦], front-left [−90◦, 0◦], front-right

[0◦, 90◦] and back-right [90◦, 180◦]. We use the same training and test set as in Secs 6.3.4

and 6.5.2 respectively, which contain 2,000 training and 239 test images, all taken from the

LabelMe dataset [Russell et al., 2008].

For the detector, we use the approach of Felzenszwalb et al. [2008], with a single com-

ponent, and with the parts model turned off. This effectively results in an SVM classifier

trained on standard Histogram of Gradients (HOG) features [Dalal and Triggs, 2005], where

the root location of the bounding boxes is treated as a latent boundary, and where the hard

negative data mining step is activated during training. We train four independent clas-

sifiers on the four splits of the training set, and apply the sigmoid normalization step of

Platt [1999] to have each one generate probabilistic outputs.

9.3.3 Initial Experiments

At test time, we manually select which detector to run based on the ground truth sun posi-

tion in the 239 test images, and compute the average precision (AP) curve for the resulting

detections. Overall, the improvement is modest: using the 4 illumination splits results

in an increase of 2% in AP in our test sets. A few caveats may explain such a limited

improvement in performance. First, the HOG features employ a contrast-normalization

scheme which strives to achieve illumination invariance. Since this is contrary to our goal

of capturing variations due to illumination, new or complementary features should instead

be used. Interestingly, the HOG feature weights recovered for each classifier do differ based

on illumination direction, even despite this normalization scheme. As shown in Fig. 9.1,

differences arise where hard shadows (e.g., around the feet) or hard contrast with the back-
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9.3 Illumination-Aware Pedestrian Detection

(a) Back-left (b) Back-right (c) Front-left (d) Front-right

Figure 9.1: Mean images (top row) and HOG [Dalal and Triggs, 2005] weights learned (bottom
row) for pedestrians with the sun coming from four different directions: (a) back-left, (b) back-
right, (c) front-left, and (d) front-right. Differences in HOG weights are visible around the feet
and shoulders regions.

ground (around shoulders or sides) are likely to be. This is encouraging, but it suggests that

further research in this area should focus on designing features that explicitly aim to capture

variations caused by lighting. The second caveat is that the training and test set contain

many very small pedestrians, where the limited resolution obfuscates illumination effects.

A better, higher-resolution dataset should be used instead [Dollár et al., 2009]. Overall,

these experiments suggest that knowledge about illumination might indeed be used to im-

prove object detector, but further research in this direction is required to show additional

improvement.
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9.4 Future Directions

We now discuss possible extensions to our current framework.

9.4.1 Integrating Other Illumination Cues

Since our framework is probabilistic in nature, additional cues can readily be added without

any significant changes. We review a few possibilities of existing or new illumination cues

that, although not as commonly-available in images as the ones we have used in our work

(see Ch. 6), could also be integrated within our framework.

Human faces Front-facing human faces can easily be detected in images using off-the-shelf

face detectors as in [Bitouk et al., 2008]. From them, it should be possible to also estimate

the illumination conditions [Huang et al., 2008; Bitouk et al., 2008; Han et al., 2010].

Occluding contours If occluding contours can be detected in a single image [Hoiem et al.,

2010], then the illumination estimation technique of Johnson and Farid [2007] could readily

be integrated in our framework.

9.4.2 Higher-Level Shadow Reasoning

This thesis has argued in Ch. 5 and 6 that detecting shadow boundaries is a useful tool for

understanding illumination in single images. A possible extension to this framework is to

reason about shadow regions instead [Zhu et al., 2010]. Regions might provide additional

robustness to noise and to uncertainty in boundary classification, since it requires that a

closed surface area be in shadows. In addition, shadow regions would provide the spatial

support required for reasoning about the object which cast the shadow in the first place:

if elongated, then the caster is likely a vertical object such as a pedestrian, or a pole; if

scattered with holes, then it likely comes from foliage or vegetation.
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9.5 Towards Illumination-Aware Scene Understanding

Throughout this document, we have argued that illumination interacts with the world

in complex ways. Objects cast shadows on their surroundings, the clear sky exhibits a

gradient that is a function of the sun position, surfaces facing the sun are brightly lit,

etc. In this thesis, we have proposed techniques to analyze these effects in order to reason

about illumination, and exploit them in graphics applications, in both image sequences and

single images. Fig. 9.2 illustrates this graphically, with the red arrows corresponding to the

contributions of this thesis. Going forward, we propose that we should also move beyond

the task of solely estimating illumination, and aim at reasoning about the interplay between

scene and illumination as a whole (blue arrows in Fig. 9.2).

The interaction between illumination and objects (Fig. 9.2, center) has already been

discussed in Sec. 9.3. Let us now elaborate on the relationship between scene geometry

and lighting. The goal of scene layout estimation, as introduced by Hoiem et al. [2007],

is to segment the image into broad geometric classes: sky, vertical surfaces, and support

(ground). The vertical surfaces are further subdivided into planar orientation (facing left,

facing right, facing forward), porous (e.g., vegetation) or solid (with no definable orienta-

tion, like pedestrians or cars for example). We have already discussed at length in Ch. 6

the interplay between scene geometry and illumination: surfaces facing the sun should be

brighter than those facing away from the sun2. While we already know that bright surfaces

inform us about the sun position (see Sec. 6.3.3), knowledge of the sun position also tells us

something about surfaces: if the sun comes from the right, then left-facing surfaces should

be dark. Can information about the sun position help improve scene layout estimation?

This is an interesting future research direction.

Another interesting example of scene-illumination interactions is in scene boundary

reasoning [Canny, 1986; Martin et al., 2004; Hoiem et al., 2010]. Several phenomena are

responsible for creating boundaries in an image: reflectance (material) changes, surface

normal discontinuities (e.g., corner of a building), occlusions (e.g., edge of an object), and

cast shadows. However, since cast shadows do not coincide with object boundaries in the

2Surface reflectance (albedo) also has a role to play here, but illumination changes typically dominate
reflectance changes in brightly-lit scenes.
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Illumination

Boun
dar

y c
olor r

ati
os

Ex
pe

cte
d s

had
ow ap

pe
ara

nce
Expected surface brightness

Surface brightness

O
bj

ec
t 

ap
pe

ar
an

ce

Ex
pe

ct
ed

 o
bj

ec
t 

lo
ca

tio
ns

Image boundariesGeometric layout Objects (pedestrians)

Input image

Figure 9.2: Towards illumination-aware scene understanding. Starting from an input image
(top), this thesis has shown how to exploit geometric surfaces [Hoiem et al., 2007], ob-
jects [Felzenszwalb et al., 2010], and image boundaries [Canny, 1986] to recover the illumination
conditions in an image (red arrows). An interesting future research direction consists in under-
standing how this knowledge can be used to improve these important computer vision tasks
(blue arrows).

image, existing algorithms treat them as nuisances and strive to become invariant to them.

Instead, we argue that we should explicitly include knowledge of shadows in boundary

reasoning algorithms, for example using specific detectors like the one presented in Ch. 5.

In all the cases discussed here and presented in Fig. 9.2, there is one important caveat

that anyone attempting to solve this problem will have to carefully examine and handle:
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9.5 Towards Illumination-Aware Scene Understanding

knowledge of the illumination conditions (especially the sun position) cannot always help

reasoning about the scene in a given image. Because the sun seldom shines on the entire

scene all at once (unless it is an open field devoid of objects), its light is bound to be

occluded by some objects and thereby creates large shaded areas. Objects, boundaries, or

surfaces in these areas suddenly become unpredictive of the sun direction: they simply are

dark. So we are facing a tricky ambiguity here: is the region of the image dark because the

sun comes from a different direction (e.g., not facing the surface), or is it because some other

scene element blocks the sunlight, which would otherwise shine straight on? Solving this

ambiguity might require specific tools like the “sunlit pedestrian” classifier, from Sec. 6.3.4,

which is explicitly trained to distinguished between sunlit and shaded pedestrians.
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Conclusion

What we call the beginning is often the end.

And to make an end is to make a beginning.

The end is where we start from.

T. S. Eliot (1888–1965)

In conclusion, this dissertation proposes a radical shift from the way natural illumination is

considered in computer vision: instead of striving to become invariant to illumination, we

should embrace it by actively seeking ways to analyze and exploit its effects on images. It has

also shown how this novel understanding of illumination in images can be used in computer

graphics to generate novel photo-realistic content by borrowing appearance in similarly-lit

images. It is our hope that this thesis will inspire others, and provide them with the insights

and tools required to move towards illumination-aware scene understanding and synthesis.
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Appendix A

Estimating Illumination in Image

Sequences: Additional Material

A.1 Geolocating the Camera Using the Sun and the Sky

The techniques presented so far have been considering either the sun position or the sky

appearance as two independent sources of information that could be used to recover the

camera parameters. We now demonstrate that, by combining them, we can avoid the

requirement of having to know the GPS location of the camera, and also estimate it.

Recovery of the GPS location, or geolocation, has been explored in a variety of scientific

fields. In biology, scientists are tracking many marine animals using light sensors. The

sunset and sunrise times are found by analyzing the light intensity profiles captured by

these sensors, which are then used to geolocate the animals and track them [Hill, 1994]. In

robotics, altimeters are used on outdoor mobile robots to accurately detect the sun position,

and compute the GPS location from several observations [Cozman and Krotkov, 1995]. In

computer vision, Jacobs et al. [2007b] determine the position of webcams by correlating

their intensity variations computed over several months with sunlight satellite images of

the same period.
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A.1 Geolocating the Camera Using the Sun and the Sky

A.1.1 Algorithm

In our work, we show how we can estimate the latitude and longitude of the camera, as well

as its geometric parameters, from an image sequence in which the sun and sky are visible.

We introduce the following algorithm:

Algorithm 3: Camera localization from the sun and the sky
Input: Sun position in images: (us, vs);
Input: Clear sky images;
Input: Date and time of capture of each image.

Find set I of images where the sun is far away from the field of view;1

Solve the non-linear minimization (3.16) to recover fc and θc;2

Compute the sun angles (θsi, φsi) from (fc, θc) and the sun labels (us, vs) using (A.3);3

Solve the non-linear minimization (A.4) to estimate the latitude l and longitude L;4

Solve the non-linear minimization (3.17) to recover the camera azimuth φc.5

Output: Camera parameters: (fc, θc, φc);
Output: Camera latitude and longitude: (l, L).

We now detail lines 3 and 4 of Algorithm 3: how to recover the latitude l and longitude

L of the camera given the date and time of capture, the camera zenith angle θc and focal

length fc, as well as the sun position in images (us, vs). Our approach relies on an equation

expressing the sun zenith and azimuth angles θsg and φsg, as a function of time, date,

latitude and longitude on Earth [Preetham et al., 1999]:

θsg =
π

2
− arcsin

�
sin l sin δ − cos l cos δ cos

πt

12

�

φsg = arctan
� − cos δ sin πt

12

cos l sin δ − sin l cos δ cos πt
12

�
,

(A.1)

where δ is the solar declination in radians, and t is solar time in decimal hours. δ and t are

given by:

δ = 0.4093 sin
�

2π(J − 81)
368

�
,

t = ts + 0.17 sin
�

4π(J − 80)
373

�
− 0.129 sin

�
2π(J − 8)

355

�
+

12L

π
,

(A.2)

where ts is standard time in UTC coordinates in decimal hours, and J is the julian date
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A.1 Geolocating the Camera Using the Sun and the Sky

(the day of the year as an integer in the range 1 to 365).

The relationship between the sun pixel coordinates (us, vs) in the images and its zenith

and azimuth angles θsi and φsi is the following:

θsi = arccos

�
vs sin θc + fc cos θc�

f2
c + u2

s + v2
s

�

φsi = arctan
�

fc sin φc sin θc − us cos φc − vs sin φc cos θc

fc cos φc sin θc + us sin φc − vs cos φc cos θc

�
,

(A.3)

see Appendix A.3 for the derivation.

Note that at the ground truth GPS location, θsg = θsi and φsg = φsi. We can therefore

recover the GPS location by solving the following least-squares minimization problem:

min
l,L

N�

k=1

∠(−→s (θ(k)
sg , φ(k)

sg ),−→s (θ(k)
si , φ(k)

si ))2 , (A.4)

where N is the number of images where the sun has been labeled, ∠(·) denotes the angular

difference, and −→s (θ,φ) is the vector obtained by expressing the angles (θ,φ) in Cartesian

coordinates. A solution in l and L can be recovered using a non-linear least-squares op-

timizer. We have experimentally found that first minimizing the error on zenith angles

∠(θsg, θsi) and using its solution to initialize (A.4) resulted in greater stability. This entire

process is summarized in Algorithm 3.

A.1.2 Camera Localization Results

To evaluate the precision of our algorithm, we tested it over a large set of conditions using

synthetic data, as well as on our ground truth sequence.

A.1.2.1 Synthetic Data

We evaluated the performance of our algorithm on synthetic data, obtained by varying the

latitude l, longitude L, camera azimuth angle φc, and number of available images n. The

resulting 4-dimensional parameter space was discretized the following way: 9◦ increments

for both l and L, 23◦ increments for φc, and n = 20, 50, 100. For each point in the that

parameter space, n sun positions are randomly generated according to (A.1) and (A.3) with
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Figure A.1: Error in GPS coordinates estimation, in km, for different values of n: (a) 20, (b) 50,
and (c). Since longitude does not seem to affect the precision of the results, the errors shown
here are averaged over all longitudes. The white cells indicate configurations where the sun is
never visible.

gaussian noise of variance σ2 = 5px. Each experiment is repeated 15 times to account for

randomness, and the mean over all these tries are reported. Fig. A.1 shows the errors (in

km) obtained by our algorithm at every point in this parameter space. Since longitude does

not seem to affect the precision of the results, the errors shown are averaged over all values

of longitude. The white cells indicate configurations where the sun is never visible, so the

GPS position cannot be recovered. When n = 100, the mean error is 25km.
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A.2 Calibrating the Camera From the Sun Position: Derivation of the Linear System of
Equations

Sequence Ground truth Estimated Error (km)name Latitude (◦) Longitude (◦) Latitude (◦) Longitude (◦)
257 38.97 -76.61 38.47 -76.40 58.44
279 43.32 -84.60 42.06 -84.13 145.82
513 40.20 -79.61 39.42 -80.61 122.25
524 40.41 -77.13 40.09 -77.66 56.72
569 44.00 -103.24 45.21 -103.54 136.65
601 32.69 -96.62 31.72 -95.50 150.78
630 28.98 -98.50 28.58 -97.79 81.53
695 36.60 -79.38 37.77 -79.25 129.84

Table A.1: Detail of localization results for 8 sequences taken from the AMOS dataset. On
average, our method makes a localization error of 110km.

A.1.2.2 Ground Truth Results

We also applied our technique on 8 sequences from the AMOS database [Jacobs et al.,

2007a], where the ground truth GPS positions are known. We obtain a mean localization

error of 110km (straight-line distance on the surface of the Earth), and the results for each

individual sequence are shown in Table A.1. On average, each sequence was localized by

using 48 images as input.

A.2 Calibrating the Camera From the Sun Position: Derivation

of the Linear System of Equations

In Sec. 3.2, we presented an overview of the method employed to find an initial estimate of

the camera parameters from the sun position gathered over several frames. For complete-

ness, we now present all the details of the derivation.

Recall the following goal: we wish to recover the projection matrix M, which we con-

strain to be of the form M = K



 R t

0 1



, where R and K are defined in (3.3) and (3.4)
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respectively. Written explicitely, we have:

M =





m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34




=





fc sin φc −fc cos φc 0 0

−fc cos φc cos θc −fc sin φc cos θc fc sin θc 0

cos φc sin θc sin φc sin θc cos θc 0




.

(A.5)

Each observation is a pair of sun 3-D coordinates p, and its corresponding location in an

image (us, vs). If mi is the ith row of M, then each observation defines two equations

(following [Forsyth and Ponce, 2003]):

(m1 − usm3) · s = 0 ,

(m2 − vsm3) · s = 0 .
(A.6)

If we have N such observations, we can write the linear system of equations from (A.6)

directly in matrix notation with the form Pm = 0:





x(1)
w y(1)

w 0 0 0 −u(1)
s x(1)

w −u(1)
s z(1)

w −u(1)
s z(1)

w

0 0 x(1)
w y(1)

w z(1)
w −v(1)

s x(1)
w −v(1)

s z(1)
w −v(1)

s z(1)
w

...
...

...
...

...
...

...
...

x(N)
w y(N)

w 0 0 0 −u(N)
s x(N)

w −u(N)
s z(N)

w −u(N)
s z(N)

w

0 0 x(N)
w y(N)

w z(N)
w −v(N)

s x(N)
w −v(N)

s z(N)
w −v(N)

s z(N)
w









m11

m12

m21

m22

m23

m31

m32

m33





= 0.

(A.7)

This is a system of 2N equations and 8 unknowns. When N ≥ 4, homogeneous linear

least-squares can be used to compute the value of the vector m that minimizes |Pm|2 as

the solution of an eigenvalue problem.

Because M is rank-deficient (rank = 2), it can only be recovered up to an unknown

scale factor. However, observe that the third row in M must have unit length [Forsyth and

Ponce, 2003], so we normalize m by � = ±
�

m2
31 + m2

32 + m3
33 before applying (A.8). After
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normalization, the camera parameters (fc, θc, φc) can be recovered by:

θc = arctan

��
m2

31 + m2
32

m33

�

fc =
�

m2
11 + m2

12

φc = arctan
�

m11

−m12

�
.

(A.8)

The sign of � is chosen such that the points s lie in front of the camera (i.e., have positive

x coordinates).

A.3 Expressing the Sky Model as a Function of Camera Param-

eters: Full Derivation

In Sec. 3.3.1.3, we presented a way to express the sky model as a function of camera

parameters, which made the assumption that the camera zenith and azimuth angles were

independent in order to come up with a simpler model. In this appendix, we derive the

exact expressions for θp and φp, the zenith and azimuth angles corresponding to a pixel at

coordinates (up, vp) in the image, as illustrated in Fig. 3.5.

We first convert the (up, vp) coordinates to a point s
� in the 3-D camera reference frame

(xc,yc, zc), and then rotate it to align it with the global reference frame (xw,yw, zw). The

coordinates of the point in the camera reference frame are

s
� =





x�s

y�s

z�s




=





fc

−up

vp




. (A.9)

The rotation that maps the point s
� in the camera reference frame to a point s in the world

reference frame is given by R−1, where R has already been defined in (3.3). We apply the
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rotation to express the point in the world reference frame:

s =





xs

ys

zs




= R−1

s
� . (A.10)

Finally, the angles are obtained by converting into spherical coordinates:

θp = arccos

�
zs�

x2
s + y2

s + z2
s

�
, φp = arctan

�
ys

xs

�
. (A.11)

We obtain the final, exact equations for θp and φp by substituting (A.9) into (A.10),

and the resulting expression into (A.11):

θp = arccos



vp sin θc + fc cos θc�
f2

c + u2
p + v2

p



 (A.12)

φp = arctan
�

fc sin φc sin θc − up cos φc − vp sin φc cos θc

fc cos φc sin θc + up sin φc − vp cos φc cos θc

�
. (A.13)

A.4 Determination of Minimum Angular Difference for the Azi-

muth-independent Sky Model

In this appendix, we elaborate on the synthetic experiments that are performed in order

to evaluate the conditions in which our azimuth-independent sky model (3.9) introduced in

Sec. 3.3.1.2 is valid. As in Sec. 3.3, we consider only clear skies where turbidity t = 2.17 (see

the first row of Fig. 3.6 for a visualization of the Perez sky model (3.7) at that particular

turbidity).

We proceed to evaluate the influence of the azimuth-dependent component of the Perez

sky model (second factor in (3.7)). Our goal is to determine sun-camera configurations

where that influence is mostly constant over the image. Given the field of view of the

camera, we generate synthetic sky images over all possible sun positions. More precisely,

we generate images that cover the sun zenith angle θs ∈ [0, 90◦], and the sun relative azimuth
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angle ∆φs = φs − φc with respect to the camera ∆φs ∈ [−180◦, 180◦]. For each synthetic

image, we then compute:

r =
max(c∗)
min(c∗)

, (A.14)

where c∗ is the mean column in the image, computed over the visible sky region only. In

other words, we summarize the effect of the sun on an image by a single value r, which

captures how the sky columns are affected. When r = 1, the sun has no effect on the sky.

Unfortunately, this is never the case, as the sun will always have some effect on the sky

when it is clear. Therefore, we approximate that the sun has little effect when r ≤ 1.1.

In Fig. A.2, we plot r over the entire (θs,∆φs) space. The white lines are the r = 1.1

isocontours, and the shaded regions indicate configurations where r < 1.1.

For the typical case of 35◦ field of view shown in Fig. A.2b, we can safely affirm that

when the sun is at least 100◦ away from the camera field of view, then r ≤ 1.1, except in a

region located immediately behind the camera where it rises up to r = 1.2. When the field

of view diminishes to 20◦ as in Fig. A.2a, then the number of sun-camera configurations

where r ≤ 1.1 is much larger, as the sun has to be closer to the camera to induce a noticeable

influence on the sky appearance. The opposite effect is observed in the case of a larger field

of view, as shown in Fig. A.2c.

In conclusion, we used synthetic experiments to explore the validity of our azimuth-

independent sky model (3.9), and we showed that for standard cameras, the sun has little

influence on the sky when it is at least 100◦ away from the camera field of view.
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Figure A.2: Synthetic experiments to evaluate the influence of the sun on the sky gradient,
generated for different camera fields of view: (a) 20◦, (b) 35◦, and (c) 50◦. Each value is
obtained by first synthesizing the sun-dependent component of the Perez sky model (second
term in (3.7)) at the corresponding sun zenith θs and relative azimuth (∆φs) angles. The white
lines are the isocontours corresponding to r = 1.1, and the shaded areas indicate that r < 1.1,
where r is defined in (A.14). The black rectangles indicate the camera field of view.
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