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Abstract

Over the past two decades, the storage capacity and access bandwidth of main memory
have improved tremendously, by 128x and 20x, respectively. These improvements are mainly
due to the continuous technology scaling of DRAM (dynamic random-access memory), which
has been used as the physical substrate for main memory. In stark contrast with capacity
and bandwidth, DRAM latency has remained almost constant, reducing by only 1.3x in the
same time frame. Therefore, long DRAM latency continues to be a critical performance bot-
tleneck in modern systems. Increasing core counts, and the emergence of increasingly more
data-intensive and latency-critical applications further stress the importance of providing
low-latency memory accesses.

In this dissertation, we identify three main problems that contribute significantly to long
latency of DRAM accesses. To address these problems, we present a series of new techniques.
Our new techniques significantly improve both system performance and energy efficiency. We
also examine the critical relationship between supply voltage and latency in modern DRAM
chips and develop new mechanisms that exploit this voltage-latency trade-off to improve
energy efficiency.

First, while bulk data movement is a key operation in many applications and operating
systems, contemporary systems perform this movement inefficiently, by transferring data
from DRAM to the processor, and then back to DRAM, across a narrow off-chip channel.
The use of this narrow channel for bulk data movement results in high latency and high en-
ergy consumption. This dissertation introduces a new DRAM design, Low-cost Inter-linked
SubArrays (LISA), which provides fast and energy-efficient bulk data movement across sub-
arrays in a DRAM chip. We show that the LISA substrate is very powerful and versatile
by demonstrating that it efficiently enables several new architectural mechanisms, including
low-latency data copying, reduced DRAM access latency for frequently-accessed data, and
reduced preparation latency for subsequent accesses to a DRAM bank.

Second, DRAM needs to be periodically refreshed to prevent data loss due to leakage.
Unfortunately, while DRAM is being refreshed, a part of it becomes unavailable to serve
memory requests, which degrades system performance. To address this refresh interference
problem, we propose two access-refresh parallelization techniques that enable more overlap-
ping of accesses with refreshes inside DRAM, at the cost of very modest changes to the
memory controllers and DRAM chips. These two techniques together achieve performance
close to an idealized system that does not require refresh.

Third, we find, for the first time, that there is significant latency variation in accessing
different cells of a single DRAM chip due to the irregularity in the DRAM manufacturing
process. As a result, some DRAM cells are inherently faster to access, while others are in-



herently slower. Unfortunately, existing systems do not exploit this variation and use a fixed
latency value based on the slowest cell across all DRAM chips. To exploit latency variation
within the DRAM chip, we experimentally characterize and understand the behavior of the
variation that exists in real commodity DRAM chips. Based on our characterization, we
propose Flexible-LatencY DRAM (FLY-DRAM), a mechanism to reduce DRAM latency by
categorizing the DRAM cells into fast and slow regions, and accessing the fast regions with a
reduced latency, thereby improving system performance significantly. Our extensive exper-
imental characterization and analysis of latency variation in DRAM chips can also enable
development of other new techniques to improve performance or reliability.

Fourth, this dissertation, for the first time, develops an understanding of the latency be-
havior due to another important factor — supply voltage, which significantly impacts DRAM
performance, energy consumption, and reliability. We take an experimental approach to
understanding and exploiting the behavior of modern DRAM chips under different supply
voltage values. Our detailed characterization of real commodity DRAM chips demonstrates
that memory access latency reduces with increasing supply voltage. Based on our charac-
terization, we propose Voltron, a new mechanism that improves system energy efficiency
by dynamically adjusting the DRAM supply voltage based on a performance model. Our
extensive experimental data on the relationship between DRAM supply voltage, latency, and
reliability can further enable developments of other new mechanisms that improve latency,
energy efficiency, or reliability.

The key conclusion of this dissertation is that augmenting DRAM architecture with
simple and low-cost features, and developing a better understanding of manufactured DRAM
chips together leads to significant memory latency reduction as well as energy efficiency
improvement. We hope and believe that the proposed architectural techniques and detailed
experimental data on real commodity DRAM chips presented in this dissertation will enable
developments of other new mechanisms to improve the performance, energy efficiency, or
reliability of future memory systems.
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Chapter 1

Introduction

1.1. Problem

Since the inception of general-purpose electronic computers from more than half a cen-
tury ago, the computer technology has seen tremendous improvement on increasing higher
performance, more main memory, and more disk storage. Main memory, a major system
component, has served an essential role of storing data and instruction sets for computer
systems to operate. For decades, semiconductor DRAM (dynamic random-access memory)
has been the building foundation of main memory.

DRAM-based main memory has made rapid progress on capacity and bandwidth, im-
proving by 128x and 20x respectively over the past two decades [54] 129 130} 132, 185,
186l 2206], B11], as shown in Figure , which illustrates the historical scaling trends of a
DRAM chip from 1999 to 2017. These capacity and bandwidth improvements mainly follow
Moore’s Law [230] and Dennard scaling [73], which enable more and faster transistors along
with more pins. On the contrary, DRAM latency has improved (i.e., reduced) by only 1.3x,
which is a drastic underperformer compared to capacity and bandwidth. As a result, long
DRAM latency remains as a significant system performance bottleneck for many modern ap-
plications [236], 244], such as in-memory databases [11, 35, 611, 214], [351], data analytics (e.g.,

Spark) [20, 21, 61), 355], graph traversals [341 354], Google’s datacenter workloads [148], and
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buffers for network packets in routers or network processors [14, 107, 168, 334, 346, 359]. For
example, a recent study by Google reported that memory latency is more important than
memory bandwidth for the applications running in Google’s datacenters [148]. Another ex-
ample is that, to achieve 100 Gb/s Ethernet, network processors require low DRAM latency

to access and process network packets buffered in the DRAM [107].

-4 Capacity #Bandwidth Latency 128x

-
o
o

20x

DRAM Improvement
=
o

-
[

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

=

Figure 1.1. DRAM scaling trends over time [54, [129] 130}, 132, 185, 186, 226, 311].

To provide low DRAM access latency, DRAM manufacturers design specialized low-latency
DRAM chips (e.g., RLDRAM [228] and FCRAM [288]) at the cost of higher price and
lower density than the commonly-used DDRx DRAM (e.g., DDR3 [130], DDR3L [134],
DDR4 [132]) chips. Figure compares RLDRAM2/3 (low-latency) to DDR3L/4 DRAM
(high-density) chips based on the cost (i.e., price per bit) and access latency. We obtain
the pricing information (for buying a bulk of 1000 DRAM chips) from a major electronic
component distributor [74]. Although the RLDRAMXx chip attains 4x lower latency than the
DDRx DRAM chip, its cost for each bit is significantly higher, at 39x. We provide further
discussion on how the RLDRAMx chip achieves low latency at a high cost in Section |3.1}
One main reason for the high increase in the price is due to the high area overhead incurred
by the architectural designs in RLDRAMx chips. In contrast to the density of a DDRx chip,
which ranges from 2Gb to 8Gb, an RLDRAMXx chip typically has a low density of 576Mb.
Therefore, this dissertation focuses on understanding, characterizing, and addressing the
long latency problem of DRAM-based memory systems at low cost (i.e., low DRAM chip

area overhead) without intrusive changes to DRAM chips and/or memory controllers.

2
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Figure 1.2. Cost and latency comparison between RLDRAMx and DDRx DRAM chips.

We first identify three specific problems that cause, incur, or affect long memory latency.
First, bulk data movement, the movement of thousands or millions of bytes between two
memory locations, is a common operation performed by an increasing number of real-world
applications (e.g., [148], (186, 261, 285, 297, 298, 299] 3111 324], 1365]). In current systems, since
memory is designed as a simple data repository that supplies data, performing a bulk data
movement operation between two locations in memory requires the data to go through the
processor even though both the source and destination are within the memory. To perform
the movement, the data is first read out one cache line at a time from the source location in
memory into the processor caches, over a pin-limited off-chip channel (typically 64 bits wide
in current systems [54]). Then, the data is written back to memory, again one cache line
at a time over the pin-limited channel, into the destination location. By going through the
processor, this data movement across memory incurs a significant penalty in terms of both
latency and energy consumption.

Second, due to the increasing difficulty of efficiently manufacturing smaller DRAM cells
with smaller technology nodes, DRAM cells are becoming slower and faultier than they
were in the past [149 153, 159, 162, 222]. At smaller technology nodes, DRAM cells are
more susceptible to imperfect manufacturing process, which causes the characteristics (e.g.,
latency) of the cells to deviate from the DRAM design specification. As a result, latency
variation — cells within the same DRAM chip requiring different access latencies — becomes

a problem in commodity DRAM chips. In order to preserve chip production yield, DRAM
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manufacturers choose to tolerate latency variation across cells from different chips or within
a chip by conservatively setting the standard DRAM latency to be determined by the worst-
case latency of any cell in any acceptable chip [54] [I85]. This high worst-case latency is
applied uniformly across all DRAM cells in all DRAM chips. As a result, even though
some fraction of a DRAM chip can inherently be accessed with a latency that is shorter
than the standard specification, the standard latency, which is pessimistically set to a very
conservative value, prevents systems from attaining higher performance.

Third, since a DRAM cell stores data in a capacitor, which leaks charge over time, DRAM
needs to be periodically refreshed to prevent data loss due to leakage. While DRAM is being
refreshed, a part of it becomes unavailable to serve memory requests [55), 204], which prolongs
the already long memory latency by delaying the demand requests from processors. This
problem will become more prevalent as DRAM density increases [55, 204], leading to more
DRAM cells to be refreshed within the same refresh interval.

These three problems cause or exacerbate the long memory latency, which is already a
critical bottleneck in system performance. The trend of increasing memory latency penalty is
expected to continue to grow due to increasing core counts and the emergence of increasingly
more data-intensive and latency-critical applications. Thus, low-latency memory accesses are
now even more important than the past on improving overall system performance and energy
efficiency.

In addition, there is a critical trade-off between DRAM latency and supply voltage, which
greatly affects both the performance and energy efficiency of DRAM chips. There is little
experimental understanding and mechanisms taking advantage of this trade-off in existing
systems, which apply a fixed supply voltage value during the runtime. If this voltage-latency
trade-off is well understood, one can devise mechanisms that can improve energy efficiency,

latency, or both, by achieving a good trade-off depending on system design goals.
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1.2. Thesis Statement and Overview

The goal of this thesis is to enable low-latency DRAM memory systems, based on a solid
understanding of the causes of and trade-offs related to long DRAM latency. Towards this
end, we explore the causes of the three latency problems that we described in the previous
section, by (i) examining the internal DRAM chip architecture and memory controller de-
signs, and (4i) characterizing commodity DRAM chips. With the understanding of these
causes, our thesis statement is that

memory latency can be significantly reduced with a multitude of low-cost

architectural techniques that aim to reduce different causes of long latency.

To this end, we (i) propose a series of mechanisms that augment the DRAM chip archi-
tecture with simple and low-cost features that better utilize the existing DRAM circuitry,
(7i) develop a better understanding of latency behavior and trade-offs by conducting exten-
sive experiments on real commodity DRAM chips, and (i) propose techniques to enhance
memory controllers to take advantage of the innate characteristics of individual DRAM chips
employed in the systems rather than just treating all the chips as having the same latency
characteristic. We give a brief overview of our mechanisms and experimental characteriza-

tions in the rest of this section.

1.2.1. Low-Cost Inter-Linked Subarrays: Enabling Fast Data Movement

To enable fast and efficient data movement across a wide range of memory at low cost, we
propose a new DRAM substrate, Low-Cost Inter-Linked Subarrays (LISA). To achieve this,
LISA adds low-cost connections between adjacent subarrays—the smallest building block in
today’s DRAM chips. By using these connections to link the existing internal wires (bitlines)
of adjacent subarrays, LISA enables wide-bandwidth data transfer across multiple subarrays
with only 0.8% DRAM area overhead. As a DRAM substrate, LISA is versatile, enabling

an array of new applications that reduce various latency components. We describe and



CHAPTER 1. INTRODUCTION

evaluate three such applications in detail: (1) fast inter-subarray bulk data copy, (2) in-
DRAM caching using a DRAM architecture whose rows have heterogeneous access latencies,
and (3) accelerated bitline precharging (an operation that prepares DRAM for subsequent
accesses) by linking multiple precharge units together. Our extensive evaluations show that
combining LISA’s three applications attains 1.9x system performance improvement and 2x
DRAM energy reduction on average across a variety of workloads running on a quad-core
system. To our knowledge, LISA is the first DRAM substrate that supports fast inter-

subarray data movement, which enables a wide variety of mechanisms for DRAM systems.

1.2.2. Refresh Parallelization with Memory Accesses

To mitigate the negative performance impact of DRAM refresh, we propose two comple-
mentary mechanisms, DARP (Dynamic Access Refresh Parallelization) and SARP (Subarray
Access Refresh Parallelization). The goal is to address the drawbacks of per-bank refresh by
building more efficient techniques to parallelize refreshes and accesses within DRAM. Per-
bank refresh is a DRAM command that refreshes only a single bank (a bank is a collection
of subarrays, and multiple banks are organized into a DRAM chip) at a time. Although
per-bank refresh enables a bank to be accessed wile another bank is being refreshed, it suf-
fers from two shortcomings that limit the ability of DRAM to serve demand requests while
refresh operations are being performed.

First, today’s memory controllers issue per-bank refreshes in a strict round-robin order,
which can unnecessarily delay a bank’s demand requests when there are idle banks. To
avoid refreshing a bank with pending demand requests, DARP issues per-bank refreshes to
idle banks in an out-of-order manner. Furthermore, DRAM writes are not latency-critical
because processors do not stall to wait for them. Taking advantage of this observation, DARP
proactively schedules refreshes during intervals when a batch of writes are draining to DRAM.
Second, SARP exploits the existence of mostly-independent subarrays within a bank. With

the cost of only 0.7% DRAM area overhead, it allows a bank to serve memory accesses to an
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idle subarray while another subarray is being refreshed. Our extensive evaluations on a wide
variety of workloads and systems show that our mechanisms improve system performance
by 3.3%/7.2%/15.2% on average (and up to 7.1%/14.5%/27.0%) across 100 workloads over
per-bank refresh for 8/16/32Gb DRAM chips. To our knowledge, these two techniques are
the first mechanisms to (i) enhance refresh scheduling policy of per-bank refresh and (i)

achieve parallelization of refresh and memory accesses within a refreshing bank.

1.2.3. Understanding and Exploiting Latency Variation Within a DRAM Chip

To understand the characteristics of latency variation in modern DRAM chips, we com-
prehensively characterize 240 DRAM chips from three major vendors and make several new
observations about latency variation within DRAM. We find that (i) there is large latency
variation across the DRAM cells, and (1) variation characteristics exhibit significant spatial
locality: slower cells are clustered in certain regions of a DRAM chip Based on our ob-
servations, we propose Flexible-LatencY DRAM (FLY-DRAM), a mechanism that exploits
latency variation across DRAM cells within a DRAM chip to improve system performance.
The key idea of FLY-DRAM is to enable the memory controller to exploit the spatial local-
ity of slower cells within DRAM and access the faster DRAM regions with reduced access
latency. FLY-DRAM requires modest modification in the memory controller without intro-
ducing any changes to the DRAM chips. Our evaluations show that FLY-DRAM improves
the performance of a wide range of applications by 13.3%, 17.6%, and 19.5%, on average, for
each of the three different vendors’ real DRAM chips, in a simulated 8-core system. To our
knowledge, this is the first work to (i) provide a detailed experimental characterization and
analysis of latency variation across different cells within a DRAM chip, (4i) show that access
latency variation exhibits spatial locality, and (i) propose mechanisms that take advantage

of variation within a DRAM chip to improve system performance.
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1.2.4. Understanding and Exploiting Trade-off Between Latency and Voltage
Within a DRAM Chip

To understand the critical relationship and trade-off between DRAM latency and supply
voltage, which greatly affects both DRAM performance, energy efficiency, and reliability, we
perform an experimental study on 124 real DDR3L (low-voltage) DRAM chips manufactured
recently by three major DRAM vendors. We find that reducing the supply voltage below
a certain point introduces bit errors in the data, and we comprehensively characterize the
behavior of these errors. We discover that these errors can be avoided by increasing the
access latency. This key finding demonstrates that there exists a trade-off between access
latency and supply voltage, i.e., increasing supply voltage enables lower access latency (or
vice versa). Based on this trade-off, we propose a new mechanism, Voltron, which aims to
improve energy efficiency of DRAM. The key idea of Voltron is to use a performance model
to determine how much we can reduce the supply voltage without introducing errors and
without exceeding a user-specified threshold for performance loss. Our evaluations show
that Voltron reduces the average system energy consumption by 7.3%, with a small system

performance loss of 1.8% on average, for a variety of memory-intensive quad-core workloads.

1.3. Contributions

The overarching contribution of this dissertation is the three new mechanisms that reduce
DRAM access latency and experimental characterizations for understanding latency behavior

in DRAM chips. More specifically, this dissertation makes the following main contributions.

1. We propose a new DRAM substrate, Low-Cost Inter-Linked Subarrays (LISA), which
provides high-bandwidth connectivity between subarrays within the same bank to
support bulk data movement at low latency, energy, and cost. Using the LISA sub-
strate, we propose and evaluate three new applications: (1) Rapid Inter-Subarray Copy

(RISC), which copies data across subarrays at low latency and low DRAM energy;
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(2) Variable Latency (VILLA) DRAM, which reduces the access latency of frequently-
accessed data by caching it in fast subarrays; and (3) Linked Precharge (LIP), which
reduces the precharge latency for a subarray by linking its precharge units with neigh-

boring idle precharge units. Chapter [4] describes LISA and its applications in detail.

. We propose two new refresh mechanisms: (1) DARP (Dynamic Access Refresh Par-
allelization), a new per-bank refresh scheduling policy, which proactively schedules
refreshes to banks that are idle or that are draining writes and (2) SARP (Subarray
Access Refresh Parallelization), a new refresh architecture, that enables a bank to serve
memory requests in idle subarrays while other subarrays are being refreshed. Chapter

describes these two refresh techniques in detail.

. We experimentally demonstrate and characterize the significant variation in DRAM
access latency across different cells within a DRAM chip. Our experimental character-
ization on modern DRAM chips yields six new fundamental observations about latency
variation. Based on this experimentally-driven characterization and understanding, we
propose a new mechanism, FLY-DRAM, which exploits the lower latencies of DRAM
regions with faster cells by introducing heterogeneous timing parameters into the mem-
ory controller. Chapter [6] describes our experiments, analysis, and optimization in

detail.

. We perform a detailed experimental characterization of the effect of varying supply
voltage on DRAM latency, reliability, and data retention on real DRAM chips. Our
comprehensive experimental characterization provides four major observations on how
DRAM latency and reliability is affected by supply voltage. These observations allow
us to develop a deep understanding of the critical relationship and trade-off between
DRAM latency and supply voltage. Based on this trade-off, we propose a new low-
cost DRAM energy optimization mechanism called Voltron, which improves system

energy efficiency by dynamically adjusting the voltage based on a performance model.
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Chapter [7] describes our experiments, analysis, and optimization in detail.

1.4. Outline

This thesis is organized into |8 chapters. Chapter 2 describes necessary background on
DRAM organization, operations, and latency. Chapter 3 discusses related prior work on
providing low-latency DRAM systems. Chapter [4] presents the design LISA and the three new
architectural mechanisms enabled by it. Chapter o presents the two new refresh mechanisms
(DARP or SARP) that address the refresh interference problem. Chapter @ presents our
experimental study on DRAM latency variation and our mechanism (FLY-DRAM) that
exploits it to reduce latency. Chapter [7] presents our experimental study on the trade-
off between latency and voltage in DRAM and our mechanism (Voltron) that exploits it
to improve energy efficiency. Finally, Chapter |8 presents conclusions and future research

directions that are enabled by this dissertation.

10



Chapter 2

Background

In this chapter, we provide necessary background on DRAM organization and operations
used to access data in DRAM. Each operation requires a certain latency, which contributes
to the overall DRAM access latency. Understanding of these fundamental operations and
their associated latencies provides the core basics required for understanding later chapters

in this dissertation.

2.1. High-Level DRAM System Organization

A modern DRAM system consists of a hierarchy of channels, modules, ranks, and chips,
as shown in Figure Each memory channel drives DRAM commands, addresses, and
data between a memory controller in the processor and one or more DRAM modules. Each
module contains multiple DRAM chips that are organized into one or more ranks. A rank
refers to a group of chips that operate in lock step to provide a wide data bus (usually 64
bits), as a single DRAM chip is designed to have a narrow data bus width (usually 8 bits)
to minimize chip cost. Each of the eight chips in the rank shown in Figure transfers 8

bits simultaneously to supply 64 bits of data.

11
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Figure 2.1. DRAM system organization.

2.2. Internal DRAM Logical Organization

Within a DRAM chip, there are multiple banks (e.g., eight in a typical DRAM chip [130],
[166]) that can process DRAM commands independently from each other to increase par-
allelism. A bank consists of a 2D-array of DRAM cells that are organized into rows and
columns, as shown in Figure A row typically consists of 8K cells. The number of
rows varies depending on the chip density. Each DRAM cell has (i) a capacitor that stores
binary data in the form of electrical charge (e.g., fully charged and discharged states repre-
sent 1 and 0, respectively), and (i1) an access transistor that serves as a switch to connect
the capacitor to the bitline. Each column of cells share a bitline, which connects them to a
sense amplifier. The sense amplifier senses the charge stored in a cell, converts the charge to
digital binary data, and buffers it. Each row of cells share a wire called the wordline, which
controls the cells’ access transistors. When a row’s wordline is enabled, the entire row of
cells gets connected to the row of sense amplifiers through the bitlines, enabling the sense
amplifiers to sense and latch that row’s data. The row of sense amplifiers is also called the

row buffer.

'Note that the figure shows a logical representation of the bank to ease the understanding of the DRAM
operations required to access data and their associated latency. After we explain the DRAM operations in
the next section, we will show the detailed physical organization of a bank in Section @

12
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2.3. Accessing DRAM

Accessing (i.e., reading from or writing to) a bank consists of three steps: (i) Row
Activation & Sense Amplification: opening a row to transfer its data to the row buffer,
(i) Read/Write: accessing the target column in the row buffer, and (ii7) Precharge:
closing the row and the row buffer. We use Figure to explain these three steps in detail.
The top part of the figure shows the phase of the cells within the row that is being accessed.
The bottom part shows both the DRAM command and data bus timelines, and demonstrates

the associated timing parameters.

. Activated Charge
@ it @ ANl @ (K, @ prechorges

sense amplifiers

< > transfer datato IO fully restored” ready for activation
cmd (et READ PRE

ACT
L|—) .-->data beat L|—) L|—)

data bus : : : :
timing € —==tRCD—==l<tCL! | |
parametersic _ _ _ _ _ _ _ ___ tRAS- - - - —————- e ————tRP- - - - !

Figure 2.2. Internal DRAM phases, DRAM command/data timelines, and timing param-
eters to read a cache line.

Initial State. Initially, the bank is in the precharged state (@ in Figure , where all of
the components are ready for activation. All cells are fully charged, represented with the
black color (a darker cell color indicates more charge). Second, the bitlines are charged to
Vbp/2, represented as a thin line (a thin bitline indicates the initial voltage state of Vpp/2;
a thick bitline means the bitline is being driven). Third, the wordline is disabled with 0V (a

thin wordline indicates 0V; a thick wordline indicates Vpp). Fourth, the sense amplifier is

13
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off without any data latched in it (indicated by light color in the sense amplifier).

Row Activation & Sense Amplification Phases. To open a row, the memory controller
sends an ACTIVATE command to raise the wordline of the corresponding row, which connects
the row to the bitlines (@). This triggers an activation, where charge starts to flow from
the cell to the bitline (or the other way around, depending on the initial charge level in
the cell) via a process called charge sharing. This process perturbs the voltage level on the
corresponding bitline by a small amount. If the cell is initially charged (which we assume
for the rest of this explanation, without loss of generality), the bitline voltage is perturbed
upwards. Note that this causes the cell itself to discharge, losing its data temporarily (hence
the lighter color of the accessed row), but this charge will be restored as we will describe
below. After the activation phase, the sense amplifier senses the voltage perturbation on
the bitline, and turns on to further amplify the voltage level on the bitline by injecting more
charge into the bitline and the cell (making the activated row’s cells darker in @). When
the bitline is amplified to a certain voltage level (e.g., 0.8Vpp), the sense amplifier latches
in the cell’s data, which transforms it into binary data (@). At this point in time, the data
can be read from the sense amplifier. The latency of these two phases (activation and sense
amplification) is called the activation latency, and is defined as tRCD in the standard DDR
interface [130, 132]. This activation latency specifies the latency from the time an ACTIVATE

command is issued to the time the data is ready to be accessed in the sense amplifier.

Read/Write & Restoration Phases. Once the sense amplifier (row buffer) latches in the
data, the memory controller can send a READ or WRITE command to access the corresponding
column of data within the row buffer (called a column access). The column access time to
read the cache line data is called tCL (tCWL for writes). These parameters define the time
between the column command and the appearance of the first beat of data on the data bus,
shown at the bottom of Figure 2.2l A data beat is a 64-bit data transfer from the DRAM to

the processor. In a typical DRAM [130], a column READ command reads out 8 data beats

14
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(also called an 8-beat burst), thus reading a complete 64-byte cache line.

After the bank becomes activated and the sense amplifier latches in the binary data of
a cell, it starts to restore the connected cell’s charge back to its original fully-charged state
(@). This phase is known as restoration, and can happen in parallel with column accesses.
The restoration latency (from issuing an ACTIVATE command to fully restoring a row of

cells) is defined as tRAS in the standard DDR interface [130), 132], as shown in Figure

Precharge Phase. In order to access data from a different row, the bank needs to be
re-initialized back to the precharged state (@). To achieve this, the memory controller
sends a PRECHARGE command, which (i) disables the wordline of the corresponding row,
disconnecting the row from the sense amplifiers, and (7i) resets the voltage level on the bitline
back to the initialized state, Vpp/2, so that the sense amplifier can sense the charge from the
newly opened row. The latency of a precharge operation is defined as tRP in the standard
DDR interface [130] 132], which is the latency between a PRECHARGE and a subsequent

ACTIVATE within the same bank.

2.4. DRAM Refresh

2.4.1. All-Bank Refresh (REF,;)

The minimum time interval during which any cell can retain its electrical charge without
being refreshed is called the minimum retention time, which depends on the operating tem-
perature and DRAM type. Because there are tens of thousands of rows in DRAM, refreshing
all of them in bulk incurs high latency. Instead, memory controllers send a number of refresh
commands that are evenly distributed throughout the retention time to trigger refresh op-
erations, as shown in Figure 2.3al Because a typical refresh command in a commodity DDR
DRAM chip operates at an entire rank level, it is also called an all-bank refresh or REFy,
for short [130], 133, 224]. The timeline shows that the time between two REF,, commands

is specified by tREFI,, (e.g., 7.8us for 64ms retention time). Therefore, refreshing a rank
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requires 64ms/7.8,s ~ 8192 refreshes and each operation refreshes exactly 1/8192 of the rank’s
TOWS.

When a rank receives a refresh command, it sends the command to a DRAM-internal
refresh unit that selects which specific rows or banks to refresh. A REF,;, command triggers
the refresh unit to refresh a number of rows in every bank for a period of time called tRFCy,
(Figure . During tRFC,,, banks are not refreshed simultaneously. Instead, refresh
operations are staggered (pipelined) across banks [234]. The main reason is that refreshing
every bank simultaneously would draw more current than what the power delivery network
can sustain, leading to potentially incorrect DRAM operation [234, [305]. Because a REF,,
command triggers refreshes on all the banks within a rank, the rank cannot process any
memory requests during tRFC,;,, The length of tRFCy, is a function of the number of rows

to be refreshed.
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Figure 2.3. Refresh command service timelines.

2.4.2. Per-Bank Refresh (REF};)

To allow partial access to DRAM during refresh, LPDDR DRAM (which is designed
for mobile platforms), supports an additional finer-granularity refresh scheme, called per-

bank refresh (REFy, for short) [133] 224]. It splits up a REF,, operation into eight separate
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operations scattered across eight banks (Figure. Therefore, a REF,, command is issued
eight times more frequently than a REF,, command (i.e., tREFI,, = tREFI,,/ 8).

Similar to issuing a REF,,, a controller simply sends a REFy,, command to DRAM
every tREFIy, without specifying which particular bank to refresh. Instead, when a rank’s
internal refresh unit receives a REF);, command, it refreshes only one bank for each command
following a sequential round-robin order as shown in Figure 2.3b] The refresh unit uses an
internal counter to keep track of which bank to refresh next.

By scattering refresh operations from REF,;, into multiple and non-overlapping per-bank
refresh operations, the refresh latency of REFy, (tRFC,,) becomes shorter than tRFCy.
Disallowing REF,, operations from overlapping with each other is a design decision made
by the LPDDR DRAM standard committee [133]. The reason is simplicity: to avoid the
need to introduce new timing constraints, such as the timing between two overlapped refresh
operations ]

With the support of REF,;,, LPDDR DRAM can serve memory requests to non-refreshing
banks in parallel with a refresh operation in a single bank. Figure [2.4| shows pictorially how
REFy, provides performance benefits over REFy;, from parallelization of refreshes and reads.
REFy, reduces refresh interference on reads by issuing a refresh to Bank 0 while Bank 1 is
serving reads. Subsequently, it refreshes Bank 1 to allow Bank 0 to serve a read. As a result,
REF), alleviates part of the performance loss due to refreshes by enabling parallelization of

refreshes and accesses across banks.

2.5. Physical Organization of a DRAM Bank:DRAM Subarrays
and Open-Bitline Architecture

In this section, we delve deeper into the physical organization of a bank. This knowledge

is required for understanding our proposals described in Chapter ] and Chapter 5l However,

2 At slightly increased complexity, one can potentially propose a modified standard that allows overlapped
refresh of a subset of banks within a rank.
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Figure 2.4. Service timelines of all-bank and per-bank refresh.

such knowledge is not required for our other two proposals in Chapter [6] and Chapter [7}
Typically, a bank is subdivided into multiple subarrays [55), 166} 298] [347], as shown in
Figure [4.2] Each subarray consists of a 2D-array of DRAM cells that are connected to sense
amplifiers through bitlines. Because the size of a sense amplifier is more than 100x the size
of a cell [I86], modern DRAM designs fit in only enough sense amplifiers in a row to sense
half a row of cells. To sense the entire row of cells, each subarray has bitlines that connect
to two rows of sense amplifiers — one above and one below the cell array (1) and (2) in
Figure , for Subarray 1). This DRAM design is known as the open bitline architecture,
and is commonly used to achieve high density in modern DRAM chips [195, 329]. A single
row of sense amplifiers, which holds the data from half a row of activated cells, is also referred

as a row buffer.

2.5.1. DRAM Subarray Operation

In Section [2.3, we describe the details of major DRAM operations to access data in a
bank. In this section, we describe the same set of operations to understand how they work
at the subarray-level within a bank. Accessing data in a subarray requires two steps. The
DRAM row (typically 8KB across a rank of eight x8 chips) must first be activated. Only
after activation completes, a column command (i.e., a READ/WRITE) can operate on a piece

of data (typically 64B across a rank; the size of a single cache line) from that row.
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Figure 2.5. Bank and subarray organization in a DRAM chip.

When an ACTIVATE command with a row address is issued, the data stored within a row
in a subarray is read by two row buffers (i.e., the row buffer at the top of the subarray (1) and
the one at the bottom (2)). First, a wordline corresponding to the row address is selected by
the subarray’s row decoder. Then, the top row buffer and the bottom row buffer each sense
the charge stored in half of the row’s cells through the bitlines, and amplify the charge to
full digital logic values (0 or 1) to latch in the cells’ data.

After an ACTIVATE finishes latching a row of cells into the row buffers, a READ or a WRITE
can be issued. Because a typical read/write memory request is made at the granularity of
a single cache line, only a subset of bits are selected from a subarray’s row buffer by the
column decoder. On a READ, the selected column bits are sent to the global sense amplifiers
through the internal data bus (also known as the global data lines) (3), which has a narrow
width of 64B across a rank of eight chips. The global sense amplifiers (4) then drive the
data to the bank I/O logic (5), which sends the data out of the DRAM chip to the memory
controller.

While the row is activated, a consecutive column command to the same row can access
the data from the row buffer without performing an additional ACTIVATE. This is called

a row buffer hit. In order to access a different row, a PRECHARGE command is required
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to reinitialize the bitlines’ values for another ACTIVATE. This re-initialization process is

completed by a set of precharge units (6) in the row buffer.
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Related Work

Many prior works propose mechanisms to reduce or mitigate DRAM latency. In this
chapter, we describe the closely relevant works by dividing them into different categories

based on their high-level approach.

3.1. Specialized Low-Latency DRAM Architecture

RLDRAM [228] and FCRAM [288] enable lower DRAM timing parameters by reducing
the length of bitlines (i.e., with a fewer number of cells attached to each bitline). Because the
bitline parasitic capacitance reduces with bitline length, shorter bitlines enable faster charge
sharing between the cells and the sense amplifiers, thus reducing the latency of DRAM
operations. The main drawback of this simple approach is that it leads to lower chip density
due to a significant amount of area overhead (30-40% for FCRAM, 40-80% for RLDRAM)
cause by the additional peripheral logic (e.g., row decoders) required to support shorter
bitlines [166] 186]. In contrast, our proposals do not require as significant and intrusive

changes to a DRAM chip.
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3.2. Cached DRAM

Several prior works (e.g., [102] 109, 114, [I51]) propose to add a small SRAM cache
to a DRAM chip to lower the access latency for data that is kept in the SRAM cache
(e.g., frequently or recently used data). There are two main disadvantages of these works.
First, adding an SRAM cache into a DRAM chip is very intrusive: it incurs a high area
overhead (38.8% for 64KB in a 2Gb DRAM chip) and design complexity [166, [186]. Second,
transferring data from DRAM to SRAM uses a narrow global data bus, internal to the
DRAM chip, which is typically 64-bit wide. Thus, installing data into the DRAM cache
incurs high latency. Compared to these works, our proposals in this dissertation reduce low

latency without significant area overhead or complexity.

3.3. Heterogeneous-Latency DRAM

Prior works propose DRAM architectures that provide heterogeneous latency either spa-
tially (dependent on where in the memory an access targets) or temporally (dependent on

when an access occurs).

3.3.1. Spatial Heterogeneity

Prior work introduces spatial heterogeneity into DRAM, where one region has a fast
access latency but fewer DRAM rows, while the other has a slower access latency but many
more rows [I186], B11]. The fast region is mainly utilized as a caching area, for the frequently
or recently accessed data. We briefly describe two state-of-the-art works that offer different
heterogeneous-latency DRAM designs.

CHARM [311] introduces heterogeneity within a rank by designing a few fast banks with
(1) shorter bitlines for faster data sensing, and (2) closer placement to the chip I/O for
faster data transfers. To exploit these low-latency banks, CHARM uses an OS-managed

mechanism to statically map hot data to these banks, based on profiled information from
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the compiler or programmers. Unfortunately, this approach cannot adapt to program phase
changes, limiting its performance gains. If it were to adopt dynamic hot data management,
CHARM would incur high migration costs over the narrow 64-bit bus that internally connects
the fast and slow banks.

TL-DRAM [I86] provides heterogeneity within a subarray by dividing it into fast (near)
and slow (far) segments that have short and long bitlines, respectively, using isolation tran-
sistors. The fast segment can be managed as an OS-transparent hardware cache. The main
disadvantage is that it needs to cache each hot row in two near segments as each subarray
uses two row buffers on opposite ends to sense data in the open-bitline architecture (as we
discussed in Section [2.5). This prevents TL-DRAM from using the full near segment ca-
pacity. As we can see, neither CHARM nor TL-DRAM strike a good design balance for
heterogeneous-latency DRAM. In this dissertation, we propose a new heterogeneous DRAM
design that offers fast data movement with a low-cost and easy-to-implement design.

Several prior works [60], 21T, 269] propose to employ different types of DRAM modules
to provide heterogeneous latency at the memory module level. These works are orthogonal

to the proposals in this dissertation because we focus on reducing latency at the chip level.

3.3.2. Temporal Heterogeneity

Prior work observes that DRAM latency can vary depending on when an access occurs.
The key observation is that a recently accessed or refreshed row has nearly full electri-
cal charge in the cells, and thus the following access to the same row can be performed
faster [105, 106, [306]. We briefly describe two state-of-the-art works that focus on providing
heterogeneous latency temporally.

ChargeCache [105] enables faster access to recently-accessed rows in DRAM by tracking
the addresses of recently-accessed rows. NUAT [306] enables accesses to recently-refreshed
rows at low latency because these rows are already highly-charged. The main issue with these

works is that the proposed effect of highly-charged cells can be accessed with lower latency,
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is slightly observable only when very long refresh intervals are used on existing DRAM chips,
as demonstrated by a recent characterization work [106]. However, within the duration of
the standard 64ms refresh interval, no latency benefits can be directly observed on existing
DRAM chips. As a result, these ideas likely require changes to the DRAM chips to provide
benefits as suggested by a prior work [106]. In contrast, our work in this dissertation does
not require data to be recently-accessed or -refreshed to benefit from reduced latency, but it

focuses on providing low latency by exploiting spatial heterogeneity.

3.4. Bulk Data Transfer Mechanisms

Prior works [49] 97, 08| 147, B61] propose to add scratchpad memories to reduce CPU
pressure during bulk data transfers, which can also enable sophisticated data movement (e.g.,
scatter-gather), but they still require data to first be moved on-chip. A patent [293] proposes
a DRAM design that can copy a page across memory blocks, but lacks concrete analysis and
evaluation of the underlying copy operations. Intel I/O Acceleration Technology [120] allows
for memory-to-memory DMA transfers across a network, but cannot transfer data within the
main Memory.

Zhao et al. [365] propose to add a bulk data movement engine inside the memory controller
to speed up bulk-copy operations. Jiang et al. [I37] design a different copy engine, placed
within the cache controller, to alleviate pipeline and cache stalls that occur when these
transfers occur. However, these works do not directly address the problem of data movement
across the narrow memory channel.

Seshadri et al. [298] propose RowClone to perform data movement within a DRAM chip,
avoiding costly data transfers over the pin-limited channels. However, its effectiveness is
limited because RowClone enables very fast data movement only when the source and desti-
nation are within the same DRAM subarray. The reason is that while two DRAM rows in the
same subarray are connected by row-wide bitlines (e.g., 8K bits), rows in different subarrays

are connected through a narrow 64-bit data bus (albeit an internal DRAM bus). Therefore,
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even for an in-DRAM data movement mechanism such as RowClone, inter-subarray bulk
data movement incurs long latency even though data does not move out of the DRAM chip.
In contrast, one of our proposals, LISA (Chapter [4)), enables fast and energy-efficient bulk
data movement across subarrays. We provide more detailed qualitative and quantitative
comparisons between LISA and RowClone in Section [4.5]

Lu et al. [207] propose a heterogeneous DRAM design called DAS-DRAM that consists
of fast and slow subarrays. It introduces a row of migration cells into each subarray to move
rows across different subarrays. Unfortunately, the latency of DAS-DRAM is not scalable
with movement distance, because it requires writing the migrating row into each intermediate
subarray’s migration cells before the row reaches its destination, which prolongs data transfer
latency. In contrast, LISA (Chapter [4]) provides a direct path to transfer data between row

buffers without requiring intermediate data writes into the subarray.

3.5. DRAM Refresh Latency Mitigation

Prior works (e.g., [4} 6], 23], BT], 158, 197, 204, 248, 258, 278, 343]) propose mechanisms to
reduce unnecessary refresh operations by taking advantage of the fact that different DRAM
cells have widely different retention times [160, 203]. These works assume that the retention
time of DRAM cells can be accurately profiled and they depend on having this accurate profile
to guarantee data integrity [203]. However, as shown in Liu et al. [203] and later analyzed in
detail by several other works [153, 154, [155] 264], accurately determining the retention time
profile of DRAM is an outstanding research problem due to the Variable Retention Time
(VRT) and Data Pattern Dependence (DPD) phenomena, which can cause the retention time
of a cell to fluctuate over time. As such, retention-aware refresh techniques need to overcome
the profiling challenges to be viable. A recent work, AVATAR [27§], proposes a retention-
aware refresh mechanism that addresses VRT by using ECC chips, which introduces extra
cost. In contrast, our refresh mitigation techniques (Chapter [5) enable parallelization of

refreshes and accesses without relying on cell data retention profiles or ECC, thus providing
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high reliability at low cost.

Several other works propose different refresh mechanisms. Nair et al. [246] propose Re-
fresh Pausing, which pauses a refresh operation to serve pending memory requests when
the refresh causes conflicts with the requests. Although our work already significantly re-
duces conflicts between refreshes and memory requests by enabling parallelization, it can be
combined with Refresh Pausing to address rare conflicts. Tavva et al. [330] propose EFGR,
which exposes non-refreshing banks during an all-bank refresh operation so that a few ac-
cesses can be scheduled to those non-refresh banks during the refresh operation. However,
such a mechanism does not provide additional performance and energy benefits over per-
bank refresh, which we use to build our mechanism in this dissertation. Isen and John [123]
propose ESKIMO, which modifies the ISA to enable memory allocation libraries to skip re-
freshes on memory regions that do not affect programs’ execution. ESKIMO is orthogonal to
our mechanism, and its modification has high system-level complexity by requiring system
software libraries to make refresh decisions.

Another technique to address refresh latency is through refresh scheduling (e.g., [5] 30,
124] 234], [318]). Stuecheli et al. [318] propose elastic refresh, which postpones refreshes by a
time delay that varies based on the number of postponed refreshes and the predicted rank
idle time to avoid interfering with demand requests. Elastic refresh has two shortcomings.
First, it becomes less effective when the average rank idle period is shorter than the refresh
latency as the refresh latency cannot be fully hidden in that period. This occurs especially
with 1) more memory-intensive workloads that inherently have less idleness and 2) higher
density DRAM chips that have higher refresh latency. Second, elastic refresh incurs more
refresh latency when it incorrectly predicts that a period is idle without pending memory
requests in the memory controller. In contrast, our mechanisms parallelize refresh opera-
tions with accesses even if there is no idle period and therefore outperform elastic refresh.

We quantitatively demonstrate the benefits of our mechanisms over elastic refresh [318] in

Section [B.4]
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Mukundan et al. [234] propose scheduling techniques to address the problem of command
queue seizure, whereby a command queue gets filled up with commands to a refreshing rank,
blocking commands to another non-refreshing rank. In our dissertation, we use a different
memory controller design that does not have command queues, similarly to another prior
work [108], 319] [320] [321]. Our controller generates a command for a scheduled request right
before the request is sent to DRAM instead of pre-generating the commands and queueing
them up. Thus, our baseline refresh design does not suffer from the problem of command

queue seizure.

3.6. Exploiting DRAM Latency Variation

Adaptive-Latency DRAM (AL-DRAM) [I85] also characterizes and exploits DRAM la-
tency variation, but does so at a much coarser granularity. This work experimentally charac-
terizes latency variation across different DRAM chips under different operating temperatures.
AL-DRAM sets a uniform operation latency for the entire DIMM and does not exploit het-
erogeneity at the chip-level or within a chip. Chandrasekar et al. study the potential of
reducing some DRAM timing parameters [52]. Similar to AL-DRAM, our dissertation ob-
serves and characterizes latency variation across DIMMs. Different from prior works, this
dissertation also characterizes latency variation within a chip, at the granularity of individ-
ual DRAM cells and exploits the latency variation that exists within a DRAM chip. Our
proposal can be combined with AL-DRAM to improve performance further.

A recent work by Lee et al. [I83] [I84] also observes latency variation within DRAM chips.
The work analyzes the variation that is due to the circuit design of DRAM components,
which it calls design-induced variation. Furthermore, it proposes a new profiling technique to
identify the lowest DRAM latency without introducing errors. In this dissertation, we provide
the first detailed experimental characterization and analysis of the general latency variation
phenomenon within real DRAM chips. Our analysis is broad and is not limited to design-

induced variation. Our proposal of exploiting latency variation, FLY-DRAM (Chapter @,

27



CHAPTER 3. RELATED WORK

can employ Lee et al.’s new profiling mechanism [I83] 184] to identify additional latency

variation regions for reducing access latency.

3.7. In-Memory Computation

Modern execution models rely on transferring data from the memory to the processor
to perform computation. Since a large number of modern applications consume a large
amount of data, this model incurs high latency, bandwidth, and energy due to the excessive
use of the narrow memory channel that is typically as wide as only 64 bits. To avoid the
memory channel bottleneck, many prior works (e.g., [7, 8, 12} 22 [36] [75] 86 87, [88 89, 92,
99, [112], 113], 150, 169, 212 260), 266, 267, 274, 294], 297, 299, B00, B16, 328, 360]) propose
different frameworks and mechanisms to enable processing-in-memory (PIM) to accelerate
parts of the applications. However, these works do not fundamentally reduce the raw memory
access latency within a DRAM chip. Therefore, our dissertation is complementary to these
mechanisms. Furthermore, one of our proposals, LISA (Chapter [4) is also complementary to
a previously proposed in-memory bulk processing mechanism that can perform bulk bitwise
AND, OR [297, 299]. LISA can enhance the speed and range of such operations as these

operations require copying data between rows.

3.8. Mitigating Memory Latency via Memory Scheduling

Since memory has limited bandwidth and parallelism to serve memory requests con-
currently, contention for memory bandwidth across different applications can cause sig-
nificant performance slowdown for individual applications as well as the entire system.
Many prior works propose to address bandwidth contention by using more intelligent mem-
ory scheduling policies. A number of prior works focus on improving DRAM through-
put without being aware of the characteristics of the running applications in the system
(e.g., [1T5] 180, 284], 303, B70]). Many other works observe that application-unaware mem-

ory scheduling provides low performance, unfairness, and cases that lead to denial of memory
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service [231]. As a result, these prior works (e.g., [16] [66] [79, 122 [142] 164, 165, 177, 231,
232, [235], 240, 247, 253| 281, 319, 820, 321, 322, [323], 342, 364]) propose scheduling policies
that take into account of individual applications’ characteristics to perform better memory
request scheduling to improve overall system performance and fairness. While these works
reduce the queueing latency experienced by the applications and the system, they do not
fundamentally reduce the DRAM access latency of memory requests. The various proposals

in this dissertation do.

3.9. Improving Parallelism in DRAM to Hide Memory Latency

A number of prior works propose new DRAM architectures to increase parallelism within
DRAM and thus overlap memory latency of different DRAM operations. Kim et al. [166]
propose subarray-level parallelism (SALP) to take advantage of the existing subarray archi-
tecture to overlap multiple memory requests going to different subarrays within the same
bank. O et al. [257] propose to add isolation transistors in each subarray to separate the
bitlines from the sense amplifiers, so that the bitlines can be precharged while the row buffer
is still activated. Lee et al. [I88] propose to add a data channel dedicated for I/O to serve
accesses from both CPU and I/O in parallel. Several works [9] 10, 849, B67] propose to
divide a DRAM rank into multiple smaller ranks (i.e., sub-ranks) to serve memory requests
independently from each sub-rank at the cost of higher read or write latency. All these prior
works do not fundamentally reduce the access latency of DRAM operations. Their bene-
fits decrease with more memory accesses interfering with each other at a single subarray,
bank, or rank. Our proposals in this dissertation reduce the DRAM access latency directly
(Chapters [4] and @ These prior works are complementary to our proposals, and combined

together with our techniques can provide further system performance improvement.
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3.10. Other Prior Works on Mitigating High Memory Latency

3.10.1. Data Prefetching

Many prior works propose data prefetching techniques to load data speculatively from
memory into the cache (before the data is accessed), to hide the memory latency with
computation (e.g., [13, 24, 48, [63] 65 [78, [0, 81, 103], 104, 116| 143, 144, 173, 177, 178,
1801, 237, 238, 242] 254, B30T, [314]). However, prefetching does not reduce the fundamental
DRAM latency required to fetch data, and prefetch requests can cause interference with
other demand requests, thus potentially introducing performance overhead [80) B314]. On
the other hand, our proposals can reduce the DRAM access latency not only for demand

requests but also for prefetch requests without causing interference to other requests.

3.10.2. Multithreading

To hide memory latency, prior works [170, 199, 308, 309] 33T, 339] propose to use multi-
threading to overlap the DRAM latency of one thread with computation by another thread.
While multithreading can tolerates the latency experienced by the applications or threads,
the technique does not reduce the memory access latency. In fact, multithreading can cause
additional delays due to the contention that arises between threads on shared resource ac-
cesses. For example, on a GPU system that runs a large number of threads, memory la-
tency can still be a performance limiter when threads stalling on memory requests delay
other threads from being issued [I8|, 140}, 141], 250, B345]. Exploiting the potential of mul-
tithreading provided by the hardware also requires non-trivial effort from programmers to
write bug-free programs [189]. Furthermore, multithreading does not improve single-thread
performance, which is still important for many modern applications, e.g., mobile appli-
cations [I00]. Critical threads that are delayed on a memory access can be bottlenecks
that degrade the performance of an entire multi-threaded application by delaying other

threads |76, 138, 139, [325], 326]. Our proposals in this dissertation reduce the memory access
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latency directly. As a result, these proposals not only improve the single-thread performance
but also the performance of multithreading processors by reducing the amount of memory

stall time on critical threads that stall other threads.

3.10.3. Processor Architecture Design to Tolerate Memory Latency

A single processor core can employ various techniques to tolerate memory latency by gen-
erating multiple DRAM accesses that can potentially be served concurrently by the DRAM
system (e.g., out-of-order execution [336], non-blocking caches [I71], and runahead execu-
tion [104] 237, 238, 242] 243]). The effectiveness of these latency tolerance techniques highly
depends on whether DRAM can serve the generated memory accesses in parallel as these
techniques do not directly reduce the latency of individual accesses.

Other prior works (e.g. [201], 202], 237, 289] [332], 348 356]) propose to use value prediction
to avoid pipeline stalls due to memory by predicting the requested data value. However, in-
correct value prediction incurs high cost due to pipeline flushes and re-executions. Although
this cost can be mitigated with approximate value prediction [332, B356], approximation is
not applicable to all applications as some require precise correctness for execution.

Our proposals in this dissertation directly reduce DRAM access latency even if the ac-
cesses cannot be served in parallel. Our proposals are also complementary to these processor
architectural techniques as we introduce low-cost modifications to DRAM chips and memory

controllers.

3.10.4. System Software to Mitigate Application Interference

Prior works (e.g., [77, [156], 157, 198, 205, 206], 369]) propose system software techniques to
manage inter-application interference in the memory to reduce interference-induced memory
latency. These works are orthogonal to our proposals in this dissertation because they do
not reduce the access latency to memory. However, their techniques are complementary to

our proposals.
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3.10.5. Reducing Latency of On-Chip Interconnects

Prior works (e.g. [58, [66, 67, 68|, [84], 85, 94 ©5], ©96], 190}, 233], 304]) propose mechanisms to
reduce the latency of memory requests when they are traversing the on-chip interconnects.
These works are complementary to the proposals presented in this dissertation since our

works reduce the fundamental memory device access latency.

3.10.6. Reducing Latency of Non-Volatile Memory

In this dissertation, we focus on the DRAM technology, which is the predominant physical
substrate for main memory in today’s systems. On the other hand, a new class of non-volatile
memory (NVM) technology is becoming a potential substrate to replace DRAM or co-exist
with DRAM in future systems [172, [174] [175] [176] 219, 220, 277, 279 357]. Since NVM has
substantially longer latency than DRAM, prior works (e.g., [110], 135, 172, 194, 220} 247,
275, 1358, 362]) propose various techniques to reduce the access latency of different types of
NVM (e.g., PCM and STT-RAM). However, these techniques are not directly applicable to
DRAM devices because each NVM technology has a fundamentally different way of accessing

its memory cells (i.e., devices) from DRAM.

3.11. Experimental Studies of Memory Chips

In this dissertation, we provide extensive detailed experimental characterization and anal-
ysis of latency behavior in modern commodity DRAM chips. There have been other experi-
mental studies of DRAM chips [52] 145}, 146}, 153, 154} 161, 162, 18T, 183] 184, 185, 203, 264]
that study various issues including data retention, read disturbance, latency, address map-
ping, and power. There have also been field studies of the characteristics of DRAM memories
employed in large-scale systems [82, 117, 192, 222] 292, 312, 313]. Both of these types works
are complementary to the works presented in this dissertation.

Similarly, there have been experimental studies of other types of memories, especially

NAND flash memory [38, 40], A1) 42, 43|, 44} 45], [46], 47, 210, 263]. These studies develop a
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similar FPGA-based infrastructure [39] used in this dissertation and examine various issues
including data retention, read disturbance, latency, P/E cycling errors, programming errors,
and cell-to-cell program interference. There have also been field studies of the characteristics
of flash memories employed in large-scale systems [221] 251] 262} 291]. These works are also
complementary to the experimental works presented in this dissertation.

Furthermore, there have been experimental studies of other memory and storage tech-
nologies, such as hard disks [25, 26, 270, 290], SRAM [19, 213] 280, 333] B335, 337], and
PCM [271], 363]. All of these works are also complementary to the experimental works

presented in this dissertation.
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Low-Cost Inter-Linked Subarrays
(LISA)

Bulk data movement, the movement of thousands or millions of bytes between two mem-
ory locations, is a common operation performed by an increasing number of real-world ap-
plications (e.g., [148], 1806], 261, 285, 297, 298, B11l, 324, [365]). Therefore, it has been the
target of several architectural optimizations (e.g., [33] 137, 298, 350, [365]). In fact, bulk
data movement is important enough that modern commercial processors are adding special-
ized support to improve its performance, such as the ERMSB instruction recently added to
the x86 ISA [121].

In today’s systems, to perform a bulk data movement between two locations in memory,
the data needs to go through the processor even though both the source and destination are
within memory. To perform the movement, the data is first read out one cache line at a
time from the source location in memory into the processor caches, over a pin-limited off-
chip channel (typically 64 bits wide). Then, the data is written back to memory, again one
cache line at a time over the pin-limited channel, into the destination location. By going
through the processor, this data movement incurs a significant penalty in terms of latency

and energy consumption. In this chapter, we introduce a new DRAM substrate, Low-Cost
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Inter-Linked Subarrays (LISA), whose goal is to enable fast and efficient data movement
across a large range of memory at low cost. We show that, as a DRAM substrate, LISA is

versatile, enabling an array of new applications that reduce the fundamental access latency

of DRAM.

4.1. Motivation: Low Subarray Connectivity Inside DRAM

To address the inefficiencies of traversing the pin-limited channel, a number of mecha-
nisms have been proposed to accelerate bulk data movement (e.g., [137, 207, 298, 365]). The
state-of-the-art mechanism, RowClone [298], performs data movement completely within a
DRAM chip, avoiding costly data transfers over the pin-limited memory channel. However,
its effectiveness is limited because RowClone can enable fast data movement only when
the source and destination are within the same DRAM subarray. A DRAM chip is divided
into multiple banks (typically 8), each of which is further split into many subarrays (16 to
64) [166], shown in Figure [4.1a] to ensure reasonable read and write latencies at high den-
sity [55], 130, 132, 166, B40]. Each subarray is a two-dimensional array with hundreds of
rows of DRAM cells, and contains only a few megabytes of data (e.g., 4MB in a rank of
eight 1Gb DDR3 DRAM chips with 32 subarrays per bank). While two DRAM rows in the
same subarray are connected via a wide (e.g., 8K bits) bitline interface, rows in different
subarrays are connected via only a narrow 64-bit data bus within the DRAM chip (Fig-
ure . Therefore, even for previously-proposed in-DRAM data movement mechanisms
such as RowClone [298], inter-subarray bulk data movement incurs long latency and high
memory energy consumption even though data does not move out of the DRAM chip.

While it is clear that fast inter-subarray data movement can have several applications
that improve system performance and memory energy efficiency [148, 261, 285], 297, 298], 365],
there is currently no mechanism that performs such data movement quickly and efficiently.
This is because no wide datapath exists today between subarrays within the same bank (i.e.,

the connectivity of subarrays is low in modern DRAM). Our goal is to design a low-cost
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Figure 4.1. Transferring data between subarrays using the internal data bus takes a long
time in state-of-the-art DRAM design, RowClone [298] (a). Our work, LISA, enables fast
inter-subarray data movement with a low-cost substrate (b).

DRAM substrate that enables fast and energy-efficient data movement across subarrays.

4.2. Design Overview and Applications of LISA

We make two key observations that allow us to improve the connectivity of subarrays
within each bank in modern DRAM. First, accessing data in DRAM causes the transfer of
an entire row of DRAM cells to a buffer (i.e., the row buffer, where the row data temporarily
resides while it is read or written) via the subarray’s bitlines. Each bitline connects a column
of cells to the row buffer, interconnecting every row within the same subarray (Figure .
Therefore, the bitlines essentially serve as a very wide bus that transfers a row’s worth of
data (e.g., 8K bits) at once. Second, subarrays within the same bank are placed in close
proximity to each other. Thus, the bitlines of a subarray are very close to (but are not

currently connected to) the bitlines of neighboring subarrays (as shown in Figure [4.1a)).

Key Idea. Based on these two observations, we introduce a new DRAM substrate, called
Low-cost Inter-linked SubArrays (LISA). LISA enables low-latency, high-bandwidth inter-
subarray connectivity by linking neighboring subarrays’ bitlines together with solation tran-
sistors, as illustrated in Figure We use the new inter-subarray connection in LISA
to develop a new DRAM operation, row buffer movement (RBM), which moves data that
is latched in an activated row buffer in one subarray into an inactive row buffer in another

subarray, without having to send data through the narrow internal data bus in DRAM. RBM
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exploits the fact that the activated row buffer has enough drive strength to induce charge
perturbation within the idle (i.e., precharged) bitlines of neighboring subarrays, allowing the
destination row buffer to sense and latch this data when the isolation transistors are enabled.

By using a rigorous DRAM circuit model that conforms to the JEDEC standards [130]
and ITRS specifications [126], 127], we show that RBM performs inter-subarray data move-
ment at 26x the bandwidth of a modern 64-bit DDR4-2400 memory channel (500 GB/s vs.
19.2 GB/s; see §4.4.3), even after we conservatively add a large (60%) timing margin to

account for process and temperature variation.

Applications of LISA. We exploit LISA’s fast inter-subarray movement to enable many
applications that can improve system performance and energy efficiency. We implement and

evaluate the following three applications of LISA:

e Bulk data copying. Fast inter-subarray data movement can eliminate long data
movement latencies for copies between two locations in the same DRAM chip. Prior
work showed that such copy operations are widely used in today’s operating sys-
tems [261), 285] and datacenters [148]. We propose Rapid Inter-Subarray Copy (RISC),
a new bulk data copying mechanism based on LISA’s RBM operation, to reduce the
latency and DRAM energy of an inter-subarray copy by 9.2x and 48.1x, respectively,

over the best previous mechanism, RowClone [298] (§4.5)).

e Enabling access latency heterogeneity within DRAM. Prior works [186, B11] in-
troduced non-uniform access latencies within DRAM, and harnessed this heterogeneity
to provide a data caching mechanism within DRAM for hot (i.e., frequently-accessed)
pages. However, these works do not achieve either one of the following goals: (1) low
area overhead, and (2) fast data movement from the slow portion of DRAM to the fast
portion. By exploiting the LISA substrate, we propose a new DRAM design, VarlabLe
LAtency (VILLA) DRAM, with asymmetric subarrays that reduce the access latency

to hot rows by up to 63%, delivering high system performance and achieving both goals
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of low overhead and fast data movement (§4.6)).

e Reducing precharge latency. Precharge is the process of preparing the subarray
for the next memory access [130], 166, 185 186]. It incurs latency that is on the
critical path of a bank-conflict memory access. The precharge latency of a subarray
is limited by the drive strength of the precharge unit attached to its row buffer. We
demonstrate that LISA enables a new mechanism, LInked Precharge (LIP), which
connects a subarray’s precharge unit with the idle precharge units in the neighboring

subarrays, thereby accelerating precharge and reducing its latency by 2.6x (§4.7)).

These three mechanisms are complementary to each other, and we show that when combined,
they provide additive system performance and energy efficiency improvements (
LISA is a versatile DRAM substrate, capable of supporting several other applications be-
yond these three, such as performing efficient data remapping to avoid conflicts in systems
that support subarray-level parallelism [166], and improving the efficiency of bulk bitwise
operations in DRAM [297] (see §4.11)).

4.3. DRAM Subarrays

In this chapter, we focus on operations across subarrays within the same bank, which
require us to delve deeper into the physical organization of a bank. Typically, a bank is
subdivided into multiple subarrays [55, 166, 298, 347], as shown in Figure[4.2] Each subarray
consists of a 2D-array of DRAM cells that are connected to sense amplifiers through bitlines.
Because the size of a sense amplifier is more than 100x the size of a cell [I86], modern DRAM
designs fit in only enough sense amplifiers in a row to sense half a row of cells. To sense the
entire row of cells, each subarray has bitlines that connect to two rows of sense amplifiers
— one above and one below the cell array (1) and 2) in Figure , for Subarray 1). This
DRAM design is known as the open bitline architecture, and is commonly used to achieve

high-density DRAM [195, 329]. A single row of sense amplifiers, which holds the data from
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half a row of activated cells, is also referred as a row buffer.
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Figure 4.2. Bank and subarray organization in a DRAM chip.

4.3.1. DRAM Subarray Operation

Accessing data in a subarray requires two steps. The DRAM row (typically 8KB across
a rank of eight x8 chips) must first be activated. Only after activation completes, a column
command (i.e., a READ/WRITE) can operate on a piece of data (typically 64B across a rank;
the size of a single cache line) from that row.

When an ACTIVATE command with a row address is issued, the data stored within a row
in a subarray is read by two row buffers (i.e., the row buffer at the top of the subarray (1) and
the one at the bottom (2)). First, a wordline corresponding to the row address is selected by
the subarray’s row decoder. Then, the top row buffer and the bottom row buffer each sense
the charge stored in half of the row’s cells through the bitlines, and amplify the charge to
full digital logic values (0 or 1) to latch in the cells” data.

After an ACTIVATE finishes latching a row of cells into the row buffers, a READ or a WRITE
can be issued. Because a typical read/write memory request is made at the granularity of
a single cache line, only a subset of bits are selected from a subarray’s row buffer by the
column decoder. On a READ, the selected column bits are sent to the global sense amplifiers

through the internal data bus (also known as the global data lines) (3), which has a narrow

39



CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

width of 64B across a rank of eight chips. The global sense amplifiers (4) then drive the
data to the bank 1/0O logic (5), which sends the data out of the DRAM chip to the memory
controller.

While the row is activated, a consecutive column command to the same row can access
the data from the row buffer without performing an additional ACTIVATE. This is called
a row buffer hit. In order to access a different row, a PRECHARGE command is required
to reinitialize the bitlines’ values for another ACTIVATE. This re-initialization process is
completed by a set of precharge units (6) in the row buffer. For more detail on DRAM
commands and internal DRAM operation, we refer the reader to prior works [166, 185, 186,

2041, 298|, [311].

4.4. Mechanism

First, we discuss the low-cost design changes to DRAM to enable high-bandwidth con-
nectivity across neighboring subarrays (Section 4.4.1). We then introduce a new DRAM
command that uses this new connectivity to perform bulk data movement (Section 4.4.2)).

Finally, we conduct circuit-level studies to determine the latency of this command (Sec-

tions [4.4.3 and [4.4.4)).

4.4.1. LISA Design in DRAM

LISA is built upon two key characteristics of DRAM. First, large data bandwidth within
a subarray is already available in today’s DRAM chips. A row activation transfers an entire
DRAM row (e.g., 8KB across all chips in a rank) into the row buffer via the bitlines of the
subarray. These bitlines essentially serve as a wide bus that transfers an entire row of data
in parallel to the respective subarray’s row buffer. Second, every subarray has its own set
of bitlines, and subarrays within the same bank are placed in close proximity to each other.

Therefore, a subarray’s bitlines are very close to its neighboring subarrays’ bitlines, although
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these bitlines are not directly connected together.E]

By leveraging these two characteristics, we propose to build a wide connection path be-
tween subarrays within the same bank at low cost, to overcome the problem of a narrow
connection path between subarrays in commodity DRAM chips (i.e., the internal data bus
(3 in Figure . Figure 4.3 shows the subarray structures in LISA. To form a new, low-cost
inter-subarray datapath with the same wide bandwidth that already exists inside a subarray,
we join neighboring subarrays’ bitlines together using isolation transistors. We call each of
these isolation transistors a link. A link connects the bitlines for the same column of two

adjacent subarrays.

| | | |
Isolation
D) = ASybargay G Transistor (Link)

1 t t :: J \‘l/
S Top Row Buffer
A t i (src)

i 1 aSubarray I 1

Bottom Row Buffer
(dst)

Subarray 2

Figure 4.3. Inter-linked subarrays in LISA.

When the isolation transistor is turned on (i.e., the link is enabled), the bitlines of two
adjacent subarrays are connected. Thus, the sense amplifier of a subarray that has already
driven its bitlines (due to an ACTIVATE) can also drive its neighboring subarray’s precharged
bitlines through the enabled link. This causes the neighboring sense amplifiers to sense the
charge difference, and simultaneously help drive both sets of bitlines. When the isolation
transistor is turned off (i.e., the link is disabled), the neighboring subarrays are disconnected

from each other and thus operate as in conventional DRAM.

!Note that matching the bitline pitch across subarrays is important for a high-yield DRAM process [195]
329].
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4.4.2. Row Buffer Movement (RBM) Through LISA

Now that we have inserted physical links to provide high-bandwidth connections across
subarrays, we must provide a way for the memory controller to make use of these new
connections. Therefore, we introduce a new DRAM command, RBM, which triggers an
operation to move data from one row buffer (half a row of data) to another row buffer within
the same bank through these links. This operation serves as the building block for our
architectural optimizations.

To help explain the RBM process between two row buffers, we assume that the top row
buffer and the bottom row buffer in Figure |4.3[ are the source (src) and destination (dst) of
an example RBM operation, respectively, and that src is activated with the content of a row
from Subarray 0. To perform this RBM, the memory controller enables the links (@ and
(B)) between src and dst, thereby connecting the two row buffers’ bitlines together (bitline
of src to bitline of dst, and bitline of src to bitline of dst).

Figure illustrates how RBM drives the data from src to dst. For clarity, we show only
one column from each row buffer. State (1) shows the initial values of the bitlines (BL and
BL) attached to the row buffers — src is activated and has fully driven its bitlines (indicated
by thick bitlines), and dst is in the precharged state (thin bitlines indicating a voltage state
of Vpp/2). In state (2), the links between src and dst are turned on. The charge of the src
bitline (BL) flows to the connected bitline (BL) of dst, raising the voltage level of dst’s BL
to Vpp/2 + A. The other bitlines (BL) have the opposite charge flow direction, where the
charge flows from the BL of dst to the BL of src. This phase of charge flowing between
the bitlines is known as charge sharing. It triggers dst’s row buffer to sense the increase of
differential voltage between BL and BL, and amplify the voltage difference further. As a
result, both src and dst start driving the bitlines with the same values. This double sense
amplification process pushes both sets of bitlines to reach the final fully sensed state ((3)),
thus completing the RBM from src to dst.

Extending this process, RBM can move data between two row buffers that are not ad-
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Figure 4.4. Row buffer movement process using LISA.

jacent to each other as well. For example, RBM can move data from the src row buffer (in
Figure to a row buffer, dst2, that is two subarrays away (i.e., the bottom row buffer of
Subarray 2, not shown in Figure . This operation is similar to the movement shown in
Figure , except that the RBM command turns on two extra links (L (2) in Figure ,
which connect the bitlines of dst to the bitlines of dst2, in state (2). By enabling RBM
to perform row buffer movement across non-adjacent subarrays via a single command, in-
stead of requiring multiple commands, the movement latency and command bandwidth are

reduced.

4.4.3. Row Buffer Movement (RBM) Latency

To validate the RBM process over LISA links and evaluate its latency, we build a model of
LISA using the Spectre Circuit Simulator [37], with the NCSU FreePDK 45nm library [255].
We configure the DRAM using the JEDEC DDR3-1600 timings [130], and attach each bitline
to 512 DRAM cells [186, BTT]. We conservatively perform our evaluations using worst-case
cells, with the resistance and capacitance parameters specified in the ITRS reports [126], [127]
for the metal lanes. Furthermore, we conservatively model the worst RC drop (and hence
latency) by evaluating cells located at the edges of subarrays.

We now analyze the process of using one RBM operation to move data between two
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non-adjacent row buffers that are two subarrays apart. To help the explanation, we use an
example that performs RBM from RBO to RB2, as shown on the left side of Figure 4.5 The
right side of the figure shows the voltage of a single bitline BL from each subarray during
the RBM process over time. The voltage of the BL bitlines show the same behavior, but

have inverted values. We now explain this RBM process step by step.
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Figure 4.5. SPICE simulation results for transferring data across two subarrays with LISA.

First, before the RBM command is issued, an ACTIVATE command is sent to RBO at
time 0. After roughly 21ns (1), the bitline reaches Vpp, which indicates the cells have been
fully restored (tRAS). Note that, in our simulation, restoration happens more quickly than
the standard-specified tRAS value of 35ns, as the standard includes a guardband on top of
the typical cell restoration time to account for process and temperature variation [52} [185].
This amount of margin is on par with values experimentally observed in commodity DRAMs
at 55°C [185].

Second, at 35ns ((2)), the memory controller sends the RBM command to move data from
RBO to RB2. RBM simultaneously turns on the four links (circled on the left in Figure
that connect the subarrays’ bitlines.

Third, after a small amount of time (), the voltage of RBO’s bitline drops to about
0.9V, as the fully-driven bitlines of RBO are now charge sharing with the precharged bitlines

attached to RB1 and RB2. This causes both RB1 and RB2 to sense the charge difference and
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start amplifying the bitline values. Finally, after amplifying the bitlines for a few nanoseconds
(@ at 40ns), all three bitlines become fully driven with the value that is originally stored in
RBO.

We thus demonstrate that RBM moves data from one row buffer to a row buffer two
subarrays away at very low latency. Our SPICE simulation shows that the RBM latency
across two LISA links is approximately 5ns (2) — @). To be conservative, we do not allow

data movement across more than two subarrays with a single RBM commandE]

4.4.4. Handling Process and Temperature Variation

On top of using worst-case cells in our SPICE model, we add in a latency guardband to
the RBM latency to account for process and temperature variation, as DRAM manufacturers
commonly do [52] [I85]. For instance, the ACTIVATE timing (tRCD) has been observed to
have margins of 13.3% [52] and 17.3% [185] for different types of commodity DRAMs. To
conservatively account for process and temperature variation in LISA, we add a large timing
margin, of 60%, to the RBM latency. Even then, RBM latency is 8ns and RBM provides a
500 GB/s data transfer bandwidth across two subarrays that are one subarray apart from

each other, which is 26x the bandwidth of a DDR4-2400 DRAM channel (19.2 GB/s) [132].

4.5. Application 1: Rapid Inter-Subarray Bulk Data Copying
(LISA-RISC)

Due to the narrow memory channel width, bulk copy operations used by applications and
operating systems are performance limiters in today’s systems [137, 148, 298, B365]. These
operations are commonly performed due to the memcpy and memmov. Recent work reported
that these two operations consume 4-5% of all of Google’s datacenter cycles, making them

an important target for lightweight hardware acceleration [148]. As we show in Section m,

2In other words, RBM has two variants, one that moves data between immediately adjacent subarrays
(Figure [4.4) and one that moves data between subarrays that are one subarray apart from each other

(Figure .
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the state-of-the-art solution, RowClone [298], has poor performance for such operations when
they are performed across subarrays in the same bank.

Our goal is to provide an architectural mechanism to accelerate these inter-subarray
copy operations in DRAM. We propose LISA-RISC, which uses the RBM operation in LISA
to perform rapid data copying. We describe the high-level operation of LISA-RISC (Sec-
tion , and then provide a detailed look at the memory controller command sequence

required to implement LISA-RISC (Section [4.5.3)).

4.5.1. Shortcomings of the State-of-the-Art

Previously, we have described the state-of-the-art work, RowClone [298], which addresses
the problem of costly data movement over memory channels by coping data completely in
DRAM. However, RowClone does not provide fast data copy between subarrays. The main
latency benefit of RowClone comes from intra-subarray copy (RC-IntraSA for short) as
it copies data at the row granularity. In contrast, inter-subarray RowClone (RC-InterSA)
requires transferring data at the cache line granularity (64B) through the internal data bus in
DRAM. Consequently, RC-InterSA incurs 16z longer latency than RC-IntraSA. Furthermore,
RC-InterSA is a long blocking operation that prevents reading from or writing to the other
banks in the same rank, reducing bank-level parallelism [180, 241].

To demonstrate the ineffectiveness of RC-InterSA, we compare it to today’s currently-
used copy mechanism, memcpy, which moves data via the memory channel. In contrast to
RC-InterSA, which copies data in DRAM, memcpy copies data by sequentially reading out
source data from the memory and then writing it to the destination data in the on-chip
caches. Figure 4.6| compares the average system performance and queuing latency of RC-
InterSA and memcpy, on a quad-core system across 50 workloads that contain bulk (8KB)
data copies (see Section for our methodology). RC-InterSA actually degrades system
performance by 24% relative to memcpy, mainly because RC-InterSA increases the overall

memory queuing latency by 2.88x, as it blocks other memory requests from being serviced
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by the memory controller performing the RC-InterSA copy. In contrast, memcpy is not a long
or blocking DRAM command, but rather a long sequence of memory requests that can be
interrupted by other critical memory requests, as the memory scheduler can issue memory

requests out of order [164} 165, 240, 241, 284, 320, 342, 370].
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Figure 4.6. Comparison of RowClone to memcpy over the memory channel, on workloads
that perform bulk data copy across subarrays on a 4-core system.
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Figure 4.7. Command service timelines of a row copy for LISA-RISC and RC-InterSA
(command latencies not drawn to scale).

On the other hand, RC-InterSA offers energy savings of 5.1% on average over memcpy by
not transferring the data over the memory channel. Overall, these results show that neither
of the existing mechanisms (memcpy or RowClone) offers fast and energy-efficient bulk data

copy across subarrays.

4.5.2. In-DRAM Rapid Inter-Subarray Copy (RISC)

Our goal is to design a new mechanism that enables low-latency and energy-efficient
memory copy between rows in different subarrays within the same bank. To this end, we
propose a new in-DRAM copy mechanism that uses LISA to exploit the high-bandwidth
links between subarrays. The key idea, step by step, is to: (1) activate a source row in a

subarray; (2) rapidly transfer the data in the activated source row buffers to the destination
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subarray’s row buffers, through LISA’s wide inter-subarray links, without using the narrow
internal data bus; and (3) activate the destination row, which enables the contents of the
destination row buffers to be latched into the destination row. We call this inter-subarray
row-to-row copy mechanism LISA-Rapid Inter-Subarray Copy (LISA-RISC).

As LISA-RISC uses the full row bandwidth provided by LISA, it reduces the copy la-
tency by 9.2x compared to RC-InterSA (see Section . An additional benefit of using
LISA-RISC is that its inter-subarray copy operations are performed completely inside a bank.
As the internal DRAM data bus is untouched, other banks can concurrently serve memory
requests, exploiting bank-level parallelism. This new mechanism is complementary to Row-
Clone, which performs fast intra-subarray copies. Together, our mechanism and RowClone
can enable a complete set of fast in-DRAM copy techniques in future systems. We now

explain the step-by-step operation of how LISA-RISC copies data across subarrays.

4.5.3. Detailed Operation of LISA-RISC

Figure [4.7] shows the command service timelines for both LISA-RISC and RC-InterSA,
for copying a single row of data across two subarrays, as we show on the left. Data is copied
from subarray SAO to SA2. We illustrate four row buffers (RBO-RB3): recall from Section
that in order to activate one row, a subarray must use two row buffers (at the top and
bottom), as each row buffer contains only half a row of data. As a result, LISA-RISC must
copy half a row at a time, first moving the contents of RB1 into RB3, and then the contents
of RBO into RB2, using two RBM commands.

First, the LISA-RISC memory controller activates the source row (ACTsp) to latch its data
into two row buffers (RBO and RB1). Second, LISA-RISC invokes the first RBM operation
(RBM;_,3) to move data from the bottom source row buffer (RB1) to the respective destination
row buffer (RB3), thereby linking RB1 to both RB2 and RB3, which activates both RB2 and
RB3. After this step, LISA-RISC cannot immediately invoke another RBM to transfer the

remaining half of the source row in RBO into RB2, as a row buffer (RB2) needs to be in the
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precharged state in order to receive data from an activated row buffer (RBO). Therefore,
LISA-RISC completes copying the first half of the source data into the destination row
before invoking the second RBM, by writing the row buffer (RB3) into the cells through an
activation (ACTspp). This activation enables the contents of the sense amplifiers (RB3) to
be driven into the destination row. To address the issue that modern DRAM chips do not
allow a second ACTIVATE to an already-activated bank, we use the back-to-back ACTIVATE
command that is used to support RowClone [298)].

Third, to move data from RBO to RB2 to complete the copy transaction, we need to
precharge both RB1 and RB2. The challenge here is to precharge all row buffers exzcept RBO.
This cannot be accomplished in today’s DRAM because a precharge is applied at the bank
level to all row buffers. Therefore, we propose to add a new precharge-exception command,
which prevents a row buffer from being precharged and keeps it activated. This bank-wide
exception signal is supplied to all row buffers, and when raised for a particular row buffer,
the selected row buffer retains its state while the other row buffers are precharged. After
the precharge-exception (PREg) is complete, we then invoke the second RBM (RBMy_;3) to
copy RBO to RB2, which is followed by an activation (ACTgys’) to write RB2 into SA2. Finally,
LISA-RISC finishes the copy by issuing a PRECHARGE command (PRE in Figure to the
bank.

In comparison, the command service timeline of RC-InterSA is much longer, as RowClone
can copy only one cache line of data at a time (as opposed to half a row buffer). This requires
128 serial cache line transfers to read the data from RBO and RB1 into a temporary row in
another bank, followed by another 128 serial cache line transfers to write the data into RB2
and RB3. LISA-RISC, by moving half a row using a single RBM command, achieves 9.2x

lower latency than RC-InterSA.
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Figure 4.8. Latency and DRAM energy of 8KB copy.

4.5.4. Data Coherence

When a copy is performed in DRAM, one potential disadvantage is that the data stored
in the DRAM may not be the most recent version, as the processor may have dirty cache
lines that belong to the section of memory being copied. Prior works on in-DRAM migration
have proposed techniques to accommodate data coherence [297, 298]. Alternatively, we can

accelerate coherence operations by using structures like the Dirty-Block Index [295].

4.5.5. Comparison of Copy Techniques

Figure 4.8 shows the DRAM latency and DRAM energy consumption of different copy
commands for copying a row of data (8KB). The exact latency and energy numbers are listed
in Table We derive the copy latency of each command sequence using equations based
on the DDR3-1600 timings [I30] (available in our technical report [56]), and the DRAM
energy using the Micron power calculator [223]. For LISA-RISC, we define a hop as the
number of subarrays that LISA-RISC needs to copy data across to move the data from
the source subarray to the destination subarray. For example, if the source and destination
subarrays are adjacent to each other, the number of hops is 1. The DRAM chips that we
evaluate have 16 subarrays per bank, so the maximum number of hops is 15.

We make two observations from these numbers. First, although RC-InterSA incurs similar

latencies as memcpy, it consumes 29.6% less energy, as it does not transfer data over the

30ur reported numbers differ from prior work [298] because: (1) we use faster DRAM timing parameters
(1600-11-11-11 vs 1066-8-8-8), and (2) we use the 8KB row size of most commercial DRAM instead of
4KB [298).

50



CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

Copy Commands (8KB) Latency (ns) Energy (pnJ)

memcpy (via mem. channel) 1366.25 6.2
RC-InterSA / Bank / IntraSA 1363.75 / 701.25 / 83.75 4.33 / 2.08 / 0.06
LISA-RISC (1 /7 /15hops) 148.5/196.5 /260.5 0.09/0.12 /0.17

Table 4.1. Copy latency and DRAM energy.

channel and DRAM I/O for each copy operation. However, as we showed in Section m,
RC-InterSA incurs a higher system performance penalty because it is a long-latency blocking
memory command. Second, copying between subarrays using LISA achieves significantly
lower latency and energy compared to RowClone, even though the total latency of LISA-
RISC grows linearly with the hop count.

By exploiting the LISA substrate, we thus provide a more complete set of in-DRAM
copy mechanisms. Our workload evaluation results show that LISA-RISC outperforms RC-
InterSA and memcpy: its average performance improvement and energy reduction over the
best performing inter-subarray copy mechanism (i.e., memcpy) are 66.2% and 55.4%, re-

spectively, on a quad-core system, across 50 workloads that perform bulk copies (see Sec-

tion 4.10.1)).

4.6. Application 2: In-DRAM Caching Using Heterogeneous Sub-
arrays (LISA-VILLA)

Our second application aims to reduce the DRAM access latency for frequently-accessed
(hot) data. Prior work introduces heterogeneity into DRAM, where one region has a fast
access latency but small capacity (fewer DRAM rows), while the other has a slow access
latency but high capacity (many more rows) [I86, B11]. To yield the highest performance
benefits, the fast region is used as a dynamic cache that stores the hot rows. There are two
design constraints that must be considered: (1) ease of implementation, as the fast caching
structure needs to be low-cost and non-intrusive; and (2) data movement cost, as the caching
mechanism should adapt to dynamic program phase changes, which can lead to changes in

the set of hot DRAM rows. As we show in Section prior work has not balanced the
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trade-off between these two constraints.

Our goal is to design a heterogeneous DRAM that offers fast data movement with a
low-cost and easy-to-implement design. To this end, we propose LISA-VILLA (VarlabLe
LAtency), a mechanism that uses LISA to provide fast row movement into the cache when
the set of hot DRAM rows changes. LISA-VILLA is also easy to implement, as discussed in
Section We describe our hot row caching policy in Section

4.6.1. Shortcomings of the State-of-the-Art

We observe that two state-of-the-art techniques for heterogeneity within a DRAM chip
are not effective at providing both ease of implementation and low movement cost.

CHARM [311] introduces heterogeneity within a rank by designing a few fast banks with
(1) shorter bitlines for faster data sensing, and (2) closer placement to the chip I/O for faster
data transfers. To exploit these low-latency banks, CHARM uses an OS-managed mechanism
to statically allocate hot data to them based on program profile information. Unfortunately,
this approach cannot adapt to program phase changes, limiting its performance gains. If it
were to adopt dynamic hot data management, CHARM would incur high movement cost
over the narrow 64-bit internal data bus in DRAM, as illustrated in Figure since it

does not provide high-bandwidth connectivity between banks.

Fast Bank Slow Bank )
Isolation

Transistors

Underutilized
Cache Space

v Internal
_ Data Bus
High Movement Cost

(a) CHARM [3171] (b) TL-DRAM [I86]

Figure 4.9. Drawbacks of existing heterogeneous DRAMs.

TL-DRAM [I86] provides heterogeneity within a subarray by dividing it into fast (near)

and slow (far) segments that have short and long bitlines, respectively, using isolation tran-
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sistors. To manage the fast segment as an OS-transparent hardware cache, TL-DRAM
proposes a fast intra-subarray movement scheme similar to RowClone [298]. The main dis-
advantage is that TL-DRAM needs to cache each hot row in two near segments, as shown
in Figure 4.9b, as each subarray uses two row buffers on opposite ends to sense data in the
open-bitline architecture. This prevents TL-DRAM from using the full near segment capac-
ity. TL-DRAM’s area overhead is also sizable (3.15%) in an open-bitline architecture. As
we can see, neither CHARM nor TL-DRAM strike a good trade-off between the two design

constraints.

4.6.2. Variable Latency (VILLA) DRAM

We propose to introduce heterogeneity within a bank by designing heterogeneous-latency
subarrays. We call this heterogeneous DRAM design VarlabLe LAtency DRAM (VILLA-
DRAM). To design a low-cost fast subarray, we take an approach similar to prior work,
attaching fewer cells to each bitline to reduce the parasitic capacitance and resistance. This
reduces the sensing (tRCD), restoration (tRAS), and precharge (tRP) time of the fast subar-
rays [186] 228, 311]. In this chapter, we focus on managing the fast subarrays in hardware,
as it offers better adaptivity to dynamic changes in the hot data set.

In order to take advantage of VILLA-DRAM, we rely on LISA-RISC to rapidly copy rows
across subarrays, which significantly reduces the caching latency. We call this synergistic
design, which builds VILLA-DRAM using the LISA substrate, LISA-VILLA. Nonetheless,
the cost of transferring data to a fast subarray is still non-negligible, especially if the fast
subarray is far from the subarray where the data to be cached resides. Therefore, an intelli-
gent cost-aware mechanism is required to make astute decisions on which data to cache and

when.
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4.6.3. Caching Policy for LISA-VILLA

We design a simple epoch-based caching policy to evaluate the benefits of caching a row
in LISA-VILLA. Every epoch, we track the number of accesses to rows by using a set of
1024 saturating counters for each bank.F_f] The counter values are halved every epoch to
prevent staleness. At the end of an epoch, we mark the 16 most frequently-accessed rows
as hot, and cache them when they are accessed the next time. For our cache replacement
policy, we use the benefit-based caching policy proposed by Lee et al. [I86]. Specifically, it
uses a benefit counter for each row cached in the fast subarray: whenever a cached row is
accessed, its counter is incremented. The row with the least benefit is replaced when a new
row needs to be inserted. Note that a large body of work proposed various caching policies
(e.g., [102, 109, 114} 136, 1511 219, 276, 296, [357]), each of which can potentially be used
with LISA-VILLA.

Our evaluation shows that LISA-VILLA improves system performance by 5.1% on aver-

age, and up to 16.1%, for a range of 4-core workloads (see Section [4.10.2)).

4.7. Application 3: Fast Precharge Using Linked Precharge Units
(LISA-LIP)

Our third application aims to accelerate the process of precharge. The precharge time
for a subarray is determined by the drive strength of the precharge unit. We observe that
in modern DRAM, while a subarray is being precharged, the precharge units (PUs) of other
subarrays remain idle.

We propose to exploit these idle PUs to accelerate a precharge operation by connecting
them to the subarray that is being precharged. Our mechanism, LISA-LInked Precharge
(LISA-LIP), precharges a subarray using two sets of PUs: one from the row buffer that

is being precharged, and a second set from a neighboring subarray’s row buffer (which is

4The hardware cost of these counters is low, requiring only 6KB of storage in the memory controller (see

Section {4.8.1)).
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already in the precharged state), by enabling the links between the two subarrays.

Figure [4.10| shows the process of linked precharging using LISA. Initially, only one sub-
array (top) is fully activated (state (1)) while the neighboring (bottom) subarray is in the
precharged state. The neighboring subarray is in the precharged state, as only one subarray
in a bank can be activated at a time, while the other subarrays remain precharged. In state
(2), we begin the precharge operation by disabling the sense amplifier in the top row buffer
and enabling its PU. After we enable the links between the top and bottom subarrays, the
bitlines start sharing charge with each other, and both PUs simultaneously reinitialize the
bitlines, eventually fully pulling the bitlines to Vpp/2 (state (3)). Note that we are using

two PUs to pull down only one set of activated bitlines, which is why the precharge process

is shorter.
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Figure 4.10. Linked precharging through LISA.

To evaluate the accelerated precharge process, we use the same methodology described
in Section and simulate the linked precharge operation in SPICE. Figure shows
the resulting timing diagram. During the first 2ns, the wordline is lowered to disconnect the
cells from the bitlines (1). Then, we enable the links to begin precharging the bitlines (2).
The result shows that the precharge latency reduces significantly due to having two PUs to
perform the precharge. LISA enables a shorter precharge latency of approximately 3.5ns 3)
versus the baseline precharge latency of 13.1ns (4.

To account for process and temperature variation, we add a guardband to the
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Figure 4.11. SPICE simulation of precharge operation.

SPICE-reported latency, increasing it to 5ns (i.e., by 42.9% ), which still achieves 2.6x lower
precharge latency than the baseline. Our evaluation shows that LISA-LIP improves perfor-
mance by 10.3% on average, across 50 four-core workloads (see Section [4.10.3)).

4.8. Hardware Cost

4.8.1. Die Area Overhead

To evaluate the area overhead of adding isolation transistors, we use area values from
prior work, which adds isolation transistors to disconnect bitlines from sense amplifiers [257].
That work shows that adding an isolation transistor to every bitline incurs a total of 0.8% die
area overhead in a 28nm DRAM process technology. Similar to prior work that adds isolation
transistors to DRAM [I86], 257], our LISA substrate also requires additional control logic
outside the DRAM banks to control the isolation transistors, which incurs a small amount of
area and is non-intrusive to the cell arrays. For LISA-VILLA, we use 1024 six-bit saturating
counters to track the access frequency of rows in every bank; this requires an additional 6KB

storage within a memory controller connected to one rank.

4.8.2. Handling Repaired Rows

To improve yield, DRAM manufacturers often employ post-manufacturing repair tech-
niques that can remap faulty rows to spare rows provisioned in every subarray [152]. There-
fore, consecutive row addresses as observed by the memory controller may physically reside in

different subarrays. To handle this issue for techniques that require the controller to know the
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subarray a row resides in (e.g., RowClone [298], LISA-RISC), a simple approach can be used
to expose the repaired row information to the memory controller. Since DRAM already stores
faulty rows’ remapping information inside the chip, this information can be exposed to the
controller through the serial presence detect (SPD) [131], which is an EEPROM that stores
DRAM information such as timing parameters. The memory controller can read this stored
information at system boot time so that it can correctly determine a repaired row’s location
in DRAM. Note that similar techniques may be necessary for other mechanisms that require

information about physical location of rows in DRAM (e.g., [55] 149} 162, [166], [186], 203]).

4.9. Methodology

We evaluate our system using a variant of Ramulator [I67], an open-source cycle-accurate
DRAM simulator, driven by traces generated from Pin [208]. We will make our simulator
publicly available [62]. We use a row buffer policy that closes a row only when there are no
more outstanding requests in the memory controller to the same row [284]. Unless stated

otherwise, our simulator uses the parameters listed in Table [7.2]

Processor 1-4 000 cores, 4GHz, 3-wide issue
Cache L1: 64KB, L2: 512KB per core, L3: 4MB, 64B lines
Mem. Controller 64/64-entry read/write queue, FR-FCFS [284] [370]

DDR3-1600 [227], 1-2 channels, 1 rank/channel,
8 banks/rank, 16 subarrays/bank

DRAM

Table 4.2. Evaluated system configuration.

To evaluate the benefits of different data copy mechanisms in isolation, we use a copy-aware
page mapping policy that allocates destination pages to the same DRAM structures (i.e.,
subarrays, banks) where the source pages are allocated. As a result, our evaluation of dif-
ferent data copy mechanisms is a limit study as only the specified copy mechanism (e.g.,
RISC) is used for copy operations. For example, when evaluating RISC, the page mapper
allocates both the source and destination pages within the same bank to evaluate the benefits

of RISC’s fast data movement between subarrays.
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Benchmarks and Workloads. We primarily use benchmarks from TPC(-C/-H) [338],
DynoGraph (BFS, PageRank) [272], SPEC CPU2006 [315], and STREAM [218], along with
a random-access microbenchmark similar to HPCC RandomAccess [111]. Because these
benchmarks predominantly stress the CPU and memory while rarely invoking memcpy, we use
the following benchmarks to evaluate different copy me