
Understanding and Improving

the Latency of DRAM-Based Memory Systems

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Kevin K. Chang

M.S., Electrical & Computer Engineering, Carnegie Mellon University

B.S., Electrical & Computer Engineering, Carnegie Mellon University

Carnegie Mellon University

Pittsburgh, PA

May, 2017

Copyright ©2017, Kevin K. Chang

Abstract

Over the past two decades, the storage capacity and access bandwidth of main memory
have improved tremendously, by 128x and 20x, respectively. These improvements are mainly
due to the continuous technology scaling of DRAM (dynamic random-access memory), which
has been used as the physical substrate for main memory. In stark contrast with capacity
and bandwidth, DRAM latency has remained almost constant, reducing by only 1.3x in the
same time frame. Therefore, long DRAM latency continues to be a critical performance bot-
tleneck in modern systems. Increasing core counts, and the emergence of increasingly more
data-intensive and latency-critical applications further stress the importance of providing
low-latency memory accesses.

In this dissertation, we identify three main problems that contribute significantly to long
latency of DRAM accesses. To address these problems, we present a series of new techniques.
Our new techniques significantly improve both system performance and energy efficiency. We
also examine the critical relationship between supply voltage and latency in modern DRAM
chips and develop new mechanisms that exploit this voltage-latency trade-off to improve
energy efficiency.

First, while bulk data movement is a key operation in many applications and operating
systems, contemporary systems perform this movement inefficiently, by transferring data
from DRAM to the processor, and then back to DRAM, across a narrow off-chip channel.
The use of this narrow channel for bulk data movement results in high latency and high en-
ergy consumption. This dissertation introduces a new DRAM design, Low-cost Inter-linked
SubArrays (LISA), which provides fast and energy-efficient bulk data movement across sub-
arrays in a DRAM chip. We show that the LISA substrate is very powerful and versatile
by demonstrating that it efficiently enables several new architectural mechanisms, including
low-latency data copying, reduced DRAM access latency for frequently-accessed data, and
reduced preparation latency for subsequent accesses to a DRAM bank.

Second, DRAM needs to be periodically refreshed to prevent data loss due to leakage.
Unfortunately, while DRAM is being refreshed, a part of it becomes unavailable to serve
memory requests, which degrades system performance. To address this refresh interference
problem, we propose two access-refresh parallelization techniques that enable more overlap-
ping of accesses with refreshes inside DRAM, at the cost of very modest changes to the
memory controllers and DRAM chips. These two techniques together achieve performance
close to an idealized system that does not require refresh.

Third, we find, for the first time, that there is significant latency variation in accessing
different cells of a single DRAM chip due to the irregularity in the DRAM manufacturing
process. As a result, some DRAM cells are inherently faster to access, while others are in-

i

herently slower. Unfortunately, existing systems do not exploit this variation and use a fixed
latency value based on the slowest cell across all DRAM chips. To exploit latency variation
within the DRAM chip, we experimentally characterize and understand the behavior of the
variation that exists in real commodity DRAM chips. Based on our characterization, we
propose Flexible-LatencY DRAM (FLY-DRAM), a mechanism to reduce DRAM latency by
categorizing the DRAM cells into fast and slow regions, and accessing the fast regions with a
reduced latency, thereby improving system performance significantly. Our extensive exper-
imental characterization and analysis of latency variation in DRAM chips can also enable
development of other new techniques to improve performance or reliability.

Fourth, this dissertation, for the first time, develops an understanding of the latency be-
havior due to another important factor – supply voltage, which significantly impacts DRAM
performance, energy consumption, and reliability. We take an experimental approach to
understanding and exploiting the behavior of modern DRAM chips under different supply
voltage values. Our detailed characterization of real commodity DRAM chips demonstrates
that memory access latency reduces with increasing supply voltage. Based on our charac-
terization, we propose Voltron, a new mechanism that improves system energy efficiency
by dynamically adjusting the DRAM supply voltage based on a performance model. Our
extensive experimental data on the relationship between DRAM supply voltage, latency, and
reliability can further enable developments of other new mechanisms that improve latency,
energy efficiency, or reliability.

The key conclusion of this dissertation is that augmenting DRAM architecture with
simple and low-cost features, and developing a better understanding of manufactured DRAM
chips together leads to significant memory latency reduction as well as energy efficiency
improvement. We hope and believe that the proposed architectural techniques and detailed
experimental data on real commodity DRAM chips presented in this dissertation will enable
developments of other new mechanisms to improve the performance, energy efficiency, or
reliability of future memory systems.

ii

Acknowledgments

The pursuit of Ph.D. has been a period of fruitful learning experience for me, not only
in the academic arena, but also on a personal level. I would like to reflect on the many
people who have supported and helped me to become who I am today. First and foremost,
I would like to thank my advisor, Prof. Onur Mutlu, who has taught me how to think
critically, speak clearly, and write thoroughly. Onur generously provided the resources and
the open environment that enabled me to carry out my research. I am also very thankful
to Onur for giving me the opportunities to collaborate with students and researchers from
other institutions. They have broadened my knowledge and improved my research.

I am grateful to the members of my thesis committee: Prof. James Hoe, Prof. Kayvon
Fatahalian, Prof. Moinuddin Qureshi, and Prof. Steve Keckler for serving on my defense.
They provided me valuable comments and helped make the final stretch of my Ph.D. very
smooth. I would like to especially thank Prof. James Hoe for introducing me to computer
architecture and providing me numerous pieces of advice throughout my education.

I would like to thank my internship mentors, who provided the guidance to make my work
successful for both sides: Gabriel Loh, Mithuna Thottethodi, Yasuko Eckert, Mike O’Connor,
Srilatha Manne, Lisa Hsu, Zeshan Chishti, Alaa Alameldeen, Chris Wilkerson, Shih-Lien Lu,
and Manu Awasthi. I thank the Intel Corporation and Semiconductor Research Corporation
(SRC) for their generous financial support.

During graduate school, I have met many wonderful fellow graduate students and friends
whom I am grateful to. Members in SAFARI research group have been both great friends and
colleagues to me. Rachata Ausavarungnirun was my great cubic mate who supported and
tolerated me for many years. Donghyuk Lee was our DRAM guru who introduced expert
DRAM knowledge to many of us. Saugata Ghose was my collaborator and mentor who
assisted me in many ways. Hongyi Xin has been a good friend who taught me a great deal
about bioinformatics and amused me with his great sense of humor. Yoongu Kim taught me
how to conduct research and think about problems from different perspectives. Samira Khan
provided me insightful academic and life advice. Gennady Pekhimenko was always helpful
when I am in need. Vivek Seshadri is someone I aspire to be because of his creative and
methodical approach to problem solving and thinking. Lavanya Subramanian was always
warm and welcoming when I approached her with ideas and problems. Chris Fallin’s critical
feedback on research during the early years of my research was extremely helpful. Kevin
Hsieh was always willing to listen to my problems in school and life, and provided me with
the right advice. Nandita Vijaykumar was a strong-willed person who gave me unwavering
advice. I am grateful to other SAFARI members for their companionship: Justin Meza,
Jamie, Ben, HanBin Yoon, Yang Li, Minesh Patel, Jeremie Kim, Amirali Boroumand, and

iii

Damla Senol. I also thank graduate interns and visitors who have assisted me in my research:
Hasan Hassan, Abhijith Kashyap, and Abdullah Giray Yaglikci.

Graduate school is a long and lonely journey that sometimes hits you the hardest when
working at midnight. I feel very grateful for the many friends who were there to help me
grind through it. I want to thank Richard Wang, Yvonne Yu, Eugene Wang, and Hongyi
Xin for their friendship and bringing joy during my low time.

I would like to thank my family for their enormous support and sacrifices that they made.
My mother, Lili, has been a pillar of support throughout my life. She is the epitome of love,
strength, and sacrifice. I am grateful to her strong belief in education. My sister, Nadine,
has always been there kindly supporting me with unwavering love. I owe all of my success to
these two strong women in my life. I would like to thank my late father, Pei-Min, for his love
and full support. My childhood was full of joy because of him. I am sorry that he has not
lived to see me finish my Ph.D. I also thank my step father, Stephen, for his encouragement
and support. Lastly, I thank my girlfriend Sherry Huang, for all her love and understanding.

Finally, I am grateful to the Semiconductor Research Corporation and Intel for providing
me a fellowship. I would like to acknowledge the support of Google, Intel, NVIDIA, Samsung,
VMware, and the United States Department of Energy. This dissertation was supported
in part by the Intel Science and Technology Center for Cloud Computing, Semiconductor
Research Corporation, and National Science Foundation (grants 1212962 and 1320531).

iv

Contents

List of Figures x

List of Tables xiii

1 Introduction 1
1.1 Problem . 1
1.2 Thesis Statement and Overview . 5

1.2.1 Low-Cost Inter-Linked Subarrays: Enabling Fast Data Movement . . 5
1.2.2 Refresh Parallelization with Memory Accesses 6
1.2.3 Understanding and Exploiting Latency Variation Within a DRAM Chip 7
1.2.4 Understanding and Exploiting Trade-off Between Latency and Voltage

Within a DRAM Chip . 8
1.3 Contributions . 8
1.4 Outline . 10

2 Background 11
2.1 High-Level DRAM System Organization . 11
2.2 Internal DRAM Logical Organization . 12
2.3 Accessing DRAM . 13
2.4 DRAM Refresh . 15

2.4.1 All-Bank Refresh (REFab) . 15
2.4.2 Per-Bank Refresh (REFpb) . 16

2.5 Physical Organization of a DRAM Bank:DRAM Subarrays and Open-Bitline
Architecture . 17
2.5.1 DRAM Subarray Operation . 18

3 Related Work 21
3.1 Specialized Low-Latency DRAM Architecture 21
3.2 Cached DRAM . 22
3.3 Heterogeneous-Latency DRAM . 22

3.3.1 Spatial Heterogeneity . 22
3.3.2 Temporal Heterogeneity . 23

3.4 Bulk Data Transfer Mechanisms . 24
3.5 DRAM Refresh Latency Mitigation . 25
3.6 Exploiting DRAM Latency Variation . 27

v

3.7 In-Memory Computation . 28
3.8 Mitigating Memory Latency via Memory Scheduling 28
3.9 Improving Parallelism in DRAM to Hide Memory Latency 29
3.10 Other Prior Works on Mitigating High Memory Latency 30

3.10.1 Data Prefetching . 30
3.10.2 Multithreading . 30
3.10.3 Processor Architecture Design to Tolerate Memory Latency 31
3.10.4 System Software to Mitigate Application Interference 31
3.10.5 Reducing Latency of On-Chip Interconnects 32
3.10.6 Reducing Latency of Non-Volatile Memory 32

3.11 Experimental Studies of Memory Chips . 32

4 Low-Cost Inter-Linked Subarrays (LISA) 34
4.1 Motivation: Low Subarray Connectivity Inside DRAM 35
4.2 Design Overview and Applications of LISA 36
4.3 DRAM Subarrays . 38

4.3.1 DRAM Subarray Operation . 39
4.4 Mechanism . 40

4.4.1 LISA Design in DRAM . 40
4.4.2 Row Buffer Movement (RBM) Through LISA 42
4.4.3 Row Buffer Movement (RBM) Latency 43
4.4.4 Handling Process and Temperature Variation 45

4.5 Application 1: Rapid Inter-Subarray Bulk Data Copying (LISA-RISC) . . . 45
4.5.1 Shortcomings of the State-of-the-Art 46
4.5.2 In-DRAM Rapid Inter-Subarray Copy (RISC) 47
4.5.3 Detailed Operation of LISA-RISC . 48
4.5.4 Data Coherence . 50
4.5.5 Comparison of Copy Techniques . 50

4.6 Application 2: In-DRAM Caching Using Heterogeneous Subarrays (LISA-
VILLA) . 51
4.6.1 Shortcomings of the State-of-the-Art 52
4.6.2 Variable Latency (VILLA) DRAM 53
4.6.3 Caching Policy for LISA-VILLA . 54

4.7 Application 3: Fast Precharge Using Linked Precharge Units (LISA-LIP) . . 54
4.8 Hardware Cost . 56

4.8.1 Die Area Overhead . 56
4.8.2 Handling Repaired Rows . 56

4.9 Methodology . 57
4.10 Evaluation . 59

4.10.1 Bulk Memory Copy . 59
4.10.2 In-DRAM Caching with LISA-VILLA 62
4.10.3 Accelerated Precharge with LISA-LIP 63
4.10.4 Putting Everything Together . 64
4.10.5 Sensitivity to System Configuration 65
4.10.6 Effect of Copy Distance on LISA-RISC 65

vi

4.11 Other Applications Enabled by LISA . 66
4.12 Summary . 67

5 Mitigating Refresh Latency by Parallelizing Accesses with Refreshes 68
5.1 Motivation . 69

5.1.1 Increasing Performance Impact of Refresh 69
5.1.2 Our Goal . 71

5.2 Mechanisms . 72
5.2.1 Overview . 72
5.2.2 Dynamic Access Refresh Parallelization 72
5.2.3 Subarray Access Refresh Parallelization 77

5.3 Methodology . 83
5.4 Evaluation . 84

5.4.1 Multi-Core Results . 84
5.4.2 Effect of tFAW . 89
5.4.3 Effect of Subarrays-Per-Bank . 89
5.4.4 Effect of Refresh Interval . 90
5.4.5 DDR4 Fine Granularity Refresh . 90

5.5 Summary . 91

6 FLY-DRAM: Understanding and Exploiting Latency Variation in DRAM 92
6.1 Motivation . 93
6.2 Experimental Methodology . 94

6.2.1 DRAM Test . 95
6.2.2 Characterized DRAM Modules . 96

6.3 Activation Latency Analysis . 96
6.3.1 Behavior of Activation Errors . 97
6.3.2 FPGA Test for Activation Latency 99
6.3.3 Activation Error Distribution . 100
6.3.4 Impact of Data Pattern . 103
6.3.5 Effect of Temperature . 104
6.3.6 Spatial Locality of Activation Errors 105
6.3.7 Density of Activation Errors . 107
6.3.8 Effect of Error Correction Codes . 108

6.4 Precharge Latency Analysis . 109
6.4.1 Behavior of Precharge Errors . 110
6.4.2 FPGA Test for Precharge Latency . 111
6.4.3 Precharge Error Distribution . 112
6.4.4 Spatial Locality of Precharge Errors 113

6.5 Restoration Latency Analysis . 115
6.5.1 Impact of Reduced tRAS . 115
6.5.2 Test Methodology and Results . 115

6.6 Exploiting Latency Variation . 117
6.6.1 Flexible-Latency DRAM . 117
6.6.2 Discussion: DRAM-Aware Page Allocator 121

vii

6.7 Summary . 122

7 Voltron: Understanding and Exploiting the Trade-off Between Latency
and Voltage in DRAM 124
7.1 Background and Motivation . 124

7.1.1 Effect of DRAM Voltage and Frequency on Power Consumption . . . 126
7.1.2 Memory Voltage and Frequency Scaling 127
7.1.3 Our Goal . 129

7.2 Experimental Methodology . 129
7.3 Characterization of DRAM Under Reduced Voltage 132

7.3.1 DRAM Reliability as Supply Voltage Decreases 132
7.3.2 Longer Access Latency Mitigates Voltage-Induced Errors 136
7.3.3 Spatial Locality of Errors . 140
7.3.4 Density of Errors . 141
7.3.5 Effect of Temperature . 142
7.3.6 Impact on Refresh Rate . 144
7.3.7 Summary . 146

7.4 Voltron: Reducing DRAM Energy Without Sacrificing Memory Throughout 146
7.4.1 Array Voltage Scaling . 147
7.4.2 Performance-Aware Voltage Control 148
7.4.3 Implementation . 151

7.5 System Evaluation . 153
7.5.1 Methodology . 153
7.5.2 Impact of Array Voltage Scaling . 155
7.5.3 Effect of Performance-Aware Voltage Control 157
7.5.4 System Energy Breakdown . 160
7.5.5 Effect of Exploiting Spatial Locality of Errors 161
7.5.6 Effect on Heterogeneous Workloads 163
7.5.7 Effect of Varying the Performance Target 164
7.5.8 Sensitivity to the Profile Interval Length 165

7.6 Summary . 166

Appendices for Chapter 7 167
7.A FPGA Schematic of DRAM Power Pins . 167
7.B Effect of Data Pattern on Error Rate . 167
7.C SPICE Simulation Model . 170
7.D Spatial Distribution of Errors . 172
7.E Full Information of Every Tested DIMM . 174

8 Conclusions and Future Directions 176
8.1 Summary of Latency Reduction . 178
8.2 Future Research Directions . 180

8.2.1 Enabling LISA to Perform 1-to-N Memory Copy or Move Operations 180
8.2.2 In-Memory Computation with LISA 181
8.2.3 Extending LISA to Non-Volatile Memory 182

viii

8.2.4 Data Prefetching with Variable Latency (VILLA) DRAM 182
8.2.5 Reducing Activation Latency with Error Detection Codes 183
8.2.6 Avoiding Worst-Case Data Patterns for Higher Reliability 183

8.3 Final Concluding Remarks . 183

Bibliography 187

ix

List of Figures

1.1 DRAM scaling trends over time [54, 129, 130, 132, 185, 186, 226, 311]. . . . 2
1.2 Cost and latency comparison between RLDRAMx and DDRx DRAM chips. 3

2.1 DRAM system organization. 12
2.2 Internal DRAM phases, DRAM command/data timelines, and timing param-

eters to read a cache line. 13
2.3 Refresh command service timelines. 16
2.4 Service timelines of all-bank and per-bank refresh. 18
2.5 Bank and subarray organization in a DRAM chip. 19

4.1 Transferring data between subarrays using the internal data bus takes a long
time in state-of-the-art DRAM design, RowClone [298] (a). Our work, LISA,
enables fast inter-subarray data movement with a low-cost substrate (b). . . 36

4.2 Bank and subarray organization in a DRAM chip. 39
4.3 Inter-linked subarrays in LISA. 41
4.4 Row buffer movement process using LISA. 43
4.5 SPICE simulation results for transferring data across two subarrays with

LISA. 44
4.6 Comparison of RowClone to memcpy over the memory channel, on workloads

that perform bulk data copy across subarrays on a 4-core system. 47
4.7 Command service timelines of a row copy for LISA-RISC and RC-InterSA

(command latencies not drawn to scale). 47
4.8 Latency and DRAM energy of 8KB copy. 50
4.9 Drawbacks of existing heterogeneous DRAMs. 52
4.10 Linked precharging through LISA. 55
4.11 SPICE simulation of precharge operation. 56
4.12 Comparison of copy mechanisms in a single-core system. Value (%) on top

indicates the improvement of LISA-RISC-1 over memcpy. 60
4.13 Four-core system evaluation: (a) weighted speedup and (b) memory energy

per instruction. 62
4.14 Performance improvement and hit rate with LISA-VILLA, and performance

comparison to using RC-InterSA with VILLA-DRAM. 63
4.15 Speedup and row buffer (RB) hit rate of LISA-LIP. 64
4.16 Combined WS improvement of LISA applications. 65
4.17 Performance sensitivity to channels and LLC size. 65

x

5.1 Refresh latency (tRFCab) trend. 70
5.2 Performance degradation due to refresh. 70
5.3 Performance loss due to REFab and REFpb. 71
5.4 Algorithm of out-of-order per-bank refresh. 74
5.5 Service timeline of a per-bank refresh operation along with read and write

requests using different scheduling policies. 76
5.6 Service timeline of a refresh and a read request to two different subarrays

within the same bank. 78
5.7 DRAM bank without and with SARP. 80
5.8 Multi-core system performance improvement over REFab across 100 workloads. 85
5.9 Average system performance improvement over REFab. 87
5.10 Energy consumption. Value on top indicates percentage reduction of DSARP

compared to REFab. 88
5.11 WS improvement of DSARP over REFab and REFpb as memory intensity and

DRAM density vary. 88
5.12 Performance comparisons to FGR and AR [234]. 91

6.1 DRAM latency trends over time [129, 130, 132, 226]. 93
6.2 FPGA-based DRAM testing infrastructure. 95
6.3 Bit error rate of all DIMMs with reduced tRCD. 101
6.4 BERs of DIMMs grouped by model, when tested with different tRCD values. 102
6.5 BERs due to four different data patterns on three different DIMMs as tRCD

varies. 104
6.6 BERs of three example DIMMs operating under different temperatures. . . . 105
6.7 Probability of observing activation errors. 106
6.8 Breakdown of the number of error bits observed in each data beat of erroneous

cache lines at tRCD=7.5ns. 107
6.9 Percentage of error-free cache lines with various strengths of error correction

(EC), with tRCD=7.5ns. 109
6.10 Bit error rate of all DIMMs with reduced tRP. 112
6.11 BERs of DIMMs grouped by model, when tested with different tRP values. 113
6.12 Probability of observing precharge errors. 114
6.13 System performance improvement of FLY-DRAM for various DIMMs (listed

in Table 6.3). 121

7.1 DRAM system and chip organization. 125
7.2 FPGA-based DRAM testing platform. 130
7.3 The fraction of erroneous cache lines in each DIMM as we reduce the supply

voltage, with a fixed access latency. 134
7.4 Effect of reduced array supply voltage on activation, restoration, and precharge,

from SPICE simulations. 135
7.5 Distribution of minimum reliable latency values as the supply voltage is de-

creased for 31 DIMMs. The number above each point indicates the fraction
of DIMMs that work reliably at the specified voltage and latency. Top row:
tRCDmin; Bottom row: tRPmin. 137

xi

7.6 SPICE simulation results compared with experimental measurements from 12
DRAM DIMMs for Vendor B. 139

7.7 The probability of error occurrence for two representative DIMMs, categorized
into different rows and banks, due to reduced voltage. 141

7.8 Distribution of bit errors in data beats. 142
7.9 Effect of high ambient temperature (70℃) on minimum reliable operation

latency at reduced voltage. 143
7.10 The number of weak cells that experience errors under different retention

times as supply voltage varies. 145
7.11 Relationship between performance loss (due to increased memory latency) and

applications’ characteristics: MPKI (a) and memory stall time fraction (b).
Each data point represents a single application. 149

7.12 System performance loss and energy savings due to array voltage scaling for
memory-intensive workloads. 156

7.13 Performance and energy comparison between Voltron and MemDVFS on non-
memory-intensive and memory-intensive workloads. 158

7.14 Breakdown of system energy consumption (lower is better). 160
7.15 Performance and energy benefits of exploiting bank-error locality in Voltron

(denoted as Voltron+BL) on non-memory-intensive and memory-intensive
workloads. 162

7.16 System performance loss and energy efficiency improvement of Voltron and
MemDVFS across 50 different heterogeneous workload mixes. 164

7.17 System performance loss and energy efficiency improvement of Voltron as the
system performance loss target varies. 165

7.18 Sensitivity of Voltron’s system energy efficiency improvement to profile inter-
val length. 165

7.A.1DRAM power pins controlled by the ML605 FPGA board. 167
7.B.1Effect of stored data pattern on bit error rate (BER) across different supply

voltage levels. 168
7.C.1Our SPICE model schematic of a DRAM cell array. 170
7.D.1Probability of error occurrence due to reduced-voltage operation in a DIMM

from Vendor A. 172
7.D.2Probability of error occurrence due to reduced-voltage operation in a DIMM

from Vendor B. 173
7.D.3Probability of error occurrence due to reduced-voltage operation in a DIMM

from Vendor C. 173

8.1 The major timing parameters required to access a cache line in DRAM. . . 179

xii

List of Tables

4.1 Copy latency and DRAM energy. 51
4.2 Evaluated system configuration. 57
4.3 A subset of copy workloads with detailed results. 58
4.4 Effect of copy distance on LISA-RISC. 66

5.1 Evaluated system configuration. 83
5.2 Maximum and average WS improvement due to our mechanisms over REFpb

and REFab. 86
5.3 Effect of DSARP on multi-core system metrics. 89
5.4 Performance improvement due to SARPpb over REFpb with various tFAW and

tRRD values. 89
5.5 Effect of number of subarrays per bank. 89
5.6 Maximum and average WS improvement due to DSARP. 90

6.1 Properties of tested DIMMs. 97
6.2 Evaluated system configuration. 119
6.3 Distribution of cache lines under various tRCD and tRP values for three char-

acterized DIMMs. 120

7.1 Main properties of the tested DIMMs. 131
7.2 Evaluated system configuration. 154
7.3 DRAM latency required for correct operation for each evaluated Varray. . . . 154
7.4 Evaluated benchmarks with their respective L3 MPKI values. 155
7.5 System performance loss and energy savings due to array voltage scaling for

non-memory-intensive workloads. 157
7.B.1Calculated p-values from the BERs across three data patterns at each supply

voltage level. A p-value less than 0.05 indicates that the BER is statistically
different across the three data patterns (indicated in bold). — indicates that
the BER is zero. 4 indicates that we cannot reliably access data from the
DIMM. 169

7.E.1Characteristics of the evaluated DDR3L DIMMs. 175

8.1 Summary of latency improvements due to our proposed mechanisms. 179

xiii

Chapter 1

Introduction

1.1. Problem

Since the inception of general-purpose electronic computers from more than half a cen-

tury ago, the computer technology has seen tremendous improvement on increasing higher

performance, more main memory, and more disk storage. Main memory, a major system

component, has served an essential role of storing data and instruction sets for computer

systems to operate. For decades, semiconductor DRAM (dynamic random-access memory)

has been the building foundation of main memory.

DRAM-based main memory has made rapid progress on capacity and bandwidth, im-

proving by 128x and 20x respectively over the past two decades [54, 129, 130, 132, 185,

186, 226, 311], as shown in Figure 1.1, which illustrates the historical scaling trends of a

DRAM chip from 1999 to 2017. These capacity and bandwidth improvements mainly follow

Moore’s Law [230] and Dennard scaling [73], which enable more and faster transistors along

with more pins. On the contrary, DRAM latency has improved (i.e., reduced) by only 1.3x,

which is a drastic underperformer compared to capacity and bandwidth. As a result, long

DRAM latency remains as a significant system performance bottleneck for many modern ap-

plications [236, 244], such as in-memory databases [11, 35, 61, 214, 351], data analytics (e.g.,

Spark) [20, 21, 61, 355], graph traversals [341, 354], Google’s datacenter workloads [148], and

1

CHAPTER 1. INTRODUCTION

buffers for network packets in routers or network processors [14, 107, 168, 334, 346, 359]. For

example, a recent study by Google reported that memory latency is more important than

memory bandwidth for the applications running in Google’s datacenters [148]. Another ex-

ample is that, to achieve 100 Gb/s Ethernet, network processors require low DRAM latency

to access and process network packets buffered in the DRAM [107].

1

10

100

1999 2003 2006 2008 2011 2013 2014 2015 2016 2017

DR
AM

	Im
pr
ov
em

en
t

Capacity Bandwidth Latency 128x

20x

1.3x

Figure 1.1. DRAM scaling trends over time [54, 129, 130, 132, 185, 186, 226, 311].

To provide low DRAM access latency, DRAM manufacturers design specialized low-latency

DRAM chips (e.g., RLDRAM [228] and FCRAM [288]) at the cost of higher price and

lower density than the commonly-used DDRx DRAM (e.g., DDR3 [130], DDR3L [134],

DDR4 [132]) chips. Figure 1.2 compares RLDRAM2/3 (low-latency) to DDR3L/4 DRAM

(high-density) chips based on the cost (i.e., price per bit) and access latency. We obtain

the pricing information (for buying a bulk of 1000 DRAM chips) from a major electronic

component distributor [74]. Although the RLDRAMx chip attains 4x lower latency than the

DDRx DRAM chip, its cost for each bit is significantly higher, at 39x. We provide further

discussion on how the RLDRAMx chip achieves low latency at a high cost in Section 3.1.

One main reason for the high increase in the price is due to the high area overhead incurred

by the architectural designs in RLDRAMx chips. In contrast to the density of a DDRx chip,

which ranges from 2Gb to 8Gb, an RLDRAMx chip typically has a low density of 576Mb.

Therefore, this dissertation focuses on understanding, characterizing, and addressing the

long latency problem of DRAM-based memory systems at low cost (i.e., low DRAM chip

area overhead) without intrusive changes to DRAM chips and/or memory controllers.

2

CHAPTER 1. INTRODUCTION

0 10 20 30 40 50 60

Access Latency (ns)

0.00
0.02
0.04
0.06
0.08
0.10
0.12

P
ric

e
($

) p
er

 B
it RLDRAM2

RLDRAM3
DDR3L
DDR4

Figure 1.2. Cost and latency comparison between RLDRAMx and DDRx DRAM chips.

We first identify three specific problems that cause, incur, or affect long memory latency.

First, bulk data movement, the movement of thousands or millions of bytes between two

memory locations, is a common operation performed by an increasing number of real-world

applications (e.g., [148, 186, 261, 285, 297, 298, 299, 311, 324, 365]). In current systems, since

memory is designed as a simple data repository that supplies data, performing a bulk data

movement operation between two locations in memory requires the data to go through the

processor even though both the source and destination are within the memory. To perform

the movement, the data is first read out one cache line at a time from the source location in

memory into the processor caches, over a pin-limited off-chip channel (typically 64 bits wide

in current systems [54]). Then, the data is written back to memory, again one cache line

at a time over the pin-limited channel, into the destination location. By going through the

processor, this data movement across memory incurs a significant penalty in terms of both

latency and energy consumption.

Second, due to the increasing difficulty of efficiently manufacturing smaller DRAM cells

with smaller technology nodes, DRAM cells are becoming slower and faultier than they

were in the past [149, 153, 159, 162, 222]. At smaller technology nodes, DRAM cells are

more susceptible to imperfect manufacturing process, which causes the characteristics (e.g.,

latency) of the cells to deviate from the DRAM design specification. As a result, latency

variation – cells within the same DRAM chip requiring different access latencies – becomes

a problem in commodity DRAM chips. In order to preserve chip production yield, DRAM

3

CHAPTER 1. INTRODUCTION

manufacturers choose to tolerate latency variation across cells from different chips or within

a chip by conservatively setting the standard DRAM latency to be determined by the worst-

case latency of any cell in any acceptable chip [54, 185]. This high worst-case latency is

applied uniformly across all DRAM cells in all DRAM chips. As a result, even though

some fraction of a DRAM chip can inherently be accessed with a latency that is shorter

than the standard specification, the standard latency, which is pessimistically set to a very

conservative value, prevents systems from attaining higher performance.

Third, since a DRAM cell stores data in a capacitor, which leaks charge over time, DRAM

needs to be periodically refreshed to prevent data loss due to leakage. While DRAM is being

refreshed, a part of it becomes unavailable to serve memory requests [55, 204], which prolongs

the already long memory latency by delaying the demand requests from processors. This

problem will become more prevalent as DRAM density increases [55, 204], leading to more

DRAM cells to be refreshed within the same refresh interval.

These three problems cause or exacerbate the long memory latency, which is already a

critical bottleneck in system performance. The trend of increasing memory latency penalty is

expected to continue to grow due to increasing core counts and the emergence of increasingly

more data-intensive and latency-critical applications. Thus, low-latency memory accesses are

now even more important than the past on improving overall system performance and energy

efficiency.

In addition, there is a critical trade-off between DRAM latency and supply voltage, which

greatly affects both the performance and energy efficiency of DRAM chips. There is little

experimental understanding and mechanisms taking advantage of this trade-off in existing

systems, which apply a fixed supply voltage value during the runtime. If this voltage-latency

trade-off is well understood, one can devise mechanisms that can improve energy efficiency,

latency, or both, by achieving a good trade-off depending on system design goals.

4

CHAPTER 1. INTRODUCTION

1.2. Thesis Statement and Overview

The goal of this thesis is to enable low-latency DRAM memory systems, based on a solid

understanding of the causes of and trade-offs related to long DRAM latency. Towards this

end, we explore the causes of the three latency problems that we described in the previous

section, by (i) examining the internal DRAM chip architecture and memory controller de-

signs, and (ii) characterizing commodity DRAM chips. With the understanding of these

causes, our thesis statement is that

memory latency can be significantly reduced with a multitude of low-cost

architectural techniques that aim to reduce different causes of long latency.

To this end, we (i) propose a series of mechanisms that augment the DRAM chip archi-

tecture with simple and low-cost features that better utilize the existing DRAM circuitry,

(ii) develop a better understanding of latency behavior and trade-offs by conducting exten-

sive experiments on real commodity DRAM chips, and (iii) propose techniques to enhance

memory controllers to take advantage of the innate characteristics of individual DRAM chips

employed in the systems rather than just treating all the chips as having the same latency

characteristic. We give a brief overview of our mechanisms and experimental characteriza-

tions in the rest of this section.

1.2.1. Low-Cost Inter-Linked Subarrays: Enabling Fast Data Movement

To enable fast and efficient data movement across a wide range of memory at low cost, we

propose a new DRAM substrate, Low-Cost Inter-Linked Subarrays (LISA). To achieve this,

LISA adds low-cost connections between adjacent subarrays–the smallest building block in

today’s DRAM chips. By using these connections to link the existing internal wires (bitlines)

of adjacent subarrays, LISA enables wide-bandwidth data transfer across multiple subarrays

with only 0.8% DRAM area overhead. As a DRAM substrate, LISA is versatile, enabling

an array of new applications that reduce various latency components. We describe and

5

CHAPTER 1. INTRODUCTION

evaluate three such applications in detail: (1) fast inter-subarray bulk data copy, (2) in-

DRAM caching using a DRAM architecture whose rows have heterogeneous access latencies,

and (3) accelerated bitline precharging (an operation that prepares DRAM for subsequent

accesses) by linking multiple precharge units together. Our extensive evaluations show that

combining LISA’s three applications attains 1.9x system performance improvement and 2x

DRAM energy reduction on average across a variety of workloads running on a quad-core

system. To our knowledge, LISA is the first DRAM substrate that supports fast inter-

subarray data movement, which enables a wide variety of mechanisms for DRAM systems.

1.2.2. Refresh Parallelization with Memory Accesses

To mitigate the negative performance impact of DRAM refresh, we propose two comple-

mentary mechanisms, DARP (Dynamic Access Refresh Parallelization) and SARP (Subarray

Access Refresh Parallelization). The goal is to address the drawbacks of per-bank refresh by

building more efficient techniques to parallelize refreshes and accesses within DRAM. Per-

bank refresh is a DRAM command that refreshes only a single bank (a bank is a collection

of subarrays, and multiple banks are organized into a DRAM chip) at a time. Although

per-bank refresh enables a bank to be accessed wile another bank is being refreshed, it suf-

fers from two shortcomings that limit the ability of DRAM to serve demand requests while

refresh operations are being performed.

First, today’s memory controllers issue per-bank refreshes in a strict round-robin order,

which can unnecessarily delay a bank’s demand requests when there are idle banks. To

avoid refreshing a bank with pending demand requests, DARP issues per-bank refreshes to

idle banks in an out-of-order manner. Furthermore, DRAM writes are not latency-critical

because processors do not stall to wait for them. Taking advantage of this observation, DARP

proactively schedules refreshes during intervals when a batch of writes are draining to DRAM.

Second, SARP exploits the existence of mostly-independent subarrays within a bank. With

the cost of only 0.7% DRAM area overhead, it allows a bank to serve memory accesses to an

6

CHAPTER 1. INTRODUCTION

idle subarray while another subarray is being refreshed. Our extensive evaluations on a wide

variety of workloads and systems show that our mechanisms improve system performance

by 3.3%/7.2%/15.2% on average (and up to 7.1%/14.5%/27.0%) across 100 workloads over

per-bank refresh for 8/16/32Gb DRAM chips. To our knowledge, these two techniques are

the first mechanisms to (i) enhance refresh scheduling policy of per-bank refresh and (ii)

achieve parallelization of refresh and memory accesses within a refreshing bank.

1.2.3. Understanding and Exploiting Latency Variation Within a DRAM Chip

To understand the characteristics of latency variation in modern DRAM chips, we com-

prehensively characterize 240 DRAM chips from three major vendors and make several new

observations about latency variation within DRAM. We find that (i) there is large latency

variation across the DRAM cells, and (ii) variation characteristics exhibit significant spatial

locality: slower cells are clustered in certain regions of a DRAM chip Based on our ob-

servations, we propose Flexible-LatencY DRAM (FLY-DRAM), a mechanism that exploits

latency variation across DRAM cells within a DRAM chip to improve system performance.

The key idea of FLY-DRAM is to enable the memory controller to exploit the spatial local-

ity of slower cells within DRAM and access the faster DRAM regions with reduced access

latency. FLY-DRAM requires modest modification in the memory controller without intro-

ducing any changes to the DRAM chips. Our evaluations show that FLY-DRAM improves

the performance of a wide range of applications by 13.3%, 17.6%, and 19.5%, on average, for

each of the three different vendors’ real DRAM chips, in a simulated 8-core system. To our

knowledge, this is the first work to (i) provide a detailed experimental characterization and

analysis of latency variation across different cells within a DRAM chip, (ii) show that access

latency variation exhibits spatial locality, and (iii) propose mechanisms that take advantage

of variation within a DRAM chip to improve system performance.

7

CHAPTER 1. INTRODUCTION

1.2.4. Understanding and Exploiting Trade-off Between Latency and Voltage

Within a DRAM Chip

To understand the critical relationship and trade-off between DRAM latency and supply

voltage, which greatly affects both DRAM performance, energy efficiency, and reliability, we

perform an experimental study on 124 real DDR3L (low-voltage) DRAM chips manufactured

recently by three major DRAM vendors. We find that reducing the supply voltage below

a certain point introduces bit errors in the data, and we comprehensively characterize the

behavior of these errors. We discover that these errors can be avoided by increasing the

access latency. This key finding demonstrates that there exists a trade-off between access

latency and supply voltage, i.e., increasing supply voltage enables lower access latency (or

vice versa). Based on this trade-off, we propose a new mechanism, Voltron, which aims to

improve energy efficiency of DRAM. The key idea of Voltron is to use a performance model

to determine how much we can reduce the supply voltage without introducing errors and

without exceeding a user-specified threshold for performance loss. Our evaluations show

that Voltron reduces the average system energy consumption by 7.3%, with a small system

performance loss of 1.8% on average, for a variety of memory-intensive quad-core workloads.

1.3. Contributions

The overarching contribution of this dissertation is the three new mechanisms that reduce

DRAM access latency and experimental characterizations for understanding latency behavior

in DRAM chips. More specifically, this dissertation makes the following main contributions.

1. We propose a new DRAM substrate, Low-Cost Inter-Linked Subarrays (LISA), which

provides high-bandwidth connectivity between subarrays within the same bank to

support bulk data movement at low latency, energy, and cost. Using the LISA sub-

strate, we propose and evaluate three new applications: (1) Rapid Inter-Subarray Copy

(RISC), which copies data across subarrays at low latency and low DRAM energy;

8

CHAPTER 1. INTRODUCTION

(2) Variable Latency (VILLA) DRAM, which reduces the access latency of frequently-

accessed data by caching it in fast subarrays; and (3) Linked Precharge (LIP), which

reduces the precharge latency for a subarray by linking its precharge units with neigh-

boring idle precharge units. Chapter 4 describes LISA and its applications in detail.

2. We propose two new refresh mechanisms: (1) DARP (Dynamic Access Refresh Par-

allelization), a new per-bank refresh scheduling policy, which proactively schedules

refreshes to banks that are idle or that are draining writes and (2) SARP (Subarray

Access Refresh Parallelization), a new refresh architecture, that enables a bank to serve

memory requests in idle subarrays while other subarrays are being refreshed. Chapter 5

describes these two refresh techniques in detail.

3. We experimentally demonstrate and characterize the significant variation in DRAM

access latency across different cells within a DRAM chip. Our experimental character-

ization on modern DRAM chips yields six new fundamental observations about latency

variation. Based on this experimentally-driven characterization and understanding, we

propose a new mechanism, FLY-DRAM, which exploits the lower latencies of DRAM

regions with faster cells by introducing heterogeneous timing parameters into the mem-

ory controller. Chapter 6 describes our experiments, analysis, and optimization in

detail.

4. We perform a detailed experimental characterization of the effect of varying supply

voltage on DRAM latency, reliability, and data retention on real DRAM chips. Our

comprehensive experimental characterization provides four major observations on how

DRAM latency and reliability is affected by supply voltage. These observations allow

us to develop a deep understanding of the critical relationship and trade-off between

DRAM latency and supply voltage. Based on this trade-off, we propose a new low-

cost DRAM energy optimization mechanism called Voltron, which improves system

energy efficiency by dynamically adjusting the voltage based on a performance model.

9

CHAPTER 1. INTRODUCTION

Chapter 7 describes our experiments, analysis, and optimization in detail.

1.4. Outline

This thesis is organized into 8 chapters. Chapter 2 describes necessary background on

DRAM organization, operations, and latency. Chapter 3 discusses related prior work on

providing low-latency DRAM systems. Chapter 4 presents the design LISA and the three new

architectural mechanisms enabled by it. Chapter 5 presents the two new refresh mechanisms

(DARP or SARP) that address the refresh interference problem. Chapter 6 presents our

experimental study on DRAM latency variation and our mechanism (FLY-DRAM) that

exploits it to reduce latency. Chapter 7 presents our experimental study on the trade-

off between latency and voltage in DRAM and our mechanism (Voltron) that exploits it

to improve energy efficiency. Finally, Chapter 8 presents conclusions and future research

directions that are enabled by this dissertation.

10

Chapter 2

Background

In this chapter, we provide necessary background on DRAM organization and operations

used to access data in DRAM. Each operation requires a certain latency, which contributes

to the overall DRAM access latency. Understanding of these fundamental operations and

their associated latencies provides the core basics required for understanding later chapters

in this dissertation.

2.1. High-Level DRAM System Organization

A modern DRAM system consists of a hierarchy of channels, modules, ranks, and chips,

as shown in Figure 2.1a. Each memory channel drives DRAM commands, addresses, and

data between a memory controller in the processor and one or more DRAM modules. Each

module contains multiple DRAM chips that are organized into one or more ranks. A rank

refers to a group of chips that operate in lock step to provide a wide data bus (usually 64

bits), as a single DRAM chip is designed to have a narrow data bus width (usually 8 bits)

to minimize chip cost. Each of the eight chips in the rank shown in Figure 2.1a transfers 8

bits simultaneously to supply 64 bits of data.

11

CHAPTER 2. BACKGROUND

core

processor

core

DRAM module

rank

memory
controller

chip ...chip
0

channel

chip
7

...

(a) DRAM System

sense amplifiers

DRAM cell

(b) DRAM Bank

Figure 2.1. DRAM system organization.

2.2. Internal DRAM Logical Organization

Within a DRAM chip, there are multiple banks (e.g., eight in a typical DRAM chip [130,

166]) that can process DRAM commands independently from each other to increase par-

allelism. A bank consists of a 2D-array of DRAM cells that are organized into rows and

columns, as shown in Figure 2.1b1. A row typically consists of 8K cells. The number of

rows varies depending on the chip density. Each DRAM cell has (i) a capacitor that stores

binary data in the form of electrical charge (e.g., fully charged and discharged states repre-

sent 1 and 0, respectively), and (ii) an access transistor that serves as a switch to connect

the capacitor to the bitline. Each column of cells share a bitline, which connects them to a

sense amplifier. The sense amplifier senses the charge stored in a cell, converts the charge to

digital binary data, and buffers it. Each row of cells share a wire called the wordline, which

controls the cells’ access transistors. When a row’s wordline is enabled, the entire row of

cells gets connected to the row of sense amplifiers through the bitlines, enabling the sense

amplifiers to sense and latch that row’s data. The row of sense amplifiers is also called the

row buffer.

1Note that the figure shows a logical representation of the bank to ease the understanding of the DRAM
operations required to access data and their associated latency. After we explain the DRAM operations in
the next section, we will show the detailed physical organization of a bank in Section 7.1.

12

CHAPTER 2. BACKGROUND

2.3. Accessing DRAM

Accessing (i.e., reading from or writing to) a bank consists of three steps: (i) Row

Activation & Sense Amplification: opening a row to transfer its data to the row buffer,

(ii) Read/Write: accessing the target column in the row buffer, and (iii) Precharge:

closing the row and the row buffer. We use Figure 2.2 to explain these three steps in detail.

The top part of the figure shows the phase of the cells within the row that is being accessed.

The bottom part shows both the DRAM command and data bus timelines, and demonstrates

the associated timing parameters.

transfer data to IO

cmd
READACT

data bus

timing
parameters

PRE ACT

fully restored ready for activation
sense amplifiers

1 2 3 4 PrechargedCharge
Restored

Activated
(Read/Write)Activation

data beat

Figure 2.2. Internal DRAM phases, DRAM command/data timelines, and timing param-
eters to read a cache line.

Initial State. Initially, the bank is in the precharged state (4 in Figure 2.2), where all of

the components are ready for activation. All cells are fully charged, represented with the

black color (a darker cell color indicates more charge). Second, the bitlines are charged to

VDD/2, represented as a thin line (a thin bitline indicates the initial voltage state of VDD/2;

a thick bitline means the bitline is being driven). Third, the wordline is disabled with 0V (a

thin wordline indicates 0V; a thick wordline indicates VDD). Fourth, the sense amplifier is

13

CHAPTER 2. BACKGROUND

off without any data latched in it (indicated by light color in the sense amplifier).

Row Activation & Sense Amplification Phases. To open a row, the memory controller

sends an activate command to raise the wordline of the corresponding row, which connects

the row to the bitlines (1). This triggers an activation, where charge starts to flow from

the cell to the bitline (or the other way around, depending on the initial charge level in

the cell) via a process called charge sharing. This process perturbs the voltage level on the

corresponding bitline by a small amount. If the cell is initially charged (which we assume

for the rest of this explanation, without loss of generality), the bitline voltage is perturbed

upwards. Note that this causes the cell itself to discharge, losing its data temporarily (hence

the lighter color of the accessed row), but this charge will be restored as we will describe

below. After the activation phase, the sense amplifier senses the voltage perturbation on

the bitline, and turns on to further amplify the voltage level on the bitline by injecting more

charge into the bitline and the cell (making the activated row’s cells darker in 2). When

the bitline is amplified to a certain voltage level (e.g., 0.8VDD), the sense amplifier latches

in the cell’s data, which transforms it into binary data (2). At this point in time, the data

can be read from the sense amplifier. The latency of these two phases (activation and sense

amplification) is called the activation latency, and is defined as tRCD in the standard DDR

interface [130, 132]. This activation latency specifies the latency from the time an activate

command is issued to the time the data is ready to be accessed in the sense amplifier.

Read/Write & Restoration Phases. Once the sense amplifier (row buffer) latches in the

data, the memory controller can send a read or write command to access the corresponding

column of data within the row buffer (called a column access). The column access time to

read the cache line data is called tCL (tCWL for writes). These parameters define the time

between the column command and the appearance of the first beat of data on the data bus,

shown at the bottom of Figure 2.2. A data beat is a 64-bit data transfer from the DRAM to

the processor. In a typical DRAM [130], a column read command reads out 8 data beats

14

CHAPTER 2. BACKGROUND

(also called an 8-beat burst), thus reading a complete 64-byte cache line.

After the bank becomes activated and the sense amplifier latches in the binary data of

a cell, it starts to restore the connected cell’s charge back to its original fully-charged state

(3). This phase is known as restoration, and can happen in parallel with column accesses.

The restoration latency (from issuing an activate command to fully restoring a row of

cells) is defined as tRAS in the standard DDR interface [130, 132], as shown in Figure 2.2.

Precharge Phase. In order to access data from a different row, the bank needs to be

re-initialized back to the precharged state (4). To achieve this, the memory controller

sends a precharge command, which (i) disables the wordline of the corresponding row,

disconnecting the row from the sense amplifiers, and (ii) resets the voltage level on the bitline

back to the initialized state, VDD/2, so that the sense amplifier can sense the charge from the

newly opened row. The latency of a precharge operation is defined as tRP in the standard

DDR interface [130, 132], which is the latency between a precharge and a subsequent

activate within the same bank.

2.4. DRAM Refresh

2.4.1. All-Bank Refresh (REFab)

The minimum time interval during which any cell can retain its electrical charge without

being refreshed is called the minimum retention time, which depends on the operating tem-

perature and DRAM type. Because there are tens of thousands of rows in DRAM, refreshing

all of them in bulk incurs high latency. Instead, memory controllers send a number of refresh

commands that are evenly distributed throughout the retention time to trigger refresh op-

erations, as shown in Figure 2.3a. Because a typical refresh command in a commodity DDR

DRAM chip operates at an entire rank level, it is also called an all-bank refresh or REFab

for short [130, 133, 224]. The timeline shows that the time between two REFab commands

is specified by tREFIab (e.g., 7.8µs for 64ms retention time). Therefore, refreshing a rank

15

CHAPTER 2. BACKGROUND

requires 64ms/7.8µs ≈ 8192 refreshes and each operation refreshes exactly 1/8192 of the rank’s

rows.

When a rank receives a refresh command, it sends the command to a DRAM-internal

refresh unit that selects which specific rows or banks to refresh. A REFab command triggers

the refresh unit to refresh a number of rows in every bank for a period of time called tRFCab

(Figure 2.3a). During tRFCab, banks are not refreshed simultaneously. Instead, refresh

operations are staggered (pipelined) across banks [234]. The main reason is that refreshing

every bank simultaneously would draw more current than what the power delivery network

can sustain, leading to potentially incorrect DRAM operation [234, 305]. Because a REFab

command triggers refreshes on all the banks within a rank, the rank cannot process any

memory requests during tRFCab, The length of tRFCab is a function of the number of rows

to be refreshed.

Time REF
Unit

REFab
0 REFab

1 REFab
8191

...

tREFIab
REFab

...

Bank7 REF

Bank1 REF

Bank0
Time

REF

tRFCab

(a) All-bank refresh (REFab) frequency and granularity.

Time REF
Unit

REFpb
0 REFpb

8 REFpb
65528

...

tREFIpb = tREFIab / 8

REFpb

...

Bank7

Bank1

Bank0
Time

REF

REF

REF

tRFCab/8 < tRFCpb < tRFCab

(b) Per-bank refresh (REFpb) frequency and granularity.

Figure 2.3. Refresh command service timelines.

2.4.2. Per-Bank Refresh (REFpb)

To allow partial access to DRAM during refresh, LPDDR DRAM (which is designed

for mobile platforms), supports an additional finer-granularity refresh scheme, called per-

bank refresh (REFpb for short) [133, 224]. It splits up a REFab operation into eight separate

16

CHAPTER 2. BACKGROUND

operations scattered across eight banks (Figure 2.3b). Therefore, a REFpb command is issued

eight times more frequently than a REFab command (i.e., tREFIpb = tREFIab/ 8).

Similar to issuing a REFab, a controller simply sends a REFpb command to DRAM

every tREFIpb without specifying which particular bank to refresh. Instead, when a rank’s

internal refresh unit receives a REFpb command, it refreshes only one bank for each command

following a sequential round-robin order as shown in Figure 2.3b. The refresh unit uses an

internal counter to keep track of which bank to refresh next.

By scattering refresh operations from REFab into multiple and non-overlapping per-bank

refresh operations, the refresh latency of REFpb (tRFCpb) becomes shorter than tRFCab.

Disallowing REFpb operations from overlapping with each other is a design decision made

by the LPDDR DRAM standard committee [133]. The reason is simplicity: to avoid the

need to introduce new timing constraints, such as the timing between two overlapped refresh

operations.2

With the support of REFpb, LPDDR DRAM can serve memory requests to non-refreshing

banks in parallel with a refresh operation in a single bank. Figure 2.4 shows pictorially how

REFpb provides performance benefits over REFab from parallelization of refreshes and reads.

REFpb reduces refresh interference on reads by issuing a refresh to Bank 0 while Bank 1 is

serving reads. Subsequently, it refreshes Bank 1 to allow Bank 0 to serve a read. As a result,

REFpb alleviates part of the performance loss due to refreshes by enabling parallelization of

refreshes and accesses across banks.

2.5. Physical Organization of a DRAM Bank:DRAM Subarrays

and Open-Bitline Architecture

In this section, we delve deeper into the physical organization of a bank. This knowledge

is required for understanding our proposals described in Chapter 4 and Chapter 5. However,

2At slightly increased complexity, one can potentially propose a modified standard that allows overlapped
refresh of a subset of banks within a rank.

17

CHAPTER 2. BACKGROUND

Saved Cycles in REFpb
READ Time

Time

Bank0

Bank1

Per-Bank
Refresh

READ READ

REFpb

REFpb

READ Time

Time

Bank0

Bank1

All-Bank
Refresh

REFab

REFab READ READ

READ Time

Time

Bank0

Bank1
No-Refresh

READ READ

Figure 2.4. Service timelines of all-bank and per-bank refresh.

such knowledge is not required for our other two proposals in Chapter 6 and Chapter 7.

Typically, a bank is subdivided into multiple subarrays [55, 166, 298, 347], as shown in

Figure 4.2. Each subarray consists of a 2D-array of DRAM cells that are connected to sense

amplifiers through bitlines. Because the size of a sense amplifier is more than 100x the size

of a cell [186], modern DRAM designs fit in only enough sense amplifiers in a row to sense

half a row of cells. To sense the entire row of cells, each subarray has bitlines that connect

to two rows of sense amplifiers — one above and one below the cell array (1 and 2 in

Figure 4.2, for Subarray 1). This DRAM design is known as the open bitline architecture,

and is commonly used to achieve high density in modern DRAM chips [195, 329]. A single

row of sense amplifiers, which holds the data from half a row of activated cells, is also referred

as a row buffer.

2.5.1. DRAM Subarray Operation

In Section 2.3, we describe the details of major DRAM operations to access data in a

bank. In this section, we describe the same set of operations to understand how they work

at the subarray-level within a bank. Accessing data in a subarray requires two steps. The

DRAM row (typically 8KB across a rank of eight x8 chips) must first be activated. Only

after activation completes, a column command (i.e., a read/write) can operate on a piece

of data (typically 64B across a rank; the size of a single cache line) from that row.

18

CHAPTER 2. BACKGROUND

GSA

Internal
Data
Bus

...

64b

Bank I/O

Sense
Amplifier

Precharge
Unit

Bitline

Bitline

Bitline

Bitline

Wordline

Global
Sense Amplifiers

Subarray 0

SA SA SASA
1

R
o

w
 D

ec
o

d
er

SASASASA
2

Subarray 1

3

4
5

6

Figure 2.5. Bank and subarray organization in a DRAM chip.

When an activate command with a row address is issued, the data stored within a row

in a subarray is read by two row buffers (i.e., the row buffer at the top of the subarray 1 and

the one at the bottom 2). First, a wordline corresponding to the row address is selected by

the subarray’s row decoder. Then, the top row buffer and the bottom row buffer each sense

the charge stored in half of the row’s cells through the bitlines, and amplify the charge to

full digital logic values (0 or 1) to latch in the cells’ data.

After an activate finishes latching a row of cells into the row buffers, a read or a write

can be issued. Because a typical read/write memory request is made at the granularity of

a single cache line, only a subset of bits are selected from a subarray’s row buffer by the

column decoder. On a read, the selected column bits are sent to the global sense amplifiers

through the internal data bus (also known as the global data lines) 3 , which has a narrow

width of 64B across a rank of eight chips. The global sense amplifiers 4 then drive the

data to the bank I/O logic 5 , which sends the data out of the DRAM chip to the memory

controller.

While the row is activated, a consecutive column command to the same row can access

the data from the row buffer without performing an additional activate. This is called

a row buffer hit. In order to access a different row, a precharge command is required

19

CHAPTER 2. BACKGROUND

to reinitialize the bitlines’ values for another activate. This re-initialization process is

completed by a set of precharge units 6 in the row buffer.

20

Chapter 3

Related Work

Many prior works propose mechanisms to reduce or mitigate DRAM latency. In this

chapter, we describe the closely relevant works by dividing them into different categories

based on their high-level approach.

3.1. Specialized Low-Latency DRAM Architecture

RLDRAM [228] and FCRAM [288] enable lower DRAM timing parameters by reducing

the length of bitlines (i.e., with a fewer number of cells attached to each bitline). Because the

bitline parasitic capacitance reduces with bitline length, shorter bitlines enable faster charge

sharing between the cells and the sense amplifiers, thus reducing the latency of DRAM

operations. The main drawback of this simple approach is that it leads to lower chip density

due to a significant amount of area overhead (30-40% for FCRAM, 40-80% for RLDRAM)

cause by the additional peripheral logic (e.g., row decoders) required to support shorter

bitlines [166, 186]. In contrast, our proposals do not require as significant and intrusive

changes to a DRAM chip.

21

CHAPTER 3. RELATED WORK

3.2. Cached DRAM

Several prior works (e.g., [102, 109, 114, 151]) propose to add a small SRAM cache

to a DRAM chip to lower the access latency for data that is kept in the SRAM cache

(e.g., frequently or recently used data). There are two main disadvantages of these works.

First, adding an SRAM cache into a DRAM chip is very intrusive: it incurs a high area

overhead (38.8% for 64KB in a 2Gb DRAM chip) and design complexity [166, 186]. Second,

transferring data from DRAM to SRAM uses a narrow global data bus, internal to the

DRAM chip, which is typically 64-bit wide. Thus, installing data into the DRAM cache

incurs high latency. Compared to these works, our proposals in this dissertation reduce low

latency without significant area overhead or complexity.

3.3. Heterogeneous-Latency DRAM

Prior works propose DRAM architectures that provide heterogeneous latency either spa-

tially (dependent on where in the memory an access targets) or temporally (dependent on

when an access occurs).

3.3.1. Spatial Heterogeneity

Prior work introduces spatial heterogeneity into DRAM, where one region has a fast

access latency but fewer DRAM rows, while the other has a slower access latency but many

more rows [186, 311]. The fast region is mainly utilized as a caching area, for the frequently

or recently accessed data. We briefly describe two state-of-the-art works that offer different

heterogeneous-latency DRAM designs.

CHARM [311] introduces heterogeneity within a rank by designing a few fast banks with

(1) shorter bitlines for faster data sensing, and (2) closer placement to the chip I/O for

faster data transfers. To exploit these low-latency banks, CHARM uses an OS-managed

mechanism to statically map hot data to these banks, based on profiled information from

22

CHAPTER 3. RELATED WORK

the compiler or programmers. Unfortunately, this approach cannot adapt to program phase

changes, limiting its performance gains. If it were to adopt dynamic hot data management,

CHARM would incur high migration costs over the narrow 64-bit bus that internally connects

the fast and slow banks.

TL-DRAM [186] provides heterogeneity within a subarray by dividing it into fast (near)

and slow (far) segments that have short and long bitlines, respectively, using isolation tran-

sistors. The fast segment can be managed as an OS-transparent hardware cache. The main

disadvantage is that it needs to cache each hot row in two near segments as each subarray

uses two row buffers on opposite ends to sense data in the open-bitline architecture (as we

discussed in Section 2.5). This prevents TL-DRAM from using the full near segment ca-

pacity. As we can see, neither CHARM nor TL-DRAM strike a good design balance for

heterogeneous-latency DRAM. In this dissertation, we propose a new heterogeneous DRAM

design that offers fast data movement with a low-cost and easy-to-implement design.

Several prior works [60, 211, 269] propose to employ different types of DRAM modules

to provide heterogeneous latency at the memory module level. These works are orthogonal

to the proposals in this dissertation because we focus on reducing latency at the chip level.

3.3.2. Temporal Heterogeneity

Prior work observes that DRAM latency can vary depending on when an access occurs.

The key observation is that a recently accessed or refreshed row has nearly full electri-

cal charge in the cells, and thus the following access to the same row can be performed

faster [105, 106, 306]. We briefly describe two state-of-the-art works that focus on providing

heterogeneous latency temporally.

ChargeCache [105] enables faster access to recently-accessed rows in DRAM by tracking

the addresses of recently-accessed rows. NUAT [306] enables accesses to recently-refreshed

rows at low latency because these rows are already highly-charged. The main issue with these

works is that the proposed effect of highly-charged cells can be accessed with lower latency,

23

CHAPTER 3. RELATED WORK

is slightly observable only when very long refresh intervals are used on existing DRAM chips,

as demonstrated by a recent characterization work [106]. However, within the duration of

the standard 64ms refresh interval, no latency benefits can be directly observed on existing

DRAM chips. As a result, these ideas likely require changes to the DRAM chips to provide

benefits as suggested by a prior work [106]. In contrast, our work in this dissertation does

not require data to be recently-accessed or -refreshed to benefit from reduced latency, but it

focuses on providing low latency by exploiting spatial heterogeneity.

3.4. Bulk Data Transfer Mechanisms

Prior works [49, 97, 98, 147, 361] propose to add scratchpad memories to reduce CPU

pressure during bulk data transfers, which can also enable sophisticated data movement (e.g.,

scatter-gather), but they still require data to first be moved on-chip. A patent [293] proposes

a DRAM design that can copy a page across memory blocks, but lacks concrete analysis and

evaluation of the underlying copy operations. Intel I/O Acceleration Technology [120] allows

for memory-to-memory DMA transfers across a network, but cannot transfer data within the

main memory.

Zhao et al. [365] propose to add a bulk data movement engine inside the memory controller

to speed up bulk-copy operations. Jiang et al. [137] design a different copy engine, placed

within the cache controller, to alleviate pipeline and cache stalls that occur when these

transfers occur. However, these works do not directly address the problem of data movement

across the narrow memory channel.

Seshadri et al. [298] propose RowClone to perform data movement within a DRAM chip,

avoiding costly data transfers over the pin-limited channels. However, its effectiveness is

limited because RowClone enables very fast data movement only when the source and desti-

nation are within the same DRAM subarray. The reason is that while two DRAM rows in the

same subarray are connected by row-wide bitlines (e.g., 8K bits), rows in different subarrays

are connected through a narrow 64-bit data bus (albeit an internal DRAM bus). Therefore,

24

CHAPTER 3. RELATED WORK

even for an in-DRAM data movement mechanism such as RowClone, inter-subarray bulk

data movement incurs long latency even though data does not move out of the DRAM chip.

In contrast, one of our proposals, LISA (Chapter 4), enables fast and energy-efficient bulk

data movement across subarrays. We provide more detailed qualitative and quantitative

comparisons between LISA and RowClone in Section 4.5.

Lu et al. [207] propose a heterogeneous DRAM design called DAS-DRAM that consists

of fast and slow subarrays. It introduces a row of migration cells into each subarray to move

rows across different subarrays. Unfortunately, the latency of DAS-DRAM is not scalable

with movement distance, because it requires writing the migrating row into each intermediate

subarray’s migration cells before the row reaches its destination, which prolongs data transfer

latency. In contrast, LISA (Chapter 4) provides a direct path to transfer data between row

buffers without requiring intermediate data writes into the subarray.

3.5. DRAM Refresh Latency Mitigation

Prior works (e.g., [4, 6, 23, 31, 158, 197, 204, 248, 258, 278, 343]) propose mechanisms to

reduce unnecessary refresh operations by taking advantage of the fact that different DRAM

cells have widely different retention times [160, 203]. These works assume that the retention

time of DRAM cells can be accurately profiled and they depend on having this accurate profile

to guarantee data integrity [203]. However, as shown in Liu et al. [203] and later analyzed in

detail by several other works [153, 154, 155, 264], accurately determining the retention time

profile of DRAM is an outstanding research problem due to the Variable Retention Time

(VRT) and Data Pattern Dependence (DPD) phenomena, which can cause the retention time

of a cell to fluctuate over time. As such, retention-aware refresh techniques need to overcome

the profiling challenges to be viable. A recent work, AVATAR [278], proposes a retention-

aware refresh mechanism that addresses VRT by using ECC chips, which introduces extra

cost. In contrast, our refresh mitigation techniques (Chapter 5) enable parallelization of

refreshes and accesses without relying on cell data retention profiles or ECC, thus providing

25

CHAPTER 3. RELATED WORK

high reliability at low cost.

Several other works propose different refresh mechanisms. Nair et al. [246] propose Re-

fresh Pausing, which pauses a refresh operation to serve pending memory requests when

the refresh causes conflicts with the requests. Although our work already significantly re-

duces conflicts between refreshes and memory requests by enabling parallelization, it can be

combined with Refresh Pausing to address rare conflicts. Tavva et al. [330] propose EFGR,

which exposes non-refreshing banks during an all-bank refresh operation so that a few ac-

cesses can be scheduled to those non-refresh banks during the refresh operation. However,

such a mechanism does not provide additional performance and energy benefits over per-

bank refresh, which we use to build our mechanism in this dissertation. Isen and John [123]

propose ESKIMO, which modifies the ISA to enable memory allocation libraries to skip re-

freshes on memory regions that do not affect programs’ execution. ESKIMO is orthogonal to

our mechanism, and its modification has high system-level complexity by requiring system

software libraries to make refresh decisions.

Another technique to address refresh latency is through refresh scheduling (e.g., [5, 30,

124, 234, 318]). Stuecheli et al. [318] propose elastic refresh, which postpones refreshes by a

time delay that varies based on the number of postponed refreshes and the predicted rank

idle time to avoid interfering with demand requests. Elastic refresh has two shortcomings.

First, it becomes less effective when the average rank idle period is shorter than the refresh

latency as the refresh latency cannot be fully hidden in that period. This occurs especially

with 1) more memory-intensive workloads that inherently have less idleness and 2) higher

density DRAM chips that have higher refresh latency. Second, elastic refresh incurs more

refresh latency when it incorrectly predicts that a period is idle without pending memory

requests in the memory controller. In contrast, our mechanisms parallelize refresh opera-

tions with accesses even if there is no idle period and therefore outperform elastic refresh.

We quantitatively demonstrate the benefits of our mechanisms over elastic refresh [318] in

Section 5.4.

26

CHAPTER 3. RELATED WORK

Mukundan et al. [234] propose scheduling techniques to address the problem of command

queue seizure, whereby a command queue gets filled up with commands to a refreshing rank,

blocking commands to another non-refreshing rank. In our dissertation, we use a different

memory controller design that does not have command queues, similarly to another prior

work [108, 319, 320, 321]. Our controller generates a command for a scheduled request right

before the request is sent to DRAM instead of pre-generating the commands and queueing

them up. Thus, our baseline refresh design does not suffer from the problem of command

queue seizure.

3.6. Exploiting DRAM Latency Variation

Adaptive-Latency DRAM (AL-DRAM) [185] also characterizes and exploits DRAM la-

tency variation, but does so at a much coarser granularity. This work experimentally charac-

terizes latency variation across different DRAM chips under different operating temperatures.

AL-DRAM sets a uniform operation latency for the entire DIMM and does not exploit het-

erogeneity at the chip-level or within a chip. Chandrasekar et al. study the potential of

reducing some DRAM timing parameters [52]. Similar to AL-DRAM, our dissertation ob-

serves and characterizes latency variation across DIMMs. Different from prior works, this

dissertation also characterizes latency variation within a chip, at the granularity of individ-

ual DRAM cells and exploits the latency variation that exists within a DRAM chip. Our

proposal can be combined with AL-DRAM to improve performance further.

A recent work by Lee et al. [183, 184] also observes latency variation within DRAM chips.

The work analyzes the variation that is due to the circuit design of DRAM components,

which it calls design-induced variation. Furthermore, it proposes a new profiling technique to

identify the lowest DRAM latency without introducing errors. In this dissertation, we provide

the first detailed experimental characterization and analysis of the general latency variation

phenomenon within real DRAM chips. Our analysis is broad and is not limited to design-

induced variation. Our proposal of exploiting latency variation, FLY-DRAM (Chapter 6),

27

CHAPTER 3. RELATED WORK

can employ Lee et al.’s new profiling mechanism [183, 184] to identify additional latency

variation regions for reducing access latency.

3.7. In-Memory Computation

Modern execution models rely on transferring data from the memory to the processor

to perform computation. Since a large number of modern applications consume a large

amount of data, this model incurs high latency, bandwidth, and energy due to the excessive

use of the narrow memory channel that is typically as wide as only 64 bits. To avoid the

memory channel bottleneck, many prior works (e.g., [7, 8, 12, 22, 36, 75, 86, 87, 88, 89, 92,

99, 112, 113, 150, 169, 212, 260, 266, 267, 274, 294, 297, 299, 300, 316, 328, 360]) propose

different frameworks and mechanisms to enable processing-in-memory (PIM) to accelerate

parts of the applications. However, these works do not fundamentally reduce the raw memory

access latency within a DRAM chip. Therefore, our dissertation is complementary to these

mechanisms. Furthermore, one of our proposals, LISA (Chapter 4) is also complementary to

a previously proposed in-memory bulk processing mechanism that can perform bulk bitwise

AND, OR [297, 299]. LISA can enhance the speed and range of such operations as these

operations require copying data between rows.

3.8. Mitigating Memory Latency via Memory Scheduling

Since memory has limited bandwidth and parallelism to serve memory requests con-

currently, contention for memory bandwidth across different applications can cause sig-

nificant performance slowdown for individual applications as well as the entire system.

Many prior works propose to address bandwidth contention by using more intelligent mem-

ory scheduling policies. A number of prior works focus on improving DRAM through-

put without being aware of the characteristics of the running applications in the system

(e.g., [115, 180, 284, 303, 370]). Many other works observe that application-unaware mem-

ory scheduling provides low performance, unfairness, and cases that lead to denial of memory

28

CHAPTER 3. RELATED WORK

service [231]. As a result, these prior works (e.g., [16, 66, 79, 122, 142, 164, 165, 177, 231,

232, 235, 240, 241, 253, 281, 319, 320, 321, 322, 323, 342, 364]) propose scheduling policies

that take into account of individual applications’ characteristics to perform better memory

request scheduling to improve overall system performance and fairness. While these works

reduce the queueing latency experienced by the applications and the system, they do not

fundamentally reduce the DRAM access latency of memory requests. The various proposals

in this dissertation do.

3.9. Improving Parallelism in DRAM to Hide Memory Latency

A number of prior works propose new DRAM architectures to increase parallelism within

DRAM and thus overlap memory latency of different DRAM operations. Kim et al. [166]

propose subarray-level parallelism (SALP) to take advantage of the existing subarray archi-

tecture to overlap multiple memory requests going to different subarrays within the same

bank. O et al. [257] propose to add isolation transistors in each subarray to separate the

bitlines from the sense amplifiers, so that the bitlines can be precharged while the row buffer

is still activated. Lee et al. [188] propose to add a data channel dedicated for I/O to serve

accesses from both CPU and I/O in parallel. Several works [9, 10, 349, 367] propose to

divide a DRAM rank into multiple smaller ranks (i.e., sub-ranks) to serve memory requests

independently from each sub-rank at the cost of higher read or write latency. All these prior

works do not fundamentally reduce the access latency of DRAM operations. Their bene-

fits decrease with more memory accesses interfering with each other at a single subarray,

bank, or rank. Our proposals in this dissertation reduce the DRAM access latency directly

(Chapters 4 and 6). These prior works are complementary to our proposals, and combined

together with our techniques can provide further system performance improvement.

29

CHAPTER 3. RELATED WORK

3.10. Other Prior Works on Mitigating High Memory Latency

3.10.1. Data Prefetching

Many prior works propose data prefetching techniques to load data speculatively from

memory into the cache (before the data is accessed), to hide the memory latency with

computation (e.g., [13, 24, 48, 63, 65, 78, 80, 81, 103, 104, 116, 143, 144, 173, 177, 178,

180, 237, 238, 242, 254, 301, 314]). However, prefetching does not reduce the fundamental

DRAM latency required to fetch data, and prefetch requests can cause interference with

other demand requests, thus potentially introducing performance overhead [80, 314]. On

the other hand, our proposals can reduce the DRAM access latency not only for demand

requests but also for prefetch requests without causing interference to other requests.

3.10.2. Multithreading

To hide memory latency, prior works [170, 199, 308, 309, 331, 339] propose to use multi-

threading to overlap the DRAM latency of one thread with computation by another thread.

While multithreading can tolerates the latency experienced by the applications or threads,

the technique does not reduce the memory access latency. In fact, multithreading can cause

additional delays due to the contention that arises between threads on shared resource ac-

cesses. For example, on a GPU system that runs a large number of threads, memory la-

tency can still be a performance limiter when threads stalling on memory requests delay

other threads from being issued [18, 140, 141, 250, 345]. Exploiting the potential of mul-

tithreading provided by the hardware also requires non-trivial effort from programmers to

write bug-free programs [189]. Furthermore, multithreading does not improve single-thread

performance, which is still important for many modern applications, e.g., mobile appli-

cations [100]. Critical threads that are delayed on a memory access can be bottlenecks

that degrade the performance of an entire multi-threaded application by delaying other

threads [76, 138, 139, 325, 326]. Our proposals in this dissertation reduce the memory access

30

CHAPTER 3. RELATED WORK

latency directly. As a result, these proposals not only improve the single-thread performance

but also the performance of multithreading processors by reducing the amount of memory

stall time on critical threads that stall other threads.

3.10.3. Processor Architecture Design to Tolerate Memory Latency

A single processor core can employ various techniques to tolerate memory latency by gen-

erating multiple DRAM accesses that can potentially be served concurrently by the DRAM

system (e.g., out-of-order execution [336], non-blocking caches [171], and runahead execu-

tion [104, 237, 238, 242, 243]). The effectiveness of these latency tolerance techniques highly

depends on whether DRAM can serve the generated memory accesses in parallel as these

techniques do not directly reduce the latency of individual accesses.

Other prior works (e.g. [201, 202, 237, 289, 332, 348, 356]) propose to use value prediction

to avoid pipeline stalls due to memory by predicting the requested data value. However, in-

correct value prediction incurs high cost due to pipeline flushes and re-executions. Although

this cost can be mitigated with approximate value prediction [332, 356], approximation is

not applicable to all applications as some require precise correctness for execution.

Our proposals in this dissertation directly reduce DRAM access latency even if the ac-

cesses cannot be served in parallel. Our proposals are also complementary to these processor

architectural techniques as we introduce low-cost modifications to DRAM chips and memory

controllers.

3.10.4. System Software to Mitigate Application Interference

Prior works (e.g., [77, 156, 157, 198, 205, 206, 369]) propose system software techniques to

manage inter-application interference in the memory to reduce interference-induced memory

latency. These works are orthogonal to our proposals in this dissertation because they do

not reduce the access latency to memory. However, their techniques are complementary to

our proposals.

31

CHAPTER 3. RELATED WORK

3.10.5. Reducing Latency of On-Chip Interconnects

Prior works (e.g. [58, 66, 67, 68, 84, 85, 94, 95, 96, 190, 233, 304]) propose mechanisms to

reduce the latency of memory requests when they are traversing the on-chip interconnects.

These works are complementary to the proposals presented in this dissertation since our

works reduce the fundamental memory device access latency.

3.10.6. Reducing Latency of Non-Volatile Memory

In this dissertation, we focus on the DRAM technology, which is the predominant physical

substrate for main memory in today’s systems. On the other hand, a new class of non-volatile

memory (NVM) technology is becoming a potential substrate to replace DRAM or co-exist

with DRAM in future systems [172, 174, 175, 176, 219, 220, 277, 279, 357]. Since NVM has

substantially longer latency than DRAM, prior works (e.g., [110, 135, 172, 194, 220, 247,

275, 358, 362]) propose various techniques to reduce the access latency of different types of

NVM (e.g., PCM and STT-RAM). However, these techniques are not directly applicable to

DRAM devices because each NVM technology has a fundamentally different way of accessing

its memory cells (i.e., devices) from DRAM.

3.11. Experimental Studies of Memory Chips

In this dissertation, we provide extensive detailed experimental characterization and anal-

ysis of latency behavior in modern commodity DRAM chips. There have been other experi-

mental studies of DRAM chips [52, 145, 146, 153, 154, 161, 162, 181, 183, 184, 185, 203, 264]

that study various issues including data retention, read disturbance, latency, address map-

ping, and power. There have also been field studies of the characteristics of DRAM memories

employed in large-scale systems [82, 117, 192, 222, 292, 312, 313]. Both of these types works

are complementary to the works presented in this dissertation.

Similarly, there have been experimental studies of other types of memories, especially

NAND flash memory [38, 40, 41, 42, 43, 44, 45, 46, 47, 210, 263]. These studies develop a

32

CHAPTER 3. RELATED WORK

similar FPGA-based infrastructure [39] used in this dissertation and examine various issues

including data retention, read disturbance, latency, P/E cycling errors, programming errors,

and cell-to-cell program interference. There have also been field studies of the characteristics

of flash memories employed in large-scale systems [221, 251, 262, 291]. These works are also

complementary to the experimental works presented in this dissertation.

Furthermore, there have been experimental studies of other memory and storage tech-

nologies, such as hard disks [25, 26, 270, 290], SRAM [19, 213, 280, 333, 335, 337], and

PCM [271, 363]. All of these works are also complementary to the experimental works

presented in this dissertation.

33

Chapter 4

Low-Cost Inter-Linked Subarrays

(LISA)

Bulk data movement, the movement of thousands or millions of bytes between two mem-

ory locations, is a common operation performed by an increasing number of real-world ap-

plications (e.g., [148, 186, 261, 285, 297, 298, 311, 324, 365]). Therefore, it has been the

target of several architectural optimizations (e.g., [33, 137, 298, 350, 365]). In fact, bulk

data movement is important enough that modern commercial processors are adding special-

ized support to improve its performance, such as the ERMSB instruction recently added to

the x86 ISA [121].

In today’s systems, to perform a bulk data movement between two locations in memory,

the data needs to go through the processor even though both the source and destination are

within memory. To perform the movement, the data is first read out one cache line at a

time from the source location in memory into the processor caches, over a pin-limited off-

chip channel (typically 64 bits wide). Then, the data is written back to memory, again one

cache line at a time over the pin-limited channel, into the destination location. By going

through the processor, this data movement incurs a significant penalty in terms of latency

and energy consumption. In this chapter, we introduce a new DRAM substrate, Low-Cost

34

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

Inter-Linked Subarrays (LISA), whose goal is to enable fast and efficient data movement

across a large range of memory at low cost. We show that, as a DRAM substrate, LISA is

versatile, enabling an array of new applications that reduce the fundamental access latency

of DRAM.

4.1. Motivation: Low Subarray Connectivity Inside DRAM

To address the inefficiencies of traversing the pin-limited channel, a number of mecha-

nisms have been proposed to accelerate bulk data movement (e.g., [137, 207, 298, 365]). The

state-of-the-art mechanism, RowClone [298], performs data movement completely within a

DRAM chip, avoiding costly data transfers over the pin-limited memory channel. However,

its effectiveness is limited because RowClone can enable fast data movement only when

the source and destination are within the same DRAM subarray. A DRAM chip is divided

into multiple banks (typically 8), each of which is further split into many subarrays (16 to

64) [166], shown in Figure 4.1a, to ensure reasonable read and write latencies at high den-

sity [55, 130, 132, 166, 340]. Each subarray is a two-dimensional array with hundreds of

rows of DRAM cells, and contains only a few megabytes of data (e.g., 4MB in a rank of

eight 1Gb DDR3 DRAM chips with 32 subarrays per bank). While two DRAM rows in the

same subarray are connected via a wide (e.g., 8K bits) bitline interface, rows in different

subarrays are connected via only a narrow 64-bit data bus within the DRAM chip (Fig-

ure 4.1a). Therefore, even for previously-proposed in-DRAM data movement mechanisms

such as RowClone [298], inter-subarray bulk data movement incurs long latency and high

memory energy consumption even though data does not move out of the DRAM chip.

While it is clear that fast inter-subarray data movement can have several applications

that improve system performance and memory energy efficiency [148, 261, 285, 297, 298, 365],

there is currently no mechanism that performs such data movement quickly and efficiently.

This is because no wide datapath exists today between subarrays within the same bank (i.e.,

the connectivity of subarrays is low in modern DRAM). Our goal is to design a low-cost

35

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

Row Buffer

Slow

Internal

Data Bus

Subarray

Cell

Bitlines

64b

(a) RowClone [298]

8Kb Fast

Isolation

Transistor

(b) LISA

Figure 4.1. Transferring data between subarrays using the internal data bus takes a long
time in state-of-the-art DRAM design, RowClone [298] (a). Our work, LISA, enables fast
inter-subarray data movement with a low-cost substrate (b).

DRAM substrate that enables fast and energy-efficient data movement across subarrays.

4.2. Design Overview and Applications of LISA

We make two key observations that allow us to improve the connectivity of subarrays

within each bank in modern DRAM. First, accessing data in DRAM causes the transfer of

an entire row of DRAM cells to a buffer (i.e., the row buffer, where the row data temporarily

resides while it is read or written) via the subarray’s bitlines. Each bitline connects a column

of cells to the row buffer, interconnecting every row within the same subarray (Figure 4.1a).

Therefore, the bitlines essentially serve as a very wide bus that transfers a row’s worth of

data (e.g., 8K bits) at once. Second, subarrays within the same bank are placed in close

proximity to each other. Thus, the bitlines of a subarray are very close to (but are not

currently connected to) the bitlines of neighboring subarrays (as shown in Figure 4.1a).

Key Idea. Based on these two observations, we introduce a new DRAM substrate, called

Low-cost Inter-linked SubArrays (LISA). LISA enables low-latency, high-bandwidth inter-

subarray connectivity by linking neighboring subarrays’ bitlines together with isolation tran-

sistors, as illustrated in Figure 4.1b. We use the new inter-subarray connection in LISA

to develop a new DRAM operation, row buffer movement (RBM), which moves data that

is latched in an activated row buffer in one subarray into an inactive row buffer in another

subarray, without having to send data through the narrow internal data bus in DRAM. RBM

36

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

exploits the fact that the activated row buffer has enough drive strength to induce charge

perturbation within the idle (i.e., precharged) bitlines of neighboring subarrays, allowing the

destination row buffer to sense and latch this data when the isolation transistors are enabled.

By using a rigorous DRAM circuit model that conforms to the JEDEC standards [130]

and ITRS specifications [126, 127], we show that RBM performs inter-subarray data move-

ment at 26x the bandwidth of a modern 64-bit DDR4-2400 memory channel (500 GB/s vs.

19.2 GB/s; see §4.4.3), even after we conservatively add a large (60%) timing margin to

account for process and temperature variation.

Applications of LISA. We exploit LISA’s fast inter-subarray movement to enable many

applications that can improve system performance and energy efficiency. We implement and

evaluate the following three applications of LISA:

• Bulk data copying. Fast inter-subarray data movement can eliminate long data

movement latencies for copies between two locations in the same DRAM chip. Prior

work showed that such copy operations are widely used in today’s operating sys-

tems [261, 285] and datacenters [148]. We propose Rapid Inter-Subarray Copy (RISC),

a new bulk data copying mechanism based on LISA’s RBM operation, to reduce the

latency and DRAM energy of an inter-subarray copy by 9.2x and 48.1x, respectively,

over the best previous mechanism, RowClone [298] (§4.5).

• Enabling access latency heterogeneity within DRAM. Prior works [186, 311] in-

troduced non-uniform access latencies within DRAM, and harnessed this heterogeneity

to provide a data caching mechanism within DRAM for hot (i.e., frequently-accessed)

pages. However, these works do not achieve either one of the following goals: (1) low

area overhead, and (2) fast data movement from the slow portion of DRAM to the fast

portion. By exploiting the LISA substrate, we propose a new DRAM design, VarIabLe

LAtency (VILLA) DRAM, with asymmetric subarrays that reduce the access latency

to hot rows by up to 63%, delivering high system performance and achieving both goals

37

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

of low overhead and fast data movement (§4.6).

• Reducing precharge latency. Precharge is the process of preparing the subarray

for the next memory access [130, 166, 185, 186]. It incurs latency that is on the

critical path of a bank-conflict memory access. The precharge latency of a subarray

is limited by the drive strength of the precharge unit attached to its row buffer. We

demonstrate that LISA enables a new mechanism, LInked Precharge (LIP), which

connects a subarray’s precharge unit with the idle precharge units in the neighboring

subarrays, thereby accelerating precharge and reducing its latency by 2.6x (§4.7).

These three mechanisms are complementary to each other, and we show that when combined,

they provide additive system performance and energy efficiency improvements (§4.10.4).

LISA is a versatile DRAM substrate, capable of supporting several other applications be-

yond these three, such as performing efficient data remapping to avoid conflicts in systems

that support subarray-level parallelism [166], and improving the efficiency of bulk bitwise

operations in DRAM [297] (see §4.11).

4.3. DRAM Subarrays

In this chapter, we focus on operations across subarrays within the same bank, which

require us to delve deeper into the physical organization of a bank. Typically, a bank is

subdivided into multiple subarrays [55, 166, 298, 347], as shown in Figure 4.2. Each subarray

consists of a 2D-array of DRAM cells that are connected to sense amplifiers through bitlines.

Because the size of a sense amplifier is more than 100x the size of a cell [186], modern DRAM

designs fit in only enough sense amplifiers in a row to sense half a row of cells. To sense the

entire row of cells, each subarray has bitlines that connect to two rows of sense amplifiers

— one above and one below the cell array (1 and 2 in Figure 4.2, for Subarray 1). This

DRAM design is known as the open bitline architecture, and is commonly used to achieve

high-density DRAM [195, 329]. A single row of sense amplifiers, which holds the data from

38

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

half a row of activated cells, is also referred as a row buffer.

GSA

Internal
Data
Bus

...

64b

Bank I/O

Sense
Amplifier

Precharge
Unit

Bitline

Bitline

Bitline

Bitline

Wordline

Global
Sense Amplifiers

Subarray 0

SA SA SASA
1

R
o

w
 D

ec
o

d
er

SASASASA
2

Subarray 1

3

4
5

6

Figure 4.2. Bank and subarray organization in a DRAM chip.

4.3.1. DRAM Subarray Operation

Accessing data in a subarray requires two steps. The DRAM row (typically 8KB across

a rank of eight x8 chips) must first be activated. Only after activation completes, a column

command (i.e., a read/write) can operate on a piece of data (typically 64B across a rank;

the size of a single cache line) from that row.

When an activate command with a row address is issued, the data stored within a row

in a subarray is read by two row buffers (i.e., the row buffer at the top of the subarray 1 and

the one at the bottom 2). First, a wordline corresponding to the row address is selected by

the subarray’s row decoder. Then, the top row buffer and the bottom row buffer each sense

the charge stored in half of the row’s cells through the bitlines, and amplify the charge to

full digital logic values (0 or 1) to latch in the cells’ data.

After an activate finishes latching a row of cells into the row buffers, a read or a write

can be issued. Because a typical read/write memory request is made at the granularity of

a single cache line, only a subset of bits are selected from a subarray’s row buffer by the

column decoder. On a read, the selected column bits are sent to the global sense amplifiers

through the internal data bus (also known as the global data lines) 3 , which has a narrow

39

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

width of 64B across a rank of eight chips. The global sense amplifiers 4 then drive the

data to the bank I/O logic 5 , which sends the data out of the DRAM chip to the memory

controller.

While the row is activated, a consecutive column command to the same row can access

the data from the row buffer without performing an additional activate. This is called

a row buffer hit. In order to access a different row, a precharge command is required

to reinitialize the bitlines’ values for another activate. This re-initialization process is

completed by a set of precharge units 6 in the row buffer. For more detail on DRAM

commands and internal DRAM operation, we refer the reader to prior works [166, 185, 186,

204, 298, 311].

4.4. Mechanism

First, we discuss the low-cost design changes to DRAM to enable high-bandwidth con-

nectivity across neighboring subarrays (Section 4.4.1). We then introduce a new DRAM

command that uses this new connectivity to perform bulk data movement (Section 4.4.2).

Finally, we conduct circuit-level studies to determine the latency of this command (Sec-

tions 4.4.3 and 4.4.4).

4.4.1. LISA Design in DRAM

LISA is built upon two key characteristics of DRAM. First, large data bandwidth within

a subarray is already available in today’s DRAM chips. A row activation transfers an entire

DRAM row (e.g., 8KB across all chips in a rank) into the row buffer via the bitlines of the

subarray. These bitlines essentially serve as a wide bus that transfers an entire row of data

in parallel to the respective subarray’s row buffer. Second, every subarray has its own set

of bitlines, and subarrays within the same bank are placed in close proximity to each other.

Therefore, a subarray’s bitlines are very close to its neighboring subarrays’ bitlines, although

40

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

these bitlines are not directly connected together.1

By leveraging these two characteristics, we propose to build a wide connection path be-

tween subarrays within the same bank at low cost, to overcome the problem of a narrow

connection path between subarrays in commodity DRAM chips (i.e., the internal data bus

3 in Figure 4.2). Figure 4.3 shows the subarray structures in LISA. To form a new, low-cost

inter-subarray datapath with the same wide bandwidth that already exists inside a subarray,

we join neighboring subarrays’ bitlines together using isolation transistors. We call each of

these isolation transistors a link. A link connects the bitlines for the same column of two

adjacent subarrays.

Top Row Buffer
(src)

Bottom Row Buffer
(dst)

Isolation

Transistor (Link)
Subarray 0

Subarray 1

Subarray 2

A

B

Figure 4.3. Inter-linked subarrays in LISA.

When the isolation transistor is turned on (i.e., the link is enabled), the bitlines of two

adjacent subarrays are connected. Thus, the sense amplifier of a subarray that has already

driven its bitlines (due to an activate) can also drive its neighboring subarray’s precharged

bitlines through the enabled link. This causes the neighboring sense amplifiers to sense the

charge difference, and simultaneously help drive both sets of bitlines. When the isolation

transistor is turned off (i.e., the link is disabled), the neighboring subarrays are disconnected

from each other and thus operate as in conventional DRAM.

1Note that matching the bitline pitch across subarrays is important for a high-yield DRAM process [195,
329].

41

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

4.4.2. Row Buffer Movement (RBM) Through LISA

Now that we have inserted physical links to provide high-bandwidth connections across

subarrays, we must provide a way for the memory controller to make use of these new

connections. Therefore, we introduce a new DRAM command, RBM, which triggers an

operation to move data from one row buffer (half a row of data) to another row buffer within

the same bank through these links. This operation serves as the building block for our

architectural optimizations.

To help explain the RBM process between two row buffers, we assume that the top row

buffer and the bottom row buffer in Figure 4.3 are the source (src) and destination (dst) of

an example RBM operation, respectively, and that src is activated with the content of a row

from Subarray 0. To perform this RBM, the memory controller enables the links (A and

B) between src and dst, thereby connecting the two row buffers’ bitlines together (bitline

of src to bitline of dst, and bitline of src to bitline of dst).

Figure 4.4 illustrates how RBM drives the data from src to dst. For clarity, we show only

one column from each row buffer. State 1 shows the initial values of the bitlines (BL and

BL) attached to the row buffers — src is activated and has fully driven its bitlines (indicated

by thick bitlines), and dst is in the precharged state (thin bitlines indicating a voltage state

of VDD/2). In state 2 , the links between src and dst are turned on. The charge of the src

bitline (BL) flows to the connected bitline (BL) of dst, raising the voltage level of dst’s BL

to VDD/2 + ∆. The other bitlines (BL) have the opposite charge flow direction, where the

charge flows from the BL of dst to the BL of src. This phase of charge flowing between

the bitlines is known as charge sharing. It triggers dst’s row buffer to sense the increase of

differential voltage between BL and BL, and amplify the voltage difference further. As a

result, both src and dst start driving the bitlines with the same values. This double sense

amplification process pushes both sets of bitlines to reach the final fully sensed state (3),

thus completing the RBM from src to dst.

Extending this process, RBM can move data between two row buffers that are not ad-

42

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

VDD

Activated

VDD-�
VDD/2-�

VDD 0

Charge Sharing &

Double Amplification
21 Activated RB 3 Fully Sensed

0
0+� 0

BL BL BL BL BL BL

VDD

src

dst

src

dst

src

dstPrecharged

(VDD/2)

Link

VDD/2+� Ł

Figure 4.4. Row buffer movement process using LISA.

jacent to each other as well. For example, RBM can move data from the src row buffer (in

Figure 4.3) to a row buffer, dst2, that is two subarrays away (i.e., the bottom row buffer of

Subarray 2, not shown in Figure 4.3). This operation is similar to the movement shown in

Figure 4.4, except that the RBM command turns on two extra links (L 2 in Figure 4.4),

which connect the bitlines of dst to the bitlines of dst2, in state 2 . By enabling RBM

to perform row buffer movement across non-adjacent subarrays via a single command, in-

stead of requiring multiple commands, the movement latency and command bandwidth are

reduced.

4.4.3. Row Buffer Movement (RBM) Latency

To validate the RBM process over LISA links and evaluate its latency, we build a model of

LISA using the Spectre Circuit Simulator [37], with the NCSU FreePDK 45nm library [255].

We configure the DRAM using the JEDEC DDR3-1600 timings [130], and attach each bitline

to 512 DRAM cells [186, 311]. We conservatively perform our evaluations using worst-case

cells, with the resistance and capacitance parameters specified in the ITRS reports [126, 127]

for the metal lanes. Furthermore, we conservatively model the worst RC drop (and hence

latency) by evaluating cells located at the edges of subarrays.

We now analyze the process of using one RBM operation to move data between two

43

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

non-adjacent row buffers that are two subarrays apart. To help the explanation, we use an

example that performs RBM from RB0 to RB2, as shown on the left side of Figure 4.5. The

right side of the figure shows the voltage of a single bitline BL from each subarray during

the RBM process over time. The voltage of the BL bitlines show the same behavior, but

have inverted values. We now explain this RBM process step by step.

0.5

0.7

0.9

1.1

1.3

0 5 10 15 20 25 30 35 40 45 50

V
o

lt
ag

e
(V

)

Time (ns)

RB0.BL (src) RB1.BL RB2.BL (dst)

VDD

VDD/2

1 2

3

4

ACTIVATE
RBM

RB0

(src)

RB1

RB2

(dst)
RBM

BL BL

Figure 4.5. SPICE simulation results for transferring data across two subarrays with LISA.

First, before the RBM command is issued, an activate command is sent to RB0 at

time 0. After roughly 21ns (1), the bitline reaches VDD, which indicates the cells have been

fully restored (tRAS). Note that, in our simulation, restoration happens more quickly than

the standard-specified tRAS value of 35ns, as the standard includes a guardband on top of

the typical cell restoration time to account for process and temperature variation [52, 185].

This amount of margin is on par with values experimentally observed in commodity DRAMs

at 55°C [185].

Second, at 35ns (2), the memory controller sends the RBM command to move data from

RB0 to RB2. RBM simultaneously turns on the four links (circled on the left in Figure 4.5)

that connect the subarrays’ bitlines.

Third, after a small amount of time (3), the voltage of RB0’s bitline drops to about

0.9V, as the fully-driven bitlines of RB0 are now charge sharing with the precharged bitlines

attached to RB1 and RB2. This causes both RB1 and RB2 to sense the charge difference and

44

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

start amplifying the bitline values. Finally, after amplifying the bitlines for a few nanoseconds

(4 at 40ns), all three bitlines become fully driven with the value that is originally stored in

RB0.

We thus demonstrate that RBM moves data from one row buffer to a row buffer two

subarrays away at very low latency. Our SPICE simulation shows that the RBM latency

across two LISA links is approximately 5ns (2 → 4). To be conservative, we do not allow

data movement across more than two subarrays with a single RBM command.2

4.4.4. Handling Process and Temperature Variation

On top of using worst-case cells in our SPICE model, we add in a latency guardband to

the RBM latency to account for process and temperature variation, as DRAM manufacturers

commonly do [52, 185]. For instance, the activate timing (tRCD) has been observed to

have margins of 13.3% [52] and 17.3% [185] for different types of commodity DRAMs. To

conservatively account for process and temperature variation in LISA, we add a large timing

margin, of 60%, to the RBM latency. Even then, RBM latency is 8ns and RBM provides a

500 GB/s data transfer bandwidth across two subarrays that are one subarray apart from

each other, which is 26x the bandwidth of a DDR4-2400 DRAM channel (19.2 GB/s) [132].

4.5. Application 1: Rapid Inter-Subarray Bulk Data Copying

(LISA-RISC)

Due to the narrow memory channel width, bulk copy operations used by applications and

operating systems are performance limiters in today’s systems [137, 148, 298, 365]. These

operations are commonly performed due to the memcpy and memmov. Recent work reported

that these two operations consume 4-5% of all of Google’s datacenter cycles, making them

an important target for lightweight hardware acceleration [148]. As we show in Section 4.5.1,

2In other words, RBM has two variants, one that moves data between immediately adjacent subarrays
(Figure 4.4) and one that moves data between subarrays that are one subarray apart from each other
(Figure 4.5).

45

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

the state-of-the-art solution, RowClone [298], has poor performance for such operations when

they are performed across subarrays in the same bank.

Our goal is to provide an architectural mechanism to accelerate these inter-subarray

copy operations in DRAM. We propose LISA-RISC, which uses the RBM operation in LISA

to perform rapid data copying. We describe the high-level operation of LISA-RISC (Sec-

tion 4.5.2), and then provide a detailed look at the memory controller command sequence

required to implement LISA-RISC (Section 4.5.3).

4.5.1. Shortcomings of the State-of-the-Art

Previously, we have described the state-of-the-art work, RowClone [298], which addresses

the problem of costly data movement over memory channels by coping data completely in

DRAM. However, RowClone does not provide fast data copy between subarrays. The main

latency benefit of RowClone comes from intra-subarray copy (RC-IntraSA for short) as

it copies data at the row granularity. In contrast, inter-subarray RowClone (RC-InterSA)

requires transferring data at the cache line granularity (64B) through the internal data bus in

DRAM. Consequently, RC-InterSA incurs 16x longer latency than RC-IntraSA. Furthermore,

RC-InterSA is a long blocking operation that prevents reading from or writing to the other

banks in the same rank, reducing bank-level parallelism [180, 241].

To demonstrate the ineffectiveness of RC-InterSA, we compare it to today’s currently-

used copy mechanism, memcpy, which moves data via the memory channel. In contrast to

RC-InterSA, which copies data in DRAM, memcpy copies data by sequentially reading out

source data from the memory and then writing it to the destination data in the on-chip

caches. Figure 4.6 compares the average system performance and queuing latency of RC-

InterSA and memcpy, on a quad-core system across 50 workloads that contain bulk (8KB)

data copies (see Section 4.9 for our methodology). RC-InterSA actually degrades system

performance by 24% relative to memcpy, mainly because RC-InterSA increases the overall

memory queuing latency by 2.88x, as it blocks other memory requests from being serviced

46

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

by the memory controller performing the RC-InterSA copy. In contrast, memcpy is not a long

or blocking DRAM command, but rather a long sequence of memory requests that can be

interrupted by other critical memory requests, as the memory scheduler can issue memory

requests out of order [164, 165, 240, 241, 284, 320, 342, 370].

 0

 1

 2

 3

GMean

W
ei

gh
te

d
S

pe
ed

up

-24.0%

 0
 200
 400
 600
 800

 1000

GMean

Q
ue

ue
in

g
L

at
en

cy

 (
cy

cl
es

)

2.88x memcpy
RC-InterSA

Figure 4.6. Comparison of RowClone to memcpy over the memory channel, on workloads
that perform bulk data copy across subarrays on a 4-core system.

ACTSA0 PRERD0 RD126
...RC-InterSA

(SA0�SA2)

LISA-RISC

(SA0�SA2)

Time

RBM1�3ACTSA0 PREEACTSA2 PREACTSA2�

ACTSA2 PREWR0 WR127
...

RBM0�2

RD1 RD127 WR1 WR126

9.2x reduction in latency

Serial cache line transfers

Bulk row buffer transfers

Copy
RB0

RB1

RB2

RB3

SA0

SA1

SA2

Figure 4.7. Command service timelines of a row copy for LISA-RISC and RC-InterSA
(command latencies not drawn to scale).

On the other hand, RC-InterSA offers energy savings of 5.1% on average over memcpy by

not transferring the data over the memory channel. Overall, these results show that neither

of the existing mechanisms (memcpy or RowClone) offers fast and energy-efficient bulk data

copy across subarrays.

4.5.2. In-DRAM Rapid Inter-Subarray Copy (RISC)

Our goal is to design a new mechanism that enables low-latency and energy-efficient

memory copy between rows in different subarrays within the same bank. To this end, we

propose a new in-DRAM copy mechanism that uses LISA to exploit the high-bandwidth

links between subarrays. The key idea, step by step, is to: (1) activate a source row in a

subarray; (2) rapidly transfer the data in the activated source row buffers to the destination

47

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

subarray’s row buffers, through LISA’s wide inter-subarray links, without using the narrow

internal data bus; and (3) activate the destination row, which enables the contents of the

destination row buffers to be latched into the destination row. We call this inter-subarray

row-to-row copy mechanism LISA-Rapid Inter-Subarray Copy (LISA-RISC).

As LISA-RISC uses the full row bandwidth provided by LISA, it reduces the copy la-

tency by 9.2x compared to RC-InterSA (see Section 4.5.5). An additional benefit of using

LISA-RISC is that its inter-subarray copy operations are performed completely inside a bank.

As the internal DRAM data bus is untouched, other banks can concurrently serve memory

requests, exploiting bank-level parallelism. This new mechanism is complementary to Row-

Clone, which performs fast intra-subarray copies. Together, our mechanism and RowClone

can enable a complete set of fast in-DRAM copy techniques in future systems. We now

explain the step-by-step operation of how LISA-RISC copies data across subarrays.

4.5.3. Detailed Operation of LISA-RISC

Figure 4.7 shows the command service timelines for both LISA-RISC and RC-InterSA,

for copying a single row of data across two subarrays, as we show on the left. Data is copied

from subarray SA0 to SA2. We illustrate four row buffers (RB0–RB3): recall from Section 4.3

that in order to activate one row, a subarray must use two row buffers (at the top and

bottom), as each row buffer contains only half a row of data. As a result, LISA-RISC must

copy half a row at a time, first moving the contents of RB1 into RB3, and then the contents

of RB0 into RB2, using two RBM commands.

First, the LISA-RISC memory controller activates the source row (ACTSA0) to latch its data

into two row buffers (RB0 and RB1). Second, LISA-RISC invokes the first RBM operation

(RBM1→3) to move data from the bottom source row buffer (RB1) to the respective destination

row buffer (RB3), thereby linking RB1 to both RB2 and RB3, which activates both RB2 and

RB3. After this step, LISA-RISC cannot immediately invoke another RBM to transfer the

remaining half of the source row in RB0 into RB2, as a row buffer (RB2) needs to be in the

48

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

precharged state in order to receive data from an activated row buffer (RB0). Therefore,

LISA-RISC completes copying the first half of the source data into the destination row

before invoking the second RBM, by writing the row buffer (RB3) into the cells through an

activation (ACTSA2). This activation enables the contents of the sense amplifiers (RB3) to

be driven into the destination row. To address the issue that modern DRAM chips do not

allow a second activate to an already-activated bank, we use the back-to-back activate

command that is used to support RowClone [298].

Third, to move data from RB0 to RB2 to complete the copy transaction, we need to

precharge both RB1 and RB2. The challenge here is to precharge all row buffers except RB0.

This cannot be accomplished in today’s DRAM because a precharge is applied at the bank

level to all row buffers. Therefore, we propose to add a new precharge-exception command,

which prevents a row buffer from being precharged and keeps it activated. This bank-wide

exception signal is supplied to all row buffers, and when raised for a particular row buffer,

the selected row buffer retains its state while the other row buffers are precharged. After

the precharge-exception (PREE) is complete, we then invoke the second RBM (RBM0→2) to

copy RB0 to RB2, which is followed by an activation (ACTSA2′) to write RB2 into SA2. Finally,

LISA-RISC finishes the copy by issuing a precharge command (PRE in Figure 4.7) to the

bank.

In comparison, the command service timeline of RC-InterSA is much longer, as RowClone

can copy only one cache line of data at a time (as opposed to half a row buffer). This requires

128 serial cache line transfers to read the data from RB0 and RB1 into a temporary row in

another bank, followed by another 128 serial cache line transfers to write the data into RB2

and RB3. LISA-RISC, by moving half a row using a single RBM command, achieves 9.2x

lower latency than RC-InterSA.

49

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

 0
 1
 2
 3
 4
 5
 6
 7

 0 200 400 600 800 1000 1200 1400

E
ne

rg
y

(µ
J)

Latency (ns)

InterSA

InterBankIn
tra

SA

1 7 15 hops
Improvement of LISA-RISC memcpy

RowClone
LISA-RISC

Figure 4.8. Latency and DRAM energy of 8KB copy.

4.5.4. Data Coherence

When a copy is performed in DRAM, one potential disadvantage is that the data stored

in the DRAM may not be the most recent version, as the processor may have dirty cache

lines that belong to the section of memory being copied. Prior works on in-DRAM migration

have proposed techniques to accommodate data coherence [297, 298]. Alternatively, we can

accelerate coherence operations by using structures like the Dirty-Block Index [295].

4.5.5. Comparison of Copy Techniques

Figure 4.8 shows the DRAM latency and DRAM energy consumption of different copy

commands for copying a row of data (8KB). The exact latency and energy numbers are listed

in Table 4.1.3 We derive the copy latency of each command sequence using equations based

on the DDR3-1600 timings [130] (available in our technical report [56]), and the DRAM

energy using the Micron power calculator [223]. For LISA-RISC, we define a hop as the

number of subarrays that LISA-RISC needs to copy data across to move the data from

the source subarray to the destination subarray. For example, if the source and destination

subarrays are adjacent to each other, the number of hops is 1. The DRAM chips that we

evaluate have 16 subarrays per bank, so the maximum number of hops is 15.

We make two observations from these numbers. First, although RC-InterSA incurs similar

latencies as memcpy, it consumes 29.6% less energy, as it does not transfer data over the

3Our reported numbers differ from prior work [298] because: (1) we use faster DRAM timing parameters
(1600-11-11-11 vs 1066-8-8-8), and (2) we use the 8KB row size of most commercial DRAM instead of
4KB [298].

50

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

Copy Commands (8KB) Latency (ns) Energy (µJ)

memcpy (via mem. channel) 1366.25 6.2
RC-InterSA / Bank / IntraSA 1363.75 / 701.25 / 83.75 4.33 / 2.08 / 0.06
LISA-RISC (1 / 7 / 15 hops) 148.5 / 196.5 / 260.5 0.09 / 0.12 / 0.17

Table 4.1. Copy latency and DRAM energy.

channel and DRAM I/O for each copy operation. However, as we showed in Section 4.5.1,

RC-InterSA incurs a higher system performance penalty because it is a long-latency blocking

memory command. Second, copying between subarrays using LISA achieves significantly

lower latency and energy compared to RowClone, even though the total latency of LISA-

RISC grows linearly with the hop count.

By exploiting the LISA substrate, we thus provide a more complete set of in-DRAM

copy mechanisms. Our workload evaluation results show that LISA-RISC outperforms RC-

InterSA and memcpy: its average performance improvement and energy reduction over the

best performing inter-subarray copy mechanism (i.e., memcpy) are 66.2% and 55.4%, re-

spectively, on a quad-core system, across 50 workloads that perform bulk copies (see Sec-

tion 4.10.1).

4.6. Application 2: In-DRAM Caching Using Heterogeneous Sub-

arrays (LISA-VILLA)

Our second application aims to reduce the DRAM access latency for frequently-accessed

(hot) data. Prior work introduces heterogeneity into DRAM, where one region has a fast

access latency but small capacity (fewer DRAM rows), while the other has a slow access

latency but high capacity (many more rows) [186, 311]. To yield the highest performance

benefits, the fast region is used as a dynamic cache that stores the hot rows. There are two

design constraints that must be considered: (1) ease of implementation, as the fast caching

structure needs to be low-cost and non-intrusive; and (2) data movement cost, as the caching

mechanism should adapt to dynamic program phase changes, which can lead to changes in

the set of hot DRAM rows. As we show in Section 4.6.1, prior work has not balanced the

51

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

trade-off between these two constraints.

Our goal is to design a heterogeneous DRAM that offers fast data movement with a

low-cost and easy-to-implement design. To this end, we propose LISA-VILLA (VarIabLe

LAtency), a mechanism that uses LISA to provide fast row movement into the cache when

the set of hot DRAM rows changes. LISA-VILLA is also easy to implement, as discussed in

Section 4.6.2. We describe our hot row caching policy in Section 4.6.3.

4.6.1. Shortcomings of the State-of-the-Art

We observe that two state-of-the-art techniques for heterogeneity within a DRAM chip

are not effective at providing both ease of implementation and low movement cost.

CHARM [311] introduces heterogeneity within a rank by designing a few fast banks with

(1) shorter bitlines for faster data sensing, and (2) closer placement to the chip I/O for faster

data transfers. To exploit these low-latency banks, CHARM uses an OS-managed mechanism

to statically allocate hot data to them based on program profile information. Unfortunately,

this approach cannot adapt to program phase changes, limiting its performance gains. If it

were to adopt dynamic hot data management, CHARM would incur high movement cost

over the narrow 64-bit internal data bus in DRAM, as illustrated in Figure 4.9a, since it

does not provide high-bandwidth connectivity between banks.

High Movement Cost

Fast Bank Slow Bank

64b Internal

Data Bus

(a) CHARM [311]

Underutilized
Cache Space

Near
Seg.

Far
Seg.

Isolation

Transistors

(b) TL-DRAM [186]

Figure 4.9. Drawbacks of existing heterogeneous DRAMs.

TL-DRAM [186] provides heterogeneity within a subarray by dividing it into fast (near)

and slow (far) segments that have short and long bitlines, respectively, using isolation tran-

52

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

sistors. To manage the fast segment as an OS-transparent hardware cache, TL-DRAM

proposes a fast intra-subarray movement scheme similar to RowClone [298]. The main dis-

advantage is that TL-DRAM needs to cache each hot row in two near segments, as shown

in Figure 4.9b, as each subarray uses two row buffers on opposite ends to sense data in the

open-bitline architecture. This prevents TL-DRAM from using the full near segment capac-

ity. TL-DRAM’s area overhead is also sizable (3.15%) in an open-bitline architecture. As

we can see, neither CHARM nor TL-DRAM strike a good trade-off between the two design

constraints.

4.6.2. Variable Latency (VILLA) DRAM

We propose to introduce heterogeneity within a bank by designing heterogeneous-latency

subarrays. We call this heterogeneous DRAM design VarIabLe LAtency DRAM (VILLA-

DRAM). To design a low-cost fast subarray, we take an approach similar to prior work,

attaching fewer cells to each bitline to reduce the parasitic capacitance and resistance. This

reduces the sensing (tRCD), restoration (tRAS), and precharge (tRP) time of the fast subar-

rays [186, 228, 311]. In this chapter, we focus on managing the fast subarrays in hardware,

as it offers better adaptivity to dynamic changes in the hot data set.

In order to take advantage of VILLA-DRAM, we rely on LISA-RISC to rapidly copy rows

across subarrays, which significantly reduces the caching latency. We call this synergistic

design, which builds VILLA-DRAM using the LISA substrate, LISA-VILLA. Nonetheless,

the cost of transferring data to a fast subarray is still non-negligible, especially if the fast

subarray is far from the subarray where the data to be cached resides. Therefore, an intelli-

gent cost-aware mechanism is required to make astute decisions on which data to cache and

when.

53

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

4.6.3. Caching Policy for LISA-VILLA

We design a simple epoch-based caching policy to evaluate the benefits of caching a row

in LISA-VILLA. Every epoch, we track the number of accesses to rows by using a set of

1024 saturating counters for each bank.4 The counter values are halved every epoch to

prevent staleness. At the end of an epoch, we mark the 16 most frequently-accessed rows

as hot, and cache them when they are accessed the next time. For our cache replacement

policy, we use the benefit-based caching policy proposed by Lee et al. [186]. Specifically, it

uses a benefit counter for each row cached in the fast subarray: whenever a cached row is

accessed, its counter is incremented. The row with the least benefit is replaced when a new

row needs to be inserted. Note that a large body of work proposed various caching policies

(e.g., [102, 109, 114, 136, 151, 219, 276, 296, 357]), each of which can potentially be used

with LISA-VILLA.

Our evaluation shows that LISA-VILLA improves system performance by 5.1% on aver-

age, and up to 16.1%, for a range of 4-core workloads (see Section 4.10.2).

4.7. Application 3: Fast Precharge Using Linked Precharge Units

(LISA-LIP)

Our third application aims to accelerate the process of precharge. The precharge time

for a subarray is determined by the drive strength of the precharge unit. We observe that

in modern DRAM, while a subarray is being precharged, the precharge units (PUs) of other

subarrays remain idle.

We propose to exploit these idle PUs to accelerate a precharge operation by connecting

them to the subarray that is being precharged. Our mechanism, LISA-LInked Precharge

(LISA-LIP), precharges a subarray using two sets of PUs: one from the row buffer that

is being precharged, and a second set from a neighboring subarray’s row buffer (which is

4The hardware cost of these counters is low, requiring only 6KB of storage in the memory controller (see
Section 4.8.1).

54

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

already in the precharged state), by enabling the links between the two subarrays.

Figure 4.10 shows the process of linked precharging using LISA. Initially, only one sub-

array (top) is fully activated (state 1) while the neighboring (bottom) subarray is in the

precharged state. The neighboring subarray is in the precharged state, as only one subarray

in a bank can be activated at a time, while the other subarrays remain precharged. In state

2 , we begin the precharge operation by disabling the sense amplifier in the top row buffer

and enabling its PU. After we enable the links between the top and bottom subarrays, the

bitlines start sharing charge with each other, and both PUs simultaneously reinitialize the

bitlines, eventually fully pulling the bitlines to VDD/2 (state 3). Note that we are using

two PUs to pull down only one set of activated bitlines, which is why the precharge process

is shorter.

VDD

VDD/2

Link

Precharged

Activated

VDD-�

VDD/2+�

VDD/2-�

Charge Sharing &

Double Precharging
21 Activated RB 3 Fully Precharged

Precharge

Enabled

0 0+�

VDD/2 VDD/2

VDD/2

VDD/2

VDD/2

Figure 4.10. Linked precharging through LISA.

To evaluate the accelerated precharge process, we use the same methodology described

in Section 4.4.3 and simulate the linked precharge operation in SPICE. Figure 4.11 shows

the resulting timing diagram. During the first 2ns, the wordline is lowered to disconnect the

cells from the bitlines 1 . Then, we enable the links to begin precharging the bitlines 2 .

The result shows that the precharge latency reduces significantly due to having two PUs to

perform the precharge. LISA enables a shorter precharge latency of approximately 3.5ns 3

versus the baseline precharge latency of 13.1ns 4 .

To account for process and temperature variation, we add a guardband to the

55

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

0.5

0.7

0.9

1.1

1.3

0 5 10 15

B
it

li
n
e

V
o

lt
ag

e
(V

)

Time (ns)

Baseline
LISA-LIP

3.5

1 2 3 4

13.1

Figure 4.11. SPICE simulation of precharge operation.

SPICE-reported latency, increasing it to 5ns (i.e., by 42.9%), which still achieves 2.6x lower

precharge latency than the baseline. Our evaluation shows that LISA-LIP improves perfor-

mance by 10.3% on average, across 50 four-core workloads (see Section 4.10.3).

4.8. Hardware Cost

4.8.1. Die Area Overhead

To evaluate the area overhead of adding isolation transistors, we use area values from

prior work, which adds isolation transistors to disconnect bitlines from sense amplifiers [257].

That work shows that adding an isolation transistor to every bitline incurs a total of 0.8% die

area overhead in a 28nm DRAM process technology. Similar to prior work that adds isolation

transistors to DRAM [186, 257], our LISA substrate also requires additional control logic

outside the DRAM banks to control the isolation transistors, which incurs a small amount of

area and is non-intrusive to the cell arrays. For LISA-VILLA, we use 1024 six-bit saturating

counters to track the access frequency of rows in every bank; this requires an additional 6KB

storage within a memory controller connected to one rank.

4.8.2. Handling Repaired Rows

To improve yield, DRAM manufacturers often employ post-manufacturing repair tech-

niques that can remap faulty rows to spare rows provisioned in every subarray [152]. There-

fore, consecutive row addresses as observed by the memory controller may physically reside in

different subarrays. To handle this issue for techniques that require the controller to know the

56

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

subarray a row resides in (e.g., RowClone [298], LISA-RISC), a simple approach can be used

to expose the repaired row information to the memory controller. Since DRAM already stores

faulty rows’ remapping information inside the chip, this information can be exposed to the

controller through the serial presence detect (SPD) [131], which is an EEPROM that stores

DRAM information such as timing parameters. The memory controller can read this stored

information at system boot time so that it can correctly determine a repaired row’s location

in DRAM. Note that similar techniques may be necessary for other mechanisms that require

information about physical location of rows in DRAM (e.g., [55, 149, 162, 166, 186, 203]).

4.9. Methodology

We evaluate our system using a variant of Ramulator [167], an open-source cycle-accurate

DRAM simulator, driven by traces generated from Pin [208]. We will make our simulator

publicly available [62]. We use a row buffer policy that closes a row only when there are no

more outstanding requests in the memory controller to the same row [284]. Unless stated

otherwise, our simulator uses the parameters listed in Table 7.2.

Processor 1–4 OoO cores, 4GHz, 3-wide issue

Cache L1: 64KB, L2: 512KB per core, L3: 4MB, 64B lines

Mem. Controller 64/64-entry read/write queue, FR-FCFS [284, 370]

DRAM
DDR3-1600 [227], 1–2 channels, 1 rank/channel,
8 banks/rank, 16 subarrays/bank

Table 4.2. Evaluated system configuration.

To evaluate the benefits of different data copy mechanisms in isolation, we use a copy-aware

page mapping policy that allocates destination pages to the same DRAM structures (i.e.,

subarrays, banks) where the source pages are allocated. As a result, our evaluation of dif-

ferent data copy mechanisms is a limit study as only the specified copy mechanism (e.g.,

RISC) is used for copy operations. For example, when evaluating RISC, the page mapper

allocates both the source and destination pages within the same bank to evaluate the benefits

of RISC’s fast data movement between subarrays.

57

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

Benchmarks and Workloads. We primarily use benchmarks from TPC(-C/-H) [338],

DynoGraph (BFS, PageRank) [272], SPEC CPU2006 [315], and STREAM [218], along with

a random-access microbenchmark similar to HPCC RandomAccess [111]. Because these

benchmarks predominantly stress the CPU and memory while rarely invoking memcpy, we use

the following benchmarks to evaluate different copy mechanisms: (1) bootup, (2) forkbench,

and (3) Unix shell. These were shared by the authors of RowClone [298]. The bootup

benchmark consists of a trace collected while a Debian operating system was booting up.

The forkbench kernel forks a child process that copies 1K pages from the parent process by

randomly accessing them from a 64MB array. The Unix shell is a script that runs find in

a directory along with ls on each subdirectory. More information on these is in [298].

To construct multi-core workloads for evaluating the benefits of data copy mechanisms,

we randomly assemble 50 workloads, each comprising 50% copy-intensive benchmarks and

50% non-copy-intensive benchmarks. To evaluate the benefits of in-DRAM caching and

reduced precharge time, we restrict our workloads to randomly-selected memory-intensive

(≥ 5 misses per thousand instructions) non-copy-intensive benchmarks. Due to the large

number of workloads, we present detailed results for only five workload mixes (Table 4.3),

along with the average results across all 50 workloads.

Mix 1 tpcc64, forkbench, libquantum, bootup
Mix 2 bootup, xalancbmk, pagerank, forkbench
Mix 3 libquantum, pagerank, forkbench, bootup
Mix 4 mcf, forkbench, random, forkbench
Mix 5 bfs, bootup, tpch2, bootup

Table 4.3. A subset of copy workloads with detailed results.

Performance Metrics. We measure single-core and multi-core performance using IPC

and Weighted Speedup (WS) [310], respectively. Prior work showed that WS is a measure

of system throughput [83]. To report DRAM energy consumption, we use the Micron power

calculator [223]. We run all workloads for 100 million instructions, as done in many recent

works [165, 166, 186, 187, 240].

58

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

VILLA-DRAM Configuration. For our simulated VILLA-DRAM, each fast subarray

consists of 32 rows to achieve low latency on sensing, precharge, and restoration (a typical

subarray has 512 rows). Our SPICE simulation reports the following new timing parameters

for a 32-row subarray: tRCD=7.5ns, tRP=8.5ns, and tRAS=13ns, which are reduced from

the original timings by respectively, 45.5%, 38.2%, and 62.9%. For each bank, we allocate 4

fast subarrays in addition to the 16 512-row subarrays, incurring a 1.6% area overhead. We

set the epoch length for our caching policy to 10,000 cycles.

4.10. Evaluation

We quantitatively evaluate our proposed applications of LISA: (1) rapid bulk copy-

ing (LISA-RISC), (2) in-DRAM caching with heterogeneous subarrays (LISA-VILLA), and

(3) reduced precharge time (LISA-LIP).

4.10.1. Bulk Memory Copy

Single-Core Workloads

Figure 4.12 shows the performance of three copy benchmarks on a single-core system with

one memory channel and 1MB of last-level cache (LLC). We evaluate the following bulk copy

mechanisms: (1) memcpy, which copies data over the memory channel; (2) RowClone [298];

and (3) LISA-RISC. We use two different hop counts between the source and destination

subarray for LISA-RISC: 15 (longest) and 1 (shortest). They are labeled as LISA-RISC-15

and LISA-RISC-1, respectively, in the figure. We make four major observations.

First, LISA-RISC achieves significant improvement over RC-InterSA for all three bench-

marks in terms of both IPC and memory energy consumption, shown in Figure 4.12a and

Figure 4.12b, respectively. This shows that the LISA substrate is effective at performing fast

inter-subarray copies.

Second, both LISA-RISC-1 and LISA-RISC-15 significantly reduce the memory energy

consumption over memcpy. This is due to (1) reduced memory traffic over the channel by

59

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

 0
 0.5

 1
 1.5

 2
 2.5

 3

bootup forkbench shell
IP

C

Benchmarks

12.6%
4.9x

1.8%

memcpy
RC-InterSA
RC-InterBA
RC-IntraSA

LISA-RISC-15
LISA-RISC-1

(a) IPC

 0
 0.2
 0.4
 0.6
 0.8

 1

bootup forkbench shellN
or

m
. D

R
A

M
 E

ne
rg

y

Benchmarks

-58.0% -94.7% -77.1%
memcpy

RC-InterSA
RC-InterBA
RC-IntraSA

LISA-RISC-15
LISA-RISC-1

(b) Energy

 0.5

 1

 2

 4

bootup forkbench shell

N
or

m
al

iz
ed

 I
P

C
(l

og
2)

Benchmarks

18.2%

4.2x

44.7%

256KB
512KB

1MB
2MB
4MB

(c) LISA’s performance improvement over memcpy as LLC size varies

Figure 4.12. Comparison of copy mechanisms in a single-core system. Value (%) on top
indicates the improvement of LISA-RISC-1 over memcpy.

keeping the data within DRAM, and (2) higher performance.

Third, LISA-RISC-1/-15 provides 12.6%/10.6%, 4.9x/4.3x, and 1.8%/0.7% speedup for

bootup, forkbench, and shell, respectively, over memcpy. The performance gains are

smaller for bootup and shell. Both of these benchmarks invoke fewer copy operations

(i.e., 2171 and 2682, respectively) than forkbench, which invokes a large number (40952)

of copies. As a result, forkbench is more sensitive to the memory latency of copy com-

mands. Furthermore, the large LLC capacity (1MB) helps absorb the majority of memory

writes resulting from memcpy for bootup and shell, thereby reducing the effective latency

of memcpy.

Fourth, RC-InterSA performs worse than memcpy for bootup and shell due to its long

60

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

blocking copy operations. Although, it attains a 19.4% improvement on forkbench because

memcpy causes severe cache pollution by installing a large amount of copied data into the

LLC. Compared to the 20% cache hit rate for memcpy, RC-InterSA has a much higher hit

rate of 67.2% for forkbench. The copy performance of memcpy is strongly correlated with

the LLC management policy and size.

To understand performance sensitivity to LLC size, Figure 4.12c shows the speedup of

LISA-RISC-1 over memcpy for different LLC capacities. We make two observations, which

are also similar for LISA-RISC-15 (not shown). First, for bootup and shell, the speedup

of LISA over memcpy reduces as the LLC size increases because the destination locations of

memcpy operations are more likely to hit in the larger cache.

Second, for forkbench, LISA-RISC’s performance gain over memcpy decreases as cache

size reduces from 1MB to 256KB. This is because the LLC hit rate reduces much more

significantly for LISA-RISC, from 67% (1MB) to 10% (256KB), than for memcpy (from 20%

at 1MB, to 19% at 256KB). When forkbench uses LISA-RISC for copying data, its working

set mainly consists of non-copy data, which has good locality. As the LLC size reduces by

4x, the working set no longer fits in the smaller cache, thus causing a significant hit rate

reduction. On the other hand, when memcpy is used as the copy mechanism, the working set

of forkbench is mainly from bulk copy data, and is less susceptible to cache size reduction.

Nonetheless, LISA-RISC still provides an improvement of 4.2x even with a 256KB cache.

We conclude that LISA-RISC significantly improves performance and memory energy

efficiency in single-core workloads that invoke bulk copies.

Multi-Core Workloads

Figure 4.13 shows the system performance and energy efficiency (i.e., memory energy per

instruction) of different copy mechanisms across 50 workloads, on a quad-core system with

two channels and 4MB of LLC. The error bars in this figure (and other figures) indicate the

25th and 75th percentile values across all 50 workloads. Similar to the performance trends

61

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

seen in the single-core system, LISA-RISC consistently outperforms other mechanisms at

copying data between subarrays. LISA-RISC-1 attains a high average system performance

improvement of 66.2% and 2.2x over memcpy and RC-InterSA, respectively. Although Mix 5

has the smallest number of copy operations out of the five presented workload mixes, LISA-

RISC still improves its performance by 6.7% over memcpy. By moving copied data only within

DRAM, LISA-RISC significantly reduces memory energy consumption (55.4% on average)

over memcpy. In summary, LISA-RISC provides both high performance and high memory

energy efficiency for bulk data copying for a wide variety of single- and multi-core workloads.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

Mix1 Mix2 Mix3 Mix4 Mix5 GMean50

N
or

m
al

iz
ed

 W
S

Workloads

66.2% RC-InterSA
RC-InterBA
RC-IntraSA

LISA-RISC-15
LISA-RISC-1

(a) Weighted speedup normalized to memcpy

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

Mix1 Mix2 Mix3 Mix4 Mix5 HMean50N
or

m
al

iz
ed

 M
em

or
y

E
ne

rg
y/

In
st

ru
ct

io
n

Workloads

-55.4%
RC-InterSA
RC-InterBA
RC-IntraSA

LISA-RISC-15
LISA-RISC-1

(b) Memory energy efficiency normalized to memcpy

Figure 4.13. Four-core system evaluation: (a) weighted speedup and (b) memory energy
per instruction.

4.10.2. In-DRAM Caching with LISA-VILLA

Figure 4.14 shows the system performance improvement of LISA-VILLA over a baseline

without any fast subarrays in a four-core system. It also shows the hit rate in VILLA-

DRAM, i.e., the fraction of accesses that hit in the fast subarrays. We make two main

observations. First, by exploiting LISA-RISC to quickly cache data in VILLA-DRAM, LISA-

62

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

VILLA improves system performance for a wide variety of workloads — by up to 16.1%, with

a geometric mean of 5.1%. This is mainly due to reduced DRAM latency of accesses that hit

in the fast subarrays (which comprise 16MB of total storage across two memory channels).

The performance improvement heavily correlates with the VILLA cache hit rate. Our work

does not focus on optimizing the caching scheme, but the hit rate may be increased by an

enhanced caching policy (e.g., [276, 296]), which can further improve system performance.

 0.95

 1

 1.05

 1.1

 1.15

 0 10 20 30 40 50
 0
 10
 20
 30
 40
 50
 60
 70

N
or

m
al

iz
ed

 W
S

V
IL

L
A

 H
it R

ate (%
)

Workloads

LISA-VILLA
Cache Hit Rate

 0
 0.2
 0.4
 0.6
 0.8

 1

GMean

N
or

m
al

iz
ed

 W
S

RC-InterSA
LISA-VILLA

Figure 4.14. Performance improvement and hit rate with LISA-VILLA, and performance
comparison to using RC-InterSA with VILLA-DRAM.

Second, the VILLA-DRAM design, which consists of heterogeneous subarrays, is not

practical without LISA. Figure 4.14 shows that using RC-InterSA to move data into the

cache reduces performance by 52.3% due to slow data movement, which overshadows the

benefits of caching. The results indicate that LISA is an important substrate to enable not

only fast bulk data copy, but also a fast in-DRAM caching scheme.

4.10.3. Accelerated Precharge with LISA-LIP

Figure 4.15 shows the system performance improvement of LISA-LIP over a baseline that

uses the standard DRAM precharge latency, as well as LISA-LIP’s row-buffer hit rate, on

a four-core system across 50 workloads. LISA-LIP attains a maximum gain of 13.2%, with

a mean improvement of 8.1%. The performance gain becomes higher as the row-buffer hit

rate decreases, which leads to more precharge commands. These results show that LISA is a

versatile substrate that effectively reduces precharge latency in addition to accelerating data

movement.

63

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

 0.95
 1

 1.05
 1.1

 1.15

 0 10 20 30 40 50
 10
 20
 30
 40
 50
 60
 70

N
or

m
al

iz
ed

 W
S

R
B

 H
it R

ate (%
)

Workloads

LISA-LIP Speedup RB Hit Rate

Figure 4.15. Speedup and row buffer (RB) hit rate of LISA-LIP.

We also evaluate the effectiveness of combining LISA-VILLA and LISA-LIP (not shown,

but available in our technical report [56]). The combined mechanism, which is transparent

to software, improves system performance by 12.2% on average and up to 23.8% across the

same set of 50 workloads without bulk copies. Thus, LISA is an effective substrate that can

enable mechanisms to fundamentally reduce memory latency.

4.10.4. Putting Everything Together

As all of the three proposed applications are complementary to each other, we eval-

uate the effect of putting them together on a four-core system. Figure 4.16 shows the

system performance improvement of adding LISA-VILLA to LISA-RISC (15 hops), as well

as combining all three optimizations, compared to our baseline using memcpy and standard

DDR3-1600 memory. We draw several key conclusions. First, the performance benefits

from each scheme are additive. On average, adding LISA-VILLA improves performance

by 16.5% over LISA-RISC alone, and adding LISA-LIP further provides an 8.8% gain over

LISA-(RISC+VILLA). Second, although LISA-RISC alone provides a majority of the per-

formance improvement over the baseline (59.6% on average), the use of both LISA-VILLA

and LISA-LIP further improves performance, resulting in an average performance gain of

94.8% and memory energy reduction (not plotted) of 49.0%. Taken together, these results

indicate that LISA is an effective substrate that enables a wide range of high-performance

and energy-efficient applications in the DRAM system.

64

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

 0.5

 1

 2

 4

 8

 0 10 20 30 40 50

N
or

m
al

iz
ed

 W
S

(l
og

2)

Workloads

LISA-(RISC+VILLA+LIP)
LISA-(RISC+VILLA)

LISA-RISC-15

Figure 4.16. Combined WS improvement of LISA applications.

4.10.5. Sensitivity to System Configuration

Figure 4.17 shows the weighted speedup for memcpy and LISA-All (i.e., all three applica-

tions) on a 4-core system using varying memory channel counts and LLC sizes. The results

show that performance improvement increases with fewer memory channels, as memory con-

tention increases. On the other hand, adding more memory channels increases memory-level

parallelism, allowing more of the copy latency to be hidden. Similar trends are observed

with the LLC capacity. As LLC size decreases, the working set becomes less likely to fit with

memcpy, worsening its performance. LISA-All provides significant performance benefits for

all configurations.

 0

 2

 4

 6

 8

 10

W
ei

gh
te

d
S

pe
ed

up

Memory Channels LLC Size

2.1x
1.9x

1.8x
2.0x

1.9x
1.9x

memcpy
LISA-All

Figure 4.17. Performance sensitivity to channels and LLC size.

4.10.6. Effect of Copy Distance on LISA-RISC

Table 4.4 shows that the performance gain and memory energy savings of LISA-RISC over

memcpy increases as the copy distance reduces. This is because with fewer subarrays between

the source and destination subarrays, the number of RBM commands invoked by LISA-RISC

65

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

reduces accordingly, which decreases the latency and memory energy consumption of bulk

data copy.

Copy Distance (hops) 1 3 7 15 31 63

RISC Copy Latency (ns) 148.5 164.5 196.5 260.5 388.5 644.5
WS Improvement (%) 66.2 65.3 63.3 59.6 53.0 42.4
DRAM Energy Savings (%) 55.4 55.2 54.6 53.6 51.9 48.9

Table 4.4. Effect of copy distance on LISA-RISC.

4.11. Other Applications Enabled by LISA

We describe two additional applications that can potentially benefit from LISA. We

describe them at a high level, and defer evaluations to future work.

Reducing Subarray Conflicts via Remapping. When two memory requests access two

different rows in the same bank, they have to be served serially, even if they are to different

subarrays. To mitigate such bank conflicts, Kim et al. [166] propose subarray-level parallelism

(SALP), which enables multiple subarrays to remain activated at the same time. However,

if two accesses are to the same subarray, they still have to be served serially. This problem

is exacerbated when frequently-accessed rows reside in the same subarray. To help alleviate

such subarray conflicts, LISA can enable a simple mechanism that efficiently remaps or moves

the conflicting rows to different subarrays by exploiting fast RBM operations.

Extending the Range of In-DRAM Bulk Operations. To accelerate bitwise opera-

tions, Seshadri et al. [297] propose a new mechanism that performs bulk bitwise AND and

OR operations in DRAM. Their mechanism is restricted to applying bitwise operations only

on rows within the same subarray as it requires the copying of source rows before performing

the bitwise operation. The high cost of inter-subarray copies makes the benefit of this mech-

anism inapplicable to data residing in rows in different subarrays. LISA can enable efficient

inter-subarray bitwise operations by using LISA-RISC to copy rows to the same subarray at

low latency and low energy.

66

CHAPTER 4. LOW-COST INTER-LINKED SUBARRAYS (LISA)

4.12. Summary

We present a new DRAM substrate, low-cost inter-linked subarrays (LISA), that expe-

dites bulk data movement across subarrays in DRAM. LISA achieves this by creating a new

high-bandwidth datapath at low cost between subarrays, via the insertion of a small num-

ber of isolation transistors. We describe and evaluate three applications that are enabled

by LISA. First, LISA significantly reduces the latency and memory energy consumption of

bulk copy operations between subarrays over two state-of-the-art mechanisms [298]. Second,

LISA enables an effective in-DRAM caching scheme on a new heterogeneous DRAM orga-

nization, which uses fast subarrays for caching hot data in every bank. Third, we reduce

precharge latency by connecting two precharge units of adjacent subarrays together using

LISA. We experimentally show that the three applications of LISA greatly improve sys-

tem performance and memory energy efficiency when used individually or together, across a

variety of workloads and system configurations.

We conclude that LISA is an effective substrate that enables several effective applications.

We believe that this substrate, which enables low-cost interconnections between DRAM sub-

arrays, can pave the way for other applications that can further improve system performance

and energy efficiency through fast data movement in DRAM.

67

Chapter 5

Mitigating Refresh Latency by

Parallelizing Accesses with Refreshes

In the previous chapter, we describe LISA, a new DRAM substrate, that significantly

reduces inter-subarray movement latency to enable several low-latency optimizations. While

LISA primarily targets the latency incurred on demand requests issued from the applications,

it does not address the latency problem due to a DRAM maintenance operation, refresh,

which is issued periodically by the memory controllers to recharge the cells data.

Each DRAM cell must be refreshed periodically every refresh interval as specified by the

DRAM standards [130, 133]. The exact refresh interval time depends on the DRAM type

(e.g., DDR or LPDDR) and the operating temperature. While DRAM is being refreshed,

it becomes unavailable to serve memory requests. As a result, refresh latency significantly

degrades system performance [204, 234, 246, 318] by delaying in-flight memory requests. This

problem will become more prevalent as DRAM density increases, leading to more DRAM

rows to be refreshed within the same refresh interval. DRAM chip density is expected

to increase from 8Gb to 32Gb by 2020 as it doubles every two to three years [125]. Our

evaluations show that DRAM refresh, as it is performed today, causes an average performance

degradation of 8.2% and 19.9% for 8Gb and 32Gb DRAM chips, respectively, on a variety

68

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

of memory-intensive workloads running on an 8-core system. Hence, it is important to

develop practical mechanisms to mitigate the performance penalty of DRAM refresh. In this

chapter, we propose two complementary mechanisms to mitigate the negative performance

impact of refresh: DARP (Dynamic Access Refresh Parallelization) and SARP (Subarray

Access Refresh Parallelization) The goal is to address the draw- backs of per-bank refresh

by building more efficient techniques to parallelize refreshes and accesses within DRAM.

5.1. Motivation

In this section, we first describe the scaling trend of commonly used all-bank refresh in

both LPDDR and DDR DRAM as chip density increases in the future. We then provide

a quantitative analysis of all-bank refresh to show its performance impact on multi-core

systems followed by performance comparisons to per-bank refresh that is only supported in

LPDDR.

5.1.1. Increasing Performance Impact of Refresh

During the tRFCab time period, the entire memory rank is locked up, preventing the

memory controller from sending any memory request. As a result, refresh operations degrade

system performance by increasing the latency of memory accesses. The negative impact on

system performance is expected to be exacerbated as tRFCab increases with higher DRAM

density. The value of tRFCab is currently 350ns for an 8Gb memory device [130]. Figure 5.1

shows our estimated trend of tRFCab for future DRAM generations using linear extrapolation

on the currently available and previous DRAM devices. The same methodology is used in

prior works [204, 318]. Projection 1 is an extrapolation based on 1, 2, and 4Gb devices;

Projection 2 is based on 4 and 8Gb devices. We use the more optimistic Projection 2

for our evaluations. As it shows, tRFCab may reach up to 1.6µs for future 64Gb DRAM

devices. This long period of unavailability to process memory accesses is detrimental to

system performance.

69

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

1 8 16 24 32 40 48 56 64

R
ef

re
sh

 L
a
te

n
cy

 (
n

s)

DRAM Density (Gb)

Present

Projection 1
Projection 2

Figure 5.1. Refresh latency (tRFCab) trend.

To demonstrate the negative system performance impact of DRAM refresh, we evaluate

100 randomly mixed workloads categorized to five different groups based on memory inten-

sity on an 8-core system using various DRAM densities.1 We use up to 32Gb DRAM density

that the ITRS predicts to be manufactured by 2020 [125]. Figure 5.2 shows the average per-

formance loss due to all-bank refresh compared to an ideal baseline without any refreshes for

each memory-intensity category. The performance degradation due to refresh becomes more

severe as either DRAM chip density (i.e., tRFCab) or workload memory intensity increases

(both of which are trends in systems), demonstrating that it is increasingly important to

address the problem of DRAM refresh.

 0

 5

 10

 15

 20

 25

 30

0 25 50 75 100 GmeanP
er

fo
rm

a
n

ce
L

o
ss

 (
%

)

Percentage of Memory-intensive
Benchmarks in a Workload

8Gb 16Gb 32Gb

Figure 5.2. Performance degradation due to refresh.

Even though the current DDR3 standard does not support REFpb, we believe that it is

important to evaluate the performance impact of REFpb on DDR3 DRAM because DDR3

DRAM chips are widely deployed in desktops and servers. Furthermore, adding per-bank

refresh support to a DDR3 DRAM chip should be non-intrusive because it does not change

the internal bank organization. We estimate the refresh latency of REFpb in a DDR3 chip

1Detailed methodology is described in Section 5.3, including workloads, simulation methodology, and
performance metrics.

70

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

based on the values used in an LPDDR2 chip. In a 2Gb LPDDR2 chip, the per-bank refresh

latency (tRFCpb) is 90ns and the all-bank refresh latency (tRFCab) is 210ns, which takes

2.3x longer than tRFCpb [224].2 We apply this multiplicative factor to tRFCab to calculate

tRFCpb.

Based on the estimated tRFCpb values, we evaluate the performance impact of REFpb on

the same 8-core system and workloads.1 Figure 5.3 shows the average performance degrada-

tion of REFab and REFpb compared to an ideal baseline without any refreshes. Even though

REFpb provides performance gains over REFab by allowing DRAM accesses to non-refreshing

banks, its performance degradation becomes exacerbated as tRFCpb increases with higher

DRAM density. With 32Gb DRAM chips using REFpb, the performance loss due to DRAM

refresh is still a significant 16.6% on average, which motivates us to address issues related to

REFpb.

 0
 5

 10
 15
 20

8Gb 16Gb 32Gb

P
er

fo
rm

a
n

ce
L

o
ss

 (
%

)

DRAM Density

REFab REFpb

Figure 5.3. Performance loss due to REFab and REFpb.

5.1.2. Our Goal

We identify two main problems that REFpb faces. First, REFpb commands are scheduled

in a very restrictive manner in today’s systems. Memory controllers have to send REFpb

commands in a sequential round-robin order without any flexibility. Therefore, the current

implementation does not exploit the full benefit from overlapping refreshes with accesses

across banks. Second, REFpb cannot serve accesses to a refreshing bank until the refresh of

that bank is complete. Our goal is to provide practical mechanisms to address these two

problems so that we can minimize the performance overhead of DRAM refresh.

2LPDDR2 has a shorter tRFCab than DDR3 because LPDDR2 1) has a retention time of 32ms instead
of 64ms in DDR3 under normal operating temperature and 2) each operation refreshes fewer rows.

71

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

5.2. Mechanisms

5.2.1. Overview

We propose two mechanisms, Dynamic Access Refresh Parallelization (DARP) and Sub-

array Access Refresh Parallelization (SARP), that hide refresh latency by parallelizing re-

freshes with memory accesses across banks and subarrays, respectively. DARP is a new re-

fresh scheduling policy that consists of two components. The first component is out-of-order

per-bank refresh that enables the memory controller to specify a particular (idle) bank to

be refreshed as opposed to the standard per-bank refresh policy that refreshes banks in a

strict round-robin order. With out-of-order refresh scheduling, DARP can avoid refreshing

(non-idle) banks with pending memory requests, thereby avoiding the refresh latency for

those requests. The second component is write-refresh parallelization that proactively issues

per-bank refresh to a bank while DRAM is draining write batches to other banks, thereby

overlapping refresh latency with write latency. The second mechanism, SARP, allows a bank

to serve memory accesses in idle subarrays while other subarrays within the same bank are

being refreshed. SARP exploits the fact that refreshing a row is contained within a subar-

ray, without affecting the other subarrays’ components and the I/O bus used for transferring

data. We now describe each mechanism in detail.

5.2.2. Dynamic Access Refresh Parallelization

Out-of-order Per-bank Refresh

The limitation of the current per-bank refresh mechanism is that it disallows a memory

controller from specifying which bank to refresh. Instead, a DRAM chip has internal logic

that strictly refreshes banks in a sequential round-robin order. Because DRAM lacks visibility

into a memory controller’s state (e.g., request queues’ occupancy), simply using an in-order

REFpb policy can unnecessarily refresh a bank that has multiple pending memory requests

to be served when other banks may be free to serve a refresh command. To address this

72

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

problem, we propose the first component of DARP, out-of-order per-bank refresh. The idea

is to remove the bank selection logic from DRAM and make it the memory controller’s

responsibility to determine which bank to refresh. As a result, the memory controller can

refresh an idle bank to enhance parallelization of refreshes and accesses, avoiding refreshing

a bank that has pending memory requests as much as possible.

Due to REFpb reordering, the memory controller needs to guarantee that deviating from

the original in-order schedule still preserves data integrity. To achieve this, we take advantage

of the fact that the contemporary DDR JEDEC standard [130, 132] actually provides some

refresh scheduling flexibility. The standard allows up to eight all-bank refresh commands to

be issued late (postponed) or early (pulled-in). This implies that each bank can tolerate up

to eight REFpb to be postponed or pulled-in. Therefore, the memory controller ensures that

reordering REFpb preserves data integrity by limiting the number of postponed or pulled-in

commands.

Figure 5.4 shows the algorithm of our mechanism. The out-of-order per-bank refresh

scheduler makes a refresh decision every DRAM cycle. There are three key steps. First, when

the memory controller hits a per-bank refresh schedule time (every tREFIpb), it postpones

the scheduled REFpb if the to-be-refreshed bank (R) has pending demand requests (read

or write) and it has postponed fewer refreshes than the limit of eight (1). The hardware

counter that is used to keep track of whether or not a refresh can be postponed for each

bank is called the refresh credit (ref credit). The counter decrements on a postponed refresh

and increments on a pulled-in refresh for each bank. Therefore, a REFpb command can

be postponed if the bank’s ref credit stays above -8. Otherwise the memory controller is

required to send a REFpb command to comply with the standard. Second, the memory

controller prioritizes issuing commands for a demand request if a refresh is not sent at any

given time (2). Third, if the memory controller cannot issue any commands for demand

requests due to the timing constraints, it instead randomly selects one bank (B) from a list

of banks that have no pending demand requests to refresh. Such a refresh command is either

73

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

a previously postponed REFpb or a new pulled-in REFpb (3).

Every Cycle

= tREFIpb?

Can postpone

REFpb for bank R?

Can issue a

demand request?

Refresh R

Select a random

bank (B)

B has pending

requests?

Refresh B

(ref_credit[B]++)

To next B

Gone through

 all banks?

Issue request

Idle

No

Yes

No

Yes

Yes

Yes

No

No

No

Postpone refresh

(ref_credit[R]--)

Yes
1

2

3

Figure 5.4. Algorithm of out-of-order per-bank refresh.

Write-refresh Parallelization

The key idea of the second component of DARP is to actively avoid refresh interference

on read requests and instead enable more parallelization of refreshes with write requests.

We make two observations that lead to our idea. First, write batching in DRAM creates

an opportunity to overlap a refresh operation with a sequence of writes, without interfering

with reads. A modern memory controller typically buffers DRAM writes and drains them to

DRAM in a batch to amortize the bus turnaround latency, also called tWTR or tRTW [130,

166, 179], which is the additional latency incurred from switching between serving writes to

reads because DRAM I/O bus is half-duplex. Typical systems start draining writes when the

write buffer occupancy exceeds a certain threshold until the buffer reaches a low watermark.

This draining time period is called the writeback mode, during which no rank within the

draining channel can serve read requests [59, 179, 317]. Second, DRAM writes are not

latency-critical because processors do not stall to wait for them: DRAM writes are due to

dirty cache line evictions from the last-level cache [179, 317].

74

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

Given that writes are not latency-critical and are drained in a batch for some time interval,

we propose the second component of DARP, write-refresh parallelization, that attempts to

maximize parallelization of refreshes and writes. Write-refresh parallelization selects the bank

with the minimum number of pending demand requests (both read and write) and preempts

the bank’s writes with a per-bank refresh. As a result, the bank’s refresh operation is hidden

by the writes in other banks.

The reasons why we select the bank with the lowest number of demand requests as a

refresh candidate during writeback mode are two-fold. First, the goal of the writeback mode

is to drain writes as fast as possible to reach a low watermark that determines the end of

the writeback mode [59, 179, 317]. Extra time delay on writes can potentially elongate the

writeback mode by increasing queueing delay and reducing the number of writes served in

parallel across banks. Refreshing the bank with the lowest write request count (zero or more)

has the smallest impact on the writeback mode length because other banks can continue

serving their writes to reach to the low watermark. Second, if the refresh scheduled to a

bank during the writeback mode happens to extend beyond writeback mode, it is likely that

the refresh 1) does not delay immediate reads within the same bank because the selected

bank has no reads or 2) delays reads in a bank that has less contention. Note that we

only preempt one bank for refresh because the JEDEC standard [133] disallows overlapping

per-bank refresh operations across banks within a rank.

Figure 5.5 shows the service timeline and benefits of write-refresh parallelization. There

are two scenarios when the scheduling policy parallelizes refreshes with writes to increase

DRAM’s availability to serve read requests. Figure 5.5a shows the first scenario when the

scheduler postpones issuing a REFpb command to avoid delaying a read request in Bank 0 and

instead serves the refresh in parallel with writes from Bank 1, effectively hiding the refresh

latency in the writeback mode. Even though the refresh can potentially delay individual

write requests during writeback mode, the delay does not impact performance as long as the

length of writeback mode remains the same as in the baseline due to longer prioritized write

75

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

Postpone Refresh

READ

WRITE

Time

Time

Bank0

Bank1

READ Time

Time

Bank0

Bank1

WRITEWRITE

WRITEWRITE WRITE
Saved Cycles

REF Delays Read

Per-Bank
Refresh

Write Access
Refresh
Parallelization

REFpb

REFpb

Turnaround

WRITE

WRITE

(a) Scenario 1: Parallelize postponed refresh with writes.

WRITE

Time

Time

Bank0

Bank1

Time

Time

Bank0

Bank1

WRITEWRITE

Saved Cycles

Per-Bank
Refresh

Write Access
Refresh
Parallelization WRITEWRITE WRITE

READ

READ

REF Delays Read

Pull-In Refresh

REFpb

REFpb

WRITE

WRITE

(b) Scenario 2: Parallelize pulled-in refresh with writes.

Figure 5.5. Service timeline of a per-bank refresh operation along with read and write
requests using different scheduling policies.

request streams in other banks. In the second scenario shown in Figure 5.5b, the scheduler

proactively pulls in a REFpb command early in Bank 0 to fully hide the refresh latency from

the later read request while Bank 1 is draining writes during the writeback mode (note that

the read request cannot be scheduled during the writeback mode).

The crucial observation is that write-refresh parallelization improves performance because

it avoids stalling the read requests due to refreshes by postponing or pulling in refreshes in

parallel with writes without extending the writeback period.

Algorithm 1 shows the operation of write-refresh parallelization. When the memory

controller enters the writeback mode, the scheduler selects a bank candidate for refresh

when there is no pending refresh. A bank is selected for refresh under the following criteria:

1) the bank has the lowest number of demand requests among all banks and 2) its refresh

credit has not exceeded the maximum pulled-in refresh threshold. After a bank is selected

for refresh, its credit increments by one to allow an additional refresh postponement.

76

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

Algorithm 1 Write-refresh parallelization

Every tRFCpb in Writeback Mode:

if refresh queue[0:N-1].isEmpty() then
b = find bank with lowest request queue count AND ref credit < 8
refreshBank(b)
ref credit[b] += 1

Implementation

DARP incurs a small overhead in the memory controller and DRAM without affecting

the DRAM cell array organization. There are five main modifications. First, each refresh

credit is implemented with a hardware integer counter that either increments or decrements

by up to eight when a refresh command is pulled-in or postponed, respectively. Thus, the

storage overhead is very modest with 4 bits per bank (32 bits per rank). Second, DARP

requires logic to monitor the status of various existing queues and schedule refreshes as

described. Despite reordering refresh commands, all DRAM timing constraints are followed,

notably tRRD and tRFCpb that limit when REFpb can be issued to DRAM. Third, the DRAM

command decoder needs modification to decode the bank ID that is sent on the address bus

with the REFpb command. Fourth, the refresh logic that is located outside of the banks

and arrays needs to be modified to take in the specified bank ID. Fifth, each bank requires

a separate row counter to keep track of which rows to refresh as the number of postponed

or pulled-in refresh commands differs across banks. Our proposal limits the modification to

the least invasive part of the DRAM without changing the structure of the dense arrays that

consume the majority of the chip area.

5.2.3. Subarray Access Refresh Parallelization

Even though DARP allows refreshes and accesses to occur in parallel across different

banks, DARP cannot deal with their collision within a bank. To tackle this problem, we pro-

pose SARP (Subarray Access Refresh Parallelization) that exploits the existence of subarrays

within a bank. The key observation leading to our second mechanism is that refresh occupies

only a few subarrays within a bank whereas the other subarrays and the I/O bus remain

77

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

idle during the process of refreshing. The reasons for this are two-fold. First, refreshing a

row requires only its subarray’s sense amplifiers that restore the charge in the row without

transferring any data through the I/O bus. Second, each subarray has its own set of sense

amplifiers that are not shared with other subarrays.

Based on this observation, SARP’s key idea is to allow memory accesses to an idle

subarray while another subarray is refreshing. Figure 5.6 shows the service timeline and

the performance benefit of our mechanism. As shown, SARP reduces the read latency by

performing the read operation to Subarray 1 in parallel with the refresh in Subarray 0.

Compared to DARP, SARP provides the following advantages: 1) SARP is applicable to

both all-bank and per-bank refresh, 2) SARP enables memory accesses to a refreshing bank,

which cannot be achieved with DARP, and 3) SARP also utilizes bank-level parallelism

by serving memory requests from multiple banks while the entire rank is under refresh.

SARP requires modifications to 1) the DRAM architecture because two distinct wordlines

in different subarrays need to be raised simultaneously, which cannot be done in today’s

DRAM due to the shared peripheral logic among subarrays, 2) the memory controller such

that it can keep track of which subarray is under refresh in order to send the appropriate

memory request to an idle subarray.

REFab/pb

Time

Time

Subarray0

Subarray1

Time

Time

Subarray0

Subarray1

Saved Cycles

All-Bank or
Per-Bank
Refresh

Subarray
Access Refresh
Parallelization

REFab/pb

READ

READ

Bank0

Bank0

REF Delays Read

Figure 5.6. Service timeline of a refresh and a read request to two different subarrays
within the same bank.

78

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

DRAM Bank Implementation for SARP

As opposed to DARP, SARP requires modifications to DRAM to support accessing sub-

arrays individually. While subarrays are equipped with dedicated local peripheral logic, what

prevents the subarrays from being operated independently is the global peripheral logic that

is shared by all subarrays within a bank.

Figure 5.7a shows a detailed view of an existing DRAM bank’s organization. There

are two major shared peripheral components within a bank that prevent modern DRAM

chips to refresh at subarray level. First, each bank has a global row decoder that decodes

the incoming row’s addresses. To read or write a row, memory controllers first issue an

activate command with the row’s address. Upon receiving this command, the bank feeds

the row address to the global row decoder that broadcasts the partially decoded address to all

subarrays within the bank. After further decoding, the row’s subarray then raises its wordline

to begin transferring the row’s cells’ content to the row buffer.3 During the transfer, the row

buffer also restores the charge in the row. Similar to an activate, refreshing a row requires

the refresh unit to activate the row to restore its electrical charge (only the refresh row

counter is shown for clarity in Figure 5.7a). Because a bank has only one global row decoder

and one pair of address wires (for subarray row address and ID), it cannot simultaneously

activate two different rows (one for a memory access and the other for a refresh).

Second, when the memory controller sends a read or write command, the required column

from the activated row is routed through the global bitlines into the global I/O buffer (both

of which are shared across all subarrays’ row buffers) and is transferred to the I/O bus. This

is done by asserting a column select signal that is routed globally to all subarrays, which

enables all subarrays’ row buffers to be concurrently connected to the global bitlines. Since

this signal connects all subarrays’ row buffers to the global bitlines at the same time, if

more than one activated row buffer (i.e., activated subarray) exists in the bank, an electrical

short-circuit occurs, leading to incorrect operation. As a result, two subarrays cannot be

3The detailed step-to-step explanation of the activation process can be found in prior works [166, 186, 298].

79

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

Subarray

Row Buffer

Local
Row Dec.

Col. Sel

Subarray

Row Buffer
Col. Sel

Global I/O Buffer

G
lo

ba
l R

o
w

 D
ec

.

La
tc

h

Subarray
Row Addr

Subarray
ID

REF Row
Counter

R
ow

A

dd
r.

Global Bitlines

(a) Existing organization without SARP.

Subarray

Row Buffer

Col.
Sel

G
lo

b
al

 R
o

w
 D

ec
.

La
tc

h

Subarray
Row Addr

Subarray
ID

Local Row

R
o

w

A
d

d
r.

REF Subarray REF?

Global I/O Buffer

Subarray

Row Buffer

Col.
Sel

=ID?

=ID?

Global Bitlines

3

2 4

1

(b) New organization with SARP.

Figure 5.7. DRAM bank without and with SARP.

kept activated when one is being read or written to, which prevents a refresh to one subarray

from happening concurrently with an access in a different subarray in today’s DRAM.

The key idea of SARP is to allow the concurrent activation of multiple subarrays, but to

only connect the accessed subarray’s row buffer to the global bitlines while another subarray

is refreshing. Figure 5.7b shows our proposed changes to the DRAM microarchitecture.

There are two major enablers of SARP.

The first enabler of SARP allows both refresh and access commands to simultaneously

select their designated rows and subarrays with three new components. The first component

(1) provides the subarray and row addresses for refreshes without relying on the global row

decoder. To achieve this, it decouples the refresh row counter into a refresh-subarray counter

and a local-row counter that keep track of the currently refreshing subarray and the row

address within that subarray, respectively. The second component (2) allows each subarray

to activate a row for either a refresh or an access through two muxes. One mux is a row-

address selector and the other one is a subarray selector. The third component (3) serves

as a control unit that chooses a subarray for refresh. The REF? block indicates if the bank is

currently under refresh and the =ID? comparator determines if the corresponding subarray’s

80

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

ID matches with the refreshing subarray counter for refresh. These three components form

a new address path for the refresh unit to supply refresh addresses in parallel with addresses

for memory accesses.

The second enabler of SARP allows accesses to one activated subarray while another

subarray is kept activated for refreshes. We add an AND gate (4) to each subarray that

ensures the refreshing subarray’s row buffer is not connected to the global bitlines when the

column select signal is asserted on an access. At any instance, there is at most one activated

subarray among all non-refreshing subarrays because the global row decoder activates only

one subarray at a time. With the two proposed enablers, SARP allows one activated subarray

for refreshes in parallel with another activated subarray that serves data to the global bitlines.

Detecting Subarray Conflicts in the Memory Controller

To avoid accessing a refreshing subarray, which is determined internally by the DRAM

chip in our current mechanism, the memory controller needs to know the current refreshing

subarray and the number of subarrays. We create shadow copies of the refresh-subarray

and local-row counters in the memory controller to keep track of the currently-refreshing

subarray. We store the number of subarrays in an EEPROM called the serial presence detect

(SPD) [131], which stores various timing and DRAM organization information in existing

DRAM modules. The memory controller reads this information at system boot time so that

it can issue commands correctly.4

Power Integrity

Because an activate draws a lot of current, DRAM standards define two timing pa-

rameters to constrain the activity rate of DRAM so that activates do not over-stress the

power delivery network [130, 305]. The first parameter is the row-to-row activation delay

(tRRD) that specifies the minimum waiting time between two subsequent activate com-

4Note that it is possible to extend our mechanisms such that the memory controller specifies the subarray
to be refreshed instead of the DRAM chip. This requires changes to the DRAM interface.

81

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

mands within a DRAM device. The second is called the four activate window (tFAW) that

defines the length of a rolling window during which a maximum of four activates can be

in progress. Because a refresh operation requires activating rows to restore charge in DRAM

cells, SARP consumes additional power by allowing accesses during refresh. To limit the

power consumption due to activates, we further constrain the activity rate by increasing

both tFAW and tRRD, as shown below. This results in fewer activate commands issued

during refresh.

PowerOverheadFAW =
4 ∗ IACT + IREF

4 ∗ IACT
(5.1)

tFAW SARP = tFAW ∗ PowerOverheadFAW (5.2)

tRRD SARP = tRRD ∗ PowerOverheadFAW (5.3)

IACT and IREF represent the current values of an activate and a refresh, respectively,

based on the Micron Power Calculator [223]. We calculate the power overhead of parallelizing

a refresh over a four activate window using (5.1). Then we apply this power overhead to

both tFAW (5.2) and tRRD (5.3), which are enforced during refresh operations. Based on the

IDD values in the Micron 8Gb DRAM [225] data sheet, SARP increases tFAW and tRRD

by 2.1x during all-bank refresh operations. Each per-bank refresh consumes 8x lower current

than an all-bank refresh, thus increasing tFAW and tRRD by only 13.8%.

Die Area Overhead

In our evaluations, we use 8 subarrays per bank and 8 banks per DRAM chip. Based on

this configuration, we calculate the area overhead of SARP using parameters from a Rambus

DRAM model at 55nm technology [282], the best publicly available model that we know of,

and find it to be 0.71% in a 2Gb DDR3 DRAM chip with a die area of 73.5mm2. The power

overhead of the additional components is negligible compared to the entire DRAM chip.

82

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

5.3. Methodology

To evaluate our mechanisms, we use an in-house cycle-level x86 multi-core simulator

with a front end driven by Pin [208] and an in-house cycle-accurate DRAM timing model

validated against DRAMSim2 [286]. Unless stated otherwise, our system configuration is as

shown in Table 5.1.

Processor
8 cores, 4GHz, 3-wide issue, 8 MSHRs/core,
128-entry instruction window

Last-
level
Cache

64B cache-line, 16-way associative,
512KB private cache-slice per core

Memory
Con-
troller

64/64-entry read/write request queue, FR-FCFS [284],
writes are scheduled in batches [59, 179, 317] with
low watermark = 32, closed-row policy [59, 165, 284]

DRAM
DDR3-1333 [225], 2 channels, 2 ranks per channel,
8 banks/rank, 8 subarrays/bank, 64K rows/bank, 8KB rows

Refresh
Settings

tRFCab = 350/530/890ns for 8/16/32Gb DRAM chips,
tREFIab = 3.9µs, tRFCab-to-tRFCpb ratio = 2.3

Table 5.1. Evaluated system configuration.

In addition to 8Gb DRAM, we also evaluate systems using 16Gb and 32Gb near-future

DRAM chips [125]. Because commodity DDR DRAM does not have support for REFpb,

we estimate the tRFCpb values for DDR3 based on the ratio of tRFCab to tRFCpb in

LPDDR2 [224] as described in Section 5.1.1. We evaluate our systems with 32ms reten-

tion time, which is a typical setting for a server environment and LPDDR DRAM, as also

evaluated in previous work [246, 318].

We use benchmarks from SPEC CPU2006 [315], STREAM [218], TPC [338], and a

microbenchmark with random-access behavior similar to HPCC RandomAccess [111]. We

classify each benchmark as either memory intensive (MPKI ≥ 10) or memory non-intensive

(MPKI < 10). We then form five intensity categories based on the fraction of memory

intensive benchmarks within a workload: 0%, 25%, 50%, 75%, and 100%. Each category

contains 20 randomly mixed workloads, totaling to 100 workloads for our main evaluations.

For sensitivity studies in Sections 5.4.1, 5.4.2, 5.4.3, and 5.4.4, we run 16 randomly selected

83

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

memory-intensive workloads using 32Gb DRAM to observe the performance trend.

We measure system performance with the commonly-used weighted speedup (WS) [83,

310] metric. To report the DRAM system power, we use the methodology from the Micron

power calculator [223]. The DRAM device parameters are obtained from [225]. Every

workload runs for 256 million cycles to ensure the same number of refreshes. We report

DRAM system power as energy per memory access serviced to fairly compare across different

workloads.

5.4. Evaluation

In this section, we evaluate the performance of the following mechanisms: 1) the all-bank

refresh scheme (REFab), 2) the per-bank refresh scheme (REFpb), 3) elastic refresh [318],

4) our first mechanism, DARP, 5) our second mechanism, SARP, that is applied to either

REFab (SARPab) or REFpb (SARPpb), 6) the combination of DARP and SARPpb, called

DSARP, and 7) an ideal scheme that eliminates refresh. Elastic refresh [318] takes advantage

of the refresh scheduling flexibility in the DDR standard: it postpones a refresh if the refresh

is predicted to interfere with a demand request, based on a prediction of how long a rank

will be idle, i.e., without any demand request.

5.4.1. Multi-Core Results

Figure 5.8 plots the system performance improvement of REFpb, DARP, SARPpb, and

DSARP over the all-bank refresh baseline (REFab) using various densities across 100 work-

loads (sorted based on the performance improvement due to DARP). The x-axis shows the

sorted workload numbers as categorized into five memory-intensive groups with 0 to 19

starting in the least memory-intensive group and 80 to 99 in the most memory-intensive one.

Table 5.2 shows the maximum and geometric mean of system performance improvement due

to our mechanisms over REFpb and REFab for different DRAM densities. We draw five key

conclusions from these results.

84

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

 0.95

 1

 1.05

 1.1

 1.15

 1.2

25 18 6 17 16 58 26 24 59 53 50 39 36 69 72 66 65 63 88 85

N
o

r
m

a
li

z
e
d

 W
S

Sorted Workload Number (8Gb)

REFpb
DARP

SARPpb
DSARP

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

10 18 6 9 43 2 59 51 37 28 27 50 89 69 47 78 74 96 63 85

Sorted Workload Number (16Gb)

 0.95
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

 1.35
 1.4

29 45 40 44 35 39 38 68 24 53 41 57 50 73 69 84 86 78 63 80

Sorted Workload Number (32Gb)

Figure 5.8. Multi-core system performance improvement over REFab across 100 workloads.

First, DARP provides system performance gains over both REFpb and REFab schemes:

2.8%/4.9%/3.8% and 7.4%/9.8%/8.3% on average in 8/16/32Gb DRAMs, respectively. The

reason is that DARP hides refresh latency with writes and issues refresh commands in

out-of-order fashion to reduce refresh interference on reads. Second, SARPpb provides

significant system performance improvement over DARP and refresh baselines for all the

evaluated DRAM densities as SARPpb enables accesses to idle subarrays in the refresh-

ing banks. SARPpb’s average system performance improvement over REFpb and REFab is

3.3%/6.7%/13.7% and 7.9%/11.7%/18.6% in 8/16/32Gb DRAMs, respectively. Third, as

density increases, the performance benefit of SARPpb over DARP gets larger. This is be-

cause the longer refresh latency becomes more difficult to hide behind writes or idle banks

for DARP. This is also the reason why the performance improvement due to DARP drops

slightly at 32Gb compared to 16Gb. On the other hand, SARPpb is able to allow a long-

refreshing bank to serve some memory requests in its subarrays.

Fourth, combining both SARPpb and DARP (DSARP) provides additive system perfor-

mance improvement by allowing even more parallelization of refreshes and memory accesses.

As DRAM density (refresh latency) increases, the benefit becomes more apparent, resulting

in improvement up to 27.0% and 36.6% over REFpb and REFab in 32Gb DRAM, respectively.

Fifth, REFpb performs worse than REFab for some workloads (the curves of REFpb drop-

ping below one) and the problem is exacerbated with longer refresh latency. Because REFpb

commands cannot overlap with each other [133], their latencies are serialized. In con-

trast, REFab operates on every bank in parallel, which is triggered by a single command

that partially overlaps refreshes across different banks [234]. Therefore, in a pathological

85

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

case, the REFpb latency for refreshing every bank (eight in most DRAMs) in a rank is

8× tRFCpb = 8× tRFCab

2.3 ≈ 3.5× tRFCab, whereas all-bank refresh takes tRFCab (see Sec-

tion 5.1.1). If a workload cannot effectively utilize multiple banks during a per-bank refresh

operation, REFpb may potentially degrade system performance compared to REFab.

Density Mechanism
Max (%) Gmean (%)

REFpb REFab REFpb REFab

8Gb
DARP 6.5 17.1 2.8 7.4
SARPpb 7.4 17.3 3.3 7.9
DSARP 7.1 16.7 3.3 7.9

16Gb
DARP 11.0 23.1 4.9 9.8
SARPpb 11.0 23.3 6.7 11.7
DSARP 14.5 24.8 7.2 12.3

32Gb
DARP 10.7 20.5 3.8 8.3
SARPpb 21.5 28.0 13.7 18.6
DSARP 27.0 36.6 15.2 20.2

Table 5.2. Maximum and average WS improvement due to our mechanisms over REFpb

and REFab.

All Mechanisms’ Results

Figure 5.9 shows the average performance improvement due to all the evaluated re-

fresh mechanisms over REFab. The weighted speedup value for REFab is 5.5/5.3/4.8 using

8/16/32Gb DRAM density. We draw three major conclusions. First, using SARP on all-bank

refresh (SARPab) also significantly improves system performance. This is because SARP

allows a rank to continue serving memory requests while it is refreshing. Second, elastic

refresh does not substantially improve performance, with an average of 1.8% over all-bank

refresh. This is because elastic refresh does not attempt to pull in refresh opportunistically,

nor does it try to overlap refresh latency with other memory accesses. The observation is

consistent with prior work [246]. Third, DSARP captures most of the benefit of the ideal

baseline (”No REF”), performing within 0.9%, 1.2%, and 3.7% of the ideal for 8, 16, and

32Gb DRAM, respectively.

86

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

 0
 5

 10
 15
 20
 25
 30

8Gb 16Gb 32Gb

W
S

 I
m

p
ro

v
em

en
t

(%
)

DRAM Density

REFpb
Elastic
DARP

SARPab

SARPpb
DSARP
No REF

Figure 5.9. Average system performance improvement over REFab.

Performance Breakdown of DARP

To understand the observed performance gain in more detail, we evaluate the perfor-

mance of DARP’s two components separately. Out-of-order per-bank refresh improves per-

formance by 3.2%/3.9%/3.0% on average and up to 16.8%/21.3%/20.2% compared to REFab

in 8/16/32Gb DRAMs. Adding write-refresh parallelization to out-of-order per-bank refresh

(DARP) provides additional performance gains of 4.3%/5.8%/5.2% on average by hiding

refresh latency with write accesses.

Energy

Our techniques reduce energy per memory access compared to existing policies, as shown

in Figure 5.10. The main reason is that the performance improvement reduces average static

energy for each memory access. Note that these results conservatively assume the same

power parameters for 8, 16, and 32 Gb chips, so the savings in energy would likely be more

significant if realistic power parameters are used for the more power-hungry 16 and 32 Gb

nodes.

Effect of Memory Intensity

Figure 5.11 shows the performance improvement of DSARP compared to REFab and

REFpb on workloads categorized by memory intensity (% of memory-intensive benchmarks

in a workload), respectively. We observe that DSARP outperforms REFab and REFpb con-

sistently. Although the performance improvement of DSARP over REFab increases with

87

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

 0

 10

 20

 30

 40

 50

8Gb 16Gb 32Gb
E

n
er

g
y
 P

er
 A

cc
es

s
(n

J
)

DRAM Density

3.0% 5.2%
9.0% REFab

REFpb
Elastic
DARP

SARPab
SARPpb
DSARP
No REF

Figure 5.10. Energy consumption. Value on top indicates percentage reduction of DSARP
compared to REFab.

higher memory intensity, the gain over REFpb begins to plateau when the memory intensity

grows beyond 25%. This is because REFpb’s benefit over REFab also increases with memory

intensity as REFpb enables more accesses to be be parallelized with refreshes. Nonetheless,

our mechanism provides the highest system performance compared to prior refresh policies.

 0

 10

 20

 30

0 25 50 75 100Avg

W
S

 I
n

cr
ea

se
 (

%
)

Compared to REFab

 0

 10

 20

 30

0 25 50 75 100Avg
Compared to REFpb

8Gb
16Gb
32Gb

Figure 5.11. WS improvement of DSARP over REFab and REFpb as memory intensity and
DRAM density vary.

Effect of Core Count

Table 5.3 shows the weighted speedup, harmonic speedup, fairness, and energy-per-access

improvement due to DSARP compared to REFab for systems with 2, 4, and 8 cores. For

all three systems, DSARP consistently outperforms the baseline without unfairly penalizing

any specific application. We conclude that DSARP is an effective mechanism to improve

performance, fairness and energy of multi-core systems employing high-density DRAM.

88

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

Number of Cores 2 4 8

Weighted Speedup Improvement (%) 16.0 20.0 27.2
Harmonic Speedup Improvement [209] (%) 16.1 20.7 27.9
Maximum Slowdown Reduction [67, 164, 165] (%) 14.9 19.4 24.1
Energy-Per-Access Reduction (%) 10.2 8.1 8.5

Table 5.3. Effect of DSARP on multi-core system metrics.

5.4.2. Effect of tFAW

Table 5.4 shows the performance improvement of SARPpb over REFpb when we vary

tFAW in DRAM cycles (20 cycles for the baseline as specified by the data sheet) and

when tRRD scales proportionally with tFAW.5 As tFAW reduces, the performance ben-

efit of SARPpb increases over REFpb. This is because reduced tFAW enables more ac-

cesses/refreshes to happen in parallel, which our mechanism takes advantage of.

tFAW/tRRD (DRAM cycles) 5/1 10/2 15/3 20/4 25/5 30/6

WS Improvement (%) 14.0 13.9 13.5 12.4 11.9 10.3

Table 5.4. Performance improvement due to SARPpb over REFpb with various tFAW and

tRRD values.

5.4.3. Effect of Subarrays-Per-Bank

Table 5.5 shows that the average performance gain of SARPpb over REFpb increases as

the number of subarrays increases in 32Gb DRAM. This is because with more subarrays,

the probability of memory requests to a refreshing subarray reduces.

Subarrays-per-bank 1 2 4 8 16 32 64

WS Improvement (%) 0 3.8 8.5 12.4 14.9 16.2 16.9

Table 5.5. Effect of number of subarrays per bank.

5We evaluate only SARPpb because it is sensitive to tFAW and tRRD as it extends these parameters

during parallelization of refreshes and accesses to compensate for the power overhead.

89

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

5.4.4. Effect of Refresh Interval

For our studies so far, we use 32ms retention time (i.e., tREFIab = 3.9µs) that represents

a typical setting for a server environment and LPDDR DRAM [133]. Table 5.6 shows the

performance improvement of DSARP over two baseline refresh schemes using retention time

of 64ms (i.e., tREFIpb = 7.8µs). DSARP consistently provides performance gains over both

refresh schemes. The maximum performance improvement over REFpb is higher than that

over REFab at 32Gb because REFpb actually degrades performance compared to REFab for

some workloads, as discussed in the 32ms results (Section 5.4.1).

Density Max (%) Gmean (%)
REFpb REFab REFpb REFab

8Gb 2.5 5.8 1.0 3.3
16Gb 4.6 8.6 2.6 5.3
32Gb 18.2 13.6 8.0 9.1

Table 5.6. Maximum and average WS improvement due to DSARP.

5.4.5. DDR4 Fine Granularity Refresh

DDR4 DRAM supports a new refresh mode called fine granularity refresh (FGR) in an

attempt to mitigate the increasing refresh latency (tRFCab) [132]. FGR trades off shorter

tRFCab with faster refresh rate (1⁄tREFIab) that increases by either 2x or 4x. Figure 5.12

shows the effect of FGR in comparison to REFab, adaptive refresh policy (AR) [234], and

DSARP. 2x and 4x FGR actually reduce average system performance by 3.9%/4.0%/4.3%

and 8.1%/13.7%/15.1% compared to REFab with 8/16/32Gb densities, respectively. As the

refresh rate increases by 2x/4x (higher refresh penalty), tRFCab does not scale down with the

same constant factors. Instead, tRFCab reduces by 1.35x/1.63x with 2x/4x higher rate [132],

thus increasing the worst-case refresh latency by 1.48x/2.45x. This performance degrada-

tion due to FGR has also been observed in Mukundan et al. [234]. AR [234] dynamically

switches between 1x (i.e., REFab) and 4x refresh modes to mitigate the downsides of FGR.

AR performs slightly worse than REFab (within 1%) for all densities. Because using 4x FGR

90

CHAPTER 5. MITIGATING REFRESH LATENCY BY PARALLELIZING ACCESSES
WITH REFRESHES

greatly degrades performance, AR can only mitigate the large loss from the 4x mode and

cannot improve performance over REFab. On the other hand, DSARP is a more effective

mechanism to tolerate the long refresh latency than both FGR and AR as it overlaps refresh

latency with access latency without increasing the refresh rate.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

8Gb 16Gb 32Gb

N
o
rm

a
li

ze
d

 W
S

DRAM Density

REFab

FGR 2x

FGR 4x

AR

DSARP

Figure 5.12. Performance comparisons to FGR and AR [234].

5.5. Summary

We introduced two new complementary techniques, DARP (Dynamic Access Refresh

Parallelization) and SARP (Subarray Access Refresh Parallelization), to mitigate the DRAM

refresh penalty by enhancing refresh-access parallelization at the bank and subarray levels,

respectively. DARP 1) issues per-bank refreshes to idle banks in an out-of-order manner

instead of issuing refreshes in a strict round-robin order, 2) proactively schedules per-bank

refreshes during intervals when a batch of writes are draining to DRAM. SARP enables a

bank to serve requests from idle subarrays in parallel with other subarrays that are being

refreshed. Our extensive evaluations on a wide variety of systems and workloads show

that these mechanisms significantly improve system performance and outperform state-of-

the-art refresh policies, approaching the performance of ideally eliminating all refreshes. We

conclude that DARP and SARP are effective in hiding the refresh latency penalty in modern

and near-future DRAM systems, and that their benefits increase as DRAM density increases.

91

Chapter 6

FLY-DRAM: Understanding and

Exploiting Latency Variation in

DRAM

DRAM standards define a fixed value for each of the timing parameters, which determine

the latency of DRAM operations. Unfortunately, these latencies do not reflect the actual time

the DRAM operations take for each cell. This is because the true access latency varies for

each cell, as every cell is different in size and strength due to manufacturing process variation

effects. For simplicity, and to ensure that DRAM yield remains high, DRAM manufacturers

define a single set of latencies that guarantees reliable operation, based on the slowest cell

in any DRAM chip across all DRAM vendors. As a result, there is a significant opportunity

to reduce DRAM latency if, instead of always using worst-case latencies, we employ the true

latency for each cell that enables the three operations reliably.

Our goal in this chapter is to (i) understand the impact of cell variation in the three fun-

damental DRAM operations for cell access (activation, precharge, and restoration); (ii) ex-

perimentally characterize the latency variation in these operations; and (iii) develop new

mechanisms that take advantage of this variation to reduce the latency of these three oper-

92

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

ations.

6.1. Motivation

The latencies of the three DRAM operations (activation, precharge, and restoration),

as defined by vendor specifications, have not improved significantly in the past decade, as

depicted in Figure 6.1. This is especially true when we compare latency improvements to the

capacity (64×= 8Gb
128Mb) and bandwidth improvements (16×≈ 2133MT/s

133MT/s) [130, 132, 185, 186,

311] commodity DRAM chips experienced in the past decade. In fact, the activation and

precharge latencies increased from 2013 to 2015, when DDR DRAM transitioned from the

third generation (12.5ns for DDR3-1600J [130]) to the fourth generation (14.06ns for DDR4-

2133P [132]). As the latencies specified by vendors have not reduced over time, the system

performance bottleneck caused by raw main memory latency remains largely unaddressed in

modern systems.

+21% -29%

-17% +8%

Figure 6.1. DRAM latency trends over time [129, 130, 132, 226].

In this chapter, we observe that the three fundamental DRAM operations can actually

complete with a much lower latency for many DRAM cells than the specification, because

there is inherent latency variation present across the DRAM cells within a DRAM chip.

This is a result of manufacturing process variation, which causes the sizes and strengths

of cells to be different, thus making some cells faster and other cells slower to be accessed

reliably [101, 160, 193]. The speed gap between the fastest and slowest DRAM cells is

93

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

getting worse [50, 259], as the technology node continues to scale down to sub-20nm feature

sizes. Unfortunately, instead of optimizing the latency specifications for the common case,

DRAM vendors use a single set of standard access latencies, which provide reliable operation

guarantees for the worst case (i.e., slowest cells), to maximize manufacturing yield.

We find that the (widening) speed gap among DRAM cells presents an opportunity to

reduce DRAM access latency. If we can understand and characterize the inherent variation

in cell latencies, we can use the resulting understanding to reduce the access latency for those

rows that contain faster cells. The goal of this chapter is to (i) experimentally characterize

and understand the impact of latency variation in the three fundamental DRAM operations

for cell access (activation, precharge, and restoration), and (ii) develop new mechanisms that

take advantage of this variation to improve system performance.

To this end, we build an FPGA-based DRAM testing infrastructure and characterize 240

DRAM chips from three major vendors. We analyze the variations in the latency of the

three fundamental DRAM operations by operating DRAM at multiple reduced latencies.

6.2. Experimental Methodology

To study the effect of using different timing parameters on modern DDR3 DRAM chips,

we developed a DRAM testing platform that allows us to precisely control the value of

timing parameters and the tested DRAM location (i.e., banks, rows, and columns) within a

module. The testing platform, shown in Figure 6.2, consists of Xilinx FPGA boards [352]

and host PCs. We use the RIFFA [128] framework to communicate data over the PCIe bus

from our customized testing software running on the host PC to our customized test engine

on the FPGA. Each DRAM module is tested on an FPGA board, and is located inside a

heat chamber that is connected to a temperature controller. Unless otherwise specified, we

test modules at an ambient temperature of 20±1℃. We examine various temperatures in

Section 6.3.5.

94

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

Figure 6.2. FPGA-based DRAM testing infrastructure.

6.2.1. DRAM Test

To achieve the goal of controlling timing parameters, our FPGA test engine supports a

list of DRAM commands that get processed directly by the memory controller on the FPGA.

Then, on the host PC, we can write a test that specifies a sequence of DRAM commands

along with the delay between the commands (i.e., timing parameters). The test sends the

commands and delays from the host PC to the FPGA test engine.

Test 2 shows the pseudocode of a test that reads a cache line from a particular bank,

row, and column with timing parameters that can be specified by the user. The test first

sends an activate to the target row (line 2). After a tRCD delay that we specify (line

3), it sends a read (line 4) to the target cache line. Our test engine enables us to specify

the exact delay between two DRAM commands, thus allowing us to tune certain timing

parameters. The read delay (tCL) and data transfer latency (tBL) are two DRAM internal

timings that cannot be changed using our infrastructure. After our test waits for the data

to be fully transferred (line 5), we precharge the bank (line 6) with our specified tRP (line

7). We describe the details of the tests that we created to characterize latency variation of

95

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

tRCD, tRP, and tRAS in the next few sections.

Test 2 Read a cache line with specified timing parameters.
1 ReadOneCacheLine(my tRCD ,my tRP , bank , row , col)
2 ACT(bank , row)

3 cmdDelay(my tRCD) . Set activation latency (tRCD)
4 READ(bank , row , col)
5 cmdDelay(tCL +tBL) . Wait for read to finish
6 PRE(bank)
7 cmdDelay(my tRP) . Set precharge latency (tRP)
8 readData() . Send the read data from FPGA to PC

6.2.2. Characterized DRAM Modules

We characterize latency variation on a total of 30 DDR3 DRAM modules, comprising 240

DRAM chips, from the three major DRAM vendors that hold more than 90% of the market

share [28]. Table 7.1 lists the relevant information about the tested DRAM modules. All

of these modules are dual in-line (i.e., 64-bit data bus) with a single rank of DRAM chips.

Therefore, we use the terms DIMM (dual in-line memory module) and module interchange-

ably. In the rest of the chapter, we refer to a specific DIMM using the label Dnv , where n and

v stand for the DIMM number and vendor, respectively. In the table, we group the DIMMs

based on their model number, which provides certain information on the process technology

and array design used in the chips.

6.3. Activation Latency Analysis

In this section, we present our methodology and results on varying the activation latency,

which is expressed by the tRCD timing parameter. We first describe the nature of errors

caused by tRCD reduction in Section 6.3.1. Then, we describe the FPGA test we conducted

on the DRAM modules to characterize tRCD variation in Section 6.3.2. The remaining

sections describe different major observations we make based on our results.

96

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

Vendor
DIMM

Model
Timing (ns) Assembly

Name (tRCD/tRP/tRAS) Year

A

Total of
8 DIMMs

D0−1
A M0 13.125/13.125/35 2013

D2−3
A M1 13.125/13.125/36 2012

D4−5
A M2 13.125/13.125/35 2013

D6−7
A M3 13.125/13.125/35 2013

B
Total of
9 DIMMs

D0−5
B M0 13.125/13.125/35 2011-12

D6−8
B M1 13.125/13.125/35 2012

C
Total of

13 DIMMs

D0−5
C M0 13.125/13.125/34 2012

D6−12
C M1 13.125/13.125/36 2011

Table 6.1. Properties of tested DIMMs.

6.3.1. Behavior of Activation Errors

As we discuss in Section 2.3, tRCD is defined as the minimum amount of time between

the activate and the first column command (read/write). Essentially, tRCD represents

the time it takes for a row of sense amplifiers (i.e., the row buffer) to sense and latch a row

of data. By employing a lower tRCD value, a column read command may potentially read

data from sense amplifiers that are still in the sensing and amplification phase, during which

the data has not been fully latched into the sense amplifiers. As a result, reading data with

a lowered tRCD can induce timing errors (i.e., flipped bits) in the data.

To further understand the nature of activation errors, we perform experiments to answer

two fundamental questions: (i) Does lowering tRCD incur errors on all cache lines read from

a sequence of read commands on an opened row? (ii) Do the errors propagate back to the

DRAM cells, causing permanent errors for all future accesses?

97

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

Errors Localized to First Column Command

To answer the first question, we conduct Test 3 that first activates a row with a specific

tRCD value, and then reads every cache line in the entire row. By conducting the test on

every row in a number of DIMMs from all three vendors, we make the following observation.

Test 3 Read one row with a specified tRCD value.
1 ReadOneRow(my tRCD , bank , row)
2 ACT(bank , row)

3 cmdDelay(my tRCD) . Set activation latency
4 for c ← 1 to ColMAX

5 READ(bank , row , c) . Read one cache line
6 findErrors() . Count errors in a cache line

7 cmdDelay(tCL + tBL)
8 PRE(bank)
9 cmdDelay(tRP)

Observation 1: Activation errors are isolated to the cache line from the first read

command, and do not appear in subsequently-read cache lines from the same row.

There are two reasons why errors do not occur in the subsequent cache line reads. First, a

read accesses only its corresponding sense amplifiers, without accessing the other columns.

Hence, a read’s effect is isolated to its target cache line. Second, by the time the second

read is issued, a sufficient amount of time has passed for the sense amplifiers to properly

latch the data. Note that this observation is independent of DIMMs and vendors as the

fundamental DRAM structure is similar across different DIMMs. We discuss the number of

activation errors due to different tRCD values for each DIMM in Section 6.3.3.

Activation Errors Propagate into DRAM Cells

To answer our second question, we run two iterations of Test 3 (i.e., reading a row that is

activated with a specified tRCD value) on the same row. The first iteration reads a row that

is activated with a lower tRCD value, then closes the row. The second iteration re-opens the

row using the standard tRCD value, and reads the data to confirm if the errors remain in

the cells. Our experiments show that if the first iteration observes activation errors within a

98

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

cache line, the second iteration observes the same errors. This demonstrates that activation

errors not only happen at the sense amplifiers but also propagate back into the cells.

We hypothesize this is because reading a cache line early causes the sense amplifiers to

latch the data based on the current bitline voltage. If the bitline voltage has not yet fully

developed into VDD or 0V, the sense amplifier latches in unknown data and amplifies this

data to the bitline, which is then restored back into the cell during restoration phase.

Observation 2: Activation errors occur at the sense amplifiers and propagate back into

the cells. The errors persist until the data is overwritten.

After observing that reducing activation latency results in timing errors, we now consider

two new questions. First, after how much activation latency reduction do DIMMs start

observing timing errors? Second, how many cells experience activation errors at each latency

reduction step?

6.3.2. FPGA Test for Activation Latency

To characterize activation errors across every cell in DIMMs, we need to perform an

activate and a read on one cache line at a time since activation errors only occur in one

cache line per activation. To achieve this, we use Test 4, whose pseudocode is below, for

every cache line within a row.

Test 4 Read each cache line with a specified tRCD value.
1 tRCDColOrderTest(my tRCD , data)
2 for b ← 1 to BankMAX

3 for c ← 1 to ColMAX . Column first
4 for r ← 1 to RowMAX

5 WriteOneCacheLine(b, r , c, data)
6 ReadOneCacheLine(tRCD, tRP, b, r , c)
7 assert findErrors() == 0 . Verify data
8 ReadOneCacheLine(my tRCD, tRP, b, r , c)
9 findErrors() . Count errors in a cache line

The test iterates through each cache line (lines 2-4) and performs the following steps to

test the cache line’s reliability under a reduced tRCD value. First, it opens the row that

contains the target cache line, writes a specified data pattern into the cache line, and then

99

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

precharges the bank (line 5). Second, the test re-opens the row to read the cache line with

the standard tRCD (line 6), and verifies if the value was written properly (line 7). Then it

precharges the bank again to prepare for the next activate. Third, it re-activates the row

using the reduced tRCD value (my tRCD in Test 4) to read the target cache line (line 8).

It records the number of timing errors (i.e., bit flips) out of the 64-byte (512-bit) cache line

(line 9).

In total, we have conducted more than 7500 rounds of tests on the DIMMs shown in

Table 7.1, accounting for at least 2500 testing hours. For each round of tests, we conducted

Test 4 with a different tRCD value and data pattern. We tested five different tRCD values:

12.5ns, 10ns, 7.5ns, 5ns, and 2.5ns. Due to the slow clock frequency of the FPGA, we can

only adjust timings at a 2.5ns granularity. We used a set of four different data patterns:

0x00, 0xaa, 0xcc, and 0xff. Each data pattern represents the value that was written into

each byte of the entire cache line.

In this dissertation, we do not examine the latency behavior of each cell over a controlled

period of time, except for the fact that we perform the tests for multiple rounds per DIMM.

The latency of a cell could potentially change over time, within a short period of time (e.g.,

similar effect as Variable Retention Time) or long period of time (e.g., aging and wearout).

However, we leave comprehensive characterization of latency behavior due to time variation

as part of future work.

6.3.3. Activation Error Distribution

In this section, we first present the distribution of activation errors collected from all of

the tests conducted on every DIMM. Then, we categorize the results by DIMM model to

investigate variation across models from different vendors.

100

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

Total Bit Error Rates

Figure 6.3 shows the box plots of the bit error rate (BER) observed on every DIMM

as tRCD varies. The BER is defined as the fraction of activation error bits in the total

population of tested bits. For each box, the bottom, middle, and top lines indicate the 25th,

50th, and 75th percentile of the population. The ends of the whiskers indicate the minimum

and maximum BER of all DIMMs for a given tRCD value. Note that the y-axis is in log scale

to show low BER values. As a result, the bottom whisker at tRCD=7.5ns cannot be seen

due to a minimum value of 0. In addition, we show all observation points for each specific

tRCD value by overlaying them on top of their corresponding box. Each point shows a BER

collected from one round of Test 4 on one DIMM with a specific data pattern and a tRCD

value. Based on these results, we make several observations.

2.55.07.510.012.5

tRCD (ns)

10-1010-910-810-710-610-510-410-310-210-1100

B
it

E
rr

or
 R

at
e

(B
E

R
)

Figure 6.3. Bit error rate of all DIMMs with reduced tRCD.

First, we observe that BER exponentially increases as tRCD decreases. With a lower

tRCD, fewer sense amplifiers are expected to have enough strength to properly sense the

bitline’s voltage value and latch the correct data. Second, at tRCD values of 12.5ns and

10ns, we observe no activation errors on any DIMM. This shows that the tRCD latency of

the slowest cells in our tested DIMMs likely falls between 7.5 and 10ns, which are lower than

the standard value (13.125ns). The manufacturers use the extra latency as a guardband to

provide additional protection against process variation.

101

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

Third, the BER variation among DIMMs becomes smaller as tRCD value decreases. The

reliability of DIMMs operating at tRCD=7.5ns varies significantly depending on the DRAM

models and vendors, as we demonstrate in the Section 6.3.3. In fact, some DIMMs have no

errors at tRCD=7.5ns, which cannot be seen in the plot due to the log scale. When tRCD

reaches 2.5ns, most DIMMs become rife with errors, with a median BER of 0.48, similar to

the probability of a coin toss.

Bit Error Rates by DIMM Model

Since the performance of a DIMM can vary across different models, vendors, and fab-

rication processes, we provide a detailed analysis by breaking down the BER results by

DIMM model (listed in Table 7.1). Figure 6.4 presents the distribution of every DIMM’s

BER grouped by each vendor and model combination. Each box shows the quartiles and

median, along with the whiskers indicating the minimum and maximum BERs. Since all

of the DIMMs work reliably at 10ns and above, we show the BERs for tRCD=7.5ns and

tRCD=5ns.

A-M0
A-M1

A-M2
A-M3

B-M0
B-M1

C-M0
C-M1

DIMM Models

10-10
10-8
10-6
10-4
10-2
100

B
E

R

tRCD = 7.5ns

A-M0
A-M1

A-M2
A-M3

B-M0
B-M1

C-M0
C-M1

DIMM Models

tRCD = 5ns

Figure 6.4. BERs of DIMMs grouped by model, when tested with different tRCD values.

By comparing the BERs across models and vendors, we observe that BER variation

exists not only across DIMMs from different vendors, but also on DIMMs manufactured

from the same vendor. For example, for DIMMs manufactured by vendor C, Model 0 DIMMs

have fewer errors than Model 1 DIMMs. This result suggests that different DRAM models

102

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

have different circuit architectures or process technologies, causing latency variation between

them.

Similar to the observation we made across different DIMM models, we observe variation

across DIMMs that have the same model. Due to space constraints, we omit figures to

demonstrate this variation, but all of our results are available online [62]. The variation across

DIMMs with the same model can be attributed to process variation due to the imperfect

manufacturing process [50, 193, 252, 259].

6.3.4. Impact of Data Pattern

In this section, we investigate the impact of reading different data patterns under different

tRCD values. Figure 6.5 shows the average BER of test rounds for three representative

DIMMs, one from each vendor, with four data patterns. We do not show the BERs at

tRCD=2.5ns, as rows cannot be reliably activated at that latency. We observe that pattern

0x00 is susceptible to more errors than pattern 0xff, while the BERs for patterns 0xaa and

0xcc lie in between.1 This can be clearly seen on D0
C , where we observe that 0xff incurs 4

orders of magnitude fewer errors than 0x00 on average at tRCD=7.5ns. We make a similar

observation for the rest of the 12 DIMMs from vendor C.

With patterns 0xaa and 0xcc, we observe that bit 0 is more likely to be misread than bit

1. In particular, we examined the flipped bits on three DIMMs that share the same model

as D0
C , and observed that all of the flipped bits are due to bit 0 flipping to 1. From this

observation, we can infer that there is a bias towards bit 1, which can be more reliably read

under a shorter activation latency than bit 0.

We believe this bias is due to the sense amplifier design. One major DRAM vendor

presents a circuit design for a contemporary sense amplifier, and observes that it senses the

VDD value on the bitline faster than 0V [196]. Hence, the sense amplifier is able to sense and

latch bit 1 faster than 0. Due to this pattern dependence, we believe that it is promising to

1In a cache line, we write the 8-bit pattern to every byte.

103

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

7.5 5

tRCD (ns)

10-3

10-2

10-1

100

B
E

R

D0
A

7.5 5

tRCD (ns)

10-3

10-2

10-1

100
D0
B

7.5 5

tRCD (ns)

10-12
10-10
10-8
10-6
10-4
10-2
100

D0
C

Model
0xcc
0x00
0xaa
0xff

Figure 6.5. BERs due to four different data patterns on three different DIMMs as tRCD

varies.

investigate asymmetric data encoding or error correction mechanisms that favor 1s over 0s.

Observation 3: Errors caused by reduced activation latency are dependent on the stored

data pattern. Reading bit 1 is significantly more reliable than bit 0 at reduced activation

latencies.

6.3.5. Effect of Temperature

Temperature is an important external factor that may affect the reliability of DIMMs [82,

154, 203, 292]. In particular, Schroeder et al. [292] and El-Sayed et al. [82] do not observe

clear evidence for increasing DRAM error rates with increased temperature in data centers.

Other works find that data retention time strongly depends on temperature [154, 203, 278].

However, none of these works have studied the effect of temperature on DIMMs when they

are operating with a lower activation latency.

To investigate the impact of temperature on DIMMs operating with an activation latency

lower than the standard value, we perform experiments that adjust the ambient temperature

using a closed-loop temperature controller (shown in Figure 6.2). Figure 6.6 shows the

average BER of three example DIMMs under three temperatures: 20℃, 50℃, and 70℃ for

tRCD=7.5/5ns. We include error bars, which are computed using 95% confidence intervals.

We make two observations. First, at tRCD=7.5ns (Figure 6.6a), every DIMM shows a

different BER trend as temperature increases. By calculating the p-value between the BERs

104

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

20 50 70
0e+00
2e-02
4e-02
6e-02

B
E

R

D0
A

20 50 70

Temperature (°C)

0e+00
2e-02
4e-02
6e-02
8e-02

D0
B

20 50 70
0e+00
2e-06
4e-06
6e-06
8e-06

D0
C

(a) tRCD=7.5ns

20 50 70
0.00
0.03
0.06
0.09

B
E

R

D0
A

20 50 70

Temperature (°C)

0.00
0.05
0.10
0.15
0.20

D0
B

20 50 70
0.00
0.06
0.12
0.18

D0
C

(b) tRCD=5ns

Figure 6.6. BERs of three example DIMMs operating under different temperatures.

of different temperatures, we find that the change in BERs is not statistically significant from

one temperature to another for two out of the three tested DIMMs, meaning that we cannot

conclude that BER increases at higher temperatures. For instance, the p-values between the

BERs at 20℃ and 50℃ for D0
A, D0

B, and D0
C are 0.084, 0.087, and 0.006, respectively. Two

of the three DIMMs have p-values greater than an α of 0.05, meaning that the BER change

is statistically insignificant. Second, at lower tRCD values (5ns), the difference between the

BERs due to temperature becomes even smaller.

Observation 4: Our study does not show enough evidence to conclude that activation

errors increase with higher temperatures.

6.3.6. Spatial Locality of Activation Errors

To understand the locations of activation errors within a DIMM, we show the probability

of experiencing at least one bit error in each cache line over a large number of experimental

runs. Due to limited space, we present the results of two representative DIMMs from our

experiments.

Figure 6.7 shows the locations of activation errors in the first bank of two DIMMs using

tRCD=7.5ns. Additional results showing the error locations in every bank for some DIMMs

105

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

are available online [62]. The x-axis and y-axis indicate the cache line number and row

number (in thousands), respectively. In our tested DIMMs, a row size is 8KB, comprising

128 cache lines (64 bytes). Results are gathered from 40 and 52 iterations of tests for D0
C

and D3
A, respectively.

0 20 40 60 80 100 120

Cache Line

0

2

4

6

8

10

12

14

16

R
o
w

 (
0

0
0

s)

0.00
0.03
0.06
0.09
0.12
0.15
0.18
0.21
0.24
0.27

P
r(

ca
ch

e
 l
in

e
 w

it
h
 ¸

 1
-b

it
 e

rr
o
r)

(a) Bank 0 of D0
C

0 20 40 60 80 100 120

Cache Line

0

2

4

6

8

10

12

14

16

R
o
w

 (
0

0
0

s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
r(

ca
ch

e
 l
in

e
 w

it
h
 ¸

 1
-b

it
 e

rr
o
r)

(b) Bank 0 of D3
A

Figure 6.7. Probability of observing activation errors.

The main observation on D0
C (Figure 6.7a) is that errors tend to cluster at certain columns

of cache lines. For the majority of the remaining cache lines in the bank, we observe no errors

throughout the experiments. We observe similar characteristics in other DIMMs from the

same model. In addition, we observe clusters of errors at certain regions. For example, D3
A

(Figure 6.7b) shows that the activation errors repeatedly occur within the first half of the

majority of rows.

We hypothesize that the cause of such spatial locality of errors is due to the locality of

variation in the fabrication process during manufacturing: certain cache line locations can

end up with less robust components, such as weaker sense amplifiers, weaker cells, or higher

resistance bitlines.

Observation 5: Activation errors do not occur uniformly within DRAM. They instead

exhibit strong spatial concentration at certain regions.

106

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

0 1 2 3 4 5 6 7

Data Beats

0
20
40
60
80

100

N
-B

it
 E

rr
o
r

O
cc

u
rr

e
n
ce

 (
%

) tRCD=7.5ns

4-64
3
2
1
0

(a) A-M1

0 1 2 3 4 5 6 7

Data Beats

0
20
40
60
80

100
N

-B
it

 E
rr

o
r

O
cc

u
rr

e
n
ce

 (
%

) tRCD=7.5ns

4-64
3
2
1
0

(b) B-M1

0 1 2 3 4 5 6 7

Data Beats

0
20
40
60
80

100

N
-B

it
 E

rr
o
r

O
cc

u
rr

e
n
ce

 (
%

) tRCD=7.5ns

4-64
3
2
1
0

(c) C-M0

Figure 6.8. Breakdown of the number of error bits observed in each data beat of erroneous
cache lines at tRCD=7.5ns.

6.3.7. Density of Activation Errors

In this section, we investigate how errors are distributed within the erroneous cache lines.

We present the distribution of error bits at the granularity of data beats , as conventional

error-correcting codes (ECC) work at the same granularity. We discuss the effectiveness of

employing ECC in Section 6.3.8. Recall from Section 2.3 that a cache line transfer consists

of eight 64-bit data beats.

Figure 6.8 shows the distribution of error bits observed in each data beat of all erroneous

cache lines when using tRCD=7.5ns. We show experiments from 9 DIMMs, categorized into

107

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

three DIMM models (one per vendor). We select the model that observes the lowest average

BER from each vendor, and show the frequency of observing 1, 2, 3, and ≥4 error bits in

each data beat. The results are aggregated from all DIMMs of the selected models. We

make two observations.

First, most data beats experience only fewer than 3 error bits at tRCD=7.5ns. We observe

that more than 84%, 53%, and 91% of all the recorded activation errors are just 1-bit errors

for DIMMs in A-M1, B-M1, and C-M0, respectively. Across all of the cache lines that contain

at least one error bit, 82%, 41%, and 85% of the data beats that make up each cache line

have no errors for A-M1, B-M1, and C-M0, respectively. Second, when tRCD is reduced to

5ns, the number of errors increases. The distribution of activation errors in data beats when

using tRCD=5ns is available online [62], and it shows that 68% and 49% of data beats in

A-M1 and C-M0 still have no more than one error bit.

Observation 6: For cache lines that experience activation errors, the majority of their

constituent data beats contain either no errors or just a 1-bit error.

6.3.8. Effect of Error Correction Codes

As shown in the previous section, a majority of data beats in erroneous cache lines

contain only a few error bits. In contemporary DRAM, ECC is used to detect and correct

errors at the granularity of data beats. Therefore, this creates an opportunity for applying

error correction codes (ECC) to correct activation errors. To study of the effect of ECC, we

perform an analysis that uses various strengths of ECC to correct activation errors.

Figure 6.9 shows the percentage of cache lines that do not observe any activation errors

when using tRCD=7.5ns at various ECC strengths, ranging from single to triple error bit

correction. These results are gathered from the same 9 DIMMs used in Section 6.3.7. The

first bar of each group is the percentage of cache lines that do not exhibit any activation

errors in our experiments. The following data bars show the fraction of error-free cache lines

after applying single, double, and triple error correction codes.

108

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

A-M1 B-M1 C-M0

DIMM Models

0
20
40
60
80

100

E
rr

or
-F

re
e

C
ac

he
 L

in
es

 (
%

)

99.9%

0EC
1EC
2EC
3EC

Figure 6.9. Percentage of error-free cache lines with various strengths of error correction
(EC), with tRCD=7.5ns.

We make two observations. First, without any ECC support, a large fraction of cache

lines can be read reliably without any errors in many of the DIMMs we study. Overall,

92% and 99% of cache lines can be read without any activation errors from A-M1 and C-M0

DIMMs, respectively. On the other hand, B-M1 DIMMs are more susceptible to reduced

activation latency: only 12% of their cache lines can be read without any activation errors.

Observation 7: A majority of cache lines can be read without any activation errors in

most of our tested DIMMs. However, some DIMMs are very susceptible to activation errors,

resulting in a small fraction of error-free cache lines.

Second, ECC is very effective in correcting the activation errors. For example, with a

single error correction code (1EC), which is widely deployed in many server systems, the

fraction of reliable cache lines improves from 92% to 99% for A-M1 DIMMs. Even for B-M1

DIMMs, which exhibit activation errors in a large fraction of cache lines, the triple error

correcting code is able to improve the percentage of error-free cache lines from 12% to 62%.

Observation 8: ECC is an effective mechanism to correct activation errors, even in

modules with a large fraction of erroneous cache lines.

6.4. Precharge Latency Analysis

In this section, we present the methodology and results on varying the precharge latency,

represented by the tRP timing parameter. We first describe the nature of timing errors

109

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

caused by reducing the precharge latency in Section 6.4.1. Then, we describe the FPGA test

we conducted to characterize tRP variation in Section 6.4.2. In the remaining sections, we

describe four major observations from our result analysis.

6.4.1. Behavior of Precharge Errors

In order to access a new DRAM row, a memory controller issues a precharge command,

which performs the following two functions in sequence: (i) it closes the currently-activated

row in the array (i.e., it disables the activated row’s wordline); and (ii) it reinitializes the

voltage value of every bitline inside the array back to VDD/2, to prepare for a new activation.

Reducing the precharge latency by a small amount affects only the reinitialization process

of the bitlines without interrupting the process of closing the row. The latency of this process

is determined by the precharge unit that is placed by each bitline, next to the sense amplifier.

By using a tRP value lower than the standard specification, the precharge unit may not have

sufficient time to reset the bitline voltage from either VDD (bit 1) or 0V (bit 0) to VDD/2,

thereby causing the bitline to float at some other intermediate voltage value. As a result,

in the subsequent activation, the sense amplifier can incorrectly sense the wrong value from

the DRAM cell due to the extra charge left on the bitline. We define precharge errors to be

timing errors due to reduced precharge latency.

To further understand the nature of precharge errors, we use a test similar to the one for

reduced activation latency in Section 6.3.1. The test reduces only the precharge latency, while

keeping the activation latency at the standard value, to isolate the effects that occur due to

a reduced precharge latency. We attempt to answer two fundamental questions: (i) Does

lowering the precharge latency incur errors on multiple cache lines in the row activated after

the precharge? (ii) Do these errors propagate back to the DRAM cells, causing permanent

errors for all future accesses?

110

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

Precharge Errors Are Spread Across a Row

Throughout repeated test runs on DIMMs from all three vendors, we observe that reduc-

ing the precharge latency induces errors that are spread across multiple cache lines in the

row activated after the precharge. This is because reducing the tRP value affects the latency

between two row-level DRAM commands, precharge and activate. As a result, having

an insufficient amount of precharge time for the array’s bitlines affects the entire row.

Observation 9: Timing errors occur in multiple cache lines in the row activated after a

precharge with reduced latency.

Furthermore, these precharge errors are due to the sense amplifiers sensing the wrong

voltage on the bitlines, causing them to latch incorrect data. Therefore, as the restoration

operation reuses the data latched in the sense amplifiers, the wrong data is written back into

the cells.

6.4.2. FPGA Test for Precharge Latency

In contrast to activation errors, precharge errors are spread across an entire row. As a

result, we use a test that varies tRP at the row level. The pseudocode of the test, Test 5, is

shown below.

Test 5 Read each row with a specified tRP value.
1 tRPRowOrderTest(my tRP , data)
2 for b ← 1 to BankMAX

3 for r ← 1 to RowMAX . Row order
4 WriteOneRow(b, r , data)
5 ReadOneRow(tRCD, tRP, b, r)
6 WriteOneRow(b, r + 1 , data bar) . Inverted data
7 ReadOneRow(tRCD, tRP, b, r + 1)
8 assert findErrors() == 0 . Verify data, data bar
9 ReadOneRow(tRCD, my tRP, b, r)

10 findErrors() . Count errors in row r

In total, we have conducted more than 4000 rounds of tests on the DIMMs shown in

Table 7.1, which accounts for at least 1300 testing hours. We use three groups of different

data patterns: (0x00, 0xff), (0xaa, 0x33), and (0xcc, 0x55). Each group specifies two

111

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

different data patterns, which are the inverse of each other, placed in consecutive rows in

the same array. This ensures that as we iterate through the rows in order, the partially-

precharged state of the bitlines will not favor the data pattern in the adjacent row to be

activated.

6.4.3. Precharge Error Distribution

In this section, we first show the distribution of precharge errors collected from all of

the tests conducted on every DIMM. Then, we categorize the results by DIMM model to

investigate variation across models from different vendors.

Total Bit Error Rates

Figure 6.10 shows the box plots of the BER observed for every DIMM as tRP is varied

from 12.5ns down to 2.5ns. Based on these results, we make several observations.

2.55.07.510.012.5

tRP (ns)

10-610-510-410-310-210-1100

B
E

R

Figure 6.10. Bit error rate of all DIMMs with reduced tRP.

First, similar to the observation made for activation latency, we do not observe errors

when the precharge latency is reduced to 12.5 and 10ns, as the reduced latencies are still

within the guardband provided. Second, the precharge BER is significantly higher than the

activation BER when errors start appearing at 7.5ns – the median of the precharge BER is

587x higher than that of the activation BER (shown in Figure 6.3). This is partially due to

the fact that reducing the precharge latency causes the errors to span across multiple cache

lines in an entire row , whereas reducing the activation latency affects only the first cache

112

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

line read from the row. Third, once tRP is set to 5ns, the BER exceeds the tolerable range,

resulting in a median BER of 0.43. In contrast, the activation BER does not reach this high

an error rate until the activation latency is lowered down to 2.5ns.

Observation 10: With the same amount of latency reduction, the number of precharge

errors is significantly higher than the number of activation errors.

Bit Error Rates by DIMM Model

To examine the precharge error trend for individual DIMM models, we show the BER

distribution of every DIMM categorized by DRAM model in Figure 6.11. Similar to the

observation we made for activation errors in Section 6.3.1, variation exists across different

DIMM models. These results provide further support for the existence and prevalence of

latency variation in modern DRAM chips.

A-M0
A-M1

A-M2
A-M3

B-M0
B-M1

C-M0
C-M1

DIMM Models

10-6
10-5
10-4
10-3
10-2
10-1
100

B
E

R

tRP = 7.5ns

A-M0
A-M1

A-M2
A-M3

B-M0
B-M1

C-M0
C-M1

DIMM Models

tRP = 5ns

Figure 6.11. BERs of DIMMs grouped by model, when tested with different tRP values.

6.4.4. Spatial Locality of Precharge Errors

In this section, we investigate the location and distribution of precharge errors. Due

to the large amount of available data, we show representative results from a single DIMM,

D0
C (model C-M0). All of our results for all DIMMs will be made available publicly [62].

Figure 6.12 shows the probability of each cache line seeing at least a one-bit precharge error

in Bank 0 and Bank 7 of D0
C when we set tRP to 7.5ns. The x-axis indicates the cache line

113

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

0 20 40 60 80 100 120

Cache Line

0

2

4

6

8

10

12

14

16

R
o
w

 (
0

0
0

s)

(a) Bank 0 of D0
C

0 20 40 60 80 100 120

Cache Line

0

2

4

6

8

10

12

14

16

R
o
w

 (
0

0
0

s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

P
r(

ca
ch

e
 l
in

e
 w

it
h
 ¸

 1
-b

it
 e

rr
o
r)

(b) Bank 7 of D0
C

Figure 6.12. Probability of observing precharge errors.

number, and the y-axis indicates the row number (in thousands). The results are gathered

from 12 iterations of tests. We make several observations based on our results.

First, some banks do not have any precharge errors throughout the experiments, such

as Bank 0 (Figure 6.12a, hence the plot is all white). Similar to the activation errors,

precharge errors are not distributed uniformly across locations within DIMMs. Second,

Figure 6.12b shows that the errors concentrate on a certain region of rows, while the other

regions experience much fewer or no errors. This demonstrates that certain sense amplifiers,

or cells at certain locations are more robust than others, allowing them to work reliably

under a reduced precharge latency.

Observation 11: Precharge errors do not occur uniformly within DIMMs, but exhibit

strong spatial concentration at certain regions.

Overall, we observe that 71.1%, 13.6%, and 84.7% of cache lines contain no precharge

errors when they are read from A-M1, B-M1, and C-M0 model DIMMs, respectively, with

tRP=7.5ns. Similar to the trend discussed in Section 6.3.8, C-M0 DIMMs have the highest

fraction of reliable cache lines among the DIMMs tested, while B-M1 DIMMs experience the

largest amount of errors. Even though the number of error-free cache lines at tRP=7.5ns is

lower than that at tRCD=7.5ns, the portion is still significant enough to show the prevalence

114

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

of precharge latency variation in modern DIMMs.

Observation 12: When precharge latency is reduced, a majority of cache lines can be

read without any timing errors in some of our tested DIMMs. However, other DIMMs are

largely susceptible to precharge errors, resulting in a small fraction of error-free cache lines.

6.5. Restoration Latency Analysis

In this section, we present a methodology and findings on varying the restoration latency,

defined by the tRAS timing parameter. First, we elaborate on the impact of reducing tRAS

on performance and reliability in Section 6.5.1. Then, we explain our FPGA test conducted

to characterize tRAS variation, and present our observations.

6.5.1. Impact of Reduced tRAS

As mentioned in Section 2.3, tRAS specifies the minimum amount of time between issuing

an activate and a precharge command to a bank. By reducing tRAS, we can complete

an access to one row faster, and quickly switch to access the next row. From the perspective

of reliability, reducing the restoration latency may potentially induce errors in the cells due

to having insufficient time to restore the lost charge back to the cells. When a row of cells is

activated, the cells temporarily lose their charge to the bitlines, so that the sense amplifiers

can sense the charge. During the restoration phase, the sense amplifiers restore charge back

into the cells, bringing them back to the fully-charged state. By reducing the restoration

latency, the amount of restored charge reduces, and the cells may not reach the fully-charged

state. As a result, a subsequent access to the same row may not able to sense the correct

value, thereby leading to errors.

6.5.2. Test Methodology and Results

To characterize the variation in restoration latency (tRAS), we consider another important

factor that affects the amount of charge stored in DRAM cells, which is leakage. DRAM

115

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

cells lose charge over time, thus requiring a periodic refresh operation to restore the charge.

Reducing the restored charge in the cells can cause them to lose too much charge before the

next refresh, generating an error.

To perform a conservative characterization, we integrate this leakage factor into our

test methodology. We access each row by issuing a pair of commands, activate and

precharge, with a specific tRAS value between these two commands. Then, we wait

for a full refresh period (defined as 64ms in the DRAM standard [130, 132]) before we access

the row again to verify the correctness of its data. We test this sequence on a representative

set of DIMMs from all three DRAM vendors and we use four data patterns: 0x00, 0xff,

0xaa, and 0xcc.

In our previously described tests on activation and precharge variation, we test every time

step from the default timing value to a minimum value of 2.5ns, with a reduction of 2.5ns

per step. Instead of reducing tRAS all the way down to 2.5ns from its standard value of 35ns,

we lower it until trasmin = tRCD + tCL + tBL, which is the latency of activating a row

and reading a cache line from it. In a typical situation where the memory controller reads

or writes a piece of data after opening a row, lowering tRAS below trasmin means that the

memory controller can issue a precharge while the data is still being read or written. Doing

so risks terminating read or write operations prematurely, causing unknown behavior.

In order to test tRAS with a reasonable range of values, we iterate tRAS from 35ns

to trasmin. Our trasmin is calculated by using the standard tCL=13.125ns and tBL=5ns

along with a fast tRCD=5ns. trasmin is rounded up to the nearest multiple of 2.5ns, which

is 22.5ns.

We do not observe errors across the range of tRAS values we tested in any of our ex-

periments. This implies that charge restoration in modern DRAMs completes within the

duration of an activation and a read. Therefore, tRAS can be reduced aggressively without

affecting data integrity.

Observation 13: Modern DIMMs have sufficient timing margin to complete charge

116

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

restoration within the period of an activate and a read. Hence, tRAS can be reduced

without introducing any errors.

6.6. Exploiting Latency Variation

Based on our extensive experimental characterization, we propose two new mechanisms

to reduce DRAM latency for better system performance. Our mechanisms exploit the key

observation that different DIMMs have different amounts of tolerance for lower DRAM la-

tency, and there is a strong correlation between the location of the cells and the lowest

latency that the cells can tolerate. The first mechanism (Section 6.6.1) is a pure hardware

approach to reducing DRAM latency. The second mechanism (Section 6.6.2) leverages OS

support to maximize the benefits of the first mechanism.

6.6.1. Flexible-Latency DRAM

As we discussed in Sections 6.3.6 and 6.4.4, the timing errors caused by reducing the

latency of the activation/precharge operations are concentrated on certain DRAM regions,

which implies that the latency heterogeneity among DRAM cells exhibits strong locality.

Based on this observation, we propose Flexible-LatencY DRAM (FLY-DRAM), a software-

transparent design that exploits this heterogeneity in cells to reduce the overall DRAM

latency. The key idea of FLY-DRAM is to determine the shortest reliable access latency of

each DRAM region, and to use the memory controller to apply that latency to the corre-

sponding DRAM region at runtime. There are two key design challenges of FLY-DRAM, as

we discuss below.

The first challenge is determining the shortest access latency. This can be done using

a latency profiling procedure, which (i) runs Test 4 (Section 6.3.2) with different timing

values and data patterns, and (ii) records the smallest latency that enables reliable access

to each region. This procedure can be performed at one of two times. First, the system

can run the procedure the very first time the DRAM is initialized, and store the profiling

117

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

results to non-volatile memory (e.g., disk or flash memory) for future reference. Second,

DRAM vendors can run the procedure at manufacturing time, and embed the results in the

Serial Presence Detect (SPD) circuitry (a ROM present in each DIMM) [131]. The memory

controller can read the profiling results from the SPD circuitry during DRAM initialization,

and apply the correct latency for each DRAM region. While the second approach involves

a slight modification to the DIMM, it can provide better latency information, as DRAM

vendors have detailed knowledge on DRAM cell variation, and can use this information to

run more thorough tests to determine a lower bound on the latency of each DRAM region.

The second design challenge is limiting the storage overhead of the latency profiling

results. Recording the shortest latency for each cache line can incur a large storage overhead.

For example, supporting four different tRCD and tRP timings requires 4 bits per 512-bit cache

line, which is almost 0.8% of the entire DRAM storage. Fortunately, the storage overhead can

be reduced based on a new observation of ours. As shown in Figures 6.7a and 6.7b, timing

errors typically concentrate on certain DRAM columns. Therefore, FLY-DRAM records the

shortest latency at the granularity of DRAM columns. Assuming we still need 4 bits per

DRAM cache line, we need only 512 bits per DRAM bank, or an insignificant 0.00019%

storage overhead for the DIMMs we evaluated. One can imagine using more sophisticated

structures, such as Bloom Filters [34], to provide finer-grained latency information within a

reasonable storage overhead, as shown in prior work on variable DRAM refresh time [204,

278]. We leave this for future work.

The FLY-DRAM memory controller (i) loads the latency profiling results into on-chip

SRAMs at system boot time, (ii) looks up the profiled latency for each memory request

based on its memory address, and (iii) applies the corresponding latency to the request. By

reducing the latency values of tRCD, tRAS, and tRP for some memory requests, FLY-DRAM

improves overall system performance, which we quantitatively demonstrate in the next two

sections.

118

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

Evaluation Methodology

We evaluate the performance of FLY-DRAM on an eight-core system using Ramula-

tor [163, 167], an open-source cycle-level DRAM simulator, driven by CPU traces generated

from Pin [208]. We will make our source code publicly available [62]. Table 7.2 summa-

rizes the configuration of our evaluated system. We use the standard DDR3-1333H timing

parameters [130] as our baseline.

Processor 8 cores, 3.3 GHz, OoO 128-entry window

LLC 8 MB shared, 8-way set associative

DRAM
DDR3-1333H [130], open-row policy [284],
2 channels, 1 rank per channel, 8 banks per rank,
Baseline: tRCD/tCL/tRP = 13.125ns, tRAS = 36ns

Table 6.2. Evaluated system configuration.

FLY-DRAM Configuration. To conservatively evaluate FLY-DRAM, we use a random-

izing page allocator that maps each virtual page to a randomly-located physical page in

memory. This allocator essentially distributes memory accesses from an application to dif-

ferent latency regions at random, and is thus unaware of FLY-DRAM regions.

Because each DIMM has a different fraction of fast cache lines, we evaluate FLY-DRAM

on three different yet representative real DIMMs that we characterized. We select one DIMM

from each vendor. Table 6.3 lists the distribution of cache lines that can be read reliably

under different tRCD and tRP values, based on our characterization. For each DIMM, we

use its distribution as listed in the table to model the percentage of cache lines with different

tRCD and tRP values. For example, for D2
A, we set 93% of its cache lines to use a tRCD

of 7.5ns, and the remaining 7% of cache lines to use a tRCD of 10ns. Although these

DIMMs have a small fraction of cache lines (<10%) that can be read using tRCD=5ns, we

conservatively set tRCD=7.5ns for them to ensure high reliability. FLY-DRAM dynamically

sets tRCD and tRP to either 7.5ns or 10ns for each memory request, based on which cache

line the request is to. For the tRAS timing parameter, FLY-DRAM uses 27ns (dtrcd+tcle)

119

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

for all cache lines in these three tested DIMMs, as we observe no errors in any of the tested

DIMMs due to lowering tRAS (see Section 6.5.2).

DIMM Vendor Model
tRCD Dist. (%) tRP Dist. (%)

Name 7.5ns 10ns 7.5ns 10ns

D2
A A M1 93 7 74 26

D7
B B M1 12 88 13 87

D2
C C M0 99 1 99 1

Table 6.3. Distribution of cache lines under various tRCD and tRP values for three char-
acterized DIMMs.

FLY-DRAM Upper-Bound Evaluation. We also evaluate the upper-bound performance

of FLY-DRAM by assuming that every DRAM cell is fast (i.e., 100% of cache lines can be

accessed using tRCD/tRP=7.5ns).

Applications and Workloads. To demonstrate the benefits of FLY-DRAM in an 8-core

system, we generate 40 8-core multi-programmed workloads by assigning one application to

each core. For each 8-core workload, we randomly select 8 applications from the following

benchmark suites: SPEC CPU2006 [315], TPC-C/H [338], and STREAM [218]. We use

PinPoints [265] to obtain the representative phases of each application. Our simulation

executes at least 200 million instructions on each core [57, 105, 166, 186].

Performance Metric. We measure system performance with the weighted speedup (WS)

metric [310], which is a measure of job throughput on a multi-core system [83]. Specifically,

WS =
∑N

i=1
IPCshared

i

IPCalone
i

. N is the number of cores in the system. IPCsharedi is the IPC of

an application that runs on corei while other applications are running on the other cores.

IPCalonei is the IPC of an application when it runs alone in the system without any other

applications. Essentially, WS is the sum of every application’s slowdown compared to when

it runs alone on the same system.

120

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

Multi-Core System Results

Figure 6.13 illustrates the system performance improvement of FLY-DRAM over the

baseline for 40 workloads. The x-axis indicates the evaluated DRAM configurations, as

shown in Table 6.3. The percentage value on top of each box is the average performance

improvement over the baseline.

D2
A D7

B D2
C

Upper Bound
1.05
1.10
1.15
1.20
1.25
1.30

N
or

m
al

iz
ed

 W
S

17.6%
13.3%

19.5% 19.7%

Figure 6.13. System performance improvement of FLY-DRAM for various DIMMs (listed
in Table 6.3).

We make the following observations. First, FLY-DRAM improves system performance

significantly, by 17.6%, 13.3%, and 19.5% on average across all 40 workloads for the three

real DIMMs that we characterize. This is because FLY-DRAM reduces the latency of tRCD,

tRP, and tRAS by 42.8%, 42.8%, and 25%, respectively, for many cache lines. In particular,

DIMM D2
C , whose great majority of cells are reliable at low tRCD and tRP, performs within

1% of the upper-bound performance (19.7% on average). Second, although DIMM D7
B has

only a small fraction of cells that can operate at 7.5ns, FLY-DRAM still attains significant

system performance benefits by using low tRCD and tRP latencies (10ns), which are 23.8%

lower than the baseline, for the majority of cache lines. We conclude that FLY-DRAM is

an effective mechanism to improve system performance by exploiting the widespread latency

variation present across DRAM cells.

6.6.2. Discussion: DRAM-Aware Page Allocator

While FLY-DRAM significantly improves system performance in a software-transparent

manner, we can take better advantage of it if we expose the different latency regions of

121

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

FLY-DRAM to the software stack. We propose the idea of a DRAM-aware page allocator

in the OS, whose goal is to better take advantage of FLY-DRAM by intelligently mapping

application pages to different-latency DRAM regions in order to improve performance.

Within an application, there is heterogeneity in the access frequency of different pages,

where some pages are accessed much more frequently than other pages [32, 283, 311, 324,

344, 357]. Our DRAM-aware page allocator places more frequently-accessed pages into lower-

latency regions in DRAM. This access frequency aware placement allows a greater number

of DRAM accesses to experience a reduced latency than a page allocator that is oblivious to

DRAM latency variation, thereby likely increasing system performance.

For our page allocator to work effectively, it must know which pages are expected to be

accessed frequently. In order to do this, we extend the OS system calls for memory allocation

to take in a Boolean value, which states whether the memory being allocated is expected to

be accessed frequently. This information either can be annotated by the programmer, or can

be estimated by various dynamic profiling techniques [3, 51, 136, 215, 283, 324, 344, 357].

The page allocator uses this information to find a free physical page in DRAM that suits

the expected access frequency of the application page that is being allocated.

We expect that by using our proposed page allocator, FLY-DRAM can perform close to

the upper-bound performance reported in Section 6.6.1, even for DIMMs that have a smaller

fraction of fast regions.

6.7. Summary

This chapter provides the first experimental study that comprehensively characterizes and

analyzes the latency variation within modern DRAM chips for three fundamental DRAM

operations (activation, precharge, and restoration). We find that significant latency variation

is present across DRAM cells in all 240 of our tested DRAM chips, and that a large fraction

of cache lines can be read reliably even if the activation/restoration/precharge latencies

are reduced significantly. Consequently, exploiting the latency variation in DRAM cells

122

CHAPTER 6. FLY-DRAM: UNDERSTANDING AND EXPLOITING LATENCY
VARIATION IN DRAM

can greatly reduce the DRAM access latency. Based on the findings from our experimental

characterization, we propose and evaluate a new mechanism, FLY-DRAM (Flexible-LatencY

DRAM), which reduces DRAM latency by exploiting the inherent latency variation in DRAM

cells. FLY-DRAM reduces DRAM latency by categorizing the DRAM cells into fast and

slow regions, and accessing the fast regions with a reduced latency. We demonstrate that

FLY-DRAM can greatly reduce DRAM latency, leading to significant system performance

improvements on a variety of workloads.

We conclude that it is promising to understand and exploit the inherent latency variation

within modern DRAM chips. We hope that the experimental characterization, analysis, and

optimization techniques presented in this chapter will enable the development of other new

mechanisms that exploit the latency variation within DRAM to improve system performance

and perhaps reliability.

123

Chapter 7

Voltron: Understanding and

Exploiting the Trade-off Between

Latency and Voltage in DRAM

In the previous chapter, we present our experimental study on characterizing memory

latency variation and its reliability implication in real DRAM chips. One important factor

that we have not discussed is supply voltage, which significantly impacts DRAM performance

and DRAM energy consumption. Our goal in this chapter is to characterize and understand

the relationship between supply voltage and DRAM latency. Furthermore, we study the

trade-off with various other characteristics of DRAM, including reliability and data retention.

7.1. Background and Motivation

In this section, we first provide necessary DRAM background and terminology. We then

discuss related work on reducing the voltage and/or frequency of DRAM, to motivate the

need for our study. Figure 7.1a shows a high-level overview of a modern memory system

organization. A processor (CPU) is connected to a DRAM module via a memory channel,

which is a bus used to transfer data and commands between the processor and DRAM.

124

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

A DRAM module is also called a dual in-line memory module (DIMM) and it consists of

multiple DRAM chips, which are controlled together.1 Within each DRAM chip, illustrated

in Figure 7.1b, we categorize the internal components into two broad categories: (i) the

DRAM array, which consists of multiple banks of DRAM cells organized into rows and

columns, and (ii) peripheral circuitry, which consists of the circuits that sit outside of the

DRAM array.

Processor

DRAM module

Memory
Controller

chip ...Chip
0

Channel

Chip
7

64

...
8 8

(a) DRAM System

Sense Amplifiers

Control
Logic

DLL

I/O

Peripheral
Circuitry

DRAM Array

Channel

Bank 0

Bank 7

8

(b) DRAM Chip

Figure 7.1. DRAM system and chip organization.

A DRAM array is divided into multiple banks (typically eight in DDR3 DRAM [130, 134])

that can process DRAM commands independently from each other to increase parallelism.

A bank contains a 2-dimensional array of DRAM cells. Each cell uses a capacitor to store a

single bit of data. Each array of cells is connected to a row of sense amplifiers via vertical

wires, called bitlines. This row of sense amplifiers is called the row buffer. The row buffer

senses the data stored in one row of DRAM cells and serves as a temporary buffer for the

data. A typical row in a DRAM module (i.e., across all of the DRAM chips in the module)

is 8KB wide, comprising 128 64-byte cache lines.

The peripheral circuitry has three major components. First, the I/O component is used

to receive commands or transfer data between the DRAM chip and the processor via the

1In this chapter, we study DIMMs that contain a single rank (i.e., a group of chips in a single DIMM
that operate in lockstep).

125

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

memory channel. Second, a typical DRAM chip uses a delay-lock loop (DLL) to synchronize

its data signal with the external clock to coordinate data transfers on the memory channel.

Third, the control logic decodes DRAM commands sent across the memory channel and

selects the row and column of cells to read data from or write data into. For a more detailed

view of the components in a DRAM chip and how to access data stored in DRAM, we refer

the reader to Chapter 2.

7.1.1. Effect of DRAM Voltage and Frequency on Power Consumption

DRAM power is divided into dynamic and static power. Dynamic power is the power

consumed by executing the access commands: activate, precharge, and read/write.

Each activate and precharge consumes power in the DRAM array and the peripheral

circuitry due to the activity in the DRAM array and control logic. Each read/write con-

sumes power in the DRAM array by accessing data in the row buffer, and in the peripheral

circuitry by driving data on the channel. On the other hand, static power is the power

that is consumed regardless of the DRAM accesses, and it is mainly due to transistor leak-

age. DRAM power is governed by both the supply voltage and operating clock frequency:

Power ∝ V oltage2 × Frequency [69]. As shown in this equation, power consumption scales

quadratically with supply voltage, and linearly with frequency.

DRAM supply voltage is distributed to both the DRAM array and the peripheral circuitry

through respective power pins on the DRAM chip, dedicated separately to the DRAM array

and the peripheral circuitry. We call the voltage supplied to the DRAM array, Varray, and the

voltage supplied to the peripheral circuitry, Vperi. Each DRAM standard requires a specific

nominal supply voltage value, which depends on many factors, such as the architectural

design and process technology. In this chapter, we focus on the widely used DDR3L DRAM

design that requires a nominal supply voltage of 1.35V [134]. To remain operational when

the supply voltage is unstable, DRAM can tolerate a small amount of deviation from the

nominal supply voltage. In particular, DDR3L DRAM is specified to operate with a supply

126

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

voltage ranging from 1.283V to 1.45V [229].

The DRAM channel frequency value of a DDR DRAM chip is typically specified using

the channel data rate, measured in mega-transfers per second (MT/s). The size of each data

transfer is dependent on the width of the data bus, which ranges from 4 to 16 bits for a

DDR3L chip [229]. Since a modern DDR channel transfers data on both the positive and

the negative clock edges (hence the term double data rate, or DDR), the channel frequency is

half of the data rate. For example, a DDR data rate of 1600 MT/s means that the frequency

is 800 MHz. To run the channel at a specified data rate, the peripheral circuitry requires a

certain minimum voltage (Vperi) for stable operation. As a result, the supply voltage scales

directly (i.e., linearly) with DRAM frequency, and it determines the maximum operating

frequency [69, 72].

7.1.2. Memory Voltage and Frequency Scaling

One proposed approach to reducing memory energy consumption is to scale the voltage

and/or the frequency of DRAM based on the observed memory channel utilization. We

briefly describe two different ways of scaling frequency and/or voltage below.

Frequency Scaling. To enable the power reduction that comes with reduced DRAM

frequency, prior works propose to apply dynamic frequency scaling (DFS) by adjusting the

DRAM channel frequency based on the memory bandwidth demand from the DRAM chan-

nel [29, 70, 71, 72, 268, 327]. A major consequence of lowering the frequency is the likely

performance loss that occurs, as it takes a longer time to transfer data across the DRAM

channel while operating at a lower frequency. The clocking logic within the peripheral cir-

cuitry requires a fixed number of DRAM cycles to transfer the data, since DRAM sends

data on each edge of the clock cycle. For a 64-bit memory channel with a 64B cache line

size, the transfer typically takes four DRAM cycles [130]. Since lowering the frequency in-

creases the time required for each cycle, the total amount of time spent on data transfer, in

nanoseconds, increases accordingly. As a result, not only does memory latency increase, but

127

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

also memory data throughput decreases, making DFS undesirable to use when the running

workload’s memory bandwidth demand or memory latency sensitivity is high. The extra

transfer latency from DRAM can also cause longer queuing times for requests waiting at the

memory controller [122, 156, 157, 179, 320, 321], further exacerbating the performance loss

and potentially delaying latency-critical applications [69, 72].

Voltage and Frequency Scaling. While decreasing the channel frequency reduces the

peripheral circuitry power and static power, it does not affect the dynamic power consumed

by the operations performed on the DRAM array (i.e., activation, restoration, precharge).

This is because DRAM array operations are asynchronous, i.e., independent of the channel

frequency [223]. As a result, these operations require a fixed time (in nanoseconds) to

complete. For example, the activation latency in a DDR3L DRAM module is 13ns, regardless

of the DRAM frequency [229]. If the channel frequency is doubled from 1066 MT/s to

2133 MT/s, the memory controller doubles the number of cycles for the activate timing

parameter (i.e., tRCD) (from 7 cycles to 14 cycles), to maintain the 13ns latency.

In order to reduce the dynamic power consumption of the DRAM array as well, prior

work proposes dynamic voltage and frequency scaling (DVFS) for DRAM, which reduces

the supply voltage along with the channel frequency [69]. This mechanism selects a DRAM

frequency based on the current memory bandwidth utilization and finds the minimum op-

erating voltage (Vmin) for that frequency. Vmin is defined to be the lowest voltage that still

provides “stable operation” for DRAM (i.e., no errors occur within the data). There are

two significant limitations for this proposed DRAM DVFS mechanism. The first limitation

is due to a lack of understanding of how voltage scaling affects the DRAM behavior. No

prior work provides experimental characterization or analysis of the effect of reducing the

DRAM supply voltage on latency, reliability, and data retention in real DRAM chips. As

the DRAM behavior under reduced-voltage operation is unknown to satisfactorily maintain

the latency and reliability of DRAM, the proposed DVFS mechanism [69] can reduce supply

voltage only very conservatively. The second limitation is that this prior work reduces the

128

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

supply voltage only when it reduces the channel frequency, since a lower channel frequency

requires a lower supply voltage for stable operation. As a result, DRAM DVFS results in

the same performance issues experienced by the DRAM DFS mechanisms. In Section 7.5.3,

we evaluate the main prior work [69] on memory DVFS to quantitatively demonstrate its

benefits and limitations.

7.1.3. Our Goal

The goal of this chapter is to (i) experimentally characterize and analyze real modern

DRAM chips operating at different supply voltage levels, in order to develop a solid and

thorough understanding of how reduced-voltage operation affects latency, reliability, and

data retention in DRAM; and (ii) develop a mechanism that can reduce DRAM energy con-

sumption by reducing DRAM voltage, without having to sacrifice memory data throughput,

based on the insights obtained from comprehensive experimental characterization. Under-

standing how DRAM characteristics change at different voltage levels is imperative not only

for enabling memory DVFS in real systems, but also for developing other low-power and

low-energy DRAM designs that can effectively reduce the DRAM voltage. We experimen-

tally analyze the effect of reducing supply voltage of modern DRAM chips in Section 7.3,

and introduce our proposed new mechanism for reducing DRAM energy in Section 7.4.

7.2. Experimental Methodology

To study the behavior of real DRAM chips under reduced voltage, we build an FPGA-

based infrastructure based on SoftMC [106], which allows us to have precise control over

the DRAM modules. This method was used in many previous works [54, 106, 145, 146,

153, 154, 155, 161, 162, 182, 183, 185, 203, 217, 278] as an effective way to explore different

DRAM characteristics (e.g., latency, reliability, and data retention time) that have not been

known or exposed to the public by DRAM manufacturers. Our testing platform consists

of a Xilinx ML605 FPGA board and a host PC that communicates with the FPGA via a

129

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

PCIe bus (Figure 7.2). We adjust the supply voltage to the DRAM by using a USB interface

adapter [119] that enables us to tune the power rail connected to the DRAM module directly.

The power rail is connected to all the power pins of every chip on the module (as shown in

Appendix 7.A).

DR
AM

FPGA

Figure 7.2. FPGA-based DRAM testing platform.

Characterized DRAM Modules. In total, we tested 31 DRAM DIMMs, comprising

of 124 DDR3L (low-voltage) chips, from the three major DRAM chip vendors that hold

more than 90% of the DRAM market share [28]. Each chip has a 4Gb density. Thus,

each of our DIMMs has a 2GB capacity. The DIMMs support up to a 1600 MT/s channel

frequency. Due to our FPGA’s maximum operating frequency limitations, all of our tests are

conducted at 800 MT/s. Note that the experiments we perform do not require us to adjust

the channel frequency. Table 7.1 describes the relevant information about the tested DIMMs.

Appendix 7.E provides detailed information on each DIMM. Unless otherwise specified, we

test our DIMMs at an ambient temperature of 20±1℃. We examine the effects of high

ambient temperature (i.e., 70±1℃) in Section 7.3.5.

DRAM Tests. At a high level, we develop a test (Test 6) that writes/reads data to/from

every row in the entire DIMM, for a given supply voltage. The test takes in several different

input parameters: activation latency (tRCD), precharge latency (tRP), and data pattern.

The goal of the test is to examine if any errors occur under the given supply voltage with

130

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

Vendor
Total Number Timing (ns) Assembly

of Chips (tRCD/tRP/tRAS) Year

A (10 DIMMs) 40 13.75/13.75/35 2015-16

B (12 DIMMs) 48 13.75/13.75/35 2014-15

C (9 DIMMs) 36 13.75/13.75/35 2015

Table 7.1. Main properties of the tested DIMMs.

the different input parameters.

Test 6 Test DIMM with specified tRCD/tRP and data pattern.

1 VoltageTest(DIMM , tRCD , tRP , data, data)
2 for bank ← 1 to DIMM .BankMAX

3 for row ← 1 to bank .RowMAX . Walk through every row within the current bank
4 WriteOneRow(bank , row , data) . Write the data pattern into the current row
5 WriteOneRow(bank , row + 1 , data) . Write the inverted data pattern into the next

row
6 ReadOneRow(tRCD, tRP, bank , row) . Read the current row
7 ReadOneRow(tRCD, tRP, bank , row + 1) . Read the next row
8 RecordErrors() . Count errors in both rows

In the test, we iteratively test two consecutive rows at a time. The two rows hold data

that are the inverse of each other (i.e., data and data). Reducing tRP lowers the amount of

time the precharge unit has to reset the bitline voltage from either full voltage (bit value 1)

or zero voltage (bit value 0) to half voltage. If tRP were reduced too much, the bitlines would

float at some other intermediate voltage value between half voltage and full/zero voltage. As

a result, the next activation can potentially start before the bitlines are fully precharged. If

we were to use the same data pattern in both rows, the sense amplifier would require less

time to sense the value during the next activation, as the bitline is already biased toward

those values. By using the inverse of the data pattern in the row that is precharged for the

next row that is activated, we ensure that the partially-precharged state of the bitlines does

not unfairly favor the access to the next row [54]. In total, we use three different groups of

data patterns for our test: (0x00, 0xff), (0xaa, 0x33), and (0xcc, 0x55). Each specifies the

131

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

data and data, placed in consecutive rows in the same bank.

7.3. Characterization of DRAM Under Reduced Voltage

In this section, we present our major observations from our detailed experimental charac-

terization of 31 commodity DIMMs (124 chips) from three vendors, when the DIMMs operate

under reduced supply voltage (i.e., below the nominal voltage level specified by the DRAM

standard). First, we analyze the reliability of DRAM chips as we reduce the supply voltage

without changing the DRAM access latency (Section 7.3.1). Our experiments are designed

to identify if lowering the supply voltage induces bit errors (i.e., bit flips) in data. Second,

we present our findings on the effect of increasing the activation and precharge latencies for

DRAM operating under reduced supply voltage (Section 7.3.2). The purpose of this exper-

iment is to understand the trade-off between access latencies (which impact performance)

and the supply voltage of DRAM (which impacts energy consumption). We use detailed

circuit-level DRAM simulations to validate and explain our observations on the relationship

between access latency and supply voltage. Third, we examine the spatial locality of errors

induced due to reduced-voltage operation (Section 7.3.3) and the distribution of errors in

the data sent across the memory channel (Section 7.3.4). Fourth, we study the effect of tem-

perature on reduced-voltage operation (Section 7.3.5). Fifth, we study the effect of reduced

voltage on the data retention times within DRAM (Section 7.3.6). We present a summary

of our findings in Section 7.3.7.

7.3.1. DRAM Reliability as Supply Voltage Decreases

We first study the reliability of DRAM chips under low voltage, which was not studied by

prior works on DRAM voltage scaling (e.g., [69]). For these experiments, we use the minimum

activation and precharge latencies that we experimentally determine to be reliable (i.e., they

do not induce any errors) under the nominal voltage of 1.35V at 20±1℃ temperature. As

shown in prior works [4, 31, 52, 54, 106, 153, 154, 155, 182, 183, 185, 197, 204, 258, 264,

132

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

278, 343], DRAM manufacturers adopt a pessimistic standard latency that incorporates a

large margin as a safeguard to ensure that each chip deployed in the field operates correctly

under a wide range of conditions. Examples of these conditions include process variation,

which causes some chips or some cells within a chip to be slower than others, or high

operating temperatures, which can affect the time required to perform various operations

within DRAM. Since our goal is to understand how the inherent DRAM latencies vary with

voltage, we conduct our experiments without such an excessive margin. We identify that

the reliable tRCD and tRP latencies are both 10ns (instead of the 13.75ns latency specified

by the DRAM standard) at 20℃, which agree with the values reported by prior work on

DRAM latency characterization [54, 182, 185].

Using the reliable minimum latency values (i.e., 10ns for all of the DIMMs), we run

Test 6, which accesses every bit within a DIMM at the granularity of a 64B cache line. In

total, there are 32 million cache lines in a 2GB DIMM. We vary the supply voltage from

the nominal voltage of 1.35V down to 1.20V, using a step size of 0.05V (50mV). Then, we

change to a smaller step size of 0.025V (25mV), until we reach the lowest voltage at which the

DIMM can operate reliably (i.e., without any errors) while employing the reliable minimum

latency values. (We examine methods to further reduce the supply voltage in Section 7.3.2.)

For each voltage step, we run 30 rounds of Test 6 for each DIMM. Figure 7.3 shows the

fraction of cache lines that experience at least 1 bit of error (i.e., 1 bit flip) in each DIMM

(represented by each curve), categorized based on vendor.

We make three observations. First, when each DIMM runs below a certain voltage

level, errors start occurring. We refer to the minimum voltage level of each DIMM that

allows error-free operation as Vmin. For example, most DIMMs from Vendor C have Vmin =

1.30V . Below Vmin, we observe errors because the fundamental DRAM array operations (i.e.,

activation, restoration, precharge) cannot fully complete within the time interval specified by

the latency parameters (e.g., tRCD, tRAS) at low voltage. Second, not all cache lines exhibit

errors for all supply voltage values below Vmin. Instead, the number of erroneous cache

133

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.25 1.3 1.35
Supply Voltage (V)

0

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

F
ra

ct
io

n
of

 C
ac

he
 L

in
es

w
ith

 E
rr

or
s

(%
)

Vendor A Vendor B Vendor C

Figure 7.3. The fraction of erroneous cache lines in each DIMM as we reduce the supply
voltage, with a fixed access latency.

lines for each DIMM increases as we reduce the voltage further below Vmin. Specifically,

Vendor A’s DIMMs experience a near-exponential increase in errors as the supply voltage

reduces below Vmin. This is mainly due to the manufacturing process and architectural

variation, which introduces strength and size variation across the different DRAM cells

within a chip [52, 54, 160, 161, 182, 183, 185, 193]. Third, variation in Vmin exists not

only across DIMMs from different vendors, but also across DIMMs from the same vendor.

However, the variation across DIMMs from the same vendor is much smaller compared to

cross-vendor variation, since the fabrication process and circuit designs can differ drastically

across vendors. These results demonstrate that reducing voltage beyond Vmin, without

altering the access latency, has a negative impact on DRAM reliability.

We also conduct an analysis of storing different data patterns on the error rate during

reduced-voltage operation (see Appendix 7.B). In summary, our results show that the data

pattern does not have a consistent effect on the rate of errors induced by reduced-voltage

operation. For most supply voltage values, the data pattern does not have a statistically

significant effect on the error rate.

Source of Errors. To understand why errors occur in data as the supply voltage

reduces below Vmin, we perform circuit-level SPICE simulations [216, 245], which reveal

134

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

more detail on how the cell arrays operate. We develop a SPICE model of the DRAM

array that uses a sense amplifier design from prior work [27] with the 45 nm transistor model

from the Predictive Technology Model (PTM) [273, 366]. Appendix 7.C provides a detailed

description of our SPICE simulation model, which we have open-sourced [2].

We vary the supply voltage of the DRAM array (VDD) in our SPICE simulations from

1.35V to 0.90V. Figure 7.4 shows the bitline voltage during activation and precharge for

different VDD values. Times 0ns and 50ns correspond to when the DRAM receives the

activate and the precharge commands, respectively. An activate causes the bitline

voltage to increase from VDD/2 to VDD in order to sense the stored data value of “1”. A

precharge resets the bitline voltage back to VDD/2 in order to enable the issuing of a later

activate to another row within the same bank. In the figure, we mark the points where

the bitline reaches the 1 ready-to-access voltage, which we assume to be 75% of VDD ; 2

ready-to-precharge voltage, which we assume to be 98% of VDD ; and 3 ready-to-activate

voltage, which we assume to be within 2% of VDD/2. These points represent the minimum

tRCD, tRAS, and tRP values, respectively, required for reliable DRAM operation. For readers

who wish to understand the bitline voltage behavior in more detail, we refer them to recent

works [105, 182, 183, 185, 186] that provide extensive background on how the bitline voltage

changes during the three DRAM operations.

0.4
0.6
0.8
1.0
1.2
1.4

0 10 20 30 40 50 60 70

Bi
tli
ne

	V
ol
ta
ge
	(V

)

Time	(ns)

1.35	V
1.20	V
1.10	V
1.00	V
0.90	V

tRCD

PRECHARGEACTIVATE

1

tRAS2

tRP3

Figure 7.4. Effect of reduced array supply voltage on activation, restoration, and precharge,
from SPICE simulations.

We make two observations from our SPICE simulations. First, we observe that the bitline

135

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

voltage during activation increases at a different rate depending on the supply voltage of the

DRAM array (VDD). Thus, the supply voltage affects the latency of the three DRAM

operations (activation, restoration, and precharge). When the nominal voltage level (1.35V)

is used for VDD , the time (tRCD) it takes for the sense amplifier to drive the bitline to the

ready-to-access voltage level (75% of VDD) is much shorter than the time to do so at a lower

VDD . As VDD decreases, the sense amplifier needs more time to latch in the data, increasing

the activation latency. Similarly, the restoration latency (tRAS) and the precharge latency

(tRP) increase as VDD decreases.

Second, the latencies of the three fundamental DRAM array operations (i.e., activation,

restoration, precharge) do not correlate with the channel (or clock) frequency (not shown in

Figure 7.4). This is because these operations are clock-independent asynchronous operations

that are a function of the cell capacitance, bitline capacitance, and VDD [152].2 As a result,

the channel frequency is independent of the three fundamental DRAM operations.

Therefore, we hypothesize that DRAM errors occur at lower supply voltages because the

three DRAM array operations have insufficient latency to fully complete at lower voltage

levels. In the next section, we experimentally investigate the effect of increasing latency

values as we vary the supply voltage on real DRAM chips.

7.3.2. Longer Access Latency Mitigates Voltage-Induced Errors

To confirm our hypothesis from Section 7.3.1 that a lower supply voltage requires a longer

access latency, we test our DIMMs at supply voltages below the nominal voltage (1.35V)

while incrementally increasing the activation and precharge latencies to be as high as 20ns

(2x higher than the tested latency in Section 7.3.1). At each supply voltage value, we call

the minimum required activation and precharge latencies that do not exhibit any errors

tRCDmin and tRPmin, respectively.

Figure 7.5 shows the distribution of tRCDmin (top row) and tRPmin (bottom row) mea-

2In Appendix 7.C, we show a detailed circuit schematic of a DRAM array that operates asynchronously,
which forms the basis of our SPICE circuit simulation model [2].

136

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

sured for all DIMMs across three vendors as we vary the supply voltage. Each circle repre-

sents a tRCDmin or tRPmin value. A circle’s size indicates the DIMM population size, with

bigger circles representing more DIMMs. The number above each circle indicates the fraction

of DIMMs that work reliably at the specified voltage and latency. Also, we shade the range

of potential tRCDmin and tRPmin values. Since our infrastructure can adjust the latencies

at a granularity of 2.5ns, a tRCDmin or tRPmin value of 10ns is only an approximation of

the minimum value, as the precise tRCDmin or tRPmin falls between 7.5ns and 10ns. We

make three major observations.

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
Supply Voltage (V)

7
8
9

10
11
12
13
14
15
16

M
in

im
um

 A
ct

iv
at

io
n

 L
at

en
cy

 (n
s)

0.1

0.1 1.0 1.0 1.0 1.0 1.0 1.0

Vendor A

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
Supply Voltage (V)

0.1 0.3

0.2

0.1

0.4

0.5 0.9

0.1

1.0 1.0 1.0 1.0 1.0 1.0

Vendor B

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
Supply Voltage (V)

0.1

0.2

0.2

0.1

0.1

0.7 0.7

0.1

1.0 1.0 1.0 1.0

Vendor C

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
Supply Voltage (V)

7
8
9

10
11
12
13
14

M
in

im
um

 P
re

ch
ar

ge
 L

at
en

cy
 (n

s)

0.2 1.0 1.0 1.0 1.0 1.0 1.0

Vendor A

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
Supply Voltage (V)

0.1 0.2

0.4

0.3

0.6

0.6

0.4

0.9

0.1

1.0 1.0 1.0 1.0 1.0

Vendor B

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
Supply Voltage (V)

0.1 0.6 0.6

0.2

0.8 0.9

0.1

0.6

0.4 1.0 1.0

Vendor C

Figure 7.5. Distribution of minimum reliable latency values as the supply voltage is de-
creased for 31 DIMMs. The number above each point indicates the fraction of DIMMs that
work reliably at the specified voltage and latency. Top row: tRCDmin; Bottom row: tRPmin.

First, when the supply voltage falls below Vmin
3, the tested DIMMs show that an increase

of at least 2.5ns is needed for tRCDmin and tRPmin to read data without errors. For example,

some DIMMs require at least a 2.5ns increase of tRCDmin or tRPmin to read data without

errors at 1.100V, 1.125V, and 1.25V from Vendors A, B, and C, respectively. Since our

testing platform can only identify the minimum latency at a granularity of 2.5ns [106], we

use circuit-level simulations to obtain a more precise latency measurement of tRCDmin and

tRPmin (which we describe in the latter part of this section).

3In Section 7.3.1, we define Vmin as the minimum voltage level of each DIMM that allows error-free
operation. Table 7.E.1 in Appendix 7.E shows the Vmin value we found for each DIMM.

137

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

Second, DIMMs from different vendors exhibit very different behavior on how much

tRCDmin and tRPmin need to increase for reliable operation as supply voltage falls below

Vmin. Compared to other vendors, many more of Vendor C’s DIMMs require higher tRCDmin

and tRPmin to operate at a lower VDD . This is particularly the case for the precharge

latency, tRPmin. For instance, 60% of Vendor C’s DIMMs require a tRPmin of 12.5ns to

read data without errors at 1.25V, whereas this increase is not necessary at all for DIMMs

from Vendor A, which all operate reliably at 1.15V. This reveals that different vendors

may have different circuit architectures or manufacturing process technologies, which lead

to variations in the additional latency required to compensate for a reduced VDD in DIMMs.

Third, at very low supply voltages, not all of the DIMMs have valid tRCDmin and tRPmin

values less than or equal to 20ns that enable error-free operation of the DIMM. We see that

the circle size gets smaller as the supply voltage reduces, indicating that the number of

DIMMs that can operate reliably (even at higher latency) reduces. For example, Vendor A’s

DIMMs can no longer operate reliably (i.e., error-free) when the voltage is below 1.1V. We

tested a small subset of DIMMs with latencies of more than 50ns and found that these very

high latencies still do not prevent errors from occurring. We hypothesize that this is because

of signal integrity issues on the channel, causing bits to flip during data transfer at very low

supply voltages.

We correlate our characterization results with our SPICE simulation results from Sec-

tion 7.3.1, demonstrating that there is a direct relationship between supply voltage and

access latency. This new observation on the trade-off between supply voltage and access

latency is not discussed or demonstrated in prior work on DRAM voltage scaling [69], where

the access latency (in nanoseconds) remains fixed when performing memory DVFS. In con-

clusion, we demonstrate both experimentally and in circuit simulations that increasing the

access latency (i.e., tRCD and tRP) allows us to lower the supply voltage while still reliably

accessing data without errors.

Deriving More Precise Access Latency Values. One limitation of our experiments

138

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

is that we cannot precisely measure the exact tRCDmin and tRPmin values, due to the 2.5ns

minimum latency granularity of our experimental framework [106]. Furthermore, supply

voltage is a continuous value, and it would take a prohibitively long time to study the supply

voltage experimentally at a finer granularity. We address these limitations by enriching our

experimental results with circuit-level DRAM SPICE simulations that model a DRAM array

(see Appendix 7.C for details of our circuit simulation model).

The SPICE simulation results highly depend on the specified transistor parameters (e.g.,

transistor width). To fit our SPICE results with our experimental results (for the supply

voltage values that we studied experimentally), we manually adjust the transistor parameters

until the simulated results fit within our measured range of latencies. Figure 7.6 shows the

latencies reported for activation and precharge operations using our final SPICE model,

based on the measured experimental data for Vendor B.

Latency	Obtained	
via	SPICE	Simulation

Figure 7.6. SPICE simulation results compared with experimental measurements from 12
DRAM DIMMs for Vendor B.

We make two major observations. First, we see that the SPICE simulation results fit

within the range of latencies measured during our experimental characterization, confirming

that our simulated circuit behaves close to the real DIMMs. As a result, our circuit model

allows us to derive a more precise minimum latency for reliable operation than our experi-

139

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

mental data.4 Second, DRAM arrays can operate at a wide range of voltage values without

experiencing errors. This aligns with our hypothesis that errors at very low supply voltages

(e.g., 1V) occur during data transfers across the channel rather than during DRAM array

operations. Therefore, our SPICE simulations not only validate our observation that a lower

supply voltage requires longer access latency, but also provide us with a more precise reliable

minimum operating latency estimate for a given supply voltage.

7.3.3. Spatial Locality of Errors

While reducing the supply voltage induces errors when the DRAM latency is not long

enough, we also show that not all DRAM locations experience errors at all supply voltage

levels. To understand the locality of the errors induced by a low supply voltage, we show the

probability of each DRAM row in a DIMM experiencing at least one bit of error across all

experiments. We present results for two representative DIMMs from two different vendors,

as the observations from these two DIMMs are similar to those we make for the other tested

DIMMs. Our results collected from each of the 31 DIMMs are publicly available [2].

Figure 7.7 shows the probability of each row experiencing at least a one-bit error due to

reduced voltage in the two representative DIMMs. For each DIMM, we choose the supply

voltage when errors start appearing (i.e., the voltage level one step below Vmin), and we do

not increase the DRAM access latency (i.e., 10ns for both tRCD and tRP). The x-axis and

y-axis indicate the bank number and row number (in thousands), respectively. Our tested

DIMMs are divided into eight banks, and each bank consists of 32K rows of cells.5

Our main observation is that errors tend to cluster at certain locations. For our repre-

sentative DIMMs, we see that errors tend to cluster at certain rows across multiple banks

for Vendor B. On the contrary, Vendor C’s DIMMs exhibit errors in certain banks but not in

other banks. We hypothesize that the error concentration can be a result of (i) manufactur-

ing process variation, resulting in less robust components at certain locations, as observed

4The circuit model can further serve as a common framework for studying other characteristics of DRAM.
5Additional results showing the error locations at different voltage levels are in Appendix 7.D.

140

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

(a) DIMM B6 of vendor B at 1.05V. (b) DIMM C2 of vendor C at 1.20V.

Figure 7.7. The probability of error occurrence for two representative DIMMs, categorized
into different rows and banks, due to reduced voltage.

in Vendor B’s DIMMs; or (ii) architectural design variations in the power delivery network.

However, it is hard to verify our hypotheses without knowing the specifics of the DRAM

circuit design, which is proprietary information that varies across different DRAM models

within and across vendors.

Another implication of the spatial concentration of errors under low voltage is that only

those regions with errors require a higher access latency to read or write data correctly,

whereas error-free regions can be accessed reliably with the standard latency. In Section 7.5.5,

we discuss and evaluate a technique that exploits this spatial locality of errors to improve

system performance.

7.3.4. Density of Errors

In this section, we investigate the density (i.e., the number) of error bits that occur within

each data beat (i.e., the unit of data transfer, which is 64 bits, through the data bus) read

back from DRAM. Conventional error-correcting codes (ECC) used in DRAM detect and

correct errors at the granularity of a data beat. For example, SECDED ECC [211, 312] can

correct a single-bit error and detect two-bit errors within a data beat. Figure 7.8 shows the

distribution of data beats that contain no errors, a single-bit error, two-bit errors, or more

than two bits of errors, under different supply voltages for all DIMMs. These distributions

are collected from 30 rounds of experiments that were tested on each of the 31 DIMMs per

voltage level, using 10ns of activation and precharge latency. A round of experiment refers

141

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

to a single run of Test 6, as described in Section 7.2, on a specified DIMM.

1.1 1.15 1.2 1.25
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 D

at
a

B
ea

ts

Vendor A

1.1 1.15 1.2 1.25

Vendor B

1.1 1.15 1.2 1.25

Vendor C

Error Bits
>2
2
1
0

Supply Voltage (V)

0.99

Figure 7.8. Distribution of bit errors in data beats.

The results show that lowering the supply voltage increases the fraction of beats that

contain more than two bits of errors. There are very few beats that contain only one

or two error bits. This implies that the most commonly-used ECC scheme, SECDED, is

unlikely to alleviate errors induced by a low supply voltage. Another ECC mechanism,

Chipkill [211, 312], protects multiple bit failures within a DRAM chip. However, it cannot

correct errors in multiple DRAM chips. Instead, we believe that increasing the access latency,

as shown in Section 7.3.2, is a more effective way of eliminating errors under low supply

voltages.

7.3.5. Effect of Temperature

Temperature is an important external factor that can affect the behavior of DRAM [82,

154, 162, 182, 185, 203, 204, 292]. Prior works have studied the impact of temperature on

reliability [82, 161, 162, 292], latency [54, 182, 185], and retention time [154, 203, 204, 278]

at the nominal supply voltage. However, no prior work has studied the effect of temperature

on the latency at which DRAM operates reliably, as the supply voltage changes.

To reduce the test time, we test 13 representative DIMMs under a high ambient tempera-

ture of 70℃ using a closed-loop temperature controller [106]. Figure 7.9 shows the tRCDmin

and tRPmin values of tested DIMMs, categorized by vendor, at 20℃ and 70℃. The error

bars indicate the minimum and maximum latency values across all DIMMs we tested that

142

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

are from the same vendor. We increase the horizontal spacing between the low and high

temperature data points at each voltage level to improve readability.

8
10
12
14
16
18
20

tR
C

D
m

in
 (n

s)
Vendor A

20°C
70°C

Vendor B Vendor C

1.15 1.2 1.3 1.35
8

10
12
14
16
18
20

tR
P

m
in

 (n
s)

1.05
1.075 1.1 1.15 1.2 1.35

Supply Voltage (V)
1.175 1.2 1.25 1.3 1.35

Figure 7.9. Effect of high ambient temperature (70℃) on minimum reliable operation
latency at reduced voltage.

We make two observations. First, temperature impacts vendors differently. On Ven-

dor A’s DIMMs, temperature does not have an observable impact on the reliable operation

latencies. Since our platform can test latencies with a step size of only 2.5ns, it is possible

that the effect of high temperature on the reliable minimum operating latency for Ven-

dor A’s DIMMs may be within 2.5ns. On the other hand, the temperature effect on latency

is measurable on DIMMs from Vendors B and C. DIMMs from Vendor B are not strongly

affected by temperature when the supply voltage is above 1.15V. The precharge latency for

Vendor C’s DIMMs is affected by high temperature at supply voltages of 1.35V and 1.30V,

leading to an increase in the minimum latency from 10ns to 12.5ns. When the voltage is

below 1.25V, the impact of high temperature on precharge latency is not observable, as

the precharge latency already needs to be raised by 2.5ns, to 12.5ns, at 20℃. Second, the

precharge latency is more sensitive to temperature than the activation latency. Across all of

our tested DIMMs, tRP increases with high temperature under a greater number of supply

voltage levels, whereas tRCD is less likely to be perturbed by temperature.

Since temperature can affect latency behavior under different voltage levels, techniques

143

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

that compensate for temperature changes can be used to dynamically adjust the activation

and precharge latencies, as proposed by prior work [182, 185].

7.3.6. Impact on Refresh Rate

Recall from Chapter 2 that a DRAM cell uses a capacitor to store data. The charge

in the capacitor leaks over time. To prevent data loss, DRAM periodically performs an

operation called refresh to restore the charge stored in the cells. The frequency of refresh is

determined by the amount of time a cell can retain enough charge without losing information,

commonly referred to as a cell’s retention time. For DDR3 DIMMs, the worst-case retention

time assumed for a DRAM cell is 64ms (or 32ms at temperatures above 85℃ [203, 204]).

Hence, each cell is refreshed every 64ms, which is the DRAM-standard refresh interval.

When we reduce the supply voltage of the DRAM array, we expect the retention time

of a cell to decrease, as less charge is stored in each cell. This could potentially require

a shorter refresh interval (i.e., more frequent refreshes). To investigate the impact of low

supply voltage on retention time, our experiment writes all 1s to every cell, and reads out

the data after a given amount of retention time, with refresh disabled. We test a total of

seven different retention times (in ms): 64 (the standard time), 128, 256, 512, 1024, 1536,

and 2048. We conduct the experiment for ten rounds on every DIMM from all three vendors.

Figure 7.10 shows the average number of weak cells (i.e., cells that experience bit flips due

to too much leakage at a given retention time) across all tested DIMMs, for each retention

time, under both 20℃ and 70℃. We evaluate three voltage levels, 1.35V, 1.2V, and 1.15V,

that allow data to be read reliably with a sufficiently long latency. The error bars indicate

the 95% confidence interval. We increase the horizontal spacing between the curves at each

voltage level to improve readability.

Our results show that every DIMM can retain data for at least 256ms before requiring a

refresh operation, which is 4x higher than the standard worst-case specification. These results

align with prior works, which also experimentally demonstrate that commodity DRAM cells

144

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

64 128 256 512
1024

1536
2048

Retention Time (ms)

0
10−2
10−1
100
101
102
103
104

N
um

be
r o

f W
ea

k
C

el
ls

(A
vg

. O
ve

r 2
0

Te
st

s
pe

r D
IM

M
)

Temperature = 20°C

1.15V
1.20V
1.35V

64 128 256 512
1024

1536
2048

Retention Time (ms)

Temperature = 70°C

Figure 7.10. The number of weak cells that experience errors under different retention
times as supply voltage varies.

have much higher retention times than the standard specification of 64ms [106, 154, 160, 182,

185, 203, 264, 278]. Even though higher retention times (i.e., longer times without refresh)

reveal more weak cells, the number of weak cells is still very small, e.g., tens of weak cells

out of billions of cells, on average across all DIMMs at under 20℃. Again, this corresponds

closely to observations from prior works showing that there are relatively few weak cells with

low retention time in DRAM chips, especially at lower temperatures [106, 154, 160, 182, 185,

203, 264, 278].

We observe that the effect of the supply voltage on retention times is not statistically

significant. For example, at a 2048ms retention time, the average number of weak cells in a

DRAM module increases by only 9 cells (out of a population of billions of cells) when the

supply voltage drops from 1.35V (66 weak cells) to 1.15V (75 weak cells) at 20℃. For the

same 2048ms retention time at 70℃, the average number of weak cells increases by only

131 cells when the supply voltage reduces from 1.35V (2510 weak cells) to 1.15V (2641 weak

cells).

When we lower the supply voltage, we do not observe any weak cells until a retention

time of 512ms, which is 8x the standard refresh interval of 64ms. Therefore, we conclude

that using a reduced supply voltage does not require any changes to the standard refresh

interval at 20℃ and 70℃ ambient temperature.

145

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

7.3.7. Summary

We have presented extensive characterization results and analyses on DRAM chip la-

tency, reliability, and data retention time behavior under various supply voltage levels. We

summarize our findings in six key points. First, DRAM reliability worsens (i.e., more er-

rors start appearing) as we reduce the supply voltage below Vmin. Second, we discover that

voltage-induced errors occur mainly because, at low supply voltages, the DRAM access la-

tency is no longer sufficient to allow the fundamental DRAM operations to complete. Third,

via both experiments on real DRAM chips and SPICE simulations, we show that increasing

the latency of activation, restoration, and precharge operations in DRAM can mitigate errors

under low supply voltage levels until a certain voltage level. Fourth, we show that voltage-

induced errors exhibit strong spatial locality in a DRAM chip, clustering at certain locations

(i.e., certain banks and rows). Fifth, temperature affects the reliable access latency at low

supply voltage levels and the effect is very vendor-dependent. Sixth, we find that reducing

the supply voltage does not require increasing the standard DRAM refresh rate for reliable

operation below 70℃.

7.4. Voltron: Reducing DRAM Energy Without Sacrificing Mem-

ory Throughout

Based on the extensive understanding we developed on reduced-voltage operation of real

DRAM chips in Section 7.3, we propose a new mechanism called Voltron, which reduces

DRAM energy without sacrificing memory throughput. Voltron exploits the fundamental

observation that reducing the supply voltage to DRAM requires increasing the latency of

the three DRAM operations in order to prevent errors. Using this observation, the key

idea of Voltron is to use a performance model to determine by how much to reduce the

DRAM supply voltage, without introducing errors and without exceeding a user-specified

threshold for performance loss. Voltron consists of two main components: (i) array voltage

146

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

scaling, a hardware mechanism that leverages our experimental observations to scale only the

voltage supplied to the DRAM array; and (ii) performance-aware voltage control, a software

mechanism6 that automatically chooses the minimum DRAM array voltage that meets a

user-specified performance target.

7.4.1. Array Voltage Scaling

As we discussed in Section 7.1.1, the DRAM supply voltage to the peripheral circuitry

determines the maximum operating frequency. If we reduce the supply voltage directly,

the frequency needs to be lowered as well. As more applications become more sensitive to

memory bandwidth, reducing DRAM frequency can result in a substantial performance loss

due to lower data throughput. In particular, we find that reducing the DRAM frequency

from 1600 MT/s to 1066 MT/s significantly degrades performance of our evaluated memory-

intensive applications by 16.1%. Therefore, the design challenge of Voltron is to reduce the

DRAM supply voltage without changing the DRAM frequency.

To address this challenge, the key idea of Voltron’s first component, array voltage scaling,

is to reduce the voltage supplied to the DRAM array (Varray) without changing the voltage

supplied to the peripheral circuitry, thereby allowing the DRAM channel to maintain a high

frequency while reducing the power consumption of the DRAM array. To prevent errors

from occurring during reduced-voltage operation, Voltron increases the latency of the three

DRAM operations (activation, restoration, and precharge) in every DRAM bank based on

our observations in Section 7.3.

By reducing Varray, we effectively reduce (i) the dynamic DRAM power on activate,

precharge, and refresh operations; and (ii) the portion of the static power that comes from

the DRAM array. These power components decrease quadratically with the square of the

array voltage reduction in a modern DRAM chip [27, 152]. The trade-off is that reducing

Varray requires increasing the latency of the three DRAM operations, for reliable opera-

6Note that this mechanism can also be implemented in hardware, or as a cooperative hardware/software
mechanism.

147

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

tion, thereby leading to some system performance degradation, which we quantify in our

evaluation (Section 7.5).

7.4.2. Performance-Aware Voltage Control

Array voltage scaling provides system users with the ability to decrease Varray to reduce

DRAM power. Employing a lower Varray provides greater power savings, but at the cost of

longer DRAM access latency, which leads to larger performance degradation. This trade-off

varies widely across different applications, as each application has a different tolerance to

the increased memory latency. This raises the question of how to pick a “suitable” array

voltage level for different applications as a system user or designer. For this dissertation,

we say that an array voltage level is suitable if it does not degrade system performance by

more than a user-specified threshold. Our goal is to provide a simple technique that can

automatically select a suitable Varray value for different applications. To this end, we propose

performance-aware voltage control, a power-performance management policy that selects a

minimum Varray that satisfies a desired performance constraint. The key observation is

that an application’s performance loss (due to increased memory latency) scales linearly

with the application’s memory demand (e.g., memory intensity). Based on this empirical

observation we make, we build a performance loss predictor that leverages a linear model to

predict an application’s performance loss based on its characteristics at runtime. Using the

performance loss predictor, Voltron finds a Varray that can keep the predicted performance

within a user-specified target at runtime.

Key Observation. We find that an application’s performance loss due to higher la-

tency has a strong linear relationship with its memory demand (e.g., memory intensity).

Figure 7.11 shows the relationship between the performance loss of each application (due

to reduced voltage) and its memory demand under two different reduced-voltage values

(see Section 7.5.1 for our methodology). Each data point represents a single application.

Figure 7.11a shows each application’s performance loss versus its memory intensity, ex-

148

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

pressed using the commonly-used metric MPKI (last-level cache misses per kilo-instruction).

Figure 7.11b shows each application’s performance loss versus its memory stall time, the

fraction of execution time for which memory requests stall the CPU’s instruction win-

dow (i.e., reorder buffer). In Figure 7.11a, we see that the performance loss is a piece-

wise linear function based on the MPKI. The observation that an application’s sensitiv-

ity to memory latency is correlated with MPKI has also been made and utilized by prior

works [66, 67, 68, 164, 165, 235, 240, 241, 342, 364, 368].

0 20 40 60 80 100 120 140
MPKI

0
2
4
6
8

10

S
ys

te
m

 IP
C

D
eg

ra
da

tio
n

(%
) Varray = 1.2V

0 20 40 60 80 100 120 140
MPKI

Varray = 1.1V
Non-Memory-Intensive Memory-Intensive

(a) Performance loss vs. last-level cache MPKI.

0 20 40 60 80 100
Memory Stall Time (%)

0
2
4
6
8

10

S
ys

te
m

 IP
C

D
eg

ra
da

tio
n

(%
) Varray = 1.2V

0 20 40 60 80 100
Memory Stall Time (%)

Varray = 1.1V

(b) Performance loss vs. memory stall time fraction.

Figure 7.11. Relationship between performance loss (due to increased memory latency)
and applications’ characteristics: MPKI (a) and memory stall time fraction (b). Each data
point represents a single application.

When an application is not memory-intensive (i.e., has an MPKI < 15), its performance

loss grows linearly with MPKI, becoming more sensitive to memory latency. Latency-

sensitive applications spend most of their time performing computation at the CPU cores

and issue memory requests infrequently. As a result, increasing the number of memory

requests causes more stall cycles in the CPU.

On the other hand, the performance of memory-intensive applications (i.e., those with

MPKI ≥ 15) is less sensitive to memory latency as the MPKI grows. This is because

memory-intensive applications experience frequent cache misses and spend a large portion

149

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

of their time waiting on pending memory requests. As a result, their rate of progress is

significantly affected by the memory bandwidth, and therefore they are more sensitive to

memory throughput instead of latency. With more outstanding memory requests (i.e., higher

MPKI), the memory system is more likely to service them in parallel, leading to more

memory-level parallelism [91, 165, 180, 239, 241, 242]. Therefore, improved memory-level

parallelism enables applications to tolerate higher latencies more easily.

Figure 7.11b shows that an application’s performance loss increases with its instruc-

tion window (reorder buffer) stall time fraction due to memory requests for both memory-

intensive and non-memory-intensive applications. A stalled instruction window prevents

the CPU from fetching or dispatching new instructions [242], thereby degrading the run-

ning application’s performance. This observation has also been made and utilized by prior

works [90, 238, 239, 242].

Performance Loss Predictor. Based on the observed linear relationships between

performance loss vs. MPKI and memory stall time fraction, we use ordinary least squares

(OLS) regression to develop a piecewise linear model for each application that can serve as

the performance loss predictor for Voltron. Equation 7.1 shows the model, which takes the

following inputs: memory latency (Latency = tRAS + tRP), the application’s MPKI, and

its memory stall time fraction.

PredictedLossi =



α1 + β1Latencyi + β2App.MPKIi

+ β3App.StallTimeFractioni
if MPKI < 15

α2 + β4Latencyi + β5App.MPKIi

+ β6App.StallTimeFractioni

otherwise

(7.1)

α1 β1 β2 β3 α2 β4 β5 β6

-30.09 0.59 0.01 19.24 -50.04 1.05 -0.01 15.27

150

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

PredictedLossi is the predicted performance loss for the application. The subscript i

refers to each data sample, which describes a particular application’s characteristics (MPKI

and memory stall time fraction) and the memory latency associated with the selected voltage

level. To generate the data samples, we run a total of 27 workloads across 8 different voltage

levels that range from 1.35V to 0.90V, at a 50mV step (see Section 7.5.1 for our methodology).

In total, we generate 216 data samples for finding the coefficients (i.e., α and β values) in our

model. To avoid overfitting the model, we use the scikit-learn machine learning toolkit [118]

to perform cross-validation, which randomly splits the data samples into a training set (151

samples) and a test set (65 samples). To assess the fit of the model, we use a common

metric, root-mean-square error (RMSE), which is 2.8 and 2.5 for the low-MPKI and high-

MPKI pieces of the model, respectively. Furthermore, we calculate the R2 value to be 0.75

and 0.90 for the low-MPKI and high-MPKI models, respectively. Therefore, the RMSE and

R2 metrics indicate that our model provides high accuracy for predicting the performance

loss of applications under different Varray values.

Array Voltage Selection. Using the performance loss predictor, Voltron selects the

minimum value of Varray that satisfies the given user target for performance loss. Algorithm 1

depicts the array voltage selection component of Voltron. The voltage selection algorithm is

executed at periodic intervals throughout the runtime of an application. During each interval,

the application’s memory demand is profiled. At the end of an interval, Voltron uses the

profile to iteratively compare the performance loss target to the predicted performance loss

incurred by each voltage level, starting from a minimum value of 0.90V. Then, Voltron selects

the minimum Varray that does not exceed the performance loss target and uses this selected

Varray as the DRAM supply voltage in the subsequent interval. In our evaluation, we provide

Voltron with a total of 10 voltage levels (every 0.05V step from 0.90V to 1.35V) for selection.

7.4.3. Implementation

Voltron’s two components require modest modifications to different parts of the system.

151

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

Algorithm 1 Array Voltage Selection
1 SelectArrayVoltage(target loss)
2 for each interval . Enter at the end of an interval
3 profile = GetMemoryProfile()
4 NextVarray = 1.35
5 for Varray ← 0.9 to 1.3 . Search for the smallest Varray that satisfies the performance loss target
6 predicted loss = Predict(Latency(Varray), profile.MPKI, profile.StallTime) . Predict

performance loss
7 if predicted loss ≤ target loss then . Compare the predicted loss to the target
8 NextVarray = Varray . Use the current Varray for the next interval
9 break

10 ApplyVoltage(NextVarray) . Apply the new Varray for the next interval

In order to support array voltage scaling, Voltron requires minor changes to the power

delivery network of DIMMs, as commercially-available DIMMs currently use a single supply

voltage for both the DRAM array and the peripheral circuitry. Note that this supply voltage

goes through separate power pins: VDD and VDDQ for the DRAM array and peripheral

circuitry, respectively, on a modern DRAM chip [229]. Therefore, to enable independent

voltage adjustment, we propose to partition the power delivery network on the DIMM into

two domains: one domain to supply only the DRAM array (VDD) and the other domain to

supply only the peripheral circuitry (VDDQ).

Performance-aware voltage control requires (i) performance monitoring hardware that

records the MPKI and memory stall time of each application; and (ii) a control algorithm

block, which predicts the performance loss at different Varray values and accordingly selects

the smallest acceptable Varray. Voltron utilizes the performance counters that exist in most

modern CPUs to perform performance monitoring, thus requiring no additional hardware

overhead. Voltron reads these counter values and feeds them into the array voltage selec-

tion algorithm, which is implemented in the system software layer. Although reading the

performance monitors has a small amount of software overhead, we believe the overhead is

negligible because we do so only at the end of each interval (i.e., every four million cycles in

most of our evaluations; see sensitivity studies in Section 7.5.8).

Voltron periodically executes this performance-aware voltage control mechanism during

the runtime of the target application. During each time interval, Voltron monitors the

152

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

application’s behavior through hardware counters. At the end of an interval, the system

software executes the array voltage selection algorithm to select the predicted Varray and

accordingly adjust the timing parameters stored in the memory controller for activation,

restoration, and precharge. Note that there could be other (e.g., completely hardware-based)

implementations of Voltron. We leave a detailed explanation of different implementations to

future work.

7.5. System Evaluation

In this section, we evaluate the system-level performance and energy impact of Voltron.

We present our evaluation methodology in Section 7.5.1. Next, we study the energy savings

and performance loss when we use array voltage scaling without any control (Section 7.5.2).

We study how performance-aware voltage control delivers overall system energy reduction

with only a modest amount of performance loss (Sections 7.5.3 and 7.5.4). We then evaluate

an enhanced version of Voltron, which exploits spatial error locality (Section 7.5.5). Finally,

Sections 7.5.6 to 7.5.8 present sensitivity studies of Voltron to various system and algorithm

parameters.

7.5.1. Methodology

We evaluate Voltron using Ramulator [167], a detailed and and cycle-accurate open-

source DRAM simulator [1], integrated with a multi-core performance simulator. We model

a low-power mobile system that consists of 4 ARM cores and DDR3L DRAM. Table 7.2

shows our system parameters. Such a system resembles existing commodity devices, such

as the Google Chromebook [93] or the NVIDIA SHIELD tablet [256]. To model power and

energy consumption, we use McPAT [191] for the processor and DRAMPower [53] for the

DRAM-based memory system. We open-source the code of Voltron [2].

Table 7.3 lists the latency values we evaluate for each DRAM array voltage (Varray).

The latency values are obtained from our SPICE model using data from real devices (Sec-

153

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

Processor
4 ARM Cortex-A9 cores [15], 2GHz,
192-entry instruction window

Cache L1: 64KB/core, L2: 512KB/core, L3: 2MB shared

Memory
64/64-entry read/write request queue, FR-FCFS [284, 370]

Controller

DRAM
DDR3L-1600 [134]
2 channels (1 rank and 8 banks per channel)

Table 7.2. Evaluated system configuration.

tion 7.3.2), which is available online [2].7 To account for manufacturing process variation,

we conservatively add in the same latency guardband (i.e., 38%) used by manufacturers at

the nominal voltage level of 1.35V to each of our latency values. We then round up each

latency value to the nearest clock cycle time (i.e., 1.25ns).

Varray tRCD - tRP - tRAS (ns) Varray tRCD - tRP - tRAS (ns)

1.35 13.75 - 13.75 - 36.25 1.10 15.00 - 16.25 - 40.00

1.30 13.75 - 13.75 - 36.25 1.05 16.25 - 17.50 - 41.25

1.25 13.75 - 15.00 - 36.25 1.00 17.50 - 18.75 - 45.00

1.20 13.75 - 15.00 - 37.50 0.95 18.75 - 21.25 - 48.75

1.15 15.00 - 15.00 - 37.50 0.90 21.25 - 26.25 - 52.50

Table 7.3. DRAM latency required for correct operation for each evaluated Varray.

Workloads. We evaluate 27 benchmarks from SPEC CPU2006 [315] and YCSB [64], as

shown in Table 7.4 along with each benchmark’s L3 cache MPKI, i.e., memory intensity. We

use the 27 benchmarks to form homogeneous and heterogeneous multiprogrammed workloads.

For each homogeneous workload, we replicate one of our benchmarks by running one copy on

each core to form a four-core multiprogrammed workload, as done in many past works that

7In this chapter, we do not have experimental data on the restoration latency (tRAS) under reduced-
voltage operation. This is because our reduced-voltage tests access cache lines sequentially from each DRAM
row, and tRAS overlaps with the latency of reading all of the cache lines from the row. Instead of designing
a separate test to measure tRAS, we use our circuit simulation model (Section 7.3.2) to derive tRAS values
for reliable operation under different voltage levels. We leave the thorough experimental evaluation of tRAS
under reduced-voltage operation to future work.

154

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

evaluate multi-core system performance [54, 60, 185, 186, 248, 249, 302, 305]. Evaluating

homogeneous workloads enables easier analysis and understanding of the system. For each

heterogeneous workload, we combine four different benchmarks to create a four-core workload.

We categorize the heterogeneous workloads by varying the fraction of memory-intensive

benchmarks in each workload (0%, 25%, 50%, 75%, and 100%). Each category consists

of 10 workloads, resulting in a total of 50 workloads across all categories. Our simulation

executes at least 500 million instructions on each core. We calculate system energy as the

product of the average dissipated power (from both CPU and DRAM) and the workload

runtime. We measure system performance with the commonly-used weighted speedup (WS)

metric [310], which is a measure of job throughput on a multi-core system [83].

Number Name L3 MPKI Number Name L3 MPKI Number Name L3 MPKI

0 YCSB-a 6.66 9 calculix 0.01 18 milc 27.91
1 YCSB-b 5.95 10 gamess 0.01 19 namd 2.76
2 YCSB-c 5.74 11 gcc 3.20 20 omnetpp 27.87
3 YCSB-d 5.30 12 GemsFDTD 39.17 21 perlbench 0.95
4 YCSB-e 6.07 13 gobmk 3.94 22 povray 0.01
5 astar 3.43 14 h264ref 2.14 23 sjeng 0.73
6 bwaves 19.97 15 hmmer 6.33 24 soplex 64.98
7 bzip2 8.23 16 libquantum 37.95 25 sphinx3 13.59
8 cactusADM 6.79 17 mcf 123.65 26 zeusmp 4.88

Table 7.4. Evaluated benchmarks with their respective L3 MPKI values.

7.5.2. Impact of Array Voltage Scaling

In this section, we evaluate how array voltage scaling (Section 7.4.1) affects the system

energy consumption and application performance of our homogeneous workloads at different

Varray values. We split our discussion into two parts: the results for memory-intensive

workloads (i.e., applications where MPKI ≥ 15 for each core), and the results for non-

memory-intensive workloads.

Memory-Intensive Workloads. Figure 7.12 shows the system performance (WS) loss,

DRAM power reduction, and system energy reduction, compared to a baseline DRAM with

1.35V, when we vary Varray from 1.30V to 0.90V. We make three observations from these

results.

155

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

bwaves Gems libq mcf milc omnetpp soplex AVG
Workload

0
5

10
15
20
25
30

S
ys

te
m

 P
er

fo
rm

an
ce

Lo
ss

 (%
)

1.3V 1.2V 1.1V 1.0V 0.9V

bwaves Gems libq mcf milc omnetpp soplex AVG
Workload

0
5

10
15
20
25
30
35
40

D
R

A
M

 P
ow

er
S

av
in

gs
 (%

)

1.3V 1.2V 1.1V 1.0V 0.9V

bwaves Gems libq mcf milc omnetpp soplex AVG
Workload

0
2
4
6
8

10
12
14

S
ys

te
m

 E
ne

rg
y

S
av

in
gs

 (%
)

1.3V 1.2V 1.1V 1.0V 0.9V

Figure 7.12. System performance loss and energy savings due to array voltage scaling for
memory-intensive workloads.

First, system performance loss increases as we lower Varray, due to the increased DRAM

access latency. However, different workloads experience a different rate of performance loss,

as they tolerate memory latency differently. Among the memory-intensive workloads, mcf

exhibits the lowest performance degradation since it has the highest memory intensity and

high memory-level parallelism, leading to high queuing delays in the memory controller. The

queuing delays and memory-level parallelism hide the longer DRAM access latency more than

in other workloads. Other workloads lose more performance because they are less able to

tolerate/hide the increased latency. Therefore, workloads with very high memory intensity

and memory-level parallelism can be less sensitive to the increased memory latency.

Second, DRAM power savings increase with lower Varray since reducing the DRAM array

voltage decreases both the dynamic and static power components of DRAM. However, sys-

tem energy savings does not monotonically increase with lower Varray. We find that using

Varray=0.9V provides lower system energy savings than using Varray=1.0V, as the processor

156

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

takes much longer to run the applications at Varray=0.9V. In this case, the increase in static

DRAM and CPU energy outweighs the dynamic DRAM energy savings.

Third, reducing Varray leads to a system energy reduction only when the reduction in

DRAM energy outweighs the increase in CPU energy (due to the longer execution time). For

Varray =1.1V, the system energy reduces by an average of 7.6%. Therefore, we conclude that

array voltage scaling is an effective technique that improves system energy consumption,

with a small performance loss, for memory-intensive workloads.

Non-Memory-Intensive Workloads. Table 7.5 summarizes the system performance

loss and energy savings of 20 non-memory-intensive workloads as Varray varies from 1.30V to

0.90V, over the performance and energy consumption under a nominal Varray of 1.35V. Com-

pared to the memory-intensive workloads, non-memory-intensive workloads obtain smaller

system energy savings, as the system energy is dominated by the processor. Although the

workloads are more compute-intensive, lowering Varray does reduce their system energy con-

sumption, by decreasing the energy consumption of DRAM. For example, at 1.2V, array

voltage scaling achieves an overall system energy savings of 2.5% with a performance loss of

only 1.4%.

Varray 1.3V 1.2V 1.1V 1.0V 0.9V

System Performance Loss (%) 0.5 1.4 3.5 7.1 14.2

DRAM Power Savings (%) 3.4 10.4 16.5 22.7 29.0

System Energy Savings (%) 0.8 2.5 3.5 4.0 2.9

Table 7.5. System performance loss and energy savings due to array voltage scaling for
non-memory-intensive workloads.

7.5.3. Effect of Performance-Aware Voltage Control

In this section, we evaluate the effectiveness of our complete proposal for Voltron, which

incorporates our performance-aware voltage control mechanism to drive the array voltage

157

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

scaling component intelligently. The performance-aware voltage control mechanism selects

the lowest voltage level that satisfies the performance loss bound (provided by the user or

system designer) based on our performance model (see Section 7.4.2). We evaluate Voltron

with a target performance loss of 5%. Voltron executes the performance-aware voltage

control mechanism once every four million cycles.8 We quantitatively compare Voltron to

MemDVFS, a dynamic DRAM frequency and voltage scaling mechanism proposed by prior

work [69], which we describe in Section 7.1.2. Similar to the configuration used in the prior

work, we enable MemDVFS to switch dynamically between three frequency steps: 1600, 1333,

and 1066 MT/s, which employ supply voltages of 1.35V, 1.3V, and 1.25V, respectively.

Figure 7.13 shows the system performance (WS) loss, DRAM power savings, and system

energy savings due to MemDVFS and Voltron, compared to a baseline DRAM with a supply

voltage of 1.35V. We show one graph per metric, where each graph uses boxplots to show the

distribution among all workloads. In each graph, we categorize the workloads as either non-

memory-intensive or memory-intensive. Each box illustrates the quartiles of the population,

and the whiskers indicate the minimum and maximum values. The red dot indicates the

mean. We make four major observations.

Non-Intensive Intensive
0
1
2
3
4
5
6

S
ys

te
m

 P
er

fo
rm

an
ce

Lo
ss

 (%
)

MemDVFS Voltron

(a)

Non-Intensive Intensive
0
5

10
15
20
25

D
R

A
M

 P
ow

er
S

av
in

gs
 (%

)

(b)

Non-Intensive Intensive
2
0
2
4
6
8

10
12

S
ys

te
m

 E
ne

rg
y

S
av

in
gs

 (%
)

(c)

Figure 7.13. Performance and energy comparison between Voltron and MemDVFS on
non-memory-intensive and memory-intensive workloads.

First, as shown in Figure 7.13a, Voltron consistently selects a Varray value that satisfies the

performance loss bound of 5% across all workloads. Voltron incurs an average (maximum)

8We evaluate the sensitivity to the frequency at which we execute the mechanism (i.e., the interval length
of Voltron) in Section 7.5.8.

158

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

performance loss of 2.5% (4.4%) and 2.9% (4.1%) for non-memory-intensive and memory-

intensive workloads, respectively. This demonstrates that our performance model enables

Voltron to select a low voltage value that saves energy while bounding performance loss

based on the user’s requirement. We evaluate Voltron with a range of different performance

targets in Section 7.5.7.

Second, MemDVFS has almost zero effect on memory-intensive workloads. This is be-

cause MemDVFS avoids scaling DRAM frequency (and hence voltage) when an application’s

memory bandwidth utilization is above a fixed threshold. Reducing the frequency can re-

sult in a large performance loss since the memory-intensive workloads require high data

throughput. As memory-intensive applications have high memory bandwidth consumption

that easily exceeds the fixed threshold used by MemDVFS, MemDVFS cannot perform fre-

quency and voltage scaling during most of the execution time. These results are consistent

with the results reported in MemDVFS [69]. In contrast, Voltron reduces system energy

(shown in Figure 7.13c) by 7.0% on average for memory-intensive workloads, at the cost of

2.9% system performance loss, which is well within the specified performance loss target of

5% (shown in Figure 7.13a).

Third, both MemDVFS and Voltron reduce the average system energy consumption for

non-memory-intensive workloads. MemDVFS reduces system energy by dynamically scaling

the frequency and voltage of DRAM, which lowers the DRAM power consumption (as shown

in Figure 7.13b). By reducing the DRAM array voltage to a lower value than MemDVFS,

Voltron is able to provide a slightly higher DRAM power and system energy reduction for

non-memory-intensive workloads than MemDVFS.

Fourth, although Voltron reduces the system energy with a small performance loss, the

average system energy efficiency, in terms of performance per watt (not shown in the figure),

still improves by 3.3% and 7.4% for non-memory-intensive and memory-intensive workloads,

respectively, over the baseline. Thus, we demonstrate that Voltron is an effective mechanism

that improves system energy efficiency not only on non-memory-intensive applications, but

159

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

also (especially) on memory-intensive workloads where prior work was unable to do so.

To summarize, across non-memory-intensive and memory-intensive workloads, Voltron

reduces the average system energy consumption by 3.2% and 7.0% while limiting average

system performance loss to only 2.5% and 2.9%, respectively. Voltron ensures that no work-

load loses performance by more than the specified target of 5%. We conclude that Voltron is

an effective DRAM and system energy reduction mechanism that significantly outperforms

prior memory DVFS mechanisms.

7.5.4. System Energy Breakdown

To demonstrate the source of energy savings from Voltron, Figure 7.14 compares the

system energy breakdown of Voltron to the baseline, which operates at the nominal voltage

level of 1.35V. The breakdown shows the average CPU and DRAM energy consumption

across workloads, which are categorized into non-memory-intensive and memory-intensive

workloads. We make two observations from the figure.

Baseline Voltron
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

E
ne

rg
y

(J
)

Non-Memory-Intensive

Baseline Voltron

Memory-Intensive

DRAM Static
DRAM Dynamic
CPU

Figure 7.14. Breakdown of system energy consumption (lower is better).

First, in the non-memory-intensive workloads, the CPU consumes an average of 80%

of the total system energy when the DRAM uses the nominal voltage level. As a result,

Voltron has less potential to reduce the overall system energy as it reduces only the DRAM

energy, which makes up only 20% of the total system energy. Second, DRAM consumes an

average of 53% of the total system energy in the memory-intensive workloads. As a result,

Voltron has a larger room for potential improvement for memory-intensive workloads than for

160

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

non-memory-intensive workloads. Across the memory-intensive workloads, Voltron reduces

the average dynamic and static DRAM energy by 14% and 11%, respectively. However,

Voltron increases the CPU energy consumption by 1.7%, because the application incurs a

small system performance degradation (due to the increased memory access latency), which

is within our 5% performance loss target (as shown in Section 7.5.3). We conclude that

Voltron is effective in reducing DRAM energy, and it is an effective system energy reduction

mechanism, especially when DRAM is a major consumer of energy in the system.

7.5.5. Effect of Exploiting Spatial Locality of Errors

In Section 7.3.3, our experimental results show that errors due to reduced voltage concen-

trate in certain regions, specifically in select DRAM banks for some vendors’ DIMMs. This

implies that when we lower the voltage, only the banks with errors require a higher access

latency to read or write data correctly, whereas error-free banks can be accessed reliably

with the standard latency. Therefore, in this section, we enhance our Voltron mechanism by

exploiting the spatial locality of errors caused by reduced-voltage operations. The key idea

is to dynamically change the access latency on a per-bank basis (i.e., based on the DRAM

banks being accessed) to account for the reliability of each bank. In other words, we would

like to increase the latency only for banks that would otherwise experience errors, and do so

just enough such that these banks operate reliably.

For our evaluation, we model the behavior based on a subset (three) of Vendor C’s

DIMMs, which show that the number of banks with errors increases as we reduce the supply

voltage (Section 7.3.3). We observe that these DIMMs start experiencing errors at 1.1V

using the standard latency values. However, only one bank observes errors when we reduce

the voltage level from 1.15V to 1.1V (i.e., 50mV reduction). We evaluate a conservative

model that increases the number of banks that need higher latency by one for every 50mV

reduction from the nominal voltage of 1.35V. Note that this model is conservative, because we

start increasing the latency when the voltage is reduced to 1.3V, which is much higher than

161

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

the lowest voltage level (1.15V) for which we observe that DIMMs operate reliably without

requiring a latency increase. Based on this conservative model, we choose the banks whose

latencies should increase sequentially starting from the first bank, while the remaining banks

operate at the standard latency. For example, at 1.25V (100mV lower than the nominal

voltage of 1.35V), Voltron needs to increase the latency for the first two out of the eight

banks to ensure reliable operation.

Figure 7.15 compares the system performance and energy efficiency of our bank-error lo-

cality aware version of Voltron (denoted as Voltron+BL) to the previously-evaluated Voltron

mechanism, which is not aware of such locality. By increasing the memory latency for only

a subset of banks at each voltage step, Voltron+BL reduces the average performance loss

from 2.9% to 1.8% and increases the average system energy savings from 7.0% to 7.3%

for memory-intensive workloads, with similar improvements for non-memory-intensive work-

loads. We show that enhancing Voltron by adding awareness of the spatial locality of errors

can further mitigate the latency penalty due to reduced voltage, even with the conserva-

tive bank error locality model we assume and evaluate in this example. We believe that a

mechanism that exploits spatial error locality at a finer granularity could lead to even higher

performance and energy savings, but we leave such an evaluation to future work.

Non-Intensive Intensive
0
1
2
3
4
5

S
ys

te
m

 P
er

fo
rm

an
ce

Lo
ss

 (%
)

Voltron Voltron+BL

Non-Intensive Intensive

2
4
6
8

10

S
ys

te
m

 E
ne

rg
y

S
av

in
gs

 (%
)

Voltron Voltron+BL

Figure 7.15. Performance and energy benefits of exploiting bank-error locality in Voltron
(denoted as Voltron+BL) on non-memory-intensive and memory-intensive workloads.

162

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

7.5.6. Effect on Heterogeneous Workloads

So far, we have evaluated Voltron on homogeneous multi-core workloads, where each

workload consists of the same benchmark running on all cores. In this section, we evaluate

the effect of Voltron on heterogeneous workloads, where each workload consists of different

benchmarks running on each core. We categorize the workloads based on the fraction of

memory-intensive benchmarks in the workload (0%, 25%, 50%, 75%, and 100%). Each

category consists of 10 workloads, resulting in a total of 50 workloads across all categories.

Figure 7.16 shows the system performance loss and energy efficiency improvement (in

terms of performance per watt) with Voltron and with MemDVFS for heterogeneous work-

loads. The error bars indicate the 95% confidence interval across all workloads in the cate-

gory. We make two observations from the figure. First, for each category of the heterogeneous

workloads, Voltron is able to meet the 5% performance loss target on average. However, since

Voltron is not designed to provide a hard performance guarantee for every single workload,

Voltron exceeds the performance loss target for 10 out of the 50 workloads, though it ex-

ceeds the target by only 0.76% on average. Second, the energy efficiency improvement due to

Voltron becomes larger as the memory intensity of the workload increases. This is because

the fraction of system energy coming from memory grows with higher memory intensity,

due to the higher amount of memory traffic. Therefore, the memory energy reduction from

Voltron has a greater impact at the system level with more memory-intensive workloads.

On the other hand, MemDVFS becomes less effective with higher memory intensity, as

the memory bandwidth utilization more frequently exceeds the fixed threshold employed by

MemDVFS. Thus, MemDVFS has a smaller opportunity to scale the frequency and voltage.

We conclude that Voltron is an effective mechanism that can adapt to different applications’

characteristics to improve system energy efficiency.

163

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

0% 25% 50% 75% 100%
Fraction of memory-intensive benchmarks in a workload

0
1
2
3
4
5
6

S
ys

te
m

 P
er

fo
rm

an
ce

Lo
ss

 (%
)

MemDVFS Voltron

0% 25% 50% 75% 100%
Fraction of memory-intensive benchmarks in a workload

0
2
4
6
8

10
12

P
er

f/W
at

t
Im

pr
ov

em
en

t (
%

) MemDVFS Voltron

Figure 7.16. System performance loss and energy efficiency improvement of Voltron and
MemDVFS across 50 different heterogeneous workload mixes.

7.5.7. Effect of Varying the Performance Target

Figure 7.17 shows the performance loss and energy efficiency improvement due to Voltron

as we vary the system performance loss target for both homogeneous and heterogeneous

workloads. For each target, we use a boxplot to show the distribution across all workloads.

In total, we evaluate Voltron on 1001 combinations of workloads and performance targets: 27

homogeneous workloads × 13 targets + 50 heterogeneous workloads × 13 targets. The first

major observation is that Voltron’s performance-aware voltage control mechanism adapts to

different performance targets by dynamically selecting different voltage values at runtime.

Across all 1001 runs, Voltron keeps performance within the performance loss target for

84.5% of them. Even though Voltron cannot enforce a hard performance guarantee for all

workloads, it exceeds the target by only 0.68% on average for those workloads where it does

not strictly meet the target.

Second, system energy efficiency increases with higher performance loss targets, but the

gains plateau at around a target of 10%. Beyond the 10% target, Voltron starts selecting

smaller Varray values (e.g., 0.9V) that result in much higher memory latency, which in turn

increases both the CPU runtime and system energy. In Section 7.5.2, we observed that

employing a Varray value less than 1.0V can result in smaller system energy savings than

using Varray =1.0V.

We conclude that, compared to prior work on memory DVFS, Voltron is a more flexible

mechanism, as it allows the users or system designers to select a performance and energy

trade-off that best suits their target system or applications.

164

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

1 2 3 4 5 6 7 8 9 10 15 20 25

System Performance Loss Target (%)

0
5

10
15
20
25
30

S
ys

te
m

 P
er

fo
rm

an
ce

Lo
ss

 (%
)

1 2 3 4 5 6 7 8 9 10 15 20 25

System Performance Loss Target (%)

0

5

10

15

20
P

er
f/W

at
t I

m
pr

ov
em

en
t (

%
)

Figure 7.17. System performance loss and energy efficiency improvement of Voltron as the
system performance loss target varies.

7.5.8. Sensitivity to the Profile Interval Length

Figure 7.18 shows the average system energy efficiency improvement due to Voltron with

different profile interval lengths measured across 27 homogeneous workloads. As the profile

interval length increases beyond two million cycles, we observe that the energy efficiency

benefit of Voltron starts reducing. This is because longer intervals prevent Voltron from

making faster Varray adjustments based on the collected new profile information. Nonethe-

less, Voltron consistently improves system energy efficiency for all evaluated profile interval

lengths.

0.25 0.5 1 2 4 10 25 50
Profile Interval Length (million cycles)

0
1
2
3
4
5

P
er

f/W
at

t
Im

pr
ov

em
en

t (
%

)

Figure 7.18. Sensitivity of Voltron’s system energy efficiency improvement to profile inter-
val length.

165

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

7.6. Summary

In this chapter, we provide the first experimental study that comprehensively character-

izes and analyzes the behavior of DRAM chips when the supply voltage is reduced below its

nominal value. We demonstrate, using 124 DDR3L DRAM chips, that the DRAM supply

voltage can be reliably reduced to a certain level, beyond which errors arise within the data.

We then experimentally demonstrate the relationship between the supply voltage and the

latency of the fundamental DRAM operations (activation, restoration, and precharge). We

show that bit errors caused by reduced-voltage operation can be eliminated by increasing

the latency of the three fundamental DRAM operations. By changing the memory controller

configuration to allow for the longer latency of these operations, we can thus further lower

the supply voltage without inducing errors in the data. We also experimentally characterize

the relationship between reduced supply voltage and error locations, stored data patterns,

temperature, and data retention.

Based on these observations, we propose and evaluate Voltron, a low-cost energy re-

duction mechanism that reduces DRAM energy without affecting memory data throughput.

Voltron reduces the supply voltage for only the DRAM array, while maintaining the nomi-

nal voltage for the peripheral circuitry to continue operating the memory channel at a high

frequency. Voltron uses a new piecewise linear performance model to find the array supply

voltage that maximizes the system energy reduction within a given performance loss target.

Our experimental evaluations across a wide variety of workloads demonstrate that Voltron

significantly reduces system energy consumption with only very modest performance loss.

166

Appendix

7.A. FPGA Schematic of DRAM Power Pins

Figure 7.A.1 shows a schematic of the DRAM pins that our FPGA board [353] connects

to (see Section 7.2 for our experimental methodology). Since there are a large number of

pins that are used for different purposes (e.g., data address), we zoom in on the right side

of the figure to focus on the power pins that we adjust for our experiments in this chapter.

Power pin numbering information can be found on the datasheets provided by all major

vendors (e.g., [229, 287, 307]). In particular, we tune the VCC1V5 pin on the FPGA, which

is directly connected to all of the VDD and VDDQ pins on the DIMM. The reference voltage

VTTVREF is automatically adjusted by the DRAM to half of VCC1V5.

DIMM

Pin Layout Schematic

Figure 7.A.1. DRAM power pins controlled by the ML605 FPGA board.

7.B. Effect of Data Pattern on Error Rate

As discussed in Section 7.3.1, we do not observe a significant effect of different stored

data patterns on the DRAM error rate when we reduce the supply voltage. Figure 7.B.1

167

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

shows the average bit error rate (BER) of three different data patterns (aa, cc, and ff)

across different supply voltage levels for each vendor. Each data pattern represents the byte

value (shown in hex) that we fill into the DRAM. The error bars indicate the 95% confidence

interval. We make two observations from the figure.

0
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

B
E

R

Vendor A

0
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

B
E

R

Vendor B

1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.25 1.35
Supply Voltage (V)

0
10−9
10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1
100

B
E

R

Vendor C

0xaa
0xcc
0xff

Figure 7.B.1. Effect of stored data pattern on bit error rate (BER) across different supply
voltage levels.

First, the BER increases as we reduce the supply voltage for all three data patterns. We

made a similar observation in Section 7.3.1, which shows that the fraction of errors increases

as the supply voltage drops. We explained our hypothesis on the cause of the errors, and

used both experiments and simulations to test the hypothesis, in Section 7.3.2.

Second, we do not observe a significant difference across the BER values from the three

different data patterns. We attempt to answer the following question: Do different data

patterns induce BER values that are statistically different from each other at each voltage

168

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

level? To answer this, we conduct a one-way ANOVA (analysis of variance) test across the

measured BERs from all three data patterns at each supply voltage level to calculate a p-

value. If the p-value is below 0.05, we can claim that these three data patterns induce a

statistically-significant difference on the error rate. Table 7.B.1 shows the calculated p-value

at each supply voltage level. At certain supply voltage levels, we do not have a p-value listed

(shown as — or 4 in the table), either because there are no errors (indicated as —) or we

cannot reliably access data from the DIMMs even if the access latency is higher than the

standard value (indicated as 4).

Supply Vendor

Voltage A B C

1.305 — — —

1.250 — — 0.000000

1.200 — — 0.029947

1.175 — — 0.856793

1.150 — — 0.872205

1.125 — 0.375906 0.897489

1.100 0.028592 0.375906 0.000000

1.075 0.103073 0.907960 4

1.050 4 0.651482 4

1.025 4 0.025167 4

Table 7.B.1. Calculated p-values from the BERs across three data patterns at each supply
voltage level. A p-value less than 0.05 indicates that the BER is statistically different across
the three data patterns (indicated in bold). — indicates that the BER is zero. 4 indicates
that we cannot reliably access data from the DIMM.

Using the one-way ANOVA test, we find that using different data patterns does not have

a statistically significant (i.e., p-value ≥ 0.05) effect on the error rate at all supply voltage

levels. Significant effects (i.e., p-value < 0.05) occur at 1.100V for Vendor A, at 1.025V for

Vendor B, and at both 1.250V and 1.100V for Vendor C. As a result, our study does not

169

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

provide enough evidence to conclude that using any of the three data patterns (aa, cc, and

ff) induces higher or lower error rates than the other two patterns at reduced voltage levels.

7.C. SPICE Simulation Model

We perform circuit-level SPICE simulations to understand in detail how the DRAM cell

arrays operate at low supply voltage. We model a DRAM cell array in SPICE, and simulate

its behavior for different supply voltages. We have released our SPICE model online [2].

DRAM Cell Array Model. We build a detailed cell array model, as shown in Fig-

ure 7.C.1. In the cell array, the DRAM cells are organized as 512x512 array, which is a

common organization in modern DRAM chips [347]. Each column is vertical, and corre-

sponds to 512 cells sharing a bitline that connects to a sense amplifier. Due to the bitline

wire and the cells that are connected to the bitline, there is parasitic resistance and capaci-

tance on each bitline. Each row consists of 512 cells sharing the same wordline, which also

has parasitic resistance and capacitance. The amount of parasitic resistance and capacitance

on the bitlines and wordlines is a major factor that affects the latency of DRAM operations

accessing a cell array [183, 186].

Sense
Amplifier

Sense Amplifiers

DRAM cell array

...

...

...

...

...

...

512 rows

512 columns

Figure 7.C.1. Our SPICE model schematic of a DRAM cell array.

170

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

Simulation Methodology. We use the LTspice [200] SPICE simulator to perform our

simulations. To find the access latency of the DRAM operations under different supply volt-

ages, we build a DRAM cell array using technology parameters that we derive from a 55 nm

DRAM model [347] and from a 45 nm process technology model [273, 366]. By default, we

assume that the cell capacitance is 24 fF and the bitline capacitance is 144 fF [347]. The

nominal Varray is 1.35V, and we perform simulations to obtain the latency of DRAM oper-

ations at every 25mV step from 1.35V down to 0.9V. The results of our SPICE simulations

are discussed in Section 7.3.1 and 7.3.2.

171

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

7.D. Spatial Distribution of Errors

In this section, we expand upon the spatial locality data presented in Section 7.3.3.

Figures 7.D.1, 7.D.2, and 7.D.3 show the physical locations of errors that occur when the

supply voltage is reduced for a representative DIMM from Vendors A, B, and C, respectively.

At higher voltage levels, even if errors occur, they tend to cluster in certain regions of a

DIMM. However, as we reduce the supply voltage further, the number of errors increases,

and the errors start to spread across the entire DIMM.

0 1 2 3 4 5 6 7

Bank

30

25

20

15

10

5

0

R
ow

 (
00

0s
)

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

ro
w

 w
ith

 >
1­

bi
t e

rr
or

)

|

(a) Supply voltage=1.075V.

0 1 2 3 4 5 6 7

Bank

30

25

20

15

10

5

0

R
ow

 (
00

0s
)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

P
r(

ro
w

 w
ith

 >
1­

bi
t e

rr
or

)

|

(b) Supply voltage=1.1V.

Figure 7.D.1. Probability of error occurrence due to reduced-voltage operation in a DIMM
from Vendor A.

172

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

0 1 2 3 4 5 6 7

Bank

30

25

20

15

10

5

0
R

ow
 (

00
0s

)

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

ro
w

 w
ith

 >
1­

bi
t e

rr
or

)

|

(a) Supply voltage=1.025V.

_

(b) Supply voltage=1.05V.

0 1 2 3 4 5 6 7

Bank

30

25

20

15

10

5

0
R

ow
 (

00
0s

)

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

P
r(

ro
w

 w
ith

 >
1­

bi
t e

rr
or

)

|

(c) Supply voltage=1.1V.

Figure 7.D.2. Probability of error occurrence due to reduced-voltage operation in a DIMM
from Vendor B.

0 1 2 3 4 5 6 7

Bank

30

25

20

15

10

5

0

R
ow

 (
00

0s
)

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

ro
w

 w
ith

 >
1­

bi
t e

rr
or

)

|

(a) Supply voltage=1.1V.

0 1 2 3 4 5 6 7

Bank

30

25

20

15

10

5

0

R
ow

 (
00

0s
)

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

ro
w

 w
ith

 >
1­

bi
t e

rr
or

)

|

(b) Supply voltage=1.15V.

0 1 2 3 4 5 6 7

Bank

30

25

20

15

10

5

0

R
ow

 (
00

0s
)

0.0

0.2

0.4

0.6

0.8

1.0

P
r(

ro
w

 w
ith

 >
1­

bi
t e

rr
or

)

|

(c) Supply voltage=1.2V.

Figure 7.D.3. Probability of error occurrence due to reduced-voltage operation in a DIMM
from Vendor C.

173

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

7.E. Full Information of Every Tested DIMM

Table 7.E.1 lists the parameters of every DRAM module that we evaluate, along with

the Vmin we discovered for each module based on our experimental characterization (Sec-

tion 7.3.1). We provide all results for all DIMMs in our GitHub repository [2].

174

CHAPTER 7. VOLTRON: UNDERSTANDING AND EXPLOITING THE TRADE-OFF
BETWEEN LATENCY AND VOLTAGE IN DRAM

Vendor Module
Date∗ Timing† Organization Chip

(yy-ww) Freq (MT/s) tRCD (ns) tRP (ns) tRAS (ns) Size (GB)‡ Chips? Size (Gb) Pins Die Version§ Vmin (V)◦

A1 15-46 1600 13.75 13.75 35 2 4 4 ×16 B 1.100

A2 15-47 1600 13.75 13.75 35 2 4 4 ×16 B 1.125

A3 15-44 1600 13.75 13.75 35 2 4 4 ×16 F 1.125

A4 16-01 1600 13.75 13.75 35 2 4 4 ×16 F 1.125

A5 16-01 1600 13.75 13.75 35 2 4 4 ×16 F 1.125

A6 16-10 1600 13.75 13.75 35 2 4 4 ×16 F 1.125

A7 16-12 1600 13.75 13.75 35 2 4 4 ×16 F 1.125

A8 16-09 1600 13.75 13.75 35 2 4 4 ×16 F 1.125

A9 16-11 1600 13.75 13.75 35 2 4 4 ×16 F 1.100

A

Total
of
10

DIMMs

A10 16-10 1600 13.75 13.75 35 2 4 4 ×16 F 1.125

B1 14-34 1600 13.75 13.75 35 2 4 4 ×16 Q 1.100

B2 14-34 1600 13.75 13.75 35 2 4 4 ×16 Q 1.150

B3 14-26 1600 13.75 13.75 35 2 4 4 ×16 Q 1.100

B4 14-30 1600 13.75 13.75 35 2 4 4 ×16 Q 1.100

B5 14-34 1600 13.75 13.75 35 2 4 4 ×16 Q 1.125

B6 14-32 1600 13.75 13.75 35 2 4 4 ×16 Q 1.125

B7 14-34 1600 13.75 13.75 35 2 4 4 ×16 Q 1.100

B8 14-30 1600 13.75 13.75 35 2 4 4 ×16 Q 1.125

B9 14-23 1600 13.75 13.75 35 2 4 4 ×16 Q 1.125

B10 14-21 1600 13.75 13.75 35 2 4 4 ×16 Q 1.125

B11 14-31 1600 13.75 13.75 35 2 4 4 ×16 Q 1.100

B

Total
of
12

DIMMs

B12 15-08 1600 13.75 13.75 35 2 4 4 ×16 Q 1.100

C 1 15-33 1600 13.75 13.75 35 2 4 4 ×16 A 1.300

C 2 15-33 1600 13.75 13.75 35 2 4 4 ×16 A 1.250

C 3 15-33 1600 13.75 13.75 35 2 4 4 ×16 A 1.150

C 4 15-33 1600 13.75 13.75 35 2 4 4 ×16 A 1.150

C 5 15-33 1600 13.75 13.75 35 2 4 4 ×16 C 1.300

C 6 15-33 1600 13.75 13.75 35 2 4 4 ×16 C 1.300

C 7 15-33 1600 13.75 13.75 35 2 4 4 ×16 C 1.300

C 8 15-33 1600 13.75 13.75 35 2 4 4 ×16 C 1.250

C

Total
of
9

DIMMs

C 9 15-33 1600 13.75 13.75 35 2 4 4 ×16 C 1.300

∗ The manufacturing date in the format of year-week (yy-ww). For example, 15-01 indicates that the DIMM

was manufactured during the first week of 2015.

† The timing factors associated with each DIMM:

Freq: the channel frequency

tRCD: the minimum required latency for an activate to complete

tRP : the minimum required latency for a precharge to complete

tRAS: the minimum required latency for to restore the charge in an activated row of cells

‡ The maximum DRAM module size supported by our testing platform is 2GB.

? The number of DRAM chips mounted on each DRAM module.

§ The DRAM die versions that are marked on the chip package.

◦ The minimum voltage level that allows error-free operation, as described in Section 7.3.1.

Table 7.E.1. Characteristics of the evaluated DDR3L DIMMs.

175

Chapter 8

Conclusions and Future Directions

Over the past few decades, long DRAM access latency has been a critical bottleneck in

system performance. Increasing core counts and the emergence of increasingly more data-

intensive and latency-critical applications further exacerbate the performance penalty of high

memory latency. Therefore, providing low-latency memory accesses is more critical now

than ever before for achieving high system performance. While certain specialized DRAM

architectures provide low memory latency, they come at a high cost (e.g., 39x higher than the

common DDRx DRAM chips, as described in Chapter 1) with low chip density. As a result,

the goal of this dissertation is to enable low-latency DRAM-based memory systems at low

cost, with a solid understanding of the latency behavior in DRAM based on experimental

characterization on real DRAM chips.

To this end, we propose a series of mechanisms to reduce DRAM access latency at low

cost. First, we propose Lost-Cost Inter-Linked Subarrays (LISA) to enable low-latency,

high-bandwidth inter-subarray connectivity within each bank at a very modest cost of 0.8%

DRAM area overhead. Using this new inter-subarray connection, DRAM can perform inter-

subarray data movement at 26x the bandwidth of a modern 64-bit DDR4-2400 memory

channel. We exploit LISA’s fast inter-subarray movement to propose three new architectural

mechanisms that reduce the latency of two frequently-used system API calls (i.e., memcpy

176

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

and memmove) and the three fundamental DRAM operations, i.e., activation, restoration, and

precharge. We describe and evaluate three such mechanisms in this dissertation: (1) Rapid

Inter-Subarray Copy (RISC), which copies data across subarrays at low latency and low

DRAM energy; (2) Variable Latency (VILLA) DRAM, which reduces the access latency of

frequently-accessed data by caching it in fast subarrays; and (3) Linked Precharge (LIP),

which reduces the precharge latency for a subarray by linking its precharge units with neigh-

boring idle precharge units. Our evaluations show that the three new mechanisms of LISA

significantly improve system performance and energy efficiency when used individually or

together, across a variety of workloads and system configurations.

Second, we mitigate the refresh interference, which incurs long memory latency, by

proposing two access-refresh parallelization mechanisms that enable overlapping more ac-

cesses with refreshes inside DRAM. These two refresh mechanisms are 1) DARP, a new

per-bank refresh scheduling policy that proactively schedules refreshes to banks that are idle

or that are draining writes and 2) SARP, a refresh architecture that enables a bank to serve

memory requests in idle subarrays while other subarrays are being refreshed. DARP intro-

duces minor modifications to only the memory controller, and SARP incurs a very modest

cost of 0.7% DRAM area overhead. Our extensive evaluations on a wide variety of systems

and workloads show that these two mechanisms significantly improve system performance

and outperform state-of-the-art refresh policies. These two techniques together achieve per-

formance close to an idealized system that does not require refresh.

Third, this dissertation provides the first experimental study that comprehensively char-

acterizes and analyzes the latency variation within modern DRAM chips for three fundamen-

tal DRAM operations (activation, precharge, and restoration). We experimentally demon-

strate that significant variation is present across DRAM cells within our tested DRAM chips.

Based on our experimental characterization, we propose a new mechanism, FLY-DRAM,

which exploits the lower latencies of DRAM regions with faster cells by introducing hetero-

geneous timing parameters into the memory controller. We demonstrate that FLY-DRAM

177

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

can greatly reduce DRAM latency, leading to significant system performance improvements

on a variety of workloads.

Finally, for the first time, we perform detailed experimental characterization that studies

the critical relationship between DRAM supply voltage and DRAM access latency in modern

DRAM chips. Our detailed characterization of real commodity DRAM chips demonstrates

that memory access latency reduces with increasing supply voltage. Based on our charac-

terization, we propose Voltron, a new mechanism that improves system energy efficiency by

dynamically adjusting the DRAM supply voltage based on a performance model.

8.1. Summary of Latency Reduction

In this section, we summarize the memory latency reduction due to mechanisms proposed

in this dissertation. In the particular systems that we evaluated in this dissertation, a last-

level cache (LLC) miss generates a DRAM request that requires multiple fundamental DRAM

operations (e.g., activation, restoration, precharge). Our mechanisms focus on improving the

latency of these fundamental DRAM operations after an LLC miss. Note that our proposals

can potentially be applied to different memory technologies in the memory hierarchy, such

as eDRAM (which typically serves as an LLC), providing additional latency benefits.

Specifically, DRAM has five major timing parameters associated with the DRAM op-

erations that are used to access a cache line in a closed row: tRCD, tRAS, tCL, tBL, and

tRP, which are shown in Figure 8.1. Since we have already explained the details of these

timing parameters in Chapter 2, we focus on summarizing the improvements on these timing

parameters due to our proposed techniques in this section.

In this dissertation, our proposals reduce three of the five timing parameters: tRCD, tRAS,

and tRP. These three timing parameters are crucial for systems that generate a large number

of random accesses (e.g., reading buffered network packets) or data dependent accesses (e.g.,

pointer chasing). Since the read timing parameter (tCL) is a DRAM-internal timing that is

determined by a clock inside DRAM, our testing platform does not have the capability to

178

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

READACTIVATE PRECHARGEdata

Time

Figure 8.1. The major timing parameters required to access a cache line in DRAM.

characterize its behavior. We leave the study on tCL to future work. On the other hand, tBL

is determined by the width and frequency of the DRAM channel, which is not the focus of

this dissertation. In addition to addressing the three major DRAM timing parameters, our

dissertation also reduces the bulk copy latency and the refresh-induced latency. Table 8.1

lists the quantitative latency improvements due to each of our proposed mechanisms for the

high-density DDRx DRAM chips.

Mechanisms Improved Latency Components Latency (ns) Improvement

LISA-RISC (§4.5) Copy latency of 4KB data 148.5 9.2x

LISA-VILLA (§4.6) tRCD/tRAS/tRP 7.5/13/8.5 1.8x/2.7x/1.5x

LISA-LIP (§4.7) tRP 5 2.6x

FLY-DRAM (§6.6.1) tRCD/tRAS/tRP 7.5/27/7.5 1.8x/1.3x/1.8x

DSARP (§5.2)
Avg. latency of read requests

199/200/202 1.2x/1.3x/1.5x
for 8/16/32Gb DRAM chips

Table 8.1. Summary of latency improvements due to our proposed mechanisms.

The three mechanisms built on top of LISA reduce various latency components. First,

Rapid Inter-Subarray Copy (RISC) significantly reduces the bulk copy latency between

subarrays by 9.2x. Second, Variable Latency (VILLA) DRAM reduces the access latency

(i.e., tRCD, tRAS, and tRP) of frequently-accessed data by caching it in fast subarrays with

shorter bitlines. Third, LIP reduces the precharge latency of every subarray by 2.6x. LIP

connects two precharge units of adjacent subarrays together using LISA to accelerate the

179

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

precharge operation. In total, the three LISA mechanisms together incur a small DRAM

chip area overhead of 2.4%.

Flexible-Latency (FLY) DRAM reduces the three major timing parameters by exploiting

our experimental observation on latency variation within commodity DDR3 DRAM chips.

The key idea of FLY-DRAM is to determine the shortest reliable access latency of each

DRAM region, and to use the memory controller to apply that latency to the corresponding

DRAM region at runtime. Overall, FLY-DRAM reduces the latency of tRCD/tRAS/tRP by

1.8x/1.3x/1.8x for accesses to those DRAM regions without slow cells. FLY-DRAM does not

require any modification to the DRAM chips since it leverages the innate latency behavior

that varies across DRAM cells within the same DRAM chip.

To address the refresh-induced latency, DSARP mitigates refresh latency by parallelizing

refresh operations with memory accesses within the DRAM chip. As a result, DSARP re-

duces the average latency of read requests across 100 different 8-core workloads by 1.2x/1.3x/1.5x

for 8/16/32Gb DRAM chips. DSARP incurs a low DRAM chip area overhead of 0.7%.

We conclude that our dissertation enables significant latency improvements at very low

cost in high-density DRAM chips by augmenting DRAM architecture with simple and low-

cost features, and developing a better understanding of manufactured DRAM chips.

8.2. Future Research Directions

This dissertation opens up several avenues of future research directions. In this section,

we describe several directions that can tackle other problems related to memory systems

based on the ideas and approaches proposed in this dissertation.

8.2.1. Enabling LISA to Perform 1-to-N Memory Copy or Move Operations

A typical memcpy or memmove call only allows the data to be copied from one source

location to one destination location. To copy or move data from one source location to

multiple different destinations, repeated calls are required. The problem is that such repeated

180

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

calls incur long latency and high bandwidth consumption. In Chapter 4, we propose to use

the LISA substrate to accelerate memcpy and memmove in DRAM without the intervention

of CPU. One potential application that can be enabled by LISA is performing memcpy or

memmove from one source location to multiple destinations completely in DRAM without

requiring multiple calls of these operations.

By using LISA, we observe that moving data from the source subarray to the destination

subarray latches the source row’s data in all the intermediate subarrays’ row buffer. As a

result, activating these intermediate subarrays would copy their row buffers’ data into the

specified row. By extending LISA to perform multi-point (1-to-N) copy or move operations,

we can significantly increase system performance of several commonly-used system opera-

tions. For example, forking multiple child processes can utilize 1-to-N copy operations to

copy those memory regions that are likely to be modified by the children.

8.2.2. In-Memory Computation with LISA

One important requirement of efficient in-memory computation is being able to move

data from its stored location to the computation units with very low latency and energy.

In Chapter 4, we discussed the benefits of using LISA to extend the data range of in-

memory bitwise operations. We believe using the LISA substrate can enable a new in-

memory computation framework. The idea is to add a small computation unit inside each

or a subset of banks, and connect these computation units to the neighboring subarrays

which store the data. Doing so allows the system to utilize LISA to move bulk data from

the subarrays to the computation under low latency with low area overhead.

Two potential types of computation units to add are bitwise shifters and ripple-carry

adders since simple integer addition and bitwise shifting between two arrays of data are

common operations in many applications. One key challenge of adding computation units

would be fitting each single unit that processes a single bit within a pitch of DRAM array’s

column. For example, a single-bit shifter requires 12 transistors which is much bigger than a

181

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

sense amplifier (4 transistors). This implementation overhead can restrict the computation

to process data at the granularity of a row size. Nonetheless, this general in-memory com-

putation framework still has the potential to enable simple filtering operations in memory

to provide high system performance or energy efficiency at low cost.

8.2.3. Extending LISA to Non-Volatile Memory

In this dissertation, we only focus on the DRAM technology. A class of emerging memory

technology is non-volatile memory (NVM), which has the capability of retaining data without

power supply. We believe that the LISA substrate can be extended to NVM (e.g., STT-

RAM) since the memory organization of NVM mostly resembles that of DRAM. A potential

application of LISA in NVM is an efficient file copy operation that does not incur costly I/O

data transfer.

8.2.4. Data Prefetching with Variable Latency (VILLA) DRAM

Data prefetching utilizes unused memory bandwidth to speculatively transfer data from

memory to caches. However, if memory bandwidth is heavily utilized, prefetch requests can

degrade system performance by interfering with demand requests. Therefore, a prefetching

scheme that does not exert pressure on memory channels can potentially attain higher system

performance.

In Section 4.6, we described a new heterogeneous DRAM design, called Variable Latency

(VILLA) DRAM, which introduces fast subarrays in each DRAM bank. VILLA utilizes the

LISA substrate to efficiently transfer row-size data (8KB) from a slow subarray to a fast

subarray without using the memory channel. We believe a new prefetching scheme can be

designed with the VILLA cache by prefetching a whole row of data before demand requests

occur. The primary benefit is that prefetching to VILLA cache does not cause bandwidth

contention. Also, VILLA can increase the prefetch coverage since the prefetching granularity

is large, with hundreds of cache lines.

182

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

8.2.5. Reducing Activation Latency with Error Detection Codes

In Chapter 6, we observed that activation errors (due to reduced activation latency)

are permanent by propagating back into the first accessed column of data. If the errors

were transient, a new mechanism could be devised to read data with aggressively-reduced

activation latency and re-read data when activation errors occur. Activation errors can be

detected using error detection codes. Therefore, this raises a key question: can we modify

the DRAM sensing circuit to make activation errors transient? Answering this question

requires a thorough understanding of the modern DRAM circuit to find out how activation

errors propagate back into DRAM cells.

8.2.6. Avoiding Worst-Case Data Patterns for Higher Reliability

Our experimental characterization in Section 6.3 showed that errors caused by reduced

activation latency are dependent on the stored data pattern. Reading bit 1 is significantly

more reliable than bit 0 at reduced activation latencies. To improve reliability of future

DRAM, a future research direction is to design new encoding scheme that will (1) increase

the number of bit 1 and (2) store the encoding metadata at low cost.

8.3. Final Concluding Remarks

In this dissertation, we highlighted problems that cause or affect long DRAM latency

and presented extensive experimental characterization on studying DRAM latency behavior

in commodity DRAM chips. Overall, we presented four new techniques: 1) LISA, which is

a versatile DRAM substrate that provides fast data movement between subarrays to enable

several low-latency mechanisms, 2) DSARP, which overlaps accesses with refreshes to reduce

refresh-induced latency, 3) FLY-DRAM, which exploits our experimental characterization on

latency variation within a chip to reduce latency to access regions with faster DRAM cells,

and 4) Voltron, which exploits our experimental characterization on the critical relation-

ship between access latency and supply voltage to improve energy efficiency. We conclude

183

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

and hope the proposed low-latency architectural mechanisms and the detailed experimental

characterization on commodity DRAM chips in this dissertation will pave the way for new

research that can develop new mechanisms to improve system performance, energy efficiency,

or reliability of future memory systems.

184

Other Works of the Author

Throughout the course of my Ph.D. study, I have worked on several different topics with

many fellow graduate students from CMU and collaborators from other institutions. In this

chapter, I would like to acknowledge these works.

In the early years of my Ph.D., I worked on a number of projects on networks-on-chip

(NoCs). In collaboration with Rachata Ausavarungnirun, Chris Fallin, and others, we have

contributed to a new congestion control algorithm (HAT [58]), a new router architecture

(MinBD [85]), and a new hierarchical ring design (HiRD [17]). We show that these new

techniques can significantly improve the energy efficiency of NoCs.

Another topic that I have developed an interest and worked on was memory scheduling

policy for heterogeneous processors that consist of conventional CPU cores and other types

of accelerators. In collaboration with Rachata Ausavarungnirun and Lavanya Subramanian,

we have developed a new memory scheduler, SMS [16], that improves system performance

and fairness of a CPU-GPU processor by reducing the application interference between CPU

and GPU. I have also contributed to a memory scheduler that targets another type of het-

erogeneous processor that consists of conventional CPU cores and hardware accelerators for

image processing and recognition. In collaboration with Hiroyuki Usui and Lavanya Subra-

manian, we have developed a memory scheduler, DASH [342], that enables the accelerators

to meet their deadlines while attaining high system performance.

In collaboration with Hasan Hassan, I have worked on developing a DRAM-testing in-

frastructure, SoftMC [106], that has facilitated my research on DRAM characterization and

185

CHAPTER 8. CONCLUSIONS AND FUTURE DIRECTIONS

other works. In collaboration with Donghyuk Lee, I have contributed to another low DRAM

latency architecture, AL-DRAM [185], that adaptively adjusts latency of DRAM based on

the ambient temperature.

Finally, we have released the simulators used for these different works on GitHub. The

simulators that I contributed to are as follows: (1) NoCulator for NoCs evaluation, (2)

Ramulator (in C and C#) for memory projects, and (3) SoftMC, which is an FPGA-based

memory controller design, for DRAM characterization. The source code is available on

GitHub at https://github.com/CMU-SAFARI.

186

https://github.com/CMU-SAFARI

Bibliography

[1] Ramulator. https://github.com/CMU-SAFARI/ramulator, 2015.

[2] DRAM Voltage Study. https://github.com/CMU-SAFARI/DRAM-Voltage-Study, 2017.

[3] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. W. Keckler. Page Placement
Strategies for GPUs Within Heterogeneous Memory Systems. In ASPLOS, 2015.

[4] A. Agrawal, A. Ansari, and J. Torrellas. Mosaic: Exploiting the spatial locality of process
variation to reduce refresh energy in on-chip eDRAM modules. In HPCA, 2014.

[5] A. Agrawal et al. Refrint: Intelligent Refresh to Minimize Power in On-Chip Multiprocessor
Cache Hierarchies. In HPCA, 2013.

[6] A. Agrawal, M. O’Connor, E. Bolotin, N. Chatterjee, J. Emer, and S. Keckler. CLARA:
Circular Linked-List Auto and Self Refresh Architecture. In MEMSYS, 2016.

[7] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi. A scalable processing-in-memory accelerator
for parallel graph processing. In ISCA, 2015.

[8] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. Pim-enabled instructions: A low-overhead, locality-
aware processing-in-memory architecture. In ISCA, 2015.

[9] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S. Schreiber. Improving System
Energy Efficiency with Memory Rank Subsetting. TACO, 9(1):4:1–4:28, 2012.

[10] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi. Multicore DIMM: an Energy Efficient
Memory Module with Independently Controlled DRAMs. CAL, 2009.

[11] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood. DBMSs on a Modern Processor:
Where Does Time Go? In VLDB, 1999.

[12] B. Akin, F. Franchetti, and J. C. Hoe. Data Reorganization in Memory Using 3D-stacked
DRAM. In ISCA, 2015.

[13] A. R. Alameldeen and D. A. Wood. Interactions Between Compression and Prefetching in
Chip Multiprocessors. In HPCA, 2007.

[14] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing Router Buffers. In SIGCOMM, 2004.

[15] ARM Ltd. Cortex-A9 Processor. https://www.arm.com/products/processors/cortex-a/
cortex-a9.php.

187

https://github.com/CMU-SAFARI/ramulator
https://github.com/CMU-SAFARI/DRAM-Voltage-Study
https://www.arm.com/products/processors/cortex-a/cortex-a9.php
https://www.arm.com/products/processors/cortex-a/cortex-a9.php

BIBLIOGRAPHY

[16] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H. Loh, and O. Mutlu. Staged
memory scheduling: Achieving high performance and scalability in heterogeneous systems.
In ISCA, 2012.

[17] R. Ausavarungnirun, C. Fallin, X. Yu, K. K. W. Chang, G. Nazario, R. Das, G. H. Loh, and
O. Mutlu. Design and evaluation of hierarchical rings with deflection routing. In SBAC-PAD,
2014.

[18] R. Ausavarungnirun, S. Ghose, O. Kayran, G. H. Loh, C. R. Das, M. T. Kandemir, and
O. Mutlu. Exploiting Inter-Warp Heterogeneity to Improve GPGPU Performance. In PACT,
2015.

[19] J. L. Autran, P. Roche, S. Sauze, G. Gasiot, D. Munteanu, P. Loaiza, M. Zampaolo, and
J. Borel. Altitude and Underground Real-Time SER Characterization of CMOS 65 nm
SRAM. IEEE TNS, 56(4):2258–2266, 2009.

[20] A. J. Awan, M. Brorsson, V. Vlassov, and E. Ayguade. Performance Characterization of
In-Memory Data Analytics on a Modern Cloud Server. In BDCloud, 2015.

[21] A. J. Awan, M. Brorsson, V. Vlassov, and E. Ayguade. Micro-Architectural Characterization
of Apache Spark on Batch and Stream Processing Workloads. In BDCloud, 2016.

[22] O. O. Babarinsa and S. Idreos. Jafar: Near-data processing for databases. In SIGMOD, 2015.

[23] S. Baek, S. Cho, and R. Melhem. Refresh now and then. IEEE TC, 63(12):3114–3126, 2014.

[24] J.-L. Baer and T.-F. Chen. Effective Hardware-Based Data Prefetching for High-Performance
Processors. IEEE TC, 44(5):609–623, 1995.

[25] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, G. R. Goodson, and
B. Schroeder. An analysis of data corruption in the storage stack. TOS, 4(3):8, 2008.

[26] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and J. Schindler. An analysis of latent
sector errors in disk drives. In SIGMETRICS, 2007.

[27] R. J. Baker. CMOS Circuit Design, Layout, and Simulation. Wiley-IEEE Press, 2010.

[28] H. Bauer, S. Burghardt, S. Tandon, and F. Thalmayr. Memory: Are challenges ahead?,
March 2016.

[29] R. Begum, D. Werner, M. Hempstead, G. Prasad, and G. Challen. Energy-Performance
Trade-offs on Energy-Constrained Devices with Multi-component DVFS. In IISWC, 2015.

[30] I. Bhati, Z. Chishti, and B. Jacob. Coordinated refresh: Energy efficient techniques for
DRAM refresh scheduling. In ISLPED, 2013.

[31] I. Bhati, Z. Chishti, S.-L. Lu, and B. Jacob. Flexible auto-refresh: Enabling scalable and
energy-efficient dram refresh reductions. In ISCA, 2015.

[32] A. Bhattacharjee and M. Martonosi. Thread Criticality Predictors for Dynamic Performance,
Power, and Resource Management in Chip Multiprocessors. In ISCA, 2009.

188

BIBLIOGRAPHY

[33] S. Blagodurov, S. Zhuralev, M. Dashti, and A. Fedorova. A Case for NUMA-Aware Con-
tention Management on Multicore Systems. In USENIX ATC, 2011.

[34] B. H. Bloom. Space/Time Tradeoffs in Hash Coding with Allowable Errors. CACM, July
1970.

[35] P. A. Boncz, S. Manegold, and M. L. Kersten. Database Architecture Optimized for the New
Bottleneck: Memory Access. In VLDB, 1999.

[36] A. Boroumand, S. Ghose, B. Lucia, K. Hsieh, K. Malladi, H. Zheng, and O. Mutlu. Lazypim:
An efficient cache coherence mechanism for processing-in-memory. CAL, 2016.

[37] Cadence Design Systems, Inc. Spectre Circuit Simulator. http://www.cadence.com/

products/rf/spectre_circuit/pages/default.aspx.

[38] Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, and E. F. Haratsch. Vulnerabilities in MLC
NAND Flash Memory Programming: Experimental Analysis, Exploits, and Mitigation Tech-
niques. In HPCA, 2017.

[39] Y. Cai, E. F. Haratsch, M. McCartney, and K. Mai. FPGA-Based Solid-State Drive Proto-
typing Platform. In FCCM, 2011.

[40] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai. Error Patterns in MLC NAND Flash Memory:
Measurement, Characterization, and Analysis. In DATE, 2012.

[41] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai. Threshold Voltage Distribution in MLC
NAND Flash Memory: Characterization, Analysis, and Modeling. In DATE, 2013.

[42] Y. Cai, Y. Luo, S. Ghose, E. F. Haratsch, K. Mai, and O. Mutlu. Read Disturb Errors in
MLC NAND Flash Memory: Characterization and Mitigation. In DSN, 2015.

[43] Y. Cai, Y. Luo, E. F. Haratsch, K. Mai, and O. Mutlu. Data Retention in MLC NAND Flash
Memory: Characterization, Optimization, and Recovery. In HPCA, 2015.

[44] Y. Cai, O. Mutlu, E. F. Haratsch, and K. Mai. Program Interference in MLC NAND Flash
Memory: Characterization, Modeling, and Mitigation. In ICCD, 2013.

[45] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and K. Mai. Flash Correct
and Refresh: Retention Aware Management for Increased Lifetime. In ICCD, 2012.

[46] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. Unsal, and K. Mai. Error Analysis
and Retention-Aware Error Management for NAND Flash Memory. In ITJ, 2013.

[47] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, O. Unsal, A. Cristal, and K. Mai. Neighbor-cell
assisted error correction for mlc nand flash memories. In SIGMETRICS, 2014.

[48] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A Study of Integrated Prefetching and Caching
Strategies. In SIGMETRICS, 1995.

[49] J. Carter, W. Hsieh, L. Stoller, M. Swanson, L. Zhang, E. Brunvand, A. Davis, C.-C. Kuo,
R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama. Impulse: building a smarter
memory controller. In HPCA, 1999.

189

http://www.cadence.com/products/rf/spectre_circuit/pages/default.aspx
http://www.cadence.com/products/rf/spectre_circuit/pages/default.aspx

BIBLIOGRAPHY

[50] K. Chakraborty and P. Mazumder. Fault-Tolerance and Reliability Techniques for High-
Density Random-Access Memories. Prentice Hall, 2002.

[51] R. Chandra, S. Devine, B. Verghese, A. Gupta, and M. Rosenblum. Scheduling and Page
Migration for Multiprocessor Compute Servers. In ASPLOS, 1994.

[52] K. Chandrasekar, S. Goossens, C. Weis, M. Koedam, B. Akesson, N. Wehn, and K. Goossens.
Exploiting Expendable Process-Margins in DRAMs for Run-Time Performance Optimization.
In DATE, 2014.

[53] K. Chandrasekar, C. Weis, Y. Li, S. Goossens, M. Jung, O. Naji, B. Akesson, N. Wehn,
and K. Goossens. DRAMPower: Open-source DRAM Power & Energy Estimation Tool.
http://www.drampower.info.

[54] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pekhimenko,
S. Khan, and O. Mutlu. Understanding Latency Variation in Modern DRAM Chips: Exper-
imental Characterization, Analysis, and Optimization. In SIGMETRICS, 2016.

[55] K. K. Chang, D. Lee, Z. Chishti, A. Alameldeen, C. Wilkerson, Y. Kim, and O. Mutlu.
Improving DRAM Performance by Parallelizing Refreshes with Accesses. In HPCA, 2014.

[56] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu. Low-Cost Inter-
Linked Subarrays (LISA): A New DRAM Substrate with Higher Connectivity. Technical
report, Carnegie Mellon Univ., SAFARI Research Group, 2016.

[57] K. K. Chang, P. J. Nair, D. Lee, S. Ghose, M. K. Qureshi, and O. Mutlu. Low-Cost
Inter-Linked Subarrays (LISA): Enabling Fast Inter-Subarray Data Movement in DRAM.
In HPCA, 2016.

[58] K. K.-W. Chang, R. Ausavarungnirun, C. Fallin, and O. Mutlu. HAT: Heterogeneous Adap-
tive Throttling for On-Chip Networks. In SBAC-PAD, 2012.

[59] N. Chatterjee, N. Muralimanohar, R. Balasubramonian, A. Davis, and N. P. Jouppi. Staged
reads: Mitigating the impact of DRAM writes on DRAM reads. In HPCA, 2012.

[60] N. Chatterjee, M. Shevgoor, R. Balasubramonian, A. Davis, Z. Fang, R. Illikkal, and R. Iyer.
Leveraging heterogeneity in dram main memories to accelerate critical word access. In MI-
CRO, 2012.

[61] R. Clapp, M. Dimitrov, K. Kumar, V. Viswanathan, and T. Willhalm. Quantifying the
performance impact of memory latency and bandwidth for big data workloads. In IISWC,
2015.

[62] CMU SAFARI Research Group. https://github.com/CMU-SAFARI.

[63] R. Cooksey, S. Jourdan, and D. Grunwald. A Stateless, Content-directed Data Prefetching
Mechanism. In ASPLOS, 2002.

[64] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking Cloud
Serving Systems with YCSB. In SOCC, 2010.

190

http://www.drampower.info
https://github.com/CMU-SAFARI

BIBLIOGRAPHY

[65] F. Dahlgren, M. Dubois, and P. Stenström. Sequential hardware prefetching in shared-
memory multiprocessors. IEEE TPDS, 6(7):733–746, 1995.

[66] R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi. Application-to-core
mapping policies to reduce memory system interference in multi-core systems. In HPCA,
2013.

[67] R. Das, O. Mutlu, T. Moscibroda, and C. Das. Application-aware prioritization mechanisms
for on-chip networks. In MICRO, 2009.

[68] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. AéRgia: Exploiting Packet Latency Slack
in On-chip Networks. In ISCA, 2010.

[69] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu. Memory Power Manage-
ment via Dynamic Voltage/Frequency Scaling. In ICAC, 2011.

[70] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini. CoScale: Coordi-
nating CPU and Memory System DVFS in Server Systems. In MICRO, 2012.

[71] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini. MultiScale: Memory
System DVFS with Multiple Memory Controllers. In ISLPED, 2012.

[72] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini. MemScale: Active Low-
power Modes for Main Memory. In ASPLOS, 2011.

[73] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc. Design of
ion-implanted MOSFET’s with very small physical dimensions. IEEE JSSC, 9(5):256–268,
1974.

[74] Digi-Key. http://www.digikey.com.

[75] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin, C. Chen,
C. W. Kang, I. Kim, and G. Daglikoca. The Architecture of the DIVA Processing-in-memory
Chip. In ICS, 2002.

[76] K. Du Bois, S. Eyerman, J. B. Sartor, and L. Eeckhout. Criticality Stacks: Identifying
Critical Threads in Parallel Programs Using Synchronization Behavior. In ISCA, 2013.

[77] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness via Source Throttling: A
Configurable and High-performance Fairness Substrate for Multi-core Memory Systems. In
ASPLOS, 2010.

[78] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Prefetch-aware shared resource manage-
ment for multi-core systems. In ISCA, 2011.

[79] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu, and Y. N. Patt.
Parallel application memory scheduling. In MICRO, 2011.

[80] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt. Coordinated control of multiple prefetchers
in multi-core systems. In MICRO, 2009.

[81] E. Ebrahimi, O. Mutlu, and Y. N. Patt. Techniques for bandwidth-efficient prefetching of
linked data structures in hybrid prefetching systems. In HPCA, 2009.

191

http://www.digikey.com

BIBLIOGRAPHY

[82] N. El-Sayed, I. A. Stefanovici, G. Amvrosiadis, A. A. Hwang, and B. Schroeder. Temperature
Management in Data Centers: Why Some (Might) Like It Hot. In SIGMETRICS, 2012.

[83] S. Eyerman and L. Eeckhout. System-Level Performance Metrics for Multiprogram Work-
loads. IEEE Micro, 2008.

[84] C. Fallin, C. Craik, and O. Mutlu. CHIPPER: A Low-complexity Bufferless Deflection Router.
In HPCA, 2011.

[85] C. Fallin, G. Nazario, X. Yu, K. Chang, R. Ausavarungnirun, and O. Mutlu. MinBD:
Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect. In NOCS, 2012.

[86] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim. Nda: Near-dram acceleration
architecture leveraging commodity dram devices and standard memory modules. In HPCA,
2015.

[87] B. B. Fraguela, J. Renau, P. Feautrier, D. Padua, and J. Torrellas. Programming the
FlexRAM Parallel Intelligent Memory System. In PPoPP, 2003.

[88] M. Gao, G. Ayers, and C. Kozyrakis. Practical near-data processing for in-memory analytics
frameworks. In PACT, 2015.

[89] M. Gao and C. Kozyrakis. HRL: Efficient and flexible reconfigurable logic for near-data
processing. In HPCA, 2016.

[90] S. Ghose, H. Lee, and J. F. Mart́ınez. Improving Memory Scheduling via Processor-Side Load
Criticality Information. In ISCA, 2013.

[91] A. Glew. MLP Yes! ILP No! Memory Level Parallelism, or, Why I No Longer Worry About
IPC. In Proc. of the ASPLOS Wild and Crazy Ideas Session, San Jose, CA, October 1997.

[92] M. Gokhale, B. Holmes, and K. Iobst. Processing in memory: the Terasys massively parallel
PIM array. Computer, 28(4):23–31, 1995.

[93] Google. Chromebook. https://www.google.com/chromebook/.

[94] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Express Cube Topologies for on-Chip
Interconnects. In HPCA, 2009.

[95] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu. Kilo-NOC: A Heterogeneous Network-
on-chip Architecture for Scalability and Service Guarantees. In ISCA, 2011.

[96] B. Grot, S. W. Keckler, and O. Mutlu. Preemptive Virtual Clock: A flexible, efficient, and
cost-effective QOS scheme for networks-on-chip. In MICRO, 2009.

[97] M. Gschwind. Chip Multiprocessing and the Cell Broadband Engine. In CF, 2006.

[98] J. Gummaraju, M. Erez, J. Coburn, M. Rosenblum, and W. J. Dally. Architectural Support
for the Stream Execution Model on General-Purpose Processors. In PACT, 2007.

[99] Q. Guo, N. Alachiotis, B. Akin, F. Sadi, G. Xu, T.-M. Low, L. Pileggi, J. C. Hoe, and
F. Franchetti. 3D-Stacked Memory-Side Acceleration: Accelerator and System Design. In
WONDP, 2014.

192

https://www.google.com/chromebook/

BIBLIOGRAPHY

[100] M. Halpern, Y. Zhu, and V. J. Reddi. Mobile CPU’s rise to power: Quantifying the impact
of generational mobile CPU design trends on performance, energy, and user satisfaction. In
HPCA, 2016.

[101] T. Hamamoto, S. Sugiura, and S. Sawada. On the Retention Time Distribution of Dynamic
Random Access Memory (DRAM). In IEEE TED, 1998.

[102] C. A. Hart. CDRAM in a Unified Memory Architecture. In Intl. Computer Conference, 1994.

[103] M. Hashemi, Khubaib, E. Ebrahimi, O. Mutlu, and Y. N. Patt. Accelerating Dependent
Cache Misses with an Enhanced Memory Controller. In ISCA, 2016.

[104] M. Hashemi, O. Mutlu, and Y. N. Patt. Continuous runahead: Transparent hardware accel-
eration for memory intensive workloads. In MICRO, 2016.

[105] H. Hassan et al. ChargeCache: Reducing DRAM Latency by Exploiting Row Access Locality.
In HPCA, 2016.

[106] H. Hassan et al. SoftMC: A Flexible and Practical Open-Source Infrastructure for Enabling
Experimental DRAM Studies. In HPCA, 2017.

[107] C. Hermsmeyer, H. Song, R. Schlenk, R. Gemelli, and S. Bunse. Towards 100G Packet
Processing: Challenges and Technologies. Bell Lab. Tech. J., 14(2):57–79, 2009.

[108] E. Herrero, J. Gonzalez, R. Canal, and D. Tullsen. Thread row buffers: Improving mem-
ory performance isolation and throughput in multiprogrammed environments. IEEE TC,
62(9):1879–1892, 2013.

[109] H. Hidaka, Y. Matsuda, M. Asakura, and K. Fujishima. The Cache DRAM Architecture.
IEEE Micro, 1990.

[110] M. Hoseinzadeh, M. Arjomand, and H. Sarbazi-Azad. SPCM: The Striped Phase Change
Memory. TACO, 12(4):38:1–38:25, 2015.

[111] HPC Challenge. RandomAccess. http://icl.cs.utk.edu/hpcc.

[112] K. Hsieh, E. Ebrahim, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar, O. Mutlu,
and S. W. Keckler. Transparent Offloading and Mapping (TOM): Enabling Programmer-
Transparent Near-Data Processing in GPU Systems. In ISCA, 2016.

[113] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand, S. Ghose, and O. Mutlu.
Accelerating pointer chasing in 3D-stacked memory: Challenges, mechanisms, evaluation. In
ICCD, 2016.

[114] W.-C. Hsu and J. E. Smith. Performance of Cached DRAM Organizations in Vector Super-
computers. In ISCA, 1993.

[115] I. Hur and C. Lin. Adaptive history-based memory schedulers. In MICRO, 2004.

[116] I. Hur and C. Lin. Memory prefetching using adaptive stream detection. In MICRO, 2006.

193

BIBLIOGRAPHY

[117] A. A. Hwang, I. A. Stefanovici, and B. Schroeder. Cosmic Rays Don’t Strike Twice: Under-
standing the Nature of DRAM Errors and the Implications for System Design. In ASPLOS,
2012.

[118] INRIA. scikit-learn. http://scikit-learn.org/stable/index.html.

[119] T. Instrument. USB Interface Adapter EVM. http://www.ti.com/tool/usb-to-gpio.

[120] Intel Corp. Intel®I/O Acceleration Technology. http://www.intel.com/content/www/us/
en/wireless-network/accel-technology.html.

[121] Intel Corp. Intel 64 and IA-32 Architectures Optimization Reference Manual, 2012.

[122] E. Ipek, O. Mutlu, J. F. Mart́ınez, and R. Caruana. Self-optimizing memory controllers: A
reinforcement learning approach. In ISCA, 2008.

[123] C. Isen and L. John. ESKIMO - energy savings using semantic knowledge of inconsequential
memory occupancy for DRAM subsystem. In MICRO, 2009.

[124] Y. Ishii, K. Hosokawa, M. Inaba, and K. Hiraki. High performance memory access scheduling
using compute-phase prediction and writeback-refresh overlap. In JILP Memory Scheduling
Championship, 2012.

[125] ITRS. International technology roadmap for semiconductors executive summary. http:

//www.itrs.net/Links/2011ITRS/2011Chapters/2011ExecSum.pdf, 2011.

[126] ITRS. http://www.itrs.net/ITRS1999-2014Mtgs,Presentations&Links/2013ITRS/

2013Tables/FEP_2013Tables.xlsx, 2013.

[127] ITRS. http://www.itrs.net/ITRS1999-2014Mtgs,Presentations&Links/2013ITRS/

2013Tables/Interconnect_2013Tables.xlsx, 2013.

[128] M. Jacobsen, D. Richmond, M. Hogains, and R. Kastner. RIFFA 2.1: A Reusable Integration
Framework for FPGA Accelerators. RTS, 2015.

[129] JEDEC. DDR2 SDRAM Standard, 2009.

[130] JEDEC. DDR3 SDRAM Standard, 2010.

[131] JEDEC. Standard No. 21-C. Annex K: Serial Presence Detect (SPD) for DDR3 SDRAM
Modules, 2011.

[132] JEDEC. DDR4 SDRAM Standard, 2012.

[133] JEDEC. Low Power Double Data Rate 3 (LPDDR3), 2012.

[134] JEDEC. Addendum No.1 to JESD79-3 - 1.35V DDR3L-800, DDR3L-1066, DDR3L-1333,
DDR3L-1600, and DDR3L-1866, 2013.

[135] L. Jiang, B. Zhao, Y. Zhang, J. Yang, and B. R. Childers. Improving Write Operations in
MLC Phase Change Memory. In HPCA, 2012.

194

http://scikit-learn.org/stable/index.html
http://www.ti.com/tool/usb-to-gpio
http://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
http://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
http://www.itrs.net/Links/2011ITRS/2011Chapters/2011ExecSum.pdf
http://www.itrs.net/Links/2011ITRS/2011Chapters/2011ExecSum.pdf
http://www.itrs.net/ITRS 1999-2014 Mtgs, Presentations & Links/2013ITRS/2013Tables/FEP_2013Tables.xlsx
http://www.itrs.net/ITRS 1999-2014 Mtgs, Presentations & Links/2013ITRS/2013Tables/FEP_2013Tables.xlsx
http://www.itrs.net/ITRS 1999-2014 Mtgs, Presentations & Links/2013ITRS/2013Tables/Interconnect_2013Tables.xlsx
http://www.itrs.net/ITRS 1999-2014 Mtgs, Presentations & Links/2013ITRS/2013Tables/Interconnect_2013Tables.xlsx

BIBLIOGRAPHY

[136] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell, Y. Solihin, and
R. Balasubramonian. CHOP: Adaptive Filter-Based DRAM Caching for CMP Server Plat-
forms. In HPCA, 2010.

[137] X. Jiang, Y. Solihin, L. Zhao, and R. Iyer. Architecture Support for Improving Bulk Memory
Copying and Initialization Performance. In PACT, 2009.

[138] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt. Bottleneck Identification and Schedul-
ing in Multithreaded Applications. In ASPLOS, 2012.

[139] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt. Utility-based Acceleration of Multi-
threaded Applications on Asymmetric CMPs. In ISCA, 2013.

[140] A. Jog, O. Kayıran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das.
Orchestrated Scheduling and Prefetching for GPGPUs. In ISCA, 2013.

[141] A. Jog, O. Kayıran, N. C. Nachiappan, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer,
and C. R. Das. OWL: Cooperative Thread Array Aware Scheduling Techniques for Improving
GPGPU Performance. In ASPLOS, 2013.

[142] A. Jog, O. Kayiran, A. Pattnaik, M. T. Kandemir, O. Mutlu, R. Iyer, and C. R. Das.
Exploiting Core Criticality for Enhanced GPU Performance. In SIGMETRICS, 2016.

[143] D. Joseph and D. Grunwald. Prefetching Using Markov Predictors. In ISCA, 1997.

[144] N. P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers. In ISCA, 1990.

[145] M. Jung, D. M. Mathew, É. F. Zulian, C. Weis, and N. Wehn. A New Bank Sensitive
DRAMPower Model for Efficient Design Space Exploration. In PATMOS, 2016.

[146] M. Jung, C. C. Rheinländer, C. Weis, and N. Wehn. Reverse Engineering of DRAMs: Row
Hammer with Crosshair. In MEMSYS, 2016.

[147] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy. Intro-
duction to the Cell Multiprocessor. IBM JRD, 2005.

[148] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-Y. Wei, and
D. Brooks. Profiling a Warehouse-Scale Computer. In ISCA, 2015.

[149] U. Kang, H.-S. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, and J. Choi. Co-
Architecting Controllers and DRAM to Enhance DRAM Process Scaling. In The Memory
Forum, 2014.

[150] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Torrellas.
FlexRAM: toward an advanced intelligent memory system. In ICCD, 1999.

[151] G. Kedem and R. P. Koganti. WCDRAM: A Fully Associative Integrated Cached-DRAM
with Wide Cache Lines. CS-1997-03, Duke, 1997.

[152] B. Keeth and R. J. Baker. DRAM Circuit Design: A Tutorial. Wiley, 2001.

195

BIBLIOGRAPHY

[153] S. Khan et al. PARBOR: An Efficient System-Level Technique to Detect Data Dependent
Failures in DRAM. In DSN, 2016.

[154] S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu. The Efficacy of
Error Mitigation Techniques for DRAM Retention Failures: A Comparative Experimental
Study. In SIGMETRICS, 2014.

[155] S. Khan, C. Wilkerson, D. Lee, A. R. Alameldeen, and O. Mutlu. A Case for Memory
Content-Based Detection and Mitigation of Data-Dependent Failures in DRAM. CAL, 2016.

[156] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding memory
interference delay in cots-based multi-core systems. In RTAS, 2014.

[157] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar. Bounding and
Reducing Memory Interference Delay in COTS-Based Multi-Core Systems. RTS, 52(3):356–
395, 2016.

[158] J. Kim and M. C. Papaefthymiou. Block-based multi-period refresh for energy efficient dy-
namic memory. In ASIC, 2001.

[159] K. Kim. Technology for Sub-50nm DRAM and NAND Flash Manufacturing. IEDM, pages
323–326, December 2005.

[160] K. Kim and J. Lee. A New Investigation of Data Retention Time in Truly Nanoscaled
DRAMs. EDL, 30(8):846–848, 2009.

[161] Y. Kim. Architectural Techniques to Enhance DRAM Scaling. PhD thesis, Carnegie Mellon
University, 2015.

[162] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu.
Flipping Bits in Memory Without Accessing Them: An Experimental Study of DRAM Dis-
turbance Errors. In ISCA, 2014.

[163] Y. Kim et al. Ramulator. https://github.com/CMU-SAFARI/ramulator.

[164] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A Scalable and High-Performance
Scheduling Algorithm for Multiple Memory Controllers. In HPCA, 2010.

[165] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread Cluster Memory Schedul-
ing: Exploiting Differences in Memory Access Behavior. In MICRO, 2010.

[166] Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu. A Case for Exploiting Subarray-Level
Parallelism (SALP) in DRAM. In ISCA, 2012.

[167] Y. Kim, W. Yang, and O. Mutlu. Ramulator: A Fast and Extensible DRAM Simulator.
CAL, 2015.

[168] B. Kleveland, M. J. Miller, R. B. David, J. Patel, R. Chopra, D. K. Sikdar, J. Kumala, S. D.
Vamvakos, M. Morrison, M. Liu, and J. Balachandran. An Intelligent RAM with Serial I/Os.
IEEE Micro, 2013.

[169] P. M. Kogge. EXECUBE-A New Architecture for Scaleable MPPs. In ICPP, 1994.

196

https://github.com/CMU-SAFARI/ramulator

BIBLIOGRAPHY

[170] P. Kongetira, Kathirgamar, and K. Olukotun. Niagara: A 32-Way Multithreaded Sparc
Processor. IEEE Micro, 25(2):21–29, March–April 2005.

[171] D. Kroft. Lockup-Free Instruction Fetch/Prefetch Cache Organization. In ISCA, 1981.

[172] E. Kultursay, M. Kandemir, A. Sivasubramaniam, and O. Mutlu. Evaluating STT-RAM as
an energy-efficient main memory alternative. In ISPASS, 2013.

[173] A.-C. Lai, C. Fide, and B. Falsafi. Dead-block Prediction & Dead-block Correlating Prefetch-
ers. In ISCA, 2001.

[174] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting Phase Change Memory as a
Scalable DRAM Alternative. In ISCA, 2009.

[175] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Phase Change Memory Architecture and the
Quest for Scalability. CACM, 53(7):99–106, 2010.

[176] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and D. Burger. Phase-
Change Technology and the Future of Main Memory. IEEE Micro, 30(1):143–143, 2010.

[177] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-Aware DRAM Controllers. In
MICRO, 2008.

[178] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-Aware Memory Controllers.
IEEE TC, 60(10):1406–1430, 2011.

[179] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N. Patt. DRAM-Aware Last-Level
Cache Writeback: Reducing Write-Caused Interference in Memory Systems. Technical report,
2010.

[180] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt. Improving Memory Bank-Level Paral-
lelism in the Presence of Prefetching. In MICRO, 2009.

[181] D. Lee. Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity. In
arXiv:1604.08041v1, 2016.

[182] D. Lee. Reducing DRAM Latency at Low Cost by Exploiting Heterogeneity. PhD thesis,
Carnegie Mellon University, 2016.

[183] D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko, V. Se-
shadri, and O. Mutlu. Design-Induced Latency Variation in Modern DRAM Chips: Charac-
terization, Analysis, and Latency Reduction Mechanisms. In SIGMETRICS, 2017.

[184] D. Lee, S. M. Khan, L. Subramanian, R. Ausavarungnirun, G. Pekhimenko, V. Seshadri,
S. Ghose, and O. Mutlu. Reducing DRAM latency by exploiting design-induced latency
variation in modern DRAM chips. In arXiv:1610.09604v1, 2016.

[185] D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu. Adaptive-
Latency DRAM: Optimizing DRAM Timing for the Common-Case. In HPCA, 2015.

[186] D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, and O. Mutlu. Tiered-Latency DRAM:
A Low Latency and Low Cost DRAM Architecture. In HPCA, 2013.

197

BIBLIOGRAPHY

[187] D. Lee, G. Pekhimenko, S. M. Khan, S. Ghose, and O. Mutlu. Simultaneous Multi Layer
Access: A High Bandwidth and Low Cost 3D-Stacked Memory Interface. TACO, 2016.

[188] D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu. Decoupled Direct
Memory Access: Isolating CPU and IO Traffic by Leveraging a Dual-Data-Port DRAM. In
PACT, 2015.

[189] E. A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[190] M. M. Lee, J. Kim, D. Abts, M. Marty, and J. W. Lee. Approximating Age-based Arbitration
in On-chip Networks. In PACT, 2010.

[191] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. McPAT:
An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore
Architectures. In MICRO, 2009.

[192] X. Li, M. C. Huang, K. Shen, and L. Chu. A Realistic Evaluation of Memory Hardware
Errors and Software System Susceptibility. In USENIX ATC, 2010.

[193] Y. Li, H. Schneider, F. Schnabel, R. Thewes, and D. Schmitt-Landsiedel. DRAM Yield
Analysis and Optimization by a Statistical Design Approach. In IEEE TCSI, 2011.

[194] Z. Li, F. Wang, D. Feng, Y. Hua, J. Liu, and W. Tong. MaxPB: Accelerating PCM write by
maximizing the power budget utilization. TACO, 13(4):46, 2016.

[195] K.-N. Lim, W.-J. Jang, H.-S. Won, K.-Y. Lee, H. Kim, D.-W. Kim, M.-H. Cho, S.-L. Kim,
J.-H. Kang, K.-W. Park, and B.-T. Jeong. A 1.2V 23nm 6F2 4Gb DDR3 SDRAM with Local-
Bitline Sense Amplifier, Hybrid LIO Sense Amplifier and Dummy-Less Array Architecture.
In ISSCC, 2012.

[196] K.-N. Lim, W.-J. Jang, H.-S. Won, K.-Y. Lee, H. Kim, D.-W. Kim, M.-H. Cho, S.-L. Kim,
J.-H. Kang, K.-W. Park, and B.-T. Jeong. A 1.2V 23nm 6F2 4Gb DDR3 SDRAM With Local-
Bitline Sense Amplifier, Hybrid LIO Sense Amplifier and Dummy-Less Array Architecture.
In ISSCC, 2012.

[197] C. H. Lin, D. Y. Shen, Y. J. Chen, C. L. Yang, and M. Wang. Secret: Selective error
correction for refresh energy reduction in drams. In ICCD, 2012.

[198] J. Lin, Q. Lu, X. Ding, Z. Zhang, and P. Sadayappan. Gaining Insights into Multicore Cache
Partitioning: Bridging the Gap between Simulation and Real Systems. In HPCA, 2008.

[199] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A Unified Graphics
and Computing Architecture. IEEE Micro, 28(2):39–55, 2008.

[200] Linear Technology Corp. LTspice IV. http://www.linear.com/LTspice.

[201] M. H. Lipasti and J. P. Shen. Exceeding the dataflow limit via value prediction. In MICRO,
1996.

[202] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen. Value Locality and Load Value Prediction.
In ASPLOS, 1996.

198

http://www.linear.com/LTspice

BIBLIOGRAPHY

[203] J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu. An Experimental Study of Data
Retention Behavior in Modern DRAM Devices: Implications for Retention Time Profiling
Mechanisms. In ISCA, 2013.

[204] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu. RAIDR: Retention-Aware Intelligent DRAM
Refresh. In ISCA, 2012.

[205] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A Software Memory Partition
Approach for Eliminating Bank-level Interference in Multicore Systems. In PACT, 2012.

[206] L. Liu, Y. Li, Z. Cui, Y. Bao, M. Chen, and C. Wu. Going vertical in memory management:
Handling multiplicity by multi-policy. In ISCA, 2014.

[207] S.-L. Lu, Y.-C. Lin, and C.-L. Yang. Improving DRAM Latency with Dynamic Asymmetric
Subarray. In MICRO, 2015.

[208] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building Customized Program Analysis Tools with Dynamic Instrumen-
tation. In PLDI, 2005.

[209] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and fairness in SMT pro-
cessors. In ISPASS, 2001.

[210] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, and O. Mutlu. Enabling accurate and practical
online flash channel modeling for modern mlc nand flash memory. JSAC, 2016.

[211] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal, J. Liu, B. Khessib,
K. Vaid, and O. Mutlu. Characterizing Application Memory Error Vulnerability to Optimize
Datacenter Cost via Heterogeneous-Reliability Memory. In DSN, 2014.

[212] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz. Smart memories: a
modular reconfigurable architecture. In ISCA, 2000.

[213] J. Maiz, S. Hareland, K. Zhang, and P. Armstrong. Characterization of multi-bit soft error
events in advanced SRAMs. In IEDM, 2003.

[214] Y. Mao, C. Cutler, and R. Morris. Optimizing RAM-latency Dominated Applications. In
APSys, 2013.

[215] J. Marathe and F. Mueller. Hardware Profile-Guided Automatic Page Placement for ccNUMA
Systems. In PPoPP, 2006.

[216] G. Massobrio and P. Antognetti. Semiconductor Device Modeling with SPICE. McGraw-Hill,
1993.

[217] D. M. Mathew, E. F. Zulian, S. Kannoth, M. Jung, C. Weis, and N. Wehn. A Bank-Wise
DRAM Power Model for System Simulations. In RAPIDO, 2017.

[218] J. D. McCalpin. STREAM Benchmark.

[219] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan. Enabling Efficient and Scalable
Hybrid Memories Using Fine-Granularity DRAM Cache Management. CAL, 2012.

199

BIBLIOGRAPHY

[220] J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, and O. Mutlu. A Case for Efficient Hard-
ware/Software Cooperative Management of Storage and Memory. In WEED, 2013.

[221] J. Meza, Q. Wu, S. Kumar, and O. Mutlu. A Large-Scale Study of Flash Memory Failures
in the Field. In SIGMETRICS, 2015.

[222] J. Meza, Q. Wu, S. Kumar, and O. Mutlu. Revisiting Memory Errors in Large-Scale Produc-
tion Data Centers: Analysis and Modeling of New Trends from the Field. In DSN, 2015.

[223] Micron Technology. Calculating Memory System Power for DDR3, 2007.

[224] Micron Technology. 2Gb: x16, x32 Mobile LPDDR2 SDRAM S4, 2010.

[225] Micron Technology. 8Gb: x4, x8 1.5V TwinDie DDR3 SDRAM, 2011.

[226] Micron Technology, Inc. 128Mb: x4, x8, x16 Automotive SDRAM, 1999.

[227] Micron Technology, Inc. 4Gb: x4, x8, x16 DDR3 SDRAM, 2011.

[228] Micron Technology, Inc. 576Mb: x18, x36 RLDRAM3, 2011.

[229] Micron Technology, Inc. 2Gb: x4, x8, x16 DDR3L SDRAM, 2015.

[230] G. E. Moore. Cramming More Components Onto Integrated Circuits. Proceedings of the
IEEE, 86(1):82–85, 1998.

[231] T. Moscibroda and O. Mutlu. Memory Performance Attacks: Denial of Memory Service in
Multi-core Systems. In USENIX Security Symposium, 2007.

[232] T. Moscibroda and O. Mutlu. Distributed Order Scheduling and its Application to Multi-Core
DRAM Controllers. In PODC, 2008.

[233] T. Moscibroda and O. Mutlu. A Case for Bufferless Routing in On-chip Networks. In ISCA,
2009.

[234] J. Mukundan, H. Hunter, K.-h. Kim, J. Stuecheli, and J. F. Mart́ınez. Understanding and
mitigating refresh overheads in high-density DDR4 DRAM systems. In ISCA, 2013.

[235] S. P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Moscibroda. Reducing
Memory Interference in Multicore Systems via Application-aware Memory Channel Parti-
tioning. In MICRO, 2011.

[236] O. Mutlu. Memory Scaling: A Systems Architecture Perspective. IMW, 2013.

[237] O. Mutlu, H. Kim, and Y. N. Patt. Address-value delta (AVD) prediction: increasing the
effectiveness of runahead execution by exploiting regular memory allocation patterns. In
MICRO, 2005.

[238] O. Mutlu, H. Kim, and Y. N. Patt. Techniques for Efficient Processing in Runahead Execution
Engines. In ISCA, 2005.

[239] O. Mutlu, H. Kim, and Y. N. Patt. Efficient Runahead Execution: Power-Efficient Memory
Latency Tolerance. IEEE Micro, 2006.

200

BIBLIOGRAPHY

[240] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access Scheduling for Chip Multipro-
cessors. In MICRO, 2007.

[241] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch Scheduling: Enhancing Both Perfor-
mance and Fairness of Shared DRAM Systems. In ISCA, 2008.

[242] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead Execution: An Alternative to
Very Large Instruction Windows for Out-of-Order Processors. In HPCA, 2003.

[243] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead execution: An effective alter-
native to large instruction windows. IEEE Micro, 23(6):20–25, 2003.

[244] O. Mutlu and L. Subramanian. Research Problems and Opportunities in Memory Systems.
SUPERFRI, 2015.

[245] L. W. Nagel and D. Pederson. SPICE (Simulation Program with Integrated Circuit Em-
phasis). Technical Report UCB/ERL M382, EECS Department, University of California,
Berkeley, 1973.

[246] P. Nair, C.-C. Chou, and M. K. Qureshi. A case for refresh pausing in DRAM memory
systems. In HPCA, 2013.

[247] P. J. Nair, C. Chou, B. Rajendran, and M. K. Qureshi. Reducing read latency of phase
change memory via early read and Turbo Read. In HPCA, 2015.

[248] P. J. Nair, D.-H. Kim, and M. K. Qureshi. ArchShield: Architectural Framework for Assisting
DRAM Scaling by Tolerating High Error Rates. In ISCA, 2013.

[249] P. J. Nair, D. A. Roberts, and M. K. Qureshi. Citadel: Efficiently Protecting Stacked Memory
from Large Granularity Failures. In MICRO, 2014.

[250] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu, and Y. N. Patt.
Improving GPU Performance via Large Warps and Two-Level Warp Scheduling. In MICRO,
2011.

[251] I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield, A. Sivasubramaniam, B. Cutler,
J. Liu, B. Khessib, and K. Vaid. SSD Failures in Datacenters: What? When? And Why? In
SYSTOR, 2016.

[252] S. Nassif. Delay Variability: Sources, Impacts and Trends. In ISSCC, 2000.

[253] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair queuing memory systems. In
MICRO, 2006.

[254] K. J. Nesbit, A. S. Dhodapkar, and J. E. Smith. AC/DC: An Adaptive Data Cache Prefetcher.
In PACT, 2004.

[255] North Carolina State Univ. FreePDK45. http://www.eda.ncsu.edu/wiki/FreePDK.

[256] NVIDIA. SHIELD Tablet. https://www.nvidia.com/en-us/shield/tablet/.

[257] S. O, Y. H. Son, N. S. Kim, and J. H. Ahn. Row-Buffer Decoupling: A Case for Low-Latency
DRAM Microarchitecture. In ISCA, 2014.

201

http://www.eda.ncsu.edu/wiki/FreePDK
https://www.nvidia.com/en-us/shield/tablet/

BIBLIOGRAPHY

[258] T. Ohsawa, K. Kai, and K. Murakami. Optimizing the DRAM Refresh Count for Merged
DRAM/Logic LSIs. In ISLPED, 1998.

[259] M. Onabajo and J. Silva-Martinez. Analog Circuit Design for Process Variation-Resilient
Systems-on-a-Chip. Springer, 2012.

[260] M. Oskin, F. T. Chong, and T. Sherwood. Active pages: a computation model for intelligent
memory. In ISCA, 1998.

[261] J. K. Ousterhout. Why Aren’t Operating Systems Getting Faster as Fast as Hardware? In
USENIX Summer Conf., 1990.

[262] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang. SDF: Software-defined Flash
for Web-scale Internet Storage Systems. In ASPLOS, 2014.

[263] T. Parnell, N. Papandreou, T. Mittelholzer, and H. Pozidis. Modelling of the Threshold
Voltage Distributions of Sub-20nm NAND Flash Memory. In GLOBECOM, 2014.

[264] M. Patel, J. Kim, and O. Mutlu. The Reach Profiler (REAPER): Enabling the Mitigation of
DRAM Retention Failures via Profiling at Aggressive Conditions. In ISCA, 2017.

[265] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pinpointing
Representative Portions of Large Intel Itanium Programs with Dynamic Instrumentation. In
MICRO, 2004.

[266] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas,
and K. Yelick. A case for intelligent ram. IEEE Micro, 17(2):34–44, 1997.

[267] A. Pattnaik, X. Tang, A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, and C. R.
Das. Scheduling Techniques for GPU Architectures with Processing-In-Memory Capabilities.
In PACT, 2016.

[268] I. Paul, W. Huang, M. Arora, and S. Yalamanchili. Harmonia: Balancing Compute and
Memory Power in High-performance GPUs. In ISCA, 2015.

[269] S. Phadke and S. Narayanasamy. MLP aware heterogeneous memory system. In DATE, 2011.

[270] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure Trends in a Large Disk Drive Popula-
tion. In FAST, 2007.

[271] A. Pirovano, A. Redaelli, F. Pellizzer, F. Ottogalli, M. Tosi, D. Ielmini, A. L. Lacaita, and
R. Bez. Reliability study of phase-change nonvolatile memories. IEEE T-DMR, 4(3):422–427,
2004.

[272] J. Poovey et al. DynoGraph. https://github.com/sirpoovey/DynoGraph.

[273] PTM. Predictive technology model.

[274] S. H. Pugsley, J. Jestes, H. Zhang, R. Balasubramonian, V. Srinivasan, A. Buyuktosunoglu,
A. Davis, and F. Li. NDC: Analyzing the impact of 3D-stacked memory+logic devices on
MapReduce workloads. In ISPASS, 2014.

202

https://github.com/sirpoovey/DynoGraph

BIBLIOGRAPHY

[275] M. K. Qureshi, M. M. Franceschini, L. A. Lastras-Montaño, and J. P. Karidis. Morphable
Memory System: A Robust Architecture for Exploiting Multi-level Phase Change Memories.
In ISCA, 2010.

[276] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. S. Jr., and J. Emer. Adaptive Insertion Policies
for High-Performance Caching. In ISCA, 2007.

[277] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali. Enhanc-
ing Lifetime and Security of PCM-based Main Memory with Start-gap Wear Leveling. In
MICRO, 2009.

[278] M. K. Qureshi, D. H. Kim, S. Khan, P. J. Nair, and O. Mutlu. AVATAR: A Variable-
Retention-Time (VRT) Aware Refresh for DRAM Systems. In DSN, 2015.

[279] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable High Performance Main Memory
System Using Phase-change Memory Technology. In ISCA, 2009.

[280] D. Radaelli, H. Puchner, S. Wong, and S. Daniel. Investigation of multi-bit upsets in a 150
nm technology SRAM device. IEEE TNS, 52(6):2433–2437, 2005.

[281] N. Rafique, W. T. Lim, and M. Thottethodi. Effective Management of DRAM Bandwidth
in Multicore Processors. In PACT, 2007.

[282] Rambus. DRAM Power Model, 2010.

[283] L. E. Ramos, E. Gorbatov, and R. Bianchini. Page Placement in Hybrid Memory Systems.
In ICS, 2011.

[284] S. Rixner, W. Dally, U. Kapasi, P. Mattson, and J. Owens. Memory Access Scheduling. In
ISCA, 2000.

[285] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and A. Gupta. The Impact of Archi-
tectural Trends on Operating System Performance. In SOSP, 1995.

[286] P. Rosenfeld, E. Cooper-Balis, and B. Jacob. DRAMSim2: A cycle accurate memory system
simulator. CAL, 2011.

[287] Samsung Electronics Co., Ltd. 2Gb D-die DDR3L SDRAM, 2011.

[288] Y. Sato, T. Suzuki, T. Aikawa, S. Fujioka, W. Fujieda, H. Kobayashi, H. Ikeda, T. Nagasawa,
A. Funyu, Y. Fuji, K. Kawasaki, M. Yamazaki, and M. Taguchi. Fast cycle RAM (FCRAM):
A 20-ns Random Row Access, Pipe-Lined Operating DRAM. In VLSIC, 1998.

[289] Y. Sazeides and J. E. Smith. The Predictability of Data Values. In MICRO, 1997.

[290] B. Schroeder and G. A. Gibson. Disk Failures in the Real World: What Does an MTTF of
1,000,000 Hours Mean to You? In FAST, 2007.

[291] B. Schroeder, R. Lagisetty, and A. Merchant. Flash Reliability in Production: The Expected
and the Unexpected. In FAST, 2016.

[292] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM Errors in the Wild: A Large-Scale
Field Study. In SIGMETRICS, 2009.

203

BIBLIOGRAPHY

[293] S.-Y. Seo. Methods of Copying a Page in a Memory Device and Methods of Managing Pages
in a Memory System. U.S. Patent Application 20140185395, 2014.

[294] V. Seshadri. Simple DRAM and Virtual Memory Abstractions to Enable Highly Efficient
Memory Systems. PhD thesis, Carnegie Mellon University, 2016.

[295] V. Seshadri, A. Bhowmick, O. Mutlu, P. Gibbons, M. Kozuch, and T. Mowry. The Dirty-
Block Index. In ISCA, 2014.

[296] V. Seshadri et al. The Evicted-Address Filter: A Unified Mechanism to Address Both Cache
Pollution and Thrashing. In PACT, 2012.

[297] V. Seshadri, K. Hsieh, A. Boroumand, D. Lee, M. Kozuch, O. Mutlu, P. Gibbons, and
T. Mowry. Fast Bulk Bitwise AND and OR in DRAM. CAL, 2015.

[298] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko, Y. Luo,
O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry. RowClone: Fast and Energy-
Efficient In-DRAM Bulk Data Copy and Initialization. In MICRO, 2013.

[299] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O. Mutlu,
P. B. Gibbons, and T. C. Mowry. Buddy-ram: Improving the performance and efficiency of
bulk bitwise operations using DRAM. In arXiv:1611.09988v1, 2016.

[300] V. Seshadri, T. Mullins, A. Boroumand, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and
T. C. Mowry. Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial
Locality of Non-Unit Strided Accesses. In MICRO, 2015.

[301] V. Seshadri, S. Yedkar, H. Xin, O. Mutlu, P. B. Gibbons, M. A. Kozuch, and T. C. Mowry.
Mitigating Prefetcher-Caused Pollution Using Informed Caching Policies for Prefetched
Blocks. TACO, 11(4):51:1–51:22, 2015.

[302] A. Shafiee, M. Taassori, R. Balasubramonian, and A. Davis. MemZip: Exploring Unconven-
tional Benefits from Memory Compression. In HPCA, 2014.

[303] J. Shao and B. T. Davis. A burst scheduling access reordering mechanism. In HPCA, 2007.

[304] A. Sharifi, E. Kultursay, M. Kandemir, and C. R. Das. Addressing End-to-End Memory
Access Latency in NoC-Based Multicores. In MICRO, 2012.

[305] M. Shevgoor, J.-S. Kim, N. Chatterjee, R. Balasubramonian, A. Davis, and A. N. Udipi.
Quantifying the relationship between the power delivery network and architectural policies
in a 3D-stacked memory device. In MICRO, 2013.

[306] W. Shin, J. Yang, J. Choi, and L.-S. Kim. NUAT: A Non-Uniform Access Time Memory
Controller. In HPCA, 2014.

[307] SK Hynix. DDR3L SDRAM Unbuffered SODIMMs Based on 4Gb A-die, 2014.

[308] B. J. Smith. A pipelined, shared resource MIMD computer. In ICPP, 1978.

[309] B. J. Smith. Architecture and applications of the HEP multiprocessor computer system. In
SPIE, 1981.

204

BIBLIOGRAPHY

[310] A. Snavely and D. Tullsen. Symbiotic Jobscheduling for a Simultaneous Multithreading
Processor. In ASPLOS, 2000.

[311] Y. H. Son, S. O, Y. Ro, J. W. Lee, and J. H. Ahn. Reducing Memory Access Latency with
Asymmetric DRAM Bank Organizations. In ISCA, 2013.

[312] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley, J. Shalf, and
S. Gurumurthi. Memory errors in modern systems: The good, the bad, and the ugly. In
ASPLOS, 2015.

[313] V. Sridharan and D. Liberty. A Study of DRAM Failures in the Field. In SC, 2012.

[314] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback directed prefetching: Improving the
performance and bandwidth-efficiency of hardware prefetchers. In HPCA, 2007.

[315] Standard Performance Evaluation Corp. SPEC CPU2006 Benchmarks.
http://www.spec.org/cpu2006.

[316] H. S. Stone. A Logic-in-Memory Computer. IEEE Transactions on Computers, C-19(1):73–
78, 1970.

[317] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L. K. John. The virtual write queue:
Coordinating DRAM and last-level cache policies. In ISCA, 2010.

[318] J. Stuecheli, D. Kaseridis, H. Hunter, and L. John. Elastic refresh: Techniques to mitigate
refresh penalties in high density memory. In MICRO, 2010.

[319] L. Subramanian. Providing High and Controllable Performance in Multicore Systems Through
Shared Resource Management. PhD thesis, Carnegie Mellon University, 2015.

[320] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu. The Blacklisting Memory
Scheduler: Achieving High Performance and Fairness at Low Cost. In ICCD, 2014.

[321] L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, and O. Mutlu. BLISS: Balancing Perfor-
mance, Fairness and Complexity in Memory Access Scheduling. In IEEE TPDS, 2016.

[322] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O. Mutlu. The Application Slowdown
Model: Quantifying and Controlling the Impact of Inter-application Interference at Shared
Caches and Main Memory. In MICRO, 2015.

[323] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu. Mise: Providing performance
predictability and improving fairness in shared main memory systems. In HPCA, 2013.

[324] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R. Balasubramonian, and A. Davis. Micro-
Pages: Increasing DRAM Efficiency with Locality-Aware Data Placement. In ASPLOS, 2010.

[325] M. A. Suleman, O. Mutlu, J. A. Joao, Khubaib, and Y. N. Patt. Data Marshaling for
Multi-core Architectures. In ISCA, 2010.

[326] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Accelerating Critical Section
Execution with Asymmetric Multi-core Architectures. In ASPLOS, 2009.

205

BIBLIOGRAPHY

[327] V. Sundriyal and M. Sosonkina. Joint frequency scaling of processor and DRAM. The Journal
of Supercomputing, 2016.

[328] Z. Sura, A. Jacob, T. Chen, B. Rosenburg, O. Sallenave, C. Bertolli, S. Antao, J. Brunheroto,
Y. Park, K. O’Brien, and R. Nair. Data access optimization in a processing-in-memory
system. In CF, 2015.

[329] T. Takahashi, T. Sekiguchi, R. Takemura, S. Narui, H. Fujisawa, S. Miyatake, M. Morino,
K. Arai, S. Yamada, S. Shukuri, M. Nakamura, Y. Tadaki, K. Kajigaya, K. Kimura, and
B. Kiyoo Itoh. A Multigigabit DRAM Technology with 6F2 Open-Bitline Cell, Distributed
Overdriven Sensing, and Stacked-Flash Fuse. IEEE JSSC, 2001.

[330] V. K. Tavva, R. Kasha, and M. Mutyam. EFGR: An Enhanced Fine Granularity Refresh
Feature for High-Performance DDR4 DRAM Devices. TACO, 11(3), 2014.

[331] J. E. Thornton. Parallel operation in the Control Data 6600. In Fall Joint Computer Con-
ference, 1964.

[332] B. Thwaites, G. Pekhimenko, H. Esmaeilzadeh, A. Yazdanbakhsh, O. Mutlu, J. Park, G. Mu-
ruru, and T. Mowry. Rollback-free Value Prediction with Approximate Loads. In PACT,
2014.

[333] A. D. Tipton, J. A. Pellish, R. A. Reed, R. D. Schrimpf, R. A. Weller, M. H. Mendenhall,
B. Sierawski, A. K. Sutton, R. M. Diestelhorst, G. Espinel, et al. Multiple-bit upset in 130
nm CMOS technology. IEEE TNS, 53(6):3259–3264, 2006.

[334] C. Toal, D. Burns, K. McLaughlin, S. Sezer, and S. O’Kane. An RLDRAM II Implementation
of a 10Gbps Shared Packet Buffer for Network Processing. In AHS, 2007.

[335] S. O. Toh, Z. Guo, and B. Nikoli. Dynamic SRAM stability characterization in 45nm CMOS.
In VLSIC, 2010.

[336] R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple Arithmetic Units. IBM
Journal, pages 25–33, January 1967.

[337] Y. Tosaka, H. Ehara, M. Igeta, T. Uemura, H. Oka, N. Matsuoka, and K. Hatanaka. Com-
prehensive study of soft errors in advanced CMOS circuits with 90/130 nm technology. In
IEDM, 2004.

[338] Transaction Performance Processing Council. TPC Benchmarks. http://www.tpc.org/.

[339] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous multithreading: Maximizing
on-chip parallelism. In ISCA, 1995.

[340] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis, and N. P.
Jouppi. Rethinking DRAM Design and Organization for Energy-Constrained Multi-Cores.
In ISCA, 2010.

[341] Y. Umuroglu, D. Morrison, and M. Jahre. Hybrid breadth-first search on a single-chip FPGA-
CPU heterogeneous platform. In FPL, 2015.

206

http://www.tpc.org/

BIBLIOGRAPHY

[342] H. Usui, L. Subramanian, K. K.-W. Chang, and O. Mutlu. DASH: Deadline-Aware High-
Performance Memory Scheduler for Heterogeneous Systems with Hardware Accelerators.
TACO, 12(4):65:1–65:28, 2016.

[343] R. Venkatesan, S. Herr, and E. Rotenberg. Retention-aware placement in DRAM (RAPID):
Software methods for quasi-non-volatile DRAM. In HPCA, 2006.

[344] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Operating System Support for Im-
proving Data Locality on CC-NUMA Compute Servers. In ASPLOS, 1996.

[345] N. Vijaykumar, G. Pekhimenko, A. Jog, A. Bhowmick, R. Ausavarungnirun, C. Das, M. Kan-
demir, T. C. Mowry, and O. Mutlu. A Case for Core-Assisted Bottleneck Acceleration in
GPUs: Enabling Flexible Data Compression with Assist Warps. In ISCA, 2015.

[346] A. Vishwanath, V. Sivaraman, Z. Zhao, C. Russell, and M. Thottan. Adapting Router Buffers
for Energy Efficiency. In CoNEXT, 2011.

[347] T. Vogelsang. Understanding the Energy Consumption of Dynamic Random Access Memo-
ries. In MICRO, 2010.

[348] K. Wang and M. Franklin. Highly Accurate Data Value Prediction Using Hybrid Predictors.
In MICRO, 1997.

[349] F. A. Ware and C. Hampel. Improving Power and Data Efficiency with Threaded Memory
Modules. In ICCD, 2006.

[350] S. Wong, F. Duarte, and S. Vassiliadis. A Hardware Cache memcpy Accelerator. In FPT,
2006.

[351] S. L. Xi, O. Babarinsa, M. Athanassoulis, and S. Idreos. Beyond the Wall: Near-Data
Processing for Databases. In DaMoN, 2015.

[352] Xilinx. ML605 Hardware User Guide, Oct. 2012.

[353] Xilinx, Inc. Xilinx XTP052 – ML605 Schematics (Rev D). https://www.xilinx.com/

support/documentation/boards_and_kits/xtp052_ml605_schematics.pdf.

[354] Q. Xu, H. Jeon, and M. Annavaram. Graph processing on GPUs: Where are the bottlenecks?
In IISWC, 2014.

[355] A. Yasin, Y. Ben-Asher, and A. Mendelson. Deep-dive analysis of the data analytics workload
in CloudSuite. In IISWC, 2014.

[356] A. Yazdanbakhsh, G. Pekhimenko, B. Thwaites, H. Esmaeilzadeh, O. Mutlu, and T. C.
Mowry. RFVP: Rollback-Free Value Prediction with Safe-to-Approximate Loads. TACO,
12(4):62:1–62:26, 2016.

[357] H. Yoon, J. Meza, R. Ausavarungnirun, R. Harding, and O. Mutlu. Row Buffer Locality
Aware Caching Policies for Hybrid Memories. In ICCD, 2012.

[358] H. Yoon, J. Meza, N. Muralimanohar, N. P. Jouppi, and O. Mutlu. Efficient Data Mapping
and Buffering Techniques for Multilevel Cell Phase-Change Memories. TACO, 11(4):40:1–
40:25, 2014.

207

https://www.xilinx.com/support/documentation/boards_and_kits/xtp052_ml605_schematics.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/xtp052_ml605_schematics.pdf

BIBLIOGRAPHY

[359] P. J. Zabinski, B. K. Gilbert, and E. S. Daniel. Coming Challenges with Terabit-per-Second
Data Communication. IEEE CSM, 13(3):10–20, 2013.

[360] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Ignatowski. TOP-
PIM: Throughput-oriented Programmable Processing in Memory. In HPDC, 2014.

[361] L. Zhang, Z. Fang, M. Parker, B. K. Mathew, L. Schaelicke, J. B. Carter, W. C. Hsieh, and
S. A. McKee. The Impulse Memory Controller. IEEE TC, 50(11):1117–1132, 2001.

[362] W. Zhang and T. Li. Characterizing and Mitigating the Impact of Process Variations on
Phase Change Based Memory Systems. In MICRO, 2009.

[363] Z. Zhang, W. Xiao, N. Park, and D. J. Lilja. Memory module-level testing and error behaviors
for phase change memory. In ICCD, 2012.

[364] J. Zhao, O. Mutlu, and Y. Xie. Firm: Fair and high-performance memory control for persis-
tent memory systems. In MICRO, 2014.

[365] L. Zhao, R. Iyer, S. Makineni, L. Bhuyan, and D. Newell. Hardware Support for Bulk Data
Movement in Server Platforms. In ICCD, 2005.

[366] W. Zhao and Y. Cao. New generation of predictive technology model for sub-45nm design
exploration. In ISQED, 2006.

[367] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu. Mini-rank: Adaptive DRAM
Architecture for Improving Memory Power Efficiency. In MICRO, 2008.

[368] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu. Memory access scheduling schemes for systems with
multi-core processors. In ICPP, 2008.

[369] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource contention in
multicore processors via scheduling. In ASPLOS, 2010.

[370] W. Zuravleff and T. Robinson. Controller for a Synchronous DRAM That Maximizes
Throughput by Allowing Memory Requests and Commands to Be Issued Out of Order. U.S.
Patent 5630096, 1997.

208

	List of Figures
	List of Tables
	Introduction
	Problem
	Thesis Statement and Overview
	Low-Cost Inter-Linked Subarrays: Enabling Fast Data Movement
	Refresh Parallelization with Memory Accesses
	Understanding and Exploiting Latency Variation Within a DRAM Chip
	Understanding and Exploiting Trade-off Between Latency and Voltage Within a DRAM Chip

	Contributions
	Outline

	Background
	High-Level DRAM System Organization
	Internal DRAM Logical Organization
	Accessing DRAM
	DRAM Refresh
	All-Bank Refresh (REFab)
	Per-Bank Refresh (REFpb)

	Physical Organization of a DRAM Bank:DRAM Subarrays and Open-Bitline Architecture
	DRAM Subarray Operation

	Related Work
	Specialized Low-Latency DRAM Architecture
	Cached DRAM
	Heterogeneous-Latency DRAM
	Spatial Heterogeneity
	Temporal Heterogeneity

	Bulk Data Transfer Mechanisms
	DRAM Refresh Latency Mitigation
	Exploiting DRAM Latency Variation
	In-Memory Computation
	Mitigating Memory Latency via Memory Scheduling
	Improving Parallelism in DRAM to Hide Memory Latency
	Other Prior Works on Mitigating High Memory Latency
	Data Prefetching
	Multithreading
	Processor Architecture Design to Tolerate Memory Latency
	System Software to Mitigate Application Interference
	Reducing Latency of On-Chip Interconnects
	Reducing Latency of Non-Volatile Memory

	Experimental Studies of Memory Chips

	Low-Cost Inter-Linked Subarrays (LISA)
	Motivation: Low Subarray Connectivity Inside DRAM
	Design Overview and Applications of LISA
	DRAM Subarrays
	DRAM Subarray Operation

	Mechanism
	LISA Design in DRAM
	Row Buffer Movement (RBM) Through LISA
	Row Buffer Movement (RBM) Latency
	Handling Process and Temperature Variation

	Application 1: Rapid Inter-Subarray Bulk Data Copying (LISA-RISC)
	Shortcomings of the State-of-the-Art
	In-DRAM Rapid Inter-Subarray Copy (RISC)
	Detailed Operation of LISA-RISC
	Data Coherence
	Comparison of Copy Techniques

	Application 2: In-DRAM Caching Using Heterogeneous Subarrays (LISA-VILLA)
	Shortcomings of the State-of-the-Art
	Variable Latency (VILLA) DRAM
	Caching Policy for LISA-VILLA

	Application 3: Fast Precharge Using Linked Precharge Units (LISA-LIP)
	Hardware Cost
	Die Area Overhead
	Handling Repaired Rows

	Methodology
	Evaluation
	Bulk Memory Copy
	In-DRAM Caching with LISA-VILLA
	Accelerated Precharge with LISA-LIP
	Putting Everything Together
	Sensitivity to System Configuration
	Effect of Copy Distance on LISA-RISC

	Other Applications Enabled by LISA
	Summary

	Mitigating Refresh Latency by Parallelizing Accesses with Refreshes
	Motivation
	Increasing Performance Impact of Refresh
	Our Goal

	Mechanisms
	Overview
	Dynamic Access Refresh Parallelization
	Subarray Access Refresh Parallelization

	Methodology
	Evaluation
	Multi-Core Results
	Effect of tFAW
	Effect of Subarrays-Per-Bank
	Effect of Refresh Interval
	DDR4 Fine Granularity Refresh

	Summary

	FLY-DRAM: Understanding and Exploiting Latency Variation in DRAM
	Motivation
	Experimental Methodology
	DRAM Test
	Characterized DRAM Modules

	Activation Latency Analysis
	Behavior of Activation Errors
	FPGA Test for Activation Latency
	Activation Error Distribution
	Impact of Data Pattern
	Effect of Temperature
	Spatial Locality of Activation Errors
	Density of Activation Errors
	Effect of Error Correction Codes

	Precharge Latency Analysis
	Behavior of Precharge Errors
	FPGA Test for Precharge Latency
	Precharge Error Distribution
	Spatial Locality of Precharge Errors

	Restoration Latency Analysis
	Impact of Reduced tRAS
	Test Methodology and Results

	Exploiting Latency Variation
	Flexible-Latency DRAM
	Discussion: DRAM-Aware Page Allocator

	Summary

	Voltron: Understanding and Exploiting the Trade-off Between Latency and Voltage in DRAM
	Background and Motivation
	Effect of DRAM Voltage and Frequency on Power Consumption
	Memory Voltage and Frequency Scaling
	Our Goal

	Experimental Methodology
	Characterization of DRAM Under Reduced Voltage
	DRAM Reliability as Supply Voltage Decreases
	Longer Access Latency Mitigates Voltage-Induced Errors
	Spatial Locality of Errors
	Density of Errors
	Effect of Temperature
	Impact on Refresh Rate
	Summary

	Voltron: Reducing DRAM Energy Without Sacrificing Memory Throughout
	Array Voltage Scaling
	Performance-Aware Voltage Control
	Implementation

	System Evaluation
	Methodology
	Impact of Array Voltage Scaling
	Effect of Performance-Aware Voltage Control
	System Energy Breakdown
	Effect of Exploiting Spatial Locality of Errors
	Effect on Heterogeneous Workloads
	Effect of Varying the Performance Target
	Sensitivity to the Profile Interval Length

	Summary

	Appendices for Chapter 7
	FPGA Schematic of DRAM Power Pins
	Effect of Data Pattern on Error Rate
	SPICE Simulation Model
	Spatial Distribution of Errors
	Full Information of Every Tested DIMM

	Conclusions and Future Directions
	Summary of Latency Reduction
	Future Research Directions
	Enabling LISA to Perform 1-to-N Memory Copy or Move Operations
	In-Memory Computation with LISA
	Extending LISA to Non-Volatile Memory
	Data Prefetching with Variable Latency (VILLA) DRAM
	Reducing Activation Latency with Error Detection Codes
	Avoiding Worst-Case Data Patterns for Higher Reliability

	Final Concluding Remarks

	Bibliography

