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mixed-effects group fMRI



C. Maumet and T. Nichols          OHBM 2018           2

Inference
Detections 

(subject-level)

Inference
Detections 

(subject-level)

Inference
Detections 

(study-level)

Inference
Detections 

(study-level)

Meta-analytic levelGroup levelSubject level

Pre-processed 
dataS

ub
je

ct
 1

Model fitting 
and estimation Contrast and 

std. err. maps

Model fitting 
and estimationPre-processed 

dataS
ub

je
ct

 n

Contrast and 
std. err. maps

… Model fitting 
and estimation Contrast and 

std. err. maps

Pre-processed 
dataS

ub
je

ct
 1

Model fitting 
and estimation Contrast and 

std. err. maps

Model fitting 
and estimationPre-processed 

dataS
ub

je
ct

 n

Contrast and 
std. err. maps

… Model fitting 
and estimation Contrast and 

std. err. maps

Model fitting 
and estimation Contrast and 

std. err. maps

Inference

Detections 
(meta-analysis)

What is the link between meta-analysis and 
group fMRI?



Methods
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GLM for group fMRI

Y = Xβ + ε

where ε ∼ Ｎ(0, ᶦ2 + σ2
i
 )

N-vector of subject-level 
contrast estimates

Design matrix Random error

Between-subject 
variance

Variance of subject i's 
contrast
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Solving the GLM: OLS vs. FGLS

Y = Xβ + ε, where ε ∼ Ｎ(0, ᶦ2 + σ2
i
 )

Assuming ᶦ2 + σ2
i
 constant, Ordinary Least Squares (OLS) 

gives the following group statistic estimate:

where            is the usual one-sample variance.

Under H
0
: 
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Y = Xβ + ε, where ε ∼ Ｎ(0, ᶦ2 + σ2
i
 )

Feasible Generalised Least Squares (FGLS) gives the 

following group statistic estimate:

  where

where        is the study i’s sampling variance.

In large samples, under H
0
:  

Solving the GLM: OLS vs. FGLS
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Solving the GLM: OLS vs. FGLS

Statistic Assumptions Implementation

OLS

ᶦ2 + σ2
i
 constant                      'One-sample t-test' (default)

                     'Mixed effects: Simple OLS'

            
                     3dttest++

FGLS

Large samples                      'Mixed-effects analysis'

                     'Mixed effects: FLAME1' (default)

                      
                     3dMEMA



C. Maumet and T. Nichols          OHBM 2018           8

Invalid method

Method: Monte Carlo simulations

Goal: assess the validity of OLS and FGLS under

violation of  their assumption
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"True" -log10 
P-values computed 
empirically by MC 
simulations

Difference between 
sorted observed 
P-values (computed 
by OLS or FGLS) and 
sorted expected 
-log10 P-values.

If the method is exact 
then the difference will lie 
in the 95% CI (grey 
ribbon) around zero 
(black line).

Conservative method
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And in meta-analyses?

Question: Does this issue also affects 
group fMRI studies?

σ2
i

Between-study 
variance ᶦ2 = 1

Heteroscedasticity
max(σ2

i) = α min(σ2
i) and 

mean(σ2
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Simulations
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Between- and within-subject variances 
in real fMRI data

Study # subjects # outliers Mean ᶦ2 Mean σ2
in Max/Min 

σ2
in ratio

Mean 
σ2

out

01 25 2 354 100 4 282

02 25 1 680 100 5 317

03 20 2 800 100 5 281

04 20 3 886 9 347

05 9 0 1802 3 -

... ... ... ... ... ... ...

Summary 0-15% 18-170 100 2-9 164-300

21 studies investigating pain



C. Maumet and T. Nichols          OHBM 2018           12

N ∈ { 25, 50 } subjects
ᶦ2 = 1 and mean(σ2

in) = 1
Two settings for the within-subject variance:

• max(σ2
in) / min(σ2

in) ∈ { 1, 2, 4, 6, 8, 10 }
• 16% of outliers with  σ2

out∈ { 0.25, 0.5, 2, 4 }

106 realisations

Simulation setup



Results
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Varying levels of heteroscedasticity
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In the presence of outliers
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Real data
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Conclusions
FGLS can be invalid is small samples, 

especially in the presence of strong 

heteroscedasticity or ‘low variance’ 

outliers.

RFX remained valid in all studied settings. 
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