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Abstract
Surface wear is estimated to result in upwards of 70% of material failure in the US with

costs of over 300 billion dollars per annum. Tribology is defined as the study of friction,
lubrication, and wear, and while all three of these sub-disciplines stem from interactions at the
asperity scale, studies involving the mechanics of industrial interfaces will often ignore their
interdependence. This work makes use of a synthesis of in situ tribological data with ex situ
surface characterization, in order to elucidate the mechanics of friction and wear in a number of
industrial interfaces each with its own objective. Section 1 focuses on using this technique to
elucidate the mechanics of protective solid lubricants. Detailed experiments were conducted to
study the formation and depletion of self-replenishing powder transfer films in both single
component and composite forms. Based on the synthesis of ex situ and in situ findings, the
primary wear mechanisms at each interface were described as abrasive and transfer film
phenomena were described in a new way using a quasi-hydrodynamic approach. In addition to
transfer films, hard tribological coatings were also studied for their ability to mitigate impact
damage. Coefficient of restitution results were combined with investigations ex situ of the impact
sites and compared to nanoindentation results of coating properties. Through synthesizing these
results, it was found that more elastic coatings worked best on stiffer substrates, while harder,

more brittle coatings worked best on soft substrates. In Section 2, the Section 1 findings were

crucial in the development of a numerical model which was presented using abrasive
formulations for the wear of soft surfaces and preferential patterning. Quantitative agreement for
modeling friction and surface evolution, as well as qualitative agreement for wear trends were
provided for experimental values from previous studies. In Section 3, this technique was used to
study powder rheology as it applies to flows in the additive manufacturing process. Rheological
characterization was conducted for stress states akin to spreading and hopper flow on an FT4
powder rheometer, while morphological characterization was performed in collaboration with
the Material Science Department at Carnegie Mellon using scanning electron microscopy. By
analyzing the results in concert, it was found that morphology proved to be more important than
material type or manufacturing process in governing flow properties. Spreading-like states were
found to be most sensitive to factors affecting particle rolling, while hopper-like states were

found to be most sensitive to factors affecting particle cohesion. In Section 4, the interactions of
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single cutters were explored for rock substrates found during drilling for oil, gas, and geothermal
heat. Experiments were conducted first for O1 tool steel buttons on Carthage Marble. Cutting
with this type cutter was found to produce rough surfaces which would lead to an increase of
friction force in the cut. Experiments for dry and lubricated cutting with industrial polycrystalline
diamond compact cutters were performed for Carthage Marble, Nugget Sandstone, and Mancos
Shale on a retrofitted UMT-3 Tribometer from Bruker. Cutting was found to produce smoother
topographies and a decrease in friction. Lubricants were found to possess both a lubricating
effect which would reduce COF as well as a weakening effect which would enhance rate of
penetration and the load at which cutting would commence. Scraping was found to produce a
scalloped topography similar to “bit-bounce.” Industrial drilling fluids or “muds” were also
evaluated and ranked using a figure of merit proposed within this work. By normalization with
the dry scenario, muds performance in terms of friction and rate of penetration could be
combined to provide ranking of a given mud for a given rock type. Overall it was found that
implementing both in situ tribological data and ex situ surface metrology was an extremely
effective way to recreate the mechanics present in industrial interfaces which are difficult to

observe otherwise.
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Chapter 1: Background

Friction and wear have been studied extensively in a plethora of industrial scenarios, and
while they are generally thought to be related at the asperity scale of contact, they are rarely
coupled together. This fact stems from the complexity in their interdependence, as well as the
existence of a myriad of different mechanisms for each. One of the most useful techniques for
elucidating friction and wear is tribometry, in which pin-on-disc type tests are used to monitor
friction and wear in situ between two materials, sometimes three if an interfacial medium or
lubricant is also desired. In addition to in situ tribometry, ex situ analysis can often provide
qualitative or sometimes quantitative insights into the dynamics of an interface. Both of these
techniques are used to elucidate information about the progress of an interaction, yet often they
are not used in conjunction. This work aims to utilize a synthesis of both in situ tribological data
with ex situ surface metrology, in which direct inferences from both are used to construct a post-
mortem analysis of the interfacial mechanics of different industrial applications.

1.1 Solid Lubrication Studies

In Tribology (the study of friction, lubrication, and wear), it is generally understood that
harsher operating conditions of state-of-the art technologies will continue to render many oil-
based lubricants unfit for long term tribological performance [1]. This difficulty with oils
manifests itself primarily as a tendency to dissociate at temperatures above 500°C [1]. As a
result, many solid powder lubricants such as graphite and Molybdenum Disulfide(MoS,) were
developed as high temperature alternatives with ultra-low coefficients of friction (u), as low as
0.02 [1, 2]. In both cases, the solid lubricants are thought to accommodate velocity by the

interfacial shearing of lamellae which comprise their molecular arrangements. There have been



extensive studies in characterizing the low friction performance of both these solid lubricants for
many different applications [3-14].

After the establishment of these two powders as viable options for high-temperature
lubrication, a plethora of other conditions soon followed which were well-suited for the
employment of solid lubricants. These conditions include cryo-temperature environments such as
those found in superconductors [5, 14], vacuum contacts found extensively in space applications
[3, 14, 15], low-speed or reciprocating sliding contacts for start-up and shut-down [16], and
finally, electrically conductive contacts such as those for the rail-gun or power generation
industries [2, 6, 17]. In each of these situations, the nature of liquid Ilubricants prohibits their
implementation due to issues such as freezing, outgassing, loss of load carrying capacity due to
low speeds, and lack of electrical conductivity.

While many solid lubricants have been shown to be suitable replacements for oils, they
are not without their own environmental constraints. For example, graphite performs well in
moist environments, while MoS; prefers arid interfaces. This key difference stems from the
chemistry of the respective lamellae, where H,O molecules will be absorbed. While beneficial to
graphite in providing hydrogen planes on which to slide, the hydrogen molecules actually
prevent the smooth sliding of sulfur planes through the tribo-oxidation of dangling bonds in
MoS; films [8, 9]. These types of differences have led to a restricted list of solid lubricant
applications, while continuing to stress the need for further study to widen their robustness.

One novel method of applying these solid lubricants in situ (i.e., during sliding) is
through film transfer [4, 10, 11, 15, 18, 19]. For transfer film lubrication, the potential to
lubricate contacts in situ through an inherently self-replenishing process exists, as long as the

transfer film is continuously deposited. In order to accomplish this, a compacted powder pellet is



often used to transfer a thin lubricant film onto a moving substrate wherever uncovered asperities
exist [4, 10, 18, 19]. An intuitive schematic in which the disk asperities are exaggerated is shown

for this system in fig 1.
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Figure 1: Schematicof the self-replenishing system

In many ways this will be similar to burnishing but without the need for smart systems or
human intervention. This type of lubrication system also has a large amount of flexibility in
specialty contacts because a variety of solid lubricant powders can be employed in pellet form.
For instance, the potential to lubricate sliding contacts has already been explored with graphite
powders, which are inherently conductive [2]. However, though graphite is known to possess
moderate conductivity, its reliance on moist environments, may make it a poor choice for
electrical contacts. These kinds of specific drawbacks which adversely affect the performance of
homogenous transfer film lubricant in broad applications are quite common. For instance, tribo-
oxidation, prohibits transfer film deposition by hardening the pellet through excessive polishing
and creates higher friction during sliding [18]. In addition, powders made from multiple

components in order to provide multi-functional capabilities can suffer from separation effects



and loss of frictional performance if the particle sizes aren’t closely matched due to size
segregation [6, 20-22].

Another popular technique for improving friction and wear performance through solid
lubrication is by deposition of hard tribological coatings such as Diamond like Carbon (DLC)
and Chromium Nitride (CrN). Due to their extremely hard nature, these films can often be used
to mitigate other forms of damage such as that from impact, denting, micro-fracture, and spalling
[1, 3, 18, 23, 24]. Generally these coatings are expected to work either by the formation of films
stemming their matrix on the surface, or through the fact that they provide material properties
such as extremely high hardness or enhanced elasticity [14, 23] yet are still prone to failure
before the desired lifetime of the sliding interface due to wear mechanisms like abrasion,
spalling, and delamination [1, 3-6, 10, 14-16, 18, 19, 23, 25-27]. Despite the success of these
forms of lubrication, particularly in specifically tailored environments, their own breakdowns
emphasize the need for in-depth study of their own protective mechanics. It is the goal of this
section of the thesis to further explore the ability of solid lubricants in terms of both transfer
films and hard tribological coatings to enhance the tribological performance of various industrial
contacts.

1.2 Research Objective 1

To investigate the protective mechanics of single component transfer film, composite
transfer film, and hard coating solid lubrication systems through a synthesis of in situ
tribological data with ex situ surface metrology

In terms of the work involving solid lubricant mechanics, experiments were performed
for different single and multi-component transfer films, as well as different hard tribological

coatings. The transfer films were comprised of MoS,, MoS,/Cu, and MoS,/ Sb,03 and applied



using an in situ self-replenishing slider pad-on-disk tribometer which will be explained below.
The films were studied on both tungsten carbide as well as stainless steel substrates with a focus
on film deposition, depletion, oxidation, conductivity, as well as friction and wear reduction of
the interface.

Tribo-Testing. Analyses of the deposition mechanics, friction, and wear of the transfer
film solid lubricants were carried out on a pellet-on-disk with slider pad tribometer outfitted for
self-replenishing in situ powder lubrication shown in fig. 2. The friction loads at both the solid
lubricant compact as well as the slider-pad interface are measured using load cells, while the

wear of the solid lubricant pellet is tracked using an LVDT with a resolution of 1pm.

Slider pad
and arm

Pellet Disk

Figure 2: Pellet with slider pad-on-disk
tribometer

Powder Lubricant Pellets. Solid lubricant pellets were created from loose powders, each
with uniform particle sizes, in varying composition by weight. Single component lubricant
pellets were made from MoS;with an average particle size of 1.7 ym through dry compaction at
2500 psi. Multi component lubricants were created to serve two purposes, oxidation control of

the lubricant film and composite surface, and electrical conductivity. For improving oxidation



control, 1.7 pm MoS; and 1.5 pm Sb,O3 powders were combined in a 60/40 mixture by weight.
For decreasing the electrical resistance of MoS; lubricants, 5.5 um copper powders were
combined in various percent weight compositions with 1.7 pm and 6 pm MoS;.

Hard Tribological Coatings. The hard tribological coatings were magnetron sputtered
through collaboration with the Timken Co., and comprised of tungsten doped DLC (W-DLC) as
well as Chromium Nitride (CRN) at different thicknesses. The substrates used were a basic 440C
stainless steel ordered from McMaster Carr, as well as 52100 alloy steel made at the Timken Co.
Due to their industrial application of raceway coatings which experience primarily rolling
friction and shock impacts, these coatings were investigated for their ability to reduce impact
damage rather than sliding friction. Tribological data for impact testing was capture in the form

of the coefficient of restitution displayed in equation (1.1).
COR=,H,/H, (1.1)

The impacts were conducted through drop testing on an in-house drop test rig (DTR) shown in
Figure 3. Part A holds a spherical element through the use of a vacuum pump connected through
the hose (Part B). A glass box encloses the test chamber while the lower specimen is held
clamped in Part C. The impact is recorded using a high-speed video camera from Photron in
order to precisely capture the rebound height for use in equation 1.1. Each material combination

is tested at 9 different heights while the impact sites are marked for ex situ analysis.



Figure 3: Drop test rig (DTR) for acquiring coefficient of restitution between
rolling elements and a stationary substrate

Ex Situ Analysis.Powder films were examined and characterized using three different
metrology instruments. A scanning white light interferometer from Zygo was used to measure
the surface topography of all powder films, bare substrates, worn surfaces, impact craters. The Z
resolution of the machine is rated at 0.1 nm, while a 20x objective was used to ensure a x and y
resolution of 1.2 um. This technique was chosen for its speed and accuracy, particularly when
monitoring samples that may have loose debris accumulation, as well as its ability to create 3D
topography data for input into numerical models. A hysitron nano-indentor, was used to
characterize the hardness and elastic modulus of the bare substrates and hard tribological

coatings. Lastly a scanning electron microscope (SEM) was used to in order to examine



subsurface damage as well as to ascertain information on the chemical composition of worn
surfaces when applicable.
1.3 Two Body Wear Modeling

As industrial processes have continued to progress in complexity, it has been estimated that
70% of material failure in US industry is due to wear [28], resulting in a approximated cost of up
to 100 Billion dollars per annum even by 1983 [29]. Although often detrimental, wear can be
shown to possess beneficial aspects as well. Brake pads utilize wear to dissipate kinetic energy,
while solid film lubrication often uses wear to establish lubricious transfer films [1, 18, 19, 28,
30]. While traditionally thought as a process to mitigate, this stresses an importance to
understand wear on a more fundamental level.

To better explain the complexities of wear, a large breadth of work exists both in theory,
experiment, and modeling. For instance, Archard [31] developed general wear laws to explain
both adhesive and abrasive wear, while Challen et al. [32]and Hokkirigawa et al. [33] more
specifically postulated abrasive theory behind different wear mechanisms with respect to
severity of penetration. Similarly, experimental investigations have been conducted in order to
validate these theoretical studies and their explanation of wear mechanisms. This includes
work done by Dougherty et al. [4, 10, 18, 30, 34], Dearnaley [35], Trezona and Allsopp [26],
Quintanilla and Goddard [36], and Kayaba et al. [37], in which wear mechanisms and
relationships were characterized through surface examination and wear testing.

In synthesizing these theoretical and experimental works, many numerical models have also
been constructed in order to predict wear behavior such that a better understanding of

beneficial or detrimental wear might be gained. For instance, in chemical mechanical polishing



(CMP), simulations such as the Particle Augmented Mixed Lubrication (PAML) model [38-40]
were developed to explore the beneficial wear of slurry particles in polishing copper wafers
used to construct electronic circuits. In these models, a deterministic treatment was used in
which surfaces were represented as a collection of cuboids called “voxels,” and stresses are
tracked at each asperity. Alternatively, other models have been developed in which a statistical
treatment of surface contact is used in conjunction with existing, also statistical, theoretical
models for wear debris generation in both lubricated and un-lubricated contacts [10, 32, 41-
43].

Interestingly, many of these papers sought to treat friction and wear separately, in
addition to using a static surface which does not involve over time resulting in predictions that
are also static and constant. However, at the asperity level, it follows that the two phenomena
would be inextricably linked due to their role as the resistance and deformation of asperity
contacts. Even in terms of macroscopic behavior, this interdependence is highlighted by
instances when surfaces are expected to wear while providing low friction interfaces such as self-
lubricating interfaces. Often in these cases the material will undergo some type of wear process
at the asperity level, such as transfer film formation, or plastic deformation, in order to improve
lubricity. For instance, in Chapter 1 section 1.1, it was discussed how a sacrificial compact made
of a lubricious material was used to spread a lubricating transfer film onto a hard disk. The
sacrificial compact acts as one of the mating surfaces to spread its lubricious material in transfer
film form through wear. In this type of configuration, shown to be mherently “self-replenishing”
it is paramount to ensure a steady wear rate, or lubricant supply, into the interface while
maintaining low friction during the wear process. Optimizing these types of configurations rely

on ensuring a certain friction and wear behavior together, while also stressing the need to



understand surface contacts that are continually evolving. This synthesis of friction, wear, and
surface evolution is highly complex and requires study both in terms of experiments and
modeling, that is inherently deterministic rather than statistical. This is because statistical
treatments of a surface will always include a distribution of or averaging of friction, wear, and
surface evolution rather than simulating events as they would physically occur in situ. It is the
goal of this section of the thesis to utilize a deterministic framework to simulate in silico two
body wear which tracks both friction, wear, and surface evolution, which can be experimentally
validated against results like those found in Chapter 1 Section 1.1.
1.4 Research Objective 2
Developand Validate a computational model for 2 body friction, wear, and surface
evolution; through a synthesis of in situ tribological data with ex situ surface metrology

The modeling portion of this work will utilize deterministic contact mechanics in order to
model the friction and wear of two bodies in contact, and will be validated against experiments
performed in objective #1. The contact and wear mechanics utilized in this work have been
studied extensively and are derived from Hertzian contact mechanics coupled with abrasive wear
experiments conducted by Hokkirigawa et. al [33] and Masen and Rooij [42], as well as
analytical theory to apply these findings to a single asperity or a statistical collection of asperities
carried out by Zhao, Maetta, and Chang [41]. These will be discussed at length in the modeling
section of this thesis.

This work will differ from past attempts in that it will look to create a deterministic
collection of asperities rather than use a statistical distribution. This is conducted to attempt to
recreate data in which a surface is allowed to evolve naturally through the physics of wear, in

order to capture true in silico virtual experiments and real life phenomena. The surface will be
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represented as a collection of volume pixels of different heights, exactly like one would acquire
from a surface profilometer. Representing surfaces in this fashion has been used in a number of
numerical modeling studies to achieve highly accurate predictions of real contact area [30, 38-
40, 44, 45]. However, very rarely are friction and wear coupled together with this technique such
that the interactions of surfaces are not only captured at a given moment, but over time for a
surface which is allowed to evolve through wear events[30, 38-40].

The work discussed herein attempts to synthesize a rigorous contact mechanics treatment,
a new technique for calculating friction between asperities as they slide over one another, as well
as a deterministic voxel framework using a collection of assumptions which can be summarized
as follows:

1.) Surfaces will be represented as a collection of volume pixels of differing heights,
identical to the data one would receive from a surface metrology tool such as an atomic
force microscope or an optical interferometer. The harder surface will be assumed to be
rigid in that it does not wear, and its asperity tips will be represented as Hertzian spheres
of radius to be determined experimentally.

2.) Contact between interacting asperities will be tracked at each timestep with the harder
spherical peaks indenting into softer asperity peaks assumed to be flat. The stresses will
be calculated using Hertzian contact mechanics between the hard spherical asperity tips
and the flat softer asperity tips. These mechanics expanded to transition between the
elastic, elastoplastic, and plastic stress regimes, such that wear events can be determined

in proportion to the amount of plastic stress present.
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3.) Friction will be calculated both as the plastic flow work of indentation, as one asperity
drags through the other, as well as the amount of overlap the asperity experiences from
the previous timestep to capture the force as one asperity climbs overthe other.

4.) The soft surface wear will be subtracted at each asperity in which the stress reached a
critical limit sufficient to produce a wear particle; the surface topography will then be
updated between timesteps allowing for real time surface evolution.

1.5 Additive Manufacturing Powders

Additive Manufacturing (AM) is a technique which suggests the potential to create parts
faster, cheaper, expending less energy, and wasting less resources; all while drastically
increasing the freedom of design complexity [46-48]. Generally the techniques of AM are
categorized by the mechanism in which the metal powders are bound together, be it Direct Laser
Sintering (DLS), Electron Beam Melting (EBM), or Inkjet Binding (IB). Each of these
mechanisms is highly complex and in possession of its own body of work discussing constraints
and challenges which also change from machine to machine. One thing which remains crucial to
part creation in each powder bed process is the need to spread a uniform layer of powder at each
build step [49-52]. Powder is delivered to the build area, often by a hopper, and then spread
using some type of mechanical shearing implement such as a roller, rake, or wedge. The powder
is then sintered or bound using one of the above mentioned mechanisms, and the process is
repeated slice by slice until a final, cohesive part has been created inside the loose powder bulk.
The flow behaviors of powders and granular material in general are considered to be extremely
complex in the physics and engineering communities [53-58]. This is because they are discrete

in nature, highly susceptible to the environmental conditions, and unable to be described by any
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one value like viscosity [53, 54, 58-62]. However, understanding their own behaviors is crucial
to optimizing the AM process and tackling its most serious implementation challenges[49-51].

While they stem from a myriad of factors, the most serious detractors to AM at present can
all be related, at least partially, to issues at the spreading interface. Part integrity do to
microstructural defects is one of the foremost issues, in which finished parts can have high
porosity and/or poor surface finish [47, 49-51, 63]. It is follows that the creation of a uniform
layer for sintering is an essential step to ensuring that a given layer is free of defects once the
sintering process begins [49-51].  Unpredictable and non-uniform surface finish is also a
common difficulty for additive manufacturing, and governed largely by the particle morphology
and uniformity of the last spread layer [47, 50, 51, 61, 63, 64]. In order to achieve more reliable
surface finishes which do not require expensive post-machining processes, things such as bi-
modal powder distributions or nanoscale particles have been suggested, particularly for DLS or
IB machines [51, 63]. While seemingly representative of a simple change, it has been shown that
these alterations to the powder can cause severe impediments to uniform powder flow such as
size-segregation, agglomeration, and jamming [56, 58]. These phenomena must be understood
from a rheological perspective even before many of the other issues relating to the sintering step,
because the creation of a uniform layer depends on smooth powder flow.

A second issue holding back AM is its currently limited material set when compared to
subtractive manufacturing techniques. Due to the complex nature of powder flows, expanding
the existing material set will involve a great deal of screening and optimizing flow properties to
avoid issues with the powder spread and hopper delivery processes. This is directly tied to the
fact that powders of different material, as well as those of the same material but of different

make, have been shown to display a wide range of rheological differences [58-62, 65].
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Another of the major challenges which AM faces is the need for improved build times.
Currently the process is perhaps most attractive because of the complex part geometries which it
can create. However, in order to take advantage of its potential for cost saving in any kind of
heavy industry, it must show that it can print parts at a high rate. Currently, build times even for
simple parts are quite long, and spreading represents a significant portion of time spent on a
given layer. This time increases both with smaller particle sizes which demand more layers per
part, as well as any spreads which must be repeated. Due to the infancy of spreading science,
most machines employ rudimentary flow meters which monitor the volume of a spread. In order
to maximize the utility of this elementary system, redundant spreads are used which double or
triple the amount of time spreading per layer. In order to minimize build times, spreads must be
done as fast as possible, as few times as possible, but without sacrificing layer uniformity.
However powder flow has been shown to be highly dependent on the velocity [56, 58, 59, 66-
68], and so this process currently requires a great deal of trial and error from powder to powder.

It is the belief of the author that optimizing the spreading process will be crucial to tackling
this collection of challenges, and will involve understanding powder rheology with a focus on
spreading as uniformly as possible but as fast as possible. Despite the potential for optimization
of powder deposition through rheological characterization, there has been very little work
published to study the flowability of AM powders with even less discussing how the flow can be
tied to powder morphology or how it will affect the AM process. This may largely be due to the
fact that most of the work leading up to 2015 has been done using basic gravimetric flow meters,
in which the stress states of the powder cannot be controlled or directly correlated to those in the
AM process [51, 69-71]. Without more direct matching of the stress states, the relevance of

efficient flow speed to AM will remain somewhat nebulous. It is the goal of this section of the
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thesis, to provide a rigorous characterization framework to describe the flow properties of AM
powders such that manufacturers will be better equipped to tackle rheological issues throughout
the AM process.
1.6 Research Objective 3
To relate the flow properties of metallic powders to different additive manufacturing
processes, using a combination of in situ powder rheometry and ex situ microscopy

The Additive Manufacturing Portion of this research is dedicated to experimentally
characterizing metal powders by relating powder morphology to flow under conditions similar to
those found in an actual AM machine. The powders tested were a collection of Ti-6Al-4v
powders from four different manufacturers, as well five different powder materials from the

same manufacturer. More details will be given in Chapter 6.

FT4 Powder Rheometer
1. Powder Sample Bulk
2. Impellar Blade Arm and
Torque Load Cell
3. Compression Load Cell

Figure 4: FT4 Powder Rheometer
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Powder Rheometry. The rheology of each powder was analyzed using a Freeman FT4
powder rheometer shown in Fig 4. The machine itself has seen extensive use for powder
characterization in a wide array of industries in which powder flow is a prime concern such as
powder metallurgy, pharmaceuticals, and food processing [59, 62, 68]. The machine has several
advantages over simpler devices like the Hall flow meter, in that it has the ability for highly
precise in situ data capture, and the ability to impose a variety of different stress states. This last
advantage is crucial for capturing data relevant to AM, as powders will behave very differently
under different stress states, and a test in which simple gravimetric flow is monitored may not be
enough to describe the variety of flows in the AM process.

Despite the advantageous of the FT4 rheometer only a few papers have been published until
very recently [72, 73]. In these papers, while they consider the effect of recycling on the
flowability of a single powder type, very little is done to discuss how the stress state allows for
comparison of the rheometry flow to flow in the AM process. In order for rheological data to be
relevant to AM it is crucial that this bridge be addressed between rheometry and specific areas in
an AM machine. In addition, only single powder types for a given machine are considered and
so a detailed discussion of how morphology will affect powder flow between manufacturers or
materials is prohibited. It is the goal of this section of the thesis to expand upon these works by
elucidating how particle morphology will affect powder flow for a wide variety of AM materials
and manufacturers, as well as offer insight as to how given stress states on an FT4 can be

correlated to relevant flows in an AM system.
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1.7 Deep Well Rock Drilling

Given the world’s diminishing fossil fuel reserves, drilling expeditions are forced each
year to delve deeper to uncover natural resources [74]. In fact, the creation process for wells
further down than 1.5 km, often below the ocean floor, has been specified as “deep well
drilling.” Due to the fact that the cost of a well increases exponentially with depth [75], the
drilling process can represent up to 50% of the total project costs [74]. This is a result of a
number of effects. The first of which occurs during the surveying stage where smaller bore holes
are carefully drilled to assess the potent