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Abstract 
The term ‘nanotechnology’ has emerged as a buzzword since the last few decades. It has found 

widespread applications across disciplines, from medicine to energy. The synthesis of gold and 

silver nanoclusters has found much excitement, due to their novel material properties. Seminal 

work by various groups, including ours, has shown that the size of these clusters can be 

controlled with atomic precision. This control gives access to tuning the optical and electronic 

properties. 

The majority of nanoclusters reported thus far are not water soluble, which limit their 

applications in biology that requires water-solubility. Going from organic to aqueous phase is by 

no means a simple task, as it is associated with many challenges. Their stability in the presence 

of oxygen, difficulty in characterization, and separation of pure nanoclusters are some of the 

major bottlenecks associated with the synthesis of water-soluble gold nanoclusters. Water-

soluble gold nanoclusters hold great potential in biological labeling, bio-catalysis and nano-

bioconjugates.  

To overcome this problem, a new ligand with structural rigidity is needed. After considering 

various possibilities, we chose Captopril as a candidate ligand. In my thesis research, the 

synthesis of Au25 nanocluster capped with captopril has been reported. Captopril-protected Au25 

nanocluster showed significantly higher thermal stability and enhanced chiroptical properties 

than the Glutathione-capped cluster, which confirms our initial rationale, that the ligand is 

critical in protecting the nanocluster. The optical absorption properties of these Au25 nanoclusters 

are studied and compared to the plasmonic nanoparticles. 

The high thermal stability and solubility of Au25 cluster capped with Captopril motivated us to 

explore this ligand for the synthesis of other gold clusters. Captopril is a chiral molecule with 

two chiral centers.  The chiral ligand can induce chirality to the overall cluster, even if the core is 

achiral. Therefore, to obtain Au38 clusters as an enantiomer, the ligand employed should be chiral. 

The enantioselective synthesis of Au38 capped with different chiral ligands has been reported and 

their chiroptical properties have been compared. 

The synthesis of a series of water-soluble Au nanoclusters has motivated us to study the effect of 

capping ligands and the core-size on their steady-state and time-resolved fluorescence properties, 

since the photoluminescence properties are particularly important for bioimaging and biomedical 
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applications of nanoclusters. To gain fundamental insights into the origin of luminescence in 

nanoclusters, the effect of temperature on the fluorescence properties of these clusters has also 

been studied. 

The different sized nanoclusters ranging from a few dozen atoms to hundreds of atoms form a 

bridge between discrete atoms and the plasmonic nanocrystals; the latter involves essentially 

collective electron excitation-a phenomenon well explained by classical physics as opposed to 

quantum physics. The central question is: at what size does this transition from quantum 

behavior to classical behavior occur? To unravel this, we have successfully synthesized a series 

of silver nanoclusters. The precise formula assignment and their structural determination are still 

ongoing. We have successfully demonstrated the application of these water-soluble Au 

nanoclusters in photodynamic therapy for the treatment of cancer. We have successfully 

demonstrated that Au nanocluster system can produce singlet oxygen without the presence of 

any organic photosensitizers. In a collaborative project with Dr. Peteanu’s group, the quenching 

efficiency of organic dyes by these water soluble nanoclusters is studied in different systems. 

Overall, this thesis outlines the successful synthesis of a family of water-soluble nanoclusters, 

their optical, chiroptical and fluorescence properties, as well as some applications of these 

nanoclusters. 
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Chapter 1 

Introduction 

1.1 History of metal nanoparticles 
The earliest use of metal nanoparticles dates back to the ancient history of Roman, Egyptian and 

Chinese civilizations, although nanoparticles were not identified then. Gold and silver 

nanoparticles, were used to stain glasses for cathedrals and other decorative purposes. The 

application though, was not just restricted to decoration. In ancient India, metal nanoparticles had 

been used in medicinal application to cure arthritis and had a high cosmetic value. Despite these 

common applications, their size range was unknown due to the unavailability of nanoscale 

imaging techniques. The most significant scientific experiment came forward in mid-19th 

century when Michael Faraday reported the synthesis of gold colloid by the reduction of gold 

salt with white phosphorus in a two-phase system. 

 
Figure 1.1 (A) Stained glass in Roman Cathedral, (B) Lycurgus Cup Glass4th Century AD. 

(Source: http://www.britishmuseum.org) 

 

Faraday believed that the particles of his colloid were of dimensions smaller than the wavelength 

of visible light.1The ruby red color of gold colloid stimulated much interest in scientific research. 

After half an century, Gustov Mie solved the Maxwell equation in 1908 and successfully 

modeled the optical spectra of gold colloid. This was the first study of interaction of light with 

nanoparticles (gold) and it explained the absorption and scattering properties of gold 

nanoparticles. The invention of transmission electron microscopy (TEM) by Knoll and Raska in 

(A) (B)
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1931 was an important asset, as the size of the synthesized nanoparticles could be precisely 

measured. The pioneering work2 of J. Turkevich on the synthesis and TEM imaging of gold 

nanoparticles was an intriguing work; the synthesis of gold nanoparticles was done by employing 

citrate ions and gold salt in aqueous solution. The citrate ions serve as both a reducing agent and 

the stabilizer for protecting the gold nanoparticles.2 The synthesis produced gold nanoparticles of 

size 10-20 nm measured by TEM. This method was further modified by G. Frens and it has since 

become a common method utilized even now a days for preparing citrate-capped gold 

nanoparticles of > 10 nm diameter.3,4 The early synthesis of some of the metal nanoparticles 

followed this approach of using some kind of stabilizer to prevent the nanoparticles from 

aggregation due to collisions in the solution state. The common stabilizers used are surfactants, 

amphiphilic polymers, ligands, and even solvent molecules if they can bind to nanoparticle 

surfaces.5 An early example of producing magnetic nanoparticles for early recording purposes 

was proposed by Hess et. al. to prepare Co colloid of 10-100 nm. In this method, Co2(CO)8 was 

heated to a high temperature in the presence of dispersant polymer.6 The generation of metal 

nanoparticles by thermal decomposition of metal-organic precursor in the presence of a stabilizer 

became a common approach for the synthesis of Fe, Co, Ni, and Cd metal nanoparticles.7-9 

Another approach to synthesize metal nanoparticles with better size control was achieved by 

using high concentrations of reducing agents like citrate or sodium borohydride. Schmid et al 

developed the synthesis of phosphine protected gold nanoparticles with a size of ~ 1.4 nm by 

using excess NaBH4.10 

A quite popular method reported for gold nanoparticle synthesis was the “Brust-Schriffin method” 

reported in 1994. This method was motivated by the thiol self- assembled- monolayer (SAM) on 

metal surfaces.11-13 This was the first report of using thiol as a capping ligand for the synthesis of 

gold nanoparticles. The Brust method involves two steps where the first step involves the phase 

transfer of gold salt by using a phase transfer agent (surfactant) and subsequently the Au (I) 

thiolate polymer was reduced by NaBH4 to form nanoparticles. The use of excess of reducing 

agent (typically 10 times the gold salt) helped in narrowing the size distribution. The strong 

interaction of thiol with the gold surface and the Van der Waals interactions make this 

nanoparticle system highly stable. The size of the nanoparticle can be effectively controlled by 

the ratio of precursor gold salt to alkanethiol. Due to their extraordinary stability, these thiol 

protected nanoparticles can be even isolated and stored in powder form and further re-dispersed 
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nanoparticle. The surface plasmon for gold nanoparticles is well defined for nanoparticles 

between 2-100 nm. The effect of increasing size has already been discussed, but if the size 

decreases below 2 nm the plasmon properties disappear and the quantum confinement starts 

playing important roles in the spectral properties. This effect will be explained in the later section. 

      
Figure 1.3 (a) Change in the color of nanoparticles solution with the core diameter. (Source: 

http://www.webexhibits.org/causesofcolor), (b) Surface plasmon peak shift and broadening with 

the change in the size of gold nanoparticle diameter. Reproduced from ref. 18 with permission. 

Copyright 1999 American Chemical Society. 

 

1.3 Thiolate-protected gold nanoparticles 
The synthesis of gold nanoparticles, which started as Au colloid by Faraday and further evolved 

into charge stabilized nanoparticle solution, was further explored by researchers and various 

synthesis of gold nanoparticles was reported in the solution state. As mentioned above, 

researchers explored the use of surfactants, polymers, phosphine and other various stabilizers to 

synthesize gold nanoparticles in solution. The thiol-protected Au nanoparticles prepared by the 

“Brust-Schiffrin method” are quite stable and can be conveniently stored in the powder form;  

post-synthetic manipulations such as functionalization and ligand exchange on such nanoparticle 

surfaces have been widely practiced.  

Murray and co-workers employed various thiols such as straight chain alkanethiols (C6, C8, and 

C12) to form gold nanoparticle with a core diameter of 1.2 nm and theoretical modeling suggested 

the nanoparticles to be of ~ 309 gold atoms and ~95 alkanethiols. Their work also showed that 

both solid and solution state characterization can be used for these nanoparticles as they can be 
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converted in powder form or dispersed in a solvent of choice.19 In their successive work Murray 

et. al. used ω-substituted thiol to perform ligand exchange with the gold nanoparticles capped 

with unsubstituted thiol. The resultant gold nanoparticles were capped   with the mixed 

monolayer of both the substituted and unsubstituted thiol.20 Murray group also reported the 

synthesis of dodecanethiolate-protected Au nanoparticle with a mean diameter of 1.5-5.2 nm and 

studied the electronic properties of the gold core; they also employed different types of 

arenethiols for the synthesis of monolayer protected gold nanoparticles.21,22 

The “Brust-Schiffrin method” was also adapted for the synthesis of water-soluble thiol protected 

gold nanoparticles. The use of  thiol with hydrophilic substitution resulted in water solubility and 

surfactant molecules were used to stabilize gold nanoparticles.23 Kornberg et al used various 

carboxylic acid substituted thiols to produce thiolated-gold nanoparticles with core diameter 1.5-

4 nm.24 The initial goal of these syntheses was to achieve narrow size distribution for the 

resultant nanoparticles. Several post-synthetic modifications were used to improve the size 

distribution  of thiol- protected gold nanoparticles, such as, 1) non-solvent mediated size-

selective precipitation,25 2) chromatographic separation,26-28 3) heat treatment.29-31 The post-

synthetic heat treatment was also termed “Digestive Ripening” in which the as-synthesized 

polydisperse-gold nanoparticles were further heated with excess thiol.32 The other approach to 

achieving good control on the size distribution was developed by various groups, in which  

polymeric thioether, polymeric thiol, and mercapto-succinic acid were explored as capping 

ligands for the gold nanoparticle synthesis.33-35 

1.4 Nanocrystals Vs Nanoclusters 
The term nanocrystals’ refers to the nanoparticles which are crystalline, while nanoparticles refer 

to entities that are not necessarily crystalline (e.g. polymer nanoparticles). On the other hand, 

nanoclusters are often reserved for the ultra small nanoparticles (e.g <2 nm). Whetten and co-

workers achieved the synthesis of ultrasmall gold nanoparticles with a narrow size 

distribution;25,36 specifically, Alvarez et al employed solvent based precipitation where a typical 

size can be selectively precipitated by using solvent with different polarity. They isolated Au 

nanocrystals in the size range of 1.5-3.5 nm which were estimated to have ~100 to ~1300 gold 

atoms. These isolated fractions were further analyzed by laser desorption ionization mass 

spectrometry (LDI-MS). These fractionated nanoparticles were readily forming superlattice, 
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Au-S, S-C, or Au-Au bond can even be cleaved due to the high laser intensity. This will reduce 

the chance of getting the exact mass of the cluster, so the precise formula of a nanoclusters 

cannot be determined with accuracy. On the other hand, ESI-MS is a much softer ionization 

technique than LDI-MS, but in those days ESI-MS was restricted to water-soluble samples only. 

It is important to note here that ESI-MS can now be done for nanoclusters in both aqueous and 

organic solvents, but years ago the restriction of ESI-MS for only aqueous soluble samples 

prompted researchers to explore water-soluble thiol ligands. Schaff et al employed a tripeptide 

glutathione (GSH=γ-Glu-Cys-Gly) as a water-soluble thiol. Glutathione has a cystine unit in the 

middle which has a thiol group; this thiol group can be used to bind with gold. Glutathione is a 

very important biologically molecule as it is present in every living organism, as it maintains 

cellular potential in the reduced state. The use of glutathione was also advantageous, as its steric 

bulkiness provides a large cone angle and hence helps in controlling the cluster size.  Schaff et al 

synthesized gold nanoclusters using GSH as a ligand and its water-solubility provided an 

opportunity to purify the cluster by running it through polyacrylamide gel electrophoresis 

(PAGE). The PAGE purification enabled the isolation of intact clusters and the ESI-MS analysis 

revealed the mass of the cluster to be 10.4 kDa as shown in figure 1.6 (a).40 Based on the mass, 

the formula assigned to the cluster was Au28(SG)16 (later corrected as Au25(SG)18 by Tsukuda 

group via high resolution ESI-MS determination of the precise mass of the cluster). The 

absorption spectrum of this cluster showed multiple absorption bands which were manifestations 

of the quantum confinement for this cluster as shown in figure 1.6 (b).40 Murray and coworkers 

used phenylethanethiol, and hexane thiol ligands and synthesize a cluster species that showed a 

similar optical spectrum as the Au28(SG)16 (corrected as Au25(SG)18 later).41,42  Unfortunately the 

cluster formula was erroneously assigned to Au38(PhCH2CH2)24, later they corrected the formula 

as Au25(SCH2CH2Ph)18. 

Similarly several other groups reported the synthesis of molecular sized clusters but the mass 

assignment and the formula identification was mistaken.43,44 

Tsukuda and coworkers used the glutathione ligand and performed a one-phase synthesis to 

obtain a series of water-soluble clusters. These species were isolated by running it through 

PAGE. The high resolution ESI mass spectrometry data revealed and identified six different 

species, 1= Au18(SG)11, 2 = Au21(SG)12, 3 = Au25±1(SG)14±1, 4 = Au28(SG)16, 5 = Au32(SG)18, 6 = 

Au39(SG)23.45 In their follow up work, the use of high density gel and the use of their own 
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gap of 2.15 eV was observed for this cluster which was significantly higher than that of Au25 

nanocluster (gap energy: 1.3 eV). Also the stability of the Au20 was significantly higher against 

thiol etching. Qian et al reported a large-scale synthesis of Au38 nanoclusters capped by 

dodecanthiol. The synthesis was carried in two steps, where the first step involves the synthesis 

of a polydisperse mixture, Aun(SR)m. This mixture was then etched with excess ligand to obtain 

molecularly pure Au38(SC12H25)24 nanoclusters.50 In a similar synthetic modification Qian et al 

reported the synthesis of Au144(SCH2CH2Ph)60. In these syntheses, the starting polydisperse 

mixture was used as a precursor for the second step where “size focusing” occurred, which gave 

rise to molecularly pure nanoclusters. The “size focusing” method involves the etching of the 

polydisperse mixture in the presence of excess thiol and is primarily driven by the 

thermodynamics, which eventually “focuses” the cluster size towards a stable cluster size.51 Qian 

et al also reported the synthesis of Au40 and Au55 clusters.52,53 The thiol etching mechanism was 

further extended to other ligands. Researchers have also demonstrated that phosphine protected 

gold clusters can be utilized in making thiolate-protected gold clusters. Murray and coworkers 

used phosphine protected Au55 nanoclusters to generate Au75 nanoclusters capped with 

hexanethiol.54 Tsukuda and coworkers utilized phoshine-capped Au11 to make thiolate-capped 

Au25 clusters as well as phoshpine/thiolate rod-shaped Au25 clusters. Qian et al synthesized the 

Au25 nanospheres and Au25 nanorods by thiol etching of polydisperse Au nanoparticles capped 

with phosphine. The synthesis was done by both one-phase and two-phase approaches and this 

work demonstrated that the shape of Au25 nanoclusters can be conveniently controlled by the 

judicious choice of the ligand in the thiol-etching step using the regular nanoparticles as the 

precusor.55  

1.5.3 Crystal structure determination of Aun(SR)m clusters 
The crystal structure of nanoclusters reveals the nature of bonding and the packing of atoms. The 

synthesis and formula determination does explain the identity of the synthesized nanoclusters, 

but the atomic packing, the nature of bonding between metal atoms and the ligand, and the 

electronic properties of clusters cannot be understood without knowing the structure. Bulk gold 

has a fcc structure, so do conventional gold nanocrystals; but what would happen as we go 

further down in the size regime was an interesting question. If the structures of the nanoclusters 

are not fcc then what other structures would be adopted in such clusters? 
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The first breakthrough was achieved by Korenberg and coworkers when they reported the 

synthesis and total structure determination of Au102 nanoclusters capped with 44 p-

mercaptobenzoic acid.56 The Au102 structure can be viewed as a Au79 core with D5h symmetry. 

The rest 10 gold atoms cap the 10 square shaped Au facets of the Au79 core with a pseudo D5h 

symmetry, which form a protecting layer. The remaining 13 gold atoms are connected with 

multiple bonds from the Au79 core atoms. The thiols in the crystal structure were shown to be 

bonded with both gold atoms. This gives a rigid surface layer to the crystal structure as shown in 

figure 1.8.56 The structure showed that Au102 is chiral with both enantiomers present in the unit 

cell, hence, making the arrangement as a racemic mixtutre. 

   

Figure 1.8 X-ray crystal structure of Au102(p-MBA)44 with Au atoms shown in yellow and S 

shown in Cyan. Reproduced with permission from ref. 56. Copyright 2007 AAAS. 

 

The second successful report of crystal structure determination was independently reported by 

Murray and Jin groups for the [Au25(SCH2CH2Ph)18] cluster (counterion: TOA+).57.58  In the 

work by Zhu et al, the high purity of the synthesized clusters via the approach of kinetic control 

was the key to successfully obtain the crystal structure. Murray and coworkers also successfully 

obtained the crystal structure of [Au25(SCH2CH2Ph)18]-1 at the same time by using PhSH in the 

crystal growth solution.58 In Zhu’s crystallization method, the crystal was grown directly from 

the solution phase. The X-ray crystallographic analysis of Au25 revealed the presence of a Au13 

icosahedron core with 12 remaining gold atoms arranged along the ±x, y, and z axes of the core. 
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As icosahedron has 20 triangular faces, so this leaves eight Au3 triangular face uncapped. The 18 

thiolate ligands cover the Au13 icosahedral core by six Au2S3 staple motifs as shown in figure 1.9 

(a). Zhu et al also determined the crystal structure of charge-neutral [Au25(SCH2CH2Ph)18]0 

which was obtained by the loss of one electron from the anion through air oxidation shown in 

figure 1.9 (b).59 Although the structural arrangement for both the anion and the neutral Au25 are 

the same, the anionic Au25S18 system showed distortions in the crystal structure while no such 

distortions was observed for Au25
0. 

 

Figure 1.9 (a) Crustal structure of [Au25(SCH2CH2Ph)18]-1, and (b) Crystal structure of 

[Au25(SCH2CH2Ph)18]0. Reproduced with permission from ref. 59. Copyright 2009 American 

Chemical Society. 

 

The initial work by Qian et al on the large scale synthesis of Au38(SC12H25)24 clusters with high  

purity prompted the subsequent synthesis of Au38(SC2H4Ph)24. The latter was successfully grown 

into single crystals, followed by the determination of the crystal structure of Au38(SR)24. The 

high purity of the clusters and judicious design of crystallization conditions were the key for 

successful crystallization.60  

The crystal structure of Au38(SCH2CH2Ph)24 also showed chiral structures (both enantiomers 

present in the unit cell, figure 1.9(a)). The crystal structure showed face-fused bi-icosahedral  

Au23 core capped by second shell of 15 Au atoms (shown in figure 1.9 (b)). If one accounts for 

the thiol ligands in the structure, then it can be visualized as Au23 core capped with three 
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monomeric staple motifs of the Au(SR)2 form and six dimeric staple motifs of the Au2(SR)3 

form.60 

 

          

 

Figure 1.10 (a) Crystal structure of Au38(SCH2CH2Ph)24 showing the enantiomers in the same 

unit cell, with Au atoms on magenta, S in yellow, and C in grey, (b) Anatomy of the Au23 core 

arrangement in the Au38 structure. Reproduced with permission from ref. 60. Copyright 2010 

American Chemical Society. 

 

1.6 Synthesis of Au nanoclusters with other ligands 
The synthesis, characterization and structural determination of several reported Au nanoclusters 

discussed in the previous sections delivered a great deal of information to the researchers; about 

the structure and bonding, optical and electronic properties and also about the stability of these 

nanoclusters. This also directs the research of noble metal nanoclusters towards various 

biological applications. To make the nanoclusters compatible for biological applications the 

ligand design becomes important. Researchers explored plethora of ligands including proteins, 

peptides, DNA sequences, polymers, and dendrites to synthesize Au nanoclusters with different 

size and moreover with distinct properties like photoluminescence, sensing and molecular probes. 

Ying and coworkers reported the use of bovin serum albumin (BSA) protein as a capping ligand 

for the synthesis of highly fluorescent gold nanoclusters.61 The nanocluster was reported to be 
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Au25 capped with BSA ligand. This work was followed by many research groups; several other 

proteins like HSA, lysozyme, trypsin and other ferritin family of proteins were reported for the 

synthesis of Au nanoclusters.62-65 With respect to polymers and dendrimers, Tan and coworkers 

used thioether polymer ligand to prepare Au and Ag nanoclusters with strong blue 

fluorescence.66 Dickson and coworkers used different dendrimers to synthesize Au nanoclusters 

with strong fluorescence.67 Chen and coworkers employed DNA, peptides, and amino acids to 

synthesize atomically precise Au nanoclusters where they performed biomolecular etching of 

bigger nanoparticles or nanorods.68 

1.7 Thesis overview  
This dissertation focuses on the synthesis of water-soluble gold and silver nanoclusters. The goal 

is to achieve enhanced stability, study the optical and chiroptical properties of various ligand 

capped gold clusters and application of these nanoclusters in diverse fields. 

Chapter 2 focuses on the synthesis of water-soluble Au25 nanoclusters capped with (2S)-1-[(2S)-

2-methyl-3-sulfanylpropanoyl]pyrrolidine-2-carboxylic acid also called Captopril (Capt for 

short). The rationale of using Captopril as a ligand is to achieve high thermal stability for water-

soluble Au25 nanoclusters. In addition to the thermal stability, the enhanced photoluminescence 

and chiroptical response of Au25(Capt)18 clusters are compared with the reported clusters. Also, 

the quantum confinement of the Au25 nanoclusters and its effect on its optical properties are 

compared with the Au nanocrystals or plasmonic nanoparticles. 

Chapter 3 describes the enantioselective synthesis of Au38 nanoclusters in high yield. The 

synthesis of enantiomerically pure nanoclusters has been a challenge in the field of nanoclusters. 

The chirality of metal core and the capping ligand governs the overall chirality of the 

nanoclusters. In this work the synthesis of enantiomerically pure Au38 nanoclusters has been 

achieved by using optically active ligand. The origin of chirality and the enantiomeric purity of 

the cluster are compared with the literature. Also, this chapter involves synthesis and isolation of 

water-soluble Au40 nanoclusters capped with captopril and their optical purity.  

Chapter 4 focuses on the origin of photoluminescence properties in gold nanoclusters. In that 

regard, the effect of capping ligand and the varying core size has been studied. The steady state 

and time resolved photoluminescence properties of these clusters are studied to better understand 

the mechanism of fluorescence as the core size or the ligand shell changes. Also, the 
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fluorescence properties are studied at cryogenic temperature to understand the electronic 

contribution in the fluorescence mechanism. 

Chapter 5 explains all the ongoing work and finally concludes our work on synthesis and 

application of these water-soluble nanoclusters. The synthesis of silver nanoclusters to uncover 

the exact boundary where the transition from molecular behavior to plasmonic behavior will be 

demonstrated. This chapter also focuses on the application of nanoclusters in diverse directions. 

The optical, photoluminescence, chiroptical, and high thermal stability properties of nanoclusters 

are explored in practical applications such as catalysis, cancer biology, and energy science. 
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Chapter 2  

Water-Soluble Au25(Capt)18 Nanoclusters: 

Synthesis, Thermal Stability, and Optical 

Properties 
2.1 Introduction 
Metal nanoclusters of gold having 10 to few dozen atoms constitute a new class of material that 

has been extensively studied in recent years.1-9 The size (less than 2 nm) of these nanoclusters 

differentiates them from bulk gold and gold nanocrystals. This size effect leads to the discrete 

electronic structure of the core due to the quantum size effect.10,11 Because of this effect, the 

absorption spectrum for these clusters shows a step-like absorption. The unique size and 

electronic arrangement of these clusters are responsible for various interesting properties like 

chirality,12-18 magnetism,19-21 redox properties,2,22,23 and also their potential applications in 

catalysis,24-26 and bio-labeling and imaging.27-29 The significance of these clusters have led to the 

synthesis, characterization, and application of various cluster size with atomic precision.2,30-43 

Further insight into their structural arrangement was established by the total structure 

determination of Au102(SR)44,38 Au25(SR)18,44,45 and Au38(SR)24
16 by single crystal X-ray 

crystallography. The structure determination not only explained the nature of bonding between 

the core gold atoms in these molecular clusters, but also explained the nature of gold-sulfur 

bonding. It also elucidated the structure and bonding in staple motifs like Au2SR2 and Au2SR3 

which passivates the Au core in these clusters. Knowing the structural arrangement also helped 

in explaining the spectral properties of these clusters which were a result of electronic 

transitions.45 Among all these thiolate protected clusters, Au25(SR)18 and Au144(SR)60 are most 

widely studied due to their high stability in comparison to the other cluster sizes. The synthesis 

of these clusters and other stable clusters are always mediated by thiols soluble in organic 

solvents. As a result the nanoclusters are soluble in organic solvents only. The water-solubility of 

the nanoclusters becomes important for many applications such as bio-labelling, imaging, and 

therapeutics. Although there has been reports of several gold nanoclusters capped with proteins, 
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peptides, DNA sequences, polymers, and dendrites in last few years, their composition and 

stability has always been questionable. The synthesis of atomically precise, water-soluble metal 

nanoclusters has largely been limited to the gold-glutathione system.12,37 Tsukuda et al for the 

first time reported the synthesis of different Aun clusters capped with glutathione (GSH). The 

different core-sized nanoclusters have been isolated by separating the polydisperse Aun(SG)m 

clusters through poly acrylamide gel electrophoresis (PAGE). This method always led to the low 

yield of any specific core size, as a statistical distribution of sizes were observed, albeit 

Au25(SG)18 was the predominant species. Tsukuda et al  also reported a large scale synthesis of 

Au25(SG)18 clusters by the ligand exchange reaction of Au11(PPh3)8Cl3 with glutathione.46 

However, the stability of Au25(SG)18 cluster has always been ambiguous at high temperature. 

The hydrolysis of GSH to pyroglutamic acid has always been observed in the ESI-mass 

spectrometry of these clusters.37  The fragile nature of these clusters has always been a concern 

not limited to mass spectrometric studies. Poor stability limits the application of these clusters in 

catalysis and other biological application where several other nanoclusters with aromatic thiol 

capping have been used. The stability of Au25(SG)18 cluster has also prevented it from any type 

of crystallization studies. Although the Au25 system is stable, the nature of glutathione ligand 

plays an important role in its stability. Glutathione (GSH) is a tripeptide (γ-Glu-Cys-Gly). It 

exists as disulphide GSSG. The bulky size of this ligand, easily hydrolysable amide bond, and 

stability restricted to lower temperatures makes it vulnerable to different degradation process. 

 The synthesis of  stable clusters like Au25(SCH2CH2Ph)18, Au38(SCH2CH2Ph)24, Au102(p-MBA)44 

has always been done with the ligand having a rigid structure. The ligands phenyl ethane thiol or 

p-mercapto benzoic acid have a rigid benzene ring. This provides a certain degree of stability to 

the ligand structure. To get the same extent of stability, and still achieve water solubility, the 

design of ligand is very critical. This motivated us to choose (2S)-1-[(2S)-2-methyl-3-

sulfanylpropanoyl] pyrrolidine-2-carboxylic acid (Captopril) as a ligand for the synthesis of the 

most explored Au nanocluster size Au25. Captopril is a L-proline derivative. It has been used as a 

drug for the treatment of hypertension and congestive heart failure. The use of captopril as a 

ligand for nanocluster syntehsis has been recently reported by Kitaev et al  for the synthesis of 

chiral Ag nanoclusters47 but the stability of Ag nanoclusters limited the exploration of verstality 

of captopril as a choice of ligand for the synthesis.  
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 In this chapter, we report the synthesis of Au25 cluster capped with captopril. The choice of 

captopril was not just based on its water solubility, but the five-membered pyrrolidone ring was 

expected to provide the same structural rigidity and stability as observed in case of phenyl ethane 

thiol ligand. The Au25 core is achiral but the chiral ligands induces some degree of chirality in 

the visible region to the cluster system. Since captopril in  its original form is chiral, Au25 cluster 

capped with captopril should be chiral. The chirality of Au25 capped with three chiral ligands has 

been studied. Also, the thermal stability of Au25Capt18 system has been compared with Au25SG18 

system to show its enhanced stability as compared to the glutathione system. The 

photoluminescence properties of Au25Capt18 nanoclusters are studied and compared with 

Au25SG18 at room temperature and at elevated temperatures.48 Finally the absorption properties 

of Au25 nanoclusters capped with different ligands are compared with plasmonic nanoparticle or 

nanocrystal system to show the effect of quantum confinement on the optical absorption 

properties of these clusters.49 

2.2 Experimental  
2.2.1 Synthesis of Au25 nanoclusters 
Synthesis of Au25(Capt)18: The synthesis of Au25Capt18 was done at room temperature in air. 

Typically HAuCl4.3H2O (0.20mmol, 78.7 mg) and ToABr (0.23 mmol, 126.8 mg) was fisrt 

dissolved in 10 ml methanol and vigorously stirred for 20 min. The solution color changed from 

yellow-orange to deep red. After 20 min, Captopril (1 mmol, 217.2 mg) was dissolved in 5 ml 

methanol and rapidly injected in the the reaction mixture and further stirred for 30 min. The 

solution color quickly changed to white. After 30 min, NaBH4 (2 mmol, 75.6mg) was disoolved 

in 5 ml of ice cold water and rapidly added with vigorous stirring. The solution color 

immediately changed to brown-black. The reaction was further run for 8 hr and then the reaction 

mixture was centrifuged to remove insoluble Au (I) polymer. The supernatant was collected and 

further concentrated by rotatry evapouration and then precipitated by adding ethanol. The 

precipitate was extracted several times with minimum ammount of methanol and finally 

precipitated by ethanol and dried in vacuum. The synthetic outline is shown in scheme 2.1 (A) 

Synthesis of Au25(SG)18: The synthesis of Au25(SG)18 was done in two steps. First the Aun(SG)m 

clusters were prepared by previously reported protocol. This polydisperse mixture was then 

etched with excess of glutathione at 55 °C in water. The etched product was then centrifuged to 
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remove insoluble Au(I):SR polymer and the supernatant was precipitated with ethanol. The 

precipitate was washed several times with ultrasonication and centrifugation to get the clean 

product. This etched product was run through the PAGE gel to obtain ultra pure Au25(SG)18 

clusters as a major product (will be described in the next section). The synthetic outline is shown 

in scheme 2.1(B). 

                
Scheme 2.1 (A) Synthesis of Au25Capt18 cluster with gold salt precursor left panel (B) Synthesis 

of etched Au:SG clusters right panel. 

 

Synthesis of Au25(PET*)18: The Au25 capped with S-phenylpropane-1-thiol (PET*) was done at 

room temperature in air. Typically HAuCl4.3H2O (0.20mmol, 78.7 mg) and ToABr (0.23 mmol, 

126.8 mg) was fisrt dissolved in 15 ml THF and vigorously stirred for 20 min. The solution color 

changed from yellow-orange to deep red. After 20 min, S-phenylpropane-1-thiol (1 mmol, 170 

µl) was rapidly added in the the reaction mixture and further stirred for 30 min. The solution 

color quickly changed to white. After 30 min, NaBH4 (2 mmol, 75.6mg) was disoolved in 5 ml 

of ice cold water and rapidly added with slow stirring(~100 rpm). The solution color 

immediately changed to brown-black. The stirring speed was further increased to 800 rpm after 5 

min. The reaction was further run for 4-6 hr and then the reaction mixture was concentrated by 

rotatry evapouration and then methanol was added to the reaction mixture to precipitate the 

clusters. The precipitated clusters were repeatedly washed with methanol to remove unreacted 

thiols and reagents. The precipitate was finally extracted with MeCN to obtain pure 
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Au25(PET*)18 clusters. The MeCN solution was then evapourated in N2 environment and further 

dried in vacuum. 

2.2.2 Purification by polyacrylamide gel electrophoresis (PAGE)  
PAGE has been utilized by biochemists for a very long time to separate and purify proteins. The 

gel separates the proteins on the basis of molecular weight. For proteins, the molecular mass is 

quite large and the size is quite big so they can be separated by a low density gel (4-15%). For 

nanoclusters, although the mass could range from 5-40 kDa, their hydrodynamic radii is quite 

small as they have a metallic core which is more densely packed than proteins. In order to 

separate the nanoclusters from the gel, the pore-size of the PAGE gel should be quite small. This 

can be done by increasing the monomer (acrylamide) concentartion and also the cross-linker 

(bis-acrylamide) concentartion. To separate the nanoclusters effectively, we increased the 

monomer concentartion in the range of 20-35 % with the cross linker concentration of 4-7 %. 

The other modification we made to run the nanoclusters through the gel is to run them without 

adding any sodium dodecyl sulfate (SDS). As the nanoclusters are negatively charged, they 

separate on the basis of their mass with lower molecular mass cluster travelling the farthest. Also, 

the nanoclusters are colored and did require any staining with a dye.  

 PAGE serves both as a qualitative and quantitative technique for nanoclusters. We have 

succesfully and precisely separated ~60 mg of nanoclusters in one run which can not be possible 

by  any other technique for such a small system. The purity of a sample can be seen by the 

number of bands it separates into, and the width of the band gives a quantitative estimate of a 

particular size. PAGE experiment was carried by using OWL P10DS-2 vertical gel 

electrophoresis system. The gel size was 20 cm × 20 cm. The separating and stacking gel was 

prepared with 30 and 4 % monomer (acrylamide) concentration respectively  with 4 % 

concentration of cross linker bis-acrylamide for best separation. The gel was eluted with 25 mM 

tris and 192 mM glycine buffer for 16 hr at 300V. The cluster was dissolved in 10 % v/v 

glycerol/water and loaded in the gel.  

 The as synthesized Au25(Capt)18 was dissolved in 10 % v/v glycerol/water and loaded in the gel 

with a high loading of 80 µl/well at a concentartion of 30 mg/ml. The high loading was to ensure 

that any impurity from smaller or bigger size be disctinctly visible, thus will be a qualitative test 

for the purity of the nanoclusters. The biggest advantage of running a nanoclusters sample 

through the gel is not just separating it from other nanoclusters, but the unreacted ligand or other 



27 
 

small molecule which is present as impurities travels faster than nanoclusters and hence easily 

get separated. Au25(Capt)18 appears as a single thick band with orange appearance with no 

visible sign of any band of either smaller or bigger mass as shown in figure 2.1 (A). The thick 

orange band (Au25(Capt)18) in the gel matrix was then cut, crushed and soaked in water for 2 hr. 

The nanoclusters due to their water-solubility, diffuse in water. The nanocluster solution with gel 

matrix was then filtered with 0.2 µm filter and concentrated by a cut off filter of 3 kDa. The 

concentarted solution was then precipitated with acetone and dried in vacuum to obtain ultra 

pure clusters Au25(Capt)18. 

 For the PAGE separation of the etched Au:SG cluster, it was dissolved in 10 % v/v 

glycerol/water and then loaded in the gel with a loading of 40 µl/well at a concentartion of 10 

mg/ml. The lower loading was to insure the better separation of the nanoclusters of different size 

into well resolved band. The etched Au:SG clusters separated into 4 distinct well resolved band 

with Au25(SG)18 being the most dominant band as shown in figure 2.1 (B). The Au25(SG)18 

portion was then cut, crushed and soaked in water for 2 hr. The Au25(SG)18 nanocluster solution 

with gel matrix was then filtered with 0.2 µm filter and concentrated by a cut off filter of 3 kDa. 

The concentarted solution was then precipitated with ethanol and dried in vacuo to obtain ultra 

pure clusters Au25(SG)18. 

                    
Figure 2.1 (A) PAGE gel image showing a thick band of Au25(Capt)18 with no impurity from 

bigger or smaller size, (B) PAGE image showing 4 distinct bands with Au25(SG)18 appeared as 

the most dominant band. 
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2.2.3 Characterization 
UV-Vis spectra of the Au25 clusters were acquired by Hewlett- Packard (HP) Agilent 8453 diode 

array spectrophotometer at room temperature. Thermal stability was monitored by Hewlett- 

Packard (HP) Agilent 8453 diode array spectrophotometer quipped with Agilent 89090A 

temperature probe. Fluorescence spectra were recorded on a Fluorolog-3 spectrofluorometer 

(HORIBA Jobin Yvon). The excitation wavelength was fixed at 514 nm (from a Xe arc source) 

for all the cluster species in emission measurements. Electrospray ionization (ESI) mass spectra 

were recorded using a Waters Q-TOF mass spectrometer equipped with a Z spray source. The 

sample was dissolved in 50 % water/methanol mixture and injected at a flow rate of 5 μL/min. 

MALDI-MS were performed on a PerSeptiveBiosystems Voyager DE super-STR time-of-flight 

(TOF) mass spectrometer. 2,4-dihydroxy benzoic acid was acid as a matrix. Thermal gravimetric 

analysis (TGA) was obtained on a TG/DTA6300 analyzer (Seiko Instruments, Inc.) under a N2 

atmosphere (flow rate ~50 mL/min). NMR spectra were recorded at Bruker Avance™ 300 

spectrometer operating at 300 MHz for 1H using standard Brucker software. The chiroptical 

properties of Au25 clusters were measured on a JASCO J-810 CD spectrometer. Au25(SG)18 and 

Au25(Capt)18 were dissolved in water and S-Au25(PET*)18 was dissolved in CH2Cl2. All the 

measurement was done at ambient temperature and under N2 atmosphere. 

2.3 Results and Discussion 
2.3.1 Synthesis of Au25(Capt)18 clusters 
The synthesis of Au25(Capt)18 was done in methanol as a solvent. Although Captopril is soluble 

in variety of solvents like water, methanol, ethanol, THF, and other polar organic solvents, the 

choice of solvent was critical for the controlled nucleation and growth process. The use of highly 

polar solvent like water can lead to the uncontrolled nucleation and despite the kinetic control on 

the growth process the size distribution can result to Au25 and other smaller size clusters. 

Similarly, use of less polar solvent like THF could shift the growth towards bigger particles. The 

synthesis was done in variety of solvents and the growth process was monitored with UV-Vis 

spectroscopy, and finally it was concluded that a non solvent like methanol works best for the 

kinetically controlled growth of Au25 clusters. The reaction was continuously monitored by UV-

Vis, as the absorbance spectra for Au25 works as an optical signature for identification of Au25 

cluster. The peak at 450 nm and 670 nm is the characteristic of Au25. After 8 hr of incubation the 
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features of Au25 became well pronounced as shown in figure 2.2(A). The clusters after the 

removal of Au (I) polymer and some unreacted material showed a pronounced peak of Au25 as 

shown in figure 2.2(B).  

 
Figure 2.2 (A) Time evolution of the synthesis process (spectra has been offset for clarity). (B) 

Au25(Capt)18 before and after cleaning and precipitation. Reproduced from ref. 48 with 

permission. Copyright@ 2012 Royal Society of Chemistry. 

 

The as separated clusters were sufficiently pure as observed from the spectral feature. However, 

the water solubility of the cluster gave an opportunity to run the sample through the PAGE. The 

high monomer concentration (30 %) of the gel allows separating the clusters based on their 

charge density. When Au25(Capt)18 was run through the gel, it was evident that Au25(Capt)18  was 

predominantly pure as shown in figure 2 .1(A). Running the sample through the gel helped 

removal of unreacted ligand and thiolate, which is evident from the enhancement in the feature 

of absorption spectra of the sample before and after running through the gel (figure 2.3). 

2.3.2 Formula Assignment by TGA and mass-spectrometry 
Although, the spectral features confirmed the identity of Au25(Capt)18, the sample was further 

characterized by TGA. Approximately 3 mg of the pure cluster was heated in N2 atmosphere to 

monitor the loss of ligand and hence verify the purity and the assigned formula of Au25(Capt)18. 

The determined weight loss from TGA was 44.19 % which was extremely close to the calculated 

value of 44.14 % thus verifying the composition of the purified cluster. The Au25(Capt)18 started 

losing the ligands around 180°C as shown in figure 2.4. 
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Figure 2.3 Absorbance spectra of Au25(Capt)18 before and after running through the gel. 

 

 
Figure 2.4 TGA data for Au25(Capt)18 showing the ligand loss. 

 

The formula assignment was further confirmed by ESI-mass spectrometry. The ESI data can also 

confirm the presence of any fragmentation, explaining the stability of the clusters. The 

Au25(Capt)18 was dissolved in 50 % water/methanol mixture and injected at a flow rate of 5 

μL/min. The ESI-mass spectrum showed a prominent peak at m/z 3101.6, with the 0.33 Da 

spacing of the isotope peaks indicating that the ions are 3+ charged (Figure 2.5 inset). The m/z 

3101.6 is assigned to [Au25(Capt)18Na22]3+. The 22 Na atoms could be interpreted as all the 18 -
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Figure 2.6 MALDI-MS spectra of Au25(Capt)18 clusters. Reproduced from ref. 48 with 

permission. Copyright@ 2012 Royal Society of Chemistry. 

 

2.3.3 Thermal stability of Au25(Capt)18 clusters  
The main focus of this work was to improve thermal stability for water soluble Au25(SR)18 

nanoclusters as their stability  has always been ambiguous. To determine the thermal stability, 

solutions of Au25(Capt)18 and Au25(SG)18 was made in water with nearly equal optical density 

and then heated at 80 °C for 12 hrs. The decay kinetics was monitored by UV-Vis. The spectra 

were recorded after every 30 min. The decay was monitored at 400, 450, 670, and 800 nm 

wavelength to quantify the degradation process. The absorption spectra for Au25(Capt)18 did not 

show any sign of degradation with time (figure 2.7 (A) top left panel), while Au25(SG)18 started 

degrading just after 4 hrs and in 12 hrs the spectra started looking featureless (figure 2.7 (B) top 

right panel).  
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Figure 2.7  Time dependent thermal decay profile for (A) Au25(Capt)18 and (B) Au25(SG)18.  The 

clusters were heated at 80 °C for 12 hr. Decay kinetics at different wavelength for (C) 

Au25(Capt)18 and (D) Au25(SG)18 clusters. Reproduced from ref. 48 with permission. 

Copyright@ 2012 Royal Society of Chemistry. 

 

It is important to note that one-electron oxidation of [Au25(Capt)18]- to [Au25(Capt)18]0 and finally 

to [Au25(Capt)18]+ can shift the peak at 670, 450, 400 nm. This has already been observed in the 

previous study of Au25 nanoclusters capped with aromatic thiols.23 The kinetic data for 

Au25(Capt)18, showed slight increase in the absorbance (at different wavelengths) in the beginning 

but became constant with time (figure 2.7 (C) bottom left panel). For Au25(SG)18 the absorbance 

showed a continuous decrease for all 4 wavelengths (see figure 2.7 (D) bottom left panel). This 

clearly establishes the high stability of Au25(Capt)18 with respect to Au25(SG)18. The solutions 

were heated till 24 hr and the absorption spectra were recorded. Captopril capped Au25 showed 

no sign of degradation while glutathione capped Au25 showed completely featureless spectra 
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(figure 2.8). Despite the two having the same Au25 metallic core, there stability is markedly 

different. This clearly indicates that it is the stability of Captopril over glutathione that governs 

the overall stability of the clusters. 

 
Figure 2.8 UV-Vis spectra of Au25(Capt)18 (black) and Au25(SG)18 (red) after heating for 24 hr at 

80 °C  

  

To visualize the effect of nanocluster degradation after heating, we took an aliquot of nanocluster 

solution of both Au25 nanoclusters and concentrated it to a lower volume ~ 70 µl. This 

concentrated solution was mixed with 5 µl of glycerol and loaded in the gel with the fresh 

solutions of nanoclusters and run side by side. For Au25(Capt)18 nanoclusters there was no sign of 

degradation in the gel image while  Au25(SG)18 was completely degraded as shown in figure 2.9.  

Therefore, we concluded that the ligand plays an important role in the stability of the clusters and 

it is the stability of the ligand which dictates the overall stability of the nanoclusters. To prove 

this hypothesis we performed NMR experiment on the both the ligands. Equal concentration of 

glutathione and Captopril was prepared in D2O and NMR spectra were recorded. Both the 

solution was then heated for 2 hr at 80 °C. The NMR spectra for Captopril was unchanged after 

heating, but the NMR spectra for glutathione changed and new peak appeared which clearly 

showed the degradation of glutathione as shown in figure 2.10. The new peaks in the NMR 

spectra, which appeared after heating glutathione ligand, corresponded to the pyroglutamic acid. 
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The degradation of glutathione to pyroglutamic acid has been observed in the ESI-mass 

spectrometry of Au25SG18 nanoclusters.37 The hydrolysis of the amide bond in case of GSH leads 

to the degradation of the nanoclusters. 

 
Figure 2.9 PAGE image of Au25 clusters after heating at 80 °C for 12 hr 

 

 
Figure 2.10 (A) and (D) refers to the structure of Captopril and Glutathione, (B) and (E) refers 

to the NMR spectra of Captoril and Glutathione in D2O before heating, (C) and (F) refers to 

NMR of Captopril and Glutathione after heating at 80 °C. The NMR spectra of Glutathione 
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clearly shows some new peak after heating. Reproduced from ref. 48 with permission. 

Copyright@ 2012 Royal Society of Chemistry. 

 

2.3.4 Photo-luminescence properties of Au25 nanoclusters 
The fluorescence spectrum of Au25(Capt)18 was measured and compared with the Au25(SG)18 

nanoclusters. The excitation wavelength was fixed at 514 nm. The Au25(SG)18 nanoclusters has 

been reported to have higher fluorescence intensity than any other reported Au25 nanoclusters 

capped with aromatic thiols.50 The emission profiles were nearly the same for these two clusters, 

with Captopril capped Au25 having higher fluorescence than its glutathione counterpart, 

Au25(SG)18. This makes Au25(Capt)18  quite remarkable as it has enhanced photo-luminescence 

among all reported Au25 nanoclusters (figure 2.11). We have also compared the fluorescence of 

the two clusters before and after heating. Interestingly, both clusters exhibited a large 

enhancement in fluorescence during the 12 h heating process. The Au25(Capt)18 cluster showed 

an almost 20 times stronger fluorescence as compared to the room temperature sample and 

almost 11 times in comparison to the 1 h heated sample as shown in figure 2.12(A), while 

Au25(SG)18 showed twice more intense fluorescence compared to that prior to heating (or the 1 h 

heated sample). We speculate that the huge overall enhancement in the fluorescence is due to the 

change in the charge state of Au25(Capt)18 clusters (from -1 to 0 or +1), while the lower 

enhancement for Au25(SG)18 could be due to the degradation of majority of the nanoclusters in 

course of heating. Also, the electronic effect of the ligands can play a role in the overall 

luminescence properties.50 

The huge enhancement in the fluorescence of Au25(Capt)18 after heating can be utilized in 

diverse way as the clusters shows significant fluorescence at room temperature but significantly 

high fluorescence after heating.  

2.3.5 Chiroptical properties  
The captopril is a proline derivative with L-configuration and has two chiral centers. We 

investigated the chiroptical properties of Au25(Capt)18 and compared it with other reported chiral 

ligand-capped Au25(SR)18 clusters, including –SG and –SCH2CH(Me)Ph; the latter is a chirally 

modified analog of –SCH2CH2Ph (abbreviated as PET*).15 It is important to note here that the 

CD signals of all these chiral ligands lie in the UV region. However, for chiral ligand-capped 

nanoclusters, the CD signals are observed in the visible region which involves metal-based 
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electronic transitions; such signals are apparently not directly from the ligands, but from the 

metal cores due to a chiral induction effect.15 We compared the CD spectra of Au25(SR)18 

nanoclusters capped with the three chiral ligands mentioned above. All the three nanocluster 

solutions were prepared at the same optical density (0.1 OD at 670 nm) and their CD spectrum 

was recorded. The Au25(Capt)18 nanoclusters show two strong positive bands (at 275 and 480 nm) 

and two negative bands (at 310 and 430 nm) shown in figure 2.13 (C). For Au25(PET*)18, the CD 

spectra showed two strong negative bands (at 295 and 425 nm) while a weak positive band (at 

550 nm) shown in figure 2.13 (B). The CD spectra of Au25(SG)18 showed  three significant 

positive bands (at 275, 360, and 480 nm) while two weak negative bands (at 310 and 430 nm) 

shown in figure 2.13 (B). In Comparison to Au25(SG)18 and S-Au25(PET*)18 nanoclusters, the 

Au25(Capt)18 CD spectrum shows more intense positive band at ~480 nm and a more pronounced 

negative band at 430 nm. Therefore, the comparison of the chiroptical properties of these 

nanoclusters showed that Au25(Capt)18 has more pronounced chiroptical properties. Also, the CD 

spectra of Au25(SR)18 with different chiral ligands can serve as spectroscopic fingerprints for 

differentiating chiral ligand-capped Au25 nanoclusters.  

 

 
Figure 2.11 Comparison of the fluorescence spectra of Au25(Capt)18 and Au25(SG)18 (both 

dissolved in water, abs. (670 nm) = 0.15 OD). Excitation: 514 nm; Slit width: 5 nm. Reproduced 

from ref. 48 with permission. Copyright@ 2012 Royal Society of Chemistry. 

 

600 650 700 750 800 850 900
0

20

40

60

80

100

120

140

Lu
m

in
es

ce
nc

e 
(k

cp
s)

Wavelength (nm)

 Au25(Capt)18
 Au25(SG)18



38 
 

Figure 2.12 Time dependence fluorescence of (A) Au25(Capt)18, (B) Au25(SG)18, during the 12 hr 

heating process. Reproduced from ref. 48 with permission. Copyright@ 2012 Royal Society of 

Chemistry. 

 
Scheme 2.2 The structure of the ligands, red star indicates the chiral center. 

 

2.3.6 Optical absorption properties of Au25 nanoclusters 
Noble metals (Au, Ag) nanoparticles are well characterized by their plasmonic behavior. The 

surface plasmon resonance (SPR) shown by these metals are well studied partly due to their 

strong color effect and their SPR frequency lies in the visible region of the spectrum.51 The SPR 

gives an idea of the chemical environment of the nanoparticles.52 The SPR is shown when the 

size of nanoparticle is between 3-100 nm and so size plays a very important role in the SPR of 

nanoparticles.53 If the size of nanoparticle goes below 3 nm then the SPR is absent and molecule 

like behavior becomes dominant and the spectra for those size regimes depicts electronic 

transition. The nanoparticles with a size around 1~2 nm shows this discrete electronic transition 

clearly in their spectral behavior. Due to the presence of a few dozen atoms, they behave like a 

molecule or cluster of atoms and so called super atoms as they show properties like atom of an 

element. In this work, we have demonstrated the distinct optical behavior of cluster Au25SR18 
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Figure 2.14 UV-Vis spectra of Au25 capped with glutathione and plasmonic Au nanoparticle. 

Reproduced from ref. 49 with permission. Copyright@ 2012 Simplex academic publisher. 

 

According to theoretical simulations, the lowest energy band at ~680 nm is attributed to the 

HOMO-LUMO transition (Scheme 3), which is of single electron transition in nature, as opposed 

to collective-electron excitation in plasmonic Au nanocrystals. The other two peaks at 400 and 

450 nm are also attributed to discrete electronic transitions (Scheme 3). The optical excitations in 

Au25(SR)18 nanoclusters involve molecular-like one-electron transitions; no collective SPR 

excitations were observed in Au25 nanoclusters. This optical behavior of Au25(SR)18 is in stark 

contrast with conventional Au nanoparticles. The distinctive optical absorption of Au25 

nanoclusters originates from the quantum confinement effect due to the extremely Au core (1 

nm), which  leads to a quantized sp band (Scheme 3), in contrast with the quasicontinuous sp 

conduction band in plasmonic Au  nanoparticles. 

2.3.6.1 Effect of capping ligand 
We then investigated the effect of capping ligands on the optical absorption of Au25 nanoclusters. 

For conventional plasmonic nanoparticles, the passivating ligands were found to cause red- or 

blue-shift in the optical spectra.54 To investigate whether nanoclusters showed such an effect, we 

synthesized Au25 nanoclusters using three different thiol ligands, including phenylethanethiol 

(abbreviated as PET), glutathione (GSH), and captopril (Capt). The Au25 nanoclusters capped 

with glutathione and captopril were dissolved in water and the phenylethanethiolate-capped Au25 
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the change in dielectric constant.55,56 Interestingly, for nanoclusters, we found that the spectral 

features for all the three types of dried Au25(SR)18 nanoclusters deposited on quartz substrates 

exhibit similar optical absorption features as in the solution phase  This is in sharp contrast to the  

behavior of plasmonic metal nanoparticles on substrates. Thus, our results show that the optical 

transitions in Au25 nanoclusters are not sensitive to the physical environment (figure 2.16) 

 
Figure 2.15 Au25 capped with captopril, phenyl ethane thiol, and glutathione. The spectra have 

been slightly offset for clarity. Reproduced from ref. 49 with permission. Copyright@ 2012 

Simplex academic publisher. 

 

 
Figure 2.16 Au25 capped with different ligand on quartz substrate. The spectra have been offset 

for clarity. Copyright@ 2012 Simplex academic publisher. 
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2.3.6.3 Effect of dielectric constants of solvents 
Since the Au25 spectra did not show any shift in peak position between the solution and solid 

states, it indicates that the dielectric constant (ε) of the medium does not affect the spectral 

properties of these quantum-sized nanoclusters. To further investigate the effect of dielectric 

constant on the optical absorption of Au25 nanoclusters, we studied the spectra of Au25(PET)18 

nanoclusters in various solvents that have different dielectric constants and chemical 

environments. Table 1 lists the organic solvents investigated in this work and their respective 

dielectric constants (ε = n2, where n = refractive index) at optical frequencies. For plasmonic 

nanoparticles, the SPR wavelength red shifts with increasing n and the sensitivity is typically 

about 100 nm (i.e. SPR peak wavelength shift) per unit of refractive index (n) for spherical 

nanoparticles,57 and non-spherical nanoparticles can be even more sensitive.56 In contrast, our 

results show that the Au25(PET)18 nanocluster solution did not show any discernible shift in their 

peak wavelengths with different solvents (figure 2.17). This is again a distinct feature compared 

to the behavior of plasmonic nanoparticles. 

 
Table 2.1 Solvents and their dielectric constants 

 

 
Figure 2.17 Au25(PET)18 in different solvents. The spectra have been slightly offset for clarity. 

Copyright@ 2012 Simplex academic publisher. 

Solvents Dielectric constant 

Acetonitrile (MeCN)                                                 37.5

Dichloromethane (DCM)                                           9.1

Tetrahydrofuran (THF)                                             7.5

Toluene                                                                       2.3
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Au25(SG)18 nanoclusters. The high stability of Au25(Capt)18 clusters has been explained by the 

ligand stability of Captopril over Glutathione. Photoluminescence study showed that 

Au25(Capt)18 nanoclusters have high fluorescence than glutathione or aromatic thiols capped 

Au25 nanoclusters reported before. The thermal study revealed that the fluorescence enhancement 

of ~20 times can be achieved for Au25(Capt)18 by heating the nanocluster solution. The chiral 

ligand does induce chirality to the overall cluster. Au25(Capt)18 captopril showed enhanced 

chiroptical properties than the other reported nanoclusters. CD spectra of various chiral ligand 

capped Au25(SR)18 can serve as fingerprint for the detection of nanoclusters. 

Also, the optical absorption study of Au25 nanoclusters and its comparison with plasmonic 

nanoparticles revealed that the nanocluster system shows fundamentally distinct optical 

properties than their larger counterpart-plasmonic nanoparticles. The absorption spectra of Au25 

nanoclusters showed no effect of capping ligand, physical state, and dielectric environment 

which has a significant effect on the plasmonic nanoparticles. The distinct optical absorption of 

these nanocluster systems has been explained by the discrete energy level transition as compared 

to the quasi-continuous band in case of plasmonic nanoparticles.  
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Chapter 3 

Large-scale Enantioselective Synthesis of 

Chiral Au38 and Au40 Nanoclusters  
3.1 Introduction 
Ever since chirality was described in early 19th century, it has continued to garner a lot of interest 

in diverse areas of scientific research, including the more recent field of nanotechnology. Indeed, 

special types of macromolecules like DNA and metal nanoparticles exhibit this intriguing feature, 

which in turn has been shown to have direct effect on catalysis, medicine and a variety of 

applications.1 In this direction, major advances in the synthesis of colloidal nanoparticles in 

recent years has enabled widespread exploration of chirality in nanostructures. For example, 

chiral nanoparticles have shown promise in potential applications,1 like chiral catalysis,2-4 

chiroptics (e.g. negative refractive index materials),5,6 chiral separation of analytical and 

biological molecules,7 and chiral recognition and sensor design.8,9 

In the past, several strategies have been employed to achieve chiral nanostructures. These 

include i) direct synthesis in the presence of chiral ligands or chiral surfactants,10 ii) post-

synthetic modification of achiral nanoparticles by chiral stabilizers,4 iii) chiral assembly of 

nanoparticles in the presence of chiral templates11 or even without template.12 In this regard, 

various chiral stabilizers have been used, most significant of them being chiral thiols (for e.g. L-

glutathione, L- or D-cysteine) and inherently chiral biomolecules like DNA and peptides.13-18 

Many types of optical active nanoparticles have been reported utilizing such strategies; 

noteworthy examples include chiral Au nanospheres and nanorods, chirally assembled Au 

nanosphere and nanorods, chiral Ag nanoparticles, and even chiral semiconductor quantum 

dots.4-6,10,11,17 The key feature in such chiral metal nanoparticles is essentially the circular 

dichroism (CD) response which emerges in the metal-based optical absorption region such as the 

vicinity of surface plasmon resonance (SPR) and typically lies beyond the region of the ligand 

itself (usually in the UV region). With respect to the CD signal of the ligand, it is often enhanced 

by the plasmon of metal nanoparticles and scales as the plasmon intensity. 
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In view of these interesting properties, an interesting question of chiral nanoparticles pertains to 

the origin of the optical activity, including both chiral surface plasmon resonance (SPR) 

observed in metal nanoparticles > 2 nm in size and the chiroptical response in non-plasmonic 

ultrasmall nanoparticles (i.e. nanoclusters). Several mechanisms have been advocated in previous 

reports; however, these mechanisms are still being debated. In general, for plasmonic 

nanoparticles, the CD response in the vicinity of the plasmon frequency is attributed to the 

surface molecule induced chiral currents in the nanoparticles.19 Meanwhile, for non-plasmonic 

nanoclusters three different mechanisms have been proposed,13 i) chiral metal core,20 ii) chiral 

adsorption pattern (or a related model called chiral footprint model),16 and iii) chiral induction or 

vicinal effect (i.e. electronic induction by chiral molecules).21 It is well-established that chiral 

molecules on the particle surface can impart chirality to nanoparticles, thereby inducing 

chiroptical response from the particle. This feature is evident in plasmonic or excitonic CD 

responses in the visible to near IR wavelengths.  

Prominent examples include the CD responses at ~400 nm for Ag nanoparticles, at ~520 nm for 

gold nanoparticles, and multiple CD peaks for nanoclusters due to quantized electronic structure. 

In addition, Tang and coworkers observed unique bi signated CD bands around the longitudinal 

SPR of Au nanorods through 1D end-to-end assembly of cysteine end-functionalized gold 

nanorods, and the optical activity was attributed to the collective tip-enhanced electromagnetic 

field in the 1D assembly of nanorods.22 Inherently chiral Au38(SCH2CH2Ph)24 nanoclusters have 

also been reported. Further, separation of the (±)-Au38 and (±)-Au40 enantiomers was achieved 

very recently by chiral high-performance liquid chromatography (HPLC).23,24 In this regard, a 

key question which arises is whether selective synthesis of enantiomers can be achieved in one 

step, that is, to form one enantiomer against the other, which is often critical for practical 

applications of such non-plasmonic chiral nanoparticles. 

In order to address this issue, we attempted the enantioselective synthesis of different ligand-

protected Au38 nanoclusters by a direct approach using chiral ligands including (R) and (S)-2-

phenylpropane-1-thiol (abbreviated as R- and S-PET, or collectively as PET*), (2S)-1-[(2S)-2-

methyl-3-sulfanylpropanoyl] pyrrolidine-2-carboxylic acid (commercial name: Captopril, 

abbreviated as Capt), and L-glutathione(GSH) and Au40 capped with Captopril. To this end, we 

successfully achieved the synthesis of Au38 nanoclusters protected by all of aforementioned 

ligands. Further in order to confirm the chiral nature of these clusters, their anisotropy factors 
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(ΔA/A) were measured and found to be comparable to that of the reported pure 

Au38(SCH2CH2Ph)24 enantiomers separated by chiral HPLC.23 

3.2 Experimental  
3.2.1 Synthesis of Au38(PET*)24 

In a typical synthesis, HAuCl4·3H2O (0.1612 g, 0.41 mmol) was dissolved in 5 mL Nanopure 

water, and tetraoctylammonium bromide (TOAB, 0.2596 g, 0.47 mmol) was dissolved in 10 mL 

toluene. The two solutions were combined in a 25 mL tri-neck round bottom flask. The solution 

was vigorously stirred (~1100 rpm) with a magnetic stir bar to facilitate phase transfer of Au (III) 

salt into the toluene phase. After ~15 min, phase transfer was completed, leaving a clear aqueous 

phase at the bottom of the flask; the aqueous layer was then removed using a 10 mL syringe. The 

toluene solution of Au (III) was cooled to 0 °C in an ice bath over a period of 30 min under 

magnetic stirring. After stirring was reduced to a very low speed (~50 rpm), (R)- or (S)-2-

phenylpropane-1-thiol (0.17 mL, ~3 equivalents of the moles of gold) was added. The solution 

was kept stirring after thiol addition, during which the solution color slowly changed from deep 

red to faint yellow, then gradually phased out and eventually became clear over a ~1 h period. 

After the solution turned clear, the stirring speed was increased to ~1100 rpm. 10 mL of aqueous 

solution of NaBH4 (0.1561 g, 4 mmol, 10 equivalents per mole of gold, freshly made in 10 mL 

ice-cold Nanopure water) was rapidly added to the solution all at once. The reaction was allowed 

to proceed for ~20 hours. After that, the black toluene phase was dried by rotary evaporation at 

room temperature and ethanol was added to separate the Au nanoclusters from TOAB and other 

side products. Acetonitrile was added to extract the Au25 clusters impurity from the black 

mixture, and the remaining black solid was polydisperse gold nanoclusters. The black solid 

obtained in the first step (about 20 mg) was dissolved in 20mL toluene. 1.0 mL (R)- or (S)-2-

phenylpropane-1-thiol was added to the solution. The solution was then heated to 80 oC and 

maintained at 80 oC for about 12 hours under constant magnetic stirring. After that, 20 mL 

methanol was added to the solution to precipitate Au nanoparticles. Au38 nanoparticles and 

Au(I)-SR exist in the black precipitation. Since Au(I)-SR is poorly soluble in any organic 

solvents, Au38 can be extracted with toluene and CH2Cl2.  
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3.2.2 Synthesis of Au38(Capt)24 

The synthesis of Au38(Capt)24 was done at room temperature under air. HAuCl4⋅3H2O (0.20 

mmol, 78.7 mg) and TOABr (0.23 mmol, 126.8 mg) were first dissolved in 15 ml methanol and 

vigorously stirred (1200 rpm). The solution color changed from yellow-orange to deep red. After 

15 min, captopril (0.6 mmol, 130 mg) was added into the reaction mixture under stirring. The 

solution color quickly changed to white. After 30 min, the stirring speed was reduced to 600 rpm 

and NaBH4 (1mmol, 37.8 mg, dissolved in 5 ml of ice cold water) was rapidly added to the 

reaction mixture. The solution color immediately turned brown-green. The reaction was allowed 

to proceed for 48 h and the reaction was monitored continuously through UV-Vis spectroscopy. 

After 48 h, the spectral feature was clearly like Au38 as shown in figure 3.1. The reaction mixture 

was then centrifuged to remove unreacted, insoluble Au(I):SR polymers. The supernatant was 

collected and concentrated in vacuo. The clusters were precipitated by adding acetone to the 

solution. The precipitate was extracted with minimum amounts of methanol several times and 

precipitated with acetone. The clean precipitate was finally dried under vacuum. 

 
Figure 3.1 Time evolution of the synthesis process of Au38(Capt)24 (spectra has been offset for 

clarity). 

 

3.2.3 Synthesis of Au38(SG)24 

The synthesis of Au38SG24 was done in two steps. First the polydisperse Aun(SG)m clusters were 

prepared by previously reported protocol.25 This mixture was then etched with excess of 
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glutathione at 55 °C in water.26 The etched product was then centrifuged to remove insoluble 

Au(I):SR polymer and the supernatant was precipitated with ethanol. The precipitate was washed 

several times, ultrasonicated and centrifuged to obtain the clean product. The etched product was 

run through the PAGE gel with 30 % monomer concentration for 16 hr at 200 V. Au38(SG)24 

appears as well separated band (figure. 3.2). The pure Au38(SG)24 clusters was then cut from the 

gel and soaked in water for 2 h and then filtered with 0.2 µm filter. The filtered solution was then 

concentrated with a cut-off filter of 3 kDa. The concentrated solution was then precipitated with 

ethanol and then dried in vacuum. 

 
Figure 3.2 PAGE image of the etched Aun(SG)m nanoclusters. 

 

3.2.4 Synthesis of Au40(Capt)24 
The synthesis of Au40(Capt)24 was done in one pot. In the synthesis of Au38(Capt)24 process, if 

the reaction is aged for 24-30 hr and the product is isolated, it generates Au40(Capt)24 along with 

Au38(Capt)24. This is quite similar to the work of Qian et al. where the Au40(PET)24 nanoclusters 

was isolated by stopping the thiol etching process at 18 hr instead of 48 hr.27 The Au40 

nanoclusters were isolated by running the gel and isolating the Au40 fraction (as shown in figure 

3.3) by the regular protocol for isolation of nanoclusters from the gel. 

 
Figure 3.3 PAGE image of the isolated Au40(Capt)24 nanoclusters. 

Au38SG24

Au25SG18

Au38Capt24

Au40(Capt )24
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3.2.5 Characterization 
The UV-vis absorption spectra (190-1100 nm range) of the cluster were recorded in CH2Cl2 (for 

organic soluble Au38) and water (for aqueous soluble Au38) at room temperature using a Hewlett-

Packard (HP) 8453 diode array spectrophotometer. The UV-vis-NIR spectra (190-2000 nm range) 

were recorded on a Varian Cary 5000 vis-NIR spectrophotometer at room temperature. 

Electrospray ionization (ESI) mass spectra were recorded using a Waters Q-TOF mass 

spectrometer equipped with a Z spray source. Water soluble Au38(Capt)24 was dissolved in 50 % 

water/methanol and injected at a flow rate of 5 μL/min. For Au38(PET*)24, a solution of CsOAc 

salt (50 mM in dry methanol) was added to form Cs+ adducts of nanoclusters (dissolved in 

toluene or CH2Cl2, ~1 mg/mL) during the ESI process, and the positively charged adducts were 

then detected by ESI-MS. Circular dichroism (CD) spectra of the clusters were recorded in 

CH2Cl2 (for organic soluble Au38) and in water (for aqueous soluble Au38) at room temperature 

on a JASCO J-810 CD spectrometer. Thermal gravimetric analysis (TGA) was performed on a 

TG/DTA6300 analyzer (Seiko Instruments, Inc.) under a N2 atmosphere (flow rate ~50 mL/min). 

3.3 Results and Discussion 
3.3.1 Synthesis of Au38(PET*)24 
Our synthetic strategy to obtain chiral Au38 nanoclusters capped with R- and S-PET is different 

from that employed for obtaining racemic Au38(SCH2CH2Ph)24.28 In a previous work,28 a two-

phase method for synthesis of Au38 nanoclusters was proposed. Here, the first step involved the 

synthesis of water-soluble polydisperse glutathione-capped Aun(SG)m clusters followed by 

ligand exchange with excess HSCH2CH2Ph. Hence, this process involves phase transfer from 

water to organic phase, followed by size focusing of polydisperse Aun(SCH2CH2Ph)m into 

molecularly pure Au38(SCH2CH2Ph)24. However, this method failed to yield the direct synthesis 

of chiral Au38. Therefore, we developed a new one-phase protocol to achieve enantioselective 

synthesis. In this method, we synthesized polydisperse Aun(PET*)m clusters, where PET refers to 

either (R)-PET* or (S)-PET*, in the first step in lieu of water soluble glutathione in previous 

work. The second step involved the conversion of the polydisperse Aun(PET*)m clusters to 

molecular purity Au38(PET*)24 product in presence of excess chiral thiol at ~80 oC. Chiral 

Au38(PET*)24 nanoclusters were separated from the side product (i.e. Au(I)-PET* complexes, 

which are less soluble in most solvents) by extracting it with toluene or CH2Cl2. In the new one-
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core structure. More importantly, our results demonstrate that the (S)-PET* ligand can 

selectively form the left-handed Au38 enantiomer, while the (R)-PET* forms the right-handed 

enantiomer exclusively. It is worth analyzing the origin of chiroptical activity. In Burgi’s work, 

the origin of the observed CD signals is attributed to the chiral Au38 core (i.e., no chiral ligand 

induction effect),15 while in our system effects from both the Au38 chiral core and chiral ligand 

induction are present, but the latter’s contribution is much smaller compared to the metal core-

induced CD signals. 

The attainment of (R)-Au38(PET*)24 and (S)-Au38(PET*)24 nanoclusters via bulk solution phase 

synthesis opens the possibility for practical applications such as chiral catalysis. However, their 

full exploitation for potential applications is somewhat limited by the fact that they are only 

organic soluble. Meanwhile, water-soluble nanoclusters are equally important, especially in the 

realm of biological applications. Thus, we further pursued the synthesis of chiral Au38 

nanoclusters with water-soluble thiol ligands such as glutathione and captopril.  

3.3.3 Synthesis of Au38(Capt)24 and Au38(SG)24 nanoclusters 
The synthesis of captopril-capped Au38(Capt)24 was done via the one-pot procedure (see 

Experimental section for details). Briefly, HAuCl4·3H2O and captopril were mixed in a molar 

ratio of 1:3 to yield Au(I)-thiolate complexes or polymers. These Au(I) species were further 

reduced by addition of a relatively small amount of NaBH4.  

 
Figure 3.6 ESI-mass spectrum of Au38(Capt)24. 
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The size-focusing of the mixture occurred over a period of 2 days at room temperature. The final 

product was found to exhibit the spectral features of Au38. The product was further purified by 

centrifugation to remove insoluble Au(I):thiolate polymer residuals. This in turn was followed by 

precipitation of the concentrated mixture and multiple washings with ethanol to yield pure 

Au38(Capt)24. The formula was further confirmed by ESI-mass spectrometry (figure 3.6). Since 

the ligand captopril is intrinsically charged on account of the presence of a carboxylic acid group, 

addition of CsOAc salt to facilitate cluster ionization was deemed unnecessary.  Indeed, the 

Au38(Capt)24 clusters appeared as sodium adducts in the 4-, 5-, and 6- charge states in the 

negative mode ESI spectrum. Moreover, no other fragments were observed in the lower or higher 

mass range, which strongly confirms the high purity of Au38(Capt)24. The formula assignment 

was further confirmed by thermogravimetric analysis (TGA), where a weight loss of 40.92% was 

observed (figure 3.7). This value is in complete agreement with the calculated theoretical value 

(40.90%).  

 
Figure 3.7 TGA of Au38(Capt)24. The weight loss at ~120 oC is due to hydroscopic nanoclusters, 

rather than ligand loss. 

 

For the synthesis of water soluble, glutathione-capped Au38(SG)24, a two-step strategy was 

employed as opposed to the one-pot synthesis of Au38(Capt)24. In the first step, polydisperse 

Aun(SG)m clusters were prepared by a previously reported protocol.25 These size-mixed clusters 

were then treated with excess glutathione at 55 °C in water for 4-5 hr.26 The product so obtained 
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was then centrifuged to isolate it from insoluble Au(I):SG polymers. The supernatant (containing 

nanoclusters) was further precipitated with ethanol to obtain pure nanoclusters. The collected 

product was subjected to polyacrylamide gel electrophoresis (PAGE). Au38(SG)24 appears as a 

well separated band. The Au38(SG)24 clusters were then isolated as described in the experimental 

section. The UV-Vis-NIR absorption spectrum of the as-collected product confirms Au38 

nanoclusters, evidenced by the presence of all the signature peaks of racemic Au38(PET)24.28 The 

Au38(SG)24 nanoclusters have a prominent peak around 625 nm and 1060 nm (figure 3.8), with 

the latter being attributed to the HOMO-LUMO gap absorption; of note, the HOMO-LUMO 

absorption peak is damped in the UV-vis spectra (up to 1100 nm only) shown in Figure 3.4 A 

(afore-discussed) and Figure 3.9 (vide infra) due to its proximity to the detection limit of the 

silicon photodiode detector (up to 1100 nm wavelength).  

 
Figure 3.8 UV-Vis-NIR absorption spectra of Au38(SG)24. The 1100 nm peak corresponds to the 

HOMO-LUMO gap absorption of the cluster. 

 

3.3.4 Chiroptical properties of Au38(Capt)24 and Au38(SG)24 nanoclusters 
The absorption spectra for Au38(Capt)24 and Au38(SG)24 are shown in figure 3.9 (left panels A 

and B). Indeed, their CD spectra exhibit quite different signals, figure 3.9 (right panels C and D).  
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In particular, the CD signal for Au38(SG)24 shows three positive bands at 350 nm, 388 nm, 636 

nm and four negative bands at 282 nm, 446 nm, 563 nm, 743 nm.  

 
Figure 3.9 UV-Vis absorption spectra of (A) Au38(Capt)24 and (B) Au38(SG)24 (left panels). CD 

spectra of (C) Au38(Capt)24 and (D) Au38(SG)24 (right panels). 

 

The anisotropy factor (ΔA/A=g, where A stands for absorbance) calculated for the Au38(SG)24 

cluster at various wavelengths is tabulated in 3.1. The highest value observed for the anisotrpy 

factor is +1.08×10-3 at 620 nm which is comparable to Burgi’s chiral HPLC-isolated enantiomers 

of Au38(SCH2CH2Ph). The sample purity and the PAGE gel conditions govern the purity of the 

final product. In our work, the clusters are of molecular purity where no impurities were detected, 

as verified by running the PAGE gel multiple times. We next look closely at the CD spectrum of 

Au38(Capt)24, it shows four positive bands at 297 nm, 365 nm, 577 nm, 754 nm and five negative 

bands at 255 nm, 338 nm, 400 nm, 480 nm, 639 nm. These are somewhat different from both 
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Au38(SG)24 and Au38(PET*), indicating the influence of the specific ligand type on the CD 

signals from the Au38 metal core. We further calculated the anisotropy factor for Au38(Capt)24 at 

different wavelengths (table 3.1). The highest anisotropy factor observed for this cluster was 

found to be +4×10-3 at 747 nm. This, indeed, is the highest anisotropy value obtained for any of 

the previously reported gold nanoclusters with any ligand. 

 

Table 3.1 Wavelength and anisotropy factor (g), and signs for Au38SG24 and Au38(Capt)24 

clusters 

 
 

3.3.5 Comparison of the absorption and chiroptical properties of Au38 

Capped with different ligand 
The different chiroptical responses of the Au38 clusters capped with the three different ligands 

are fascinating, which is in striking contrast with their similar UV-vis absorption spectra (as 

shown in figure 3.10 left panel). This explicitly proves that inspite of having the same core (i.e. 

Au38) and the same types of staple motifs (i.e. dimeric and monomeric staples) around the core, 

the capping ligand shell plays quite a significant role in defining the chiroptical behavior. Since 

the Au38 core is inherently chiral, the influence of different chiral ligands shows a pronounced 

difference in the chiroptical response of the overall cluster. Not only some of the CD band 

locations are changed, but also the chiroptical response for the clusters shows quite different 

chiral response below 600 nm wavelength (figure 3.10 , right panel).  

Wavelength (nm) Au38SG24 (g) Au38(Capt)24 (g) Wavelength (nm)

747                                       -8.3×10-4   

620                                      +1.08×10-3

568                                       -3.5×10-4

512                                       -2.3×10-4

449                                       -6.4×10-4

385                                       +2.4×10-4

354                                       +4.3×10-4

296                                       -6.6×10-4

239                                       -1.8×10-4

747                                        +4×10-3   

629                                       -1.4×10-3

564                                       +4.9×10-4

479                                      -7.1×10-4

449                                       -1.8×10-4

393                                       -5.1×10-4

345                                       -2.6×10-4

298                                       +2.1×10-4

245                                       -2.4×10-4
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Figure 3.10 Absorption spectra (left panel) and CD spectra for (S)-Au38(PET*)24, Au38(SG)24, 

and Au38(Capt)24 

 

3.3.6 Synthesis of Au40(Capt)24 nanoclusters 
The size focusing synthesis of Au38(Capt)24 was stopped at 24-30 hr to control the growth 

process which results to  Au40(Capt)24 nanoclusters. It is important to mention that if the size-

focusing reaction is run for 48 hr all the Au40(Capt)24 nanoclusters are converted into more stable 

Au38(Capt)24 nanoclusters. Therefore, the controlled growth process governs the formation of 

Au40 nanoclusters. Figure 3.11 (A) shows the UV-Vis absorption spectra and (B) TGA of the gel 

isolated Au40(Capt)24 clusters 

 
Figure 3.11 (A) Absorption spectra and (B) TGA of the Au40(Capt)24 nanoclusters. 
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3.4 Summary 
In conclusion, we have successfully achieved the first direct enantioselective synthesis of Au38 

and Au40 nanocluster enantiomers using chiral ligands. Although the Au38 nanocluster exhibits 

inherent chirality due to the staple motifs, the structure of chiral ligands can influence the 

chiroptical behavior of the core to a significant extent, as evidenced by the different CD spectra 

of the Au38 nanoclusters capped by the different types of ligands. These observations explicitly 

prove that the chiral response of ligand-protected nanoclusters has major influences from both 

the metal atom arrangement and the ligand shell around it. In addition, the high molecular purity 

and the facile synthesis of chiral Au38 and Au40 nanoclusters are expected to make them attractive 

candidates for future exploration of chiral catalysis and other chiroptical applications. 
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Chapter 4 

Core-size and Ligand Dependent 

Fluorescence Properties of Gold nanoclusters 
4.1 Introduction 
Gold nanoparticles are amongst the most studied nanostructures due to their tunable electronic 

structures and material properties.1 Amongst the unique properties shown by nano-meter sized 

gold, surface plasmon resonance (SPR) is undoubtedly the most fascinating one. The SPR arises 

from the collective oscillation of free electron in the continuous band structure and can be 

precisely tuned by varying the structural parameters such as size, aspect ratio, shape, and the 

capping ligand.2 The plasmonic properties of gold has been well documented in the past few 

decades but very little attention has been given to the luminescence properties of gold 

nanoparticles. After decades of sustained effort, luminescent gold nanoparticle has emerged as 

new class of material.3-5 The recent work in this field has enabled researchers to synthesize 

different sized luminescent gold nanoparticles with high quantum yield and explore various 

applications. Although, the luminescence properties of gold nanoparticles have been studied 

recently, the observation of fluorescence from gold metal dates back to 1969 by the pioneering 

work of Mooradia.6 By using a 488 nm laser power, the gold and copper films are excited and 

photoluminescence was observed at 564 and 620 nm respectively. Since copper and gold have 

continuous conduction band (sp band) structure, the observed luminescence was attributed to the 

interband (d-sp) transitions than intraband (within sp band) transition. Scheme 4.1 shows the first 

proposed mechanism to explain the luminescence form gold and other metal films. The emission 

in this case is due to the recombination of electrons at the Fermi level to the holes in the upper 

lying d level. Although the photoluminescence from the metal system, with high density of states 

and large number of free electrons was quite unusual as compared to the traditional fluorophores, 

the work still did not get much attention because the quantum yield (QY) was extremely low (10-

10). The study of SERS on thin metal film shed some light on the emission properties of metals as 

a constant emission background was observed in the SERS of metal films. Boyd et al from their 

study on metals films showed that the emission of gold films are in the range of 400-650 nm and 
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of emission energy with the number of gold atoms (N) per clusters. Reproduced with permission from ref. 

16. Copyright 2004 American Physical Society. 

The study of dendrimer capped Au clusters revealed that the capping ligand has a little influence 

on the photoluminescence property of the clusters. Therefore, with the same core-size the 

emission should remain the same by any change of capping ligand. The Au8 clusters reported by 

various groups with different capping ligands resulted in the same blue emission.17-19 This was 

further observed for Au3 clusters, where the same emission property was observed for different 

ligands. Jin et al. observed that the Au3 core capped with dodecanethiol has emission ~ 340 

nm,20 similarly Gonzalez et al. reported the Au2 and Au3core capped with poly (N-

vinylpyrrolidone) with their emission maxima lying at 315 and 335 nm respectively.21 

As the size of the nanoclusters increases, its emission energy is slightly deviated from the perfect 

free electron model due to the screening of electron and a small harmonic distortion in the 

potential energy well.22 Tsukuda et al. reported the series of Au nanoclusters capped with 

glutathione Au10(SG)10, Au15(SG)13, Au18(SG)14, Au22(SG)16, Au22(SG)17, Au25(SG)18, 

Au29(SG)20, Au33(SG)22, and Au39(SG)24 and it was observed that the emission of these 

nanoclusters are not dependent on the clusters size, which was in sharp contrast to the dendrimer 

capped nanoclusters.23  

In case of Au25 nanoclusters, the crystal determination revealed the presence of Au13 icosahedral 

core with six staple motifs of Au2S3 surrounding the core. Theoretical calculation on the 

electronic structure of Au25 showed that the first peak which is the HOMO-LUMO gap at 1.8 eV 

is due to the sp-sp intraband transition. The second peak at 2.75 eV is the combined effect of sp-

sp intarband transition and also the interband d-sp transitions. The third peak at 3.1 eV 

corresponds to interband d-sp transition. The electronic transition also explains the origin of 

fluorescence in these clusters. Goodson et al. studied the ultrafast relaxation dynamics of Au25 

and observed two emission peaks ~ 500 and 700 nm.24 This study suggested that the 500 nm 

emission peak arises due to the electron hole recombination in the Au13 core. These transitions 

will have a little influence from the capping ligand. The NIR emission at 700 nm can originate 

from the recombination of holes in the ground core state and electron decay from the core 

excited state to the S-Au-S-Au-S staple motif as shown in figure 4.2.24 If we consider the Au13 

core as an isolated cluster, the short wavelength emission at 500 nm (2.48 eV) was observed to 

be close to 2.43 eV emission from dendrimer capped Au13 clusters. This suggested that surface 
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at cryogenic temperature to resolve the distinct electronic transition in their emission spectra. 

The life-time decay for several reported Au cluster was studied in the past and it was observed 

that these few atoms Au clusters have very short leaved emission profile with the lifetime of few 

nanoseconds. Also, as the excitation wavelength was changed, the lifetime of the nanoclusters 

showed a dramatic shift and a lifetime of few µs was observed. To understand the decay kinetics 

of all these clusters in consideration we performed the lifetime study for the clusters. We studied 

the lifetime with varying time scale to quantify the decay kinetics.  

4.2 Experimental 
4.2.1 Synthesis of Au nanoclusters 
The synthesis of Au25(Capt)18, Au25(SG)18, Au25(PET*)18 nanoclusters has been described in 

chapter 2. Au15(SG)13 and Au18(SG)14 are also obtained as a separate band while running the 

etched Au:SG nanoclusters through the gel. These bands are isolated following the protocol for 

isolating Au25(SG)18 nanoclusters as explained in Chapter 2 (experimental section). The 

synthesis of Au25(PET)18 nanoclusters was done similar to the synthesis of Au25(PET*)18 where 

the PET ligand was used instead of PET* in the synthesis process.  

4.2.2 Characterization 
UV-Vis spectra of the Au25 clusters were acquired by Hewlett- Packard (HP) Agilent 8453 diode 

array spectrophotometer at room temperature. Glutathione capped nanoclusters was dissolved in 

water, while aromatic thiol capped nanoclusters were dissolved in toluene. Fluorescence spectra 

were recorded on a Fluorolog-3 spectrofluorometer (HORIBA Jobin Yvon). For the convenience 

of comparison, the excitation wavelength was fixed at 375 and 514 nm (from a Xe arc source) 

for all the cluster species in emission measurements. The band pass for both the emission and 

excitation was fixed to 5 nm. Quantum yields (QY) were measured with dilute solutions of 

clusters (~0.05 OD absorption at 514 nm) using [Au25(SG)18]- as a reference (QY: 2 × 10-3)26. 

Cryogenic measurement was done by using FL-1013 liquid nitrogen dewar assembly compatible 

with Fluorolog-3 spectrofluorometer. Water-soluble nanoclusters was mixed with ethylene 

glycol and water in 2:1 ratio and degassed for 15 min in vacuum and then slowly dropped in 

liquid nitrogen to form glass for the fluorescence measurement. For aromatic thiol capped 

nanoclusters, 1:1 mixture of toluene and acetonitrile was used as a solvent for forming glass. 

Fluorescence lifetimes were measured with a time-correlated single photon counting (TCSPC) 
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of Au25(Capt)18 and Au25(SG )18 in chapter 2 has already shown that Au25(Capt)18 nanoclusters 

has slightly higher fluorescence than Au25(SG )18 at room temperature.27 

 
Figure 4.3 Absorption (top left panel) emission (top right panel) and the integrated fluorescence intensity 

plot (bottom) for Au25(Capt )18 nanoclusters at different dilution.  

 

For Au15(SG)13 and Au18(SG)14 the reported QY was 2×10-4 and 4×10-3 respectively.23 In our 

study of these nanoclusters, we observed a strong emission from these nanoclusters. The 

emission intensity was ~ 10-15 times higher than the Au25(SG)18 nanoclusters so we decided to 

calculate the QY for these nanoclusters. The low QY observed by Tsukuda et al. may be due to 

the poor separation of these nanoclusters in the gel matrix. In our synthesis and PAGE 

experiment, we were able to get a baseline separation of these nanoclusters (figure 2.1(B) chapter 

2) and so the QY for ultra-pure cluster can be calculated. For Au15(SG)13 nanoclusters, the 

absorbance, fluorescence, and the integrated fluorescence has been shown in figure 4.4. The QY 

was calculated using equation 4.1 and the observed QY was 3×10-2, which is ~15 times higher 

than Au25(SG)18 nanoclusters. 
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Figure 4.4 Absorption (top left panel) emission (top right panel) and the integrated fluorescence intensity 

plot (bottom) for Au15(SG )13 nanoclusters at different dilution.  

Similarly, for Au18(SG )14 nanoclusters the calculated QY value was found to be 2×10-2, which is 

~10 times higher than Au25(SG)18 nanoclusters. 

 
Figure 4.5 Absorption (top left panel) emission (top right panel) and the integrated fluorescence intensity 

plot (bottom) for Au18(SG )14 nanoclusters at different dilution.  
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4.3 Results and Discussion 
4.3.1 Ligand dependent fluorescence properties of Au25 nanoclusters 
The study of emission properties of Au3 and and Au8 nanoclusters clusters capped with different 

ligands has been shown to have similar emission profile with different capping ligand. However, 

Wu et al. observed distinct emission profile for Au25 capped with glutathione and phenyl 

ethanethiol. This contradiction motivated us to study the effect of capping ligand on the 

fluorescence properties of Au25 nanoclusters. Scheme 4.3 shows the structure of four different 

ligand employed in this study. 

 
Scheme 4.3 Showing the structure of ligands involved in the fluorescence study  

 

The absorption spectra of Au25 capped with PET, PET*, Capt and GSH has been shown in figure 

4.6. The absorption spectra for all these nanoclusters were perfectly overlapping with peaks at 

400, 450, and 670 nm. The change of ligand does not show any change in their spectral profile. 

However, the fluorescence spectra of these Au25 nanoclusters capped with a different thiolate 

ligand shows a very different profile. The emission spectra at 514 nm excitation shows (figure 

4.7 left panel) that Au25(Capt)18 has highest emission than Au25(SG)18, Au25(PET)18, 

Au25(PET*)18 nanoclusters. For Au25(Capt)18, and Au25(SG)18 the emission profile is similar with 

emission maxima ~715 nm. The Au25(PET)18 has been reported to have its emission maxima in 

the NIR region ~900 nm, but the cut-off limit (850 nm) of the detector in our measurement, 
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limits the fluorescence maxima ~825 nm which is not the actual maxima. The emission profile 

for Au25(PET*)18 is similar to Au25(PET)18 with slightly lower fluorescence intensity. 

 
Figure 4.6 Absorption spectra of Au25 capped with different ligands. (The spectra has been offset for 

clarity.) 

 

The emission profile is similar for excitation at 375 and 514 nm excitation, with 375 nm 

excitation results to enhanced emission intensity for all the nanoclusters (figure 4.7 right panel) 

This observation is in contrast with the previous study of Au8 and Au3 nanoclusters where the 

change of ligand did not altered the emission profile and the emission maxima. 

 
Figure 4.7 Emission spectra of Au25 capped with different ligands (left panel 514 nm excitation, right 

panel 375 nm excitation).  
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4.3.2 Fluorescence properties of Au25(PET)18 

For Au25(PET)18 nanoclusters, the absorption, emission and excitation spectra is shown in figure 

4.8. The excitation spectra at 700 and 800 nm emission was acquired which showed very low 

intensity with no significant features. The emission spectra at 375 and 514 nm showed similar 

emission profile with emission maxima ~820 nm. For 375 nm excitation, emission was found to 

be more intense than 514 nm excitation. The blank region in the emission profile is due to the 

double wavelength artifact at ~ 750 nm for 375 nm excitation. This artifact has been deleted. 

 
Figure 4.8 Absorption (black), emission (red, blue) and excitation spectra (green, magenta) of 

Au25(PET)18 cluster. The emission spectra (excitation at 375 nm ) has been scaled 10 times to fit on the 

same scale. 

 

The full width at half maxima (FWHM) of the emission profile was ~ 200 nm (not observed in 

this measurement due to detector limit of 850 nm) and the emission profile showed a shoulder 

below 500 nm. The ultrafast study of Au25(PET)18 nanoclusters have showed two emission 

emission peak at 500 and 700 nm respectively.24 The important question is; can these emission 

peak be resolved in regular emission measurement. To achieve that, we measured the 

fluorescence at cryogenic temperature (77 K). The nanoclusters were cooled in liquid nitrogen, 

which led to the formation of glass (solvent was changed to 1:1, toluene: acetonitrile) and then 

emission measurement were done by maintaining the nanoclusters at 77 K. The emission profile 

which appeared as a broad peak at room temperature split into two peaks at 575 nm and 725 nm 
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(for 375 nm excitation). The double wavelength artifact has been deleted. In addition, the 

emission intensity was enhanced ~50 times (room temperature data has been scaled 10 times in 

the plot) as shown in figure 4.9 left panel. In case of 514 nm excitation, the emission peak also 

split into two peaks with both the emission maxima shifted towards red and appeared at 715 and 

815 nm. The emission intensity was also enhanced for the cryogenic data (514 nm excitation) 

with the enhancement of ~25 times as compared to the room temperature data as shown in figure 

4.9 (right panel: room temperature data has been scaled 10 times in the plot). Therefore, the 

emission spectra can split into two peaks at cryogenic temperature, where the electronic 

contribution from the core and the staple motif can be observed clearly. The peak intensity of 

575 nm peak was observed to be more dominant than the peak intensity at 725 nm. We speculate 

that the higher temperature sensitivity of this peak may be due to the contribution from just the 

core (metal atoms); while the peak at 725 nm may have a lesser temperature sensitivity as the 

staple motif is constructed by both the Au atoms and the S atoms. 

 
Figure 4.9 Emission spectra of Au25(PET)18 at cryogenic temperature (left panel 375 nm excitation, right 

panel 514 nm excitation). The blank between the spectra in the left panel is due to the double wavelength 

artifact which has been deleted. 

 

4.3.3 Fluorescence properties of Au25(PET*)18 

The absorption, emission, and excitation spectra of Au25(PET*)18 nanoclusters is shown in figure 

4.10. Although the absorption profile is similar, the emission and the excitation spectra is quite 

different than Au25(PET)18 nanoclusters. The excitation spectra, for 700 and 800 nm emission 
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showed very low intensity with no significant features. The emission spectra at 375 and 514 nm 

excitation, showed similar emission profile with emission maxima ~790 nm. For 375 nm 

excitation, emission was found to be more intense than 514 nm excitation, which is similar to the 

emission profile of Au25(PET)18. 

 
Figure 4.10 Absorption (black), emission (red, blue) and excitation spectra (green, magenta) of 

Au25(PET*)18 cluster. The emission spectra (excitation at 375 nm ) has been scaled 10 times to fit on the 

same scale. 

 

The emission was measured at cryogenic temperature and the similar splitting of the emission 

peak was observed at the low temperature. For 375 nm excitation, the emission peak clearly 

splitted into two peaks at 580 and 750 nm. The blank space in the 750 nm peak is due to double 

wavelength artifact, which has been deleted. The emission measured at cryogenic temperature 

(375 nm excitation) has been enhanced 10 times in comparison to the room temperature data 

(figure 4.11, left panel). 
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4.12. Although the absorption spectrum is similar to the Au25 nanoclusters capped with aromatic 

ligands, the emission and excitation spectra showed marked difference. The excitation spectra at 
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700 nm. The emission spectra showed more intense peak for 375 nm excitation than 514 nm 

excitation.   

    
Figure 4.11 Emission spectra of Au25(PET*)18 at cryogenic temperature (left panel 375 nm excitation, 

right panel 514 nm excitation). The blank between the spectra in the left panel is due to the double 

wavelength artifact. The cryogenic data has been scaled 10 times (for 375 nm excitation). 

 

For 514 nm excitation, the broad emission peak at room temperature did not showed a clear 

splitting pattern, rather a hump around 625 nm and a peak at 710 nm.  

 
Figure 4.12 Absorption (black), emission (red, blue) and excitation spectra (green, magenta) of 

Au25(Capt)18 cluster. The emission spectra (excitation at 375 nm ) has been scaled 5 times to fit on the 

same scale. The blank space in the red curve is due to the double wavelength artifact, which has been 

deleted. 
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The cryogenic measurement of the emission for Au25(Capt)18 nanoclusters revealed that 375 nm 

excitation  can be clearly resolved into two emission peak with emission maxima at 570 and 710 

nm . The emission peak at 710 nm was more prominent than 550 nm peak which was quite 

different than the case of Au25(PET)18 and Au25(PET*)18 where the later peak was more 

prominent. The emission at cryogenic temperature was enhanced 10 time than the emission at 

room temperature (figure 4.13 left panel). 

 
Figure 4.13 Emission spectra of Au25(Capt)18 at cryogenic temperature (left panel 375 nm excitation, 

right panel 514 nm excitation). The cryogenic data has been scaled 10 times (for 375 nm excitation) and 5 

times (for 514 nm excitation). 

 

For 514 nm excitation, the emission peak at room temperature did not showed any splitting 

pattern, except a slight blue shift of the emission peak (at 710 nm), observed for cryogenic 

measurement. The emission at cryogenic temperature was enhanced by 5 times than the room 

temperature data (figure 4.13 right panel). 
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The cryogenic measurement of the emission of Au25(SG)18 nanoclusters revealed that the 

emission spectra showed a blue shift with peak partially resolving into two peaks at 610 and 690 

nm (for 375 nm excitation) as shown in figure 4.15 left panel. The 575 nm excitation also shifted 

the peak to lower wavelength with the splitting of peak partially into two shallow peak at 625 

and 680 nm. The emission intensity of the lower wavelength peak (610 and 625 nm) in both the 

excitation was quite different than the case of aromatic thiol capped Au25 nanoclusters.  

 
Figure 4.14 Absorption (black), emission (red, blue) and excitation spectra (green, magenta) of 

Au25(SG)18 cluster.  

 

The emission peak in this case was also enhanced for the cryogenic measurement with the 375 

nm excitation leading to the enhancement of 10 times than the room temperature measurement 

while for 514 nm the emission peak was enhanced ~5 times as shown in figure 4.15 right panel.    
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(for 514 nm excitation) was much lower than 375 nm excitation with a broad peak with FWHM 

of 250 nm (figure 4.16). 

 
Figure 4.15 Emission spectra of Au25(SG)18 at cryogenic temperature (left panel 375 nm excitation, right 

panel 514 nm excitation). The cryogenic data has been scaled 10 times (for 375 nm excitation).  

 

 
Figure 4.16 Absorption (black), emission (red, blue) and excitation spectra (green, magenta) of 

Au15(SG)13 cluster. The emission spectra (excitation at 375 nm) has been scaled 10 times to fit on the 

same scale. 
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The quantum yield calculation revealed that Au15(SG)13 clusters have ~15 times higher QY than 

Au25(SG)18  nanoclusters. The cryogenic emission study of Au25 nanoclusters with different 

ligands has revealed that emission intensity enhances significantly at low temperature. Therefore, 

the Au15(SG)13 nanoclusters was supposed to  have significantly high emission intensity at 

cryogenic temperature. The cryogenic emission at 375 nm showed clear splitting of the broad 

emission peak into two peaks with a narrow peak at 510 nm and a very broad peak starting from 

600 nm to 850 nm. The broad peak looked quite flattened, we hypothesize that the high emission 

intensity was reaching the saturation limit of the detector as the cryogenic data (for 375 nm 

excitation) was ~ 4×106 cps, which is significantly high (figure 4.17 left panel). The 514 nm 

excitation with lower emission intensity was able to resolve the broad emission peak into two 

clear peak at 640 and 760 nm.    

 
Figure 4.17 Emission spectra of Au15(SG)13 at cryogenic temperature (left panel 375 nm excitation, right 

panel 514 nm excitation). The cryogenic data has been scaled 100 times (for 375 nm excitation) and 50 

times (for 514 nm excitation). 
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Figure 4.18 Absorption (black), emission (red, blue) and excitation spectra (green, magenta) of 

Au18(SG)14 cluster.  

 

The cryogenic emission study of Au18(SG)14 nanoclusters showed a shallow peak at 525 nm  

with a very broad peak which again could be due to the saturation of the detector due to the very 

strong emission at cryogenic temperature (150 times more than the room temperature data) 

figure 4.19 left panel. The low emission at 514 nm excitation was clearly able to resolve the 

emission peak into two peaks with emission maxima at 650 and 760 nm (figure 4.19 right panel). 

 
Figure 4.19 Emission spectra of Au15(SG)13 at cryogenic temperature (left panel 375 nm excitation, right 

panel 514 nm excitation). The cryogenic data has been scaled 150 times (for 375 nm excitation) and 50 

times (for 514 nm excitation). 
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4.3.8 Time resolved fluorescence of Au nanoclusters 
The time resolved measurement of some of the reported Au25 nanoclusters revealed that these 

nanoclusters have a very short lifetime of few nano second to maximum of hundreds of nano 

seconds. The synthesis of these series of Au25 nanoclusters with different ligands and the 

different core-size isolated in our work and there steady state fluorescence study motivated us to 

study their decay kinetics. For the lifetime measurement, the time scale was varied from 200 ns 

to 10 µs to get the decay-kinetics of these nanoclusters.  The lifetime measurement for 

Au15(SG)13 and Au18(SG)14 nanoclusters is shown in figure 4.20. The lifetime was measured for 

10 µs and then 4-exponential was fitted in the curve. The curve fitting resulted to a perfect fit 

with the χ2 value of 1.06 and 1.08 for both the decay curve for Au15(SG)13 and Au18(SG)14 

nanoclusters respectively. The channel was changed (from 1k to 8k) to get more data point to get 

the better curve fitting and the lifetime value was averaged for all those fitting. The Au15(SG)13 

nanoclusters showed four lifetime of 19 ns, 110 ns, 440 ns, and 1.7 µs. This was the first 

observation of such a high lifetime from these small nanoclusters. Similarly for Au18(SG)14 

nanoclusters the lifetime observed after the 4-exp fit was 10 ns, 140 ns, 470 ns, and 1.6 µs.  

 
Figure 4.20 Fluorescence decay profile of Au15SG13 and Au18SG14 nanoclusters (excitation 375 nm, 1.1 

nm pulse; emission monitored at 700 nm). The blue curve is the exponential fit to the decay profile; 

bottom red curve shows the residual of fitting.    
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For Au25 capped with water-soluble ligand (SG and Capt) the time-resolved measurement 

showed the presence of both the shorter ns lifetime component and the longer lifetime 

component. For Au25(Capt)18 nanoclusters the longer lifetime (µs) component has high 

amplitude which shows that the Au25(Capt)18 cluster relaxation has much longer lifetime than any 

other reported Au25 nanoclusters. The lifetime data is shown in figure 4.21. The 4-exp curve 

fitting of the decay profile resulted to the perfect fit with a χ2 value of 0.98 and 1.16 for 

Au25(SG)18 and Au25(Capt)18 respectively. For Au25(SG)18 the lifetime values observed were 5 ns, 

140 ns, 340 ns, and 1.6 µs with shorter lifetime component has dominant amplitude than the 

longer lifetime. For Au25(Capt)18 nanoclusters the lifetime value observed were 15 ns, 95 ns, 390 

ns and 1.7 µs as shown in figure 4.21 right panel. 

 
Figure 4.21 Fluorescence decay profile of Au25SG18 and Au25Capt18  nanoclusters (excitation 375 nm, 1.1 

nm pulse; emission monitored at 700 nm). The blue curve is the exponential fit to the decay profile; 

bottom red curve shows the residual of fitting.    
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our result was consistent with the previous work. For Au25(PET*)18 nanoclusters the lifetime 

measurement revealed that there is presence of higher lifetime component (340 nm) along with 

the lower lifetime components of few nanoseconds. The lifetime data for Au25(PET)18 and 

Au25(PET*)18 nanoclusters is shown in figure 4.22 with the 3-exponential and 4-exponential fit to 

the decay curve with the χ2 value of 1.31 and 1.26 respectively. The Au25(PET)18 showed the 

lifetime value of 7 ns, 85 ns, and 130 ns while the Au25(PET*)18 nanoclusters showed the lifetime 

value of 8 ns, 50 ns, 99 ns, and 340 ns. The decay profile, prompt, fit to the curve, and the 

residual of fitting is shown in figure 4.22.   

 
Figure 4.22 Fluorescence decay profile of Au25PET18 and Au25PET*

18 nanoclusters (excitation 375 nm, 

1.1 nm pulse; emission monitored at 700 nm). The blue curve is the exponential fit to the decay profile; 

bottom red curve shows the residual of fitting. 
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the fluorescence properties of Au nanoclusters with few atoms. Also, our experiments revealed 

that the core size of the nanoclusters could not define the emission range which clearly 

contradicts the earlier studies. Previous studies claimed that emission maxima shift to higher 

wavelength by the increase of core-size. The lifetime measurement of the Au nanoclusters 

capped with different ligands (Au25) and with varying core size revealed the ligand dependence 

on the decay kinetics of these nanoclusters. Theoretical studies of Au25 nanoclusters have 

revealed that the core-shell structure of the Au25 nanoclusters explains the shorter and the longer 

lifetime values. The shorter lifetime of few nanoseconds to ~ 100 ns is due to the relaxation 

inside the core, while longer lifetime of hundreds of nanosecond to µs is due to the relaxation 

from the staple motif (Shell). The structure of Au15 and Au18 nanoclusters is unknown but 

theoretical studies have revealed that both these clusters should have core-shell structure in order 

to get the appropriate geometric and electronic shell closing. This explains the longer lifetime 

component observed in both the nanoclusters. Therefore, the electronic effect of the ligand, 

which contributes to the relaxation dynamics of these nanoclusters from the staple motif to the 

core, is responsible for the longer lifetime (µs). The study of the decay kinetics at other 

excitation wavelength will shed more light into their decay kinetics.  
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Chapter 5 

Ongoing Projects and Future Directions 
5.1 Bridging the gap between nanoclusters and nanocrystals 
The recent development in the field of noble metals nanoclusters has revealed different sized nanoclusters 

ranging from sub-nanometer to the region where plasmonic properties becomes dominant.1-3 Researchers 

have reported a series of nanoclusters of gold and silver with few atoms to several hundred atoms.4-12 

However, the exact size and number of atoms where the transition from molecular behavior to plasmonic 

behavior occurs still remains unknown. Using silver-thiolate as a model system, we aim to determine the 

exact size and atom count Agn where the transition from quantum to classical behavior occurs.  For this 

purpose, we have recently synthesized a series of Ag nanoclusters capped with captopril as shown in 

scheme 5.1.  

 
Scheme 5.1 Synthesis of Ag:Capt nanoclusters 

 

The as-synthesized clusters were subjected to PAGE separation, which resulted in separation of 

these nanoclusters in seven distinct bands, with smaller size nanoclusters travelling farthest. 

These nanoclusters are isolated from the gel by the method described in chapter 2. Figure 5.1 

shows the gel image and the optical absorption spectra of the gel-isolated nanoclusters. The SPR 

peak of silver nanoparticles (size >2 nm) lies ~ 430 nm. As the size of the nanoparticles increase, 
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the plasmon peak becomes broadens and the peak shifts towards red. In this case, we observed 

that despite the size of band 1 being smallest, the peak is quite broad with FWHM of 300 nm. As 

the size of the nanoclusters increases, the absorption peak becomes narrow and the peak shows a 

blue shift. This is clear distinction from the bigger nanoparticles or nanocrystals.  

 
Figure 5.1 Absorbance spectra of the gel-isolated Ag:Capt nanoclusters (left panel), and PAGE image of 

the separated nanoclusters (right panel). Band H refers to the highest band among all isolated bands. 

 

5.1.1 Mass determination of Ag:Capt clusters 
To determine the exact number of atoms in the nanoclusters, we need to get the precise mass-

spectrometric determination of the nanoclusters.  For this purpose, MALDI-mass spectrometry 

was used. The nanoclusters were dissolved in water and then combined with matrix (2,4-

dihydroxy benzoic acid (DHB)) in 1:1 ratio and then 4-5 µl of this mixture was deposited on the 

MALDI plate to co-crystallize the nanoclusters with the matrix. The nanoclusters were then 

analyzed by MALDI-mass spectrometry. The MALDI-MS spectrum of the bands 1-6 is shown in 

Figure 5.2. The MALDI mass spectrum showed a clear progression of size with increasing mass 

as we move from band 1-6. For some spectrum the progressive peaks were observed in periodic 

order. These peaks correspond to the recombination of the nanoclusters in the presence of laser 

power as dimer, trimer, so on. The mass analysis revealed that band 1 should have ~ 250-300 Ag 

atoms, while band 6 can have up to 700-800 silver atoms. As our calculation in chapter 1 has 

revealed that for ~ 480 atoms of gold, the plasmonic properties becomes dominant and visible. 
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Since Ag has the same bulk lattice constant and ~ similar size than Au, we speculate that band 4 

or band 5 would be the mass at which plasmonic property will be dominant and the transition 

from molecular behavior to plasmonic behavior will occur.  Although, the MALDI spectrum 

gives an estimate of their mass-range, the precise mass i.e. the exact number of silver and the 

captopril ligand in the cluster composition can only be determined by ESI-MS. The 

investigations using ESI-MS is still ongoing. 

 
Figure 5.2 MALDI- mass spectrum of band 1-6. The progression of peaks in the spectra is due to the 

combination of the clusters.  
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5.1.2 Size estimation of Ag:Capt clusters 
The size of the nanoclusters can be evaluated by TEM. The small size of these nanoclusters and 

lower Z contrast of the Ag in comparison to the Au makes it relatively more challenging. The 

other issue associated with TEM image is that these small nanoclusters tend to aggregate in the 

presence of high voltage electron beam. Hence, the exact size estimation becomes a challenge. 

To address this issue, we decided to do the powder X-ray diffraction (p-XRD) of these 

nanoclusters. The plasmonic nanoparticles shows fcc arrangement and as the size decreases, the 

p-XRD peak of the nanoparticles becomes broader. The p-XRD data combined with the TEM 

will give the exact estimation of the nanocluster size. Figure 5.3 shows the TEM image of 

biggest size Ag:capt nanoclusters (Band H). The TEM image shows that most of the nanoclusters 

are in the the size range of ~ 2 nm with few of them aggregated by the electron beam to show 

slightly bigger sizes. The high-resolution TEM (HR-TEM) image of these nanoclusters would be 

quite informative, as it will give the idea of lattice plains and the closed packing in the Ag 

nanoclusters. The HR-TEM of these nanoclusters is still under progress. 

 

 
Figure 5.3 TEM image of band H 
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The p-XRD of Band H is shown in figure 5.4 left panel. The peak at 2θ values of 37.5, 64, and 

76 correspond to the fcc pattern of silver. The broad peak signifies the smaller size of these 

nanoclusters. The p-XRD of Band 6 is shown in figure 5.4 right panel. The further broadening of 

the fcc peak can be clearly seen in case of band 6. However, the peak position in band 6 was 

found to be consistent with band H and the fcc arrangement of silver. The p-XRD of the lower 

bands is still in progress. As the size distribution of the synthesis is focused towards bigger 

particles, the yield of the lower bands is considerably low, this makes the p-XRD measurement 

quite challenging, as at least few mg (20-50 mg) of the sample is required. 

 
Figure 5.4 p-XRD pattern of band H (left panel) and band 6 (right panel). The peak positions correspond 

to the fcc lattice arrangement of silver.  

 

5.1.3 Optical properties of Ag:Capt clusters 
The absorption spectra of these Ag:Capt nanoclusters closely resemble to the plasmonic Ag 

nanoparticles. This can be misleading as the sizes of some of these nanoclusters are < 2 nm. To 

prove that these nanoclusters are non-plasmonic, and the plasmonic properties appear at a certain 

size, the fluorescence lifetime of these nanoclusters clusters can be calculated. For plasmonic 

nanoparticles, the decay-lifetime is in the range of nanoseconds to picoseconds, so the lifetime 

measurement will reveal that at what band size the plasmonic property dominates the molecular 

properties. The emission spectra (excitation wavelength 300 nm) of these nanoclusters are shown 

in figure 5.5. The emission peak broadens as the size of these nanoclusters increase. The lifetime 

measurement is still under progress. 
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Figure 5.5 Emission spectra of the Ag:Capt nanoclusters. The excitation wavelength is 300 nm. 

 

5.2 Singlet Oxygen Production by Water-Soluble Au25(Capt)18
–

clusters 
5.2.1 Introduction 
Photodynamic therapy (PDT) is a relatively new method for cancer treatment, where tumor cells 

are destroyed by light-induced, local production of a reactive oxygen species (ROS) such as 

singlet oxygen (1O2) and superoxide(O2·
─) via photosensitizers.13-19 It is considered that singlet 

oxygen is the primary cytotoxic agent responsible for PDT. The development of singlet oxygen 

photosensitizers to produce highly reactive oxygen species is a key step for effective PDT. In 

recent years, an increasing number of researchers have considered the possibility of 

nanomaterials as singlet oxygen photosensitizers such as semiconductor quantum dots (QDs), 

fullerene C60, metal nanoparticles, and QDs conjugated with aromatic photosensitizers. 

Unfortunately, most photosensitizers have some major drawbacks, including poor water 

solubility, toxicity, instability, and ineffective excitation wavelengths for the tissue 

penetration.20-26 
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Recently, significant progress has been made in the synthesis of atomically precise thiolate-

protected gold nanoclusters (denoted as Aun(SR)m , where SR refers to thiolate ligand), such as 

Au25(SR)18, Au38(SR)24, Au102(SR)44, and Au144(SR)60.1,27,28 The photoluminescent properties of 

Aun(SR)m render such nanoclusters as promising imaging and sensing agents. However, till now 

there have been no reports on the exploitation of Aun(SR)m nanoclusters as potential 

photosensitizers toward PDT. Herein we demonstrate that singlet oxygen can be produced 

through the direct photosensitization by Au25(Capt)18
−clusters (Capt = captopril) without the 

presence of any organic photosensitizers. The experimental evidence includes (1) sensitive probe 

for singlet oxygen, namely, diaminobenzidine (DAB), (2) quenching of singlet oxygen 

production by histidine as the efficient scavenger for singlet oxygen, and (3) enhancement of 

singlet oxygen production in D2O. 

5.2.2 Detection of singlet oxygen by chemical probe detection 
Water-soluble DAB(2,4-diamino benzidine) was employed as a singlet oxygen probe in this 

study.25-27 For the DAB method, a 10 mM stock solution of DAB in DMF was prepared, and then 

added to 1 mL aqueous solution (H2O or D2O) of Au25(Capt)18
−, to give final concentrations of 

Au25(Capt)18
- and DAB of 30–40 µM and 500 µM, respectively. The solution was purged with 

air for approximately 10 min immediately prior to measurement. The solutions were then 

irradiated with a light-emitting diode (LED) at a power of 50 mW (532 nm, Green laser). The 

adsorption spectra were recorded after different periods of light irradiation. To see the effect of 

dissolved oxygen, pure N2 gas was bubbled through the D2O solution of Au25(Capt)18
− and DAB 

for 1 h. The solution was then irradiated with light for 10 min in a N2-filled glove bag.   

5.2. 3. Results and Discussion 
Chemical trapping detection methods were adopted for assessing the generation of singlet 

oxygen by Au25(Capt)18
−. Depending on the particular trapping species, the chemical trapping of 

singlet oxygen can be monitored by changes in fluorescence, absorption, or electron spin 

resonance (EPR). In the present study, DAB was employed to examine the ability of 

Au25(Capt)18
− to generate singlet oxygen in aqueous media. Although the exact mechanism by 

which the oxidation of DAB occurs is not clear, it is known that singlet oxygen can directly react 

with DAB to form a DAB polymer as the oxidation product. The reaction with singlet oxygen 

can be monitored by the changes in absorption spectra in the UV-visible region. DAB has been 
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demonstrated to have high selectivity towards singlet oxygen, and does not show any noticeable 

response towards hydroxyl radicals or superoxide. 

Figure 5.6 shows the absorption spectra of DAB in a D2O solution of Au25(Capt)18
−. D2O was 

employed as the solvent because of the longer lifetime of singlet oxygen (20–58 μs) in 

comparison to H2O (~2 μs),29,30 leading to a greater probability of interaction with DAB. The 

detection experiment was conducted for 2 h, with three different regimes used: (I) 0–60 min, 

under darkness (Fig 5.6 a), (II) 60–90 min, irradiation at 532 nm (Fig 5.6 b), and (III) 90–120 

min, irradiation at 532 nm in the presence of histidine (Fig 5.6 c). The spectrum shown in Fig 5.6 

(a) was acquired after the solution was purged with air, sealed with a cap, and then kept in 

darkness under an air atmosphere for 60 min.  

Under darkness, there was no change in the absorption spectra of DAB in the presence of 

Au25(Capt)18
− (Fig 5.6 a). This indicates that the trapping species was not oxidized in the air 

atmosphere, and therefore, there was no photoexcited Au25(Capt)18
− present. However, during 

the 532 nm light irradiation, the absorbance below 650 nm can be seen to dramatically increase 

over time due to DAB oxidation (Fig 5.6 b). This result indicates that the photoexcited 

Au25(Capt)18
− was able to generate singlet oxygen. On the other hand, in the absence of 

Au25(Capt)18
−, there was no evident change in the absorbance spectrum of DAB with light 

irradiation (Fig 5.6 d), confirming  that the combination of Au25(Capt)18
− and light irradiation was 

responsible for the changes. If the singlet oxygen generated by the Au25(Capt)18
− causes the 

oxidation of DAB, the change in the rate of DAB absorbance would depend on the concentration 

of oxygen dissolved in the D2O. Removal of such oxygen by N2 purging resulted in significantly 

smaller changes in the absorbance spectrum.  It should be noted that there was still a slight 

change in the absorbance of DAB, even in the N2 atmosphere, indicating that there was a small 

contribution from a photocatalytic effect of Au25(Capt)18
− without the involvement of oxygen. 

In order to further confirm the generation of singlet oxygen on the photoexcitation of 

Au25(Capt)18
−, a scavenger method was employed to inhibit the generation of singlet oxygen. It 

has been well established that histidine is a specific scavenger that can effectively inhibit the 

generation of singlet oxygen.31,32 Figure 5.6 (c) shows the absorption spectra of a DAB-

containing solution of Au25(Capt)18
− in D2O in the presence of histidine, with almost no change 

evident on increasing irradiation time. It is clear that the histidine effectively inhibited the 
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oxidation of the DAB, supporting the hypothesis that the activated oxygen species generated by 

the Au25(Capt)18
− is in fact singlet oxygen.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.6 Absorption spectra of a DAB-containing solution of Au25(Capt)18

− in D2O. (a) 0–60 min, 

under darkness, (b) 60–90 min, light irradiation at 532 nm (50 mW), and (c) 90–120 min, light irradiation 

at 532 nm (50 mW) in the presence of histidine (20 mM). (d) Absorption spectra of DAB in a D2O 

solution in the absence of Au25(Capt)18
−, irradiation at 532 nm (50 mW) for 60 min. [Au25] = 30 µM, 

[DAB] = 500 µM. 
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nm due to the generation of singlet oxygen by Au25(Capt)18
−. Finally, in region III, there is 

almost no change in absorbance of DAB because of the inhibition of singlet oxygen by the 

histidine scavenger. In addition, the use of H2O in place of D2O reduced the interaction between 

DAB and singlet oxygen because of the shorter lifetime in H2O. This observation was further 
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evidence of the generation of singlet oxygen by Au25(Capt)18
−. From the above results, it can be 

concluded that singlet oxygen is produced via direct photosensitization by Au25(Capt)18
− in 

aqueous media.  

Figure 5.7 Changes in absorbance at 445 nm of a DAB-containing solution of Au25(Capt)18
− in D2O 

(black) and H2O (blue). Region I: Darkness; Region II: Light irradiation; Region III: Addition of histidine 

scavenger. 

 

Therefore, we have demonstrated that singlet oxygen can be produced through the direct 

photosensitization of Au25(Capt)18
− clusters  without using organic photosensitizers under 

visible/ near-IR irradiation. Singlet oxygen was successfully detected using a singlet oxygen 

probe. Enhancement of singlet oxygen production in D2O compared to that in H2O was observed, 

and quenching of production was shown to occur on bubbling N2 gas through the solution. The 

efficiency of singlet oxygen generation by other Au nanoclusters will be studied. Mechanistic 

insights in the singlet oxygen generation will be developed. Owing to the unique properties of 

singlet oxygen, this study has far reaching implications, not only for PDT but also in broader 

fields of interest like medicine, organic synthesis, and polymer chemistry.  

5.3 Quenching behaviors of Gold Nanoclusters 
An interesting property of metal nanoparticles (NPs) is their ability to affect the fluorescence 

properties of different molecules.33-36 Several studies over the years have shown that different 
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nanoparticles can either quench or enhance the fluorescence of different dye molecules. These 

effects depend on several factors such as the identity of the metal and the dye, the distance 

between them and the relative orientation between the dye and the nanoparticles.37,38 Although 

nanoparticles of larger size (>2nm) have been extensively studied for their effects on 

fluorescence properties of dye molecules, much less studies have been done to smaller 

nanoparticles (<2nm) and also nanoclusters. Recently, comparison between the fluorescence 

quenching efficiencies of 4nm AuNP, 2nm AuNP and glutathione coated Au25 nanocluster by 

Chowdhury et al revealed striking difference between the fluorescence quenching properties of 

these three different particles.39 For this study, several bis-intercalator dyes bound to 30mer 

duplex DNA was used as a fluorescence source (Figure 5.8 A). It was observed in this study that 

the 4nm AuNP was one order of magnitude more effective in quenching compared to the 2nm 

AuNP and Au25 nanocluster. Also, the 4nm AuNP showed significantly higher quenching of 

fluorescence when the dye has emission band overlapping the plasmonic band of the AuNP 

(Figure 5.8 B). However the 2nm AuNP showed an almost monotonic decrease in the quenching 

efficiency with decrease in the emission wavelength of the dye which can be explained by the 

NSET theory proposed by Strouse et al (Figure 5.8 C).40-42 But the quenching efficiencies of the 

Au25 nanoclusters did not show any trend which could be related with either NSET theory or 

effect of spectral overlap (Figure 5.8 D). The Au25NC showed highest quenching for YOYO-

1/DNA complex and LOLO-1/DNA complex which have emission spectra separated from the 

discrete electronic transition band of the nanocluster.   

From the initial study, it was quite clear that understanding the quenching behavior of the 

AuNCs require a new model different from larger nanoparticles. Since we have robust methods 

to synthesize atomically precise nanoclusters, we wanted to study the effect of different size of 

Au nanoclusters on the quenching efficiencies. We choose to use POPO-1, YOYO-1, YOYO-3 

and TOTO-3 bound to double stranded DNA for these experiments. We have used five different 

nanoclusters namely, Au15SG13, Au18SG14, Au25SG18, Au25Capt18 and Au38SG24 for this study. 

For the quenching experiment 100 nM duplex DNA was annealed by heating to 95 °C for 10 min 

followed by slow cooling to room temperature. Then 7 equivalent of the bis-intercalator dye was 

added to the solution and incubated overnight at room temperature. This was followed by the 

addition of various amounts of AuNCs, the resultant mixture was incubated for 30 min. After 30 
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nanocluster Au15SG13 does not show any quenching for any of the intercalator dyes. The reason 

for not showing any quenching could be either electronic properties of the NC or it is also 

possible that due to the smallest size, it does not bind to the DNA duplex very effectively. 

Interestingly all the other nanoclusters showed highest quenching efficiencies for YOYO-1 

dye/DNA complex. Also, the quenching efficiencies of the AuNCs for complexes emitting in the 

wavelength region >600nm was negligible. Although these experiments did not show any 

correlation between the size of the AuNCs and their quenching efficiencies, surprisingly one 

particular wavelength region (500-600nm) was more efficiently quenched compared to other 

wavelength regions. Although we do not have any particular explanation for this behavior, it 

could be due to some electronic properties of the AuNCs which are common to all the four 

different AuNCs used in this study. 

 

Table 5.1 Collisional quenching constants of various dyes by different AuNCs 

 1:7 POPO-1 

dye/30 bp 

dsDNA 

1:7 YOYO-1 

dye/30 bp 

dsDNA 

1:7 YOYO-3 

dye/30 bp 

dsDNA 

1:7 TOTO-3 

dye/30 bp 

dsDNA 

Au25(SG)18 .001 .014 .004 .005 

Au18(SG)14 No quenching .01 No quenching No quenching 

Au15(SG)13  No quenching No quenching No quenching No quenching 

Au38(SG)24  .005 .012 No quenching No quenching 

Au25(Capt)18 No quenching .01 No quenching No quenching 

4nm Au np .06 .2 .04 .01 
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Although the quenching behavior of the AuNCs could not be explained by any known theory, the 

binding behavior of the AuNCs to the duplex DNA could also be an important factor. Because 

both the duplex DNA and the AuNPs are negatively charged, it is not very well understood what 

is the binding mode between the DNA and AuNCs. Therefore, to eliminate the ambiguity of 

binding mode of the diierent AuNCs with the DNA duplex, we decided to perform similar 

quenching experiment with positively charged quantum dots (QDots). Due to the positive charge 

of the quantum dots, the interaction between AuNCs and the QDots are completely electrostatic. 

Therefore, it eliminates the problem of different binding mode of the AuNCs and the duplex 

DNA. Again, we choose to use four different quantum dots with absorption maxima at 450 nm, 

525 nm, 600 nm and 665 nm spreading from the blue to red region of the visible spectrum 

(Figure 5.9). 

 
Figure 5.9 The emission spectra of the different QDots and the absorption spectra of the different AuNCs.  

 

We have done some preliminary experiments for quenching of these QDots fluorescence with 

the AuNCs. One interesting observation was that similar to the DNA-dye complex, Au15 cluster 

does not show any quenching of the QDot fluorescence.  
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phenomenon was observed in case of some nanoclusters, initially with the addition of smaller 

amount of the AuNCs the fluorescence of the QDots increased rather than decreasing reaching a 

maximum (Figure 5.10 B, and Figure 5.11 A and B). Then upon addition of more AuNCs the 

fluorescence gradually decreased, although AuNPs are known to increase the fluorescence of 

dyes either by decreasing the radiative rate or increasing the absorbance or both. This unusual 

concentration dependence is quite puzzling. We are currently trying to characterize this 

quenching process by using fluorescence lifetime measurements and the different concentration 

regions of the AuNCs and QDots. 
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