
Subdimensional Expansion: A

Framework for Computationally

Tractable Multirobot Path Planning

Glenn Wagner

CMU-RI-TR-15-33

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics.

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

December 2015

Thesis Committee:
Howie Choset

Manuela Veloso
Maxim Likhachev

Sven Koenig
Vijay Kumar

Copyright c© 2015 Glenn Wagner. All Rights Reserved.

Keywords: multirobot systems, path planning, planning with uncertainty

Abstract

Planning optimal paths for large numbers of robots is computation-
ally expensive. In this thesis, we present a new framework for multirobot
path planning called subdimensional expansion, which initially plans for
each robot individually, and then coordinates motion among the robots
as needed. More specifically, subdimensional expansion initially creates a
one-dimensional search space embedded in the joint configuration space of
the multirobot system. When the search space is found to be blocked dur-
ing planning by a robot-robot collision, the dimensionality of the search
space is locally increased to ensure that an alternative path can be found.
As a result, robots are only coordinated when necessary, which reduces the
computational cost of finding a path. Subdimensional expansion is a flex-
ible framework that can be used with multiple planning algorithms. For
discrete planning problems, subdimensional expansion can be combined
with A* to produce the M* algorithm, a complete and optimal multirobot
path planning problem. When the configuration space of individual robots
is too large to be explored effectively with A*, subdimensional expansion
can be combined with probabilistic planning algorithms to produce sRRT
and sPRM.

M* is then extended to solve variants of the multirobot path plan-
ning algorithm. We present the Constraint Manifold Subsearch (CMS)
algorithm to solve problems where robots must dynamically form and dis-
solve teams with other robots to perform cooperative tasks. Uncertainty
M* (UM*) is a variant of M* that handles systems with probabilistic
dynamics. Finally, we apply M* to multirobot sequential composition.
Results are validated with extensive simulations and experiments on mul-
tiple physical robots.

iv

Acknowledgments

This thesis would not have been possible without the support and
guidance of many people. First thanks must go to my advisor, Howie
Choset, for his advice and support throughout a rather prolonged process.
His support was unwavering throughout the years, even during a year and
a half slog through a set of ideas that sounded good at first, but proved a
dead end.

The members of my committee, Manuela Veloso, Maxim Likhachev,
Sven Koenig, and Vijay Kumar, provided invaluable advice and guidance.
They offered valuable pointers on research directions, and caught impor-
tant implicit assumptions that I made on several occasions.

The members of the biorobotics lab were critical to this work. Special
thanks are due to Peter Karkus, with whom I collaborated on rCMS. He
wrote the rCMS code, and extended a conference paper to form the first
draft of the CMS chapter in this thesis. Jae Kim and Konrad Urban wrote
the code for the base CMS implementation. I would also like to thank
Matt Tesch, Ross Hatton, Dave Rollinson, Chahui Gong, Tony Dear, and
Matt Travers for their guidance in the ways of being a grad student, service
as a sounding board for ideas, and assistance in editing numerous papers.

I would also like to thank my friends Alex Roper, D W Rowlands
[146], Andrea Dubin [56], Kristen Kozak, and Cathy Douglas, as well as
the CMU KGB for keeping me, if not entirely sane, at least functional.

Finally, I would like to thank my parents, who provided the resources
and education necessary for me to even reach CMU, and always had a
sympathetic ear when I ran into problems.

vi

Contents

1 Introduction 1
1.0.1 Contributions . 3

1.1 Problem Definition . 6
1.2 Prior Work . 7

1.2.1 Reactive Planning . 8
1.2.2 Workspace Decomposition . 9
1.2.3 Rule-Based Path Planning . 11
1.2.4 Coupled Planning . 11
1.2.5 Decoupled Planning . 13
1.2.6 Dynamically Coupled Planning 15
1.2.7 Miscellaneous . 16

2 Subdimensional Expansion 17

3 M* 29
3.1 Problem Definition . 29
3.2 Algorithmic Description . 32
3.3 Completeness and Cost Optimality 35

3.3.1 Alternative Graph-Centric Description 36
3.3.2 Proof of Optimality and Completeness 38

3.4 Performance Analysis . 45
3.5 Variants of M* . 46

3.5.1 Recursive M* . 46
3.5.2 Inflated M* . 47
3.5.3 Replacements for A* . 48
3.5.4 Policy Optimization . 51

3.6 Comparison of M* and Similar Algorithms 53
3.7 M* Results . 54

3.7.1 M*, Operator Decomposition and rM* 56
3.7.2 Policy Optimization . 58
3.7.3 Inflated Heuristics . 60
3.7.4 Comparison to Rule-Based Approaches 61
3.7.5 Fully Coupled Tests . 63

vii

3.7.6 Critical Densities . 65

4 Subdimensional Expansion and Probabilistic Path Planning 67
4.1 sPRM: Subdimensional Expansion with PRMs 68
4.2 sRRT: Subdimensional Expansion with RRTs 71
4.3 Simulation Results: sPRM and sRRT 74
4.4 Conclusions . 75

5 Constraint Manifold Subsearch 79
5.1 Prior Work . 80
5.2 Problem Definition . 81

5.2.1 The Task Graph . 83
5.3 Planning on Constraint Manifolds . 86
5.4 Constraint Manifold Subsearch . 89

5.4.1 The task augmented joint configuration graph 89
5.4.2 Algorithmic description of CMS 91
5.4.3 Example . 100

5.5 Recursive Constraint Manifold Subsearch 101
5.6 Completeness and Optimality . 103
5.7 Results . 107
5.8 Conclusion and Future Work . 115

6 Planning With Uncertainty 117
6.1 Multirobot Path Planning with Uncertainty 121

6.1.1 Structure of the MPPU problem 125
6.2 Uncertainty M* . 128
6.3 Constrained M* . 131
6.4 Belief Representation for MPPU . 134

6.4.1 Multirobot Systems with Finite Probability of Delay 135
6.5 Results . 140

6.5.1 Comparison to Alternate Approaches 142
6.5.2 Scaling of UM* . 150
6.5.3 CM* . 152

6.6 Summary and Conclusions . 154

7 Multirobot Sequential Composition 157
7.1 M* for multirobot sequential composition 160
7.2 Synchronization Issues . 162
7.3 Time Augmented Prepares Graph . 164
7.4 Implementation . 168

7.4.1 Scribbler robots . 169
7.4.2 Architecture . 171
7.4.3 Controller Design . 172

7.5 Experiments . 175

viii

7.5.1 Test Cases . 180
7.6 Conclusions . 187

8 Conclusions 189

A Notation 191

Glossary 193

Acronyms 199

Bibliography 201

ix

x

List of Figures

1.1 Abstract visualization of the variable dimensionality search space con-
structed by subdimensional expansion 2

2.1 Geometric visualization of the search space generated by subdimen-
sional expansion . 20

2.2 Setup for an example of the working of subdimensional expansion . . 21
2.3 Example of individual policies. 21
2.4 Subdimensional expansion example step 1. 22
2.5 Subdimensional expansion example step 2. 23
2.6 Subdimensional expansion example step 3. 24
2.7 Subdimensional expansion example step 4. 25

3.1 Graph-centric description of M* . 39
3.2 Operator Decomposition . 49
3.3 Comparison of M* to A*, OD, and EPEA* 53
3.4 Example simulation environment . 55
3.5 Results for optimal planning without policy optimization 56
3.6 Results for optimal planning with policy optimization 59
3.7 Results for ε-suboptimal planning . 60
3.8 Comparison between M* and Parallel Push and Swap 62
3.9 Path cost comparison between M* and PPAS 63
3.10 Results for a fully coupled problem. 64
3.11 Histogram of the time to solution for inflated ODrM* 66

4.1 Construction of the joint configuration graph for sPRM 68
4.2 sRRT projection of random samples onto the search space 72
4.3 Depiction of the three link robot used to test sRRT and sPRM 75
4.4 Simulation results for RRT-Connect, sRRT and sPRM 76

5.1 Example of a cooperative task . 81
5.2 Example of a task graph . 83
5.3 Example of dependency between teams that merge to form a new team 86
5.4 The joint configuration graph may be incompatible with cooperative

tasks . 87

xi

5.5 Definition of the CPP problem for the CMS example 95
5.6 CMS example step 1. 96
5.7 CMS example step 2. 97
5.8 CMS example step 3. 98
5.9 CMS example step 4. 99
5.12 Typical random environment for testing CMS 110
5.13 Comparison of CMS and rCMS performance 111
5.14 Performance of rCMS with varying inflation factors. 112
5.15 Performance of rCMS with varying obstacle densities. 113
5.16 Histogram of time to solution for rCMS 114

6.1 To resolve a collision in Multirobot Path Planning with Uncertainty
(MPPU) a robot not involved in the collision may have to alter its
path. Therefore conventional Multirobot Path Planning algorithms
will be incomplete when applied to MPPU 126

6.2 Spatial beliefs compared to temporal beliefs for MPPU. 135
6.3 Nominal position selection for temporal belief representations for MPPU136
6.4 Belief representation pruning and accuracy of collision prediction by

UM* . 140
6.5 Typical step in a 40-robot plan computed by UM*. 141
6.6 Comparison between UM* and rM*, where rM* ignores the probabilis-

tic dynamics. 143
6.7 Comparison of performance of UM* and padded rM*. 144
6.8 Histograms of the probability that individual robots will collide while

executing plans generated by UM* and padded M*. 145
6.9 Collision probabilities when executing plans computed by padded mstar

with different values of rpad . 146
6.10 Number of robots that reach their goals without collision with receding

horizon planning. 148
6.11 Performance of UM* with different collision thresholds 150
6.12 Performance of UM* with different inflation factors 152
6.13 Performance of UM* with different belief representation prunning thresh-

olds. 153
6.14 Comparison of UM* and CM* . 155

7.1 Comparison of sequential composition and traditional path planning . 158
7.2 Construction of the joint prepares graph 159
7.3 Sources of synchronization error in multirobot sequential composition. 163
7.4 Comparison of the joint prepares graph and time augmented joint pre-

pares graph . 166
7.5 Example of the approximate time augmented prepares graph. 167
7.6 Parallax Scribbler robot as used in experiments 168
7.7 Positioning of the body frame of differential drive robots to simplify

control . 170

xii

7.8 Architecture for experiments. 171
7.9 Example of controllers used in experiments. 173
7.10 Prepares relation of controllers used in experiments. 175
7.11 Course used to calibrate robots and simulation. 176
7.12 Turn vs straight controllers. 176
7.13 Histogram of the time required for a physical and simulated robot to

execute a turn or a straight controller 177
7.14 Six and 8 robot tests cases for sequential composition. 181
7.15 Experimental results for M* running on the joint prepares graph and

the ATAJPG with eight robots. 183
7.16 Experimental results for M* running on the joint prepares graph and

the ATAJPG with six robots. 185
7.17 Experimental results for UM* running on the joint prepares graph with

six robots. 186

xiii

xiv

List of Tables

1.1 Contributions . 4

3.1 Symbol definitions for multirobot path planning on graphs 30
3.2 Symbol definitions for M* . 32
3.3 Search graph symbols . 36
3.4 Number of robots in the largest collision set encountered in a problem

solved by M*, ODM*, EPEM*, rM*, ODrM*, and EPErM* 57

5.1 Differences between M* and CMS . 90

6.1 Uncertainty M* notation . 122

7.1 Time to compute plans for multirobot sequential composition experi-
ments . 184

xv

xvi

Chapter 1

Introduction

Multirobot systems offer flexibility, sensor coverage, and redundancy, which makes

them attractive for tasks such as surveillance, search and rescue, and warehouse

automation. Exploiting the benefits of multirobot systems requires addressing a mul-

titude of issues including task assignment, communication, synchronization of world

models, and the coordination of large numbers of robots, in addition to all the chal-

lenges that face single robot systems.

One of the fundamental problems for multirobot systems is finding safe, colli-

sion free paths that take robots to configurations at which they can perform tasks,

which is termed the Multirobot Path Planning (MPP) problem. There is a fundamen-

tal trade-off between path quality and the computational cost of finding solutions.

Finding optimal solutions (i.e. minimal cost paths) is known to be NP-complete1

[143, 205], while finding solutions to more complex formulations of the MPP problem

that allow robots of differing sizes is PSPACE-hard2 [78]. Conversely, feasible paths

of unbounded length can be found in polynomial time [98, 199]. Thus high-quality

1NP-complete is a complexity class that represents the hardest problems in NP, such as the
traveling salesman problem and Boolean satisfiability. No known polynomial time algorithms exist.

2PSPACE-hard problems require polynomial space to solve, and are believed to be harder than
NP-complete problems

1

1

2

3

4

5

1,2

3,4,5

4,5

(a)

12

(b)

3

4

5

(c)

Figure 1.1: An abstract visualization of a variable dimensionality search space con-
structed by subdimensional expansion, for a system of five robots. (a) Initially each
robot is constrained to its individually optimal path, represented by a single line, but
when the individually optimal paths for robots 1 and 2 are found to conflict (b), the
local dimensionality of the search space must be increased, as represented by a 2D
square. When the individually optimal paths of three robots are found to conflict (c),
the local dimensionality of the search space must be increased further, represented
by the 3D cube, to include all local paths of the three robots. If robot 3 clears robots
4 and 5 before they resolve their mutual interaction, then the dimensionality of the
search decreases so that planning is coupled only for robots 4 and 5.

2

paths are hard to find, while low quality paths can be found rapidly.

In this thesis, we introduce a new approach that can find high quality paths

quickly called subdimensional expansion. Subdimensional expansion is not a specific

algorithm, but rather a method for manipulating the search spaces of existing search

algorithms to decrease the computational cost of solving MPP problems. Subdimen-

sional expansion starts by finding a path for each robot in its individual configu-

ration space without regard for robot-robot interactions or collisions (i.e. as if the

robot were the only robot). Combining the individual paths of each robot defines a

one-dimensional search space for the full multirobot system embedded in the joint

configuration space. When robots are found to collide in the multirobot search space,

subdimensional expansion locally grows the dimensionality of the search space to

allow an alternative path for the robots involved in the collision to be found with

coupled planning, while planning for the uninvolved robots remains decoupled (Fig-

ure 1.1). Although the search space may grow to cover the entire joint configuration

space in the worst case, leading to exponential time complexity, for many problems

subdimensional expansion can construct a low dimensional search space that allows

for efficient computation of a high quality path.

1.0.1 Contributions

This thesis makes contributions to optimal and ε-suboptimal MPP on graphs, MPP

for systems where individual robots have many degrees of freedom (DOFs), coopera-

tive path planning where robots must dynamically form teams to execute cooperative

tasks, planning with uncertainty, and combined planning and control for multirobot

systems (Table 1.1). All these contributions are based on subdimensional expansion,

a new framework for MPP that combines computationally efficient planning with the

flexibility to be readily applied to many variants of the MPP problem. Applying sub-

3

Contribution Explanation Chapter
Optimal and ε-suboptimal
MPP on graphs

M* and its variants provide state of the art
performance for MPP on graphs, including
directed graphs

3

MPP with robots with
many DOFs

sRRT and sPRM allow for efficient path
planning for many robots where each robot
has many DOFs

4

Planning for many robots
with cooperative paths

CMS allows for planning paths for many
robots that must dynamically form teams
to perform cooperative tasks

5

Planning with uncertainty UM* can efficiently find paths for sys-
tems with uncertain dynamics where in-
teractions are possible anywhere in the
workspace

6

Combined planning and
control

M* can be combined with the sequential
composition framework to generate plans
for multirobot systems that consist of a
sequence of controllers, robustness against
environmental perturbations and modeling
errors

7

Table 1.1: Contributions

4

dimensional expansion to graph search results in the M* algorithm and its variants.

M* provides state of the art performance for finding optimal and ε-suboptimal paths.

Subdimensional expansion can be combined with probabilistic planning algorithms,

resulting in the sRRT and sPRM algorithms, to find paths for multirobot systems

where each robot has many degrees of freedom, outperforming existing probabilistic

approaches. CMS is an implementation of subdimensional expansion that can find

paths for multirobot systems where the robots must temporarily form teams to per-

form cooperative tasks, a problem that has received relatively little attention. UM*,

a variant of M*, can efficiently solve problems where the dynamics of the robots are

uncertain. Unlike the work of Melo and Veloso [119], UM* can solve problems where

robots can interact anywhere in the workspace, instead of only in well defined inter-

action regions, but does so at the cost of computing only a single trajectory, rather

than a full policy that could respond to sensor measurements received during execu-

tion [119]. Finally, we show that M* can be combined with the sequential composition

framework to combine planning and control of multirobot systems. This is enabled

by the ability of M* to compute plans on directed graphs, and produces paths that

are robust to environmental perturbations.

The thesis is organized as follows: We begin by describing the MPP problem

and the prior work. Chapter 2 describes subdimensional expansion. Chapter 3 de-

scribes M*, an implementation of subdimensional expansion where the configuration

space of each robot is represented as a graph. Chapter 4 describes implementations

of subdimensional expansion based on probabilistic planning algorithms, which are

suitable for systems where each robot has many degrees of freedom. Chapter 5 de-

scribes an adaptation of M* to handle problems where robots must dynamically form

and dissolve teams to perform cooperative tasks. Robots will not perfectly execute

plans, so the last two chapters focus on generating plans that are robust to errors in

plan execution, via explicitly accounting for uncertainty at planning time (Chapter 6)

5

and integrating path planning and control via the sequential composition framework

(Chapter 7).

1.1 Problem Definition

We start by formally defining the MPP problem. Consider a system of n robots ri

indexed by the set I = {1, . . . , n}. Each robot has a free configuration space Qi
free.

The joint configuration space that represents the state of the entire system is given

by the direct product of the single robot free configuration spaces Q =
∏

i∈I Q
i
free.

By this definition, the joint configuration space may contain robot-robot collisions,

but no obstacle-robot collisions. Let the Π denote the space of continuous paths

π : [0, 1] → Q in the joint configuration space. The MPP problem is to find an

optimal, collision-free path π∗ ∈ Π, from an initial configuration of the system qs to a

goal configuration qf , that minimizes a cost functional g : Π→ R+. To define which

states result in robot-robot collisions, we introduce a collision function Ψ : Q→ P(I)

which returns the set of robots in collision at a given joint configuration, where P (I)

is the power set of I containing all subsets of I. The MPP problem can be expressed

as

π∗ = argmin g(π)

s.t.

π∗(0) = qs

π∗(1) = qf

∀t ∈ [0, 1] Ψ(π(t)) = ∅.

(1.1)

There are several important variants of the MPP problem. The permutation in-

variant multirobot path planning problem deals with homogeneous robots where a

robot must reach each goal position, but any robot can be assigned to any goal

6

[183, 204]. The k-color MPP problem is a generalization where there are k classes

of robots that are interchangeable within, but not between, classes [164]. In the ve-

hicle routing problem, there are a set of goal positions that must be visited by a

robot, and each robot can visit some, all, or none of the goal positions [180]. The

Cooperative Path Planning (CPP) problem is a variant where multiple robots must

temporarily form tightly coordinated teams to perform cooperative tasks. The Mul-

tirobot Path Planning with Uncertainty (MPPU) problem addresses systems in which

the dynamics of the robots are uncertain.

Equation 1.1 looks like the formulation of the single robot path planning problem

for a robot with the configuration space Q, which raises the question of how the MPP

problem differs from the single robot path planning problem. The first difference

is qualitative; the joint configuration space for multirobot systems can exceed 2000

dimensions [86, 192], while single robots typically don’t have more than 20 degrees

of freedom [136, 172]. The second difference lies in the direct product structure of

the joint configuration space, which means that not only can the joint configuration

space be factored into the product of single robot configuration spaces, but the actions

of the system as a whole can be factored into the actions of individual robots. As

a result, a planner can meaningfully reason about the motion of individual robots,

whereas the motion of individual joints in a robot arm cannot be generally considered

independently of one another.

1.2 Prior Work

MPP algorithms can be characterized by how and to what extent they exploit the

direct product structure of the joint configuration space to accelerate planning. In

general, the more heavily a MPP depends on the direct product structure, the faster

it will find solutions, at the cost of returning more expensive paths and possibly failing

7

to find a valid path. We proceed to discuss the existing literature on MPP grouped

by how the algorithms exploit the structure of the joint configuration space.

1.2.1 Reactive Planning

One possible approach to solving the MPP problem is to plan paths for each robot

seperately, then run a reactive controller on each robot during execution to avoid

collisions and deadlocks3. One approach is to simply have the robots stop if they be-

lieve a collision is imminent [85], which poses an obvious danger of deadlocks. A less

deadlock-prone approach is to command robots to follow a circular path and rotate

around one another [38, 75]. A variety of controllers have been inspired by biological

swarms [36, 44, 61, 73, 111, 115, 145, 193], using a combination of short-ranged repul-

sive forces, mid-ranged alignment forces, and long-ranged attractive forces. Swarm-

inspired controllers are generally designed to move large numbers of robots to a single

destination as a coherent flock.

In the aforementioned approaches, a robot does not consider the fact that the

robots with which it interacts are also trying to avoid collisions. Therefore, a robot

may work harder than necessary to avoid collisions. van den Berg et al. [187] intro-

duced reciprocal velocity obstacles that split the responsibility for avoiding a collision

between the interacting robots, but makes the assumption that all robots execute

the same controller [163, 190]. Trautman and Krause [181] used a Gaussian pro-

cess to learn how other agents/pedestrians react to the presence of a robot, allowing

cooperative collision avoidance between inhomogeneous robots.

3A deadlock occurs when one or more robots become permanently unable to move under the
chosen control scheme. A live lock occurs when robots continue to move but permanently fail to
make progress, typically by entering a cycle.

8

1.2.2 Workspace Decomposition

Another approach is to decompose the workspace into a number of regions. Robots in

different regions are known not to interact with one another, and simple rules can be

established to govern how robots can move from one region to another. One method

is to break the world into a series of corridors, and then prescribe traffic rules for

navigating intersections [2, 55, 196]. Švestka and Overmars [178] developed a multi-

level hierarchical graph, where a single vertex may represent an entire region of the

workspace, while Ryan [148, 149] defines a high-level graph by decomposing the graph

that represents the workspace into cliques, stacks, and singletons. Each vertex in the

high-level graph can contain a specific number of robots, and has rules for entering

and exiting the vertex. A plan for the entire system is first found in the high-level

graph; a detailed plan for each robot through the workspace can be extracted from

the high-level plan later.

Rather than dividing the workspace into a small number of large regions, the

workspace can be split into many small reservation cells. Before a robot is allowed

to move into a new cell, it must acquire an exlusive reservation for said cell, either

from a centralized authority [55, 200], or via negotiation with nearby robots [142]. As

long as each cell is large enough for a robot to come to a complete stop, safety can

be guaranteed.

Alternatively, the workspace can be split into regions where coordination between

robots is or is not necessary. Interaction regions can be defined as states at which

the reward or transition function of a robot depends upon one or more other robot.

Varakantham et al. [191] handled such cases by modifying the individual reward func-

tion for each robot, increasing the reward for states where synergistic interaction could

occur, and decreasing the reward for states with antagonistic interactions. Spaan and

Melo [165] learned an individual policy for each robot outside of the interaction states,

9

and a joint policy for robots in interaction states. Furthermore, Spaan and Melo [165]

showed that performance could be improved by beginning to coordinate robots at in-

dependent states bordering states where rewards depend on the state of multiple

robots, i.e. it is too late to coordinate robots if they have already crashed. Melo and

Veloso [119][120] developed a Q-learning algorithm that builds on the work of Spaan

and Melo [165] to learn where coordination is necessary. A “coordinate” action is

added to the set of actions available to each robot. When the coordination action

is taken, the robot chooses an action based on its current state, and the position of

the nearest neighbor robot. Robots will typically learn to take coordinate actions at

bottlenecks, where robot-robot interactions are likely. Kok et al. [95][94] presented an

approach which performs Q-learning for each robot independently, but stores statis-

tics for the reward of the joint actions that are explored. If these statistics indicate

that coordinating actions at a specific location is beneficial, then the algorithm starts

learning coordinated actions at that state. This approach has the benefit of being

able to handle tasks besides basic path planning, such as capturing targets that re-

quired coordinated action by multiple pursers. De Hauwere et al. [48] [49, 50] learned

the states relative to a robot that necessitate coordination, i.e. a robot may need to

coordinate with a robot directly in front of it, but not with a robot far to the rear.

The approach of Bnaya et al. [23] computes all paths that a robot would take if no

other robots were present. A randomly drawn set of paths are drawn for each robot,

and checked for interference. A cost penalty is assessed on moving through states at

which robots may interfere with one another. Optimal paths for each robot are then

computed subject to the penalty terms, with final collision avoidance provided by a

reactive controller.

10

1.2.3 Rule-Based Path Planning

Rule-based approaches are centralized approaches which use a set of stereotyped

behaviors to govern robot-robot interactions during planning. The plans computed

by rule-based approaches specify the motion of the entire system and are guaranteed

to be collision free. Push and Swap [116, 100], Push and Rotate [51], the Tree-Based

Agent Swapping Strategy algorithm [89], and the work of Auletta et al. [7] utilize

behaviors that exchange the positions of two robots without disturbing any other

robot. Surynek [174, 175] developed algorithms based on the theory of bi-connected

graphs that use behaviors similar to Push and Rotate. Warehousing approaches shift

robots into configurations which will not interfere with the motion of other robots

[40, 133, 197], then plan for a small number of robots at a time.

The rule-based algorithms described in the previous paragraph are guaranteed to

find a solution in polynomial time, but the quality of the path is typically low. In

particular, the above methods only allow a single robot to move at any given time,

which results in very long execution times. Parallel Push and Swap is a variant of

Push and Swap which permits simultaneous motion of multiple agents, significantly

decreasing path costs [151].

1.2.4 Coupled Planning

Coupled MPP algorithms treat the robots in a multirobot system as components of

a single meta-agent whose configuration space is the joint configuration space. The

MPP problem is then solved by planning a path for the meta-agent using a single

robot path planning algorithm. By exploring the joint configuration space, coupled

approaches can offer completeness and optimality guarantees, at the expense of high

computational cost.

A* [77] could be used to search the joint configuration space, resulting in a simple,

11

coupled planner. However, the exponential growth of the joint configuration space

as the number of robots increases quickly renders planning paths with A* computa-

tionally infeasible. Iterative Deepening A* (IDA*) reduces the memory consumption

of A* by using depth-first search [46, 96]. However, it is only effective when robots

are packed densely enough that only a few robots can move at any time. One basic

problem with A* based approaches is the presence of many redundant actions which

A* will instantiate, but never actually use, such as actions where every robot moves

directly away from its goal. Operator Decomposition (OD) [167] and Enhanced Partial

Expansion A* (EPEA*) [62, 71] are lazy variants of A* designed for MPP which delay

instantiating actions which are heuristically expensive, and thus unlikely to be used as

part of the optimal solution. Such lazy evaluation dramatically reduces the effective

branching factor of the multirobot system, significantly reducing computational cost

of finding a path.

Probabilistic planners were developed to find paths for robot mechanisms with

many internal degrees of freedom, for which deterministic planners such as A* were

unable to find paths in a reasonable amount of time. The suitability of probabilis-

tic planners for high-dimensional planning has led to the development of coupled

algorithms that use probabilistic planners to explore the joint configuration space

of multirobot systems [35, 63, 103, 152, 153]. However, the structure and pure size

of the joint configuration space of multiple robot systems limits such approaches to

relatively small numbers of robots; to the best of our knowledge, the largest problem

solved by running a probabilistic planner directly in the joint configuration space of

a multirobot system involved 10 robots [63, 34].

An alternate approach to coupled planning is to recast the MPP problem as a

Boolean Satisfiability (SAT) problem. The SAT problem is to find an assignment of

truth values to variables that satisfy a logical formula. The MPP problem can be

recast as a SAT problem by creating a set of Boolean variables to track the location

12

of each robot, and adding terms to the Boolean formula to enforce collision avoidance

[58, 81, 87, 176, 177]. SAT planners have also been used to find shortcuts to reduce

the cost of non-optimal paths computed by rule-based planners [14, 175].

Similarly, the permutation invariant multirobot path planning problem can be

reformulated as a network flow problem. Yu and Lavalle [204] showed that such a

transformation allows for optimal paths to be found in polynomial time. By com-

posing the workspace into many largely independent cells, the network flow approach

can be applied to systems of 1,000,000 robots [86]

1.2.5 Decoupled Planning

Where a coupled planner searches the joint configuration space of a multirobot system,

decoupled algorithms explore one or more low dimensional search spaces. Decoupled

planners can quickly find paths for systems containing many robots. The drawback

of decoupled algorithms is that the search spaces employed by decoupled planners

represent only a small portion of the joint configuration space, and thus decoupled

algorithms are not guaranteed to find a path for all solvable problems [153]. There are

two primary classes of decoupled planners, velocity schedulers and priority planners.

Velocity Scheduling

Velocity scheduling approaches first plan a path for each robot, and then construct

a coordination space, which describes the position of each robot along its path. The

velocity scheduling approach then seeks a path in the coordination space, i.e. a

velocity schedule, that moves each robot to its goal without robot-robot collisions

[45, 84, 108, 134, 160]. Krishna et al. [99] introduced a decentralized approach where

a robot coordinates its velocity schedule with a limited number of neighboring robots.

Lavalle and Hutchinson [105] developed a hybrid between velocity scheduling and

13

coupled planning by restricting each robot not to a single path, but rather to a sparse

roadmap.

Priority Planning

Priority planners assign each robot a priority, and then plan for each robot in order of

decreasing priority, treating higher priority robots as moving obstacles [60]. Priority

planning can be readily decentralized, with low priority robots giving way to high

priority robots [33, 54, 144, 192]. Saha and Isto [150] attempted to address the

issue that low priority robots cannot influence the path of high priority robots by

hybridizing priority planners and velocity schedules. They allowed a low priority

robot to change the velocity schedule of higher priority robots, but not the path in

the workspace that the higher priority robot takes.

A key element to the success of a priority planner is the choice of priority ordering;

a high priority robot whose goal is in a bottleneck of the environment can easily

prevent a solution from being found. van den Berg and Overmars [186] assigned

a priority to robots based on the intial distance the robot is from its goal, with a

longer distance to the goal corresponding to a higher priority. Turpin et al. [182, 183]

showed that for permutation invariant multirobot path planning there is a priority

ordering that is guaranteed to produce a solution. Assign each robot to a goal such

that the sum-squared distance traveled is minimized. Then assign priority to robots

in decreasing order of distance to the goal. The resulting algorithm can be shown to

be complete and run in polynomial time.

Other approaches to priority planning rely on searching the possible priority order-

ings [12, 159]. One commonly used heuristic to guide search over priority orders is to

examine the position of the initial and goal configurations of the robots [30, 117, 188].

If the goal configuration of robot r1 lies on or blocks the path of r2, then r2 is assigned

a higher priority than r1. Conversely, if the initial configuration of r1 lies on or blocks

14

the path of r2, then r1 is assigned a higher priority than r2. These relations may

introduce cycles, which different approaches break in different manners, including

random search in priority ordering [117].

1.2.6 Dynamically Coupled Planning

Dynamically coupled planning is an alternative to coupled or decoupled algorithms

which grow the search space during planning, so that the search space can initially

be very small, then grow only where necessary. In the worst case, the search spaces

constructed by dynamically coupled algorithms may cover the entire joint config-

uration space, but for most problems a substantially smaller search space suffices.

Subdimensional expansion is a dynamically coupled planner

Al-Wahedi presented an approach in which paths are found separately for each

robot, followed by coupled planning in a window around conflicts, but said approach

does not return optimal paths [1]. The work of van den Berg et al. [188] shows how

to identify the minimal sets of robots which must execute a cooperative path instead

of sequentially executing single robot paths. The dynamic networks of Clark et al.

[41] couple online planning during execution for sets of robots capable of mutual

communication. The Increasing Cost Search Tree (ICST) [3, 155, 154, 158] limits the

cost that can be incurred by an individual robot, then uses pairwise tests to determine

for which robots the cost limits must be raised. Independence Detection (ID) [167]

and Meta-Agent Conflict Based Search (MA-CBS) [157] initially attempt to find a

path using decoupled planning approaches, but revert to coupled planning for subsets

of robots for which the decoupled planner cannot find optimal paths. Standley and

Korf [168] introduced a variant of ID that reverts to prioritized planning when the

coupled subsets of robots get too big, at the cost of optimality. Calliess and Roberts

[32] proposed a method that is very similar to MA-CBS, but based on Mixed-Integer

15

Programming rather than graph search.

1.2.7 Miscellaneous

There are several interesting approaches that do not cleanly fit into the categories

discussed so far. Bhattacharya et al. [22] developed an approach that can find optimal

solutions to problems with complex inter-robot constraints, by iteratively replanning

for each robot in turn. Initially, the inter-robot constraints are ignored. At the

beginning of each iteration, the weight given to inter-robot constraints is increased

slightly. The resulting paths can be shown to converge to the optimal path. Ghrist

and Koditschek [70] showed that the free joint configuration space of a system of

two robots at a Y-intersection had a simple geometry, that of a punctured disk with

six triangular fins, which allows for easy planning. Multirobot coordination can be

simplified by annotating each point in the workspace with a preferred direction; mov-

ing in the preferred direction is cheaper than moving against the preferred direction

[82, 130]. Finally, Kloder and Hutchinson [90] developed a clever method of solving

the permutation invariant multirobot path planning problem without ever explicitly

assigning robots to goal locations by representing the position of the robots and the

goal as the complex valued roots of polynomials. A path in polynomial space be-

tween two configurations can be computed by interpolating the coefficients of the

polynomials that represent the initial and final configurations. However, extracting a

workspace trajectory for a given robot requires repeatedly solving a track assignment

problem, which makes this approach significantly less practical, and planning in the

presence of obstacles is difficult.

16

Chapter 2

Subdimensional Expansion

In MPP there is an inherent trade-off between path quality and the computational

cost of finding a path. However, in many problem instances of interest, the MPP

problem naturally decomposes into small subproblems, which permits optimal paths1

to be found at low computational cost. Specifically, if the interactions between robots

are sparse, the MPP problem can be split into two parts: planning paths for individual

robots and optimally resolving conflicts between robots.

Subdimensional expansion is a framework for MPP that exploits the aforemen-

tioned natural decomposition to find optimal paths at low computational cost. Sub-

dimensional expansion begins by computing an individual policy for each robot. The

individual policy specifies the individually optimal path from each point in the free

configuration space of a robot to its goal configuration, neglecting the presence of

other robots. The path of the multirobot system induced by each robot obeying its

individual policy is termed the joint policy path. Robot-robot collisions are likely to

be present in the joint policy path.

Subdimensional expansion then uses the individual policies to guide the construc-

1An optimal path is a collision-free path which minimizes some cost function.

17

tion of a search space of variable dimensionality that is embedded in the joint configu-

ration space of the system, in which to coordinate the motion of the multirobot system

and resolve any conflicts. Subdimensional expansion makes the optimistic assump-

tion that the joint policy path is collision free until there is evidence otherwise, and

thus each robot is initially restricted to obeying its individual policy. The resulting

search space is one-dimensional, as a point on in the search space is fully determined

by how long the robots have executed their individual policies, and planning is fully

decoupled, i.e. each robot follows an independently computed plan. An underlying

planner , such as A*, is then employed to find an optimal path in the search space.

When the underlying planner encounters a robot-robot collision, the involved robots

are permitted to diverge from their individual policies, locally increasing the dimen-

sionality of the search space. In the region of increased dimensionality, planning is

conducted as a search over the joint actions of the robots involved in the collision,

i.e. coupled planning for those robots.

Two constructs, the backpropagation set and the collision set , are employed to

ensure that the search space is only expanded where and as much as necessary. Sub-

dimensional expansion only expands the search space when the underlying planner

finds a collision, but the optimal resolution of the collision may require the involved

robots to diverge from their individual policies long before the collision would take

place. This requires expanding the search space along all paths that the underlying

planner has explored that lead to the collision. The backpropagation set of a point

q in the search space is used to propagate information about a collision back along

all paths that lead to q, and consists of the set of all points for which the underlying

planner has considered q as a possible successor. If the underlying planner is A*, then

when a vertex is expanded it is added to the backpropagation set of each of its out-

neighbors , whereas if RRT is employed as the underlying planner the backpropagation

set of a configuration contains its parent in the search tree.

18

Subdimensional expansion uses the collision set to aggregate information about

collisions and to determine the local dimensionality of the search space. The collision

set C of a given point q in the search space is the set of robots involved in a collision

either at q or at successor of q on a path that has been explored by the underlying

planner. If a configuration has not been visited by the underlying planner, its collision

set is empty. The collision set is computed using the backpropagation set. If the

collision set Ck of a configuration qk changes, including the first time the underlying

planner visits a configuration at which a robot-robot collision occurs, then the robots

in Ck are added to the collision set of each point in the backpropagation set of qk. In

addition, if a new configuration ql is added to the backpropagation set of qk, then the

robots in Ck are added to Cl. Note that the above rules imply that the collision set

is a function of the current state of search, and the collision set of any given point in

the search space will only grow as the search progresses.

Robots in the collision set are known to collide with other robots if restricted

to their individually optimal paths, but there is no evidence that robots outside the

collision set will collide while obeying their individual policies. Therefore to ensure

that a collision-free path can be found, the search space must include any possible

joint action for the robots in the collision set, while the robots not in the collision set

obey their individual policies. The result is a local increase in the dimensionality of the

search space, but the search space will likely still be of lower dimensionality than the

joint configuration space in which the search space is embedded. Because the search

space is embedded in the joint configuration space, each point in the search space

fully defines the configuration of the system, regardless of the local dimensionality of

the search space. A locally low dimensional search space just restricts which paths of

the system will be explored by the underlying planner.

Although the search space constructed by subdimensional expansion is embedded

in a high-dimensional space and is thus hard to visualize, the geometry of the search

19

Figure 2.1: Geometric visualization of the search space as embedded in the joint
configuration space. The circle represents the goal configuration. The cube represents
a region of the search space in which the collision set contains three robots, while the
square denotes a region where the collision set contains two robots. The lines denote
the joint paths for the multirobot system induced by the individual policies, which
connect configurations on the periphery of the higher-dimensional regions of the search
space to the goal.

space can still be succinctly described, and provides an alternate way of understanding

subdimensional expansion. The search space will have the appearance of a set of

elongated “tubes” of decreasing dimensionality embedded in the joint configuration

space, extending from the initial configuration towards the goal (Figure 2.1). Each

tube grows around an explored path or set of paths that lead to a robot-robot collision,

and thus the interior of each tube consists of states with non-empty collision sets. The

surface of each tube are covered with one-dimensional “hairs” that extend towards

the goal. Each hair is the joint policy path leading from a state on the surface of the

tube with an empty collision set to the goal. The search space starts as a single hair,

which thickens and branches as robot-robot collisions are found.

To better illustrate the workings of subdimensional expansion, we present an ex-

ample for MPP on graphs. Planning is done using the M* algorithm, an implemen-

tation of subdimensional expansion that uses A* as the underlying planner. M* will

be described in detail in section 3, but for the purposes of this example M* can be

described as being equivalent to running A* on a small search graph which grows

every time a robot-robot collision is found.

20

Figure 2.2: Example of the working of subdimensional expansion. Robots r1, r2, r3

start at A1, C1, and A3 respectively, with goal configurations B2, B1 and C3.

(a) Policy for r1 (b) Policy for r2 (c) Policy for r3

Figure 2.3: Subdimensional expansion starts by computing a individual policy for
each robot. The optimal action for a robot at each configuration is indicated by
arrows. The loop at the goal state indicates that the robot should seek to remain at
its goal.

21

Collision Set = ∅

Neighbors of Expanded State
(B1, B1, B3)

Post Expansion Open List
Coordinate f-value Collision set

(A1, C1, A3) 5 {1, 2}

(a) Configuration at Step 1

(b) Search tree after expansion.

Figure 2.4: (a) Example of the workings of subdimensional expansion. The robots
start at (A1, C1, A3) and have the goal (B2, A2, C3). The grid on the left shows
the configuration that is expanded by M* in step one. The arrows show the actions
that M* considers for each robot. The tables on the right enumerate the resulting
neighboring configurations, and the state of the open list after the expansion and
collision set update are completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set.
The vertex expanded in step one is bolded.

22

Collision Set = {1, 2}

Neighbors of Expanded State
(B1, B1, B3),(A2, B1, B3),(A1, B1, B3)
(B1, C2, B3),(A2, C2, B3),(A1, C2, B3)
(B1, C1, B3),(A2, C1, B3),(A1, C1, B3)

Post Expansion Open List
Coordinate f-value Collision set

(A2, B1, B3) 5 ∅
(A1, B1, B3) 6 ∅
(B1, C1, B3) 6 ∅
(A2, C1, B3) 6 ∅
(B1, C2, B3) 7 ∅
(A2, C2, B3) 7 ∅
(A1, C1, B3) 7 ∅
(A1, C2, B3) 8 ∅

(a) Configuration at Step 2

(b) Search tree after expansion.

Figure 2.5: (a) Example of the workings of subdimensional expansion. The robots
start at (A1, C1, A3) and have the goal (B2, A2, C3). The grid on the left shows
the configuration that is expanded by M* in step two. The arrows show the actions
that M* considers for each robot. The tables on the right enumerate the resulting
neighboring configurations, and the state of the open list after the expansion and
collision set update are completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set.
The vertex expanded in step two is bolded.

23

Collision Set = ∅

Neighbors of Expanded State
(A2, B1, C3)

Post Expansion Open List
Coordinate f-value Collision set

(B2, B1, C3) 5 ∅
(A1, B1, B3) 6 ∅
(B1, C1, B3) 6 ∅
(A2, C1, B3) 6 ∅
(B1, C2, B3) 7 ∅
(A2, C2, B3) 7 ∅
(A1, C1, B3) 7 ∅
(A1, C2, B3) 8 ∅

(a) Configuration at Step 3

(b) Search tree after expansion.

Figure 2.6: (a) Example of the workings of subdimensional expansion. The robots
start at (A1, C1, A3) and have the goal (B2, A2, C3). The grid on the left shows the
configuration that is expanded by M* in step three. The arrows show the actions
that M* considers for each robot. The tables on the right enumerate the resulting
neighboring configurations, and the state of the open list after the expansion and
collision set update are completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set.
The vertex expanded in step three bolded.

24

Collision Set = ∅

Neighbors of Expanded State

Post Expansion Open List
Coordinate f-value Collision set

(A1, B1, B3) 6 ∅
(B1, C1, B3) 6 ∅
(A2, C1, B3) 6 ∅
(B1, C2, B3) 7 ∅
(A2, C2, B3) 7 ∅
(A1, C1, B3) 7 ∅
(A1, C2, B3) 8 ∅

(a) Configuration at Step 4

(b) Search tree after expansion.

Figure 2.7: (a) Example of the workings of subdimensional expansion. The robots
start at (A1, C1, A3) and have the goal (B2, A2, C3). The grid on the left shows the
configuration that is expanded by M* in step four. The arrows show the actions
that M* considers for each robot. The tables on the right enumerate the resulting
neighboring configurations, and the state of the open list after the expansion and
collision set update are completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set.
The vertex expanded in step four is bolded.

25

Consider a system of three robots, r1, r2, and r3, which move on a graph rep-

resenting a four connected grid. The X coordinates of the graph are labeled with

letters, while the Y coordinates are labeled with numbers. Robot r1 starts at the

initial configuration v1
s = A1 and has the goal v1

f = B2. Robots r2 and r3 have initial

configurations v2
s = C1 and v3

s = A3, and goal configurations v2
f = B1 and v3

f = C3

respectively (Figure 2.2). The initial configuration of the multirobot system is de-

noted (A1, C1, A3), while the goal configuration is (B2, B1, C3) The robots incur a

cost of 1 for any action, including remaining in place, but the robots can wait at their

goal for zero cost.

Subdimensional expansion begins by computing an individual policy for each robot

(Figure 2.3). The choice of policies is not unique. For instance, an alternate policy

for r1 would be to move up from A1 rather than right. Choice of individual policies

is discussed in section 3.5.4.

Once the individual policies are computed, search for the multirobot system can

commence. M* maintains an open list of candidate vertices which are explored in

order of f-value, the sum of the cost to reach a vertex and a heuristic cost-to-go.

When search begins the open list only contains the initial configuration, with an

empty collision set (Figure 2.4). An empty collision set means that every robot obeys

its individual policy. Therefore, when the initial configuration is expanded, there is

only one neighbor, (B1, B1, B3) (Figure 2.4a). At (B1, B1, B3) robots r1 and r2 are

in collision, which triggers a collision set update. The initial configuration is in the

backpropagation set of (B1, B1, B3), (Figure 2.4b), so r1 and r2 are added to the

collision set of the initial configuration, which implicitly modifies the search graph.

To allow the modified search graph to be explored, the initial configuration is added

back to the open list (section 3.2).

In the second iteration of M*, the initial configuration is once more taken from the

open list, and expanded (Figure 2.5). This time, r1 and r2 are in the collision set of

26

the initial configuration, so only r3 is restricted to its individual policy. As a result,

the initial configuration now has nine neighbors (Figure 2.5a), including (B1, B1, B3).

The backpropagation set of each neighbor contains only the initial configuration, as

the only paths that have been explored lead from the initial configuration to one of

its neighbors (Figure 2.5b). The initial configuration has an empty backpropagation

set, because no paths have been explored that lead to the initial configuration, and

thus collisions at one of the neighbors cannot be propagated to the collision set of

a different neighbor. The only robot-robot collision occurs at (B1, B1, B3), and the

involved robots have already been added to the collision set of the initial configuration,

the only state in the backpropagation set of (B1, B1, B3). Therefore, no further

modification of the collision sets is required. The collision-free neighbors are then

added to the open list and sorted by f-value.

In the third iteration, the most promising vertex is (A2, B1, B3) (Figure 2.6).

(A2, B1, B3) was never previously expanded, and thus has an empty collision set,

and therefore a single neighbor (B2, B1, C3), the goal configuration. The goal con-

figuration is collision free, and thus is added to open list. Note that in the counter-

factual case that the neighbor of (A2, B1, B3) had contained a robot-robot collision,

the involved robots would be added to the collision sets of both (A2, B1, B3) and

(A1, C1, A3).

In the fourth iteration, the goal configuration has the lowest f-value of any vertex

in the open list, and is thus expanded (Figure 2.7), which indicates that the optimal

path has been found.

27

28

Chapter 3

M*

A key detail of subdimensional expansion is how the search space is constructed, an

issue which depends upon the planner used by a given implementation. We will now

describe how subdimensional expansion can be implemented for planning paths for

multirobot systems moving in spaces represented by graphs. A* [77] is an attractive

planner when the configuration space of each robot can be represented by a graph.

A* is optimal, meaning it finds optimal paths, and complete, meaning that it will take

finite time to either find a path or determine that no path exists. In this section, we

present the M* algorithm, a complete and optimal implementation of subdimensional

expansion which uses A* as the underlying planner.

3.1 Problem Definition

Consider a system of n robots ri indexed by the set I = {1, . . . , n}. Let the free

configuration space of ri be represented by the directed configuration graph Gi =

{V i, Ei}. V i is the set of vertices in Gi, each of which represents a configuration of

ri. Ei is the set of directed edges, each of which represents an action that transitions

ri from one configuration to another. Each edge is associated with a positive cost.

29

Symbol Meaning

ri ith robot

Gi Configuration graph representing configuration space of ri

vi Vertex in Gi representing a configuration of ri

vis Initial configuration of ri

vif Goal configuration of ri

G Joint configuration graph representing joint configuration space of system

v Vertex in G representing a configuration of the multirobot system

vs Initial configuration of multirobot system

vf Goal configuration of multirobot system

vik Configuration of ri at joint configuration specified by vk

π(vk, v`) Path for the multirobot system connecting vk to v`

g(π(.)) Cost of specified path

Ψ(vk) Set of robots that collide at vk

Table 3.1: Symbol definitions for multirobot path planning on graphs

Each robot has an initial configuration vis ∈ V i and a goal configuration vif ∈ V i.

The joint configuration space which describes the state of the entire multirobot

system is represented by the joint configuration graph, which is the direct product of

the individual robot configuration graphs G = G1 × · · · ×Gn, with vertex set V and

edge set E. Recall that the direct product of two graphs, Gi×Gj, has the vertex set

V i × V j. Two vertices (vik, v
j
k) and (vi`, v

j
`) in V i × V j are connected by an edge in

the product graph if the edge eik` connecting vik to vi` is present in Ei and the edge

ejk` connecting vjk to vj` is present in Ej. Note that G may contain vertices at which

robots collide.

Let Πi denote the set of all valid paths in Gi, where a valid path consists of a

sequence of vertices such that each vertex in the sequence is an out-neighbor of its

predecessor in Gi. Π = Π1× · · · ×Πn denotes the set of all paths in G. Let πi(vk, v`)

denote a path in Gi from vk to v`. The cost of a single robot path gi : Πi → R+ is

30

the sum of the costs of the edges traversed in the path. The cost g : Π → R+ of a

path π(vk, v`) in G is the sum of the costs of the corresponding single robot paths

πi(vik, v
i
`), where vik is the position of ri at the joint configuration vk,

g(π(vk, v`)) =
∑
i∈I

gi(πi(vik, v
i
`)). (3.1)

The task of M* is to find an optimal, collision-free path from the joint initial

configuration vs = v1
s × · · · × vns to the joint goal configuration vf = v1

f × · · · × vnf ,

denoted π∗(vs, vf). To determine where robots collide with one another, we define

a collision function Ψ : V → P(I) which returns the set of robots in collision at a

given vertex, with P(I) denoting the power set of I which contains all subsets of I.

What constitutes a collision depends on the problem being solved, and may represent

a physical collision, a contention for a shared resource, or some other conflict. Note

that Ψ(vk) describes the robots which are locally in collision at vk, whereas Ck collects

all collisions occurring at a successor of vk on some path explored by the underlying

A* planner, thus Ψ(vk) ⊆ Ck. For the purpose of description, only collisions at

vertices will be considered, as collisions taking place during the traversal of edges can

be modeled by inserting additional vertices into the joint configuration graph.

The notation in this thesis can get complex, due to the number of different objects

that the text must describe, and the number of different spaces in which said objects

may lie. To make the notation more comprehensible, a standard format is employed.

The symbol xyz refers to an object of type x, where z is a label for the specific object

instance, and y ⊂ I is robot or set of robots which are described by x. For instance,

vik refers to a vertex k describing the configuration of robot ri. The symbols xik and

xjk refer to the components of xk describing robots i and j respectively. The symbols

i, j, k and ` are reserved for short term indexing, and are reused throughout the thesis

31

Symbol Meaning

φi Individual policy for ri

πiφ(vi, vif) Path for ri induced by its individual policy from vi to vif

πφ(v, vf) Path the for multirobot system induced by each robot obeying its
individual policy from v to vf

π∗(vk, v`) Minimal cost, collision-free path connecting vk to v`

Ck Collision set at vk

V nbh
k Limited neighbors of vk

h(vk) Heuristic cost-to-go from vk to vf

Table 3.2: Symbol definitions for M*

in different contexts. The definitions of symbols used in the problem definition are

summarized in Table 3.1.

3.2 Algorithmic Description

M* is broadly similar to A* [77] in implementation. The primary difference is that

M* restricts the set of possible successors of a vertex based on the collision set. Only

robots in the collision set are allowed to consider any possible action; all other robots

must obey their individual policies (Figures 2.4-2.7). A more detailed description

follows.

M* is most easily described as a set of modifications to A*. Recall that A*

maintains an open list of vertices vk to explore. Each vertex represents one point in

the joint configuration space of the multirobot system, specifying the configuration of

every robot. These are sorted by f-value, which is the sum of a g-value and a heuristic

cost. The g-value is the cost of the cheapest path to vk found thus far, and is therefore

an upper bound on g(π∗(vs, vk)). The heuristic cost, h(vk), is a lower bound on the

cost of the optimal path from vk to the goal, i.e. h(vk) ≤ g(π∗(vk, vf)). At each

iteration, the vertex vk with the smallest f-value in the open list is expanded. Each

32

neighbor v` of vk is added to the open list if the path reaching v` via vk is cheaper than

the current g-value of v`. The process continues until the goal vertex vf is expanded,

which indicates that an optimal path to the goal has been found for the multirobot

system.

Prior to planning for the multirobot system, M* computes the individual policies

φi : V i → V i for each robot, where φi(vi) is the successor of vi along the minimal

cost path to vif for robot ri, ignoring robot-robot interactions. φi can be efficiently

computed by Reverse Resumable A* [159]. The path induced by φi from vi is de-

noted πiφ(vi, vif). The joint policy φ : V → V moves each individual robot along its

individual policy, with the joint policy path induced by φ from v denoted πφ(v, vf).

Computing the individual policies permits the efficient computation of the highly in-

formative Sum of Individual Costs (SIC) heuristic, which is commonly employed for

multirobot path planning [62, 96, 167]. The SIC heuristic evaluated at vk is the sum

of the costs of the individually optimal paths of all robots

h(vk) = g(πφ(vk, vf)) ≤ g(π∗(vk, vf)). (3.2)

The primary difference in implementation between M* and A* lies in the expansion

step: while A* considers all neighbors of a vertex vk for addition to the open list, M*

only considers a subset of the neighbors of vk, denoted the limited neighbors . The

limited neighbors V nbh
k are the set of neighbors of vk which can be reached from vk

when each robot not in the collision set Ck of vk moves according to its individual

policy. A robot in the collision set of vk is allowed to move to any neighboring state

in the robots configuration graph Gi. More formally, the limited neighbors V nbh
k are

the set of neighbors v` of vk such that the i’th component of v` satisfies one of two

properties: i) if i ∈ Ck then vi` is an out-neighbor of vik, or ii) if i 6∈ Ck then vi` is the

individually optimal successor of vik according to φi. If there is a robot-robot collision

33

Algorithm 1 Pseudocode for collision set backpropagation

Require: vk, C`, open
{vk- vertex in the backpropagation set of v`}
{C`- the collision set of v`}
{open- the open list for M*}
if C` 6⊆ Ck then
Ck ← Ck

⋃
C`

if ¬(vk ∈ open) then
open.insert(vk) {If the collision set changed, vk must be re-expanded}

for vm ∈ vk.back set do
backprop(vm, Ck,open)

at vk then V nbh
k = ∅ to prevent paths from passing through collisions.

V nbh
k =

v`
∣∣∣∣∣∣∣
{

eik` ∈ Ei, i ∈ Ck
vi` = φi(vik), i /∈ Ck

 (3.3)

The collision sets of each vertex must be updated whenever M* finds a new path

to a robot-robot collision. To this end, M* maintains a backpropagation set for each

vertex vk, which is the set of all vertices v` that were expanded while vk was an

element of V nbh
` . The backpropagation set is thus the set of neighbors of vk through

which the planner has explored a path to vk. M* propagates information about a

collision at vk by adding the robots in Ψ(vk) to the collision set of each vertex v` in

the backpropagation set of vk. The robots in C` are then added to the collision set of

each vertex in the backpropagation set of v`, with the process repeating recursively

until a vertex vm is reached with Ψ(vk) ⊆ Cm. Because V nbh
` is dependent on C`,

changing C` adds new paths through v` to the search space. To allow these new

paths to be explored, v` is added to the open list (Algorithm 1). Pseudocode for M*

is provided in Algorithm 2.

34

Algorithm 2 Pseudocode for M*

{Define default values for vertices}
for all vk ∈ V do
vk.cost ← MAXCOST
vk.back set ← ∅
Ck ← ∅
{Initialize search}
vs.cost ← 0
open ← {vs}
while open.empty() == False do
vk ← open.pop() {Get cheapest vertex}
if vk = vf then
{A solution has been found}
return back track(vk) {Reconstruct the optimal path by following the back
pointers}

for v` ∈ V nbh
k do

v`.back set.append(vk) {Add vk to the back propagation list}
C` ← C`

⋃
Ψ(v`)

{Update collision sets, and add vertices whose collision set changed back to
open}
backprop(vk, C`,open)
if Ψ(v`) = ∅ and vk.cost+f(ek`) < v`.cost then
{vk is the cheapest route to v`}
v`.cost ← vk.cost+f(ek`)
v`.back ptr ← vk {Track the best path to v`}
open.insert(v`)

return No path exists

3.3 Completeness and Cost Optimality

In this section, M* will be shown to be both complete and optimal. The description of

M* given in 3.2 is well suited to implementation, but provides only a local description

of the operation of M*, which is not optimal for proving global properties. In the

following subsection, a global description of M* is provided which is more suited

to proving properties of the M* algorithm, with a focus on the search space that is

constructed by M*. M* will be shown to be equivalent to alternating between running

A* on a search graph, and expanding the search graph based on collisions found by

A*. As a result, demonstrating that the construction of the search graph takes finite

35

Symbol Name Meaning A* equivalent

G Joint configura-
tion graph

Joint configuration space

Gsch Search graph Current search graph Graph that is being
searched

Gexp Explored graph Explicitly constructed by
M*

Vertices in the open list

Gnbh Neighbor graph Gexp plus limited
neighbors

Vertices in the open list
plus their out-neighbors

Gφ Policy graph Individually optimal
paths starting from
Gnbh \Gexp

Table 3.3: Search graph symbols

time and that the search graph will eventually contain the optimal path, if extant, is

sufficient to prove that M* is complete and optimal.

3.3.1 Alternative Graph-Centric Description

M* differs from A* solely in the use of the limited neighbors when expanding a vertex

and the presence of the backprop function (Algorithm 1). The backprop function does

nothing unless a new path to a collision is found. Therefore, between discoveries of

new paths to collisions, M* behaves exactly like A* running on a search graph Gsch

which is a subgraph of the joint configuration graph G that represents the joint

configuration space.

The search graph Gsch consists of three subgraphs: the explored graph Gexp, the

neighbor graph Gnbh, and the policy graph Gφ (Table 3.3). Gexp is the portion of G

which has been searched by M*, Gnbh represents the limited neighbors of the vertices

in Gexp, and Gφ consists of the paths induced by φ that connect vertices in Gnbh to

vf . Only Gexp is explicitly constructed, with Gnbh and Gφ being implicitly defined by

36

Gexp and the collision sets of the vertices in Gexp.

We now describe the explored graph Gexp, neighbor graph Gnbh, and policy graph

Gφ in greater detail. The vertex set of Gexp consists of all vertices which have been

added to the open list. When a vertex vk ∈ Gexp is expanded, its limited neighbors

V nbh
k are added to the open list, and thus to the vertex set of Gexp. The edges

connecting vk to each of its limited neighbors are added to the edge set of Gexp.

The collision set of a vertex is a function of the paths that have been explored by

the underlying planner. Gexp contains all such paths, and therefore encodes all the

information required to compute the collision set of any vertex vk.

Ck =


Ψ(vk)

⋃
v`∈Vk

Ψ(v`) vk ∈ Gexp

∅ vk /∈ Gexp

(3.4)

where Vk = {v` | ∃π(vk, v`) ⊆ Gexp} is the set of vertices to which there exists a path

from vk in Gexp. If vk /∈ Gexp, then M* has never visited vk, and thus vk has not been

explicitly constructed and thus Ψ(vk) has not yet been computed. In accordance to

the optimistic assumption, vk is assumed to be collision-free, and Ck is initialized as

the empty set. Therefore, a path in Gsch may contain a vertex vk in Gsch \ Gexp at

which robots collide. However, vk must be added to the open list, and thus to Gexp,

before any such path could be returned. At that point, Ψ(vk) would be computed,

leading to the out-neighbors of vk being removed from Gsch, as per the definition of

the limited neighbors.

The neighbor graph Gnbh
k is the subgraph of the joint configuration graph Gsch

that represents the limited neighbors of vk ∈ Gexp. Gnbh
k contains vk, V

nbh
k , and the

edges leading from vk to the vertices in V nbh
k . Let Gnbh =

⋃
vk∈Gexp Gnbh

k , and therefore

Gexp ⊂ Gnbh.

Because Ck = ∅ for all vk which are not in the explored graph Gexp, search from

37

vk ∈ Gnbh \ Gexp will proceed along πφ(vk, vf) until either vf or a vertex in Gexp 1

is reached. The resulting path segment is denoted πφ(vk), and is represented as a

subgraph Gφ
k , whose vertex set is the set of vertices in πφ(vk), and whose edge set

contains each edge connecting a vertex in πφ(vk) to its successor. Let the policy graph

be defined as Gφ =
⋃
vk∈Gnbh\Gexp G

φ
k .

Gsch can now be defined as the union of Gexp, the subgraph explored by M*; Gnbh,

the limited neighbors of vertices in Gexp,;and Gφ, the individually optimal paths

connecting vertices in Gnbh \ Gexp to vf . By the definitions of Gexp, Gnbh and Gφ,

vertices and edges shift from Gφ to Gnbh, and from Gnbh to Gexp as search progresses.

However, Gsch as a whole only changes when the collision set of a vertex in Gsch

changes. See Figure 3.1 for an illustration of how the subgraphs change over time.

3.3.2 Proof of Optimality and Completeness

As demonstrated in the previous section, M* can be treated as alternating between

exploring the search graph Gsch with A* and modifying Gsch based on the partial

search results. Because A* is complete and optimal [77], M* is complete and optimal if

Gsch will contain π∗(vs, vf) and no cheaper path after a finite number of modifications

or, if π∗(vs, vf) does not exist, Gsch will be modified at most a finite number of times.

We proceed by showing that if no solution exists, M* will terminate in finite time

without returning a path. We then show that M* will eventually find the optimal

path if one of two conditions always hold: Gsch contains the optimal path, or Gsch

contains an unexplored path containing a robot-robot collision which costs no more

than the optimal path. We complete the proof by showing that at least one of the

two conditions always holds.

1If πφ(vk, vf) encounters a vertex in the explored graph Gexp, then there may be some v` ∈
πφ(vk, vf) such that Ψ(v`) 6= ∅, with v` ∈ Gexp. In such a case, πφ(vk, vf) is not wholly within Gsch.
For this reason, only the portion of πφ(vk, vf) prior to reaching a vertex in Gexp is considered.

38

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 3.1: The above figures depict how the explored graph Gexp and the search
graph Gsch evolve in the configuration space. Vertices are represented as circles, with
arrows representing directed edges. Gexp is depicted by solid lines, while Gsch \Gexp is
depicted by dashed lines. G\Gsch is represented by dotted lines, with edges suppressed
for clarity. A vertex is given a bold outline when it is expanded, while filled circles
represent vertices with known robot-robot collisions. vs is in the upper left, while vf
is in the bottom right. In (a), (b), and (c), the most promising vertex in the open
list is expanded, until a collision is found. Gnbh is updated to reflect the new collision
sets in (d). The policy graph Gφ is updated in (e). In (f) a vertex is re-expanded,
having been added back to the open list when its collision set was changed. (g),
(h), and (i) see the most promising vertices in the open list expanded, until vf is
expanded, indicating that a path has been found.

39

Lemma 1. If no solution exists, M* will terminate in finite time without returning

a path.

Proof. Assume no solution exists. As part of M*, A* is run on the search graph Gsch.

A* will explore all of Gsch in finite time and conclude that no solution exists, except

if the A* search is interrupted by a modification of Gsch. Gsch is only modified when

the collision set of at least one vertex in Gsch is changed. Each modification adds

one or more robots to the collision set, and thus each collision set can be modified

at most n− 1 times; the first modification must add at least two robots. Therefore,

Gsch can be modified at most (n− 1) ∗ |V | times. Thus if no solution exists, M* will

always terminate in finite time.

We now show that M* will never return an invalid path containing a robot-robot

collision. A vertex vk has out-neighbors only if it is collision free, unless vk is not in

the explored graph Gexp. Before M* will return a path passing through vk, vk must be

added to the open list, and thus to Gexp. When vk which is not collision free is added

to the open list, Gsch is modified to remove all out-neighbors of vk, which removes any

path passing through vk from Gsch. Therefore, M* will never return a path passing

through a state at which robots collide. Thus, if no solution exists, M* will terminate

in finite time without returning a path .

Next, assume that an optimal collision-free path from vs to vf exists, i.e. the joint

configuration graph G contains an optimal path π∗(vs, vf).

Lemma 2. If an optimal path exists, M* will find the optimal path in finite time if

one of two cases always hold

Case 1: The search graph Gsch contains an optimal path, π∗(vs, vf)

Case 2: The search graph Gsch contains a path π(vs, vc) such that g (π (vs, vc)) +

h(vc) ≤ g(π∗(vs, vf)), and ∃ vb ∈ π(vs, vc) such that Ψ(vc) 6⊆ Cb

40

Case 2 implies the existence of a path which has not been explored by M* that leads

to a robot-robot collision at vc, and which costs no more than π∗(vs, vf). If the path

had been explored, vb and vc would have been added to the open list and thus to the

explored graph Gexp. In this case, Cb would include all robots involved in the collision

at vc, i.e. the robots in Ψ(vc).

To prove lemma 2, we proceed by showing that if case 1 holds, the optimal path

will be found unless a cheaper path containing a collision exists in the search graph

Gsch, i.e., case 2 holds (Lemma 3). We then show that M* will never explore a

suboptimal path to the goal as long as case 2 holds (Lemma 4), and that case 2 will

not hold after finite time (Lemma 5). We conclude by proving that either case 1 or

case 2 will always hold, demonstrating that the optimal path will be found (Lemma

7).

Lemma 3. If the search graph Gsch contains an optimal path (i.e. case 1 holds), M*

will find the optimal path, unless case 2 also holds.

Proof. If case 1 holds, running A* on Gsch will find π∗(vs, vf) in finite time, un-

less there exists a cheaper path πcheaper(vs, vf) ⊆ Gsch, which we now show would

satisfies the conditions for case 2 to hold. Because π∗(vs, vf) is a minimal cost

collision-free path, πcheaper(vs, vf) must contain a robot-robot collision. Therefore

a vertex vk ∈ πcheaper(vs, vf) must exist such that Ψ(vk) 6= ∅, and by (Equation 3.2)

g(πcheaper(vs, vk)) + h(vk) < g(π∗(vs, vf)). The existence of a path through vk implies

that vk /∈ Gexp, as a vertex containing robot-robot collisions has its outneighbors

removed when added to the explored graph Gexp. Therefore, Ck = ∅ by (Equation

3.4). Since Ψ(vk) 6⊆ Ck, vk fulfills the roles of both vb and vc in the definition of case

2. As a result, if case 1 holds, M* will find π∗(vs, vf), unless case 2 also holds2 .

2We note that if the equality g (π (vs, vc)) + h(vc) ≤ g(π∗(vs, vf)) holds for case 2, then M* may
find the optimal path while both case 1 and case 2 hold. We gloss over this point in the main text,
as it ultimately does not change the logic of the proof.

41

Lemma 4. If the search graph Gsch contains an unexplored path cheaper than g(π∗(vs, vf))

(i.e. case 2 holds), M* will not return a suboptimal path.

Proof. If case 2 holds, then π(vs, vc) will be explored by A* and added to the explored

graph Gexp before A* finds any path to vf that costs more than g(π∗(vs, vf)) [77].

Adding π(vs, vc) to Gexp will modify Cb. G
sch will then be modified to reflect the new

limited neighbors of vb and A* will be restarted. Therefore, M* will never return a

suboptimal path as long as case 2 holds .

Lemma 5. The search graph Gsch will cease to contain any unexplored path cheaper

g(π∗(vs, vf)) (i.e. case 2 will cease to hold) after finite time.

Proof. For case 2 to hold, there must be at least one vertex vb such that Cb is a strict

subset of I. Gsch can be modified at most (n− 1) ∗ |V | times before all collision sets

are equal to I. Therefore, after a finite number of modifications of Gsch case 2 cannot

hold. A* will fully explore any finite graph in finite time, implying that the time

between any two successive modifications of Gsch is finite. Therefore, case 2 will not

hold after finite time .

With these auxillary results in hand, the proof of lemma 2 is as follows. If case

1 holds, then M* will find the optimal path in finite time, unless case 2 also holds

(Lemma 3). While case 2 holds, M* will not return a suboptimal path (Lemma 4),

and case 2 cannot hold after finite time (Lemma 5). Therefore, after finite time, only

case 1 will hold, implying that M* will find the optimal path in finite time.

To complete the proof of the completeness and optimality of M*, we must show

that case 1 or case 2 will always hold. To do so, we first need an auxiliary result

(Lemma 6) showing that the optimal path for some subset of robots costs no more

than the joint path taken by those robots in the optimal, joint path for the entire set

42

of robots. The auxiliary result is used to demonstrate that an optimal path can be

found by combining optimal paths for disjoint subsets of robots.

Let π′Ω(vk, vf) be the path constructed by combining the optimal path for a subset

Ω ⊂ I of robots with the individually optimal paths for the robots in I \ Ω.

Lemma 6. If the joint configuration graph contains an optimal path π∗(vk, vf), then

∀Ω ⊂ I, g(π′Ω(vk, vf)) ≤ g(π∗(vk, vf). Furthermore, if Ω1 ⊂ Ω2, then g(π′Ω1
(vk, vf)) ≤

g(π′Ω2
(vk, vf)).

Proof. If π∗(vk, vf) from an arbitrary vk to vf exists in G, then for any subset of robots

Ω there exists an optimal path πΩ
∗ (vΩ

k , v
Ω
f) which costs no more than the path taken

by those robots in π∗(vk, vf). Let Ω = I \ Ω be the complement of Ω and πΩ
φ (vΩ

k , v
Ω
f)

be the path for the robots in Ω induced by each robot obeying its individual policy.

πΩ
φ (vΩ

k , v
Ω
f) costs no more than the paths taken by the robots in Ω in π∗(vk, vf) by

the construction of the individual policies. A path for all robots in I, π′Ω(vk, vf),

is then constructed by having each robot in Ω follow its path in πΩ
∗ (vΩ

k , v
Ω
f), while

each robot in Ω follows its path in πΩ
φ (vΩ

k , v
Ω
f). Since the individual path for each

robot in π′Ω(vk, vf) costs no more than the path for the same robot in π∗(vk, vf),

g(π′Ω(vk, vf)) ≤ g(π∗(vk, vf)). By the same logic, if Ω1 ⊆ Ω2, then g(π′Ω1
(vk, vf)) ≤

g(π′Ω2
(vk, vf)) .

Lemma 7. The search graph Gsch will always contain an optimal path (i.e. case 1

will hold) or an unexplored path which costs no more than the optimal path (i.e. case

2 will hold) at all points in the execution of M*.

Proof. We proceed by showing that the limited neighbors of each vertex in Gsch are

sufficient to construct either the optimal path, or some unexplored, no more expensive

path. Consider the vertex vk ∈ Gsch with collision set Ck. The successor of vk in

π′Ck
(vk, vf), v`, is a limited neighbor of vk by the definition of the limited neighbors

43

(Equation 3.2). Since C` ⊆ Ck by (Equation 3.4), Lemma 6 implies

g(π′Ck
(vk, v`)) + g(π′C`

(v`, vf)) ≤

g(π′Ck
(vk, vf)) ≤ g(π∗(vk, vf))

(3.5)

We apply the above bound vertex by vertex from the initial vertex to show that a

path π′′(vs, vf) ∈ Gsch can be constructed which satisfies either case 1 or case 2. The

successor of the m’th vertex vm in π′′(vs, vf) is the successor of vm in π′Cm
(vm, vf). Ap-

plying (Equation 3.5) gives the bound g(π′′(vs, vf)) ≤ g(π′Cs
(vs, vf)) ≤ g(π∗(vs, vf)).

If π′′(vs, vf) = π∗(vs, vf) then case 1 is satisfied. Otherwise, there is a vertex vc ∈

π′′(vs, vf) such that Ψ(vc) 6= ∅. Let vb be the predecessor of vc, which implies that

vc lies in π′Cb
(vb, vf). Then Ψ(vc) 6⊆ Cb, because by construction the robots in Cb do

not collide with one another in π′Cb
(vb, vf). By (Equation 3.2), g(π′′(vs, vc)) +h(vc) ≤

g(π′′(vs, vf)) ≤ g(π∗(vs, vf)), which implies case 2 is satisfied.

There is an edge case which must be considered if case 1 does not hold. If π′′(vs, vf)

contains a vertex vk 6∈ Gexp with a successor v` ∈ Gexp, C` may not be a subset of

Ck, because no path exists from vk to v` in the explored graph Gexp, so the bound

given by (Equation 3.5) does not apply. However, in this case the path induced by φ

from v` must terminate at some vertex vc with Ψ(vc) 6= ∅. We construct a new path

by following π′′(vs, vf) to v`, and then following πφ(v`, vf) to vc. The sum of the cost

of this path and h(vc) must be less than g(π∗(vs, vf)), and Ψ(vc) 6⊆ Ck, so case 2 still

holds .

Theorem 1. M* is complete and optimal.

Proof. If the joint configuration graph G does not contain an optimal path, then M*

will terminate in finite time without returning an invalid path (Lemma 1). If G does

contain an optimal path, then the search graph must always contain either the optimal

path, or an unexplored path which costs no more than the optimal path (Lemma 7),

44

which implies that then M* will find the optimal path in finite time (Lemma 2). M*

will thus find the optimal path in finite time, if one exists, or terminate in finite time

if no path exists. Therefore, M* is complete and optimal .

3.4 Performance Analysis

Consider M* running on a worst case problem where every robot interacts with every

other robot. Over time, the collision sets will grow until each collision set contains

every robot, at which point M* will reduce to A*. The question is then how much

additional overhead M* imposes in the most difficult problem instances compared to

A*. M* may expand each vertex up to n times; once when the collision set is empty,

and once when the collision set contains 2, . . . , n robots, where n is the total number

of robots. The computational cost of expanding a vertex with a given collision set

C is proportional to the number of limited neighbors b|C|, where b is the number of

outneighbors of each vertex in the individual configuration graphs. Normalized to

the cost of a single A* expansion, bn, the total cost of all M* expansions of a given

vertex is
n∑

i=0,i 6=1

(
1

b

)i
≤

n∑
i=0,

(
1

b

)i
=

1−
(

1
b

)n+1

1− 1
b

≤ b

b− 1
(3.6)

using rules for the sum of finite and infinite geometric series. Therefore, repeated M*

expansions of a given vertex do at most a constant factor more work than a single

A* expansion of the same vertex.

Updating the collision set of a vertex takes time linear in the number robots, and

the collision set of each vertex may be updated at most (n− 1) times, and thus total

complexity of maintaining the collision sets may be O(n2|V |), where |V | is the total

number of vertices in the joint configuration graph. |V | is exponential in the number

of robots. In practice the cost of maintaining the collision set is not significant.

45

3.5 Variants of M*

Several variants of M* with improved performance have been developed. Recursive

M* (rM*) breaks the collision set into independent subsets of robots that can be

planned for separately, reducing the maximum dimensionality of the search space.

Inflated M* uses an inflated heuristic function to reduce planning time, but returns

a path costing up to a specified factor more than the optimal path. ODM* and

EPEM* replace A* with Operator Decomposition (OD) [167] and Enhanced Partial

Expansion A* (EPEA*) [62], variants of A* tuned for multirobot path planning.

Recursive versions of ODM* and EPEM* can be created, resulting in ODrM* and

EPEM*, as well as their inflated variants. Finally, the performance of M* is sensitive

to choice of individual policies. The Meta-Agent Conflict Based Search framework

[157] can be employed to optimize the individual policies using rapid, decoupled

planning for individual robots, before applying ODrM* or EPErM* to sets of robots

requiring coupled planning.

3.5.1 Recursive M*

The M* algorithm described in 3.2 performs coupled planning for all robots in the col-

lision set, even when the collision set consists of spatially separated subsets of robots.

rM* finds an optimal, collision-free path for each such subset via a recursive call to

rM*. Such paths constrain the motion for each subset of robots in the same fashion

that the individual policies constrain the motion of individual robots. By separating

the planning for independent subsets of robots, the worst case computational cost of

rM* is exponential in the size of the largest set of mutually colliding robots, rather

than in the total number of robots found to collide with other robots.

Implementing recursive M* requires few modifications to basic M*. The colli-

sion set for vk in rM* becomes a collection of the largest disjoint sets that can be

46

formed from the collisions reachable from vk in Gexp. For example, if collisions in-

volving the sets of robots {1, 2}, {2, 3}, and {4, 5} can be reached from vk, then

Ck = {{1, 2, 3}, {4, 5}}, instead of {1, 2, 3, 4, 5} as would be the case in basic M*. If

ri is not in any element of Ck then it obeys its individual policy φi, as in M*. Oth-

erwise, ri follows the optimal path for the subset of robots in Ck to which it belongs,

as computed by a recursive call to rM*. The exception is if Ck = {I}, in which case

V̂k is computed as usual for M*, using I as the collision set. This functions as the

base case of the recursive calls to rM*.

Recursive M* retains the optimality and completeness properties of M*. Each

disjoint set of colliding robots can be thought of as a single, high-dimensional meta-

agent. The recursive calls to rM* then serve to compute the individual policy for each

meta-agent. With these concepts in place, the proofs in section 3.3.2 apply to rM*.

3.5.2 Inflated M*

One problem with the basic M* implementation is that every time a new robot is

involved in a collision, it is added to the collision set of vs. Unless g(π∗(vs, vf)) =

g(πφ(vs, vf)), vs must then be re-expanded at a computational cost that is exponential

in the size of Cs. Inflating the heuristic by multiplying the heuristic by some ε > 1

is known to significantly decrease the time A* requires to find a solution in many

cases [139, 25, 97, 132, 69]. Furthermore, the resultant path will cost no more than

ε · g(π∗(vs, vf)) [47]. The logic in Section 3.3.2 can be extended to show that M* has

the same sub-optimality bound when used with an inflated heuristic.

An inflated heuristic benefits M* in two fashions. First of all, an inflated heuristic

biases the search towards the leaves of the search tree close to the goal, where a

solution is more likely to be found quickly, which is the source of benefit in inflated

A*. In addition, the vertices near the leaves of the search tree will generally have

47

smaller collision sets. Therefore, an inflated heuristic will bias search to occur in a

region of the search space of low dimensionality.

3.5.3 Replacements for A*

A* is fundamentally limited for multirobot path planning because the number of out-

neighbors of a single vertex increases exponentially with the number of robots. A*

adds all out-neighbors of a vertex to the open list, even if many will never be expanded.

As a result, A* will run out of memory when dealing with systems containing even

moderate numbers of robots. OD [167] and EPEA* [62] are variants of A* which

delay instantiating expensive neighbors, thus reducing the effective branching factor

of the graph. Replacing A* in M* with OD and EPEA* results in the ODM* and

EPEM* algorithms, respectively.

ODM*

In ODM*, A* is replaced as the underlying planner by Operator Decomposition, a

variant of A* developed explicitly for multirobot path planning. OD mitigates the

problem of growth in the number of out-neighbors by procedurally generating the

out-neighbors so that low cost neighbors are generated first, and high-cost neighbors

may never be instantiated. OD generates two types of search vertices; standard and

intermediate. A standard vertex represents the configuration of all robots in the

system. When a standard vertex is expanded, OD generates intermediate vertices

which specify all possible actions for the first robot. The cost and heuristic cost-to-go

of the intermediate vertices are updated to reflect the new position of the first robot;

then the intermediate vertices are added to the open list. When an intermediate

vertex is expanded, additional intermediate vertices specifying the action of the next

robot are generated. Standard vertices are generated once actions are assigned for the

48

2

1

0

1 1 2

2

A B C
(a)

Robot 1

A1,C1
f=2

A2,C1
f=4

B1,C1
f=2

A0,C1
f=4

A1,C1
f=3

B1,C2
f=4

B1,C0
f=2

B1,C1
f=3 Robot 2

(b)

Figure 3.2: Operator Decomposition is used to solve a simple, 2 robot path planning
problem (a), where the robots move from vertices A1 and C1 to the goals B1 and
C0. Initially, the search tree contains a single, standard vertex {A1, C1} (b). When
{A1, C1} is expanded, four intermediate vertices, denoted by dashed lines, are gener-
ated to represent the possible actions of the first robot. The intermediate vertex with
the lowest f-value is selected for expansion. Three vertices are created, representing
the actions of robot 2 which do not collide with the new position of robot 1. Since the
new position of all robots has been specified, these are standard vertices. The goal
vertex {B1, C0} has the lowest remaining f-value, and is expanded next, indicating
that a path has been found. [155, adapted]

49

last robot. This procedure results in the creation of standard vertices which represent

heuristically promising actions, such as each robot moving directly towards its goal,

before instantiating any less promising vertices. Typically fewer total vertices are

created, reducing the computational cost of finding a path.

Figure 3.2 illustrates the vertex expansion of operator decomposition for a problem

involving two robots. When coupled with an admissible heuristic, operator decom-

position is complete and optimal with respect to path cost. Thus, ODM* is also

guaranteed to find optimal paths.

EPEM*

In EPEM*, A* is replaced as the underlying planner by Enhanced Partial Expansion

A*, a variant of A* that has been applied to single- and multi-agent planning [62].

EPEA* seeks to eliminate the generation of excess vertices, which have a f-value larger

than the cost of the optimal path and thus will never be expanded.

EPEA* sorts the open list based on the sum of the f-value of a vertex and an offset,

∆f(v), which is initially set to zero. When EPEA* expands a vertex vk, it employs a

domain specific Operator Selection Function (OSF) to instantiate only those neighbors

of vk whose f-value is equal to f(vk) + ∆f(vk). ∆f(vk) is then incremented, and vk is

added back to the open list. As a result, no excess vertices will ever be generated.

For multirobot path planning, EPEA* uses an OSF which generates neighbors of

a vertex vk in a two step process: allocating costs to specific robots and generating

neighbors. The offset of vk can be interpreted as an excess cost compared to the

heuristically optimal neighbor of vk. In the first step of expansion, EPEA* allocates

individual robots a specific amount of excess to incur. All neighbors of vk that match

the allocation of excess cost are then generated, and added to the open list. This

is more efficient than a direct search over all possible neighbors. Felner et. al. [62]

report that EPEA* outperforms A* and OD when solving dense multirobot path

50

planning problems.

3.5.4 Policy Optimization

The performance of M* is very sensitive to the choice of individual policies when

many optimal paths exist for each robot. One choice of individual policies may result

in few collisions, while another choice may result in a large number of robots colliding

at a single bottleneck, preventing a solution from being found in reasonable time.

Therefore, it may be desirable to optimize the choice of individual policies prior to

starting M* search.

Meta-Agent Conflict Based Search (MA-CBS) [157] is a planning framework in-

troduced by Sharon et. al. based on their Conflict Based Search (CBS) planning

algorithm [156], and generalizes the earlier Independence Detection (ID) algorithm

by Standley [167]. Conflict-Based Search explores a space of constraints on individual

robots, rather than the joint configuration space of the system. Each search vertex

contains a set of constraints and the optimal path for each robot subject to the con-

straints. The constraints prohibit individual robots from occupying a specific position

at a specific time that would lead to interference with another robot.

At each step, the search vertex with the smallest total path cost is checked for

collisions between the constrained paths of the individual robots. If no collisions are

detected, then the optimal solution has been found. If a collision is found between

two robots at position q and time t, the search tree branches. Two new vertices are

created, each with an added constraint prohibiting one of the involved robots from

occupying q at time t. New paths are then computed for each of the involved robots

that obey the newly expanded set of constraints. When planning for an individual

robot, conflicts with paths of other robots are used for tie breaking: i.e. paths which

do not conflict with the paths of other robots are preferred, but no additional cost

51

will be incurred to avoid such conflicts.

While the search space for constrained planning is of constant dimensionality, the

set of possible constraints grows exponentially. As a result, CBS performs poorly when

there are many alternate paths which require a large number of constraints to cover.

In such cases, it is more efficient to use coupled search to find a path for the effected

robots. MA-CBS [157] is an extension of CBS in which robots are permanently merged

into a meta-agent when the number of mutual constraints generated exceeds a merge

threshold B. Within a meta-agent, planning is conducted using a coupled planning

algorithm respecting the constraints placed on the meta-agent. Internal constraints

upon the constituent robots are removed when they are merged into a meta-agent,

although the new meta-agent inherits constraints that resulted from collisions with

agents not included in the meta-agent. MA-CBS with a given merge threshold B is

denoted as MA-CBS(B). Typically, smaller values of B work better in more open

environments with many alternate paths, resorting to coupled search earlier, while

larger values of B work better in more constrained environments. MA-CBS(0) is

equivalent to ID [157].

Using ODrM* as the coupled planner for MA-CBS results in the MA-CBS+ODrM*

algorithm. The individual policies computed for ODrM* respect the constraints im-

posed on the meta-agent, and attempt to minimize conflicts with robots not in the

meta-agent. In this fashion, the individual policies are optimized to minimize robot-

robot conflicts.

ODrM* and MA-CBS complement each other well. MA-CBS can minimize the

total number of collisions via rapid, decoupled search, and is effective in narrow

bottlenecks which pose a problem for ODrM*, while ODrM* is more suited to open

regions than other coupled planners, as ODrM* will reject alternate, low cost paths

which cannot resolve collisions.

52

(a) Configuration (b) EPEA* Search Tree (c) M* Search Tree

Figure 3.3: Illustrative example of the computation benefit of M* compared with
A*, OD, or EPEA*. (a) Robots start at v1

s , v
2
s , and v3

s and move to v1
f , v

2
f and v3

f

respectively. (b) EPEA* must construct a search tree containing multiple alternate
paths before it can consider moving r1 into the alcove. (c) M* does not need to
consider alternate paths for r3 before M* can consider moving r1 into the alcove.

3.6 Comparison of M* and Similar Algorithms

M*, EPEA*, OD, ID and MA-CBS all exploit the same natural decomposition of

the multirobot path planning problem by exploring paths that minimize the costs

incurred by individual robots before considering more expensive paths. As a result,

there are a number of similarities in these algorithms. This section will describe

how M* differs from the other algorithms, and where M* can show a performance

improvement.

EPEA* and OD are both approaches that intelligently search the joint configura-

tion space. While EPEA* and OD can delay instantiating unpromising vertices, they

cannot identify and exclude unnecessary portions of the joint configuration space. By

tracking which robots collide where, M* can construct a search space that excludes

unnecessary regions of the joint configuration space. Consider a 3 robot example,

where r1 and r2 must swap positions in a narrow corridor, while r3 is alone in an

open room (Figure 3.3a). Clearly, r2 needs to wait for r1 to enter the alcove, or

vice versa. However, such a path would have a greater f-value than the initial state.

53

Therefore, before OD or EPEA* could consider such a path, they must first examine

all optimal alternate paths for r3, even though none of those paths could possibly re-

solve the conflict (Figure 3.3b). In the case of M*, r3 is not involved in any collision,

and thus will remain restricted to its individually optimal path (Figure 3.3c). M* can

therefore proceed immediately to considering alternate paths for the robots involved

in the collision, rather than waisting time on alternate paths for r3.

MA-CBS, ID and rM* share a common purpose: splitting the multirobot system

into independent subsets of robots. The approach rM* takes to splitting the system

is less sophisticated than that employed by ID and MA-CBS. When rM* detects

a collision between two robots, it immediately merges them to form a meta-agent,

instead of checking whether choosing a different individual policy of one of the robots

could avoid the collision, as MA-CBS or ID would do. However, rM* has much more

fine-grained control over the merging of robots. Once rM* resolves a collision between

the agents composing a meta-agent, it splits the meta-agent back into individual

robots, whereas once MA-CBS or ID generates a meta-agent, it remains merged. The

local merging of rM* will typically not reduce the peak dimensionality of the search

space, as vs accumulates all collisions and must be re-expanded if g(π∗(vs, vf)) >

f(vs). However, it will reduce the number of vertices at which the search space will

have maximal dimensionality. Furthermore, the fine-grained nature of rM* allows it

to be used within the MA-CBS or ID frameworks as the coupled planner, thus gaining

the benefit of both the more sophisticated policy optimization performed by MA-CBS

and ID, and the local merging of agents that rM* provides.

3.7 M* Results

To validate the performance of M* on systems of up to 200 robots, we turn to sim-

ulation. All simulations were implemented in python and run on a computer with

54

Figure 3.4: A typical four-connected grid world with 32x32 cells for a test run includ-
ing 40 robots. Colored circles represent the initial positions of the robots, while goal
positions are marked with colored stars. Unfilled circles represent the obstacles.

an Intel Core i5-2500 processor clocked at 3.30 GHz (Turbo Boost disabled) with 8

GB of RAM. The test environment was a 32x32, four-connected grid of cells, with

a 20% probability of a given cell being marked as an obstacle, as in [167] (Figure

3.4). Unique initial and goal positions for each robot were chosen randomly within

the same connected component of the workspace. Any action by an individual robot,

including waiting, incurred a cost of one, although a robot could wait at its assigned

goal with zero cost. The existence of a wait action implies the presence of a self-loop

for each vertex vk ∈ Gi, so that vk is its own out-neighbor.

Each trial was given 5 minutes to find a solution. 100 random environments were

tested for a given number of robots. We present the percentage of trials that were

successful within 5 minutes as well as the median time required to find solutions. Run

time is plotted on a logarithmic scale.

55

0 10 20 30 40 50 600

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)
A*
OD

EPEA*

M*

ODM*

EPEM*

0 10 20 30 40 50 60
Number Robots

10-2

10-1

100

101

102

103

T
im

e
to

 S
ol

ut
io

n
(s

)

(a) M* Variants
Max 60 Robots

0 10 20 30 40 50 600

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

rM* ODrM* EPErM*

0 10 20 30 40 50 60
Number Robots

10-2

10-1

100

101

102

103

T
im

e
to

 S
ol

ut
io

n
(s

)

(b) rM* Variants
Max 60 Robots

Figure 3.5: Results for A*, OD, EPEA*, M*, ODM*, and EPEM* (a) and rM*,
ODrM*, and EPErM* (b). The plots on top illustrate the percentage of trials in
which a solution was found within 5 minutes, in a 32x32 four-connected grid world.
The bottom graphs the median time to solution.

3.7.1 M*, Operator Decomposition and rM*

We start by comparing A*, OD, EPEA*, M*, EPEM*, ODM*, rM*, ODrM* and

EPErM* (Figure 3.5). The plateauing of the median time to solution plots is the

result of at least 50% of trials reaching the 5 minute time limit. Python’s CPU time

function has a resolution of one millisecond, resulting in solutions that take less than

one millisecond being reported as taking zero time, which cannot be represented on

a logarithmic plot.

As expected, A* demonstrated the worst performance, being unable to find solu-

tions for problems of 10 or more robots. A* was limited by the exponential growth

in the number of neighbors of a given vertex as the number of robots increases. OD,

56

Algorithm Largest Collision Set
Largest Independent Subset

of the Collision Set

M* 9

ODM* 15

EPEM* 15

rM* 16 9

ODrM* 25 16

EPErM* 25 16

Table 3.4: Number of robots in the largest collision set encountered in a problem
solved by M*, ODM*, EPEM*, rM*, ODrM*, and EPErM* for systems of up to 40
robots in a 32x32 grid world. For rM*, ODrM*, and EPErM* the size of the largest
independent subset of the collision set for which coupled planning was successfully
performed is also reported.

EPEA*, M*, ODM* and EPEM* all show roughly similar performance. M* solved

the most problems with 15 robots, but decayed in performance rapidly until it under-

performed all other algorithms at 20 robots. OD generally underperformed EPEA*,

M*, ODM*, and EPEM*, while EPEA* unexpectedly showed the best performance

for problems involving 20 robots.

The recursive variants of M* showed noticeable improvement over the non-recursive

approaches, and solved twice as many problems involving 20 robots as EPEA* (Fig-

ure 3.5b). Recall that rM* uses A* as the underlying planning algorithm, so that

rM* typically expands more vertices than ODrM* or EPErM*. Thus, we expected

ODrM* to solve more instances within the given time limit. ODrM* and EPErM*

solved twice as many problems involving 25 robots as basic rM*. The near identi-

cal performance of ODrM* and EPErM* can be accounted for by the similarity in

performance of OD and EPEA*.

The degree to which M* and its variants can solve problems which involve dense

interactions between many robots can be measured by the maximum size of the

collision set of vs encountered during a successful trial (Table 3.4). Recall that the

57

collision set of vs accumulates all robots found to collide with another robot at any

point in the search. However, if g(π∗(vs, vf) = g(πφ(vs, vf) then vs may not be

expanded with its largest collision set, depending on how ties are broken when vertex

f-values are compared. ODM*, ODrM*, EPEM*, and EPErM* were able to handle

larger collision sets than M* and rM*, which is to be expected because OD and

EPEA* could solve problems involving more robots than A*.

The recursive implementations solved problems in which roughly twice as many to-

tal robots were involved in collisions as the equivalent non-recursive implementation.

This is because the recursive implementations split the collision set into independent

subsets of robots, for which coupled planning is performed separately. The largest

independent subset of the collision set in the recursive implementations were equiva-

lent in size to the largest collision sets for which the non-recursive implementations

found solutions. Thus, while recursive implementations could solve problems involv-

ing more total robots, the number of robots which could interact in a single region of

the workspace, and thus require coupled planning, was determined by the underlying

planner.

3.7.2 Policy Optimization

We now present simulation results using the MA-CBS planning framework, and

demonstrate that integrating ODrM* or EPErM* provides state of the art results for

optimal multirobot path planning. MA-CBS is parametrized by a merge threshold

which must be tuned to a specific problem’s characteristics. MA-CBS+OD, MA-

CBS+EPEA*, MA-CBS+ODrM*, and MA-CBS+EPErM* were tested with merge

thresholds of 3, 10, 30, 100, 300, 1000 and 3000. MA-CBS+ODrM* and MA-

CBS+EPErM* performed best with a merge threshold of 1000, while MA-CBS+OD

and MA-CBS+EPEA* performed best with a merge threshold of 3000.

58

0 10 20 30 40 50 600

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

CBS
MA-CBS(3000)+OD

MA-CBS(3000)+EPEA*

MA-CBS(1000)+ODrM*

MA-CBS(1000)+EPErM*

0 10 20 30 40 50 60
Number Robots

10-2

10-1

100

101

102

103
T

im
e

to
 S

ol
ut

io
n

(s
)

Policy Optimization

Figure 3.6: Results for CBS, MA-CBS(10)+OD, MA-CBS(20)+ODrM*, and MA-
CBS(30)+EPErM*. The plot on top illustrate the percentage of trials in which a
solution was found within 5 minutes, in a 32x32 four-connected grid world. The
bottom graphs the median time to solution.

The planning results for CBS, equivalent to MA-CBS(∞), MA-CBS(3000)+OD,

MA-CBS(3000)+EPEA*, MA-CBS(1000)+ODrM*, and MA-CBS(1000)+EPErM*

are given in figure 3.6. CBS outperformed MA-CBS(3000)+OD, MA-

CBS(3000)+EPEA*, which is not surprising given that the environment is very clut-

tered, which is where CBS is known to perform best [157]. The greater planning

power of M* allowed MA-CBS(1000)+ODrM* and MA-CBS(1000)+EPErM* to sub-

stantially outperform CBS, while the performance of MA-CBS(1000)+ODrM* and

MA-CBS(1000)+EPErM* were nearly identical. We note that on 8-connected grids,

where there are more alternate paths, the performance benefit of MA-CBS+ODrM*

over CBS and MA-CBS+OD becomes even more substantial [64].

59

0 10 20 30 40 50 600

20

40

60

80

100
S

uc
ce

ss
 R

at
e

(%
)

A* (=1.1)
OD (=1.1)

EPEA* (=1.1)
M* (=1.1)

ODM* (=1.1)
EPEM* (=1.1)

0 10 20 30 40 50 60
Number Robots

10-2

10-1

100

101

102

103

T
im

e
to

 S
ol

ut
io

n
(s

)

(a) M* variants with inflation

0 10 20 30 40 50 600

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

rM* (=1.1)
ODrM* (=1.1)

EPErM* (=1.1)

0 10 20 30 40 50 60
Number Robots

10-2

10-1

100

101

102

103

T
im

e
to

 S
ol

ut
io

n
(s

)

(b) rM* variants with inflation

Figure 3.7: Results for A*, OD, M*, ODM*, rM* and ODrM* with a heuristic inflated
by 10% (a) and extended results to 100 robots for inflated ODM*, inflated rM*,
inflated ODrM*, and MA-CBS(20)+ODrM* without an inflated heuristic (b). The
plots on top illustrate the percentage of trials in which a solution was found within 5
minutes, in a 32x32 four-connected grid world. The bottom graphs the median time
to solution.

3.7.3 Inflated Heuristics

We tested A*, M*, EPEA* and variants of M* with a heuristic inflated by a factor

of 1.1 (Figure 3.7a). All algorithms were thus guaranteed to find a path costing no

more than 10% more than that of the optimal solution. Inflated A* was still unable

to find solutions for systems of 10 or more robots, as each vertex has ten million

neighbors. While the success rate for inflated OD, inflated EPEA* and inflated M*

all improved, M* benefited substantially more from an inflated heuristic than OD or

EPEA* did. Basic inflated M* was held back by inefficient neighbor generation for

larger collision sets, and thus performed on par with inflated EPEA*, but inflated

60

ODM* and inflated EPEM* solved problems involving roughly twice as many robots.

The inflated heuristic concentrates search on the leaves of the search graph nearest

to the goal, providing a benefit to EPEA*, OD and M*. However, such leaves will

also have smaller collision sets, reducing the dimensionality of the search space for

M*, and accounting for the greater reduction in computation time for inflated ODM*

and inflated EPEM* compared to inflated OD or inflated EPEA*.

Inflated rM*, ODrM* and EPErM* show further improvements in performance,

as expected (Figure 3.7b). Inflated ODrM* and EPErM* were able to find solu-

tions more quickly, in more cases, and with a simpler implementation than MA-

CBS(1000)+ODrM*, reflecting the computational benefits of relaxing the require-

ment to find optimal cost paths, even if only slightly.

3.7.4 Comparison to Rule-Based Approaches

M* and inflated M* can find optimal or ε-suboptimal paths to problems involving

many robots, but in the worst case the computational complexity of M* is still ex-

ponential in the number of robots. This raises the question of what benefits M*

conveys in practice in comparison to polynomial-time, rule based approaches which

do not provide bounds on path cost. To this end, we compared variants of M* against

a C++ implementation of Parallel Push and Swap (PPAS) graciously provided by

Sajid et al. [151]. The PPAS code was not optimized for performance or run time

Four variants of M* are used as points of comparison, MA-CBS(1000)+EPErM*,

which produces optimal paths, and inflated EPErM* with inflation factors of 1.1, 3,

and 10. The performance of inflated ODrM* was essentially the same as EPErM*,

so results for ODrM* are omitted. The failures of PPAS were the result of the

implementation tested crashing. While PPAS has only been shown to be complete

on trees, the observed failures are most likely the result of bugs in the provided code.

61

0 50 100 150 2000

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

MA-CBS(1000)+EPErM*
EPErM* (=1.1)

EPErM* (=3)
EPErM* (=10)

PPAS

0 50 100 150 200
Number Robots

10-2

10-1

100

101

102

103
T

im
e

to
 S

ol
ut

io
n

(s
)

Comparison with Rule-Based Approches

Figure 3.8: Results for MA-CBS(1000)+EPErM*, inflated EPErM* with inflation
factors of 1.1, 3, and 10, and Parallel Push and Swap (PPAS). The plot on top
illustrate the percentage of trials in which a solution was found within 5 minutes, in
a 32x32 four-connected grid world. The bottom graphs the median time to solution.
The failures of PPAS were due to the implementation being tested crashing.

All successful runs of PPAS terminated in under 6 seconds.

The mean path cost and mean makespan (time until all robots reach their goals)

of paths found by PPAS and M* variants are shown in figure 3.9. PPAS consistently

found paths of substantially greater cost than those found by EPErM* variants,

demonstrating the benefits of approaches which bound path cost. Note that the cost

bounds on inflated EPErM* are loose; while EPErM* (ε = 10) could potentially find

paths that cost ten times the minimal cost, it generally finds substantially cheaper

paths. The results are slightly distorted by the fact that the mean cost and makespan

are only computed for trials for which a given algorithm was able to find a solution.

As a result, the mean makespan for EPErM* (ε = 1.1) appears to decline for instances

involving more than 50 robots (Figure 3.9b), but this is an artifact of EPErM* (ε =

62

5 10 15 20 25 30 35 400

200

400

600

800

1000

1200

M
ea

n
C

os
t

MA-CBS(1000)+EPErM*
EPErM* (=1.1)

EPErM* (=3)
EPErM* (=10)

PPAS

5 10 15 20 25 30 35 40
Number Robots

35

40

45

50

55

60

65

M
ea

n
M

ak
es

pa
n

(a) Path cost comparison (≤40 robots)

0 50 100 150 2000
2000
4000
6000
8000

10000
12000
14000
16000

M
ea

n
C

os
t

MA-CBS(1000)+EPErM*
EPErM* (=1.1)

EPErM* (=3)
EPErM* (=10)

PPAS

0 50 100 150 200
Number Robots

20
40
60
80

100
120
140
160
180
200

M
ea

n
M

ak
es

pa
n

(b) Path cost comparison (≤200 robots)

Figure 3.9: Path costs for MA-CBS(1000)+EPErM*, inflated EPErM* with inflation
factors of 1.1, 3, and 10, and Parallel Push and Swap (PPAS). The plot on top shows
the mean cost of the paths successfully found by the algorithms. The bottom plots
show the mean makespan (time until all robots reach their goal). (a) Results for
trials of up to 40 robots. (b) Results for trials of up to 200 robots.

1.1) only solving the easier instances of those problems. However, the success rates

of PPAS and EPErM* (ε = 10) are similar enough, especially up to 150 robots, for

the cost comparisons to be valid.

3.7.5 Fully Coupled Tests

In the previously discussed simulations, the environment was comparatively open,

allowing a substantial degree of decoupling between robots. To examine the perfor-

mance of M* in fully coupled environments, a series of tests were run in a 4x4 gird

world with up to 15 robots, equivalent to the 15 puzzle.

Six optimal approaches were tested, EPEM*, EPErM*, CBS, MA-

63

0 2 4 6 8 10 12 140

20

40

60

80

100
S

uc
ce

ss
 R

at
e

(%
)

EPEM*

EPErM*
CBS

MA-CBS(1000)+EPEA*

MA-CBS(1000)+EPErM*

EPEA*

0 2 4 6 8 10 12 14
Number Robots

10-2

10-1

100

101

102

103

T
im

e
to

 S
ol

ut
io

n
(s

)

(a) Optimal Coupled Results

0 2 4 6 8 10 12 140

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

EPErM* (=10)
EPEA* (=10)
EPEM* (=10)

ODM* (=10)
PPAS
OD (=10)

0 2 4 6 8 10 12 14
Number Robots

10-2

10-1

100

101

102

103

T
im

e
to

 S
ol

ut
io

n
(s

)

(b) Sub/Non-Optimal Coupled Results

Figure 3.10: Results for fully coupled tests on a 4-connected, 4x4 grid world, with (a)
optimal and (b) suboptimal and non-optimal algorithms. The plot on top illustrate
the percentage of trials in which a solution was found within 5 minutes, in a 32x32
four-connected grid world. The bottom graphs the median time to solution.

CBS(1000)+EPErM*, EPEA*, and MA-CBS(1000)+EPEA*3 (Figure 3.10a). There

is a general trend that the more aggressively an algorithm exploits decoupling be-

tween robots, the worse its performance. EPErM* is out performed by EPEM*, and

EPEA* outperforms both EPEM* and CBS. MA-CBS(1000)+EPEA* does outper-

form EPEA* for 13 robots, which we interpret as MA-CBS slightly simplifying some

problems before falling back on EPEA*.

Five ε-suboptimal methods were tested; inflated EPEA*, inflated OD, inflated

EPEM*, inflated EPErM*, all with an inflation factor of ε = 10. The ε-suboptimal

methods were tested against PPAS, a non-optimal, rule based method. PPAS can

find solutions much faster than any of the ε-suboptimal methods, but fails on all of

3The results for MA-CBS for fully coupled problems are insensitive to the merge threshold chosen
for MA-CBS

64

the 15 robot problems, because PPAS makes the assumption that there are always

at least two free vertices. The failures of PPAS at 10 robots were due to bugs in the

implementation that was tested. Inflated EPErM* performed the worst of any of the

ε-suboptimal methods, due to the overhead of computing paths for disjoint subsets

of robots that were later invalidated due to collisions with other robots. Inflated OD

outperforms inflated EPEA*, which may be surprising given the performance of those

algorithms with a lower inflation factor of ε = 1.1 (Figure 3.7a). However EPEA*

generates all neighboring vertices of a given f-value at once, while OD iteratively

generates the neighboring vertices. High inflation factors bias search towards the

goal, causing OD to behave in a more depth-first manner, effectively generating a

single neighbor for a given state at a time. Goldenberg et al. [71] described but did

not implement optimal-generation variants of EPEA* which may mitigate the reduced

performance of EPEA* with large inflation factors. Inflated ODM* and EPEM* are

roughly a constant factor slower than inflated OD, but have similar success rates.

Note that even with a high inflation factor OD substantially underperforms inflated

EPErM* in less cluttered environments; in the 32x32 grid environment inflated OD

with ε = 10 performs roughly on par with EPErM* ε = 1.1.

3.7.6 Critical Densities

The median time to solution plots for M* have a character shape: the time to solu-

tion grows gradually as the number of robots increases, before hitting an inflection

point and rising sharply. The success rate typically drops sharply at or just before

the inflection point. This is particularly evident for inflated rM* (Figure 3.8). As

the dimensionality of the search space grows, the cost of exploring the search space

grows exponentially. Therefore, there should be a relatively sharp transition between

collision sets that define a search space small enough for M* to explore, and collision

65

0
20
40
60
80

100

N
um

be
r

of
 T

ria
ls

30 robots

0
20
40
60
80

100

N
um

be
r

of
 T

ria
ls

40 robots

0 50 100 150 200 250 300
Time to Solution (s)

0
20
40
60
80

100

N
um

be
r

of
 T

ria
ls

50 robots

Figure 3.11: Histogram of the time to solution for inflated ODrM* with ε = 1.1. The
distribution is very peaked, indicating that either inflated ODrM* is generally able
to solve a problem rapidly, or it is not able to solve the problem at all in reasonable
time.

sets that induce too large of a search space. The inflection point is most likely a

result of the robots achieving a critical density at which the typical problem requires

at least one vertex with a collision set in the critical range to be expanded. Once

this point is reached, increasing planning time is unlikely to yield substantially more

solutions. The histogram of the time to solution for inflated ODrM* supports the

theory that there is a critical size of the collision set. If inflated ODrM* can find a

solution it will do so quickly, and otherwise it will time out without finding a solution

(Figure 3.11).

66

Chapter 4

Subdimensional Expansion and

Probabilistic Path Planning

M* demonstrates excellent scaling with the number of agents in a multirobot sys-

tem. However, if a multirobot system is composed of individual robots for which

A* cannot quickly find paths, than M* is not appropriate for finding paths for the

multirobot system. Probabilistic planners such as Probabilistic Roadmaps (PRM)

[88] and Rapidly-Exploring Random Trees (RRT) [106] were developed to find paths

for robots with high-dimensional configuration spaces [24] and complex constraints,

which stymied conventional planners. For example, PRMs have demonstrated the

ability to find paths for the folding of proteins with more than 200 degrees of freedom

[6].

Probabilistic approaches have been applied to smaller multirobot systems by di-

rectly planning in the joint configuration space [35, 63, 152, 153]. However, multirobot

systems are more challenging for probabilistic planners than a single robot with an

equivalent number of degrees of freedom because a candidate path segment must be

collision-free for all robots in the system. When the workspace is cluttered, the prob-

67

(a) Individual PRM (b) Joint PRM

Figure 4.1: We show a PRM constructed in a single robot configuration space that
connects the initial configuration (box) to the goal configuration (star) for three
homogeneous robots, indicated by pattern. Circles are randomly generated samples
used to construct the PRM (a). We construct a PRM in the joint configuration space
of the three robot system by taking the tensor product of three copies of single robot
PRM (b).

ability that a given path segment is collision-free declines rapidly as the number of

robots in the system increases. For this reason, combining probabilistic planners with

multirobot path planning approaches, such as decoupled planning, can substantially

improve performance [41, 150].

In this chapter we apply subdimensional expansion to PRMs and RRTs, resulting

in the subdimensional Probabilistic Roadmap (sPRM) and subdimensional Rapidly-

Exploring Random Tree (sRRT) algorithms [195], respectively. sPRM and sRRT

combine the capability of probabilistic planners to find paths for robots with many

degrees of freedom with the ability of subdimensional expansion to construct a low-

dimensional search space for multirobot systems, permitting paths to be found for

large teams of complex robots.

4.1 sPRM: Subdimensional Expansion with PRMs

A PRM is a graph which provides a sparse description of the configuration which can

be constructed in a relatively small amount of time considering the dimensionality of

68

the configuration space. A PRM is constructed by drawing random samples, called

milestones, from the collision-free configuration space of the system. The milestones

comprise the vertices of the PRM. A local planner is employed to find simple paths

between pairs of nearby milestones. If the path between a pair of such milestones

is collision-free, then an edge is added to the PRM connecting the two milestones.

A number of approaches have been developed to ensure that sufficient samples are

drawn from confined regions of the configuration space, such as narrow passages, to

ensure that the PRM will be connected [26, 79, 198, 5, 52]. Once construction of the

PRM is completed, a path connecting two milestones in the PRM can be found using

a graph search algorithm, such as A* [88].

Path planning with PRMs thus poses two problems; how to construct a PRM

which covers the configuration space of the system of interest, and how to find a

path in the PRM once its construction is completed. Constructing a PRM in the

joint configuration space of a multirobot system is difficult, as two milestones cannot

be connected if a single robot collides with an obstacle on the path generated by

the local planner, so the probability that two milestones can be connected declines

rapidly as the number of robots increases. Švestka and Overmars [178] showed that

a PRM covering the joint configuration space, termed the joint PRM in this thesis,

of a multirobot system can be computed efficiently by taking the Cartesian product

of PRMs constructed in the configuration space of each robot (Figure 4.1). Unfortu-

nately, the number of vertices in the joint PRM, grows exponentially with the number

of robots, which makes finding a path in the joint PRM difficult. Švestka and Over-

mars [178] employed a hierarchical subgraph decomposition of the joint PRM to find

a path, which only permitted a single robot to move at any time, and only considered

systems of up to 5 robots. In sPRM, a joint PRM is constructed according to the

method of Švestka and Overmars [178], then M* is used to efficiently find a path for

the multirobot system in the joint PRM.

69

sPRM follows the lead of Švestka and Overmars [178] by constructing an individual

PRM Gi in the configuration space Qi of each robot ri. The initial and goal configu-

rations of the robot, qis and qif are used as milestones in addition to random samples

(Figure 4.1a). Since the PRM is constructed for a single robot, collision checking only

considers robot-obstacle collisions. Homogeneous robots can share copies of a single

PRM, in which case the initial and goal configurations of all of the homogeneous

robots are used as milestones. Construction of the individual PRM is completed once

each initial configuration lies in the same connected component as its associated goal

configuration.

Just as A* is used to find a path in a single robot PRM, M* (Section 3) is used to

find a collision-free path for the multirobot system. The joint PRM G which covers

the joint configuration space is defined as the direct product1 of the individual PRMs

(Figure 4.1b), but is not explicitly constructed. Instead, M* incrementally constructs

a low-dimensional search graph Gsch during the course of searching for a path, as

described in section 3.3.1. Edges are only checked for robot-robot collisions when

explored by M*, providing some of the benefits of lazy collision checking described

by Bohlin and Kavraki [24]. Furthermore, the joint PRM is free of robot-obstacle

collisions by construction, so the collision checker only has to check for robot-robot

collisions. In this manner, planning to avoid robot-obstacle collisions is decoupled

from planning to avoid robot-robot collisions.

Švestka and Overmars [178] proved that if a collision-free path for the multirobot

system exists, the probability that the joint PRM contains a collision-free path goes to

1 as the number of milestones used to construct the individual PRMs goes to infinity.

M* is complete 3.3.2, and thus will find a collision-free path in finite time, if such a

path is contained in the joint PRM. Therefore, we can conclude that the probability

1Here we diverge from Švestka and Overmars [178] who formed the joint PRM using the Cartesian
product. The Cartesian product allows a single robot to move at a time, while the direct product
allows multiple robots to move simultaneously

70

that sPRM will find a collision-free path goes to 1 as the number milestones used

in the individual robot PRMs goes to infinity, a property known as probabilistic

completeness.

4.2 sRRT: Subdimensional Expansion with RRTs

RRTs were introduced by LaValle and Kuffner as an efficient single-query planner for

high dimensional systems [106]. RRTs construct a search tree rooted at the initial

configuration of the system. The tree is extended in a three step process. First, a

random sample is drawn from the configuration space. A local planner then attempts

to extend a path from the nearest vertex in the search tree towards the random

sample. Finally, the local path is tested for collisions. If no collisions are found, the

final configuration of the local path, which may not be the same as the random sample

depending on the local planner, is added to the search tree. Because the search graph

is a tree, a path from the initial configuration to the goal can be easily retrieved once

a configuration sufficiently close to the goal is added to the tree.

sRRT uses the subdimensional expansion framework to guide the construction of

an RRT for multirobot systems. sRRT starts by computing the individual policy

for each robot ri by growing an RRT tree T i, denoted a policy tree, from the goal

configuration qif of ri in Qi. Since the policy tree is grown backwards from the goal

configuration, the parent pik of qik in T i is the next step on the path defined by φi

from qik to the goal.

φi(qik) = pik. (4.1)

If qik 6∈ T i, T i is first grown until the policy tree is connected to qik. In practice, it is

best to connect qik to T i using bidirectional search: attempting to make a connection

between T i and a tree grown from qik as in RRT-Connect [101].

71

(a) Random sample prior to projection.

(b) Random sample projected onto the search space with Ck = ∅.

(c) Random sample projected onto the search space with Ck = {1, 2}.

Figure 4.2: (a) A random sample qs is projected onto the search space in the Voronoi
region of the vertex qk. A three robot configuration space is visualized by showing
the coordinates of each robot side by side. qik gives the location of the ith robot in qk.
The arrow points along the individual policy from qk to the next configuration φ(qk).
The circles show the random sample qs before any projection. (b) Ck = ∅, so each
robot is restricted to its individual policy, resulting in the projected sample q′s. (c)
Ck = {r1, r2}. Therefore, only robot r3 is restricted to its individual policy, resulting
in the projected sample q′′s

72

Path planning for the full system is performed by growing a tree Tf forwards in the

joint configuration space, from a root vertex at the initial system configuration qs. The

expansion of Tf is restricted to the search space Qsch determined by subdimensional

expansion. The search space is constructed by identifying each vertex qk ∈ Tf with a

local search space Qsch
k = {q | qi = φi(qik)∀i 6∈ Ck}, which is the set of configurations

which can be reached from qk when the robots not in Ck obey their individual policy.

The choice of search space causes each robot to flow along its policy tree towards

the goal, while allowing robots involved in robot-robot collisions to depart from the

policy tree to find a path around the collision.

To grow Tf , random samples must be drawn from Qsch. sRRT generates samples

q′z in Qsch by first drawing a random sample qz from the joint configuration space,

then projecting qz onto Qsch. Let qk ∈ Tf be the nearest vertex to qz. qz can be

projected onto Qsch
k by replacing the coordinates for each robot not in Ck with the

coordinate for that robot’s next step along its individual policy from qk

q′iz =


qiz ri ∈ Ck

φi(qik) ri 6∈ Ck
(4.2)

where q′iz is the coordinate for the i’th robot in q′z (Figure 4.2). qz can be thought of

as determining how each robot in the collision set deviates from its individual policy.

Once a sample is generated, the local planner finds a path from qk towards q′z,

which is then checked for robot-robot and robot-obstacle collisions. If ri is found to

be involved in a robot-robot collision, ri is added to Ck, then recursively added to

the collision set of the parent vertex of qk, in a manner analogous to the backprop

function in M* (Algorithm 1). As in M*, growing the collision sets increases the

dimensionality of the search space, to ensure that a collision-free path can be found.

We note that sRRT bears a resemblance to bidirectional algorithms such as RRT-

73

Connect [101]. RRT-Connect attempts to connect a forward tree grown from the

initial configuration to a back tree grown from the goal configuration of a system.

Tf in sRRT resembles the forward tree of RRT-Connect, while the policy trees as a

group resembles the back tree. However, the back tree in RRT-Connect and the policy

trees in sRRT serve different purposes. The back tree in RRT-Connect is grown in

the configuration space of the full system, and is intended to assist finding paths in

environments where planning from the goal is easier than planning from the initial

configuration. The policy trees are grown in the configuration spaces of individual

robots, and are intended to decouple planning to avoid robot-obstacle collisions from

planning to avoid robot-robot collisions. The policy trees can quickly find a path for

each robot to its goal configuration which avoids robot-obstacle collisions, because

the dimensionality of the individual robot configuration space is much smaller than

the dimensionality of the joint configuration space of the multirobot system. The

policy trees guide the construction of Tf towards the goal configuration, so that only

robot-robot collisions must be resolved. The projection defined by (Equation 4.2)

ensures that Tf only explores new paths for robots that would otherwise interact,

minimizing the dimensionality of the search space, and thus the computational cost

of finding a path.

4.3 Simulation Results: sPRM and sRRT

sRRT and sPRM were tested in simulation on teams of kinematic three link robots.

Each robot has a five-dimensional configuration space (x, y, θ, α1, α2), with (x, y, θ) ∈

SE(2) specifying the position and orientation of the central link, and α1, α2 ∈ [−π/2, π/2]

specifying the angle of each joint (Figure 4.3). Each link has length 2. The robots

are permitted to translate and rotate freely.

10 random test environments were created, each 90x90 and containing 25 square

74

Figure 4.3: Depiction of the three link robot used to test sRRT and sPRM

obstacles with sides of length 2. The initial and goal configurations were chosen

randomly, with each test case run 10 times. We present the percentage of trials that

were successful within 5 minutes as well as the median time required to find solutions.

Run time is plotted on a logarithmic scale. We compare sRRT with RRT-Connect

[101] and sPRM using inflated ODrM* with an inflation factor of 10 (Figure 4.4).

sPRM had the highest success rate, followed by sRRT and RRT-Connect.

4.4 Conclusions

The greater effectiveness of sPRM compared to sRRT and RRT-Connect for systems

consisting of large numbers of robots can be attributed to three factors. In sPRM,

robot-robot coordination is conducted on a discrete graph, while in sRRT coordination

is performed in a continuous space, which is generally more difficult. Furthermore,

the graph used by sPRM is known to be free of robot-obstacle collisions, decoupling

coordination from obstacle avoidance, while sRRT must consider both robot-robot

and robot-obstacle paths when coordinating robots. sPRM also shares more com-

putation between robots. In the case of homogeneous robots, a PRM grown in the

75

5 10 15 20 25 30
0

20

40

60

80

100

S
uc

ce
ss

R
at

e
(%

)

5 10 15 20 25 30
Number Robots

10−2

10−1

100

101

102

103

Ti
m

e
to

S
ol

ut
io

n
(s

)

RRT-Connect sRRT sPRM

Figure 4.4: Results for RRT-Connect, sRRT and sPRM. The plots on top illustrate
the percentage of trials in which a solution was found within 5 minutes. The bottom
plot shows median time to solution.

configuration space of one robot can be used to generate individual policies for all

robots, while sRRT must grow a separate policy tree for each robot. Also, when

sPRM checks whether two robots can traverse a given pair of edges without collision,

the result can be cached for use whenever that pair of edges are traversed, regardless

of which robots are involved.

For problems involving lower numbers of robots, sPRM takes comparatively more

time to find a solution than the RRT based approaches, because of the necessity

of constructing a sufficiently dense roadmap prior to calling ODrM*. While sRRT

and RRT-Connect continue to construct new paths for individual robots throughout

planning, the set of all possible joint paths that will be considered by sPRM is fixed

once sPRM stops work on the individual robot roadmaps and calls ODrM*. While

sPRM could call ODrM* immediately after the initial configuration of each robot is

76

connected to its goal in the individual robot PRMs, a denser roadmap is desirable.

The initial configuration and goal configuration in the joint PRM are not necessarily

connected once the initial and goal configurations are connected in the single robot

PRMs, as the single robot PRMs do not consider robot-robot collisions. Determining

that no solution exists for a multirobot system in the joint PRM is an expensive

operation, even using inflated ODrM*. Therefore, it is better to spend the time to

construct a denser joint PRM that will be connected, rather than spending a long

time determining that a sparse joint PRM is disconnected and in need of extension.

Furthermore a sparse, but connected roadmap, may contain only one of multiple

paths through a given field of obstacles. Such bottlenecks result in many robots

interacting in a small area, which forces ODrM* to operate in a high-dimensional

search space, and significantly increases the cost of finding a path for the multirobot

system. A denser roadmap, containing multiple paths through a given region of space,

will tend to spread out the individual robots, thus reducing the computational cost

of finding a path.

77

78

Chapter 5

Constraint Manifold Subsearch

Many interesting problems, such as automated assembly or observation of multiple

targets, involve tasks where robots may temporarily come together to form teams.

Handling the dynamic formation and dissolution of these robot teams requires solv-

ing two problems: scheduling and assigning robots to teams, and coordinating the

motions of many robots as independent agents and as parts of varied teams. In this

chapter, the assignment of robots to tasks and the order in which tasks must be

executed are assumed to be provided a priori, and the focus will be on finding high-

quality, collision-free paths for large numbers of robots that can dynamically form

teams. We term the result the Cooperative Path Planning (CPP) problem.

In this chapter, we introduce an algorithm for solving CPP problems called Con-

straint Manifold Subsearch (CMS) [194], based on the M* MPP algorithm (Chap-

ter 3). CMS operates by temporarily merging the agents in a team into a single

meta-agent whose configuration space is the constraint manifold of the task, i.e. the

subspace of the team configuration space that satisfies the constraints of the task.

CMS is complete and guaranteed to find the optimal solution. Alternatively, CMS

can accept ε-suboptimality in return for greatly reduced planning time. Following

79

the example of rM*, we show that planning time can be further reduced by splitting

the CPP problem into independent subproblems, leading to the recursive Constraint

Manifold Subsearch (rCMS) algorithm.

5.1 Prior Work

Solving the CPP problem requires solving two qualitatively different problems: co-

ordinating the simultaneous motion of many teams of robots [64, 194, 62, 157, 167]

and finding paths for the robots within a team that satisfy the constraints of the task

being executed. While there has been a large amount of work in formation control

[13, 16, 17, 18, 19, 39, 44, 57, 107, 109, 121, 122, 145, 127, 166, 193, 203] and coop-

erative manipulation [4, 37, 53, 66, 93, 91, 147, 202], little work has been done in the

context of path planning with the dynamic formation and dissolution of teams. We

review some of the notable exceptions which have inspired our work here.

Ayanian and Kumar [10], Desaraju and How [54], and Bhattacharya et al. [22]

developed CPP planners that could plan for systems where multiple teams form and

persist for significant durations. Ayanian and Kumar [10] solved problems where

robots must remain in close proximity to the other robots in its team by searching

the prepares graph of controllers in a sequential composition framework [31], and

later extended the work to consider dynamic formation and dissolution of teams

[8], but this algorithm did not scale well to larger numbers of robots or consider

the dependencies between teams introduced by subsequent teams sharing robots.

Bhattacharya et al. [22] and Desaraju and How [54] both developed CPP algorithms

that operate incrementally by adjusting the path of one robot at a time to better

match the constraints imposed by the tasks. Desaraju and How [54] developed DM-

RRT, a decentralized algorithm where a single robot was allowed to replan its path

to better match the task constraints. DM-RRT scales well with increasing numbers

80

Start

Goal

Figure 5.1: A cooperative task τ j is defined by a set of robots Rj that will perform
the task, an initial joint configuration qjs at which the robots can start execution of
the task, a joint goal configuration qjf at which the task is considered complete, and

a set of inter-robot task constraints Cj (red, dashed arrows) which must be satisfied
during execution.

of robots, but guarantees neither completeness nor optimality. Bhattacharya et al.

[22] repeatedly replanned paths for individual robots while gradually increasing the

cost of violating task constraints. The resulting approach can be shown to eventually

converge to the optimal path, but does not scale well with increasing numbers of

robots.

5.2 Problem Definition

The objective of the CPP problem is to find a high quality, collision-free path for a set

of n robots ri, i ∈ {1, 2, . . . , n}, such that the robots complete a set of m cooperative

tasks τ j, j ∈ {1, 2, . . . ,m}. Each task τ j is represented by a tuple
(
Rj, qjs, q

j
f ,C

j
)

where Rj is the set of robots assigned to perform the task, qjs is the joint configuration

of the robots in Rj at which the task execution can begin, qjf is the joint configuration

81

of robots at which the task can be completed, and Cj is a set of task constraints that

the robots in Rj must satisfy during task execution (Figure 5.1). We use τ j to denote

both the task and the team of robots that performs the task. To simplify notation,

robots are assumed to always be part of a team. If a robot is operating independently

of other robots then it is assigned to a singleton team with no constraints.

Each robot ri has an ordered task list that contains the tasks assigned to the

robot, such as delivering a large load or driving a rivet, in the order of execution.

The robot may have to form a team with a different set of robots to perform each

task. The task lists must be consistent, i.e. the ordering of the tasks for the entire

system cannot induce any cycles.

When a team is at its goal configuration it can take an explicit transition action

to complete its task and allow its constituent robots to form new teams for the

next tasks in their task lists. If the forming teams , T form, created by the transition

action contain robots from multiple teams, termed the dissolving team T diss, then the

transition action must be taken simultaneously by all of the dissolving teams.

CMS seeks to minimize the sum of the costs of the paths taken by each team,

where the cost of a team’s path does not depend on the path of any other team. CMS

assumes that a team incurs a non-negative cost for each action. CMS also assumes

that τ i can wait at its goal configuration at zero cost if it is unable to perform the

transition action due to one or more of the other associated dissolving teams not

being at their goal configuration. All solutions to a given problem will contain the

same transition actions, which therefore incur zero cost Finally, CMS assumes that

robots incur zero cost for waiting at the goal configuration of their final task.

82

Figure 5.2: Example of a task graph. Robot r1 is assigned the task list [τ 1], r2 is
assigned to [τ 2, τ 4, τ 5], and r3 is assigned to [τ 3, τ 4, τ 6]. Note that q5

s = q5
f , so τ 5 is

represented by a single vertex in V gl (blue), and has no corresponding vertex in V tm

(red). The transition vertices are the gray squares.

5.2.1 The Task Graph

In the MPP problem a robot ri only impacts the path taken by rj if rj must alter

its path to avoid a potential collision with ri. In the CPP problem, the dependencies

between teams are more complex, as a team can only form after an earlier set of teams

complete their task, and a team can only complete its task once the other dissolving

teams are at their goal configuration. We encode the dependencies between teams in

a task graph, a common tool in the task scheduling community [74, 80].

The task graph Gst = {V tm, V gl, V tr, Est} is a directed tripartite graph with three

types of vertices. Team τ i is represented by the vertex τ itm ∈ V tm before τ i reaches its

goal configuration and by τ igl ∈ V gl after reaching its goal configuration for the first

time. If qis = qif , for instance because τ i is a single robot that must wait for another

team to arrive to form its next team, then the task graph contains τ igl but not τ itm. The

transition vertices vtr ∈ V tm represent transition actions. Let vtask ∈ V tm ∪ V gl ∪ V tr

denote an arbitrary vertex in the task graph.

In the sequel, τ i may represent τ itm, τ igl, or the team throughout the execution of

83

its task, depending on context. This notation, while ambiguous, will substantially

simplify the later description of CMS by removing the need to constantly refer to

whether a given team has reached its goal configuration.

The edges in the task graph are formed as follows. Consider a team τ i. If qis = qif ,

then it is represented by a single vertex τ igl ∈ V gl as the team starts at its goal

configuration. Otherwise, the team is represented by two vertices; τ itm ∈ V tm and

τ igl ∈ V gl, with an edge connecting τ itm to τ igl. Assuming τ i is not the final task for

its constituent robots, τ igl is connected by an edge to the transition vertex vtr for

which τ i ∈ T diss. Similarly, unless τ i is the first task (including singleton tasks) for

its constituent robot, an edge connects the transition vertex for which τ i ∈ T form to

τ itm, if it exists, or τ igl, otherwise.

There is a natural partial ordering on vertices of the task graph wherein a vertex

vitask ∈ Gst is dominated by vjtask ∈ Gst, denoted vitask ≤ vjtask, if there is a path in Gst

from vitask to vjtask or vitask = vjtask. Two vertices are incomparable if there is no path

between them in Gst. A team τ i is dominated by a vertex vktask if the vertex in V tm or

V gl corresponding to τ i is dominated by vktask. Finally, a team or transition vertex is

dominated by a set of task graph vertices if it is dominated by at least one element of

the set. The partial ordering has a fairly simple intuitive meaning. If τ i ≤ τ j, i 6= j

then τ i must complete its task before τ j can form, while incomparable teams can

coexist. If vitask is a transition vertex, then all teams dominated by vitask must finish

their tasks before the transition corresponding to vitask can occur.

The path taken by τ i from its initial configuration to its goal configuration directly

depends only upon the paths of the teams with which τ i potentially collides. However,

the teams with which τ i potentially collides depend upon when τ i forms and when it

completes its task. As a result, the path taken by τ i is affected by the path taken by

τ j in three cases.

84

1. τ j ≤ τ i, i 6= j

2. CMS finds a potential collision between τ i and τ j

3. The successor of τ i and τ j in the task graph is the same transition vertex

In case 1, τ j ≤ τ i implies that τ j must dissolve before τ i can form. Changing when

τ i forms will effect its position relative to the other teams. As a result, the optimal

path may require τ j to take a short, expensive path so that τ i can complete its task

before a potential collision with a third team could occur. Case 2 is straight forward,

as if τ i and τ j potentially collide, then τ i or τ j must alter their path to avoid the

potential collision.

Case 3 implies that τ i and τ j must take a common transition action to finish their

tasks, which can only be done when all the associated dissolving teams including τ i

and τ j are at their goal configurations. If τ i collides with a third robot before τ i

reaches its goal configuration, then τ i could not have taken a transition action to

avoid the collision regardless of the configuration of τ j, so altering the path of τ j

would have no impact on resolving the collision. However, if τ i had ever reached its

goal configuration before colliding with a third robot, then there is at least one step

at which τ i could have taken a transition action, and thus altering the path of τ j may

be required to resolve the collision at minimal cost.

Consider an environment containing a crevasse that can only be crossed if teams

τ 1 and τ 2 combine to form τ 3. Furthermore, τ 2 has two possible paths: a long, cheap

path around a sand dune; and a short, expensive path over the sand dune (Figure

5.3). If τ 1 potentially collides with τ 4 before τ 1 reaches its goal configuration (Figure

5.3a), then τ 1 never had a chance to cross the crevasse before the collision no matter

what τ 2 did. Therefore the potential collision between τ 1 and τ 4 can be resolved

without including τ 2 in the coupled planning. Now alter the problem so that τ 1 is

already at its goal configuration, and the potential collision between τ 1 and τ 4 occurs

85

(a) (b)

Figure 5.3: Teams τ 1 and τ 2 must combine to form τ 3 to cross a crevasse (gray). τ 2

has two possible paths: a long, cheap path (green arrow) around a sand dune (tan); or
a short, expensive path (red arrow) across the dune. (a) If τ 4 collides with τ 1 before
τ 1 reaches its goal configuration q1

f , then the collision can be resolved without altering
the path of τ 2. (b) If τ 4 collides with τ 1 after τ 1 had reached its goal configuration,
then the optimal path may require τ 2 to take its shorter, more expensive path so that
τ 1 and τ 2 can merge to form τ 3 and cross the crevasse before the potential collision
between τ 1 and τ 4.

before τ 2 would reach its goal configuration while following the long, cheap path, but

after τ 2 would reach its goal along the short, expensive path. The individual policies

will always send τ 2 along the cheaper path. If altering the paths of τ 1 and τ 4 is

sufficiently expensive, then the optimal path would be for τ 2 to take the short and

expensive path, allowing τ 1 and τ 2 to form τ 3 and cross the crevasse before τ 4 would

potentially collide with τ 1. Thus resolving a potential collision between τ 1 and τ 4

requires coupling planning with τ 2, but only if τ 1 had reached its goal configuration

before the potential collision.

5.3 Planning on Constraint Manifolds

At its core, CMS takes an existing multirobot path planning algorithm and modifies

its search space to quickly find a path that satisfies the task constraints. More specif-

86

(a) (b) (c)

Figure 5.4: Certain cooperative tasks may be incompatible with the joint configu-
ration graph of the robots executing the task. (a) A regular grid is an appropriate
discretization of the configuration graph of a fully-actuated planar robot. The arrows
show the actions permitted by the abstraction: horizontal and vertical translation.
(b) A team of three robots can translate a common load, represented by the ellipse,
with the translation actions afforded by the discretization. (c) The red arrows indi-
cate the necessary actions of the robots to rotate the load, but such actions are not
afforded by a grid discretization.

ically, CMS plans for each team in the constraint manifold1 of the associated task,

the subspace of the joint configuration space of the constituent robots that satisfies

the task constraints.

The CPP problem can be näıvely solved by conventional MPP algorithms if the

action set is augmented with the actions needed to form or dissolve teams. Violations

of the task constraints can then be treated simply as a robot-robot collision. For

instance, if a pair of robots is carrying a rigid body and one robot moves too far

away from the other, the multirobot path planning algorithm would treat that state

as being invalid just as if the first robot had run into the second.

Such an approach would face two serious problems. First, the actions afforded to

a team by the joint configuration graph may not be sufficient to complete its assigned

task. Figure 5.4 shows a simple example of a joint configuration graph that only

allows horizontal and vertical translations, preventing the robot team from performing

1Constraint manifold is a term of convenience: CMS can solve problems where the task constraint
is satisfied on a subspace that is not a manifold.

87

a rotation. The second problem is that the constraint manifold of a task is typically

of lower dimensionality than the team configuration space in which it is embedded.

For instance, the constraint manifold for ten planar robots carrying a rigid body is

a 3 dimensional space, rather than a 20 or 30 dimensional space. As a result, most

configurations in the team configuration space will violate task constraints. Planning

a path for the team would thus require expensive, coupled planning for all of the

robots in the team, and would be equivalent to constructing the constraint manifold

by exhaustive search.

The constraint manifold for a number of interesting tasks can be exactly com-

puted. For instance, the constraint manifold for a team of planar robots carrying

a rigid body is isomorphic to SE(2) and can be parameterized by the position and

orientation of the load. Cohen et al. [42] showed that the constraint manifold for

dual-arm manipulation by a PR-2 robot is a simple 6 dimensional subspace of the full

14 dimensional configuration space. CMS exploits such exact descriptions of the con-

straint manifold by restricting robots executing a cooperative task to the constraint

manifold.

CMS restricts a team of robots to the constraint manifold of a task by temporarily

replacing the robots with a single meta-agent whose configuration space is the associ-

ated task’s constraint manifold. Let Ψi :Mi → Qi be the embedding that maps the

constraint manifold Mi to the joint configuration space Qi of the robots in a team

τ i. Mi
start = Ψ−1

i (qis) is the position of the team in the constraint manifold where the

robots start executing task τ i, and Mi
goal = Ψ−1

i (qif) is the position of the team in

the constraint manifold where the task can be completed.

For the purpose of planning, the constraint manifold associated with each task is

discretized. The constraint manifold Mi of team τ i is represented by the weighted

directed graph Gi
M = {V i

M , E
i
M}, termed the manifold graph. Each vertex in the

vertex set V i
M represents a configuration on the constraint manifold, while each edge

88

in the edge set Ei
M represents valid transitions between configurations. The weight

of an edge represents the cost of the action associated with the edge.

5.4 Constraint Manifold Subsearch

CMS is an extension of M* (Chapter 3) to solve the CPP problem. The following

changes to M* are necessary to track task completion and reason about the com-

plex robot-robot interactions in the CPP problem. The joint configuration graph

is replaced with the task augmented joint configuration graph Gaug, that tracks the

state of task execution and contains additional edges corresponding to team disso-

lution/formation events. Secondly, individual policies are computed for each team,

rather than for each robot. The heuristic function and the limited neighbors are

modified to account for transition actions. Finally, the collision set is replaced with

the conflict set and the coupled set which capture the more complex dependencies

between teams of robots.

5.4.1 The task augmented joint configuration graph

The graph explored by CMS must track the progress the system makes in execut-

ing tasks, to determine the feasible actions of each robot and the optimal behavior.

Therefore, CMS constructs and searches Gaug which tracks the active teams and their

positions. Each vertex in Gaug represents a set of ordered pairs (τ i, viM) which con-

tains each active team and the vertex in its manifold graph that represents the team’s

current configuration. Edges correspond to motion of the teams and changes in the

content of the active teams.

Gaug is the union of one active graph Gact(T act
k) for every possible set of active

teams T act
k and a transition graph Gtrans that captures possible transitions between

89

Search graph
M* Joint configuration graph that represents the joint configu-

ration space

CMS Task augmented joint configuration graph that represents
the joint configuration space and the state of task execution

Heuristic
M* Cost for robots to reach their goals from their current

position

CMS Cost for the active teams to reach their goal configurations
and for all teams that dominate the active teams to complete
their tasks

Collision set
M* The robots that collide at vk or a successor of vk in the

search tree and must consider alternative paths at vk

CMS 1. Conflict set: The teams that collide at vk or a successor
of vk in the search tree
2. Coupled set: The active teams whose path impact the
teams in the conflict set, and thus must consider alternate
paths at vk

Table 5.1: Differences between M* and CMS

sets of active teams, i.e.

Gaug =
⋃
T act
k

Gact(T act
k)

⋃
Gtrans. (5.1)

An active graph Gact(T act
k) describes the joint configuration space of a particular

set of active teams. Gact(T act
k) is defined as the direct product of the manifold graphs

corresponding to teams in T act
k ,

Gact(T act
k) =

∏
τ i∈T act

k

Gi
M . (5.2)

assuming that each vertex viM in the manifold graph Gi
M is first replaced by the

ordered pair (τ i, viM) to match the format of Gaug. The cost of an edge in Gact(T act
i)

90

is the sum of the edge costs in the corresponding manifold graphs. Note that an

active graph does not contain any edge which takes a team to its goal configuration

for the first time, as such an action would alter the active teams2. Such edges are

part of the transition graph instead.

The transition graph Gtrans describes transition events where teams dissolve and

new teams form. The vertex set of Gtrans is the union of vertices in each active graph

and the edges in Gtrans connect different active graph components. An edge is added

to the transition graph from a vertex vk in two cases. In the first case, there is an

active team τ itm ∈ T act
k that has never reached its goal configuration and for which

there is an edge from vik to its goal configuration. The edge thus represents a transition

from τ itm to τ igl. Such an action incurs the same cost as traversing the corresponding

edge in the manifold graph of τ itm. The second case is when the dissolving teams of

a transition node in the task graph are all at their goal configuration. Those teams

can take the transition action to form a new set of teams, resulting in a new set

of active teams. A single edge in the transition graph may represent multiple such

team transitions, while the teams that do not take the transition action move in their

manifold graphs as normal. Combining the active graphs and the transition graph to

form task augmented joint configuration graph produces a single graph that captures

all possible actions and sets of active teams in a CPP problem.

5.4.2 Algorithmic description of CMS

In this section, we describe CMS as a variant M* that can solve the CPP problem.

Recall that M* maintains an open list of vertices sorted by a lower bound on the

cost of any path passing through that vertex. In every planning step, M* expands

2Recall that we distinguish between a team that has never reached its goal configuration and one
that has reached its goal configuration at least once due to changes in dependencies between teams
(Section 5.2.1)

91

the cheapest vertex vk on the open list and adds its limited neighbors to the open

list. The limited neighbors are generated by considering all possible actions for the

robots in the collision set Ck of vk, while the robots not in the collision set take the

action specified by their individual policy. The process is repeated until the goal

vertex is expanded, at which point an optimal path can be recovered. To solve the

CPP problem, CMS searches the task augmented joint configuration graph while

altering how the individual policies and the heuristic function are computed, and

CMS replaces the collision sets with the conflict set and the coupled set to capture the

more complicated dependencies between teams of robots. To minimize duplication

this section assumes a good understanding of M*, which is described in detail in

chapter 3.

M* computes a single individual policy for each robot. In a similar manner, CMS

computes an individual policy φi for each team τ i that maps the configuration of τ i to

the action that would move τ i along an optimal path leading to its goal configuration

if there were no other teams. If the team is at its goal configuration the individual

policy is to take the team transition action, if the other dissolving teams are at their

goal configurations, or to otherwise remain in place.

CMS modifies the sum of cost-to-go heuristic used by M* to account for the cost

of sequentially performing multiple cooperative tasks. More specifically, let the cost

of executing a task τ i be the cost of following the individual policy φi of the team τ i

from the start configuration to the goal configuration of τ i. Let the cost of finishing

τ i at a vertex vk be the cost of following φi from the configuration of τ i at vk to the

goal configuration of τ i. The cost-to-go heuristic used by CMS is then the sum of

the cost of completing the tasks of the active teams and the cost of executing the

individual policies of all tasks that have not been started.

In M* the collision set of a vertex defines the set of robots for which planning must

be locally coupled, i.e. the robots that are allowed to explore alternative actions to

92

their individual policies. CMS defines collisions in terms of teams. Furthermore, the

active teams at a state preceding the collision may not include the colliding teams,

but the preceding teams can still influence the paths of the teams that collide.

To account for dependencies between successive teams, CMS breaks the collision

set into two components: the conflict set, which contains the teams that have collided,

and the coupled set, which describes the teams that must consider alternatives to the

individual policy to avoid the collision. The conflict set Ck of a vertex vk in the

task augmented joint configuration graph is the set of teams that collide at vk or

some successor state in the search tree, keeping in mind that τ itm is distinct from τ igl.

If a new collision is found at vk then the resulting conflict set is added to all the

vertices in the backpropagation set of vk, in the same fashion that the collision set

is backpropagated in M*. Any teams in the conflict set that are dominated by other

teams in the conflict set are removed. Note that Ck may contain teams that are not

active at vk.

The coupled set Γk is the subset of the active teams T act
k at vk which can influence

the path of the colliding teams in Ck. Let successor (Ck) ⊆ V gl
⋃
V tr denote the set

of the successors in the task graph of the teams in Ck. If a team has no successors,

then it is treated as its own successor. Γk is then defined as

Γk =
{
τ i ∈ T act

k |∃vtask ∈ successor (Ck) s.t. τ i ≤ vtask

}
, (5.3)

If a team in the conflict set had not reached its goal configuration prior to the collision

that added it to the conflict set τ itm ∈ V tm, the successor will be in V gl and will

have the same set of dominated teams as τ itm. However, if the team had reached

its goal configuration prior to the collision τ igl ∈ V gl, then its successor will be a

transition vertex, which dominates all of the dissolving teams associated with the

transition. This reflects the fact that the trajectory of a robot that has reached its

93

goal configuration potentially depends on the trajectories of all the dissolving teams

associated with its next transition, and thus indirectly on their predecessors (Section

5.2.1). Vertices in Gaug are returned to the open list whenever their coupled set

changes, in the same fashion that M* returns previously expanded nodes to the open

list when their coupled sets change.

Consider the case of the task graph given in figure 5.2. If teams τ 1 and τ 2 were

to collide before τ 1 and τ 2 reached their goal configuration, then the conflict set

would be {τ 1
tm, τ

2
tm}. If CMS were to backtrack to v` to consider an alternate path,

then the coupled set would be the teams dominated by {τ 1
gl, τ

2
gl}, which is given by

Γ = {τ 1
tm, τ

2
tm}. However, if the collision were to occur later, after τ 2 had reached

its goal configuration, and thus where the active teams were {τ 1
tm, τ

2
gl, τ

3
tm}, then the

conflict set would be {τ 1
tm, τ

2
gl}. If CMS then backtracked to v`, the coupled set would

be the teams dominated by
{
τ 1
gl, v

a
tr

}
, which are {τ 1

tm, τ
2
tm, τ

3
tm}. τ 3

tm would be added

to the coupled set because τ 2
gl might be able to avoid the collision with τ 1 by taking

the team formation action earlier, so τ 3
tm might need to take a more expensive, but

shorter, path.

In M* the limited neighbors of a vertex in the joint configuration graph are deter-

mined by two constructs: the individual policies which determine the default action

for the robots, and the collision set which determines which robots must consider

actions beyond those generated by the individual policies. In a similar manner, the

limited neighbors in CMS of a vertex vk ∈ Gaug are determined by the individual

policies of the active teams and the coupled set. The teams in the coupled set are

allowed to take any action permitted by their manifold graph as well as the transition

action, if applicable, while the rest of the active teams are restricted to the action

generated by their individual policies. Note that if the conflict set and the coupled

set are empty there is only one limited neighbor.

Note that a collision between two single robot teams could eventually result in

94

(a) Initial configuration (b) Goal configuration (c) Task graph

Figure 5.5: Initial and goal configurations of the teams in the example of CMS. (a)
The three robots start as members of singleton teams with the same identifier. The
initial configuration of τ 4 overlaps the start and goal configurations of τ 2 and τ 3, and
so is omitted for clarity. The goal configuration of τ 2 and τ 3 are the same as the
start configuration, so those teams reach their goal configuration immediately. τ 2

and τ 3 combine to form τ 4, which occupies two spaces (b). τ 1 is assigned to move
to the bottom right corner, while τ 4 is assigned to move up, until its right hand side
occupies B3. (c) Task graph associated with the CPP problem.

coupled planning for all robots in the system at some predecessor vertex, especially

if there are tasks with overlapping set of assigned robots. In such cases finding an

optimal solution would be computationally very expensive. Inflating the heuristic

function à la inflated M* (Section 3.5.2) biases search towards the final state of the

system, which provides a soft limit on how far back in the search CMS will look

for an alternate path around collisions, limiting the effective size of the coupled set.

However, inflated CMS is ε-suboptimal and may return a path that costs up the ε

times the cost of the optimal path, where ε is the inflation factor of the heuristic.

In practice, CMS is based on Operator Decomposition M* (ODM*) (Section 3.5.3),

a variant of M* which replaces A* with Operator Decomposition (OD) [167] and which

differs from M* only in implementation details.

95

C = ∅
Γ = ∅

Neighbors of Expanded State
[(τ 1

tm, B2), (τ 4
tm, B1)]

Post Expansion Open List
Coordinate f-value

[(τ 1
tm, B2), (τ 4

tm, B1)] 7

(a) Configuration at Step 1

(b) Search tree after expansion.

Figure 5.6: (a) An example of the workings of CMS. The grid on the left shows the
configuration that is expanded by CMS in step one, and the conflict and coupled
sets of the configuration when it was expanded. The tables on the right enumer-
ate the resulting limited neighbors, and the open list after the expansion is completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set.
The vertex expanded in step one is bolded. The conflict and coupled sets are given
for each vertex in the search tree after expansion and conflict set backpropagation
are completed.

96

C = ∅
Γ = ∅

Neighbors of Expanded State
[(τ 1

tm, B1), (τ 4
tm, B2)]

Post Expansion Open List
Coordinate f-value

[(τ 1
tm, B2), (τ 4

tm, B1)] 7[
(τ 1
tm, B3), (τ 2

gl, A1), (τ 3
gl, B1)

]
7

(a) Configuration at Step 2

(b) Search tree after expansion.

Figure 5.7: (a) An example of the workings of CMS. The grid on the left shows the
configuration that is expanded by CMS in step two, and the conflict and coupled
sets of the configuration when it was expanded. The tables on the right enumer-
ate the resulting limited neighbors, and the open list after the expansion is completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set.
The vertex expanded in step two is bolded. The conflict and coupled sets are given
for each vertex in the search tree after expansion and conflict set backpropagation
are completed. Grayed out vertices were never added to the open list due to a
collision blocking the edge from their predecessor.

97

C =
{
τ1
tm, τ

4
tm

}
Γ =

{
τ1
tm, τ

4
tm

}

Neighbors of Expanded State
[(τ 1

tm, C2), (τ 4
tm, B2)], [(τ 1

tm, B1), (τ 4
tm, B2)],

[(τ 1
tm, B2), (τ 4

tm, B2)], [(τ 1
tm, B3), (τ 4

tm, B2)]
[(τ 1

tm, A2), (τ 4
tm, B2)], [(τ 1

tm, C2), (τ 4
tm, B1)]

[(τ 1
tm, C2), (τ 4

tm, C1)], . . .

Post Expansion Open List
Coordinate f-value

[(τ 1
tm, C2), (τ 4

tm, B2)] 7[
(τ 1
tm, B3), (τ 2

gl, A1), (τ 3
gl, B1)

]
7

[(τ 1
tm, B3), (τ 4

tm, B2)] 9
[(τ 1

tm, C2), (τ 4
tm, B1)] 9

[(τ 1
tm, C2), (τ 4

tm, C1)] 11
...

...

(a) Configuration at Step 3

(b) Search tree after expansion.

Figure 5.8: (a) An example of the workings of CMS. The grid on the left shows the
configuration that is expanded by CMS in step three, and the conflict and coupled
sets of the configuration when it was expanded. The tables on the right enumer-
ate the resulting limited neighbors, and the open list after the expansion is completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set.
The vertex expanded in step three is bolded. The conflict and coupled sets are given
for each vertex in the search tree after expansion and conflict set backpropagation
are completed. Grayed out vertices were never added to the open list due to a
collision blocking the edge from their predecessor.

98

C = ∅
Γ = ∅

Neighbors of Expanded State[
(τ 1
gl, C1), (τ 4

gl, B3)
]

Post Expansion Open List
Coordinate f-value[

(τ 1
gl, C1), (τ 4

gl, B3)
]

7[
(τ 1
tm, B3), (τ 2

gl, A1), (τ 3
gl, B1)

]
7

[(τ 1
tm, B3), (τ 4

tm, B2)] 9
[(τ 1

tm, C2), (τ 4
tm, B1)] 9

[(τ 1
tm, C2), (τ 4

tm, C1)] 11
...

...

(a) Configuration at Step 4

(b) Search tree after expansion.

Figure 5.9: (a) An example of the workings of CMS. The grid on the left shows the
configuration that is expanded by CMS in step four, and the conflict and coupled
sets of the configuration when it was expanded. The tables on the right enumer-
ate the resulting limited neighbors, and the open list after the expansion is completed.

(b) In the search tree solid arrows point from a vertex to its successor states
while dashed lines point from a vertex to the elements of its backpropagation set.
The vertex expanded in step four is bolded. The conflict and coupled sets are given
for each vertex in the search tree after expansion and conflict set backpropagation
are completed. Grayed out vertices were never added to the open list due to a
collision blocking the edge from their predecessor.

99

5.4.3 Example

We now present a simple example of how CMS operates. Consider a set of three robots

r1, r2, and r3. Each robot starts as the sole member of a singleton team, denoted τ 1,

τ 2, and τ 3 respectively (Figure 5.5a). Teams τ 2 and τ 3 are assigned to immediately

combine to form τ 4, so their initial states are also their goal states (Figure 5.5b). The

initial state of the system is therefore
[
(τ 1
tm, B3), (τ 2

gl, A1), (τ 3
gl, B1)

]
. τ 1 is assigned to

move to the bottom-right corner while τ 4, which occupies two squares because it is

composed of two robots, moves vertically. The goal state of the system as a whole is

denoted
[
(τ 1
gl, C1), (τ 4

gl, B3)
]
. The corresponding task graph is given in Figure 5.5c.

When there are multiple choices, the individual policies and tie-breaking between

vertices on the open list are chosen to produce an informative but short example.

When CMS expands the initial state
[
(τ 1
tm, B3), (τ 2

gl, A1), (τ 3
gl, B1)

]
the conflict set

and the coupled set are empty, because CMS has not found any collisions. Therefore,

all teams follow their individual policy (Figure 5.6). τ 2
gl and τ 3

gl immediately take the

transition action to form τ 4
tm. τ 1

tm moves down, towards its goal. The single limited

neighbor defined by the individual policies is [(τ 1
tm, B2), (τ 4

tm, B1)], which is added to

the open list as it is free of collisions.

CMS expands [(τ 1
tm, B2), (τ 4

tm, B1)] in the second step (Figure 5.7). The coupled

set is still empty, so both teams obey their individual policies; τ 1
tm continues to move

down while τ 4
tm moves up. The resulting limited neighbor is [(τ 1

tm, B1), (τ 4
tm, B2)].

The collision checking code indicates that τ 1
tm and τ 4

tm would collide head-on if they

were to attempt to make that move. Therefore, {τ 1
tm, τ

4
tm} is added to the conflict

set of the preceding states in the search tree (Figure 5.7b), but the conflict set of

[(τ 1
tm, B1), (τ 4

tm, B2)] is not set, as the teams never actually reached that state. The

coupled set is defined in terms of the conflict set, so when the conflict set changes, so

does the coupled set, and thus the limited neighbors of a vertex. Because their coupled

100

sets have changed, [(τ 1
tm, B2), (τ 4

tm, B1)] and
[
(τ 1
tm, B3), (τ 2

gl, A1), (τ 3
gl, B1)

]
are placed

back on the open list so that CMS can explore their new limited neighbors. The

limited neighbor [(τ 1
tm, B1), (τ 4

tm, B2)] is discarded, as it cannot be reached directly

from [(τ 1
tm, B2), (τ 4

tm, B1)].

The third step sees CMS expand [(τ 1
tm, B2), (τ 4

tm, B1)] a second time (Figure 5.8).

In this case, all the active teams are in the coupled set, so CMS must generate all

possible neighbors. Several of the neighbors feature collisions between τ 1
tm and τ 4

tm.

The conflict sets of the predecessor states already contain τ 1
tm and τ 4

tm so no backprop-

agation is necessary, and the neighbors with collisions can be discarded immediately.

In the fourth step, CMS expands [(τ 1
tm, C2)(τ 4

tm, B2)] (Figure 5.9). CMS has not

yet explored a path from [(τ 1
tm, C2)(τ 4

tm, B2)], so the conflict set and coupled set

are once again empty. The single limited neighbor is
[
(τ 1
gl, C1), (τ 4

gl, B3)
]
, which is

collision free, and thus added to the open list.
[
(τ 1
gl, C1), (τ 4

gl, B3)
]

is the goal state

of the system, and has the lowest f-value of any vertex in the open list. Therefore,

CMS will expand the goal state in the fifth step of planning, indicating that CMS

has found an optimal, collision free solution to the CPP problem.

Under a different choice of tie breaking for vertices in the open

list
[
(τ 1
tm, B3), (τ 2

gl, A1), (τ 3
gl, B1)

]
could have been re-expanded be-

fore [(τ 1
tm, B2), (τ 4

tm, B1)]. If it had been, the limited neighbors of[
(τ 1
tm, B3), (τ 2

gl, A1), (τ 3
gl, B1)

]
would have included all possible joint actions for

τ 1
tm, τ 2

gl, and τ 3
gl, including joint actions where τ 2

gl and τ 3
gl combine to form τ 4

tm, and

joint actions where team formation is delayed.

5.5 Recursive Constraint Manifold Subsearch

CMS couples planning for all teams in the coupled set, even when resolving multi-

ple disjoint collisions. Recursive Constraint Manifold Subsearch (rCMS), like rM*,

101

resolves collisions by identifying and solving independent subproblems . Solving each

subproblem requires coupling fewer teams. Since the cost of planning is exponential in

the number of coupled teams, rCMS can result in substantial reductions in planning

time.

In rCMS, the conflict set is a set of conflict set elements , where each conflict set

element initially contains a single set of mutually colliding teams. If the coupled

sets defined by two conflict set elements are not disjoint, the conflict set elements

are merged, and any team dominated by other teams in the conflict set element is

removed.

A subproblem is defined by a conflict set element Ci, and is responsible for finding

a path that avoids the collision that produced Ci. To this end, let the resolve set

Tres (Ci) denote the set of teams upon whom the paths of the teams in Ci depend,

i.e. the teams that contain a robot that later forms part of a team in Ci, or teams

which a team in Ci depends upon to take the transition action3.

Tres
(
Ci
)

=
{
τ j|τ j < successor

(
Ci
k

)
∨ τ j ≤ Ci

k

}
. (5.4)

where vitask < vjtask implies vitask ≤ vjtask ∧ vitask 6= vjtask. The subproblem itself is a

copy of the full CPP problem where any team not in Tres (Ci) is disabled . A disabled

team cannot collide with other teams, move, or incur cost, which implies that the

contribution of a disabled team to the f-value is constant. As a result, the disabled

teams have no influence on the paths of the teams in the resolve set. The subproblem

is solved once every team is either disabled or is the final team for its constituent

robots and is at its goal configuration. The solution is then the paths taken by the

robots in the resolve set, with disabled teams ignored.

3Recall that each team τ may be represented by two task graph vertices; one before it has reached
its goal set τtm ∈ V tm and the other after it has reached its goal set at least once τgl ∈ V gl. Unless

otherwise specified, τ i may refer to τ itm or τ igl.

102

A subproblem defined by a conflict set element Ci
k can be queried from an arbitrary

vk in the task augmented joint configuration graph. Any team in the resolve set will

behave normally, while the other teams will be placed at their position in vk and

then disabled. Thus, the solution to the subproblem from vk depends only upon the

teams in the intersection of the active teams and the resolve set, which is precisely

the coupled set associated with Ci
k. As a result, the subproblems associated with the

conflict set elements at vk can be solved separately.

Each rCMS planner has an associated resolve set containing the teams that will

not be disabled. The resolve set of the top-level rCMS planner contains all of the

teams in the task graph. When a rCMS planner expands a vertex vk ∈ Gaug, it

checks how many conflict set elements Ck contains. If Ck contains no conflict set

elements or a single conflict set element whose coupled set contains all the active

teams that are not disabled, then the limited neighbors are computed as normal for

CMS. Otherwise, the planner defines a subproblem for each conflict set element Ci
k,

and computes a solution with a rCMS subplanner whose resolve set is Tres (Ci
k). A

single limited neighbor is then generated wherein each team in the coupled set takes

the first action in the solution to the appropriate subproblem. Teams in the resolve

set that are not in the coupled set of any conflict set element follow their individual

policies. All other teams are disabled and cannot take any actions. If any subproblem

has no solution, then vk has no limited neighbors. Otherwise, the resulting limited

neighbor is guaranteed to either lie on the optimal path, or a path that contains a

collision that would modify at least one conflict set element when the path is explored.

5.6 Completeness and Optimality

The proof that CMS is complete and will return minimal cost paths follows the same

basic form as the proof for M* (Section 3.3.2). M* can be treated as alternating

103

between running A* on a search graph and extending the search graph. Lemma 1

shows that if no solution exists, M* will terminate in finite time without returning

a solution. Lemma 2 shows that M* will return the optimal path in finite time if

the search graph always contains either the optimal path or an unexplored path to a

collision that is no more expensive then the optimal path. Lemmas 3-5 prove lemma

2. Lemma 7 proves that the conditions assumed by lemma 2 always hold, supported

by an auxiliary result that combining the optimal path for a subset of robots with

the joint policy path for the complement produces a path no more expensive then the

optimal path (Lemma 6). Taken together, these lemmas prove that M* is complete

and will return the optimal path (Theorem 1).

Lemmas 1-5 all hold for CMS with minor alteration; the collision set must be

replaced by the coupled set, and robots must be replaced by teams. Lemma 6 is

not directly applicable to CMS as the task constraints mean that it is not possible

to compute an optimal path for a subset of the robots. We therefore show that the

paths generated by combining a solution for a subproblem defined by the conflict set

with the joint policy path for the teams not in the subproblem produces a path that

costs no more than the optimal path. With this result in hand, a modified version

of lemma (Lemma 7) holds, proving that CMS is complete and will return optimal

paths.

The following proof relies on the joint policy path costing no more than the optimal

path, which is trivial in M*. However, in CMS this holds for the individual policies

as defined only if the teams are able to wait at their goal configuration at zero cost.

We therefore provide the following lemma.

Lemma 8. If the task augmented joint configuration graph contains a solution, then

the joint policy path πφ(vk, vf) costs no more than the optimal path, g(πφ(vk, vf)) ≤

g(π∗(vk, vf)).

104

Proof. By construction, the individual policy for each team generates the cheapest

path for a team from any configuration in its manifold graph to its goal configuration.

Therefore, the joint policy path could only cost more than the optimal path if there

were coordination costs incurred due to the timing of each team completing its task.

However, waiting at the goal configuration is assumed to incur a team zero cost

until all teams required to form the next set of teams are in position (Section 5.2).

Therefore, the joint policy path can incur no coordination costs, and thus costs no

more than the optimal path.

Consider a subproblem defined for a conflict set, rather than the conflict set el-

ements used by rCMS (Section 5.5). Such a subproblem may couple planning for

teams involved in completely independent collisions, but is otherwise similar to those

used in rCMS. We now show that a solution for a subproblem can be used to con-

struct a path that costs no more than the optimal path and contains no collisions

between the teams in the resolve set of the subproblem. For a given conflict set Ck,

let π′Ck
(vk, vf) be the path from vk in the task augmented joint configuration graph

to vf constructed by taking the solution for the subproblem induced by Ck for the

teams in the subproblem, and having all other teams follow their individual policies.

Also, Ck is said to be dominated by C`, Ck ≤ C` if every element of Ck is dominated

by an element of C`.

Lemma 9. If the task augmented joint configuration graph contains an optimal

solution π∗(vk, vf) from some vertex vk in the task augmented joint configuration

graph, then for any conflict set Ck a path π′Ck
(vk, vf) can be constructed such that

g
(
π′Ck

(vk, vf)
)
≤ g (π∗ (vk, vf)). Furthermore, if Ck ≤ C`, then g

(
π′Ck

(vk, vf)
)
≤

g
(
π′C`

(vk, vf)
)
.

Proof. If the full problem has an optimal solution, then a solution for the subproblem

can be constructed by extracting the paths taken by the teams in the resolve set.

105

Therefore, the optimal solution for a subproblem costs no more than the path taken by

the teams in the resolve set in the optimal solution for the full problem. The individual

policies induce minimal cost paths for all teams not in the subproblem. Because the

cost of a path is the sum of the costs of the paths of the individual teams, and no

coordination costs can be incurred (Lemma 8), g
(
π′Ck

(vk, vf)
)
≤ g (π∗ (vk, vf)).

If every element of Ck ≤ C`, then the teams in the subproblem associated with

Ck are a subset of the teams in the subproblem associated with C`. Therefore by the

logic in the previous paragraph, g
(
π′Ck

(vk, vf)
)
≤ g

(
π′C`

(vk, vf)
)

Lemma 10. The search graph Gsch will always contain an optimal path (i.e. case 1

of lemma 2 will hold) or an unexplored path which costs no more than the optimal

path (i.e. case 2 of lemma 2 will hold) at all points in the execution of CMS.

Proof. By construction, if v` is the successor of vk on π′Ck
(vk, vf), then C` ≤ Ck

(Section 5.4). With the result of lemma 9, the proof then follows by analogy to the

proof of lemma 7.

Theorem 2. CMS is complete and optimal.

Proof. If the task augmented joint configuration graph G does not contain an opti-

mal path, then CMS will terminate in finite time without returning an invalid path

(Lemma 1 with slight modification). If G does contain an optimal path, then the

search graph must always contain either the optimal path, or an unexplored path

which costs no more than the optimal path (Lemma 10), which implies that then

CMS will find the optimal path in finite time (Lemma 2 with slight modification).

CMS will thus find the optimal path in finite time, if one exists, or terminate in finite

time if no path exists. Therefore, CMS is complete and optimal.

Theorem 3. rCMS is complete and optimal.

106

(a) Initial (b) Intermediate (c) Final

Figure 5.10: Small white squares are obstacles, while colored squares represent in-
dividual robots, and large squares represent teams. (a) The four robots that start
at the bottom must transport a large square object to the top of the corridor. (b)
However, the robots must delay starting the transport task to allow the single robot
that starts at other end of the corridor to pass. (c) Once the single robot is clear,
the transport task can be completed.

Proof. Lemma 9 holds with trivial modification when the path is constructed from

the solutions of multiple subproblem, each defined by one of the conflict set elements

of vk. Lemma 10 then holds, given the observation that if v` is a successor of vk in the

search tree, then each conflict set element in C` is dominated by exactly one conflict

set element in Ck.

5.7 Results

We validate the performance of CMS and rCMS in simulation. The cooperative tasks

take the form of moving large, rigid, rectangular loads. The load must be prevented

from contacting any object aside from the robots carrying the load. The constraint

manifolds corresponding to the tasks are diffeomorphic to SE(2). When a robot is in

a singleton team it moves on an 8-connected grid where waiting as well as vertical

and horizontal movement costs 1, while diagonal movements cost
√

2. A robot may

wait for zero cost at its final destination or at the start configuration of its next task

if the other robots assigned to the task are not yet in position. The manifold graphs

107

(a) t ∈ [0, 20] (b) t ∈ [20, 40] (c) t ∈ [40, 60]

Figure 5.11: Small white squares are obstacles, while colored squares represent in-
dividual robots and rectangles represent teams. Eight teams of three robots each
must pick up rectangular loads from depots on the periphery, and deliver them to
drop points between the rows of obstacles. Each team must make two such deliveries.
Path segments are shown for three time windows, where the entire path is 121 units
in duration. Please consult the uploaded video for a better depiction of the path.

for teams of multiple robots carrying a load are similar 8-connected grids where the

cost movement or waiting is multiplied by the number of robots in the team. Teams

can also take an action to rotate by ±45◦ at cost equal to the number of constituent

robots. Actions to form or dissolve teams incur zero cost. To simplify the problem,

the loads are assumed to be removed from the workspace after being delivered by a

team.

We present the results of two specific simulation runs and a set of randomized

trials. The first simulation demonstrates that CMS handles problems where task

execution must be delayed. The second simulation is a larger, more realistic problem

108

inspired by warehouse automation. All simulations were implemented in Python and

run on a Intel Core i7 processor clocked at 3.30 GHz.

In the first simulation, four robots start at one end of a corridor opposite a single

robot (Figure 5.10a). The four robots must carry a large, square object to the top

of the corridor. However, while the team is carrying the load it cannot move out

of the way of the single robot, which must reach the bottom of the environment.

Therefore, the robots must delay executing the task until the single robot has cleared

the corridor (Figure 5.10b). Furthermore, one of the robots that will carry the load

must move out of the way of the single robot. Once the single robot has cleared

the corridor, the transport task can be successfully executed (Figure 5.10c). CMS

required 0.5 seconds to compute the optimal solution to this problem, while rCMS

took 0.8 seconds. Given that there are no independent collisions, it is not surprising

that rCMS takes slightly longer, as rCMS has more overhead.

The second simulation consists of eight teams of three robots each, that must

pick up long rectangular loads from depots on the periphery of the workspace, and

deliver them to positions between rows of obstacles (Figure 5.11). The robots may

move independently when not carrying a load. Each team must deliver two loads

before returning to their initial positions. Neither CMS nor rCMS can solve the

problem optimally in under 5 minutes. Thus to compute a solution in reasonable

time, an inflation factor of 1.2 was used. CMS took 20 seconds to compute the

solution while rCMS took 6 seconds. In this problem, there are multiple independent

sets of interacting teams, leading to rCMS outperforming CMS.

To investigate how CMS and rCMS scale with the number of robots and tasks,

we generated randomized 80x80 grid worlds. Approximately 20% obstacle coverage

was generated by randomly placing 320 2x2 obstacles with overlaps permitted. As in

the simulated warehouse, tasks consisted of three robots carrying a long rectangular

load between randomly chosen positions, with a given robot always teaming with the

109

Figure 5.12: Typical random environment with 20% obstacle coverage. The empty
squares are obstacles. The colored squares are individual robots, and the long rect-
angles teams of three robots carrying a heavy load. The configuration of teams is
taken from halfway through a path found by inflated rCMS with ε = 3 for a problem
involving 102 robots in 34 teams.

110

0 20 40 60 80 100 1200

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

1 task CMS
3 tasks CMS

5 tasks CMS
1 task rCMS

3 tasks rCMS
5 tasks rCMS

0 20 40 60 80 100 120
Number Robots

10-2

10-1

100

101

102

103

T
im

e
to

 S
ol

ut
io

n
(s

)

Figure 5.13: Comparison of CMS and rCMS performance on randomly generated
80x80 worlds. All trials used an inflation factor of 3. The top plot shows the percent-
age of trials for which a solution was found within 20 minutes, while the bottom plot
gives the median time until a solution was found.

same robots. All tasks are feasible in isolation, and robots can always move from the

end position of one task to the start configuration of the next tasks in the absence

of other teams. When a robot was not actively carrying a load it was free to move

independently. Randomized trials were generated for between 1 and 40 teams, with

50 such trials generated for each number of teams (Figure 5.12). CMS and rCMS

were both run with an inflation factor of 3. Each trial was given 5 minutes to find

a solution before the trial was marked as a failure (Figure 5.13). rCMS dramatically

outperformed CMS with the success rate of rCMS on problems involving 3 to 5 tasks

per robot equivalent to the performance of CMS with only a single task per robot

(Figure 5.13).

We then tested the impact of varying the inflation factor of rCMS (Figure 5.14),

with each robot assigned 3 tasks. As expected, rCMS was unable to solve anything

111

0 20 40 60 80 1000

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

=1
=1.1

=3 =10

0 20 40 60 80 100
Number Robots

10-2

10-1

100

101

102

103

T
im

e
to

 S
ol

ut
io

n
(s

)

Figure 5.14: Performance of rCMS with varying inflation factors. Each team was
assigned 3 tasks, in worlds with 20% obstacle coverage. The top plot shows the
percentage of trials for which a solution was found within 5 minutes, while the bottom
plot gives the median time until a solution was found.

but the simplest problems optimally (ε = 1). When ε = 1 almost any collision will

force re-expansion of the root vertex of the search tree, where the coupled set has

maximal size. Setting ε = 1.1 sets a very soft limit to backtracking; to prevent

incurring one extra unit of cost, rCMS would be willing to backtrack approximately

10/n steps in the search tree, where n is the number of robots that have not reached

their final goal. When the inflation factor is increased to ε = 3, rCMS will come close

to greedily minimizing the heuristic value, primarily backtracking to resolve dead-

ends rather than reduce path cost. rCMS would have to incur approximately 3 ∗ n

extra cost before it would be willing to backtrack one step. As a result, there is a

substantial improvement in success rate, and rCMS is able to solve some problems

involving 102 robots in 34 teams, where as with ε = 1.1 rCMS was only able to

112

0 20 40 60 80 1000

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

10% obstacles 20% obstacles 30% obstacles

0 20 40 60 80 100
Number Robots

10-2

10-1

100

101

102

103

T
im

e
to

 S
ol

ut
io

n
(s

)

Figure 5.15: Performance of rCMS with varying obstacle densities in randomly gen-
erated 80x80 worlds. Inflated rCMS was run with ε = 3 and three tasks per robot.
The top plot shows the percentage of trials for which a solution was found within 5
minutes, while the bottom plot gives the median time until a solution was found.

solve systems with 75 robots in 25 teams. Increasing ε to 10 results in little change

in performance, as rCMS is already operating in a close to greedy manner. These

results track closely the observed behavior of rM* (Figure 3.8).

rCMS was then tested in environments with 10%, 20%, and 30% obstacle coverage

with ε = 3 and 3 tasks per robot(Figure 5.15)4. There was less variation in run time

than anticipated, as M* has previously been observed to suffer when confronted with

narrow bottlenecks through which bidrectional traffic flows. However, the difficulty

increase from 10% to 20% obstacle coverage is noticeably smaller than the difficulty

increase from 20% to 30% obstacle coverage, which may be due to the formation of

bottlenecks.

4Attempts to generate random worlds with 40% obstacle density failed as the probability of
randomly chosen task start and goal locations falling within the same connected component was too
low.

113

0
10
20
30
40
50

N
um

be
r

of
 T

ria
ls

30 robots

0
10
20
30
40
50

N
um

be
r

of
 T

ria
ls

57 robots

0 50 100 150 200 250 300
Time to Solution (s)

0
10
20
30
40
50

N
um

be
r

of
 T

ria
ls

84 robots

(a) 80x80 world

0
10
20
30
40
50

N
um

be
r

of
 T

ria
ls

12 robots

0
10
20
30
40
50

N
um

be
r

of
 T

ria
ls

30 robots

0 50 100 150 200 250 300
Time to Solution (s)

0
10
20
30
40
50

N
um

be
r

of
 T

ria
ls

48 robots

(b) 40x40 world

Figure 5.16: Histogram of time to solution for rCMS with ε = 3 and 20% obstacle
coverage and three tasks per robot in a 80x80 world (a) and in a 40x40 world (b).

In M*, the median time to solution typically grows gradually as the number of

robots increases, before hitting an inflection point and growing rapidly (Section 3.7).

We interpreted this behavior as the system hitting a critical density of robots that

forced the dimensionality of the search space high enough that M* no longer could

find solutions. Only the weakest versions of CMS (CMS and rCMS with ε = 1 and

ε = 1.1) showed inflection points in the tested environments. This suggests that

the environments were too large for the more powerful planners to hit critical density

before timing out, and suggests that increasing the time limit may permit a significant

number of additional problems to be solved. The 30% obstacle density case shows

weak evidence of an inflection point (Figure 5.15), and being the test point with the

114

highest robot density, supports this interpretation. Furthermore, the histogram of

time to solution for rCMS with ε = 3 (Figure 5.16a) shows that the distribution of

times overlaps with the time limit when the success rate has significantly dropped,

whereas in inflated ODrM* there is always a clear separation between the time to

solution for feasible problems and unfeasible problems (Figure 3.11). This further

suggests that rCMS with larger inflation values encounters problems that simply take

longer to solve, rather than problems where the majority exceed a critical density.

When rCMS was run on a 40x40 world with a quarter the area of the standard

80x80 world there was a stronger separation between successful and unsuccessful

runs, suggesting that in smaller worlds rCMS is more likely to hit a critical density.

5.8 Conclusion and Future Work

We presented the Constraint Manifold Subsearch, a new algorithm for solving the

cooperative path planning problem. CMS can compute optimal or ε-suboptimal paths

for systems with large numbers of robots that can perform cooperative tasks. We

also presented rCMS, a variant of CMS that decouples planning for disjoint sets of

interacting teams, and show that rCMS significantly outperforms CMS.

There are a number of avenues for future work. CMS has been implemented for

only a single cooperative task: multiple mobile robots carrying a single object. In

the future, we will pursue techniques for automatically constructing the constraint

manifold [21, 161, 42, 171] to apply CMS to more types of tasks. Of special inter-

est is the task of cooperatively carrying an object through an environment that is

sufficiently cluttered that robots must disconnect and reconnect to the object clear

obstacles [112], potentially resting the load on the ground temporarily.

To simplify the problem, we assumed that actions of teams do not impact the

environment, even when the teams move large objects. We believe that this assump-

115

tion can be removed by treating environmental features that may be manipulated by

robots as dummy teams that contain no robots. CMS will then naturally account for

dependencies between the teams that manipulate the environmental features and the

teams that may be impeded by the environmental features.

Finally, CMS currently assumes that each team can wait at its goal configuration

for zero cost, which is necessary to properly decouple planning between teams. We

intend to generalize CMS to allow robots to incur cost at goal configurations. We

believe that a proper analysis of lower bounds on arrival times of different teams at

their goal configurations can reduce coupling, especially when combined with inflation

and other manipulation of the heuristic function.

116

Chapter 6

Planning With Uncertainty

Robots will not precisely follow even the best of plans due to imperfect control and

actuation, as well as unknown environmental features and noise. There is thus a need

for plans which can be executed even in the face of significant uncertainty. We term

the problem of finding paths for multiple robots in the face of uncertain dynamics

the Multirobot Path Planning with Uncertainty (MPPU) problem. Models for uncer-

tain systems fall into two broad categories: non-deterministic and probabilistic. The

dynamics of a non-deterministic system describe the set of states the system could

occupy at a given time, but give no indication of the likelihood of any given state.

As such, non-deterministic models are useful for systems whose dynamics can be

bounded, but for which a detailed model is not available or not reliable [59, 104, 114].

However, non-deterministic models force a conservative approach, as they cannot dif-

ferentiate between a very low probability collision, which could be safely neglected,

and a high probability collision which must be avoided. Probabilistic models maintain

a belief state for the system which is a probability distribution over the system’s con-

figuration space. Probabilistic models require a more detailed dynamics model, but

admit constraints that can accept a low probability of failure, which may be neces-

117

sary to achieve a high-quality path, or any path at all. Although probabilistic models

are a subset of non-deterministic models, algorithms designed to solve probabilistic

systems can be used to solve non-deterministic problems1, while algorithms intended

for non-deterministic problems may fail on probabilistic problems. Therefore, our

primary focus in this chapter will be on probabilistic systems.

The most general approach to planning with uncertainty is to cast the problem as

a Partially Observable Markov Decision Process (POMDP) [83, 102, 140]. Solving the

POMDP returns a policy that provides the optimal action for any state-observation

pair. While POMDPs have been successfully applied to the MPPU problem [184, 123],

solving the full POMDPs is prohibitively expensive for all but the smallest problems

[129].

MPPU algorithms seek to approximate the full POMDP formulation while mini-

mizing computational cost and maximizing the quality of the resulting plan. Three

basic approaches to the MPPU problem are dynamic planning, interaction regions,

and belief space planning.

Dynamic replanning approaches assume that uncertainty is insignificant over short

periods of time, and the uncertainty in the results of any single action have only

local consequences. Under these conditions uncertainty can be handled by taking

sensor measurements to observe the result of taking a small number of actions, then

replanning without explicitly accounting for uncertainty based on the observed state

of the system. Several early approaches for single robots in dynamic environments

computed a velocity that would take the robot towards the goal while maximizing the

time the robot could maintain that velocity without colliding with a obstacle [67, 162].

D* and similar algorithms based on RRTs [27, 63, 92, 110, 124, 169] were developed

to allow for rapid, global replanning for single robots in an unknown or partially

1To adapt a probabilistic algorithm to a non-deterministic system, assign a uniform probability
distribution to the feasible states of the non-deterministic system and set thresholds to not accept
any probability of failure

118

known world. Bruce and Veloso [28] applied a replanning approach to multirobot

systems, combining separate global path planning with one-step look-ahead velocity

selection. Safety was guaranteed by requiring that each robot be able to come to a

safe stop by breaking with maximal effort immediately after finishing its next planned

action. Dynamic replanning approaches will fail when the uncertainty associated with

a single action is significant, or can lead to two qualitatively different results with

lasting consequences.

An alternate approach specific to multirobot systems is to identify a limited set of

interaction regions where robots may interact, and thus robots only require coordi-

nation when in the interaction region. In reservation based approaches, the planner

reserves the interaction regions for specific robots, and requires other robots to wait

safely outside the interaction region until the robot that has the region reserved has

passed through [55, 65, 128, 196, 201]. Reservation based approaches generally do

not consider uncertainty in the path of single robots, and may lead to robots waiting

for prolonged periods of time if a robot with a reservation for an interaction region is

delayed.

Melo and Veloso [119] exploited interaction regions to produce a simplified version

of the full POMDP formulation, called Decentralized Sparse-Interaction Markov De-

cision Process (DEC-SIMDP). They constructed a separate POMDP for each robot

ri. The focal robot ri could observe its full state, but could only observe the state of

another robot when both ri and the other robot were in the same interaction region.

All robots aside from ri were assumed to obey a fixed policy generated by solving

either single agent MDP or a multiagent MDP for all robots aside from ri. As a

result, the policy of ri only directly depended upon the position of the other robots

when in the interaction regions, substantially the computational cost of computing a

policy.

Solving a DEC-SIMDP produces a policy and as a result can handle bimodal dis-

119

tributions, such as when the robot may be in one of two different passages requiring

different paths. The policy will also base its commanded action upon sensor measure-

ments received during execution, and as a result will not cause a robot to wait outside

an interaction region for a robot that was significantly delayed. However, like reser-

vation based systems DEC-SIMDPs are only applicable to environments containing

a low number of small, well defined interaction regions. This is most likely to be the

case for structured environments like road networks, hallways, or warehouses.

A final approach is to plan paths in the belief space of the system. The belief

space of a system is the space of probability distributions over the configuration

space of the system. The belief state of a single robot can be represented as a

Gaussian. An extended Kalman filter is often used to propagate the Gaussian belief

state along a given path and account for expected measurements. Planning can be

done using A* or RRTs [72, 141]. Extensions account for non-maximal likelihood

measurements [189], the delay between receiving an updated position measurement

and the robot correcting for error [29], and the truncation of the belief state due to

possible collisions with obstacles [131, 173]. Other approaches allow for non-Gaussian

belief spaces [118, 138]. van den Berg et al. [189] used a priority planner (Section

1.2.5) to perform belief space planning for a multirobot system, but did not account

for the impact of interactions between robots on the belief states of the robots. Belief

space path planning is more efficient than solving the full POMDP because belief

space planning computes a single nominal trajectory in belief space, rather than a

full control policy. As a result the paths produced by belief space planning will not

react to sensor measurements received during execution, unlike the policy generated

by solving a POMDP or DEC-SIMDP. Thus if a belief space plan calls for r1 to wait

for r2 to pass through a bottleneck, r1 will wait for r2 even if r2 was delayed and r1

could safely navigate the bottleneck. However, belief space planning does not require

well defined interaction regions, and thus is applicable to cluttered environments

120

where interaction regions are either ill-defined or too numerous for reservation or

DEC-SIMDP based approaches.

In this chapter, we analyze the MPPU problem and show that it only approxi-

mately has the direct product structure relied upon by most MPP algorithms. We

then present Uncertainty M* (UM*), an extension of M* to handle the MPPU prob-

lem. UM* uses subdimensional expansion to efficiently explore the joint belief space

of a multirobot system. Because the MPPU problem lacks a direct product struc-

ture, UM* is not complete or optimal. However, unlike decoupled algorithms (Section

1.2.5) which may fail to find solutions for realistic problems, UM* will only fail to

find solutions in contrived cases. We introduce a non-Gaussian belief space represen-

tation that is appropriate for MPPU. UM* is then compared in simulation to several

alternate approaches to MPPU and is shown to work well when complete plans are

required.

6.1 Multirobot Path Planning with Uncertainty

The MPPU problem seeks to find paths for systems of multiple robots whose location

and dynamics are uncertain. The system is described by joint belief states b : Q →

R≥0 in the joint belief space B of probability distributions over the joint configuration

space of the system. The objective of the MPPU problem is to find an optimal path

π∗
(
bs, bf

)
for a system of n robots ri, i ∈ I = {1, . . . , n} from an initial joint belief

state2 bs to some final belief bf whose probability density is sufficiently concentrated in

the goal region. The cumulative probability that each robot collides with other robots

along the path leading to bf must be below a threshold value, i.e. P i
cumulative

(
bf
)
≤

δcol ∀i ∈ I. To simplify the problem, we assume that if two robots collide both

are removed from the workspace, so each robot can collide only once. Otherwise a

2If the robots start perfectly localized, then bs is a delta function

121

Symbol Meaning
coli An auxiliary state added to the configuration space of

robot ri to represent that robot having collided with
another robot or obstacle

Qi = Qi
nat ∪ {coli} The configuration space of a robot ri is formed by taking

the normal configuration space of the robot Qi
nat and

adding a configuration to represent ri having collided

B =
{
b : Q→ R≥0

}
Joint belief space of the multirobot system

b ∈ B Joint belief of the full multirobot system

Bi =
{
bi : Qi → R≥0

}
Belief space for robot ri

bi ∈ Bi Belief for robot ri. If b is a joint belief, then bi denotes
the marginal probability of the state ri in b

P i
cumulative (b) = bi (coli) Cumulative probability of ri colliding with another

robot along the path leading to b

δcol maximum acceptable cumulative collision probability

Ψ : Q→ P (I) Collision function that returns the set of robots that
collide at a given joint configuration

Table 6.1: Uncertainty M* notation

detailed model of the collision dynamics would be required. A path is optimal if

it minimizes a cost function g
(
π
(
bs, bf

))
=
∑

i g
i
(
πi
(
bis, b

i
f

))
. The cost function is

chosen so that the cost of a robot performing a given action is independent of the

probability of the robot having collided prior to taking said action.

A probability distribution over the configuration space of a robot ri does not

capture the probability that ri has collided with another robot and is ill defined if the

robot may have been removed from the workspace. Therefore for the purpose of the

MPPU problem the configuration space Qi of ri is augmented by an additional state,

coli, which represents ri having collided with another robot. The system as a whole

has the joint configuration space Q =
∏

iQ
i. The joint belief space of the system is

122

then the space of probability distributions

B =

{
b : Q→ R≥0

∣∣ ∫
q

b (q) dq = 1

}
. (6.1)

The belief state of a single robot bi : Qi → R≥0 is the marginal distribution of the

state of ri in a given joint belief b. The cumulative probability of ri having collided

with another robot along any path leading to b is then P i
cumulative (b) = bi (coli).

Each robot ri can take a set of actionsAi. The local belief dynamicsDi : Qi×Ai →

Bi gives the belief state of ri after it takes an action while perfectly localized at some

position, subject to

∫
qi`∈Qi

Di
(
qik, a

i
)

(qi`)dq
i
` = 1 (6.2)

Di
(
coli, ai

) (
qi`
)

=


1 qi` = coli

0 qi` ∈ Qi \
{
coli
} . (6.3)

The belief dynamics Dyni : Bi ×Ai → Bi of ri that describe the evolution of a belief

over time, neglecting other robots, are given by

Dyni
(
bi, ai

)
=

∫
qi∈Qi

bi
(
qi
)
Di
(
qi, ai

)
dqi (6.4)

If there were no collisions then the joint belief dynamics for the system as a whole

would be

Dynnocol : B ×A → B (6.5)

Dynnocol (bk, ak) (q`) 7→
∫
q

bk(q)
∏
i

Di
(
qi, aik

) (
qi`
)

(6.6)

The collision free joint belief dynamics must be corrected to account for robot-robot

123

collisions. Let Ψ : Q→ P (I) map from a position in the joint configuration space to

the robots that would collide at that point3. Now let φ : Q→ Q map a configuration

qk to a new configuration similar to qk where every robot ri that collides at qk is

moved to coli

φ (q`) 7→
∏
i


qi` ri 6∈ Ψ (q`)

coli ri ∈ Ψ (q`)

(6.7)

Next define a kernel that maps the probability mass at a configuration q to φ (q)

K : Q×Q→ B (6.8)

K (qk, q`) 7→ δ (qk − φ (q`)) (6.9)

where δ is the Dirac delta function and K maps a configuration q` to a belief that

is a delta function centered at φ (q`). The joint belief dynamics for the system as a

whole can now be written

Dyn : B ×A → B (6.10)

Dyn (bk, ak) (q`) 7→
∫
q

K (q`, q) Dynnocol (bk, ak) (q) dq (6.11)

Joint belief dynamics of the form of 6.10 have several important properties. The

belief dynamics of a given robot ri are independent from the belief dynamics of any

robot with which it does not collide. The joint belief dynamics are not the Cartesian

product of the individual robot belief dynamics. Requiring that the belief dynamics

depend on local dynamics (Equation 6.5) ensures that the behavior of the robot

depends only upon its state, and not upon its belief, which is non-physical. Finally,

the belief dynamics are conservative, so the preimage of any open set of a belief must

contain at least as much probability mass as the open set.

3P (I) denotes the power set of I, i.e. the set of all subsets of I

124

Note that according to the above definitions, a robot could potentially be said

to collide with itself. Collisions between the robot and the environment which may

occur if a robot has imperfect localization can be represented as a self-collision.

6.1.1 Structure of the MPPU problem

The MPP problem as defined in this thesis has a direct product structure where both

the joint configuration space and the joint dynamics are the Cartesian product4 of the

single robot configuration spaces and dynamics respectively. In M*, this assumption

was embodied by the fact that the joint configuration graph is the direct product

of the configuration graphs of the individual robots (Section 3.1), with collisions

effectively setting the cost of some vertices to be infinite (impassable). The direct

product structure means that if a robot can reach some individual configuration as

part of a team, it can reach that configuration by itself or as part of any subteam.

As a result, if no solution exists for a MPP problem involving a set of robots Ω,

then no solution exists for a problem involving a superset of the robots Ω′ ⊃ Ω.

This permits MPP algorithms to resolve collisions by altering the paths of only those

robots directly involved in the collision.

The MPPU problem lacks the direct product structure of the MPP problem, as

collision checking couples the dynamics of the individual robots. Consider a single

robot r1 in an obstacle-free environment. Since no robot-robot collisions are possible,

r1 will never reach a belief where b1 (col1) > 0. However, if a second robot r2 is added,

then collisions can occur, and r1 may reach a belief with b1 (col1) > 0. Therefore,

the reachable configuration space of a robot or system of robots may actually expand

when additional robots are added.

The above concern may seem esoteric, but it is possible to construct a system

4If f : A→ X and g : B → Y , then f × g : A×B → X × Y and (f × g)(a, b) 7→ (f(a), g(b))

125

(a) (b)

Figure 6.1: (a) A three robot problem with a collision threshold of δcol = 0.59. Each
robot has only a single path. There is a 20% chance of a collision if states e and h are
occupied simultaneously, and a 50% chance of collision if states c and f are occupied
simultaneously. There is no solution, as P 2

cumulative

(
bf
)

= 0.6. In (b) a fourth robot
is added with two paths: an expensive path passing through j and a cheap path
passing through k. There is a 20% chance of collision if states g and j are occupied
simultaneously. The only solution is when r4 chooses the more expensive path, at
which point P 2

cumulative

(
bf
)

= 0.58, just below the threshold value.

where a robot must go out of its way to collide with a second robot for a solution

to exist. Consider a system of three robots with a collision threshold of δcol = 0.59,

i.e. there can be at most a 59% chance of a given robot colliding with other robots

(Figure 6.1a). Each robot has only one path it can follow, i.e. the action set for each

robot at every configuration contains a single element. There is a 20% chance of a

collision between r2 and r3 when they simultaneously occupy states e and h. If r2

does not collide with r3, then there is a 50% chance of a collision between r2 and r1

while occupying states c and f . As a result, r2 has the highest cumulative probability

of collision, at P 2
cumulative

(
bf
)

= 0.6, which is above the collision threshold of 0.59.

Therefore the problem as stated has no solution.

Now consider adding a fourth robot r4 to the problem (Figure 6.1b). r4 has two

126

possible paths: an expensive path passing through state j and a cheap path passing

through state k. If r4 takes the cheaper path, it will not collide with any other robot,

and thus r2 will violate the constraint on cumulative collision probability. However,

if r4 takes the more expensive path, there is a 20% probability at state j that it will

collide with r3. Because r3 might collide with r4, there is now only a 16% chance that

r3 will collide with r2 at state h. Propagating the beliefs forward, the cumulative

probability of collision of r2 at the end of the path will now be 0.58, which is below

the threshold. Therefore to a resolve an interaction between robots r1, r2 and r3,

it is necessary for r4 to choose an expensive path containing a possible collision

over a cheaper, collision-free path. This is fundamentally a consequence of the joint

configuration space not being a direct product.

As a result, most complete MPP algorithms will either be inapplicable to the

MPPU problem, or lose completeness guarantees. EPEA* and OD are exceptions

as they perform exhaustive search of the entire joint configuration space, but will be

very inefficient. That said, completeness will only be lost in very unusual cases, where

a robot must choose to collide with another robot, to reduce the probability that the

second robot will collide with a third robot. Such situations are unlikely to appear

in realistic problems, unlike priority planners cannot reposition robots in a dead-end

corridor, a realistic problem.

The paradoxical requirement that robots deliberately collide with one another to

reduce the probability that yet another robot collides is a result of having n seperate

constraints, and trading slack in one or more constraint to satisfy another. Now

consider an alternate formulation of the MPPU problem subject to a single constraint

on the total expected number of collisions

∑
i

P i
cumulative (b) ≤ δcol (6.12)

127

The joint belief dynamics are locally conservative, which implies that if a given amount

of probability mass is to be moved out of a state in collision, an equal or greater

amount of probability mass must be moved in an earlier belief. A robot ri can

only change the belief state of rj by colliding with it or another robot. Thus any

attempt by ri to prevent a collision between two other robots will result in an increase

in the expected number of collisions. Therefore, if a solution exists for a team of

robots, then there is a solution for any subteam and constraint violations can be

resolved by altering the paths of only those robots directly involved in the violation.

However, the single constraint means that disjoint sets of colliding robots cannot be

considered separately, as all contribute to the same constraint. Intuitively, there is

no principled mechanism for partitioning the permitted number of expected collisions

between subproblems. This rules out approaches such as rM* and MA-CBS, which

are known to dramatically increase planning performance (Section 3.7).

MPPU is fundamentally different from the MPP problem because the belief dy-

namics for the robots are inherently coupled, removing the direct product structure

of the MPP problem. Without the direct product structure, the MPPU problem

is harder to decompose into tractable subproblems, which makes designing efficient,

provably correct and optimal algorithms for MPPU significantly more difficult.

6.2 Uncertainty M*

In this section we introduce UM*, a variant of M* (Chapter 3) adapted to solve MPPU

problems. UM* differs from M* in that UM* searches the joint belief graph that

describes the joint belief space, and computes collision sets by considering constraint

violations.

The joint belief graph G = {V,E} is a discretized representation of the joint belief

space and the joint belief dynamics. Each vertex vk ∈ V represents a belief state

128

bk ∈ B. An edge ek` ∈ E that connects vk to v` is associated with an action ak` ∈ A

such that Dyn (bk, ak`) = b`. The joint belief graph for a specific MPPU problem is

implicitly defined by the initial belief bs and the action set. The joint belief graph as

a whole is implicitly defined by repeated application of actions. The belief graphs for

single robots are constructed in a similar manner, and used to compute the individual

policies.

In M* collisions were treated as occurring at vertices based on the position of the

robots in the joint configuration space. However in UM* the belief dynamics are such

that it is impossible for two robots to collide at a given belief (Section 6.1); those

robots would be moved to the special col state instead. Thus it is more natural to

describe a collision as part of a transition from one belief to the next, i.e. as occurring

at an edge. All of the proofs for M* still hold under these conditions (Section 3.1).

The second modification is to the calculation of the collision set. In M* replanning

is triggered by the exploration of a vertex where two or more robots were in collision.

In UM* replanning is triggered when the probability of a robot colliding is high

enough to violate the collision probability constraint. UM* splits the collision set Ck

into two components: the threshold robots Cthresh
k and the associated robots Cassoc

k . The

threshold robots are those robots whose cumulative collision probability exceeds the

threshold value at vk or some successor of vk in the search tree. The associated robots

are those robots which have a non-zero probability of colliding with a threshold robot

at some edge in the subset of the search tree rooted at vk. The robots in Cthresh are

known to violate their collision constraint, so UM* must find an alternate path that

reduces the likelihood of collision for the threshold robots. Doing so requires changing

the paths of the threshold robots or the paths of the robots with which they collide,

i.e. the associated robots. The associated robots have slack in their constraints as

otherwise they would be threshold robots. As a result alternate paths for the robots

that collide only with robots in Cassoc
k do not need to be considered. While altering

129

the path of such a robot could alter the belief state of a robot in Cassoc
k , and thus

indirectly the belief state of a threshold robot, the same holds true for every robot in

the system, even if it never collided with another robot (Section 6.1.1). Furthermore,

such second-order interactions are much weaker, and thus can be neglected in the

interest of efficiency. With Ck = Cthresh
k

⋃
Cassoc
k the limited neighbors of vk in UM*

are computed in the same fashion as in M* (Equation 3.3).

The threshold robots and associated robots are computed in a similar fashion to

how M* computes the collision set. If a set of robots exceeds the collision probability

threshold at vk, they are added to the threshold robots Cthresh
k . Then Cthresh

k and

Cassoc
k are added to the threshold robots and associated robots, respectively, of each

vertex v` in the backpropagation set of vk. Furthermore, any robots that have a

non-zero probability of colliding with a robot in Cthresh
k on the edge e`k connecting

v` to vk are added to Cassoc
` . If Cthresh

` or Cassoc
` were changed, v` repeats the process

(Algorithm 3).

UM* can be implemented using the inflated and recursive variants of M* (Sec-

tion 3.5). rM* is substantially more efficient than M* (Section 3.7) with minimal

drawbacks. Therefore, UM* is based on rM* throughout this chapter.

UM* notionally plans over a joint belief graph which represents the joint belief

space. However, unless the joint beliefs have a very simple representation such as a

Gaussian, the size of the representation of a single joint belief grows exponentially in

the number of robots. To simplify the representation, the belief distribution for each

robot is assumed to be independent,

b (q) =
∏
i

bi
(
qi
)
. (6.13)

Note that the belief dynamics still properly account for robot-robot collisions. If ri

has a chance of colliding with rj at some position vk, then the subsequent belief of ri

130

Algorithm 3 Pseudocode for collision set backpropagation in UM*

Require: vk, C
thresh
` , Cassoc

` , open
{vk- vertex in the backpropagation set of v`}
{Cthresh

` - threshold collision set of v`}
{Cassoc

` - associated collision set of v`}
{open- the open list for M*}
Cthresh
k ← Cthresh

k ∪ Cthresh
`

Cassoc
k ← Cassoc

k ∪ Cassoc
` ∪ robots that potentially collide with robots in Cthresh

` on
ek`
if Cthresh

k or Cassoc
k changed then

if ¬(vk ∈ open) ∧ Ck changed then
open.insert(vk) {If the collision set changed, vk must be re-expanded}

for vm ∈ vk.back set do
{Propagate changes to predecessors of vk}
backprop

(
vm, C

thresh
k , Cassoc

k , open
)

will have a lower density at vik than if rj were not potentially there.

6.3 Constrained M*

rM* gains a significant performance advantage over M* (Figure 3.7) by breaking a

problem into independent subproblems. When each robot has an individual con-

straint on the probability that it collides with another robot the constraints on any

given subproblem are simply the union of the constraints of the constituent robots5.

However, a constraint on the total expected number of collisions is a global constraint

on the system as a whole; there is no obvious way to determine a separate threshold

for each subproblem.

Stentz [170] showed that a single robot path that obeys a single constraint could

be generated by treating the constraint as a weighted penalty cost. Specifically, let the

constraint be of the form c (π) ≤ δ, where c is a non-decreasing function. Then let the

new cost function g′ (π) = g (π) +wc (π) be the sum of the path cost and a weighted

5Ignoring that the full MPPU is not the direct product of the problems for individual robots, and
thus robots not involved in a given collision can take actions that adjust the probability of collisions
between the robots involved in a collision

131

Algorithm 4 Pseudocode for UM*

{Define default values for vertices}
for all vk ∈ V do
vk.cost ← MAXCOST
vk.back set ← ∅
Cthresh
k ← ∅

Cassoc
k ← ∅

{Initialize search}
vs.cost ← 0
{Open list is sorted by f-value}
open ← {vs}
while open.empty() == False do
vk ← open.pop() {Get cheapest vertex}
if Succ (bk) then
{A solution has been found. Reconstruct the optimal path by following the
back pointers}
return back track(vk)

for v` ∈ V nbh
k do

{Add vk to the back propagation list}
v`.back set.append(vk)
{Compute threshold robots}
Cthresh
` ← Cthresh

`

⋃ {i | P i
cumulative (b`) > δcol}

{Update collision sets, and add vertices whose collision set changed back to
open (Algorithm 3)}
backprop(vk, C

thresh
` , Cassoc

` ,open)
{If v` doesn’t violate constraints, and vk is the cheapest path to v`, update
costs and add to open list}
if P i

cumulative (b`) > δcol∀i ∈ I and vk.cost+g(ekl) < v`.cost then
{vk is the cheapest route to v`}
v`.cost ← vk.cost+g(ekl)
{Track the best path to v`}
v`.back ptr ← vk
open.insert(v`)

return No path exists

132

penalty term related to violations of the constraint. The optimal, constrained path

is found by finding the path that minimizes g′ while performing binary search on

w. If the path that minimizes g′ violates the constraint w is increased, otherwise

w is decreased. Stentz [170] proved that this process will converge on the optimal

solution for problems with a single constraint and developed algorithms based on

A* and D*, called Constrained A* (CA*) and Constrained D* (CD*) respectively.

CD* is valuable because this process requires repeated global planning, where the

environment changes slightly between each iteration. Using D* substantially reduces

the planning time compared to A*. Later work led to the K2 algorithm [135] that

could find a high quality solution for a single robot with multiple constraints, but K2

is not readily extensible to MPPU.

UM* can be readily adapted to use the penalty cost approach, using the sum

of the probabilities that individual robots collide with other robots at each step as

the penalty term. The resulting algorithm, called Constrained M* (CM*), can solve

problems where the constraint is on the probability that each robot collides with

other robots and when the constraint is on the total number of expected collisions.

In either case, CM* uses a single weight, so CM* is a purely heuristic method when

dealing with multiple single robot constraints. The benefit is that CM* can run

the recursive implementation of M* while subject to an expected total number of

collisions constraint. The global adjustments to the cost function allow balancing of

the minimization of robot-robot collisions with the additional cost incurred to avoid

collisions across all subproblems. CM* assumes that the search has converged when

two successive valid paths have the same cost, neglecting the penalty term. As with

UM*, CM* is assumed to be based on rM* throughout the remainder of the chapter.

Unfortunately there is no D* equivalent for M*. As a result, only the individ-

ual policies can be shared between iterations of CM* and everything else must be

replanned from scratch.

133

6.4 Belief Representation for MPPU

In most of the work on single robot belief space planning, the belief state of the system

is represented by Gaussian distributions [29, 72, 131, 141, 173, 189]. In these works

the primary source of uncertainty is imperfect localization, and the main challenge

is obstacle avoidance. We are interested in problems where the individual robots are

highly capable, and the primary challenge arises from the presence of many robots.

We therefore assume that each robot has perfect localization and can accurately track

a trajectory in the workspace, but synchronization between robots is imperfect. For

such a system, spatial Gaussian beliefs do not provide a good representation, because

they cannot conform to the path actually tracked by the robots. Instead, the belief

state of the robots are represented as a distribution over position along the planned

trajectory, directly modeling uncertainty due to synchronization errors (Figure 6.2b).

Such a representation allows for useful planning when the size of the distribution is

large compared to the size of environmental features.

Modeling position as a distribution over position in the planned trajectory poses a

problem during planning, when the final trajectory is not yet known. If a robot were

allowed to be either ahead or behind schedule the distribution would depend on parts

of the path that have not been computed (Figure 6.3a), and the full distribution is

needed for proper collision checking. Therefore, we model the nominal position of a

robot as being as far along the path as physically possible. All uncertainty can then

be modeled as delays, which would place the robot somewhere on the path leading

to its nominal position (Figure 6.3b). As a result, the belief distribution of the robot

is fully defined throughout planning.

134

(a) Spatial Uncertainty (b) Temporal Uncertainty

Figure 6.2: (a) Gaussian beliefs over robot positions (red and blue shaded regions)
are commonly used when planning for single robots with uncertainty. However, spa-
tial Gaussians do not accurately reflect the belief distribution when uncertainty is
dominated by synchronization issues between multiple robots, and robots can accu-
rately track spatial trajectories (corridors outlined in red and blue). As a result, a
spatial Gaussian belief may predict collisions that are not possible. (b) Expressing
uncertainty as a belief over position along the planned path produces beliefs that
better represent the synchronization problems of multirobot path planning.

6.4.1 Multirobot Systems with Finite Probability of Delay

Consider a system of n robots ri indexed by the set I = {1, . . . , n}. Each robot

moves on a configuration graph Gi = {V i, Ei} (Section 3.1). The set of actions

available to a robot when at a vertex vik corresponds to the edges leading to the

out-neighbors. A collision function (Ψij : Ei × Ej → {0, 1}) returns one if robots ri

and rj would collide if they simultaneously traverse a given pair of edges and zero

otherwise. At each time step, there is a Pdelay probability that the robot will delay

at its current location rather than taking the planned action. During execution, each

robot counts the number of unplanned delay actions it takes, and will subsequently

skip an equal number of planned delay actions. Thus planned delay actions serve as

an indirect synchronization action. Every action a robot plans to take incurs cost 1

135

(a) Plan time belief with expected posi-
tion

(b) Plan time belief with most advanced
position

Figure 6.3: For planning with uncertainty, the belief of the robots position is de-
scribed as a distribution over position along the trajectory (red shading). (a) If the
nominal position of the robot is the expected position, then the portion of the belief
corresponding to moving faster than expected depends upon part of the trajectory
which has not yet been computed. (b) By recasting the nominal position as the
most advanced possible state, and recasting all uncertainty as delay, the belief can
be described purely in terms of the portion of the trajectory which has already been
planned.

except waiting at the goal configuration of the robot which incurs no cost.

The belief state bik of ri is represented by two sequences: posik : {1, . . . ,m} → V i

and probik : {1, . . . ,m} → [0, 1]. posik is the sequence of positions that ri would have

passed through if it never was unexpectedly delayed and probik contains the probabil-

ities that ri occupies each state in posik. The position furthest along the path is given

by posik (1), which ri occupies with probability probik (1). The probability that ri has

collided with another robot is given implicitly by P i
cumulative (bik) = 1−∑m

j=1 probik (j).

Tracking the full joint probability would be computationally impractical, so the belief

distributions for each robot are assumed to be independent. Therefore, b =
∏

i b
i.

136

The belief dynamics for ri are written

Dyni
((

posik, probik
)
, eixy

)
7→
(
posi`, probi`

)
(6.14)

‖posik‖ = m (6.15)

posi` =


{
viy, posik (1) , . . . , posik (m)

}
x 6= y

posik x = y (planned delay)

(6.16)

where
(
posik, probik

)
represents the belief state of ri and eixy is associated with a specific

action that takes ri from vix to viy. If the action is not a planned delay (x 6= y),

probi` (w) =



(1− Pdelay) probik (1) w = 1

(1− Pdelay) probik (w) + Pdelayprobik (w − 1) 1 < w ≤ m

Pdelayprobik (w − 1) w = m+ 1

(6.17)

If the action is a planned delay, (x = y),

probi` (w) =



probik (1) + (1− Pdelay) probik (w + 1) w = 1

Pdelayprobik (w) + (1− Pdelay) probik (w + 1) 1 < w < m

Pdelayprobik (w) w = m

(6.18)

The joint belief dynamics differs from the product of the individual robot belief

dynamics in that the joint belief dynamics includes collision checking, which depends

on the probability that robots traverse each edge. Consider the case of ri taking

action ai from the belief bik, and let bi` = Dyni
((

posik, probik
)
, ai
)
.6 Assuming that

the action was not a planned delay, the probability of ri traversing edge eixy is given

6The action is specified directly instead of in terms of an edge to reduce overlap in notation

137

by

P
(
eixy|bik, ai

)
=



∑
j

posik(j)=vix
posi`(j)=v

i
y

(1− Pdelay) probik (j) x 6= y

∑
j

posik(j)=vix

Pdelayprobik (j) x = y

(6.19)

If the action was a planned delay, then

P
(
eixy|bik, ai

)
=



∑
j

posik(j+1)=vix
posi`(j)=v

i
y

(1− Pdelay) probik (j) x 6= y

∑
j 6=1

posik(j)=vix

Pdelayprobik (j) +
(
posik (1) = vix

)
probik (1) x = y

(6.20)

where posik (1) = vix evaluates to 1 if true and 0 if false.

Now consider the case where the system takes a joint action a starting at bk which

would place the system at b` if there were no collisions. The probability that ri would

not collide with another robot if it traversed ei ∈ Ei is

Pfree

(
ei|bk, a

)
=
∏
j 6=i

(
1−

∑
ej∈Ej

Ψij
(
ei, ej

)
P
(
ej|bjk, aj

))
(6.21)

The joint belief dynamics, including collision checking, can now be written

Dyn (bk, a) = Dyn ((posk, prob`) , exy) 7→ b` = (pos`, prob`) (6.22)

exy ≡ a (6.23)

‖posik‖ = m (6.24)

posi` =


{
viy, posik (1) , . . . , posik (m)

}
x 6= y

posik x = y (planned delay)

(6.25)

138

If the action is not a planned delay, (x 6= y),

probi` (w) =



Pfree

(
posi` (2) , posi` (1) |bk, a

)
(1− Pdelay) probik (1) w = 1

Pfree

(
posik (w) ,posik (w − 1) |bk, a

)
(1− Pdelay) probik (w) +

Pfree

(
posik (w − 1) ,posik (w − 1) |bk, a

)
Pdelayprobik (w − 1)

1 < w ≤ m

Pfree

(
posik (w − 1) , posik (w − 1) |bk, a

)
Pdelayprobik (w − 1) w = m+ 1

(6.26)

where Pfree (posik (w) , posik (w − 1) |bk, a) is the probability that ri traverses the edge

connecting posik (w) to posik (w − 1) without colliding with another robot. If the action

is a planned delay, (x = y),

probi` (w) =



Pfree

(
posik (1) , posik (1) |bk, a

)
probik (1) +

Pfree

(
posik (2) , posik (1) |bk, a

)
(1− Pdelay) probik (2)

w = 1

Pfree

(
posik (w) ,posik (w) |bk, a

)
Pdelayprobik (w) +

Pfree

(
posik (w + 1) , posik (w) |bk, a

)
(1− Pdelay) probik (w + 1)

1 < w < m

Pfree

(
posik (w) , posik (w) |bk, a

)
Pdelayprobik (w) w = m

(6.27)

As defined, the support of the belief of ri will cover the entire path taken by ri,

even though the probability mass at many states will be infinitesimal. Therefore,

states at the front and back of the distribution are removed if the probability mass

at those states are less than some threshold value Pprune. After states are pruned, the

remaining belief is re-normalized to preserve the total probability mass of the belief.

Pprune must be chosen carefully, as it sets how much probability mass can “leak” out

of the belief at each step (Figure 6.4). If Pprune = 0.01 then after 30 steps, there may

be a 30% chance that a robot will have “leaked” out of the support of the belief,

and into the untracked tail. This can lead to UM* significantly underestimating the

probability of collision (Figure 6.4). In the validation experiments, Pprune = 0.001

led to accurate estimation of the collision probability, and setting Pprune = 0.0001 did

139

0.00 0.02 0.04 0.06 0.08 0.10
Planned collision probability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
S

im
ul

at
ed

 c
ol

lis
io

n
pr

ob
ab

ili
ty

(a) Min Probability Density
0.01

0.00 0.02 0.04 0.06 0.08 0.10
Planned collision probability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
im

ul
at

ed
 c

ol
lis

io
n

pr
ob

ab
ili

ty

(b) Min Probability Density
0.001

0.00 0.02 0.04 0.06 0.08 0.10
Planned collision probability

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
im

ul
at

ed
 c

ol
lis

io
n

pr
ob

ab
ili

ty

(c) Min Probability Density
0.0001

Figure 6.4: Scatter plots showing the accuracy of the plans computed by UM* based
on the minimum density at which elements of the belief state will be pruned. Each
dot represents a single robot. The x-axis gives the probability of collision computed
for that robot by UM*. The y-axis gives the observed probability of collision after
running 100 realizations of each plan. If UM* was perfectly accurate all points would
lie on the red line. If UM* is too aggressive at pruning the belief state (a) UM*
will substantially underestimate the probability of collision. Reducing the pruning
threshold to 0.001% produces accurate results for the tested environment (b), and
further reductions do not leader to improve accuracy (c).

not noticeably improve collision probability prediction7. Large belief distributions

cause a significant increase in the cost of performing collision checking, which can

significantly harm performance (Figure 6.13).

6.5 Results

UM* was tested in simulated environments for the problem described in the previous

section (Section 6.4.1). Each trial took place in a 32x32 four-connected grid of cells,

with a 20% probability of a given cell being marked as an obstacle (Figure 6.5).

Unique initial and goal positions for each robot were chosen randomly within the

same connected component of the workspace. Any action by an individual robot,

including waiting, incurred a cost of one, although a robot could wait at its assigned

7If a robot has a 10% probability of colliding, the standard deviation of the estimated collision

probability from 100 trials would be
√

p(1−p)
n = 3%

140

Figure 6.5: Typical step in a 40-robot plan computed by UM*. The gray circles are
obstacles. Colored stars denote the goal configuration of robots. The colored bars
represent the planning-time belief state as to where the robots would be. The color
of more probable states are more saturated. The colored circles denote the actual
position of the robots in one realization of the plan.

141

goal with zero cost. Unless otherwise stated, Pdelay = 0.1, δcol = 0.1, and the heuristics

used by M* and UM* were inflated by a factor of ε = 3.

Each trial was given 5 minutes to find a solution. 100 random environments were

tested for a given number of robots. We present the percentage of trials that were

successful within 5 minutes as well as the median time required to find solutions. Run

time is plotted on a logarithmic scale.

6.5.1 Comparison to Alternate Approaches

The first question is whether explicitly planning for uncertainty provides a significant

benefit. We therefore compare UM* to three alternative approaches to solving the

MPPU problem: running rM* without accounting for uncertainty, running rM* where

robots are penalized for passing close to one another, and online replanning during

plan execution.

Comparison with rM*

UM* was first compared to rM*, where rM* assumes that robots never take unplanned

delay actions8 (Figure 6.6). As expected, the probability that a robot will collide

with other robots is much higher when following a path generated by rM* then

when following a path generated by UM*, with a significant number of robots being

guaranteed to collide with other robots (Figure 6.6a). However, the improvement in

safety comes at a heavy cost. UM* can only solve approximately 20% of problems

containing 40 robots, while rM* has a similar success rate for problems containing

180 robots.

142

0.0 0.2 0.4 0.6 0.8 1.0
Collision Probability

0

500

1000

1500

2000

2500

3000

3500

N
um

be
r

of
 R

ob
ot

s

UM*

rM*

(a) Collision probability during execution

0 50 100 150 2000

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

UM* =3 rM* =3

0 50 100 150 200
Number Robots

10-2

10-1

100

101

102

103

T
im

e
to

 S
ol

ut
io

n
(s

)

(b) Planning performance

Figure 6.6: Comparison between UM* and rM*, where rM* ignores the probabilistic
dynamics. Each robot has a 10% chance of delaying rather than taking its planned
action. The heuristics of UM* and rM* are inflated by 3. (a) Every trial solved by
both UM* and rM* was executed 100 times to compute the collision probability of
each robot, and are plotted in a histogram on a per-robot basis. The percentage of
trials that were solved successfully in under five minutes and the median time to find
solutions are plotted in (b).

143

0 5 10 15 20 25 30 35 400

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

UM*

Constant rpad =1
Constant rpad =2

Linear rpad =2
Linear rpad =4

0 5 10 15 20 25 30 35 40
Number Robots

10-2

10-1

100

101

102

103

T
im

e
to

 S
ol

ut
io

n
(s

)

Figure 6.7: Comparison of performance of UM* and padded rM*. All trials were
run with Pdelay = 0.1, gpad = 10, and ε = 3. The top figure gives the percentage of
trials that were solved successfully in under five minutes and the bottom plot gives
the median time to find solutions.

144

0.0 0.2 0.4 0.6 0.8 1.0
Collision Probability

0

500

1000

1500

2000

2500

3000

N
um

be
r

of
 R

ob
ot

s

UM*

Constant rpad =1

(a) Constant padding
rpad = 1

0.0 0.2 0.4 0.6 0.8 1.0
Collision Probability

0

200

400

600

800

1000

1200

1400

1600

N
um

be
r

of
 R

ob
ot

s

UM*

Constant rpad =2

(b) Constant padding
rpad = 2

0.0 0.2 0.4 0.6 0.8 1.0
Collision Probability

0

500

1000

1500

2000

2500

N
um

be
r

of
 R

ob
ot

s

UM*

Linear rpad =2

(c) Linear padding
rpad = 2

0.0 0.2 0.4 0.6 0.8 1.0
Collision Probability

0
100
200
300
400
500
600
700
800
900

N
um

be
r

of
 R

ob
ot

s
UM*

Linear rpad =4

(d) Linear padding
rpad = 4

Figure 6.8: Histograms of the probability that individual robots will collide while
executing plans. For each subfigure, the trials for which both UM* and a version
of padded rM* found a solution were identified, and each solution was executed 100
times to estimate the probability that each individual robot would collide with another
robot. The histogram shows how many robots had a given probability of collision.
Note that the total number of robots plotted varies depending on how many trials a
given version of padded rM* was able to solve

145

0.0 0.2 0.4 0.6 0.8 1.0
Collision Probability

0
200
400
600
800

1000
1200
1400
1600
1800

N
um

be
r

of
 R

ob
ot

s
Constant rpad =1
Constant rpad =2

(a) Constant padding

0.0 0.2 0.4 0.6 0.8 1.0
Collision Probability

0
100
200
300
400
500
600
700
800
900

N
um

be
r

of
 R

ob
ot

s

Linear rpad =2
Linear rpad =4

(b) Linear padding

Figure 6.9: Comparison of different values of rpad. For each form of padding, trials
that were solved at two different values of rpad were identified, and each solution was
executed 100 times to estimate the probability that each individual robot would collide
with another robot. The histogram shows how many robots had a given probability
of collision. (b) Linear padding with rpad = 4 was only able to solve problems where
linear padding with rpad = 2 had lower probability of collision (Figure 6.8c). The
effect for constant padding (a) is not as noticeable

Comparison with padded rM*

One standard way of handling uncertainty in sensing or execution is to inflate the

size of the robots to encourage paths with greater clearance. To this end, we tested

rM* with two forms of padding. In constant padding, a pair of robots ri and rj incur

an extra penalty cost gpad if the distance between ri and rj is less than or equal to a

padding radius rpad. In linear padding, the penalty cost incurred by ri and rj varies

linearly from gpad if rj is coincident with ri to 0 if the distance between ri and rj is

greater than or equal to rpad. rM* adds any robot that incurs a non-zero penalty cost

to the collision set. Several values for the penalty cost were tested, gpad ∈ {3, 10, 30}.

A value of gpad = 10 worked best; gpad = 3 failed to prevent robot-robot collisions,

and gpad = 30 did not substantially reduce collisions compared to gpad = 10.

When rpad was small (rpad = 1 for constant padding, and rpad = 2 for linear

padding) the success rate for padded rM* was on par with UM*, and the time to

solution was noticeably lower (Figure 6.7). However, such minor padding resulted

8Recall that UM* is implemented on top of rM*

146

in high likelihood of robot-robot collisions (Figures 6.8a, 6.8c). Doubling rpad sub-

stantially reduced the probability of robot-robot collisions (Figures 6.8b, 6.8d), but

significantly reduced the number of solved problems. Furthermore, the collision prob-

abilities can be misleading, as padded rM* will fail more on harder problems, where

robot-robot collisions are more likely (Figure 6.9). This effect explains most of the

reduction in collision probability for linear padding with rpad = 4 (Figure 6.9b), but

is not as significant for constant padding with rpad = 2 (Figure 6.9a).

The tested environment contains many features that are only one or two cells

wide, but the support of the belief for a single robot can exceed 7 cells in length

(Figure 6.5). Thus if robot-robot collisions are to be avoided, the padding region

around the robots must be large compared to the features of the environment through

which the robots must navigate. Robots would have difficultly passing one another

in corridors, and may even interfere with one another while on opposite sides of

impassable obstacles. Properly accounting for the true uncertainty in robot dynamics

is thus important when dealing with belief states with support large compared to the

size of environmental features.

Receding Horizon Planning

Another approach to dealing with uncertainty is receding horizon planning, where

planning is run to some depth instead of planning all the way to the goal. In the

implementation tested here, the robots execute half of the computed plan before

replanning. Thus, if the horizon is 4 steps away, the robots will take two actions,

then a new receding horizon path will be computed. UM*, rM*, and padded rM*

were tested in receding horizon planning. There are two important details. Each

invocation of the planner is independent, so the UM* planner will only constrain the

probability of robots colliding within a single limited depth plan, not over the course

of the entire path to the goal. rM* also behaves slightly differently in a receding

147

10 15 20 25 30 35 40
Robots without collision

0

50

100

150

200

250

300

N
um

be
r

of
 T

ria
ls

M*

UM*

Padded M*

(a) Planning horizon: 4 steps

10 15 20 25 30 35 40
Robots without collision

0

50

100

150

200

250

300

N
um

be
r

of
 T

ria
ls

M*

UM*

Padded M*

(b) Planning horizon: 6 steps

10 15 20 25 30 35 40
Robots without collision

0

50

100

150

200

250

300

N
um

be
r

of
 T

ria
ls

M*

UM*

Padded M*

(c) Planning horizon: 8 steps

10 15 20 25 30 35 40
Robots without collision

0

50

100

150

200

250

300

N
um

be
r

of
 T

ria
ls

M*

UM*

Padded M*

(d) Planning horizon: 10 steps

Figure 6.10: Number of robots that reach their goals without collision with receding
horizon planning. Planning with receding horizons is an online process. When robots
collide, they are removed from the environment. The plots show how many robots
successfully reach their goals without colliding when following a receding horizon
planner. The robots execute half the planned steps before replanning the path. Unlike
most similar histograms in this chapter, the results for all trials are plotted, not just
those successfully completed by all approaches.

148

horizon context, as the subplanners invoked by rM* share the same receding horizon.

As a result, the subplanners are not complete which can cause rM* to improperly

conclude that no solution exists. In that circumstance, rM* returns the path to the

node with the lowest heuristic value that rM* has expanded.

Receding horizon planning is inherently an online approach and the robot dy-

namics are non-deterministic. Therefore receding horizon planning was run on 100

randomly generated problems containing 40 robots, with each trial run 10 times.

Each trial was given 30 seconds total of planning time. If all robots that had not

collided with other robots had not reached their goal before the budgeted planning

time was exhausted the trial was counted as a failure. UM* was run with the collision

threshold set to δcol = 0.075 to approximately match the safety of paths generated by

padded rM*. In all other respects the environments were the same as in other trials.

As would be expected, rM* and padded rM* perform the best with short planning

horizons, which maximizes information about where the robots actually are (Figure

6.10), and minimizes the support of the belief states, which permits minimal padding.

UM* benefits from a longer planning horizon. If the planning horizon is too short

UM* is prone to live-locks, where the robots oscillate back and forth. As expected,

UM* and padded rM* produce safer paths than simple rM*, although they are both

more prone to timing out. With the collision threshold tuned so that the safety of

paths generated by UM* and padded rM* were approximately equal safety, padded

rM* was able to solve 800 trials while UM* was only able to solve 600 trials, showing

the benefits of padded rM* for comparatively short planning horizons.

UM* has a substantial advantage over more heuristic approaches when the support

of the belief of each robot is large, as happens when planning a full solution to a MPPU

problem. When the support of the belief of individual robots is comparable in size

to typical environmental features, then accurately accounting for the true belief both

makes finding solutions easier

149

0 5 10 15 20 25 30 35 400

20

40

60

80

100
S

uc
ce

ss
 R

at
e

(%
)

col =0.0 col =0.03 col =0.1 col =0.3

0 5 10 15 20 25 30 35 40
Number Robots

10-2

10-1

100

101

102

103

T
im

e
to

 S
ol

ut
io

n
(s

)

(a) UM* performance
varying collision threshold

5 10 15 20 25 30 35 40
Number of Robots

0

200

400

600

800

1000

1200

M
ed

ia
n

P
at

h
C

os
t

col =0 col =0.03 col =0.1 col =0.3

(b) UM* path cost
varying collision threshold

Figure 6.11: (a)Comparison of performance of UM* with differing collision thresholds.
All trials were run with Pdelay = 0.1 and ε = 3. The top figure gives the percentage of
trials that were solved successfully in under five minutes and the bottom plot gives
the median time to find solutions. (b) Median path cost for paths found by UM* with
varying collision thresholds. Only considers trials which were solved for all values of
collision threshold.

6.5.2 Scaling of UM*

With the benefits of UM* established, we wish to investigate how UM* scales with

its two principle tuning parameters: the collision threshold δcol and the heuristic

inflation factor ε. The collision threshold trades off path safety for path quality, and

the heuristic inflation factor trades path quality for planning time. A third parameter,

the pruning threshold Pprune, trades accuracy in the belief representation for reduced

planning time.

UM* was tested with a selection of collision thresholds, δcol ∈ {0, 0.03, 0.1, 0.3}

with Pdelay = 0.1 and ε = 3 (Figure 6.11). When δcol = 0, UM* is equivalent to

padding the robot to exactly cover the support of its belief. UM* had the lowest

150

success rate when δcol = 0, indicating that avoiding all overlap requires expensive

detours. Although the difference is small, a collision threshold of 0.1 produced the

best success rate. The similarity to Pdelay is likely not coincidental. Assume that

two robots start fully localized with ri occupying the position vk that rj would like

to occupy. If ri takes a step away from vk while rj steps into vk, then bi(vk) = 0.1

and bj(vk) = 0.9, which leads to a probability of collision of 0.09, just under the

threshold. Setting δcol = Pdelay thus allows robots to pass close to one another, but

quickly detects beliefs that will deeply interpenetrate one another. When δcol = 0.3,

UM* could get stuck in deep local minima when robots cross paths, where the beliefs

could overlap for multiple planning steps before violating the constraint. Finding a

path out of such a local minima would be difficult.

As expected, δcol = 0.3 produces the lowest path costs while δcol = 0 produces the

highest cost paths. These results match the degree to which the collision threshold

constrains the paths. The difference in path costs is approximately 10%. The path

costs are only significant between δcol = 0 and δcol 6= 0. The results for 30 or more

robots must be taken with caution, as only eight 30 robot trials were solved for all

collision thresholds, and there was only a single 35 and 40 robot problem that was

solved for all collision thresholds.

The other tuning parameter is the inflation factor ε (Figure 6.12). UM* performs

similarly for ε = 1 and ε = 1.1, which suggests that preventing constraint violations

is more expensive for UM* than for M*, where setting ε = 1.1 substantially increased

performance (Figure 3.7). Going from ε = 1.1 to ε = 2 leads to a substantial increase

in performance, while further increase of the inflation factor sees rapidly decreasing

gains (Figure 6.12a), matching the behavior of rM* (Figure 3.8). The cost bounds

imposed by the heuristic inflation factors are very loose. The difference in median

path cost between ε = 2 and ε = 10 is less than 10%, again matching the behavior of

rM* (Figure 3.9).

151

0 5 10 15 20 25 30 35 400

20

40

60

80

100
S

uc
ce

ss
 R

at
e

(%
)

=1
=1.1

=2
=3

=10

0 5 10 15 20 25 30 35 40
Number Robots

10-2

10-1

100

101

102

103

T
im

e
to

 S
ol

ut
io

n
(s

)

(a) UM* performance
varying inflation factor

5 10 15 20 25 30 35 40
Number of Robots

0

200

400

600

800

1000

1200

M
ed

ia
n

P
at

h
C

os
t

=2 =3 =10

(b) UM* path cost
varying inflation factor

Figure 6.12: (a) Comparison of performance of UM* with differing heuristic inflation
factors. All trials were run with Pdelay = 0.1 and δcol = 0.1. The top figure gives
the percentage of trials that were solved successfully in under five minutes and the
bottom plot gives the median time to find solutions. (b) Median path cost for paths
found by UM* with varying heuristic inflation factors. Only considers trials which
were solved for all values of the inflation factor.

As expected, lower values of the pruning threshold Pprune led to lower success rates

and longer planning times (Figure 6.13). A lower value of Pprune leads to larger support

for the belief state of each robot, complicating collision checking, but improving the

accuracy of the belief representation. In these tests, Pprune = 0.001 led to good

accuracy, with smaller values providing no improvement (Figure 6.4).

6.5.3 CM*

CM* was tested with two different constraints; the probability of collision for each

robot being below a threshold and the total expected number of collisions being under

a threshold. For the single robot constraint, the threshold was set at δcol = 0.1. For

152

0 5 10 15 20 25 30 35 400

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

Pprune =0.01 Pprune =0.001 Pprune =0.0001

0 5 10 15 20 25 30 35 40
Number Robots

10-2

10-1

100

101

102

103

T
im

e
to

 S
ol

ut
io

n
(s

)

Figure 6.13: Comparison of the performance of UM* with different pruning thresholds
Pprune for the underlying belief. Pprune was tested at 0.01, 0.001, and 0.0001. The top
figure gives the percentage of trials that were solved successfully in under five minutes
and the bottom plot gives the median time to find solutions.

the expected number of collisions threshold the threshold was set at 0.1 times the

number of robots in the problem. UM* subject to the constraint that each robot has

a probability of collision of less than δcol = 0.1 was used as a point of comparison

(Figure 6.14), because the recursive implementation of UM* cannot operate under

the expected number of collisions constraint, and the recursive implementation is nec-

essary for efficient computation. CM* was tested with initial penalty costs 100 and

1000 times the probability of robot-robot collisions. UM* consistently outperforms

CM* (Figure 6.14a). The performance of CMS subject to the single robot constraint

and the expected number of collisions constraints were nearly identical. Furthermore,

the probability that a robot collides when following a CMS path subject to the in-

dividual and expected number of collisions are nearly identical (Figure 6.14b) are

nearly identical, and skewed to collision probabilities well below the constraint. This

suggests that to find a solution the penalty costs are being set sufficiently high to

153

avoid nearly all collisions.

6.6 Summary and Conclusions

In this chapter, we showed that the MPPU problem lacks the direct product structure

upon which most MPP algorithms rely. We then presented UM*, a variant of rM* for

the MPPU problem. UM* loses completeness only in cases which require a robot that

does not normally collide with any other robot to deliberately collide with another

robot. We then gave a non-Gaussian belief space representation that is appropriate

for multirobot systems when individual robots can localize themselves well, but have

little ability to synchronize their actions with other robots. We then compared UM*

with several heuristic approaches to MPPU. UM* works well when a complete plan

for the system is required; when continuous, short horizon replanning is feasible UM*

is outperformed by a simple padding approach. We then tested UM* against CM*,

a variant inspired by CD*, and showed that CM* underperforms UM*.

154

0 5 10 15 20 25 30 35 400

20

40

60

80

100

S
uc

ce
ss

 R
at

e
(%

)

UM*

CM* 100

CM* 100 expected

CM* 1000

CM* 1000 expected

0 5 10 15 20 25 30 35 40
Number Robots

10-2

10-1

100

101

102

103

T
im

e
to

 S
ol

ut
io

n
(s

)

(a) CM* performance

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Collision Probability

0

500

1000

1500

2000

2500

3000

3500

N
um

be
r

of
 R

ob
ot

s

UM*
100 initial cost
100 initial cost expected collisions
1000 initial cost
1000 initial cost expected collisions

(b) CM* collision probability

Figure 6.14: Comparison of UM* and CM*. UM* and CM* were tested with a single
robot collision threshold of 0.1. CM* was also tested with a constraint that the total
expected number of collisions be no more than 0.1 times the number of robots. CM*
was tested with the initial penalty cost being 100 and 1000 times the probability of
collision. The heuristic inflation factor was 3, and Pdelay = 0.1. (a) Comparison of
performance of UM* and CM*. The top figure gives the percentage of trials that
were solved successfully in under five minutes and the bottom plot gives the median
time to find solutions. (b) Histogram of robot collision probability. For every trial
solved by UM* and all versions of CM* the resulting plans were executed 100 times to
estimate true robot-robot collision probabilities. The histogram shows the probability
that a robot will collide with other robots, with each robot in each trial being counted
separately. Note that the domain of the plot extends only to a 50% probability of
collision, instead of the 100% used in most similar plots.

155

156

Chapter 7

Multirobot Sequential Composition

Conventional path planning algorithms compute a single trajectory in the configura-

tion space of the system. However, perturbations and process uncertainties can force

the system to depart from the planned trajectory. Running a trajectory-tracking con-

troller can provide robustness to small perturbations. However, because the planner

only considers a single trajectory, there is no guarantee that the trajectory-tracking

controller will avoid collisions while recovering from larger perturbations (Figure

7.1a). Sequential composition seeks to produce paths that are robust to perturba-

tions by planning not in the configuration space of the system, but rather over a set

of controllers [20, 31, 43, 125, 126, 179]. The resulting plan is a sequence of controllers,

chosen such that the goal set of each controller lies in the domain of attraction of the

succeeding controller (Figure 7.1b), defining a plan over a “thick” region of the con-

figuration space, instead of a single “thin” trajectory. As long as the system remains

within the domains of the planned controllers safety is guaranteed. Furthermore, the

system can readily detect when it is subject to a large enough perturbation that the

original sequence of controllers can no longer guarantee safety and then compute a

new plan.

157

(a) Path planning (b) Sequential composition

Figure 7.1: (a) Conventional path planning algorithms compute a plan consisting
of a single trajectory in configuration space (black arrow). While a trajectory con-
troller can compensate for small disturbances, large disturbances during execution
(red arrow) can cause the tracking controller to run into an obstacle. (b) Sequential
composition planners [31, 43] compute a plan consisting of a sequence of controllers ,
chosen so that the goal set of each controller is a subset of the domain of attraction of
the subsequent controller. In this example the initial path is yellow, purple, blue. The
planned controllers guarantee safety as long as perturbations are not large enough to
force the system out of their domains. Perturbations large enough to force the robot
out of the domain of attractions of the controllers are easily detected, and can be
compensated for by selecting a different sequence of controllers

Computing a sequential composition plan is a multi-step affair. First, a set of

controllers with well defined domains must be deployed in the environment. The

domain of a controller is an invariant subset1 of the domain of attraction of the

controller that lies entirely within the free configuration space. Controllers should

be deployed so that the union of their domains cover as large a fraction of the free

configuration space as possible.

The second step is to describe how the controllers can be sequenced. Controller

A is said to prepare controller B, denoted A � B, if the goal set of A is a subset

of the domain of B. A single controller can prepare multiple controllers. Once a

robot reaches the goal set of its current controller, it will be in the domain of all

1If a robot starts in the domain of a controller it will remain within the domain of the controller.

158

(a) Controllers (b) Prepares graph

Figure 7.2: (a) An example of a controller deployment where A � C, B � C, C � D
and C � E. (b) The associated prepares graph.

the prepared controllers, and can choose which to execute next according to a pre-

computed policy. The prepares graph is a directed graph that captures the prepares

relationship between controllers (Figure 7.2). Each controller is represented as a

vertex in the prepares graph whose out-neighbors are the prepared controllers. Thus

a feasible sequence of controllers can be computed by finding a path in the prepares

graph.

Prior work on sequential composition has primarily focused on combined control

and path planning for single robots, where the prepares graph is sufficiently small that

a policy over the entire prepares graph can be computed [20, 31, 43, 125, 126, 179].

The result is a control policy defined over a much larger fraction of the free configu-

ration space than would be possible for a single conventional controller. Ayanian and

Kumar [9] applied sequential composition to MPP by constructing controllers directly

in the joint configuration space of the system [10, 11], producing a prepares graph

which grew exponentially with the number of robots. Ayanian and Kumar [9] used

A* to find a path in the prepares graph, which limited the approach to small numbers

of robots. While not using the language of sequential composition, Ulusoy et al. [185]

159

describe an approach for using Linear Temporal Logic (LTL) solvers to coordinate

robots executing single robot primitives, explicitly allowing for the primitives to be

controllers. They also introduced region automata to handle primitives with different

durations. However, the computational cost of the LTL solver limited the approach

to a system of 2 robots.

In this chapter, we apply M* to multirobot sequential composition to facilitate

robust planning for systems containing large numbers of robots. Our basic approach

is to compute a prepares graph for each robot, then take the direct product to define

a joint prepares graph for the system as a whole. M* can then be used to find a path

in the joint prepares graph which assigns a sequence of single robot controllers to

each robot. However, the time a robot takes to execute a controller varies with the

geometry of the domain of the controller and random perturbations. We introduce

the time augmented joint prepares graph, an adaptation of region automata [185],

which captures differences in average execution time for different controllers. We deal

with stochastic variations in execution time using UM* to explicitly reason about

uncertainty (Chapter 6).

7.1 M* for multirobot sequential composition

Consider system of n robots ri, i ∈ {1, . . .}. Robot ri has a configuration space Qi

and dynamics F i : Qi × U i → T Qi, where U i is the space of control inputs of ri and

T cspacei is the tangent bundle of Qi that contains the configuration velocities. A

controller for ri is a mapping Cik : Qi → Dik where Dik ⊂ Qi
free is the domain of the

controller in the free configuration space. The flow of the controller ΦCik : Qi×R→ Qi

maps the configuration qi of ri at time zero to the configuration it would occupy

ΦCik (qi, t) at time t under the influence of controller Cik.

Each controller Cik has a goal set Gik ⊂ Dik. The flow of valid controller takes every

160

point in its domain to the goal set in finite time

∀qi ∈ Dik ∃T ≥ 0 s.t ΦCik

(
qi, T

)
∈ Gi ∧ ∀t ∈ [0, T] ΦCik

(
qi, t
)
∈ Dik (7.1)

Note that by this definition ri executing Cik may leave Dik, but only by passing through

Gik.

Finally, we say that controller Cik prepares Ci`, k 6= `, if Gik ⊂ Di`, denoted Cik � Ci`.

Cik prepares itself only if Gik is an invariant set, i.e. once ri reaches Gik it will never

leave Gik without executing a different controller. We term the controllers that prepare

a given controller Cik the preparing controllers of Cik. The prepares relations between

a set of controllers Ci for a robot ri are described by the prepares graph Gi, where

the vertex set of Gi is Ci. An edge connects Cik to Ci` if and only if Cik � Ci`.

The joint prepares graph of the multirobot system is the direct product of the

individual prepares graphs G =
∏n

i=1G
i, with vertex set V and edge set E. Each

vertex vk in G is associated with a tuple of controllers (C1
k , . . . , Cnk), which assigns

ri to execute Cik. Let vf be associated with a tuple of controllers that stabilize the

robots at their ultimate goal states.

Specifying the vertex vs that represents the initial state of the system requires

care. Assume the robots start at an initial joint configuration qs ∈ Q. Each robot

may start in the domain of multiple controllers. Thus, the system could start from

one of exponentially many vertices in the joint prepares graph, all of which would have

to be added to the open list of M*. To allow M* to efficiently construct the optimal

set of initial controllers, we define an initial vertex vs that is associated with a tuple

of dummy controllers
(
C1

dummy, . . . , Cndummy

)
. Cidummy prepares every controller Cik ∈ Ci

for which qis ∈ Dik. M* can then intelligently select the proper set of controllers to

execute first.

M* can then be used to compute a path in the joint prepares graph that describes

161

the sequence of controllers to be executed by each robot.

7.2 Synchronization Issues

The construction of the joint prepares graph embodies an assumption that each robot

will transition from one controller to its successor at the same time, which would imply

that every controller takes the same amount of time to be executed by each robot.

However, differences in controller geometry and execution errors ensure that the time

required to traverse a controller, termed the duration of a controller, not only differs

between controllers, but is actually a random variable. There are several reasons for

differences in duration

1. Controllers have domains of different shapes and command different velocities,

and thus require different amounts of time to traverse (Figure 7.3a).

2. The goal set of different preparing controllers will be at different distances from

the goal set of the controller. Therefore, the duration of a controller will depend

upon the preparing controller (Figure 7.3b).

3. The time a robot requires to execute a controller from different configurations

within the goal set of the same preparing controller will be different (Figure

7.3c).

4. A robot will take different amounts of time to execute the same controller from

the same starting point due to environmental perturbations, noise in position

estimates, and other stochastic influences (Figure 7.3d).

Reasons 1 and 2 are deterministic in that their contribution to the duration is due

solely upon the geometry of the controller and its preparing controllers2. In the next

section, we specialize region automata [185] for sequential composition, producing

2Assuming that the goal set of each controller is small

162

(a) Different controller geometries (b) Different preparing controller

(c) Different positions in goal set of
preparing controller

(d) Different path due to noise and mod-
eling errors

Figure 7.3: Larger controllers will typically have longer durations than smaller con-
trollers (a). The duration of a single controller will depend on the preparing controller
(b) and where in the goal set of the preparing controller the robot starts executing
the controller (c). Finally, perturbations of the trajectory during execution ensure
that the duration will not be exactly the same even if the robot starts twice in exactly
the same spot (d)

163

the time augmented joint prepares graph which accounts for geometric variations in

duration.

Reasons 3 and 4 are inherently stochastic. Reason 3 is inherent to the fact that

sequential composition reasons about controllers, rather than specific robot configu-

rations, while 4 is inherent to non-ideal robots. We address stochastic uncertainty by

planning paths for the system using UM* (Chapter 6), which explicitly reasons about

uncertainty.

7.3 Time Augmented Prepares Graph

The time augmented joint prepares graph is intended to account for deterministic

differences in the duration of controllers (Section 7.2). To do so, the time augmented

joint prepares graph tracks how long each robot has spent in each controller, and

only assigns new controllers to robots in the order that they complete their assigned

controllers. To this end, we define the nominal duration tnom : Ci × Ci → R+ over

the set of all deployed controllers Ci for ri, where tnom (Cik, Ci`) is the time that ri is

expected to require to execute controller Cik ∈ Ci when prepared by Ci`. The time

augmented joint prepares graph is equivalent to the region automata of [185], but

specialized for sequential composition.

A vertex vk in the time augmented joint prepares graph is a set of ordered pairs

(Cik, tik), where Cik ∈ Ci is the controller assigned to ri, and tik is the expected time-to-go

before the robot will complete executing Cik. The neighbors of vk assign new controllers

to the robots that will finish their current controllers first, and update the time-to-

go for the robots that will take longer to finish executing their assigned controllers.

More specifically, denote the minimal time-to-go for any robot as δtk = mini t
i
k. The

164

neighbors of vk are then

neighbors(vk) =

v`
∣∣∣∣∣ vi` = (Cim, tnom (Cim, Cik)) tik = δtk ∧ Cik � Cim
vi` = (Cik, tik − δtk) tik > δtk

 . (7.2)

An example of the time augmented joint prepares graph is given in figure 7.4. The

controllers for robot r1 have the prepares relation A � B, and the controllers for r2

have the relation C � D � E (Figure 7.4a). Controllers A, B, and E have a nominal

duration of 2 units. Controllers C and D have a nominal duration of 1 unit. The

resulting joint prepares graph is given by (A,C) → (B,D) → (B,E) (Figure 7.4b).

The transition (A,C) → (B,D) is not feasible, because A takes longer to execute

than C. The time augmented joint prepares graph avoids such problems. The initial

vertex v1 is given by ((A, 2), (C, 1)). Robot r2 will finish executing C in 1 unit of

time, while r1 requires 2 units of time to execute A. Therefore δt1 = 1. According to

equation 7.2, the neighbor of v1 is v2 = ((A, 1), (D, 1)). Controller D is expected to be

executed by r2 in 1 unit of time. Controller A requires 2 units of time to be executed,

but r1 has already executed A for 1 unit of time. Therefore, r1 has a time-to-go of

1 unit. Thus, δt2 = 1, with r1 and r2 finishing their current controllers at the same

time. Therefore, the out-neighbor of v2 is v3 = ((B, 2), (E, 2)).

From the algorithmic point of view, M* can plan paths in the time augmented

joint prepares graph without modification. However, the existing implementations of

M* assume that the graph describing the full system is the product of single robot

graphs, which is not the case for and the time augmented joint prepares graph or

region automata [185]. An alternative to the time augmented joint prepares graph

that can be used directly by existing M* implementations is the Approximate Time

Augmented Joint Prepares Graph (ATAJPG), which represents the execution of con-

trollers using a fixed temporal resolution. The ATAJPG is the direct product of single

165

(a) Single robot controllers

(b) Joint prepares graph

(c) Time augmented joint prepares graph

Figure 7.4: (a) Robots r1 and r2 have different controller sets and prepares graphs.
The larger controllers A, B, and E have a nominal duration of 2, while the smaller
controllers C and D can be executed in 1 time unit. (b) The joint prepares graph is
the direct product of the single robot prepares graphs, and thus ignores differences in
nominal duration of the controllers. The transition (A,C) → (B,D) is not realistic,
because A takes longer to execute than C. (c) The time augmented joint prepares
graph is formed by augmenting each controller with a time-to-go.

166

Figure 7.5: Example of the approximate time augmented prepares graph with a time
resolution of 1. The nominal duration of controller C is 5 when prepared by controller
A and 3 when prepared by controller B.

robot approximate time augmented prepares graphs, in which each controller is repre-

sented by a number of vertices determined by its largest nominal duration, recalling

that the nominal duration of a controller depends upon its preparing controller. If

a controller has a maximal nominal duration of 5 seconds and the time resolution is

1 second, then the controller is represented in the approximate time augmented pre-

pares graph by 5 vertices (Figure 7.5). The vertices representing a single controller

are arranged in a chain, and annotated with the time to go. The last vertex associ-

ated with controller Cik (smallest time to go) is connected to the vertices representing

controllers Ci`, Cik � Ci` with a time-to-go equal to tnom (Ci`, Cik).

The advantage of the ATAJPG is that it is a drop-in replacement for the joint

prepares graph in M* implementations. The disadvantage is that the ATAJPG will

be up to a constant factor larger than the time augmented joint prepares graph,

where the constant factor is the maximal number of vertices used to represent a

single controller. The extra vertices correspond to situations where no robot is at the

last vertex representing its current controller, and thus have only a single successor

167

(a) (b)

Figure 7.6: Parallax Scribbler robot as used in experiments (a). To simplify control
design, the body frame was placed at the front of the robot (b). The scribbler can
then be treated as a fully actuated robot in position with heading left uncontrolled.

in the ATAJPG. The extra vertices do not contribute to the branching factor of the

graph, so running M* on the ATAJPG should take a constant factor more time then

running M* on the time augmented joint prepares graph.

7.4 Implementation

Sequential composition addresses issues of control in the face of uncertain dynamics

and environmental noise, which makes experimental validation particularly useful.

Logistical constraints limited the number of physical robots that could be run simul-

taneously and the size of the workspace. Experiments were therefore run in a mixed

reality framework, combining physical and simulated robots to increase the number

of agents and the size of the workspace.

168

7.4.1 Scribbler robots

Parallax Scribbler robots provided by Manuela Veloso served as the test bed. The

Scribbler robot is a differential drive robot that is nearly circular in shape (Figure

7.6a), with a radius of 7.2 cm. Each Scribbler robot was equipped with a Parani

SD100 Bluetooth serial adapter providing a 9600 baud serial connection to an offboard

computer. The Scribbler robots have minimal onboard computation and no odometry

sensors, requiring offboard localization and control. Each robot was programmed to

obey motor speed commands received over the Bluetooth link.

The Scribbler robots showed a significant variation in performance due to their

age. However, the four best robots had similar performance, with a maximum speed of

0.3 meters per second (m/s), and a maximal angular velocity of 3.5 radians per second

(rad/s). Note that an ideal differential drive robot with the radius and maximal linear

velocity of the Scribblers would have a maximal angular velocity of 4.2 rad/s. The

Scribblers were observed to have difficulty turning counterclockwise, presumably due

to asymmetries in the drive train, which may account for the reduced average angular

velocity.

According to the unicycle model, a differential drive robot can directly control

its angular ξ̇θ and longitudinal ξ̇x velocities. The main emphasis of this thesis is on

planning for multiple robots, so to simplify controller design we follow [10] and place

the body frame at the front of the robot, instead of directly between the wheels as in

the unicycle model (Figure 7.6b). With the offset body frame the Scribbler can be

treated as a fully-actuated planar robot, leaving θ uncontrolled. The kinematics of

the robot are then given by

ξ̇x
ξ̇y

 = ρwheel

1 1

1 −1


ω1

ω2

 (7.3)

169

2r

Figure 7.7: Control of a differential drive robot can be simplified by placing the body
frame at the front of the robot, and only controlling x and y. However, this means
that when the body frame of the robot is at a given position, the robot might occupy
any points in a circle that is twice the diameter of the robot.

where ρwheel is the radius of a wheel and ω1 and ω2 are the angular velocities of the

left and right wheels, respectively. A velocity field defined in the world frame can be

converted into a controller for the robot by

ω1

ω2

 =
1

2ρwheel

1 1

1 −1


 cos (θ) sin (θ)

− sin (θ) cos (θ)


νx (x, y)

νy (x, y)

 (7.4)

where νx (x, y) (respectively νy (x, y)) is the commanded world velocity in the x (re-

spectively y) direction when the body frame of the robot is at (x, y, θ). The downside

of this model is that the robot extends up to 2 radii from the origin of the body frame

and does not actively control θ, effectively doubling the required clearance to avoid

collisions [10] (Figure 7.7).

170

Robot Manager
Physical Manager Sim Manager

Control Manager
Planner

Vision Positions

Positions Velocity Commands

Positions Motor Commands

Motor Commands

SimulationReality

Figure 7.8: Architecture for experiments.

7.4.2 Architecture

The limited sensing and computational resources of the Scribbler robots required the

use of a centralized localization and control scheme. Furthermore, limitations in the

size of the test environment and the number of available robots led to a mixed-reality

approach, utilizing both real and simulated robots. The high level architecture con-

sisted of a robot manager and a control manager (Figure 7.8). The robot manager

provided the control manager with estimates of the position of each robot, and con-

verted the world frame velocity commands of the control manager into motor com-

mands. The control manager was responsible for planning, determining the active

controller for each robot and computing commands of each robot’s active controller.

The robot manager was a wrapper around two sub-components: the physical

robot manager and the sim manager, responsible for communicating with the real

and simulated robots respectively. The physical robot manager was responsible for

171

establishing serial communications over Bluetooth with each robot, sending motor

controls to the robots via Bluetooth, and running computer vision to localize the

robots using an overhead camera. An Aruco tag was placed on the top of each robot

(Figure 7.6a) to allow an overhead camera to localize the robots using the Aruco

computer vision library [68]. In the lab, localization was precise to within 1 mm and

1/100 of a radian, which when combined with the relatively low performance of the

Scribblers meant no filtering was necessary. The sim manager interfaced directly with

the simulator, reading out the position of the robots and passing in commanded motor

speeds. The robot manager hid whether a given robot was physical or simulated from

the control manager: the interface for providing position estimates and receiving

commanded world frame velocities was the same in either case.

The control manager computed a joint path for the multirobot system using M*

or UM* when explicitly considering uncertainty. The joint path was split into sepa-

rate paths for each individual robot, and executed separately. The control manager

supported optional synchronization when running a plan computed by M* by slowing

down robots which are ahead of other robots by ση, where σ is the synchronization

factor and η is the number of steps in the plan the robot is ahead of the slowest robot.

7.4.3 Controller Design

Controllers were defined on convex, polygonal domains in the workspace following the

work of Habets and Van Schuppen [76]. An affine vector field over a triangular domain

is fully defined by the value of the field at the vertices of the triangle. A continuous,

piecewise-affine field can be generated over a convex polygon by triangulating the

polygon and specifying the value of the field at each vertex of the polygon. For the

vector field to define a valid controller for use in sequential composition, the trajectory

of any particle that flows along the vector field starting from within the domain must

172

Figure 7.9: Example of controller design. The goal face is the face furthest to the
right. The gray lines indicate the internal triangulation of the polygonal domain.

leave the polygon through a specified goal face after finite time, and must not leave

the domain of the controller through any other face.

Consider the case of designing a controller whose domain is a convex m-gon, where

vk denotes the coordinates of the kth vertex. Let n̂k denote the outward-pointing

unit normal vector for the face connecting vertex vk to vk+1, where all arithmetic is

mod m. Without loss of generality, assume that the goal face is face 0. The piece-wise

affine vector field defined on a triangulation of the polygon is a valid controller if the

value of the vector field uk at each vertex vk satisfies Habets and Van Schuppen [76]

n̂0 · uk > 0

n̂(2k−1)%m · uk ≤ 0

k ∈ {0, 1} (7.5)

n̂0 · uk > 0

n̂k−1 · uk ≤ 0

n̂k · uk ≤ 0

i ≥ 2 (7.6)

Roughly, every uk must have a component pointing out of the goal face, and an inward

component relative to every adjacent non-goal face [76]. We choose uk by running a

linear program that finds the unit vector that satisfies (Equation 7.5) and maximizes

173

the objective function

c (ui) =


n̂0 − n̂(2k−1)%m∣∣n̂0 − n̂(2k−1)%m

∣∣ · ui i ∈ {0,m− 1}

v̄ − vk
|v̄ − vk|

· ui i ∈ {1, . . . ,m− 2}
(7.7)

where v̄ denotes the centroid of the polygon. At vertices not adjacent to the exit face,

the objective function rewards controllers that move a robot towards the centroid of

the domain as quickly as possible. At vertices adjacent to the exit face, the objective

function balances the need to move robots near the adjacent non-exit face into the

interior of the polygon with the need to move robots out through the exit face. We also

choose to rescale the resulting piecewise-affine vector field to have constant magnitude

(Figure 7.9).

Goal controllers stabilize a robot at the centroid of the domain using linear at-

tractive fields with magnitude proportional to the distance from the centroid. Goal

controllers also provide the robots with the ability to wait in place. Normally a robot

ri will transition from Cik to the next controller in its plan Cik+1 as soon as ri enters

Dik+1. However, this would effectively prevent a robot from executing a goal controller

multiple times in a row to wait for prolonged period of time, as this would imply that

Dik = Dik+1, so the robot would immediately skip over any repetitions of the goal

controller in the plan. Instead, each goal controller is explicitly assigned a nominal

duration. When a robot begins executing a goal controller it starts a clock and will

not transition to the next controller in its plan until it has spent time at least equal

to the nominal duration in its current controller. If the next step in the plan calls

for the robot to wait again at the same goal controller, the robot resets its clock and

waits for another fixed period of time.

174

A B

Figure 7.10: Consider a controller defined in square A whose goal face is shared with
square B. The controller in A prepares every controller whose domain is B except for
the controller in B whose goal face is shared by square A.

7.5 Experiments

We mounted a 720p webcam on the ceiling of the lab, which allowed Scribblers to

be localized in a region 1.6x1.2 meters. Controllers were deployed in the visible

region by covering the workspace with squares 0.15 meters on a side, slightly more

than one Scribbler diameter. Up to five controllers were deployed in each square,

four controllers each using a different face of the square as a goal face, and one goal

controller which allows the robot to wait in place, which is especially important if the

square contains the robot’s goal configuration. Controllers were only constructed if

they would prepare at least one other controller, i.e. the goal face of the controller

must be shared with at least one other square. A controller prepares every controller in

the square that shares its goal face, except for the controller which would immediately

return the robot to its starting square (Figure 7.10). The simulated robots occupied

a space twice as large, centered on the visible region. All controllers except goal

controllers were set to command a constant speed of 0.12 m/s.

Controllers are deemed to interfere if they share a vertex. This guarantees a

clearance of two Scribbler radii between the origins of the body frames of the robots.

To guarantee that no collisions occur a clearance of four radii would be required.

Unfortunately, the workspace for the physical robots is not large enough to require a

175

Figure 7.11: Course used to calibrate the robots and simulation. The physical and
simulated robots were each driven through 10 laps of the course. Each box is the
domain of one or more controller in the calibration path. The arrows represent the
vector field of the active controller.

CA

B

Figure 7.12: Controller C is labeled as a straight controller when prepared by con-
troller A and as a turn controller when prepared by controller B.

four radii clearance. From a practical standpoint, we have never observed a collision

between robots that were executing controllers that did not share a vertex.

To calibrate the simulation and estimate the duration of each controller we ran

every physical robot and the simulated robot through 10 laps of a calibration course

(Figure 7.11). Controllers were divided into two categories depending on the relative

geometry of the controller and its preparing controller: straight and turn. A controller

is labeled a straight controller if its goal face is parallel to the goal face of its preparing

controller, and is otherwise labeled as a turn controller (Figure 7.12). Note that the

same controller may be assigned both labels when prepared by different controllers.

176

0.4 0.6 0.8 1.0 1.2 1.4
Time to execute (s)

0
20
40
60
80

100
120
140

N
um

be
r

of
 o

bs
er

va
tio

ns

(a) Physical robot: Straight

0.4 0.6 0.8 1.0 1.2 1.4
Time to execute (s)

0

20

40

60

80

100

120

N
um

be
r

of
 o

bs
er

va
tio

ns

(b) Physical robot: Turn

0.4 0.6 0.8 1.0 1.2 1.4
Time to execute (s)

0

20

40

60

80

100

120

N
um

be
r

of
 o

bs
er

va
tio

ns

(c) Simulated robot: Straight

0.4 0.6 0.8 1.0 1.2 1.4
Time to execute (s)

0
5

10
15
20
25
30
35
40
45

N
um

be
r

of
 o

bs
er

va
tio

ns

(d) Simulated robot: Turn

Figure 7.13: Histogram of the time required for a physical and simulated robot to
execute a turn or a straight controller

The physical robots took 0.85 ± 0.12 seconds to execute a straight controller, and

0.87± 0.16 seconds. Covering 0.15 meters in 0.88 seconds suggests that the physical

robots were traveling at an average of 0.17 m/s, instead of the commanded 0.12 m/s.

We therefore sped up the simulated robots by a factor of 1.4, which led the simulated

robots to executing a straight controller in an average of 0.88 ± 0.03 seconds and a

turn controller in an average of 0.59± 0.10 seconds. The simulated robots were able

to execute the turn controllers in less time because they were able to cut the corner to

a degree dependent upon their position when entering the controller, explaining the

increased variance. The physical robots were able to cut the corner on turn controllers

as well, explaining the lower minimal time to execute a turn controller compared to

177

a straight controller. However, the physical robots are much less responsive than the

simulated robots, and so tended to overshoot while executing the diagonal section of

the path, leading to a very high variance.

M* and ATAJPG

We choose to use a time resolution of 0.3 seconds for the ATAJPG, and set the nominal

duration of each controller to the mean duration for robots with the same duration,

recalling that the nominal duration of a controller depends upon its preparing con-

troller, and round to the nearest whole number of vertices. The nominal duration for

physical robots executing straight and turn controllers and for the simulated robots

executing straight controllers was 0.9 seconds, and so these controllers were repre-

sented by three vertices. The simulated robot took approximately 0.6 seconds to

execute a turn controller, and so those were represented by two vertices.

UM*

To combine sequential composition and planning with uncertainty, we used UM* and

the delay model from section 6.4.1. We used a constant delay probability, with spe-

cialized delay probabilities for different controllers left as future work. For the delay

model from section 6.4.1 to work, the nominal duration must be the minimal time in

which a controller can be executed, which for the physical robots is approximately 0.6

seconds for both the straight and turn controllers (Figure 7.13). The delay probability

must be chosen so that the resulting belief distribution for controller execution time

will best match the observed distribution of controller durations. Assume a controller

is represented by n vertices in the joint prepares graph or ATAJPG, where each vertex

represents δt seconds of controller execution. We wish to find the probability that a

robot will take k steps to execute the controller, for a duration of kδt, when the robot

has a Pdelay probability of delaying at each step. This is equivalent to the probability

178

that the robot delays k− n times in the first k− 1 steps, followed by not delaying at

the final step, which is given by

P (k) =

k − 1

k − n

P k−n
delay (1− Pdelay)n−1 (1− Pdelay) (7.8)

=

k − 1

k − n

P k−n
delay (1− Pdelay)n (7.9)

Equation 7.9 is the negative binomial distribution which has a mean value [137]

k̄ =
n

1− Pdelay

(7.10)

Given a fixed nominal duration tnom, n = tnom

δt
. Therefore, for a fixed mean duration

t̄ = k̄δt

k̄δt =

(
tnom

δt

1− Pdelay

)
δt (7.11)

t̄ =
tnom

1− Pdelay

(7.12)

which is independent of the number of vertices used to represent a controller. Thus

given an observed nominal duration and mean duration, the appropriate delay prob-

ability Pdelay is

Pdelay =
t̄− tnom

t̄
. (7.13)

For straight controllers with tnom = 0.6 and t̄ = .85, (Equation 7.13) implies Pdelay =

0.29, while for turn controllers with tnom = 0.6 and t̄ = 0.87 Pdelay = 0.31. Therefore

we use Pdelay = 0.3.

179

UM* and the ATAJPG

Our current UM* implementation does not support variable delay probabilities, so we

must use Pdelay = 0.3 for all controllers. As mentioned earlier, the minimum time for

a real robot to execute any controller is approximately 0.6 seconds. A simulated robot

takes a minimum of approximately 0.4 seconds, which with Pdelay = 0.3 implies an

mean duration of 0.6 seconds which closely matches the observed value. A simulated

robot executes a straight controller in a minimum of 0.8 seconds. However, with

a fixed delay probability, this would correspond to a mean duration of 1.1 seconds,

which is well above the observed mean. For the purposes of UM* planning on the

ATAJPG we treat simulated robots as being able to execute a straight controller in

a minimum of 0.6 seconds, like the real robots. The time resolution for the ATAJPG

was set to 0.2 seconds per vertex, which meant that a simulated robot executing

a turn controller would be represented by 2 vertices, and all other controllers by 3

vertices.

7.5.1 Test Cases

UM* cannot handle as many robots as M* so we tested two problems, one involving

six robots and the other eight robots (Figure 7.14). The initial and goal configurations

of the robots were defined by two rectangles; the inner rectangle lying entirely within

the field of view of the camera, and the outer rectangle surrounding the inner rectangle

outside the field of view. In the eight robot case, physical robots were placed at each

vertex of the inner rectangle, and simulated robots were placed at the vertices of the

outer rectangle. The goal configuration for both types of robots was the vertex directly

opposite the robot’s starting vertex on the appropriate rectangle. This induced a

double ’X’ pattern, leading to mutual interaction between all robots. In the six robot

case one physical and one simulated robot were omitted.

180

(a) Eight robot problem (b) Six robot problem

Figure 7.14: Initial configuration of the eight (a) and six (b) robot problems. The
empty blue circles with a red number are the simulated robots. Robots seek to move
to the diametrically opposite position. The squares are the domains of the controllers
used in one solution to the problem.

The problems described here are difficult. Each robot effectively occupies a space

equal to two squares (as every pair of robots must be separated by an empty square).

The camera’s field of view is only 11 squares by 8 squares, and all robots seek to pass

through this region. In the context of chapter 3 this would be roughly equivalent

to solving a problem where 6 or 8 robots must pass through an area that is 5x4

(remember that each robot occupies 2 squares), which is a rather high density.

M*

We first describe the results when using M* as the planner and not explicitly consid-

ering uncertainty. We tested three conditions; planning on the joint prepares graph

with a synchronization factor of 0.3, planning on the joint prepares graph with no

synchronization, and planning on the ATAJPG with no synchronization. We ran each

condition three times, however the results for each trial were very similar so we only

plot results for the first trial. The plans generated by M* would always be safe if

executed exactly as planned by the robots. To track how closely the robots adhere

181

the plan we plot the minimal distance between the centers (not body frames) of the

robots and the controller indices of each robot as a function of time. Recall that a

sequential composition plan assigns each robot a sequence of controllers. The con-

troller index of a robot is the index of the controller the robot is currently executing

within the planned sequence of controllers.

When M* plans of the joint prepares graph and robots are run with a synchro-

nization factor of 0.3 the robots remain almost perfectly synchronized (Figure 7.15a),

and as a result stay a safe distance from one another. When the synchronization is

removed, the simulated robots execute their plans significantly faster than the phys-

ical robots (Figure 7.15b). The resulting synchronization errors leads to one grazing

collision between a real and simulated robot at 7 seconds and a serious collision where

a simulated robot almost completely overlapped a real robot for several seconds start-

ing 10 seconds into the run. We believe that the difference in speed comes from the

simulated robot being able to execute turn controllers more quickly than physical

robots, and planning on the joint prepares graph implicitly assumes that the time

required to execute each controller is the same. The ATAJPG accounts for determin-

istic differences in execution time for different controllers, including whether they are

executed by real or simulated robots. As a result, even without explicit synchroniza-

tion the robots are almost as coordinated when executing a plan computed in the

ATAJPG (Figure 7.15c) as they were when executing a plan computed on the joint

prepares graph with active synchronization (Figure 7.15a). We note that the physical

robots showed great consistency; the paths followed in all three replicates of a given

trial were nearly identical which likely contributed to the efficacy of planning on the

ATAJPG.

Running M* on the six robot test case (Figure 7.14b) produced qualitatively

similar results. When plans were generated in the joint configuration graph and no

synchronization was applied, the simulated robots moved through their plans more

182

0 5 10 15 20 25 30 35
Time (s)

0
5

10
15
20
25
30
35

C
on

tr
ol

le
r

in
de

x

Controller Index

Real
Sim

0 5 10 15 20 25 30 35
Time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
in

im
um

 D
is

ta
nc

e
(m

)

Minimum Center-Center Distance

(a) 8 robot M* planning on the joint prepares graph with 0.3 synchronization factor

0 5 10 15 20 25
Time (s)

0
5

10
15
20
25
30
35

C
on

tr
ol

le
r

in
de

x

Controller Index

Real
Sim

0 5 10 15 20 25
Time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

M
in

im
um

 D
is

ta
nc

e
(m

)

Minimum Center-Center Distance

(b) 8 robot M* planning on the joint prepares graph with no synchronization

0 5 10 15 20 25 30
Time (s)

0
10
20
30
40
50
60
70
80
90

C
on

tr
ol

le
r

in
de

x

Controller Index

Real
Sim

0 5 10 15 20 25 30
Time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

M
in

im
um

 D
is

ta
nc

e
(m

)

Minimum Center-Center Distance

(c) 8 robot M* planning on the ATAJPG with no synchronization

Figure 7.15: The controller index and minimum distance between any two robots for
the eight robot trial (Figure 7.14b) with M* planning. The controller index is the
index of the controller in a robot’s plan that the controller is executing at a given
time. If the robots were perfectly synchronized, they would always have the same
controller index. If robots are closer together than 2 Scribbler radii (red dashed line)
they are in collision.

183

Algorithm Robots Planning Time (s)
M* 8 0.4
M* ATAJPG 8 4.5
M* 6 0.2
M* ATAJPG 6 0.8
UM* 6 74.9

Table 7.1: Time to compute plans for multirobot sequential composition experiments

quickly, leading to a robot-robot collision (Figure 7.16b). When path execution was

synchronized (Figure 7.16a) or planning was conducted on the ATAJPG and execution

was not synchronized (Figure 7.16c) coordination between the robots was much better

and no collisions occurred.

The time required to compute the plan for each problem case is given in table 7.1.

The ATAJPG for M* contains approximately three times as many vertices as the joint

prepares graph, so we would expect M* to take three times as long to find a path

in the ATAJPG as the joint prepares graph. For the six robot problem, planning

on the ATAJPG took four times as long as on the joint prepares graph, which is

approximately as expected. However, planning on the ATAJPG took M* 10 times

longer than planning on the joint prepares graph for the eight robot case. This can

be explained by the fact that M* identified and avoided a significant collision while

planning on the ATAJPG that was not found when planning on the joint prepares

graph, which would have increased the planning time.

UM*

The comparatively high robot density caused significant problems for planning with

uncertainty, as UM* is significantly less able to deal with large numbers of robots

than M* (Figure 6.6a). Furthermore, the delay probability of 0.3 is significantly

higher than the delay probability used in chapter 6. Taken together, this means

that the belief distributions will be relatively larger. For UM* to solve the 6 robot

184

0 5 10 15 20 25 30
Time (s)

0

5

10

15

20

25

30

C
on

tr
ol

le
r

in
de

x

Controller Index

Real
Sim

0 5 10 15 20 25 30
Time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
in

im
um

 D
is

ta
nc

e
(m

)

Minimum Center-Center Distance

(a) 6 robot M* planning on the joint prepares graph with 0.3 synchronization factor

0 5 10 15 20 25
Time (s)

0

5

10

15

20

25

30

C
on

tr
ol

le
r

in
de

x

Controller Index

Real
Sim

0 5 10 15 20 25
Time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
in

im
um

 D
is

ta
nc

e
(m

)

Minimum Center-Center Distance

(b) 6 robot M* planning on the joint prepares graph with no synchronization

0 5 10 15 20 25 30
Time (s)

0
10
20
30
40
50
60
70
80
90

C
on

tr
ol

le
r

in
de

x

Controller Index

Real
Sim

0 5 10 15 20 25 30
Time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
in

im
um

 D
is

ta
nc

e
(m

)

Minimum Center-Center Distance

(c) 6 robot M* planning on the ATAJPG with no synchronization

Figure 7.16: The controller index and minimum distance between any two robots for
the six robot trial (Figure 7.14b) with M* planning. The controller index is the index
of the controller in a robot’s plan that the controller is executing at a given time. If
the robots were perfectly synchronized, they would always have the same controller
index. If robots are closer together than 2 Scribbler radii (red dashed line) they are
in collision.

185

0 5 10 15 20 25 30
Time (s)

0

10

20

30

40

50

B
el

ie
f i

nd
ex

Belief Index

Real
Sim

0 5 10 15 20 25 30
Time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

M
in

im
um

 D
is

ta
nc

e
(m

)

Minimum Center-Center Distance

(a) 6 robot UM* planning on the joint prepares graph with no synchronization

Figure 7.17: The controller index and minimum distance between any two robots for
the six robot trial with UM* planning. If the robots were perfectly synchronized,
they would always have the same controller index. If robots are closer together than
2 Scribbler radii (red dashed line) they must be in collision.

problems, the belief distributions had to be pruned aggressively, removing any state

whose probability mass was below 0.1, which is known to reduce planning accuracy

(Figure 6.4).

UM* plans a sequence of beliefs rather than a sequence of controllers, where each

belief is a probability distribution over robots. We therefore plot the index of the

current most likely belief for each robot to assess coordination between the robots

(Figure 7.17). Although the coordination was not as good as the M* results with

synchronization or with planning on the ATAJPG, the path was still safely executed,

thanks to UM* explicitly accounting for variation in execution time of controllers. The

time required to execute the path was approximately the same as the time required

to perform the M* path planned on the ATAJPG, indicating that no unreasonable

diversions were generated.

Finding a path in the joint prepares graph took UM* 75 seconds, when M* was able

to find a solution in 0.2 seconds, which indicates planning with uncertainty is much

more difficult on the chosen test case. UM* failed to find a path in the ATAJPG even

when given 20 minutes. Each controller may be represented by up to three vertices in

186

ATAJPG. Thus for a belief in the ATAJPG to represent the distribution of the robot

in the workspace with the same accuracy, its support must cover three times as many

vertices in the ATAJPG as in the joint prepares graph (i.e. the pruning threshold must

be a third of its value for planning in the joint prepares graph). Profiling indicates

that computing the impact of collisions on the belief distribution took about half the

planning of the planning time. Our collision checking code is quadratic in size of the

support of the belief distributions. Given that the ATAJPG is approximately three

times the size of the joint prepares graph, and collision checking would take nine times

as long, we might expect UM* to take 27 times longer to find a path in the ATAJPG,

even if no additional collisions were found. However, UM* could not find a solution

in the ATAJPG even when the pruning threshold was set at 0.1, and thus the support

of the belief contained the same number of vertices, but covered 1/3 of the area in

the workspace as planning in the joint prepares graph. Our best explanation is that

UM* search on the ATAJPG found a collision that was very hard to resolve, causing

failure of the planner.

7.6 Conclusions

In this chapter, we showed that M* can be used to enable combined planning and

control of multiple robots using the sequential composition framework. We adapted

region automata for to the multirobot sequential composition framework to address

deterministic differences in the duration of controllers, producing the time augmented

joint prepares graph. To allow direct reuse of existing implementations of M* we show

that the time augmented joint prepares graph can be approximated as the direct

product of single robot approximate time augmented prepares graphs, producing

the ATAJPG. We then describe how UM* can be applied to multirobot sequential

composition to account for stochastic differences in execution time.

187

We validate our results on experiments involving up to eight agents, of which four

were physical robots and four were simulated robots. M* was able to produce plans

that could be safely executed without centralized synchronization by planning in the

ATAJPG. UM* was also able to compute plans that could be safely executed without

centralized synchronization, but only for a simplified 6 robot problem. However, UM*

was unable to find plans in the ATAJPG even in the six robot case.

The robots used in these experiments proved very consistent; each test case was

run three times and the resulting trajectories were qualitatively the same each time.

We believe this contributed significantly to the effectiveness of the M* planning in the

ATAJPG in comparison to UM*. We also suspect that as a robot executed multiple

controllers, differences in execution time tended to cancel out, and thus we believe

we overestimated the effective uncertainty in the position of the robots. If true, this

would help explain the performance of UM*.

188

Chapter 8

Conclusions

The MPP problem deals with truly enormous spaces; realistic problems can be con-

structed where enumerating the possible actions that a system can take at even one

time step is not physically possible1. Such large problems can still be solved due

to the direct product structure inherent to the MPP problem. The direct product

structure arises from the fact that the joint configuration space is the product of

single robot configuration spaces, and the action set for the system as a whole is the

product of the action sets of the individual robots. Finally, the constraints are the

logical conjunction of the constraints on robots or pairs of robots. Taken together,

the direct product structure implies that a subset of robots can be identified that

are responsible for any given constraint violation, and the constraint can be resolved

by considering alternate paths for only the responsible robots. Exploiting the direct

product structure is what differentiates a true MPP algorithm from a planner that

just happens to be applied to a multirobot system.

MPP variants alter the direct product structure. The action set of the CPP prob-

lem deviates from the direct product structure at a small number of configurations,

1A 200 robot system on a four-connected grid such as those solved by inflated rM* in figure 3.8
has 5200 ≈ 10139 possible actions. The universe contains at most 10123 bits of information [113]

189

where the robots can form or dissolve teams. Even though the number of states with

non-product action sets is low, the necessary coupling between robots increases dra-

matically. The MPPU problem fundamentally lacks the direct problem of the MPP

problem, in that the result of a robot taking an action depends on the state and

action of all the other robots, to the extent that a robot can reach states as part of a

multirobot system it could not reach on its own. However in practice, the structure of

the MPPU problem is sufficiently close to a direct product that approaches developed

for the MPP can still be applied.

In this thesis, we developed a general framework for solving the MPP problem

called subdimensional expansion, which directly and explicitly exploits the product

structure of the MPP problem. Subdimensional expansion starts by constructing a

search space by planning for each robot individually, and then explores the search

space for a path that does not violate any constraints. When it encounters a constraint

violation, subdimensional expansion expands the search space by only considering

alternate paths for the robots which could actually resolve the constraint violation.

Both the construction of the low-dimensional search space and the identification of

a small subset of robots responsible for a given constraint violation are only feasible

due to the product structure of the MPP problem.

Subdimensional expansion is both flexible and efficient. Because subdimensional

expansion functions by defining a search space, it can be paired with the appropriate

underlying planner to allow rapid planning for robots with both many and few degrees

of freedom, and can alter its criteria for growing the search space to account for the

different dependencies between robots in variants of the MPP problem. Although

flexibility often costs efficiency, variants of M* are currently state-of-the art for finding

optimal and ε-suboptimal solutions to MPP on graphs2.

2The more recent work on enhanced CBS (ECBS) [15] can outperform inflated rM* using tight
bounds, but inflated rM* performs better with loose bounds. We also anticipate that inflated rM*
can be combined with ECBS in the same way ODrM* was combined with MA-CBS.

190

Appendix A

Notation

The notation in this thesis can get complex, as we deal with many similar objects

that describe different robots, or sets of robots. To make the notation more com-

prehensible, a standard format is employed. Superscripts are used to denote which

robots a given object describes, while subscripts are used to denote specific instances.

For instance, vik refers to the k’th vertex in the configuration graph of ri.

Given an object describing the system as a whole, for instance vk in the joint

configuration graph, adding a superscript refers to the state of a specific robot. Thus

vik would be the configuration graph vertex that describes the configuration of ri when

the system as a whole is the joint configuration described by vk.

The symbols i and j are reserved for short term indexing of robots, while k and `

are used to index specific instances of vertices in graphs, the collision set associated

with a vertex, etc. Then general rule is that subscripts are fixed within a paragraph,

but not over longer time scales. Thus if vk refers to the same vertex if it appears

twice in a single paragraph, but this does not imply that vk would still refer to that

same vertex in a later paragraph. Furthermore, if the same subscript appears next

to two different types of objects in the same paragraph, the objects are implied to be

191

related. For instance, Ck would be the collision set of vk.

192

Glossary

active graph (Gact()) The equivalent of the joint configuration graph when a specific
set of teams are active in CMS. Associated with a maximal incomparable subset of
V tm ∪ V gl. 89–91
active team (T act) The set of teams that are currently performing tasks. 89–94,
101, 103, 197
approximate time augmented prepares graph A variant of the prepares graph
where each controller is represented by a number of vertices corresponding to its
maximal nominal duration.. xii, 167, 187
associated robot (Cassoc) The robots that potentially collide with a threshold robot
at the current vertex or some explored successor. Used in UM*. 129, 130

backpropagation set The backpropagation set of a point q in the search space is
the set of all points for which the underlying planner has considered q as a possible
successor. 18, 19, 22–27, 34, 93, 130, 131

collision function 31
1) (Ψ : Q→ P(I)) A mapping from a point in the joint configuration space to the
set of robots that are involved in a collision at that configuration. 6
2) (Ψij : Ei × Ej → {0, 1}) A mapping that returns one if two robots would collide
if they simultaneously traverse a specified pair of edges, and zero otherwise. 135

collision set (C) The collision set of a point q is the set of robots involved in a
collision at some successor state of q in the search tree of M*. xv, 18–20, 22–27,
32–35, 37–40, 42, 43, 45–48, 57, 58, 60, 61, 65, 66, 89, 90, 92–94, 104, 128–132, 146,
191–195
complete A planning algorithm is complete if it is guaranteed in finite time to either
find a solution or prove that no solution exists. 11, 14, 29, 35, 36, 38, 42, 44, 45, 47,
50, 61, 79, 103, 106, 127, 154
configuration graph (Gi) A graph that represents the configuration space of some
system. Each vertex represents a state in the configuration space, and edges represent
valid transitions between states. 29, 30, 33, 45, 125, 135, 191, 195
conflict set (C) One of two parts of the extension of the collision set for use in CMS.
The conflict set of a vertex vk in the task augmented joint configuration graph is
the set of vertices in the task graph that correspond to teams that collided at some
successor of vk in the search tree.. 89, 90, 92–94, 96–102, 104, 105, 193, 194

193

conflict set element An element of the conflict set in rCMS. Each conflict set el-
ement is a set of task graph vertices corresponding to colliding teams. The coupled
sets of each conflict set element of a given vertex in the task augmented joint config-
uration graph must be disjoint (if not, the effected conflict set elements are merged.
102, 103, 105, 107, 194, 196
constraint manifold The submanifold of a configuration space which satisfies a set
of constraints. In this work, constraint manifold is a term of convinence, and can be
used to refer to subspaces which satisfy a set of constraints, but are not manifolds..
87, 195
coupled set (Γ) One of two parts of the extension of the collision set for use in CMS.
The set of teams that need to perform coupled planning given a particular conflict
set. 89, 90, 92–104, 194

disabled A disabled team cannot collide with other teams, and cannot move or incur
cost, implying that its contribution to the f-value of a vertex is constant. As a result,
a disabled cannot influence the path of any other team. rCMS uses disabled robots to
form subproblems without having to form new CPP problems that contain a variable
number of robots. 102, 103, 194
dissolving team The dissolving teams of a transition action are the set of teams
that combine to form a new set of teams, the forming teams. 82, 83, 85, 92–94, 194
duration Random variable describing the time required for a robot to reach the goal
set of a controller C from the goal set of the preparing controller. 162–164, 176,
178–180, 187

explored graph (Gexp) The portion of the search graph which M* has explicitly
constructed (Section 3.3.1). 36–42, 44, 195

forming team The forming teams are the teams formed by a given transition action
taken by a set of dissolving teams. 82, 194
free configuration space (Qi

free) The subspace of the configuration space of robot
ri which is free of self-collisions or collisions with environment obstacles. 6, 29

individual policy (φi) Term in M*. A policy which at every point in the configura-
tion space of a robot ri dictates the best possible action if there were no other robots.
17–21, 26, 27, 32, 33, 43, 46, 47, 51, 52, 54, 71–73, 76, 86, 89, 92–94, 100, 103–106,
129, 195, 196
individually optimal path (πiφ) The optimal path for robot ri if no other robots
were present. 17, 19, 33, 36, 38, 43, 54, 196

joint belief graph A graph representing the joint belief space of a multirobot system
symbol. 128–130

joint belief space (B =
{
b : Q→ R≥0

∣∣ ∫
q
b (q) dq = 1

}
) The space of probability

distribution functions defined on the product of the joint configuration space, where
an state coli has been added to the configuration space of each robot ri to denote that
robot having collided. An element of the joint belief space describes the probability of

194

the robots occupying a specify set of positions and having collided with other robots
or not. 121, 122, 128, 130, 194
joint configuration graph (G) A graph representing the joint configuration space
of a multirobot system. In this work, constructed by taking the tensor product of the
configuration graphs of the constituent robots. xi, 30, 31, 36, 37, 40, 43–45, 87, 89,
90, 94, 125, 182, 191, 193, 195–197
joint configuration space (Q) The configuration space representing a multiagent
system. Constructed by taking the direct product of the configuration spaces of the
constituent agents. 3, 6–8, 11–13, 15, 16, 18–20, 30, 32, 36, 51, 53, 67–70, 73, 74, 90,
121, 122, 125, 127, 129, 159, 189, 193–195
joint policy (φ) A policy for a multirobot system where each robot obeys its indi-
vidual policy. 33
joint policy path (πφ) The path produced when all robots follow their individual
policies. In CMS, the path produced when all teams follow their individual policies.
17, 18, 20, 33, 104, 105
joint prepares graph The tensor product of the prepares graphs associated with
individual robots of a multirobot system. Each vertex in the joint prepares graph
specifies which single-robot controller should be executed by each individual robot.
xii, xiii, 160–162, 165–167, 178, 181–187, 197
joint PRM A PRM defined in the joint configuration space of a multirobot sys-
tem. When formed from the product of single robot PRMs, can be used as the joint
configuration graph in M*. 69, 70, 77

limited neighbor (V nbh
k) The neighbors of a vertex vk in the joint configuration

graph which can be reached when the robots not in the collision set of vk obey their
individual policies (Equation 3.3). 32, 33, 36–38, 42, 43, 45, 89, 92, 94, 96–101, 103,
195

manifold graph (GM) A graph representing the constraint manifold of a team of
robots. Used in CMS. 88–91, 94, 105, 107
meta-agent A set of robots treated as a single, more complex robot. 11, 47, 52, 54

neighbor graph (Gnbh) Construct in M*. Consists of the explored graph, the limited
neighbors of the vertices in the explored graph, and the edges connecting the vertices
in explored graph to their limited neighbors. 36, 37
nominal duration (tnom : C × C → R+) tnom (Cik, Ci`) is the nominal time required
for robot ri to finish executing the controller Cik from the goal set of Ci`, Ci` � Cik.
164–167, 174, 178, 179, 193

optimal A planning algorithm is optimal if it is guaranteed to find the minimal cost
path. 1, 5, 11, 29, 35, 36, 38, 42, 44, 45, 47, 50, 63, 64, 106
out-neighbor The out-neighbors of a vertex vk in a directed graph are the vertices
vl such that the directed edge from vk to vl exist.. 18, 30, 33, 36, 37, 40, 48, 55, 135,
165

195

permutation invariant multirobot path planning Multirobot path planning
where a robot must reach each goal location, but the assignment of robots to goals is
a free parameter. 6, 13, 14, 16
policy graph (Gφ) The subgraph representing the individually optimal paths starting
from Gnbh \Gexp. 36–39
policy tree (T i) A RRT grown from the goal state of a robot ri that is used to
compute the robot’s individual policy in sRRT. 71, 73, 74, 76
prepares (�) A controller A prepares controller B, written A � B if the goal set of
A lies within the domain of attraction of B. 158, 159, 161, 165, 167, 176, 196
prepares graph A directed graph used in sequential composition with edges pointing
from a controller, represented as a vertex, to the controllers which it prepares. 159–
161, 166, 193, 195, 196
preparing controller

Singular The controller executed by a robot before entering the current
controller

Plural The set of controllers that prepare the current controller
. 161–163, 167, 176, 178, 194

resolve set (Tres (Ci)) The subset of teams that preceed the teams in a conflict set
element. These are the robots that need to be explicitly planned for to find a path
that prevents the collision(s) that produced the conflict set element. 102, 103, 105,
106

search graph (Gsch) In M*, the implicitly defined subgraph of the joint configuration
graph searched by the underlying planner (Section 3.3.1). In CMS the search graph
is a subgraph of the task augmented joint configuration graph. 36, 38–44, 104, 106,
194, 196
sequential composition A combined control/planning paradigm where a set of
controllers are placed in the environment such that each controller converges to the
domain of attraction of one or more other controller. Instead of planning a trajectory
in the configuration space, planning in sequential composition returns a sequence of
controllers to execute, by searching the prepares graph. viii, xii, xv, 4–6, 157–160,
162, 164, 168, 172, 178, 182, 184, 187, 196
subdimensional expansion An approach to generating a low dimensional search
space for multirobot path planning. xi, 2, 3, 5, 15, 17–26, 29, 121, 190, 200
ε-suboptimal A path is ε-suboptimal if it costs no more than ε times the cost of
the optimal path. A multirobot path planner is ε-suboptimal if guaranteed to find
ε-suboptimal paths. xi, 3–5, 61, 64, 65, 79, 95, 115, 190
subproblem A subset of a CPP problem that can be solved independently of the
rest of the problem. Characterised by the subgraph of the task graph dominated by
a set of task graph vertices. 102–107, 194
synchronization factor Factor by which the control manager slows robots that are
running fast, raised to the power of the number of steps the robot is in front of the
slowest robot. 172, 181–183, 185

196

task augmented joint configuration graph (Gaug) An extension of the joint
configuration graph the active teams and their positions. Each vertex represents a
set of ordered pairs (τ i, viM). viii, 89–93, 103–106, 193, 194, 196
task constraint A set of constraints placed on the robots performing a given coop-
erative task that must be satisfied for the task to be completed successfully. 80–82,
86–88, 104
task graph (Gst = {V tm, V gl, V tr, Est}) A directed tripartite graph where one subset
of vertices correspond to teams that have never reached their goal, another to teams
that have reached their goal at least once, and the third to transitions between teams..
xi, 83–85, 91, 93–95, 102, 103, 193, 194, 196
task list The task list for robot ri is an ordered list of tasks which ri is required to
perform. 82
threshold robot (Cthresh) The set of robots whose probability of collision exceeds
the permitted threshold at the current vertex or at one of the explored successors.
Used in UM*. 129, 130, 132, 193
time augmented joint prepares graph A variant of the joint prepares graph that
accounts for different nominal times of execution for single robot controllers (Figure
7.4). xii, 160, 164–168, 187
transition graph A graph used in CMS to allow exploration of team formation/dissolution
actions. 89, 91

underlying planner A multirobot path planning algorithm used to explore the
search space generated by subdimensional expansion. Typically a coupled planner
such as A* or RRT. 18–20, 29, 193, 196

197

198

Acronyms

ATAJPG Approximate Time Augmented Joint Prepares Graph. xiii, 165, 167, 168,
178, 180–188

CA* Constrained A*. 133

CBS Conflict Based Search [156] (Section 3.5.4). 51, 52, 59, 63, 64

CD* Constrained D*. 133, 154

CM* Constrained M*. viii, xii, 131, 133, 152–155

CMS Constraint Manifold Subsearch (Chapter 5). viii, xii, xv, 4, 5, 79, 82, 84–101,
103, 104, 106–109, 111, 114–116, 153, 193–197

CPP Cooperative Path Planning. A variant of the MPP problem where robots teams
must form cooperative teams to perform tasks. xii, 7, 79–81, 83, 87, 89, 91, 92,
95, 101, 102, 189, 194, 196

EPEA* Enhanced Partial Expansion A*. A variant of A* tailored to the MPP
problem [62, 71] (Section 3.5.3). xi, 12, 46, 48, 50, 53, 54, 56–61, 64, 65, 127

ID Independence Detection [167]. 15, 51–54

MA-CBS Meta-Agent Conflict Based Search [157] (Section 3.5.4). 15, 51–54, 58–64,
128

MPP Multirobot Path Planning. xii, 1, 3–8, 11, 12, 17, 20, 79, 83, 87, 121, 125, 127,
128, 154, 159, 189, 190, 199, 200

MPPU Multirobot Path Planning with Uncertainty. viii, xii, 7, 117, 118, 121, 122,
125, 127–129, 131, 133, 134, 142, 149, 154, 190

OD Operator Decomposition. A variant of A* tailored to MPP [167] (Section 3.5.3).
xi, 12, 46, 48, 50, 53, 54, 56–61, 64, 65, 127

POMDP Partially Observable Markov Decision Process. 118–120

PRM Probabilistic Roadmap. 67–71, 75, 77, 195, 200

rCMS Recursive Constraint Manifold Subsearch (Chapter 5.5). viii, xii, 80, 101–103,
105–107, 109–115, 194

199

rM* recursive M*. vii, xii, xv, 46, 47, 54, 56–58, 60, 61, 65, 128, 130, 131, 133,
142–147, 149, 151, 154, 189, 190

RRT Rapidly-Exploring Random Tree. 67, 68, 71, 73–76, 120, 196, 197, 200

SAT Boolean Satisfiability. 12, 13

sPRM subdimensional Probabilistic Roadmap. A probabilistic MPP algorithm that
uses M* to find a path in a product graph generated from PRMs. viii, xi, 4, 5,
68–71, 74–76

sRRT subdimensional Rapidly-Exploring Random Trees. An implementation of sub-
dimensional expansion that uses RRTs as the underlying planner. viii, xi, 4, 5,
68, 71, 73–76, 196

UM* Uncertainty M*. viii, xii, xiii, 4, 5, 121, 128–133, 139, 140, 142–147, 149–155,
160, 164, 172, 178, 180, 184, 186–188, 193, 197

200

Bibliography

[1] Khaled Mohamed Al-Wahedi. A Hybrid Local-Global Motion Planner for Multi-
Agent Coordination. PhD thesis, Case Western Reserve University, 2000.

[2] R Alami, S Fleury, M Herrb, F Ingrand, and F Robert. Multi-robot cooperation
in the MARTHA project. IEEE Robotics & Automation Magazine, 5(1):36–47,
mar 1998. ISSN 10709932.

[3] Faten Aljalaud and Nathan R Sturtevant. Finding Bounded Suboptimal Multi-
Agent Path Planning Solutions Using Increasing Cost Tree Search. In Sixth
International Symposium on Combinatorial Search, pages 203–204, 2013.

[4] Javier Alonso-Mora, Ross A Knepper, Roland Siegwart, and Daniela Rus. Local
Motion Planning for Collaborative Multi-Robot Manipulation of Deformable
Objects. In IEEE International Conference on Robotics and Automation, pages
5495–5502, Seattle, Washington USA, 2015. ISBN 9781479969227.

[5] Nancy M Amato, O. Burchan Bayazit, Lucia K Dale, Christopher Jone, and
Daniel Vallejo. OBPRM: An obstacle-based PRM for 3D workspaces. In Inter-
national Workshop on the Algorithmic Foundations of Robotics, 1998.

[6] Nancy M Amato, Ken a Dill, and Guang Song. Using motion planning to
map protein folding landscapes and analyze folding kinetics of known native
structures. Journal of computational biology, 10(3-4):239–55, jan 2003. ISSN
1066-5277.

[7] V. Auletta, a. Monti, M. Parente, and P. Persiano. A Linear-Time Algorithm
for the Feasibility of Pebble Motion on Trees. Algorithmica, 23(3):223–245, mar
1999. ISSN 0178-4617.

[8] Nora Ayanian. Coordination of Multirobot Teams and Groups in Constrained
Environments : Models , Abstractions , and Control Policies. PhD thesis,
University of Pennsylvania, 2011.

[9] Nora Ayanian and Vijay Kumar. Decentralized feedback controllers for multi-
agent teams in environments with obstacles. In Proceedings of IEEE Inter-
national Conference on Robotics and Automation, pages 1936–1941. Ieee, may
2008. ISBN 978-1-4244-1646-2.

[10] Nora Ayanian and Vijay Kumar. Decentralized feedback controllers for multi-
agent teams in environments with obstacles. IEEE Transactions on Robotics,

201

26(5):878–887, oct 2010.

[11] Nora Ayanian, Vinutha Kallem, and Vijay Kumar. Synthesis of feedback con-
trollers for multiple aerial robots with geometric constraints. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 3126–3131.
Ieee, sep 2011. ISBN 978-1-61284-456-5.

[12] Kianoush Azarm and Günther Schmidt. Conflict-free motion of multiple mo-
bile robots based on decentralized motion planning and negotiation. In IEEE
International Conference on Robotics and Automation, number April, pages
3526–3533, 1997.

[13] Tucker Balch and Ronald C. Arkin. Behavior-based formation control for mul-
tirobot teams. IEEE Transactions on Robotics and Automation, 14(6):926–939,
1998. ISSN 1042296X.

[14] Tomáš Balyo, Roman Bartak, and Pavel Surynek. Shortening Plans by Local
Re-planning. In 24th International Conference on Tools with Artificial Intelli-
gence, Athens, Greece, 2012.

[15] Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. Suboptimal Variants of
the Conflict-Based Search Algorithm for the Multi-Agent Pathfinding Problem.
In Proceedings of the Sixth International Symposium on Combinatorial Search,
2014.

[16] T D Barfoot and Christopher M Clark. Motion Planning for Formations of
Mobile Robots. Journal of Robotics and Autonomous Systems, 46(2), 2004.

[17] Laura E Barnes, Mary Anne Fields, and Kimon P Valavanis. Swarm formation
control utilizing elliptical surfaces and limiting functions. IEEE transactions on
systems, man, and cybernetics. Part B, Cybernetics, 39(6):1434–45, dec 2009.
ISSN 1941-0492.

[18] Calin Belta and Vijay Kumar. Motion generation for formations of robots: a
geometric approach. In IEEE International Conference on Robotics and Au-
tomation, number 3, pages 1245–1250, 2001. ISBN 0780364759.

[19] Calin Belta and Vijay Kumar. Optimal Motion Generation for Groups of
Robots: A Geometric Approach. Journal of Mechanical Design, 126(January
2004):63, 2004. ISSN 10500472.

[20] Calin Belta, Volkan Isler, and George J Pappas. Discrete abstractions for robot
motion planning and control in polygonal environments. IEEE Transactions on
Robotics, 21(5):864–874, 2005.

[21] Dmitry Berenson, Siddhartha S Srinivasa, Dave Ferguson, and James J Kuffner.
Manipulation planning on constraint manifolds. In IEEE International Con-
ference on Robotics and Automation, volume i, pages 625–632. Ieee, may 2009.
ISBN 978-1-4244-2788-8.

[22] Subhrajit Bhattacharya, Maxim Likhachev, and Vijay Kumar. Multi-agent path
planning with multiple tasks and distance constraints. In IEEE International

202

Conference on Robotics and Automation, pages 953–959. Ieee, may 2010. ISBN
978-1-4244-5038-1.

[23] Zahy Bnaya, Roni Stern, and Ariel Felner. Multi-Agent Path Finding for Self
Interested Agents. In Proceedings of the Sixth International Symposium on
Combinatorial Search, pages 38–46, Leavenworth, Washington, USA, 2013.

[24] Robert Bohlin and Lydia E Kavraki. Path planning using lazy PRM. In IEEE
International Conference on Robotics and Automation, volume 1, pages 521–
528. IEEE, 2000.

[25] Blai Bonet and Hector Geffner. Planning as heuristic search. Artificial Intelli-
gence, 129(1-2):5–33, 2001. ISSN 0004-3702.

[26] Valerie Boor, Mark H Overmars, and A Frank van der Stappen. The gaussian
sampling strategy for probabilistic roadmap planners. In IEEE International
Conference on Robotics and Automation, volume 2, pages 1018–1023. IEEE,
1999.

[27] James Robert Bruce and Manuela Veloso. Real-time randomized path planning
for robot navigation. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), volume 3, pages 2383–2388, 2002. ISBN 0-7803-
7398-7.

[28] James Robert Bruce and Manuela Veloso. Real-time multi-robot motion
planning with safe dynamics. In Multi-Robot Systems. From Swarms to In-
telligent Automata, volume III, pages 1–12. 2005. ISBN 1402033885. doi:
10.1007/1-4020-3389-3{\ }13.

[29] Adam Bry and Nicholas Roy. Rapidly-exploring random belief trees for motion
planning under uncertainty. In IEEE International Conference on Robotics and
Automation, pages 723–730, 2011. ISBN 9781612843865.

[30] Stephen Buckley. Fast motion planning for multiple moving robots. In IEEE
International Conference on Robotics and Automation, volume 1, pages 322–
326, may 1989.

[31] RR Burridge, Alfred A Rizzi, and Daniel E Koditschek. Sequential composition
of dynamically dexterous robot behaviors. International Journal of Robotics
Research, 18(6):534–555, 1999.

[32] Jan-P Calliess and Stephen J Roberts. Multi-Agent Planning with Mixed-
Integer Programming and Adaptive Interaction Constraint Generation (Ex-
tended Abstract). In Proceedings of the Sixth International Symposium on
Combinatorial Search, pages 207–208, Leavenworth, Washington, USA, 2013.

[33] Michal Cáp, Peter Novák, Martin Selecký, Jan Faigl, and Jíı Voḱınek. Asyn-
chronous Decentralized Prioritized Planning for Coordination in Multi-Robot
System. In IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pages 3822–3829, 2013. ISBN 9781467363587.

[34] Michal Cáp, Peter Novák, Jíı Voḱınek, and Michal Pěchouček. Multi-agent

203

RRT *: Sampling-based Cooperative Pathfinding. In Autonomous Robots and
Multirobot Systems Workshop at AAMAS 2013, 2013.

[35] Stefano Carpin and Enrico Pagello. On parallel RRTs for multi-robot systems.
In Proceedings of 8th Conference Italian Association for Artificial Intelligence,
pages 834–841. Citeseer, 2002.

[36] Hande Çelikkanat and Erol ahin. Steering self-organized robot flocks through
externally guided individuals. Neural Computing and Applications, 19(6):849–
865, mar 2010. ISSN 0941-0643.

[37] Luiz Chaimowicz, Thomas Sugar, Vijay Kumar, and Mario F M Campos. An
architecture for tightly coupled multi-robot cooperation. In IEEE Interna-
tional Conference on Robotics and Automation, pages 2992–2997, 2001. ISBN
0780364759.

[38] Dong Eui Chang, Shawn C Shadden, Jerrold E Marsden, and Reza Olfati-Saber.
Collision avoidance for multiple agent systems. In Proceedings of the 42nd IEEE
Conference on Decision and Control, number December, pages 539–543, Maui,
Hawaii, 2003. ISBN 0780379241.

[39] Chien Chern Cheah, Saing Paul Hou, and Jean Jacques E. Slotine. Region-
based shape control for a swarm of robots. Automatica, 45(10):2406–2411, oct
2009. ISSN 00051098.

[40] Minsik Cho and DZ Pan. A high-performance droplet routing algorithm for
digital microfluidic biochips. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 27(10):1714–1724, 2008.

[41] Christopher M Clark, Stephen M Rock, and Jean-Claude Latombe. Motion
planning for multiple mobile robots using dynamic networks. In IEEE Interna-
tional Conference on Robotics and Automation, pages 4222–4227, 2003.

[42] Benjamin Cohen, Sachin Chitta, and Maxim Likhachev. Single- and dual-arm
motion planning with heuristic search. The International Journal of Robotics
Research, nov 2013. ISSN 0278-3649.

[43] David C Conner, Howie Choset, and Alfred A Rizzi. Integrated planning and
control for convex-bodied nonholonomic systems using local feedback control
policies. In Robotics: Science and Systems II, pages 57–64, Philadelphia, PA,
aug 2006. MIT Press.

[44] Iain D Couzin, Jens Krause, Richard James, Graeme D. Ruxton, and Nigel R
Franks. Collective memory and spatial sorting in animal groups. Journal of
Theoretical Biology, pages 1–11, 2002.

[45] Rongxin Cui, Bo Gao, and Ji Guo. Pareto-optimal coordination of multiple
robots with safety guarantees. Autonomous Robots, 32(3):189–205, dec 2011.
ISSN 0929-5593.

[46] Joseph C Culberson and Jonathan Schaeffer. Efficiently searching the 15-puzzle.
Technical Report May, Deparment of Computing Science, University of Alberta,

204

Edmonton, Alberta, Canada, 1994.

[47] Henry W Davis, Anna Bramanti-Gregor, and Jin Wang. The Advantages of
Using Depth and Breadth Components in Heuristc Search, 1988.

[48] Yann-Michaël De Hauwere, Peter Vrancx, and Ann Nowé. Learning what to
observe in multi-agent systems. In The 21st Benelux Conference on Artificial
Intelligence, 2009.

[49] Yann-Michaël De Hauwere, Peter Vrancx, and Ann Nowé. Learning multi-agent
state space representations. In 9th International Conference on Autonomous
Agents and Multiagent Systems, pages 715–722, Toronto, 2010. International
Foundation for Autonomous Agents and Multiagent Systems.

[50] Yann-Michaël De Hauwere, Peter Vrancx, and Ann Nowé. Solving Sparse De-
layed Coordination Problems in Multi-Agent Reinforcement Learning. In Marek
Vrancx, Peter and Knudson, Matthew and Grześ, editor, Adaptive and Learn-
ing Agents, volume 7113 of Lecture Notes in Computer Science, pages 114–133.
Springer Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-28499-1{\ }8.

[51] Boris de Wilde, Adriaan W ter Mors, and Cees Witteveen. Push and rotate:
cooperative multi-agent path planning. In 12th International Conference on Au-
tonomous Agents and Multiagent Systems, pages 87–94, Saint Paul, Minnesota,
2013.

[52] Jory Denny and Nancy M Amato. The Toggle Local Planner for sampling-
based motion planning. In IEEE International Conference on Robotics and
Autonomation, pages 1779–1786. Ieee, may 2012. ISBN 978-1-4673-1405-3.

[53] Jaydev P. Desai and Vijay Kumar. Motion planning for cooperating mobile
manipulators. Journal of Robotic Systems, 16(10):557–579, 1999. ISSN 0741-
2223.

[54] Vishnu R. Desaraju and Jonathan P. How. Decentralized path planning for
multi-agent teams with complex constraints. Autonomous Robots, 32(4):385–
403, feb 2012. ISSN 0929-5593.

[55] Kurt Dresner and Peter Stone. A Multiagent Approach to Autonomous Inter-
section Management. Journal of Artificial Intelligence Research, 31:591–653,
2008.

[56] Andrea Rose Dubin. A Magmatic Trigger for the Paleocene-Eocene Thermal
Maximum? . Doctoral thesis, MIT, Woods Hole Oceanographic Institution,
2015.

[57] Magnus Egerstedt and Xiaoming Hu. Formation constrained multi-agent con-
trol. IEEE Transactions on Robotics and Automation, 17(6):947–951, 2001.
ISSN 1042296X.

[58] Esra Erdem, Doga G Kisa, Umut Oztok, and Peter Schueller. A general formal
framework for pathfinding problems with multiple agents. In AAAI Conference
on Artificial Intelligence, pages 290–296, 2013.

205

[59] Michael Erdmann. On Motion Planning with Uncertainty. PhD thesis, 1984.

[60] Michael Erdmann and Tomas Lozano-Perez. On multiple moving objects. Al-
gorithmica, 2(1):477–521, 1987. ISSN 0178-4617.

[61] Anders Eriksson, Martin Nilsson Jacobi, Johan Nyström, and Kolbjørn Tun-
strøm. Determining interaction rules in animal swarms. Behavioral Ecology, 21:
1106–1111, 2010.

[62] Ariel Felner, Meir Goldenberg, Guni Sharon, Roni Stern, Tal Beja, and
Robert C Holte. Partial-Expansion A * with Selective Node Generation. In
AAAI Conf, pages 471–477, 2012.

[63] Dave Ferguson, Nidhi Kalra, and Anthony Stentz. Replanning with rrts. In
IEEE International Conference on Robotics and Automation, pages 1243–1248.
IEEE, 2006.

[64] Cornelia Ferner, Glenn Wagner, and Howie Choset. ODrM* optimal multirobot
path planning in low dimensional search spaces. In 2013 IEEE International
Conference on Robotics and Automation, pages 3854–3859. Ieee, may 2013.
ISBN 978-1-4673-5643-5.

[65] Carlo Ferrari, Enrico Pagello, Jun Ota, and Tamio Arai. Multirobot motion
coordination in space and time. Robotics and Autonomous Systems, 25(3-4):
219–229, nov 1998. ISSN 09218890.

[66] Jonathan Fink, Nathan Michael, Soonkyum Kim, and Vijay Kumar. Planning
and control for cooperative manipulation and transportation with aerial robots.
The International Journal of Robotics Research, 30(3):324–334, sep 2010. ISSN
0278-3649.

[67] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window
approach to collision avoidance. IEEE Robotics Automation Magazine, 4(1):
23–33, 1997. ISSN 10709932.

[68] S. Garrido-Jurado, R. Muñoz-Salinas, F.J. Madrid-Cuevas, and M.J. Maŕın-
Jiménez. Automatic generation and detection of highly reliable fiducial mark-
ers under occlusion. Pattern Recognition, 47(6):2280–2292, jun 2014. ISSN
00313203.

[69] John Gaschnig. A Problem Similarity Approach to Devising Heuristics: First
Results. In International Joint Conference on Artificial Intelligence, pages 23–
29, 1979.

[70] Robert W Ghrist and Daniel E Koditschek. Safe Cooperative Robot Dynamics
on Graphs. SIAM Journal on Control and Optimization, 40(5), 2002.

[71] Meir Goldenberg, Ariel Felner, and Nathan R Sturtevant. Optimal-Generation
Variants of EPEA*. In Symposium on Combinatorial Search, pages 89–97,
Leavenworth, Washington, USA, 2013.

[72] Juan Pablo Gonzalez and Anthony Stentz. Planning with Uncertainty in Po-
sition: an Optimal Planner. In IEEE International Conference on Intelligent

206

Robots and Systems, 2005.

[73] Michael A Goodrich, Brian Pendleton, Sean Kerman, and PB Sujit. What
Types of Interactions do Bio-Inspired Robot Swarms and Flocks Afford a Hu-
man? In Robotics: Science and Systems, 2012.

[74] R. L. Graham, E. L. Lawler, J. K. Lenstra, and a. H G Rinnooy Kan. Op-
timization and Approximation in Deterministic Sequencing and Scheduling: a
Survey. Annals of Discrete Mathematics, 5(C):287–326, 1979. ISSN 01675060.

[75] D.D. Grossman. Traffic control of multiple robot vehicles. IEEE Journal on
Robotics and Automation, 4(5):491–497, 1988. ISSN 08824967.

[76] L. C G J M Habets and Jan H. Van Schuppen. A control problem for affine
dynamical systems on a full-dimensional polytope. Automatica, 40:21–35, 2004.
ISSN 00051098.

[77] P E Hart, N J Nilsson, and B Raphael. A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2), jul 1968.

[78] J.E. Hopcroft, J.T. Schwartz, and M. Sharir. On the Complexity of Motion
Planning for Multiple Independent Objects; PSPACE- Hardness of the ”Ware-
houseman’s Problem”. The International Journal of Robotics Research, 3(4):
76–88, dec 1984. ISSN 0278-3649.

[79] David Hsu, T Jiang, J Reif, and Z Sun. The bridge test for sampling narrow pas-
sages with probabilistic roadmap planners. In IEEE International Conference
on Robotics and Automation, volume 3, pages 4420–4426. IEEE, 2003.

[80] T. C. Hu. Parallel Sequencing and Assembly Line Problems. Operations Re-
search, 9(6):841–848, 1961. ISSN 0030-364X.

[81] Ruoyun Huang, Yixin Chen, and Weixiong Zhang. A Novel Transition Based
Encoding Scheme for Planning as Satisfiability. In AAAI Conference on Arti-
ficial Intelligence, pages 89–94, 2010.

[82] MR Jansen and Nathan R Sturtevant. Direction maps for cooperative pathfind-
ing. In AAAI Conference on Artificial Intelligence and Interactive Digitial En-
tertainment poster, pages 185–190, 2008.

[83] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Plan-
ning and acting in partially observable stochastic domains. Artificial Intelli-
gence, 101(1-2):99–134, 1998. ISSN 00043702.

[84] K Kant and S W Zucker. Toward efficient trajectory planning: The path-
velocity decomposition. The International Journal of Robotics Research, 5(3):
72, 1986. ISSN 0278-3649.

[85] Shin Kato, Sakae Nishiyama, and Jun’ichi Takeno. Coordinating Mobile Robots
by Applying Traffic Rules. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 1535–1541, 1992. ISBN 0780307372.

[86] Max Katsev, Jingjin Yu, and Steven M Lavalle. Efficient formation path plan-

207

ning on large graphs. In IEEE International Conference on Robotics and Au-
tomation, volume 0904501, pages 3606–3611, 2013. ISBN 9781467356435.

[87] Henry Kautz and Bart Selman. Unifying SAT-based and graph-based planning.
In International Joint Conference on Artificial Intelligence, 1999.

[88] Lydia E Kavraki, Petr Švestka, Jean-Claude Latombe, and Mark H Overmars.
Probabilistic roadmaps for path planning in high-dimensional configurations
spaces. IEEE Transactions on Robotics and Automation, 12(4):566–580, jun
1996.

[89] Mokhtar M Khorshid, Robert C Holte, and Nathan R Sturtevant. A
Polynomial-Time Algorithm for Non-Optimal Multi-Agent Pathfinding. In Pro-
ceedings of the Symposium on Combinatorial Search, 2011.

[90] Stephen Kloder and Seth A Hutchinson. Path planning for permutation-
invariant multirobot formations. IEEE Transactions on Robotics, 22(4):650–
665, 2006.

[91] Ross A Knepper, Todd Layton, John Romanishin, and Daniela Rus. Ike-
aBot : An Autonomous Multi-Robot Coordinated Furniture Assembly System.
In IEEE International Conference on Robotics and Automation, 2013. ISBN
9781467356428.

[92] Sven Koenig and Maxim Likhachev. D* Lite. In AAAI Conference on Artificial
Intelligence, pages 476–483, 2002.

[93] Y. Koga and Jean-Claude Latombe. On multi-arm manipulation planning. In
IEEE International Conference on Robotics and Automation, pages 945–952,
San Diego, CA, 1994. IEEE Comput. Soc. Press. ISBN 0-8186-5330-2.

[94] Jelle R Kok and Nikos Vlassis. Using the Max-Plus Algorithm for Multiagent
Decision Making in Coordination Graphs. In Yasutake Bredenfeld, Ansgar and
Jacoff, Adam and Noda, Itsuki and Takahashi, editor, RoboCub 2005: Robot
Soccer World Cup IX, volume 4020 of Lecture Notes in Computer Science, pages
1–12. Springer Berlin Heidelberg, 2006.

[95] Jelle R Kok, Pieter Jan ’t Hoen, Bram Bakker, and Nikos Vlassis. Utile Co-
ordination: Learning interdependencies among cooperative agents. In IEEE
Symposium on Computational Intelligence and Games, 2005.

[96] RE Korf. Depth-first iterative-deepening: An optimal admissible tree search.
Artificial intelligence, 27(1):97–109, sep 1985. ISSN 00043702.

[97] Richard E Korf. Linear-space best-first search. Artificial Intelligence, 62(1):
41–78, 1993. ISSN 0004-3702.

[98] DM Kornhauser, G. Miller, and P. Spirakis. Coordinating pebble motion on
graphs, the diameter of permutation groups, and applications. In 25th Sympo-
sium on Foundations of Computer Science, pages 241—-250. M. I. T., 1984.

[99] K Madhava Krishna, Henry Hexmoor, and Srinivas Chellappa. Reactive Nav-
igation of Multiple Moving Agents by collaborative Resolution of Conflicts.

208

Journal of Robotic Systems, pages 249–269, 2005.

[100] Athanasios Krontiris, Ryan Luna, and Kostas E Bekris. From Feasibility Tests
to Path Planners for Multi-Agent Pathfinding. In Symposium on Combinatorial
Search, number Surynek 2009, pages 114–122, 2013.

[101] James J Kuffner and Steven M LaValle. RRT-connect: An efficient approach
to single-query path planning. In IEEE International Conference on Robotics
and Automation, number April, pages 995–1001, 2000. ISBN 0780358864.

[102] Hanna Kurniawati, David Hsu, and Wee Sun Lee. SARSOP : Efficient Point-
Based POMDP Planning by Approximating Optimally Reachable Belief Spaces.
In Robotics: Science and Systems IV, 2008.

[103] Jean-claude Latombe. On delaying collision checking in PRM planning: Ap-
plication to multi-robot coordination. The International Journal of Robotics
Research, 21(1):5–26, 2002.

[104] Jean-Claude Latombe, Anthony Lazanas, and Shashank Shekhar. Robot motion
planning with uncertainty in control and sensing. Artificial Intelligence, 52(1):
1–47, 1991. ISSN 00043702.

[105] Steven M Lavalle and Seth A Hutchinson. Optimal Motion Planning for Mul-
tiple Robots having Independent Goals. IEEE Transactions on Robotics and
Automation, 14(6):912–925, dec 1998.

[106] Steven M LaValle and James J Kuffner. Randomized kinodynamic planning. In
Proceedings IEE International Conference on Robotics and Automation, 1999.

[107] Naomi Ehrich Leonard and Edward Fiorelli. Virtual Leaders , Artificial Po-
tentials and Coordinated Control of Groups. In IEEE Conference on Decision
and Control, number December, pages 2968–2973, Orlando, Florida USA, 2001.
ISBN 0780370619.

[108] Stéphane Leroy, Jean-Paul Laumond, and Thierry Siméon. Multiple Path
Coordination for Mobile Robots: A Geometric Algorithm. In International
Joint Conference on Artificial Intelligence, pages 1118–1123, San Francisco,
CA, USA, 1999. Morgan Kaufmann Publishers Inc. ISBN 1-55860-613-0.

[109] M Anthony Lewis and Kar-han Tan. High Precision Formation Control of
Mobile Robots Using Virtual Structures. Autonomous Robots, 403:387–403,
1997.

[110] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebas-
tian Thrun. Anytime Dynamic A*: An Anytime, Replanning Algorithm. In
International Conference on Automated Planning and Scheduling, 2005.

[111] Magnus Lindhé, Petter Ogren, and Karl Henrik Johansson. Flocking with ob-
stacle avoidance: A new distributed coordination algorithm based on voronoi
partitions. In IEEE International Conference on Robotics and Automation,
number April, pages 1785–1790, 2005. ISBN 078038914X.

[112] Laura Lindzey, Ross A Knepper, Howie Choset, and Siddhartha S Srinivasa.

209

The Feasible Transition Graph: Encoding Topology and Manipulation Con-
straints for Multirobot Push-Planning. In Workshop on the Algorithmic Foun-
dations of Robotics, page 16, 2014.

[113] S Lloyd and Y J Ng. Black hole computers. Scientific American, 291(5):52–61,
2004. ISSN 0036-8733.

[114] Tomas Lozano-Perez, M T Mason, and R H Taylor. Automatic Synthesis of
Fine-Motion Strategies for Robots. The International Journal of Robotics Re-
search, 3(1):3–24, 1984. ISSN 0278-3649.

[115] Ryan Lukeman, Yue-Xian Li, and Leah Edelstein-Keshet. Inferring individual
rules from collective behavior. Proceedings of the National Academy of Sciences
of the United States of America, 107:12576–12580, 2010.

[116] Ryan Luna and Kostas E Bekris. Push and swap: Fast cooperative path-finding
with completeness guarantees. In International Joint Conference on Artificial
Intelligence, 2011.

[117] B Maren, B Wolfram, and T Sebastian. Constraint-based Optimization of
Priority Schemes for Decoupled Path Planning Techniques. KI 2001: Advances
in Artificial Intelligence, pages 78—-93, 2001.

[118] Nik A Melchior and Reid Simmons. Particle RRT for path planning with uncer-
tainty. In IEEE Conference on Robotics and Automation, number April, pages
10–14, Roma, Italy, 2007. ISBN 1424406021.

[119] Francisco S Melo and Manuela Veloso. Learning of Coordination: Exploiting
Sparse Interactions in Multiagent Systems. In International Conference on
Autonomous Agents and Multiagent Systems, may 2009.

[120] Francisco S Melo and Manuela Veloso. Decentralized MDPs with sparse inter-
actions. Artificial Intelligence, 175(11):1757–1789, jul 2011. ISSN 00043702.

[121] Nathan Michael, Calin Belta, and Vijay Kumar. Controlling three dimensional
swarms of robots. In IEEE International Conference on Robotics and Automa-
tion, number May, pages 964–969. Ieee, 2006. ISBN 0-7803-9505-0.

[122] Nathan Michael, Michael M Zavlanos, Vijay Kumar, and George J Pappas.
Distributed multi-robot task assignment and formation control. In IEEE Inter-
national Conference on Robotics and Automation, pages 128–133. IEEE, 2008.

[123] Scott A Miller, Zachary A Harris, and Edwin K P Chong. Coordinated guidance
of autonomous UAVs via nominal belief-state optimization. In Proceedings of the
American Control Conference, pages 2811–2818, 2009. ISBN 9781424445240.

[124] G. Ayorkor Mills-Tettey, Anthony Stentz, and M. Bernardine Dias. DD* Lite:
Efficient Incremental Search with State Dominance. In Proceedings of the
National Conference on Artificial Intelligence, pages 1032–1038, 2006. ISBN
1577352815.

[125] Joseph Moore and Russ Tedrake. Control synthesis and verification for a perch-
ing UAV using LQR-Trees. In IEEE Conference on Decision and Control, pages

210

3707–3714. Ieee, dec 2012. ISBN 978-1-4673-2066-5.

[126] Umashankar Nagarajan, George Kantor, and Ralph Hollis. Integrated motion
planning and control for graceful balancing mobile robots. The International
Journal of Robotics Research, 32(9-10):1005–1029, jul 2013. ISSN 0278-3649.

[127] Reza Olfati-Saber, W B Dunbar, and Richard M Murray. Cooperative control
of multi-vehicle systems using cost graphs and optimization. In Proceedings of
the American Control Conference, pages 2–7, 2003. ISBN 0780378962.

[128] C Spence Oliver, Mahesh Saptharishi, John M Dolan, Ashitey Trebi-Ollennu,
and Pradeep Khosla. Multi-robot path planning by predicting structure in
a dynamic environment. In IFAC special session on Collaboration and Data
Fusion in Distributed Mobile Robotic Systems, 2000.

[129] Christos H Papadimitriou and John N Tsitsiklis. The Complexity of Markov
Decision Processes. Mathematics of Operations Research, 12(3):441–, 1987.

[130] Sachin Patil, Jur Van Den Berg, Sean Curtis, Ming Lin, and Dinesh Manocha.
Directing crowd simulations using navigation fields. IEEE transactions on vi-
sualization and computer graphics, 17(2):244–54, feb 2011. ISSN 1941-0506.

[131] Sachin Patil, Jur Van Den Berg, and Ron Alterovitz. Estimating probability
of collision for safe motion planning under Gaussian motion and sensing uncer-
tainty. In IEEE International Conference on Robotics and Automation, pages
3238–3244, 2012. ISBN 9781467314039.

[132] Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Welsley, 1984.

[133] Mike Peasgood, John McPhee, and Christopher M Clark. Complete and scalable
multi-robot planning in tunnel environments. Computer Science and Software
Engineering, 1, 2006.

[134] Jufeng Peng and Srinivas Akella. Coordinating Multiple Robots with Kino-
dynamic Constraints Along Specified Paths. International Journal of Robotics
Research, 24(4):295–310, 2005. ISSN 0278-3649.

[135] Andrés Santiago Pérez-Bergquist and Anthony Stentz. K2: An efficient ap-
proximation algorithm for globally and locally multiply-constrained planning
problems. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 1385–1391, 2005. ISBN 0780389123.

[136] Mike Phillips, Andrew Dornbush, Sachin Chitta, and Maxim Likhachev. Any-
time incremental planning with E-Graphs. In IEEE International Conference
on Robotics and Automation, pages 2444–2451. Ieee, may 2013. ISBN 978-1-
4673-5643-5.

[137] Jim Pitman. Probibility. Springer-Verlag New York, 1 edition, 1993.

[138] Robert Platt, Leslie Kaelbling, Tomas Lozano-Perez, and Russ Tedrake. Non-
Gaussian belief space planning: Correctness and complexity. In IEEE Interna-
tional Conference on Robotics and Automation, pages 4711–4717, 2012. ISBN

211

9781467314039.

[139] Ira Pohl. The avoidance of (relative) catastrophe, heuristic competence, gen-
uine dynamic weighting and computational issues in heuristic problem solving.
In International Joint Conference on Artificial intelligence, pages 12–17, San
Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc.

[140] Josep M Porta, Nikos Vlassis, Matthijs T J Spaan, and Pascal Poupart. Point-
Based Value Iteration for Continuous POMDPs. Journal of Machine Learning
Research, 7:2329–2367, 2006. ISSN 10450823.

[141] S Prentice and Nicholas Roy. The Belief Roadmap: Efficient Planning in Be-
lief Space by Factoring the Covariance. The International Journal of Robotics
Research, 28(11-12):1448–1465, 2009. ISSN 0278-3649.

[142] Oliver Purwin, Raffaello DAndrea, and Jin-Woo Lee. Theory and implemen-
tation of path planning by negotiation for decentralized agents. Robotics and
Autonomous Systems, 56(5):422–436, may 2008. ISSN 09218890.

[143] Daniel Ratner and Manfre Warmuth. Finding a Shortest Solution for the NxN
Extension of the 15-PUZZLE is Intractable. In AAAI Conference on Artificial
Intelligence, pages 168–172, Philadelphia, PA, USA, 1986.

[144] Ralf Regele and Paul Levi. Cooperative multi-robot path planning by heuris-
tic priority adjustment. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 5954–5959. Ieee, oct 2006. ISBN 1-4244-0258-1.

[145] Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model.
In ACM SIGGRAPH Computer Graphics, volume 21, pages 25–34, aug 1987.
ISBN 0897912276.

[146] Daniel Walter Rowlands. Xenon Difluoride Etching and Molecular Oxygen Ox-
idation of Silicon by Reactive Scattering. Masters thesis, MIT, 2015.

[147] Daniela Rus, Bruce Donald, and Jim Jennings. Moving Furniture with Teams
of Autonomous Robots. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 235–242, Pittsburgh, PA, 1995. ISBN 0818671084.

[148] Malcolm Ryan. Multi-robot path planning with sub-graphs. In 19th Aus-
tralasian Conference on Robotics and Automation, 2006.

[149] Malcolm Ryan. Constraint-based multi-robot path planning. In IEEE Interna-
tional Conference on Robotics and Automation, pages 922–928. Ieee, may 2010.
ISBN 978-1-4244-5038-1.

[150] Mitul Saha and P Isto. Multi-Robot Motion Planning by Incremental Coordina-
tion. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 5960–5963, 2006.

[151] Qandeel Sajid, Ryan Luna, and Kostas E Bekris. Multi-Agent Pathfinding
with Simultaneous Execution of Single-Agent Primitives. In Symposium on
Combinatorial Search, pages 88–96, 2012.

[152] G Sánchez and Jean-Claude Latombe. On delaying collision checking in PRM

212

planning: Application to multi-robot coordination. The International Journal
of Robotics Research, 21(1):5, 2002.

[153] Gildardo Sanchez and Jean-claude Latombe. Using a PRM planner to compare
centralized and decoupled planning for multi-robot systems. IEEE International
Conference on Robotics and Automation, 2(May):2112–2119, 2002.

[154] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. Pruning Tech-
niques for the Increasing Cost Tree Search for Optimal Multi-Agent Pathfinding.
In Symposium on Combinatorial Search, pages 150–157, 2011.

[155] Guni Sharon, Roni Stern, Meir Goldenberg, Ariel Felner, and I Beer-Sheva. The
increasing cost tree search for optimal multi-agent pathfinding. International
Joint Conference on Artificial Intelligence, 2(i):662–667, 2011.

[156] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. Conflict-
Based Search for Optimal Multi-Agent Path Finding. In AAAI Conference on
Artificial Intelligence, 2012.

[157] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. Meta-Agent
Conflict-Based Search For Optimal Multi-Agent Path Finding. Symposium on
Combinatorial Search, pages 97–104, 2012.

[158] Guni Sharon, Roni Stern, Meir Goldenberg, and Ariel Felner. The increasing
cost tree search for optimal multi-agent pathfinding. Artificial Intelligence, 195:
470–495, feb 2013. ISSN 00043702.

[159] David Silver. Cooperative pathfinding. In AAAI Conference on Artificial In-
telligence and Interactive Digital Entertainment, pages 23–28, 2005.

[160] Thierry Siméon, Stéphane Leroy, and Jean-paul Laumond. Path Coordination
for Multiple Mobile Robots : A Resolution-Complete Algorithm. IEEE Trans-
actions on Robotics and Automation, 18(1):42–49, 2002.

[161] Thierry Siméon, Juan Cortés, Anis Sahbani, and Jean-Paul Laumond. A
general manipulation task planner. In Jean-Daniel Boissonnat, Joel Burdick,
Ken Goldberg, and Seth A Hutchinson, editors, Workshop on the Algorithmic
Foundations of Robotics, volume 7 of Springer Tracts in Advanced Robotics,
pages 311–327. Springer Berlin Heidelberg, 2004. ISBN 3540404767. doi:
10.1007/978-3-540-45058-0{\ }19.

[162] Reid Simmons. The curvature-velocity method for local obstacle avoidance. In
IEEE International Conference on Robotics and Automation, volume 4, pages
3375 –3382 vol.4, 1996. ISBN 0-7803-2988-0.

[163] Jamie Snape, Jur van den Berg, Stephen J Guy, and Dinesh Manocha. The
hybrid reciprocal velocity obstacle. IEEE Transactions on Robotics, 27(4):696–
706, 2011.

[164] Kiril Solovey and Dan Halperin. k-Color Multi-Robot Motion Planning. In
Workshop on the Algorithmic Foundations of Robotics, volume 255827, pages
1–23, 2012.

213

[165] Matthijs T j Spaan and Francisco S Melo. Interaction-driven Markov games
for decentralized multiagent planning under uncertainty. In International Con-
ference on Autonomous Agents and Multiagent Systems, number Aamas, pages
525–532, 2008.

[166] WM Spears and DF Gordon. Using artificial physics to control agents. In
International Conference on Information Intelligence and Systems, pages 281–
288, Bethesda, MD, 1999.

[167] Trevor Standley. Finding Optimal Solutions to Cooperative Pathfinding Prob-
lems. In AAAI Conference on Artificial Intelligence, 2010.

[168] Trevor Standley and R Korf. Complete algorithms for cooperative pathfinding
problems. In International Joint Conference on Artificial Intelligence. IJCAI,
2011.

[169] Anthony Stentz. Optimal and Efficient Path Planning for Unknown and Dy-
namic Environments. International Journal of Robotics and Automation, 10:
89–100, 1993.

[170] Anthony Stentz. CD*: A Real-Time Resolution Optimal Re-Planner for Glob-
ally Constrained Problems. In AAAI Conference on Artificial Intelligence, pages
605–612, 2002.

[171] I A Sucan and Lydia E Kavraki. On the advantages of task motion multigraphs
for efficient mobile manipulation. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4621–4626. IEEE, 2011.

[172] I A Sucan and Lydia E Kavraki. Mobile manipulation: Encoding motion plan-
ning options using task motion multigraphs. In IEEE International Conference
on Robotics and Automation, pages 5492–5498. IEEE, 2011.

[173] Wen Sun and Lg Torres. Safe Motion Planning for Imprecise Robotic Manipu-
lators by Minimizing Probability of Collision. In International Symposium on
Robotics Research, pages 1–16, 2013.

[174] Pavel Surynek. An application of pebble motion on graphs to abstract multi-
robot path planning. In IEEE International Conference on Tools with Artificial
Intelligence, number 201, pages 151–158. Ieee, nov 2009. ISBN 978-1-4244-5619-
2.

[175] Pavel Surynek. Solving Abstract Cooperative Path-Finding in Densely Popu-
lated Environments. Computational Intelligence, 30(2), 2012.

[176] Pavel Surynek. An SAT-Based Approach to Cooperative Path-Finding Using
All-Different Constraints. In Symposium on Combinatorial Search, pages 191–
192, 2012.

[177] Pavel Surynek. Optimal Cooperative Path-Finding with Generalized Goals in
Difficult Cases. In Tenth Symposium of Abstraction, Reformulation, and Ap-
proximation, pages 119–122, 2013.

[178] Petr Švestka and Mark H Overmars. Coordinated path planning for multiple

214

robots. Robotics and Autonomous Systems, 23(3):125–152, 1998.

[179] Russ Tedrake, Ian R. Manchester, Mark Tobenkin, and John W Roberts. LQR-
trees: Feedback Motion Planning via Sums-of-Squares Verification. The In-
ternational Journal of Robotics Research, 29(8):1038–1052, apr 2010. ISSN
0278-3649.

[180] Paolo Toth and Daniele Vigo, editors. The Vehcile Routing Problem. Mono-
graphs on Discrete Mathematics and Applications. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2002. ISBN 0898715792.

[181] Peter Trautman and Andreas Krause. Unfreezing the robot: Navigation in
dense, interacting crowds. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 797–803. Ieee, oct 2010. ISBN 978-1-4244-6674-0.

[182] Matthew Turpin, Nathan Michael, and Vijay Kumar. Trajectory Planning and
Assignment in Multirobot Systems. In Workshop on Algorithmic Foundations
of Robotics, 2012.

[183] Matthew Turpin, Nathan Michael, and Vijay Kumar. Concurrent Assignment
and Planning of Trajectories for Large Teams of Interchangeable Robots. In
IEEE International Conference on Robotics and Automation, pages 834–840,
Karlsruhe, 2013. ISBN 9781467356428.

[184] Alphan Ulusoy, Stephen L Smith, Xu Chu Ding, and Calin Belta. Robust
multi-robot optimal path planning with temporal logic constraints. In IEEE
International Conference on Robotics and Automation, pages 4693–4698, Saint
Paul, Minnesota, USA, may 2012. Ieee. ISBN 978-1-4673-1405-3.

[185] Alphan Ulusoy, Stephen L Smith, and Calin Belta. Optimal Multi-Robot Path
Planning with LTL Constraints : Guaranteeing Correctness Through Synchro-
nization. In M. Ani Hsieh and G Chirikjian, editors, Distributed Autonomous
Robotic Systems, volume 104 of Spring Tracts in Advanced Robotics. 2014. ISBN
9783642551468.

[186] Jur van den Berg and Mark H Overmars. Prioritized Motion Planning for
Multiple Robots. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2217–2222, 2005.

[187] Jur van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal Velocity Obsta-
cles for real-time multi-agent navigation. In IEEE International Conference on
Robotics and Automation, pages 1928–1935. Ieee, may 2008. ISBN 978-1-4244-
1646-2.

[188] Jur van den Berg, Jack Snoeyink, Ming Lin, and Dinesh Manocha. Centralized
Path Planning for Multiple Robots: Optimal Decoupling into Sequential Plans.
In Robotics: Science and Systems, 2009.

[189] Jur van den Berg, Pieter Abbeel, and Ken Goldberg. LQG-MP: Optimized path
planning for robots with motion uncertainty and imperfect state information.
The International Journal of Robotics Research, 30(7):895–913, 2011. ISSN

215

0278-3649.

[190] Jur van den Berg, Stephen J Guy, Ming Lin, and Dinesh Manocha. Reciprocal
n-Body Collision Avoidance. In Robotics Research, volume 70 of Springer Tracts
in Advanced Robotics, pages 3–19. 2011.

[191] Pradeep Varakantham, Jun-young Kwak, Matthew Taylor, Janusz Marecki,
Paul Scerri, and Milind Tambe. Exploiting Coordination Locales in Distributed
POMDPs via Social Model Shaping. In International Conference on Automated
Planning and Scheduling, pages 313–320, 2009.

[192] Prasanna Velagapudi, Katia Sycara, and Paul Scerri. Decentralized prioritized
planning in large multirobot teams. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4603–4609, 2010. ISBN 9781424466764.

[193] Tamás Vicsek, Andras Czirók, Eshel Ben-Jacob, Inon Coehn, Ofer Shochet,
A Czirók, Eshel Ben-Jacob, I Cohen, and Ofer Shochet. Novel Type of Phase
Transition in a System of Self-Driven Particles. Physical Review Letters, 75(6):
4–7, 1995.

[194] Glenn Wagner and Howie Choset. Subdimensional expansion for multirobot
path planning. Artificial Intelligence, 219(0):1–24, 2015. ISSN 0004-3702.

[195] Glenn Wagner, Misu Kang, and Howie Choset. Probabilistic Path Planning for
Multiple Robots with Subdimensional Expansion. In IEEE/RSJ International
Conference on Robotics and Automation, may 2012.

[196] Jing Wang and Suparerk Premvuti. Distributed traffic regulation and control
for multiple autonomous mobile robots operating in discrete space. In IEEE
International Conference on Robotics and Automation, volume 2, pages 1619–
1624. Ieee, 1995. ISBN 0-7803-1965-6.

[197] Ko-Hsin Cindy Wang, Adi Botea, and Philip Kilby. On Improving the Quality of
Solutions in Large-Scale Cooperative Multi-Agent Pathfinding. In Symposium
on Combinatorial Search, pages 209–210, 2011.

[198] Steven A Wilmarth, Nancy M Amato, and Peter F Stiller. MAPRM: A prob-
abilistic roadmap planner with sampling on the medial axis of the free space.
In IEEE International Conference on Robotics and Automation, number May,
pages 1024–1031, 1999.

[199] Richard M Wilson. Graph puzzles, homotopy, and the alternating group. Jour-
nal of Combinatorial Theory, Series B, pages 86–96, 1974.

[200] Peter R Wurman, Raffaello D Andrea, and Mick Mountz. Coordinating Hun-
dreds of Cooperative , Autonomous Vehicles in Warehouses. AI Magazine, 29
(1):9–20, 2008.

[201] Chairit Wuthishuwong, Ansgar Traechtler, and Torsten Bruns. Safe trajectory
planning for autonomous intersection management by using vehicle to infras-
tructure communication. EURASIP Journal on Wireless Communications and
Networking, 2015(33), 2015. ISSN 1687-1499.

216

[202] Atsushi Yamashita, Tamio Arai, Jun Ota, and Hajime Asama. Motion plan-
ning of multiple mobile robots for cooperative manipulation and transportation.
IEEE Transactions on Robotics and Automation, 19(2):223–237, apr 2003. ISSN
1042-296X.

[203] Peng Yang, Randy A. Freeman, and Kevin M. Lynch. Multi-agent coordina-
tion by decentralized estimation and control. IEEE Transactions on Automatic
Control, 53(11):2480–2496, 2008.

[204] Jingjin Yu and Steven M Lavalle. Multi-agent Path Planning and Network
Flow. In Emilio Frazzoli, Tomas Lozano-Perez, Nicholas Roy, and Daniela Rus,
editors, Workshop on the Algorithmic Foundations of Robotics, volume 86 of
Springer Tracts in Advanced Robotics, pages 157–173, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. ISBN 978-3-642-36278-1.

[205] Jingjin Yu and Steven M LaValle. Structure and intractability of optimal multi-
robot path planning on graphs. Proceedings AAAI National Conference on
Artificial Intelligence, 2013.

217

	Table of Contents
	List of Figures
	List of Tables

	Introduction
	Contributions
	Problem Definition
	Prior Work
	Reactive Planning
	Workspace Decomposition
	Rule-Based Path Planning
	Coupled Planning
	Decoupled Planning
	Dynamically Coupled Planning
	Miscellaneous

	Subdimensional Expansion
	M*
	Problem Definition
	Algorithmic Description
	Completeness and Cost Optimality
	Alternative Graph-Centric Description
	Proof of Optimality and Completeness

	Performance Analysis
	Variants of M*
	rM*
	Inflated M*
	Replacements for A*
	Policy Optimization

	Comparison of M* and Similar Algorithms
	M* Results
	M*, Operator Decomposition and rM*
	Policy Optimization
	Inflated Heuristics
	Comparison to Rule-Based Approaches
	Fully Coupled Tests
	Critical Densities

	Subdimensional Expansion and Probabilistic Path Planning
	sPRM: Subdimensional Expansion with PRMs
	sRRT: Subdimensional Expansion with RRTs
	Simulation Results: sPRM and sRRT
	Conclusions

	CMS
	Prior Work
	Problem Definition
	The Task Graph

	Planning on Constraint Manifolds
	Constraint Manifold Subsearch
	The task augmented joint configuration graph
	Algorithmic description of CMS
	Example

	rCMS
	Completeness and Optimality
	Results
	Conclusion and Future Work

	Planning With Uncertainty
	MPPU
	Structure of the MPPU problem

	UM*
	CM*
	Belief Representation for MPPU
	Multirobot Systems with Finite Probability of Delay

	Results
	Comparison to Alternate Approaches
	Scaling of UM*
	CM*

	Summary and Conclusions

	Multirobot Sequential Composition
	M* for multirobot sequential composition
	Synchronization Issues
	Time Augmented Prepares Graph
	Implementation
	Scribbler robots
	Architecture
	Controller Design

	Experiments
	Test Cases

	Conclusions

	Conclusions
	Notation
	Glossary
	Glossary
	Acronyms

	Bibliography
	Bibliography

