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Abstract
The nature of visual properties used for object perception in mid- and high-level

vision areas of the brain is poorly understood. Past studieshave employed sim-
plistic stimuli probing models limited in descriptive power and mathematical under-
pinnings. Unfortunately, pursuit of more complex stimuli and properties requires
searching through a wide, unknown space of models and of images. The difficulty
of this pursuit is exacerbated in brain research by the limited number of stimulus
responses that can be collected for a given human subject over the course of an ex-
periment.

To more quickly identify complex visual features underlying cortical object per-
ception, I develop, test, and use a novel method in which stimuli for use in the
ongoing study are selected in realtime based on fMRI-measured cortical responses
to recently-selected and displayed stimuli. A variation ofthe simplex method [7]
controls this ongoing selection as part of a search in visualspace for images produc-
ing maximal activity — measured in realtime — in a pre-determined 1 cm3 brain
region. I probe cortical selectivities during this search using photographs of real-
world objects and synthetic “Fribble” objects [76]. Real-world objects are used to
understand perception of naturally-occurring visual properties. These objects are
characterized based on feature descriptors computed from the scale invariant feature
transform (SIFT, [36]), a popular computer vision method that is well established in
its utility for aiding in computer object recognition and that I recently found to ac-
count for intermediate-level representations in the visual object processing pathway
in the brain [35]. Fribble objects are used to study object perception in an arena in
which visual-properties are well defined a priori. They are constructed from multi-
ple well-defined shapes, and variation of each of these component shapes produces
a clear space of visual stimuli.

I study the behavior of my novel realtime fMRI search method,to assess its
value in the investigation of cortical visual perception, and I study the complex vi-
sual properties my method identifies as highly-activating selected brain regions in
the visual object processing pathway. While there remain further technical and bio-
logical challenges to overcome, my method uncovers reliable and interesting cortical
properties for most subjects — though only for selected searches performed for each
subject. I identify brain regions selective for holistic and component object shapes
and for varying surface properties, providing examples of more precise selectivities
within classes of visual properties previously associatedwith cortical object repre-
sentation [24, 63, 71]. I also find examples of “surround suppression,” in which
cortical activity is inhibited upon viewing stimuli slightly deviation from the visual
properties preferred by a brain region, expanding on similar observations at lower
levels of vision [22, 73].
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Chapter 1

Introduction

The process of visual object recognition typically associates visual inputs — commencing with

an array of light intensities falling on the retina — with semantic categories, for example, “cow,”

“car,” or “face.” Nearly every theory or computational system that attempts to implement or ac-

count for this process, including the biological visual recognition system realized in the ventral

occipito-temporal pathway of the human brain, assumes a feedforward visual processing hierar-

chy in which the features of representation progressively increase in complexity as one moves

up in a feedforward manner [48] — the ultimate output being high-levelobject representations

that allow the assignment of category-level labels. Withinthis framework, it is understood that

there are levels ofintermediatefeatural representations that, while less complex than entire ob-

jects, nonetheless capture important object-level visualproperties [69]. Yet, for all the interest in

uncovering the nature of such features in biological vision, they remain remarkably elusive. At

present there is little empirical data on the neural representations of visual objects employed be-

tween input image and object representation. The goal of my research is to develop a new method

for the exploration and identification of visual propertiesused to encode object information along

the ventral pathway — the neural regions most associated with visual object processing.
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1.1 Prior work

The issue of constituent features for object representation has been somewhat sidestepped in neu-

roimaging’s focus on feature codes realized in “category-selective” regions within the ventral-

temporal cortex. Most investigations of these regions — forexample, the “fusiform face area”

(FFA), associated with the detection and discrimination offaces [17, 20], the “parahippocampal

place area” (PPA), associated with scene processing [12], or the lateral occipital complex (LOC),

associated with the processing of objects more generally [16] — emphasize specific object-level

experiential factors or input characteristics that lead totheir recruitment, but never establish the

underlying compositional properties that form the basis ofthe nominally category-specific rep-

resentations. Studies of the visual properties that lead tothe recruitment of these class-specific,

functionally-defined brain regions largely have focused onthe effects of spatial transformations

and of the alteration of simple domain-specific features [68]. For example, images of objects

from within a given class often elicit similar neural responses when scaled, rotated, or moved to

different locations in the visual field; although in the caseof picture-plane inversion or 3D rota-

tion, there is typically some change in neural activity [19,45]. To the extent that viable models of

neural representation have been developed, they often haverelied on the statistical analysis of the

input space within a restricted object domain. For example,“face spaces,” nominally capturing

the featural dimensions of human face representation, can be defined using principal component

analysis (PCA) on face images or using parameterized models that are generative for construct-

ing, what appear to be, realistic new face stimuli [5, 14]. Alternatively, the featural dimensions

of representation are sometimes made more explicit, as in Kravitz et al. [31] who found that the

encoding of scenes in human visual cortex can be understood in terms of an underlying set of

intuitive properties, including “open/closed” and “natural/artificial” [31]. These properties may

be understood in light of Ullman et al.’s more general proposal that intermediate features may

be construed as image fragments most-informative to a visual encoding/recognition task [69].

Further supporting the effectiveness of this sort of approach, there is some neurophysiological

2



evidence consistent with the fragment framework laid out byUllman and colleagues [18].

Current computational models commonly applied to biological object recognition tend to

make only weak assumptions regarding the nature of intermediate, compositional features1. For

example, almost all models employ variants of Gabor filterbanks, detecting local edges in visual

stimuli, to explain selectivities in primary visual cortex(V1) [22]. Extending this approach, Kay

et al., Freeman and Simoncelli, and Serre et al. propose hierarchies of linear and non-linear spa-

tial pooling computations, with Gabor filters at the base, tomodel higher-level vision [13, 27, 57].

Kay et al. is well known for exploring how neural units codingfor orientation and scale within

human V1, V2, and V3 can be assembled to reconstruct complex images. Although the study

provides an elegant demonstration of how modern fMRI methods may support more fine-grained

analyses (and therefore inspiration for further investigation), it does not inform us regarding the

nature ofintermediate featurespast the already-established edge-statistic selectivities of V1 and

V2. Indeed, we see this as the fundamental problem in any attempt to decode the features of

“intermediate-level” object representation — the parameter space is extremely large and highly

underspecified, therefore it is difficult to find effective models that fit the data.

This is not to say that studies of intermediate feature representation have not provided some

more fine-grained data regarding the neural encoding of objects. For example, Tanaka explored

the minimal visual stimulus that was sufficient to drive a given neuron at a level equivalent

to the complete object [63]. He found that individual neurons in inferior temporal (IT) cortex

were selective for a wide variety of simple patterns and shapes that bore some resemblance to

the objects initially used to elicit a response from each neuron. Interestingly, Tanaka hypoth-

esized that this pattern-specific selectivity is organizedinto a columnar structure that maps out

a high-dimensional feature space for representing visual objects. Similarly, Yamane et al. and

Hung et al. used a somewhat different search procedure employing a highly constrained, param-

eterized stimulus space to identify contour selectivity for individual neurons in primate visual

1The exception being Hummel and Biederman who made very strong assumptions as to the core features used
in object representation. Unfortunately, in this model such strong assumptions work against any generality for the
model [23].
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cortex [24, 78]. They found that most contour-selective neurons in V4 and IT each encoded

some subset of the parameter space. Moreover, each 2D contour within this space appeared to

encode specific 3D surface properties and small collectionsof these contour-selective units were

sufficient to capture the overall 3D appearance of an object or object part. Similarly, Cadieu et al.

characterized V4 selectivities as sets of prefered and anti-prefered edges, defined in the context

of the hierarchical biological model “HMAX” [4].

Dynamic selection of stimuli while recording and analyzingneural responses — pursued by

Tanaka, Yamane et al., and Hung et al. — opens a promising direction in the study of interme-

diate visual feature representations. Drawing from the world of all visual objects, the potentially

infinite images that can be displayed far outnumbers the trials available in any experiment. For a

given neural unit, one would like to converge quickly on the visual properties of greatest interest

and avoid undue exploration of properties having no effect on neural activity. This concern is

particularly pressing when performing human (rather than primate) studies, in which subjects

remain in the lab at most for a few hours over the course of several days, permitting the explo-

ration of possibly one hundred stimuli rather than the thousands possible in animal recordings.

A recent rise in realtime neuroimaging analyses sets the stage for dynamic stimulus selection in

human imaging studies. Shibata et al. used neurofeedback from V1 and V2 to control the size of

a circular stimulus displayed to subjects and Ward et al. explored realtime mapping of the early

visual field using Kalman filtering [59, 74]. While focusing onearly visual regions, these studies

show the promise of incorporating realtime analysis and feedback into neuroimaging work.

1.2 Approach

I utilize realtime fMRI analysis in conjunction with approaches from optimization and computer

vision to further address the question of features underlying object representation in the brain.

Similar to Yamane et al. and Hung et al., I explore the response of selected regions in the ventral

visual pathway in a parameterized space of stimuli, searching for stimuli producing maximal
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activity from the selected regions. Recent work guides my selection of candidate models for the

structure of stimulus space and for the principles determining cortical response.

I study visual object perception in the brain using fMRI — functional magnetic resonance

imaging. fMRI measures neural activity across the brain as reflected by blood oxygen level.

Increased firing within a group of neurons results in increased blood flow to these neurons to

provide sufficient oxygen to support their activity. The changes in blood oxygen level produce

changes in the magnetic field employed and measured by fMRI. The technology, as used in my

work, records activity at a spatial resolution of ˜2 mm and a temporal resolution of 1 s. fMRI

provides benefits over electrode recordings used in animal studies above, as it is non-invasive —

no surgery is required for placement of electrodes — and records activity across the full brain

— spanning diverse potential regions of interest in the ventral pathway. Unfortunately, blood

flow requires as many as 3 to 6 seconds to respond to neural activity, while firing occurs at

periods of ˜10 ms, hampering our ability to understand temporal dynamics underlying object

perception across the brain. However, it is well fit for the present task, measuring static selec-

tivities of one cubic millimeter to one cubic centimeter brain regions. Alternative neuroimaging

techniques, such as magnetoencepholography (MEG), offer higher temporal resolution measure-

ments of brain activity, but have much more poor spatial resolution.

The structure of the stimulus space to be used in my study is determined by the visual fea-

tures chosen to characterize the stimuli. While strong sets of candidate features for cortical ob-

ject perception are unclear, a variety of visual propertieshave shown promise. Simple two- and

three-dimensional surface contours have provided insights into neural coding [24, 78] and repre-

sentation of objects as the combination of simple componentshapes has accounted for facets of

perception [23]. Select models drawn from computer vision literature — incorporating diverse

linear and non-linear operations on image properties to maximize machine performance in ob-

ject recognition tasks — have been shown as strong proxy theories of features used in biological

object representation in intermediate stages of the ventral pathway [35]. In particular, Leeds et

al. associates the scale invariant feature transform, “SIFT” [36] with visual reprentation in the
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fusiform cortex. In my present work, I define two visual representation spaces — the first space

based on SIFT features, computed from photographs of real-world objects, and the second space

based on parametric descriptions of synthetic “Fribble” objects [76] constructed from simple

textured component shapes.

A variety of approaches can be used to characterize the response of a cortical region to

the properties described in a given stimulus feature space.Models may focus on prediction

of individual voxel responses for viewed stimuli [27], prediction of stimulus groupings elic-

iting similar multi-voxel activities [35], successful classification of viewed stimuli based on

voxel activity [27], or identification of stimuli producingmaximal response in a recorded neural

unit [24, 63, 78]. Each of these focii can benefit from dynamicstimulus selection, to maximally

sharpen model accuracy over limited recording time. Activelearning literature — studying the

strategy for selecting a small number of examples from whichto maximize the effects of su-

pervised learning — particularly focuses on efficiently learning boundaries in feature space for

optimal binary classification. In contrast, work in dynamicstimulus selection for studying in-

termediate features in vision has focused on optimization —searching for the stimulus that

produces the highest response for a given neural unit [24, 78]. I pursue the latter approach, de-

veloping novel realtime analysis software to perform a search for the most-preferred stimulus for

a given brain region.

I select four one cubic centimeter cortical regions of interest (ROIs) to study in the ventral

pathway of each of twenty subjects — ten viewing real-world objects and ten viewing Fribble

objects. For each ROI, I search in the associated feature space to identify the stimuli producing

maximal activity, selecting new stimuli for the search in realtime based on ROI responses to

recently displayed stimuli. Optimally, most selected stimuli will cluster around a location in

feature space corresponding to the visual properties for which the ROI is most selective. I assess

the performance of my realtime search method, in addition tostudying the resulting findings of

complex featural selectivities.

While searches for many ROIs failed to converge to reveal clear featural selectivitivies, my
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method uncovers reliable and interesting cortical properties for a subset of regions in most sub-

jects. I identify brain regions selective for holistic and component object shapes and for varying

surface properties, providing examples of more precise selectivities within classes of visual prop-

erties previously associated with cortical object representation [24, 63, 71]. I also find examples

of “surround suppression,” in which cortical activity is inhibited upon viewing stimuli slightly

deviated from the visual properties preferred by a brain region, expanding on similar observations

at lower levels of vision [22, 73]. Stimuli producing the highest responses for an ROI often were

distributed across multiple areas of visual feature space,potentially reflecting multiple distinct

neural populations with distinct selectivities included within the one cubic centimeter ROI.

1.3 Contributions

My work on realtime fMRI analysis and the search for complex visual feature selectivities under-

lying cortical object perception explores myriad theoretical and technical questions with impact

on multiple fields.

• Realtime neural data processingis novel in studies of perception and particularly in neu-

roimaging. Standard preprocessing methods for fMRI data incorporate information across

hours of scanning and employ computations that can require many minutes to perform.

Further processing is required to isolate a representationof cortical response from a se-

lected cortical region. I introduce and assess adaptationsof these methods for efficient,

and more cursory, analyses that can be completed sufficiently quickly to provide the in-

formation needed to intelligently select new stimuli to show a subject based on his or her

cortical responses to past stimuli.

• Realtime communication among computers and programsis essential to pass data quickly

among the fMRI scanner, signal processing programs, programs intelligently selecting new

stimuli based on recent and past cortical responses to stimuli, and programs displaying new

stimuli to the subject. I use a collection of shared files and inter-program sockets for these
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communications and assess their performance.

• A space of visual objectsmust be established as the context in which to search for com-

plex visual properties maximally activating a selected cortical region of interest. I presume

objects are organized in the brain based on composition visual features, but the identity of

these features — and of optimal candidate stimuli to illustrate these features — remains

much in question. For example, in the study of IT neurons Hunget al. pursued an implicit

space of synthetic stimuli generated from a medial axis representation [24]; however, it is

unclear such a representation is a strong model for voxel-level encoding. Furthermore, the

synthesized monochromatic blob stimuli used by Hung et al. may produce neural activity

that generalizes poorly to neural responses to real-world objects. As discussed above, I de-

fine, use, and assess two spaces of visual objects, the first based on my recent work linking

voxel-level coding and computer vision representations ofreal-world objects — particu-

larly focusing on SIFT [36] (Chap. 2) — and the second based on aset of synthesized

“Fribble” objects [76] with manually-defined axes of variability for textured component

shapes.

• It also is unclear what is the optimalsearch methodused to quickly identify stimuli and vi-

sual properties producing maximal activity from a selectedcortical. Search is further com-

plicated by the noise included in each measured cortical response to previously-viewed

stimuli. I adapt and assess the performance of a version of the simplex method incorporat-

ing uncertainty through simulated annealing [7].

• Regions of interestfor study of intermediate feature coding can be drawn from across

the ventral pathway. Indeed, the ability of fMRI to record neural activity at high spatial

resolution across the brain is one of the central benefits forits use in my study of human

visual coding. Unfortunately, the anatomical areas on which to focus are uncertain when

moving past V1 and V2, and the desirable expanse of these regions is similarly unclear.

I select and assess 125-voxel cube ROIs identified by a searchlight method inspired by
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my recent work identifying voxel regions linked with computer vision representations of

objects (Chap. 2). ROIs for each subject are identified based on data collected in a scan

prior to the realtime scans.

1.4 Thesis organization

The rest of the thesis is organized as follows. In Chap. 2, I discuss my work modeling cortical

visual representations with computer vision methods, further detailed in Leeds et al. [35]. This

chapter introduces SIFT and representational dissimilarity analysis, which are important com-

ponents in my realtime search. In Chap. 3, I discuss the methods used in my current search

for intermediate featural selectivities. These methods address technical decisions made in fMRI

study design, signal processing, software communications, image representations, and search

technique. In Chap. 4, I present the performance of my searches, study results of processing de-

cisions, and observe the stimuli producing strongest and weakest responses from the set regions

of interest. In Chap. 5, I discuss the implications of my findings to the development of future

realtime fMRI investigations and to the understanding of visual object perception in the brain. I

propose further work in Chap. 6.
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Chapter 2

Related work

My present study employs realtime search to identify complex visual properties used in the ven-

tral pathway. Many of the methods contributing to the realtime search are drawn from my recent

work evaluating computer vision methods as potential models for cortical object representation.

In this recent work, I use a searchlight procedure [32] to select a contiguous group of voxels

for each analysis, userepresentational dissimilarity analysis[33] to compare groupings of ob-

ject stimuli based on their voxel and computer vision encodings, and identify the scale invariant

feature transform, SIFT [36], as a strong model of visual representation in intermediate regions

of the ventral object preception pathway. In Chap. 3, I discuss the use of voxel searchlights and

representational dissimilarity analysis to identify regions of interest in which to perform real-

time searches for complex feature selectivities; I also discuss the use of SIFT to parameterize

visual properties to be searched. In the present chapter, I reproduce my paper currently in revi-

sion, Leeds et al. [35], to discuss the use of these analysis methods in my recent investigation,

identifying links between computer vision models and cortical encoding in the ventral pathway.
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2.1 Introduction

The process of visual object recognition typically associates visual inputs — commencing with

an array of light intensities falling on the retina — with semantic categories, for example, “cow,”

“car,” or “face.” Nearly every model, theory, or computational system that attempts to imple-

ment or account for this process, including the biological visual recognition system realized in

the ventral occipito-temporal pathway of the human brain, assumes a feedforward visual pro-

cessing hierarchy in which the features of representation progressively increase in complexity

as one moves up in a feedforward manner [48] — the ultimate output being high-levelobject

representationsthat allow the assignment of category-level labels. It goesalmost without say-

ing that within this framework, one presupposes levels ofintermediatefeatural representations

that, while less complex than entire objects, nonetheless capture important object-level visual

properties [69]. Yet, for all the interest in uncovering thenature of such features with respect

to biological vision, they remain remarkably elusive. At present there is little empirical data on

the neural representations of visual objects in the netherworld between input image and object

representation. The goal of our present study is to unravel how the human brain encodes object

information along the ventral pathway — the neural “real estate” associated with visual object

processing.

Given the paucity of data that bears on this question, how do we develop viable theories

explicating the (compositional) features underlying the neural representation of objects? One

possibility is to focus on feature codes realized in “category-selective” regions within the ventral-

temporal cortex. However, most investigations of these regions — for example, the “fusiform

face area” (FFA), associated with the detection and discrimination of faces [17, 20], the “parahip-

pocampal place area” (PPA), associated with scene processing [12], or the lateral occipital com-

plex (LOC), associated with the processing of objects more generally [16] — emphasize specific

object-level experiential factors or input characteristics that lead to their recruitment, but never

establish the underlying compositional properties that form the basis of the nominally category-
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specific representations. Most studies of the visual properties that lead to the recruitment of these

class-specific, functionally-defined brain regions have focused on the effects of spatial transfor-

mations and of the alteration of simple domain-specific features [68]. For example, images of

objects from within a given class often elicit similar neural responses when scaled, rotated, or

moved to different locations in the visual field; although inthe case of picture-plane inversion or

3D rotation, there is typically some change in neural activity [19, 45]. To the extent that viable

models of neural representation have been developed, they have relied on the statistical analy-

sis of the input space within a restricted object domain. Forexample, “face spaces,” nominally

capturing the featural dimensions of human face representation, can be defined using principal

component analysis (PCA) on face images or using parameterized models that are generative for

constructing, what appear to be, realistic new face stimuli[5, 14]. Alternatively, the featural di-

mensions of representation are sometimes made more explicit, as in Kravitz et al. [31] who found

that the encoding of scenes in human visual cortex can be understood in terms of an underlying

set of intuitive properties, including “open/closed” and “natural/artificial” [31].

This is not to say that studies of intermediate feature representation have not provided some

more fine-grained data regarding the neural encoding of objects. For example, Tanaka explored

the minimal visual stimulus that was sufficient to drive a given neuron at a level equivalent to the

complete object [63]. He found that individual neurons in ITwere selective for a wide variety

of simple patterns and shapes that bore some resemblance to the objects initially used to elicit a

response from each neuron. Interestingly, Tanaka hypothesized that this pattern-specific selec-

tivity is organized into a columnar structure that maps out ahigh-dimensional feature space for

representing visual objects. Similarly, Yamane et al. and Hung et al. used a somewhat differ-

ent search procedure employing a highly constrained, parameterized stimulus space to identify

contour selectivity for individual neurons in primate visual cortex [24, 78]. They found that

most contour-selective neurons in V4 and IT each encoded some subset of the parameter space.

Moreover, each 2D contour within this space appeared to encode specific 3D surface properties

and small collections of these contour-selective units were sufficient to capture the overall 3D
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appearance of an object or object part. Within the human neuroscience literature, the study most

often associated with feature decoding is that of Kay et al. who explored how neural units coding

for orientation and scale within human V1, V2, and V3 can be assembled to reconstruct complex

images [27]. Although Kay et al. provide an elegant demonstration of how modern fMRI meth-

ods may support more fine-grained analyses (and therefore inspiration for further investigation),

their work does not inform us regarding the nature ofintermediate featuresin that Kay et al.

relied on well-established theories regarding the featural properties of V1 and V2. That is, they

decoded features within a reasonably well-understood parameter space in which it is generally

agreed that the particular brain regions in question encodeinformation about the orientations and

scales of local edges. Indeed, we see this as the fundamentalproblem in any attempt to decode

the features of “intermediate-level” object representation — the parameter space is extremely

large and highly underspecified, therefore it is difficult tofind effective models that fit the data.

As such, Ullman et al.’s proposal that intermediate features can be construed as image fragments

of varying scale and location — leaving the content of said fragments entirely unspecified — is

perhaps the strongest attempt yet at capturing task-relevant object information encoded within

the human ventral pathway [69]. Supporting the effectiveness of this sort of approach, there is

some neurophysiological evidence consistent with the fragment framework laid out by Ullman

and colleagues [18].

Finally, we note that current computational models commonly applied to biological object

recognition tend to make only weak assumptions regarding the nature of intermediate, composi-

tional features1. For example, almost all models employ variants of Gabor filterbanks, detecting

local edges in visual stimuli, to explain selectivities in primary visual cortex (V1) [22]. Extending

this approach, both Kay et al. and Serre et al. propose hierarchies of linear and non-linear spatial

pooling computations, with Gabor filters at the base, to model higher-level vision [27, 57]. One

such hierarchical model, “HMAX” [4], partially predicts neural selectivity in the mid-level ven-

1The exception being Hummel and Biederman who made very strong assumptions as to the core features used
in object representation. Unfortunately, in this model such strong assumptions work against any generality for the
model [23].
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tral stream (V4) for simple synthetic stimuli. However, HMAX imperfectly clusters pictures of

real-world objects relative to clustering based on neurophysiological and fMRI data from IT [33].

To further address the question of the compositional features underlying neural object rep-

resentation, we employed several models of visual representation drawn from machine vision

— each provides a putative hypothesis regarding the features used in object perception. These

representations incorporate diverse linear and non-linear operations on image properties to max-

imize machine performance in object detection and recognition tasks. As such, we are relying on

these models as proxies for theories of features for biological object representation. Given this

set of models, we collected data on human object processing using fMRI and a simple object per-

ception task. We then correlated the resultant neural data with the object dissimilarity matrices

predicted by each computer vision model, thereby establishing a correspondence between each

model and patterns of neural activity in specific spatial locations within the brain. Consistent

with the fact that these models make different assumptions with respect to object representation,

we found that different models were associated with neural object encoding in different cortical

locations. However, consistent with the overal visual nature of all of these representations, we

observed that most of these associations lay within the ventral and dorsal visual cortices. Of par-

ticular interest, one popular machine vision represention, the scale invariant feature transform,

“SIFT” [36], which encodes images using relatively simple local features, was the most strongly

associated with measured neural activity in the brain regions typically associated with mid-level

object perception (e.g., fusiform cortex). To better explicate how we arrived at this finding,

we next define what is meant by “dissimilarity” with respect to both computational models and

neural data.

2.1.1 Representational dissimilarity analysis

To assess model performance, neural stimulus representations as measured by fMRI and a given

machine vision model were compared using representationaldissimilarity analysis. For each
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set of voxels and for each model, a pairwise distance matrix was computed reflecting which

sets of stimulus images were considered to be similar and which were considered to be dif-

ferent (more detail is given in Sec. 2.2.7). Model/neural matrices were more correlated when

the two corresponding representations of the stimuli groupthe considered images in a similar

manner. Kriegeskorte et al. demonstrated the advantages ofdissimilarity analysis in observing

and understanding complex patterns of neural activity — in their case, a collection of spatially

contiguous voxels [33]. We similarly wished to understand object encoding across restricted vol-

umes of voxels. The advantage of this approach is that it allows us to judge a model’s descriptive

power without requiring identification of the exact — most-likely non-linear — mapping be-

tween model and voxel responses. Indeed, O’Toole et al. and Kiani et al. pursued related

cortical-computational dissimilarity analyses in studying visual perception, finding that the or-

ganization of object categories in IT is based, in part, on visual similarity [43] and, in part, on

higher-order class information [28]. The ability of this method to bypass the issue of learning a

direct mapping between model predictions and neural data provides particular benefit for fMRI

studies in that it obviates the need to split rather limited datasets in order to cross-validate.

2.2 Methods

2.2.1 Stimuli

A picture and word set comprised of 60 distinct color object photos displayed on 53% gray back-

grounds and their corresponding basic-level names was usedas stimuli (Fig. 2.1). The specific

category of each object was selected to match the 60 objects used in Just et al. [26]2. The photo-

graphic images used in our study were taken from web image searches; therefore, we do not have

the rights to redistibute the actual images. The 60 objects included five examples from each of

twelve diverse semantic classes, for example, tools, food,mammals, or body parts. Each object

2The particular images used in Just et al. were drawn from the “Snodgrass and Vanderwart” line-drawing image
dataset [61].
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Figure 2.1: The 60 image stimuli displayed to subjects

was depicted by a single image. Although visual similarities among stimuli can be seen across

semantic groups, such as knife and carrot (thin and slanted up to the right) or tomato and eye

(circular in the image plane), objects within a semantic class were typically more similar to one

another relative to their across-class similarities. Our use of real-world images of objects rather

than the hand-drawn or computer-synthesized stimuli employed in the previously-discussed stud-

ies of mid-level visual coding, for example, Cadieu et al. [4]and Yamane et al. [78], is intended

to more accurately capture the importance of the broad set ofnaturally-occuring visual features

in object perception.

2.2.2 Subjects

Five subjects (one left-handed, one female, age range 20 to 24) from the Carnegie Mellon Uni-

versity community participated, gave written informed consent, and were monitarily compen-

sated for their participation. All procedures were approved by the Institutional Review Board of

Carnegie Mellon University.

2.2.3 Experimental Design

All stimuli were presented using Matlab [38] and the Psychophysics Toolbox [3, 44] controlled

by an Apple Macintosh and were back projected onto a white screen located at the head end
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of the bore using a DLP projector (Sharp XG-P560W). Subjects viewed the images through a

mirror attached to the head coil with object stimuli subtending a visual angle of approximately

8.3 deg × 8.3 deg. Each stimulus was displayed in the center of the screen for 2.0 s followed by

a blank 53% gray screen shown for a time period randomly selected to be between 500 and 3000

ms, followed by a centered fixation cross that remained displayed until the end of each 10 s trial,

at which point the next trial began. As such, the SOA between consecutive stimulus displays was

fixed at 10 s. Subjects were instructed to press a button when the fixation cross appeared. The

fixation onset detection task was used to engage subject attention throughout the experiment. No

other task was required of subjects, meaning that our study addresses object perception under

passive viewing conditions.

The 10 s SOA was chosen to minimize temporal overlap between voxel BOLD responses for

multiple stimuli — a slow event-related design based on the assumption that the hemodynamic

response in the ventral-temporal cortex has decreased to a sufficient degree in the 10–12 s after

stimulus onset to minimize the noise in our measurements of the cortical responses.

The stimuli were presented in 24 six-minute runs, spread across three 1-hour scanning ses-

sions and arranged to minimize potential adaptation and priming effects. Each scanning session

included two sets of four runs. Each run contained 15 word and15 picture stimuli, ordered such

that the picture and the word corresponding to the same object were not viewed in direct succes-

sion and all stimuli were viewed exactly once in each four-run set to avoid priming and adaptation

effects. Trials using the word stimuli were not analyzed or otherwise considered as part of our

present study. Stimulus order was randomized across blocksand across subjects. Over the course

of the experiment, each subject viewed each picture and eachword six times; averaging across

multiple repetitions was performed for each stimulus, described below, to reduce trial-by-trial

noise.

The first session for each subject also included functional localizer scans to identify object

selective cortex — namely, the Lateral Occipital Complex (LOC) — a functionally defined re-

gion [30] that we consider separately from the anatomically-identified lateral occipital cortex
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(LO; although there is overlap between the two areas). For this localizer, 16 s blocks of common

everyday objects were alternated with 16 s blocks of phase-scrambled versions of the same ob-

jects, separated by 6 s of fixation [16, 30]. Phase scramblingwas achieved by taking the Fourier

transform of each image, randomizing the resulting phase values while retaining the original

frequency amplitudes, and reconstructing the image from the modified Fourier coefficients [53].

Within each block, 16 images, depicting 14 distinct objects, were shown for 800 msec each, each

object being followed by a 200 msec gray screen. Two of the objects were sequentially repeated

once during each block — to maintain attention, subjects were instructed to monitor for this,

performing a one-back identity task in which they respondedvia a keypress whenever the same

object image was repeated across two image presentations. Six blocks of both the intact and

scrambled objects conditions were presented over the 282 s scan [47]. The object images used

in the localizer scans were different from the object picture stimuli discussed in Sec. 2.2.1. LOC

area(s) were identified as those brain regions more selective for intact versus scrambled objects.

LOC areas included all regions containing spatially contiguous voxels (no minimum cluster size)

for which beta weights for the block design had significance level ofp < .005.

To provide anatomical information, a T1-weighted structural MRI was performed between

runs within the first scanning session for each subject.

2.2.4 fMRI Procedures

Subjects were scanned using a 3.0 T Siemens Verio MRI scannerwith a 32-channel head coil.

Functional images were acquired with a gradient echo-planar imaging pulse sequence (TR 2 s,

TE 26 ms, flip angle90◦, 2 mm × 2 mm × 3 mm voxels, field of view192 × 192 mm2,

31 oblique-axial slices). Slices spanned the majority of the brain, to observe relevant stimulus

representations beyond the visual streams (Fig. 2.2). An MP-RAGE sequence (flip angle9◦,

1 mm3 voxels, field of view256 × 256 mm3, 176 sagittal slices) was used for anatomical

imaging.
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Figure 2.2: Slice coverage for all subjects.
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2.2.5 Preprocessing

Functional scans were coregistered to the anatomical imageand motion corrected using AFNI [46].

Highpass filtering was implemented in AFNI by removing sinusoidal trends with periods of

half and full length of each run (338 s) as well as polynomial trends of orders one through

three. The data then were normalized so that each voxel’s time-course was zero-mean and unit-

variance [26]. To allow multivariate analysis to exploit information present at high spatial fre-

quencies, no spatial smoothing was performed [62].

For each stimulus repetition, the measured response of eachvoxel consisted of five data sam-

ples starting 2 s/1 TR after onset, corresponding to the 10 s between stimuli. Each five-sample

response was consolidated into a weighted sum, intended to estimate the peak response. This was

accomplished as one step in a “searchlight” process [32]: 123-voxel searchlight spheres — with

radii of 3 voxels — were defined centered sequentially on every voxel in the brain. The average

five-sample response of voxels across this sphere and acrossall stimulus presentations was com-

puted. For a given searchlight, for each stimulus, each voxel was assigned a number based on

the dot product of this average response and the voxel’s meanresponse across all six repetitions

of that stimulus. To the extent that hemodynamic responses are known to vary across cortical

regions, this procedure allowed us to take into account a given voxel’s local neighborhood mean-

response shape. Fitting the local average response may provide a more accurate model of the

relative activity of voxels across a sphere as compared to fitting a fixed response function across

the whole brain.

2.2.6 Initial Voxel Selection

Data analysis was performed on the entire scanned brain volume, with subregions defined by the

sequential searchlight. To distinguish the brain, in its entirety, from the surrounding skull and

empty scanner space, a voxel mask was applied based on functional data using standard AFNI

procedures. Voxels outside the full-brain mask were set to0 at all time points; these0 values
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were incorporated into searchlight analyses when performed close to the exterior of the brain.

Because the inclusion of these null values was consistent across all stimuli, it did not affect the

patterns of the dissimilarity matrices.

2.2.7 Representational Dissimilarity Measures

As discussed earlier, we employedrepresentational dissimilarityas means for relating the neural

representation of objects to the representation of the sameobjects within a variety of computer

vision models. Arepresentational dissimilarity matrix(RDM) Dm was computed for each en-

coding modelm such that

Dm
i,j = dm(si, sj) (2.1)

meaning the matrix element in theith row andjth column contains the distance, ordissimilar-

ity, between theith and jth stimulussi andsj in the modelm. A given dissimilarity matrix

captures which visual objects are clustered together by thecorresponding representation. The

searchlight procedure was then used to identify voxel clusters withDms similar to the RDMs of

each computer vision model.

A 123-voxel searchlight sphere was defined centered on each voxel in the brain [32], with

individual voxel responses to each stimulus computed as described in Sec. 2.2.5. For a given

searchlight centered on voxel-location(x, y, z), each RDM entryDsrchltx,y,z

i,j was defined as one

minus the Spearman correlation between the voxel responsesfor stimuli i andj [33]:

dsrchltx,y,z(si, sj) = 1 − r(v(si), v(sj)) (2.2)

The 123-element vectorv(si) represents the voxel responses for stimulusi averaged across all

six blocks to compute the RDM. This averaging enhances the stimulus-specific response over the

independent time-varying noise, providing a more stable estimate of the searchlight response to

each stimulus.
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Figure 2.3: Multi-dimensional scaling visualization of the relative clustering of 15 of the stimulus
pictures based on each computational model under analysis.

Five computational models of object representation were implemented for comparison with

the neural representation of objects. Four of these methodswere drawn from popular computer

vision models with varied approaches to object representation, while the fifth was a standard

computational model designed to account for neural responses relatively early in primate vi-

sual cortex. Distinct distance metricsdm(· · · ) were derived from each method. These models,

ordered from relatively more local to more global feature representations, are described next.

1. Gabor filterbank The Gabor filter is a well-established model of cell and voxel-level

selectivity in V1 [10]. Each filter identifies a specific localoriented edge in the stimulus.

A bank of filters spans edge angle, position, and size. The first four levels of the filterbank
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used in Kay et al. [27] were implemented and used to representeach image. The real-

valued responses for each filter were recorded in a vector. Euclidean distance was used to

measure the difference between the vectors associated witheach pair of images.

2. Geometric Blur Geometric Blur uses local image properties at selected interest points.

The relative locations of these interest points are included in the image encoding, thus in-

corporating more global geometric properties of each object. Feature vectors consist of

pixel values regularly sampled in radiating circles aroundthe interest point, with the start-

ing point for sampling being determined by local image statistics. Pixel values are blurred

over space, with increasing blur for higher-radius circles. This approach emphasizes pre-

cise details at each interest point and lower-resolution context from the surrounding region,

similar to the decrease in spatial resolution away from the retina’s focal point in early vi-

sion.

Interest points were selected randomly from edges found by aCanny edge detector [6].

Features were extracted through an implementation of the algorithm described in Berg et

al. [2]. For each pair of images, each interest point in one image (the image with fewer

points) was matched with the point spatially closest in the second image. The dissimilarity

for each pair of points was computed by taking the weighted sum of the negative correlation

between the two feature vectors, the Euclidean distance between the points, and the change

in circle orientation as defined in Berg et al. [2]. The final dissimilarity between images

was found by summing the dissimilarities for all pairs of points. This incorporates both

global geometric information and spatially-sampled localimage statistics.

3. Scale Invariant Feature Transform Scale Invariant Feature Transform or “SIFT” fea-

tures [36] have been widely used in computer vision systems for visual object recogni-

tion. This approach selects significant pixel patches of an image and captures associated

visual properties that are invariant to a variety of common transformations, such as rota-

tion, translation, image enlargement, and (potentially) changes in ambient lighting. More
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specifically, for a given image,interest pointsare identified and a scaled, rotated frame

is defined around each point. For each frame, a feature vectoris computed to encode the

local image properties, defined as coefficients of a pyramid of image gradients increasing

in spatial scope. SIFT features were extracted from the 60 object stimuli using the VLFeat

package for Matlab [70], with default settings when not otherwise specified.

A bag of featuresapproach was used to compare SIFT features for pairs of images [40].

Conceptually, each of the SIFT feature vectors in each stimulus is categorized as one of 128

“words,” where the words are consistently defined across all60 images. Each image is then

characterized by the frequency of each of the possible words. More specifically,k-means

clustering is performed on the feature vectors from all interest points of all pictures, placing

each vector into one of 128 groups. Assignment of multi-dimensional continuous-valued

vectors to a small number of groups greatly reduces SIFT’s representational complexity.

A histogram is computed to find the frequency of each vector-group in each image and the

histograms were normalized to sum to 1. For each image pair, the Kullback-Leibler (KL)

divergence was used to measure the difference between the resulting two normalized his-

tograms.

4. Shock GraphsThe Shock Graph provides a complete and unique representation of a given

visual object’s external shape by constructing a modified form of Blum’s medial axis [29]

based on the object’s silhouette. The graph is a set of vertices, edges, andshocklabels,

G = (V,E, λ). Each vertex represents a point or interval along the medialaxis, edges

connect spatially neighboring points/intervals, and eachlabel specifies the curvature of the

portion of the silhouette associated with the corresponding vertices:

• λ = 1 when curvature is monotonic; object only widens or only narrows over an

interval

• λ = 2 when curvature reaches a local minimum at a point; object narrows prior to

the point in the axis and widens after the point
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• λ = 3 when curvature remains constant over an interval; object silhouette ends in a

semi-circle or object is a circle

• λ = 4 when curvature achieves a local maximum at a point; object widens prior to

the point in the axis and narrows after the point

Further details are provided by Siddiqi et al. [60]. The distance between graph pairs was

computed using a graph-matching technique implemented by ShapeMatcher 5.2.1, which

also was used to generate the graphs [37].

5. Scene GistAlthough Scene Gist [41] is specially designed for recognition of scenes rather

than objects, we included this model partly as a control for our assumptions about object

representation and partly to explore whether global image encoding methods are applicable

to biological object perception. In the Scene Gist model, each picture is represented as a

weighted sum of bases, found through principal component analysis such that a small

number of bases can be added together to reconstruct naturalscene images with low error.

The weights used in summing the bases to reconstruct an imageserve as the features.

A scene gist feature vector for each image was computed usingMatlab code implemented

by Torralba [67], and normalized to sum to 1. The distance between each image pair was

calculated as the KL divergence between the corresponding normalized feature vectors.

After defining the distance metrics and calculating the representational dissimilarity matrix

(RDM) entries for each of the five models, the resultant matrix for each model was compared to

the matrix for each searchlight volume by converting the lower triangle of each60 × 60 matrix

into a 1770 × 1 vector and measuring correlations. When a model represents aset of image

pairs as similar and a voxel sphere encodes the same pairs of images as similar, we may consider

the voxels to be selective for the visual properties captured in the model. By comparing each

computational representation with searchlights swept across the whole brain, we can identify

which cortical regions, if any, have responses well described by each method’s object/image

representational approach.
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Statistical significance values were computed at each searchlight location through permuta-

tion tests. The elements of the vectorized computer vision RDMs were permuted 500 times;

the mean and variance of correlations for each searchlight position with each permuted RDM

were computed to derivez values for the true correlation measures. Thez values were con-

verted intop values and a threshold was chosen such that the false detection rate wasq ≤ .001,

following the method of Genovese et al. [15], and the regionsabove threshold were visualized

over the subjects’ anatomical surfaces. Surface maps were constructed using FreeSurfer [1] and

SUMA [51].

2.3 Results

Our study was designed to illuminate how the human visual system encodes object information

along the ventral pathway and, in particular, explicate thenature of intermediate neural object

representations. To that end, we employed five computational models that make specific, and

different, assumptions about the algorithms for recognizing content in visual images (Sec. 2.2.7).

To the extent that there is a gap in our knowledge with respectto the nature of intermediate

features in human vision, we adopted these models as proxy theories that each provide differing

constraints on possible representations. Individual models were compared to our fMRI data by

measuring the distance, orrepresentational dissimilarity, between each pair of object stimuli for

both the particular computational model and the neural encoding. A searchlight method was

used to identify brain regions where the set of inter-stimulus distances, that is, the grouping of

the stimuli, was similar to the grouping of the same stimuli produced by a given computational

representation. Of note, in comparison to the limited functional regions identified by the LOC

localization technique discussed in Sec. 2.2.3, we searched almost the entire brain to allow for

the existence of brain regions selective for complex visualfeatures beyond those regions often

associated with object representation.

Given that all five of our included models rely on the same visual input as our fMRI experi-
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Figure 2.4: Cortical regions with a dissimilarity structuresignificantly correlated,q < .001,
with the dissimiliarity structures of the five different models of visual feature coding. Colors are
associated as follows: blue forSIFT, cyan forGeometric Blur, green forShock Graph, purple for
Scene Gist, and orange forGabor filterbank. Color intensity proportional to correlation. Regions
matching multiple models show the corresponding colors overlayed. Note first that although
we illustrate these results on surface maps, the actual searchlights were run on brain volumes,
and second, that color overlap sometimes forms misleading shades, for example, purple as the
combination of blue and orange. Compare with Fig. 2.5 in casesof uncertainty.
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Figure 2.5: Cortical regions on Talairach brain with dissimilarity structure significantly corre-
lated, q < .001, with the structures of computer visual models. Colors are associated with
subjects as follows: blue for S1, cyan for S2, green for S3, yellow for S4, and orange for S5.
Red denotes overlap between two or more subjects, with darker shades of red corresponding to
increasing numbers of subjects overlapping with one another.
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ment, it is not surprising, but still gratifying, that we observe significant correlations between our

neural data and all five models. Fig. 2.4 depicts those brain areas with significant correlations

(q < .001) between the distance matrices derived from each model and the neural responses

within each area. Importantly, although we scanned across almost the entire brain, these corre-

lated brain areas are focused in anatomical locations associated with low-, mid-, and high-level

vision in both dorsal and ventral visual cortices, with limited spread to prefrontal cortex. Over-

all, the SIFT model most consistently matched the obtained stimulus representations in mid-level

visual areas, while the Gabor filterbank model most consistently matched the obtained stimulus

representations in low-level visual areas. The neuroanatomical locations for matches to the three

other models were less consistent across subjects.

If we consider the underlying characteristics of each model, these results appear reasonable.

First, the Gabor filterbank model encodes local oriented edges and has been used successfully

to model receptive fields in early visual cortex [27]. Thus, the distance matrix correlations re-

sulting from the Gabor filterbank model serve as a baseline toensure that our overall approach

is viable. As such, we expected a significant match between the activity observed in human

V1 and this model. Moreover, including the Gabor filterbank model allows us to contrast these

baseline correlations expected to be associated with earlier visual processing with any observed

correlations arising in mid- and high-level visual areas. As illustrated in Fig. 2.4 in orange, S2,

S3, and S5 all show a positive correlation between the RDMs from the Gabor filterbank model

and neural activity in the left occipital pole, while all fivesubjects show a positive correlation in

the right occipital pole. Somewhat surprisingly, the Gaborfilterbank model also elicits signifi-

cant positive correlations in mid-level visual areas, including the left fusiform (lFus) in all five

subjects and the right fusiform (rFus) in subjects S2, S3, S4, and S5; subjects S2, S3, and S5 also

exhibit positive correlations in left lateral occipital cortex (LO). We also see some correlation in

anatomical regions often associated with higher-level visual processing, for example extending

more anteriorly in the ventral temporal cortex for S1, S4, and S5. Finally, the Gabor filterbank

model is correlated with activity beyond the ventral stream, including the inferior parietal (IP)
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region in the left hemisphere of S2, S3, and S4, and in the right hemisphere of S2; somewhat

smaller correlations were also observed in left prefrontalcortex (PFC) of S2 and right PFC of S3

and S5. Least intuitive may be the small-area, weak correlation matches in left pre-central sulcus

of S3 and S5. Fig. 2.5 emphasizes the most consistent match regions across subjects are in the

bilateral occipital poles and early ventral stream.

In constrast with the Gabor filterbank model, the SIFT model encodes local visual statistics

selected across points of interest in an image. The more restricted results observed for the SIFT

model are consistent with this difference in representation. Positive correlations between the

SIFT model and regions of neural activity are evident in subjects S2, S3, S4, and S5, as illustrated

in Fig. 2.4 in blue. With respect to the SIFT model, our major finding is that these four subjects

all show positive correlations in bilateral Fusiform. Subject S5 also shows a positive correlation

in bilateral LO. In the dorsal stream, there is strong positive correlation for S2 in left IP. We

also observed a positive correlation in left PFC for S5 and right PFC for S2 and S5. Fig. 2.5

illustrates the overlap of positively correlated regions across subjects in bilateral Fusiform and in

the posterior right ventral stream.

The Geometric Blur model, much like SIFT, encodes local visual properties from selected

points in each image, but also encodes more global information about object geometry. As

illustrated in cyan in Fig. 2.4, all five subjects showed positive correlations with neural activity

in mid-level visual areas; the breakdown by subjects being illustrated in Fig. 2.5. Subjects S1

and S5 exhibited positive correlations spanning bilateralFusiform and posterior IT (pIT), with S5

exhibiting a more continuous region. More anteriorly in right IT, we observed spatially smaller

positive correlation for S1 and S4. The right occipital polealso had small spatial regions showing

positive correlations for S1, S2, S3, and S5, in addition to regions near the left occipital pole for

S1 and S5. Within the ventral visual cortex, S5 also shows a positive correlation in bilateral

LO. In the dorsal stream, there are small positive correlated areas in the parieto-occipital sulcus

(POS) for S2. Finally, we observed a positive correlation inPFC for S5.

The Shock Graph model uniquely represents the silhouette shape of a given visual object,
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ignoring small-scale internal details critical to more local models such as SIFT and geometric

blur. Positive correlations between neural activity and the Shock Graph model are illustrated

in green in Fig. 2.4. These positive correlations are apparent for subjects S1, S3, S4, and S5.

S1 exhibits positive correlations in bilateral LO and bilateral occipital poles. There are positive

correlations for S3, S4, and S5 in rFus, as illustrated in Fig. 2.5.

The Scene Gist model encodes global image properties most commonly found in natural

scenes, focusing on the two-dimensional spectrum across a given image. Positive correlations

for the Scene Gist model are shown in purple in Fig. 2.4, with the most robust results being

observed in S5, although, as illustrated in Fig. 2.5, there are also positive correlations in S1, S3,

and S4. More specifically, S1 and S5 exhibit positive correlations in lFus. S5 also shows positive

correlations in rFus, bilateral LO, and the bilateral pIT. S3 and S5 show positive correlations in

the right occipital pole, with S5 also showing a positive correlation in the left temporal pole. Less

robust effects are seen for S4 and S5 in a more anterior regionof right IT; while S1 and S5 show

positive correlations near left IP.

Taking a somewhat broader perspective, comparisons among these results indicate that some

brain regions appear to consistently correlate with several of the computational models we con-

sidered. First, the Geometric Blur and SIFT models, both encoding local statistics of images,

have overlapping regions on the ventral surfaces of S3 and S5and in PFC of S5. Within the

ventral surface, these regions tend to be in pIT. The greatest degree of overlap can be seen be-

tween SIFT and the Gabor filterbank model across subjects S2,S3, S4, and S5, largely along the

posterior ventral surface. To some extent, this may be expected simply by chance, as these two

methods produce the largest sets of model-cortical match regions. It also is worth noting SIFT

is based on non-linear operations on selected Gabor filter responses, potentially tying the two

methods together.

Another way of examining this data involves focusing on a specific functional region — in

this case the area of the ventral stream most often associated with generic, high-level object

processing — the LOC [16, 30]. Overlap between cortical regions differentially selective for
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Figure 2.6: Cortical regions selected by LOC localizer and also found to have dissimilarity struc-
ture significantly correlated,q < .001, with the structures of computer vision models. Colors are
associated as follows: blue forSIFT, cyan forGeometric Blur, green forShock Graph, yellow
for Scene Gist, orange forGabor filterbank. Yellow countours show LOC localized regions.
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Figure 2.7: Distance matrix Spearman correlations among the five models. Mean and standard
deviation correlations computed using leave-one-out method, leaving out 1 of the 60 stimuli for
the distance matrices. Higher correlations in larger font and in darker red backgrounds.

objects, identified using the LOC “localizer” described above, and searchlight volumes found

to be positively correlated with one or more of the five computational models are illustrated

in Fig. 2.6. These overlap regions were spatially small as compared to the overall volumes

identified by the searchlight process and varied in anatomical location depending on the particular

computational model and the subject. For example, within the LOC, the anatomically-based left

LO overlapped with a volume identified as correlated with theGabor filterbank model in S3,

while the lFus showed overlap with volumes associated with the Gabor filterbank model in S4.

Further overlap within LOC was observed for Gabor filterbankvolumes located in right pIT for

S4, in a more anterior region of left IT for S1, and in left extrastriate cortex for S3 and S5. With

respect to correlated searchlight volumes arising from theSIFT and Geometric Blur models,

within LOC we observed overlap in right LO, pIT and more anterior IT for S5. Finally, the

Geometric Blur model overlapped with LOC responses in anterior IT for S1.

To provide perspective on the similarities among the five studied computational models, we

compared their respective stimulus distance matrices in Fig. 2.7. We compute correlations for

distance matrices including 59 of the 60 rows and columns andobserve the average and standard

deviation for each model comparison. We observe that the correlation between models’ stimulus

grouping structures generally fails to act as a predictor ofoverlapping regions seen in Fig. 2.4,

with the potential exception of the link between SIFT and Geometric Blur. Fig. 2.7 also illustrates

that the models have notably low pairwise correlations, that is, representations, of the 60 stimuli.
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Supporting this observation, for the most part, there are few overlapping regions across models

in any of the five subjects.

A distribution of the model-neural activity positive correlation values, akin to a Gamma dis-

tribution, is above the FDR threshold for each subject and for each model. The nature of these

distributions is illustrated in Fig. 2.8. Note that while the average significant correlations for each

model are roughly the same,r = 0.15, the highest values provide a sense of ranking among

computational representations in their abilities to account for neural responses. Most intuitively,

the Gabor filterbank model, assumed to account for aspects ofprocessing within primary visual

cortex, shows the strongest matches with an average top correlation of roughlyr = 0.33; anal-

ysis of individual subject correlations reveals the same pattern. SIFT exhibits the second highest

set of correlations, with an average top correlation of roughly r = 0.23. The distribution of

maximum correlations follows the same trend as the total area across all of the positively corre-

lated regions for each model across all subjects; this is shown in Figs. 2.4 and 2.5. Fig. 2.8 also

illustrates that there are significant positive correlations between every subject and every model.

Certain matches are omitted from the discussion above because of their low correlations and their

small surface spans, making them difficult to interpret.

2.4 Discussion

2.4.1 Computational models of vision as proxy theories of biological vision

Our goal in this project was to better elucidate the featuralcharacter of the ventral neural sub-

strates supporting visual object processing. In contrast to our understanding of early visual pro-

cessing (e.g., V1 through V4) and the high-level organization of visual cortex (e.g., the LOC,

FFA, PPA, etc.), intermediate representation along the ventral pathway is poorly understood. To

the extent that few theories account for this stage of visualobject processing, we adopted a col-

lection of theories drawn from computer vision to serve as proxies in that each theory makes
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specific, and different, assumptions regarding object representation.

To apply these theories to the neural representation of objects, we analyzed the pattern of

similarity relationships between objects within the same collection of 60 objects as represented

within the brain using fMRI and within each computational model. We then applied a search-

light analysis to uncover correlations between patterns ofneural activity within brain subregions

— sampled across the brain — and patterns within each computational model. This approach

provided many regions where there was a reasonable correspondence between a given model and

the observed neural activity. Importantly, almost all of these significant correlations occurred in

brain areas associated with visual object processing, thereby providing a theoretical sanity check

that our results are informative with respect to our question of interest. At one level, this general

result should not be particularly surprising — all of our models relied on the same spatial input,

images of objects, that were used as stimuli in the neuroimaging component of our study. Ideally,

correlations at input should be reflected, at least to some degree, in correlations in representation

of that input. On the other hand, the tested models each captured somewhat different linear and

non-linear structures in their representation of objects (e.g., [2, 8]). For example, the interest

point frameworks used in the SIFT and Geometric Blur models provide a potential basis for

parts-based perception — often assumed to be a critical element in the biological representation

of objects [54, 79]. In contrast, the Shock Graph approach provides a compact encoding of an

object’s silhouette, supporting a parametric descriptionof holistic representation [29]. Finally,

Scene Gist is even more biased in representing global properties of an image, encoding the entire

image structure of an object as well as the background [41].

Beyond the basic finding that our highest model-neural response correlations are observed

within the visual system, we gain further confidence regarding the informativeness of our method

from the observation that the strongest correlations between the Gabor filterbank model and neu-

ral activity are located early in the visual pathway, near the orbital pole and extrastriate cortex.

This finding is consistent with a wide variety of studies characterizing early neural visual re-

ceptive fields as coding for local oriented edges [10, 22, 27]. The extension of these significant
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correlation regions into the higher-level bilateral fusiform and inferiorparietal has slightly less

clear interpretations, but may support the hypothesis of Serre et al. [57] and Cadieu et al. [4] that

later stages of the ventral visual stream employ a hierarchyof sometimes non-linear operations

based on initial Gabor filter outputs. Beyond the operationsspecified in Serre et al. and Cadieu et

al., SIFT represents a reframing of Gabor filter-like outputs for more complex recognition tasks,

potentially accounting for the overlap in brain regions we observe between the correlations for

the Gabor filterbank and SIFT models across subjects.

In summarizing the relative performance of the tested models, we find that both across and

within subjects, the SIFT model appears to be the most promising of those tested for accounting

for intermediate-level object representation in the humanvisual system. In particular, the SIFT

model most strongly and consistently matched patterns of neural activity in rFus — an anatom-

ical neighborhood associated with processing faces and other objects drawn from domains of

expertise [17, 20, 65]. To a lesser extent, we also observed correlations for the SIFT model

within left LO — a neuroanatomically-defined brain region also associated with object percep-

tion [16]. However, as shown in Fig. 2.6, the SIFT model rarely correlates with brain regions

lying within the functionally-defined object-selective area referred to as LOC. Thus, it appears

that the representation of objects in SIFT is similar to an intermediate encoding stage along the

path to high-level object representation.

As a “proxy” model of intermediate feature representation,the preponderance of significant

SIFT correlations in our results invites further reflectionon its underlying algorithm. As dis-

cussed earlier, SIFT’s interest point strategy is consistent with parts- or feature-based models of

object perception. Notably, unlike Geometric Blur, our implementation of SIFT disregards the

spatial locations of the local image regions it encodes, a characteristic that is consistent with the

observation of invariance between intact images and their blockwise scrambled versions [71].

Similarly, SIFT incorporates aspects of the Gabor filterbank model which does a reasonable job

at capturing characteristics of early visual processing; as such, this component of SIFT enhances

its nominal biological plausibility. Finally, our “bag of words” implementation of the SIFT
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model [40] supports the learning of commonly-occurring local edge patterns as “visual words”

— the use of such words allows the extraction of statistical patterns in the input similar to how

vision scientists often characterize V1 receptive fields [42].

Our results also suggest that the Shock Graph model may be informative with respect to in-

termediate feature representation. Shock graphs describeobjects in terms of their global shapes,

capturing their axial structures and silhouettes. Thus, spatial information about the relative po-

sitions of shape features are preserved, but the local imagestatistics that may specify local fea-

tures are not captured (e.g., texture). Our observation of correlations between ventral stream

neural activity and the Shock Graph model supports the idea underlying shape-based encoding

in intermediate-level neural representations [24, 63, 78]. To the extent that these correlations are

confined to more posterior parts of the ventral stream, they are, however, somewhat inconsistent

with Hung et al.’s [24] observation of shape-based representations in anterior IT in monkeys. At

the same time, this observation should not be generalized toother models of global encoding, as

we find that Scene Gist, encoding spatial frequencies acrosswhole images, produces correlations

in more anterior IT.

More generally, although our results are informative in some respects, it is doubtful that any

established computational vision model accurately captures the neural representations instanti-

ated in intermediate-level biological vision. Indeed, thebest correlations between any model and

the fMRI-derived cortical distance matrices (Fig. 2.8) fall below the majority of pairwise corre-

lations observed between the model-derived distance matrices (Fig. 2.7). Nonetheless, the large

majority of statistically significant (q < .001) model-fMRI correlations were found in visual

brain areas, with some differentiation within these areas for different methods. Thus, we gain

some sense of the properties for which given brain regions may be selective.

From a theoretical perspective, one potential concern withthis interpretation is how we se-

lected particular computational models for use in our study. In large part, our choices were

based on each model’s success or popularity in the extant computational vision literature and on

each model’s distinct encoding strategy with respect to intermediate feature representation —
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an intuition validated by the fact that the models have measurably different stimulus dissimilar-

ity matrices (Fig. 2.7). Of note, our present work does not include an analysis of the popular

hiearchical model of biological vision known as “HMAX” [4, 48, 57]. HMAX employs a hier-

archical series of summing and non-linear pooling operations to model mid-level visual regions

such as V2 and V4. However, the HMAX model contains a variety of variables that must be fit

either to the input stimulus set or to a set of experimental data [57]. In an additional experiment

not presented here, we found the actual data set collected inour study using the 60 image stimuli

was insufficient for reliable fitting of HMAX [56], even when limiting the model to layers S1

through C2, as in Cadieu et al. [4]. In contrast, the application of HMAX to the responses of

individual neurons in monkeys [4] is more feasible, as data for 1,000s of trials can be acquired.

At the same time, it is worth noting that neurophysiologicalrecordings of IT do not correspond

to HMAX predictions for stimulus grouping structure [33].

From an empirical perspective, a second potential concern is the degree of variability in the

spatial location, or even the existence, of large high-correlation brain regions for each model

within individual subjects. In some cases, as in SIFT and Gabor filterbank, the changes in

anatomical positions across subjects were relatively slight, consistent with variability of func-

tional region locations, such as LOC or FFA [34]. More qualitative variability, for example,

across lobes or hemispheres, may reflect meaningful differences in our subjects’ cognitive and

cortical approaches to object perception. For example, individuals may vary in the degree to

which they attend to local versus global features or apply holistic mechanisms [77]. Beyond the

potential strategic variation in how individuals perceiveobjects, noise in the hemodynamic sig-

nals may increase the variability of correlated brain regions across subjects. However, this latter

possibility fails to explain why all subjects exhibit significant and consistent correlations within

the visual pathway for several of the models.
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2.5 Conclusion

Our study aims to connect the cortical encoding in mid- and high-level visual areas of human

ventral stream and image representations as realized in several different computational models

of object representation. Perhaps the most salient conclusion we can make is that the best bi-

ological/computational correspondence is observed for the Scale Invariant Feature Transform

(“SIFT”) model [36]. Although such results do not imply thatSIFT-like computations are some-

how realized in the human brain, they do suggest that the SIFTmodel captures some aspects of

the visual stimulus that are likewise instantiated in humanvisual object processing. As this is

one of the first attempts to directly connect extant computational models of object representa-

tion with the neural encoding of objects, there remains ample room to sharpen our observations

and to further explore the space of possible biological vision representations. For example, the

passive viewing task used in the neuroimaging component of our study could be replaced by

an active object identification task, which, conceivably, might yield stronger neural signals and

more robust results. Likewise, other computational visionmodels should be considered, for ex-

ample, histograms of oriented gradients [9], the more biologically-inspired HMAX model (given

that we first solve the problem of limited data using fMRI), orthe biologically-motivated and

hierarchical model described in Jarrett et al. [25]. In particular, SIFT’s similarity to HMAX —

both models rely on non-linearities to pool local edge information — indicates further pursuit

of HMAX to describe high-level voxel encodings may prove fruitful course for future research.

Finally, a more sophisticated approach to developing model-brain correspondences may be re-

alized by combining the dissimilarity matrices for any group of representational methods with

weights optimally learned to match the representation at any given brain region [66]. In sum, our

present study provides a foundation for further exploration of well-defined quantitative models

using dissimilarity analyses and points the way to methods that may help shed further light on the

visual structures encoded in the human brain. I discuss my further exploration through realtime

search in the following chapters.
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Chapter 3

Methods

In my present work, I study cortical object perception by searching for the complex visual prop-

erties most activating pre-selected cortical regions of interest in the ventral pathway. Employing

fMRI for my investigation, there are a limited number of stimulus display trials available to

probe regional selectivities — roughly 300 displays per hour sampling from a near-infinite space

of visual object properties. I develop, use, and assess novel methods to efficiently search the

“space” of visual object stimuli to quickly identify those stimuli evoking the highest response

from a pre-selected cortical region. These methods analyzefMRI signals in realtime to deter-

mine region responses to recently-displayed stimuli, and use these recent cortical responses to

select new stimuli likely to produce higher activity.

I employ two sets of object stimuli and two corresponding definitions of visual properties

to explore intermediate representations in the ventral pathway. The first stimulus set consists of

photographs of real-world objects, assessing cortical perception of visual properties using im-

ages that can be encountered in ordinary life experience; these objects are characterized by a

Euclidean feature space derived from the SIFT method [36], found to account for object repre-

sentations in intermediate regions of the ventral pathway in Chap. 2. The second stimulus set

consists of synthetic Fribble objects [76] constructed from simple textured shapes, providing

careful control on the varying properties displayed to subjects; these objects are characterized by
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a Euclidean feature space in which each axis captures the degree of controlled manipulation to a

corresponding component shape.

My work explores the effectiveness of my novel methods in realtime fMRI analysis and dy-

namic selection of stimuli, and my work uses these methods toexplore the complex selectivities

of intermediate regions in the cortical object perception pathway.

3.1 Realtime computational strategy and system architecture

In fMRI studies of human subjects, scanning time is limited to several hours across several

days. During a given scan session, the slow evolution of the blood-flow dependent fMRI signal

limits the frequency of stimulus displays to one display every 8 to 10 seconds. While number of

display trials is small, the number of potential visual objects to show as stimuli is nearly infinite.

Therefore, I develop, use, and assess methods for the dynamic selection of stimuli, choosing new

images to display based on the response of the pre-selected brain region to previous images to

try to maximize regional activity and to identify the associated complex featural selectivity. This

approach effectively is a search through a stimulus space. The search requires realtime fMRI

signal processing and analysis using an array of computer programs that execute in parallel and

that interact with one another. Each brain region for study is chosen, or “pre-selected,” prior to

the realtime analysis scanning session discussed here. Regions are chosen for each subject based

their representation of visual objects as seen from data collected from a prior scanning session

for the subject, as discussed in Secs. 3.3.6 and 3.4.5.

Three programs run in parallel throughout the realtime search for stimuli producing maximal

regional activity:

• Thedisplay program sends visual stimuli to the display screen for subject to view while

lying in the scanner.

• The preprocessing programconverts recently-recorded raw full-volume scanner output

into a single number corresponding to the response of a pre-selected cortical region to the
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recently-displayed stimulus.

• The search program uses past stimulus responses, computed by the preprocessing pro-

gram, to select the next stimuli to show the subject, to be sent to the screen by the display

program. The stimuli are selected through a simplex “search” of visual feature space for

the location/stimulus producing the highest response froma cortical region, described in

Sec. 3.1.5.

3.1.1 Interleaving searches

To use scanning time most efficiently, four searches are performed studying four pre-selected

brain regions during each scan. After a stimulus first appears in front of the subject in the scan-

ner, 10–14 s1 is required to gather the 10 s cortical response to the stimulus and an additional ˜10 s

is required to process the response and to select the next stimulus for display. Before the next

stimulus for a given search has been selected, the display program can rotate to another search,

maximizing the use of limited scan time to study multiple brain regions. The display and analysis

programs alternate in sequence among the four searches — i.e., search 1 → search 2 →

search 3 → search 4 → search 1 · · · . Different classes of real-world and Fribble

objects are employed for each of the four searches, as described in Secs. 3.3.1 and 3.4.1. Alter-

nation among visually distinct classes is further advantageous to my study as it decreases the risk

of cortical adaptation present if multiple similar stimuliwere viewed in direct succession.

The preprocessing program evaluates cortical responses inblocks of two searches at a time —

i.e., it waits to collect data from the current stimulus displays forsearch 1 andsearch 2,

analyzes the block of data, waits to collect data from the current stimulus displays forsearch 3

andsearch 4, analyzes this block of data, and so on. This grouping of stimulus responses in-

creases overall analysis speed. Several steps of preprocessing require the execution of AFNI [46]

command-line functions. Computation time is expended to initialize and terminate each func-

1The 4 s beyond the duration of the cortical response accountsfor communication delay between the fMRI
scanner and the machine running the preprocessing and search programs.
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Figure 3.1: Diagram of communications between the console (which collects and sends fMRI
data from the scanner), the “analysis machine,” and the “display machine,” as well as com-
munications between the analysis programs. These elementswork together to analyze cortical
responses to object stimuli in realtime, select new stimulito show the subject, and display the
new stimuli to the subject.

tion each time it is called, independent of the time requiredfor data analysis. By applying each

function to data from two searches together, the “non-analysis” time across function calls is

decreased.

3.1.2 Inter-program communication

Three programs run throughout each realtime search to permit dynamic selection and display

of new stimuli most effectively probing the visual selectivity of a chosen cortical region. The

programs — focusing on fMRI preprocessing, visual propertysearch, and stimulus display tasks,

respectively — are written and executed separately to more easily track, test, and debug each

process and to more easily permit implementation and application of alternate approaches to

each task. Furthermore, the display program runs on a separate machine from the other two

processes, shown in Fig. 3.1, to ensure sufficient processorresources are dedicated to each task,

particularly as analysis and display computations must occur simultaneously throughout each

scan.

Due to the separation of tasks into three programs, each taskrelies on information determined

by another program or machine, as indicated in Fig. 3.1. Below, I discuss the methods used to

communicate information necessary for preprocessing, search, and stimulus display.

• Preprocessing program inputThe scanner console machine receives brain volumes from
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the fMRI scanner. I reconfigure console storage protocols such that each received volume

is copied in realtime to a mounted drive on the analysis machine. The analysis machine

runs the preprocessing and search programs2, using the newly-recorded fMRI data to deter-

mine the responses of pre-selected cortical regions to the most recently-displayed stimuli,

and using the responses to select the next stimuli to displayto the subject in the scanner to

probe the visual selectivities of the regions. The preprocessing program checks the shared

disk every 0.2 seconds to determine whether all the volumes for the newest block of search

results — the full 10 s cortical responses to two recently-shown stimuli, described further

in Sec. 3.1.1 — are available for analysis. Once all the data is available, the preprocessing

program uses the data, as discussed in Sec. 3.1.4, to computeone numbers to represent

the response of each of two pre-selected brain regions to their respective stimuli. The pro-

gram proceeds to write each response into a file labeledresponseN and then creates a

second empty file namedsemaphoreN, whereN ∈ 1, 2, 3, 4 in each file is the number

of the search being processed. The files are written into a pre-determined directory that

is monitored by the search program, so the search program canfind information saved by

the preprocessing program. The creation of thesemaphoreN file signals to the search

program that the response of the brain region studied in theN th search has been written

fully to disk. This approach prevents the search program from reading an incomplete or

outdatedresponseN file and acting on incorrect information.

• Search program input The search program alternates among four searches for the visual

feature selectivities of four brain regions, i.e., searching for the stimuli containing features

producing the most activity from a pre-selected cortical region. At any given time during

a realtime scan, the search program either is computing the next stimulus to display for

a search whose most recent cortical response has recently been computed, or is waiting

for the responses of the next block of two searches to be computed. While waiting, the

2These programs are run on a separate machine from the consoleto ensure sufficient processing power is avail-
able for realtime analysis.
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search program checks the pre-determined directory every 0.2 seconds for the presence of

the semaphore file of the current search, created by the preprocessing program. Once the

search program finds this file, the program deletes the semaphore file and loads the relevant

brain region’s response from the response file. The search program proceeds to compute

the next stimulus to display, intended to evoke a high response from the brain region, as

discussed in Sec. 3.1.5, and sends the stimulus label to the display program running on the

display machine.

• Display program input Two methods were used for the transmission of stimulus labels

between the search and display programs. (The display program controls what is shown

to the subject at every moment of the scanning sessions.) Forthe first five subjects, stud-

ied using real-world objects, the search program sent each label to the display program

by saving it in a file,rtMsgOutN, in a directory of the analysis computer mounted by

the display computer. Immediately prior to showing the stimulus for the current search

N ∈ {1, 2, 3, 4} — alternating between four searches, as do the preprocessing and search

programs — the display program looked for the correspondingfile in the mounted direc-

tory. For the remaining subjects — using either real-world or Fribble objects — labels were

passed over an open socket from the Matlab [38] instance running the search program to

the Matlab instance running the display program. In the socket communication, the search

program paired each label with the number identifierN of the search for which it was com-

puted. Immediately prior to showing the stimulus for any given current search, the display

program read all available search stimulus updates from thesocket until it found and pro-

cessed the update for the current search and then showed the current stimulus to display

for the current search. Ordinarily, both techniques allowed the display program to present

the correct new stimulus for each new trial, based on the computations of the search pro-

gram. However, when preprocessing and search computationsdid not complete before the

time their results were required for a new stimulus display,the two communication tech-
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niques between the search and display programs had differing behaviors. Message passing

through a file ensured there always was a label to be read and used by the display program

at display time, but sometimes the available label had been produced by the search pro-

gram for use in the previous search iteration. Message passing through a socket ensured

stimulus display in the display program did not occur until data intended for the current

search iteration were available; however, waiting for the new data sometimes caused sig-

nificant delays in stimulus display — occasionally delays ofgreater than 20 seconds — and

sometimes updates were not computed for a search iteration for a given class. I study the

effects of delayed preprocessing and search results on overall realtime search performance

in Chaps. 4 and 5.

3.1.3 Stimulus display

All stimuli were presented using Matlab [38] and the Psychophysics Toolbox [3, 44] controlled

by an Apple Macintosh and were back projected onto a white screen located at the head end

of the bore using a DLP projector (Sharp XG-P560W). Subjects viewed the images through a

mirror attached to the head coil with object stimuli subtending a visual angle of approximately

8.3 deg × 8.3 deg. During the realtime search scans, each stimulus was displayed for 1 s followed

by a centered fixation cross that remained displayed until the end of each 8 s trial, at which point

the next trial began. The 8 s trial duration is chosen to be as short as possible while providing

sufficient time for the realtime programs to compute and return the next stimuli to display based

on the previous cortical responses. Further experimental design details are provided for each

scan in Secs. 3.3.4 and 3.4.3.

3.1.4 Preprocessing

Functional images were acquired with a Siemens Verio scanner using a 2 s TR. Further fMRI

procedures are provided in Sec. 3.2. The preprocessing program analyzed all brain images in
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two-trial blocks, corresponding to the cortical responsesto stimuli for displays for two consec-

utive searches. The preprocessing program computed a representation of the response of pre-

selected cortical regions to displayed stimuli. Each display trial had a duration of 8 s and the

measured hemodynamic (blood-flow) response for each stimulus had a duration of 10 s. Thus,

each block considered by the preprocessing program spanned18 s (containing 9 volumes), ex-

cept for the first block which also contained the first 6 s of baseline activity prior to the first

stimulus onset, and thus spanned 24 s (and 12 volumes). Because of the disparity between 8 s

trials and 10 s hemodynamic responses, there was a 2 s (one volume) overlap between each pair

of consecutively processed blocks.

Scans in each data block were registered to the first volume ofthe current run and motion cor-

rected using AFNI. Polynomial trends of orders one through three were removed. The data then

were normalized for each voxel by subtracting the average and dividing by the standard deviation,

obtained from the current data block and from a previous “reference” scan session (described in

Secs. 3.3.4 and 3.4.3), respectively, to approximate zero-mean and unit variance [26]. The stan-

dard deviation was determined from ˜1 hour of recorded signal from a previous scan session to

gain a more reliable estimate of signal variability in each voxel. Due to variations in baseline sig-

nal magnitude across and within scans, each voxel’s mean signal value required updating based

on activity in each block. To allow multivariate analysis toexploit information present at high

spatial frequencies, no spatial smoothing was performed [62].

Matlab was used to perform further processing on the fMRI time courses for the voxels in the

cortical region of interest for the associated search. For each stimulus presentation, the measured

response of each voxel consisted of five data samples starting 2 s/1 TR after onset, corresponding

to the 10 s hemodynamic response duration. Each five-sample response was consolidated into a

weighted sum by computing the dot product of the response andthe average hemodynamic re-

sponse function (HRF) for the associated region. The HRF wasdetermined based on data from an

initial “reference” scan session3 performed before the realtime scanning sessions, as described in

3In the reference scan session, 36 object stimuli were displayed multiple times over an hour session, in addition
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Secs. 3.3.4 and 3.4.3. The pattern of voxel responses acrossthe region was consolidated further

into a single scalar response value by computing a similar weighted sum. Like the HRF, the voxel

weights were determined from reference scan data. The weights correspond to the most common

multi-voxel pattern observed in the region during the earlier scan, i.e, the first principal compo-

nent of the set of multi-voxel patterns. This projection of recorded realtime responses onto the

first principal component treats the activity across the region as a single locally-distributed code,

emphasizing voxels whose contributions to this code are most significant and de-emphasizing

those voxels with ordinarily weak contributions to the average pattern.

3.1.5 Search program

The search program chooses the next stimulus to display to probe the selectivity of a pre-selected

cortical region based on the region’s responses to recentlydisplayed stimuli. The search chooses

the next stimulus by considering a space of visual properties and probing locations in this space

(corresponding to stimuli with particular visual properties) to most-quickly identify locations that

will elicit maximal activity from the brain region under study. The visual spaces searched for the

first group of ten subjects and the second group of ten subjects are defined in Secs. 3.3.2 and 3.4.1,

respectively. Each stimulusi that could be displayed is assigned a point in spacepi based on its

visual properties. The measured response of the brain region to this stimulusri is understood as:

ri = f(pi) + η (3.1)

i.e., a functionf of the stimulus’ visual properties as encoded by its location in the space plus

a noise termη, drawn from a zero-centered Gaussian distribution. The process of displaying an

image, recording the ensuing cortical activity via fMRI, and isolating the response of the brain

region of interest using the preprocessing program I model as performing an evaluation under

to other images. After the session was completed, cortical responses were processed to determine cortical regions
of interest for study in the ensuing realtime scans and to measure signal properties of the voxels in these regions.
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noise of the function describing the region’s response. By performing evaluations in strategic

points in visual space, each corresponding to a stimulus image, I seek to identify the location of

the function’s maximum — equated with the visual property selectivity of the brain region.

For simplicity, I assume my selected region has a selectivity functionf that reaches a maxi-

mum at a certain point in the visual space and falls off with increasing Euclidean distance from

this point. I assume the visual feature space, defined in Secs. 3.3.2 and 3.4.1 for each of the

two subject groups, reasonably captures the representation of visual objects for the given brain

region because each region was selected based on its representational match with the correspond-

ing space as reflected by data recorded during viewing of object stimuli in the subject’s earlier

reference scan session, described in Secs. 3.3.6 and 3.4.5.I also expect a considerable amount of

noise to be added to the underlying selectivity-driven response signal computed during realtime

scans. Under these assumptions, I use the simplex method [39] as the foundation of my approach

to finding the optimal stimuli in the space. More specifically, the search program uses a modified

version of the simplex simulated annealing Matlab code available from Donckels [11], imple-

menting the algorithm from Cardoso et al. [7]. I incorporate measurement uncertainty through

partial resets of the simplex and through random perturbations to the measured cortical responses

with magnitude determined by simulated annealing.

The searches for stimuli producing maximal activity for each of the four pre-selected brain

regions are performed over the course of a 1.5 hour scanning session. Because subjects require

time to rest their eyes and their attention across the scan time, stimulus display runs and the

underlying searches selecting the stimuli are limited to 8.5 minute periods. The simplex for each

cortical region is re-established at the start of each new run. At the beginning of the scanning

session, the starting location for the simplex for each of the four brain regions is set either to the

origin or to another pre-determined point in visual property space, as discussed in Sec. 3.5.2. The

starting locations for the simplexes for each ensuing display run, i.e., theith run, is set to be the

simplex point that evoked the largest response from the associated cortical region in the(i− 1)th

run. At the start of theith display/search run, each simplex is initialized with the starting point
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xi,1, as defined above, andD further points,xi,d+1 = xi,1 +Ud vd, whereD is the dimensionality

of the space,Ud is a scalar value drawn from a uniform distribution between−1 and1, andvd is

a vector withdth element1 and all other elements0. In other words, each initial simplex for each

run consists of the initial point and, for each dimension of the space, an additional point randomly

perturbed from the initial point only along that dimension.The redefinition of each simplex at

the start of each new run constitutes a partial search reset to more-fully explore all corners of the

feature space while retaining a hold on the location from theprevious run appearing to produce

the most activity from the selected region. For the remainder of this section, I will focus on

simplex updates in the search for the selectivity of one cortical region, although updates for four

simplexes occur in an alternating fashion throughout each run, as discussed above.

After determining the initial points of the simplex, the simplex method operates as follows,

seeking to identify new points (corresponding to stimuli) that evoke the highest responses from

the selected cortical region:

1. Evaluate function at all points in the simplex

2. Hypothesize new point in space that will produce higher functional response than do cur-

rent points in simplex

3. Evaluate function at new point

4. Based on value at new point

• Replace point with smallest functional response in simplexwith new point which

contains higher functional response, return to step 2

• Select a different new point to compare with all points in simplex, return to step 3

• Adjust locations of all points in simplex, return to step 1

The spatial location of each new point selected by the simplex method for testing is modified to

be the location of the nearest stimulus available to be shown, as there are a limited number of

potential stimuli to choose for the next display and an infinite combination of potential spatial
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coordinates. Each “function evaluation” is achieved by display of the stimulus associated with

the point in space by the display program, recording the cortical response by the fMRI machine,

and fMRI signal processing by the preprocessing program, asdescribed above. Over the search

time, I expect the simplex to contract and the member points to move towards the location whose

properties elicit maximum response in the brain region under study.

The presence of noise in the recorded fMRI signal potentially can reduce the observed re-

sponse of a brain region to one of its most preferred stimuli,causing the observed response to

lie below the responses associated with points already in the search simplex and leading to an

incorrect rejection of the the new preferred stimulus from the simplex. Similarly, the measured

response of a non-preferred stimulus can be inflated by noiseand improperly accepted into the

simplex. To counteract these effects, as the search progresses, the measured brain region re-

sponse to each new potential simplex pointrnew, corresponding to a visual stimulus viewed by

the subject, is perturbed by subtracting a random scalar,

r′new = rnew − T |ln(rand)| (3.2)

whererand is a value drawn from the uniform distribution between0 and1, andT is a scaling

“temperature” value discussed below; the measured brain responses of the points currently in the

simplex are perturbed byaddingsimilar random scalars,

r′j = rj + |T ln(rand)| (3.3)

for the purpose of comparing the current simplex points withthe potential new point. These

adding and substracting operations have a conservative effect, limiting newly-accepted points to

those for which the brain region appears to show dramatically greater selectivity than the points

currently in the simplex. The scaling temperature valueT decreases over search time based on
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the equation:

Tnew =
Told

1 + Toldln(1+δ)
3σ

(3.4)

whereδ is a pre-determined cooling rate parameter andσ is the standard deviation of all brain

region response values so-far measured. A largerδ value results in faster cooling, and a larger

σ value — reflecting less convergence in brain region responses — results in slower cooling.

As the search progresses, it is expected the simplex will focus on points in an increasingly nar-

row region of visual feature space — an area producing particularly high responses from the set

cortical region — and more complete exploration of the smaller space is favored over cautious

acceptance and rejection of new simplex points. Decreasingthe temperature causes less pertur-

bation of cortical region responses at each point, in Eqns. 3.2 and 3.3, relaxing the criteria for

replacing current points in the simplex with new points and allowing freer movement of the sim-

plex in the space. The strategy of decreasing random perturbations over time, and the method for

decreasing perturbations through Eqn. 3.4, constitutes a form of “simulated annealing.” The tem-

perature is set to decrease when the span of the simplex in thevisual feature space has narrowed

sufficiently [7, 11]. However, due to the limited number of trials in each realtime scanning run

for each search — each search run completes after 15 “function evaluations,” corresponding to

the number of stimulus display trials assigned to each search for each scanning run, as discussed

in Secs. 3.3.4 and 3.4.3 — the reduced span criterion never ismet, and the temperature never is

decreased, in my present study.

Simulations were used to findδ and initial T values to maximize the chance of correctly

identifying the spatial neighborhood eliciting maximum neural response using the simplex sim-

ulated annealing realtime search over six scan runs, with 15searches steps in each run, similar

to the conditions of the actual realtime scan searches. Simulated brain responses were computed

following Eqn. 3.1, using a pre-determined selectivity center in the feature space and applying

Gaussian noiseη = N (0, s); the standard deviation of the simulated noises was selected based

on the statistics of ventral pathway responses to object stimuli recorded in my previous study
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described in Chap. 2. As a result of the simulations, the values in Eqn. 3.4 are set asδ = 5 and

T = 10.

3.2 fMRI Procedures

Subjects were scanned using a 3.0 T Siemens Verio MRI scannerwith a 32-channel head coil.

Functional images were acquired with a gradient echo-planar imaging pulse sequence (TR 2 s,

TE 26 ms, flip angle90◦, 2 mm × 2 mm × 3 mm voxels, field of view192 × 192 mm2,

31 oblique-axial slices). Slices spanned the majority of the brain, to all the possibility of future

study of visual stimulus representations beyond the visualstreams. An MP-RAGE sequence

(flip angle9◦, 1 mm3 voxels, field of view256 × 256 mm3, 176 sagittal slices) was used for

anatomical imaging.

3.3 Real-world object search

In searching for complex visual feature selectivities in the ventral stream, I begin with a focus

on the perception of real-world objects with visual features represented by the scale invariant

feature transform (SIFT, [36]). Use of photographs of real objects — such as statues, cows,

cars, and suitcases — provides a more realistic understanding of cortical activity while a person

is interacting with the real world, rather than interactingwith an artificial world of simplistic

blob and pattern stimuli employed by most studies of complexvisual properties used by the

brain [4, 24]. Unfortunately, the optimal representation to capture the visual structure of real-

world objects, particular as it is perceived in intermediate regions of the cortical ventral pathway,

is unclear. My recent work, discussed in Chap. 2, indicates a SIFT-based representation of visual

objects is a strong candidate to match representations usedby voxel regions in mid- and high-

level vision areas in the brain. SIFT incorporates established low-level biological features —

capturing local edge information at selected interest point — and performs non-linear synthesis
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of statistics across the full image. These computational properties have contributed to SIFT’s

general success on object recognition tasks in the field of computer vision, and contribute to

its association with intermediate cortical visual representations. I represent real-world object

stimuli through coordinates in a SIFT-based space and search through this space to identify visual

selectivities of regions in the ventral object perception pathway.

3.3.1 Stimuli

Stimuli were drawn from a picture set comprised of 400 distinct color object photos displayed

on 53% gray backgrounds (Fig. 3.2). The photographic imageswere taken from the Hemera

Photo Objects dataset [21]. My use of real-world images of objects rather than the hand-drawn

or computer-synthesized stimuli employed in the studies ofmid-level visual coding discussed in

Chap. 1, e.g., Cadieu et al. [4] and Yamane et al. [78], is intended to more accurately capture the

importance of the broad set of naturally-occurring visual features to object perception.

Four separate searches were performed in each realtime analysis scanning session, probing

the visual property selectivities of four distinct pre-selected brain regions. Each search drew

from a distinct class of visual objects — mammals, human-forms, cars, and containers. The

images in each class were manually selected from the Hemera dataset — automatic grouping of

stimuli was not possible as there was insufficient semantic information included in the dataset to

assemble a class of sufficiently large size. The four manually-assembled classes varied in size

from containing 68 to 150 objects.

The focus of each search within an object class limited visual variability across stimuli in the

search. The remaining sources of variability, I hoped, would be relatively intuitively identified

and easily associated with their influence on the magnitude of cortical region activity. Unfortu-

nately, these hopes were not frequently fulfilled in our results, discussed in Chaps. 4 and 5. The

cortical region for each search was selected based on the region’s differentially high activation

when the subject viewed objects within the search class, as reflected by data recorded from an
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Figure 3.2: Example stimuli used in realtime search of real-world objects. Images were selected
from four classes of objects — mammals, human-forms, cars, and containers.
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earlier reference scan session. Use of a narrow object classto probe a region selective for the

same class also was intended to produce strong cortical signal for analysis during the search

scans, minimizing the effects of noise when computing the next stimulus to display based on

regional response to the most recent stimuli.

3.3.2 Stimulus “SIFT” space

To identify visual properties producing highest activity in a pre-selected brain region, my sim-

plex simulated annealing search program requires a Euclidean search space containing the object

stimuli to display. While my recent work supports the use of SIFT as a model of representing

visual objects in a manner similar to the grouping performedby voxel representations in interme-

diate regions of the ventral pathway, the SIFT measure of Leeds et al. does not directly generate

a space that is easily searched. Entries to the pairwise distance matrix — the “representational

dissimilarity matrix” — for pairs of object stimuli are computed based on non-linear Kullback-

Leibler divergence comparison between histogram of visualwords [35]. In my present work, I

define a Euclidean space based on the distance matrix using Matlab’s implementation of metric

multidimensional scaling (MDS) [55]. MDS finds a space in which the original pairwise dis-

tances between data points — i.e., SIFT distances between stimuli — are maximally preserved

for any givenn dimensions.

Starting with a SIFT-based distance matrix for 1000 Hemera photo objects, the MDS method

produced a space containing over 600 dimensions. Unfortunately, as the number of dimensions

in a search space increases, the sparsity of data in the spacecan increase exponentially, making

a clear conclusion about the underlying selectivity function increasingly more uncertain absent

of further search constraints. Furthermore, the standard simplex method’s average search time

grows polynomially with the number of dimensions, and exponentially in the worst case [52],

which poses a significant problem given limited subject timein the scanner. Therefore, I seek to

use a small number of the most-representative dimensions for realtime search. Fig. 3.3 shows the
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Figure 3.3: Percent variance explained of SIFT pairwise distance structure by multi-dimensional
scaling (MDS) dimensions.

first four to eight dimensions of MDS space provide the most incremental benefit in capturing

variance of the original SIFT-based pairwise distance matrix; inclusion of each further dimen-

sion adds important additional contributions to modeling the SIFT representation, but individual

dimensions quickly diminish in descriptive power. To allowthe search program to be able to

converge, I limit the number of MDS dimensions to the top four. The potential shortcomings of

a four-dimensional MDS SIFT space are evaluated in Chap. 5.

3.3.3 Subjects

Ten subjects (four female, age range 19 to 31) from the Carnegie Mellon University community

participated, gave written informed consent, and were monitarily compensated for their partic-

ipation. All procedures were approved by the InstitutionalReview Board of Carnegie Mellon

University.
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3.3.4 Experimental design

The study of featural selectivities in the perception of real-world objects was divided into an

initial “reference” scanning session and two realtime scanning sessions for each subject. The

reference session gathers cortical responses to the four classes of object stimuli. These responses

are used to select the four brain regions — corresponding to the four object classes — to be

further studied in the ventral pathway and to gather information about fMRI signal properties

in these regions. The realtime scan sessions search for stimuli producing the maximal response

from the four brain regions, dynamically choosing new stimuli to display based on the regions’

responses to recently shown stimuli. Each realtime scan session begins with a distinct set of

starting coordinates in the visual space,xi,1 described in Sec. 3.1.5, corresponding to a distinct set

of stimuli to display for the beginning of the four searches.After the completion of both sessions,

I compare the visual feature selectivies identified in each session for each region to determine

if search results are independent of starting conditions. This comparison constitutes one of my

evaluations of my novel realtime processing and search methods, described in Sec. 3.5, which I

study in addition to the scientific findings of ventral pathway regional feature selectivities.

Reference session

The reference session gathers cortical data needed to most-effectively pursue searches for real-

world stimuli in the SIFT-based space defined in Sec. 3.3.2 and to perform realtime processing

in the later scan sessions. In particular, the data are used to identify regions most differentially

activated by each of the four stimulus classes, via a “class localizer,” and are used to identify

regions that group visual object images in a manner similar to SIFT, via a “SIFT localizer,”

described in Sec. 3.3.6. The overlap between these class andSIFT regions are used to define 125

voxel class/SIFT cubic regions of interest (ROIs) for studyin the realtime scan sessions. Voxel-

specific signal properties and multi-voxel pattern trends are learned from the data in the ROIs

in the reference session and are used for realtime analysis,converting multi-voxel, multi-second
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responses from a given region to a given stimulus into a single number representing the region’s

response as discussed in Sec. 3.1.4.

Runs in the reference scan followed a slow event-related design, similar to that used in my

recent work studying mid-level visual representations in cortical object perception [35]. Each

stimulus was displayed in the center of the screen for 2.0 s followed by a blank 53% gray screen

shown for a time period randomly selected to be between 500 and 3000 ms, followed by a

centered fixation cross that remained displayed until the end of each 10 s trial, at which point

the next trial began. As such, the SOA between consecutive stimulus displays was fixed at 10 s.

Subjects were instructed to press a button when the fixation cross appeared. The fixation onset

detection task was used to engage subject attention throughout the experiment. No other task

was required of subjects, meaning that the scan assesses object perception under passive viewing

conditions.

The 10 s SOA was chosen to minimize temporal overlap between voxel BOLD responses

for multiple stimuli — based on the assumption that the hemodynamic response in the ventral-

temporal cortex has decreased to a sufficient degree in the 10–12 s after stimulus onset to mini-

mize the noise in my measurements of the cortical responses.

The stimuli were presented in four three-minute runs, spread across the one-hour scanning

sessions and arranged to minimize potential adaptation andpriming effects. Each run contained

36 object pictures, 9 objects from each of the four classes, ordered to alternate among the four

classes similar to the realtime display design described inSec. 3.1.1. Stimulus order was ran-

domized across runs. Over the course of the experiment, eachsubject viewed each picture four

times; averaging across multiple repetitions was performed for each stimulus, described below,

to reduce trial-by-trial noise. I determined from data gathered in Leeds et al. that relatively little

information is gained by averaging over more than four repetitions.

The session also included functional localizer scans to identify object selective cortex —

namely, the Lateral Occipital Complex (LOC) — a functionally defined region [30] that we con-

sider for comparison with the four “SIFT/object-class localizers” described above. For the LOC
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localizer, 16 s blocks of common everyday objects were alternated with 16 s blocks of phase-

scrambled versions of the same objects, separated by 6 s of fixation [16, 30]. Phase scrambling

was achieved by taking the Fourier transform of each image, randomizing the resulting phase

values while retaining the original frequency amplitudes,and reconstructing the image from the

modified Fourier coefficients [53]. Within each block, 16 images, depicting 14 distinct objects,

were shown for 800 msec each, each object being followed by a 200 msec gray screen. Two of

the objects were sequentially repeated once during each block — to maintain attention, subjects

were instructed to monitor for this, performing a one-back identity task in which they responded

via a keypress whenever the same object image was repeated across two image presentations.

Six blocks of both the intact and scrambled objects conditions were presented over the 282 s

scan [47]. The object images used in the localizer scans weredifferent from the object picture

stimuli discussed in Sec. 3.3.1. LOC area(s) were identifiedas those brain regions more se-

lective for intact versus scrambled objects. LOC areas included all regions containing spatially

contiguous voxels (no minimum cluster size) for which beta weights for the block design had

significance level ofp < .005.

To provide anatomical information, a T1-weighted structural MRI was performed between

runs within the reference scanning session.

Realtime sessions

The realtime sessions displayed stimuli chosen in realtimeto maximize the response of the four

pre-selected ROIs under study, as discussed further in Sec.3.1. The stimuli drawing the highest

responses are considered to indicate the visual features selectivities for a given region.

Runs in the realtime analysis sessions followed a fast event-related design. Each stimulus

was displayed centered on one of nine locations on the screenfor 1 s followed by a centered

fixation cross that remained displayed until the end of each 8s trial, at which point the next

trial began. As such, the SOA between consecutive stimulus displays was fixed at 8 s. For
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each trial, the stimulus center was selected to be +2.5, 0, or-2.5 degrees horizontally and/or

vertically displaced from the screen center. The stimulus center changed with 30% chance on

each new trial. Subjects were instructed to press a button when the image was centered on the

same location as was the previous image. The one-back location task was used to engage subject

attention throughout the experiment. This task was used instead of fixation detection employed in

the reference scan because the one-back location task requires particular focus on each stimulus,

which could potentially strengthen cortical activity above that elicited by passive viewing of the

objects, aiding in the accurate computation of regional response in each trial. Unfortunately,

the chosen design for the realtime scans also risks responsevariability resulting from slight

changes in stimulus position and from maintaining the previous trial in memory as a strategy

for comparing locations. In the reference session, there isgreater liberty to pool responses over

multiple runs in post-hoc analyses, and thus potentially weaker cortical signals were recorded

for each trial using the fixation detection design while avoiding the potential confounds of the

one-back location task.

The 8 s SOA was chosen instead of the 10 s SOA used in Sec. 3.3.4 to increase the number of

objects viewed by the subject in each session. Concern about noise from temporally overlapping

voxel responses — lasting 10–12 s after stimulus onset — is lessened because a stable response

estimate can be obtained across the 10 s stimulus response signal by fitting each voxel signal to

the average HRF for the ROI, learned during the reference scan described in Sec. 3.3.6. Fur-

thermore, the design rotates among the four stimulus classes from trial to trial and each object

class ROI was chosen to contain voxels responding selectively for stimuli in the associated class.

Therefore, the response of a region for its given stimulus isexpected to be relatively unaffected

by the front and tail ends of the overlapping responses of theout-of-class stimuli displayed before

and after it — responses that are presumably lower in overallamplitude. Notably, the “rapid”

event related design is only 2 s faster per run than is the slowevent related design used by the

reference scan. The 8 s SOA is chosen to be short while still providing sufficient time for the

realtime analysis and search programs to compute and returnthe next stimuli to display based on
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the previous cortical responses.

In each of the two 1.5-hour realtime scanning sessions, the stimuli were presented in four

to eight 8.5-minute runs. Each stimulus was selected by the realtime search program based on

ROI responses to the stimuli previously shown in the same category, as discussed in Sec. 3.1.

Each run contained 60 object pictures, 15 objects from each class, ordered to alternate through

the four classes. Interleaving the studies of four distinctvisual object classes avoided adaptation,

priming, and biasing effects.

Each realtime session began with an LOC localizer scan, following the design described in

Sec. 3.3.4. This scan played an important role in the mechanics of the realtime search meth-

ods. The ROIs selected for study in the realtime scan sessions are defined as positions in the

96 × 96 × 31 voxel volume returned by the fMRI scanner. However, the positions of the

corresponding regions in the brain likely will differ between scan sessions, as the subject’s brain

will have a slightly different position and orientation in the fMRI volume each time he or she

is placed into the scanner for the session. Because each voxel has its own assigned weight in

each region, as a step towards multi-voxel pattern analysisdiscussed in Sec. 3.1.4, proper align-

ment between the reference scan and each realtime scan is important for each voxel. The first

functional volume scanned for the LOC localizer was used to compute the spatial transforma-

tion between the brain’s position in the current session andit’s position in the reference session.

This transformation was applied (in reverse) to the ROI locations computed from the reference

scan data and the resulting corrected ROIs were applied in preprocessing analyses for the rest

of the session. The initial estimation of the transformation matrix requires several minutes of

computation — time that largely overlaps with the performance of the LOC localizer. Subject

performance of the localizer task, rather than lying in the scanner with no task, decreases the risk

for subject movement while the alignment computations to complete. Lack of motion within the

session maximizes the alignment of the brain at any given point in scanning with the orientation

of the corrected ROIs.
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3.3.5 Preprocessing

Reference session

Functional scans during the reference scan session were coregistered to the anatomical image and

motion corrected using AFNI [46]. Similar to the realtime preprocessing in Sec. 3.1.4, highpass

filtering was implemented in AFNI by removing sinusoidal trends with periods of half and full

length of each run (338 s) as well as polynomial trends of orders one through three. The data

then were normalized so that each voxel’s time course was zero-mean and unit variance [26]. To

allow multivariate analysis to exploit information present at high spatial frequencies, no spatial

smoothing was performed [62].

For each stimulus repetition, the measured response of eachvoxel consisted of five data

samples starting 2 s after onset, corresponding to the 10 s between stimuli. Each five-sample

response was consolidated into a weighted sum, intended to estimate the peak response. This

sum took two forms, distinct from the method used in Sec. 3.1.4.

• For the “SIFT localizer,” used to identify voxel regions that group stimuli in a manner

similar to SIFT as in the analyses in Chap. 2, the sum over time points of each voxel’s

response was accomplished as one step in a “searchlight” process [32]. 123-voxel search-

light spheres — each with a radius of 3 voxels — were defined centered sequentially on

every voxel in the brain. The average five-sample response ofvoxels across this sphere and

across all stimulus presentations was computed. For a givensearchlight, for each stimulus,

each voxel was assigned a number based on the dot product of this average response and

the voxel’s mean response across all six repetitions of thatstimulus. To the extent that

hemodynamic responses are known to vary across cortical regions, this procedure allowed

us to take into account a given voxel’s local neighborhood mean-response shape. Fitting

the local average response may provide a more accurate modelof the relative activity of

voxels across a sphere as compared to fitting a fixed response function across the whole

brain. This “searchlight HRF-fitting” was previously employed successfully in my work
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on identifying models for intermediate-level visual representations in the ventral pathway,

discussed in Chap. 2.

• For the “class localizer,” used to identify voxels responding more strongly to stimuli in one

of the four object classes than to stimuli in the other three classes, the sum over time points

for each voxel was simply an average of the middle three samples of its response [26].

Class preference analyses were performed on a per-voxel basis, rather than over a 123-

voxel searchlight, providing less data from which to compute local hemodynamic response

shapes used in the SIFT localizer. Thus, I employed an earlier peak estimation method,

presuming response peaks across the brain will occur 4 to 8 s after stimulus onset.

Realtime session

At the beginning of each realtime session, an LOC localizer scan was run and AFNI was used

in realtime to compute an alignment transformation betweenthe initial functional volume of the

localizer and the first functional volume recorded during the reference scan session. The ROIs

selected for study in the realtime scan sessions (Sec. 3.3.6) were defined as positions in the voxel

volume returned by the fMRI scanner during the reference scan. However, the actual positions

of these object-specific regions are set in the anatomical reference frame of the brain. Changes in

head position between reference and realtime scan sessionsresult in the brain, and its associated

ROIs, moving to different locations in the scan volume. Because each voxel has its own assigned

weight in each region, as discussed in Sec. 3.1.4, proper alignment between the reference scan

and each realtime scan is important for each voxel. The transformation computed between the

realtime LOC volume and the reference volume was applied in reverse to each voxel in the four

ROIs. The resulting corrected ROIs were applied throughoutthe realtime search runs to extract

signal from the voxels associated with each search.

Preprocessing during the realtime search runs was performed in realtime by the preprocessing

program, as discussed in Sec. 3.1.4, and was used to compute region responses to recently display
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stimuli. The results of this preprocessing were used by the search program to select new stimuli

to display to the subject to determine the visual propertiesevoking the highest activity from

each of the selected regions. The results of preprocessing also were stored for later post-session

analyses.

3.3.6 Selection of class/SIFT regions of interest

For each subject, functional activity recorded in the reference scan was used to identify brain

regions most differentially activated by each of the four stimulus classes and that cluster images

in a manner similar to SIFT. Regions of interest (ROIs) to study during the realtime scan ses-

sions were selected manually from contiguous groups of voxels matching SIFT representation of

objects and showing class-specific activity. Focus on thesepre-selected (and non-overlapping)

regions during realtime search sessions allowed me to target stimuli for each region — i.e.,

selecting stimuli limited to be within a defined real-world object class — in order to produce

stronger fMRI signals for more reliable single-trial analyses in the presence of fMRI noise. The

use of these pre-selected regions also maximized the effectiveness of using the SIFT-based space,

defined in Sec. 3.3.2, to search for visual feature selectivities.

Class localizer

For each stimulus classS, selectivitysc was assessed for each voxel by computing:

sc =
〈rc〉 − 〈rc̄〉

σ(rc)
(3.5)

where〈rc〉 is the mean response for stimuli within the given class,〈rc̄〉 is the mean response for

stimuli outside of the class, andσ(rc) is the standard deviation of responses within the class. I

visually identified clusters of voxels with the highest relative responses for the given class, using

a variable threshold and clustering through AFNI. Thresholds were adjusted by hand to find

overlap with SIFT localizer results, rather than selectingthresholds based on significance tests.
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Figure 3.4: Class-selective regions for subject S9 in real-world object search. Colors are associ-
ated as follows: blue for human-forms, cyan for mammals, green for cars, orange for containers,
red for overlap.
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Figure 3.5: Cortical regions with dissimilarity structureshighly correlated with the dissimilarty
structure of the SIFT visual coding model for subject S9 in real-world object search. Compar-
isons follow the representational dissimilarity matrix-searchlight method discussed in Chap. 2.

Alternative approaches for merging class and SIFT localizer results are discussed in Chap. 6. In

general, the highest-selectivity clusters of voxels appear within the visual processing streams, as

we would expect, though further regions are apparent that may by associated with the semantic

meaning of the class (Fig. 3.4). Chaps. 4 and 5 further assess the localizer results and their

implications.

SIFT localizer

The representational dissimilarity matrix-searchlight method described in Chap. 2 was used to

determine brain regions with neural representations of objects similar to the representation of the

same objects by SIFT. Thresholds were adjusted by hand to findcontiguous cluster with high

voxel spherez values, computed based on distance matrix correlations as described in Chap. 2;
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full-volume significance tests were not performed. The regions showing highest matches be-

tween SIFT and voxel representations of the stimuli appear focused in the ventral visual stream,

associated with visual object perception (Fig. 3.5), consistent with prior findings for SIFT [35].

Selection of ROIs

Visual inspection was used to find overlaps between the class-selective and SIFT-representational

regions. For each class, a 125 voxel cube ROI was selected based on the observed overlap in a

location in the ventral visual stream.

The use of relatively small cortical — one cubic centimeter —regions enables exploration of

local selectivities for complex visual properties. Analyses were successfully pursued on similar

spatial scales in our past work (Chap. 2 identifying 123-voxel searchlights showing significantly

similar stimulus grouping structure to those of computer vision models and in past neurophysi-

ological studies identifying neural columns showing selectivity to particular object shapes [63].

In potential future work, adjacent one cubic centimeter regions can be studied to mark the pro-

gression across the brain of featural selectivities in SIFTspace.

ROI statistics

Once the ROIs were established, further statistics were computed for each region for use in re-

altime preprocessing. The average HRF was computed for eachregion, taken across all voxels

and all real-world object stimulus displays. This HRF was used in the realtime sessions to com-

pare with the time course of voxel responses to recently displayed stimuli. In computing region

statistics, the original voxel time course responses for each reference scan stimulus display were

consolidated into a weighted sum by computing the dot product of the response and the HRF. Pro-

ceeding with the consolidated voxel responses, principal component analysis was performed on

the multi-voxel responses across runs and stimuli to identify the most common multi-voxel pat-

tern. The first principal component — the most common pattern— was compared to multi-voxel
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pattern responses found in realtime. As indicated above, the HRF, the first principal component

of the multi-voxel response, and the variance of each voxel’s time courses were stored for use

during realtime searches.

3.4 Fribble object search

While real-world object stimuli provide a more direct perspective on cortical object perception

of regularly-observed objects, compared to the simplisticartificial stimuli often used in similar

studies [4, 24], the broad variety of visual properties contained in such stimuli are difficult to

capture in the small search space we can explore in a practical time frame with the simplex sim-

ulated annealing search. Indeed, Fig. 3.3 shows 10 dimensions of SIFT-based Euclidean space

captures less than 35% of variance in the grouping structureof 1000 real-world objects, while

my search can explore only four dimensions in the limited scanning time. Chaps. 4 and 5 re-

port that realtime searches performed on cortical regions from the 10 subjects viewing classes of

real-world objects purposely restricted to limit visual variability frequently failed to converge on

clear visual feature selectivities (though some of the real-world object searches do show exciting

results).

As a potential solution to the challenges of visual variability in the real-world objects, I pur-

sue search for complex visual selectivities using a set of synthetic objects called “Fribbles” [76].

These stimuli are composed of colored, textured, three-dimensional shapes forming objects

richer in structure than the gray blobs employed by Yamane etal. and Hung et al. [24, 78],

but more controlled in appearance than the world of real objects. While the stimuli differ from

the set discussed in Sec. 3.3, the majority of the methods arenearly identical for the dynamic

selection of stimuli to identify preferred visual properties. The Fribble study provides a comple-

mentary perspective to the real-world object study on realtime search performance and on visual

selectivities in the ventral pathway.
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3.4.1 Fribble stimuli

Stimuli were generated based on a library of synthetic Fribbles [64, 76], and were displayed on

54% gray backgrounds as in Sec. 3.3.1. Fribbles are animal-like objects composed of colored,

textured geometric shapes. They are divided into classes, each defined by a specific body form

and a set of four locations for attached appendages. In the library, each appendage has three

potential shapes, e.g., a circle, star, or square4 head for the first class in Fig. 3.6, with potentially

variable corresponding textures — thus, there are34 = 81 initial members of each class.

As in Sec. 3.3.1, four separate searches were performed in each realtime scanning session,

probing the visual property selectivities of four distinctbrain regions. Each search drew from a

distinct class of Fribble objects, as shown in Fig. 3.6. Whileeach search explored a relatively

narrow visual space around a baseline body and configurationof appendages, the variability of

appearance across Fribble classes allowed a broader perspective on selectivities across the world

of objects (though perspective was considerably more constrained than it was on the set of real-

world objects), and trends in the nature of visual features used across classes and brain regions.

A Euclidean space was constructed for each class of Fribble objects. In the space for a given

Fribble class, movement along an axis corresponded to morphing the shape of an associated

appendage. For example, for the purple-bodied Fribble class, the axes were assigned to 1) the

tan head, 2) the green tail tip, and 3) the brown legs, with thelegs grouped and morphed together

as a single appendage type. Valid locations on each axis spanned from -1 to 1 representing two

end-point shapes for the associated appendage, e.g., a circle head or a star head. Appendage

appearance at intermediate locations was computed throughthe morphing program Norrkross

MorphX [75] based on the two end-point shapes.

For each Fribble class, stimuli were generated for each of 7 locations — the end-points -1

and 1 as well as coordinates -0.66, -0.33, 0, 0.33, and 0.66 – on each of 3 axes, i.e.,73 = 343

locations. Rather than generate each stimulus individually, the 7 appearances for each appendage

4Square heads were not used in this study, as discussed below.
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Figure 3.6: Example stimuli used in realtime search of Fribble objects. Images were selected
from four synthesized classes, shown in rows in rows 1 and 2, 3and 4, 5 and 6, and 7 and 8,
respectively.
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were generated separately and then assembled together intothe full Fribble object for each of the

343 coordinates in the space.

While the coordinates in the space can be understood as visualedit instructions (through

morphing) from a baseline shape at the origin, distances between object pairs in Fribble space

are distinct from edit distances. Edit distances count the number of discrete changes between

objects. In contrast, Fribble distances represent each appendage morph along a continuum of

values, from 0 to 2, and combine changes to different appendages using Euclidean distance —

the sum of thesquareddistances along each axis.

3.4.2 Subjects

Ten subjects (six female, age range 21 to 43) from the CarnegieMellon University community

participated, gave written informed consent, and were monitarily compensated for their partic-

ipation. All procedures were approved by the InstitutionalReview Board of Carnegie Mellon

University.

3.4.3 Experimental design

As with the real-world objects (Sec. 3.3.4), the search for Fribble objects producing the highest

activity in pre-selected cortical regions — indicating visual featural selectivities — was pursued

through an initial reference scan session and two realtime scan sessions. The reference session

gathered cortical responses to the four classes of object stimuli. These responses were used to

select the four brain regions — corresponding to the four Fribble classes — to be further studied

in the ventral pathway and to gather information about fMRI signal properties in these regions.

The realtime scan sessions searched for stimuli producing the maximal response from the four

brain regions, dynamically choosing new stimuli to displaybased on the regions’ responses to

recently shown stimuli.
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Reference session

The reference session design was almost identical to that ofthe reference session for real-world

objects, described in Sec. 3.3.4. 36 stimuli, 9 stimuli fromeach of the four Fribble classes, were

passively viewed in the context of a fixation onset detectiontask spread over four three-minute

runs. The data gathered during these runs were used to identify Fribble class specific ROIs for

study in the realtime sessions. Functional localizer scansto identify the object selective cortex —

lateral occipital cortex, or “LOC” — were included for comparison with the four Fribble class

localizers. To provide anatomical information, a T1-weighted structural MRI was performed

between runs within the reference scanning session.

Realtime sessions

The realtime sessions displayed stimuli chosen in realtimeto maximize the response of the four

pre-selected ROIs under study. The stimuli drawing the highest responses are considered to

indicate the visual features selectivities for a given region. The methods for stimulus selection

are discussed in Sec. 3.1.

Runs in the realtime analysis session followed a fast event-related design. Each stimulus was

displayed in the center of the screen for 1 s followed by a centered fixation cross that remained

displayed until the end of each 8 s trial, at which point the next trial began. On any trial there

was a 10% chance the stimulus would be displayed as a darker version of itself — namely, the

stimulus’ red, green, and blue color values each would be decreased by 50 (max intensity 256).

Subjects were instructed to press a button when the image appeared to be “dim or dark.” The

dimness detection task was used to engage subject attentionthroughout the experiment. This

task was used instead of fixation detection employed in the reference scan because the dimness

detection task requires particular focus on each stimulus,which could potentially strengthen

cortical responses above those elicited by passive viewingof the objects, aiding in the accurate

computation of regional response in each trial and leading to more reliable choices in the dynamic

76



selection of future stimuli. The one-back location task wasemployed for this purpose in the real-

world object searches. However, the one-back location taskmay have caused subjects to recall

past stimuli in memory when viewing new stimuli, to compare the location of the two stimuli to

correctly determine if the stimuli were centered in different locations; this recollection potentially

could contribute to limited interpretable results for thissearch method, as seen in Chaps. 4 and 5.

At the beginning of each realtime session, an LOC localizer scan was performed. The first

volume from this localizer was used to compute the spatial transformation between the subject’s

brain position in the scanner during the current scan and theposition during the initial reference

scan session. This transformation was used to correctly align the Fribble class-specific ROIs

identified from reference session data to the brain positionin the current scan session, ensuring

the correct voxels are studied throughout the realtime search runs. Sec. 3.3.5 further discusses

the need for proper ROI alignment.

Further scan details were the same as those for the real-world object study, discussed in

Sec. 3.3.4.

3.4.4 Preprocessing

Preprocessing of fMRI signals for reference and realtime scan sessions largely followed the same

methods as did preprocessing for the real-world object search, discussed in Sec. 3.3.5.

Reference sessions functional scans were motion corrected, detrended, and filtered using

AFNI. The time courses were further normalized. For the Fribble class localizer, the five-sample

response of each voxel to each stimulus display was condensed to a single number represent-

ing response magnitude, computed using the searchlight HRF-fitting method used by the SIFT

localizer.

In the realtime sessions, preprocessing was performed in realtime. The first volume of the

LOC scan was used to align the ROIs computed based on the reference session to the subject’s

brain position in the current session. During realtime search runs, the preprocessing program
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computed region responses to recently displayed stimuli, as discussed in Sec. 3.1.4.

3.4.5 Selection of Fribble class regions of interest

I organize each class of Fribble object stimuli in a visual space that groups objects together

based on morphs to specific shapes and textures (Sec. 3.4.1).The simplicity of this representa-

tional model makes it easy to study and search. However, its simplicity and specificity also risks

the inability to properly characterize actual visual representations used in the ventral pathway.

By performing the representational dissimilarity matrix-searchlight procedure used to identify

cortical regions modeled by SIFT for the real-world objects(and regions modeled by other com-

puter vision methods) in Chap. 2, I was able to identify cortical areas reasonably whose visual

representations are well characterized by each simple Fribble space. ROIs were selected manu-

ally from these areas for study during the realtime scan sessions. In these regions, I could search

effectively for complex featural selectivities using the associated Fribble space.

The RDM-searchlight method described in Chap. 2 is used to compare neural and Fribble

space representations of stimuli. The distance matrix (RDM) for each Fribble space was con-

structed from pairwise distances between stimuli based on their degree of morphing for three

appendages, each associated with an axis in the space. Thresholds for the maximum accept-

able correlation between Fribble space and voxel-searchlight RDMs were adjusted by hand to

find contiguous clusters with high voxel spherez values, computed as in Chap. 2; full-volume

significance tests were not performed. The regions showing highest matches appear in the ven-

tral visual stream, associated with visual object perception, but also in a variety of areas less-

typically associated with vision (Fig. 3.7). As Fribble object classes have visual similarities to

animals and tools, semantic associations with class shapesmay explain Fribble class associations

in non-visual cortical areas.

125 voxel cube ROIs were selected for each object class basedon visual inspection of search-

light results in the ventral visual stream. As in Sec. 3.3.6,the HRF, the first principal component
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Figure 3.7: Cortical regions with a dissimilarity structurehighly correlated with the dissimilarty
structure of the space for each Fribble class for subject S1 in Fribble object search. Colors are
associated as follows: blue for class 1, cyan for class 2, green for class 3, orange for class 4.
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of the multi-voxel response, and the variance of each voxel’s time courses were computed and

stored for each ROI for future use during realtime search runs. These class-specific patterns

were used in comparison with response signals recorded across multiple time samples and mul-

tiple voxels to derive a single numeric measurement of response for each stimulus display; this

number was used to inform the search for region visual feature selectivity.

3.5 Assessment of search performance

The realtime search methods developed for and used in this study rely on a variety of assumptions

about visual representations employed in the ventral visual stream and about the featural selec-

tivities of small one cubic centimeter neural populations within that stream. Presuming, after the

preprocessing employed in this work, the measured responseof a selected ROI is characterized

by a function with a unique maximum in the associated featurespace, the simplex simulated

annealing method will:

• be consistent, i.e., identify the stimuli in the area of feature space producing maximal

response, regardless of the starting point of the search and

• be convergent, i.e., mostly investigate stimuli near the location producing maximal re-

sponse, expending little time to investigate more distant stimuli that will evoke lower re-

gion responses.

Consistencyprovides confidence in the reliability of search results while convergenceindicates

advantage of strategic selection of stimuli over a limited scan time compared to random selection

from the full pool of potential images. Metrics were defined for both properties and applied to

all search results. Given the limited number of existant methods for the study of complex visual

selectivities and for realtime fMRI analysis, assessment of my novel combination of methods is

important to identify promising directions for further investigative approaches in the future.
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Due to the variability of cortical responses and the noise infMRI recordings, analyses were

focused on stimuli that were visited three or more times. Theaverage response magnitude for

stimuli visited multiple times is more reliable for conclusions of underlying ROI selectivity.

When subjects did not see the correct stimulus at the proper time for a trial, which happened

on infrequent occasions discussed in Chap. 4, their ROI responses for those trials were excluded

from analysis.

3.5.1 Convergence

For a given class, convergence was computed based on the feature space locations of the visited

stimuli S, and particularly the locations of stimuli visited three ormore times,Sthresh. The

points inSthresh were clustered into groups spanning no more thand distance in the associated

space based on average linkage, whered = 0.8 for Fribble spaces andd = 0.26 for SIFT

space.5 The result of clustering was the vectorclustersSthresh, where each element contained

the numeric cluster assignment (from 1 to N) of each point inSthresh. The distribution of cluster

labels inclustersSthresh was represented aspclust, where thenth entrypclust(n) is the fraction

of clustersSthresh entries with the cluster assignmentn.

Conceptually, convergence is assessed as follows based on the distribution of points, i.e.,

stimuli visited at least three times:

• If all points are close together, i.e., in the same cluster, the search is considered to have

converged.

• If most points are in the same cluster and there are a “small number” of outliers in other

clusters, the search is considered to have converged sufficiently.

• If points are spread widely across the space, each with its own cluser, there is no conver-

gence.

5The distance thresholds were chosen based on empirical observations of clusterings across regions and subjects
in each space.
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Set as an equation, the convergence metric is

metric(S) = ||pclust||2 − .1||pclust||0 (3.6)

where||pclust||2 =
√

pclust(1)2 + · · · + pclust(N)2 and||pclust||0 is the number of non-zero

entries ofpclust. The metric awards higher values whenpclust element entries are high (most

points are in a small number of clusters) and the number of non-zero entries is small (there are

few clusters in total). Eqn. 3.6 pursues a strategy related to that of the elastic net, in whichℓ2

andℓ1 norms are added to award a vector that contains a small numberof non-zero entries, all of

which have small values [80].

3.5.2 Consistency

For each subject and each stimulus class, search consistency was determined by starting the

realtime search at a different location in feature space at the beginning of each of the two search

scan sessions. In the first scan session, the starting position was set to the origin for each class,

as stimuli were distributed in each space relatively evenlyaround the origin. In the second

scan session, the starting position was manually selected to be in a location opposite from the

regions with stimuli frequently visited and producing the highest magnitude responses. If a given

dimension was not explored in the first session’s search, a random offset from the origin along

that axis was selected for the beginning of the second session. If the second search returns to the

locations frequently visited by the first search, despite starting distant from those locations, the

search method shows consistency across initial conditions.

The metric for determining consistency of results across search sessions was a slight mod-

ification of the convergence metric. The locations of the stimuli visited three or more times

in the first and second searches were stored inS1

thresh
and S2

thresh
, respectively. The two

groups were concatenated intoSboth

thresh
, taking note which entries came from the first and sec-

ond searches. Clustering was performed as above and labels were assigned into the variable
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clustersSboththresh. The distribution of cluster labels was represented as probabilitiespclustBoth.

To measure consistency, the final metric in Eqn. 3.6 was applied only to entries ofpclustBoth

for which elements ofS1

thresh
and S2

thresh
were present

metric(Sboth) = ||pclustBoth(i ∈ B)||2 − .1||pclustBoth(i ∈ B)||0 (3.7)

whereB is the set of indicesi such that clusteri contains at least one point fromS1

thresh
and

from S2

thresh
. The metric awards the highest values for convergence if there is one single cluster

across search sessions. A spread of points across the whole search space visited consistently

between sessions would return a lower value. Complete inconsistency would leave nopclustBoth

entries to be added, returning the minimum value of 0.

3.5.3 Testing against chance

As the convergence and consistency metrics above are not well established, it is not clear what

values should be considered sufficiently high to indicate desirable search performance and what

values would arise by chance. A variant of the permutation test is used to assess the metric

results. The null hypothesis is that the convergence or consistency measure computed for a given

search or pair of searches, based on clustering of thek stimuli visited three or more times during

the search(es), would be equally likely to be found if the measure were based on clustering

of a random set ofk stimuli; this random set is chosen from the stimuli visitedone or more

times during the same search(es). The group of stimuli visited one or more times is considered

a conservative estimate of all stimuli that could have been emphasized by the search algorithm

through frequent visits. In the permutation test, the designation “displayed three or more times”

is randomly reassigned among the larger set of stimuli displayed one or more times to determine

if a random set of stimuli would be considered similarly convergent or consistent as the set of

stimuli frequently visited in my study. More specifically, indices are assigned to all points visited

in search 1 and search 2,S1 andS2, respectively, the indices and recorded number of visits are
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randomly permuted, andmetric(S1), metric(S2) andmetric(Sboth) are computed based on

the locations randomly assigned to each “frequently-visited point.” For each subject and each

search, this process is repeated 500 times, the mean and standard deviation are computed, and

the Z score for the original search result metrics are calculated. Based on visual inspection,

searches withz ≥ 1.8 are considered to mark notably non-random convergence or consistency.
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Chapter 4

Results

My study was designed to explore complex visual properties utilized for object perception by

the ventral pathway in the brain. To this end, I implemented and employed a collection of

techniques in realtime fMRI analysis and in dynamic stimulus selection to identify the visual

feature selectivities of pre-selected voxel regions. Dynamic stimulus selection was pursued to

most effectively explore the space of visual properties in limited scan time and to most quickly

identify objects that produce the highest responses from each brain region under study.

Several of my methods are novel and, as they dynamically interacted with newly recorded

cortical activity, required “testing in the field” through execution of my realtime study. Below, I

examine the performance of the programs I have written for 1)realtime fMRI signal analysis used

to determine region response to recently viewed stimuli, 2)selection of new stimuli to display to

subjects, and 3) display of the newly-chosen stimuli. I confirm the programs generally work as

expected, while identifying areas for future improvement,e.g., in proper stimulus display, and

areas challenging my initial assumptions about visual encoding in intermediate brain regions,

e.g., in the observed results from exploring visual featurespaces.

To better understand cortical object perception, I examinethe results of realtime analysis

for evidence of the selectivities of pre-selected brain regions in the ventral pathway. I study

the distribution of recorded ROI responses in the visual feature space, defined in Sec. 4.1, as
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well as comparing responses recorded for anatomically proximal ROIs. I visually inspect stim-

uli producing high responses from individual ROIs to gain intuition about the properties most

exciting to these regions. Unfortunately, results from theanalyses of many subject brain regions

are inconclusive. However, in several ROIs, one can observeone or a few sets of visual prop-

erties evoking high responses, and slightly-different visual properties evoking extreme negative

responses, reminiscent of surround suppression seen in lower levels of the visual system [22, 73].

Salient visual properties are seen to include holistic object shape, shapes of component parts, and

surface textures.

Realtime analyses were performed on two groups of subjects using two types of object stim-

uli. 10 subjects viewed photographs of real-world objects,capturing perception of visual proper-

ties as they appear in the world, and 10 subject viewed imagesof synthesized Fribble objects [76],

capturing visual properties carefully controlled in the creation of the stimulus set. The perfor-

mance of my methods and the selectivities they revealed are reported below for each group of

objects.

4.1 Feature spaces and a tool for their visualization

Dynamic selection of a new stimulus to display is performed in the context of a simplex search

of a visual feature space, as described in Sec. 3.1.5. The Euclidean space used for each search

was constructed to represent complex visual properties by spatially grouping stimuli that are

considered similar according to a selected visual metric. When choosing stimuli within a class

of real-world objects — specifically, mammals, human-forms, cars, or containers — the search

space is defined from a SIFT-based similarity metric, as discussed in Sec. 3.3.2. When choosing

stimuli within a Fribble class, the search space is defined based on visual morphs to components

of an example object from the class, as discussed in Sec. 3.4.1.

Each space contains a low number of dimensions — four dimensions for SIFT and three di-

mensions for each Fribble class — to allow the searches for visual selectivities to converge in
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a b

Figure 4.1: Search results for S3, class 2 (human-forms), shown in (a) first and second SIFT
space dimensions and (b) third and fourth dimensions. Location of all potential stimuli in space
shown as black dots. Results from realtime scan session 1 arecircles, results from realtime scan
session 2 are diamonds. For stimuli visited three or more times, colors span blue–dark blue–
dark red–red for low through high responses; for stimuli visited one or two times, colors span
cyan–yellow–green for low through high responses. Size of shape corresponds to time each point
was visited in search, with larger shapes corresponding to later points in search. Note axes for
(a) are from -1 to 1 and for (b) are from -0.5 to 0.5.
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the limited number of simplex steps that can be evaluated over the course of a scanning session.

These low dimensional spaces also permit visualization of search activity over each scan session

and visualization of general ROI response intensities across the continuum of visual properties

represented by a given space. I display this information through a colored scatter plot. For ex-

ample, representing each stimulus as a point in feature space, Fig. 4.1 shows the locations in

SIFT-based space visited by the search for human-form images evoking high activity in the pre-

selected SIFT/“human-form” region of subject S3, and showsthe regional response to each of

the displayed stimuli. The four dimensions of SIFT-based space are projected onto its first two

and second two dimensions in Figs. 4.1a and b, respectively.Stimuli “visited” during the first and

second realtime sessions are shown as circles and diamonds,respectively, centered at the stim-

uli’s corresponding coordinates in the space. (Black dots correspond to the locations of all stimuli

in the human-form class that were available for selection bythe search program.) The magnitude

of the average ROI response to a given visited stimulus is reflected in the color of its correspond-

ing shape. For stimuli visited three or more times, colors span blue–dark blue–dark red–red

for low through high average responses; for stimuli visitedone or two times, colors span cyan–

yellow–green for low through high responses. The average responses for stimuli visited three

or more times are more reliable reflections of regional response — data from my previous study

(Chap. 2) indicates noise effects are greatly reduced through averaging over responses to three

or more viewings of the same stimulus. Furthermore, repeated visits to a location by the search

method indicates the method “expects” stimuli drawn from points near this location will evoke

high responses from the brain region under analysis. Initial inspection of the red-or-blue shapes

shows two clusters of stimuli along the y-axis in Fig. 4.1a evoking high responses, indicating

multiple distinct featural selectivities in the selected ROI. Furthermore, stimuli corresponding

to nearby locations in space can produce extreme high and lowresponses together, indicating

the ROI can suppress its activity due to slight changes in visual features. Similar findings are

observed for other subjects and searches in Sec. 4.4.

Intuition about search method behavior is further providedby the colored scatter plot display.
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Color coding helps visually distinguish between frequentlyand infrequently probed stimuli. The

size of each shape in the plot reflects the time each location was visited in the scan session,

with larger shapes corresponding to later points in the search. Examination of the locations

of large and small shapes provides visual intuition of the temporal evolution of the simplex

search in the feature space. Reviewing the first two dimensions in Fig. 4.1a, one can observe

stimuli visited early in the scan are more likely to be more distant from the main clusters of

stimuli frequently displayed by the end of the scan. More objective measurements of search

performance, confirming the trend visually indicated in Fig. 4.1, are explored in Sec. 4.3.3.

Sec. 4.4 contains further examples showing that low-dimensional visual feature spaces —

both for real-world and Fribble objects — and their corresponding scatter plot visualizations

provide powerful new means to understand complex feature selectivities of regions in the ventral

object perception pathway and to evaluate the performance of my novel realtime search methods.

4.2 Selection of regions of interest

Realtime searches for cortical visual selectivities dynamically measured and incorporated the

responses of pre-selected brain regions to recently-displayed stimuli to determine new stimuli

to display. For each subject, four searches were performed,each exploring a distinct class of

visual objects and an associated ROI. The four brain regionswere selected prior to the realtime

sessions using data collected from a previously-performed“reference” scan session. Analysis of

cortical activity recorded in this earlier session identified cortical areas that were characterized

by the SIFT search space, or by each Fribble class search space, in the representation of visual

properties; for real-world objects, analysis of cortical activity also was performed to identify

areas that were more highly activated when viewing objects in a given class. Selection of ROIs

from these brain areas strengthened the validity of assumptions about the correct form of the

search space employed and, for real-world objects, likely resulted in stronger ROI responses to

stimuli used within the associated searches, lessening theeffects of background noise.
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Both for subjects viewing real-world objects and subjects viewing Fribble objects, ROIs con-

taining cubes of 125 voxels were manually selected for each of four stimulus classes searched.

Beyond incorporating voxels most highlighted by referencescan analyses reviewed above, the

four regions for each subject were selected to be non-overlapping and to lie within the ven-

tral pathway, with a preference for more anterior voxels, presumably involved in higher levels

of object perceptions. With this selection approach in mind, consideration of the anatomical

locations of the chosen ROIs provides perspective on the span of areas using SIFT-like and

“Fribble-morph-like” representational structures across subjects, and the distribution of areas

most strongly encoding each of the four studied object classes across subjects. We also gain

perspective on the range of brain areas across subjects and searches studied for complex visual

selectivities.

ROIs used for real-world object searches are distributed around and adjacent to the fusiform

cortex, while ROIs used for Fribble object searches are distributed more broadly across the ven-

tral pathway.

4.2.1 Real-world objects search

ROIs selected for study using real-world objects, organized using a SIFT-based feature space,

were distributed across the ventral pathway, as shown in Fig. 4.2. Regions largely were centered

in or near fusiform cortex, with limited anterior and lateral spread of centers. This anatomical

focus reflects the strong matches between SIFT and multi-voxel code representations of object

stimuli in fusiform cortex, not present in other areas associated with mid- and high-level vision.

In Sec. 3.3.6, Fig. 3.5 shows the findings of the “SIFT localizer” for subject S9, indicating the

presence of SIFT-associated regions in fusiform cortex andaround primary visual cortex. Similar

results are observed across subjects when comparing SIFT and multi-voxel encodings in my

previous work discussed in Chap. 2. To study visual properties used in higher level vision,

I selected ROIs beyond the primary visual cortex, resultingin ROIs focused around fusiform
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Figure 4.2: Class-selective regions for 10 subjects in real-world objects search, projected onto
the Talairach brain. Colors are associated as follows: blue for mammals, green for human-forms,
orange for cars, red for containers, overlaps shown as single color. Each subject is assigned a
shade of each of the four colors.

cortex. SIFT encodes images through a small number of non-linear operations on selected edge

statistics. Thus, it may serve as a model of cortical visual processing in areas anatomically and

computationally close to the “edge detectors” of primary visual cortex, but less closely predict

representations in higher-level brain areas [35].

The locations of ROIs specific to each of the four real-world object classes did not form

any clear patterns across subjects. Fig. 4.2 shows regions for each class — assigned to the four

colors blue, green, orange, and red — were centered in both hemispheres in varied positions —

anterior and posterior, medial and lateral. Inspection of spatial ROI clustering in the Talairach

brain, shown in Fig. 4.3, similarly indicates no clear grouping across subjects of class-specific

regions. For example, while human-forms (class 2) regions for S4, S8, and S9 (corresponding to

d, h, and i in the dendrogram labels) are grouped together, their group also contains two ROIs for

mammals (class 1) and one ROI for containers (class 4). The remaining human-forms regions

are spread into various other clusters. These observations, reflecting “class localizer” results,
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Figure 4.3: Clustering of Talairach-coordinate centers forclass-selective regions for 10 subject
in real-world objects search, shown as a dendrogram. Heightof links between subtrees indicates
shortest distance between members of the two trees as numberof voxels in Talairach brain (
54 × 64 × 50 voxels). Regions are labeled as nM, wheren ∈ {a, . . . , j} corresponds to
the subject numbers S{1, . . . , 10} andM ∈ {1, 2, 3, 4} is the region number, corresponding to
mammals, human-forms, cars, and containers.
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Figure 4.4: Class-selective regions for 10 subject in Fribbles search, projected onto Talairach
brain. Colors are associated as follows: blue for class 1, green for class 2, orange for class 3, red
for class 4, overlaps shown as single color. Each subject is assigned a shade of each of the four
colors.

underscore cross-subject variability as we delve into morenarrow areas in object perception.

4.2.2 Fribble objects search

ROIs selected for study using Fribble objects, organized using feature spaces defined on morphs

to Fribble components, were distributed broadly across theventral pathway, as shown in Fig. 4.4.

Regions were centered in areas from fusiform to lateral occipital to anterior inferotemporal cor-

tex, in addition to posterior areas above the occipital pole. This spread is notably more broad

than that of ROIs selected for real-world objects, shown in Fig. 4.2. The morphing operations

performed to shape the space for each Fribble class operate on the forms, colors, and textures of

whole component shapes — such as circle or star heads for purple Fribbles in Fig. 3.6 — poten-

tially constituting a “higher-level” process than the non-linear fusion of localized edge statistics

computed by SIFT. This increased complexity may account forthe recruitment of more ante-

rior (and perhaps more lateral) areas beyond SIFT’s fusiform regions in the ventral pathway.
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Figure 4.5: Clustering of Talairach centers for class-selective regions for 10 subject in Fribbles
search, shown as a dendrogram. Height of links between subtrees indicates shortest distance
between members of the two trees as number of voxels in Talairach brain (54 × 64 × × 50
voxels). Regions labeled as nM, wheren ∈ {k, . . . , q} corresponds to the subject numbers
S{11, . . . , 20} and M ∈ {1, 2, 3, 4} is the region number, corresponding to the four classes
illustrated in Fig. 3.6.

However, more posterior regions still are selected for manysubjects and Fribble classes as well.

As in Sec. 4.2.1 for the study of real-world objects, the locations of ROIs specific to each of

the four Fribble object classes did not form any clear patterns across subjects. Fig. 4.4 shows

regions for each class — assigned to the four colors blue, green, orange, and red — were centered

in both hemispheres in varied positions — anterior and posterior, medial and lateral. Inspection

of spatial ROI clustering in the Talairach brain, shown in Fig. 4.5, similarly indicates no clear

grouping across subjects of class-specific regions. Perhaps the group nearest to a cluster of same-

class regions is the 8-element group containing 5 class 1 regions — for S11, S13, S14, S15,

and S16 — and one region from each other class. These observations underscore cross-subject
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variability as we delve into more narrow areas in object perception.

4.3 Realtime search performance

To search for complex visual feature selectivities using stimuli evoking maximal activity from

pre-selected brain regions, I designed and used a collection of three programs, introduced in

Sec. 3.1 — 1) the display program, 2) the preprocessing program, and 3) the search program.

Together, these programs work in realtime 1) to display object stimuli to a subject, 2) to measure

the ROI responses to these stimuli, and 3) to select further stimuli to display and further probe

regional selectivities. As I developed the programs for thepresent study, and my realtime fMRI

stimulus search explored uncharted waters in methodology,I study the behavior of my code

over the course of scan sessions to confirm its generally successful execution and to understand

technical and scientific challenges to overcome in future work.

4.3.1 Display program behavior

The display program continuously interacts with the preprocessing and search programs to prop-

erly execute the search of ROI activities in visual stimulusspaces. At any given point during the

realtime scan, the search program determines a new stimulusto show to a subject based on the

subject’s ROI responses to recently-shown stimuli. These responses are extracted from set times

intervals in the fMRI signal by the preprocessing program, presuming the stimulus associated

with each response was viewed by the subject at the intended time. From the perspective of

my realtime search,the display program’s central task is to display each intended stimulus

(chosen by the search program)at its intended time (at the beginning of its associated 8 s trial,

described in Sec. 3.1.3).

Unfortunately, in the course of each realtime session, challenges periodically arose to the

prompt display of the next stimuli to explore in each realtime search1. The computations required

1Four realtime searches were performed during each realtimerun for four distinct object classes and four distinct
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to determined ROI response to a recent stimulus and to determine the next stimulus to display

occasionally did not complete before the time required by the display program to show the next

search selection. When the new stimulus choice was not made sufficiently quickly, the stimulus

displayed to the subject could be shown seconds delayed fromits intended onset time or could

incorrectly reflect the choice made from the previous iteration of the search, depending on the

stimulus update method used by the display program.

Two stimulus update methods were used by the display program, as explained in Sec. 3.1.2.

Update method 1: For five of the subjects viewing real-world objects, the display program

received the search program’s next stimulus choice by reading a file in a directory shared between

the machines respectively running the display program and the search program. Delays in the

search program computations and in directory updates over the network sometimes resulted in

the display program showing the stimulus from the previous search step. To circumvent potential

delays in shared directory updates, the display program rana forced directory update prior to

reading the latest copy of the chosen stimulus file for subjects S9 and S10. This directory update

sometimes caused noticeable delays in stimulus display time and thus was discontinued for S6,

S7, and S8.

Update method 2:For the remaining subjects, five viewing real-world objectsand ten view-

ing Fribble objects, the display program received the search program’s next stimulus choice

through a dedicated socket connection. The display programwaited to receive a message from

the search program before proceeding, thus leading to noticeable display delays when the search

program’s computations required extra time for the given block of data. The search program

also sometimes skipped simplex computations for a given class of objects at a given step, e.g.,

if a new point had been accepted into the simplex for one classbut multiple point evaluations

were left before simplex acceptance for other classes, c.f., [39]. If a class was skipped, no in-

formation was written over the socket, and the display program waited until the next time new

brain regions. All programs alternated between computations for each of the four searches, i.e.,search 1 →
search 2→ search 3→ search 4→ search 1 · · · , as discussed in Sec. 3.1.1.
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information was written before displaying stimuli. Thus, stimulus displays on some occasions

occured at 20 second delays, followed in succession by the displays of the other stimuli whose

trials had passed during the time waiting. This problem did not occur often, but requires further

code development for future versions of the realtime searchstudy. Notably, use of direct socket

communication significantly reduced the number of displayed stimuli that were not the current

choices of the search program for the given object class.

Generally, the display program showed the correct stimulusat the intended time across sub-

jects, sessions, and stimulus groups. Below, I report the infrequentlate andwrong stimulus

displays. The first five subjects scanned were the only ones for whom searches had display

errors for more than 10% of trials. For these subjects, S6, S7, S8, S9, and S10, all viewing

real-world objects, stimuli were updated through checkingof a file in a mounted directory —

therefore, this update approach was not used for the remainder of the study. For all subjects and

sessions, trials in which there was a delay of 0.5 s or more or in which the wrong stimulus was

shown are removed from consideration in analyses beyond those in the present section.

Real-world objects search

The number of displays that appeared late or showed the wrongstimulus for subjects viewing

real-world objects is shown in Table 4.1 for each subject, object class, and scan session. Stimulus

presentations were considered delayed if they were shown 0.5 s or more past the intended display

time.

When updates for display stimuli were performed through inspection of shared files, for S6,

S7, S8, S9, and S10, showing of incorrect stimuli dominated the display errors. S6, S7, and S8

were shown incorrect stimuli for 15 to 42% of trials for search 1 and search 3, corresponding

to the mammal and car classes. Among these three subjects, incorrect displays for search 2 and

search 4 only were observed in session 2 for S6. S9 was shown noincorrect stimuli; S10 was

shown incorrect stimuli on ˜10% of trials for all searches insession 1 and no incorrect stimuli in
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Subjectsession late1 late2 late3 late4wrong1 wrong2 wrong3 wrong4 # trials
S11 4 3 3 1 0 0 0 0 80
S12 0 0 0 0 0 0 0 0 96
S21 3 1 1 1 0 0 0 0 96
S22 3 1 1 0 0 0 0 0 112
S31 8 4 9 7 0 3 0 1 112
S32 3 2 2 2 3 0 3 0 112
S41 4 3 4 2 0 0 0 1 112
S42 5 4 4 1 0 0 0 1 112
S51 6 3 4 4 0 0 0 0 112
S52 7 2 3 6 0 0 0 0 112
S61 0 0 0 0 23 0 18 0 112
S62 0 0 0 0 41 25 47 23 112
S71 0 0 0 0 32 0 24 0 112
S72 0 0 0 0 21 0 30 0 112
S81 0 0 0 0 36 0 24 0 112
S82 0 0 0 0 30 0 25 0 112
S91 5 3 3 3 0 0 0 0 112
S92 5 1 1 2 0 0 0 0 112

S101 3 1 2 3 12 13 12 11 112
S102 6 2 3 3 0 0 0 0 112
total 62 30 40 35 198 41 183 37

Table 4.1: Number of delayed and incorrect display trials for real-world objects searches for each
object class and each subject. Delayed trials were those shown 0.5 s or more past the intended
display time. Results tallied separately for realtime sessions 1 and 2 for each subject, and tallied
separately for each stimulus class. Class numbers correspond to mammals, human-forms, cars,
and containers, respectively. Number of search trials per class varied in each session, as seen in
final column.
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session 2.

The preprocessing and search programs evaluate cortical responses and compute new stimuli

to display in blocks of two searches at a time — examining and acting on the fMRI data for

search 1 and search 2, then examining and acting on the fMRI data for search 3 and search 4

— as explained in Sec. 3.1.1. Ordinarily, the new stimuli to be shown for the next block of

two searches were computed 1 s or more before the first stimulus for this block is shown by the

display program. The second stimulus of the block then is shown at the start of the following

trial, 8 s later. When preprocessing is slowed (by factors considered below), the first stimulus of

the block may be chosen 0.5 s prior to display time or several seconds after display time. Even

when stimuli are chosen 1 s prior to display time, updates through the shared files read over the

mounted folder may require as much as 3 s to complete, resulting in the display program reading

and acting on old stimulus choices. These sources of typically 1 to 5 s delay past display time

in conjunction with the block processing method result in the strong discrepency in incorrect

display frequency of search 1 and search 3 — whose updates maynot arrive to the display

computer by the required time — compared with that of search 2and search 4 — whose updates

usually arrive at least 3 s before they are needed. Despite the frequency of incorrect stimuli

displayed in searches for object classes 1 and 3, it is important to note that even in the worst

case, correct stimuli were displayed on at least 55% of trials.

Variability in the frequency of display errors reflects variability in the speed of realtime fMRI

signal processing and in update speeds for the directory mounted and read by the display com-

puter. The preprocessing program removes low-frequency drift and motion effects from the scan-

ner signal prior to computing ROI responses. Depending on subject motion and scanner magnet

behavior during each scan session, the computation and extraction of these signal components

can require seconds of extra processing time. Other programs running on the “analysis machine”

— the machine running the preprocessing and search programs— also can unexpectedly take

up processor resources, slowing down realtime analysis andcommunication of updates to the

directory mounted by the display machine. While I initiate noextra programs on the analysis
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machine during realtime sessions, I also do not reconfigure the machine to suspend potentially

unnecessary background processes.

When updates for display stimuli were performed through inspection of shared files, and an

update was performed on the directory containing the files, display errors also included a limited

number of delayed displays. S9 and S10 had delayed stimulus displays for 1 to 6% of trials, with

delay on at least one trial for every session and for each of the four searches. In most cases, there

were more delays for search 1 than for any of the other searches. These delays likely resulted

from the directory update performed by the display program prior to reading the file from the

directory containing the stimulus choice for the current search. The update operation usually

executes in a fraction of a second, but occasionally runs noticeably longer. Chances of a longer-

duration update are greater when the operation has not been performed recently, such as at the

start of a realtime search run following a ˜2 minute break between runs. As search 1 starts every

run, it may be slightly more likely to experience display delays

When updates for display stimuli were performed through a socket, for S1, S2, S3, S4, and

S5, display delays dominated the errors in display program performance. Most subjects had de-

layed stimulus displays for 1 to 9% of trials, with delay on atleast one trial for every session and

for each of the four searches. However, the second session for S1 showed no delayed displays,

nor did search 4 for the second session for S2. The number of delays for search 1 was greater

than or (occasionally) equal to the number of delays for any of the other searches, except for

session 1 for S3 for which search 3 had the most delays. Acrossthe five subjects, search 3 had

the second, or sometimes first, highest number of delayed displays. The discrepency in display

error frequency between the first searches of each processing “block” as described above, i.e.,

search 1 and search 3, and the second searches of each processing block, search 2 and search

4, are significantly less pronounced than they were for the frequency of incorrect stimuli for S6,

S7, S8, S9, and S10, though the pattern remains weakly observable. For S1, S2, S3, S4, and

S5, display delays can result from delays in completing processing of cortical responses for the

block of two recently viewed stimuli — causing a greater number of delays for search 1 and
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search 3, as described above. Display delays also can occur when the search program refrains

from exploring a new simplex point for a given stimulus classat a given iteration, as described

above, thus refraining from sending a stimulus update over the socket. This lack of communica-

tion causes the display program to pause several seconds because it will not display any stimulus

until it receives new information over the socket.

A limited number of incorrect stimulus displays also occurred when updating display stimuli

through a socket. S3 and S4 were shown incorrect stimuli on 1 to 3% of trials for one or two

searches in each scan session. The source of these errors wasnot determined, though they may

have resulted from skipped evaluations in the simplex search. These errors did not occur using

socket updates for searches of Fribble object stimuli reported below.

Far fewer display errors occured when updates for display stimuli were performed over a

socket than when they were performed through inspection of ashared file. Indeed, the socket up-

date approach was introduced to improve communication speed between the search program and

the display program and, thereby, to decrease display errors. (S1, S2, S3, S4, and S5 were studied

after the five other subjects viewing real-world object stimuli.) Reflecting on the increased per-

formance caused by use of sockets, I employ only socket communication for the Fribble objects

searches.

Fribble objects search

The number of displays that appeared late for subjects viewing Fribble objects is shown in Ta-

ble 4.2 for each subject, object class, and scan session. Stimulus presentations were considered

delayed if they were shown 0.5 s or more past the intended display time. There were no displays

showing the wrong stimuli, because the display program waited for updates to each stimulus over

an open socket with the search program before proceding withthe next display.

All subjects had delayed stimulus displays in each scan session in one or more of the four

searches. Across subjects, a total of ˜70% of searches showed delayed displays, with errors
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Subjectsession late1 late2 late3 late4# trials
S111 4 0 3 3 96
S112 5 0 2 4 80
S121 4 0 1 3 80
S122 11 5 5 9 96
S131 6 2 2 1 96
S132 6 2 2 1 96
S141 3 0 0 0 96
S142 5 0 0 1 80
S151 6 2 3 1 64
S152 5 0 0 2 80
S161 5 0 0 0 80
S162 5 0 0 0 80
S171 3 0 0 0 96
S172 6 1 0 2 96
S181 6 2 2 1 80
S182 6 0 0 1 80
S191 2 1 1 1 96
S192 3 2 2 1 80
S201 3 0 0 2 96
S202 5 1 1 3 64
total 99 18 24 36

Table 4.2: Number of delayed display trials for Fribble searches for each subject. Delayed trials
were those shown 0.5 s or more past the intended display time.Results tallied separately for
realtime sessions 1 and 2 for each subject, and tallied separately for each stimulus class. Class
numbers correspond to object classes. Number of search trials per class varied in each session,
as seen in final column.
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occuring in 1 to 10% of trials. The number of delays for search1 was greater than the number of

delays for any of the other searches; across subjects, search 1 had roughly three times as many

errors as any of the other classes. Delayed displays were produced by delays in the completion of

fMRI signal preprocessing and by skipped simplex search evaluations, as discussed for subjects

viewing real-world objects.

The first block processed for each run requires slightly extra time for processing than does

any other block, because the first block contains six extra volumes, corresponding to the cortical

activity prior to the start of the first display trial. Often,this extra processing time causes a delay

for the first update of search 1. This slow start to preprocessing also contributes to the larger

number of delayed displays for search 1 observed in subjectsviewing real-world objects, shown

in Table 4.1. Variability in the frequency of display errorslikely results from variable fMRI

signal properties, requiring differing periods of time forprocessing, and from other programs

competing with the preprocessing and search programs for processor resources, as discussed

above.

Overall, display program performance was quite good for subjects viewing Fribble stimuli.

Correct stimuli were displayed on at least 90% of trials, and usually more, for each subject,

session, and search.

4.3.2 Preprocessing program behavior

The preprocessing program monitors the fMRI output throughout the course of each realtime

scan and computes the responses of pre-selected ROIs to stimuli recently shown by the display

program. To rapidly convert raw fMRI signal to ROI response values, a small set of preprocess-

ing methods were used to remove scanner and motion effects from small blocks of fMRI data,

followed by methods for extracting and summarizing over selected voxel activities. In more

typical, i.e., non-realtime, analysis, a larger array of preprocessing methods would be employed

over data from the full session to more thoroughly remove signal effects irrelevant to analysis.
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While the approach used by my preprocessing program enables performance of realtime anal-

ysis, realtime stimulus selection, and realtime search of visual spaces, truncated preprocessing

may lead to inaccurate measures of brain region responses, misinforming future search choices.

To investigate this potential concern, I compare the correlation between computed ROI responses

computed using preprocessing employed during the realtimesessions (Sec. 3.1.4) and the com-

puted responses using “offline” preprocessing consideringall runs in a scan session together, and

following the drift and motion correction as well as normalization methods of Sec. 3.3.5.

Correcting for subject motion in the scanner is a particular challenge in preprocessing that

may be affected by my methodological choices. My preprocessing program aligned fMRI vol-

umes in each time block to the first volume of the current 8.5-minute run, rather than to the first

volume recorded in the scanning session. To extract brain region responses for each displayed

stimulus, voxel selection is performed based on ROI masks aligned to the brain using the first

volume recorded in the scan session (Sec. 3.3.5), under the assumption voxel positions will stay

relatively fixed across the session. Significant motion across the scan session could potentially

place voxels of interest outside the initially-aligned ROImask as the session procedes, or cause

voxels to be misaligned from their intended weights used in computing the overall ROI stimulus

response (Sec. 3.1.4). In my analysis of preprocessing program performance, I track subject mo-

tion in each scan session and note its effects on the consistency between responses computed in

realtime and offline.

While there were some inconsistencies between responses computed by the two methods,

particularly under conditions of greater subject motion, Ifind realtime computations generally to

be reliable across subjects and sessions. This reliabilityis particularly strong for subjects viewing

Fribble objects rather than real-world objects, for reasons considered below.
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Subjectsession max motion corr1 corr2 corr3 corr4 average
S11 8.5 0.56 -0.22 0.63 0.03 0.25
S12 1.7 0.44 0.21 0.82 -0.19 0.32
S21 2.2 0.43 -0.06 0.79 0.17 0.33
S22 1.1 0.41 0.23 0.48 0.47 0.40
S31 2.1 0.39 0.55 0.71 -0.43 0.31
S32 9.6 0.63 0.44 0.33 -0.17 0.31
S41 2.2 0.91 -0.24 -0.59 0.34 0.11
S42 1.1 0.82 0.23 -0.74 0.20 0.13
S51 2.0 0.59 -0.37 0.54 0.08 0.21
S52 1.2 0.71 0.35 0.77 0.20 0.51
S61 2.3 0.39 0.57 0.16 -0.09 0.26
S62 2.7 0.69 0.33 -0.07 -0.62 0.08
S71 3.1 0.09 -0.15 0.74 -0.09 0.15
S72 2.2 0.64 -0.05 0.62 -0.09 0.28
S81 2.9 0.19 -0.04 0.77 0.61 0.38
S82 2.1 0.10 0.10 0.55 0.04 0.20
S91 2.0 0.70 0.34 0.24 0.10 0.35
S92 2.2 0.26 0.45 0.55 -0.06 0.30

S101 1.2 0.40 0.11 0.40 0.34 0.31
S102 2.1 0.76 0.42 0.63 0.38 0.55

Table 4.3: Motion effects on ROI computed responses for real-world objects searches. Correla-
tion between computed responses for each of four class ROIs using preprocessing on full scan
session versus preprocessing on small time blocks within single runs. Average column shows
average correlation results across the four ROIs for a givensubject and session. Maximum mo-
tion magnitude among the starts of all runs also included, pooled from x, y, z (in mm) and yaw,
pitch, roll (in degrees).
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Real-world objects search

Consistency between ROI responses computed in realtime and responses computed offline for

subjects viewing real-world objects are shown in Table 4.3 for each subject, object class, and scan

session. Consistency was measured as the correlation between responses of the two methods for

each display of each trial.

Correlation values were low but generally positive. 50% of searches produced correlations

of 0.3 or above, and 20% produced correlations of 0.5 or above. While realtime and offline

processing results are not perfectly consistent, the realtime methods capture desired ROI response

trends across each session — generally indicating which stimul evoked particularly high and

low cortical activities. Notably, 5 of the 17 searches producing negative correlations showed

values below -0.3, pointing to a marked negative trend between the two methods. Consistent

misalignment of positive and negative voxel weights when combining voxel activity to form a

single regional response to a stimulus may consistenly invert the sign of the computed realtime

response. Effects of this inversion on search behavior are considered in Chap. 5.

Correlation values can vary dramatically within a given subject and session across ROIs,

e.g., S62. At first consideration, this within-session variability is quite surprising, as all regions

presumably are affected by the same subject movement and scanner drift. However, brain regions

differ in the form of the multi-voxel patterns that constitute their response. Patterns the are

more broad in spatial resolution, with voxels responding similarly to their neighbors, are less

affected in their appearance if subject movement shifts theROI ˜2 mm from its expected location.

High-resolution patterns, in which neighboring voxels exhibit opposite-magnitude responses to

a stimulus, are harder to analyze correctly when shifted. Significant angular motion also could

produce differing magnitudes of voxel displacement for ROIs closer and farther from the center

of brain rotation.

I propose brain motion as a prominent potential source of inconsistency between computed

responses. Table 4.3 shows the maximum motion, pooled across translational and rotational di-
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Figure 4.6: Motion effects on ROI computed responses for real-world objects searches, as in
Table 4.3. Rows are sorted from lowest to highest corresponding maximum motion magnitude
(values not shown), and columns within each row are sorted from lowest to highest correlation
values.

mensions, between the start of the scan session and the startof each scan run. I compare only

between the starts of scan runs because motion correction computations in the realtime pre-

processing program account for further motion between the start and middle of each scan run.

For most subjects and sessions (12 of 20), maximum motion falls between 2 and 3 millime-

ters/degrees in a given direction, while the motion along other directions is usually less than 1

millimeter/degree (non-maximum motion data not shown). Thus, by the end of each session,

true ROI locations often shift from their expected locations by a voxel’s width in a certain di-

rection. The significant overlap between starting and ending ROI positions lessens my concerns

about motion effects, though high-resolution multi-voxelresponse patterns can produce response

computation inconsistencies even from this slight motion,as discussed above.

I expected increased motion would cause increased inconsistency between realtime and of-

fline computations. The expected pattern is weak but apparent when viewing correlation values
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sorted by subject motion, shown in Fig. 4.6. In this figure, sessions with the least motion are

in the top rows and sessions with the most motion are in the bottom rows; colors correspond to

correlation values and are sorted from lowest to highest in each row for ease of visualization.

Sessions containing two to three searches with low correlation values, corresponding to green

and cyan colors, are predominantly seen when there is greater subject motion. However, all ses-

sions contain searches with high correlations, and the search with the most motion, S32, contains

three high-correlation searches.

Regardless of their root cause, inconsistencies in realtime and offline preprocessing are worth

noting, and potentially can motivate future development inrealtime scanning and search meth-

ods. At the same time, responses computed in realtime are relatively reliable across subjects and

sessions, following my rather conservative correlation metric. While my method for correlation

expresses the consistency between realtime and offline preprocessing results on a trial-by-trial

basis, the consistency of computed cortical responses considered for study of ROI selectivity

likely is higher. As discussed in Sec. 4.1, ROI responses across the associated visual space are

examined only for stimuli shown three or more times. Responses for each of these stimuli are

averaged across displays to reduce variability from noise.This noise removal may mimic offline

preprocessing effects, increasing the correlation between the two methods’ results.

Fribble objects search

Consistency between ROI responses computed in realtime and responses computed offline for

subjects viewing Fribble objects are shown in Table 4.4 for each subject, object class, and session.

Consistency was measured as the correlation between responses of the two methods for each

display of each trial.

Correlation values were low but generally positive, and higher than those observed in the

real-times objects searches. 75% of searches produced correlations of 0.2 or above, and more

than 50% produced correlations above 0.45. While realtime and offline processing results are
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Subjectsession max motion corr1 corr2 corr3 corr4 average
S111 1.2 0.50 0.49 -0.55 0.51 0.24
S112 0.7 0.54 0.48 -0.40 0.12 0.19
S121 4.8 0.31 0.24 -0.08 -0.04 0.11
S122 1.2 0.87 0.64 0.67 -0.59 0.40
S131 2.5 0.56 0.70 0.45 -0.17 0.39
S132 1.6 0.51 0.68 0.62 -0.10 0.43
S141 2.4 0.60 0.65 -0.10 0.57 0.43
S142 1.2 0.39 0.74 -0.01 0.44 0.39
S151 1.2 0.44 0.53 -0.54 0.23 0.17
S152 7.0 0.34 -0.07 -0.01 -0.15 0.03
S161 2.7 0.60 0.72 0.50 0.20 0.51
S162 1.4 0.84 0.65 0.50 0.20 0.55
S171 0.7 0.46 0.75 0.37 0.56 0.54
S172 2.7 0.57 0.71 0.44 0.48 0.55
S181 2.7 0.59 0.62 0.19 -0.57 0.21
S182 1.9 0.47 0.54 0.20 -0.67 0.14
S191 2.0 0.60 0.70 0.69 0.29 0.57
S192 2.6 0.74 0.60 0.62 0.27 0.56
S201 1.7 0.59 0.57 -0.14 -0.57 0.14
S202 1.0 0.62 0.32 0.22 -0.60 0.14

Table 4.4: Motion effects on ROI computed responses. Correlation between computed responses
for each of four class ROIs using preprocessing on full scan session versus preprocessing on
small time blocks within single runs. Average column shows average correlation results across
the four ROIs for a given subject and session. Maximum motionmagnitude among the starts of
all runs also included, pooled from x, y, z (in mm) and yaw, pitch, roll (in degrees).
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Figure 4.7: Motion effects on ROI computed responses, as in Table 4.4. Rows are sorted from
lowest to highest corresponding maximum motion magnitude (values not shown), and columns
within each row are sorted from lowest to highest correlation valuesd.

not perfectly consistent, the realtime methods capture desired ROI response trends across each

session — generally indicating which stimul evoked particularly high and low cortical activi-

ties. 7 of the 17 searches producing negative correlations showed values equal to or below -0.4,

pointing to a marked negative trend between the two methods.The mechanism for a consistent

inversion in the sign, e.g., +3 becomes -3, of the computed ROI responses is discussed above for

subjects viewing real-world objects.

Correlation values can vary dramatically within a given subject and session across ROIs,

e.g., S102. Potential sources for this variability are discussed above for subjects viewing real-

world objects. However, within-session variation is notably less pronounced for subjects viewing

Fribble objects, as seen in Fig. 4.7. 12 of the 20 sessions, with each session corresponding to

a row in the figure, contain three or four searches with consistently high realtime–offline result

correlations.
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I propose above that brain motion is a prominent potential source of inconsistency between

computed responses. Table 4.4 shows the maximum motion, pooled across translational and

rotational dimensions, between the start of the scan session and the start of each scan run. Motion

for subjects viewing Fribble objects is generally reduced from that of subjects viewing real-

world objects shown in Table 4.3. For 11 of 20 Fribble sessions, maximum motion falls under

2 millimeters/degrees in a given direction, while the motion along other directions is usually

less than 1 millimeter/degree. In contrast, 5 of 20 real-world object sessions fit this description.

Thus, by the end of each Fribble-viewing session, true ROI locations usually stay within a voxel-

width’s distance of their expected locations. This decreased motion may be due to the differing

tasks performed for the two object types. For real-world objects, subjects were asked to perform

a one-back location task in which they were to judge the relative location of consecutively-

displayed objects (Sec. 3.3.4). For Fribble objects, subjects were asked to perform a dimness-

detection task in which they were to judge whether the object, always displayed in the same

central location, was dim (Sec. 3.4.3). Slight movement of real-world objects around the screen

may have encouraged slight head motion during stimulus viewings.

Comparing between real-world object and Fribble object viewing groups, there appears to be

a relation between subject motion and consistency for realtime and offline computations. Fribble

subjects, who moved less as a whole, showed a much higher number of searches with high cor-

relation values, as well as more pronounced negative correlation values for several searches. To

consider motion effects within the Fribble sessions, we study correlation values sorted by subject

motion, shown in Fig. 4.7. In this figure, there is no clear smooth transition from high (red)

to low (green/cyan) correlations with increasing motion (moving from higher to lower rows).

However, the two sessions with unusually high motion, S121 and S152, contain searches with

consistently lower realtime–offline result correlations as shown in the bottom two rows. Even

these two sessions contain at least one search with a correlation value above 0.3.

For subjects viewing Fribble stimuli, responses computed in realtime are relatively reliable

across subjects and sessions, even under a modest amount of subject motion.
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4.3.3 Search program behavior

The search program dynamically selects stimuli to show subjects based on the responses of pre-

selected brain regions to recently viewed stimuli. This stimulus selection process is central to my

study of complex visual feature selectivity. Using the simplex simulated annealing method [7]

and the spaces I have defined to capture complex visual properties relevant to object perception

(Sec. 4.1), the search program is designed to explore the space of visual properties and quickly

identify those properties producing the highest response from a pre-selected ROI. These high-

response properties correspond to the region’s visual selectivity. The search tests each selected

location in space by showing a corresponding picture to the subject and then recording and acting

on the resulting cortical response.

Presuming each brain region is selective for a single location in its associated search space,

and its activity decreases on viewing stimuli drawn at increasing distance from this location, the

search program should display two properties:

• consistency, i.e., identifying the stimuli in the area of feature space producing maximal

response, regardless of the starting point of the search and

• convergence, i.e., mostly investigating stimuli near the location producing maximal re-

sponse, expending little time to investigate more distant stimuli unlikely to evoke a high

region response.

Consistencyprovides confidence in the reliability of search results while convergenceprovides

advantage of strategic selection of stimuli over a limited scan time compared to random selec-

tion from the full pool of potential images. Sec. 3.5 defines metrics for these two properties in

Eqns. 3.6 and 3.7, respectively, and presents a form of permutation test to assess whether these

measures would reach their computed values by chance. Beyond the definition of convergence

above as focusing on one (or a few) select regions in space across each session, the search is

expected to begin by probing broadly around the space and to narrow to its focused location over

time as it identifies the maximum-response region in the space. I define two metrics below to
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measure the temporal evolution of locations explored by each realtime search.

Using the four defined metrics, I observe searches of real-world objects, using SIFT-based

space, follow expected behavior for a very limited number ofsubjects and stimulus classes.

Searches of Fribble objects, using their four corresponding search spaces, follow expected be-

havior significantly more often — in ˜25% of searches executed — though there remain many

searches that do not show strong consistency or convergence. Given the relative simplicity of

assumptions made about the structure of visual feature spaces (Secs. 3.3.2 and 3.4.1) and about

the presence of a single-maximum selectivity for each brainregion (Sec. 3.1.5), these results

nonetheless constitute a strong start for realtime fMRI search methods exploring complex visual

properties used by the brain.

Temporal evolution metrics

I studied movement of the search simplex across space for each stimulus class search and each

session by comparing the distribution of locations visitedduring the first and second half of the

session. I characterized these distributions by their meanand variance.

To assess the changing breadth of visual space examined across a search session, I divided

the stimulus-points into those visited in the first half of the session and those visited in the second

half:

∆var =
∑

j

(

σ2(Xj
2)

)

−
∑

(

σ2(Xj
1)

)

(4.1)

wheresigma2(·) is the variance function andXj
i is the set of coordinates on thejth axis for the

ith half of the session.∆var pools variance across dimensions by summing. More fine covariance

structure is ignored as the measure is intended to test for overall contraction across all dimensions

rather than changes in the general shape of the distribution.

To assess the changing regions within visual space examinedacross a search session, I again
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compared points visited in the first half of the session with those in the second half of the session:

dist =

√

√

√

√

∑

j

(

X
j
1 − X

j
2

)2

s2
j

(4.2)

whereX
j
i are as defined for Eqn. 4.1 ands2

j =
[σ2

j ]1+[σ2

j ]2
2

is the mean variance along thejth

dimension of the point locations visited in the two halves ofthe search session.dist measures

the distance between the mean location of points visited in the first and second halves of the

search session, normalized by the standard deviation of thedistributions along each dimension

— similar to the Mahalanobis distance using a diagonal covariance matrix. A shift of 0.5 on a

dimension with variance 0.1 will produce a larger metric value than a shift of 0.5 on a dimension

with variance 1.0.

Real-world objects search

Convergenceof realtime searches, i.e., the focus of searches on one or a small number of lo-

cations across a session, is shown for real-world object searches in Table 4.5 for each subject,

object class, and session. Convergence is assessed based on its Z score; inspection of cluster-

ing seen in scatter plot displays (e.g., Sec. 4.1) and in dendrogams led me to set a threshold of

Z ≥ 1.8 for Z scores above chance.

Above-threshold convergence occurred for only 9 of 80 searches performed across all ses-

sions and object classes. 8 of the 9 converged searches were performed for stimulus classes 2

(human-forms) and 4 (containers), with 4 performed for eachclass. The three programs con-

tributing to realtime search processed stimuli in blocks oftwo, as discussed in Sec. 3.1.1 and

more recently in Sec. 4.3.1, computing in quick succession the next stimuli to display for search

1 and search 2, and then, after a delay, computing in quick succession the next stimuli to display

for search 3 and search 4. As a result, when calculation of stimulus choices for a block required

more time than expected, they were much more likely to adversely affect the proper display of
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Subjectsession z1 z2 z3 z4
S11 -0.36 1.29 -0.34 2.14
S12 -0.82 1.26 .01 -0.68
S21 -0.09 0.15 -0.43 0.39
S22 0.01 0.38 -0.75 0.67
S31 -1.34 0.77 -0.41 -1.01
S32 -0.87 2.60 0.60 -0.32
S41 0.30 0.71 -0.35 2.27
S42 -.49 -1.04 -0.08 -0.45
S51 0.35 -0.08 -1.23 -0.95
S52 0.52 1.14 -0.32 -0.88
S61 -0.57 2.77 0.79 2.37
S62 -0.01 -1.43 -0.20 2.58
S71 -0.57 1.95 -1.01 1.00
S72 0.11 1.91 -0.54 1.30
S81 2.23 0.36 0.07 -0.37
S82 -1.26 0.14 1.23 0.83
S91 0.20 0.20 -1.38 -0.93
S92 -0.15 -0.80 0.05 -0.42

S101 -1.35 -0.34 -0.42 -1.07
S102 -0.69 -0.21 -0.18 0.14

Table 4.5: Convergence for searches of real-world objects asmeasured by Z score metric dis-
cussed in Sec. 3.5. Z scores of 1.8 and above in bold.
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stimuli for search 1 and search 3, which occured 8 s prior to display for search 2 and search 4.

The greater success of searches appearing second in each processing block indicates a long-term

advantage to proper stimulus displays throughout the search, as discussed further in Sec. 5.2.

However, it is worth noting there are a large number of display errors for search 4 of S62, as

seen in Table 4.1, despite its high convergence. Motion and preprocessing factors underlying the

rare above-threshold convergence results are not apparent. Indeed, only in one session, S61, does

high convergence occur for two different searches.

Below-threshold convergence Z values ranged widely. Several searches showed valuesZ <

−1.3, seeming to indicate that a “random” set of stimuli was markedly more convergent than the

stimuli actually visited frequently. To some extent, this phenomenon may point to an unexpected

feature of my significance test, defined in Sec. 3.5. Convergence measures the clustering of

stimuli visited by the search three or more times, while stimuli visited one or two times are

ignored. For my permutation test, I randomly reassign each “frequently-visited” label to one of

the stimuli visited any number of times by the search. This approach was intended to judge the

convergence of frequently visited stimuli in light of the distribution of stimuli that were visited

but not considered sufficiently close to the ROI selectivitycenter to be re-visited. However, if

several stimuli are nearby in space and close to the locationproducing highest cortical response,

their neighborhood may be visited many times but each stimulus visited only visited once or

twice. This non-frequently visited clustering may be indicated by extreme negative Z values.

However, it is also worth noting convergence Z values did notfall below -2, while the majority

of above-threshold values were greater than 2.

Consistencyof realtime searches, i.e., the focus of a search on the same location or locations

in visual space when initialized at two different points in the space in two different scan sessions,

is shown for real-world object searches in Table 4.6 for eachsubject and object class. Consistency

is assessed based on its Z score; inspection of cross-session clustering in scatter plot displays and

in dendrograms led me to set a threshold ofZ ≥ 1.8 for Z scores above chance.

Above-threshold consistency occurred for only 2 of 40 searches performed across all subjects
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Subjectsession z1 z2 z3 z4
S1 -1.02 1.80 -0.39 -0.59
S2 0.34 -1.40 -0.21 -1.78
S3 -1.91 -0.82 1.44 0.04
S4 -0.92 0.10 -1.35 0.44
S5 -1.12 2.19 -0.71 0.41
S6 0.20 -0.67 0.86 -0.83
S7 0.21 0.74 0.60 0.21
S8 -0.49 -0.53 1.79 1.35
S9 1.69 -0.33 0.65 -0.91

S10 -1.54 -0.59 .09 -1.36

Table 4.6: Consistency between searches of real-world objects as measured by Z score metric
discussed in Sec. 3.5. Z scores of 1.8 and above in bold.

and object classes. The searches were performed for stimulus class 2 (human-forms). From

the two above threshold-results, no clear pattern for successful convergence could be deduced.

Motion and preprocessing factors underlying the rare above-threshold convergence results are

not apparent. Neither of the two subjects, S1 and S5, showed above-threshold convergence

for class 2 searches. The lack of consistency for searches with above threshold convergence

— particularly for search 2 for S7, which converged in both session but shows a consistency

score ofZ = 0.74 — indicates the potential presence of multiple regions in SIFT-based space

producing high responses from a given ROI. Consideration of further sources of difficulty for

search performance of real-world objects are discussed in Sec. 5.2.

Below-threshold consistency Z values ranged widely. 6 searches showed valuesZ < −1.3,

seeming to indicate a “random” set of stimuli selected for each of two sessions would be markedly

more consistent than the stimuli actually visited frequently by the search. Reasons for extreme

low Z scores are discussed above in the context of convergence results.

The change in the distribution of locations visited by realtime searches, as reflected by

change in the distribution’s mean (dist) and variance (∆var), is shown for real-world object

searches in Table 4.7 for each subject, object class, and session.

Change in the variance of locations explored from the first half to the second half of each
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Subjectsession ∆ var1 ∆ var2 ∆ var3 ∆ var4 dist1 dist2 dist3 dist4
S11 0.01 0.01 0.02 -0.01 1.81 0.42 0.69 1.20
S12 0.01 -0.00 0.01 0.00 0.87 1.11 1.90 0.86
S21 -0.01 0.00 -0.00 -0.01 1.11 0.74 0.64 0.70
S22 0.00 -0.02 -0.00 -0.03 0.75 1.08 2.28 2.48
S31 -0.00 -0.03 0.01 0.03 1.61 1.14 1.39 2.29
S32 -0.02 0.02 0.01 -0.00 1.14 0.85 1.40 1.72
S41 0.02 0.01 0.02 0.01 1.49 2.29 0.92 1.22
S42 -0.01 0.03 0.01 -0.01 0.60 1.19 1.61 1.21
S51 -0.01 0.03 0.00 0.00 0.97 1.55 1.00 1.70
S52 -0.01 -0.03 0.00 0.02 1.22 2.55 1.06 1.45
S61 -0.01 -0.02 0.02 -0.01 1.37 1.47 1.40 0.65
S62 0.02 0.04 -0.02 -0.01 1.83 2.36 2.29 1.65
S71 -0.00 -0.01 -0.00 0.03 1.20 0.74 1.44 1.29
S72 -0.01 0.02 -0.01 0.01 1.62 0.80 1.37 1.29
S81 -0.01 -0.00 -0.00 -0.03 1.40 1.56 1.00 1.36
S82 -0.01 0.01 -0.03 -0.00 0.80 1.31 2.54 0.96
S91 0.01 0.03 -0.02 -0.01 0.45 0.48 1.12 0.60
S92 -0.01 0.01 0.00 0.01 1.45 1.57 1.65 1.23

S101 -0.02 -0.01 -0.03 0.02 1.35 1.04 1.60 1.58
S102 -0.01 0.01 0.01 0.02 1.65 1.15 2.61 1.65

Table 4.7: Temporal evolution of real-world objects searches. ∆varn and distn, corresponding
to the change in variance and mean of locations visited in thefirst and second half of each
scan session by the search of stimulus classn, are as defined in Eqns. 4.1 and 4.2, respectively.
Distances of 2.0 and greater in bold.

118



session was quite small across all searches.∆var generally falls between -0.02 and 0.02, while

the variance of locations explored in each half of a session fall between 0.02 and 0.07. Visited

points are just as likely to be more dispersed (positive∆var values) as they are to be more

concentrated (negative∆var values) as the search progresses. The lack of convergence over

time as indicated by the∆var measure in part may reflect the reinitialization of the simplex

at the start of each new run within the scan session, as described in Sec. 3.1.5. Existence of

multiple locations in search space evoking high cortical responses also may account for lack of

convergence over time. In contrast to∆var, the time-independent convergence measure defined

in Eqn. 3.6 can reach high Z values while converging on multiple locations in space, provided

the number of locations is small.

Changes in the center of the distribution of locations explored from the first half to the second

half of each session is notable for several searches, withdist ≥ 2 for 9 out of 80 searches and

dist ≥ 1.5 for 24 out of 80 searches. The 9 high shifts in distribution focus occurred with

roughly equal frequency for searches of stimulus classes 2,3, and 4. Most high shifts in focus

(7 of 9) occur in the second session. In the second session, the starting locations were selected

to be distant from the center of focus from the first session, as discussed in Sec. 3.5.2; in the

first session, the starting locations were set to be the origin, around which stimuli are distributed

in a roughly Gaussian manner. While this observation indicates a step towards cross-session

consistency for several searches, the corresponding Z scores for the consistency metric defined

in Eqn. 3.7 are predominantly negative.

Fribble objects search

Convergenceof realtime searches, as defined in Sec. 3.5, is shown for Fribble objects in Ta-

ble 4.8 for each subject, object class, and session. Convergence is assessed based on its Z score,

with a threshold ofZ ≥ 1.8 set to be considered a score above chance.

Above-threshold convergence occured for 20 of 80 searches performed across all sessions
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Subjectsession z1 z2 z3 z4
S111 -0.08 0.40 -0.13 3.90
S112 3.40 0.18 0.63 -0.38
S121 1.20 0.56 1.70 0.25
S122 0.42 1.10 0.51 1.90
S131 0.91 1.10 -0.43 0.79
S132 2.42 -1.2 1.42 2.67
S141 0.39 1.43 0.43 0.95
S142 1.45 0.60 0.52 1.40
S151 2.76 1.66 2.20 0.18
S152 1.45 1.69 -0.83 1.87
S161 1.72 2.10 1.80 0.98
S162 2.87 -1.10 -0.11 -0.22
S171 -0.47 -0.27 0.89 -0.59
S172 2.42 2.97 1.76 0.47
S181 0.54 1.57 1.82 1.72
S182 1.43 0.93 1.17 2.30
S191 2.00 0.93 3.00 4.20
S192 0.90 0.86 1.40 2.10
S201 0.77 1.07 2.86 2.84
S202 1.24 1.66 0.39 1.41

Table 4.8: Convergence for searches in Fribbles spaces as measured by Z score metric discussed
in Sec. 3.5. Z scores of 1.8 and above in bold.
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and object classes. Converged searches were performed for all stimulus classes, though more

frequently for classes 1, 3, and 4 than for class 2. Higher frequency of delayed displays for

search 1 compared to the frequency of delays for other searches did not appear to adversely

affect performance of search 1 as it had for subjects viewingreal-world objects. In part, this

may be attributable to the smaller number of display errors for Fribble object searches overall,

especially compared to the number of incorrect real-world stimuli displayed for search 1 and

search 3 reported in Table 4.1. Several realtime sessions contained multiple searches with above-

threshold convergence; three of four searches converged insession 1 for S19. However, session-

specific characteristics, i.e., subject motion, were not apparent underlying factors in successful

search convergence within Fribble-viewing subjects.

Above-threshold convergence Z scores generally were higher for Fribble object searches than

they were for real-world object searches; 50% of above-threshold Fribble object searches showed

Z ≥ 2.5, compared to 33% of above-threshold real-world object searches. The greater frequency

and magnitude of successful search convergence for Fribbleobjects may reflect the lesser mo-

tion of the subjects in these sessions or, potentially related, the seemingly more reliable results

of fMRI signal processing during these sessions, reported in Sec. 4.3.2. The structure of the

Fribble search spaces also may pose advantages over the SIFT-based image space, as discussed

in Sec. 5.2.

Below-threshold convergence Z values still were assigned to 75% of searches, and ranged

somewhat widely. However, unlike in real-world objects searches, negative Z values were much

more infrequent and were relatively small in magnitude, i.e., Z > −1.3. Furthermore, many

sub-threshold searches exhibited degrees of convergence,e.g., 22 searches have1.0 ≤ Z ≤ 1.8,

compared to 6 searches fitting this criterion for real-worldobjects sessions.

Consistencyof realtime searches, as defined in Sec. 3.5, is shown for Fribble objects in

Table 4.9 for each subject and object class. Consistency is assessed based on its Z score, with a

threshold ofZ ≥ 1.8 set to be considered a score above chance.

Above-threshold consistency occurred for 7 of 40 searches performed across all subjects and
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Subjectsession z1 z2 z3 z4
S11 2.10 0.57 0.43 2.20
S12 -0.53 1.40 -0.03 1.40
S13 0.46 0.62 -1.20 -1.40
S14 -0.59 -0.19 -1.20 1.22
S15 -1.10 -1.10 1.43 2.96
S16 -0.29 0.85 0.39 0.54
S17 2.28 3.14 3.28 -0.99
S18 -1.70 -0.03 0.28 -1.80
S19 1.40 0.30 0.97 3.80
S20 0.63 0.15 0.46 0.05

Table 4.9: Consistency between searches in Fribbles spaces as measured by Z score metric dis-
cussed in Sec. 3.5. Z scores of 1.8 and above in bold.

object classes. The searches were performed for all stimulus classes, though somewhat more

frequently for classes 1 and 4. Several realtime sessions contained multiple searches with above-

threshold consistency; three of four searches were consistent for S17. However, session-specific

characteristics, i.e., subject motion, were not apparent underlying factors in successful search

convergence within Fribble-viewing subjects. Almost all searches showing above-threshold con-

stistency also showed convergence in one scan session, and in both sessions for S19 search 4.

Lack of convergence in the both scan sessions for most searches may reflect the search in one

session starting close to the location(s) producing highest activity from the selected ROI and

converging on the desired region(s) in visual space, while the search in the other session be-

gins probing farther-away locations and searches around more widely, chancing upon the correct

areas occassionally but lacking sufficient time to converge.

Below-threshold consistency Z values ranged widely. Several searches show valuesZ <

−1.3.

The change in the distribution of locations visited by realtime searches, as reflected by

change in the distribution’s mean (dist) and variance (∆var), is shown for Fribble object searches

in Table 4.10 for each subject, object class, and session.

Change in the variance of locations explored from the first half to the second half of each
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Subjectsession ∆ var1 ∆ var2 ∆ var3 ∆ var4 dist1 dist2 dist3 dist4
S111 0.02 0.01 0.05 0.03 1.38 1.15 0.58 1.13
S112 0.05 0.03 -0.04 0.03 1.42 2.30 1.55 1.49
S121 0.02 0.02 -0.11 0.00 1.38 1.29 2.18 2.25
S122 -0.04 0.01 -0.01 0.07 1.03 2.49 0.87 2.28
S131 -0.02 0.12 0.03 0.01 2.39 0.89 0.99 0.50
S132 0.10 0.01 -0.03 0.03 1.44 0.60 .84 1.46
S141 -0.08 -0.01 -0.07 0.03 3.05 2.33 0.77 1.30
S142 -0.06 -0.05 -0.03 -0.06 1.68 1.19 1.35 1.95
S151 0.02 0.01 -0.08 0.08 1.39 1.47 1.89 1.31
S152 0.06 -0.02 0.01 -0.08 1.83 0.98 1.07 1.57
S161 -0.00 0.09 -0.02 -0.08 0.52 0.54 1.73 0.95
S162 0.05 0.05 -0.08 0.05 0.60 1.34 1.17 1.32
S171 0.01 0.06 0.03 0.07 1.31 1.03 1.16 1.20
S172 0.03 0.02 -0.08 -0.05 2.41 0.81 0.76 1.09
S181 0.10 -0.03 0.05 0.00 0.25 0.22 0.81 1.07
S182 0.01 -0.06 0.07 0.00 1.31 1.06 1.09 0.39
S191 -0.01 -0.03 0.01 -0.02 1.14 1.72 1.42 1.71
S192 -0.08 0.00 0.01 0.03 2.12 0.78 1.97 2.30
S201 -0.03 -0.07 -0.05 0.03 1.93 1.80 2.59 1.09
S202 -0.05 0.00 0.06 0.09 1.34 1.09 0.84 0.85

Table 4.10: Temporal evolution of Fribble searches.∆varn and distn, corresponding to the
change in variance and mean of locations visited in the first and second half of each scan session
by the search of stimulus classn, are as defined in Eqns. 4.1 and 4.2, respectively. Distancesof
2.0 and greater in bold.
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session was small across all searches, equivalent to observations made for search behavior us-

ing real-world objects.∆var generally falls between -0.1 and 0.1. Visited points arejust as

likely to be more dispersed (positive∆var values) as they are to be more concentrated (negative

∆var values) as the search progresses. Potential contributions to the lack of convergence over

time as indicated by the∆var measure are discussed above in the context of real-worldobjects

search performance, for which there is a similar lack of observed decrease in variance of stimuli

explored over time.

Also similar to real-world objects searches, changes in thecenter of the distribution of loca-

tions explored from the first half to the second half of each session is notable for several searches,

with dist ≥ 2 for 12 out of 80 searches anddist ≥ 1.5 for 23 out of 80 searches. The 12 high

shifts in distribution focus occurred with roughly equal frequency for searches of all stimulus

classes. Unlike in real-world objects searches, high shifts in focus occur with equal frequency

across the first and second sessions. Starting from the origin in the first session, each search ini-

tially probes stimuli whose component shapes are morphed intermediate appearances between

two better-established shapes at the extreme -1 and 1 coordinates on each axis. Intuitively, a

region involved in object perception — particularly more anterior ROIs shown in Fig. 4.4 —

may be specifically selective for a clear circle or a clear star rather than a vague shape newly

generated for my stimulus set (Fig. 3.6). Therefore, large shifts from the origin in session 1

may be expected. In contrast, the definition of real-world object feature space through SIFT and

multi-dimensional scaling will place groups of salient visual features throughout space, not just

at extremes, making large shifts from the origin less likelyin the first session. As in real-world

objects search, in the second Fribble sessions, the starting locations were selected to be distant

from the center of focus from the first session, as discussed in Sec. 3.5.2 — thus, a significant

shift in search focus would be required to identify the same stimuli producing high activity in

the pre-selected cortical region. While these second session observations indicate a step towards

cross-session consistency for several searches, the corresponding Z scores for the consistency

metric defined in Eqn. 3.7 are predominantly below threshold, though for all but S11,Z ≥ 1.4.
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All measures of Fribble object search behavior indicate more stability and more consistency

in identified visual selectivities when compared with search of real-world objects. However,

there remains significant room for improvement to enable convergence, both over space and

while operating across time, in many more than 25% of visual selectivity searches. Nonetheless,

the current success rate of a relatively simple search method — simplex simulated annealing —

to investigate a rather complex probelm in visual encoding constitutes a strong start for realtime

fMRI methods in the field.

4.4 Complex visual selectivities

I developed the set of realtime programs for dynamic selection of stimuli to display to a subject

in an fMRI machine in order to quickly identify visual properties producing the strongest activity

from cortical regions in the ventral object perception pathway. In Sec. 4.2, I report the successful

selection of ROIs for study in mid- and high-level visual areas — generally around the fusiform

cortex for subjects viewing real-world objects and more broadly spread in fusiform, lateral oc-

cipital, and anterior inferotemporal cortex for subjects viewing Fribble objects. In Sec. 4.3, I

discuss the generally proper functioning of the search programs used for exploration of visual

properties, probed by real-world and Fribble objects. Below, I discuss the visual selectivities

revealed through the use of these regions and programs.

I expected the search in each ROI to converge onto one, or a few, location(s) in the associ-

ated visual space producing greatest cortical response, corresponding to the regional selectivity.

Convergence occurred for only 10% of searches of real-world objects and 25% of searches of

Fribble objects. I examine cortical responses observed forthese searches, as well as for searches

that showed consistency between scanning sessions — i.e., revisiting the same locations in visual

space when initialized from two different points in that space. In particular, I use visual inspec-

tion of the frequently-visited stimuli, ranked by ROI response size, to intuit important visual

properties for each cortical region and use the scatter plotintroduced in Sec. 4.1 to visualize cor-
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tical activity across visual space (and, to some extent, to observe search behavior). Regardless of

the specific visualization used to examine them, the visual feature spaces I have developed pro-

vide a powerful new tool for characterizing and understanding cortical responses to complex vi-

sual properties.Examination of points frequently visited by each search andthe responses of the

corresponding brain regions revealed multiple distinct selectivities within search of single ROIs,

marked change in cortical response resulting from slight deviations in visual properties/slight

changes in location in visual space, and several intuitive classes of visual properties used by the

ventral pathway.

When a search fails to show convergence or consistency, thereis less confidence that the

stimuli used by the search sufficiently captured cortical response properties across the space of

visual features. Nonetheless, cortical response data was gathered from every ROI examined

by a search, and this data provides a partial view into complex visual properties used in the

ventral pathway. I compare patterns of activities from all searches to identify potentially smooth

evolution of selectivities across the brain. This expectedevolution was not apparent in my results,

likely because the regions explored within each subject tended to be anatomically distant from

one another and regions anatomically close across subjectsreflect variability in cortical visual

encoding across subjects.

4.4.1 Metric for cross-region comparisons

Beyond exploring the visual property selectivities for single ROIs in individual subjects, I study

the generalization of selectivities across subjects and selectivity evolution as one moves across

the cortex. To this end, I compared the distribution of high-and low-response regions in SIFT

space for anatomically proximal ROIs within and across subjects. I expected nearby ROIs to

have similar response profiles and distant ROIs to have distinct profiles. Instead, nearby ROIs

generally were quite different in selectivities, both within and across subjects.

Given the sparse sampling of SIFT space by the search method —made more sparse by
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the removal of unreliable responses estimated over “too few,” i.e., fewer than three, stimulus

repetitions — comparison of response profiles across ROIs poses its own challenge. I interpolate

over the sparse samples using inverse distance weighting [58] to construct a four-dimensional

grid of responses for each ROI and each search session. The grid spans between -1 and 1 on

each axis, divided into 0.05 length intervals. Similarity between a pair of response profiles is

computed using the Pearson correlation of the grid entries for the two ROIs.

Cross-region comparisons failed to show clear patterns of similarity in regional selectivities

related to anatomical proximity of the compared regions.

4.4.2 Real-world objects search

Among subjects viewing real-world objects, 9 selectivity searches converged and 2 searches

showed consistency across searches, as measured in Sec. 4.3.3. Examination of points frequently

visited by each search and the responses of the corresponding brain regions revealed multiple

distinct selectivities within search of single ROIs, marked change in cortical response resulting

from slight deviations in visual properties/slight changes in location in visual space, and several

intuitive classes of visual properties used by the ventral pathway — including surface texture as

well as two- and three-dimensional shape.

The two searches with highest Z score convergence values forobject class 2 (human-forms)

were performed in session 2 for S3 and in session 1 for S6; the two searches with highest Z

score convergence values for obect class 4 (containers) were performed in the two sessions for

S6, as reported in Table 4.5. Object class 3 had no searches showing above-threshold Z score

convergence values, and the one above-threshold Z score forobject class 1 was below those of

the searches in class 2 and class 4 mentioned above. I examinethe results of the four “most-

converged” searches in detail, and summarize results for all other searches with above-threshold

convergence.

The class 2/human-forms searchin the second session forS3 showed one of the greatest
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First search Second search
a b

Figure 4.8: Stimuli visited three or more times in searches for S3, class 2 (human-forms). Images
sorted in order of decreasing ROI response, averaged acrossall trials for each image.

convergence measures (Z = 2.60). The scatter plot view of this search was presented in Sec. 4.1

in Fig. 4.1. I return to analysis of this figure in the present discussion, in addition to analysis of

the relative ROI response sizes for the stimuli frequently searched, shown in Fig. 4.8. Projecting

the visited stimuli along the first two dimensions in SIFT-based space in Fig. 4.1a, and focusing

on frequently-visited stimuli (for reasons discussed in Sec. 4.1), we see two clusters on the top

left and the middle left for the second session (red and blue diamonds). The images visually

are split into two groups2: one group containing light/generally-narrow-shape (thefirst, third,

fifth and eighth highest response stimuli) and the second group containing less-light/wide-shape

(the remaining stimuli), as shown in Fig. 4.8b. Notably, stimuli evoking high and low responses

appear in both clusters, and similar-looking images can elicit opposite ROI activities — e.g., the

two red characters.

The class 2 search in the first session for S3 shows a quite weakconvergence measure

(Z = 0.77). Projecting the visited stimuli along the first two dimensions in SIFT-based space

in Fig. 4.1a appears to reveal a concentration of frequently-visited stimuli (red and blue circles)

2For the interpretation of real-world objects results, grouping was done by visual inspection of a single linkage
dendrogram constructed in the four-dimensional SIFT-based space.
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at the bottom of the first two dimension of the space, but the stimuli are broadly spread out

horizontally and along the additional two dimensions shownin Fig. 4.1b. Unlike results for the

second session, there is no concentration of focus around one (or two) spatial locations. De-

spite a very low consistency Z score (Z = −0.82), there is evidence for a degree of consistency

between session results. The stimuli evoking the strongestand weakest responses in the first

session appear in the lower cluster of visited points in the second session. The red wingless

character, again, elicits high response while the purple winged character in the first session and

the red-green winged character in the second session, nearby in visual SIFT-based space, elicit

low responses. The winged character in the first session is projected as a very small blue circle

at (−0.05, 0.02, 0.15, 0.10) in the SIFT space in Figs. 4.1a and b. By starting from a separate

location, the second search finds the highest-response spatial neighborhood for the ROI found by

the first search, but also finds a second local ROI-response maximum in SIFT space. This partial

consistency between searches is too weak by my metric to earna notably non-random Z score in

Table 4.6. Unfortunately, these nuances are not fully captured in the Z score metric used in my

study, as defined in Sec. 3.5.

The class 2 search in the first session forS6showed the greatest convergence measure across

all searches (z = 2.77). Projecting the visited stimuli along the SIFT dimensionsin Fig. 4.9,

we see one cluster (of red and blue circles) around the coordinates(−0.1,−0.15, 0,−0.15) and

several outliers for the first session. The members of the central cluster are the images producing

the second, third, fourth, and seventh highest responses from the ROI, as ordered in Fig. 4.10a.

The three stimuli in the cluster producing the highest responses may be linked by their wide

circular head/halo, while the smallest-response stimulusis notably thin — potentially indicating

response intensity as a wide/thin indicator. Stimuli evoking high and low responses, coming

from the two ends of the wide/thin spectrum, are nearby one another in the part of the SIFT

space under study by the search.

The class 2 search in the second session for S6 shows a quite weak convergence measure

(Z = −1.43). Projecting the visited stimuli along the first two and second two dimensions in

129



a b

Figure 4.9: Search results for S6, class 2 (human-forms), shown in (a) first and second SIFT
space dimensions and (b) third and fourth dimensions. Colorsand shapes used as in Fig. 4.1

First search Second search
a b

Figure 4.10: Stimuli visited three or more times in searchesfor S6, class 2 (human-forms).
Images sorted in order of decreasing ROI response, averagedacross all trials for each image.
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Fig. 4.9a and b appear to show a similar structure of one cluster with additional outliers in each

view, but careful inspection reveals the points clustered together in the first two dimensions are

split apart along the second two dimensions, and outliers ineach view are farther flung across the

space, supporting the low convergence measure. Similarly,as the consistency Z score is a low

Z = −0.67, the stimuli frequently visited in the second session fail to overlap with similar feature

space locations and “similar-looking”3 stimuli frequently visited in the first session. Although a

red character produces the minimum responses in each of the two searches (Fig. 4.10), the two

characters are located in distinct corners of the SIFT space(dark red diamond and blue circle in

Fig. 4.9).

Comparison of searches for S3 and S6, in Figs. 4.1 and 4.9, respectively, shows a similar

pattern of visited stimuli in the feature space. For both subjects, there is a focus close to the

first dimensional axis, i.e, a vertical line of red and blue circles and diamonds along the first

two dimensions; visited stimuli follow a V pattern in the second two dimensions. Furthermore,

some of the highest ROI response stimuli appear (in red) at high locations along the second

and third dimensions. Similarly, frequently-visited stimuli for S6 session 1 (dark blue circles)

appear close to the the observed lower cluster for S3 session2, though the cortical response

sizes for the two subjects appear to differ. Comparing Figs. 4.8 and 4.10, we also can confirm

a degree of overlap between the images frequently shown for each subject. In both subjects,

frequently visited stimuli seemed to show regional selectivity, and potentially differentiation, for

narrow-versus-wide shapes. While searches for the two subjects show great similarities, it is

worth noting the ROIs studied, labeled as c2 and f2 in Fig. 4.3, are anatomically distant from

one another. Thus, different subjects achieve similar coding strategies in different areas of their

brains.

Theclass 4/containers searchin sessions 1 and 2 forS6showed the third and fourth greatest

convergence measures (Z = 2.37 andZ = 2.58, respectively) across all searches. Projecting the

3Similarity in appearance is not well-defined, as explored bymy related work in Chap. 2. Generally, I limit my
similarity judgements to identification of identical pictures, e.g., in Fig. 4.8. Here, I occasionally use more rough
intuition.
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a b

Figure 4.11: Search results for S6, class 4 (containers), shown in (a) first and second SIFT space
dimensions and (b) third and fourth dimensions. Colors and shapes used as in Fig. 4.1.

First search Second search
a b

Figure 4.12: Stimuli visited three or more times in searchesfor S6, class 4 (containers). Images
sorted in order of decreasing ROI response, averaged acrossall trials for each image.
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visited stimuli along the SIFT dimensions in Fig. 4.11, we see two clusters for the first session

(red and blue circles), centered around(−0.9, 0.1, 0.17, 0.55) and(−0.55,−0.15, 0.15,−0.15),

respectively, in addition to a few outliers. The members of the first cluster are the images produc-

ing the fifth and eighth highest responses from the ROI, and the members of the second cluster

are the images producing the first, fourth, sixth, and seventh highest responses, as ordered in

Fig. 4.12a. While the members of the first group have clear visual similarities, differing only by

their color, the members of the second group are much more assorted. Perhaps they are linked by

their multiple long sides and by the illumination focused oncorners rather than edges. Stimuli

within the same group draw both high and low activities from the ROI. The two partially-open

hinged boxes produce mid-sized and low responses, indicating notably different responses to

slight changes in complex visual properties.

Projecting the stimuli in the second session (red and blue diamonds) appears to show less

strong grouping, though the convergence metric Z score is larger. The stimuli evoking the first

and third strongest responses are grouped very closely together, overlaping in the first two dimen-

sions and surrounding the origin in the second two dimensions, (0.35, 0.35, 0, 0), in Fig. 4.11.

The remaining two stimuli are outliers that appear relatively close in the first two dimensions,

but lie farther to the bottom right in the second two dimensions. It is unclear by visual inspec-

tion why two nearby stimuli are grouped together, though their top handles and predominance

of horizontal and vertical lines may underlie their grouping. Similar to the other search results

observed above, the two nearby stimuli evoke a particularlyhigh and low response, respectively,

showing regional sensitivity to a slight change in positionin visual feature space — though the

visual differences between the stimuli is rather apparent.As the consistency Z score is a low

Z = −0.83, the stimuli visited in the two sessions fail to overlap in location and in intuitive

visual appearances, though almost all stimuli visited in both searches have small handles on top

— a common but not essential characteristic of the class as shown in Fig. 3.2.

Visual comparison of searches for class 2 and class 4 in, e.g., Figs. 4.9 and 4.11, respectively,

show distinct patterns of visited stimuli in the feature space. Stimuli frequently visited by class
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4 searches are spread to greater extremes along the first and third dimensions of the space while

stimuli frequently visited by class 2 searches are spread togreater extremes along the second and

fourth dimensions. These search behavior in part reflect thediffering spreads of stimuli in each

class across the space, as shown by the black dots in each scatter plot.

Study of frequently visited stimuli in the search sessions showing lower, but above-threshold,

convergence reveals a mix of results.

• The class 2/human-forms searchin sessions 1 and 2 forS7 showed high convergence

measures (Z = 1.95 andz = 1.91, respectively). The first session frequently visited a

cluster of stimuli evoking the third, fourth, fifth, sixth, and seventh (out of seven) highest

ROI responses. The stimuli in this cluster appear to be grouped by high spatial frequency

details, and particularly frequent shiny spots, across thesurface. Stimuli close together

in the visual space evoked particularly high and low ROI responses. The second session

frequently visited points forming one cluster, but there isno clear visual grouping among

these stimuli. Stimuli close together in the visual space evoked high (first highest) and

low (eighth and tenth out of eleven) ROI response. As the consistency Z score is a low

Z = 0.74, the stimuli visited in the two session fail to overlap in location and in intuitive

visual appearances.

• Theclass 4/containers searchin the first session forS1showed high convergence (Z =

2.14). The search frequently visited a cluster of stimuli evoking the second, third, fourth,

and fifth (out of seven) highest ROI responses. There are no clear visual properties linking

these images. Notably, the stimuli evoking the highest and lowest responses fall outside

the converged cluster.

• The class 4 search in the first session forS4showed high convergence (Z = 2.27). The

search frequently visited a cluster of stimuli evoking the first, second, third, fourth, and

eigth (out of eight) highest ROI responses. The two stimuli closest in space (evoking the

second and fourth highest responses) appear to be linked by surface texture, earth-tone
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a b

Figure 4.13: Search results for S1, class 2 (human-forms), shown in (a) first and second SIFT
space dimensions and (b) third and fourth dimensions. Colorsand shapes used as in Fig. 4.1.

colors (although the SIFT representation space operates onblack-and-white versions of

the images), and similar handle shapes; visual patterns across all five clustered stimuli are

not apparent. Stimuli clustered together in the visual space evoked the highest and lowest

ROI responses.

The two searches with cross-session search consistency were performed for object class 2

(human-forms) for S1 and S5. Object classes 1, 3, and 4 had no searches showing above-

threshold Z score consistency values values. I examine the results of the two consistent search

pairs below.

Theclass 2/human-forms searchesfor S1showed a high consistency measure across the two

scan sessions (Z = 1.80). Projecting the visited stimuli along the SIFT dimensionsin Fig. 4.13,

we see stimuli frequently visited in the second session (redand blue diamonds) are spread widely

across the SIFT space. Half of the stimuli frequently visited in the first session (red and blue

circles) are focused around(0.15,−0.55, 0.15, 0.1), in the same area as the stimulus producing

the lowest ROI activity in the first session. The three stimuli in the first session exploring the
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First search Second search
a b

Figure 4.14: Stimuli visited three or more times in searchesfor S1, class 2 (human-forms).
Images sorted in order of decreasing ROI response, averagedacross all trials for each image.

same location as the second session were those producing thesecond, third, and fourth highest

responses, as shown in Fig. 4.14a. While, based on their ordering, these first-session stimuli

appear to be producing mid-level responses, distinct from the “lowest” response produced by the

metal samurai stimulus of interest in the second search, comparison of absolute computed values

within each scan session shows all four responses to be quitelow, further indicating similar

activity discover in both searches. It is difficult to intuitthe visual properties grouping these

stimuli together, though they may be linked by their metalicsurfaces, and by their rectangular

bases and heads. Reviewing the cross-session grouping in Fig. 4.13, In summary, we see my

consistency measure will award one search focusing its efforts on a single location frequently

visited by a second search — potentially indicating the needfor further modifications to my

consistency metric.

Comparison of class 2 searches for S1, S3, and S6, in Figs. 4.13, 4.1, and 4.9, respectively,

shows a similar pattern of frequently visited stimuli in feature space. There is a vertical line of

stimuli along the first two dimensions and a V pattern in the second two dimensions. Some of the

highest ROI response stimuli appear at high locations alongthe second and third dimensions for
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a b

Figure 4.15: Search results for S5, class 2 (human-forms), shown in (a) first and second SIFT
space dimensions and (b) third and fourth dimensions. Colorsand shapes used as in Fig. 4.1.

S1 session 2, S3 session 2, and S6 session 2. Notably, the 4 mostly-white figures from this region

frequently displayed to S3 in session 2 also are frequently displayed to S1 in session 2; 3 of the 4

figures are sorted in the same order based on ROI response size, as shown in Figs. 4.8 and 4.14.

Examining the relative anatomical location of the ROIs studied, labeled as a2, c2, and f2 in

Fig. 4.3 for S1, S3, and S6, respectively, we see the ROIs for S1 and S6 are very close to each

other when projected on the Talairach brain, though S3’s ROIis more distant.

The class 2 searches forS5showed a high consistency measure across the two scan sessions

(Z = 2.19). Projecting the visited stimuli along the SIFT dimensionsin Fig. 4.15, we see stimuli

frequently visited in the first session (red and blue circles) are spread across the space. Quite

similar to the S1 searches for object class 2, half of the stimuli frequently visited in the second

session (red and blue diamonds) are focused around(0.05,−0.45,−.025, 0.05), in the same area

as the stimulus producing the second lowest ROI activity in the first session. The four stimuli

in the second session exploring the same location as the firstsession were those producing the

first, fourth, sixth, and eighth largest responses, spanning high and low response values. The
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First search Second search
a b

Figure 4.16: Stimuli visited three or more times in searchesfor S5, class 2 (human-forms).
Images sorted in order of decreasing ROI response, averagedacross all trials for each image.

visual properties grouping these stimuli together appear to be the presence of sharp local angles

defining internal holes or feathers in the shape. Further inspection of the SIFT space in Fig. 4.15

shows the two search sessions explore largely different regions along the first two dimensions,

though there appear to be closer overlaps along the second two dimensions.

Comparison of class 2 searches for S5 with those of the subjects reported above, S1, S3, and

S6, shows a great degree of difference in the pattern of frequently visited stimuli in feature space

and in the pattern of cortical responses across space. This finding reflects the expected diversity

of selectivities employed in perception of a given object class, e.g., human-forms.

The high consistency Z score despite relatively limited overlap in results between two ses-

sions may point to the need for modifying the metric defined inEqn. 3.7. The metric only

considers clusters of points in SIFT space containing stimuli visited by both searches. If most

visited stimuli are dispersed throughout the space, each one will be defined as its own cluster and

its presence will not effectively decrease the metric valuethrough theℓ1 term, which will offset

the ℓ2 term for small clusters. If there is a suffficiently large cluster containing only one point

from one search and several points from the other search, this will be considered strong consis-
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(Snm,Spq) corr Tdist (Snm,Spq) corr Tdist (Snm,Spq) corr Tdist
(S21,S42) -0.37 1.5 (S54,S94) -0.55 1.5 (S12,S62) -0.49 1.6
(S52,S81) 0.42 2.0 (S33,S51) 0.60 1.3 (S24,S61) 0.23 2.3
(S23,S44) 0.86 2.6 (S13,S34) 0.45 2.8 (S21,S82) 0.42 1.7
(S72,S74) -0.48 3.1 (S33,S34) 0.82 3.2 (S23,S24) -0.31 3.6
(S82,S83) 0.72 3.6 (S11,S13) -0.25 4.5 (S41,S44) 0.54 4.5

Table 4.11: Correlation of activation profiles in SIFT-basedspace for anatomically proximal
ROIs in real-world objects searches. ROIs selected to be theclosest pairs in Fig. 4.3 in first
three rows, closest pairs within same subject in last two rows. The corr value for (Snm, Spq)
corresponds to the maximum-magnitude correlation for the classm ROI for subjectn and the
classq ROI for subjectm across search session pairs — e.g., (sess1,sess1), (sess2,sess1). corr≥
0.8 in bold. Tdists is distance (in voxels) between the two ROI centers in the Talairach brain.

tency, even if that was not intended when I designed the metric. Indeed, these are the results I

observe above.

Comparison of neighboring regions

Profile correlations are distributed roughly as a Gaussian distribution around 0, with a standard

deviation of 0.37. ROIs with high correlations, e.g.,r ≥ 0.8, show marked similarities on

visual inspection, such as the pair of interpolated response profiles shown in Fig. 4.17 for S2,

object class 3, session 2 and S4, object class 4, session 1. However, anatomically proximal ROIs

tend to have less similarity, seen across multiple pairwisecomparisons in Table 4.11 and for

an individual pairwise comparison in Fig. 4.18. We can see that r = 0.42 is associated with a

pair of profiles retaining partial similarities in peak positive and negative activity locations, with

further differences in broader surface details. The pair (S52,S81) is considered here as it is the

pair of brain regions across closest to each other across allsubjects with a non-negative profile

correlation.

Looking within individual subjects, the ROIs are slightly more separated in the brain, as

indicated in Fig. 4.3, but generally have larger correlation magnitudes than the closer region pairs

across subjects. Most correlations remain belowr = 0.8, but may indicate a weak trend. The

presence of some moderately high negative correlations within and across subjects, particularly
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Figure 4.17: Interpolated activation profiles for two ROIs,with correlationr = 0.86. Responses
normalized for each profile with maximum value red and minimum value blue. dim1 x dim2
slices taken along first and second dimensions, varied alongthird dimension and fixed at fourth
dimension to 0. dim3 x dim4 slices taken along third and fourth dimensions, varied along first
dimension and fixed at second dimension to 0.
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Figure 4.18: Interpolated activation profiles for two ROIs,with correlationr = 0.42. Same
cross-section display method employed as in Fig. 4.17.
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r = −0.55 for the (S54, S94) pair, may be similar in principle to the close proximity of maximum

and minimum activity stimuli in the SIFT visual feature space. Interpolated profiles such as in

Fig. 4.17 and scatter plots such as in Fig. 4.1 show nearby regions in feature space can evoke

extremely polar opposite cortical responses.

4.4.3 Fribble objects search

Among subjects viewing Fribble objects, 20 selectivity searches converged and 7 searches showed

consistency across searches, as measured in Sec. 4.3.3. As in real-world object searches, exami-

nation of stimuli frequently visited by each search and the responses of the corresponding brain

regions revealed multiple distinct selectivities within search of single ROIs, marked change in

cortical response resulting from slight deviations in visual properties/slight changes in location in

visual space, and several perception approaches used by theventral pathway — including focus

on the form of one or multiple component “appendages” for a given Fribble object.

The search with the highest Z score convergence value for object class 1 (curved tube object,

see Fig. 3.6) was performed in session 2 for S11; the search with the highest value for object

class 4 (wheelbarrow object) was performed in session 1 for S19, as reported in Table 4.8. The

highest Z score convergence values for searches of object classes 2 (blue-bodied, yellow-winged

object) and 3 (bipedal, metal-tipped tail object) were below those of the searches in class 1 and

4. The two searches with highest cross-session search consistency were performed for object

class 3 for S17 and for object class 4 for S19. I examine in detail the results of the two searches

listed above as most-convergent for their respective object classes as well as the results of the

two most consistent search pairs (noting S19 is both most consistent and most convergent). I also

summarize results for all other searches with above-threshold convergence and consistency.

Theclass 1/curved tube object searchin the second session forS11showed high conver-

gence (Z = 3.40). Projecting the visited stimuli along the three Fribble-specific morph dimen-

sions in Fig. 4.19, noting the third dimension is indicated by diagonal displacement, we see one
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Figure 4.19: Search results for S11, class 1, shown in three-dimensional Fribble space, with
third dimension represented as diagonal offset. Positive third dimenion results in displacement
up and to the right. Location of all potential stimuli in space shown as black dots. Results
from realtime scan session 1 are circles, results from realtime scan session 2 are diamonds. For
stimuli visited three or more times, colors span blue–dark blue–dark red–red for low through high
responses; for stimuli visited one or two times, colors spancyan–yellow–green for low through
high responses. Size of shape corresponds to time each pointwas visited in search, with larger
shapes corresponding to later points in search.

First search Second search
a b

Figure 4.20: Stimuli visited three or more times in searchesfor S11, class 1. Images sorted in
order of decreasing ROI response, averaged across all trials for each image.
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cluster4 (of red and blue diamonds) centered around(0,−0.33,−0.66). The cluster contains three

of the four stimuli visited three or more times in the second session — all but the stimulus evok-

ing the second highest response from the ROI in Fig. 4.20b. These stimuli show mid-extremes

green tail tip and mid-extremes tan head (see Fig. 3.6 for range of Fribble appearances); their legs

generally are mostly round (morphed away from the rectangular shape at the other extreme). The

outlying stimulus, while deviating in its more circular head and more flat-topped tail tip, retains

the round leg shape. I observe Fribble ROIs often are most selective for the shape of a subset

of the component appendages, although clustering appears to indicate the head and tail-tip shape

remain important for S11’s ROI as well, as does cross-session comparison of results below.

The class 1 search in the first session for S11 shows a quite weak convergence measure

(Z = −0.08). Projecting the visited stimuli along the three Fribble-space dimensions (red and

blue circles) shows the search spreading to all corners of the first two dimensions of the space,

while focusing ondim3 > 0. In several locations, pairs of near-adjacent stimuli werevisited, as

in the lower left, upper right, and center of Fig. 4.19. In each location, the stimuli evoked opposite

strength responses from the ROI — the second and seventh highest responses are coupled, as are

the first and sixth, and the third and seventh. Sensitivity toslight changes in visual features had

been observed previously for several brain regions of subjects viewing real-world objects.

The stimuli with positive values for the third dimension have more-rectangular legs, as seen

by visual inspection of Fig. 4.20a, seemingly contradictory to the round leg selectivity posited

for the second session. As part of my procedure, described inSec. 3.5, the search in the second

session is started at a position distant from the locations frequently visited in the first session to

observe whether the search will return to the same location,showing consistency. For S11 class

1, the second search found and focused on one location, closeto the frequently visited stimuli

producing the first and sixth highest responses in the first search session, but shifted along the

leg-shape dimension. This focus of one search session around a point of interest from the other

4For the interpretation of Fribble results, grouping was done by visual inspection of the three-dimensional scatter
plots, e.g., Fig. 4.19.
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Figure 4.21: Search results for S17, class 3, shown in three-dimensional Fribble space. Colors
and shapes used as in Fig. 4.19.

search session produces a consistency value,Z = 2.10. Comparing across searches, it appears

all three attributes are important to producing high regional responses.

Theclass 3/bipedal, metal-tipped tail object searchesfor S17showed high cross-session

consistency (Z = 3.28). Projecting the visited stimuli along the three Fribble-specific morph

dimensions in Fig. 4.21, we see the first session focuses on the axis of dimension 1, the second

session focuses on the axis of dimension 2, and both emphasize stimuli withdim3 ≈ 0.66. As

the convergence Z scores are low (Z < 1.8), the visited points for each session spread widely,

albeit roughly confined to a single axis. The sessions’ shared focus around(0, 0, 0.66) results

in the high consistency Z score. These points correspond to the stimuli evoking the first, sixth,

and seventh highest responses for the first session and thoseevoking the second, fifth, sixth,

and seventh highest responses for the second session, shownin Figs. 4.22a and b, respectively.

Visually, these stimuli are grouped for their spiked feet (dim3 = 0.66), as well as for their tails

appearing half-way between a circle and a cog shape (see Fig.3.6) and their yellow “plumes”

half-way between a round, patterned and angled, uniformly-shaded. The importance of spike-
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First search Second search
a b

Figure 4.22: Stimuli visited three or more times in searchesfor S17, class 3. Images sorted in
order of decreasing ROI response, averaged across all trials for each image.

shaped feet indicated in both searches, even beyond the(0, 0, 0.66) cluster focus, may relate to

prominance of edge detection in biological vision, expanding to the detection of sharp angles.

As noted for other Fribble and real-world objects searches above, stimuli evoking the lowest and

highest responses are notably clustered in the search space.

Visual comparison of searches and of regional responses fordifferent subjects cannot be made

across classes, as each Fribble space is defined by a different set of morph operations. Within

class comparisons do not reveal strong consistent patternsacross ROIs, as discussed below.

The class 4/wheelbarrow object searchfor S19showed the highest convergence measure

(Z = 4.20) in session 1 across all subjects and object classes and a high convergence measure in

session 2 (Z = 2.01). Furthermore, the two searches together showed the highest cross-session

consistency (Z = 3.80) across all subjects and object classes. Projecting the visited stimuli along

the three Fribble-specific morph dimensions in Fig. 4.23, wesee clustering alongdim1 = 0 and

dim3 = −0.33 for the first session (red and blue circles); dimension 2 location of the stimuli is

more broadly-distributed, but limited todim2 ≤ 0. The stimuli at the center of the first session

cluster — those generating the first, fourth, fifth, sixth, seventh, and eighth highest responses as
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Figure 4.23: Search results for S19, class 4, shown in three-dimensional Fribble space. Colors
and shapes used as in Fig. 4.19.

First search Second search
a b

Figure 4.24: Stimuli visited three or more times in searchesfor S19, class 4. Images sorted in
order of decreasing ROI response, averaged across all trials for each image.
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shown in Fig. 4.24a — are linked by their purple tongue and green ear shapes, both intermediate

compared with the extremes observable in Fig. 3.6. The ROI appears to be selective for the shape

of a subset of component appendages, without regard for other elements of the object (i.e., the

green nose). As observed throughout my search results, stimuli evoking high and low responses

appear in the same cluster, sometimes adjacent to one another in space and appearing rather

similar by visual inspection, indicating ROI sensitivity to slight changes in appearance.

Projecting the visited stimuli for the second session alongthe three Fribble dimensions (as

red and blue diamonds) shows two clusters, one focused around (0, 0.33, 0.66) and the other

(consisting of two stimuli) focused around(−0.66,−0.33,−0.66). The presence of multiple

selectivity centers is consistent with observed ROI response properties for subjects viewing real-

world objects, as well as Fribble subject S11 discussed above. The stimuli at the center of the

larger second session cluster — those generating the first, fifth, and sixth highest responses in

Fig. 4.24b — show a similar green ear and similar mid-extremes nose but a more star-shaped

purple tongue. The two stimuli with the most-circular tongues, ordered second and third in ROI

response, form the second cluster. This second cluster has the highest consistency with two of

the cluster outliers from the first session, i.e., the secondand third most active stimuli for the

first session. The strong consistency among a small number ofstimuli from the two sessions

together produces the high Z score value for the consistencymetric,z = 3.80. Stimuli evoking

high and low responses appear in the same cluster, sometimesadjacent to one another in space

and appearing rather similar by visual inspection.

Study of frequently visited stimuli in the remaining searchsessions showing above-threshold

convergence and consistency reveals a mix of results.

• The class 1 searchin the second session forS13showed high convergence (Z = 2.42).

The search frequently visited a cluster of stimuli evoking all but the lowest ROI response.

The stimuli are focused closely around(0.33, 0.66, 0.33), corresponding to a star-headed,

square-legged object, indicating selectivity for the formof all three component appendages.
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Stimuli close to one another in the visual space evoked evoked opposite high and low cor-

tical responses.

• The class 1 search in the first session forS15showed high convergence (z = 2.76). The

search frequently visited stimuli along thedim1 = 0 (head between star and circle shape)

plane, indicating selectivity for the form of only one of thethree component appendages.

• The class 1 search in the second session forS16showed high convergence (Z = 2.42). The

search frequently visited a cluster of stimuli evoking the first, fourth, sixth, and seventh (out

of seven) highest ROI responses. The cluster stimuli are focused around(0.33, 0.33, 1),

corresponding to an object with round legs (dim3 = 1), and mid-extreme tail tip and

head. Stimuli close to one another in visual space evoked thehighest and lowest cortical

responses.

• The class 1 search in the second session forS17showed high convergence (Z = 2.42). The

search frequently visited two clusters of stimuli evoking the third, fifth, and seventh (out

of seven) highest ROI responses and the second and sixth highest responses, respectively.

The presence of multiple selectivity centers is consistentwith observed ROI response prop-

erties for several subjects viewing real-world objects andFribble objects discussed above.

The first cluster stimuli are focused around(0.33, 0.33, 0.33), corresponding to an object

with mid-extreme head, tail tip, and legs. The second cluster stimuli are focused around

(−0.66,−1,−0.66) corresponding to an object with a star head, muffin tail-tip,and rect-

angular legs. The class 1 searches performed across the two scan sessions for S17 showed

high cross-session consistency (Z = 2.28). Frequently visited stimuli in the first session

are limited to four points more-broadly distributed acrossthe space, resulting in a low

convergence value (Z = −0.47). The point evoking the highest ROI response in the first

session is close to the(0.33, 0.33, 0.33) stimulus cluster seen in the second search session,

producing the high consistency measure.

• The class 1 search in the first session forS19showed high convergence (Z = 2.00). The
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search frequently visited three clusters of stimuli evoking the second, third, and seventh

(out of seven) highest ROI responses, the first and fifth highest responses, and the fourth

and sixth highest, respectively. These observations againshow the possibility of multiple

selectivities in a selected ROI. The first cluster is focusedaround the origin, the second is

focused around(−0.33,−0.33,−0.33), and the third is focused around(0,−1, 0).

• Theclass 2/blue-bodied, yellow-winged object(see Fig. 3.6) in the first session forS16

showed high convergence (Z = 2.10). The search frequently visited only three stimuli,

which cluster together around(−0.33, 0, 0). The small number of frequently-visited stim-

uli limits broader conclusions about ROI responses across visual space and span of ROI

activity.

• The class 2 search in the second session forS17showed high convergence (Z = 2.97).

The search frequently visited a cluster of stimuli evoking all but the ninth highest ROI re-

sponse. The stimuli are focused around(−0.66, 0, 0.33), corresponding to a square-tipped

eared object with mid-extreme wings. The class 2 searches performed across the two scan

sessions for S17 showed high cross-session consistency (Z = 3.14). Frequently visited

stimuli in the first session are more dispersed across space,resulting in a low convergence

value (Z = 0.89). The stimuli evoking the first and third (of seven) highest responses in

the first session are close to the cluster of stimuli frequently visited in the second search

session, producing the high consistency measure.

• Theclass 3 searchin the first session forS16showed high convergence (Z = 1.80). The

search frequently visited two clusters of stimuli. The firstcluster contains stimuli evok-

ing the third, fourth, and fifth (out of seven) highest ROI responses; it focuses around

(−0.33, 0,−0.66), corresponding to a mostly flat-footed object with mid-extreme tail tip

and mid-extreme yellow plume. The second cluster contains stimuli evoking the second,

sixth, and seventh highest response; it focused around(dim1, dim2) = (0, 0.66), cor-

responding to an object with a cog tail tip and a mid-extreme plume, while varying in
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dimension 3, affecting foot shape. The ROI selects for threeappendage properties in one

case and only two properties in another case. Stimuli close to one another in the visual

space in the second cluster evoked opposite high and low cortical responses.

• The class 3 search in the first session forS18showed high convergence (Z = 1.82). The

search frequently visited a cluster of stimuli evoking all but the first and sixth (of seven)

highest ROI responses. The stimuli are focused around(dim1, dim2) = (0, 0.66) while

varying in dimension 3. Stimuli close to one another in spaceevoked high and low cortical

response.

• The class 3 search in the first session forS19showed high convergence (Z = 3.00). The

search frequently visited a cluster of stimuli evoking all but the highest ROI response. The

stimuli are focused around(0, 0.33, 0), corresponding to an object with mid-extreme tail

tip, foot, and yellow plume.

• The class 3 search in the first session forS20showed high convergence (Z = 2.86). The

search frequently visited a cluster of stimuli evoking all but the first three highest ROI

responses. The stimuli are focused around(−0.66,−0.66, 0), corresponding to an object

with a narrow plume and almost-circular tail tip.

• Theclass 4 searchin the first session forS11showed high convergenc (Z = 3.90). The

search frequently visited a cluster of stimuli evoking all but the lowest ROI response.

The stimuli are focused closely around(0.33, 0,−0.33), corresponding to a fork-tongued,

block-eared object. Stimuli close to one another in space evoked high and low cortical

responses. The class 4 searches performed across the two scan sessions for S11 showed

high cross-session consistency (Z = 2.20). Frequently visited stimuli in the second ses-

sion are dispersed across space, resulting in a low convergence value (Z = −0.38). The

stimuli evoking the third and fourth (of seven) highest responses in the second session are

close to the cluster of stimuli frequently visited in the first search session, producing the

high consistency measure. As usual, the measure reflects consistency of only a few stimuli
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from one session with a high-activity stimulus or cluster ofstimuli in the other session.

• The class 4 search in the second session forS13showed high convergence (Z = 2.67).

The search frequently visited two clusters of stimuli. The first cluster contains stimul

evoking the second, third, fifth, and seventh (out of seven) highest ROI responses; the

second cluster contains stimuli evoking the first, sixth, and fourth highest responses. Both

clusters are focused around(dim1, dim2) = (0.33, 0.66). They differ by the extent to

which the green ears are bright and curved. This ROI is another example of selectivity for

a subset of Fribble component appendages, while requiring the “less-selected” appendage

— the ear — to fall into one of two appearance categories.

• The class 4 search in the second session forS18showed high convergence (Z = 2.30).

The search frequently visited a cluster of stimuli evoking all but the second (of six) highest

ROI responses. The stimuli are focused around(0.66, 0.66, 0.33), corresponding to an

object with a curved ear, almost-circular tongue, and mid-extreme nose. Stimuli close to

one another in visual space evoked high and low cortical responses.

• The class 4 search in the first session forS20showed high convergence (Z = 2.86). The

search frequently visited a cluster of stimuli evoking the second, third, fourth, fifth, eighth,

and ninth (of nine) highest ROI responses. The stimuli are focused around(0.33, 0.33,−0.33),

corresponding to an object with mid-extreme tongue, ear, and nose.

In sum, searches in most ROIs studied above cluster around a single location, indicating a single

selectivity in visual space specific for all three componentappendages in a given Fribble, though

several for searches find multiple clusters and some resultsshow Fribble location along certain

dimensions does not affect ROI response. The invariance of ROIs to variation along a certain

dimension, but selectivity along other dimensions is difficult to be detected when thresholding

by convergence and consistency, which favors tight clustering along all dimensions. Locations

of clusters, and of high ROI responses, are roughly equally likely to be in the middle of the

space (morphing between clear end-point shapes) or close tothe extreme ends (showing clear
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(Snm,Spq) corr Tdist (Snm,Spq) corr Tdist (Snm,Spq) corr Tdist
(S124,S154) 0.53 0 (S131,S151) 0.70 1.3 (S112,S162) -0.42 1.7
(S122,S152) 0.74 2.8 (S151,S161) 0.57 2.8 (S131,S161) -0.25 2.8
(S144,S174) -0.63 3.8 (S192,S202) 0.66 3.8 (S111,S131) -0.05 3.8
(S111,S151) 0.81 3.8 (S111,S161) 0.68 3.8 (S111,S141) -0.47 3.8
(S131,S141) -0.67 3.8 (S151,S141) -0.78 3.8 (S161,S141) -0.67 3.8

Table 4.12: Correlation of activation profiles in Fribble space for anatomically proximal ROIs.
ROIs selected to be the closest pairs within same subject in Fig. 4.3. The corr value for (Snm, Spq)
and Tdist between the pair of ROIs are as defined in Table 4.11.corr≥ 0.8 in bold.

end-point shapes like star heads or sharp-toed feet). For several (but not all) ROIs, stimuli close

to one another in visual space evoked high and low cortical responses — indicating sensitivity to

slight changes in visual properties.

Comparison of neighboring regions

As for real-world objects searches, Fribble ROI response profile correlations are distributed

roughly as a Gaussian distribution around 0, with a standarddeviation of 0.36. Because the

space for each Fribble class is defined by component-specificmorphing operations, meaningful

profile comparisons in the initial spaces only can be made across regions selected for the same

class of stimuli. Anatomically proximal ROIs have widely varying correlations, as seen in Ta-

ble 4.12. The positive values are above 0.5, but generally below r = 0.8, indicating similarities

are weak but present. High negative correlations, as also seen in real-world objects results, may

indicate a regions may suppress its response to stimuli excitatory to neighboring regions, con-

stituting lateral inhibition on the level of ˜10mm3 cortical regions. This potential property has

parallels to the cortical inhibition for stimuli neighboring high-activity stimuli in Fribble-morph

visual space.

Beyond metrics, cross-region consistency can be assessed visually, particularly in Fribble

spaces in which the three dimensions of stimuli can easily bevisualized in the two dimensional

scatter plot. Looking across subjects at frequently visited stimuli (red and blue circles and dia-

monds) for class 2, searches for S3, S4 and S9 appear to pursuea focus around(−0.5, 0, 0.33),
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S1 S2

S3 S4

S5 S6

Figure 4.25: Comparison of search results and cortical responses across visual space for S11–
S16, class 2. Colors and shapes used as in Fig. 4.19.
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S7 S8

S9 S10

Figure 4.26: Comparison of search results and cortical responses across visual space for S17–
S20, class 2. Colors and shapes used as in Fig. 4.19.
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evoking strong, spatially adjacent positive and negative responses. Searches for S2, S8, and S9

appear to pursue a focus around(0.5, 1, 0.33), also evoking strong, spatially adjacent positive and

negative responses. Regardless of the specific visualization used to examine them, the visual fea-

ture spaces I have developed provide a powerful new tool for characterizing and understanding

cortical responses to complex visual properties.
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Chapter 5

Discussion

My goal in this study was to better elucidate the complex visual properties used by the brain

for visual object perception. In contrast to our understanding of early visual processing (e.g.,

edge detection in primary visual cortex) and the high-levelorganization of visual cortex (e.g.,

broad category identification in LOC, FFA, and PPA), intermediate representation along the ven-

tral pathway is poorly understood. In my recent work (Chap. 2), I identified computer vision

methods that successfully modelled object representationat different stages of the ventral path-

way — methods predicted what object stimulus pairs would produce similar or distinct cortical

responses from selected brain regions. My present work procedes to use computational models

of perception to establish low-dimensional visual featurespaces as a context in which to charac-

terize brain region activity across the world of visual objects. Where Hubel and Wiesel explored

varying orientations and locations of edges to excite neurons in V1 [22], I define spaces of com-

plex object-related visual features to explore which properties will excite a 1̃0mm3 brain region

at higher levels of the ventral pathway. I develop and employnovel techniques for realtime fMRI

study to quickly identify brain region selectivities — those visual properties evoking maximal

cortical response from a pre-select region — given limited scanning time.

My work begins with the scientific question “What are complex visual properties used in cor-

tical object perception?” and the related technical question “How can we select stimuli to best
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identify cortically-preferred visual properties in limited fMRI scanning time?” Both questions

are addressed through the development and application of a set of programs that dynamically

choose visual object stimuli to show to a subject in the scanner based on the subject’s cortical

responses to previously-shown stimuli. This “realtime” stimulus selection is performed in the

context of a search of visual feature space, using the simplex simulated annealing method [7],

to quickly find the stimuli (corresponding to feature space locations) producing highest cortical

responses from a pre-selected brain region. Many modeling and technical choices underlie the

operation of my realtime search methods, pertaining to: definition of visual feature space, selec-

tion of brain regions to study (fixed prior to the search of visual space), rapid and accurate com-

putation of regional responses, and effective communication among programs running in parallel

to perform all elements of the search. In the definition of feature spaces, I test two approaches

— first organizing real-world object stimuli based on their similarities as measured by the SIFT

computer vision method [36] and then organizing synthetic Fribble objects [76] based on morph

operations to component parts required to transition from one object appearance to another. I

observe most aspects of each search generally behaved as expected, supporting my choices.

However, there remains much room for further development. Most searches fail to converge on

a clear location in visual feature space as the regional selectivity, indicating shortcomings in the

feature spaces — particularly in the space defined based on SIFT — and in assumptions about

the nature of cortical responses across each space — the simplex search method expects a unique

maximum, which is not seen in the presently-gathered data.

Those realtime searches that successfully converge, however, provide new insights into the

complex visual properties utilized by mid- and high-level brain regions in the ventral pathway.

Observing cortical activities over the defined visual feature spaces, I find multiple brain regions

producing high responses for several sets of visual properties, i.e., for two or three locations

in space. I also find many regions suppress their responses for stimuli adjacent in space —

and slightly varied in visual appearance — from those stimuli evoking markedly high cortical

activity, indicating a high-level “surround suppression”computation as discussed below. Visual
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inspection of stimuli corresponding to the spatial selectivity centers provides visual intuition

about high-level visual properties of interest, such as holistic object shape, shapes of component

parts, and surface textures.

5.1 Regional selectivities

My novel methods in realtime fMRI search seek to identify visual object stimuli producing max-

imal activity for a given brain region — revealing the complex visual property selectivities of

the brain region. I study the cortical responses recorded inthe course of realtime searches in

the context of visual feature spaces to understand brain region activity across a world of visual

objects, finding flaws in the initial search assumptions thatthere is a unique maximum to a re-

gion’s cortical activity across visual space. I seek intuition about visual properties of interest to

brain regions in the ventral stream through inspection of stimuli evoking extreme cortical activ-

ity, finding holistic object shape, shapes of component parts, and surface textures are included

among cortical selectivities.

5.1.1 Selectivities in feature space

Examination of the distribution of cortical responses across the defined visual feature spaces in-

dicates repeating patterns across subjects and ROIs not anticipated in my search design. The

simplex method assumes the activity of a given brain region reaches a maximum for a stimulus

corresponding to one location in feature space and activitymonotonically decreases for stim-

uli corresponding to points increasingly distant from the maximum. In contrast, in both SIFT

and Fribble spaces, several searches show extreme high and low response stimuli cluster to-

gether, with mid-level response stimuli spread further from the cluster center. This pattern of

slightly differing stimuli causing extremely different neural responses is familiar from visual

coding properties in earlier stages of the ventral pathway.In both SIFT and Fribble spaces, sev-
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eral searches also show cortical response maxima distributed broadly across space, rather than

concentrated in one location as a unique regional selectivity.

The proximity of stimuli evoking ROI responses of opposite extremes can be seen through

scatter plots (e.g., Figs. 4.19 and 4.231), sorted stimulus figures (e.g., the red figures in Figs. 4.8b

and the hinged-ajar boxes in 4.12a2), and activation profile cross-sections (e.g., Figs. 4.17aand 4.18a),

as well as through discussion of further high-convergence search examples in Chap. 4. These

findings are consistent with the principle of surround suppression observed at early stages of

the visual system. Hubel and Wiesel observed spatially adjacent “on” and “off” edge regions in

visual stimuli exciting or inhibiting, respectively, the spiking of neurons in V1 [22]. In modern

hierarchical models of the human visual system, the first stage reflects these early findings by

using a series of Gabor filters [27, 57]. Prior to cortical coding, retinal ganglia cells similarly

are known to have receptive fields characterized by concentric “on” and “off” rings in the im-

age plane of any given stimulus [49]. Wang et al. found evidence for surround suppression,

again based on location in the image plane, for perception ofthe second order texture statistics

of noise [73]. These multiple stages of alternating patterns of excitation and suppression are

consistent with principles of successful neural coding models, in which lateral inhibition of rep-

resentational units “located” adjacent to or nearby one another are found to be advantageous to

computational perception tasks [25, 50]. While past perceptual studies have focused on suppres-

sion of percepts neighboring one another in the plane of the image falling on the retina, local

competition in alternative feature spaces are conceptually plausible from neural coding models.

My work indicates the use of surround suppression in more complex representational spaces

employed at more advanced stages of cortical visual object perception. From a methodological

perspective, my results illustrate both the descriptive power of the feature spaces I have defined

— based on SIFT and Fribble-morph representations — and the ability of the realtime search

1Scatter plot examples only are given in Fribble spaces as they are more easily evaluated visually in one two-
dimensional plot.

2Stimulus examples only are given for SIFT searches as similarities of the real-world object stimulus set are
easier to see than they are for Fribbles that all look predominantly similar within a given class to the uninitiated
reader.
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method to capture meaningful properties of cortical behavior.

The presence of multiple local ROI response maxima in each feature space also can be

seen through scatter plots (e.g., Figs. 4.1 and 4.19) and activation profile cross-sections (e.g.

Fig. 4.18b), as well as through discussion of further results. Indeed, the high frequency of low

convergence scores in Tables 4.5 and 4.8 may correspond to large numbers of local maxima in

each search session, which may explain the results for subject S11, class 1 in Fig. 4.19. Overall,

these findings suggest the one cubic centimeter 125-voxel cubes studied may contain multiple

cortical sub-regions selective for distinct visual properties. Given the millions of neurons present

in each region and the specificity of properties explored, functional variability is a potential risk

of the analysis design. Regions purposely were limited in expanse to lessen the likelihood of

variability, but multiple voxels were retained to build upon the visual representation-searchlight

analysis findings of Chap. 2. A weighted average of voxel responses was used to compute a

single number for regional response for each trial, as discussed in Sec. 3.3.6. The weighting

was intended to further suppress less-prominent multi-voxel activity patterns, though the method

for selection of these weights may be modified to focus on voxels with a single selectivity, as

discussed further in Chap. 6.

5.1.2 Selectivity visual intuitions

Analysis of cortical activities over visual space providesvaluable understanding of the pres-

ence of one or several selectivities for a brain region and the presence of surround suppression

within the defined visual space. However, intuition about the nature of preferred stimuli, and

their underlying visual properties, is better obtained through visual inspection of those stimuli

frequently visited by each search and evoking extreme cortical responses. For many real-world

objects searches, it was not possible to identify unifying visual patterns of preferred stimuli.

However, for a few searches I did observe potential selectedshape and surface properties. For

Fribble object searches, executed in carefully-constrained visual spaces, unifying visual patterns
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for stimuli producing high cortical activity largely were holistic Fribble shapes. There were no

clear patterns across subjects regarding the preferred types of holistic shapes, dependent upon

the shapes of the three components of each Fribble class.

Frequently visited stimuli clustered together in SIFT space — evoking both extreme high and

low responses, consistent with the observations in Sec. 5.1.1 — can be united by broad shape

(e.g., width in Figs. 4.8b and 4.10a or relative three dimensional proportions in Fig. 4.12a), sur-

face properties (e.g., brightness in Fig. 4.8b or texture inFig. 4.14), and fine internal contours

(e.g., sharp-edged holes in Fig. 4.16). Observed selectivity for shapes is consistent with the find-

ings of Yamane et al. and Hung et al., who successfully identified two- and three-dimensional

contour preferences for neurons in V4 and IT using uniform-gray blob stimuli [24, 78]. Unlike

these prior studies, my work employs real-world stimuli andthus identifies classes of preferred

shapes likely to be encountered in normal life experience. Observed selectivity for surface prop-

erties is a more novel finding, though Tanaka observed such selectivities in primate IT neurons

in the context of perception of object drawings [63]. Many searches performed for real-world

objects revealed no clear patterns among stimuli evoking extreme cortical region responses, clus-

tered together in SIFT-based space. This lack of clear patterns likely reflects the difficulty of

capturing the diversity of real-world visual properties ina four dimensional space, as discussed

in Sec. 5.2.3.

Fribble objects, and corresponding “Fribble spaces,” wereused to study ten subjects with

stimuli more controlled in their span of visual properties.Frequently visited stimuli in each

Fribble space can cluster around a three-dimensional coordinate. Each dimension corresponds

to variations of a component shape morphed between two options, such as a star/circle head

or flat/curved feet, as in Fig. 3.6. Thus, clustering around apoint indicates slight variations

on three component shapes, with focus around a fixed holisticshape. Across subjects, there is

no clear pattern of the nature of favored holistic Fribble shapes, nor of favored shapes for the

three varying component “appendages.” For some searches, frequently visited Fribble stimuli

evoking strong cortical responses can vary along one axis ortwo axes while staying contant
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on the remaining one(s). Depending on the brain region, one to three component shapes can

account for selectivities. Regional selectivity for partsof an object, rather than the whole, may

be associated with cortical areas particularly early in theventral pathway; this finding would be

consistent with the focus of early and intermediate stages of vision on spatially-distinct parts of

a viewed image, pooled together over increasingly broad parts of the image at higher stages of

vision [48].

For both real-world and Fribble objects searches, visual inspection of the ordering of stimuli

by ROI response, e.g., Fig. 4.8 and 4.20, fails to yield any further insights. A priori, we would

expect shape properties to smoothly transition as measuredresponses decreases. The lack of

this transition may stem from the mix of multiple coding units, noise in fMRI data (despite

averaging), and particularly from the presence of surroundsuppression, placing similar-looking

stimuli at opposite ends of the line of sorted stimuli.

5.1.3 Comparison of neighboring regions

Similar to the notion of retinotopy [72], in which neighboring brain regions encode neighboring

parts of visual space, we expected selectivities in nearby brain regions to exhibit selectivities

for stimuli drawn from nearby parts of the more-complex visual feature spaces. Comparison of

regional selectivities was performed by smoothing the responses for the scattered visited stim-

ulus points over space to form “activation profiles” as in Fig. 4.17. As discussed in Sec. 4.4,

selectivities for nearby ROIs rarely showed strong similarity, both within subject and across sub-

jects3. There are several moderate positive and negative matches between nearby ROIs in Fribble

spaces, but the results are not as strong as desired (0.5 ≤ |r| ≤ 0.8). While these weak results

may indicate a lack of continuous transitions in selectivities across the brain, they also may reflect

limitations in the method of comparison. For example, an activation profile may contain multiple

maxima reflecting behavior of neurons in different locations across a region. A region neighbor-

3Cross-subject ROI distances were computed based on projection to a Talairach brain, as discussed in Sec. 4.2.1.
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ing from the left may only contain maximum responses for stimuli activating neurons in the left

portion of the initial region, and additional maxima for neurons towards the right end of the new

region. This partial overlap may not be sufficiently reflected in the correlation metric describe

in Sec. 4.4.1. Similarly, a neighboring ROI slightly shifting in feature space a pattern of strong

negative response surrounding strong positive response, corresponding to surround suppression

discussed above, may cause the two respective responses to have strong negative correlations

rather than strong positive correlations, potentially explaining moderately negative correlation

Fribble results in Table 4.12.

5.2 Influences on search behavior

In my work, the study of complex visual feature selectivities of regions in the ventral pathway

was driven by a set of programs that dynamically selected stimuli to display during each scan ses-

sion based on cortical responses to stimuli displayed seconds earlier in the session. Dynamic, or

“realtime,” stimulus selection was pursued to most effectively search the defined space of visual

properties in limited scan time and to most quickly identifyobjects that produce the highest re-

sponses from each brain region under study. The performanceof realtime searches for maximally

preferred stimuli in areas of the ventral pathway has not been pursued previously in neuroimag-

ing to my knowledge, and is quite new to neuroscience studiesof vision in general [24, 78].

I implemented and applied a set of programs for this study, and assesses the performance of

these programs. The three programs — responsible for cortical response measurement (called

“preprocessing”), stimulus selection (“search”), and stimulus display (“display”), respectively

— generally acted as expected and successfully worked together. However, the selection of

stimuli by the search program frequently failed to convergeon a visual selectivity for a given

brain region. A variety of inaccurate visual selectivity and technical assumptions underlying my

methods likely challenged the effectiveness of these searches.

For each subject and brain region, the realtime search method I implement — simplex simu-
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lated annealing [7] — is expected initially to probe the brain with stimuli broadly distributed in

the defined feature space, but quickly to narrow its focus to stimuli drawn around the area in fea-

ture space evoking the highest cortical responses. Furthermore, searches are expected to produce

the same results for a fixed ROI regardless of the starting point in feature space. These expecta-

tions frequently were not met, as shown in Tables 4.5, 4.6, 4.7, 4.8, 4.9, and 4.10. The simplex

method frequently revisited points spread across SIFT and Fribble spaces, with little clear change

in focus over time. Consistency of search results for the samebrain region across scan sessions

was similarly poor. Nonetheless, the successful convergence and consistency of searches for sev-

eral ROIs, and the insights resulting from these searches, indicate great robustness and ongoing

promise for my methods.

5.2.1 Simplified search assumptions

As discussed above, the simplex method expects a given ROI’sstimulus response function to

have a unique maximum in feature space. In contrast, my data often show multiple local maxima.

If there are three or more maxima in a region — particularly ifthe number of maxima is larger

— it is unlikely the search will repeatedly probe a sufficientnumber of stimuli to associate each

maximum location with a large enough cluster of stimuli to produce a high convergence value,

defined in Eqn. 3.6. Similarly, the presence of a large numberof maxima increases the likelihood

that starting searches from different points in feature space will produce different sets of results,

each focusing on points closest to their respective starting location, producing poor consistency

measures as defined in Eqn. 3.7.

5.2.2 Technical challenges in realtime programs

Myriad technical choices were required in the implementation of the three programs executing

the realtime search for regional selectivities. While the majority of these choices enabled the

smooth operation of my experiments, some challenges did arise for each program.
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The persistent variability of visited stimulus locations across each search session, indicated

by low |∆var| values in Tables 4.7 and 4.10, reflects the simplex re-initialization strategy de-

scribed in Sec. 3.1.5. Each search session was divided into multiple runs. At the beginning

of each run, a new simplex was defined centered around the location eliciting the highest ROI

response in the previous run — except in the first run, in whichthe starting point was selected

as discussed in Sec. 3.1.5. The four initial new simplex points in the four-dimensional space

were selected by taking random-sized steps away from the initial point along each dimension.

The random distribution used to generate these steps remained the same for each run, causing

an equal spread of points to investigate at the first run of thesession as the last run of the ses-

sion. Further developments to the search program allowed for partial continuation of searches

across runs, rather than requiring new simplex initializations — however, these improvements

have not yet been thoroughly tested to confirm proper execution and, therefore, were not used in

the present work.

Further technical choices in the realtime computational system posed additional challenges

to effective search. Insufficiently fast computation and network-communication times prevented

the display program from showing subjects the correct stimuli at the proper time on as many as

40% of trials, as seen in Tables 4.1 and 4.2. While the frequency of display errors was signif-

icantly reduced by switching methods of inter-program communication — from sharing a file

over a mounted drive to passing information directly through a socket — errors still occured,

sometimes on as many as 10% of trials. The preprocessing and search programs, described in

Sec. 3.1, assume the correct stimulus is shown for each trialand select new stimuli to show based

on computed ROI response regardless of the validity of the visual stimulus actually reaching the

subject. Incorrect displays misinform the simplex search about stimulus responses and can lead

to sub-optimal exploration and acceptance of future simplex points. However, the search still

often recovers sufficiently to identify ROI selectivities —one of the nine examples of significant

real-world objects search convergence, S81, comes from a session in which over 25% of stimulus

displays were incorrect, and most convergent searches include a more limited number of erro-
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neous stimulus displays. The assumption of noisy stimulus response measurements embeded in

the simplex simulated annealing approach may contribute tothe robustness of realtime search to

display errors.

Shortcomings in motion correction during preprocessing also may mislead realtime stimulus

selection. As discussed in Sec. 4.3.3, the location of ROIs for each search is determined at the

beginning of each scan session. Optimally, all functional volumes collected through a session

should be realigned to the brain position at the beginning ofthe session, to ensure the proper

voxels are used to compute stimulus responses. Instead, in my study, volumes were aligned to

the brain position at the start of their respective runs. These positions potentially could be shifted

from the beginning of the session. Comparing offline computation of ROI responses based on

start-of-session alignment with responses computed usingrealtime start-of-run alignment, as re-

ported in Tables 4.3 and 4.4, regional activity estimates could differ significantly. Similar to

the risks of undetected display errors, incorrect responsecalculations could lead to sub-optimal

exploration and acceptance of future simplex points. However, counter to this theoretical con-

cern, we can observe that 66% of significant convergence results for real-world objects searches

and 50% of significant convergence results for Fribble searches correspond to sessions whose

realtime–offline calculations have correlationsr < 0.3. Limiting convergence and consistency

measures to stimuli visited three or more times may permit averaging activity over multiple trials

to overcome errors in individual measurements. Alternatively, for sessions with highly negative

correlations, particularly noticable in Fribble spaces, searches may effectively be searching for

stimuli evoking particularly low responses; this strategymay successfully identify maxima in

stimulus space as well because of the observed phenomenon ofsurround suppression.

5.2.3 Limitations of SIFT multi-dimensional scaling space

The use of a SIFT-based Euclidean space yielded particularly poor search performance across

subjects and ROIs, despite the abilities of SIFT to capture representations of groups of visual
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objects in cortical regions associated with “intermediate-level” visual processing, discussed in

Chap. 2. Significant convergence and consistency statisticswere observed more rarely than ex-

pected — certainly compared to those statistics in Fribble spaces — and visual inspection of

frequently-visited stimuli frequently failed to provide intuition about visual properties of impor-

tance to the brain region under study.

Confining the SIFT representation to four dimensions, found through multi-dimensional scal-

ing as discussed in Sec. 3.3.2, limited SIFT space’s descriptive power over the broad span of

visual properties encompassed by real-world objects. Use of a small number of dimensions was

required to enable effective search over a limited number ofscan trials. However, Fig. 3.3 shows

that at least 50 dimensions would be required to explain 50% of the variance in a SIFT-based pair-

wise distance matrix for 1000 images. Even among the ˜100 stimuli employed for each object

class, the four dimensions used account for less than 50% of variance. The missing dimensions

acount for grouping pairwise distance patterns across large sets of images — therefore, more-

careful selection of stimuli included in a given object class still renders four-dimensional SIFT

space insufficiently-descriptive.

Intuitively, it is not surprising that there are more than four axes required to describe the

visual world, even in the non-linear pooling space of SIFT. Indeed, the method used successfully

in Chap. 2, and repeated for the realtime study, employs 128 descriptors and 128 visual words

[35]. Further study shows that tailoring SIFT space for eachof the four object classes used in my

sessions still requires over 10 dimensions each to account for 50% of variance. The exploration

of selectivities for real-world objects using Euclidean space may well require more dimensions,

and thus more trials or a more efficient realtime analysis approach. The number of dimensions

may be kept small by identification of a superior feature set,or by limitations on the stimuli. I

pursue the latter through Fribble spaces, with notable improvement.

My definition of SIFT space also may obscure visual intuitions for properties unifying stimuli

producing high cortical activations. Multi-dimensional scaling identifies dimensions maximizing

the preservation of pairwise distances between images. This method allows groups of objects
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deemed similar by SIFT to be clustered together, but may not capture patterns of visual variability

smoothly transitioning between two extremes across a diverse set of objects. Fribble space, again,

is defined to capture such variability, and reveals ROIs invariant to changes in some dimensions

but selective to changes in others.

5.2.4 ROI selection

Weak matches in response properties of nearby ROIs in part may be attributed to the lack of

sufficiently close pairs of regions under study. My study explores a new method — realtime

fMRI search of a complex visual space — to gain insight into visual object encoding. Given

the multiple sources of uncertainty, from recording and physiological noise to questions of opti-

mal realtime analysis techniques, brain regions are selected in each subject to maximize search

performance rather than to maximize opportunities for cross-region comparisons. ROI selection

was performed based on the strength of my models to explain activity during reference scans,

as discussed in Secs. 3.3.6 and 3.4.5. Furthermore, a diversity of anatomical locations were se-

lected in each subject, as reference scan data allowed, to gain perspective on cortical selectivities

in a breadth of regions across the ventral stream — a goal opposing study of transitions across

neighboring cortical areas.

Regions were selected manually by assessing localizer results, anatomically restricted to the

ventral stream. Often there were multiple candidate areas that could have been selected. Regions

centered in a larger group of voxels with high matches to SIFTand class-specific activitations, or

to Fribble-class specific encodings, were favored. However, I decided the balance of SIFT and

class-specific matchings along with proximity to anatomical locations of interest in the ventral

stream, e.g. lateral occipital, fusiform, or anterior temporal, on an ad hoc basis. Further analyses

are needed to determine the optimal balance. In Chap. 6, I propose a potential fixed method for

future ROI selection.
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5.3 Promise of realtime stimulus selection

My work employs a collection of novel methods in realtime analysis of cortical data to explore

complex visual properties used in perception. This exploration faces myriad technical and bi-

ological challenges — from scanner and physiological noisein fMRI recordings to uncertainty

about the nature of higher level visual representations — compounded by the small number of

stimuli able to be shown in the limited scanning time. Realtime selection of stimuli based on

cortical responses to recently displayed visual objects optimizes the use of this limited scanning

time, building on similar approaches in primate neurophysiology [24, 63, 78]. My present ap-

plication of simplex simulated annealing [7] for stimulus selection faces considerable additional

challenges — from occasional faults in stimulus display to frequent simplex resets — resulting

in lack of convergence and consistency for searches across anumber of brain regions across

subjects. However, numerous brain regions studied, particularly using Fribble stimuli, produced

successful search performance revealing novel insights into visual object perception. In the novel

search spaces I defined, I observe surround suppression, likely reflective of local competition be-

tween neural units, and multiple sets of featural selectivies, likely reflecting the large size of the

studied brain regions. I identify local and global shapes and surface properties such as texture and

brightness as biologically relevant complex features. I observe similarities in activation patterns

across visual feature space across subjects, confirming complex selectivities are shared across

subjects. These results, found for the convergent and consistent searches in my study, point the

way to future models of higher level vision and more refined methods for realtime stimulus se-

lection. These improvements can further overcome the many challenges facing my present work.

Indeed, the success of my initial approaches in searching for stimuli for a number of brain regions

provides encouragement for the potential of future work in realtime fMRI. This encouragement

builds on the promise of realtime stimulus selection already seen theoretically as an efficient use

of limited scanning time and empirically from past successes in neurophysiology.
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Chapter 6

Future work and conclusions

I have developed a realtime search method to determine the selectivity of ventral stream regions

for complex visual properties using fMRI. My work has provided new understandings about vi-

sual representation of objects in the brain. I identified brain regions selective for holistic and

component object shapes and for varying surface properties. The visual feature spaces I defined

in my work provide a powerful new tool for characterizing cortical responses to complex vi-

sual properties. My findings also serve as a compass to further development of realtime fMRI

methodology to study the visual system more effectively. Itinforms important choices in pro-

cessing of signals from across the brain and from within selected voxel regions, modification of

the simplex search method, and assessing the evolution of selectivities between regions.

6.1 Voxel selection

Selection of “optimal” regions of interest, based on prior reference scan data, is at the center of

realtime analysis. These regions specify the voxels that will control the choice of stimuli dis-

played, in turn revealing regional selectivity. The ROIs used in my study often showed multiple

selectivities across a given feature space, potentially reflecting the presence of multiple neural

groups effectively competing for control over the search. To focus on single group selectivities,
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it may be advisable to decrease the number of voxels within a region — potential to33 = 27. Al-

ternatively, the method for consolidation of voxel responses to a single region-wide number may

be revised to emphasize activities from only one neural group. The method used in the present

study performs a weighted sum based on the first component learned from principal component

analysis on voxel responses in the reference scan, as described in Sec. 3.3.6. This method identi-

fies and emphasizes the most common activation pattern across the region, which may be a mix

of multi-voxel patterns resulting from multiple commonly-activated neural groups. In contrast,

use of independent component analysis, or similar sparse methods, potentially including spatial

constraints, is more likely to define separate components for voxel patterns corresponding to each

neural group. Summing with the weights of an independent component may better emphasize a

single selectivity. Analyses on already collected data canindicate the effects of these approaches

for future experiments.

Beyond size and weighting, the optimal locations on which tocenter voxel regions merits

further exploration. As discussed in Sec. 5.2.4, the manualselection of ROIs in my work bal-

anced desires for broad coverage of the ventral stream with maximizing the chances for strong

signal and for strong search performance. These balances may be set through a deterministic

algorithm. Furthermore, selection in future studies may confine ROIs to a more restricted func-

tional or anatomical area, potentially favoring use of neighboring ROIs for same-session searches

to compare selectivity transitions across a cortical area.Algorithmic selection can assign each

voxel values drawing on:

• Z scores from class and representation-space localizers, such as those discussed in Sec. 3.3.4

• Z scores of nearby voxels and voxel-searchlights

• distances from desired brain regions, defined through functional localizers, anatomical

landmarks, and location of other selected ROIs for realtimeanalysis

These values can be weighted and summed to produce a score foreach voxel that represents its

desirability as the center for a region. Weights can be determined based on analyses of already
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collected data.

6.2 Search method evolution

The simulated annealing simplex search, spread across multiple runs for each realtime scan ses-

sion, incorporates a variety of algorithmic choices intended to most effectively identify selectivity

of a region under investigation. Results from my study suggest directions for improved search

performance. Convergence over scan time — rather than the clustering measured by my “conver-

gence” measure employed in this work — is limited by the re-initialization of the search simplex

at the start of each run with widely spread simplex points around a carefully chosen center. Two

methods may be used to approach more desirable search behavior.

• At the start of each new run, the re-initialized simplex points can be defined to be offset

from the simplex center with a uniform random distribution,as discussed in Sec. 3.1.5,

scaled with a decreasing maximum with increasingly later runs in the session. The scaling

can decrease using the temperature reduction equation defined in Eqn. 3.4. Furthermore,

the simulated annealing temperature for each search — affecting acceptance/rejection of

candidate points into the simplex — can be updated by the sameequation for each new

run. This approach is relatively easy to introduce into the current software, but artificially

speeds search convergence.

• The simplex state at the end of each run can be provided as the starting condition to the

search program at the beginning of the next run. Using this method, searches may run

a sufficient number of steps across runs to meet convergence criteria given in Cardoso

et al. for termination and for interim temperature updates,truly allowing the search to

incorporate simulated annealing [7]. Transfer of full search information across runs and

simultaneously management of searches at different stagesof temperature update and ter-

mination presents further implementation challenges, which are unfortunate but merit the

effort to address.

173



Analyses on already collected data may be used to indicate the likely impact of these modifica-

tions and to fine-tune optimal parameters for simplex and temperature updates.

The simplex method is intended to find a unique maximum in feature space, assuming re-

sponse to a given point decreases with distance from the maximum location. The presence of

multiple maxima with surrounding regions of suppression infeature space, violates this assump-

tion. From my data, it appears the simplex can successfully identify a small number of local

selectivities. The development of realtime fMRI search would benefit from simulation studies of

my method’s behavior incorporating the reality of multiplemaxima, and exploring the utility of

modifications to the method and of entirely different methods for probing the feature space.

6.3 Techniques in preprocessing

Realtime preprocessing of fMRI signal is needed for meaningful analyses. However, the constel-

lation of registration, detrending, and normalization steps employed require computation time

that can lead to delays in selecting new stimuli, in turn leading to incorrect stimulus displays

that misinform the ongoing searches. At the same time, I observe that post hoc performance of a

more complete, but slower, set of preprocessing steps in Tables 4.3 and 4.4 can result in different

estimates for cortical region responses, indicating the steps currently used in realtime may not

always be sufficient for proper stimulus response computations. It would be valuable to perform

further post hoc analyses on the data already collected to identify processing the steps best added,

changed, and removed to strengthen the reliability of regional response computations while de-

creasing the risk of delays associated with these computations. Incorporating the findings from

Sec. 4.3.2, future studies likely should perform volume registration with the brain position at the

start of each session, rather than with the position at the start of each run.
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6.4 Lessons learned

My work uses realtime selection of stimuli in conjunction with fMRI to explore visual properties

used by pre-selected voxel regions in the visual object perception pathway. These methods have

broad potential applications to study, for example, diverse levels of vision, alternative senses

such as hearing, and more abstract semantic representations in the brain.

For continued pursuit of realtime fMRI exploration of complex perceptual spaces, there are

six central design factors to consider:

• Selection of cortical region(s)/voxel(s) for study

• Selection of pool of potential stimuli (e.g., images, words, or sounds) from which to draw

during the experiment

• Organization of potential stimuli for effective realtime selection

• Stimulus selection method

• Stimulus presentation design — particularly, subject taskand stimulus onset asynchroncy

(i.e., the time between onsets of stimuli)

• Realtime fMRI signal processing

Selection of voxels for studyAs realtime stimulus selection still is a young field, it is advis-

able to continue along the relatively simple path already pursued with some success in primate

neurophysiology, identifying a neural “unit” likely selective for only one set of properties and

determining those properties for which it is selective [63]. In fMRI, minimization of the neural

units studied may be achieved by analysis of activity from a small voxel region, e.g., containing

2× 2× 2 voxels rather than5× 5× 5 voxels, if not fewer. Alternatively, independent component

analysis can be used to identify a set of voxels that tend to reliably vary together across stimulus

presentations — either across a5 × 5 × 5 voxel region of interest or across the ventral tempo-

ral cortex in general. These covarying voxels are likely responding to similar visual properties,

permitting study of a single set of visual properties relevant to cortical perception. The initial se-
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lection of voxels for analysis should utilize class and representation-space localizers as discussed

in Secs. 3.3.6 and 3.4.5, to increase measured cortical responses over noise and to ensure any vi-

sual representations in the stimulus organization and selection methods are reasonably accurate

for the voxels under study.

Selection of potential stimulus poolFor early realtime explorations of complex percep-

tual properties, the pool of potential stimuli should have limited “dimensions” of variation —

though these dimensions may not need to be explicitly defineda priori. The highest realtime

search performances in my work, as measured by convergence and consistency, were found for

Fribble stimuli with three fixed dimensions of variation (Sec. 4.3.3); similar successful work in

primate neurophysiology also has utilized strong visual constraints, synthesizing controlled blob

stimuli [24, 78]. Use of stimuli found in the real world, rather than synthesized by a computer

model, can provide valuable additional intuitions about cortical perception performed in more

natural settings (Sec. 5.1.2); I recommend the use of natural stimuli if they can be controlled for

perceptual variability.

Organization of stimuli Each stimulus is best represented through a set of parameters in-

dicated by prior work to be important to cortical perception. In my realtime study, the use of

the SIFT computer vision representation [36, 40] was motivated by my previous work indicating

SIFT constitute a reasonable model for representation of visual objects in intermediate stages of

the visual object processing pathway in the brain (Chap. 2).,The use of Fribbles was intended

as a controlled exploration of the effects of shape and texture, observed to be relevant to cortical

object perception by past studies [24, 63, 78] and by my realtime exploration of real-world ob-

ject stimuli (Sec. 5.1.2). For most efficient implementation and operation of the chosen realtime

stimulus selection method, the stimulus representations can be arranged into a Euclidean space,

a graph/tree, or another structure. As mentioned above, thebrain regions studied also optimally

should be selected to best support the stimulus organization assumptions.

Realtime selection of stimuliA variety of stimulus selection methods may be used to ex-

plore the visual properties used by a selected set of voxels in the brain. Identification of visual
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properties most activitating a neural unit through a simplex search of feature space is appeal-

ing for its simplicity and for its success in my current work.However, the results of realtime

study may be improved by modifications to the simplex simulated annealing method [7] to ac-

count for observed surround suppression — maximum responselocations in visual feature space

may be surrounded by visual space regions producing markedly suppressed cortical responses.

Perhaps new simplex points can be accepted when they either are prominently loweror promi-

nently higher than present points in a simplex. Alternativeexplorations of visual properties

may be pursued by evolutionary algorithms, modified from Tanaka, Yamane et al. and Hung

et al. [24, 63, 78], exploring stimuli slightly deviating from those producing the highest and

lowest responses earlier in the scan session. Further methods for characterization of a given vi-

sual feature space may be explored, using active learning with noisy measurements for learning

classification boundaries and for regressing parameterized response surfaces in the space. It is

advisable to test new stimulus selection methods in simulation, accounting for expected noise,

potential models of surround suppression, and potentiallymultiple maxima in the feature space.

Stimulus presentation designshould be developed carefully to maximize signal quality and

to minimize unintended perceptual biases. Dimness detection, used in Sec. 3.4.3 is preferable

because it limits notions about perceptual features of importance while forcing subject attention

onto the object stimuli. Fixation onset detection with passive viewing of stimuli, used in Chap. 2,

is similarly appealing for its lack of potential perceptualbiasing. However, it may cause less

attention to the stimuli which may result in weaker measuredresponses. In contrast, the one-

back location task in Sec. 3.3.4 should be avoided because itcaused some subjects to use shape-

based strategies to determine stimulus location, a strategy that may have biased their perception

of objects. Other tasks also may be worth pursuing.

The use of an 8 s stimulus onset asynchrony (SOA) in my work (Sec. 3.1.3) prevents signif-

icant overlap between cortical responses to consecutive stimuli, aiding in reliable estimates of

cortical responses to each stimulus. While more rapid display, i.e., lower SOA, the increased

overlap between stimulus responses would hinder the interpretability of single trial measure-
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ments and would require pooling of response data over many more trials to perform optimal

selection of further stimuli to study. Faster stimulus display also may require development of

approaches to decrease fMRI signal processing times, to process new response data at the speed

at which it becomes available.

Performance of multiple visual property searches in parallel, alternating displays between

distinct classes of stimuli for each search (Sec. 3.1.1), also is an appealing approach to continue

from my work. Interspersal of visually distinct stimuli lessens the risk of potential adaptation to

visually similar properties, reducing what otherwise could be a strong response from the selected

voxels.

Realtime fMRI processingas described in Sec. 3.1.4 is necessary to properly compute cor-

tical responses to displayed stimuli. However, it remains an open question which stages of pre-

processing are necessary and how best to compress cortical responses across time and space.

Detrending, motion correction, and normalization preprocessing steps all appear to be valuable,

though visual property search performance appears to be robust to reductions in motion cor-

rection (Sec. 5.2.2). Compression of cortical response across time, through fitting of an HRF,

makes response computations more robust against scanner and biological noise. Further com-

pression across voxels may add further robustness, or may obscure significant information about

multi-voxel cortical encodings. I believe my weighted summation across voxels provides a com-

promise between the two concerns while embracing more tractible realtime search methods,

requiring fewer stimulus response evaluations. However further work performing optimization,

regression, or classification given a multi-dimensional output from the cortical region of interest

also merits future pursuit.

6.5 Conclusions

My work develops a novel method for probing complex visual selectivities in the ventral vi-

sual pathway. Despite a variety of biological and technicalchallenges, I identified brain regions
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selective for holistic and component object shapes and for varying surface properties, further

developing our understanding of the visual properties usedfor cortical object perception. I also

found examples of “surround suppression,” in which cortical activity is inhibited upon viewing

stimuli slightly deviating from the visual properties preferred by a brain region. Here we see the

mechanism of surround suppression extends up the visual hierarchy, past its established use in

V1 [22], supporting the notion of a perceptual advantage forlocal competition between “neigh-

boring” percepts in higher levels of vision [25]. The multiple spaces I used to parameterize

complex visual properties — based on SIFT [36], multidimensional scaling [55], and Fribble

objects [76] — provide promising representational frameworks on which to build future studies

of object perception. Chap. 2 suggests additional computer vision representations for pursuit

in brain research. My method for realtime selection of stimuli, to rapidly identify stimuli most

activating a given brain region, presents a further way forward in neuroimaging investigations of

object vision making maximal use of limited scanning time.
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