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Abstract

The nature of visual properties used for object perceptiamid- and high-level
vision areas of the brain is poorly understood. Past stuldéa® employed sim-
plistic stimuli probing models limited in descriptive ponand mathematical under-
pinnings. Unfortunately, pursuit of more complex stimufidaproperties requires
searching through a wide, unknown space of models and ofamaghe difficulty
of this pursuit is exacerbated in brain research by the dchinumber of stimulus
responses that can be collected for a given human subjectleeourse of an ex-
periment.

To more quickly identify complex visual features undertyicortical object per-
ception, | develop, test, and use a novel method in whichudtifor use in the
ongoing study are selected in realtime based on fMRI-meascortical responses
to recently-selected and displayed stimuli. A variatiortieé simplex meth0(£[7]
controls this ongoing selection as part of a search in vispate for images produc-
ing maximal activity — measured in realtime — in a pre-detied 1 ¢m? brain
region. | probe cortical selectivities during this searding photographs of real-
world objects and synthetic “Fribble” objecgt76]. Reabiid objects are used to
understand perception of naturally-occurring visual gmies. These objects are
characterized based on feature descriptors computed frersciale invariant feature
transform (SIFT,]), a popular computer vision methodltis well established in
its utility for aiding in computer object recognition andathl recently found to ac-
count for intermediate-level representations in the Visbgect processing pathway
in the brain ES]. Fribble objects are used to study object@etion in an arena in
which visual-properties are well defined a priori. They apastructed from multi-
ple well-defined shapes, and variation of each of these casmshapes produces
a clear space of visual stimuli.

| study the behavior of my novel realtime fMRI search methtudassess its
value in the investigation of cortical visual perceptiondd study the complex vi-
sual properties my method identifies as highly-activatialgated brain regions in
the visual object processing pathway. While there remaithé&urtechnical and bio-
logical challenges to overcome, my method uncovers raiahtl interesting cortical
properties for most subjects — though only for selectedcess performed for each
subject. | identify brain regions selective for holisticcaoomponent object shapes
and for varying surface properties, providing examples of@precise selectivities
within classes of visual properties previously associatet cortical object repre-
sentation @4&3{71]. | also find examples of “surround seggion,” in which
cortical activity is inhibited upon viewing stimuli sliglytdeviation from the visual
properties preferred by a brain region, expanding on simalzservations at lower
levels of vision L@ZHB].
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Chapter 1

Introduction

The process of visual object recognition typically ass@savisual inputs — commencing with
an array of light intensities falling on the retina — with s@mtic categories, for example, “cow,”
“car,” or “face.” Nearly every theory or computational sgst that attempts to implement or ac-
count for this process, including the biological visualognition system realized in the ventral
occipito-temporal pathway of the human brain, assumesdidegard visual processing hierar-
chy in which the features of representation progressivatygase in complexity as one moves
up in a feedforward mannelr [Ll8] — the ultimate output beirghkievelobject representations
that allow the assignment of category-level labels. Withis framework, it is understood that
there are levels ahtermediatefeatural representations that, while less complex thaimezob-
jects, nonetheless capture important object-level vipmﬂerties@]. Yet, for all the interest in
uncovering the nature of such features in biological vistbeey remain remarkably elusive. At
present there is little empirical data on the neural reprieg®ns of visual objects employed be-
tween input image and object representation. The goal ofsgarch is to develop a new method
for the exploration and identification of visual propertiesed to encode object information along

the ventral pathway — the neural regions most associatddwgtial object processing.
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1.1 Prior work

The issue of constituent features for object represemtéiis been somewhat sidestepped in neu-
roimaging’s focus on feature codes realized in “categ@iecive” regions within the ventral-
temporal cortex. Most investigations of these regions —efaample, the “fusiform face area”
(FFA), associated with the detection and discriminatiofaoés O], the “parahippocampal
place area” (PPA), associated with scene processing [A2]edateral occipital complex (LOC),
associated with the processing of objects more generaly-L emphasize specific object-level
experiential factors or input characteristics that leathtar recruitment, but never establish the
underlying compositional properties that form the basighef nominally category-specific rep-
resentations. Studies of the visual properties that leakde@ecruitment of these class-specific,
functionally-defined brain regions largely have focusedtmneffects of spatial transformations
and of the alteration of simple domain-specific featured.[6®r example, images of objects
from within a given class often elicit similar neural resges when scaled, rotated, or moved to
different locations in the visual field; although in the ca$@icture-plane inversion or 3D rota-
tion, there is typically some change in neural acti\lg/ Q]. To the extent that viable models of
neural representation have been developed, they ofterrélzae on the statistical analysis of the
input space within a restricted object domain. For exaniffiéee spaces,” nominally capturing
the featural dimensions of human face representation, ealefined using principal component
analysis (PCA) on face images or using parameterized mdugisite generative for construct-
ing, what appear to be, realistic new face stir&li[ﬂ, 14Jtepdatively, the featural dimensions
of representation are sometimes made more explicit, asawitgret al. [31] who found that the
encoding of scenes in human visual cortex can be understotedms of an underlying set of
intuitive properties, including “open/closed” and “naliartificial” H]. These properties may
be understood in light of Ullman et al.'s more general pr@dbkat intermediate features may
be construed as image fragments most-informative to a &uaoding/recognition task [69].

Further supporting the effectiveness of this sort of apginpahere is some neurophysiological
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evidence consistent with the fragment framework laid outtignan and coIIeague&lS].

Current computational models commonly applied to biologaigect recognition tend to
make only weak assumptions regarding the nature of inteatesccompositional featu@sFor
example, almost all models employ variants of Gabor filteksadetecting local edges in visual
stimuli, to explain selectivities in primary visual cort@x1) [22]. Extending this approach, Kay
et al., Freeman and Simoncelli, and Serre et al. proposarotges of linear and non-linear spa-
tial pooling computations, with Gabor filters at the basentalel higher-level visiomgz 7].
Kay et al. is well known for exploring how neural units codiftg orientation and scale within
human V1, V2, and V3 can be assembled to reconstruct compiages. Although the study
provides an elegant demonstration of how modern fMRI methmody support more fine-grained
analyses (and therefore inspiration for further invesiayg, it does not inform us regarding the
nature ofintermediate featuregast the already-established edge-statistic seleeswvitf V1 and
V2. Indeed, we see this as the fundamental problem in anypnptteo decode the features of
“intermediate-level” object representation — the paranspace is extremely large and highly
underspecified, therefore it is difficult to find effective deds that fit the data.

This is not to say that studies of intermediate feature gtation have not provided some
more fine-grained data regarding the neural encoding ofctdjé-or example, Tanaka explored
the minimal visual stimulus that was sufficient to drive aegivneuron at a level equivalent
to the complete object [63]. He found that individual newam inferior temporal (IT) cortex
were selective for a wide variety of simple patterns and sbapat bore some resemblance to
the objects initially used to elicit a response from eachroeu Interestingly, Tanaka hypoth-
esized that this pattern-specific selectivity is organirgd a columnar structure that maps out
a high-dimensional feature space for representing visbjgats. Similarly, Yamane et al. and
Hung et al. used a somewhat different search procedure gingla highly constrained, param-
eterized stimulus space to identify contour selectivityifalividual neurons in primate visual

1The exception being Hummel and Biederman who made verygtsaumptions as to the core features used
in object representation. Unfortunately, in this modeltsatrong assumptions work against any generality for the

model ].



cortex ,ES]. They found that most contour-selectiveroes in V4 and IT each encoded
some subset of the parameter space. Moreover, each 2D cavitbin this space appeared to
encode specific 3D surface properties and small collectbtizese contour-selective units were
sufficient to capture the overall 3D appearance of an objeab@ct part. Similarly, Cadieu et al.
characterized V4 selectivities as sets of prefered andpaietered edges, defined in the context
of the hierarchical biological model “HMAX" [4].

Dynamic selection of stimuli while recording and analyzmgural responses — pursued by
Tanaka, Yamane et al., and Hung et al. — opens a promisingtidinein the study of interme-
diate visual feature representations. Drawing from thddvof all visual objects, the potentially
infinite images that can be displayed far outnumbers this @aailable in any experiment. For a
given neural unit, one would like to converge quickly on tlignal properties of greatest interest
and avoid undue exploration of properties having no effecheural activity. This concern is
particularly pressing when performing human (rather themate) studies, in which subjects
remain in the lab at most for a few hours over the course ofrakdays, permitting the explo-
ration of possibly one hundred stimuli rather than the tlamals possible in animal recordings.
A recent rise in realtime neuroimaging analyses sets tlge$ta dynamic stimulus selection in
human imaging studies. Shibata et al. used neurofeedbatk\fd and V2 to control the size of
a circular stimulus displayed to subjects and Ward et alloggd realtime mapping of the early
visual field using Kalman filterin@ 74]. While focusing early visual regions, these studies

show the promise of incorporating realtime analysis andlf@ek into neuroimaging work.

1.2 Approach

| utilize realtime fMRI analysis in conjunction with appraes from optimization and computer
vision to further address the question of features undaglyibject representation in the brain.
Similar to Yamane et al. and Hung et al., | explore the respafiselected regions in the ventral

visual pathway in a parameterized space of stimuli, seagcfor stimuli producing maximal
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activity from the selected regions. Recent work guides ngct®n of candidate models for the
structure of stimulus space and for the principles deteingicortical response.

| study visual object perception in the brain using fMRI — ¢tional magnetic resonance
imaging. fMRI measures neural activity across the brainedlected by blood oxygen level.
Increased firing within a group of neurons results in inceebblood flow to these neurons to
provide sufficient oxygen to support their activity. The obas in blood oxygen level produce
changes in the magnetic field employed and measured by fiviid tdchnology, as used in my
work, records activity at a spatial resolution of "2 mm anemporal resolution of 1 s. fMRI
provides benefits over electrode recordings used in anitudies above, as it is hon-invasive —
no surgery is required for placement of electrodes — andrdscactivity across the full brain
— spanning diverse potential regions of interest in the naérgathway. Unfortunately, blood
flow requires as many as 3 to 6 seconds to respond to neuraitgcivhile firing occurs at
periods of “10 ms, hampering our ability to understand temlpdynamics underlying object
perception across the brain. However, it is well fit for thegant task, measuring static selec-
tivities of one cubic millimeter to one cubic centimeteribreegions. Alternative neuroimaging
techniques, such as magnetoencepholography (MEG), affeehtemporal resolution measure-
ments of brain activity, but have much more poor spatial ltggm.

The structure of the stimulus space to be used in my studytesrdened by the visual fea-
tures chosen to characterize the stimuli. While strong detamdidate features for cortical ob-
ject perception are unclear, a variety of visual propeftiage shown promise. Simple two- and
three-dimensional surface contours have provided insigib neural codincJTZJﬂj 78] and repre-
sentation of objects as the combination of simple composiesmpes has accounted for facets of
perception [23]. Select models drawn from computer visitardture — incorporating diverse
linear and non-linear operations on image properties toimiae machine performance in ob-
ject recognition tasks — have been shown as strong proxyitdseof features used in biological
object representation in intermediate stages of the Viepathway [35]. In particular, Leeds et

al. associates the scale invariant feature transform,TS[@ with visual reprentation in the
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fusiform cortex. In my present work, | define two visual reggatation spaces — the first space
based on SIFT features, computed from photographs of redtwbjects, and the second space
based on parametric descriptions of synthetic “Fribblejeots ] constructed from simple
textured component shapes.

A variety of approaches can be used to characterize the mespof a cortical region to
the properties described in a given stimulus feature spatedels may focus on prediction
of individual voxel responses for viewed stimmy], pretibn of stimulus groupings elic-
iting similar multi-voxel activities ELS], successful dsification of viewed stimuli based on
voxel activity [27], or identification of stimuli producingiaximal response in a recorded neural
unit [24, 63, 78]. Each of these focii can benefit from dynastimulus selection, to maximally
sharpen model accuracy over limited recording time. Ackdagning literature — studying the
strategy for selecting a small number of examples from whicimaximize the effects of su-
pervised learning — particularly focuses on efficientlyritéag boundaries in feature space for
optimal binary classification. In contrast, work in dynamstimulus selection for studying in-
termediate features in vision has focused on optimizatiorsearching for the stimulus that
produces the highest response for a given neural Ei@kt,llﬂjrsue the latter approach, de-
veloping novel realtime analysis software to perform ace&or the most-preferred stimulus for
a given brain region.

| select four one cubic centimeter cortical regions of iagtr(ROIs) to study in the ventral
pathway of each of twenty subjects — ten viewing real-wotjeots and ten viewing Fribble
objects. For each ROI, | search in the associated featume padentify the stimuli producing
maximal activity, selecting new stimuli for the search imltane based on ROI responses to
recently displayed stimuli. Optimally, most selected stiinwill cluster around a location in
feature space corresponding to the visual properties faclwtihe ROI is most selective. | assess
the performance of my realtime search method, in additiostudying the resulting findings of
complex featural selectivities.

While searches for many ROIs failed to converge to reveal ¢estural selectivitivies, my

6



method uncovers reliable and interesting cortical propeifor a subset of regions in most sub-
jects. | identify brain regions selective for holistic anshegponent object shapes and for varying
surface properties, providing examples of more precisecsiglties within classes of visual prop-
erties previously associated with cortical object repnésigon l‘ @1]. | also find examples
of “surround suppression,” in which cortical activity ishibited upon viewing stimuli slightly
deviated from the visual properties preferred by a braimmgexpanding on similar observations
at lower levels of visiorl_[zzf,B?B]. Stimuli producing the higgt responses for an ROI often were

distributed across multiple areas of visual feature sppotentially reflecting multiple distinct

neural populations with distinct selectivities includeidhin the one cubic centimeter ROI.

1.3 Contributions

My work on realtime fMRI analysis and the search for complescual feature selectivities under-
lying cortical object perception explores myriad thearatiand technical questions with impact
on multiple fields.

e Realtime neural data processimgnovel in studies of perception and particularly in neu-
roimaging. Standard preprocessing methods for fMRI datarporate information across
hours of scanning and employ computations that can requam@yrminutes to perform.
Further processing is required to isolate a representatiaortical response from a se-
lected cortical region. | introduce and assess adaptatibtisese methods for efficient,
and more cursory, analyses that can be completed suffizigattkly to provide the in-
formation needed to intelligently select new stimuli to st subject based on his or her

cortical responses to past stimuli.

e Realtime communication among computers and progriarassential to pass data quickly
among the fMRI scanner, signal processing programs, pnagjiatelligently selecting new
stimuli based on recent and past cortical responses tolgtand programs displaying new

stimuli to the subject. | use a collection of shared files andriprogram sockets for these
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communications and assess their performance.

A space of visual objectniust be established as the context in which to search for com-
plex visual properties maximally activating a selectedicafregion of interest. | presume
objects are organized in the brain based on compositioravisatures, but the identity of
these features — and of optimal candidate stimuli to ilktstithese features — remains
much in question. For example, in the study of IT neurons Hetreg. pursued an implicit
space of synthetic stimuli generated from a medial axisammtation[ﬂq; however, it is
unclear such a representation is a strong model for voxel-lEncoding. Furthermore, the
synthesized monochromatic blob stimuli used by Hung et aly produce neural activity
that generalizes poorly to neural responses to real-wdnjelots. As discussed above, | de-
fine, use, and assess two spaces of visual objects, the Bt ba my recent work linking
voxel-level coding and computer vision representationeeaf-world objects — particu-
larly focusing on SIFT [36] (Chap. 2) — and the second based setaf synthesized
“Fribble” objects [76] with manually-defined axes of varilétly for textured component

shapes.

It also is unclear what is the optims¢arch methodsed to quickly identify stimuli and vi-
sual properties producing maximal activity from a seleaedical. Search is further com-
plicated by the noise included in each measured corticglorese to previously-viewed
stimuli. 1 adapt and assess the performance of a versioredithplex method incorporat-

ing uncertainty through simulated annealing [7].

Regions of interestor study of intermediate feature coding can be drawn fromoss
the ventral pathway. Indeed, the ability of fMRI to recorcurad activity at high spatial
resolution across the brain is one of the central benefitggarse in my study of human
visual coding. Unfortunately, the anatomical areas on wiicfocus are uncertain when
moving past V1 and V2, and the desirable expanse of thesen®g similarly unclear.

| select and assess 125-voxel cube ROIls identified by a diegnichmethod inspired by



my recent work identifying voxel regions linked with computision representations of
objects (Chap. 2). ROIs for each subject are identified basedhta collected in a scan

prior to the realtime scans.

1.4 Thesis organization

The rest of the thesis is organized as follows. In Chap. 2,dudis my work modeling cortical
visual representations with computer vision methodshimrtetailed in Leeds et ﬁ?ﬁ]. This
chapter introduces SIFT and representational dissirylamalysis, which are important com-
ponents in my realtime search. In Chap. 3, | discuss the msthedd in my current search
for intermediate featural selectivities. These methodiesk technical decisions made in fMRI
study design, signal processing, software communicationage representations, and search
technique. In Chap. 4, | present the performance of my sesrshedy results of processing de-
cisions, and observe the stimuli producing strongest arakes responses from the set regions
of interest. In Chap. 5, | discuss the implications of my fimgirio the development of future

realtime fMRI investigations and to the understanding stial object perception in the brain. |

propose further work in Chap. 6.
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Chapter 2

Related work

My present study employs realtime search to identify compisual properties used in the ven-
tral pathway. Many of the methods contributing to the readtisearch are drawn from my recent
work evaluating computer vision methods as potential mettelcortical object representation.
In this recent work, | use a searchlight procedure [32] tesea contiguous group of voxels
for each analysis, usepresentational dissimilarity analysi%] to compare groupings of ob-
ject stimuli based on their voxel and computer vision enegslj and identify the scale invariant
feature transform, SIF%G], as a strong model of visuatespntation in intermediate regions
of the ventral object preception pathway. In Chap. 3, | disa¢he use of voxel searchlights and
representational dissimilarity analysis to identify @gs of interest in which to perform real-
time searches for complex feature selectivities; | alsculis the use of SIFT to parameterize
visual properties to be searched. In the present chapteprbduce my paper currently in revi-
sion, Leeds et alr[35], to discuss the use of these analysiBads in my recent investigation,

identifying links between computer vision models and @aitencoding in the ventral pathway.
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2.1 Introduction

The process of visual object recognition typically assesavisual inputs — commencing with
an array of light intensities falling on the retina — with semtic categories, for example, “cow,”
“car,” or “face.” Nearly every model, theory, or computatad system that attempts to imple-
ment or account for this process, including the biologidalgl recognition system realized in
the ventral occipito-temporal pathway of the human bragsuanes a feedforward visual pro-
cessing hierarchy in which the features of representatrogrpssively increase in complexity
as one moves up in a feedforward manner [48] — the ultimatpuiuieing high-levebbject
representationshat allow the assignment of category-level labels. It galesost without say-
ing that within this framework, one presupposes levelswtdrmediatefeatural representations
that, while less complex than entire objects, nonethelapsuce important object-level visual
propertiesEQ]. Yet, for all the interest in uncovering tha&ture of such features with respect
to biological vision, they remain remarkably elusive. Aepent there is little empirical data on
the neural representations of visual objects in the netbkdvbetween input image and object
representation. The goal of our present study is to unramelthe human brain encodes object
information along the ventral pathway — the neural “reabést associated with visual object

processing.

Given the paucity of data that bears on this question, how daevelop viable theories
explicating the (compositional) features underlying tleaimal representation of objects? One
possibility is to focus on feature codes realized in “catgegelective” regions within the ventral-
temporal cortex. However, most investigations of theséoregg— for example, the “fusiform

face area” (FFA), associated with the detection and disnation of facem , 20], the “parahip-

pocampal place area” (PPA), associated with scene progegds?], or the lateral occipital com-
plex (LOC), associated with the processing of objects monegdly [16] — emphasize specific
object-level experiential factors or input charactecistihat lead to their recruitment, but never

establish the underlying compositional properties thanfthe basis of the nominally category-
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specific representations. Most studies of the visual pt@sethat lead to the recruitment of these
class-specific, functionally-defined brain regions hawaifad on the effects of spatial transfor-
mations and of the alteration of simple domain-specificufiesgt ES]. For example, images of
objects from within a given class often elicit similar ndu@sponses when scaled, rotated, or
moved to different locations in the visual field; althougtihe case of picture-plane inversion or
3D rotation, there is typically some change in neural alytid;),]. To the extent that viable
models of neural representation have been developed, ey relied on the statistical analy-
sis of the input space within a restricted object domain. é&@mple, “face spaces,” nominally
capturing the featural dimensions of human face representacan be defined using principal
component analysis (PCA) on face images or using parametiemodels that are generative for
constructing, what appear to be, realistic new face stir&u@]. Alternatively, the featural di-
mensions of representation are sometimes made more éxatién Kravitz et al. [31] who found
that the encoding of scenes in human visual cortex can berstode in terms of an underlying
set of intuitive properties, including “open/closed” anthtural/artificial” ].

This is not to say that studies of intermediate feature grtation have not provided some
more fine-grained data regarding the neural encoding ofctdjé-or example, Tanaka explored
the minimal visual stimulus that was sufficient to drive aggivneuron at a level equivalent to the
complete object [63]. He found that individual neurons ini@re selective for a wide variety
of simple patterns and shapes that bore some resemblartoe abjects initially used to elicit a
response from each neuron. Interestingly, Tanaka hypiagshat this pattern-specific selec-
tivity is organized into a columnar structure that maps ohigh-dimensional feature space for
representing visual objects. Similarly, Yamane et al. amthddet al. used a somewhat differ-
ent search procedure employing a highly constrained, petenmed stimulus space to identify
contour selectivity for individual neurons in primate vadicortex [EL,ES]. They found that
most contour-selective neurons in V4 and IT each encode@ soinset of the parameter space.
Moreover, each 2D contour within this space appeared todmspecific 3D surface properties

and small collections of these contour-selective unitsevgifficient to capture the overall 3D
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appearance of an object or object part. Within the humanaseignce literature, the study most
often associated with feature decoding is that of Kay et Ab explored how neural units coding
for orientation and scale within human V1, V2, and V3 can Ise=athled to reconstruct complex
images]. Although Kay et al. provide an elegant dematisin of how modern fMRI meth-
ods may support more fine-grained analyses (and therefgpaation for further investigation),
their work does not inform us regarding the natureirdermediate features that Kay et al.
relied on well-established theories regarding the fehdpnaperties of V1 and V2. That is, they
decoded features within a reasonably well-understoodnpetexr space in which it is generally
agreed that the particular brain regions in question enoddemation about the orientations and
scales of local edges. Indeed, we see this as the fundanpeobdém in any attempt to decode
the features of “intermediate-level” object represeptati— the parameter space is extremely
large and highly underspecified, therefore it is difficulfitud effective models that fit the data.
As such, Ullman et al.’s proposal that intermediate featwan be construed as image fragments
of varying scale and location — leaving the content of saagjfnents entirely unspecified — is
perhaps the strongest attempt yet at capturing task-rel@kgect information encoded within
the human ventral pathway [69]. Supporting the effectigsnaf this sort of approach, there is
some neurophysiological evidence consistent with thenfieg framework laid out by Ullman
and colleagueiﬂS].

Finally, we note that current computational models commamplied to biological object
recognition tend to make only weak assumptions regardiagn#ture of intermediate, composi-
tional featureE:: For example, almost all models employ variants of Gabarbiinks, detecting
local edges in visual stimuli, to explain selectivities nmpary visual cortex (V1)2]. Extending
this approach, both Kay et al. and Serre et al. propose biges of linear and non-linear spatial
pooling computations, with Gabor filters at the base, to rmbgher-level vision@?@?]. One
such hierarchical model, “HMAX” [4], partially predicts oeal selectivity in the mid-level ven-

1The exception being Hummel and Biederman who made verygtsaumptions as to the core features used
in object representation. Unfortunately, in this modeltsatrong assumptions work against any generality for the

model ].
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tral stream (V4) for simple synthetic stimuli. However, HMAmperfectly clusters pictures of
real-world objects relative to clustering based on neuyspgiogical and fMRI data from IH3].
To further address the question of the compositional festunderlying neural object rep-
resentation, we employed several models of visual reptaBen drawn from machine vision
— each provides a putative hypothesis regarding the feawsed in object perception. These
representations incorporate diverse linear and non4lioparations on image properties to max-
imize machine performance in object detection and recagniaisks. As such, we are relying on
these models as proxies for theories of features for biokgibject representation. Given this
set of models, we collected data on human object processing tMRI and a simple object per-
ception task. We then correlated the resultant neural ddkatiae object dissimilarity matrices
predicted by each computer vision model, thereby estahlish correspondence between each
model and patterns of neural activity in specific spatiabtans within the brain. Consistent
with the fact that these models make different assumptiatisr@spect to object representation,
we found that different models were associated with neurgdai encoding in different cortical
locations. However, consistent with the overal visual ratf all of these representations, we
observed that most of these associations lay within theaksmd dorsal visual cortices. Of par-
ticular interest, one popular machine vision representiba scale invariant feature transform,
“SIFT” [36], which encodes images using relatively simpedl features, was the most strongly
associated with measured neural activity in the brain regtgpically associated with mid-level
object perception (e.g., fusiform cortex). To better exgie how we arrived at this finding,
we next define what is meant by “dissimilarity” with respextioth computational models and

neural data.

2.1.1 Representational dissimilarity analysis

To assess model performance, neural stimulus represamats measured by fMRI and a given

machine vision model were compared using representatidisaimilarity analysis. For each
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set of voxels and for each model, a pairwise distance matag eomputed reflecting which
sets of stimulus images were considered to be similar andhwhviere considered to be dif-
ferent (more detail is given in Sec. 2.2.7). Model/neuratrinas were more correlated when
the two corresponding representations of the stimuli grihwgpconsidered images in a similar
manner. Kriegeskorte et al. demonstrated the advantaggismilarity analysis in observing
and understanding complex patterns of neural activity —hairtcase, a collection of spatially
contiguous voxelf[;:%]. We similarly wished to understabgkot encoding across restricted vol-
umes of voxels. The advantage of this approach is that ivalles to judge a model’s descriptive
power without requiring identification of the exact — moikely non-linear — mapping be-
tween model and voxel responses. Indeed, O'Toole et al. aadilét al. pursued related
cortical-computational dissimilarity analyses in studyivisual perception, finding that the or-
ganization of object categories in IT is based, in part, uai similarity [43] and, in part, on
higher-order class information [28]. The ability of this thed to bypass the issue of learning a

direct mapping between model predictions and neural datages particular benefit for fMRI

studies in that it obviates the need to split rather limitathdets in order to cross-validate.

2.2 Methods

2.2.1 Stimuli

A picture and word set comprised of 60 distinct color objdattos displayed on 53% gray back-
grounds and their corresponding basic-level names wasassetimuli (Figl 2.1). The specific
category of each object was selected to match the 60 objsetsin Just et aIDG] The photo-
graphic images used in our study were taken from web imagelses; therefore, we do not have
the rights to redistibute the actual images. The 60 objecisided five examples from each of
twelve diverse semantic classes, for example, tools, fowinmals, or body parts. Each object

2Th§>farticular images used in Just et al. were drawn from 8motigrass and Vanderwart” line-drawing image
dataset [61].
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Figure 2.1: The 60 image stimuli displayed to subjects

was depicted by a single image. Although visual similagitenong stimuli can be seen across
semantic groups, such as knife and carrot (thin and slarped the right) or tomato and eye
(circular in the image plane), objects within a semantisglaere typically more similar to one
another relative to their across-class similarities. Cae af real-world images of objects rather
than the hand-drawn or computer-synthesized stimuli epgalan the previously-discussed stud-
ies of mid-level visual coding, for example, Cadieu etE:ZD:]j Yamane et aIE?S], is intended
to more accurately capture the importance of the broad seatofrally-occuring visual features

in object perception.

2.2.2 Subjects

Five subjects (one left-handed, one female, age range 20)tfvxdin the Carnegie Mellon Uni-
versity community participated, gave written informed sent, and were monitarily compen-
sated for their participation. All procedures were apprblg the Institutional Review Board of

Carnegie Mellon University.

2.2.3 Experimental Design

All stimuli were presented using Math%] and the Psydtygics Toolboxﬂ?),mq controlled

by an Apple Macintosh and were back projected onto a whiteesctocated at the head end
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of the bore using a DLP projector (Sharp XG-P560W). Subjeswed the images through a
mirror attached to the head coil with object stimuli subtegda visual angle of approximately
8.3 deg x 8.3 deg. Each stimulus was displayed in the center of the screenfos fbllowed by

a blank 53% gray screen shown for a time period randomly teddo be between 500 and 3000
ms, followed by a centered fixation cross that remained ayga until the end of each 10 s trial,
at which point the next trial began. As such, the SOA betwessecutive stimulus displays was
fixed at 10 s. Subjects were instructed to press a button wieefixation cross appeared. The
fixation onset detection task was used to engage subjentiatteghroughout the experiment. No
other task was required of subjects, meaning that our stddyeases object perception under
passive viewing conditions.

The 10 s SOA was chosen to minimize temporal overlap betwerel BOLD responses for
multiple stimuli — a slow event-related design based on ggimption that the hemodynamic
response in the ventral-temporal cortex has decreasedufficent degree in the 10-12 s after
stimulus onset to minimize the noise in our measurementseofortical responses.

The stimuli were presented in 24 six-minute runs, spreadsacthree 1-hour scanning ses-
sions and arranged to minimize potential adaptation andipg effects. Each scanning session
included two sets of four runs. Each run contained 15 wordl&ngicture stimuli, ordered such
that the picture and the word corresponding to the same bljere not viewed in direct succes-
sion and all stimuli were viewed exactly once in each fourgat to avoid priming and adaptation
effects. Trials using the word stimuli were not analyzed threowise considered as part of our
present study. Stimulus order was randomized across béakacross subjects. Over the course
of the experiment, each subject viewed each picture and waah six times; averaging across
multiple repetitions was performed for each stimulus, désd below, to reduce trial-by-trial
noise.

The first session for each subject also included functiamedlizer scans to identify object
selective cortex — namely, the Lateral Occipital Complex @)3— a functionally defined re-

gion [30] that we consider separately from the anatomiea@ntified lateral occipital cortex
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(LO; although there is overlap between the two areas). kstdlalizer, 16 s blocks of common
everyday objects were alternated with 16 s blocks of phasaybled versions of the same ob-
jects, separated by 6 s of fixatilﬁ, 30]. Phase scramhlagyjachieved by taking the Fourier
transform of each image, randomizing the resulting phaseegawhile retaining the original
frequency amplitudes, and reconstructing the image fraemibdified Fourier coeﬁicient&S].
Within each block, 16 images, depicting 14 distinct objeetsre shown for 800 msec each, each
object being followed by a 200 msec gray screen. Two of theaibjwere sequentially repeated
once during each block — to maintain attention, subjectseviiestructed to monitor for this,
performing a one-back identity task in which they respondach keypress whenever the same
object image was repeated across two image presentationslasks of both the intact and
scrambled objects conditions were presented over the 282rs]. The object images used
in the localizer scans were different from the object pietstimuli discussed in Sec. 2.2.1. LOC
area(s) were identified as those brain regions more sedeftihintact versus scrambled objects.

LOC areas included all regions containing spatially camtigs voxels (no minimum cluster size)

for which beta weights for the block design had significaresel ofp < .005.

To provide anatomical information, a T1-weighted struatiMRI was performed between

runs within the first scanning session for each subject.

2.2.4 fMRI Procedures

Subjects were scanned using a 3.0 T Siemens Verio MRI scavittea 32-channel head coil.
Functional images were acquired with a gradient echo-plemaging pulse sequence (TR 2 s,
TE 26 ms, flip anglé0°®, 2 mm x 2 mm x 3 mm voxels, field of view192 x 192 mm?,

31 oblique-axial slices). Slices spanned the majority eflihain, to observe relevant stimulus
representations beyond the visual streams (Fig. 2.2). ARRMBE sequence (flip angle?,

1 mm3 voxels, field of view256 x 256 mm?, 176 sagittal slices) was used for anatomical

imaging.
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Figure 2.2: Slice coverage for all subjects.
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2.2.5 Preprocessing

Functional scans were coregistered to the anatomical imagienotion corrected using AFI\[[L%].
Highpass filtering was implemented in AFNI by removing simdsl trends with periods of
half and full length of each run (338 s) as well as polynomiahtls of orders one through
three. The data then were normalized so that each voxelés tiourse was zero-mean and unit-
variance ]. To allow multivariate analysis to exploiformation present at high spatial fre-
guencies, no spatial smoothing was performed [62].

For each stimulus repetition, the measured response ofvexethconsisted of five data sam-
ples starting 2 s/1 TR after onset, corresponding to the l€hgden stimuli. Each five-sample
response was consolidated into a weighted sum, intendestihoade the peak response. This was
accomplished as one step in a “searchlight” process [3Z:\liXel searchlight spheres — with
radii of 3 voxels — were defined centered sequentially onyeverel in the brain. The average
five-sample response of voxels across this sphere and adlgsisnulus presentations was com-
puted. For a given searchlight, for each stimulus, eachlweas assigned a number based on
the dot product of this average response and the voxel’'s mesgonse across all six repetitions
of that stimulus. To the extent that hemodynamic response&raown to vary across cortical
regions, this procedure allowed us to take into account@gioxel’s local neighborhood mean-
response shape. Fitting the local average response maideravnore accurate model of the
relative activity of voxels across a sphere as comparedtiodia fixed response function across

the whole brain.

2.2.6 Initial Voxel Selection

Data analysis was performed on the entire scanned braimeglwith subregions defined by the
sequential searchlight. To distinguish the brain, in it8rety, from the surrounding skull and
empty scanner space, a voxel mask was applied based oncitalctiata using standard AFNI

procedures. Voxels outside the full-brain mask were séX &b all time points; these values
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were incorporated into searchlight analyses when perfdrodese to the exterior of the brain.
Because the inclusion of these null values was consisteossall stimuli, it did not affect the

patterns of the dissimilarity matrices.

2.2.7 Representational Dissimilarity Measures

As discussed earlier, we employegpresentational dissimilaritgs means for relating the neural
representation of objects to the representation of the sdyeets within a variety of computer
vision models. Arepresentational dissimilarity matrigRDM) D™ was computed for each en-
coding modeln such that

Dy = d™(s', s7) (2.1)

meaning the matrix element in th& row and;* column contains the distance, dissimilar-
ity, between the'” and j** stimuluss’ and s’ in the modelm. A given dissimilarity matrix
captures which visual objects are clustered together bydneesponding representation. The
searchlight procedure was then used to identify voxel ehgstvith D™s similar to the RDMs of
each computer vision model.

A 123-voxel searchlight sphere was defined centered on eaa# in the brainEZ], with
individual voxel responses to each stimulus computed asritbesl in Sec. 2.2.5. For a given

srchlty y, -

searchlight centered on voxel-locati¢n y, z), each RDM entryD,

i was defined as one

minus the Spearman correlation between the voxel respdoisssmuli : andj [33]:
dsrettae (50 7Y = 1 — r(v(s'), v(s?)) (2.2)

The 123-element vectar(s’) represents the voxel responses for stimulaseraged across all
six blocks to compute the RDM. This averaging enhances timeikts-specific response over the
independent time-varying noise, providing a more stabiienage of the searchlight response to

each stimulus.
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Figure 2.3: Multi-dimensional scaling visualization oéttelative clustering of 15 of the stimulus
pictures based on each computational model under analysis.

Five computational models of object representation weg@emented for comparison with
the neural representation of objects. Four of these metiveds drawn from popular computer
vision models with varied approaches to object represemtatvhile the fifth was a standard
computational model designed to account for neural regsnslatively early in primate vi-
sual cortex. Distinct distance metridg'(- - - ) were derived from each method. These models,

ordered from relatively more local to more global featurpresentations, are described next.

1. Gabor filterbank The Gabor filter is a well-established model of cell and vdzgél
selectivity in V1 [10]. Each filter identifies a specific locaiented edge in the stimulus.

A bank of filters spans edge angle, position, and size. Thefdiws levels of the filterbank
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used in Kay et aI.[Z?] were implemented and used to represactt image. The real-
valued responses for each filter were recorded in a vectailidaan distance was used to

measure the difference between the vectors associate@adthpair of images.

. Geometric Blur Geometric Blur uses local image properties at selecteddstegoints.
The relative locations of these interest points are indudehe image encoding, thus in-
corporating more global geometric properties of each dbjéeature vectors consist of
pixel values regularly sampled in radiating circles arotimelinterest point, with the start-
ing point for sampling being determined by local image stats. Pixel values are blurred
over space, with increasing blur for higher-radius circl€his approach emphasizes pre-
cise details at each interest point and lower-resolutioriedd from the surrounding region,
similar to the decrease in spatial resolution away from #ima’s focal point in early vi-

sion.

Interest points were selected randomly from edges found Gwrany edge detectcm [6].
Features were extracted through an implementation of thari#thm described in Berg et
al. [2]. For each pair of images, each interest point in onagen(the image with fewer
points) was matched with the point spatially closest in #mad image. The dissimilarity
for each pair of points was computed by taking the weighted sithe negative correlation
between the two feature vectors, the Euclidean distaneegegithe points, and the change
in circle orientation as defined in Berg et g [2]. The finadgdmilarity between images
was found by summing the dissimilarities for all pairs ofisi This incorporates both

global geometric information and spatially-sampled lao@ge statistics.

. Scale Invariant Feature Transform Scale Invariant Feature Transform or “SIFT” fea-
tures [36] have been widely used in computer vision systemysitual object recogni-

tion. This approach selects significant pixel patches ofn@agie and captures associated
visual properties that are invariant to a variety of commm@ams$formations, such as rota-

tion, translation, image enlargement, and (potentialhgrges in ambient lighting. More
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specifically, for a given imageanterest pointsare identified and a scaled, rotated frame
is defined around each point. For each frame, a feature viscbmmputed to encode the
local image properties, defined as coefficients of a pyrarhicthage gradients increasing
in spatial scope. SIFT features were extracted from the ¢g&cobtimuli using the VLFeat

package for MatlaHO], with default settings when not ottise specified.

A bag of featuresmpproach was used to compare SIFT features for pairs of im%.
Conceptually, each of the SIFT feature vectors in each stisislcategorized as one of 128
“words,” where the words are consistently defined acrosilnages. Each image is then
characterized by the frequency of each of the possible wdvidse specifically.-means
clustering is performed on the feature vectors from allnesépoints of all pictures, placing
each vector into one of 128 groups. Assignment of multi-aisi@nal continuous-valued
vectors to a small number of groups greatly reduces SIFPsesentational complexity.
A histogram is computed to find the frequency of each vectotygin each image and the
histograms were normalized to sum to 1. For each image paiullback-Leibler (KL)
divergence was used to measure the difference betweendhiéimg two normalized his-

tograms.

. Shock GraphsThe Shock Graph provides a complete and unique represamts#ta given
visual object’s external shape by constructing a modifiethfof Blum’s medial axisEQ]
based on the object’s silhouette. The graph is a set of esttiedges, anshocklabels,
G = (V,E,\). Each vertex represents a point or interval along the mexdia, edges
connect spatially neighboring points/intervals, and dabkl specifies the curvature of the

portion of the silhouette associated with the correspansenrtices:

e \ = 1 when curvature is monotonic; object only widens or only oas over an

interval

e )\ = 2 when curvature reaches a local minimum at a point; objeaone prior to

the point in the axis and widens after the point
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e )\ = 3 when curvature remains constant over an interval; objécbgette ends in a

semi-circle or object is a circle

e )\ = 4 when curvature achieves a local maximum at a point; objedems prior to

the point in the axis and narrows after the point

Further details are provided by Siddiqi et Q[GO]. The aigte between graph pairs was
computed using a graph-matching technique implementechbpé&Matcher 5.2.1, which

also was used to generate the graphs [37].

. Scene GistAlthough Scene Gis@l} is specially designed for recagnibf scenes rather
than objects, we included this model partly as a control forassumptions about object
representation and partly to explore whether global imageding methods are applicable
to biological object perception. In the Scene Gist modethgacture is represented as a
weighted sum of bases, found through principal componeatyais such that a small
number of bases can be added together to reconstruct neterat images with low error.

The weights used in summing the bases to reconstruct an isexge as the features.

A scene gist feature vector for each image was computed Matijb code implemented
by Torralba [67], and normalized to sum to 1. The distancevbeh each image pair was

calculated as the KL divergence between the correspondingalized feature vectors.

After defining the distance metrics and calculating the @epntational dissimilarity matrix

(RDM) entries for each of the five models, the resultant mdtr each model was compared to

the matrix for each searchlight volume by converting thedotiangle of eaclt0 x 60 matrix

into al1770 x 1 vector and measuring correlations. When a model represeses af image

pairs as similar and a voxel sphere encodes the same paimagés as similar, we may consider

the voxels to be selective for the visual properties captimethe model. By comparing each

computational representation with searchlights swepbsscthe whole brain, we can identify

which cortical regions, if any, have responses well desctiby each method’s object/image

representational approach.
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Statistical significance values were computed at each Isiggnrtlocation through permuta-
tion tests. The elements of the vectorized computer visibiMR were permuted 500 times;
the mean and variance of correlations for each searchligsitipn with each permuted RDM
were computed to derive values for the true correlation measures. Thealues were con-
verted intop values and a threshold was chosen such that the false deteate was; < .001,
following the method of Genovese et 5[15], and the regminsve threshold were visualized
over the subjects’ anatomical surfaces. Surface maps veexsrocted using FreeSurfer [1] and

SUMA [51].

2.3 Results

Our study was designed to illuminate how the human visudkgsyencodes object information
along the ventral pathway and, in particular, explicaterthture of intermediate neural object
representations. To that end, we employed five computdtioondels that make specific, and
different, assumptions about the algorithms for recogmjziontent in visual images (Sec. 2.2.7).
To the extent that there is a gap in our knowledge with resfgethe nature of intermediate
features in human vision, we adopted these models as pregyiéis that each provide differing
constraints on possible representations. Individual risoglere compared to our fMRI data by
measuring the distance, mpresentational dissimilarifypbetween each pair of object stimuli for
both the particular computational model and the neural éimcpo A searchlight method was
used to identify brain regions where the set of inter-stusulistances, that is, the grouping of
the stimuli, was similar to the grouping of the same stimudiquced by a given computational
representation. Of note, in comparison to the limited fioral regions identified by the LOC
localization technique discussed in Sec. 2.2.3, we sedralmost the entire brain to allow for
the existence of brain regions selective for complex viseatures beyond those regions often
associated with object representation.

Given that all five of our included models rely on the same &isoput as our fMRI experi-
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Figure 2.4: Cortical regions with a dissimilarity structwsignificantly correlatedg < .001,
with the dissimiliarity structures of the five different mald of visual feature coding. Colors are
associated as follows: blue f8IFT, cyan forGeometric Bluy green forShock Graphpurple for
Scene Gistand orange foGabor filterbank Color intensity proportional to correlation. Regions
matching multiple models show the corresponding colorglayed. Note first that although
we illustrate these results on surface map Sthe actuatidegrts were run on brain volumes,
and second, that color overlap sometimes forms misleadiages, for example, purple as the
combination of blue and orange. Compare with Fig. 2.5 in cafescertainty.
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Figure 2.5: Cortical regions on Talairach brain with dissamty structure significantly corre-
lated, ¢ < .001, with the structures of computer visual models. Colors aso@ated with
subjects as follows: blue for S1, cyan for S2, green for SHpyefor S4, and orange for S5.
Red denotes overlap between two or more subjects, with dahales of red corresponding to
increasing numbers of subjects overlappingzs\svith one amothe



ment, it is not surprising, but still gratifying, that we @ge significant correlations between our
neural data and all five models. Fig. 2.4 depicts those br@asawith significant correlations
(¢ < .001) between the distance matrices derived from each modeltadédural responses
within each area. Importantly, although we scanned acrosssh the entire brain, these corre-
lated brain areas are focused in anatomical locations edsdavith low-, mid-, and high-level
vision in both dorsal and ventral visual cortices, with lied spread to prefrontal cortex. Over-
all, the SIFT model most consistently matched the obtaitietifus representations in mid-level
visual areas, while the Gabor filterbank model most consiistenatched the obtained stimulus
representations in low-level visual areas. The neuroamiatd locations for matches to the three
other models were less consistent across subjects.

If we consider the underlying characteristics of each maithelse results appear reasonable.
First, the Gabor filterbank model encodes local orientecesdmd has been used successfully
to model receptive fields in early visual cortex [27]. Thus tistance matrix correlations re-
sulting from the Gabor filterbank model serve as a baselirensure that our overall approach
is viable. As such, we expected a significant match betweerathivity observed in human
V1 and this model. Moreover, including the Gabor filterbanéd®al allows us to contrast these
baseline correlations expected to be associated witheearual processing with any observed
correlations arising in mid- and high-level visual areas. ikustrated in Fig. 2.4 in orange, S2,
S3, and S5 all show a positive correlation between the RDbI® fthe Gabor filterbank model
and neural activity in the left occipital pole, while all figeibjects show a positive correlation in
the right occipital pole. Somewhat surprisingly, the Gafiterbank model also elicits signifi-
cant positive correlations in mid-level visual areas, ugchg the left fusiform (IFus) in all five
subjects and the right fusiform (rFus) in subjects S2, S3a8d S5; subjects S2, S3, and S5 also
exhibit positive correlations in left lateral occipitaltex (LO). We also see some correlation in
anatomical regions often associated with higher-levalaliprocessing, for example extending
more anteriorly in the ventral temporal cortex for S1, S4d &%. Finally, the Gabor filterbank

model is correlated with activity beyond the ventral streamsluding the inferior parietal (IP)
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region in the left hemisphere of S2, S3, and S4, and in the hgmisphere of S2; somewhat
smaller correlations were also observed in left prefroatatex (PFC) of S2 and right PFC of S3
and S5. Least intuitive may be the small-area, weak coroelabatches in left pre-central sulcus
of S3 and S5. Fig. 2.5 emphasizes the most consistent majicinseacross subjects are in the
bilateral occipital poles and early ventral stream.

In constrast with the Gabor filterbank model, the SIFT moadeloeles local visual statistics
selected across points of interest in an image. The moneatest results observed for the SIFT
model are consistent with this difference in representatiBositive correlations between the
SIFT model and regions of neural activity are evident insaty S2, S3, S4, and S5, as illustrated
in Fig.[2.4 in blue. With respect to the SIFT model, our majodiing is that these four subjects
all show positive correlations in bilateral Fusiform. Sedtj S5 also shows a positive correlation
in bilateral LO. In the dorsal stream, there is strong pesitorrelation for S2 in left IP. We
also observed a positive correlation in left PFC for S5 agéitrPFC for S2 and S5. Fig. 2.5
illustrates the overlap of positively correlated regionsogs subjects in bilateral Fusiform and in
the posterior right ventral stream.

The Geometric Blur model, much like SIFT, encodes local aigaroperties from selected
points in each image, but also encodes more global infoamaibout object geometry. As
illustrated in cyan in Fig. 2.4, all five subjects showed pwesicorrelations with neural activity
in mid-level visual areas; the breakdown by subjects bdingtrated in Figl 2.5. Subjects S1
and S5 exhibited positive correlations spanning bilatéwsiform and posterior IT (pIT), with S5
exhibiting a more continuous region. More anteriorly inhiigT, we observed spatially smaller
positive correlation for S1 and S4. The right occipital palso had small spatial regions showing
positive correlations for S1, S2, S3, and S5, in additioretfians near the left occipital pole for
S1 and S5. Within the ventral visual cortex, S5 also showssitipe correlation in bilateral
LO. In the dorsal stream, there are small positive corrdlateas in the parieto-occipital sulcus
(POS) for S2. Finally, we observed a positive correlatioRKC for S5.

The Shock Graph model uniquely represents the silhoue#tpesbf a given visual object,
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ignoring small-scale internal details critical to moredbenodels such as SIFT and geometric
blur. Positive correlations between neural activity ane 8hock Graph model are illustrated
in green in Fig. 2.4. These positive correlations are appdm subjects S1, S3, S4, and S5.
S1 exhibits positive correlations in bilateral LO and lelat occipital poles. There are positive
correlations for S3, S4, and S5 in rFus, as illustrated in/Ei§.

The Scene Gist model encodes global image properties masnoaly found in natural
scenes, focusing on the two-dimensional spectrum acrosgen gnage. Positive correlations
for the Scene Gist model are shown in purple in Fig. 2.4, whi most robust results being
observed in S5, although, as illustrated in Fig. 2.5, thegeadso positive correlations in S1, S3,
and S4. More specifically, S1 and S5 exhibit positive cotiahe in IFus. S5 also shows positive
correlations in rFus, bilateral LO, and the bilateral pI'8.&d S5 show positive correlations in
the right occipital pole, with S5 also showing a positiveretation in the left temporal pole. Less
robust effects are seen for S4 and S5 in a more anterior reginght IT; while S1 and S5 show
positive correlations near left IP.

Taking a somewhat broader perspective, comparisons arhesg tesults indicate that some
brain regions appear to consistently correlate with séwdrdne computational models we con-
sidered. First, the Geometric Blur and SIFT models, bothodimg local statistics of images,
have overlapping regions on the ventral surfaces of S3 andn85n PFC of S5. Within the
ventral surface, these regions tend to be in pIT. The gredezgee of overlap can be seen be-
tween SIFT and the Gabor filterbank model across subjectS§§2%54, and S5, largely along the
posterior ventral surface. To some extent, this may be égdeximply by chance, as these two
methods produce the largest sets of model-cortical matome. It also is worth noting SIFT
is based on non-linear operations on selected Gabor filsgoreses, potentially tying the two
methods together.

Another way of examining this data involves focusing on aceefunctional region — in
this case the area of the ventral stream most often assdaciatle generic, high-level object

processing — the LO 1&30]. Overlap between corticalargidifferentially selective for
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Figure 2.6: Cortical regions selected by LOC localizer aso &und to have dissimilarity struc-
ture significantly correlated, < .001, with the structures of computer vision models. Colors are
associated as follows: blue f&FT, cyan forGeometric Bluy green forShock Graphyellow

for Scene Gistorange forGabor filterbank Yellow countours show LOC localized regions.
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Figure 2.7: Distance matrix Spearman correlations amoaditie models. Mean and standard
deviation correlations computed using leave-one-out otktlkeaving out 1 of the 60 stimuli for
the distance matrices. Higher correlations in larger fowt im darker red backgrounds.

objects, identified using the LOC *“localizer” described @doand searchlight volumes found
to be positively correlated with one or more of the five conapional models are illustrated
in Fig.2.6. These overlap regions were spatially small aspared to the overall volumes
identified by the searchlight process and varied in anataltocation depending on the particular
computational model and the subject. For example, witheni®C, the anatomically-based left
LO overlapped with a volume identified as correlated with @ebor filterbank model in S3,
while the IFus showed overlap with volumes associated vighGabor filterbank model in S4.
Further overlap within LOC was observed for Gabor filterbankumes located in right pIT for
S4, in a more anterior region of left IT for S1, and in left egtriate cortex for S3 and S5. With
respect to correlated searchlight volumes arising fromSHeT and Geometric Blur models,
within LOC we observed overlap in right LO, pIT and more amtetT for S5. Finally, the
Geometric Blur model overlapped with LOC responses in amtérF for S1.

To provide perspective on the similarities among the fivelisttl computational models, we
compared their respective stimulus distance matricesan ZEif. We compute correlations for
distance matrices including 59 of the 60 rows and columnsolisdrve the average and standard
deviation for each model comparison. We observe that thelation between models’ stimulus
grouping structures generally fails to act as a predictanvarlapping regions seen in Fig. 2.4,
with the potential exception of the link between SIFT and @etric Blur. Fig. 2.7 also illustrates

that the models have notably low pairwise correlationg, ihaepresentations, of the 60 stimuli.
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Supporting this observation, for the most part, there anedeerlapping regions across models
in any of the five subjects.

A distribution of the model-neural activity positive cola&on values, akin to a Gamma dis-
tribution, is above the FDR threshold for each subject amet&mh model. The nature of these
distributions is illustrated in Fig. 2.8. Note that whilesthverage significant correlations for each
model are roughly the same, = 0.15, the highest values provide a sense of ranking among
computational representations in their abilities to actdar neural responses. Most intuitively,
the Gabor filterbank model, assumed to account for aspegoéssing within primary visual
cortex, shows the strongest matches with an average toplabon of roughlyr = 0.33; anal-
ysis of individual subject correlations reveals the sanmttepa. SIFT exhibits the second highest
set of correlations, with an average top correlation of ldyg: = 0.23. The distribution of
maximum correlations follows the same trend as the tota aceoss all of the positively corre-
lated regions for each model across all subjects; this i&sho Figs. 2.4 and 2.5. Fig. 2.8 also
illustrates that there are significant positive correlagibetween every subject and every model.
Certain matches are omitted from the discussion above becdtiseir low correlations and their

small surface spans, making them difficult to interpret.

2.4 Discussion

2.4.1 Computational models of vision as proxy theories of biological vision

Our goal in this project was to better elucidate the featanaracter of the ventral neural sub-
strates supporting visual object processing. In contmstut understanding of early visual pro-
cessing (e.g., V1 through V4) and the high-level organmrabf visual cortex (e.g., the LOC,

FFA, PPA, etc.), intermediate representation along thérakepathway is poorly understood. To
the extent that few theories account for this stage of viebg@ct processing, we adopted a col-

lection of theories drawn from computer vision to serve ax@s in that each theory makes

35



correlation

correlation

Geometric
lu

Shock
graph

correlation

Scene
gist

correlation

Gabor

correlation

Figure 2.8: Histograms of significant correlations betwewudel and searchlight RDMs.
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specific, and different, assumptions regarding objectasgmtation.

To apply these theories to the neural representation ofctshjeve analyzed the pattern of
similarity relationships between objects within the sarakection of 60 objects as represented
within the brain using fMRI and within each computationaldeb We then applied a search-
light analysis to uncover correlations between patterngeafal activity within brain subregions
— sampled across the brain — and patterns within each cortimogih model. This approach
provided many regions where there was a reasonable comdspoe between a given model and
the observed neural activity. Importantly, almost all adgb significant correlations occurred in
brain areas associated with visual object processinggltlygsroviding a theoretical sanity check
that our results are informative with respect to our questibinterest. At one level, this general
result should not be particularly surprising — all of our ne¢tgirelied on the same spatial input,
images of objects, that were used as stimuli in the neuraimgagpmponent of our study. Ideally,
correlations at input should be reflected, at least to sorgeedein correlations in representation
of that input. On the other hand, the tested models each somewhat different linear and
non-linear structures in their representation of objeetg,([2, 8]). For example, the interest
point frameworks used in the SIFT and Geometric Blur modetsige a potential basis for
parts-based perception — often assumed to be a criticalegieim the biological representation
of objects [EEMQ]. In contrast, the Shock Graph approackiges a compact encoding of an
object’s silhouette, supporting a parametric descriptibholistic representatior@Q]. Finally,
Scene Gist is even more biased in representing global giepef an image, encoding the entire
image structure of an object as well as the background [41].

Beyond the basic finding that our highest model-neural nespaorrelations are observed
within the visual system, we gain further confidence regaydine informativeness of our method
from the observation that the strongest correlations betviee Gabor filterbank model and neu-
ral activity are located early in the visual pathway, nea d¢inbital pole and extrastriate cortex.
This finding is consistent with a wide variety of studies @utderizing early neural visual re-

ceptive fields as coding for local oriented edges EO, ZhE extension of these significant
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correlation regions into the higher-level bilateral fusih and inferiorparietal has slightly less

clear interpretations, but may support the hypothesis oES# al. [57] and Cadieu et jﬂ [4] that

later stages of the ventral visual stream employ a hieraoflspmetimes non-linear operations
based on initial Gabor filter outputs. Beyond the operatgpexified in Serre et al. and Cadieu et
al., SIFT represents a reframing of Gabor filter-like ougpiar more complex recognition tasks,

potentially accounting for the overlap in brain regions vixserve between the correlations for
the Gabor filterbank and SIFT models across subjects.

In summarizing the relative performance of the tested nmde¢ find that both across and
within subjects, the SIFT model appears to be the most proghaf those tested for accounting
for intermediate-level object representation in the humiaoal system. In particular, the SIFT
model most strongly and consistently matched patterns wfahactivity in rFus — an anatom-
ical neighborhood associated with processing faces argl othjects drawn from domains of
expertise E?D , 65]. To a lesser extent, we also observe®lations for the SIFT model
within left LO — a neuroanatomically-defined brain regios@bssociated with object percep-
tion [16]. However, as shown in Fig. 2.6, the SIFT model na@drrelates with brain regions
lying within the functionally-defined object-selectivesarreferred to as LOC. Thus, it appears
that the representation of objects in SIFT is similar to @aerimediate encoding stage along the
path to high-level object representation.

As a “proxy” model of intermediate feature representatitbie, preponderance of significant
SIFT correlations in our results invites further reflection its underlying algorithm. As dis-
cussed earlier, SIFT’s interest point strategy is consisigth parts- or feature-based models of
object perception. Notably, unlike Geometric Blur, our ieypentation of SIFT disregards the
spatial locations of the local image regions it encodes aaagdteristic that is consistent with the
observation of invariance between intact images and tHeakiwise scrambled versions [71].
Similarly, SIFT incorporates aspects of the Gabor filtekbarodel which does a reasonable job
at capturing characteristics of early visual processisgech, this component of SIFT enhances

its nominal biological plausibility. Finally, our “bag of evds” implementation of the SIFT
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model [40] supports the learning of commonly-occurringaloedge patterns as “visual words”
— the use of such words allows the extraction of statistiedtguns in the input similar to how
vision scientists often characterize V1 receptive fi [4

Our results also suggest that the Shock Graph model may beriafive with respect to in-
termediate feature representation. Shock graphs desabjbets in terms of their global shapes,
capturing their axial structures and silhouettes. Thuatigpinformation about the relative po-
sitions of shape features are preserved, but the local irstgistics that may specify local fea-
tures are not captured (e.g., texture). Our observatioroaketations between ventral stream
neural activity and the Shock Graph model supports the itelenlying shape-based encoding
in intermediate-level neural representati@ E:)@ T8]the extent that these correlations are
confined to more posterior parts of the ventral stream, theyleowever, somewhat inconsistent
with Hung et aI.’sf:;] observation of shape-based repitag@ms in anterior IT in monkeys. At
the same time, this observation should not be generalizethty models of global encoding, as
we find that Scene Gist, encoding spatial frequencies awroske images, produces correlations
in more anterior IT.

More generally, although our results are informative in samspects, it is doubtful that any
established computational vision model accurately cagttine neural representations instanti-
ated in intermediate-level biological vision. Indeed, ti@st correlations between any model and
the fMRI-derived cortical distance matrices (Fig./2.8) f&low the majority of pairwise corre-
lations observed between the model-derived distance eeat(Fig. 2.7). Nonetheless, the large
majority of statistically significant < .001) model-fMRI correlations were found in visual
brain areas, with some differentiation within these aremdffferent methods. Thus, we gain
some sense of the properties for which given brain regionslmaselective.

From a theoretical perspective, one potential concern thithinterpretation is how we se-
lected particular computational models for use in our stutty large part, our choices were

based on each model’s success or popularity in the extanpa@ational vision literature and on

each model’s distinct encoding strategy with respect termediate feature representation —
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an intuition validated by the fact that the models have medidy different stimulus dissimilar-
ity matrices (Fig! 2.7). Of note, our present work does netude an analysis of the popular
hiearchical model of biological vision known as “HMAX” [48457]. HMAX employs a hier-
archical series of summing and non-linear pooling openstio model mid-level visual regions
such as V2 and V4. However, the HMAX model contains a variétyaoiables that must be fit
either to the input stimulus set or to a set of experimenttd (&/]. In an additional experiment
not presented here, we found the actual data set collectadt study using the 60 image stimuli
was insufficient for reliable fitting of HMAX [56], even wheintiting the model to layers S1
through C2, as in Cadieu et al. [4]. In contrast, the applicatbHMAX to the responses of
individual neurons in monkeyg[4] is more feasible, as datélf000s of trials can be acquired.
At the same time, it is worth noting that neurophysiologieadordings of IT do not correspond

to HMAX predictions for stimulus grouping structure [33].

From an empirical perspective, a second potential concettmel degree of variability in the
spatial location, or even the existence, of large higheadation brain regions for each model
within individual subjects. In some cases, as in SIFT anddGditierbank, the changes in
anatomical positions across subjects were relativehhgligonsistent with variability of func-
tional region locations, such as LOC or F[34]. More qualite variability, for example,
across lobes or hemispheres, may reflect meaningful difé@®in our subjects’ cognitive and
cortical approaches to object perception. For exampldyithgals may vary in the degree to
which they attend to local versus global features or applistio mechanisms [77]. Beyond the
potential strategic variation in how individuals perceolgects, noise in the hemodynamic sig-
nals may increase the variability of correlated brain raegiacross subjects. However, this latter
possibility fails to explain why all subjects exhibit sifjoant and consistent correlations within

the visual pathway for several of the models.
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2.5 Conclusion

Our study aims to connect the cortical encoding in mid- arghteével visual areas of human
ventral stream and image representations as realized eraalifferent computational models
of object representation. Perhaps the most salient canolwge can make is that the best bi-
ological/computational correspondence is observed ferSbale Invariant Feature Transform
(“SIFT”) model [36]. Although such results do not imply tHal=T-like computations are some-
how realized in the human brain, they do suggest that the §1&del captures some aspects of
the visual stimulus that are likewise instantiated in humeal object processing. As this is
one of the first attempts to directly connect extant computat models of object representa-
tion with the neural encoding of objects, there remains amnpbm to sharpen our observations
and to further explore the space of possible biologicalovisepresentations. For example, the
passive viewing task used in the neuroimaging componenuostudy could be replaced by
an active object identification task, which, conceivablygim yield stronger neural signals and
more robust results. Likewise, other computational visiordels should be considered, for ex-
ample, histograms of oriented gradier{ts [9], the more lyjicially-inspired HMAX model (given
that we first solve the problem of limited data using fMRI),tbe biologically-motivated and
hierarchical model described in Jarrett et al. [25]. In atar, SIFT’s similarity to HMAX —
both models rely on non-linearities to pool local edge infation — indicates further pursuit
of HMAX to describe high-level voxel encodings may proveitfiul course for future research.
Finally, a more sophisticated approach to developing mbda&h correspondences may be re-
alized by combining the dissimilarity matrices for any gooof representational methods with
weights optimally learned to match the representation yagaren brain region [66]. In sum, our
present study provides a foundation for further exploratd well-defined quantitative models
using dissimilarity analyses and points the way to methbadsrhay help shed further light on the
visual structures encoded in the human brain. | discuss milgguexploration through realtime

search in the following chapters.
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Chapter 3

Methods

In my present work, | study cortical object perception byrebang for the complex visual prop-
erties most activating pre-selected cortical regions trst in the ventral pathway. Employing
fMRI for my investigation, there are a limited number of stilus display trials available to
probe regional selectivities — roughly 300 displays pertsampling from a near-infinite space
of visual object properties. | develop, use, and assessl mosthods to efficiently search the
“space” of visual object stimuli to quickly identify thosérauli evoking the highest response
from a pre-selected cortical region. These methods andMEd signals in realtime to deter-
mine region responses to recently-displayed stimuli, aselthese recent cortical responses to
select new stimuli likely to produce higher activity.

| employ two sets of object stimuli and two corresponding migéins of visual properties
to explore intermediate representations in the ventrdiyay. The first stimulus set consists of
photographs of real-world objects, assessing corticatqgion of visual properties using im-
ages that can be encountered in ordinary life experien@setlobjects are characterized by a
Euclidean feature space derived from the SIFT met% [®&ind to account for object repre-
sentations in intermediate regions of the ventral pathwa@€hap! 2. The second stimulus set
consists of synthetic Fribble objec@?G] constructedrfreimple textured shapes, providing

careful control on the varying properties displayed to eaty; these objects are characterized by
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a Euclidean feature space in which each axis captures thiealefjcontrolled manipulation to a
corresponding component shape.

My work explores the effectiveness of my novel methods irtirea fMRI analysis and dy-
namic selection of stimuli, and my work uses these methoégtore the complex selectivities

of intermediate regions in the cortical object perceptiathpvay.

3.1 Realtime computational strategy and system architecture

In fMRI studies of human subjects, scanning time is limitedseveral hours across several
days. During a given scan session, the slow evolution of khedsflow dependent fMRI signal
limits the frequency of stimulus displays to one displayrg\&to 10 seconds. While number of
display trials is small, the number of potential visual @bgeto show as stimuli is nearly infinite.
Therefore, | develop, use, and assess methods for the dgisatection of stimuli, choosing new
images to display based on the response of the pre-sele@®dregion to previous images to
try to maximize regional activity and to identify the assded complex featural selectivity. This
approach effectively is a search through a stimulus spate s€arch requires realtime fMRI
signal processing and analysis using an array of computgrgms that execute in parallel and
that interact with one another. Each brain region for stugdghosen, or “pre-selected,” prior to
the realtime analysis scanning session discussed hereriRege chosen for each subject based

their representation of visual objects as seen from dataatedl from a prior scanning session

for the subject, as discussed in Secs. 3.3.6 and 3.4.5.

Three programs run in parallel throughout the realtimede#or stimuli producing maximal
regional activity:

e Thedisplay program sends visual stimuli to the display screen for subject tovwiile

lying in the scanner.

e The preprocessing programconverts recently-recorded raw full-volume scanner outpu

into a single number corresponding to the response of aglexted cortical region to the
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recently-displayed stimulus.

e The search programuses past stimulus responses, computed by the preproggssin
gram, to select the next stimuli to show the subject, to bétsetime screen by the display
program. The stimuli are selected through a simplex “s€av€hisual feature space for
the location/stimulus producing the highest response faotortical region, described in

Sec] 3.1.5.

3.1.1 Interleaving searches

To use scanning time most efficiently, four searches areopeadd studying four pre-selected
brain regions during each scan. After a stimulus first appeafront of the subject in the scan-
ner, 10—14[%is required to gather the 10 s cortical response to the stisamd an additional "10 s
is required to process the response and to select the nexilss for display. Before the next
stimulus for a given search has been selected, the dispiaygmn can rotate to another search,
maximizing the use of limited scan time to study multipleibr@gions. The display and analysis
programs alternate in sequence among the four searches,sdaxch 1 — search 2 —

search 3 — search 4 — search 1 .... Different classes of real-world and Fribble

objects are employed for each of the four searches, as Heddn Secs. 3.3.1 and 3.4.1. Alter-
nation among visually distinct classes is further advasbag to my study as it decreases the risk
of cortical adaptation present if multiple similar stimulere viewed in direct succession.

The preprocessing program evaluates cortical respongdsaks of two searches at a time —
i.e., it waits to collect data from the current stimulus dégys forsearch 1 andsearch 2,
analyzes the block of data, waits to collect data from thestuistimulus displays faear ch 3
andsear ch 4, analyzes this block of data, and so on. This grouping ofudtisiresponses in-
creases overall analysis speed. Several steps of prepnogesquire the execution of AFNI [46]
command-line functions. Computation time is expended titalire and terminate each func-

The 4 s beyond the duration of the cortical response accdantsommunication delay between the fMRI
scanner and the machine running the preprocessing anchggagrams.
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Figure 3.1: Diagram of communications between the conselech collects and sends fMRI

data from the scanner), the “analysis machine,” and theplfaysmachine,” as well as com-

munications between the analysis programs. These elemenistogether to analyze cortical

responses to object stimuli in realtime, select new stirfmiBhow the subject, and display the
new stimuli to the subject.

Preprocessing
Program

Search Progra

tion each time it is called, independent of the time requfoeddata analysis. By applying each
function to data from two searches together, the “non-aisilytime across function calls is

decreased.

3.1.2 Inter-program communication

Three programs run throughout each realtime search to pelynamic selection and display
of new stimuli most effectively probing the visual seledinvof a chosen cortical region. The
programs — focusing on fMRI preprocessing, visual propsegrch, and stimulus display tasks,
respectively — are written and executed separately to maséyetrack, test, and debug each
process and to more easily permit implementation and agiic of alternate approaches to
each task. Furthermore, the display program runs on a deparachine from the other two
processes, shown in Fig. 3.1, to ensure sufficient processources are dedicated to each task,
particularly as analysis and display computations mustiiosanultaneously throughout each
scan.

Due to the separation of tasks into three programs, eachebsk on information determined
by another program or machine, as indicated in [Fig. 3.1. \Belaliscuss the methods used to

communicate information necessary for preprocessingecBeand stimulus display.

e Preprocessing program inputThe scanner console machine receives brain volumes from
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the fMRI scanner. | reconfigure console storage protocath suat each received volume
is copied in realtime to a mounted drive on the analysis nmechThe analysis machine
runs the preprocessing and search progmsa‘ng the newly-recorded fMRI data to deter-
mine the responses of pre-selected cortical regions to thet racently-displayed stimuli,
and using the responses to select the next stimuli to digplthe subject in the scanner to
probe the visual selectivities of the regions. The prepssirgy program checks the shared
disk every 0.2 seconds to determine whether all the volumah & newest block of search
results — the full 10 s cortical responses to two recentlgwamnstimuli, described further
in Sec| 3.1.1 — are available for analysis. Once all the daéaailable, the preprocessing
program uses the data, as discussed in 3.1.4, to compaiteumbers to represent
the response of each of two pre-selected brain regions tordspective stimuli. The pro-
gram proceeds to write each response into a file labeésponseN and then creates a
second empty file namesemaphor eN, where N € 1,2,3,4 in each file is the number
of the search being processed. The files are written into @ @termined directory that
is monitored by the search program, so the search prograrfirchimformation saved by
the preprocessing program. The creation of sleeraphor eN file signals to the search
program that the response of the brain region studied im\tifesearch has been written
fully to disk. This approach prevents the search programmfreading an incomplete or

outdated esponseNfile and acting on incorrect information.

e Search program input The search program alternates among four searches forghalvi
feature selectivities of four brain regions, i.e., seangtor the stimuli containing features
producing the most activity from a pre-selected corticgioa. At any given time during
a realtime scan, the search program either is computing elkestimulus to display for
a search whose most recent cortical response has recestiydoenputed, or is waiting

for the responses of the next block of two searches to be ctadpWhile waiting, the

°These programs are run on a separate machine from the cdosaisure sufficient processing power is avail-
able for realtime analysis.
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search program checks the pre-determined directory ev@rgegronds for the presence of
the semaphore file of the current search, created by thequegsing program. Once the
search program finds this file, the program deletes the seonajile and loads the relevant
brain region’s response from the response file. The seamyrgm proceeds to compute
the next stimulus to display, intended to evoke a high respdrom the brain region, as
discussed in Sec. 3.1.5, and sends the stimulus label tagplaylprogram running on the

display machine.

Display program input Two methods were used for the transmission of stimulus sabel
between the search and display programs. (The display gamogontrols what is shown
to the subject at every moment of the scanning sessions.jhEdirst five subjects, stud-
ied using real-world objects, the search program sent estodl ko the display program
by saving it in a filey t MsgQut N, in a directory of the analysis computer mounted by
the display computer. Immediately prior to showing the sluns for the current search
N € {1,2,3,4} — alternating between four searches, as do the preproceasthsearch
programs — the display program looked for the correspondliagn the mounted direc-
tory. For the remaining subjects — using either real-worl&abble objects — labels were
passed over an open socket from the MaJ;hL [38] instancangrihe search program to
the Matlab instance running the display program. In the sbc&mmunication, the search
program paired each label with the number identifVeof the search for which it was com-
puted. Immediately prior to showing the stimulus for anyegivcurrent search, the display
program read all available search stimulus updates fronsdicket until it found and pro-
cessed the update for the current search and then showedrteatcstimulus to display
for the current search. Ordinarily, both techniques alldwhee display program to present
the correct new stimulus for each new trial, based on the coatipns of the search pro-
gram. However, when preprocessing and search computatiomot complete before the

time their results were required for a new stimulus dispthg, two communication tech-
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niques between the search and display programs had dgfeehaviors. Message passing
through a file ensured there always was a label to be read aadbysthe display program
at display time, but sometimes the available label had beetuged by the search pro-
gram for use in the previous search iteration. Message as#siough a socket ensured
stimulus display in the display program did not occur unétalintended for the current
search iteration were available; however, waiting for tee/mata sometimes caused sig-
nificant delays in stimulus display — occasionally delaygrefater than 20 seconds — and
sometimes updates were not computed for a search iteratandiven class. | study the
effects of delayed preprocessing and search results oalbresltime search performance

in Chaps. 4 and|5.

3.1.3 Stimulus display

All stimuli were presented using MatIMSS] and the Psydtysics TooIboxﬁ%HM controlled
by an Apple Macintosh and were back projected onto a whiteesciocated at the head end
of the bore using a DLP projector (Sharp XG-P560W). SubjeEwed the images through a
mirror attached to the head coil with object stimuli subtegda visual angle of approximately
8.3 deg x 8.3 deg. During the realtime search scans, each stimulus was giespfar 1 s followed
by a centered fixation cross that remained displayed uriétid of each 8 s trial, at which point
the next trial began. The 8 s trial duration is chosen to benag sis possible while providing
sufficient time for the realtime programs to compute andrretiie next stimuli to display based

on the previous cortical responses. Further experimergsigd details are provided for each

scan in Secs. 3.3.4 and 3.4.3.

3.1.4 Preprocessing

Functional images were acquired with a Siemens Verio scamsiag a 2 s TR. Further fMRI

procedures are provided in Sec. 3.2. The preprocessinggrognalyzed all brain images in
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two-trial blocks, corresponding to the cortical responwestimuli for displays for two consec-
utive searches. The preprocessing program computed asegpiation of the response of pre-
selected cortical regions to displayed stimuli. Each digtial had a duration of 8 s and the
measured hemodynamic (blood-flow) response for each sisrhdd a duration of 10 s. Thus,
each block considered by the preprocessing program spakéedcontaining 9 volumes), ex-
cept for the first block which also contained the first 6 s ofdbiag activity prior to the first
stimulus onset, and thus spanned 24 s (and 12 volumes). 8soathe disparity between 8 s
trials and 10 s hemodynamic responses, there was a 2 s (amaepbverlap between each pair
of consecutively processed blocks.

Scans in each data block were registered to the first volurtteeafurrent run and motion cor-
rected using AFNI. Polynomial trends of orders one througbe were removed. The data then
were normalized for each voxel by subtracting the averagalanding by the standard deviation,

obtained from the current data block and from a previoussh&fice” scan session (described in

Secs. 3.3.4 and 3.4.3), respectively, to approximate @exan and unit variancE[EG]. The stan-
dard deviation was determined from “1 hour of recorded difjoan a previous scan session to
gain a more reliable estimate of signal variability in eaokel. Due to variations in baseline sig-
nal magnitude across and within scans, each voxel’s meaalsiglue required updating based
on activity in each block. To allow multivariate analysiseiploit information present at high
spatial frequencies, no spatial smoothing was perform2{ [6

Matlab was used to perform further processing on the fMReéteaurses for the voxels in the
cortical region of interest for the associated search. Bohetimulus presentation, the measured
response of each voxel consisted of five data samples gf&rtfl TR after onset, corresponding
to the 10 s hemodynamic response duration. Each five-samegpemnse was consolidated into a
weighted sum by computing the dot product of the responsdtemdverage hemodynamic re-
sponse function (HRF) for the associated region. The HRFdetemined based on data from an
initial “reference” scan sessi%lperformed before the realtime scanning sessions, as Hedan

3In the reference scan session, 36 object stimuli were disdlanultiple times over an hour session, in addition
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Secs. 3.3.4 and 3.4.3. The pattern of voxel responses abmssgion was consolidated further
into a single scalar response value by computing a similaghted sum. Like the HRF, the voxel
weights were determined from reference scan data. The wgetghrespond to the most common
multi-voxel pattern observed in the region during the earican, i.e, the first principal compo-
nent of the set of multi-voxel patterns. This projection e€orded realtime responses onto the
first principal component treats the activity across theae@s a single locally-distributed code,
emphasizing voxels whose contributions to this code aret sigaificant and de-emphasizing

those voxels with ordinarily weak contributions to the age pattern.

3.1.5 Search program

The search program chooses the next stimulus to displaytmeghe selectivity of a pre-selected
cortical region based on the region’s responses to recdigbfayed stimuli. The search chooses
the next stimulus by considering a space of visual propeéiel probing locations in this space
(corresponding to stimuli with particular visual propes) to most-quickly identify locations that
will elicit maximal activity from the brain region under sty. The visual spaces searched for the
first group of ten subjects and the second group of ten sigeetdefined in Secs. 3.3.2and 3.4.1,
respectively. Each stimulughat could be displayed is assigned a point in spadmsed on its

visual properties. The measured response of the brainmegithis stimulus-; is understood as:

ri = f(pi) +1 (3.1)

i.e., a functionf of the stimulus’ visual properties as encoded by its locatiothe space plus
a noise ternm, drawn from a zero-centered Gaussian distribution. Thegs® of displaying an
image, recording the ensuing cortical activity via fMRIdaisolating the response of the brain

region of interest using the preprocessing program | modgdeaforming an evaluation under

to other images. After the session was completed, cortgsgionses were processed to determine cortical regions
of interest for study in the ensuing realtime scans and tosomessignal properties of the voxels in these regions.
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noise of the function describing the region’s response. Bgfguming evaluations in strategic
points in visual space, each corresponding to a stimulugémlaseek to identify the location of
the function’s maximum — equated with the visual propertgsgvity of the brain region.

For simplicity, | assume my selected region has a selegtiuvitction f that reaches a maxi-

mum at a certain point in the visual space and falls off wittré@asing Euclidean distance from

this point. | assume the visual feature space, defined in. 882 and 3.4.1 for each of the
two subject groups, reasonably captures the represemtatticisual objects for the given brain
region because each region was selected based on its nefjates®al match with the correspond-

ing space as reflected by data recorded during viewing ofcolsfamuli in the subject’s earlier

reference scan session, described in Secs. 3.3/6 and 36 .expect a considerable amount of
noise to be added to the underlying selectivity-driven oesge signal computed during realtime
scans. Under these assumptions, | use the simplex methpad#8® foundation of my approach
to finding the optimal stimuli in the space. More specificalhe search program uses a modified
version of the simplex simulated annealing Matlab codelalvbs from Donckels [11], imple-
menting the algorithm from Cardoso et g [7]. I'incorporateasurement uncertainty through
partial resets of the simplex and through random pertushatio the measured cortical responses
with magnitude determined by simulated annealing.

The searches for stimuli producing maximal activity for lea¢ the four pre-selected brain
regions are performed over the course of a 1.5 hour scanesgj®1. Because subjects require
time to rest their eyes and their attention across the soam, tstimulus display runs and the
underlying searches selecting the stimuli are limited forinute periods. The simplex for each
cortical region is re-established at the start of each new At the beginning of the scanning
session, the starting location for the simplex for each efftur brain regions is set either to the
origin or to another pre-determined point in visual propegtace, as discussed in Sec. 3.5.2. The
starting locations for the simplexes for each ensuing displin, i.e., the'” run, is set to be the
simplex point that evoked the largest response from thecésal cortical region in thé — 1)

run. At the start of the*” display/search run, each simplex is initialized with tharting point
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z; 1, as defined above, ard further pointsy; 411 = ;1 + Uy v4, WhereD is the dimensionality
of the spacel/, is a scalar value drawn from a uniform distribution betweenand1, andv, is

a vector withd"* elementl and all other elements In other words, each initial simplex for each
run consists of the initial point and, for each dimensiorhefspace, an additional point randomly
perturbed from the initial point only along that dimensidrhe redefinition of each simplex at
the start of each new run constitutes a partial search resette-fully explore all corners of the
feature space while retaining a hold on the location fromptteeious run appearing to produce
the most activity from the selected region. For the remairadehis section, | will focus on
simplex updates in the search for the selectivity of oneicalrtegion, although updates for four

simplexes occur in an alternating fashion throughout eanhas discussed above.

After determining the initial points of the simplex, the gilex method operates as follows,
seeking to identify new points (corresponding to stimuigttevoke the highest responses from

the selected cortical region:

1. Evaluate function at all points in the simplex

2. Hypothesize new point in space that will produce highecfional response than do cur-

rent points in simplex
3. Evaluate function at new point
4. Based on value at new point

e Replace point with smallest functional response in simplitk new point which

contains higher functional response, return to step 2
e Select a different new point to compare with all points inglex, return to step 3
e Adjust locations of all points in simplex, return to step 1

The spatial location of each new point selected by the sixnpiethod for testing is modified to
be the location of the nearest stimulus available to be shawrthere are a limited number of

potential stimuli to choose for the next display and an itdidiombination of potential spatial
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coordinates. Each “function evaluation” is achieved byldg of the stimulus associated with
the point in space by the display program, recording theaanesponse by the fMRI machine,
and fMRI signal processing by the preprocessing progrardeasribed above. Over the search
time, | expect the simplex to contract and the member pomitsdve towards the location whose

properties elicit maximum response in the brain region ustely.

The presence of noise in the recorded fMRI signal potegtizdin reduce the observed re-
sponse of a brain region to one of its most preferred stinmaliising the observed response to
lie below the responses associated with points alreadyerséarch simplex and leading to an
incorrect rejection of the the new preferred stimulus frdra simplex. Similarly, the measured
response of a non-preferred stimulus can be inflated by ramidamproperly accepted into the
simplex. To counteract these effects, as the search psEgethe measured brain region re-
sponse to each new potential simplex point,, corresponding to a visual stimulus viewed by

the subject, is perturbed by subtracting a random scalar,

T w = Tnew — 1 [In(rand)| (3.2)

whererand is a value drawn from the uniform distribution betwe®and1, and7 is a scaling
“temperature” value discussed below; the measured braporeses of the points currently in the

simplex are perturbed bgddingsimilar random scalars,

i =1; + |T In(rand)| (3.3)

for the purpose of comparing the current simplex points wli# potential new point. These
adding and substracting operations have a conservateetgliiniting newly-accepted points to
those for which the brain region appears to show dramayicgéater selectivity than the points

currently in the simplex. The scaling temperature valudecreases over search time based on
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the equation:

Toia

1 _|_ TOldl;Lo(_1+6)

Thew = (3.4)

where) is a pre-determined cooling rate parameter and the standard deviation of all brain
region response values so-far measured. A lafgealue results in faster cooling, and a larger
o value — reflecting less convergence in brain region resmonsaesults in slower cooling.
As the search progresses, it is expected the simplex will§@n points in an increasingly nar-
row region of visual feature space — an area producing pdatity high responses from the set
cortical region — and more complete exploration of the saradpace is favored over cautious
acceptance and rejection of new simplex points. Decredbmtemperature causes less pertur-
bation of cortical region responses at each point, in Eqri%aBd 3.3, relaxing the criteria for
replacing current points in the simplex with new points alolgng freer movement of the sim-
plex in the space. The strategy of decreasing random paitiars over time, and the method for
decreasing perturbations through Eqn|/ 3.4, constitutesa éf “simulated annealing.” The tem-

perature is set to decrease when the span of the simplex insihal feature space has narrowed

sufficiently k?, 11]. However, due to the limited number aéts in each realtime scanning run
for each search — each search run completes after 15 “funetialuations,” corresponding to

the number of stimulus display trials assigned to each bdareach scanning run, as discussed

in Secs. 3.3.4 and 3.4.3 — the reduced span criterion neveeisand the temperature never is

decreased, in my present study.

Simulations were used to findland initial 7' values to maximize the chance of correctly
identifying the spatial neighborhood eliciting maximurnured response using the simplex sim-
ulated annealing realtime search over six scan runs, witbeBbches steps in each run, similar
to the conditions of the actual realtime scan searches. |8ietibrain responses were computed
following Egn./ 3.1, using a pre-determined selectivity teerin the feature space and applying
Gaussian noise = N (0, s); the standard deviation of the simulated noiseas selected based

on the statistics of ventral pathway responses to objectuitirecorded in my previous study
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described in Chap. 2. As a result of the simulations, the galu&qn. 3.4 are set as= 5 and

T = 10.

3.2 fMRI Procedures

Subjects were scanned using a 3.0 T Siemens Verio MRI scavitiea 32-channel head coil.
Functional images were acquired with a gradient echo-plemaging pulse sequence (TR 2 s,
TE 26 ms, flip angle®)0°, 2 mm x 2 mm x 3 mm voxels, field of view192 x 192 mm?,
31 oblique-axial slices). Slices spanned the majority eflihain, to all the possibility of future
study of visual stimulus representations beyond the vistrams. An MP-RAGE sequence
(flip angle9°, 1 mm? voxels, field of view256 x 256 mm3, 176 sagittal slices) was used for

anatomical imaging.

3.3 Real-world object search

In searching for complex visual feature selectivities ia tlentral stream, | begin with a focus
on the perception of real-world objects with visual featurepresented by the scale invariant
feature transform (SIFT, [36]). Use of photographs of relgjleots — such as statues, cows,
cars, and suitcases — provides a more realistic understgrdicortical activity while a person
is interacting with the real world, rather than interactiwgh an artificial world of simplistic
blob and pattern stimuli employed by most studies of compigxal properties used by the
brain E4,]. Unfortunately, the optimal representatiorcapture the visual structure of real-
world objects, particular as it is perceived in intermedigggions of the cortical ventral pathway,
is unclear. My recent work, discussed in Chap. 2, indicatd&a-Based representation of visual
objects is a strong candidate to match representationshysedxel regions in mid- and high-
level vision areas in the brain. SIFT incorporates esthblislow-level biological features —

capturing local edge information at selected interestpetrand performs non-linear synthesis
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of statistics across the full image. These computationapgnties have contributed to SIFT’s
general success on object recognition tasks in the field wipcer vision, and contribute to
its association with intermediate cortical visual reprgagons. | represent real-world object
stimuli through coordinates in a SIFT-based space andls#a@ugh this space to identify visual

selectivities of regions in the ventral object perceptiathgvay.

3.3.1 Stimuli

Stimuli were drawn from a picture set comprised of 400 didticolor object photos displayed
on 53% gray backgrounds (Fig. 3.2). The photographic imagse taken from the Hemera
Photo Objects datale]. My use of real-world images ¢éaib rather than the hand-drawn
or computer-synthesized stimuli employed in the studiesidflevel visual coding discussed in
Chap! 1, e.g., Cadieu et am [4] and Yamane eg. [78], is iredrid more accurately capture the
importance of the broad set of naturally-occurring vis@attires to object perception.

Four separate searches were performed in each realtimgsanatanning session, probing
the visual property selectivities of four distinct preesgted brain regions. Each search drew
from a distinct class of visual objects — mammals, humamircars, and containers. The
images in each class were manually selected from the Hena¢gsiaet — automatic grouping of
stimuli was not possible as there was insufficient semantarmation included in the dataset to
assemble a class of sufficiently large size. The four maynaeslsembled classes varied in size
from containing 68 to 150 objects.

The focus of each search within an object class limited Vigaigability across stimuli in the
search. The remaining sources of variability, | hoped, \@dag relatively intuitively identified
and easily associated with their influence on the magnitdidenical region activity. Unfortu-
nately, these hopes were not frequently fulfilled in our lssudiscussed in Chaps. 4 and 5. The
cortical region for each search was selected based on tienizglifferentially high activation

when the subject viewed objects within the search classféected by data recorded from an
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Figure 3.2: Example stimuli used in realtime search of reaild objects. Images were selected
from four classes of objects — mammals, human-forms, cascantainers.
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earlier reference scan session. Use of a narrow object tdgs®obe a region selective for the
same class also was intended to produce strong corticadlsignanalysis during the search
scans, minimizing the effects of noise when computing thdé semulus to display based on

regional response to the most recent stimuli.

3.3.2 Stimulus “SIFT” space

To identify visual properties producing highest activitya pre-selected brain region, my sim-
plex simulated annealing search program requires a Ewlidearch space containing the object
stimuli to display. While my recent work supports the use dFlShs a model of representing
visual objects in a manner similar to the grouping perforingsgoxel representations in interme-
diate regions of the ventral pathway, the SIFT measure ofitetal. does not directly generate
a space that is easily searched. Entries to the pairwisangistmatrix — the “representational
dissimilarity matrix” — for pairs of object stimuli are comped based on non-linear Kullback-
Leibler divergence comparison between histogram of vist@ats [35]. In my present work, |
define a Euclidean space based on the distance matrix usitigiidamplementation of metric
multidimensional scaling (MDS) [55]. MDS finds a space in gvhthe original pairwise dis-
tances between data points — i.e., SIFT distances betweeulist— are maximally preserved
for any givenn dimensions.

Starting with a SIFT-based distance matrix for 1000 Hemé@@objects, the MDS method
produced a space containing over 600 dimensions. Unfaelypas the number of dimensions
in a search space increases, the sparsity of data in the spadecrease exponentially, making
a clear conclusion about the underlying selectivity fumctincreasingly more uncertain absent
of further search constraints. Furthermore, the standan@lex method’s average search time
grows polynomially with the number of dimensions, and exgdrally in the worst case [52],
which poses a significant problem given limited subject timéhe scanner. Therefore, | seek to

use a small number of the most-representative dimensiomsdtiime search. Fig. 3.3 shows the
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Figure 3.3: Percent variance explained of SIFT pairwiseadise structure by multi-dimensional
scaling (MDS) dimensions.

first four to eight dimensions of MDS space provide the mostamental benefit in capturing
variance of the original SIFT-based pairwise distance ixiaitnclusion of each further dimen-
sion adds important additional contributions to modeling EIFT representation, but individual
dimensions quickly diminish in descriptive power. To alltee search program to be able to
converge, | limit the number of MDS dimensions to the top fdtre potential shortcomings of

a four-dimensional MDS SIFT space are evaluated in Chap. 5.

3.3.3 Subjects

Ten subjects (four female, age range 19 to 31) from the Cagridgilon University community
participated, gave written informed consent, and were taoiy compensated for their partic-
ipation. All procedures were approved by the InstitutioRaview Board of Carnegie Mellon

University.
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3.3.4 Experimental design

The study of featural selectivities in the perception ofl-wearld objects was divided into an
initial “reference” scanning session and two realtime s@ag sessions for each subject. The
reference session gathers cortical responses to the fgses of object stimuli. These responses
are used to select the four brain regions — correspondinpeddur object classes — to be
further studied in the ventral pathway and to gather infdrammabout fMRI signal properties

in these regions. The realtime scan sessions search farlsgmducing the maximal response
from the four brain regions, dynamically choosing new stinmudisplay based on the regions’
responses to recently shown stimuli. Each realtime scasi@ebegins with a distinct set of
starting coordinates in the visual spacg, described in Sec. 3.1.5, corresponding to a distinct set
of stimuli to display for the beginning of the four searchafer the completion of both sessions,

| compare the visual feature selectivies identified in eadsi®n for each region to determine
if search results are independent of starting conditiortss €omparison constitutes one of my
evaluations of my novel realtime processing and searchaudsthdescribed in Sec. 3.5, which |

study in addition to the scientific findings of ventral patlywagional feature selectivities.

Reference session

The reference session gathers cortical data needed toefiestively pursue searches for real-
world stimuli in the SIFT-based space defined in Sec. 3.3tarperform realtime processing
in the later scan sessions. In particular, the data are wsel@ntify regions most differentially

activated by each of the four stimulus classes, via a “clasalizer,” and are used to identify
regions that group visual object images in a manner simda8IFT, via a “SIFT localizer,”

described in Sec. 3.3.6. The overlap between these clasSIkiidegions are used to define 125
voxel class/SIFT cubic regions of interest (ROIs) for studyhe realtime scan sessions. Voxel-
specific signal properties and multi-voxel pattern trendslaarned from the data in the ROIs

in the reference session and are used for realtime anatysigerting multi-voxel, multi-second
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responses from a given region to a given stimulus into a singmber representing the region’s
response as discussed in Sec. 3.1.4.

Runs in the reference scan followed a slow event-relatedydesimilar to that used in my
recent work studying mid-level visual representationsartical object perception [35]. Each
stimulus was displayed in the center of the screen for 2.0®@~Ned by a blank 53% gray screen
shown for a time period randomly selected to be between 5@03&00 ms, followed by a
centered fixation cross that remained displayed until trleadreach 10 s trial, at which point
the next trial began. As such, the SOA between consecutimveilsts displays was fixed at 10 s.
Subjects were instructed to press a button when the fixatioss@ppeared. The fixation onset
detection task was used to engage subject attention thootidgihe experiment. No other task
was required of subjects, meaning that the scan assesges jpdjception under passive viewing
conditions.

The 10 s SOA was chosen to minimize temporal overlap betwegal\BOLD responses
for multiple stimuli — based on the assumption that the heynadic response in the ventral-
temporal cortex has decreased to a sufficient degree in thE219 after stimulus onset to mini-
mize the noise in my measurements of the cortical responses.

The stimuli were presented in four three-minute runs, spreaoss the one-hour scanning
sessions and arranged to minimize potential adaptatiopaming effects. Each run contained
36 object pictures, 9 objects from each of the four classered to alternate among the four
classes similar to the realtime display design describe®eie. 3.1.1. Stimulus order was ran-
domized across runs. Over the course of the experiment,dxbct viewed each picture four
times; averaging across multiple repetitions was perfarfioe each stimulus, described below,
to reduce trial-by-trial noise. | determined from data gaéu in Leeds et al. that relatively little
information is gained by averaging over more than four rijpets.

The session also included functional localizer scans tatifyeobject selective cortex —
namely, the Lateral Occipital Complex (LOC) — a functionalfided regionEO] that we con-

sider for comparison with the four “SIFT/object-class Iboers” described above. For the LOC
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localizer, 16 s blocks of common everyday objects were r@étiexd with 16 s blocks of phase-
scrambled versions of the same objects, separated by 6 saﬁbﬁM,EO]. Phase scrambling
was achieved by taking the Fourier transform of each imagedaomizing the resulting phase
values while retaining the original frequency amplitudasg reconstructing the image from the
modified Fourier coeﬁicient@S]. Within each block, 16 iges, depicting 14 distinct objects,
were shown for 800 msec each, each object being followed 0arisec gray screen. Two of
the objects were sequentially repeated once during eachk bloto maintain attention, subjects
were instructed to monitor for this, performing a one-baaitity task in which they responded
via a keypress whenever the same object image was repeatess &vo image presentations.
Six blocks of both the intact and scrambled objects comnulitiovere presented over the 282 s
scan [47]. The object images used in the localizer scans difezent from the object picture
stimuli discussed in Sec. 3.3.1. LOC area(s) were identdiedhose brain regions more se-
lective for intact versus scrambled objects. LOC areasuhedl all regions containing spatially

contiguous voxels (no minimum cluster size) for which betghts for the block design had

significance level op < .005.

To provide anatomical information, a T1-weighted struatiMRI was performed between

runs within the reference scanning session.

Realtime sessions

The realtime sessions displayed stimuli chosen in realtorreaximize the response of the four
pre-selected ROIs under study, as discussed further in3SecThe stimuli drawing the highest
responses are considered to indicate the visual featulgisgies for a given region.

Runs in the realtime analysis sessions followed a fast eedated design. Each stimulus
was displayed centered on one of nine locations on the sdogehs followed by a centered
fixation cross that remained displayed until the end of easht@al, at which point the next

trial began. As such, the SOA between consecutive stimuk@ays was fixed at 8 s. For
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each trial, the stimulus center was selected to be +2.5, €2.6rdegrees horizontally and/or
vertically displaced from the screen center. The stimukuster changed with 30% chance on
each new trial. Subjects were instructed to press a butt@nwine image was centered on the
same location as was the previous image. The one-backdodatk was used to engage subject
attention throughout the experiment. This task was usedadof fixation detection employed in
the reference scan because the one-back location taskesairticular focus on each stimulus,
which could potentially strengthen cortical activity aledhat elicited by passive viewing of the
objects, aiding in the accurate computation of regiongbease in each trial. Unfortunately,
the chosen design for the realtime scans also risks resp@rsbility resulting from slight
changes in stimulus position and from maintaining the mresitrial in memory as a strategy
for comparing locations. In the reference session, thegedater liberty to pool responses over
multiple runs in post-hoc analyses, and thus potentiallgpkee cortical signals were recorded
for each trial using the fixation detection design while aiag the potential confounds of the
one-back location task.

The 8 s SOA was chosen instead of the 10 s SOA used in Sed. @i8ctease the number of
objects viewed by the subject in each session. Concern ab@a flom temporally overlapping
voxel responses — lasting 10-12 s after stimulus onset —sg&eleed because a stable response
estimate can be obtained across the 10 s stimulus respgmse Isy fitting each voxel signal to
the average HRF for the ROI, learned during the reference deacribed in Sec. 3.3.6. Fur-
thermore, the design rotates among the four stimulus ddssm trial to trial and each object
class ROI was chosen to contain voxels responding selcfarestimuli in the associated class.
Therefore, the response of a region for its given stimuliexjgected to be relatively unaffected
by the front and tail ends of the overlapping responses dfti@f-class stimuli displayed before
and after it — responses that are presumably lower in ovaraplitude. Notably, the “rapid”
event related design is only 2 s faster per run than is the sl@nt related design used by the
reference scan. The 8 s SOA is chosen to be short while stllighng sufficient time for the

realtime analysis and search programs to compute and reimext stimuli to display based on
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the previous cortical responses.

In each of the two 1.5-hour realtime scanning sessions, tthmlls were presented in four
to eight 8.5-minute runs. Each stimulus was selected bydakime search program based on
ROI responses to the stimuli previously shown in the samegeay, as discussed in Sec. 3.1.
Each run contained 60 object pictures, 15 objects from ekds cordered to alternate through
the four classes. Interleaving the studies of four distunaial object classes avoided adaptation,

priming, and biasing effects.

Each realtime session began with an LOC localizer scamgviiilg the design described in
Sec/ 3.3.4. This scan played an important role in the mechaofithe realtime search meth-
ods. The ROIs selected for study in the realtime scan sessiendefined as positions in the
96 x 96 x 31 voxel volume returned by the fMRI scanner. However, the gmss of the
corresponding regions in the brain likely will differ betam scan sessions, as the subject’s brain
will have a slightly different position and orientation inet fMRI volume each time he or she
is placed into the scanner for the session. Because eachhaxédts own assigned weight in
each region, as a step towards multi-voxel pattern anaflys@aissed in Sec. 3.1.4, proper align-
ment between the reference scan and each realtime scanastamipfor each voxel. The first
functional volume scanned for the LOC localizer was usedoimmute the spatial transforma-
tion between the brain’s position in the current sessionigsmgosition in the reference session.
This transformation was applied (in reverse) to the ROl ioces computed from the reference
scan data and the resulting corrected ROIs were appliedejprpcessing analyses for the rest
of the session. The initial estimation of the transformatiatrix requires several minutes of
computation — time that largely overlaps with the perforiceaof the LOC localizer. Subject
performance of the localizer task, rather than lying in tb@mer with no task, decreases the risk
for subject movement while the alignment computations toglete. Lack of motion within the
session maximizes the alignment of the brain at any giventpoiscanning with the orientation

of the corrected ROIs.
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3.3.5 Preprocessing
Reference session

Functional scans during the reference scan session wesgistared to the anatomical image and
motion corrected using AFNI [46]. Similar to the realtimesprocessing in Sec. 3.1.4, highpass
filtering was implemented in AFNI by removing sinusoidalnds with periods of half and full
length of each run (338 s) as well as polynomial trends of srd@e through three. The data
then were normalized so that each voxel’s time course wasmpe@an and unit varianc&%]. To
allow multivariate analysis to exploit information preseam high spatial frequencies, no spatial
smoothing was performed [62].

For each stimulus repetition, the measured response of \eaa consisted of five data
samples starting 2 s after onset, corresponding to the 1@wseba stimuli. Each five-sample
response was consolidated into a weighted sum, intendestitoage the peak response. This

sum took two forms, distinct from the method used in Sec43.1.

e For the “SIFT localizer,” used to identify voxel regions tigroup stimuli in a manner
similar to SIFT as in the analyses in Chap. 2, the sum over tigietg of each voxel's
response was accomplished as one step in a “searchligfdém&Z]. 123-voxel search-
light spheres — each with a radius of 3 voxels — were definedeced sequentially on
every voxel in the brain. The average five-sample respongexais across this sphere and
across all stimulus presentations was computed. For a gearchlight, for each stimulus,
each voxel was assigned a number based on the dot producds afvfrage response and
the voxel's mean response across all six repetitions ofghatulus. To the extent that
hemodynamic responses are known to vary across cortican®ghis procedure allowed
us to take into account a given voxel's local neighborhoo@maesponse shape. Fitting
the local average response may provide a more accurate rabtted relative activity of
voxels across a sphere as compared to fitting a fixed respansédn across the whole

brain. This “searchlight HRF-fitting” was previously empéal successfully in my work
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on identifying models for intermediate-level visual repgatations in the ventral pathway,

discussed in Chap. 2.

e Forthe “class localizer,” used to identify voxels respamgmore strongly to stimuli in one
of the four object classes than to stimuli in the other thtasses, the sum over time points
for each voxel was simply an average of the middle three sesnpi its responssLjZG].

Class preference analyses were performed on a per-voxe, hathier than over a 123-

voxel searchlight, providing less data from which to congdotal hemodynamic response

shapes used in the SIFT localizer. Thus, | employed an e@diak estimation method,

presuming response peaks across the brain will occur 4 tdt8rsstimulus onset.

Realtime session

At the beginning of each realtime session, an LOC localizansvas run and AFNI was used
in realtime to compute an alignment transformation betwéerinitial functional volume of the
localizer and the first functional volume recorded during teference scan session. The ROIs
selected for study in the realtime scan sessions (Sec) 3v@ré defined as positions in the voxel
volume returned by the fMRI scanner during the referenca.setowever, the actual positions
of these object-specific regions are set in the anatomitedeece frame of the brain. Changes in
head position between reference and realtime scan sessguisin the brain, and its associated
ROIs, moving to different locations in the scan volume. Beseaeach voxel has its own assigned
weight in each region, as discussed in $ec. 3.1.4, proggmraknt between the reference scan
and each realtime scan is important for each voxel. The foamstion computed between the
realtime LOC volume and the reference volume was appliedvarse to each voxel in the four
ROIs. The resulting corrected ROIs were applied througltieairealtime search runs to extract

signal from the voxels associated with each search.
Preprocessing during the realtime search runs was pertbimrealtime by the preprocessing

program, as discussed in Sec. 3.1.4, and was used to coregida responses to recently display

67



stimuli. The results of this preprocessing were used by ¢#aech program to select new stimuli
to display to the subject to determine the visual propemiesking the highest activity from
each of the selected regions. The results of preprocesksiogwere stored for later post-session

analyses.

3.3.6 Selection of class/SIFT regions of interest

For each subject, functional activity recorded in the refiee scan was used to identify brain
regions most differentially activated by each of the foumsitus classes and that cluster images
in a manner similar to SIFT. Regions of interest (ROISs) talgtduring the realtime scan ses-
sions were selected manually from contiguous groups oflgaratching SIFT representation of
objects and showing class-specific activity. Focus on tipeseselected (and non-overlapping)
regions during realtime search sessions allowed me tottatgeuli for each region — i.e.,
selecting stimuli limited to be within a defined real-worlbject class — in order to produce
stronger fMRI signals for more reliable single-trial arsdg in the presence of fMRI noise. The
use of these pre-selected regions also maximized the igéaets of using the SIFT-based space,

defined in Sec. 3.3.2, to search for visual feature seldietvi

Class localizer

For each stimulus class, selectivitys. was assessed for each voxel by computing:

{re) = (re)

T o(r)

(3.5)

where(r.) is the mean response for stimuli within the given cldsg) is the mean response for
stimuli outside of the class, andr.) is the standard deviation of responses within the class. |
visually identified clusters of voxels with the highest tela responses for the given class, using
a variable threshold and clustering through AFNI. Thredbalere adjusted by hand to find

overlap with SIFT localizer results, rather than selectimgsholds based on significance tests.
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Figure 3.4: Class-selective regions for subject S9 in realdhobject search. Colors are associ-
ated as follows: blue for human-forms, cyan for mammalsggifer cars, orange for containers,
red for overlap.
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Figure 3.5: Cortical regions with dissimilarity structuteighly correlated with the dissimilarty
structure of the SIFT visual coding model for subject S9 ml-«world object search. Compar-
isons follow the representational dissimilarity matrieaschlight method discussed in Chap. 2.

Alternative approaches for merging class and SIFT localesults are discussed in Chap. 6. In
general, the highest-selectivity clusters of voxels appéthin the visual processing streams, as
we would expect, though further regions are apparent thgtlmaassociated with the semantic
meaning of the class (Fig. 3.4). Chaps. 4 and 5 further asbes®c¢alizer results and their

implications.

SIFT localizer

The representational dissimilarity matrix-searchlighgthod described in Chapl 2 was used to
determine brain regions with neural representations céaibjsimilar to the representation of the
same objects by SIFT. Thresholds were adjusted by hand tac@intiguous cluster with high

voxel sphere: values, computed based on distance matrix correlationsgsited in Chap. 2;
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full-volume significance tests were not performed. Theargishowing highest matches be-
tween SIFT and voxel representations of the stimuli appaaurded in the ventral visual stream,

associated with visual object perception (Fig. 3.5), cstesit with prior findings for SIFT [35].

Selection of ROIs

Visual inspection was used to find overlaps between the-slalestive and SIFT-representational
regions. For each class, a 125 voxel cube ROI was selected loasthe observed overlap in a
location in the ventral visual stream.

The use of relatively small cortical — one cubic centimeteregions enables exploration of
local selectivities for complex visual properties. Anagsvere successfully pursued on similar
spatial scales in our past work (Chap. 2 identifying 123-Verarchlights showing significantly
similar stimulus grouping structure to those of computaran models and in past neurophysi-
ological studies identifying neural columns showing st@y to particular object shapeEZ[LSfS].
In potential future work, adjacent one cubic centimeterarg can be studied to mark the pro-

gression across the brain of featural selectivities in pace.

ROI statistics

Once the ROIs were established, further statistics weregpated for each region for use in re-
altime preprocessing. The average HRF was computed forregabn, taken across all voxels
and all real-world object stimulus displays. This HRF wasdis the realtime sessions to com-
pare with the time course of voxel responses to recentifalysol stimuli. In computing region
statistics, the original voxel time course responses foheaference scan stimulus display were
consolidated into a weighted sum by computing the dot prbofitbe response and the HRF. Pro-
ceeding with the consolidated voxel responses, principadgonent analysis was performed on
the multi-voxel responses across runs and stimuli to ifletite most common multi-voxel pat-

tern. The first principal component — the most common pattewvas compared to multi-voxel
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pattern responses found in realtime. As indicated aboeeHRF, the first principal component
of the multi-voxel response, and the variance of each vexatie courses were stored for use

during realtime searches.

3.4 Fribble object search

While real-world object stimuli provide a more direct persipge on cortical object perception
of regularly-observed objects, compared to the simpltidicial stimuli often used in similar
studies E4E4], the broad variety of visual properties eomed in such stimuli are difficult to
capture in the small search space we can explore in a prhitieaframe with the simplex sim-
ulated annealing search. Indeed, Fig. 3.3 shows 10 dimensibSIFT-based Euclidean space
captures less than 35% of variance in the grouping structtil€®00 real-world objects, while
my search can explore only four dimensions in the limitechagag time. Chaps.|4 and 5 re-
port that realtime searches performed on cortical regioms the 10 subjects viewing classes of
real-world objects purposely restricted to limit visuatiedility frequently failed to converge on

clear visual feature selectivities (though some of the-veald object searches do show exciting

results).

As a potential solution to the challenges of visual variapih the real-world objects, | pur-
sue search for complex visual selectivities using a setath&tic objects called “Fribbles[ﬁ?G].
These stimuli are composed of colored, textured, threesdsional shapes forming objects
richer in structure than the gray blobs employed by Yamanal.etand Hung et aI.iZES],
but more controlled in appearance than the world of realaibjeWhile the stimuli differ from
the set discussed in Sec. 3.3, the majority of the methodseady identical for the dynamic
selection of stimuli to identify preferred visual propesi The Fribble study provides a comple-
mentary perspective to the real-world object study on irealisearch performance and on visual

selectivities in the ventral pathway.
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3.4.1 Fribble stimuli

Stimuli were generated based on a library of synthetic Femgl,@], and were displayed on
54% gray backgrounds as in Sec. 3.3.1. Fribbles are anikebbjects composed of colored,
textured geometric shapes. They are divided into classe$, @efined by a specific body form
and a set of four locations for attached appendages. In lth@yi, each appendage has three
potential shapes, e.g., a circle, star, or sqtinead for the first class in Fig. 3.6, with potentially

variable corresponding textures — thus, there3re: 81 initial members of each class.

As in Sec! 3.3.1, four separate searches were performectnrealtime scanning session,
probing the visual property selectivities of four distifetin regions. Each search drew from a
distinct class of Fribble objects, as shown in Fig. 3.6. Whkiéeh search explored a relatively
narrow visual space around a baseline body and configurafiappendages, the variability of
appearance across Fribble classes allowed a broader ptvepmn selectivities across the world
of objects (though perspective was considerably more cainstd than it was on the set of real-

world objects), and trends in the nature of visual featusegacross classes and brain regions.

A Euclidean space was constructed for each class of Frillipézts. In the space for a given
Fribble class, movement along an axis corresponded to nmgphe shape of an associated
appendage. For example, for the purple-bodied Fribblesckhe axes were assigned to 1) the
tan head, 2) the green tail tip, and 3) the brown legs, withéfe grouped and morphed together
as a single appendage type. Valid locations on each aximegddrom -1 to 1 representing two
end-point shapes for the associated appendage, e.g.l@log@ad or a star head. Appendage
appearance at intermediate locations was computed thringgmorphing program Norrkross
MorphX [75] based on the two end-point shapes.

For each Fribble class, stimuli were generated for each ot@tlons — the end-points -1
and 1 as well as coordinates -0.66, -0.33, 0, 0.33, and 0.66each of 3 axes, i.e7} = 343

locations. Rather than generate each stimulus indiviguhk 7 appearances for each appendage

4Square heads were not used in this study, as discussed below.
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Figure 3.6: Example stimuli used in realtime search of Habdibjects. Images were selected
from four synthesized classes, shown in rows in rows 1 and&)d34, 5 and 6, and 7 and 8,
respectively.
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were generated separately and then assembled togethd#rerftdl Fribble object for each of the
343 coordinates in the space.

While the coordinates in the space can be understood as \@slitahstructions (through
morphing) from a baseline shape at the origin, distancesdst object pairs in Fribble space
are distinct from edit distances. Edit distances count tmalrer of discrete changes between
objects. In contrast, Fribble distances represent eachrajgge morph along a continuum of
values, from 0 to 2, and combine changes to different appggxlasing Euclidean distance —

the sum of thesquareddistances along each axis.

3.4.2 Subjects

Ten subjects (six female, age range 21 to 43) from the Cardgilon University community
participated, gave written informed consent, and were taoly compensated for their partic-
ipation. All procedures were approved by the InstitutioRaview Board of Carnegie Mellon

University.

3.4.3 Experimental design

As with the real-world objects (Sec. 3.3.4), the search fislife objects producing the highest
activity in pre-selected cortical regions — indicatinguas featural selectivities — was pursued
through an initial reference scan session and two realtraa sessions. The reference session
gathered cortical responses to the four classes of objeatilst These responses were used to
select the four brain regions — corresponding to the founlfig classes — to be further studied
in the ventral pathway and to gather information about fMighal properties in these regions.
The realtime scan sessions searched for stimuli produbi@gnaximal response from the four
brain regions, dynamically choosing new stimuli to dispbmsed on the regions’ responses to

recently shown stimuli.
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Reference session

The reference session design was almost identical to ththeakference session for real-world
objects, described in Sec. 3.3.4. 36 stimuli, 9 stimuli freach of the four Fribble classes, were
passively viewed in the context of a fixation onset detect&sk spread over four three-minute
runs. The data gathered during these runs were used tofideéntible class specific ROIs for
study in the realtime sessions. Functional localizer staigentify the object selective cortex —
lateral occipital cortex, or “LOC” — were included for comgson with the four Fribble class
localizers. To provide anatomical information, a T1-weeggh structural MRI was performed

between runs within the reference scanning session.

Realtime sessions

The realtime sessions displayed stimuli chosen in realtonreaximize the response of the four
pre-selected ROIs under study. The stimuli drawing the ésgliesponses are considered to
indicate the visual features selectivities for a given eegiThe methods for stimulus selection
are discussed in Sec. 3.1.

Runs in the realtime analysis session followed a fast exgdated design. Each stimulus was
displayed in the center of the screen for 1 s followed by aerextfixation cross that remained
displayed until the end of each 8 s trial, at which point thetrigal began. On any trial there
was a 10% chance the stimulus would be displayed as a dansonef itself — namely, the
stimulus’ red, green, and blue color values each would besdsed by 50 (max intensity 256).
Subjects were instructed to press a button when the imageaag to be “dim or dark.” The
dimness detection task was used to engage subject attehtmghout the experiment. This
task was used instead of fixation detection employed in tfe@arece scan because the dimness
detection task requires particular focus on each stimuMigch could potentially strengthen
cortical responses above those elicited by passive viewfiige objects, aiding in the accurate

computation of regional response in each trial and leadimgdre reliable choices in the dynamic
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selection of future stimuli. The one-back location task ewaployed for this purpose in the real-
world object searches. However, the one-back locationask have caused subjects to recall
past stimuli in memory when viewing new stimuli, to compdre location of the two stimuli to
correctly determine if the stimuli were centered in diffiercations; this recollection potentially
could contribute to limited interpretable results for teearch method, as seen in Chaps. 4 and 5.

At the beginning of each realtime session, an LOC localizansvas performed. The first
volume from this localizer was used to compute the spaasformation between the subject’s
brain position in the scanner during the current scan angdiséion during the initial reference
scan session. This transformation was used to correcty dhie Fribble class-specific ROIs
identified from reference session data to the brain positidhe current scan session, ensuring
the correct voxels are studied throughout the realtimeckeams. Sec. 3.3.5 further discusses
the need for proper ROI alignment.

Further scan details were the same as those for the reathwbiect study, discussed in

Sec| 3.3.4.

3.4.4 Preprocessing

Preprocessing of fMRI signals for reference and realtinensessions largely followed the same
methods as did preprocessing for the real-world objectcéeaiscussed in Sec. 3.3.5.

Reference sessions functional scans were motion corredettended, and filtered using
AFNI. The time courses were further normalized. For the Blelxlass localizer, the five-sample
response of each voxel to each stimulus display was condeose single number represent-
ing response magnitude, computed using the searchlightfiffRtg method used by the SIFT
localizer.

In the realtime sessions, preprocessing was performedaitime. The first volume of the
LOC scan was used to align the ROIs computed based on theme&esession to the subject’s

brain position in the current session. During realtime ceauns, the preprocessing program
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computed region responses to recently displayed stimatijscussed in Sec. 3.1.4.

3.4.5 Selection of Fribble class regions of interest

| organize each class of Fribble object stimuli in a visuapthat groups objects together
based on morphs to specific shapes and textures/(Sec. 3thd simplicity of this representa-

tional model makes it easy to study and search. Howeveinitsligity and specificity also risks

the inability to properly characterize actual visual reggnetations used in the ventral pathway.
By performing the representational dissimilarity matsiarchlight procedure used to identify
cortical regions modeled by SIFT for the real-world objdgeisd regions modeled by other com-
puter vision methods) in Chap. 2, | was able to identify calt&reas reasonably whose visual
representations are well characterized by each simplélergpace. ROIs were selected manu-
ally from these areas for study during the realtime scan@essin these regions, | could search

effectively for complex featural selectivities using tresaciated Fribble space.

The RDM-searchlight method described in Chap. 2 is used tgaoenneural and Fribble
space representations of stimuli. The distance matrix (REivieach Fribble space was con-
structed from pairwise distances between stimuli basechemm tegree of morphing for three
appendages, each associated with an axis in the space.hdlu®$or the maximum accept-
able correlation between Fribble space and voxel-segtthRDMs were adjusted by hand to
find contiguous clusters with high voxel spher@alues, computed as in Chap. 2; full-volume
significance tests were not performed. The regions showigiigelst matches appear in the ven-
tral visual stream, associated with visual object peroeptbut also in a variety of areas less-
typically associated with vision (Fig. 3.7). As Fribble ebj classes have visual similarities to
animals and tools, semantic associations with class smaggsxplain Fribble class associations
in non-visual cortical areas.

125 voxel cube ROIs were selected for each object class loasé@dual inspection of search-

light results in the ventral visual stream. As in Sec. 3.816,HRF, the first principal component
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Figure 3.7: Cortical regions with a dissimilarity structumghly correlated with the dissimilarty
structure of the space for each Fribble class for subjechSaribble object search. Colors are
associated as follows: blue for class 1, cyan for class Zmgfer class 3, orange for class 4.
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of the multi-voxel response, and the variance of each vexatie courses were computed and
stored for each ROI for future use during realtime searcts.rufihese class-specific patterns
were used in comparison with response signals recordedsamnaltiple time samples and mul-
tiple voxels to derive a single numeric measurement of nespdor each stimulus display; this

number was used to inform the search for region visual feagatectivity.

3.5 Assessment of search performance

The realtime search methods developed for and used in thig stly on a variety of assumptions
about visual representations employed in the ventral Vism@am and about the featural selec-
tivities of small one cubic centimeter neural populationthim that stream. Presuming, after the
preprocessing employed in this work, the measured respafrsaelected ROI is characterized
by a function with a unique maximum in the associated feaspace, the simplex simulated

annealing method will:

e be consistent i.e., identify the stimuli in the area of feature space pi@dg maximal

response, regardless of the starting point of the search and

e be convergent i.e., mostly investigate stimuli near the location pradgcmaximal re-
sponse, expending little time to investigate more distéintudi that will evoke lower re-

gion responses.

Consistencyprovides confidence in the reliability of search resultslesbonvergencendicates
advantage of strategic selection of stimuli over a limitearstime compared to random selection
from the full pool of potential images. Metrics were defined lboth properties and applied to
all search results. Given the limited number of existanthods for the study of complex visual
selectivities and for realtime fMRI analysis, assessméntynovel combination of methods is

important to identify promising directions for further iestigative approaches in the future.

80



Due to the variability of cortical responses and the noistMRI recordings, analyses were
focused on stimuli that were visited three or more times. @herage response magnitude for
stimuli visited multiple times is more reliable for conciass of underlying ROI selectivity.
When subjects did not see the correct stimulus at the proper tor a trial, which happened
on infrequent occasions discussed in Chap. 4, their ROI resgsofor those trials were excluded

from analysis.

3.5.1 Convergence

For a given class, convergence was computed based on thesfeptace locations of the visited
stimuli S, and particularly the locations of stimuli visited three mapre times,S¢presn. The
points inS;nresn Were clustered into groups spanning no more thamnstance in the associated
space based on average linkage, whére- 0.8 for Fribble spaces and = 0.26 for SIFT
space’. The result of clustering was the vectduisterssnresn, Where each element contained
the numeric cluster assignment (from 1 to N) of each poi;igesn. The distribution of cluster
labels inclusterssinresn Was represented agius:, Where then” entryp.,..:(n) is the fraction
of clusterssinresn €Ntries with the cluster assignment
Conceptually, convergence is assessed as follows basecedfistinbution of points, i.e.,
stimuli visited at least three times:
e If all points are close together, i.e., in the same cluster,dearch is considered to have
converged.
e If most points are in the same cluster and there are a “smatbeu” of outliers in other
clusters, the search is considered to have converged sutfigi
e |f points are spread widely across the space, each with its@user, there is no conver-
gence.

5The distance thresholds were chosen based on empiricaMatises of clusterings across regions and subjects
in each space.
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Set as an equation, the convergence metric is

metric(S) - ||pclust||2 - '1||pclust||0 (36)

where||perust||2 = \/pclust(l)2 + o 4 Pawst(N)? and||perust||o is the number of non-zero
entries ofpqust- The metric awards higher values whpp,s: element entries are high (most
points are in a small number of clusters) and the number ofzava entries is small (there are
few clusters in total). Eqn. 3.6 pursues a strategy relaigtidt of the elastic net, in whict
and/1 norms are added to award a vector that contains a small nushben-zero entries, all of

which have small values [80].

3.5.2 Consistency

For each subject and each stimulus class, search consistascdetermined by starting the
realtime search at a different location in feature spackeabeginning of each of the two search
scan sessions. In the first scan session, the startinggo®ias set to the origin for each class,
as stimuli were distributed in each space relatively evetyund the origin. In the second
scan session, the starting position was manually seleotbé in a location opposite from the
regions with stimuli frequently visited and producing thghest magnitude responses. If a given
dimension was not explored in the first session’s searchndora offset from the origin along
that axis was selected for the beginning of the second sed$itne second search returns to the
locations frequently visited by the first search, despiégtistg distant from those locations, the
search method shows consistency across initial conditions

The metric for determining consistency of results acrossaesessions was a slight mod-
ification of the convergence metric. The locations of thensti visited three or more times
in the first and second searches were store&fin.., and S, ..., respectively. The two
groups were concatenated irs§°th | taking note which entries came from the first and sec-

resh’

ond searches. Clustering was performed as above and labsdsasgigned into the variable
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clustersspotninresn. 1Ne distribution of cluster labels was represented asghiibieSpciustBoth-
To measure consistency, the final metric in Eqn. 3.6 was egplinly to entries opciustBoth

i 1 2
for which elements 08;;,,..,, and Sz,,,..s, Were present

metric(SbOth) = ||pc1ustBoth(i S B)HQ - -1HpclustBoth(i € B)HO (37)

whereB is the set of indices such that clustei contains at least one point fro8{, ., and
from S2, ..., The metric awards the highest values for convergence iiétiseone single cluster
across search sessions. A spread of points across the wdaighsspace visited consistently
between sessions would return a lower value. Complete ingtensy would leave NP justBoth

entries to be added, returning the minimum value of 0.

3.5.3 Testing against chance

As the convergence and consistency metrics above are nbéstablished, it is not clear what
values should be considered sufficiently high to indicatgrdble search performance and what
values would arise by chance. A variant of the permutatieh e used to assess the metric
results. The null hypothesis is that the convergence oristamcy measure computed for a given
search or pair of searches, based on clustering of stenuli visited three or more times during
the search(es), would be equally likely to be found if the soe@ were based on clustering
of arandom set of & stimuli; this random set is chosen from the stimuli visit@te or more
times during the same search(es). The group of stimuliedsiine or more times is considered
a conservative estimate of all stimuli that could have bewaphasized by the search algorithm
through frequent visits. In the permutation test, the deslign “displayed three or more times”
is randomly reassigned among the larger set of stimuli disgdl one or more times to determine
if a random set of stimuli would be considered similarly cergent or consistent as the set of
stimuli frequently visited in my study. More specificallpdices are assigned to all points visited

in search 1 and search 8! andS?, respectively, the indices and recorded number of visis ar
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randomly permuted, anghetric(St), metric(S?) andmetric(SP°t") are computed based on
the locations randomly assigned to each “frequently-egsipoint.” For each subject and each
search, this process is repeated 500 times, the mean amthgtateviation are computed, and
the Z score for the original search result metrics are catedl. Based on visual inspection,

searches witlr > 1.8 are considered to mark notably non-random convergencermisiency.
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Chapter 4

Results

My study was designed to explore complex visual propertiézed for object perception by
the ventral pathway in the brain. To this end, | implementad amployed a collection of
techniques in realtime fMRI analysis and in dynamic stirsutelection to identify the visual
feature selectivities of pre-selected voxel regions. Dygastimulus selection was pursued to
most effectively explore the space of visual propertiesrinited scan time and to most quickly
identify objects that produce the highest responses frarh beain region under study.

Several of my methods are novel and, as they dynamicallyaioted with newly recorded
cortical activity, required “testing in the field” througlxecution of my realtime study. Below, |
examine the performance of the programs | have written foedltime fMRI signal analysis used
to determine region response to recently viewed stimulse®@ction of new stimuli to display to
subjects, and 3) display of the newly-chosen stimuli. | gomthe programs generally work as
expected, while identifying areas for future improvemeng., in proper stimulus display, and
areas challenging my initial assumptions about visual émgpin intermediate brain regions,
e.g., in the observed results from exploring visual featyraces.

To better understand cortical object perception, | exantirgeresults of realtime analysis
for evidence of the selectivities of pre-selected brainaeg in the ventral pathway. | study

the distribution of recorded ROI responses in the visualui@aspace, defined in Sec. 4.1, as
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well as comparing responses recorded for anatomicallyipraxROls. | visually inspect stim-
uli producing high responses from individual ROIs to gaituition about the properties most
exciting to these regions. Unfortunately, results fromdhalyses of many subject brain regions
are inconclusive. However, in several ROIs, one can obsameeor a few sets of visual prop-
erties evoking high responses, and slightly-differenti@lgroperties evoking extreme negative
responses, reminiscent of surround suppression seena levels of the visual syste 73].
Salient visual properties are seen to include holisticatt§bape, shapes of component parts, and
surface textures.

Realtime analyses were performed on two groups of subjeatg two types of object stim-
uli. 10 subjects viewed photographs of real-world objecagpturing perception of visual proper-
ties as they appear in the world, and 10 subject viewed imafggsthesized Fribble objec76],
capturing visual properties carefully controlled in theation of the stimulus set. The perfor-

mance of my methods and the selectivities they revealedeg@ted below for each group of

objects.

4.1 Feature spaces and a tool for their visualization

Dynamic selection of a new stimulus to display is performethie context of a simplex search
of a visual feature space, as described in Sec.|3.1.5. ThigdBan space used for each search
was constructed to represent complex visual propertiesphyiadly grouping stimuli that are
considered similar according to a selected visual metricelMthoosing stimuli within a class
of real-world objects — specifically, mammals, human-forees's, or containers — the search
space is defined from a SIFT-based similarity metric, asudised in Sec. 3.3.2. When choosing
stimuli within a Fribble class, the search space is definsgth@n visual morphs to components
of an example object from the class, as discussed in Sedé. 3.4.

Each space contains a low number of dimensions — four dirnaagor SIFT and three di-

mensions for each Fribble class — to allow the searches faViselectivities to converge in
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Figure 4.1: Search results for S3, class 2 (human-form®wwshn (a) first and second SIFT
space dimensions and (b) third and fourth dimensions. Lacaff all potential stimuli in space
shown as black dots. Results from realtime scan sessiondrales, results from realtime scan
session 2 are diamonds. For stimuli visited three or moregincolors span blue—dark blue—
dark red—red for low through high responses; for stimuliteid one or two times, colors span
cyan—-yellow—green for low through high responses. Sizéaps corresponds to time each point
was visited in search, with larger shapes correspondingtéy points in search. Note axes for
(a) are from -1 to 1 and for (b) are from -0.5 to 0.5.
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the limited number of simplex steps that can be evaluatedtbeecourse of a scanning session.
These low dimensional spaces also permit visualizatioralfch activity over each scan session
and visualization of general ROI response intensitiessactioe continuum of visual properties
represented by a given space. | display this informatioaugh a colored scatter plot. For ex-
ample, representing each stimulus as a point in featureesppag. 4.1 shows the locations in
SIFT-based space visited by the search for human-form imageking high activity in the pre-
selected SIFT/*human-form” region of subject S3, and shtivesregional response to each of
the displayed stimuli. The four dimensions of SIFT-baseatspare projected onto its first two
and second two dimensions in Figs./4.1a and b, respect®gtuli “visited” during the first and
second realtime sessions are shown as circles and diamesgectively, centered at the stim-
uli's corresponding coordinates in the space. (Black dotsespond to the locations of all stimuli
in the human-form class that were available for selectiothieysearch program.) The magnitude
of the average ROI response to a given visited stimulus isatdtl in the color of its correspond-
ing shape. For stimuli visited three or more times, coloransplue—dark blue—dark red—red
for low through high average responses; for stimuli visioe@ or two times, colors span cyan—
yellow—green for low through high responses. The averagpamses for stimuli visited three
or more times are more reliable reflections of regional respe— data from my previous study
(Chap! 2) indicates noise effects are greatly reduced tlir@wgraging over responses to three
or more viewings of the same stimulus. Furthermore, regeatgts to a location by the search
method indicates the method “expects” stimuli drawn fronrmgsnear this location will evoke
high responses from the brain region under analysis. Initsgpection of the red-or-blue shapes
shows two clusters of stimuli along the y-axis in Fig./4.1aléng high responses, indicating
multiple distinct featural selectivities in the selecte@IRFurthermore, stimuli corresponding
to nearby locations in space can produce extreme high anddsponses together, indicating
the ROI can suppress its activity due to slight changes inaliteatures. Similar findings are
observed for other subjects and searches in/Sec. 4.4.

Intuition about search method behavior is further providgdhe colored scatter plot display.
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Color coding helps visually distinguish between frequeatig infrequently probed stimuli. The
size of each shape in the plot reflects the time each locatas wisited in the scan session,
with larger shapes corresponding to later points in thectkeaExamination of the locations
of large and small shapes provides visual intuition of thegderal evolution of the simplex
search in the feature space. Reviewing the first two dimessio Fig.[4.1a, one can observe
stimuli visited early in the scan are more likely to be morstant from the main clusters of
stimuli frequently displayed by the end of the scan. Moreeotiye measurements of search
performance, confirming the trend visually indicated in.Fdl, are explored in Sec. 4.3.3.

Sec. 4.4 contains further examples showing that low-dinoeas visual feature spaces —
both for real-world and Fribble objects — and their corrasgiag scatter plot visualizations
provide powerful new means to understand complex featueetpaties of regions in the ventral

object perception pathway and to evaluate the performaitg oovel realtime search methods.

4.2 Selection of regions of interest

Realtime searches for cortical visual selectivities dyitafty measured and incorporated the
responses of pre-selected brain regions to recentlyaiispl stimuli to determine new stimuli
to display. For each subject, four searches were performach exploring a distinct class of
visual objects and an associated ROI. The four brain reghare selected prior to the realtime
sessions using data collected from a previously-perforfrefdrence” scan session. Analysis of
cortical activity recorded in this earlier session ideetificortical areas that were characterized
by the SIFT search space, or by each Fribble class search,9pabe representation of visual
properties; for real-world objects, analysis of corticatiaty also was performed to identify
areas that were more highly activated when viewing objetesgiven class. Selection of ROIs
from these brain areas strengthened the validity of assonmgabout the correct form of the
search space employed and, for real-world objects, likepited in stronger ROI responses to

stimuli used within the associated searches, lesseningffibets of background noise.
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Both for subjects viewing real-world objects and subjeatswng Fribble objects, ROIs con-
taining cubes of 125 voxels were manually selected for e&d¢buv stimulus classes searched.
Beyond incorporating voxels most highlighted by refereacan analyses reviewed above, the
four regions for each subject were selected to be non-queirig and to lie within the ven-
tral pathway, with a preference for more anterior voxelgspimably involved in higher levels
of object perceptions. With this selection approach in micahsideration of the anatomical
locations of the chosen ROIs provides perspective on tha spareas using SIFT-like and
“Fribble-morph-like” representational structures asr@sibjects, and the distribution of areas
most strongly encoding each of the four studied object elmsxross subjects. We also gain
perspective on the range of brain areas across subjecteanthes studied for complex visual

selectivities.
ROIs used for real-world object searches are distributedrad and adjacent to the fusiform
cortex, while ROIs used for Fribble object searches areibdiged more broadly across the ven-

tral pathway.

4.2.1 Real-world objects search

ROIs selected for study using real-world objects, orgahizsing a SIFT-based feature space,
were distributed across the ventral pathway, as shown irdEy Regions largely were centered
in or near fusiform cortex, with limited anterior and latespread of centers. This anatomical
focus reflects the strong matches between SIFT and mulgehande representations of object
stimuli in fusiform cortex, not present in other areas agged with mid- and high-level vision.
In Sec/ 3.3.6, Fig. 3.5 shows the findings of the “SIFT lo@aliZor subject S9, indicating the
presence of SIFT-associated regions in fusiform cortexaaadnd primary visual cortex. Similar
results are observed across subjects when comparing SléFaiti-voxel encodings in my
previous work discussed in Chap. 2. To study visual properiged in higher level vision,

| selected ROIs beyond the primary visual cortex, resultmOls focused around fusiform
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Figure 4.2: Class-selective regions for 10 subjects in weald objects search, projected onto
the Talairach brain. Colors are associated as follows: usmBmmals, green for human-forms,
orange for cars, red for containers, overlaps shown asesicglbr. Each subject is assigned a
shade of each of the four colors.

cortex. SIFT encodes images through a small number of maaiioperations on selected edge
statistics. Thus, it may serve as a model of cortical visuat@ssing in areas anatomically and
computationally close to the “edge detectors” of primargual cortex, but less closely predict

representations in higher-level brain areas [35].

The locations of ROIs specific to each of the four real-worlgeot classes did not form
any clear patterns across subjects. Fig. 4.2 shows regioeath class — assigned to the four
colors blue, green, orange, and red — were centered in batlispberes in varied positions —
anterior and posterior, medial and lateral. Inspectionpaitisl ROI clustering in the Talairach
brain, shown in Fig. 4.3, similarly indicates no clear grimgpacross subjects of class-specific
regions. For example, while human-forms (class 2) region$#, S8, and S9 (corresponding to
d, h, andiin the dendrogram labels) are grouped togethar,dhoup also contains two ROIs for
mammals (class 1) and one ROI for containers (class 4). Thairing human-forms regions

are spread into various other clusters. These observatiefiscting “class localizer” results,
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Figure 4.3: Clustering of Talairach-coordinate centerscfass-selective regions for 10 subject
in real-world objects search, shown as a dendrogram. Heightks between subtrees indicates
shortest distance between members of the two trees as nwhlekels in Talairach brain (
54 x 64 x 50 voxels). Regions are labeled as nM, wheres {q,...,;j} corresponds to
the subject numbers{$,...,10} andM € {1,2,3,4} is the region number, corresponding to
mammals, human-forms, cars, and containers.
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Figure 4.4: Class-selective regions for 10 subject in Fabldearch, projected onto Talairach
brain. Colors are associated as follows: blue for class Ergfer class 2, orange for class 3, red
for class 4, overlaps shown as single color. Each subjedsigiaed a shade of each of the four
colors.

underscore cross-subject variability as we delve into mareow areas in object perception.

4.2.2 Fribble objects search

ROIs selected for study using Fribble objects, organizéaugature spaces defined on morphs
to Fribble components, were distributed broadly acrosséiméral pathway, as shown in Fig. 4.4.
Regions were centered in areas from fusiform to lateralptadito anterior inferotemporal cor-
tex, in addition to posterior areas above the occipital pdleis spread is notably more broad
than that of ROIs selected for real-world objects, shownim [E.2. The morphing operations
performed to shape the space for each Fribble class operdbtedorms, colors, and textures of
whole component shapes — such as circle or star heads foegtnipbles in Fig. 3.6 — poten-
tially constituting a “higher-level” process than the nlamear fusion of localized edge statistics
computed by SIFT. This increased complexity may accountHerrecruitment of more ante-

rior (and perhaps more lateral) areas beyond SIFT’s fusifaggions in the ventral pathway.
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Figure 4.5: Clustering of Talairach centers for class-gelecegions for 10 subject in Fribbles
search, shown as a dendrogram. Height of links betweenemshindicates shortest distance
between members of the two trees as number of voxels in &alaiprain (54 x 64 x x 50
voxels). Regions labeled as nM, wherec {k, ..., q} corresponds to the subject numbers
S{11,...,20} and M € {1,2,3,4} is the region number, corresponding to the four classes
illustrated in Figl 3.6.

However, more posterior regions still are selected for mautyjects and Fribble classes as well.

As in Sec. 4.2.1 for the study of real-world objects, the tmres of ROIs specific to each of
the four Fribble object classes did not form any clear pagtercross subjects. Fig. 4.4 shows
regions for each class — assigned to the four colors blueg@ange, and red — were centered
in both hemispheres in varied positions — anterior and pmstenedial and lateral. Inspection
of spatial ROI clustering in the Talairach brain, shown ig.F.5, similarly indicates no clear
grouping across subjects of class-specific regions. Psithagroup nearest to a cluster of same-
class regions is the 8-element group containing 5 class ibmeg— for S11, S13, S14, S15,

and S16 — and one region from each other class. These olises/anderscore cross-subject
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variability as we delve into more narrow areas in object pption.

4.3 Realtime search performance

To search for complex visual feature selectivities usimgnsli evoking maximal activity from
pre-selected brain regions, | designed and used a colteofidhree programs, introduced in
Sec. 3.1 — 1) the display program, 2) the preprocessing progand 3) the search program.
Together, these programs work in realtime 1) to display atgémuli to a subject, 2) to measure
the ROI responses to these stimuli, and 3) to select furtiraub to display and further probe
regional selectivities. As | developed the programs forghesent study, and my realtime fMRI
stimulus search explored uncharted waters in methodologiydy the behavior of my code
over the course of scan sessions to confirm its generallyesstu execution and to understand

technical and scientific challenges to overcome in futurekwo

4.3.1 Display program behavior

The display program continuously interacts with the prepssing and search programs to prop-
erly execute the search of ROI activities in visual stimwdpaces. At any given point during the
realtime scan, the search program determines a new stirtmklisow to a subject based on the
subject’s ROI responses to recently-shown stimuli. Thespanses are extracted from set times
intervals in the fMRI signal by the preprocessing programgspming the stimulus associated
with each response was viewed by the subject at the intenished tFrom the perspective of
my realtime searchthe display program’s central task is to display each intened stimulus
(chosen by the search prograat)its intended time (at the beginning of its associated 8 s trial,
described in Sec. 3.1.3).

Unfortunately, in the course of each realtime session,lehgés periodically arose to the

prompt display of the next stimuli to explore in each reattisearch The computations required

Four realtime searches were performed during each reaitiméor four distinct object classes and four distinct
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to determined ROI response to a recent stimulus and to detertine next stimulus to display
occasionally did not complete before the time required leydisplay program to show the next
search selection. When the new stimulus choice was not mdfitgesutly quickly, the stimulus
displayed to the subject could be shown seconds delayeditsamtended onset time or could
incorrectly reflect the choice made from the previous iierabf the search, depending on the

stimulus update method used by the display program.

Two stimulus update methods were used by the display progaarexplained in Sec. 3.1.2.
Update method 1: For five of the subjects viewing real-world objects, the thgpprogram
received the search program’s next stimulus choice by nggatfile in a directory shared between
the machines respectively running the display program hadsearch program. Delays in the
search program computations and in directory updates deenétwork sometimes resulted in
the display program showing the stimulus from the previaassh step. To circumvent potential
delays in shared directory updates, the display programartorced directory update prior to
reading the latest copy of the chosen stimulus file for subj86 and S10. This directory update
sometimes caused noticeable delays in stimulus displagy @ind thus was discontinued for S6,

S7, and S8.

Update method 2:For the remaining subjects, five viewing real-world objeatsl ten view-
ing Fribble objects, the display program received the se@rogram’s next stimulus choice
through a dedicated socket connection. The display progvaited to receive a message from
the search program before proceeding, thus leading toeddile display delays when the search
program’s computations required extra time for the giveocklof data. The search program
also sometimes skipped simplex computations for a givessabd objects at a given step, e.g.,
if a new point had been accepted into the simplex for one dassnultiple point evaluations
were left before simplex acceptance for other classes,. If a class was skipped, no in-

formation was written over the socket, and the display pogwaited until the next time new

brain regions. All programs alternated between computatior each of the four searches, i.eearch 1 —
search 2 —search 3 —search 4 —search 1-.--,asdiscussedin Sec.3.1.1.
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information was written before displaying stimuli. Thuspwulus displays on some occasions
occured at 20 second delays, followed in succession by gpayis of the other stimuli whose
trials had passed during the time waiting. This problem ditiotcur often, but requires further
code development for future versions of the realtime sestatly. Notably, use of direct socket
communication significantly reduced the number of disptbg#muli that were not the current

choices of the search program for the given object class.

Generally, the display program showed the correct stimatuke intended time across sub-
jects, sessions, and stimulus groups. Below, | report thegoentlate andwrong stimulus
displays. The first five subjects scanned were the only onewltiom searches had display
errors for more than 10% of trials. For these subjects, S6,S87 S9, and S10, all viewing
real-world objects, stimuli were updated through checloh@ file in a mounted directory —
therefore, this update approach was not used for the remaafdhe study. For all subjects and
sessions, trials in which there was a delay of 0.5 s or mora which the wrong stimulus was

shown are removed from consideration in analyses beyorsktimthe present section.

Real-world objects search

The number of displays that appeared late or showed the wstimgilus for subjects viewing
real-world objects is shown in Table 4.1 for each subjegedtixlass, and scan session. Stimulus
presentations were considered delayed if they were shdws@. more past the intended display
time.

When updates for display stimuli were performed through ésipn of shared files, for S6,
S7, S8, S9, and S10, showing of incorrect stimuli dominabteddisplay errors. S6, S7, and S8
were shown incorrect stimuli for 15 to 42% of trials for sdart and search 3, corresponding
to the mammal and car classes. Among these three subjemtsrdaot displays for search 2 and
search 4 only were observed in session 2 for S6. S9 was showrtowect stimuli; S10 was

shown incorrect stimuli on “10% of trials for all searches@ssion 1 and no incorrect stimuli in
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late2 late3 latedwrongl wrong2 wrong3 wrong4# trials

Subject..ion | latel

821 96
112

112
112

112
112

112

S10 112
S1G 112
total 62 30 40 35 198 41 183 37

Table 4.1: Number of delayed and incorrect display triatséal-world objects searches for each
object class and each subject. Delayed trials were thosernsd s or more past the intended
display time. Results tallied separately for realtime ggss1 and 2 for each subject, and tallied
separately for each stimulus class. Class numbers corrddpanammals, human-forms, cars,
and containers, respectively. Number of search trials |@esovaried in each session, as seen in
final column.
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session 2.

The preprocessing and search programs evaluate cortggmees and compute new stimuli
to display in blocks of two searches at a time — examining astth@ on the fMRI data for
search 1 and search 2, then examining and acting on the fM@&Ifdasearch 3 and search 4
— as explained in Sec. 3.1.1. Ordinarily, the new stimuli éodnown for the next block of
two searches were computed 1 s or more before the first stariaitthis block is shown by the
display program. The second stimulus of the block then isvshat the start of the following
trial, 8 s later. When preprocessing is slowed (by factorsmered below), the first stimulus of
the block may be chosen 0.5 s prior to display time or seve@bisds after display time. Even
when stimuli are chosen 1 s prior to display time, updatesutin the shared files read over the
mounted folder may require as much as 3 s to complete, reguitithe display program reading
and acting on old stimulus choices. These sources of typitaio 5 s delay past display time
in conjunction with the block processing method result ia #trong discrepency in incorrect
display frequency of search 1 and search 3 — whose updatesnotagrrive to the display
computer by the required time — compared with that of searahd®search 4 — whose updates
usually arrive at least 3 s before they are needed. Desptéréiquency of incorrect stimuli
displayed in searches for object classes 1 and 3, it is irapbtb note that even in the worst
case, correct stimuli were displayed on at least 55% ofstrial

Variability in the frequency of display errors reflects \adility in the speed of realtime fMRI
signal processing and in update speeds for the directoryntedwand read by the display com-
puter. The preprocessing program removes low-frequenttyathd motion effects from the scan-
ner signal prior to computing ROI responses. Depending bjestimotion and scanner magnet
behavior during each scan session, the computation anacérim of these signal components
can require seconds of extra processing time. Other pragramming on the “analysis machine”
— the machine running the preprocessing and search prograralso can unexpectedly take
up processor resources, slowing down realtime analysiscantmunication of updates to the

directory mounted by the display machine. While | initiate exdra programs on the analysis
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machine during realtime sessions, | also do not reconfigwgertachine to suspend potentially
unnecessary background processes.

When updates for display stimuli were performed through@asipn of shared files, and an
update was performed on the directory containing the filsglay errors also included a limited
number of delayed displays. S9 and S10 had delayed stimigplsys for 1 to 6% of trials, with
delay on at least one trial for every session and for eacheofitr searches. In most cases, there
were more delays for search 1 than for any of the other searchieese delays likely resulted
from the directory update performed by the display prograiargo reading the file from the
directory containing the stimulus choice for the currerdrsh. The update operation usually
executes in a fraction of a second, but occasionally runisewtly longer. Chances of a longer-
duration update are greater when the operation has not &rmped recently, such as at the
start of a realtime search run following a "2 minute breakveein runs. As search 1 starts every
run, it may be slightly more likely to experience displayaied

When updates for display stimuli were performed through &ebdor S1, S2, S3, S4, and
S5, display delays dominated the errors in display prograrfopmance. Most subjects had de-
layed stimulus displays for 1 to 9% of trials, with delay oregtst one trial for every session and
for each of the four searches. However, the second sessi@ilfshowed no delayed displays,
nor did search 4 for the second session for S2. The numberl@jgiéor search 1 was greater
than or (occasionally) equal to the number of delays for anthe other searches, except for
session 1 for S3 for which search 3 had the most delays. AtihesBve subjects, search 3 had
the second, or sometimes first, highest number of delaygdiagis. The discrepency in display
error frequency between the first searches of each proge¥siock” as described above, i.e.,
search 1 and search 3, and the second searches of each pigpddssk, search 2 and search
4, are significantly less pronounced than they were for teguency of incorrect stimuli for S6,
S7, S8, S9, and S10, though the pattern remains weakly aidervFor S1, S2, S3, S4, and
S5, display delays can result from delays in completing gssig of cortical responses for the

block of two recently viewed stimuli — causing a greater nembf delays for search 1 and
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search 3, as described above. Display delays also can otarr the search program refrains
from exploring a new simplex point for a given stimulus class given iteration, as described
above, thus refraining from sending a stimulus update dwesbcket. This lack of communica-
tion causes the display program to pause several seconasdeeit will not display any stimulus

until it receives new information over the socket.

A limited number of incorrect stimulus displays also ocedrwwhen updating display stimuli
through a socket. S3 and S4 were shown incorrect stimuli an3% of trials for one or two
searches in each scan session. The source of these erronetdetermined, though they may
have resulted from skipped evaluations in the simplex $earbese errors did not occur using
socket updates for searches of Fribble object stimuli rtejoldoelow.

Far fewer display errors occured when updates for displemusit were performed over a
socket than when they were performed through inspectiorsbtaed file. Indeed, the socket up-
date approach was introduced to improve communicationdspe®veen the search program and
the display program and, thereby, to decrease displayserf8d, S2, S3, S4, and S5 were studied
after the five other subjects viewing real-world object stim Reflecting on the increased per-
formance caused by use of sockets, | employ only socket canwaiion for the Fribble objects

searches.

Fribble objects search

The number of displays that appeared late for subjects wigWwribble objects is shown in Ta-
ble[4.2 for each subject, object class, and scan sessionulB§ presentations were considered
delayed if they were shown 0.5 s or more past the intendedagisipne. There were no displays
showing the wrong stimuli, because the display programesidibr updates to each stimulus over
an open socket with the search program before procedingtirgtnext display.

All subjects had delayed stimulus displays in each scarnaessone or more of the four

searches. Across subjects, a total of “70% of searches shdelayed displays, with errors
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Subject..ion | latel late2 late3 lated# trials
S1 4 0 3 3 96
S1L, 5 0 2 4 80
S12 | 4 0 1 3 80
S12 | 11 5 5 9 96
S13 6 2 2 1 96
S13 6 2 2 1 96
S14 | 3 0 0 0 96
S14 | 5 0 0 1 80
S15 6 2 3 1 64
S15 5 0 0 2 80
S16 | 5 0 0 0 80
S16 | 5 0 0 0 80
S1n 3 0 0 0 96
S17, 6 1 0 2 96
S18 | 6 2 2 1 80
S18 | 6 0 0 1 80
S19 | 2 1 1 1 96
S19 3 2 2 1 80
S20 | 3 0 0 2 96
S2G | 5 1 1 3 64
total | 99 18 24 36

Table 4.2: Number of delayed display trials for Fribble sbas for each subject. Delayed trials
were those shown 0.5 s or more past the intended display tResults tallied separately for
realtime sessions 1 and 2 for each subject, and tallied asegharfor each stimulus class. Class
numbers correspond to object classes. Number of searth pea class varied in each session,
as seen in final column.
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occuring in 1 to 10% of trials. The number of delays for sedretas greater than the number of
delays for any of the other searches; across subjects,hsgédrad roughly three times as many
errors as any of the other classes. Delayed displays wedeipeal by delays in the completion of
fMRI signal preprocessing and by skipped simplex searcluatians, as discussed for subjects
viewing real-world objects.

The first block processed for each run requires slightlyaeiitne for processing than does
any other block, because the first block contains six exthames, corresponding to the cortical
activity prior to the start of the first display trial. Oftetinjs extra processing time causes a delay
for the first update of search 1. This slow start to prepraogsalso contributes to the larger
number of delayed displays for search 1 observed in subyemisng real-world objects, shown
in Table/4.1. Variability in the frequency of display errdikely results from variable fMRI
signal properties, requiring differing periods of time fmrocessing, and from other programs
competing with the preprocessing and search programs faregsor resources, as discussed
above.

Overall, display program performance was quite good foljexttb viewing Fribble stimuli.
Correct stimuli were displayed on at least 90% of trials, asdally more, for each subject,

session, and search.

4.3.2 Preprocessing program behavior

The preprocessing program monitors the fMRI output thrauglthe course of each realtime
scan and computes the responses of pre-selected ROIs tdi sgoently shown by the display
program. To rapidly convert raw fMRI signal to ROI responséues, a small set of preprocess-
ing methods were used to remove scanner and motion effects Small blocks of fMRI data,
followed by methods for extracting and summarizing oveestd voxel activities. In more
typical, i.e., non-realtime, analysis, a larger array @gocessing methods would be employed

over data from the full session to more thoroughly removaaligffects irrelevant to analysis.
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While the approach used by my preprocessing program enablé&srmance of realtime anal-
ysis, realtime stimulus selection, and realtime searchisafal spaces, truncated preprocessing
may lead to inaccurate measures of brain region responsgisfonming future search choices.
To investigate this potential concern, | compare the cati@h between computed ROI responses
computed using preprocessing employed during the reakissions (Sec. 3.1.4) and the com-
puted responses using “offline” preprocessing considexiihgins in a scan session together, and

following the drift and motion correction as well as nornzaliion methods of Sec. 3.3.5.

Correcting for subject motion in the scanner is a particutalienge in preprocessing that
may be affected by my methodological choices. My prepranggsrogram aligned fMRI vol-
umes in each time block to the first volume of the current 8ibute run, rather than to the first
volume recorded in the scanning session. To extract brgiiomaesponses for each displayed
stimulus, voxel selection is performed based on ROl masgsed to the brain using the first
volume recorded in the scan session (Sec. 3.3.5), undessuergtion voxel positions will stay
relatively fixed across the session. Significant motion s€tbe scan session could potentially
place voxels of interest outside the initially-aligned R@4sk as the session procedes, or cause
voxels to be misaligned from their intended weights usedmjguting the overall ROI stimulus
response (Sec. 3.1.4). In my analysis of preprocessingamogerformance, | track subject mo-
tion in each scan session and note its effects on the comsysbetween responses computed in

realtime and offline.

While there were some inconsistencies between responsgsutednby the two methods,
particularly under conditions of greater subject motiofindl realtime computations generally to
be reliable across subjects and sessions. This relialsiggrticularly strong for subjects viewing

Fribble objects rather than real-world objects, for reasoonsidered below.
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Subject..ion| Max motion| corrl corr2 corr3 corr4  averag
Sy 8.5 0.56 -0.22 0.63 0.03 0.25
SL 1.7 044 0.21 082 -0.19 0.32
S2 2.2 043 -0.06 079 0.17 0.33
S2 1.1 041 023 048 047 0.40
S3 2.1 0.39 055 0.71 -043 031
S3 9.6 0.63 044 0.33 -0.17 0.31
S4 2.2 091 -024 -059 034 011
S4 1.1 0.82 023 -074 020 0.3
S5 2.0 0.59 -0.37 054 0.08 0.21
S5 1.2 0.71 035 0.77 020 051
S6, 2.3 039 057 0.16 -0.09 0.26
S6 2.7 0.69 0.33 -0.07 -0.62 0.08
Sh 3.1 0.09 -0.15 0.74 -0.09 0.15
ST, 2.2 0.64 -0.05 0.62 -0.09 0.28
S8 2.9 0.19 -0.04 0.77 061 0.38
S8 2.1 0.10 0.10 055 0.04 0.20
S9 2.0 0.70 0.34 0.24 0.10 0.35
S9 2.2 0.26 045 0.55 -0.06 0.30
S10 1.2 040 0.11 040 034 031
S10 2.1 0.76 042 063 038 0.55

Table 4.3: Motion effects on ROI computed responses forweald objects searches. Correla-
tion between computed responses for each of four class R&Mg preprocessing on full scan
session versus preprocessing on small time blocks witlmgleiruns. Average column shows
average correlation results across the four ROIs for a ghudaject and session. Maximum mo-
tion magnitude among the starts of all runs also included|gzbfrom X, y, z (in mm) and yaw,

pitch, roll (in degrees).
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Real-world objects search

Consistency between ROI responses computed in realtimeespdmses computed offline for
subjects viewing real-world objects are shown in Table dr2fch subject, object class, and scan
session. Consistency was measured as the correlation lretesggonses of the two methods for

each display of each trial.

Correlation values were low but generally positive. 50% afrekes produced correlations
of 0.3 or above, and 20% produced correlations of 0.5 or abdVéile realtime and offline
processing results are not perfectly consistent, theinealinethods capture desired ROl response
trends across each session — generally indicating whichustevoked particularly high and
low cortical activities. Notably, 5 of the 17 searches prdyg negative correlations showed
values below -0.3, pointing to a marked negative trend betwée two methods. Consistent
misalignment of positive and negative voxel weights whemisiming voxel activity to form a
single regional response to a stimulus may consistenlytinkie sign of the computed realtime

response. Effects of this inversion on search behavior@meidered in Chap. 5.

Correlation values can vary dramatically within a given sgbjand session across ROIs,
e.g., S6. At first consideration, this within-session variability quite surprising, as all regions
presumably are affected by the same subject movement andesadrift. However, brain regions
differ in the form of the multi-voxel patterns that constéuheir response. Patterns the are
more broad in spatial resolution, with voxels respondingilgirly to their neighbors, are less
affected in their appearance if subject movement shiftRE™2 mm from its expected location.
High-resolution patterns, in which neighboring voxels ibxhopposite-magnitude responses to
a stimulus, are harder to analyze correctly when shiftegnicant angular motion also could
produce differing magnitudes of voxel displacement for 8€lbser and farther from the center

of brain rotation.

| propose brain motion as a prominent potential source afnsistency between computed

responses. Table 4.3 shows the maximum motion, pooledsatensslational and rotational di-
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Figure 4.6: Motion effects on ROI computed responses farweald objects searches, as in
Tablel 4.3. Rows are sorted from lowest to highest correspgnaiaximum motion magnitude
(values not shown), and columns within each row are sorteu fowest to highest correlation
values.

mensions, between the start of the scan session and thefséath scan run. | compare only
between the starts of scan runs because motion correctimpwtations in the realtime pre-
processing program account for further motion between theg and middle of each scan run.
For most subjects and sessions (12 of 20), maximum motids batween 2 and 3 millime-
ters/degrees in a given direction, while the motion alorigeodirections is usually less than 1
millimeter/degree (non-maximum motion data not shown)ug§;Hoy the end of each session,
true ROI locations often shift from their expected locasidoy a voxel’s width in a certain di-
rection. The significant overlap between starting and en&0I positions lessens my concerns
about motion effects, though high-resolution multi-voredponse patterns can produce response

computation inconsistencies even from this slight motasgiscussed above.

| expected increased motion would cause increased indensisbetween realtime and of-

fline computations. The expected pattern is weak but apparteen viewing correlation values
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sorted by subject motion, shown in Fig. 4.6. In this figuresssens with the least motion are
in the top rows and sessions with the most motion are in thetotows; colors correspond to
correlation values and are sorted from lowest to highestirtheow for ease of visualization.
Sessions containing two to three searches with low coroglatalues, corresponding to green
and cyan colors, are predominantly seen when there is graagect motion. However, all ses-
sions contain searches with high correlations, and thebedth the most motion, S3contains

three high-correlation searches.

Regardless of their root cause, inconsistencies in realind offline preprocessing are worth
noting, and potentially can motivate future developmenemtime scanning and search meth-
ods. At the same time, responses computed in realtime aigvedy reliable across subjects and
sessions, following my rather conservative correlatiotirmeWhile my method for correlation
expresses the consistency between realtime and offlinequegsing results on a trial-by-trial
basis, the consistency of computed cortical responsesdared for study of ROI selectivity
likely is higher. As discussed in Sec. 4.1, ROI responsessadhe associated visual space are
examined only for stimuli shown three or more times. Respsrier each of these stimuli are
averaged across displays to reduce variability from ndi¥es noise removal may mimic offline

preprocessing effects, increasing the correlation batvilee two methods’ results.

Fribble objects search

Consistency between ROI responses computed in realtimeespdmses computed offline for
subjects viewing Fribble objects are shown in Table 4.4 émhesubject, object class, and session.
Consistency was measured as the correlation between respohshe two methods for each
display of each trial.

Correlation values were low but generally positive, and bigthan those observed in the
real-times objects searches. 75% of searches produceslatans of 0.2 or above, and more

than 50% produced correlations above 0.45. While realtimteddfline processing results are
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Subject..ion| Max motion| corrl corr2 corr3 corrd  average
S1y 1.2 050 049 -055 051 0.24
S1% 0.7 0.54 048 -0.40 0.12 0.19
S12 4.8 031 0.24 -0.08 -0.04 0.11
S12 1.2 0.87 0.64 067 -059 0.40
S13 2.5 0.56 0.70 045 -0.17 0.39
S13 1.6 0.51 0.68 0.62 -0.10 0.43
S14 2.4 0.60 0.65 -0.10 057 043
S14 1.2 039 0.74 -0.01 044 0.39
S15 1.2 0.44 053 -054 023 0.17
S15 7.0 0.34 -0.07 -0.01 -0.15 0.03
S16 2.7 0.60 0.72 050 020 051
S16 1.4 0.84 065 050 020 0.55
S17 0.7 046 0.75 0.37 056 0.54
S1%, 2.7 0.57 0.71 044 048 0.55
S18 2.7 059 062 019 -057 0.21
S18% 1.9 0.47 054 020 -0.67 0.14
S19 2.0 0.60 0.70 0.69 0.29 0.57
S19 2.6 0.74 0.60 0.62 0.27 0.56
S20 1.7 059 057 -0.14 -057 0.14
S20 1.0 0.62 032 022 -060 0.14

Table 4.4: Motion effects on ROI computed responses. Caioelaetween computed responses
for each of four class ROIs using preprocessing on full se&ssien versus preprocessing on
small time blocks within single runs. Average column showsrage correlation results across
the four ROIs for a given subject and session. Maximum matiagnitude among the starts of
all runs also included, pooled from X, y, z (in mm) and yawcipjtroll (in degrees).
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Figure 4.7: Motion effects on ROl computed responses, agslieT4.4. Rows are sorted from
lowest to highest corresponding maximum motion magnitwaéués not shown), and columns
within each row are sorted from lowest to highest correfatialuesd.

not perfectly consistent, the realtime methods captureeteKROI response trends across each
session — generally indicating which stimul evoked patéidy high and low cortical activi-
ties. 7 of the 17 searches producing negative correlatioowad values equal to or below -0.4,
pointing to a marked negative trend between the two methdds.mechanism for a consistent
inversion in the sign, e.g., +3 becomes -3, of the computedr&ponses is discussed above for

subjects viewing real-world objects.

Correlation values can vary dramatically within a given sgbjand session across ROIs,
e.g., S19. Potential sources for this variability are discussed abfov subjects viewing real-
world objects. However, within-session variation is ndydess pronounced for subjects viewing
Fribble objects, as seen in Fig. 4.7. 12 of the 20 sessionh,agich session corresponding to
a row in the figure, contain three or four searches with ceestly high realtime—offline result

correlations.
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| propose above that brain motion is a prominent potentiaf@® of inconsistency between
computed responses. Table|4.4 shows the maximum motiohegaaross translational and
rotational dimensions, between the start of the scan seasibthe start of each scan run. Motion
for subjects viewing Fribble objects is generally reducesht that of subjects viewing real-
world objects shown in Table 4.3. For 11 of 20 Fribble sessiomaximum motion falls under
2 millimeters/degrees in a given direction, while the motadong other directions is usually
less than 1 millimeter/degree. In contrast, 5 of 20 reallevobject sessions fit this description.
Thus, by the end of each Fribble-viewing session, true R€dtions usually stay within a voxel-
width’s distance of their expected locations. This deaedanotion may be due to the differing
tasks performed for the two object types. For real-worldeotg, subjects were asked to perform
a one-back location task in which they were to judge the ikgdbcation of consecutively-
displayed objects (Sec. 3.3.4). For Fribble objects, sbjaere asked to perform a dimness-
detection task in which they were to judge whether the objaletays displayed in the same
central location, was dim (Sec. 3.4.3). Slight movementeaf-world objects around the screen
may have encouraged slight head motion during stimulusiagsv

Comparing between real-world object and Fribble object uigvgroups, there appears to be
a relation between subject motion and consistency forirealand offline computations. Fribble
subjects, who moved less as a whole, showed a much higheranwhbearches with high cor-
relation values, as well as more pronounced negative @tioel values for several searches. To
consider motion effects within the Fribble sessions, wdtiorrelation values sorted by subject
motion, shown in Fig. 4.7. In this figure, there is no clear stharansition from high (red)
to low (green/cyan) correlations with increasing motioro¢img from higher to lower rows).
However, the two sessions with unusually high motion, ;Sdr&d S15, contain searches with
consistently lower realtime—offline result correlatiorssslown in the bottom two rows. Even
these two sessions contain at least one search with a d@mrelalue above 0.3.

For subjects viewing Fribble stimuli, responses computeckaltime are relatively reliable

across subjects and sessions, even under a modest amouhjeuft snotion.
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4.3.3 Search program behavior

The search program dynamically selects stimuli to showesibjbased on the responses of pre-
selected brain regions to recently viewed stimuli. Thissius selection process is central to my
study of complex visual feature selectivity. Using the diexpsimulated annealing method [7]
and the spaces | have defined to capture complex visual piepezlevant to object perception
(Sec. 4.1), the search program is designed to explore thee sdavisual properties and quickly
identify those properties producing the highest resporm® fa pre-selected ROI. These high-
response properties correspond to the region’s visuattéty. The search tests each selected
location in space by showing a corresponding picture totibgest and then recording and acting
on the resulting cortical response.

Presuming each brain region is selective for a single loaati its associated search space,
and its activity decreases on viewing stimuli drawn at iasieg distance from this location, the

search program should display two properties:

e consistency i.e., identifying the stimuli in the area of feature spaceducing maximal

response, regardless of the starting point of the search and

e convergence i.e., mostly investigating stimuli near the location pnothg maximal re-
sponse, expending little time to investigate more disténiudi unlikely to evoke a high

region response.

Consistencyprovides confidence in the reliability of search resultslesbonvergenceprovides
advantage of strategic selection of stimuli over a limitedrstime compared to random selec-
tion from the full pool of potential images. Sec. 3.5 definestns for these two properties in
Eqgns! 3.6 and 3.7, respectively, and presents a form of gation test to assess whether these
measures would reach their computed values by chance. Beferdefinition of convergence
above as focusing on one (or a few) select regions in spaos@aeach session, the search is
expected to begin by probing broadly around the space anartowm to its focused location over

time as it identifies the maximum-response region in the spaclefine two metrics below to
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measure the temporal evolution of locations explored by eealtime search.

Using the four defined metrics, | observe searches of redevabjects, using SIFT-based
space, follow expected behavior for a very limited numbeswbjects and stimulus classes.
Searches of Fribble objects, using their four correspampdigarch spaces, follow expected be-
havior significantly more often — in "25% of searches exedute though there remain many

searches that do not show strong consistency or convergésigen the relative simplicity of

assumptions made about the structure of visual featureesg&ecs. 3.3.2 and 3.4.1) and about
the presence of a single-maximum selectivity for each bregion (Sec. 3.1/5), these results
nonetheless constitute a strong start for realtime fMRidemethods exploring complex visual

properties used by the brain.

Temporal evolution metrics

| studied movement of the search simplex across space forstagulus class search and each
session by comparing the distribution of locations visitieding the first and second half of the

session. | characterized these distributions by their na@avariance.

To assess the changing breadth of visual space examinessacgearch session, | divided
the stimulus-points into those visited in the first half af 8ession and those visited in the second

half:
Avar=> " (o*(X])) = > (*(X])) (4.1)

j
wheresigma?(-) is the variance function andl? is the set of coordinates on thé axis for the
i'" half of the sessionAvar pools variance across dimensions by summing. More fingr@nce
structure is ignored as the measure is intended to test @&yathecontraction across all dimensions

rather than changes in the general shape of the distribution
To assess the changing regions within visual space exaratreds a search session, | again
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compared points visited in the first half of the session withsk in the second half of the session:

i xi)?
dist= |3 w (4.2)
j J

2 2

WhereX{ are as defined for Eqn. 4.1 amﬁi = M is the mean variance along thé
dimension of the point locations visited in the two halveshsf search sessionist measures
the distance between the mean location of points visitethenfitrst and second halves of the
search session, normalized by the standard deviation afifftiebutions along each dimension
— similar to the Mahalanobis distance using a diagonal ¢éamae matrix. A shift of 0.5 on a
dimension with variance 0.1 will produce a larger metrianeathan a shift of 0.5 on a dimension

with variance 1.0.

Real-world objects search

Convergenceof realtime searches, i.e., the focus of searches on one mat sumber of lo-
cations across a session, is shown for real-world objectkea in Table 4/5 for each subject,
object class, and session. Convergence is assessed basse@ @tore; inspection of cluster-
ing seen in scatter plot displays (e.g., Sec. 4.1) and inmgadhs led me to set a threshold of
Z > 1.8 for Z scores above chance.

Above-threshold convergence occurred for only 9 of 80 demsqerformed across all ses-
sions and object classes. 8 of the 9 converged searches eroenped for stimulus classes 2
(human-forms) and 4 (containers), with 4 performed for eelelss. The three programs con-
tributing to realtime search processed stimuli in blocksved, as discussed in Sec. 3.1.1 and
more recently in Sec. 4.3.1, computing in quick successiemext stimuli to display for search
1 and search 2, and then, after a delay, computing in quictesston the next stimuli to display
for search 3 and search 4. As a result, when calculation miustis choices for a block required

more time than expected, they were much more likely to a@eisfect the proper display of
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Subject.cion| 21 z2 z3 z4
S -0.36 129 -0.34 2.14
S, -0.82 126 .01 -0.68
S2 | -0.09 0.15 -0.43 0.39
S2 | 001 038 -0.75 0.67
S3 | -1.34 0.77 -041 -1.01
S3 | -0.87 2.60 0.60 -0.32
S4 | 030 0.71 -0.35 2.27
S4 | -49 -1.04 -0.08 -0.45
S5 | 035 -0.08 -1.23 -0.95
S5 | 052 114 -0.32 -0.88
S6 | -0.57 2.77 0.79 2.37
S6, | -0.01 -1.43 -0.20 2.58
S7h | -057 195 -1.01 1.00
S7, | 011 191 -0.54 1.30
S8 | 223 036 0.07 -0.37
S§ | -1.26 0.14 1.23 0.83
S9 | 0.20 0.20 -1.38 -0.93
S9 | -0.15 -0.80 0.05 -0.42
S10 | -1.35 -0.34 -0.42 -1.07
S1¢ | -0.69 -0.21 -0.18 0.14

Table 4.5: Convergence for searches of real-world objectaemsured by Z score metric dis-
cussed in Sec. 3.5. Z scores of 1.8 and above in bold.
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stimuli for search 1 and search 3, which occured 8 s prior $pldy for search 2 and search 4.
The greater success of searches appearing second in eaesgng block indicates a long-term
advantage to proper stimulus displays throughout the beac discussed further in Sec. 5.2.
However, it is worth noting there are a large number of dig@eaors for search 4 of S6as
seen in Table 4/1, despite its high convergence. Motion agprpcessing factors underlying the
rare above-threshold convergence results are not appéneeed, only in one session, S@oes
high convergence occur for two different searches.

Below-threshold convergence Z values ranged widely. $¢gearches showed valugs<
—1.3, seeming to indicate that a “random” set of stimuli was medikenore convergent than the
stimuli actually visited frequently. To some extent, thiepomenon may point to an unexpected
feature of my significance test, defined in 3.5. Convemyeneasures the clustering of
stimuli visited by the search three or more times, while stimisited one or two times are
ignored. For my permutation test, | randomly reassign e&aglUently-visited” label to one of
the stimuli visited any number of times by the search. Thigrapch was intended to judge the
convergence of frequently visited stimuli in light of thesttibution of stimuli that were visited
but not considered sufficiently close to the ROI selectigignter to be re-visited. However, if
several stimuli are nearby in space and close to the locatiotucing highest cortical response,
their neighborhood may be visited many times but each stimuisited only visited once or
twice. This non-frequently visited clustering may be irade&dd by extreme negative Z values.
However, it is also worth noting convergence Z values didfathtoelow -2, while the majority
of above-threshold values were greater than 2.

Consistencyof realtime searches, i.e., the focus of a search on the sayagdn or locations
in visual space when initialized at two different pointshie space in two different scan sessions,
is shown for real-world object searches in Table 4.6 for eatdject and object class. Consistency
is assessed based on its Z score; inspection of cross4sefisstering in scatter plot displays and
in dendrograms led me to set a thresholdZof 1.8 for Z scores above chance.

Above-threshold consistency occurred for only 2 of 40 dees@erformed across all subjects
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Subject.cion| Z1 z2 z3 z4
S1|-1.02 1.80 -0.39 -0.59
S2|1 034 -140 -0.21 -1.78
S3|-1.91 -0.82 1.44 0.04
S41-0.92 010 -1.35 0.44
S5|-1.12 219 -0.71 041
S6| 0.20 -0.67 0.86 -0.83
S7|/ 021 074 0.60 0.21
S8|-049 -053 1.79 1.35
SO IE1.698 F-0:331 10651 -0.91
S10|-1.54 -0.59 .09 -1.36

Table 4.6: Consistency between searches of real-world shgescmeasured by Z score metric
discussed in Sec. 3.5. Z scores of 1.8 and above in bold.

and object classes. The searches were performed for ssnaldss 2 (human-forms). From
the two above threshold-results, no clear pattern for ssfaéconvergence could be deduced.
Motion and preprocessing factors underlying the rare aitbxeshold convergence results are
not apparent. Neither of the two subjects, S1 and S5, showedeahreshold convergence
for class 2 searches. The lack of consistency for searchissabbve threshold convergence
— particularly for search 2 for S7, which converged in botksssen but shows a consistency
score ofZ = 0.74 — indicates the potential presence of multiple regions iRTSbased space
producing high responses from a given ROI. Consideratiorudhér sources of difficulty for

search performance of real-world objects are discusseddn 2.

Below-threshold consistency Z values ranged widely. 6cdess showed values < —1.3,
seeming to indicate a “random” set of stimuli selected faheaf two sessions would be markedly
more consistent than the stimuli actually visited freqlyeby the search. Reasons for extreme

low Z scores are discussed above in the context of conveegesailts.

The change in the distribution of locations visited by realtme searchesas reflected by
change in the distribution’s mean (dist) and variander/dr), is shown for real-world object

searches in Table 4.7 for each subject, object class, astbres

Change in the variance of locations explored from the first twathe second half of each
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SUbjecgession

Avarl Avar2

Avar3 A vard

distl

dist2 dist3 dist4

S1
Sk
S2
S2
S3
S3
S4
S4
S5
S5
S6
S6
Snh
ST,
S8
S&
S9
S9
S10
S16

0.01
0.01
-0.01
0.00
-0.00
-0.02
0.02
-0.01
-0.01
-0.01
-0.01
0.02
-0.00
-0.01
-0.01
-0.01
0.01
-0.01
-0.02
-0.01

0.01
-0.00
0.00
-0.02
-0.03
0.02
0.01
0.03
0.03
-0.03
-0.02
0.04
-0.01
0.02
-0.00
0.01
0.03
0.01
-0.01
0.01

0.02
0.01
-0.00
-0.00
0.01
0.01
0.02
0.01
0.00
0.00
0.02
-0.02
-0.00
-0.01
-0.00
-0.03
-0.02
0.00
-0.03
0.01

-0.01
0.00
-0.01
-0.03
0.03
-0.00
0.01
-0.01
0.00
0.02
-0.01
-0.01
0.03
0.01
-0.03
-0.00
-0.01
0.01
0.02
0.02

1.81
0.87
1.11
0.75
1.61
1.14
1.49
0.60
0.97
1.22
1.37
1.83
1.20
1.62
1.40
0.80
0.45
1.45
1.35
1.65

0.42 0.69 1.20
1.11 190 0.86
0.74 0.64 0.7(¢
1.08 2.28 2.48
1.14 139 2.29
0.85 140 1.72
229 092 1.22
1.19 161 1.21
155 1.00 1.70
255 1.06 1.45
1.47 1.40 0.65
236 2.29 1.65
0.74 1.44 1.29
0.80 1.37 1.29
156 1.00 1.36
1.31 2.54 0.96
0.48 1.12 0.60
157 165 1.23
1.04 1.60 1.58
1.15 2.61 1.65

Table 4.7: Temporal evolution of real-world objects seasch\vam and dist;, corresponding

to the change in variance and mean of locations visited infiteeand second half of each
scan session by the search of stimulus clagsare as defined in Eqns. 4.1 and|4.2, respectively.
Distances of 2.0 and greater in bold.

118



session was quite small across all searciegar generally falls between -0.02 and 0.02, while
the variance of locations explored in each half of a sessatibétween 0.02 and 0.07. Visited
points are just as likely to be more dispersed (posithaar values) as they are to be more
concentrated (negativAvar values) as the search progresses. The lack of convergeimee
time as indicated by thé\var measure in part may reflect the reinitialization of thegex

at the start of each new run within the scan session, as tesdcim Sec. 3.1.5. Existence of
multiple locations in search space evoking high corticapmnses also may account for lack of
convergence over time. In contrastAwar, the time-independent convergence measure defined
in Eqn. 3.6 can reach high Z values while converging on migltipcations in space, provided

the number of locations is small.

Changes in the center of the distribution of locations exgrddrom the first half to the second
half of each session is notable for several searches,dith> 2 for 9 out of 80 searches and
dist > 1.5 for 24 out of 80 searches. The 9 high shifts in distributionu® occurred with
roughly equal frequency for searches of stimulus class&s &nd 4. Most high shifts in focus
(7 of 9) occur in the second session. In the second sessm®stditing locations were selected
to be distant from the center of focus from the first sessiendiacussed in Sec. 3.5.2; in the
first session, the starting locations were set to be thergragbund which stimuli are distributed
in a roughly Gaussian manner. While this observation indgat step towards cross-session
consistency for several searches, the corresponding £2sdor the consistency metric defined

in Eqn/ 3.7 are predominantly negative.

Fribble objects search

Convergenceof realtime searches, as defined in Sec. 3.5, is shown fobleritbjects in Ta-
ble4.8 for each subject, object class, and session. Comezgs assessed based on its Z score,

with a threshold ofZ > 1.8 set to be considered a score above chance.

Above-threshold convergence occured for 20 of 80 searchdsrmed across all sessions
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Subject.cion| 21 z2 z3 z4
S13 | -0.08 0.40 -0.13 3.90
S1%, | 3.40 0.18 0.63 -0.38
S12 | 1.20 056 1.70 0.25
S1% | 0.42 110 051 1.90
S13 | 091 110 -0.43 0.79
S13 | 242 -12 142 267
S14 | 0.39 143 0.43 0.95
S14 | 1.45 0.60 0.52 1.40
S15 | 276 166 220 0.18
S15 | 145 169 -0.83 1.87
S16 | 1.72 2.10 1.80 0.98
S16 | 2.87 -1.10 -0.11 -0.22
S17 | -0.47 -0.27 0.89 -0.59
S1% | 242 297 1.76 0.47
S1§ | 0.54 157 182 1.72
S18 | 1.43 093 1.17 2.30
S19 | 200 0.93 3.00 4.20
S1$ | 090 0.86 1.40 2.10
S20 | 0.77 1.07 286 284
S2¢ | 1.24 166 0.39 141

Table 4.8: Convergence for searches in Fribbles spaces asireday Z score metric discussed
in Sec! 3.5. Z scores of 1.8 and above in bold.
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and object classes. Converged searches were performed &iinallus classes, though more
frequently for classes 1, 3, and 4 than for class 2. Highejueacy of delayed displays for
search 1 compared to the frequency of delays for other seardil not appear to adversely
affect performance of search 1 as it had for subjects viewaad-world objects. In part, this
may be attributable to the smaller number of display errorgribble object searches overall,
especially compared to the number of incorrect real-wotichgli displayed for search 1 and
search 3 reported in Table 4.1. Several realtime sessianiaioed multiple searches with above-
threshold convergence; three of four searches convergsession 1 for S19. However, session-
specific characteristics, i.e., subject motion, were ngaapnt underlying factors in successful
search convergence within Fribble-viewing subjects.

Above-threshold convergence Z scores generally were high€ribble object searches than
they were for real-world object searches; 50% of abovestiwél Fribble object searches showed
Z > 2.5, compared to 33% of above-threshold real-world objectdess. The greater frequency
and magnitude of successful search convergence for Frdijexts may reflect the lesser mo-
tion of the subjects in these sessions or, potentially edlathe seemingly more reliable results
of fMRI signal processing during these sessions, reporie8dc! 4.3.2. The structure of the
Fribble search spaces also may pose advantages over thd&ET image space, as discussed
in Sec| 5.2.

Below-threshold convergence Z values still were assigoetb£o of searches, and ranged
somewhat widely. However, unlike in real-world objectsrsbas, negative Z values were much
more infrequent and were relatively small in magnitude, i > —1.3. Furthermore, many
sub-threshold searches exhibited degrees of convergenre22 searches have) < 7 < 1.8,
compared to 6 searches fitting this criterion for real-wafgects sessions.

Consistencyof realtime searches, as defined in Sec. 3.5, is shown fobleribbjects in
Table 4.9 for each subject and object class. Consistencgésssd based on its Z score, with a
threshold ofZ > 1.8 set to be considered a score above chance.

Above-threshold consistency occurred for 7 of 40 searcke®pned across all subjects and
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Subject.cion| Z1 z2 z3 z4
S11| 210 0.57 043 220
S12|-0.53 1.40 -0.03 1.4Q
S13| 046 0.62 -1.20 -1.40
S14| -059 -0.19 -1.20 1.22
S15|-1.10 -1.10 1.43 2.96
S16|-0.29 0.85 0.39 0.54
S17| 2.28 3.14 3.28 -0.99
S18| -1.70 -0.03 0.28 -1.80
S19| 140 0.30 0.97 3.80
S20| 0.63 0.15 0.46 0.05

Table 4.9: Consistency between searches in Fribbles spacasasured by Z score metric dis-
cussed in Sec. 3.5. Z scores of 1.8 and above in bold.

object classes. The searches were performed for all stsrzlasses, though somewhat more
frequently for classes 1 and 4. Several realtime sessiamsic@d multiple searches with above-
threshold consistency; three of four searches were cemsi&ir S17. However, session-specific
characteristics, i.e., subject motion, were not apparedetlying factors in successful search
convergence within Fribble-viewing subjects. Almost ahsches showing above-threshold con-
stistency also showed convergence in one scan sessionn dadhi sessions for S19 search 4.
Lack of convergence in the both scan sessions for most sssarohy reflect the search in one
session starting close to the location(s) producing highesvity from the selected ROI and

converging on the desired region(s) in visual space, whieedearch in the other session be-
gins probing farther-away locations and searches around mialely, chancing upon the correct

areas occassionally but lacking sufficient time to converge

Below-threshold consistency Z values ranged widely. Sdwszarches show valugs <

—1.3.

The change in the distribution of locations visited by realtme searchesas reflected by
change in the distribution’s mean (dist) and variankedr), is shown for Fribble object searches

in Table 4.10 for each subject, object class, and session.
Change in the variance of locations explored from the first twathe second half of each
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Subject.cion| Avarl Avar2 Avar3d Avard| distl dist2 dist3 dist4
S13 | 002 001 005 003 |1.38 1.15 0.58 1.13
S1%L 005 0.03 -0.04 0.03 |142 230 155 1.49
S12 | 0.02 0.02 -0.11 0.00| 1.38 1.29 2.18 225
S12 | -0.04 0.01 -0.01 0.07| 1.03 249 0.87 2.28
S13 | -0.02 012 003 0.01 | 239 0.89 0.99 0.50
S13  0.10 0.01 -0.03 0.03 | 144 060 .84 1.46
S14 | -0.08 -0.01 -0.07 0.03 3.05 233 0.77 1.30
S14 | -0.06 -0.05 -0.03 -0.06/ 1.68 1.19 1.35 1.95
S15 002 0.01 -0.08 0.08 | 139 147 189 131
S15 006 -0.02 001 -0.08 | 1.83 098 1.07 157
S16 | -0.00 0.09 -0.02 -0.08/ 0.52 0.54 1.73 0.95
S16 | 0.05 0.05 -0.08 0.05/ 060 134 117 1.32
S13 | 001 006 003 007 |131 1.03 116 1.20
S17, | 0.03 002 -0.08 -0.05 | 241 0.81 0.76 1.09
S18 | 0.10 -0.03 0.05 0.00| 0.25 0.22 0.81 1.07
S18 | 0.01 -0.06  0.07 0.00| 1.31 1.06 1.09 0.39
S19  -0.01 -003 001 -0.02 | 114 172 142 171
S19  -0.08 000 001 003 | 212 0.78 197 230
S2q | -0.03 -0.07 -0.05 0.03] 1.93 1.80 259 1.09
S2G | -0.05 0.00 0.06 0.09] 1.34 1.09 0.84 0.5

Table 4.10: Temporal evolution of Fribble searcheSvarm and dist, corresponding to the
change in variance and mean of locations visited in the firdts'econd half of each scan session
by the search of stimulus class are as defined in Egns. 4.1 and 4.2, respectively. Distasfces
2.0 and greater in bold.
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session was small across all searches, equivalent to @ltieegry made for search behavior us-
ing real-world objects. Avar generally falls between -0.1 and 0.1. Visited points jast as
likely to be more dispersed (positivevar values) as they are to be more concentrated (negative
Avar values) as the search progresses. Potential contritsuto the lack of convergence over
time as indicated by thAvar measure are discussed above in the context of real-wbjétts
search performance, for which there is a similar lack of olesg decrease in variance of stimuli
explored over time.

Also similar to real-world objects searches, changes ircdrger of the distribution of loca-
tions explored from the first half to the second half of eadssm® is notable for several searches,
with dist > 2 for 12 out of 80 searches antdst > 1.5 for 23 out of 80 searches. The 12 high
shifts in distribution focus occurred with roughly equadduency for searches of all stimulus
classes. Unlike in real-world objects searches, high simffocus occur with equal frequency
across the first and second sessions. Starting from thenonghe first session, each search ini-
tially probes stimuli whose component shapes are morphednediate appearances between
two better-established shapes at the extreme -1 and 1 cabtedion each axis. Intuitively, a
region involved in object perception — particularly moreteior ROIs shown in Fig. 4/4 —
may be specifically selective for a clear circle or a clear sd¢her than a vague shape newly
generated for my stimulus set (Fig. 3.6). Therefore, lafgéssfrom the origin in session 1
may be expected. In contrast, the definition of real-worlgtobfeature space through SIFT and
multi-dimensional scaling will place groups of salientuas features throughout space, not just
at extremes, making large shifts from the origin less likelyhe first session. As in real-world
objects search, in the second Fribble sessions, the stdotations were selected to be distant
from the center of focus from the first session, as discuss&kc| 3.5.2 — thus, a significant
shift in search focus would be required to identify the sammaudi producing high activity in
the pre-selected cortical region. While these second sesbigervations indicate a step towards
cross-session consistency for several searches, thesporréing Z scores for the consistency

metric defined in Eqn. 3.7 are predominantly below threshiblough for all but S117 > 1.4.
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All measures of Fribble object search behavior indicatearstability and more consistency
in identified visual selectivities when compared with skaof real-world objects. However,
there remains significant room for improvement to enablevemgence, both over space and
while operating across time, in many more than 25% of viseldivity searches. Nonetheless,
the current success rate of a relatively simple search rdethgimplex simulated annealing —
to investigate a rather complex probelm in visual encodimgstitutes a strong start for realtime

fMRI methods in the field.

4.4 Complex visual selectivities

| developed the set of realtime programs for dynamic sedaadif stimuli to display to a subject
in an fMRI machine in order to quickly identify visual propiess producing the strongest activity
from cortical regions in the ventral object perception padig. In Sec. 4.2, | report the successful
selection of ROIs for study in mid- and high-level visualase— generally around the fusiform
cortex for subjects viewing real-world objects and moredolly spread in fusiform, lateral oc-
cipital, and anterior inferotemporal cortex for subjeciswing Fribble objects. In Sec. 4.3, |
discuss the generally proper functioning of the searchnarog used for exploration of visual
properties, probed by real-world and Fribble objects. Belbdiscuss the visual selectivities
revealed through the use of these regions and programs.

| expected the search in each ROI to converge onto one, or,ddeation(s) in the associ-
ated visual space producing greatest cortical respons@spmnding to the regional selectivity.
Convergence occurred for only 10% of searches of real-wdjéats and 25% of searches of
Fribble objects. | examine cortical responses observeth&se searches, as well as for searches
that showed consistency between scanning sessions —evisiting the same locations in visual
space when initialized from two different points in that spaln particular, | use visual inspec-
tion of the frequently-visited stimuli, ranked by ROI regige size, to intuit important visual

properties for each cortical region and use the scatteimtiatduced in Sec. 4.1 to visualize cor-
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tical activity across visual space (and, to some extenthgeve search behavior). Regardless of
the specific visualization used to examine them, the visatuie spaces | have developed pro-
vide a powerful new tool for characterizing and understagdiortical responses to complex vi-
sual propertiesExamination of points frequently visited by each searchtaedesponses of the
corresponding brain regions revealed multiple distindesévities within search of single ROIs,
marked change in cortical response resulting from slightial®ons in visual properties/slight
changes in location in visual space, and several intuitiasses of visual properties used by the
ventral pathway.

When a search fails to show convergence or consistency, ihéess confidence that the
stimuli used by the search sufficiently captured corticapmnse properties across the space of
visual features. Nonetheless, cortical response data athemg@d from every ROI examined
by a search, and this data provides a partial view into coxmpigual properties used in the
ventral pathway. | compare patterns of activities from alirehes to identify potentially smooth
evolution of selectivities across the brain. This expeetgaution was not apparent in my results,
likely because the regions explored within each subjeaadrto be anatomically distant from
one another and regions anatomically close across sulvgftast variability in cortical visual

encoding across subjects.

4.4.1 Metric for cross-region comparisons

Beyond exploring the visual property selectivities forggaROIls in individual subjects, | study
the generalization of selectivities across subjects atetsaty evolution as one moves across
the cortex. To this end, | compared the distribution of highed low-response regions in SIFT
space for anatomically proximal ROIs within and across ecisj | expected nearby ROIs to
have similar response profiles and distant ROIs to havendisgirofiles. Instead, nearby ROIs

generally were quite different in selectivities, both wiitland across subjects.

Given the sparse sampling of SIFT space by the search methodade more sparse by

126



the removal of unreliable responses estimated over “tog’ fesv, fewer than three, stimulus
repetitions — comparison of response profiles across RGisgibs own challenge. | interpolate
over the sparse samples using inverse distance weigl@ﬂgc{ﬁ:onstruct a four-dimensional
grid of responses for each ROI and each search session. thepgins between -1 and 1 on
each axis, divided into 0.05 length intervals. Similarigtlween a pair of response profiles is
computed using the Pearson correlation of the grid entaethe two ROIs.

Cross-region comparisons failed to show clear patternsnofagiity in regional selectivities

related to anatomical proximity of the compared regions.

4.4.2 Real-world objects search

Among subjects viewing real-world objects, 9 selectivigashes converged and 2 searches
showed consistency across searches, as measured in SBcE&&@mination of points frequently
visited by each search and the responses of the corresgphdiim regions revealed multiple
distinct selectivities within search of single ROIs, matkdhange in cortical response resulting
from slight deviations in visual properties/slight chaagre location in visual space, and several
intuitive classes of visual properties used by the venta#thway — including surface texture as
well as two- and three-dimensional shape.

The two searches with highest Z score convergence valuebject class 2 (human-forms)
were performed in session 2 for S3 and in session 1 for S6;wbesearches with highest Z
score convergence values for obect class 4 (container® peformed in the two sessions for
S6, as reported in Table 4.5. Object class 3 had no searcbesnshabove-threshold Z score
convergence values, and the one above-threshold Z scoobjiert class 1 was below those of
the searches in class 2 and class 4 mentioned above. | exémimesults of the four “most-
converged” searches in detail, and summarize results ifotter searches with above-threshold

convergence.

The class 2/human-forms searchn the second session f&3 showed one of the greatest
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First search Second search
a b

Figure 4.8: Stimuli visited three or more times in searcle$B, class 2 (human-forms). Images
sorted in order of decreasing ROI response, averaged aaltdgals for each image.

convergence measures & 2.60). The scatter plot view of this search was presented in/Séc. 4
in Fig.[4.1. | return to analysis of this figure in the preseistdssion, in addition to analysis of
the relative ROI response sizes for the stimuli frequerdggrehed, shown in Fig. 4.8. Projecting
the visited stimuli along the first two dimensions in SIFBed space in Fig. 4.1a, and focusing
on frequently-visited stimuli (for reasons discussed ig.8el), we see two clusters on the top
left and the middle left for the second session (red and blamands). The images visually
are split into two groups one group containing light/generally-narrow-shape (irst, third,
fifth and eighth highest response stimuli) and the secondpgeontaining less-light/wide-shape
(the remaining stimuli), as shown in Fig. 4.8b. Notablyystii evoking high and low responses
appear in both clusters, and similar-looking images cant@pposite ROl activities — e.g., the

two red characters.

The class 2 search in the first session for S3 shows a quite s@akergence measure
(Z = 0.77). Projecting the visited stimuli along the first two dimeorss in SIFT-based space

in Fig./4.1a appears to reveal a concentration of frequensiged stimuli (red and blue circles)

2For the interpretation of real-world objects results, grimg was done by visual inspection of a single linkage
dendrogram constructed in the four-dimensional SIFT-bagace.
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at the bottom of the first two dimension of the space, but tivaudt are broadly spread out
horizontally and along the additional two dimensions shawhig.[4.1b. Unlike results for the
second session, there is no concentration of focus arouadqarrtwo) spatial locations. De-
spite a very low consistency Z scor8 & —0.82), there is evidence for a degree of consistency
between session results. The stimuli evoking the strorgesgtweakest responses in the first
session appear in the lower cluster of visited points in #®Bd session. The red wingless
character, again, elicits high response while the purplteged character in the first session and
the red-green winged character in the second session,yneavisual SIFT-based space, elicit
low responses. The winged character in the first sessiorojegied as a very small blue circle
at (—0.05,0.02,0.15,0.10) in the SIFT space in Figs. 4.1a and b. By starting from a sépara
location, the second search finds the highest-responsalspaighborhood for the ROI found by
the first search, but also finds a second local ROI-respongimm in SIFT space. This partial
consistency between searches is too weak by my metric toagaotably non-random Z score in
Table 4.6. Unfortunately, these nuances are not fully aaptin the Z score metric used in my
study, as defined in Sec. 3.5.

The class 2 search in the first session36ishowed the greatest convergence measure across
all searchesA = 2.77). Projecting the visited stimuli along the SIFT dimensiams=ig. (4.9,
we see one cluster (of red and blue circles) around the comtes(—0.1, —0.15,0, —0.15) and
several outliers for the first session. The members of the@esiuster are the images producing
the second, third, fourth, and seventh highest responegstfie ROI, as ordered in Fig. 4.10a.
The three stimuli in the cluster producing the highest resps may be linked by their wide
circular head/halo, while the smallest-response stimisln®tably thin — potentially indicating
response intensity as a wide/thin indicator. Stimuli emgkhigh and low responses, coming
from the two ends of the wide/thin spectrum, are nearby oratham in the part of the SIFT
space under study by the search.

The class 2 search in the second session for S6 shows a quatecmavergence measure

(Z = —1.43). Projecting the visited stimuli along the first two and set@wo dimensions in
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Figure 4.9: Search results for S6, class 2 (human-form&wshn (a) first and second SIFT
space dimensions and (b) third and fourth dimensions. Calwisshapes used as in Fig. 4.1
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Figure 4.10: Stimuli visited three or more times in searcfwsS6, class 2 (human-forms).
Images sorted in order of decreasing ROI response, aveeagess all trials for each image.
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Fig.[4.9a and b appear to show a similar structure of oneearwsith additional outliers in each
view, but careful inspection reveals the points clustecgpbther in the first two dimensions are
split apart along the second two dimensions, and outlieesiah view are farther flung across the
space, supporting the low convergence measure. Simikslyhe consistency Z score is a low
Z = —0.67, the stimuli frequently visited in the second session tadverlap with similar feature
space locations and “similar-lookirEétimuli frequently visited in the first session. Although a
red character produces the minimum responses in each ofvthedarches (Fig. 4.10), the two
characters are located in distinct corners of the SIFT spda red diamond and blue circle in
Fig.[4.9).

Comparison of searches for S3 and S6, in Figs. 4.1 and 4.9%ctregly, shows a similar
pattern of visited stimuli in the feature space. For bothjectis, there is a focus close to the
first dimensional axis, i.e, a vertical line of red and bluecleis and diamonds along the first
two dimensions; visited stimuli follow a V pattern in the sed two dimensions. Furthermore,
some of the highest ROI response stimuli appear (in red) gt lacations along the second
and third dimensions. Similarly, frequently-visited stilinffor S6 session 1 (dark blue circles)
appear close to the the observed lower cluster for S3 se&sittmough the cortical response
sizes for the two subjects appear to differ. Comparing Figsafd 4.10, we also can confirm
a degree of overlap between the images frequently shownafdn subject. In both subjects,
frequently visited stimuli seemed to show regional selégtiand potentially differentiation, for
narrow-versus-wide shapes. While searches for the two sisbghow great similarities, it is
worth noting the ROIs studied, labeled as ¢2 and f2 in [Fig, 4t8 anatomically distant from
one another. Thus, different subjects achieve similarrapdirategies in different areas of their
brains.

Theclass 4/containers searchn sessions 1 and 2 f@6showed the third and fourth greatest
convergence measures  2.37 andZ = 2.58, respectively) across all searches. Projecting the

3Similarity in appearance is not well-defined, as exploredriyyrelated work in Chap. 2. Generally, | limit my

similarity judgements to identification of identical pic&s, e.g., in Fig. 4]8. Here, | occasionally use more rough
intuition.
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Figure 4.11: Search results for S6, class 4 (containersyysiin (a) first and second SIFT space
dimensions and (b) third and fourth dimensions. Colors amges used as in Fig. 4.1.
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Figure 4.12: Stimuli visited three or more times in seardioe$6, class 4 (containers). Images
sorted in order of decreasing ROI response, averaged aalitdgals for each image.
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visited stimuli along the SIFT dimensions in Fig. 4.11, we 8&o0 clusters for the first session
(red and blue circles), centered aroupe).9,0.1,0.17,0.55) and (—0.55, —0.15,0.15, —0.15),
respectively, in addition to a few outliers. The membersheffirst cluster are the images produc-
ing the fifth and eighth highest responses from the ROI, aadrtembers of the second cluster
are the images producing the first, fourth, sixth, and séveighest responses, as ordered in
Fig./4.12a. While the members of the first group have cleadisimilarities, differing only by
their color, the members of the second group are much mocetads Perhaps they are linked by
their multiple long sides and by the illumination focusedammners rather than edges. Stimuli
within the same group draw both high and low activities frdra ROI. The two partially-open
hinged boxes produce mid-sized and low responses, indgattably different responses to
slight changes in complex visual properties.

Projecting the stimuli in the second session (red and blaendnds) appears to show less
strong grouping, though the convergence metric Z scoregeta The stimuli evoking the first
and third strongest responses are grouped very closelthgeverlaping in the first two dimen-
sions and surrounding the origin in the second two dimerssi@n35,0.35,0,0), in Fig./4.11.
The remaining two stimuli are outliers that appear reldginvaose in the first two dimensions,
but lie farther to the bottom right in the second two dimensiolt is unclear by visual inspec-
tion why two nearby stimuli are grouped together, thoughrttep handles and predominance
of horizontal and vertical lines may underlie their groupirSimilar to the other search results
observed above, the two nearby stimuli evoke a particutdigih and low response, respectively,
showing regional sensitivity to a slight change in positiowisual feature space — though the
visual differences between the stimuli is rather apparés.the consistency Z score is a low
Z = —0.83, the stimuli visited in the two sessions fail to overlap icdtion and in intuitive
visual appearances, though almost all stimuli visited ithis@arches have small handles on top
— a common but not essential characteristic of the class@grsin Fig/ 3.2.

Visual comparison of searches for class 2 and class 4 inFégs! 4.9 and 4.11, respectively,

show distinct patterns of visited stimuli in the feature ggaStimuli frequently visited by class
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4 searches are spread to greater extremes along the firdtiashditmensions of the space while
stimuli frequently visited by class 2 searches are spregodater extremes along the second and
fourth dimensions. These search behavior in part reflectififiering spreads of stimuli in each

class across the space, as shown by the black dots in eatdr ptatt

Study of frequently visited stimuli in the search sessidissng lower, but above-threshold,

convergence reveals a mix of results.

e The class 2/human-forms searchn sessions 1 and 2 f&7 showed high convergence
measuresA = 1.95 andz = 1.91, respectively). The first session frequently visited a
cluster of stimuli evoking the third, fourth, fifth, sixthnd seventh (out of seven) highest
ROI responses. The stimuli in this cluster appear to be grdigy high spatial frequency
details, and particularly frequent shiny spots, acrossstidace. Stimuli close together
in the visual space evoked particularly high and low ROI oeses. The second session
frequently visited points forming one cluster, but ther@asclear visual grouping among
these stimuli. Stimuli close together in the visual spaceked high (first highest) and
low (eighth and tenth out of eleven) ROI response. As theistesy Z score is a low
Z = 0.74, the stimuli visited in the two session fail to overlap indtion and in intuitive

visual appearances.

e Theclass 4/containers searcln the first session fog1 showed high convergence (=
2.14). The search frequently visited a cluster of stimuli evgkihe second, third, fourth,
and fifth (out of seven) highest ROI responses. There aregaw ¢lsual properties linking
these images. Notably, the stimuli evoking the highest am$t responses fall outside

the converged cluster.

e The class 4 search in the first session $drshowed high convergence (= 2.27). The
search frequently visited a cluster of stimuli evoking thstfisecond, third, fourth, and
eigth (out of eight) highest ROI responses. The two stimlolsest in space (evoking the

second and fourth highest responses) appear to be linkedrfacs texture, earth-tone
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Figure 4.13: Search results for S1, class 2 (human-fornm®ws in (a) first and second SIFT
space dimensions and (b) third and fourth dimensions. Calmisshapes used as in Fig. 4.1.

colors (although the SIFT representation space operatdgagk-and-white versions of

the images), and similar handle shapes; visual patterosseail five clustered stimuli are

not apparent. Stimuli clustered together in the visual egaoked the highest and lowest
ROI responses.

The two searches with cross-session search consisteneypeeiormed for object class 2
(human-forms) for S1 and S5. Object classes 1, 3, and 4 hacaches showing above-
threshold Z score consistency values values. | examineethdts of the two consistent search
pairs below.

Theclass 2/human-forms searchef®r S1showed a high consistency measure across the two
scan session(= 1.80). Projecting the visited stimuli along the SIFT dimensiam&ig./4.13,
we see stimuli frequently visited in the second sessiongretblue diamonds) are spread widely
across the SIFT space. Half of the stimuli frequently viite the first session (red and blue
circles) are focused arouri@.15, —0.55,0.15,0.1), in the same area as the stimulus producing

the lowest ROI activity in the first session. The three stinmukhe first session exploring the

135
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Figure 4.14: Stimuli visited three or more times in searcfwsS1, class 2 (human-forms).
Images sorted in order of decreasing ROI response, aveeagess all trials for each image.

same location as the second session were those producisgadbed, third, and fourth highest
responses, as shown in Fig. 4.14a. While, based on theirioglahese first-session stimuli
appear to be producing mid-level responses, distinct fluar{lowest” response produced by the
metal samurai stimulus of interest in the second searchpadson of absolute computed values
within each scan session shows all four responses to be lgwtefurther indicating similar
activity discover in both searches. It is difficult to intdiite visual properties grouping these
stimuli together, though they may be linked by their metalicfaces, and by their rectangular
bases and heads. Reviewing the cross-session grouping.id.EB, In summary, we see my
consistency measure will award one search focusing itsteftm a single location frequently
visited by a second search — potentially indicating the nieedurther modifications to my

consistency metric.

Comparison of class 2 searches for S1, S3, and S6, in[Figs.4t1,3and 4.9, respectively,
shows a similar pattern of frequently visited stimuli in tie®® space. There is a vertical line of
stimuli along the first two dimensions and a V pattern in theogel two dimensions. Some of the

highest ROI response stimuli appear at high locations alleagecond and third dimensions for
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Figure 4.15: Search results for S5, class 2 (human-fornm®ws in (a) first and second SIFT
space dimensions and (b) third and fourth dimensions. Calmisshapes used as in Fig. 4.1.

S1 session 2, S3 session 2, and S6 session 2. Notably, thelg-mbge figures from this region
frequently displayed to S3 in session 2 also are frequem|ylayed to S1 in session 2; 3 of the 4
figures are sorted in the same order based on ROI responsasigeown in Figs. 4.8 and 4/14.
Examining the relative anatomical location of the ROIs mddlabeled as a2, c2, and f2 in
Fig./4.3 for S1, S3, and S6, respectively, we see the ROIs¥arfsl S6 are very close to each
other when projected on the Talairach brain, though S3'siR@iore distant.

The class 2 searches f86showed a high consistency measure across the two scanrsessio
(Z = 2.19). Projecting the visited stimuli along the SIFT dimensiankig./4.15, we see stimuli
frequently visited in the first session (red and blue circkr® spread across the space. Quite
similar to the S1 searches for object class 2, half of theudtirequently visited in the second
session (red and blue diamonds) are focused arguAd, —0.45, —.025, 0.05), in the same area
as the stimulus producing the second lowest ROI activityhanfirst session. The four stimuli
in the second session exploring the same location as thesdission were those producing the

first, fourth, sixth, and eighth largest responses, spanhigh and low response values. The
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Figure 4.16: Stimuli visited three or more times in searcfwsS5, class 2 (human-forms).
Images sorted in order of decreasing ROI response, aveeagess all trials for each image.

visual properties grouping these stimuli together appedetthe presence of sharp local angles
defining internal holes or feathers in the shape. Furthgrdason of the SIFT space in Fig. 4.15
shows the two search sessions explore largely differembmegalong the first two dimensions,

though there appear to be closer overlaps along the secanditwensions.

Comparison of class 2 searches for S5 with those of the sshjegbrted above, S1, S3, and
S6, shows a great degree of difference in the pattern of éetlyvisited stimuli in feature space
and in the pattern of cortical responses across space. Tdigsdireflects the expected diversity

of selectivities employed in perception of a given objeessl e.g., human-forms.

The high consistency Z score despite relatively limitedriagein results between two ses-
sions may point to the need for modifying the metric defined€qgn.[3.7. The metric only
considers clusters of points in SIFT space containing stivisited by both searches. If most
visited stimuli are dispersed throughout the space, eaelwilhbe defined as its own cluster and
its presence will not effectively decrease the metric valweugh the/1 term, which will offset
the /2 term for small clusters. If there is a sulffficiently large stier containing only one point

from one search and several points from the other searchwiliibe considered strong consis-
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(Sm,Sp) corr  Tdist| (Sn,Sp,) corr  Tdist | (Sny,Sp,) corr  Tdist
(52,S4) -0.37 15| (S5,S9) -055 15| (S,S6) -049 1.6
(S5,S8) 0.42 20| (S3,S5) 0.60 1.3 | (S%S6) 023 23
(5%,S4,) 086 2.6 | (SkLS3) 045 28| (S2,S8) 042 1.7
(§%,S7,) -048 3.1 (S3,S3) 082 3.2 | (Sx,S2) -031 36
(S8,S8) 0.72 3.6 | (S13,SL) -0.25 45| (S4,S4) 054 45

Table 4.11: Correlation of activation profiles in SIFT-basgéce for anatomically proximal
ROIs in real-world objects searches. ROIs selected to beldsest pairs in Fig. 4.3 in first
three rows, closest pairs within same subject in last twosroWhe corr value for (Sp Sp,)
corresponds to the maximum-magnitude correlation for taesen ROI for subjectn and the
classg ROI for subjectn across search session pairs — e.g., (sessl,sessl),§ees%2, corp
0.8 in bold. Tdists is distance (in voxels) between the two ROiters in the Talairach brain.

tency, even if that was not intended when | designed the médinideed, these are the results |

observe above.

Comparison of neighboring regions

Profile correlations are distributed roughly as a Gaussisiniloution around 0, with a standard
deviation of 0.37. ROIs with high correlations, e.g.,> 0.8, show marked similarities on
visual inspection, such as the pair of interpolated respgmefiles shown in Fig. 4.17 for S2,
object class 3, session 2 and S4, object class 4, sessiomkviEp anatomically proximal ROIs
tend to have less similarity, seen across multiple pairg@@parisons in Table 4.11 and for
an individual pairwise comparison in Fig. 4.18. We can sedith= 0.42 is associated with a
pair of profiles retaining partial similarities in peak pig and negative activity locations, with
further differences in broader surface details. The pai (88 is considered here as it is the
pair of brain regions across closest to each other acrossiljécts with a non-negative profile
correlation.

Looking within individual subjects, the ROIs are slightlyore separated in the brain, as
indicated in Fig. 4.3, but generally have larger correlativagnitudes than the closer region pairs
across subjects. Most correlations remain betow 0.8, but may indicate a weak trend. The

presence of some moderately high negative correlatiortsmé@nd across subjects, particularly
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Figure 4.17: Interpolated activation profiles for two RQisth correlationr = 0.86. Responses

normalized for each profile with maximum value red and mimmwalue blue. diml1 x dim2

slices taken along first and second dimensions, varied dlirdydimension and fixed at fourth
dimension to 0. dim3 x dim4 slices taken along third and fowlitnensions, varied along first
dimension and fixed at second dimension to O.
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Figure 4.18: Interpolated activation profiles for two ROWth correlationr = 0.42. Same
cross-section display method employed as inFig.|4.17.

141



r = —0.55 for the (S5, S9) pair, may be similar in principle to the close proximity oasimum
and minimum activity stimuli in the SIFT visual feature spadnterpolated profiles such as in
Fig. 4.17 and scatter plots such as in Fig. 4.1 show nearlignegn feature space can evoke

extremely polar opposite cortical responses.

4.4.3 Fribble objects search

Among subjects viewing Fribble objects, 20 selectivityrshas converged and 7 searches showed
consistency across searches, as measured in Sec¢. 4.3r8refad-world object searches, exami-
nation of stimuli frequently visited by each search and #sponses of the corresponding brain
regions revealed multiple distinct selectivities withiasch of single ROIs, marked change in
cortical response resulting from slight deviations in ailgoroperties/slight changes in location in
visual space, and several perception approaches used bgritral pathway — including focus
on the form of one or multiple component “appendages” fonagiFribble object.

The search with the highest Z score convergence value fecbbjass 1 (curved tube object,
see Fig! 3.6) was performed in session 2 for S11; the searthtle highest value for object
class 4 (wheelbarrow object) was performed in session 118; 8s reported in Table 4.8. The
highest Z score convergence values for searches of obgsged 2 (blue-bodied, yellow-winged
object) and 3 (bipedal, metal-tipped tail object) were telbose of the searches in class 1 and
4. The two searches with highest cross-session searchstemsy were performed for object
class 3 for S17 and for object class 4 for S19. | examine inildb&results of the two searches
listed above as most-convergent for their respective olgleasses as well as the results of the
two most consistent search pairs (noting S19 is both mosistamt and most convergent). | also

summarize results for all other searches with above-tlmldstonvergence and consistency.

Theclass 1/curved tube object searcln the second session f&11showed high conver-
gence ¢ = 3.40). Projecting the visited stimuli along the three Fribbfeesific morph dimen-

sions in Figl 4.19, noting the third dimension is indicatgddiagonal displacement, we see one
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Figure 4.19: Search results for S11, class 1, shown in ttmeensional Fribble space, with
third dimension represented as diagonal offset. Positiird tlimenion results in displacement
up and to the right. Location of all potential stimuli in spashown as black dots. Results
from realtime scan session 1 are circles, results fromirealscan session 2 are diamonds. For
stimuli visited three or more times, colors span blue—dduk-bdark red—red for low through high
responses; for stimuli visited one or two times, colors spgan-yellow—green for low through
high responses. Size of shape corresponds to time eachvpaéntisited in search, with larger
shapes corresponding to later points in search.

First search Second search
a b

Figure 4.20: Stimuli visited three or more times in searcloesS11, class 1. Images sorted in
order of decreasing ROI response, averaged across adl fioiakach image.
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cIuste@ (of red and blue diamonds) centered aroind-0.33, —0.66). The cluster contains three
of the four stimuli visited three or more times in the secoesisson — all but the stimulus evok-
ing the second highest response from the ROI in[Fig. 4.20ks@&lstimuli show mid-extremes
green tail tip and mid-extremes tan head (se€ Fig. 3.6 fagah Fribble appearances); their legs
generally are mostly round (morphed away from the rectaarggiiape at the other extreme). The
outlying stimulus, while deviating in its more circular lteand more flat-topped tail tip, retains
the round leg shape. | observe Fribble ROIs often are mostithe for the shape of a subset
of the component appendages, although clustering appemditate the head and tail-tip shape

remain important for S11’s ROI as well, as does cross-sessimparison of results below.

The class 1 search in the first session for S11 shows a quitk e@aergence measure
(Z = —0.08). Projecting the visited stimuli along the three Fribbjgse dimensions (red and
blue circles) shows the search spreading to all cornerseofitst two dimensions of the space,
while focusing ondim3 > 0. In several locations, pairs of near-adjacent stimuli weséed, as
in the lower left, upper right, and center of Fig. 4.19. Inlekozation, the stimuli evoked opposite
strength responses from the ROl — the second and seventastigisponses are coupled, as are
the first and sixth, and the third and seventh. Sensitivitslight changes in visual features had

been observed previously for several brain regions of sibpewing real-world objects.

The stimuli with positive values for the third dimension Bamnore-rectangular legs, as seen
by visual inspection of Fig. 4.20a, seemingly contradigtior the round leg selectivity posited
for the second session. As part of my procedure, describ&edin 3.5, the search in the second
session is started at a position distant from the locaticaguiently visited in the first session to
observe whether the search will return to the same locasioowing consistency. For S11 class
1, the second search found and focused on one location, iwdke frequently visited stimuli
producing the first and sixth highest responses in the fistchesession, but shifted along the

leg-shape dimension. This focus of one search session@eopnint of interest from the other

4For the interpretation of Fribble results, grouping waselby visual inspection of the three-dimensional scatter
plots, e.g., Fig. 4.19.
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Figure 4.21: Search results for S17, class 3, shown in thir@ensional Fribble space. Colors
and shapes used as in Fig. 4.19.

search session produces a consistency value, 2.10. Comparing across searches, it appears

all three attributes are important to producing high reglomsponses.

The class 3/bipedal, metal-tipped tail object searchefor S17showed high cross-session
consistency ¥ = 3.28). Projecting the visited stimuli along the three Fribbpeesific morph
dimensions in Fig. 4.21, we see the first session focuseseoaxis of dimension 1, the second
session focuses on the axis of dimension 2, and both emghsteizuli with dim3 ~ 0.66. As
the convergence Z scores are log & 1.8), the visited points for each session spread widely,
albeit roughly confined to a single axis. The sessions’ shéweus around0, 0, 0.66) results
in the high consistency Z score. These points corresponetgtimuli evoking the first, sixth,
and seventh highest responses for the first session and e¢lrokang the second, fifth, sixth,
and seventh highest responses for the second session, sh&igs. 4.22a and b, respectively.
Visually, these stimuli are grouped for their spiked feét{3 = 0.66), as well as for their tails
appearing half-way between a circle and a cog shape (se@Bigand their yellow “plumes”

half-way between a round, patterned and angled, unifoshgded. The importance of spike-
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Figure 4.22: Stimuli visited three or more times in searcloesS17, class 3. Images sorted in
order of decreasing ROI response, averaged across adl fioiakach image.

shaped feet indicated in both searches, even beyon@the0.66) cluster focus, may relate to
prominance of edge detection in biological vision, expagdo the detection of sharp angles.
As noted for other Fribble and real-world objects searctes@, stimuli evoking the lowest and

highest responses are notably clustered in the search.space

Visual comparison of searches and of regional responsekfferent subjects cannot be made
across classes, as each Fribble space is defined by a difeeteof morph operations. Within

class comparisons do not reveal strong consistent patieross ROIs, as discussed below.

The class 4/wheelbarrow object searcltior S19showed the highest convergence measure
(Z = 4.20) in session 1 across all subjects and object classes anth adngergence measure in
session 2% = 2.01). Furthermore, the two searches together showed the highess-session
consistencyX = 3.80) across all subjects and object classes. Projecting tited/istimuli along
the three Fribble-specific morph dimensions in Fig. 4.23see clustering alongim1 = 0 and
dim3 = —0.33 for the first session (red and blue circles); dimension 2tiooaof the stimuli is
more broadly-distributed, but limited @m2 < 0. The stimuli at the center of the first session

cluster — those generating the first, fourth, fifth, sixthyesgh, and eighth highest responses as
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Figure 4.23: Search results for S19, class 4, shown in ti@ensional Fribble space. Colors
and shapes used as in Fig. 4.19.
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Figure 4.24: Stimuli visited three or more times in searcloesS19, class 4. Images sorted in
order of decreasing ROI response, averaged across adl toiakach image.
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shown in Fig. 4.24a — are linked by their purple tongue an@grear shapes, both intermediate
compared with the extremes observable in Fig. 3.6. The Rp¢as to be selective for the shape
of a subset of component appendages, without regard for etbments of the object (i.e., the
green nose). As observed throughout my search resultgjlsgroking high and low responses
appear in the same cluster, sometimes adjacent to one anothpace and appearing rather

similar by visual inspection, indicating ROI sensitivity slight changes in appearance.

Projecting the visited stimuli for the second session althrggthree Fribble dimensions (as
red and blue diamonds) shows two clusters, one focused @r@un.33,0.66) and the other
(consisting of two stimuli) focused arourid-0.66, —0.33, —0.66). The presence of multiple
selectivity centers is consistent with observed ROI respgoperties for subjects viewing real-
world objects, as well as Fribble subject S11 discussedeabbtie stimuli at the center of the
larger second session cluster — those generating the fitht, dnd sixth highest responses in
Fig.[4.24b — show a similar green ear and similar mid-extemease but a more star-shaped
purple tongue. The two stimuli with the most-circular toeguordered second and third in ROI
response, form the second cluster. This second clustehkasighest consistency with two of
the cluster outliers from the first session, i.e., the secamdl third most active stimuli for the
first session. The strong consistency among a small numbsgtiro@ili from the two sessions
together produces the high Z score value for the consistematyic, = = 3.80. Stimuli evoking
high and low responses appear in the same cluster, somediljgesent to one another in space

and appearing rather similar by visual inspection.

Study of frequently visited stimuli in the remaining seasgssions showing above-threshold

convergence and consistency reveals a mix of results.

e Theclass 1 searchin the second session f&13showed high convergence (= 2.42).
The search frequently visited a cluster of stimuli evokitigoat the lowest ROI response.
The stimuli are focused closely arouff@33, 0.66, 0.33), corresponding to a star-headed,

square-legged object, indicating selectivity for the fafall three component appendages.
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Stimuli close to one another in the visual space evoked @oggosite high and low cor-

tical responses.

e The class 1 search in the first session$di5showed high convergence & 2.76). The
search frequently visited stimuli along thén1 = 0 (head between star and circle shape)

plane, indicating selectivity for the form of only one of ttieee component appendages.

e The class 1 search in the second sessioid@showed high convergencg (= 2.42). The
search frequently visited a cluster of stimuli evoking tistfifourth, sixth, and seventh (out
of seven) highest ROI responses. The cluster stimuli anesket around0.33,0.33, 1),
corresponding to an object with round leg&:3 = 1), and mid-extreme tail tip and
head. Stimuli close to one another in visual space evokeditiest and lowest cortical

responses.

e The class 1 search in the second sessio81atshowed high convergencg (= 2.42). The
search frequently visited two clusters of stimuli evokihg third, fifth, and seventh (out
of seven) highest ROI responses and the second and sixtesthigisponses, respectively.
The presence of multiple selectivity centers is consisigifit observed ROI response prop-
erties for several subjects viewing real-world objects Bntdble objects discussed above.
The first cluster stimuli are focused arou(33, 0.33,0.33), corresponding to an object
with mid-extreme head, tail tip, and legs. The second ciustmuli are focused around
(—0.66, —1,—0.66) corresponding to an object with a star head, muffin tail-dipg rect-
angular legs. The class 1 searches performed across the&anssassions for S17 showed
high cross-session consistency € 2.28). Frequently visited stimuli in the first session
are limited to four points more-broadly distributed acrdiss space, resulting in a low
convergence value/ = —0.47). The point evoking the highest ROI response in the first
session is close to th®.33, 0.33, 0.33) stimulus cluster seen in the second search session,

producing the high consistency measure.

e The class 1 search in the first session$d9showed high convergencé (= 2.00). The
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search frequently visited three clusters of stimuli evgkihe second, third, and seventh
(out of seven) highest ROI responses, the first and fifth lsghesponses, and the fourth
and sixth highest, respectively. These observations ajew the possibility of multiple

selectivities in a selected ROI. The first cluster is focusexind the origin, the second is

focused around—0.33, —0.33, —0.33), and the third is focused arourid, —1, 0).

Theclass 2/blue-bodied, yellow-winged objedisee Fig. 3.6) in the first session 1846
showed high convergence (= 2.10). The search frequently visited only three stimuli,
which cluster together around-0.33, 0, 0). The small number of frequently-visited stim-
uli limits broader conclusions about ROI responses acr@sl/space and span of ROI
activity.

The class 2 search in the second sessiorStbf showed high convergence (= 2.97).
The search frequently visited a cluster of stimuli evokitigbat the ninth highest ROI re-
sponse. The stimuli are focused aroynd).66, 0, 0.33), corresponding to a square-tipped
eared object with mid-extreme wings. The class 2 searcihsrped across the two scan
sessions for S17 showed high cross-session consistehey 8.14). Frequently visited
stimuli in the first session are more dispersed across spagdfing in a low convergence
value (Z = 0.89). The stimuli evoking the first and third (of seven) highesgponses in
the first session are close to the cluster of stimuli fredyensited in the second search

session, producing the high consistency measure.

Theclass 3 searchn the first session fos16showed high convergencé (= 1.80). The
search frequently visited two clusters of stimuli. The fehister contains stimuli evok-
ing the third, fourth, and fifth (out of seven) highest ROIpesses; it focuses around
(—0.33,0,—0.66), corresponding to a mostly flat-footed object with mid-erte tail tip
and mid-extreme yellow plume. The second cluster contdinsuf evoking the second,
sixth, and seventh highest response; it focused arguid1, dim2) = (0,0.66), cor-

responding to an object with a cog tail tip and a mid-extrerheme, while varying in
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dimension 3, affecting foot shape. The ROI selects for tlaggeendage properties in one
case and only two properties in another case. Stimuli closme another in the visual

space in the second cluster evoked opposite high and lovealmresponses.

The class 3 search in the first session$d8showed high convergencé (= 1.82). The
search frequently visited a cluster of stimuli evoking alt khe first and sixth (of seven)
highest ROI responses. The stimuli are focused ardgdid 1, dim2) = (0,0.66) while
varying in dimension 3. Stimuli close to one another in spaaiked high and low cortical

response.

The class 3 search in the first session3d©showed high convergence (= 3.00). The
search frequently visited a cluster of stimuli evoking ait the highest ROI response. The
stimuli are focused aroun@, 0.33,0), corresponding to an object with mid-extreme tail

tip, foot, and yellow plume.

The class 3 search in the first session$@0showed high convergence (= 2.86). The
search frequently visited a cluster of stimuli evoking alk Ithe first three highest ROI
responses. The stimuli are focused arognd.66, —0.66, 0), corresponding to an object

with a narrow plume and almost-circular tail tip.

Theclass 4 searchn the first session fo811showed high convergen& (= 3.90). The
search frequently visited a cluster of stimuli evoking alit bhe lowest ROI response.
The stimuli are focused closely arouff@33, 0, —0.33), corresponding to a fork-tongued,
block-eared object. Stimuli close to one another in spac&exy high and low cortical
responses. The class 4 searches performed across the mveessaons for S11 showed
high cross-session consisten&y & 2.20). Frequently visited stimuli in the second ses-
sion are dispersed across space, resulting in a low conveggalue £ = —0.38). The
stimuli evoking the third and fourth (of seven) highest @sges in the second session are
close to the cluster of stimuli frequently visited in the ffisearch session, producing the

high consistency measure. As usual, the measure refledsstamcy of only a few stimuli
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from one session with a high-activity stimulus or clustestimnuli in the other session.

e The class 4 search in the second sessiorsfi8 showed high convergence (= 2.67).
The search frequently visited two clusters of stimuli. Thstfcluster contains stimul
evoking the second, third, fifth, and seventh (out of seveghdst ROI responses; the
second cluster contains stimuli evoking the first, sixthd ourth highest responses. Both
clusters are focused arouridim1, dim2) = (0.33,0.66). They differ by the extent to
which the green ears are bright and curved. This ROI is anetkemple of selectivity for
a subset of Fribble component appendages, while requinegl¢ss-selected” appendage

— the ear — to fall into one of two appearance categories.

e The class 4 search in the second sessiorSft showed high convergence (= 2.30).
The search frequently visited a cluster of stimuli evokitidgpat the second (of six) highest
ROI responses. The stimuli are focused aroutd6, 0.66,0.33), corresponding to an
object with a curved ear, almost-circular tongue, and nxislegne nose. Stimuli close to

one another in visual space evoked high and low corticaloesgs.

e The class 4 search in the first session3@0showed high convergence (= 2.86). The
search frequently visited a cluster of stimuli evoking tkeand, third, fourth, fifth, eighth,
and ninth (of nine) highest ROI responses. The stimuli azaged aroun.33, 0.33, —0.33),

corresponding to an object with mid-extreme tongue, eat,rarse.

In sum, searches in most ROIs studied above cluster aroundla $ocation, indicating a single
selectivity in visual space specific for all three comporeggendages in a given Fribble, though
several for searches find multiple clusters and some resti& Fribble location along certain
dimensions does not affect ROI response. The invariancedd$ o variation along a certain
dimension, but selectivity along other dimensions is diftico be detected when thresholding
by convergence and consistency, which favors tight cluggealong all dimensions. Locations
of clusters, and of high ROI responses, are roughly equédgiyl to be in the middle of the

space (morphing between clear end-point shapes) or clode textreme ends (showing clear
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(Sm,Sp,) corr Tdist| (S, Sp) corr Tdist| (Sn,,Sp) corr  Tdist
(S12,S15) 0.53 0 |(S13,S15) 0.70 1.3 | (S1y,S16) -0.42 1.7
(S12,515%) 0.74 2.8 | (S15,S16) 0.57 2.8 |(S13,516) -0.25 2.8
(S14,517) -0.63 3.8 |(S19,S23) 0.66 3.8 | (S14,S13) -0.05 3.8
(S13,515) 0.81 3.8 |(S14,S16) 0.68 3.8 | (S14,S14) -0.47 3.8
(S13,S14) -0.67 3.8 |(S15,S14) -0.78 3.8 |(S16,S14) -0.67 3.8

Table 4.12: Correlation of activation profiles in Fribble spdor anatomically proximal ROIs.
ROIs selected to be the closest pairs within same subjedidR. The corr value for (S Sp,)
and Tdist between the pair of ROIs are as defined in Table 4dri> 0.8 in bold.

end-point shapes like star heads or sharp-toed feet). Feragbut not all) ROIs, stimuli close
to one another in visual space evoked high and low corticgiorses — indicating sensitivity to

slight changes in visual properties.

Comparison of neighboring regions

As for real-world objects searches, Fribble ROI responsHilprcorrelations are distributed
roughly as a Gaussian distribution around 0, with a standakdation of 0.36. Because the
space for each Fribble class is defined by component-speuifiphing operations, meaningful
profile comparisons in the initial spaces only can be madesaaregions selected for the same
class of stimuli. Anatomically proximal ROIs have widelyrymg correlations, as seen in Ta-
ble/4.12. The positive values are above 0.5, but generalombe = 0.8, indicating similarities
are weak but present. High negative correlations, as ako isereal-world objects results, may
indicate a regions may suppress its response to stimuliag®cy to neighboring regions, con-
stituting lateral inhibition on the level ofil0mm? cortical regions. This potential property has
parallels to the cortical inhibition for stimuli neighbag high-activity stimuli in Fribble-morph
visual space.

Beyond metrics, cross-region consistency can be assessglly, particularly in Fribble
spaces in which the three dimensions of stimuli can easilisa@lized in the two dimensional
scatter plot. Looking across subjects at frequently visgmuli (red and blue circles and dia-

monds) for class 2, searches for S3, S4 and S9 appear to @ufeaas around—0.5, 0, 0.33),
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Figure 4.25: Comparison of search resultd 2thd cortical msgmacross visual space for S11—
S16, class 2. Colors and shapes used as in Fig. 4.19.
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evoking strong, spatially adjacent positive and nega@aponses. Searches for S2, S8, and S9
appear to pursue a focus arouiid, 1, 0.33), also evoking strong, spatially adjacent positive and
negative responses. Regardless of the specific visualizasied to examine them, the visual fea-
ture spaces | have developed provide a powerful new toolHaracterizing and understanding

cortical responses to complex visual properties.

156



Chapter 5

Discussion

My goal in this study was to better elucidate the complex aiigaroperties used by the brain
for visual object perception. In contrast to our understagaf early visual processing (e.g.,
edge detection in primary visual cortex) and the high-lewglanization of visual cortex (e.g.,
broad category identification in LOC, FFA, and PPA), intermagglrepresentation along the ven-
tral pathway is poorly understood. In my recent work (Chap.l 2)lentified computer vision
methods that successfully modelled object representatidifferent stages of the ventral path-
way — methods predicted what object stimulus pairs wouldipoe similar or distinct cortical
responses from selected brain regions. My present workepiesto use computational models
of perception to establish low-dimensional visual feagpaces as a context in which to charac-
terize brain region activity across the world of visual altge Where Hubel and Wiesel explored
varying orientations and locations of edges to excite nesimo V1 [22], | define spaces of com-
plex object-related visual features to explore which prtps will excite a 10mm? brain region
at higher levels of the ventral pathway. | develop and emplmyel techniques for realtime fMRI
study to quickly identify brain region selectivities — tlesisual properties evoking maximal
cortical response from a pre-select region — given limiteghsing time.

My work begins with the scientific question “What are complésual properties used in cor-

tical object perception?” and the related technical qoestHow can we select stimuli to best
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identify cortically-preferred visual properties in lineid fMRI scanning time?” Both questions
are addressed through the development and application eff @ programs that dynamically
choose visual object stimuli to show to a subject in the seabased on the subject’s cortical
responses to previously-shown stimuli. This “realtimaimstius selection is performed in the
context of a search of visual feature space, using the skrgieulated annealing method [7],
to quickly find the stimuli (corresponding to feature spameakions) producing highest cortical
responses from a pre-selected brain region. Many modehdgechnical choices underlie the
operation of my realtime search methods, pertaining tondefn of visual feature space, selec-
tion of brain regions to study (fixed prior to the search olnakspace), rapid and accurate com-
putation of regional responses, and effective commuminaimong programs running in parallel
to perform all elements of the search. In the definition ofdeaspaces, | test two approaches
— first organizing real-world object stimuli based on them#arities as measured by the SIFT
computer vision method [36] and then organizing synthetilclite objects [76] based on morph
operations to component parts required to transition frar@ object appearance to another. |
observe most aspects of each search generally behaved estegkpsupporting my choices.
However, there remains much room for further developmertst\vearches fail to converge on
a clear location in visual feature space as the regionat®aly, indicating shortcomings in the
feature spaces — particularly in the space defined basedfh-Si and in assumptions about
the nature of cortical responses across each space — thiesisgarch method expects a unique
maximum, which is not seen in the presently-gathered data.

Those realtime searches that successfully converge, oyw@wvide new insights into the
complex visual properties utilized by mid- and high-levedib regions in the ventral pathway.
Observing cortical activities over the defined visual featspaces, | find multiple brain regions
producing high responses for several sets of visual prigserie., for two or three locations
in space. | also find many regions suppress their responsestifiouli adjacent in space —
and slightly varied in visual appearance — from those stiraubking markedly high cortical

activity, indicating a high-level “surround suppressi@gmputation as discussed below. Visual

158



inspection of stimuli corresponding to the spatial selatsticenters provides visual intuition
about high-level visual properties of interest, such asshiolobject shape, shapes of component

parts, and surface textures.

5.1 Regional selectivities

My novel methods in realtime fMRI search seek to identifyuailkobject stimuli producing max-
imal activity for a given brain region — revealing the comphdsual property selectivities of
the brain region. | study the cortical responses recordetiencourse of realtime searches in
the context of visual feature spaces to understand braionegtivity across a world of visual
objects, finding flaws in the initial search assumptions thate is a unique maximum to a re-
gion’s cortical activity across visual space. | seek imbmtabout visual properties of interest to
brain regions in the ventral stream through inspection iofigi evoking extreme cortical activ-
ity, finding holistic object shape, shapes of componentspannd surface textures are included

among cortical selectivities.

5.1.1 Selectivities in feature space

Examination of the distribution of cortical responses asrthe defined visual feature spaces in-
dicates repeating patterns across subjects and ROIs noipated in my search design. The
simplex method assumes the activity of a given brain regéacies a maximum for a stimulus
corresponding to one location in feature space and actmiyotonically decreases for stim-
uli corresponding to points increasingly distant from thaximum. In contrast, in both SIFT
and Fribble spaces, several searches show extreme highoanee$ponse stimuli cluster to-
gether, with mid-level response stimuli spread furthenfrthe cluster center. This pattern of
slightly differing stimuli causing extremely different neal responses is familiar from visual

coding properties in earlier stages of the ventral pathwaipoth SIFT and Fribble spaces, sev-
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eral searches also show cortical response maxima disgdduadly across space, rather than
concentrated in one location as a unique regional selgctivi

The proximity of stimuli evoking ROI responses of opposix¢remes can be seen through
scatter plots (e.g., Figs. 4.19 3ﬁ4f)23orted stimulus figures (e.g., the red figures in Figs. 4.8b
and the hinged-ajar boxes in 4. Q,‘ia&nd activation profile cross-sections (e.g., Figs. 4&ib4.18a),
as well as through discussion of further high-convergemzach examples in Chapl 4. These
findings are consistent with the principle of surround segpion observed at early stages of
the visual system. Hubel and Wiesel observed spatiallycadja‘on” and “off” edge regions in
visual stimuli exciting or inhibiting, respectively, theiking of neurons in V1H2]. In modern
hierarchical models of the human visual system, the firgestaflects these early findings by
using a series of Gabor filte 57]. Prior to cortical ioggd retinal ganglia cells similarly
are known to have receptive fields characterized by conicein” and “off” rings in the im-
age plane of any given stimul49]. Wang et al. found eweefor surround suppression,
again based on location in the image plane, for perceptidheobecond order texture statistics
of noise [73]. These multiple stages of alternating patevhexcitation and suppression are
consistent with principles of successful neural coding et®dn which lateral inhibition of rep-
resentational units “located” adjacent to or nearby ondlarcare found to be advantageous to
computational perception tasks [25, 50]. While past peredstudies have focused on suppres-
sion of percepts neighboring one another in the plane ofrtfege falling on the retina, local
competition in alternative feature spaces are conceptpéusible from neural coding models.
My work indicates the use of surround suppression in moreptexnrepresentational spaces
employed at more advanced stages of cortical visual obgrception. From a methodological
perspective, my results illustrate both the descriptivegroof the feature spaces | have defined
— based on SIFT and Fribble-morph representations — andltigyaof the realtime search

1Scatter plot examples only are given in Fribble spaces asdteemore easily evaluated visually in one two-
dimensional plot.

2Stimulus examples only are given for SIFT searches as sitigs of the real-world object stimulus set are

easier to see than they are for Fribbles that all look predantly similar within a given class to the uninitiated
reader.
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method to capture meaningful properties of cortical bebravi

The presence of multiple local ROI response maxima in eaatufe space also can be
seen through scatter plots (e.g., Figs. 4.1 land|4.19) anvhtoh profile cross-sections (e.qg.
Fig.[4.18b), as well as through discussion of further rasuiideed, the high frequency of low
convergence scores in Tables 4.5 and 4.8 may correspondysrambers of local maxima in
each search session, which may explain the results forsuBjel, class 1 in Fig. 4.19. Overall,
these findings suggest the one cubic centimeter 125-voxelscstudied may contain multiple
cortical sub-regions selective for distinct visual prdpes. Given the millions of neurons present
in each region and the specificity of properties explored¢cfiwnal variability is a potential risk
of the analysis design. Regions purposely were limited ppaese to lessen the likelihood of
variability, but multiple voxels were retained to build upthe visual representation-searchlight
analysis findings of Chap. 2. A weighted average of voxel rasps was used to compute a
single number for regional response for each trial, as dised in Sec. 3.3.6. The weighting
was intended to further suppress less-prominent multelagtivity patterns, though the method
for selection of these weights may be modified to focus on lgow&h a single selectivity, as

discussed further in Chap. 6.

5.1.2 Selectivity visual intuitions

Analysis of cortical activities over visual space provideduable understanding of the pres-
ence of one or several selectivities for a brain region aedptiesence of surround suppression
within the defined visual space. However, intuition abowt tlature of preferred stimuli, and
their underlying visual properties, is better obtainedtigh visual inspection of those stimuli
frequently visited by each search and evoking extremeantesponses. For many real-world
objects searches, it was not possible to identify unifyimgual patterns of preferred stimuli.
However, for a few searches | did observe potential selesiieghe and surface properties. For

Fribble object searches, executed in carefully-consdaiisual spaces, unifying visual patterns

161



for stimuli producing high cortical activity largely werehstic Fribble shapes. There were no
clear patterns across subjects regarding the preferregstgpholistic shapes, dependent upon
the shapes of the three components of each Fribble class.

Frequently visited stimuli clustered together in SIFT spa€ evoking both extreme high and
low responses, consistent with the observations in 5-4.can be united by broad shape
(e.g., width in Figs.. 4.8b and 4.10a or relative three dinmra proportions in Fig. 4.12a), sur-
face properties (e.g., brightness in Fig.|4.8b or texturBig|4.14), and fine internal contours
(e.g., sharp-edged holes in Fig. 4.16). Observed selgcforn shapes is consistent with the find-
ings of Yamane et al. and Hung et al., who successfully ifledtiwo- and three-dimensional
contour preferences for neurons in V4 and IT using unifomaydolob stimuli [Ell 78]. Unlike
these prior studies, my work employs real-world stimuli d@nds identifies classes of preferred
shapes likely to be encountered in normal life experiendesedved selectivity for surface prop-
erties is a more novel finding, though Tanaka observed suebtsaties in primate IT neurons
in the context of perception of object drawings [63]. Manarebes performed for real-world
objects revealed no clear patterns among stimuli evokitrigmre cortical region responses, clus-
tered together in SIFT-based space. This lack of clear nostigkely reflects the difficulty of
capturing the diversity of real-world visual propertiesarfiour dimensional space, as discussed
in Sec/ 5.2.3.

Fribble objects, and corresponding “Fribble spaces,” wesed to study ten subjects with
stimuli more controlled in their span of visual propertieBrequently visited stimuli in each
Fribble space can cluster around a three-dimensional swded Each dimension corresponds
to variations of a component shape morphed between two reptsuch as a star/circle head
or flat/curved feet, as in Fig. 3.6. Thus, clustering aroungbant indicates slight variations
on three component shapes, with focus around a fixed hosikpe. Across subjects, there is
no clear pattern of the nature of favored holistic Fribblass, nor of favored shapes for the
three varying component “appendages.” For some searcteegieitly visited Fribble stimuli

evoking strong cortical responses can vary along one axtsvoraxes while staying contant
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on the remaining one(s). Depending on the brain region, ortree component shapes can
account for selectivities. Regional selectivity for pasfsan object, rather than the whole, may
be associated with cortical areas particularly early inwbtral pathway; this finding would be
consistent with the focus of early and intermediate stag@ssmn on spatially-distinct parts of
a viewed image, pooled together over increasingly broats pdrthe image at higher stages of
vision [48].

For both real-world and Fribble objects searches, visusdéction of the ordering of stimuli
by ROI response, e.g., Fig. 4.8 and 4.20, fails to yield amthé&r insights. A priori, we would
expect shape properties to smoothly transition as measesgbnses decreases. The lack of
this transition may stem from the mix of multiple coding @pinhoise in fMRI data (despite
averaging), and particularly from the presence of surragungpression, placing similar-looking

stimuli at opposite ends of the line of sorted stimuli.

5.1.3 Comparison of neighboring regions

Similar to the notion of retinotopJ/T?Z], in which neighbog brain regions encode neighboring
parts of visual space, we expected selectivities in nearbynbregions to exhibit selectivities
for stimuli drawn from nearby parts of the more-complex abkieature spaces. Comparison of
regional selectivities was performed by smoothing the sasps for the scattered visited stim-
ulus points over space to form “activation profiles” as in.Fgl7. As discussed in Sec. 4.4,
selectivities for nearby ROIs rarely showed strong sintyaboth within subject and across sub-
jects’. There are several moderate positive and negative mateftwsén nearby ROIs in Fribble
spaces, but the results are not as strong as desired<(|r| < 0.8). While these weak results
may indicate a lack of continuous transitions in seleaasgiticross the brain, they also may reflect
limitations in the method of comparison. For example, aivatibn profile may contain multiple

maxima reflecting behavior of neurons in different locati@tross a region. A region neighbor-

3Cross-subject ROI distances were computed based on ponjéata Talairach brain, as discussed in Sec. 4.2.1.
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ing from the left may only contain maximum responses for gtiractivating neurons in the left

portion of the initial region, and additional maxima for mens towards the right end of the new
region. This partial overlap may not be sufficiently reflecte the correlation metric describe

in Sec! 4.4.11. Similarly, a neighboring ROI slightly shifgiin feature space a pattern of strong
negative response surrounding strong positive respoosesponding to surround suppression
discussed above, may cause the two respective responsasetstnong negative correlations
rather than strong positive correlations, potentiallylekpng moderately negative correlation

Fribble results in Table 4.12.

5.2 Influences on search behavior

In my work, the study of complex visual feature selectidta regions in the ventral pathway
was driven by a set of programs that dynamically selectedusitio display during each scan ses-
sion based on cortical responses to stimuli displayed skxearlier in the session. Dynamic, or
“realtime,” stimulus selection was pursued to most effexdyi search the defined space of visual
properties in limited scan time and to most quickly identtyjects that produce the highest re-
sponses from each brain region under study. The performairealtime searches for maximally
preferred stimuli in areas of the ventral pathway has nohlmesued previously in neuroimag-
ing to my knowledge, and is quite new to neuroscience stuafiegsion in generalH4H8].

I implemented and applied a set of programs for this studyg, @ssesses the performance of
these programs. The three programs — responsible for ebrésponse measurement (called
“preprocessing”), stimulus selection (“search”), andnstius display (“display”), respectively
— generally acted as expected and successfully workedhegetHowever, the selection of
stimuli by the search program frequently failed to convengea visual selectivity for a given
brain region. A variety of inaccurate visual selectivitydaechnical assumptions underlying my
methods likely challenged the effectiveness of these bearc

For each subject and brain region, the realtime search rdétingplement — simplex simu-
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lated annealingﬂ?] — is expected initially to probe the hraith stimuli broadly distributed in
the defined feature space, but quickly to narrow its focusitowi drawn around the area in fea-
ture space evoking the highest cortical responses. Funtirer, searches are expected to produce
the same results for a fixed ROI regardless of the startingtpoifeature space. These expecta-
tions frequently were not met, as shown in Tables|4.5,/4%,48, 4.9, and 4.10. The simplex
method frequently revisited points spread across SIFT aibdblé spaces, with little clear change
in focus over time. Consistency of search results for the danai@ region across scan sessions
was similarly poor. Nonetheless, the successful convegand consistency of searches for sev-
eral ROIs, and the insights resulting from these searchdg;ate great robustness and ongoing

promise for my methods.

5.2.1 Simplified search assumptions

As discussed above, the simplex method expects a given R@tsilus response function to
have a unigue maximum in feature space. In contrast, my diaashow multiple local maxima.

If there are three or more maxima in a region — particularlihgé number of maxima is larger
— itis unlikely the search will repeatedly probe a sufficianimber of stimuli to associate each
maximum location with a large enough cluster of stimuli toglwce a high convergence value,
defined in Egn. 3.6. Similarly, the presence of a large nurnberaxima increases the likelihood
that starting searches from different points in featurecsepaill produce different sets of results,
each focusing on points closest to their respective stattioation, producing poor consistency

measures as defined in Egn. 3.7.

5.2.2 Technical challenges in realtime programs

Myriad technical choices were required in the implementabf the three programs executing
the realtime search for regional selectivities. While thgamty of these choices enabled the

smooth operation of my experiments, some challenges did &r each program.
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The persistent variability of visited stimulus locationg@ss each search session, indicated
by low |Avar| values in Tables 4.7 and 4.10, reflects the simplex re-lizéiion strategy de-
scribed in Sec. 3.1.5. Each search session was divided inttipfa runs. At the beginning
of each run, a new simplex was defined centered around th&édoagiciting the highest ROI
response in the previous run — except in the first run, in whighstarting point was selected
as discussed in Sec. 3.1.5. The four initial new simplex tgaim the four-dimensional space
were selected by taking random-sized steps away from thialipoint along each dimension.
The random distribution used to generate these steps reth#lie same for each run, causing
an equal spread of points to investigate at the first run ok#ssion as the last run of the ses-
sion. Further developments to the search program allowegddial continuation of searches
across runs, rather than requiring new simplex initiala@a — however, these improvements
have not yet been thoroughly tested to confirm proper exacatnd, therefore, were not used in
the present work.

Further technical choices in the realtime computationatesy posed additional challenges
to effective search. Insufficiently fast computation antiwoek-communication times prevented
the display program from showing subjects the correct dtiatithe proper time on as many as
40% of trials, as seen in Tables 4.1 and 4.2. While the frequehdisplay errors was signif-
icantly reduced by switching methods of inter-program camioation — from sharing a file
over a mounted drive to passing information directly thiowgsocket — errors still occured,
sometimes on as many as 10% of trials. The preprocessingeandnsprograms, described in
Sec! 3.1, assume the correct stimulus is shown for eaclatréhbelect new stimuli to show based
on computed ROI response regardless of the validity of thealistimulus actually reaching the
subject. Incorrect displays misinform the simplex seatobua stimulus responses and can lead
to sub-optimal exploration and acceptance of future simplgints. However, the search still
often recovers sufficiently to identify ROI selectivities ere of the nine examples of significant
real-world objects search convergence;,$8mes from a session in which over 25% of stimulus

displays were incorrect, and most convergent searchegsdaa more limited number of erro-
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neous stimulus displays. The assumption of noisy stim@apanse measurements embeded in
the simplex simulated annealing approach may contributieet@obustness of realtime search to
display errors.

Shortcomings in motion correction during preprocessirsg ahay mislead realtime stimulus
selection. As discussed in Sec. 4/3.3, the location of R@igdch search is determined at the
beginning of each scan session. Optimally, all functiorlimes collected through a session
should be realigned to the brain position at the beginninthefsession, to ensure the proper
voxels are used to compute stimulus responses. Insteady study, volumes were aligned to
the brain position at the start of their respective runs.seh@ositions potentially could be shifted
from the beginning of the session. Comparing offline comparabf ROI responses based on
start-of-session alignment with responses computed usaltme start-of-run alignment, as re-
ported in Tables 4.3 and 4.4, regional activity estimatadctdiffer significantly. Similar to
the risks of undetected display errors, incorrect respaassulations could lead to sub-optimal
exploration and acceptance of future simplex points. Hamesounter to this theoretical con-
cern, we can observe that 66% of significant convergencétsdsu real-world objects searches
and 50% of significant convergence results for Fribble dezs@orrespond to sessions whose
realtime—offline calculations have correlations< 0.3. Limiting convergence and consistency
measures to stimuli visited three or more times may pernataying activity over multiple trials
to overcome errors in individual measurements. Altermdyivfor sessions with highly negative
correlations, particularly noticable in Fribble spacesarshes may effectively be searching for
stimuli evoking particularly low responses; this strateggly successfully identify maxima in

stimulus space as well because of the observed phenomesarrofind suppression.

5.2.3 Limitations of SIFT multi-dimensional scaling space

The use of a SIFT-based Euclidean space yielded partigytadr search performance across

subjects and ROIs, despite the abilities of SIFT to captepgasentations of groups of visual
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objects in cortical regions associated with “intermediatee!” visual processing, discussed in
Chap! 2. Significant convergence and consistency statisgos observed more rarely than ex-
pected — certainly compared to those statistics in Fribpkces — and visual inspection of
frequently-visited stimuli frequently failed to providetuition about visual properties of impor-
tance to the brain region under study.

Confining the SIFT representation to four dimensions, folmnadugh multi-dimensional scal-
ing as discussed in Sec. 3.8.2, limited SIFT space’s des&ipower over the broad span of
visual properties encompassed by real-world objects. Waesmall number of dimensions was
required to enable effective search over a limited numbecah trials. However, Fig. 3.3 shows
that at least 50 dimensions would be required to explain 50%teovariance in a SIFT-based pair-
wise distance matrix for 1000 images. Even among 1@ Stimuli employed for each object
class, the four dimensions used account for less than 50%r@nce. The missing dimensions
acount for grouping pairwise distance patterns acros® laejs of images — therefore, more-
careful selection of stimuli included in a given object slasill renders four-dimensional SIFT
space insufficiently-descriptive.

Intuitively, it is not surprising that there are more thamurfaxes required to describe the
visual world, even in the non-linear pooling space of SIFrtlded, the method used successfully
in Chap! 2, and repeated for the realtime study, employs 1&88rigors and 128 visual words
]. Further study shows that tailoring SIFT space for eafdine four object classes used in my
sessions still requires over 10 dimensions each to accouB0Rb of variance. The exploration
of selectivities for real-world objects using Euclideamsp may well require more dimensions,
and thus more trials or a more efficient realtime analysig@ggh. The number of dimensions
may be kept small by identification of a superior feature sehy limitations on the stimuli. |
pursue the latter through Fribble spaces, with notable avgment.

My definition of SIFT space also may obscure visual intuigiéor properties unifying stimuli
producing high cortical activations. Multi-dimensionab$ing identifies dimensions maximizing

the preservation of pairwise distances between imagess mbthod allows groups of objects
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deemed similar by SIFT to be clustered together, but mayayatuce patterns of visual variability
smoothly transitioning between two extremes across askveet of objects. Fribble space, again,
is defined to capture such variability, and reveals ROlsriam& to changes in some dimensions

but selective to changes in others.

5.2.4 ROIl selection

Weak matches in response properties of nearby ROIs in partbeattributed to the lack of
sufficiently close pairs of regions under study. My studylergs a new method — realtime
fMRI search of a complex visual space — to gain insight inteual object encoding. Given
the multiple sources of uncertainty, from recording andgblpgical noise to questions of opti-
mal realtime analysis techniques, brain regions are ssaldoteach subject to maximize search
performance rather than to maximize opportunities for sn@gion comparisons. ROI selection

was performed based on the strength of my models to explamtgauring reference scans,

as discussed in Secs. 3.3.6 and 3.4.5. Furthermore, aithvefsinatomical locations were se-
lected in each subject, as reference scan data allowedintpespective on cortical selectivities
in a breadth of regions across the ventral stream — a goalsapgpastudy of transitions across

neighboring cortical areas.

Regions were selected manually by assessing localizeltseanatomically restricted to the
ventral stream. Often there were multiple candidate ategtcbuld have been selected. Regions
centered in a larger group of voxels with high matches to SiRd class-specific activitations, or
to Fribble-class specific encodings, were favored. Howdwecided the balance of SIFT and
class-specific matchings along with proximity to anatorhiceations of interest in the ventral
stream, e.g. lateral occipital, fusiform, or anterior teargd, on an ad hoc basis. Further analyses
are needed to determine the optimal balance. In Chap. 6, bpeoa potential fixed method for

future ROI selection.
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5.3 Promise of realtime stimulus selection

My work employs a collection of novel methods in realtime Igsis of cortical data to explore
complex visual properties used in perception. This expionafaces myriad technical and bi-
ological challenges — from scanner and physiological nmd®RI recordings to uncertainty
about the nature of higher level visual representations mpmunded by the small number of
stimuli able to be shown in the limited scanning time. Readtiselection of stimuli based on
cortical responses to recently displayed visual objectsropes the use of this limited scanning
time, building on similar approaches in primate neuropbipgly [24, 78]. My present ap-
plication of simplex simulated annealing [7] for stimuluedection faces considerable additional
challenges — from occasional faults in stimulus displayremfient simplex resets — resulting
in lack of convergence and consistency for searches acrossnder of brain regions across
subjects. However, numerous brain regions studied, pdatily using Fribble stimuli, produced
successful search performance revealing novel insigtds/isual object perception. In the novel
search spaces | defined, | observe surround suppressiely, i@lective of local competition be-
tween neural units, and multiple sets of featural selessiviikely reflecting the large size of the
studied brain regions. | identify local and global shapessanface properties such as texture and
brightness as biologically relevant complex features.desbe similarities in activation patterns
across visual feature space across subjects, confirmingleamelectivities are shared across
subjects. These results, found for the convergent and st@nsisearches in my study, point the
way to future models of higher level vision and more refinedhuds for realtime stimulus se-
lection. These improvements can further overcome the maalanges facing my present work.
Indeed, the success of my initial approaches in searchirggifouli for a number of brain regions
provides encouragement for the potential of future workealtime fMRI. This encouragement
builds on the promise of realtime stimulus selection alyesgkn theoretically as an efficient use

of limited scanning time and empirically from past successeneurophysiology.
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Chapter 6

Future work and conclusions

| have developed a realtime search method to determine kbetisey of ventral stream regions
for complex visual properties using fMRI. My work has prosdinew understandings about vi-
sual representation of objects in the brain. | identifiedrbragions selective for holistic and
component object shapes and for varying surface propeiffies visual feature spaces | defined
in my work provide a powerful new tool for characterizing ttoal responses to complex vi-
sual properties. My findings also serve as a compass to futhe=lopment of realtime fMRI
methodology to study the visual system more effectivelyinfiorms important choices in pro-
cessing of signals from across the brain and from withincdetevoxel regions, modification of

the simplex search method, and assessing the evolutioteatisdies between regions.

6.1 Voxel selection

Selection of “optimal” regions of interest, based on prieference scan data, is at the center of
realtime analysis. These regions specify the voxels thttcantrol the choice of stimuli dis-
played, in turn revealing regional selectivity. The ROlsdign my study often showed multiple
selectivities across a given feature space, potentiaflgatng the presence of multiple neural

groups effectively competing for control over the searct.fdcus on single group selectivities,

171



it may be advisable to decrease the number of voxels withégimn — potential t&> = 27. Al-
ternatively, the method for consolidation of voxel respEs® a single region-wide number may
be revised to emphasize activities from only one neural grathe method used in the present
study performs a weighted sum based on the first componemielédrom principal component
analysis on voxel responses in the reference scan, asledan Sed. 3.3.6. This method identi-
fies and emphasizes the most common activation patternsaitr@segion, which may be a mix
of multi-voxel patterns resulting from multiple commonrdytivated neural groups. In contrast,
use of independent component analysis, or similar sparsieattie, potentially including spatial
constraints, is more likely to define separate componenigiel| patterns corresponding to each
neural group. Summing with the weights of an independentpmant may better emphasize a
single selectivity. Analyses on already collected dataicditate the effects of these approaches

for future experiments.

Beyond size and weighting, the optimal locations on whicledater voxel regions merits
further exploration. As discussed in Sec. 5.2.4, the maseigction of ROIs in my work bal-
anced desires for broad coverage of the ventral stream watkirmzing the chances for strong
signal and for strong search performance. These balancgdeaet through a deterministic
algorithm. Furthermore, selection in future studies mayficee ROIs to a more restricted func-
tional or anatomical area, potentially favoring use of héigring ROIs for same-session searches
to compare selectivity transitions across a cortical ardgorithmic selection can assign each

voxel values drawing on:
e Zscores from class and representation-space localizens as those discussed in Sec. 3.3.4
e Z scores of nearby voxels and voxel-searchlights

e distances from desired brain regions, defined through fomnal localizers, anatomical

landmarks, and location of other selected ROIs for realtmaysis

These values can be weighted and summed to produce a sce&cforvoxel that represents its

desirability as the center for a region. Weights can be datexd based on analyses of already
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collected data.

6.2 Search method evolution

The simulated annealing simplex search, spread acrosgpfaulins for each realtime scan ses-
sion, incorporates a variety of algorithmic choices intthtb most effectively identify selectivity
of a region under investigation. Results from my study ssggeections for improved search
performance. Convergence over scan time — rather than teteclinig measured by my “conver-
gence” measure employed in this work — is limited by the riéghzation of the search simplex
at the start of each run with widely spread simplex pointsiacoa carefully chosen center. Two
methods may be used to approach more desirable search tehavi
e At the start of each new run, the re-initialized simplex goioan be defined to be offset
from the simplex center with a uniform random distributi@s, discussed in Sec. 3.1.5,
scaled with a decreasing maximum with increasingly latesrn the session. The scaling
can decrease using the temperature reduction equatioredefirEqn. 3.4. Furthermore,
the simulated annealing temperature for each search —tiaffleacceptance/rejection of
candidate points into the simplex — can be updated by the samuation for each new
run. This approach is relatively easy to introduce into theent software, but artificially

speeds search convergence.

e The simplex state at the end of each run can be provided asahmg condition to the
search program at the beginning of the next run. Using thithatk searches may run
a sufficient number of steps across runs to meet convergeaitegacgiven in Cardoso
et al. for termination and for interim temperature updatesly allowing the search to
incorporate simulated annealing [7]. Transfer of full #ainformation across runs and
simultaneously management of searches at different stddemperature update and ter-
mination presents further implementation challengesctviare unfortunate but merit the

effort to address.
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Analyses on already collected data may be used to indicatkkedly impact of these modifica-

tions and to fine-tune optimal parameters for simplex angtrature updates.

The simplex method is intended to find a unique maximum inufeagspace, assuming re-
sponse to a given point decreases with distance from thermemilocation. The presence of
multiple maxima with surrounding regions of suppressioferture space, violates this assump-
tion. From my data, it appears the simplex can successfdéntify a small number of local
selectivities. The development of realtime fMRI search lddaenefit from simulation studies of
my method’s behavior incorporating the reality of multiphaxima, and exploring the utility of

modifications to the method and of entirely different methtmt probing the feature space.

6.3 Techniques in preprocessing

Realtime preprocessing of fMRI signal is needed for mednirapalyses. However, the constel-
lation of registration, detrending, and normalizationpstemployed require computation time
that can lead to delays in selecting new stimuli, in turn iegdo incorrect stimulus displays
that misinform the ongoing searches. At the same time, lwbdbat post hoc performance of a
more complete, but slower, set of preprocessing steps ile3adh3 and 4.4 can result in different
estimates for cortical region responses, indicating tepssturrently used in realtime may not
always be sufficient for proper stimulus response compriatilt would be valuable to perform
further post hoc analyses on the data already collectecttuifgt processing the steps best added,
changed, and removed to strengthen the reliability of reglioesponse computations while de-
creasing the risk of delays associated with these compuatatiincorporating the findings from
Sec! 4.3.2, future studies likely should perform volumesegtion with the brain position at the

start of each session, rather than with the position at gé st each run.
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6.4 Lessons learned

My work uses realtime selection of stimuli in conjunctiortiviMRI to explore visual properties
used by pre-selected voxel regions in the visual objectgmien pathway. These methods have
broad potential applications to study, for example, digdesrels of vision, alternative senses

such as hearing, and more abstract semantic represestatitre brain.

For continued pursuit of realtime fMRI exploration of coreplperceptual spaces, there are

six central design factors to consider:

e Selection of cortical region(s)/voxel(s) for study

Selection of pool of potential stimuli (e.g., images, wqroissounds) from which to draw

during the experiment

Organization of potential stimuli for effective realtimelsction

Stimulus selection method

Stimulus presentation design — particularly, subject &s# stimulus onset asynchroncy

(i.e., the time between onsets of stimuli)
e Realtime fMRI signal processing

Selection of voxels for studyAs realtime stimulus selection still is a young field, it isved
able to continue along the relatively simple path alreadgped with some success in primate
neurophysiology, identifying a neural “unit” likely selie for only one set of properties and
determining those properties for which it is selectm [68] fMRI, minimization of the neural
units studied may be achieved by analysis of activity froomalsvoxel region, e.g., containing
2 x 2 x 2 voxels rather thah x 5 x 5 voxels, if not fewer. Alternatively, independent componen
analysis can be used to identify a set of voxels that tendiebig vary together across stimulus
presentations — either acros$ & 5 x 5 voxel region of interest or across the ventral tempo-
ral cortex in general. These covarying voxels are likelypoegling to similar visual properties,

permitting study of a single set of visual properties reféva cortical perception. The initial se-
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lection of voxels for analysis should utilize class and esgintation-space localizers as discussed

in Secs. 3.3.6 and 3.4.5, to increase measured corticaimesp over noise and to ensure any vi-
sual representations in the stimulus organization anadsefemethods are reasonably accurate
for the voxels under study.

Selection of potential stimulus poolFor early realtime explorations of complex percep-
tual properties, the pool of potential stimuli should haweited “dimensions” of variation —
though these dimensions may not need to be explicitly defanpdori. The highest realtime
search performances in my work, as measured by converg&aceomsistency, were found for
Fribble stimuli with three fixed dimensions of variation (S¢.3.3); similar successful work in
primate neurophysiology also has utilized strong visualst@ints, synthesizing controlled blob
stimuli 24,]. Use of stimuli found in the real world, raththan synthesized by a computer
model, can provide valuable additional intuitions aboutical perception performed in more
natural settings (Sec. 5.1.2); | recommend the use of natimauli if they can be controlled for
perceptual variability.

Organization of stimuli Each stimulus is best represented through a set of parasriater
dicated by prior work to be important to cortical perceptidn my realtime study, the use of
the SIFT computer vision representatig 36, 40] was mtenydoy my previous work indicating
SIFT constitute a reasonable model for representationsofatiobjects in intermediate stages of
the visual object processing pathway in the brain (Chap.T2)e, use of Fribbles was intended
as a controlled exploration of the effects of shape and textabserved to be relevant to cortical
object perception by past studig[g @ 78] and by myimealexploration of real-world ob-
ject stimuli (Sec. 5.1.2). For most efficient implementatand operation of the chosen realtime
stimulus selection method, the stimulus representatianse arranged into a Euclidean space,
a graphl/tree, or another structure. As mentioned abovedyrtia regions studied also optimally
should be selected to best support the stimulus organizasumptions.

Realtime selection of stimuliA variety of stimulus selection methods may be used to ex-

plore the visual properties used by a selected set of vordlse brain. Identification of visual
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properties most activitating a neural unit through a simp@earch of feature space is appeal-
ing for its simplicity and for its success in my current workdowever, the results of realtime
study may be improved by modifications to the simplex sinadannealing method [7] to ac-
count for observed surround suppression — maximum resgdonagons in visual feature space
may be surrounded by visual space regions producing marlsegiipressed cortical responses.
Perhaps new simplex points can be accepted when they erther@minently loweror promi-
nently higher than present points in a simplex. Alternatxplorations of visual properties
may be pursued by evolutionary algorithms, modified fromaka Yamane et al. and Hung
et al. 24,@58], exploring stimuli slightly deviatingoim those producing the highest and
lowest responses earlier in the scan session. Further geetbocharacterization of a given vi-
sual feature space may be explored, using active learnitigneisy measurements for learning
classification boundaries and for regressing parametéregponse surfaces in the space. Itis
advisable to test new stimulus selection methods in sinamagaccounting for expected noise,
potential models of surround suppression, and potentmallitiple maxima in the feature space.

Stimulus presentation desigrshould be developed carefully to maximize signal quality an
to minimize unintended perceptual biases. Dimness detedtised in Sec. 3.4.3 is preferable
because it limits notions about perceptual features of imapoe while forcing subject attention
onto the object stimuli. Fixation onset detection with passiewing of stimuli, used in Chap! 2,
is similarly appealing for its lack of potential perceptimhsing. However, it may cause less
attention to the stimuli which may result in weaker measuesponses. In contrast, the one-
back location task in Sec. 3.3.4 should be avoided becauaesed some subjects to use shape-
based strategies to determine stimulus location, a syrdled may have biased their perception
of objects. Other tasks also may be worth pursuing.

The use of an 8 s stimulus onset asynchrony (SOA) in my work.($4.3) prevents signif-
icant overlap between cortical responses to consecuiiveilt aiding in reliable estimates of
cortical responses to each stimulus. While more rapid dysple., lower SOA, the increased

overlap between stimulus responses would hinder the irg&ility of single trial measure-
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ments and would require pooling of response data over mamg mnials to perform optimal
selection of further stimuli to study. Faster stimulus ¢thgpalso may require development of
approaches to decrease fMRI signal processing times, teepsmew response data at the speed
at which it becomes available.

Performance of multiple visual property searches in pekadllternating displays between
distinct classes of stimuli for each search (Sec. 3.1.8) &l an appealing approach to continue
from my work. Interspersal of visually distinct stimuli E=ns the risk of potential adaptation to
visually similar properties, reducing what otherwise ebloé a strong response from the selected
voxels.

Realtime fMRI processingas described in Sec. 3.1.4 is necessary to properly compute ¢
tical responses to displayed stimuli. However, it remam®pen question which stages of pre-
processing are necessary and how best to compress codgmises across time and space.
Detrending, motion correction, and normalization prepssing steps all appear to be valuable,
though visual property search performance appears to hestdb reductions in motion cor-
rection (Sec. 5.2.2). Compression of cortical responsesadime, through fitting of an HRF,
makes response computations more robust against scarshéicdogical noise. Further com-
pression across voxels may add further robustness, or meguabdsignificant information about
multi-voxel cortical encodings. | believe my weighted suation across voxels provides a com-
promise between the two concerns while embracing moreiltiactealtime search methods,
requiring fewer stimulus response evaluations. Howevehé&r work performing optimization,
regression, or classification given a multi-dimensiondpatifrom the cortical region of interest

also merits future pursuit.

6.5 Conclusions

My work develops a novel method for probing complex visudéstvities in the ventral vi-

sual pathway. Despite a variety of biological and technitallenges, | identified brain regions

178



selective for holistic and component object shapes and doying surface properties, further
developing our understanding of the visual properties digsedortical object perception. | also
found examples of “surround suppression,” in which cottaivity is inhibited upon viewing
stimuli slightly deviating from the visual properties peefed by a brain region. Here we see the
mechanism of surround suppression extends up the visuarbig, past its established use in
V1 [22], supporting the notion of a perceptual advantagddoal competition between “neigh-
boring” percepts in higher levels of vision [25]. The mulépspaces | used to parameterize
complex visual properties — based on SIFT [36], multidimenal scaling [55], and Fribble
objects [76] — provide promising representational framekgmn which to build future studies
of object perception. Chap. 2 suggests additional compuséwn/representations for pursuit
in brain research. My method for realtime selection of stipto rapidly identify stimuli most
activating a given brain region, presents a further way odhin neuroimaging investigations of

object vision making maximal use of limited scanning time.
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