
Safe, Efficient, and Robust Predictive Control
of Constrained Nonlinear Systems

Vishnu R. Desaraju
April 2017

CMU-RI-TR-17-25

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Robotics

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Nathan Michael, Chair

Maxim Likhachev
Koushil Sreenath

Nicholas Roy, MIT

Copyright c© 2017 Vishnu R. Desaraju

Abstract
As autonomous systems are deployed in increasingly complex and uncertain en-

vironments, safe, accurate, and robust feedback control techniques are required to
ensure reliable operation. Accurate trajectory tracking is essential to complete a
variety of tasks, but this may be difficult if the system’s dynamics change online,
e.g., due to environmental effects or hardware degradation. As a result, uncertainty
mitigation techniques are also necessary to ensure safety and accuracy.

This problem is well suited to a receding-horizon optimal control formulation via
Nonlinear Model Predictive Control (NMPC). NMPC employs a nonlinear model
of the plant dynamics to compute non-myopic control policies, thereby improving
tracking accuracy relative to reactive approaches. This formulation ensures con-
straints on the dynamics are satisfied and can compensate for uncertainty in the state
and dynamics model via robust and adaptive extensions. However, existing NMPC
techniques are computationally expensive, and many operating domains preclude
reliable, high-rate communication with a base station. This is particularly difficult
for small, agile systems, such as micro air vehicles, that have severely limited com-
putation due to size, weight, and power restrictions but require high-rate feedback
control to maintain stability. Therefore, the system must be able to operate safely
and reliably with typically limited onboard computational resources.

In this thesis, we propose a series of non-myopic, computationally-efficient,
feedback control strategies that enable accurate and reliable operation in the pres-
ence of unmodeled system dynamics and state uncertainty. The key concept under-
lying these techniques is the reuse of past experiences to reduce online computation
and enhance control performance in novel scenarios. These experiences inform an
online-updated estimate of the system dynamics model and the choice of controller
to optimize performance for a given scenario. We present a set of simulation and
experimental studies with a small aerial robot operating in windy environments to
assess the performance of the proposed control methodologies. These results demon-
strate that leveraging past experiences to inform feedback control yields high-rate,
constrained, robust-adaptive control and enables the deployment of predictive con-
trol techniques on systems with severe computational constraints.

iv

Acknowledgments
I initially decided to do a Ph.D. to hone my research skills and to develop a

deeper understanding of motion planning and controls for robotics. However, I have
gained much more than that over the past few years thanks to the incredible people I
have had the privilege to work with.

First and foremost, I would like to thank my advisor, Prof. Nathan Michael, for
his guidance, feedback, and insight throughout my time at CMU. It is rare to find a
thesis advisor whose research interests align so well with your own, and I feel that
has made the Ph.D. a far more enjoyable and fruitful experience. His ability to dis-
sect a problem and clearly communicate the research challenges has been immensely
insightful and has helped shape my approach to research. The opportunity to help
lay the foundation for the Robust Adaptive Systems Lab has also been an invaluable
experience and has taught me far more about the challenges in deploying real-world
robotic systems than I could have imagined. I am also grateful to my thesis commit-
tee members, Prof. Maxim Likhachev, Prof. Koushil Sreenath, and Prof. Nicholas
Roy, for their feedback and insight throughout this process. In hindsight, I realized
that my committee also reflects my time at Michigan and MIT, which helped shape
my research interests.

I also have to thank all my friends and colleagues who have made the past
few years a truly memorable and enjoyable experience, especially John Yao, Ellen
Cappo, Humphrey Hu, and Kumar Shaurya Shankar. When conversations can change
topics from Lyapunov stability to quadrotor cupcakes to ancient Rome to the curi-
ously recurring template pattern, there is never a dull moment. It has been a pleasure
working with Alex Spitzer over the past year, and I am extremely grateful for all his
help in conducting and analyzing many of the flight experiments that have helped
solidify this thesis. I would also like to thank Arjav Desai and Matt Collins for their
help with the Crazyflie platform and Cormac O’Meadhra and Lauren Lieu for their
help with the ground robot simulations.

I am also grateful to Chuck Whittaker, Curt Boirum, Derek Mitchell, Wennie
Tabib, Xuning Yang, Micah Corah, Vibhav Ganesh, Erik Nelson, Shihyun Lo, and
so many others in the Robust Adaptive Systems Lab, the Field Robotics Center,
and elsewhere who have helped with everything from infrastructure to research dis-
cussions to software development to just relaxing and de-stressing throughout this
endeavor. I am also thankful for all the administrative support provided by Karen
Widmaier, Ashley McClinton, Lynnetta Miller, Nora Kazour, and Suzanne Lyons
Muth. We would certainly descend into chaos without them.

Finally, a sincere thanks to friends around the world, and especially to my par-
ents and my sister for all their support and encouragement over the course of the
Ph.D. It is fascinating to see how little has changed in the Ph.D. experience between
generations. Thanks to them, I have been able to maintain some semblance of sanity
during even the most trying of times.

vi

Contents

1 Introduction 1
1.1 Core Challenges . 3
1.2 Thesis Contributions . 4

2 Background 7
2.1 Feedback Control . 7
2.2 Model Predictive Control . 9
2.3 Fast Nonlinear Model Predictive Control . 11

2.3.1 Online NMPC . 11
2.3.2 Explicit MPC and NMPC . 12
2.3.3 Semi-Explicit MPC . 13

2.4 MPC with Plant and State Uncertainty . 14
2.4.1 Adaptive MPC . 14
2.4.2 Robust MPC . 15

2.5 Online Dynamics Model Learning . 16

3 Nonlinear Partial Enumeration 19
3.1 Approach . 19

3.1.1 Receding-Horizon Control Formulation 20
3.1.2 NPE Algorithm . 24

3.2 Results . 27
3.2.1 Simulation Studies . 27
3.2.2 Experimental Validation . 34

3.3 Conclusions . 39

4 Experience-driven Predictive Control 41
4.1 Approach . 41

4.1.1 Online Model Adaptation . 43
4.1.2 Receding-Horizon Control Formulation 46
4.1.3 EPC Algorithm . 49

4.2 Results . 51
4.2.1 Simulation Studies . 51
4.2.2 Experimental Validation . 60

4.3 Conclusions . 63

vii

5 Robust EPC 67
5.1 Approach . 68

5.1.1 Adaptive Stochastic Dynamics Model 69
5.1.2 Chance-constrained Tube MPC . 70
5.1.3 Robust EPC formulation . 72
5.1.4 Online Model Adaptation . 77
5.1.5 Algorithm Overview . 78

5.2 Results . 79
5.2.1 Simulation Studies . 80
5.2.2 Experimental Evaluation . 83

5.3 Conclusions . 95

6 Efficient Explicit Adaptive Nonlinear MPC 97
6.1 Approach . 98

6.1.1 Predictive Control Formulation . 98
6.1.2 Controller Search via Randomized Trajectories 102
6.1.3 Controller Database Generation via Sampling 104
6.1.4 Online Database Query . 105

6.2 Simulation Results . 106
6.2.1 Pendulum Control . 107
6.2.2 Quadrotor Attitude Control . 111

6.3 Experimental Evaluation . 117
6.4 Conclusions . 118

7 Conclusion 121
7.1 Summary of Contributions . 122
7.2 Future Work . 123

A Experimental Architecture and Platforms 125
A.1 Software Architecture . 125
A.2 Infrastructure . 126
A.3 Evaluation Platforms . 127

A.3.1 Quadrotor Micro Air Vehicle . 127
A.3.2 Skid-steer Ground Robot . 131

B Stability Properties 133
B.1 NPE Stability . 133

B.1.1 Mode 1: In-Database Operation . 134
B.1.2 Mode 2 - Intermediate Controller . 135
B.1.3 Stable Switching . 136

B.2 EPC Stability . 137

Bibliography 139

viii

List of Figures

1.1 Environmental interactions introduce perturbations to motion in a variety of do-
mains including (a) an aerial robot flying in a turbulent wind field, (b) an un-
derwater robot encountering currents and other flow fields [1], and (c) a ground
robot traversing a sandy slope [2]. 2

2.1 General feedback control diagram depicting the control computer that generates
commands to drive the plant (e.g., an aerial robot) to track the reference based
on state estimates (e.g., from a motion capture system or onboard sensing) and
uncertain disturbances (e.g., wind). 8

2.2 Taxonomy of several common classes of control methodologies that address the
challenges of computational efficiency, uncertainty mitigation, or constraint sat-
isfaction. The approaches detailed in this thesis represent Semi-Explicit and Ex-
plicit MPC solution strategies that leverage Adaptive and Robust MPC formula-
tions to address all three challenges concurrently. 8

3.1 Overview of the proposed approach that constructs a reusable controller database
to recover the functionality of NMPC. (a) A MAV initially operates away from
constraint boundaries enabling it to apply a controller in the database. (b) As the
MAV transitions to more aggressive flight and approaches a constraint boundary,
a new controller is added to the database that enforces this constraint. (c) The
MAV reuses controllers in the database according to its state to satisfy constraints. 20

3.2 Reference trajectory for the first test scenario 29
3.3 Comparison of position, trajectory tracking error, and attitude for the three con-

trollers considered (PD, Linear MPC, and NPE). NPE yields substantially im-
proved tracking performance with reduced overshoot and oscillations. 30

3.4 Total time a controller is applied (in seconds, indicated by color) during a se-
quence of similar actions. The first column (index 0) corresponds to the interme-
diate controller, while index 1 corresponds to the first computed controller. 31

3.5 Vehicle velocity (along the world z-axis) and commanded thrust over repeated
takeoff-hover-land sequences. Red lines indicate constraints enforced in NPE. . . 32

3.6 Total controller application time for a sequence of actions using previously com-
puted controllers. The first column shows the intermediate controller is never
used. 33

3.7 Overlay of controller switches illustrating similarity across trials. 33

ix

3.8 Snapshots of the quadrotor tracking an ellipse using Nonlinear Partial Enumera-
tion. The inset images in each frame show controller usage (left) and trajectory
visualization with active constraint alerts (right). 37

3.9 Comparison of y-axis velocity profiles for the experimental platform tracking the
elliptical trajectory using LQR and NPE, where NPE aims to enforce the velocity
limits indicated by the dashed lines. 38

4.1 Overview of the proposed approach that constructs online an experience database
consisting of parameterized feedback controllers and dynamics models. (a) A
MAV operates away from constraint boundaries enabling it to apply a controller
in the database while the dynamics model continues to be updated. (b) A new
controller is added to the experience database as the MAV transitions to more
aggressive flight and the updated dynamics model predicts that the system state
is approaching a constraint boundary. (c) The MAV reuses controllers in the
database based on the state evolution predicted by the current estimate of its
dynamics model. 42

4.2 Snapshots of the quadrotor executing the elliptical trajectory that traverses the
disturbance region (highlighted). 52

4.3 Learned controllers are reused in subsequent laps, ultimately eliminating the de-
pendence on the intermediate controller (column 0). Colors denote the total us-
age time (in seconds) for each controller. 53

4.4 EPC successfully satisfies roll and pitch control input constraints (dashed red
lines) via controller switching. 54

4.5 Comparison of EPC tracking performance with and without LWPR-based adap-
tation. 55

4.6 LWPR accurately estimates the torque disturbances about the x- and y-axes as it
tracks the elliptical trajectory. 56

4.7 EPC with LWPR yields improved position tracking error compared to L1 adap-
tive control (L1AC) and EPC with a simple state predictor (EPC-Luenberger). . . 57

4.8 Representative trajectories entering and exiting the disturbance region (high-
lighted), taken from a 100 s window of the randomized trial. 57

4.9 Reference trajectory components for the randomized trial with the disturbance
region highlighted along the x-axis . 58

4.10 Roll and pitch disturbance estimates for the randomized trial show an initial tran-
sient but have consistent performance for the remainder of the trial 58

4.11 EPC satisfies control input constraints for the entire duration of the randomized
trial while tracking a diverse set of trajectories 59

4.12 Snapshots of the line trajectory executed in a spatially-varying wind field gener-
ated via a pair of high-power fans . 60

4.13 Reference trajectory along the y-axis for the 12-lap line flight experiments 61
4.14 Comparison of y-velocity profiles for the experimental platform tracking the

line trajectory using EPC with different disturbance estimation strategies and L1

adaptive control. All three EPC instances follow the velocity constraints (dashed
lines). 62

x

4.15 Comparison of the x-axis acceleration disturbance estimated by each controller’s
model adaptation component. ISSGPR (and LWPR to some extent) shows a clear
trend in the estimates that stabilizes after acquiring sufficient experience. 64

4.16 Comparison of cross-track error induced by the wind disturbance acting orthog-
onally to the line trajectory. Both LWPR and ISSGPR are able to mitigate the
mean error, unlike the Luenberger observer-based configurations. 65

5.1 Overview of the proposed approach that combines an online learned controller
database with estimates of the dynamics model and state uncertainty. As uncer-
tainty changes, the tightened constraints (red) on the MAV automatically adjust
to ensure robust satisfaction of the requested constraints (blue), even as the MAV
switches between controllers. Panel (b) shows the addition of a new controller to
the experience database to accommodate higher sensor uncertainty. In panel (c),
the state uncertainty parameterizes all controllers in the database. 68

5.2 Nominal state constraints (blue lines) are tightened (red lines) according to a
chance-constraint bound on the predicted Gaussian uncertainty. 72

5.3 A series of snapshots showing a segment of the ground robot simulation trial.
The blue lines denote the trajectory being tracked by the ground robot as it tra-
verses the unknown environment. The successive frames illustrate the simulated
laser scanner (red dots denote simulated laser returns) building a map of the en-
vironment that drives the localization subsystem. 81

5.4 (a) EPC computes and reuses four controllers (indexed 0-3) to enforce the nom-
inal state and input constraints, while (b) Robust EPC applies 17 controllers to
ensure robust constraint satisfaction (an index of -1 denotes application of the
intermediate controller). 82

5.5 Velocity profiles for the ground robot tracking the commanded trajectory using
EPC and Robust EPC. The robust formulation yields more reliable constraint
satisfaction (velocity constraints shown by dashed lines). 83

5.6 Position tracking error of the three model adaptation strategies: Luenberger,
LWPR, and ISSGPR. Performance is comparable across all three. 85

5.7 Vehicle executing a back and forth trajectory with five laps. 87
5.8 Time spent using each controller per lap. Note that multiple controllers are

learned and reused and that the intermediate controller (index 1) ceases to be
used past lap 3. 88

5.9 Comparison of y-velocity profiles for the line trajectory across 10 trials of each
controller. Only Robust EPC satisfies the nominal velocity constraints (dashed
lines). 89

5.10 The vertical circle trajectory used to assess belief propagation, visualized using
video stills. 90

5.11 Position along the y and z axes for Robust EPC and the fixed bound approach
as compared to the reference trajectory. The fixed bound approach that uses the
true upper bound fails to track the trajectory. The mean and max error for Robust
EPC along the y-axis are 0.22 and 0.41, respectively, while for the successful
fixed bound approach, 0.24 and 0.51. 91

xi

5.12 Overlay of tube growth for Set Propagation and Belief Propagation based on the
bounds computed by each at the start of trajectory tracking. Set Propagation
growth is too fast to yield feasible constraints. 92

5.13 Velocity of Robust EPC along a high-speed back and forth trajectory. There is a
small constraint violation of 0.03 m/s during the last lap. 93

5.14 Snapshots of the horizontal circle trajectory executed in a high-speed, turbulent
wind field generated via a set of eight high-power fans 93

5.15 x and y components of the horizontal circle trajectory showing the three laps
executed . 94

5.16 Velocity of Robust EPC along the circle trajectory in the high-wind scenario. The
velocity obeys the constraint bound aside from one minor constraint violation of
0.09 m/s. 94

5.17 Cross-track error while executing the circle trajectory in the high-wind scenario
is nearly zero-mean and shows some improvement over time. 94

6.1 Growth of the pendulum controller database during the offline search. 108
6.2 Markov chain transition probabilities with states that correspond to the relevant

database controller enumeration for the pendulum feedback control system 109
6.3 Trajectory tracking performance via the pendulum control database 109
6.4 State and input constraint satisfaction via the pendulum control database 110
6.5 Disturbance region highlighted in orange with example trajectories. 112
6.6 Growth of the attitude controller database during the offline search. 113
6.7 Transition probabilities for the Markov chain with states corresponding to con-

trollers in the database. The entries for the first 100 controllers are magnified for
clarity. 114

6.8 Quadrotor attitude reference tracking performance via the control database. . . . 115
6.9 Roll and pitch torque constraints are satisfied for the duration of the attitude

control evaluation. 116
6.10 Roll and pitch torque commands satisfy constraints even in the presence of a

30% max torque disturbance. 116
6.11 Transition probability matrices (a) before and (b) after simplification of the Markov

chain underlying the position controller in the Crazyflie flight experiments. . . . 119
6.12 Snapshots of the Crazyflie tracking one lap of the linear trajectory used to evalu-

ate real-time control feasibility . 120
6.13 The Crazyflie transitions between multiple controllers while executing the linear

trajectory. 120
6.14 Controller database query times onboard the Crazyflie where even the spikes

corresponding to the controller changes are below the 10 ms desired threshold. . 120

A.1 Block diagram of the modular planning and control architecture that enables
simulation and experimental evaluation of the ideas proposed in this thesis 126

A.2 Flight arena used to experimentally validate the proposed algorithms. The arena
is equipped with a Vicon motion capture that obtains accurate, high-rate state
feedback. 127

xii

A.3 Fans in the flight arena used to generate turbulent flow to assess online model
adaptation in the proposed techniques. Colored streamers on the fans aid in
visualizing the wind. 128

A.4 The small quadrotor equipped with an ODROID-XU4 used for experimental val-
idation of NPE (Ch. 3), EPC (Ch. 4), and Robust EPC (Ch. 5). 129

A.5 The Crazyflie quadrotor used for experimental validation of the efficient explicit
adaptive NMPC technique (Ch. 6). 130

A.6 The simulated ground robot used to evaluate performance of Robust EPC (Ch. 5).
The large arrow denotes the vehicle heading, while the simulated laser scan re-
turns are shown by the red points in the background. 131

xiii

xiv

List of Tables

3.1 Solution times for NPE in simulation, including the number of control iterations
over which the statistics are computed. 33

3.2 Solution times for the outer-loop NPE running at 100 Hz onboard the experimen-
tal platform, including the number of control iterations over which the statistics
are computed. 38

3.3 Solution times for the inner-loop NPE running at 200 Hz onboard the experimen-
tal platform, including the number of control iterations over which the statistics
are computed. 38

4.1 Cross-track error statistics for the high-wind line trajectory. The last two columns
provide statistics for the experience-based approaches taken over the second half
of the trial. 63

5.1 Compute times for Robust EPC components, including the number of control
iterations over which the statistics are computed. 86

5.2 Cross-track error statistics for the high-wind circle trajectory 92

6.1 Statistics for the pendulum control database computation 108
6.2 Statistics for the 600 s pendulum database evaluation 108
6.3 Statistics for the quadrotor attitude control database computation 113
6.4 Statistics for the 600 s quadrotor attitude control database evaluation. Entries

in red indicate failures due to a prolonged database search before applying the
safety controller. 113

6.5 Comparison of mean tracking errors with and without adaptation 116
6.6 Statistics for the Crazyflie evaluation trial. 118

xv

xvi

List of Algorithms

3.1 Nonlinear Partial Enumeration . 24
3.2 NPE: New Controller Optimization . 25
4.1 Experience-driven Predictive Control . 50
5.1 Robust Experience-driven Predictive Control 78
6.1 Controller Database Generation . 105
6.2 Controller Database Query . 106

xvii

xviii

Notation

Throughout this thesis, we use the following notation to indicate different variable types

Type Examples

Scalar: x, r, u, λ,N

Vector: x, r,u, c,gx,λ

Concatenated Vector: x, r,u, c, gx,λ

Matrix: A,B,R,Gx,M

Concatenated Matrix: A,B,R,Gx,M

Set: Xk,RT ,M

Function: J(·), f(·), g(·), κ(·)

xix

xx

Chapter 1

Introduction

Safe, accurate, and reliable motion is fundamental to the deployment of agile, autonomous

robotic systems to execute challenging tasks in complex, real-world environments. These sys-

tems must employ feedback control techniques that enable them to track trajectories while obey-

ing system limitations (e.g., actuator constraints) and operational bounds (e.g., speed limits for

traversing a region of the environment or to satisfy sensor limitations). However, to ensure safety

and reliability, they must also be able to mitigate the effects of uncertainty stemming from several

sources including errors in the dynamics model, exogenous forces that alter the system’s motion,

and state estimate uncertainty introduced by inaccuracies in sensing.

These sources of uncertainty are prevalent across domains (Fig. 1.1). For example, a micro

air vehicle (MAV) operating in a windy or outdoor scenario is subject to significant perturbations

to its dynamics [3, 4, 5]. Similarly, MAVs operating in confined environments or near structures

must be able to operate safely and reliably in the presence of aerodynamic forces induced by

the vehicle’s thrust interacting with nearby surfaces, such as the ground [6, 7] or rooftops [8].

Similarly, underwater vehicles are subject to severe external disturbances, including currents and

surge, as well as variable payloads [9, 10]. Surface vehicles must additionally compensate for the

effects of wind and waves [11]. Autonomous ground vehicles operating in challenging terrestrial

or space environments may be required to traverse sloped surfaces [2] or loose terrain [12] where

1

(a) (b) (c)

Figure 1.1: Environmental interactions introduce perturbations to motion in a variety of domains
including (a) an aerial robot flying in a turbulent wind field, (b) an underwater robot encountering
currents and other flow fields [1], and (c) a ground robot traversing a sandy slope [2].

terramechanics heavily influences the vehicle’s motion.

Additionally, onboard sensing and perception systems are inherently noisy, and the uncer-

tainty in the resulting state estimates can lead to control actions that compromise the safety and

reliability of the system [13, 14]. Moreover, the uncertainty in the state estimates may vary over

time as the system traverses different parts of the environment. For example, transitioning from

a feature-rich region to one that is feature-sparse or encountering sudden illumination changes

may result in drastic changes in state uncertainty [15]. However, even with these changes in state

uncertainty, the controller must be able to enforce state and input constraints to ensure safe and

successful operation.

This underscores the need for high precision control techniques that are able to mitigate the

effects of uncertainty arising from diverse operating conditions. However, autonomous systems

are often severely limited in their available onboard computational resources, either in terms of

the resources allocated to motion control [16] or in many cases the total onboard compute [17,

18]. Therefore, these techniques must account for the system’s nonlinear dynamics, physical

and operational limitations, and computational capabilities to ensure safe, accurate, and reliable

operation.

2

1.1 Core Challenges

As a result, we identify three core challenges that must be addressed to enable safe, accurate, and

reliable feedback control on uncertain nonlinear systems with performance and computational

constraints:

• Uncertainty mitigation: Compensate for the effects of state uncertainty and perturbations to

the dynamics model.

• Constraint satisfaction: Ensure commands and states satisfy hard constraints derived from

safety or mission requirements.

• Computational efficiency: Achieve sufficiently high control rates for stability of highly dy-

namic systems with limited compute.

The problem of safe and accurate feedback control for constrained nonlinear systems is well

suited to a Nonlinear Model Predictive Control (NMPC) formulation [19]. NMPC is a receding-

horizon optimal control technique that enforces constraints on the system state and control inputs

while optimizing system evolution according to a nonlinear dynamics model (see Chapter 2 for

additional details). The resulting non-myopic control policies yield improved trajectory tracking

performance while ensuring safety through constraint satisfaction.

However, to apply NMPC to agile robotic systems operating in real-world settings, we must

ensure safe, accurate, and robust trajectory tracking despite motion uncertainty and computa-

tional constraints. NMPC performance is dependent on the fidelity of the plant model used to

forward-predict and optimize system evolution. Therefore, model uncertainty due to hardware

degradation or exogenous perturbations may lead to inaccurate trajectory tracking and potentially

catastrophic constraint violations. State estimate uncertainty also incurs similar penalties. Robust

and adaptive control formulations seek to mitigate these problems by estimating the effects of un-

certainty, e.g., via a Kalman filter, but yield delayed disturbance compensation due to the reactive

nature of these estimators. Computational tractability concerns stem from the limited onboard

3

processing capabilities available on autonomous systems. While some applications may per-

mit offboard computation, many complex operating domains preclude the reliable, low-latency

communication required for computationally-intensive offboard control. Agile, small-scale sys-

tems, such as micro aerial vehicles, further complicate this issue as they require high-rate control

to maintain stability but have severely limited onboard computation due to fundamental size,

weight and power restrictions. As a result, many powerful nonlinear control techniques, such as

constrained optimal control via nonlinear programming, are not viable for these systems.

1.2 Thesis Contributions

This thesis seeks to address these challenges through the development and validation of a set of

nonlinear predictive control methodologies that leverage past experiences to improve tracking

performance and computational efficiency. We construct an experience database that encapsu-

lates previously encountered scenarios and the corresponding optimal control laws, thus enabling

reuse of past control calculations for new scenarios. Past experiences also inform an online model

learner, allowing the system to anticipate and robustly adapt to uncertainty in the state and plant

dynamics. The contributions of this thesis are summarized below and detailed in the subsequent

chapters:

• Chapter 3 – Nonlinear Partial Enumeration: A NMPC solution technique that constructs

online a database of local controllers that can be reused in future control iterations. This ap-

proach reduces the dependence on online optimization, thus enabling high-rate NMPC on sys-

tems with insufficient computational resources to solve nonlinear programs in real-time [20].

• Chapter 4 – Experience-driven Predictive Control: An adaptive, predictive controller based

on an online-constructed database of past experiences. This approach eliminates the need to

solve nonlinear programs, thus enabling high-rate control and rapid acquisition of experience

to enhance controller performance. It combines these controllers with an online, experience-

4

based dynamics model learner, thus enabling adaptation to changes in the system dynam-

ics [21].

• Chapter 5 – Robust EPC: An extension of the EPC algorithm to account for state uncer-

tainty and enable robust adaptation. This extension enhances system performance and safety

by ensuring robust constraint satisfaction in addition to the real-time capabilities of EPC. It

also enables integration with non-idealized state estimation systems and operation in variable

environmental conditions.

• Chapter 6 – Efficient Explicit Adaptive NMPC: An explicit adaptive NMPC formulation

that employs an offline reachable-space search to generate realistic synthetic experiences for

EPC. The resulting database avoids the exponential growth of other explicit MPC formula-

tions. A Markov chain representation of the database further enhances the computational

efficiency of queries, thereby enabling NMPC without online optimization.

Additionally, each of the developed techniques seeks to demonstrate or enhance a common set

of objectives. Throughout the thesis, any result corresponding to a given objective from the list

below is highlighted with one of the following labels:

• R1: Stable control performance

• R2: Constraint satisfaction

R2.1: Constraint satisfaction in the presence of time-varying dynamics models

R2.2: Constraint satisfaction in the presence of time-varying sensor uncertainty

R2.3: Robust constraint satisfaction during aggressive trajectory tracking

• R3: Real-time computation of control commands

• R4: Improved trajectory tracking performance

R4.1: Adaptation performance

• R5: Reuse of past experiences to improve performance

5

6

Chapter 2

Background

This thesis seeks to develop safe, robust, and computationally efficient control methodologies

for constrained nonlinear systems with uncertain dynamics and state uncertainty. We therefore

leverage and extend techniques from several areas, including explicit and semi-explicit Model

Predictive Control (MPC) for safety and computational efficiency, adaptive and robust MPC for

uncertainty mitigation, and learning-based control for efficient control law selection and reuse.

This chapter provides a brief overview of related work in these areas.

2.1 Feedback Control

Feedback control aims to compute control actions, u, to minimize the error between the state

of the plant, x and a desired state or set of states, xdesired. As illustrated in Fig. 2.1, we assume

the plant is subject to uncertain external disturbances and that x is provided by a (potentially

uncertain) state estimation system. Figure 2.2 summarizes the relationships between several

control strategies that are commonly employed due to their computational efficiency, ability to

mitigate the effects of uncertainty, or capacity to obey state and input constraints.

7

Disturbance

Controller

Control
u

System (Plant)

Reference
xdesired

State
x

State Estimator

Figure 2.1: General feedback control diagram depicting the control computer that generates
commands to drive the plant (e.g., an aerial robot) to track the reference based on state estimates
(e.g., from a motion capture system or onboard sensing) and uncertain disturbances (e.g., wind).

Feedback Control

Predictive
(MPC)

Reactive
(PID-like)

Reference
Governor

Barrier
Lyapunov

Robust
Control

Adaptive
Control

Robust
MPC

Adaptive
MPC

Explicit
MPC

Semi-Explicit
MPC

Figure 2.2: Taxonomy of several common classes of control methodologies that address the
challenges of computational efficiency, uncertainty mitigation, or constraint satisfaction. The
approaches detailed in this thesis represent Semi-Explicit and Explicit MPC solution strategies
that leverage Adaptive and Robust MPC formulations to address all three challenges concur-
rently.

8

Reactive feedback controllers, such as Proportional-Integral-Derivative (PID) feedback con-

trol, achieve high rates through their simplicity. These techniques can also mitigate the effects

of uncertainty via adaptive control formulations, such as model-reference adaptive control [22]

and L1 adaptive control [23], that estimate and compensate for the effects of perturbations to

the system. Alternatively, robust control formulations, such as H∞ control [24, 25] and slid-

ing mode control [26], aim to bound the effects of uncertainty to preserve stability and tracking

performance. However, these techniques typically do not account for system limitations (e.g.,

actuator constraints). Additionally, these purely reactive techniques seek to eliminate the effects

of unmodeled dynamics, even when they may be beneficial. As a result, they can lead to de-

graded performance in more challenging settings outside their nominal operating regime. More

advanced feedback controllers are able to account for constraints via techniques such as bar-

rier Lyapunov functions [27, 28, 29] or reference governors [30, 31, 32]. In contrast, optimal

control techniques can explicitly enforce constraints while computing optimal commands for all

future times to improve overall control performance [33]. However, applying these techniques

to general nonlinear systems incurs a substantial computational penalty [34] or may even be in-

tractable [35]. Therefore, we look to Model Predictive Control (MPC) to provide a middle ground

between simple, reactive controllers and infinite-horizon optimal control formulations [36, 37].

2.2 Model Predictive Control

MPC balances these extremes by casting the control problem as a finite horizon, constrained op-

timization. It ensures the generated commands obey actuator and operating limits by optimizing

the predicted evolution of the system dynamics over anN -step horizon. When applied to a linear

system, or a system that does not deviate significantly from a nominal operating point,

xk+1 = Axk + Buk

9

with linear state and input constraints,

Gxxk+1 ≤ gx

Guuk ≤ gu

the linear MPC problem can be formulated and solved efficiently as either a constrained linear

or quadratic program [38] such as

argmin
uk

N−1∑
k=0

1

2
(xk+1 − rk+1)TQ(xk+1 − rk+1) +

1

2
uT
kRuk

s.t. xk+1 = Axk + Buk

Gxxk+1 ≤ gx

Guuk ≤ gu

∀ k = 0, . . . , N − 1

(2.1)

where x denotes the state vector, r denotes the reference or desired state, u denotes the control

input vector, and Q and R define an LQR-style cost function.

Although these techniques can be applied to nonlinear systems via linearization, the accuracy

of the resulting motion is dependent on the fidelity of the prediction model used. This motivates

the use of Nonlinear MPC (NMPC), as the nonlinear dynamics model will predict system evo-

lution more accurately than a linear approximation about a nominal operating point. However,

due to this nonlinear model and other potentially nonlinear constraints, NMPC is formulated as

a nonlinear program (NLP).

More precisely, for a system with nonlinear dynamics given by

ẋ = f(x,u)

10

and constraints given by

g(xk+1,uk) ≤ 0

this NLP computes the control sequence {u1, . . . ,uN} given the current state x0 and references

r1, . . . , rN (e.g., from a desired trajectory),

argmin
uk

N−1∑
k=0

J(xk+1, rk+1,uk)

s.t. ẋ = f(x,u)

g(xk+1,uk) ≤ 0 ∀k = 0, . . . , N − 1

(2.2)

where the cost function, J(·), is typically selected to penalize tracking error and extraneous

control effort and the differential equation constraint is enforced via numerical integration. In

each control iteration, the problem is re-solved from the current state and the first element of the

resulting control sequence is applied to the system. While MPC and NMPC formulations exist

for different classes of systems [39], in this thesis we restrict our focus nonlinear systems with

dynamics that are well modeled by a continuous and smooth (e.g., C2) function, f(·).

2.3 Fast Nonlinear Model Predictive Control

The NLP formulation of NMPC (2.2) results in a far more computationally expensive controller

than the linear variant (2.1). As a result, there are a variety of fast NMPC solution techniques

that comprise three main categories: fast online optimization, explicit NMPC, and semi-explicit

approaches.

2.3.1 Online NMPC

Online MPC formulations compute solutions at high rates through the use of efficient con-

vex optimization techniques including warm-starting the optimization using a previous solu-

11

tion [40], exploiting problem structure, and trading speed for optimality [41]. Consequently,

many fast NMPC techniques rely on convex approximations, such as sequential quadratic pro-

gramming [42, 43, 44] or iterative Linear Quadratic Regulator formulations [45], to achieve com-

putational efficiency. However, these techniques assume the optimization problem can be solved

quickly and reliably at runtime, which may not be feasible for computationally constrained sys-

tems. Additionally, the reliance on online optimization may raise software certifiability concerns

for some applications [46].

2.3.2 Explicit MPC and NMPC

Explicit MPC and NMPC approaches eliminate the need for online optimization by constructing

a database of locally-optimal controllers derived via a receding horizon optimal control formu-

lation [39, 47, 48]. At runtime, these methods query the database to identify and apply the

appropriate controller. However, explicit MPC techniques are known to scale poorly due to the

exponential growth in the number of controllers with the number of constraints [40], leading to

a prohibitively expensive database search. Consequently, numerous approximate explicit MPC

strategies are proposed that seek to improve the efficiency of database queries, for example,

through the introduction of search trees connecting partitions of a reduced state-space [49, 50].

Alternatively, some approaches leverage function approximation techniques to compute a con-

tinuous mapping from state to control output that replaces the controller database [51] and can

be combined with a partitioning strategy to yield a hierarchical model [52].

Explicit MPC is part of a broader class of methodologies that generate a set of control policies

during an offline training phase to enable high-rate online control. For example, the LQR-Tree al-

gorithm leverages offline sums-of-squares optimization to construct sequences of controllers that

are applied online to stabilize the system along specific trajectories [53, 54]. Other techniques,

such as MPC-guided policy search [55] and Learning Global Optima [56], employ demonstra-

tions of optimal behavior to train a learner (e.g., k-NN or neural network model) that seeks to

12

approximate the optimal control policy at a given query point. However, these techniques are

limited by the type and number of optimal training examples that can be generated and there-

fore often focus on learning specific behaviors [55] to avoid the same exponential growth in the

number of policies as in explicit MPC [56].

2.3.3 Semi-Explicit MPC

Semi-explicit MPC techniques combine a controller database with online optimization to bal-

ance the strengths and weaknesses of each. The Partial Enumeration (PE) [57] technique incre-

mentally constructs a controller database by solving the MPC optimization problem online if a

locally-optimal controller is not found in the current database. The solution is introduced into

the database for future use, thereby reducing the occurrence of online optimization computations.

Due to its incremental and need-based optimization formulations, PE yields smaller databases

than explicit MPC, enabling rapid online queries. However, the approach is specifically formu-

lated for linear systems. Another strategy is to restrict the size of the database by selecting a

subset of the most commonly used controllers and interpolating between them at runtime [39].

The construction of a database from past actions in order to facilitate choosing future actions

is also the foundation of transfer learning and lifelong learning algorithms. These learning-based

approaches consider executing tasks, which, by analogy to the PE algorithm, can be viewed as

a particular state-reference sequence. Transfer learning seeks to use knowledge about past tasks

to bootstrap learning a new task [58], similar to efficient MPC strategies [40]. Lifelong learning

shares similarities with the PE algorithm in that it makes this knowledge transfer bidirectional to

learn policies that maximize performance over all past and present tasks [59]. However, the PE

algorithm maintains a finite set of controllers that are updated through infrequent computation

and do not permit interpolation. Whereas lifelong learning algorithms, such as ELLA [59] or

OMTL [60], maintain a set of bases that aid in reconstructing task models whenever new data is

received.

13

While semi-explicit techniques learn from real experience gained through operation, many

learning-based techniques employ synthetic experiences in a similar way to generate or refine

their policies. Action model-based approaches use prior experiences to construct a model that

mimics the behavior of the world. The models aim to find optimal future actions via dynamic

programming [61] or stochastic shortest path [62], which can then be used to provide synthetic

experiences. Depending on the underlying learner, these experiences can be used to perform

additional refinement (e.g., additional value iteration steps in a Q-learning framework [63]) or

to guide the learner toward better solutions [62]. Other approaches aim to improve learning

speed and performance by introducing “imagined” experiences to the training data provided to

the learner [64]. For example, a recurrent neural network trained on actual experiences can be

used to predict comparable but imaginary scenarios to serve as more general training data for the

original learner [65].

2.4 MPC with Plant and State Uncertainty

For systems operating in real-world environments, a fixed nonlinear dynamics model may be

insufficient to accurately predict motion due to modeling errors and unmodeled, time varying,

exogenous disturbances. This motivates the use of MPC formulations that directly account for

these sources of uncertainty, either by modifying the dynamics or tightening the constraints to en-

sure accurate motion prediction and constraint satisfaction. Consequently, there are two general

approaches to mitigating the effects of uncertainty in predictive control: adaptive MPC formula-

tions and robust MPC formulations.

2.4.1 Adaptive MPC

The issue of model accuracy for predictive control can be addressed through various adaptation

and learning-based approaches. Adaptive formulations seek to estimate the uncertainty in the

14

dynamics and update the predictive model to more accurately anticipate the system’s interac-

tion with the constraints. Many existing adaptive MPC approaches assume a structured system

model with uncertain parameters that can be estimated online. These approaches then combine

a standard MPC formulation with an online parameter estimator, e.g., a Luenberger observer or

Kalman filter, to achieve more accurate, deliberative actions [14, 66, 67].

However, treating all model uncertainty as parameters to estimate can limit overall model

accuracy, especially when the system is subject to complex, exogenous perturbations, such as

aerodynamic effects on an aerial vehicle. Therefore, learning-based function approximation tech-

niques are also applied to address this issue. The resulting semi-structured approaches augment

a structured system model with a non-parametric, online-learned component, e.g., via a Gaussian

process [12]. The resulting semi-parametric model is then queried within the NMPC formula-

tion while continuing to adapt to model changes. While techniques such as Gaussian process

regression scale poorly with the amount of training data, other kernel-based approaches, such

as Locally Weighted Projection Regression (LWPR) and Incremental Sparse Spectrum Gaussian

Process Regression (ISSGPR) incorporate data more efficiently via linear basis functions [68] or

trigonometric approximations [69], respectively. The resulting incremental updates enable fast

model learning that is suitable for finite-horizon control [70].

2.4.2 Robust MPC

However, in practice, adaptive formulations may still lead to constraint violations due to the

difference in timescales between the disturbance estimator and high-frequency noise in the state

estimate. Therefore, Robust MPC techniques are also employed frequently to mitigate the effects

of state and model uncertainty. In contrast to adaptive approaches, robust formulations refine the

constraints to explicitly include uncertainty. Robust MPC techniques provide constraint satisfac-

tion guarantees in the presence of bounded, uncertain parameters [38, 71, 72, 73]. For linear dy-

namics, the effects of bounded uncertainty can be represented by disturbance-invariant sets [74]

15

that can be subtracted from the set of feasible states via the Pontryagin difference operation. In

the nonlinear case, this can be generalized to min-max formulations to optimize with respect to

the maximal state deviations [75]. These techniques yield more conservative controllers than the

adaptive approaches, but as a result, are able to account for any variations within the bounded

uncertainty set without requiring a disturbance estimator that can track rapid changes.

A subset of these Robust MPC techniques employ local feedback control laws to restrict the

anticipated growth of uncertainty. This yields constraint tightening and Tube MPC approaches

that enable more aggressive performance [72, 73, 76]. While many formulations assume the un-

certainty set is known a priori (e.g., as a disturbance invariant set or via the min-max calculation),

some approaches permit online modification of robustness bounds driven by online estimates of

the uncertainty bounds [13]. An extension of this idea replaces the deterministic uncertainty set

with a probabilistic representation, e.g., as a multivariate Gaussian distribution [77]. This enables

the use of a Kalman filter to predict the evolution of state uncertainty instead of the recursive Pon-

tryagin difference operations required for deterministic sets [78]. Many adaptive MPC formula-

tions also include a robust component that is coupled to estimator uncertainty [66, 75, 79]. The

resulting robust-adaptive formulations allow the adaptive component to estimate and compensate

for low frequency components of the uncertainty, while variability about the current estimate is

mitigated by the robust constraints.

2.5 Online Dynamics Model Learning

As mentioned in Sect. 2.4.1, adaptive MPC formulations mitigate the effects of uncertainty in the

dynamics model. These techniques estimate corrections to the nominal dynamics model based

on discrepancies between the system’s predicted and observed state evolution [14]. Although this

thesis does not aim to develop a novel online model learning strategy, the algorithms proposed

in many of the following chapters do incorporate an adaptive component. Therefore, we briefly

review three approaches used throughout this thesis for online estimation of perturbations to the

16

dynamics model.

We first consider a purely reactive adaptation strategy based on L1 adaptive control [23].

This approach employs a nonlinear Luenberger observer driven by the difference between the

state predicted via the nominal nonlinear dynamics model and the state reported by the state

estimator. Additionally, this approach is representative of the observer or Kalman filter based

techniques that are prevalent in the literature [14, 66, 67].

The second approach applies Locally Weighted Projection Regression (LWPR), which we

consider an experience-based technique rather than a purely reactive one. LWPR learns correc-

tions to a nominal dynamics model via a Gaussian-weighted combination of local linear basis

functions that are updated incrementally via partial least squares [68]. These basis functions

encapsulate all past dynamics information, in contrast to storing all past training data as in a

Gaussian process, and new bases are introduced as required when the existing set are insufficient

to represent new data with the desired accuracy. LWPR also has a forgetting factor to control the

rate of adaptation to model changes by adjusting the effects of prediction error on the weight for

each basis. Additionally, the computationally efficient update policy makes LWPR well-suited

to real-time operation [70]. Therefore, given a state-control pair, LWPR returns the anticipated

error between the predicted and actual next state.

Finally, we also consider Incremental Sparse Spectrum Gaussian Process Regression (ISS-

GPR) [69]. ISSGPR is a regression algorithm that projects input data onto a set of trigonometric

basis functions with randomly chosen frequencies. Regularized linear regression is then per-

formed in this feature space to obtain the predictive mean. In addition, a Bayesian perspective

allows the algorithm to be cast as a Gaussian Process Regression (GPR), which provides the

predictive variance. Although standard GPR has cubic run time in the number of data points,

ISSGPR achieves constant time by using an explicit feature space, thereby avoiding the expen-

sive computation of the Gramian matrix. Similarly to LWPR, ISSGPR regresses to a scalar

output. Thus we fit the dynamics model element-wise.

17

18

Chapter 3

Nonlinear Partial Enumeration

This chapter presents Nonlinear Partial Enumeration (NPE), a Nonlinear Model Predictive Con-

trol (NMPC) technique that combines online and offline computation to yield a nonlinear ver-

sion of Partial Enumeration MPC, thereby dramatically decreasing the solution time per NMPC

iteration and making it viable for use on systems with dynamics that evolve on the order of

milliseconds. The proposed approach leverages a parallelized structure, ensuring that a feasible

solution is returned at the required rate while enabling slower optimization techniques to learn

local control laws that capture the functionality of standard NMPC. Using the problem of ag-

gressive MAV flight as a guiding example, we leverage this formulation to demonstrate through

a set of simulation and experimental trials the functionality and performance of NPE, as well as

its ability to enable online learning of reusable local feedback control laws.

3.1 Approach

We propose a novel nonlinear extension of the Partial Enumeration (PE) technique [80] to con-

struct online a piecewise-affine control law as the solution to a NMPC problem. Just as linear PE

leverages explicit MPC techniques based on multi-parametric quadratic programming (mp-QP),

we employ ideas from explicit NMPC to combine solutions to a nonlinear program (NLP) with

19

(a) (b) (c)

Figure 3.1: Overview of the proposed approach that constructs a reusable controller database to
recover the functionality of NMPC. (a) A MAV initially operates away from constraint bound-
aries enabling it to apply a controller in the database. (b) As the MAV transitions to more aggres-
sive flight and approaches a constraint boundary, a new controller is added to the database that
enforces this constraint. (c) The MAV reuses controllers in the database according to its state to
satisfy constraints.

local mp-QPs [48], thereby reducing the number of NLPs that must be solved online. The result-

ing NPE algorithm is summarized in Fig. 3.1, as applied to a quadrotor micro air vehicle (MAV),

and detailed below.

3.1.1 Receding-Horizon Control Formulation

We first formulate a finite horizon NLP to compute the control sequence {u1, . . . ,uN} given the

current state x0 and references r1, . . . , rN (e.g., from a desired trajectory),

argmin
uk

N−1∑
k=0

Jk(xk+1, rk+1,uk)

s.t. ẋ = f(x,u)

g(xk+1,uk) ≤ 0

∀ k = 0, . . . , N − 1

(3.1)

20

where the differential equation constraint is enforced via numerical integration. The resulting

optimal control sequence must satisfy the first-order KKT conditions

∇uL(x, r,u,λ) = 0 (3.2)

Λg(x,u) = 0 (3.3)

λ ≥ 0 (3.4)

gk(x,u) ≤ 0 (3.5)

where λ is a vector of Lagrange multipliers, L(x, r,u,λ) = J(x, r,u) + λTg(x,u) is the cor-

responding Lagrangian, and Λ = diag(λ). In a standard online NMPC framework, the first

element of this sequence would be applied and the problem re-solved from the updated state.

Instead, given a sequence of control inputs {u∗k} that are the solution to (3.1) at x∗, we define

difference variables x̄ = x− x∗, r̄ = r− x∗, and ū = u− u∗ and formulate a local QP as

argmin
uk

N−1∑
k=0

1

2
(x̄k+1 − r̄k+1)TQk+1(x̄k+1 − r̄k+1) +

1

2
ūT
kRkūk

s.t. x̄k+1 = Ax̄k + Būk

Gxk+1
x̄k+1 ≤ gxk+1

Guk
ūk ≤ guk

∀ k = 0, . . . , N − 1

(3.6)

where Qk+1 and Rk are given by the Hessian of Jk(x, r,u) and A,B,Gxk+1
,Guk

,gxk+1
,guk

are given by the linearization of f(x,u) and gk(x,u) about {u∗k} and x∗. To simplify the formu-

lation, we note that the linearized dynamics over N steps can be rewritten as x = Ax̄0 + Bu,

21

where

x =



x̄1

x̄2

...

x̄N


u =



ū0

ū1

...

ūN−1


A =



A

A2

...

AN


B =



B 0 . . . 0

AB B . . . 0

...
... . . .

AN−1B AN−2B . . . B


Additionally, let H = BTQB+R, where Q = diag(Q1, . . . ,QN) and R = diag(R0, . . . ,RN−1),

andh = BTQ(Ax̄0−r), where r is defined analogously tox. Similarly, let Gx = diag(Gx1 , . . . ,GxN
),

Gu = diag(Gu0 , . . . ,GuN−1
), gx =

[
gT
x1
, . . . ,gT

xN

]T

, gu =

[
gT
u0
, . . . ,gT

uN−1

]T

, and

Γ =

GxB

Gu

 γ =

gx − GxAx̄0

gu


We can then rewrite (3.6) in an equivalent form (by dropping constant terms in the cost

function) as

argmin
u

1

2
uTHu+ hTu

s.t. Γu ≤ γ
(3.7)

This form facilitates writing the KKT conditions (3.2) and (3.3) for the local QP as

Hu+ h+ Γ Tλ = 0

Λ(Γu− γ) = 0

(3.8)

If we only consider the active constraints (i.e., with λ > 0) for a given solution, we can recon-

struct u and λ by solving a linear system derived from (3.8), where the subscript a indicates

22

rows corresponding to the active constraints

H Γ T
a

Γ a 0


u
λa

 =

−h
γa

 (3.9)

Assuming the active constraints are linearly independent (Bemporad, et al. [47] suggest al-

ternatives if this assumption fails), the resulting local QP control law u∗ is affine in x̄0 and r. If

we denote the NLP solution as uNL, the overall control law κ(x0, r) then consists of an affine

feedback term computed via the local QP and a constant feedforward term determined by the

NLP. We can then combine these terms into a single feedback control law, κ(x̄0, r), defined by

the gain matrices K1 and K2 and a feedforward vector kff,

κ(x̄0, r) = u∗(x̄0, r) + uNL

= K1x̄0 + K2r + kff (3.10)

However, as the feedback term is derived from a local approximation, we must determine the

region of validity of this solution. A similar region is computed in mp-QP explicit NMPC [48]

by formulating additional optimization problems to find hard bounds on the suboptimality of u∗

relative to the NLP solution. However, this is intractable for online computation. We instead

follow PE and determine the region of validity by first checking the remaining KKT conditions

(3.4) and (3.5) for the local QP. We can then further restrict the region of validity via commonly

used measures of suboptimality, such as the KKT tolerance criteria used to determine when to

terminate iterations in sequential quadratic programming [44],

|∇uL(x, r,u,λ)| ≤ ε

−δ ≤ Λg(x,u) ≤ δ
(3.11)

where ε and δ are predefined tolerance parameters.

23

Algorithm 3.1 Nonlinear Partial Enumeration

1: M← ∅ orMprior

2: solution found← false
3: nco running← false
4: while control is enabled do
5: x0 ← current system state
6: r ← current reference sequence
7: for each element mi ∈M do
8: Compute u,λ via (3.9)
9: if x0, r satisfy KKT criteria (3.4), (3.5) applied to (3.7) and (3.11) then

10: importancei ← current time, sortM
11: solution found← true
12: Apply affine control law (3.10) from mi

13: break
14: end if
15: end for
16: if solution found is false then
17: if nco running is false then
18: Start Alg. 3.2 (parallel thread)
19: end if
20: Apply intermediate control via linear MPC (3.13)
21: end if
22: end while

3.1.2 NPE Algorithm

Introducing these nonlinear KKT criteria enables us to extend the state of the art for fast NMPC

by defining a Nonlinear Partial Enumeration (NPE) strategy, as described in Algorithm 3.1. As

in linear PE, we aim to construct a mappingM from regions of the state space to local, affine

controllers. Each element m ∈ M is defined by a nominal state, an affine controller, and an

importance score that is used to order the elements. Intuitively, the system is not expected to

transition between regions frequently, so we choose to order the elements by when they were last

used (Pannocchia et al. [80] discuss other strategies). M can either be initialized as an empty

set or with information from previous trials to reduce the need for online optimization. In each

control iteration, we first evaluate the KKT criteria at the current state and reference for each

element inM (lines 7-9). If any element satisfies the criteria, we update its importance value

24

Algorithm 3.2 NPE: New Controller Optimization
1: nco running← true
2: uNL ← Solution to NLP (3.1) at x0

3: (K1,K2,kff)← Local QP (3.7) solution about x0,uNL

4: if NLP and local QP solutions are found then
5: if |M| > max table size then
6: Remove element fromM with minimum importance
7: end if
8: Add new element mnew = (x0,K1,K2,kff,importance) toM
9: end if

10: nco running← false

to the current time (line 10) and apply the corresponding affine controller (line 12). In this case,

no online optimization is required to generate a locally optimal feedback control law.

If no element inM satisfies the criteria, we use a parallelized approach to compute and add

a new element toM without blocking the main control loop. As described in Alg. 3.2, we solve

the NLP and local QP (lines 2-3) and in line 8 add the corresponding element toM (as defined

in (3.10)). To control the amount of time spent querying the mapping, we can restrict its size

and, if necessary, remove the lowest-importance element prior to adding mnew, as shown in

lines 5-6.

While the new element ofM is being computed, we use an intermediate controller to quickly

compute suboptimal commands that ensure stability and constraint satisfaction (Alg. 3.1, line 20).

As Pannocchia et al. note, there are several options for the intermediate controller [80]. For ex-

ample, we can formulate the intermediate controller as a linear MPC with a shorter horizon Ñ

25

and soft constraints:

argmin
uk,εk

Ñ−1∑
k=0

1

2
(x̄k+1 − r̄k+1)TQk+1(x̄k+1 − r̄k+1) +

1

2
ūT
kRkūk +

1

2
εT
kSεk

s.t. x̄k+1 = Ax̄k + Būk

Gxk+1
x̄k+1 − εk ≤ gxk+1

Guk
ūk ≤ guk

∀ k = 0, . . . , N − 1

(3.12)

The bounds on the control inputs are enforced as hard constraints to ensure the resulting com-

mands are feasible, while slack variables εk are added to the state constraints to allow violations

with some cost penalty, S. The slack variables are unconstrained to ensure existence of a solu-

tion.

As in the local QP, this can be re-written such that uk and εk are the only decision variables,

argmin
u,ε

1

2
uTHu+ hTu +

1

2
εTSε

s.t. Γu− ε ≤ γ
(3.13)

where S and ε aggregate S and εk, respectively.

As this process iterates, M will be populated by the most useful elements, reducing the

dependence on the intermediate controller. The combination of controllers queried fromM and

the intermediate controller ensures the existence of a locally optimal feedback controller at every

iteration. Since the computationally expensive components of the algorithm are run in parallel,

NPE will compute high-rate, stabilizing commands at all times, thereby enabling fast, nearly

optimization-free but minimally-suboptimal control that improves over time.

26

3.2 Results

To assess the performance of the proposed NPE algorithm, we aim to demonstrate the following

results (from the set enumerated in Chapter 1): R1: stable control performance, R4: improved

trajectory tracking performance, R5: online controller learning and reuse, R2: constraint satis-

faction, and R3: realtime computation to enable high-rate control. We consider the specific case

of a quadrotor micro aerial vehicle (MAV) tracking aggressive trajectories. To predict system

evolution, we employ a nonlinear dynamics model for the quadrotor consisting of 12 states and

four control inputs, as detailed in Appendix A.3.1. To formulate the NMPC problem, we select

a standard linear-quadratic cost function

J(x, r,u) =
1

2
(x− r)TQ(x− r) +

1

2
uTRu

and define g(x,u) to enforce the following constraints on the velocity, orientation, and control

commands,

vmin ≤ v ≤ vmax

ξmin ≤ ξ ≤ ξmax

umin ≤ u ≤ umax

By using (A.1) as the dynamics constraint in (3.1), the controller will directly compute force and

moment commands from r, without the need for intermediate commands often seen in quadrotor

control [81].

3.2.1 Simulation Studies

We conduct a series of quadrotor flights using the high-fidelity simulation environment described

in Sect. A.1 running on a 2.9 GHz Intel mobile processor. In practice, quadrotor attitude con-

trollers are often run at high rates (e.g., greater than 200 Hz) for reliable stabilization. As our

27

formulation directly computes the forces and moments (as an attitude controller would, see

Sect. A.3.1), we require the controller to return solutions at 200 Hz. Given the relative degree

of the quadrotor dynamics, we choose a ten-step prediction horizon with a step size of 20ms,

thereby allowing the controls to have a non-trivial effect on position states over the course of the

predicted motion.

We first consider a scenario (shown in Fig. 3.2) in which the quadrotor must track a linear tra-

jectory that requires increasing speeds every lap (ranging from 0.6 m/s to 3.0 m/s). We compare

the performance of NPE against a proportional-derivative (PD) controller and linear MPC. The

linear MPC follows the formulation in (3.13) and uses the same parameters as in NPE. It uses a

model of the system dynamics that is linearized about the nominal hover state and commands.

The PD control gains are also selected to be comparable to an unconstrained version of the linear

MPC (i.e., finite horizon LQR). These controllers are chosen as they can achieve the 200 Hz

update requirement. A standard NMPC implementation is three orders of magnitude slower due

to the NLP solver (see Table 3.1), and therefore is not viable for comparison in this scenario.

As Fig. 3.3 illustrates, PD control is able to track the trajectory well at lower speeds but

degrades at higher speeds due to overshoot and the resulting large oscillations. Linear MPC does

not exhibit this overshoot due to its predictive model. However, it does suffer from sustained

tracking error and large roll angles due to the choice of linearization point. Linearizing about

a non-zero roll command can actually eliminate this error in one direction, but consequently

increases the error during the return lap. Since NPE uses the NLP to provide a feed-forward term

when computing a new controller, the linearization point for the local QP and resulting feedback

controllers is chosen intelligently, resulting in stable flight (R1) with reduced tracking error and

less severe roll angles (R4).

To better illustrate NPE’s ability to learn, use, and reuse controllers, we consider another

scenario in which the quadrotor is repeatedly commanded to take-off and land aggressively, i.e.,

by commanding a 1.5 m step change in the desired altitude. NPE is initialized with an empty set

of controllers, and Fig. 3.4 shows the evolution of the control strategy over repeated takeoff and

28

Time (s)
0 10 20 30 40 50

P
os

.it
io

n
R

ef
. (

m
)

-2

-1

0

1

2

x
y
z

Time (s)
0 10 20 30 40 50

A
tti

tu
de

 R
ef

. (
ra

d)

-1

-0.5

0

0.5

1

phi
theta
psi

Figure 3.2: Reference trajectory for the first test scenario

landing sequences. The first column illustrates the dependence on the intermediate controller,

while the remaining columns correspond to the online computed controllers as they are added

to the mappingM. The first local feedback controller is computed about a common operating

mode (near hover, away from all constraint boundaries) and is analogous to a finite-horizon LQR

solution. Consequently, it is applicable to non-aggressive portions of the test scenario, as is

shown by the high usage times in the second column, but still requires substantial use of the

intermediate controller for aggressive motion (nearly a 2:1 ratio for usage duration). However,

as additional, specialized controllers are computed, NPE’s reliance on the intermediate controller

decreases until the system operates solely using the learned local feedback control laws (R5).

29

0 10 20 30 40 50

Po
si

tio
n

(m
)

-2

0

2
PD

x y z

0 10 20 30 40 50
-2

0

2
Linear MPC

0 10 20 30 40 50

Po
s.

 E
rro

r.
(m

)

-0.5

0

0.5

x y z

0 10 20 30 40 50
-0.5

0

0.5

Time (s)
0 10 20 30 40 50

At
tit

ud
e

(ra
d)

-1

0

1

roll pitch yaw

Time (s)
0 10 20 30 40 50

-1

0

1

0 10 20 30 40 50
-2

0

2
NPE

0 10 20 30 40 50
-0.5

0

0.5

Time (s)
0 10 20 30 40 50

-1

0

1

Figure 3.3: Comparison of position, trajectory tracking error, and attitude for the three con-
trollers considered (PD, Linear MPC, and NPE). NPE yields substantially improved tracking
performance with reduced overshoot and oscillations.

Although this takeoff-hover-land maneuver only activates the constraints on z-velocity and

thrust, as shown in Fig. 3.5, NPE computes 36 different controllers corresponding to combina-

tions of these constraints over the prediction horizon. More diverse maneuvers will activate far

more constraints, especially due to the coupling in the nonlinear dynamics, further emphasiz-

ing the need for a bounded set of candidate controllers. Figure 3.5 also shows that NPE largely

satisfies these constraints (R2). The minimal violations observed are due to unmodeled dynam-

ics (such as the motor time constant) resulting small prediction errors. However, this effect is

independent of the NPE formulation and further illustrates the importance of model fidelity in

predictive control.

These learned controllers can be reused in subsequent trials, enabling the NPE-controlled

system to leverage previous computation to operate more efficiently. Figure 3.6 shows the con-

troller usage for another set of takeoff and landing sequences where NPE is initialized with the

set of controllers learned in the previous trials. As expected, the system immediately leverages

the previously computed controllers, and as a result, the intermediate controller is never applied

(R5). Figure 3.7 shows an overlay of the transitions between controllers for these takeoff and

landing sequences, illustrating a consistent behavior in terms of controller switching. The slight

30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Controller Index
 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

T
ak

eo
ff

se
qu

en
ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Controller usage over multiple takeoff sequences

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Controller Index
 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

La
nd

in
g

S
eq

ue
nc

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Controller usage over multiple landing sequences

Figure 3.4: Total time a controller is applied (in seconds, indicated by color) during a sequence
of similar actions. The first column (index 0) corresponds to the intermediate controller, while
index 1 corresponds to the first computed controller.

31

0 20 40 60 80 100

ve
l z (

m
/s

)

-2

0

2

Time (s)
0 20 40 60 80 100

T
hr

us
t (

N
)

0

5

10

Figure 3.5: Vehicle velocity (along the world z-axis) and commanded thrust over repeated
takeoff-hover-land sequences. Red lines indicate constraints enforced in NPE.

variations in the switches can be attributed to the overlap between the valid regions for the learned

controllers. This is an effect of the nonlinear dynamics model and KKT tolerance criteria, and

removing these overlaps and any redundant controllers is an avenue for future investigation.

One of the key performance metrics for NPE is solution speed. The low computational cost

of NPE is illustrated in Table 3.1, which provides statistics on the compute times per component

(controller query, intermediate controller, NLP, local QP, and adding a new controller) for the

scenario shown in Fig. 3.4. The controller query and intermediate controller easily achieve the

requisite 200 Hz, while the more computationally expensive components are run in parallel with

decreasing frequency (R3). The first row of the table also shows that the NLP is only solved

36 times, which is in stark contrast to standard NMPC solutions that would require solving the

NLP in each of the 20807 control iterations. This demonstrates that NPE is an effective real-time

model predictive control methodology for nonlinear dynamic systems, such as a quadrotors,

where linearity assumptions are degraded during aggressive motions.

32

1
2
3
4
5

Controller Index
 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36T

ak
eo

ff
se

qu
en

ce

 0

0.2

0.4

0.6

(a) Learned controller usage over multiple takeoff sequences

1
2
3
4
5

Controller Index
 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36La

nd
in

g
S

eq
ue

nc
e

 0

0.2

0.4

0.6

(b) Learned controller usage over multiple landing sequences

Figure 3.6: Total controller application time for a sequence of actions using previously computed
controllers. The first column shows the intermediate controller is never used.

Time (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
on

tr
ol

le
r

In
de

x

0

5

10

15

20

25

30

35 Sequence 1
Sequence 2
Sequence 3
Sequence 4
Sequence 5

(a)

Time (s)
0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
on

tr
ol

le
r

In
de

x

0

5

10

15

20

25

30

35 Sequence 1
Sequence 2
Sequence 3
Sequence 4
Sequence 5

(b)

Figure 3.7: Overlay of controller switches illustrating similarity across trials.

Table 3.1: Solution times for NPE in simulation, including the number of control iterations over
which the statistics are computed.

Query Interm. Ctrl. NLP Local QP Add Element
Iterations 20807 1061 36 36 36

Mean (ms) 1.107 0.923 1412.6 6.232 1.404
Std. Dev. (ms) 0.678 0.781 1063.5 1.310 0.827

33

3.2.2 Experimental Validation

We further demonstrate the realtime constrained trajectory tracking capabilities of the NPE algo-

rithm via flight experiments using the small 790 g quadrotor described in Appendix A.3.1. We

employ a cascaded control setup [81] running instances of NPE for both the outer control loop

(translational dynamics) and inner control loop (rotational dynamics). Each NPE instance oper-

ates over a 20-step (control iteration) horizon with constraints on velocity, attitude, and control

commands. Figure 3.8 shows a series of snapshots of the quadrotor tracking the elliptical trajec-

tory shown in the insets on the right. The insets on the left indicate the controller being applied

and whether a new controller is being computed. As these snapshots show, NPE achieves suffi-

ciently fast update times to maintain stability (R1) and correctly identifies when the quadrotor is

approaching constraint boundaries, thus generating new, reusable controllers (R5).

To evaluate constraint satisfaction performance, we note that the elliptical trajectory com-

mands a maximum velocity of 1.1 m/s in the y-axis, while NPE is given a speed limit of 1.0 m/s

(x-axis velocity, z-axis velocity, attitude, and control input constraints are omitted as they are

rarely activated during this trajectory). Figure 3.9 compares the velocity profiles for tracking this

ellipse using finite-horizon LQR and NPE. As LQR is an unconstrained formulation, it represents

the nominal velocity profile expected from tracking this trajectory with the given cost function.

However, NPE enforces the 1.0 m/s constraint, and this results in an altered velocity profile that

largely obeys the velocity bound with minor violations (R2) likely stemming from unmodeled

dynamics.

With both instances of NPE running onboard the quadrotor’s ODROID computer (detailed

in Appendix A.3.1), we also obtain a realistic assessment of the algorithm’s computational effi-

ciency. Table 3.2 and Table 3.3 show similar patterns to the simulation results with the NPE query

times (in bold) dramatically outperforming the NLP and QP. Additionally, both the outer- and

inner-loop instances of NPE reliably achieve query times that permit the desired control rates of

100 Hz and 200 Hz, respectively (R3). As noted above, the ellipse trajectory does not activate the

34

(a) Controller 1 enables nominal flight

(b) Velocity constraint becomes activate and starts new controller computation

35

(c) Controller 3 learned to handle velocity constraint

(d) Reapplies Controller 3 to obey velocity constraint at another point in the trajectory

36

(e) Different velocity constraint become active

(f) Learns Controller 4 and reuses it to obey velocity constraint again

Figure 3.8: Snapshots of the quadrotor tracking an ellipse using Nonlinear Partial Enumeration.
The inset images in each frame show controller usage (left) and trajectory visualization with
active constraint alerts (right).

37

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-1

-0.5

0

0.5

1

V
e

lo
c
it
y
:

y
-a

x
is

 (
m

/s
)

LQR NPE

Figure 3.9: Comparison of y-axis velocity profiles for the experimental platform tracking the
elliptical trajectory using LQR and NPE, where NPE aims to enforce the velocity limits indicated
by the dashed lines.

inner-loop constraints frequently, and this is reflected in the low number of controllers computed

and the sub-millisecond query times. These sub-millisecond query times also indicate that the

inner-loop can easily compute and query multiple additional controllers without compromising

runtime.

Table 3.2: Solution times for the outer-loop NPE running at 100 Hz onboard the experimental
platform, including the number of control iterations over which the statistics are computed.

Query Interm. Ctrl. NLP Local QP Add Element
Iterations 4854 433 7 7 7

Mean (ms) 3.132 4.575 2504.47 32.961 29.994
Std. Dev. (ms) 3.282 2.083 1.852 5.624 9.868

Table 3.3: Solution times for the inner-loop NPE running at 200 Hz onboard the experimental
platform, including the number of control iterations over which the statistics are computed.

Query Interm. Ctrl. NLP Local QP Add Element
Iterations 11305 11 2 2 2

Mean (ms) 0.597 4.043 10.248 49.506 27.105
Std. Dev. (ms) 0.322 1.868 2.742 4.465 9.551

38

3.3 Conclusions

In this section, we have presented Nonlinear Partial Enumeration (NPE) as a fast solution strat-

egy for nonlinear model predictive control (NMPC). NPE extends the linear PE algorithm to use

a nonlinear model for more accurate motion prediction and, with minimal online optimization,

produces a piecewise-affine controller covering the relevant regions of the state-space. A set of

simulation studies focused on aggressive trajectory control for a quadrotor micro aerial vehicle

and experimental trials with NPE running onboard a small-scale quadrotor validate the algo-

rithm’s real-time control capabilities. Moreover, these results demonstrate that NPE outperforms

other fast control methodologies and enables reuse of learned controllers in subsequent flights,

thereby reducing the overhead associated with re-solving the optimizations online.

39

40

Chapter 4

Experience-driven Predictive Control

Although the Nonlinear Partial Enumeration (NPE) algorithm enables high-rate control that aims

to replicate NMPC performance, it also assumes the plant dynamics are known. Moreover, the

use of the nonlinear program (NLP) solution as a feedforward term conflicts with the introduction

of an adaption scheme to mitigate the effects of uncertain dynamics. Therefore, in this chapter

we propose an Experience-driven Predictive Control (EPC) methodology that combines aspects

of NPE with online model learning, e.g. via Locally Weighted Projection Regression (LWPR) or

Incremental Sparse Spectrum Gaussian Process Regression (ISSGPR). As in NPE, EPC lever-

ages an online-updated database of past experiences in order to achieve high-rate, locally-optimal

feedback control with constraint satisfaction. However, we sacrifice the NLP-based feedforward

term to parameterize the learned feedback control laws by the system dynamics, thus enabling

online adaptation to model perturbations.

4.1 Approach

This section details the proposed Experience-driven Predictive Control (EPC) algorithm for fast,

adaptive, nonlinear model predictive control. In the context of predictive control, we first de-

fine experience to be the relationship between previous states, references, and system dynamics

41

(a) (b) (c)

Figure 4.1: Overview of the proposed approach that constructs online an experience database
consisting of parameterized feedback controllers and dynamics models. (a) A MAV operates
away from constraint boundaries enabling it to apply a controller in the database while the dy-
namics model continues to be updated. (b) A new controller is added to the experience database
as the MAV transitions to more aggressive flight and the updated dynamics model predicts that
the system state is approaching a constraint boundary. (c) The MAV reuses controllers in the
database based on the state evolution predicted by the current estimate of its dynamics model.

models and the optimal control law applied at that time. Past dynamics models capture the ef-

fects of uncertainty on observed system evolution, while previous states capture the system’s

behavior under optimal control policies for a given dynamics model. Therefore, EPC constructs

and leverages a two-part representation of past experiences to improve the accuracy of its finite-

horizon lookahead. The first is the set of basis functions maintained by the online model learner

(either Locally Weighted Projection Regression (LWPR) [68] or Incremental Sparse Spectrum

Gaussian Process Regression (ISSGPR) [69]) that capture observed variations in the system dy-

namics. The second is a mapping from states and references to locally optimal controllers that is

updated online and is parameterized by the current estimate of the vehicle dynamics. The result-

ing algorithm is summarized in Fig. 4.1, as applied to a quadrotor micro air vehicle (MAV), and

detailed below.

42

4.1.1 Online Model Adaptation

Predictive control techniques for nonlinear systems employ either a nonlinear dynamics model

that incurs the complexity of solving nonlinear programs or a more computationally efficient

local approximation of the nonlinear dynamics. Therefore, given the nonlinear dynamics ẋ =

f(x,u), nominal state x∗, and nominal control u∗, we define x̄ = x − x∗ and ū = u − u∗

and derive an affine approximation of the dynamics via a first-order Taylor series expansion,

x̄nom
k+1 = Ax̄k + Būk + c. We can then extend this model with an online-learned component

that estimates perturbations to the nominal model, including nonlinearities, modeling errors, and

unmodeled exogenous forces. As mentioned above, we consider two online model learning

techniques, LWPR and ISSGPR (see Ch. 2.5 for additional details). Both techniques model a

nonlinear function (from an input z to an output p) by a Gaussian-weighted combination of

simple basis functions (linear in LWPR and sinusoidal in ISSGPR). As these models can be

updated incrementally with new data, they are able to retain information on past experiences

while adapting their estimates to changing dynamics.

LWPR-based Model Learner

LWPR updates its estimate incrementally via partial least squares, which has O(|z|) complexity,

making it well-suited to real-time operation. Partial least squares projects the inputs onto a lower

dimensional space defined by projection direction vectors νr and ρr, as detailed in [68]. It

also computes slope coefficients βr for each projection direction and an offset β0 to generate

a prediction of a scalar output. Therefore, following Mitrovic, et al. [70], we fit the dynamics

model element-wise: for the ith element in p, local linear model j (with rj projection directions)

43

is given by

Ψj(z) = β0 +

[
β1, . . . , βrj

]


νT
1

νT
2P1

...

νT
rj

(P1 · · ·Prj−1)


(z−mj)

= αj + βTj (z−mj)

where Pr = I − diag(ρr)

[
νr, . . . ,νr

]T

. The prediction model (consisting of Ni local models

with weights wj defined by a Gaussian kernel with mean mj and covariance Dj) is

pi(z) =
1

W

Ni∑
j=1

wj(z)Ψj(z)

wj(z) = exp
(
−1

2
(z−mj)

TDj(z−mj)

)
W =

Ni∑
j=1

wj(z)

ISSGPR-based Model Learner

Although LWPR can more accurately represent accumulated experiences via its local models,

we also consider ISSGPR due to its potential for faster model adaptation [82]. Prediction via

ISSGPR follows a similar structure to standard Gaussian process regression [83], except the

radial basis function kernel is approximated by a vector of D sinusoidal features with random

frequencies,

φ(z) =
σf√
D

[
cos(ωT

1z), sin(ωT
1z), . . . , cos(ωT

Dz), sin(ωT
Dz)
]T

where the parameter σf corresponds to the signal variance, the frequencies ω ∼ N (0,M), and

M is a diagonal matrix of characteristic lengths scales that reflect the size and importance of

44

each input dimension [69]. As ISSGPR also produces a scalar output, we again fit the dynamics

model element-wise.

Dynamics Model Error Prediction

With either learning algorithm, we define z =

[
xT
k uT

k

]T

and p = x̄k+1−x̄nom
k+1. The correspond-

ing prediction output p̂ =

[
p0, p1, . . .

]T

gives the estimated perturbation to the system dynamics

at a query point z. The total predictive dynamics model is then given by

x̄k+1 = x̄nom
k+1 + p̂

= Ax̄k + Būk + c + p̂

= Ax̄k + Būk + c̃ (4.1)

As we learn the perturbation model online, the learner (particularly LWPR) may initially

return high-variance estimates when the system enters a new region of the input space (i.e.,

values of z for which the system has minimal experience). Therefore, to limit the effects of the

resulting transients in the estimate, we introduce a simple gate based on the model uncertainty

maintained by the learner. If model uncertainty is high at a given query point, we instead use

a zero-order hold on the previous estimate. As the system continues to gain experience in its

operating domain, this gate will cease to be applied.

Finally, following the insight from L1 adaptive control [23], we introduce a low-pass filter on

the disturbance estimate before it is incorporated into the predictive model (4.1). This enables

LWPR and ISSGPR to learn the perturbation model quickly while limiting changes to system

dynamics to be within the bandwidth of the system.

45

4.1.2 Receding-Horizon Control Formulation

The use of an affine model (4.1) that automatically adapts to capture the effects of nonlineari-

ties and unmodeled dynamics permits a simplified optimal control formulation for EPC relative

to techniques such as nonlinear partial enumeration (NPE), which requires solving a nonlinear

program due to the general nonlinear dynamics model. Taking the current state as the nominal

state, x∗ = x0, and given N reference states r1, . . . , rN , let r̄ = r − x∗. We can then formulate

the receding-horizon control problem as a quadratic program:

argmin
ūk

N−1∑
k=0

1

2
(x̄k+1 − r̄k+1)TQk+1(x̄k+1 − r̄k+1) +

1

2
(ūk − ūp̂)TRk(ūk − ūp̂)

s.t. x̄k+1 = Ax̄k + Būk + c̃

Gxk+1
x̄k+1 ≤ gxk+1

Guk
ūk ≤ guk

∀ k = 0, . . . , N − 1

(4.2)

where c̃ = c+ p̂. If a control input, ūp̂, can be derived from the model adaptation term (e.g., if p̂

is an acceleration disturbance, ūp̂ is the corresponding force) we subtract it in the cost function

to avoid penalizing disturbance compensation.

To simplify notation, define x =

[
x̄T

1 , . . . , x̄
T
N

]T

, r =

[
r̄T

1 , . . . , r̄
T
N

]T

, u =

[
ūT

0 , . . . , ū
T
N−1

]T

,

up̂ =

[
ūT
p̂, . . . , ū

T
p̂

]T

B =



B 0 . . . 0

AB B . . . 0

...
... . . .

AN−1B AN−2B . . . B


, c =



c̃

(A + I) c̃

...∑N−1
i=0 Aic̃


,

Q = diag(Q1, . . . ,QN), R = diag(R0, . . . ,RN−1), Gx = diag(Gx1 , . . . ,GxN
),

46

Gu = diag(Gu0 , . . . ,GuN−1
), gx =

[
gT
x1
, . . . ,gT

xN

]T

, and gu =

[
gT
u0
, . . . ,gT

uN−1

]T

. Also,

noting that x̄0 = 0, we can rewrite (4.2) as

argmin
u

1

2
(x− r)TQ(x− r) +

1

2
(u− up̂)TR(u− up̂)

s.t. x = Bu+ c

Gxx ≤ gx

Guu ≤ gu

As in NPE, we construct an equivalent QP entirely in terms of u by substituting the dynamics

constraints and dropping constant terms in the cost function

argmin
u

1

2
uTHu+ hTu

s.t. Γu ≤ γ
(4.3)

where H = BTQB + R, h = BTQ(c− r)−Rup̂,

Γ =

GxB

Gu

 , and γ =

gx − Gxc

gu


Defining λ as the vector of Lagrange multipliers and Λ = diag(λ), the first two Karush-

Kuhn-Tucker (KKT) conditions for optimality (stationarity and complementary slackness) for

the QP can then be written as

Hu+ h+ Γ Tλ = 0

Λ(Γu− γ) = 0

(4.4)

If we only consider the active constraints (i.e., with λ > 0) for a given solution, we can

reconstruct u and λ by solving a linear system derived from (4.4), where the subscript a indicates

47

rows corresponding to the active constraints

H Γ T
a

Γ a 0


u
λa

 =

−h
γa


Assuming the active constraints are linearly independent (Bemporad, et al. [47] suggest al-

ternatives if this assumption fails), the resulting QP control law, u, is affine in the predicted state

error, r, and parameterized by the system dynamics

u = E5r −


E5c− E4Rup̂ + E3



g+
x − Gxc

−g−x + Gxc

g+
u

−g−u


a


(4.5)

where E1 = Γ aH−1, E2 = −(E1Γ
T
a)
−1, E3 = ET

1E2, E4 = H−1 + E3E1, and E5 = E4BTQ.

Moreover, since the coefficients in (4.5) are all functions of A, B, and c̃, the overall control

law κ(x0, r1, . . . , rN) can be written in terms of a parameterized feedback gain matrix K and

feedforward vector kff

κ(x0, r1, . . . , rN) = K(A,B, c̃)r + kff(A,B, c̃) (4.6)

This parameterization also extends to the KKT condition checks to determine whether a previ-

ously computed controller is locally optimal. The active Lagrange multipliers λa follow a similar

48

form to the control law

λa = −E6r +


E6c− ET

3Rup̂ + E2



g+
x − Gxc

−g−x + Gxc

g+
u

−g−u


a


(4.7)

where E6 = ET
3BTQ.

Therefore, instead of storing the affine controller gains and Lagrange multipliers required

to evaluate the KKT conditions, it is sufficient to store only the set of active constraints. This

enables a memory-efficient implementation for constrained systems. The controller and KKT

matrices can then be reconstructed online using (4.5), (4.7), and the current A,B, c̃. Conse-

quently, this parameterized formulation enables us to adapt and apply any previously computed

controller, when appropriate according to the KKT conditions, even as the system dynamics

evolve. The complete algorithm is detailed below.

4.1.3 EPC Algorithm

As described in Alg. 4.1, EPC constructs a database defined as a mappingM from experiences

to controllers. At the beginning of each control iteration, EPC queries the current state and refer-

ence, as well as the current affine model from LWPR, (A,B, c̃). It then queries the parameterized

mapping (line 6), and if the KKT conditions are met for an element, applies the corresponding

controller. If no controller from prior experience is applicable (line 14), it solves the QP (4.3)

to add a new parameterized element to the mapping, updating the stored experiences with the

current scenario. In parallel, EPC applies commands from a short-horizon intermediate QP with

slack on state constraints (to ensure problem feasibility), in order to maintain a desired control

update rate (line 15). As new controllers are added to the database, less valuable controllers (in-

dicated by a lower importance score) are removed (line 19) to bound the number of elements

49

Algorithm 4.1 Experience-driven Predictive Control

1: M← ∅ orMprior

2: while control is enabled do
3: x← current system state
4: r ← current reference sequence
5: A,B, c̃← current dynamics model from LWPR
6: for each element mi ∈M do
7: Compute u,λa via (4.5),(4.7)
8: if x, r satisfy parameterized KKT criteria then
9: importancei ← current time, sortM

10: solution found← true
11: Apply affine control law (4.6) from mi

12: end if
13: end for
14: if solution found is false then
15: Apply interm. control via (4.3) with slack variables
16: Update QP formulation with current model
17: Generate new controller via QP (4.3) (in parallel)
18: if |M| > maximum table size then
19: Remove element with min. importance
20: end if
21: Add mnew = (K,kff,importance) toM
22: end if
23: end while

that may be queried in one control iteration, thereby ensuring computational tractability.

In addition to introducing adaptation to unmodeled dynamics, the parameterization by ex-

perience and the introduction of an online updated linear dynamics model eliminates the most

computationally expensive component of NPE - the nonlinear program. Although the nonlinear

program does not limit the control rate in NPE, it does limit how quickly new controllers can be

computed, consequently limiting the practical horizon length and increasing the dependence on

the intermediate controller. With its quadratic program formulation, EPC has the advantage of

faster solution times in the parallel thread that can be leveraged to reduce the dependence on the

intermediate controller or increase the prediction horizon. Additionally, the nonlinear program

solutions in NPE serve as fixed feedforward terms in the resulting affine control laws, precluding

a completely adaptive control strategy. With EPC, the local controllers are fully parameterized,

50

allowing controllers computed using past experience to be adapted to the present scenario.

4.2 Results

To validate the performance of the EPC algorithm, we seek to demonstrate the following results

(from the set enumerated in Chapter 1): R1: stable control performance, R2: constraint satisfac-

tion, R3: real-time computation of control commands, R4.1: adaptation performance, and R5:

applicability of experiences to novel scenarios. These results are shown through a set of sim-

ulation and experimental studies applying EPC to the problem of controlling a small quadrotor

micro air vehicle.

4.2.1 Simulation Studies

We first conduct a series of hardware-in-the-loop simulations on an ODROID-XU4 (2 GHz ARM

processor with 2 GB RAM) that satisfies the size, weight, and power limitations of a small, 790 g

quadrotor (see Appendix A for details). The commanded trajectories cross a region where strong,

exogenous disturbances (e.g., wind) act on the vehicle. We employ a standard hierarchical con-

trol setup [81] to track the trajectories, applying EPC separately to the translational and rotational

dynamics.

The quadrotor is commanded to fly ten laps at 0.7 m/s around an elliptical trajectory (Fig. 4.2)

that intersects a region in which a constant disturbance torque is applied about the x and y axes.

Given that the disturbance acts on the rotational dynamics, we focus on the EPC used for attitude

control in the following results. The attitude dynamics are modeled by six states (body frame

Euler angles and rates) with one torque input about each axis [81], and we select a horizon (N) of

15 control iterations to ensure that the predicted state evolution captures the effects of the control

inputs. As attitude controllers are commonly run at rates exceeding 200 Hz to ensure stability

of these fast dynamics [20], we note that a viable attitude controller must consistently return a

51

(a) (b) (c)

(d) (e)

Figure 4.2: Snapshots of the quadrotor executing the elliptical trajectory that traverses the dis-
turbance region (highlighted).

control command within 5 ms.

Constraint Satisfaction

To demonstrate safety under limited control authority, we enforce constraints on the torque con-

trol inputs that are more restrictive than the nominal commands that would be applied to track

the trajectory. As a result, these constraints are activated repeatedly as the vehicle tracks the

trajectory. In order to satisfy these constraints, EPC learns 22 different parameterized feedback

control laws, as shown in Fig. 4.3. Moreover, the intermediate controller (denoted controller 0)

is only applied in the early laps, indicating that the majority of the controllers are learned quickly

and then reused in subsequent laps. This intelligent controller switching also yields reliable

constraint satisfaction (R2), as shown in Fig. 4.4.

52

1
2
3
4
5
6
7
8
9

10

 0 2 4 6 8 10 12 14 16 18 20 22

Controller Index

L
a
p

0.0

0.014

0.037

0.100

0.273

0.742

2.017

5.483

T
im

e
 (

s
)

Figure 4.3: Learned controllers are reused in subsequent laps, ultimately eliminating the depen-
dence on the intermediate controller (column 0). Colors denote the total usage time (in seconds)
for each controller.

Real-time Computation

Over the course of this trial, the mean time required to query the controller database is 0.77 ms

with a standard deviation of 0.75 ms. In contrast, the mean time to solve the equivalent QP

is 4.7 ms with a standard deviation of 3.2 ms, which violates the consistent 5 ms command

requirement. This confirms that EPC is a computationally efficient approach for adaptive non-

linear model predictive control suitable for high-rate applications, such as attitude control of a

quadrotor, even on computationally constrained platforms (R3).

Adaptation Performance

In addition to constraint satisfaction, EPC substantially improves trajectory tracking accuracy

in the presence of sudden changes to the system dynamics, as shown in Fig. 4.5. As expected,

tracking performance improves over time with the accumulation of experience. In addition to

extending the controller database, this experience refines the LWPR model. Consequently, the

model yields increasingly accurate estimates of the exogenous torques, as shown in Fig. 4.6.

Figure 4.7 illustrates the performance of EPC relative to two baseline approaches: L1 adap-

tive control (L1AC)[23] and an adaptive MPC formulation based on a state predictor (Luenberger

observer). The gains for the L1AC are selected to match the nominal gains computed by EPC.

53

0 20 40 60 80 100 120

Time (s)

-0.2

-0.1

0

0.1

0.2

R
o

ll
C

o
m

m
a

n
d

 (
N

 m
)

0 20 40 60 80 100 120

Time (s)

-0.2

-0.1

0

0.1

0.2

P
it
c
h
 C

o
m

m
a

n
d
 (

N
 m

)

Figure 4.4: EPC successfully satisfies roll and pitch control input constraints (dashed red lines)
via controller switching.

The low-pass filter bandwidth is equivalent for both controllers to ensure a fair comparison of the

adaptation laws. As the core EPC formulation is equivalent to a quadratic program-based MPC,

we consider EPC with the Luenberger observer as the second baseline. Additionally, while EPC

embeds the disturbance estimate in the prediction model to enable constraint satisfaction, L1AC

adds it as a compensation term to the resulting command. It therefore lacks any safe means of

constraint satisfaction, precluding a comparison of constrained control performance. We there-

fore loosen the EPC control input constraints to aid comparison.

As Fig. 4.7 shows, EPC (after obtaining sufficient experience) reduces peak tracking error by

an average of 26.8% relative to L1 adaptive control. EPC (with LWPR) also reduces peak track-

ing error by an average of 17.2% relative to the variant with a Luenberger observer, confirming

that the improvement relative to L1AC is not simply due to integrating the estimate into the pre-

diction model. Moreover, these results show that the combination of a predictive controller driven

by an online learned, reusable model yields significantly improved tracking performance (R4.1).

54

0 10 20 30 40 50 60 70 80 90
-0.1

0

0.1

0.2

x
 e

rr
o

r
(m

)

0 10 20 30 40 50 60 70 80 90

Time (s)

-0.1

0

0.1

0.2

y
 e

rr
o

r
(m

)

No adaptation With LWPR adaptation

Figure 4.5: Comparison of EPC tracking performance with and without LWPR-based adaptation.

Application to Novel Scenarios

Finally, to evaluate the generalizability of experience, we consider a more complex scenario.

Over the course of this 1000 s trial, the quadrotor is commanded to track a series of smooth

but random trajectories through the same environment as before. Figures 4.8 and 4.9 show

these trajectories, which achieve maximum commanded velocities of 1.7 m/s and accelerations

of 5.1 m/s2. The vehicle dynamics are also perturbed by a stochastic process emulating turbulent

air flow, introducing noise into the LWPR training data.

Due to the randomization, the quadrotor enters and exits the disturbance region following a

variety of trajectories. The resulting disturbance estimate (Fig. 4.10) shows transient behavior

during the initial traversals of the disturbance region (e.g. during the first 200 s of the trial), with

disturbance estimate rise times greater than 1.5 s. However, these transients do not reappear, even

as the vehicle traverses the region in previously unseen ways while executing this diverse set of

trajectories. Moreover, the disturbance estimate has a consistent rise time of approximately 0.5 s

55

0 10 20 30 40 50 60 70 80 90

Time (s)

-0.05

0

0.05

0.1

0.15

R
o

ll
D

is
tu

rb
a

n
c
e

 (
N

 m
)

True Estimated

0 10 20 30 40 50 60 70 80 90

Time (s)

-0.15

-0.1

-0.05

0

0.05

P
it
c
h

 D
is

tu
rb

a
n

c
e

 (
N

 m
)

True Estimated

Figure 4.6: LWPR accurately estimates the torque disturbances about the x- and y-axes as it
tracks the elliptical trajectory.

for the remainder of the trial (R4.1). This indicates that the experience gained through the initial

traversals is applicable to the numerous novel scenarios encountered in the future and yields a

consistent improvement in disturbance estimation performance (R4.1).

The controller also yields stable tracking as expected (R1). Even for this long trial with

diverse trajectories, EPC only computes 52 controllers to maintain constraint satisfaction, as

shown in Fig. 4.11 (R2). Additionally, the time to query this database has a mean of 0.30 ms

with a variance of 0.29 ms (R2). These results again illustrate the computational efficiency of

this Experience-driven Predictive Control approach and its suitability for use on flight-viable

constrained computational platforms (R3).

56

0 10 20 30 40 50 60 70 80 90
-0.1

-0.05

0

0.05

0.1

x
 e

rr
o
r

(m
)

0 10 20 30 40 50 60 70 80 90

Time (s)

-0.1

-0.05

0

0.05

0.1

y
 e

rr
o
r

(m
)

L1AC EPC-Luenberger EPC-LWPR

Figure 4.7: EPC with LWPR yields improved position tracking error compared to L1 adaptive
control (L1AC) and EPC with a simple state predictor (EPC-Luenberger).

Figure 4.8: Representative trajectories entering and exiting the disturbance region (highlighted),
taken from a 100 s window of the randomized trial.

57

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-5

0

5
x
 (

m
)

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-5

0

5

y
 (

m
)

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

0

2

4

z
 (

m
)

Figure 4.9: Reference trajectory components for the randomized trial with the disturbance region
highlighted along the x-axis

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-0.1

0

0.1

0.2

R
o
ll

d
is

tu
rb

a
n
c
e
 (

N
 m

)

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-0.3

-0.2

-0.1

0

0.1

P
it
c
h
 d

is
tu

rb
a
n
c
e
 (

N
 m

)

Figure 4.10: Roll and pitch disturbance estimates for the randomized trial show an initial tran-
sient but have consistent performance for the remainder of the trial

58

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-0.2

-0.1

0

0.1

0.2

R
o
ll

C
o
m

m
a
n
d
 (

N
 m

)

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-0.2

-0.1

0

0.1

0.2

P
it
c
h
 C

o
m

m
a
n
d
 (

N
 m

)

Figure 4.11: EPC satisfies control input constraints for the entire duration of the randomized trial
while tracking a diverse set of trajectories

59

Figure 4.12: Snapshots of the line trajectory executed in a spatially-varying wind field generated
via a pair of high-power fans

4.2.2 Experimental Validation

To validate the performance of EPC with realistic perturbations to the dynmics, we conduct a

series of flight experiments with a small quadrotor platform (detailed in Appendix A.3.1). The

quadrotor is commanded to fly 12 laps along the line trajectory shown in Fig. 4.12 with two

fans generating a spatially-varying wind disturbance field. Each fan generates approximately a

6 m/s wind that decays minimally over the dimensions of the flight arena [5]. The quadrotor is

commanded to track this trajectory with three instantiations of EPC as the position controller, one

each with the Luenberger observer, LWPR, and ISSGPR as the disturbance adaptation strategy, as

well as with L1 adaptive control. As Fig. 4.14 shows, applying an unconstrained controller (L1)

yield repeated violations of the desired velocity limit. However, all three instances of EPC show

reliable constraint satisfaction, with the LWPR version yielding only minor violations (R2.1).

To assess flight performance in the presence of the wind field, we first evaluate the model

perturbations estimated by each of the four controller instances. As the wind acts along the neg-

ative x-axis, Fig. 4.15 shows the resulting disturbance acceleration estimates over the course of

60

0 10 20 30 40 50 60

Time (s)

-2

-1

0

1

2

R
e

fe
re

n
c
e

 T
ra

je
c
to

ry
 (

m
)

Figure 4.13: Reference trajectory along the y-axis for the 12-lap line flight experiments

the 12 laps. As both L1 and the first EPC instance use the same Luenberger observer, it is un-

surprising to see consistent disturbance estimates from both trials. Additionally, these estimates

are consistent across laps. However, with the experience-based model learning methodologies,

there is a substantial temporal component to the estimate that is most noticeable with ISSGPR.

This evolution of the estimate across laps shows that the model learner is initially accumulating

experience on the effects of the wind field, but by the fourth lap, it has sufficient experience to

maintain a consistent estimate of the wind disturbance acceleration.

However, the merits of the experience-based model learning strategies is evident from a com-

parison of tracking performance with all four controllers. As the trajectory is constrained to the

y-axis and the wind acts orthogonally to it, we use the cross-track error (i.e., deviations from

the trajectory along the x-axis) to evaluate tracking performance due to adaptation. As Fig. 4.16

illustrates, both L1 and EPC with the Luenberger observer yield comparable performance that is

consistent with their comparable disturbance estimates. However, these trials also exhibit a non-

zero steady-state mean in the cross-track error. This likely stems from the reactive nature of the

observer having insufficient time to fully mitigate the effect of the wind. In contrast, the LWPR-

and ISSGPR-based EPC instantiations show nearly zero-mean cross-track error (Table 4.1). ISS-

GPR also yields a reduced variance that is consistent with empirical observations of smoother

and less oscillatory flight. The last two columns in Table 4.1 also show the cross-track error for

LWPR and ISSGPR evaluated over the last six laps, i.e., after gaining experience. This again

61

0 10 20 30 40 50 60

Time (s)

-3

-2

-1

0

1

2

3

V
e

lo
c
it
y
:

y
-a

x
is

 (
m

/s
)

(a) L1 Adaptive Control

0 10 20 30 40 50 60

Time (s)

-3

-2

-1

0

1

2

3

V
e

lo
c
it
y
:

y
-a

x
is

 (
m

/s
)

(b) EPC with Luenberger Observer (N = 25)

0 10 20 30 40 50 60

Time (s)

-3

-2

-1

0

1

2

3

V
e

lo
c
it
y
:

y
-a

x
is

 (
m

/s
)

(c) EPC with LWPR (N = 25)

0 10 20 30 40 50 60

Time (s)

-3

-2

-1

0

1

2

3

V
e

lo
c
it
y
:

y
-a

x
is

 (
m

/s
)

(d) EPC with ISSGPR (N = 25)

Figure 4.14: Comparison of y-velocity profiles for the experimental platform tracking the line
trajectory using EPC with different disturbance estimation strategies and L1 adaptive control.
All three EPC instances follow the velocity constraints (dashed lines).

62

demonstrates that tracking performance improves as the system accumulates experience (R4.1).

Table 4.1: Cross-track error statistics for the high-wind line trajectory. The last two columns
provide statistics for the experience-based approaches taken over the second half of the trial.

L1 Adaptive EPC with EPC with EPC with EPC+LWPR EPC+ISSGPR
Control Luenberger LWPR ISSGPR (2nd half) (2nd half)

Mean (m) 0.0422 0.0334 -0.0019 0.0032 -0.0016 0.0001
Std. Dev. (m) 0.0518 0.0527 0.0623 0.0514 0.0587 0.0494

4.3 Conclusions

In this chapter, we have presented the Experience-driven Predictive Control (EPC) algorithm

for fast, adaptive, nonlinear model predictive control. EPC constructs a database of reusable

feedback controllers that are parameterized by the system dynamics. When combined with an

online-learned model of the system dynamics based on Locally-Weighted Projection Regression

(LWPR) or Incremental Sparse Spectrum Gaussian Process Regression (ISSGPR), this enables

online adaption to perturbations to the dynamics model. As the system gains experience through

operation, both the controller database and the dynamics model are improved to yield increased

tracking accuracy, even in the presence of sudden changes to the dynamics model. This also

implies that if the system were to start with some experience (e.g., from past operation), it could

further reduce the transient effects of learning.

63

0 10 20 30 40 50 60
Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

x
D

is
tu

rb
an

ce
 E

st
im

. (
m

/s
2)

(a) L1 Adaptive Control

0 10 20 30 40 50 60
Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

x
D

is
tu

rb
an

ce
 E

st
im

. (
m

/s
2)

(b) EPC with Luenberger Observer (N = 25)

0 10 20 30 40 50 60
Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

x
D

is
tu

rb
an

ce
 E

st
im

. (
m

/s
2)

(c) EPC with LWPR (N = 25)

0 10 20 30 40 50 60
Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

x
D

is
tu

rb
an

ce
 E

st
im

. (
m

/s
2)

(d) EPC with ISSGPR (N = 25)

Figure 4.15: Comparison of the x-axis acceleration disturbance estimated by each controller’s
model adaptation component. ISSGPR (and LWPR to some extent) shows a clear trend in the
estimates that stabilizes after acquiring sufficient experience.

64

0 10 20 30 40 50 60

Time (s)

-0.2

-0.1

0

0.1

0.2

C
ro

s
s
-t

ra
c
k
 E

rr
o
r

(m
)

(a) L1 Adaptive Control

0 10 20 30 40 50 60

Time (s)

-0.2

-0.1

0

0.1

0.2

C
ro

s
s
-t

ra
c
k
 E

rr
o
r

(m
)

(b) EPC with Luenberger Observer (N = 25)

0 10 20 30 40 50 60

Time (s)

-0.2

-0.1

0

0.1

0.2

C
ro

s
s
-t

ra
c
k
 E

rr
o
r

(m
)

(c) EPC with LWPR (N = 25)

0 10 20 30 40 50 60

Time (s)

-0.2

-0.1

0

0.1

0.2

C
ro

s
s
-t

ra
c
k
 E

rr
o
r

(m
)

(d) EPC with ISSGPR (N = 25)

Figure 4.16: Comparison of cross-track error induced by the wind disturbance acting orthogo-
nally to the line trajectory. Both LWPR and ISSGPR are able to mitigate the mean error, unlike
the Luenberger observer-based configurations.

65

66

Chapter 5

Robust EPC

As shown in the previous chapter, the Experience-driven Predictive Control (EPC) algorithm

enables high-rate, constrained Model Predictive Control (MPC) for uncertain, nonlinear systems.

However, the model adaptation strategies EPC employs are limited in bandwidth and, as a result,

are only able to mitigate the effects of low frequency disturbances (relative to the timescale of

the dynamics). The introduction of high frequency sources of uncertainty, often via imperfect

state estimation, can therefore lead to constraint violations even in the presence of online model

adaptation.

In this chapter we aim to mitigate the effects of imperfect state estimation by leveraging

uncertainty information from the state estimator to ensure constraints on the system state and

control inputs are satisfied, even in the presence of time-varying state uncertainty. We propose

a constrained, predictive control strategy that leverages EPC for computational efficiency and

adaptation to low-frequency components of the uncertainty. We extend the underlying control

problem to a chance-constrained Tube MPC formulation to capture the effects of time-varying

state uncertainty (e.g., due to sensors with environment-dependent performance) in the robust-

ness bounds. The resulting Robust EPC algorithm (illustrated in Fig. 5.1) ensures probabilistic

constraint satisfaction in the presence of state uncertainty modeled by a multivariate Gaussian

distribution provided by a Kalman filter based state estimator.

67

(a) (b) (c)

Figure 5.1: Overview of the proposed approach that combines an online learned controller
database with estimates of the dynamics model and state uncertainty. As uncertainty changes,
the tightened constraints (red) on the MAV automatically adjust to ensure robust satisfaction
of the requested constraints (blue), even as the MAV switches between controllers. Panel (b)
shows the addition of a new controller to the experience database to accommodate higher sensor
uncertainty. In panel (c), the state uncertainty parameterizes all controllers in the database.

5.1 Approach

In this section, we present an extension of the Experience-driven Predictive Control (EPC) al-

gorithm [84] to achieve high-rate predictive control with robust constraint satisfaction. EPC

constructs online a two-part experience database consisting of previously used locally optimal

controllers and observed perturbations to the system’s dynamics model (illustrated by the blue

and yellow boxes in Fig. 5.1). As the controllers are parameterized by the dynamics model, they

automatically adapt to changes in the model. We therefore propose the Robust EPC algorithm

by similarly parameterizing the controllers in the database by an online updated estimate of the

uncertainty in the system state. This estimate is derived from the state estimator covariance and

enables the use of a belief propagation approach to construct an uncertainty tube for the evolution

of the state over the prediction horizon.

68

5.1.1 Adaptive Stochastic Dynamics Model

We consider the general nonlinear dynamics and observation models

xk+1 = f(xk,uk) + wk

zk = h(xk) + vk

(5.1)

where xk ∈ Rn is the system state, uk ∈ Rm is the control input, and wk ∼ N (0,Wk) and vk ∼

N (0,Vk) denote the process and measurement uncertainty, respectively. The corresponding first

order approximations about a nominal state x∗ and nominal control u∗ are

xk+1 ≈ Ak(xk − x∗) + Bk(uk − u∗) + c̃ + wk

zk ≈ Ck(xk − x∗) + vk

(5.2)

where c̃ combines the constant term in the Taylor series approximation and the estimate of the

model error, p̂, returned by the model learner (Sect. 4.1.1). Updating this estimate via online ob-

servations also captures the effects of unmodeled dynamics, thus enabling adaptation to external

perturbations (detailed in Sect. 5.1.4).

To model the evolution of this uncertain system, we extend (5.1) to a standard EKF belief

state update law that estimates the state mean, µk, and covariance, Σk,

µk+1 = f(µk,uk) + PkC
T
kL
−1
k (zk+1 − g(µk))

Σk+1 = Pk −PkC
T
kL
−1
k CkPk

where Pk = AkΣkA
T
k + Wk and Lk = CkPkC

T
k + Vk. Following Platt et al. [85], we take

zk+1 = h(µk) as the maximum likelihood observation to obtain a simplified belief state update

69

law

µk+1 = f(µk,uk)

Σk+1 = Pk −PkC
T
kL
−1
k CkPk

(5.3)

5.1.2 Chance-constrained Tube MPC

To incorporate this uncertainty propagation model into a robust control framework, we propose

a Tube MPC formulation where the control applied to the system, uSk , is the combination of the

MPC output, uk, and an ancillary stabilizing controller with gain matrix Sk,

uSk = uk + Sk(xk − µk) (5.4)

This gain, Sk, is designed to stabilize the nominal system via an unconstrained MPC formu-

lation [86] given in Sect. 5.1.3. The introduction of the ancillary controller restricts deviations

from the predicted state mean [78] and enables the MPC formulation to account for the reduction

in uncertainty due to local feedback. This results in a slight change in the belief state update law,

Pk = (Ak −BkSk)Σk(Ak −BkSk)
T + Wk

The Tube MPC formulation also enforces state and input constraints, xk ∈ Xk,uSk ∈ Uk. In

this work, we assume the admissible state sets, Xk, and input sets, Uk, are polytopic, or can be

approximated by polytopes. This yields a set of half-plane constraints,

Gxk+1
(xk+1 − x∗) ≤ gxk+1

Guk
(uSk − u∗) ≤ guk

(5.5)

However, due to the stochastic dynamics model, we instead employ a chance constrained formu-

70

lation by requiring (5.5) to hold with probability 1− α,

P
(
Gxk+1

(xk+1 − x∗) ≤ gxk+1

)
≥ 1− α

P
(
Guk

(uSk − u∗) ≤ guk

)
≥ 1− α

(5.6)

Given that the belief state corresponds to a multivariate Gaussian,N (µ,Σ), its probability mass

level sets are ellipsoids defined by a χ2 value. The ellipsoid containing 1 − α of the probability

mass is given by (x−µ)TΣ−1(x−µ) = χ2
n(α). Therefore, a given chance constraint threshold,

1− α, yields an ellipsoid defining the state uncertainty bounds.

Ensuring robust constraint satisfaction requires tightening (5.5) by these bounds [78], as il-

lustrated in Fig. 5.2. Consequently, to retain the linear form of the constraints, we follow Domes

et al. [87] to approximate the ellipsoid by its axis-aligned bounding box with side lengths given

by

δxk+1 =
√
χ2
n(α)diag(Σk+1) (5.7)

where diag(·) returns the diagonal elements of the argument as a vector.

While the MPC output, uk, does not introduce any control input uncertainty, the ancillary

controller is a function of the uncertain future state. This yields a similar bound on the control

command,

δuk =
√
χ2
n(α)diag(SkΣkST

k) (5.8)

Given these bounding box dimensions, we convert the probabilistic state and input constraints (5.6)

to tightened deterministic constraints, xk ∈ X̃k,uk ∈ Ũk,

Gxk+1
(µk+1 − x∗) ≤ gxk+1

−Gxk+1
δxk+1 = g̃xk+1

Guk
(uk − u∗) ≤ guk

−Guk
δuk = g̃uk

(5.9)

71

Figure 5.2: Nominal state constraints (blue lines) are tightened (red lines) according to a chance-
constraint bound on the predicted Gaussian uncertainty.

Although the bounding box is generally a conservative approximation of the ellipsoid, we ob-

serve that for any axis-aligned box constraint, tightening by the bounding box is equivalent to

the exact approach of tightening by the axis-aligned suprema over the ellipsoid [88].

5.1.3 Robust EPC formulation

Although this chance-constrained Tube MPC formulation permits an optimization-based solu-

tion, in this work, we propose a novel extension to the Experience-driven Predictive Control

(EPC) algorithm [84] to enable Robust MPC on computationally constrained systems. The pro-

posed Robust EPC algorithm leverages this tube-based formulation to enforce robust constraint

satisfaction while retaining the computational efficiency and model adaptation properties of EPC.

As in EPC, we can formulate the receding-horizon control problem as a quadratic program

(QP) due to the model adaptation term, c̃, that captures the nonlinearities and other unmodeled

dynamics. The QP is formulated about a nominal state, x∗ and input, u∗, to track a sequence of

72

N reference states r1, . . . , rN ,

argmin
ūk

N−1∑
k=0

1

2
(x̄k+1 − r̄k+1)TQk+1(x̄k+1 − r̄k+1) +

1

2
(ūk − ūp̂)TRk(ūk − ūp̂)

s.t. x̄k+1 = Ax̄k + Būk + c̃

Gxk+1
x̄k+1 ≤ g̃xk+1

Guk
ūk ≤ g̃uk

∀ k = 0, . . . , N − 1

(5.10)

where x̄k = µk − x∗, r̄k = rk − x∗, ūk = uk − u∗. If it is possible to derive a control

input, ūp̂, from the model adaptation term (e.g., if p̂ is an acceleration disturbance, ūp̂ would

be the corresponding force) we subtract it in the cost function to avoid penalizing model error

compensation [84].

Given that we can forward predict the mean and covariance evolution via (5.3), we can sim-

plify notation by defining x =

[
x̄T

1 , . . . , x̄
T
N

]T

, r =

[
r̄T

1 , . . . , r̄
T
N

]T

, u =

[
ūT

0 , . . . , ū
T
N−1

]T

,

up̂ =

[
ūT
p̂, . . . , ū

T
p̂

]T

,

B =



B 0 . . . 0

AB B . . . 0

...
... . . .

AN−1B AN−2B . . . B


, c =



c̃

(A + I) c̃

...∑N−1
i=0 Aic̃


,

Q = diag(Q1, . . . ,QN), R = diag(R0, . . . ,RN−1), Gx = diag(Gx1 , . . . ,GxN
), and Gu =

diag(Gu0 , . . . ,GuN−1
), where diag(·) here diagonally concatenates matrices. Similarly, let gx =[

g̃T
x1
, . . . , g̃T

xN

]T

and gu =

[
g̃T
u0
, . . . , g̃T

uN−1

]T

to capture the tightened constraints (5.9).

Finally, we define µ0 to be a parameter of the optimization constrained by the current state

(see Sect. 5.1.3) rather than directly using the current state as in EPC. Therefore, the nominal

73

state, x∗ = µ0, x̄0 = 0, and (5.10) simplifies to

argmin
u

1

2
(x− r)TQ(x− r) +

1

2
(u− up̂)TR(u− up̂)

s.t. x = Bu+ c

Gxx ≤ gx

Guu ≤ gu

Incorporating the dynamics into the cost and constraints yields an equivalent QP that facili-

tates the state space partitioning and local controller computation steps of EPC,

argmin
u

1

2
uTHu+ hTu

s.t. Γu ≤ γ
(5.11)

where H = BTQB + R, h = BTQ(c− r)−Rup̂,

Γ =

GxB

Gu

 , and γ =

gx − Gxc

gu


As in EPC, the partitioning of the state-space for Robust EPC is determined by the Karush-

Kuhn-Tucker (KKT) conditions for optimality,

Hu+ h+ Γ Tλ = 0

Λ(Γu− γ) = 0

(5.12)

where λ is the vector of Lagrange multipliers and Λ = diag(λ). Therefore, given a set of active

constraints (i.e., with λ > 0), we can solve for the optimal control sequence u and corresponding

74

Lagrange multipliers by solving a linear system derived from (5.12),

H Γ T
a

Γ a 0


u
λa

 =

−h
γa


where the subscript a denotes rows corresponding to active constraints.

For any linearly independent set of active constraints [47], the resulting u is affine in the

predicted state mean error, r,

u = E5r −


E5c− E4Rup̂ + E3



g+
x − Gxc

−g−x + Gxc

g+
u

−g−u


a


(5.13)

where E1 = Γ aH−1, E2 = −(E1Γ
T
a)
−1, E3 = ET

1E2, E4 = H−1 + E3E1, and E5 = E4BTQ.

Moreover, the coefficients in (5.13) are all functions of A,B, c̃, δx, and δu. Therefore, the final

control law κ(x0, r1, . . . , rN) is given by a parameterized feedback gain matrix K, a feedforward

vector kff, and the ancillary control gain matrix, S,

κ(x0, r1, . . . , rN) = K(A,B, c̃, δx, δu)r

+ kff(A,B, c̃, δ
x, δu)

+
[
S0(x0 − µ0)T, . . . ,SN−1(xN−1 − µN−1)T]T

(5.14)

The KKT condition matrices, which determine whether a previously computed controller is lo-

cally optimal, are similarly parameterized, and the active Lagrange multipliers, λa, are given

75

by

λa = −E6r +


E6c− ET

3Rup̂ + E2



g+
x − Gxc

−g−x + Gxc

g+
u

−g−u


a


(5.15)

where E6 = ET
3BTQ. Therefore, given a set of active constraints, the corresponding controller

and KKT matrices can be reconstructed online using (5.13), (5.15), and the current A,B, c̃, δx

and δu. Therefore, each controller automatically evolves with both the estimated system dynam-

ics and state uncertainty. This also enables the construction of a controller database that recovers

the functionality of (5.10) by switching between controllers according to the KKT conditions,

thus providing the foundation for the Robust EPC algorithm detailed in Sect. 5.1.5.

Ancillary Controller

In addition to the introduction of a chance-constrained formulation, the extension of EPC to Ro-

bust EPC requires two key components. The first is the ancillary controller, which aims to drive

the uncertain state, xk, to the state mean sequence, µk, produced by (5.11). The corresponding

unconstrained MPC formulation,

argmin
uk

N−1∑
k=0

1

2
(xk+1 − µk+1)TQk+1(xk+1 − µk+1) +

1

2
uT
kRkuk

yields an equivalent set of feedback control gains computed analogously to (5.14) without con-

straints,

diag(S0, . . . ,SN−1) = (BTQB + R)−1BTQ (5.16)

76

Initial State Selection

The second component is the initial state mean parameter, µ0. Due to the uncertainty in the state,

µ0 is not necessarily set to the initial state, x0. Instead, the underlying tube-based formulation

permits selecting µ0 such that

x0 ∈ µ0 ⊕ Box(δx0) (5.17)

where Box(δx0) is the bounding box with dimensions given by δx0 [89] and⊕ denotes the Minkowski

sum. We therefore propose a piecewise definition of µ0,

µ0 =


x0, x0 ∈ X̃0

projX̃ (x0), x0 ∈ X0\X̃0

(5.18)

where the projX̃ (·) operator projects the state onto the tightened constraint set, X̃ . If x0 ∈ X̃0, the

initial state satisfies (5.17) and can be assigned to µ0. Otherwise, we assume only the noisy state

is outside X̃0 and use the projection operation to find the closest point in X̃0. Due to the chance-

constrained formulation, infrequent constraint violations are possible. Therefore, if x0 /∈ X0, an

intermediate controller is applied as part of the Robust EPC algorithm detailed in Sect. 5.1.5 to

recover from the constraint violation.

5.1.4 Online Model Adaptation

In addition to robust constraint satisfaction, the parameterized controllers (5.14) generated via

Robust EPC retain the adaptation properties of EPC, thus providing a means to mitigate both

high and low frequency components of uncertainty. We consider three online model adaptation

strategies to assess their effects on robust constraint satisfaction. Locally Weighted Projection

Regression (LWPR) and Incremental Sparse Spectrum Gaussian Process Regression (ISSGPR)

constitute model adaptation techniques that leverage past experience to improve performance

over time, while the Luenberger disturbance observer is a more traditional estimation strategy

77

Algorithm 5.1 Robust Experience-driven Predictive Control

1: M← ∅ orMprior

2: while control is enabled do
3: x0 ← current system state estimate mean
4: r1, . . . , rN ← current reference sequence
5: A,B, c̃← current dynamics model via adaptation
6: Compute S via (5.16) and δx, δu via (5.7),(5.8)
7: Select µ0 via (5.18)
8: for each element mi ∈M do
9: Compute u,λ via (5.13),(5.15)

10: if x, r satisfy parameterized KKT criteria then
11: importancei ← current time, sortM
12: solution found← true
13: Apply control law (5.14) from mi

14: end if
15: end for
16: if solution found is false then
17: Apply interm. control via (5.11) with slack variables
18: Update QP formulation with (A,B, c̃, δx, δu)
19: Generate new controller via QP (5.11) (in parallel)
20: if |M| = maximum table size then
21: Remove element with min. importance
22: end if
23: Add mnew = (K,kff,importance) toM
24: end if
25: end while

that reacts to perturbations. Additional details on the three techniques are given in Sect. 2.5 and

Sect. 4.1.1.

5.1.5 Algorithm Overview

The Robust EPC algorithm leverages this formulation to achieve high-rate adaptive control while

providing robust constraint satisfaction, as illustrated in Fig. 5.1 and detailed in Alg. 5.1. We

incrementally construct a mapping, M, from experiences to controllers that can be queried in

future control iterations to recover the functionality of (5.10). In every control iteration, Robust

EPC obtains the current state estimate, x0, reference sequence, r1, . . . , rN , and dynamics model

78

(A,B, c̃) updated via adaptation. It also computes the robustness bounds, δx and δu, via the

current state estimate covariance and the ancillary controller gains, and sets the initial state,

µ0, according to (5.18). The algorithm then searches M and assesses the optimality of each

element via the parameterized KKT conditions (line 8). If the optimality criteria are met for

any element, the search terminates and the corresponding parameterized controller is augmented

with the ancillary controller (5.14) and applied.

If no element satisfies the KKT conditions (line 16), a new element is computed via (5.11)

and added toM to extend the stored experiences to include the current scenario. To avoid block-

ing the control loop during this computation, a short-horizon intermediate MPC with slack on

state constraints (line 17) is applied in parallel. The short horizon is selected to achieve the re-

quired control rate at the expense of degraded performance, while the slack constraints ensure

feasibility even in the presence of constraint violations. Robust EPC also bounds search time by

limiting the size ofM. Each element is given an importance score based on how recently it

was used, andM is sorted in order of decreasing importance. When a new element is added,

the element ofM with the minimum importance may be removed to maintain the size limit

(line 21). As this algorithm runs, M will be populated with the appropriate controllers for the

current situation, thereby reducing the dependence on the intermediate controller. Additionally,

due to the parameterized form of the controller gains (5.13) and KKT matrices (5.15), the ele-

ments ofM automatically adapt to changes in the dynamics model and robustness bounds, thus

maintaining robust constraint satisfaction.

5.2 Results

To assess the performance of the proposed Robust EPC algorithm, we aim to demonstrate the

following results through simulation studies with a skid-steer ground robot and a series of flight

experiments with a quadrotor micro air vehicle: R1: stable control performance, R3: real-time

computation of control commands, R5: experience reuse, R2.2: constraint satisfaction in the

79

presence of time-varying sensor uncertainty (i.e., robust constraint satisfaction) R4: improved

trajectory tracking performance while satisfying constraints, and R2.3: robust constraint satis-

faction during aggressive flight.

5.2.1 Simulation Studies

We first consider a simulated ground robot with skid-steer dynamics and odometry obtained

via a simulated laser-based localization strategy (see Appendix A.3.2). The ground robot is

commanded to track a set of trajectories through the environment shown in Fig. 5.3 (e.g., for

exploration or mapping applications). The localization system provides state estimates but also

introduces uncertainty in these estimates due to imperfect registration of laser returns, thus repli-

cating a common source of state estimate degradation in physical robotic systems. The dynamics

model in (A.2) yields an MPC formulation with n = 8 states and m = 2 inputs. We apply a

horizon ofN = 10 steps at the controller update rate (200 Hz) and enforce constraints on the two

control inputs (linear and angular velocity commands) as well as the translational and rotational

rates (ẋ, ẏ, θ̇). The chance constraint parameter α is set to 0.001 to yield a constraint satisfaction

probability of 99.9%.

To evaluate robust constraint satisfaction performance in the presence of imperfect state in-

formation, we compare Robust EPC with the nominal EPC when commanded to track the same

trajectory. Although the simulations are not run on a compute-constrained system (2.9 GHz Intel

mobile processor), the relative query times demonstrate that the chance constrained extension

does not significantly increase the compute times over regular EPC. For this trial, EPC yields a

mean database query time of 0.1305 ms with a standard deviation of 0.0927 ms, while Robust

EPC yields a mean of 0.1767 ms with a standard deviation of 0.1548 ms (R3). Additionally, both

approaches learn and reuse controllers to enforce constraints, as expected. However, as Fig. 5.4

illustrates, Robust EPC computes and reuses more entries in its controller database, i.e., 17 en-

tries, as opposed to four for EPC (R5). This increase is consistent with the constraint tightening

80

(a) (b)

(c) (d)

(e) (f)

Figure 5.3: A series of snapshots showing a segment of the ground robot simulation trial. The
blue lines denote the trajectory being tracked by the ground robot as it traverses the unknown
environment. The successive frames illustrate the simulated laser scanner (red dots denote sim-
ulated laser returns) building a map of the environment that drives the localization subsystem.

81

0 20 40 60 80 100 120 140 160

Time (s)

-1

0

1

2

3

C
o
n
tr

o
lle

r
In

d
e
x

(a) EPC controller changes over the duration of the trial

0 20 40 60 80 100 120 140 160

Time (s)

0

5

10

15

C
o
n
tr

o
lle

r
In

d
e
x

(b) Robust EPC controller changes over the duration of the trial

Figure 5.4: (a) EPC computes and reuses four controllers (indexed 0-3) to enforce the nom-
inal state and input constraints, while (b) Robust EPC applies 17 controllers to ensure robust
constraint satisfaction (an index of -1 denotes application of the intermediate controller).

formulation, as Robust EPC is expected to encounter the tightened constraints more frequently

than EPC encounters the nominal constraints.

The effects of this increased database size and application of the corresponding controllers

is evident in the resulting velocity profiles. Although both EPC and Robust EPC yield stable

trajectory tracking (R1), as Fig. 5.5 shows, the nominal EPC formulation yields multiple velocity

constraint violations along both axes. However, Robust EPC only yields one small violation of

the x-axis velocity constraint, thus demonstrating robust constraint satisfaction in the presence

of imperfect state information derived from the laser-based localization system (R2.2).

82

0 20 40 60 80 100 120 140 160

Time (s)

-1

-0.5

0

0.5

1

x
 V

e
lo

c
it
y
 (

m
/s

)
EPC

Robust EPC

(a)

0 20 40 60 80 100 120 140 160

Time (s)

-1

-0.5

0

0.5

1

y
 V

e
lo

c
it
y
 (

m
/s

)

EPC

Robust EPC

(b)

Figure 5.5: Velocity profiles for the ground robot tracking the commanded trajectory using EPC
and Robust EPC. The robust formulation yields more reliable constraint satisfaction (velocity
constraints shown by dashed lines).

5.2.2 Experimental Evaluation

The experimental platform is a small, 790 g quadrotor equipped with an ODROID-XU4 (2 GHz

ARM processor with 2 GB RAM), as detailed in Appendix A.3.1. As state feedback is, in part,

provided by a motion capture system with low variance on the estimates (Appendix A.2) we

inject Gaussian noise with changing variance into the motion capture data to emulate a lower-

quality sensor that exhibits changes in performance as a function of the environment (e.g., a

vision-based sensor transitioning between feature-rich and feature-sparse regions). The changing

uncertainty in the motion capture data is also broadcast to the state estimator and Robust EPC to

inform belief state propagation via the measurement covariance term in (5.1).

For these experiments, we consider the problem of controlling the translational dynamics of

83

the quadrotor [81], subject to velocity and control constraints. This yields an MPC formulation

with n = 6 states and m = 3 inputs. We also consider a horizon of N = 25 steps at the

control update rate (100 Hz) for the main Robust EPC formulation. We use α = 0.001 for

a constraint satisfaction probability of 99.9%. The intermediate controller is formulated with

a horizon of N = 10 to yield comparable solution times to Robust EPC. The cost function

weight matrices for these two horizons are selected such that a finite-horizon LQR using the

either set of weights (and the corresponding horizon) would yield the same controller gains. The

proportional and derivative gains for the L1 adaptive controller used as a baseline also match this

LQR formulation.

Timescale Separation with Model Adaptation

Since Robust EPC leverages EPC for its adaptive capabilities, the choice of model adaptation

strategies (described in Sect. 5.1.4) should influence overall uncertainty mitigation performance.

However, as these techniques seek to estimate the effects of slowly-varying disturbances act-

ing on the system, the experiments detailed below do not require the system to operate long

enough to acquire sufficient experience. As Fig. 5.6 shows, this results in comparable perfor-

mance across all three adaptation strategies. While model adaptation will improve performance

over an extended duration or in scenarios with significant exogenous perturbations to the system

(e.g., wind acting on the quadrotor) [21], for the scenarios considered below, the choice of adap-

tation strategy does not significantly impact robust constraint satisfaction. Therefore, we do not

distinguish between LWPR and ISSGPR in the remainder of these experiments.

Robust Constraint Satisfaction

We first evaluate Robust EPC’s trajectory tracking performance along a trajectory that makes

five straight line laps between two waypoints about 3.6 meters apart (Fig. 5.7a). Figure 5.7(b)

shows that Robust EPC adequately stabilizes the system to track the trajectory, which achieves a

84

0 10 20 30 40 50 60 70
-0.1

0

0.1

x
 (

m
)

Luenberger LWPR ISSGPR

0 10 20 30 40 50 60 70
-0.5

0

0.5

y
 (

m
)

0 10 20 30 40 50 60 70

Time (s)

-0.2

0

0.2

z
 (

m
)

Figure 5.6: Position tracking error of the three model adaptation strategies: Luenberger, LWPR,
and ISSGPR. Performance is comparable across all three.

maximum linear velocity of 2.7 m/s (R1).

Table 5.1 shows the compute times for the different components of Robust EPC from one rep-

resentative trial. This demonstrates that both the Query and Intermediate controller components,

which constitute the primary control thread, run in real-time on the computationally constrained

flight hardware (R3).

In order to show robust constraint satisfaction in the presence of time-varying sensor uncer-

tainty, we set up an experiment where Gaussian noise is injected into the motion capture data. To

increase the difficulty of velocity constraint satisfaction, we inject noise in the center of each lap

of the trajectory, where the velocity of the vehicle is highest. In the experiments that follow, we

use mean-zero Gaussian noise with a standard deviation of 0.03 that is applied when the position

of the vehicle along the y-axis is between -0.5 meters and 0.5 meters.

In addition to Robust EPC, we consider three baseline control strategies: L1 adaptive control,

85

EPC, and a Robust MPC (R-MPC) formulation that solves the QP online with N = 10 (to

achieve comparable solution times) and slack on state constraints (to ensure problem feasibility).

Figure 5.9 shows the resulting velocity profiles with the constraint bounds shown by the dashed

lines. L1 adaptive control shows unconstrained control performance, which naturally violates the

constraints as the reference velocity has a maximum of 2.7 m/s. The enforcement of constraints

in EPC yields smaller constraint violations, but the non-robust formulation of the constraints fails

to mitigate the effects of measurement uncertainty. R-MPC also exhibits substantial constraint

violations. To confirm that the degraded performance of R-MPC is due to the short horizon

and not the slack constraints, we also compared performance of R-MPC and Robust EPC with

N = 25 using a high-fidelity simulator on a more powerful computer and observed comparable

performance and robust constraint satisfaction. Therefore, these results illustrate that over repeat

trials, only Robust EPC consistently satisfies the velocity constraints (R2.2).

Figure 5.8 illustrates controller generation and reuse as indicated by the amount of time each

controller is applied. Note that the intermediate controller (index 1) is only used in the first few

laps, while controller 2 (corresponding to operation away from constraints) is applied frequently

(R5). This indicates that over time, all of the necessary controllers needed to track the trajectory

and satisfy constraints are enumerated and available for use in the controller table.

Time-Varying Uncertainty Prediction

To show that Robust EPC leverages the Gaussian nature of the state estimator output and exploits

regions of low uncertainty to improve performance over more conservative approaches, we inves-

Table 5.1: Compute times for Robust EPC components, including the number of control itera-
tions over which the statistics are computed.

Databse Query Intermediate Controller Solve QP Add Element
Iterations 5949 18 12 12

Mean (ms) 1.089 1.303 4.427 4.891
Std. Dev. (ms) 1.463 0.886 2.720 5.393

86

(a) The back and forth trajectory visualized using video stills.

0 5 10 15 20 25 30 35 40

Time (s)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

P
o

s
it
io

n
:

y
-a

x
is

 (
m

)

Reference Actual (5 Trials)

(b) Tracking performance of Robust EPC while executing the back and forth trajectory.

Figure 5.7: Vehicle executing a back and forth trajectory with five laps.

87

2 4 6 8 10 12

Controller Index

1

2

3

4

5

L
a
p

0.000

0.091

0.725

2.447

5.800

Figure 5.8: Time spent using each controller per lap. Note that multiple controllers are learned
and reused and that the intermediate controller (index 1) ceases to be used past lap 3.

tigate its performance compared to an instantiation of Robust EPC that uses a fixed upper bound

on the uncertainty. We take the maximum bound applied by Robust EPC during a run of the

trajectory as the uncertainty value for this fixed bound approach. The quadrotor is commanded

to track a vertical circle trajectory (Fig. 5.10) while Gaussian noise with a standard deviation of

0.03 is injected when the vehicle is below 1 meter in height. We expect that Robust EPC will

exploit the low noise region above 1 meter and achieve better performance than the conservative

approach. Figure 5.11 shows tracking results for Robust EPC using Gaussian belief propagation,

the fixed bound approach using the true upper bound as described above, and the fixed bound

approach using the highest bound that allows for stable trajectory tracking. The fixed bound

approach is unable to complete the trajectory with the true upper bound, and Robust EPC yields

reduced tracking error compared to the less conservative fixed bound approach (R4). We also

consider an uncertainty propagation strategy based on recursive application of the Pontryagin

difference with the uncertainty set [73]. However, even with the ancillary controller, this results

in an infeasible problem for the longer horizons permitted by Robust EPC. Figure 5.12 illustrates

the tube growth with a 25-step horizon for the two approaches.

88

0 5 10 15 20 25 30 35 40

Time (s)

-3

-2

-1

0

1

2

3

V
e
lo

c
it
y
:
y
-a

x
is

 (
m

/s
)

(a) L1 Adaptive Control

0 5 10 15 20 25 30 35 40

Time (s)

-3

-2

-1

0

1

2

3

V
e
lo

c
it
y
:
y
-a

x
is

 (
m

/s
)

(b) EPC (N = 25)

0 5 10 15 20 25 30 35 40

Time (s)

-3

-2

-1

0

1

2

3

V
e
lo

c
it
y
:
y
-a

x
is

 (
m

/s
)

(c) Robust MPC (QP, N = 10)

0 5 10 15 20 25 30 35 40

Time (s)

-3

-2

-1

0

1

2

3

V
e
lo

c
it
y
:
y
-a

x
is

 (
m

/s
)

(d) Robust EPC (N = 25)

Figure 5.9: Comparison of y-velocity profiles for the line trajectory across 10 trials of each
controller. Only Robust EPC satisfies the nominal velocity constraints (dashed lines).

89

Figure 5.10: The vertical circle trajectory used to assess belief propagation, visualized using
video stills.

Aggressive Flight

To further assess the performance of Robust EPC, we consider two aggressive scenarios. The

first scenario aims to test constraint satisfaction on a high speed back and forth trajectory with a

maximum velocity of 3.6 m/s. Figure 5.13 displays the velocity along the trajectory. Constraints

are satisfied throughout with the exception of a 0.03 m/s violation during the final, fastest lap.

Due to the chance-constrained nature of Robust EPC, there is a nonzero probability of constraint

violation (0.1% in our experiments). In addition, higher speeds typically accentuate any model-

ing errors present in the system and, as a result, may yield degraded tracking performance if the

model learning components are unable to adapt at a sufficiently high rate or have not accumulated

sufficient experience (as noted in Sect. 5.2.2).

90

0 0.5 1 1.5 2 2.5 3 3.5
-2

-1

0

1

2

3

y
 (

m
)

Reference

Belief Propagation

Fixed Bound (0.40 m/s)

Fixed Bound (0.53 m/s)

0 0.5 1 1.5 2 2.5 3 3.5

Time (s)

0

1

2

3

z
 (

m
)

Figure 5.11: Position along the y and z axes for Robust EPC and the fixed bound approach as
compared to the reference trajectory. The fixed bound approach that uses the true upper bound
fails to track the trajectory. The mean and max error for Robust EPC along the y-axis are 0.22
and 0.41, respectively, while for the successful fixed bound approach, 0.24 and 0.51.

In the second aggressive flight scenario, the quadrotor is commanded to fly three laps around

a circle in the x-y plane that traverses a turbulent wind field generated by eight, high-power

fans, as illustrated in Figs. 5.14 and 5.15. The average wind velocity directly in front of each

fan is approximately 6 m/s [5], and the placement of the fans around the flight volume results

in significant spatial variation in the disturbance forces acting on the vehicle. The reference

trajectory commands a maximum velocity of 2.0 m/s, but due to the wind field, the vehicle may

often overshoot the command. However, Robust EPC enforces a velocity limit of 2.3 m/s, and

as Fig. 5.16 shows, the resulting velocity profile satisfies this constraint with just one minor

violation. As a result, we conclude that Robust EPC adequately handles constraints even during

aggressive flight (R2.3).

Due to the velocity constraints being activated in each lap, it is difficult to assess flight perfor-

mance via the tracking error (e.g., a high velocity may be needed to overcome wind-induced lag).

We therefore look at cross-track error as a measure of the deviation from the trajectory, as shown

91

Figure 5.12: Overlay of tube growth for Set Propagation and Belief Propagation based on the
bounds computed by each at the start of trajectory tracking. Set Propagation growth is too fast to
yield feasible constraints.

in Fig. 5.17. As Table 5.2 shows, the cross-track error about all three axes improves significantly

by the third lap as the controller database and model learner accumulate sufficient experience.

This also matches empirical observations during the flight test that the vehicle exhibits improved

stability and smoothness over successive laps (R4.1).

Table 5.2: Cross-track error statistics for the high-wind circle trajectory

x-axis y-axis z-axis
Mean (m) Std. Dev. (m) Mean (m) Std. Dev. (m) Mean (m) Std. Dev. (m)

Lap 1 0.0287 0.0893 0.0075 0.0694 0.0161 0.0364
Lap 2 0.0266 0.1060 0.0061 0.1057 0.0242 0.0528
Lap 3 0.0110 0.0785 0.0012 0.0740 0.0022 0.0378

92

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-3

-2

-1

0

1

2

3

V
e

lo
c
it
y
:

y
-a

x
is

 (
m

/s
)

Figure 5.13: Velocity of Robust EPC along a high-speed back and forth trajectory. There is a
small constraint violation of 0.03 m/s during the last lap.

Figure 5.14: Snapshots of the horizontal circle trajectory executed in a high-speed, turbulent
wind field generated via a set of eight high-power fans

93

0 10 20 30 40 50 60

Time (s)

-2

-1

0

1

2
R

e
fe

re
n
c
e
 T

ra
je

c
to

ry
 (

m
) x

y

Figure 5.15: x and y components of the horizontal circle trajectory showing the three laps exe-
cuted

0 10 20 30 40 50 60

Time (s)

-2

-1

0

1

2

V
e
lo

c
it
y
 (

m
/s

)

v
x

v
y

Figure 5.16: Velocity of Robust EPC along the circle trajectory in the high-wind scenario. The
velocity obeys the constraint bound aside from one minor constraint violation of 0.09 m/s.

0 10 20 30 40 50 60

Time (s)

-0.4

-0.2

0

0.2

0.4

C
ro

s
s
-T

ra
c
k
 E

rr
o

r
(m

)

x

y

z

Figure 5.17: Cross-track error while executing the circle trajectory in the high-wind scenario is
nearly zero-mean and shows some improvement over time.

94

5.3 Conclusions

In this chapter, we have presented an extension to EPC that allows for robust constraint satisfac-

tion in the presence of time and state-dependent uncertainty. We have shown that the proposed

system, Robust EPC, successfully stabilizes the vehicle along a variety of trajectories (R1), eas-

ily meets computational requirements on a compute-constrained system (R3), properly satisfies

constraints in the presence of time-varying sensor uncertainty (R2.2) while improving tracking

performance as compared to conservative methods (R4), and maintains constraint satisfaction

and tracking improvement properties during aggressive flight (R2.3).

95

96

Chapter 6

Efficient Explicit Adaptive Nonlinear MPC

In this chapter we propose an explicit adaptive NMPC algorithm that builds upon the previously

described semi-explicit techniques by learning from synthetic experiences. One of the key ob-

servations from semi-explicit NMPC is that, in practice, the system only uses a small number

of the potential controllers that an explicit approach would compute. Therefore, we propose to

compute a limited database consisting of the controllers required to track feasible trajectories,

e.g., trajectories that lie within the reachable space of the system controlled by NMPC. To do so,

we construct a randomized search tree through the reachable space to generate synthetic experi-

ences and apply the EPC algorithm to incrementally construct a controller database from these

experiences. We model transitions between controllers in the database as a Markov chain and use

empirical transition probabilities to specify a partial ordering on successors for each controller.

This approach improves the efficiency of database queries and permits further reductions of the

database size, thereby enabling use on computationally constrained platforms.

While the reachable-space search shares similarities with the LQR-Tree algorithm [53], the

proposed approach addresses the problem of constrained optimal control for arbitrary (feasible)

trajectory tracking rather than the generation of stabilizing trajectory or controller sequences.

Alessio, et al. [39] also propose a means of generating a reduced explicit MPC database through

repeated simulation, but the proposed approach extends this technique by using a tree of fea-

97

sible trajectories rather than arbitrary states and references to guide the simulations. Finally,

the proposed approach enables the controllers queried online to automatically adapt to changes

in the system dynamics, due to its use of EPC. The full adaptive NMPC formulation, database

generation, and online query algorithms are detailed in the following section.

6.1 Approach

Explicit Nonlinear Model Predictive Control (NMPC) constructs a database of locally optimal

affine feedback controllers that solve a given NMPC problem without the need for online opti-

mization. The explicit NMPC technique proposed in this section combines the Experience-driven

Predictive Control (EPC) algorithm (Ch. 4) with a randomized search tree to generate synthetic

experiences that can populate a database of local feedback controllers. This offline-constructed

database can then be queried during online operation for high-rate control that is equivalent to

solving the NMPC problem but requires no online optimization.

6.1.1 Predictive Control Formulation

We consider the adaptive NMPC formulation used in EPC, summarized below, that leverages

an online-learned model of plant dynamics to simplify the optimization problem. As described

in Ch. 4, EPC employs techniques such as Locally Weighted Projection Regression (LWPR)

or Incremental Sparse Spectrum Gaussian Process Regression (ISSGPR) to learn perturbations

to the dynamics model online. Given a state-control pair, (x,u), the model learner returns the

anticipated error, p̂, between the predicted and actual next state. Combining p̂ with a first order

Taylor-series approximation of the nonlinear equations of motion (computed about the current

state x0 and a nominal control input ur derived from the trajectory) yields an affine model of the

98

system’s dynamics that evolves over time,

x̄k+1 = Ax̄k + Būk + c + p̂

= Ax̄k + Būk + c̃,

where x̄k = xk − x0, ūk = uk − ur, and c̃ = c + p̂.

This affine model enables the N -step receding-horizon control problem to be formulated as

a quadratic program (QP) rather than as a nonlinear program,

argmin
ūk

N−1∑
k=0

1

2
(x̄k+1 − r̄k+1)TQk+1(x̄k+1 − r̄k+1) +

1

2
(ūk − ūp̂)TRk(ūk − ūp̂)

s.t. x̄k+1 = Ax̄k + Būk + c̃

Gxk+1
x̄k+1 ≤ gxk+1

Guk
ūk ≤ guk

∀ k = {0, . . . , N − 1}

where {r1, . . . , rN} denote N reference states along the current trajectory, r̄k = rk − x0, and

ūp̂ is the compensatory control derived from the LWPR output. To simplify notation, we define

x =

[
x̄T

1 , . . . , x̄
T
N

]T

, r =

[
r̄T

1 , . . . , r̄
T
N

]T

, u =

[
ūT

0 , . . . , ū
T
N−1

]T

, up̂ =

[
ūT
p̂, . . . , ū

T
p̂

]T

,

B =



B 0 . . . 0

AB B . . . 0

...
... . . .

AN−1B AN−2B . . . B


, c =



c̃

(A + I) c̃

...∑N−1
i=0 Aic̃


Q = diag(Q1, . . . ,QN), R = diag(R0, . . . ,RN−1), Gx = diag(Gx1 , . . . ,GxN

),

Gu = diag(Gu0 , . . . ,GuN−1
), gx =

[
gT
x1
, . . . ,gT

xN

]T

, and gu =

[
gT
u0
, . . . ,gT

uN−1

]T

. Since

99

x̄0 = 0, the QP (6.1) can we rewritten as

argmin
u

1

2
(x− r)TQ(x− r) +

1

2
(u− up̂)TR(u− up̂)

s.t. x = Bu+ c

Gxx ≤ gx

Guu ≤ gu

Substituting the system dynamics into the cost and constraints and dropping constant terms in

the cost function yields an equivalent QP in terms of u,

argmin
u

1

2
uTHu+ hTu

s.t. Γu ≤ γ
(6.1)

where H = BTQB + R, h = BTQ(c− r)−Rup̂,

Γ =

GxB

Gu

 , and γ =

gx − Gxc

gu


As in other explicit and semi-explicit MPC techniques, we apply a standard result from multi-

parametric QPs to derive optimal, local controllers from the Karush-Kuhn-Tucker (KKT) condi-

tions for optimality[46],

Hu+ h+ Γ Tλ = 0

Λ(Γu− γ) = 0,

(6.2)

where λ is the vector of Lagrange multipliers and Λ = diag(λ). This allows u and λ to be

100

reconstructed by solving a linear system derived from (6.2),

H Γ T
a

Γ a 0


u
λa

 =

−h
γa


where the subscript a denotes rows corresponding to the active constraints (i.e., with λ > 0) for

a given solution. Assuming a linearly independent set of active constraints [47], the resulting u

is affine in the predicted state error r,

u = E5r −


E5c− E4Rup̂ + E3



g+
x − Gxc

−g−x + Gxc

g+
u

−g−u


a


, (6.3)

where E1 = Γ aH−1, E2 = −(E1Γ
T
a)
−1, E3 = ET

1E2, E4 = H−1 + E3E1, and E5 = E4BTQ.

Moreover, since the coefficients in (6.3) are all functions of A, B, and c̃, the overall control

law κ(x0, r1, . . . , rN) can be written in terms of a parameterized feedback gain matrix K and

feedforward vector kff,

κ(x0, r1, . . . , rN) = K(A,B, c̃)r + kff(A,B, c̃). (6.4)

The KKT condition checks (used to determine whether a previously computed controller is

locally optimal) have a similar structure. The active Lagrange multipliers, λa, also take a similar

101

form to the control law,

λa = −E6r +


E6c− ET

3Rup̂ + E2



g+
x − Gxc

−g−x + Gxc

g+
u

−g−u


a


(6.5)

where E6 = ET
3BTQ.

Therefore, given the current state, references, affine dynamics model, and set of active con-

straints, we can compute and validate the optimal affine feedback law via (6.3) and (6.5) and

thus construct a database of controllers simply by storing the appropriate sets of active con-

straints and reconstructing the control output online. This online reconstruction of the control

and KKT matrices also ensures that the computed control response is locally optimal even as the

system dynamics evolve.

6.1.2 Controller Search via Randomized Trajectories

Explicit MPC techniques employ formulations similar to those detailed in Sect. 6.1.1 to exhaus-

tively enumerate all controllers for a given MPC formulation (i.e., all possible combinations of

active constraints). However, this enumeration results in a controller database that is exponen-

tially large in the number of constraints1. We therefore seek to construct a database containing

only the controllers required by the system to traverse trajectories in the reachable set with time

horizon T ,

R(x0,u, T) =

{∫ T

0

f(x0,u)dt ∀ u ∈ U
}

1Assuming c constraints of the form amin ≤ a ≤ amax, there may be up to 3cN controllers)[57].

102

where f(·) denotes the nonlinear dynamics model, U is the set of controls permitted by (6.1), and

the trajectories are reasonably tracked by the system. As the control input at any point is of the

form u = Kr + kff, the reachable set under (6.1) is given by RT = R(x0,Kr + kff, T) ∀ r ∈

XN , where X is the set of states permitted by (6.1). Therefore, we pursue a database that

consists of local, affine controllers required to track trajectories inRT by searching over feasible

trajectories inRT .

Due to the high dimensionality of the search space, we choose to randomly sample trajecto-

ries inRT using the Closed-loop Rapidly-exploring Random Tree (CL-RRT) algorithm [90]. CL-

RRT grows a tree of dynamically feasible trajectories through X by randomly sampling points in

the reference space of the feedback controller (e.g., r ∈ XN for (6.1)), finding the closest node

in the current tree, and forward-simulating the closed-loop system dynamics from that node to

track the reference [91]. Consequently, the resulting tree of trajectories can be interpreted as a

sampling-based approximation of RT [92]. As CL-RRT is probabilistically complete [93, 94],

in the limit the tree of trajectories will be arbitrarily dense in any part of RT with a diverse set

of trajectories2. Moreover, if the system is differentially flat, the samples may be drawn from

the lower-dimensional space of flat outputs, S ⊂ X , and used to compute smooth polynomial

trajectories, s(t) ∈ S ∩ RT , that provide full state references r = [s(t0), ṡ(t0), . . . , s(k)(tN−1)]

to the controller [91]. This formulation allows us to solve (6.1) at any point along any branch of

the tree and generate a set of affine feedback controllers, as in Sect. 6.1.1. We can also assess if a

given set of controllers is sufficient to cover a variety of relevant operating domains (i.e, at each

simulation step of each branch).

2We intentionally do not use RRT∗ here as it includes an additional rewiring step that effectively homogenizes
the branches in the tree to obtain asymptotic optimality. In contrast, standard RRT and CL-RRT enable branches
to grow in arbitrary directions. This results in a greater diversity of trajectory segments and therefore improved
coverage ofRT .

103

6.1.3 Controller Database Generation via Sampling

We propose the following approach to generate a database, M, of affine feedback controllers.

As described in Alg. 6.1, the database is initialized to be empty, and we introduce a transition

frequency matrix, Φ, that records the number of transitions between each pair of controllers

added toM. We initialize the search tree with a nominal state, x0 ∈ X , and its corresponding

flat outputs, s0 ∈ S . For each random sample s′ generated, we compute s(t) as detailed in

Sect. 6.1.2. The system dynamics are forward-simulated along s(t) using EPC with the current

database of controllers (the simulation step size, ∆t, matches the desired control rate) and Φ is

incremented accordingly. If the appropriate controller is not found in the database, EPC solves

the QP (6.1) and adds the resulting controller to the database (increasing the size of Φ as well).

The forward-simulation terminates upon reaching a predefined maximum segment duration,

T , and a new node is added to the tree containing the end state and index of the final controller

used. Following Reist, et al. [54], we terminate growing of the tree after we have generated

M consecutive samples with resulting trajectories covered by the controllers in M, leading to

no change in M. After the database is complete, we can define an order-1 Markov chain that

represents the transitions between controllers, with empirical transition probabilities defined by

Φ̄ = Φ with normalized rows. Sorting the outgoing transitions from each state of the Markov

chain according to probability of occurrence yields a (strict) partial ordering, Ω, of the con-

trollers. This ordering informs the online query process detailed in Sect. 6.1.4.

The proposed Markov chain representation enables two additional simplifications of the con-

troller database. The first is model reduction via elimination of low-occupancy states to reduce

storage requirements and query times, which is essential for deployment on systems with severe

computational constraints. This is achieved by retaining only theK most frequently visited states

defined by the K columns of Φ̄ with the highest sums, or via more advanced approaches such as

conservation of transition rates [95]. The second simplification reduces the number of transitions

out of each state so as to limit the query time per control iteration by retaining the K highest

104

Algorithm 6.1 Controller Database Generation

1: M← ∅, Φ← 0, k ← 0
2: Add root node n0 = (x0, s0) to tree T
3: while k < M do
4: Generate sample s′ ∈ S
5: Select parent node n∗ = argminn∈T ‖sn − s′‖
6: Compute spline s(t) from sn∗ to s′

7: tsim ← 0, xsim ← xn∗ , j ← in∗

8: while tsim < T do
9: Get r from s(t)

10: for each element mi ∈M do
11: if xsim, r satisfy KKT criteria (6.2) then
12: u← κi(xsim, r), controller found← true
13: Φij ← Φij + 1, j ← i, k ← k + 1
14: break
15: end if
16: end for
17: if controller found is false then
18: Solve QP (6.1) to generate new controller, κnew = (K,kff)
19: Add new element mnew containing κnew toM
20: u← κnew(xsim, r), j ← |M|, k ← 0
21: end if
22: tsim ← tsim +∆tsim, xsim ← xsim +

∫ ∆tsim

0
f(x,u)dτ

23: end while
24: Add new node n = (xsim, ssim, j) to T
25: end while
26: Compute ordering Ω based on transition frequencies in Φ

probability transitions out of each state such that the sum of the retained transitions satisfies a

threshold, ρ, or by leveraging more advanced techniques, such as entropy-based methods [96].

Combinations of these two simplifications may also be applied, by preserving a limited set of

statesM′ such that Φ̄ij ≤ ε ∀mi ∈M′,mj ∈M∩M′ over the next N queries.

6.1.4 Online Database Query

Once the controller database,M, is populated, it enables high-rate, online control that recovers

the functionality of (6.1). As described in Alg. 6.2, we queryM in each control iteration to iden-

tify the appropriate controller κi. However, as each control iteration represents a state transition

105

Algorithm 6.2 Controller Database Query
1: Inputs:M and Ω from Alg. 6.1, Current x, r, Previous controller index j∗

2: for each element mi ∈M ordered by Ωj∗ do
3: if x, r satisfy KKT criteria (6.2) then
4: return u← κi(x, r)
5: end if
6: end for
7: return u← safety controller

in the Markov chain (including self-loops), we identify the next transition by iterating through

M according to the order specified by entry j∗ in Ω. This ordering aims to reduce the number of

controllers that must be evaluated (since evaluating the KKT conditions is more expensive than

a simple lookup table query), thereby improving the query efficiency relative to orderings based

on measures of controller utility.

Although the termination condition in Alg. 6.1 ensures a high probability of coverage, it can-

not guarantee perfect coverage. Therefore, if no controller in the database is suitable, we apply

a safety controller (e.g., a short horizon MPC with soft constraints [20] or any other globally

stabilizing controller) until the system returns to the region covered byM.

Finally, the controllers applied online retain the adaptive properties of EPC presented in

Ch. 4. As κ is parameterized by the system dynamics (Sect. 6.1.1), it can be combined with

an online model learner for online adaptation to changing plant dynamics undergoing exogenous

disturbances.

6.2 Simulation Results

To demonstrate the performance of the proposed explicit adaptive NMPC algorithm, we seek to

demonstrate the following results through a series of simulation trials: R6.1: severely reduced

controller database size, R6.2: improved computational efficiency via the Markov chain-based

ordering and simplification, and R6.3: database coverage of controllers required at run-time. We

also leverage these properties to demonstrate the following results from the set enumerated in

106

Chapter 1: R1: stable control performance, R2: constraint satisfaction, R3: real-time compu-

tation of control commands, and R4.1: adaptation performance. We consider two applications:

1) pendulum control to demonstrate basic functionality of the proposed approach and 2) quadro-

tor attitude control to demonstrate the value of Markov chain simplification to achieve the con-

trol rates required for stability. The offline computed controller database for each application is

evaluated through a series of real-time simulations that require the system to track a variety of

random, smooth trajectories.

6.2.1 Pendulum Control

The first system is a simple pendulum modeled by two states (angle and angular velocity) and

one control input (torque). The corresponding MPC formulation has a 10-step prediction horizon

and enforces constraints on angular velocity and torque.

Database Computation

To generate the controller database offline, we apply Alg. 6.1 with a termination threshold, M ,

of 50000 consecutive queries, and as Fig. 6.1 illustrates, the database satisfies this threshold after

computing 268 controllers. This number is in stark contrast to the 320 ≈ 3.49 × 109 possible

controllers that a standard explicit MPC would aim to enumerate (R6.1). Figure 6.2 shows the

Markov chain transition probabilities derived from the search process. Table 6.1 summarizes the

database generation results.

Database Query Performance

To evaluate Alg. 6.2 with this controller database, the pendulum is commanded to track a series

of random, smooth trajectories over the course of a 600 s trial. As Table 6.2 shows, the limited

number of controllers in the database permit tracking a variety of trajectories with negligible

use of the safety controller. This demonstrates that the proposed reachable-space search does

107

Simulation Steps
×10 5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

D
a

ta
b

a
s
e

 S
iz

e

0

50

100

150

200

250

300

Figure 6.1: Growth of the pendulum controller database during the offline search.

cover the space of control scenarios that the system my encounter during operation (R6.3). Ad-

ditionally, repeating the same trial with a simple search ordering (as employed by EPC) yields

substantially longer query times than the proposed ordering based on Markov chain transition

probabilities (R6.2). Figures 6.3 and Fig. 6.4 illustrate the control performance provided by this

database in terms of trajectory tracking error (R4) and constraint satisfaction (R2).

Table 6.1: Statistics for the pendulum control database computation

Tree Branches Simulation Steps Control Database Size Explicit MPC Bound
560 415517 268 320

Table 6.2: Statistics for the 600 s pendulum database evaluation

Queries Coverage Mean Query Time Safety Control Calls
Markov chain ordering 119165 99.987% 0.1316 ms 15

Simple ordering 119373 99.975% 0.7778 ms 30

108

To State (Database Controller ID)

50 100 150 200 250

F
ro

m
 S

ta
te

 (
D

a
ta

b
a

s
e

 C
o

n
tr

o
lle

r
ID

) 50

100

150

200

250

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.2: Markov chain transition probabilities with states that correspond to the relevant
database controller enumeration for the pendulum feedback control system

Time (s)

0 100 200 300 400 500 600

A
n
g
le

 (
ra

d
)

-4

-2

0

2

4
desired actual

Time (s)

0 100 200 300 400 500 600

A
n
g
le

 T
ra

c
k
in

g
 E

rr
o
r

(r
a
d
)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Figure 6.3: Trajectory tracking performance via the pendulum control database

109

Time (s)

0 100 200 300 400 500 600

A
n
g
u
la

r
V

e
lo

c
it
y
 (

ra
d
/s

)

-1

-0.5

0

0.5

1

Time (s)

0 100 200 300 400 500 600

T
o
rq

u
e
 C

o
m

m
a
n
d
 (

N
.m

)

-30

-20

-10

0

10

20

30

Figure 6.4: State and input constraint satisfaction via the pendulum control database

110

6.2.2 Quadrotor Attitude Control

The second application we consider is attitude control of a small quadrotor micro air vehicle sim-

ulated via the architecture described in Appendix A.1. Quadrotors are highly dynamic systems

that require attitude controllers that run at high feedback rates (e.g., 200 Hz), and as a result, are

sensitive to computational delays in the controller. As described in Appendix A.3.1, the atti-

tude dynamics are modeled by six states (attitude and angular velocities) and three control inputs

(torque about each axis). The corresponding MPC formulation has a 15-step prediction horizon

and enforces constraints on roll, pitch, and the three torques.

Database Computation

As with the pendulum, we first apply Alg. 6.1 with a termination threshold, M , of 50000 con-

secutive queries. As Fig. 6.6 illustrates, the database satisfies this threshold after computing 570

controllers. This number is in stark contrast to the 375 ≈ 6.08 × 1035 possible controllers that

a standard explicit MPC would aim to enumerate (R6.1). Figure 6.7 shows the Markov chain

transition probabilities derived from the search process, and Table 6.3 summarizes the database

generation results.

Database Query Performance

To evaluate online control using the database, the quadrotor is commanded to track a series of

random, smooth trajectories for a 600 s trial (commanded trajectories are in position and yaw

but contain sufficiently aggressive sections to excite the attitude dynamics, and for simplicity,

the translational dynamics are controlled via LQR). We consider both the search order based

on Markov chain transition probabilities and a simple search order as employed by EPC [84].

During the first 250 s of the trial, the proposed Markov chain-based ordering strategy yields faster

solution times than the simple ordering (R6.2), as shown in Table 6.4. Furthermore, there are no

calls to the safety controller in this time, demonstrating that the proposed reachable-space search

111

Figure 6.5: Disturbance region highlighted in orange with example trajectories.

does cover the space of control scenarios that the system may encounter during operation (R6.3).

However, we also observe that the database is still too large for reliable, realtime operation

as an extended query causes the quadrotor to crash partway through the trial with either search

ordering. This failure stems from an aggressive trajectory commanded approximately 250 s into

the simulation that requires a controller not found in the database. Both ordering strategies are

unable to detect this omission without searching the entire database, resulting in a delay of over

100 ms that causes the failure.

Database Simplification

We therefore simplify the Markov chain by preserving the highest-probability outgoing edges for

each state such that they represent 99% of transitions in the original model. This simplification

allows queries to terminate after exploring the high-probability options, resulting in successful

completion of the 600 s trial (R1) with millisecond query times that enable high-rate attitude con-

trol (R3) and negligible safety controller usage (R6.3), as shown in Table 6.4. For comparison,

112

Simulation Steps
×10 5

0 1 2 3 4 5 6 7

D
a

ta
b

a
s
e

 S
iz

e

0

100

200

300

400

500

600

Figure 6.6: Growth of the attitude controller database during the offline search.

an equivalent QP solution would be nearly an order of magnitude slower [21]. Figure 6.8 illus-

trates the attitude reference tracking error for this trial, and Fig. 6.9 verifies that the torque input

constraints are satisfied for the entire 600 s (the roll and pitch constraints are rarely activated as

the input constraints dominate) (R2). These results demonstrate that the proposed approach for

generating an explicit NMPC database enables real-time constrained control of systems with fast

timescales.

Table 6.3: Statistics for the quadrotor attitude control database computation

Tree Branches Simulation Steps Database Size Explicit MPC Bound
3000 602060 570 375

Table 6.4: Statistics for the 600 s quadrotor attitude control database evaluation. Entries in red
indicate failures due to a prolonged database search before applying the safety controller.

Number of Percent Mean Loop Safety
Queries Coverage Time Control Calls

EPC ordering 49166 100.00% 1.49 ms Failed on first call
MC ordering 49074 100.00% 1.24 ms Failed on first call

MC simplification 118956 99.97% 1.45 ms 34

113

Figure 6.7: Transition probabilities for the Markov chain with states corresponding to controllers
in the database. The entries for the first 100 controllers are magnified for clarity.

Adaptation Performance

Finally, the as controllers in the database are parameterized by the system dynamics, we introduce

the online model learner used in EPC to enable online adaptation of the control laws. A constant

torque disturbance is applied to the vehicle in the region highlighted in Fig. 6.5. The magnitude of

this exogenous torque is approximately 30% of the roll and pitch command limits enforced in the

MPC formulation. Despite this reduced control authority, the commanded torques never exceed

the constraints (R2.1), as shown in Fig. 6.10, and combining the previously computed controller

database with an online-updated estimate of the dynamics yields a 35% improvement in roll and

pitch tracking error in this region. As Table 6.5 also shows, there is a 25% improvement in

the resulting position tracking error. Thus, the improvement due to the proposed approach is

comparable to the performance obtained by directly applying EPC [84] but does not require the

computational resources to perform online optimization (R4.1).

114

0 100 200 300 400 500 600

R
o

ll
(r

a
d

)

-1

0

1

0 100 200 300 400 500 600

P
it
c
h

 (
ra

d
)

-0.5

0

0.5

Time (s)

0 100 200 300 400 500 600

Y
a

w
 (

ra
d
)

-5

0

5

Desired Actual

(a) Attitude tracking comparison

0 100 200 300 400 500 600

R
o
ll

E
rr

o
r

(r
a
d
)

-0.05

0

0.05

0.1

0 100 200 300 400 500 600

P
it
c
h
 E

rr
o
r

(r
a
d
)

-0.1

-0.05

0

0.05

Time (s)

0 100 200 300 400 500 600

Y
a
w

 E
rr

o
r

(r
a
d
)

-0.1

-0.05

0

(b) Attitude tracking error

Figure 6.8: Quadrotor attitude reference tracking performance via the control database.

115

Time (s)

0 100 200 300 400 500 600

T
o
rq

u
e
 C

o
m

m
a
n
d
 (

N
.m

)

-0.2

-0.1

0

0.1

0.2

Roll

Pitch

Figure 6.9: Roll and pitch torque constraints are satisfied for the duration of the attitude control
evaluation.

Time (s)

0 100 200 300 400 500 600

T
o
rq

u
e
 C

o
m

m
a
n
d
 (

N
.m

)

-0.2

-0.1

0

0.1

0.2

Roll

Pitch

Figure 6.10: Roll and pitch torque commands satisfy constraints even in the presence of a 30%
max torque disturbance.

Table 6.5: Comparison of mean tracking errors with and without adaptation

Roll (rad) Pitch (rad) x-Position (m) y-Position (m)
No adaptation 0.0908 0.0909 0.0400 0.0360

With adaptation 0.0597 0.0585 0.0299 0.0271

116

6.3 Experimental Evaluation

To assess the real-time control performance of the proposed efficient explicit formulation, we

implement the controller database onboard a Crazyflie quadrotor, a 32 g, severely compute-

constrained platform with a 168 MHz processor and 192 KB of SRAM (see Appendix A.3.1 for

details). In this section, we consider the problem of controlling the translational dynamics (outer

loop) of the quadrotor, rather than the attitude dynamics as in Sect. 6.2.2. The database for the

outer loop is computed offline via Alg. 6.1 and applied online via Alg. 6.2 at a rate of 100 Hz.

Following a standard cascaded control formulation [81], we apply a PD control law for the inner

loop to track the outer loop outputs.

We generate the controller database with a horizon length of N = 10 control iterations to

maintain tractability and with constraints on x-velocity, y-velocity, and the three control inputs.

This yields a database with only 191 entries, as opposed to the 350 ≈ 7.18 × 1023 total possible

controllers (R6.1). Figure 6.11 illustrates the connectivity in the corresponding Markov chain

before and after simplification. As the database only requires the active set and the simplified list

of successors for each controller, the total memory required to store the database is only 3.9 KB.

However, to reduce redundant online matrix operations, we precompute and cache some of the

EPC matrices, raising the total memory usage to 8.8 KB.

To evaluate online control performance, the vehicle is commanded to track a linear trajectory,

as shown in Fig. 6.12. Figure 6.13 depicts a set of transitions between controllers in the database

as the vehicle executes this trajectory, and Fig. 6.14 shows the corresponding query times for

the controller database. This trial demonstrates that the proposed approach is computationally

tractable on a severely constrained platform and yields stable control performance (R1). More-

over, the total position control loop time, including the database query step, achieves a mean of

3.956 ms with a sufficiently low standard deviation to reliably achieve a 100 Hz update rate (R3).

Table 6.6 summarizes the online control performance.

This realtime control performance stems from the Markov chain simplification. Each con-

117

troller in the database has on average only 9 successors to evaluate (R6.2). Without the simpli-

fication, each controller would have 191 successors to evaluate and could cause the controller

to block for nearly 100 ms, destabilizing the vehicle. Finally, even after the simplification, we

observe minimal application of the safety controller (Table 6.6). As a result, the database yields

97% coverage of the set of controllers required to track this trajectory (R6.3).

Table 6.6: Statistics for the Crazyflie evaluation trial.

Num. Queries Coverage Query Time (Mean) Query Time (Std.Dev) Safety Control Calls
8268 97.443% 3.956 ms 5.212 ms 217

6.4 Conclusions

In this chapter, we have presented a technique for constructing an explicit NMPC controller

database that leverages reachable-space search to identify a limited set of controllers that cover

nearly all potential operating domains. Transitions between controllers in the resulting database

are modeled via a Markov chain that facilitates further simplification to enable high-rate con-

strained control. Furthermore, since the controllers in the database are parameterized by the

system dynamics, they can be used in conjunction with an online model learner to enable con-

strained adaptive control. A set of simulation trials demonstrate the offline and online perfor-

mance of the proposed approach applied to a simple pendulum and the high-rate, constrained,

adaptive nonlinear control problem of quadrotor attitude control. Additionally, we demonstrate

that this approach enables real-time predictive control on a nano quadrotor with severe com-

putational constraints. Finally, although we have presented this explicit NMPC approach as an

application of EPC (Ch. 4), it is readily extended to incorporate Robust EPC (Ch. 5) as well.

118

(a)

(b)

Figure 6.11: Transition probability matrices (a) before and (b) after simplification of the Markov
chain underlying the position controller in the Crazyflie flight experiments.

119

Figure 6.12: Snapshots of the Crazyflie tracking one lap of the linear trajectory used to evaluate
real-time control feasibility

0 10 20 30 40 50 60 70 80

Time (s)

0

10

20

30

40

50

60

70

80

C
o
n
tr

o
lle

r
In

d
e
x

Figure 6.13: The Crazyflie transitions between multiple controllers while executing the linear
trajectory.

0 10 20 30 40 50 60 70 80

Flight Time (s)

0

1

2

3

4

5

6

7

8

Q
u

e
ry

 T
im

e
s
 (

m
s
)

Figure 6.14: Controller database query times onboard the Crazyflie where even the spikes corre-
sponding to the controller changes are below the 10 ms desired threshold.

120

Chapter 7

Conclusion

This thesis addresses the problem of achieving safe, accurate, and computationally efficient feed-

back control of constrained nonlinear systems with state and plant model uncertainty. Nonlinear

Model Predictive Control (NMPC) provides a natural framework to address this class of control

problems, but it is too computationally intensive to apply to small, agile autonomous systems

with size, weight, and power constraints. We therefore introduce the idea of experience-driven

control to enable the system to improve performance over time by leveraging experience in the

form of learned dynamics models and control laws. Consequently, we propose a series of feed-

back control techniques that

1. Ensure safety via a constrained robust-adaptive NMPC formulation

2. Improve trajectory tracking accuracy via semi-parametric learning of changes in the dy-

namics model due to modeling error or exogenous perturbations

3. Improve computational efficiency by leveraging past experiences to compute and store

locally optimal feedback control laws that can be reused as appropriate

121

7.1 Summary of Contributions

Chapters 3 - 6 present a set of control methodologies that leverage experience to achieve these

objectives. Thus, the four key contributions of this thesis are:

• Computationally efficient NMPC via Nonlinear Partial Enumeration: NPE solves the

NMPC problem by constructing online a database of controllers that locally recover the perfor-

mance of nonlinear optimization-based NMPC. The algorithm reuses these controllers as ap-

propriate in future control iterations, thus reducing its dependence on online optimization. As

a result, NPE achieves the millisecond solution times requires for high-rate NMPC on compu-

tationally constrained systems that are unable to solve nonlinear programs in real-time (Ch. 3).

• Adaptation to plant model uncertainty via Experience-driven Predictive Control: EPC

retains the millisecond solution times from NPE but eliminates the need to solve nonlinear

programs by introducing online dynamics model learning. We define a notion of experience

for predictive control as the combination of an online learned dynamics model that reflects

observed system evolution and a parameterized controller database that captures past locally-

optimal control laws. The controller automatically enhances tracking performance via adap-

tation to nonlinearities and unmodeled dynamics as well as unknown external disturbances

acting on the system. (Ch. 4).

• Reliable constraint satisfaction with state uncertainty via Robust EPC: Robust EPC ex-

tends the previous fast, adaptive formulation to account for time-varying state uncertainty and

yield robust constraint satisfaction. We employ a chance-constrained formulation to tighten

constraints according to the covariance from the state estimator and extend the parameteriza-

tion of the controllers in the database to include uncertainty bounds. As a result, Robust EPC

enables integration with non-idealized state estimation systems and safe operation in scenarios

where varying state uncertainty may otherwise cause constraint violations (Ch. 5).

• Tractable NMPC on severely limited systems via Efficient Explicit Adaptive NMPC: This

122

efficient solution strategy for the explicit NMPC formulation applies EPC to construct a con-

troller database offline based on realistic synthetic experiences. These synthetic experiences

are generated via simulations of a dynamically-feasible, randomized search tree that explores

the reachable space of the closed-loop system controlled by EPC. The resulting controller

database avoids the exponential growth of other explicit formulations but maintains coverage

of the set of controllers required during online operation. The empirical transition probabilities

for the database entries define a Markov chain and a partial ordering on transitions. By apply-

ing Markov chain simplification strategies, we obtain a controller database that retains cover-

age while enabling the use of NMPC on systems with severe computational constraints (Ch. 6).

7.2 Future Work

There are numerous avenues for future research that build upon the approaches presented in this

thesis. A primary focus of this work is the mitigation of various sources of uncertainty, including

unmodeled dynamics, external disturbances, and imperfect state estimation. However, there are

additional sources of uncertainty that could be addressed. For example, while model adaptation

mitigates the effects of low frequency disturbances, this adaptation is not instantaneous. As

a result, the transient behavior of the model learner introduces additional uncertainty into the

predicted system evolution, and this uncertainty could potentially cause constraint violations

such as those in Sect. 5.2.2. The Robust EPC framework can capture this uncertainty via the

process noise model, but additional care must be taken to ensure that the model learner covariance

or confidence estimates evolve in a predictable manner. Otherwise, a sudden, unexpected change

in the uncertainty bound could again lead to constraint violations due to rapid changes in the

tightened constraint bounds.

123

124

Appendix A

Experimental Architecture and Platforms

A.1 Software Architecture

We have developed a C++ ROS-based [97] software architecture to enable rapid development,

simulation testing, and experimental validation of different control techniques, including those

developed in this thesis. Figure A.1 illustrates this modular framework in which controllers are

implemented as dynamically loaded plug-ins. This greatly facilitates changing between differ-

ent control methodologies to compare their performance on a given scenario. The architecture

also includes a state machine and a modular trajectory generation component to ensure safe and

repeatable testing. For the majority of the results presented in this thesis, we use trajectory gen-

erator that publishes a polynomial spline fit to a predefined set of waypoints [98].

The controllers developed in this thesis are implemented as a C++ library templated on the

system dynamics model. This further illustrates the platform-independent nature of these algo-

rithms and simplifies the process of applying them to a new system or subsystem. All controller

implementations use the qpOASES library to solve quadratic programs via the online active set

strategy [99]. NPE (Ch. 3) also uses the NLopt library to solve nonlinear programs via an aug-

mented Lagrangian approach and the Subplex algorithm [100]. It also uses Boost odeint [101] for

numerical integration of the nonlinear dynamics constraint. With the exception of the experimen-

125

Figure A.1: Block diagram of the modular planning and control architecture that enables simu-
lation and experimental evaluation of the ideas proposed in this thesis

tal results in Ch. 6, all linear algebra operations are implemented via the Armadillo library [102]

integrated with the optimized linear algebra routines in OpenBLAS [103].

The state inputs and control outputs from this architecture are either connected to a custom

simulator that employs a high-fidelity, nonlinear model of the vehicle dynamics, or they are

connected to the appropriate hardware interface nodes. This enables seamless transitions from

full-software simulations to hardware-in-the-loop simulations to experimental testing.

A.2 Infrastructure

We conduct experimental studies in the indoor flight arena shown in Fig. A.2. To facilitate rapid

development, evaluation, and analysis of the control algorithms proposed in this thesis, we obtain

accurate state feedback at 100-200 Hz from a Vicon motion capture system installed in the arena.

This nominal accuracy also permits arbitrary degradation to emulate other sources of odometry,

as in Ch. 5. The flight arena is also equipped with a set of eight high-power fans (a subset of

which are shown in Fig. A.3) capable of generating wind speeds of up to 6 m/s [5]. As these fans

126

Figure A.2: Flight arena used to experimentally validate the proposed algorithms. The arena is
equipped with a Vicon motion capture that obtains accurate, high-rate state feedback.

can be arranged arbitrarily around the flight arena, they are able to produce turbulent flow in a

variety of directions that reflects the variability observed in windy outdoor settings.

A.3 Evaluation Platforms

A.3.1 Quadrotor Micro Air Vehicle

The dynamics of a quadrotor can be modeled as a 12 dimensional nonlinear system whose state

x =

[
pT vT ξT ωT

]T

consists of position (p), velocity (v), attitude (ξ =

[
φ θ ψ

]T

), and

angular velocity (ω). Attitude is represented by roll (φ), pitch (θ), and yaw (ψ) angles following

the ZYX convention. The control input u =

[
F τ T

]T

consists of thrust along the +z body

axis (F) and torques about each of the 3 body axes (τ =

[
τφ τθ τψ

]T

). The system’s time

127

Figure A.3: Fans in the flight arena used to generate turbulent flow to assess online model adap-
tation in the proposed techniques. Colored streamers on the fans aid in visualizing the wind.

evolution is governed by ẋ = f(x,u), where

f(x,u) =



ṗ = v

v̇ = 1
m
FRξe3 − ge3

ξ̇ = Sξω

ω̇ = J−1 (τ − ω × Jω)

(A.1)

The constants g, m, and J denote gravity, vehicle mass, and inertia, respectively. The vector e3

is the third column of the 3× 3 identity matrix, Rξ denotes the rotation matrix formed from the

ZYX Euler angles ξ that takes vectors from body frame to world frame, and Sξ is the inverse of

the Jacobian that relates ZYX Euler angle rates to angular velocities [81].

128

Figure A.4: The small quadrotor equipped with an ODROID-XU4 used for experimental valida-
tion of NPE (Ch. 3), EPC (Ch. 4), and Robust EPC (Ch. 5).

Small Custom Quadrotor

The primary experimental platform used in this thesis is the small, 790 g custom quadrotor

shown in Fig. A.4. The quadrotor is equipped with an ODROID-XU4 computer (Cortex-A15

2 GHz and Cortex-A7 octa-core CPU and 2 GB of RAM) that satisfies the size, weight, and

power limitations of the system. All control algorithms are implemented in C++ via ROS [97]

and run in real-time on the ODROID. The resulting force and torque commands are sent to a

Pixhawk autopilot (via the Mavlink protocol) where they are converted to motor commands and

applied to the system. Odometry from the motion capture system is broadcast wirelessly to the

ODROID where it is combined with IMU data from the Pixhawk via an Unscented Kalman

Filter to produce state estimates. The ODROID also enables hardware-in-the-loop simulations

by running the full control architecture and vehicle simulator (Sect. A.1) to provide realistic

solution times for the various components in the proposed algorithms.

129

Figure A.5: The Crazyflie quadrotor used for experimental validation of the efficient explicit
adaptive NMPC technique (Ch. 6).

Crazyflie Quadrotor

We also use a Bitcraze Crazyflie 2.0 nano quadrotor to demonstrate the efficiency of the algorithm

developed in Ch. 6. The Crazyflie has a total flight mass of 32 g and is severely compute-

constrained with a 168 MHz STM32F405 Cortex-M4 processor, 192 KB of SRAM, and 1 MB

of flash memory. Odometry and position setpoints are sent to the platform wirelessly, and an

onboard Kalman filter integrates odometry and IMU to generate state estimates. All control is

performed onboard the Crazyflie, and the control algorithms are implemented in C to facilitate

cross-compilation. As the EPC-based techniques developed in Ch. 6 rely heavily on matrix

operations, we have developed a set of custom linear algebra routines that exploit the sparse and

block-concatenated structure of the matrices in EPC in order to optimize runtime.

130

Figure A.6: The simulated ground robot used to evaluate performance of Robust EPC (Ch. 5).
The large arrow denotes the vehicle heading, while the simulated laser scan returns are shown by
the red points in the background.

A.3.2 Skid-steer Ground Robot

Chapter 5 presents a set of simulation results with a skid-steer ground robot (Fig. A.6) equipped

with a planar laser-scanner (270◦ field of view, 1081 beams, 30 m maximum range). The simu-

lated robot obtains state feedback via a Simultaneous Localization and Mapping (SLAM) archi-

tecture that employs an unscented Kalman filter (UKF) to fuse estimates from ICP-based laser

odometry and histogram filter-based localization [104]. The UKF also provides covariances es-

timates that capture the uncertainty in the state estimate due to imperfect ICP solutions, thereby

enabling use of the proposed Robust EPC algorithm.

We consider a dynamics model that captures the translational dynamics in the x − y plane,

heading, θ, and the angular velocities of the left and right wheels, wl and wr, respectively. As the

robot is modeled after a skid-steer platform with low-level velocity control, the control inputs

available to Robust EPC are the body-frame velocity and angular velocity commands, vdes and

ωdes, respectively. The resulting nonlinear dynamics model is given by

131

f(x,u) =



ẋ = v cos(θ)

ẍ = v̇ cos(θ)− vθ̇ sin(θ)

ẏ = v sin(θ)

ÿ = v̇ sin(θ) + vθ̇ cos(θ)

θ̇ = ω

θ̈ = ω̇

ẇl = 1
R
v̇ − 1

2
T
R
ω̇

ẇr = 1
R
v̇ + 1

2
T
R
ω̇

(A.2)

where v = 1
2
R(wl + wr), ω = R

T
(wr − wl), v̇ = −Kf (v − vdes), ω̇ = −Kτ (ω − ωdes) R is the

wheel radius, T is the vehicle track (distance between left and right wheels), and Kf and Kτ are

the low-level velocity control gains.

132

Appendix B

Stability Properties

The preceding chapters detail a series of feedback control methodologies and demonstrate stable

trajectory tracking performance through numerous simulation and experimental studies. This

empirical stability assessment is motivated by the practical nature of the challenges we aim to

address (e.g., state and model uncertainty, limited compute). However, as these techniques are

derived from control strategies with well known analytical stability properties, we include a brief

discussion of these properties below.

B.1 NPE Stability

NPE is a hybrid controller with two discrete modes. The first mode corresponds to operation

within the current database, while the second corresponds to application of the intermediate

controller. Additionally, NPE does not constitute a fundamental change in the optimal control

formulation, but rather, it is an alternate solution strategy similar to explicit MPC [47, 48] and

Partial Enumeration [80]. Therefore, to show stability with NPE, it is sufficient to show that

1) each mode preserves stability of the underlying control formulation and that 2) switching

between stable modes preserves stability.

133

B.1.1 Mode 1: In-Database Operation

Switching between controllers in the database is identical to explicit MPC, and, by construction,

the explicit approach preserves all stability and performance properties of the optimization-based

solution [47, 48]. This implies that if the optimization is formulated such that it yields stability,

the first operating mode in NPE will preserve it.

We therefore formulate the nonlinear receding horizon optimal control problem in NPE as

argmin
uk

N−1∑
k=0

J(xk+1, rk+1,uk)

s.t. ẋ = f(x,u)

g(xk+1,uk) ≤ 0

∀k = 0, . . . , N − 1

and the corresponding local control problem as

argmin
ūk

N−1∑
k=0

1

2
(x̄k+1 − r̄k+1)TQk+1(x̄k+1 − r̄k+1) +

1

2
ūT
kRkūk

s.t. x̄k+1 = Ax̄k + Būk

Gxk+1
x̄k+1 ≤ gxk+1

Guk
ūk ≤ guk

∀ k = 0, . . . , N − 1

where the current state is taken to be the nominal state, x∗ = x0, r1, . . . , rN denote N reference

states, and r̄ = r− x∗ (see Ch. 3 for details). We consider this general formulation as it permits

several techniques commonly used to ensure stability in MPC and NMPC. This includes terminal

state penalties [105] via appropriate choice of J(·) and QN ; terminal state constraints [106] via

appropriate choice of g(·), GxN
, and gxN

; and “dual-mode” formulations that combine terminal

set constraints (again given by an appropriate choice of g(·), GxN
, and gxN

) with a locally-

134

stabilizing controller [107].

B.1.2 Mode 2 - Intermediate Controller

Although there are several options for the choice of intermediate controller for Partial Enumera-

tion based approaches [80], we consider a short horizon (online optimization-based) MPC with

slack on the state constraints to ensure feasibility.

One such soft constrained formulation adds a vector of slack variables, ε, to each state con-

straint and penalizes any deviation from 0 by a weighting matrix, S,

argmin
ūk

N−1∑
k=0

1

2
(x̄k+1 − r̄k+1)TQk+1(x̄k+1 − r̄k+1) +

1

2
(ūk − ūp̂)TRk(ūk − ūp̂) +

1

2
εT
kSkεk

s.t. x̄k+1 = Ax̄k + Būk

Gxk+1
x̄k+1 ≤ gxk+1

+ εk

Guk
ūk ≤ guk

∀ k = 0, . . . , N − 1

Although this formulation is commonly used in practice [47, 108] to ensure problem feasibility,

it is not guaranteed to yield asymptotic stability [109]. Therefore, to ensure asymptotic stability,

we can employ various techniques as appropriate for a given control problem, Examples include

requiring that the slack variables be monotonically decreasing [110], limiting the number of

constraint violations over the horizon [111], explicitly minimizing the violation duration [112],

and restricting the relaxation via modifications to the terminal constraints [109]. Again, as NPE

does not prescribe a specific intermediate controller, any of these options with known stability

properties can be applied to ensure the asymptotic stability of the second mode.

135

B.1.3 Stable Switching

Assuming that the two modes are stabilized via their respective controllers, we finally wish to

ensure asymptotic stability across mode transitions. While Lyapunov-based methods can be ap-

plied to the switching system, assessing stability of a system with arbitrarily frequent transitions

requires the identification of a common Lyapunov function that satisfies stability criteria for both

modes [113]. An alternate class of approaches yield asymptotic stability by regulating the tran-

sitions between modes. Dwell time based approaches formalize the notion that sufficiently slow

switching between modes will preserve stability [113]. A family of Lyapunov functions (corre-

sponding to each mode) can be used to show asymptotic stability, but this requires the Lyapunov

functions and dwell time in each mode to be selected such that the value of the corresponding

Lyapunov function decreases beyond the final value from the previous mode [114]. However, in

the case of NPE, a dwell time requirement cannot be enforced in the first mode (in-database) as

a transition may be triggered at any time by violations of the KKT conditions.

We therefore consider the Average Dwell Time (ADT) requirement [115]. A dwell time

parameter, τD, denotes the duration for which a mode must be sustained to ensure stability. ADT

extends this to permit rapid mode transitions as long as the average time spent in a mode satisfies

τD [115]. Although NPE is expected to operate primarily in the first mode, we cannot enforce

a dwell time requirement on it as noted above. Therefore, we can ensure asymptotic stability

by enforcing the dwell time requirement on the second mode (intermediate controller). As a

result, the controller will either operate in mode 1 with infrequent transitions to mode 2, thereby

implicitly satisfying the dwell time requirement for mode 1, or it will experience numerous

transitions to mode 2 (e.g., while constructing the database), each of which is required to dwell

for sufficient time to maintain an average dwell time of τD. As a result, the controller avoids

potentially destabilizing chattering between modes.

136

B.2 EPC Stability

The EPC stability argument largely follows NPE as it retains the hybrid control structure and

solves a very similar generalized receding horizon optimal control formulation. However, there

are few additional considerations in mode 1 due to its incorporation of semi-parametric dynamics

model learning.

We wish to control a nonlinear system subject to (in general) nonlinear constraints, and as a

result, paralleled an explicit NMPC formulation [48] in NPE. In EPC, we instead approximate

the resulting nonlinear optimization problem via a series of local quadratic programs. This is

similar to single-step SQP solution strategies for NMPC [43, 44] that are known to preserve

stability [116]. As a result, we can formulate the underlying receding horizon optimal control

problem in EPC as

argmin
ūk

N−1∑
k=0

1

2
(x̄k+1 − r̄k+1)TQk+1(x̄k+1 − r̄k+1) +

1

2
(ūk − ūp̂)TRk(ūk − ūp̂)

s.t. x̄k+1 = Ax̄k + Būk + c̃

Gxk+1
x̄k+1 ≤ gxk+1

Guk
ūk ≤ guk

∀ k = 0, . . . , N − 1

where the current state is taken to be the nominal state, x∗ = x0, r1, . . . , rN denote N reference

states, r̄ = r − x∗, and c̃ = c + p̂ (see Ch. 4 for details). Again this general formulation is

compatible with a variety of techniques known to yield a stabilizing controller. EPC supports

both parametric adaptation strategies, which yield well-established adaptive MPC stability cri-

teria similar to those mentioned above [14, 66], and semiparametric adaptation strategies, e.g.

based on LWPR or ISSGPR. Although these semiparametric techniques lack inherent bounds

that yield similar stability criteria, we can recover guarantees on stability by enforcing limits

on the model learner outputs (e.g., as part of the filtering strategy mentioned in Sect. 4.1.1).

137

Both norm bounds [14] and Lipschitz bounds [75] on the overall dynamics model permit stable

formulations.

The stability properties of mode 2 and the ADT-based approach to ensuring stability across

mode transitions follow directly from Sect. B.1.2 and Sect. B.1.3, respectively.

138

Bibliography

[1] D. Lang, “My underwater robot.” TED Talks, Feb. 2013.

[2] H. Inotsume, M. Sutoh, K. Nagaoka, K. Nagatani, and K. Yoshida, “Modeling, Analysis,

and Control of an Actively Reconfigurable Planetary Rover for Traversing Slopes Covered

with Loose Soil,” J. Field Robot., vol. 30, pp. 875–896, Nov. 2013.

[3] A. Mokhtari and A. Benallegue, “Dynamic feedback controller of Euler angles and wind

parameters estimation for a quadrotor unmanned aerial vehicle,” in Proc. of the IEEE Intl.

Conf. on Robot. and Autom., (New Orleans, LA), pp. 2359–2366, Apr. 2004.

[4] J. How, E. King, and Y. Kuwata, “Flight demonstrations of cooperative control for UAV

teams,” in AIAA Unmanned Unlimited, (Chicago, IL), Sept. 2004.

[5] J. Yao, V. R. Desaraju, and N. Michael, “Experience-Based Models of Surface Proximal

Aerial Robot Flight Performance in Wind,” in Proc. of the Intl. Sym. on Exp. Robot.,

(Tokyo, Japan), pp. 1–10, Oct. 2016.

[6] C. Powers, D. Mellinger, A. Kushleyev, B. Kothmann, and V. Kumar, “Influence of Aero-

dynamics and Proximity Effects in Quadrotor Flight,” in Proc. of the Intl. Sym. on Exp.

Robot., (Quebec City, Canada), pp. 1–14, June 2012.

[7] S. Shen, N. Michael, and V. Kumar, “Autonomous multi-floor indoor navigation with a

computationally constrained MAV,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom.,

(Shanghai, China), pp. 20–25, May 2011.

[8] V. R. Desaraju, N. Michael, M. Humenberger, R. Brockers, S. Weiss, J. Nash, and

139

L. Matthies, “Vision-based landing site evaluation and informed optimal trajectory gen-

eration toward autonomous rooftop landing,” Auton. Robots, vol. 39, pp. 445–463, Oct.

2015.

[9] G. Antonelli, S. Chiaverini, N. Sarkar, and M. West, “Adaptive Control of an Autonomous

Underwater Vehicle: Experimental Results on ODIN,” IEEE Trans. Control Syst. Technol.,

vol. 36, no. 9, pp. 1420–1423, 2001.

[10] LT. N. D. Valladarez and N. E. Du Toit, “Robust Adaptive Control of Underwater Vehicles

for Precision Operations,” in OCEANS, (Washington, DC), pp. 1–7, Oct. 2015.

[11] Z. Liu, Y. Zhang, X. Yu, and C. Yuan, “Unmanned surface vehicles: An overview of

developments and challenges,” Annual Reviews in Control, vol. 41, pp. 71–93, 2016.

[12] C. Ostafew, A. Schoellig, and T. Barfoot, “Learning-Based Nonlinear Model Predictive

Control to Improve Vision-Based Mobile Robot Path-Tracking in Challenging Outdoor

Environments,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom., pp. 4029–4036,

IEEE, May 2014.

[13] A. Richards and J. How, “Robust Model Predictive Control with Imperfect Information,”

in Proc. of the Amer. Control Conf., (New York City, NY), July 2005.

[14] P. Bouffard, A. Aswani, and C. Tomlin, “Learning-based model predictive control on a

quadrotor: Onboard implementation and experimental results,” in Proc. of the IEEE Intl.

Conf. on Robot. and Autom., (St. Paul, MN), May 2012.

[15] C. Brunner and T. Peynot, “Visual metrics for the evaluation of sensor data quality in

outdoor perception,” in Proc. of the Workshop on Perf. Metrics for Intell. Sys., (Baltimore,

MD), pp. 1–8, Sept. 2010.

[16] R. Brockers, M. Humenberger, S. Weiss, and L. Matthies, “Towards Autonomous Naviga-

tion of Miniature UAV,” in IEEE Conf. on Comp. Vision and Pattern Recog. Workshops,

(Columbus, OH), June 2014.

140

[17] “Crazyflie micro quadrotor.” http://www.bitcraze.se/crazyflie/, 2016.

[18] M. Hofer, M. Muehlebach, and R. DAndrea, “Application of an Approximate Model Pre-

dictive Control Scheme on an Unmanned Aerial Vehicle,” in Proc. of the IEEE Intl. Conf.

on Robot. and Autom., (Stockholm, Sweden), May 2016.

[19] R. Findeisen and L. Imsland, “State and output feedback nonlinear model predictive con-

trol: An overview,” Euro. J. of Control, no. Apr., pp. 179–195, 2003.

[20] V. R. Desaraju and N. Michael, “Fast Nonlinear Model Predictive Control via Partial Enu-

meration,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom., (Stockholm, Sweden),

May 2016.

[21] V. R. Desaraju and N. Michael, “Leveraging Experience for Computationally Efficient

Adaptive Nonlinear Model Predictive Control,” in Proc. of the IEEE Intl. Conf. on Robot.

and Autom., (Singapore), May 2017.

[22] K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems. Prentice Hall, 1989.

[23] J. Wang, F. Holzapfel, E. Xargay, and N. Hovakimyan, “Non-Cascaded Dynamic Inversion

Design for Quadrotor Position Control with L1 Augmentation,” in Proc. of the CEAS

Specialist Conf. on Guidance, Navigation & Control, (Delft, Netherlands), Apr. 2013.

[24] P. Khargonekar, I. Petersen, and K. Zhou, “Robust stabilization of uncertain linear sys-

tems: quadratic stabilizability and H/sup infinity / control theory,” IEEE Trans. Autom.

Control, vol. 35, pp. 356–361, Mar. 1990.

[25] G. V. Raffo, M. G. Ortega, and F. R. Rubio, “An integral predictive/nonlinear H∞ control

structure for a quadrotor helicopter,” Automatica, vol. 46, no. 1, pp. 29–39, 2010.

[26] M. Ö. Efe, “Robust low altitude behavior control of a quadrotor rotorcraft through sliding

modes,” in Medit. Conf. on Control and Autom., (Athens, Greece), pp. 0–5, July 2007.

[27] K. B. Ngo, R. Mahony, and Z.-P. Jiang, “Integrator backstepping using barrier functions

for systems with multiple state constraints,” in Proc. of the IEEE Conf. on Decision and

141

Control, (Seville, Spain), pp. 8306–8312, Dec. 2005.

[28] K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier Lyapunov Functions for the control of output-

constrained nonlinear systems,” Automatica, vol. 45, no. 4, pp. 918–927, 2009.

[29] G. Wu and K. Sreenath, “Safety-critical and constrained geometric control synthesis using

control Lyapunov and control Barrier functions for systems evolving on manifolds,” in

Proc. of the Amer. Control Conf., (Chicago, IL), pp. 2038–2044, July 2015.

[30] E. G. Gilbert, I. Kolmanovsky, and K. T. Tan, “Discrete-time reference governors and the

nonlinear control of systems with state and control constraints,” International Journal of

Robust and Nonlinear Control, vol. 5, no. 5, pp. 487–504, 1995.

[31] A. Bemporad, “Reference governor for constrained nonlinear systems,” IEEE Trans. Au-

tom. Control, vol. 43, pp. 415–419, Mar. 1998.

[32] S. J. Sun and I. V. Kolmanovsky IEEE Trans. Control Syst. Technol., pp. 911–920, Nov.

[33] D. E. Kirk, Optimal control theory: an introduction. Courier Corporation, 2012.

[34] W. H. Chen, D. J. Ballance, and P. J. Gawthrop, “Optimal control of nonlinear systems: a

predictive control approach,” Automatica, vol. 39, pp. 633–641, 2003.

[35] J. H. Lee, “Model predictive control: Review of the three decades of development,” Intl.

J. of Control, Autom. and Sys., vol. 9, no. 3, pp. 415–424, 2011.

[36] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. Scokaert, “Constrained model predictive

control: Stability and optimality,” Automatica, vol. 36, pp. 789–814, June 2000.

[37] A. Bemporad and M. Morari, “Robust model predictive control: A survey,” Robustness in

identification and control, pp. 207–226, 1999.

[38] J. Löfberg, Minimax approaches to robust model predictive control. PhD thesis, Linköping

University, 2003.

[39] A. Alessio and A. Bemporad, “A Survey on Explicit Model Predictive Control,” in Non-

linear Model Predictive Control, vol. 384 of Lecture Notes in Control and Information

142

Sciences, pp. 345–369, Springer Berlin Heidelberg, 2009.

[40] H. J. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy to overcome

the limitations of explicit MPC,” International Journal of Robust and Nonlinear Control,

vol. 18, pp. 816–830, May 2008.

[41] Y. Wang and S. Boyd, “Fast Model Predictive Control Using Online Optimization,” IEEE

Trans. Control Syst. Technol., vol. 18, pp. 267–278, Mar. 2010.

[42] M. Diehl, R. Findeisen, S. Schwarzkopf, I. Uslu, F. Allgöwer, H. G. Bock, E.-D. Gilles,

and J. P. Schlöder, “An Efficient Algorithm for Nonlinear Model Predictive Control of

Large-Scale Systems Part I: Description of the Method,” Automatisierungstechnik, vol. 50,

no. 12, pp. 557–567, 2012.

[43] B. Houska, H. J. Ferreau, and M. Diehl, “An auto-generated real-time iteration algorithm

for nonlinear MPC in the microsecond range,” Automatica, vol. 47, no. 10, pp. 2279–2285,

2011.

[44] F. Debrouwere, M. Vukov, R. Quirynen, M. Diehl, and J. Swevers, “Experimental valida-

tion of combined nonlinear optimal control and estimation of an overhead crane,” in Proc.

of the Intl. Fed. of Autom. Control, (Cape Town, South Africa), pp. 9617–9622, Aug. 2014.

[45] M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian, R. Siegwart, and J. Buchli,

“Fast Nonlinear Model Predictive Control for Unified Trajectory Optimization and Track-

ing,” in Proc. of the IEEE Intl. Conf. on Robot. and Autom., (Stockholm, Sweden), May

2016.

[46] A. Bemporad, “Model Predictive Control Design: New Trends and Tools,” in Proceedings

of the 45th IEEE Conference on Decision and Control, no. 1, pp. 6678–6683, Ieee, 2006.

[47] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear quadratic

regulator for constrained systems,” Automatica, vol. 38, pp. 3–20, 2002.

[48] A. Grancharova and T. Johansen, Explicit Nonlinear Model Predictive Control, vol. 429.

143

Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[49] T. A. Johansen and A. Grancharova, “Approximate Explicit Constrained Linear Model

Predictive Control via Orthogonal Search Tree,” IEEE Trans. Autom. Control, vol. 48,

pp. 810–815, May 2003.

[50] A. N. Fuchs, C. N. Jones, and M. Morari, “Optimized decision trees for point location

in polytopic data sets - application to explicit MPC,” in Proc. of the Amer. Control Conf.,

(Baltimore, MD), pp. 5507–5512, June 2010.

[51] A. Domahidi, M. N. Zeilinger, M. Morari, and C. N. Jones, “Learning a Feasible and

Stabilizing Explicit Model Predictive Control Law by Robust Optimization,” in Proc. of

the IEEE Conf. on Decision and Control, (Orlando, FL), pp. 513–519, Dec. 2011.

[52] S. Summers, D. M. Raimondo, C. N. Jones, J. Lygeros, and M. Morari, “Fast explicit

nonlinear model predictive control via multiresolution function approximation with guar-

anteed stability,” in IFAC, 2010.

[53] R. Tedrake, “LQR-Trees: Feedback motion planning on sparse randomized trees,” in Ar-

tificial Intelligence, (Seattle, WA), p. 8, June 2009.

[54] R. Reist, P. Preiswerk, and R. Tedrake, “Feedback-motion lanning with simulation-based

LQR-trees,” Intl. Journal of Robotics Research, 2016.

[55] T. Zhang, G. Khan, S. Levine, and P. Abbeel, “Learning Deep Control Policies for Au-

tonomous Aerial Vehicles with MPC-Guided Policy Search,” in Proc. of the IEEE Intl.

Conf. on Robot. and Autom., (Stockholm, Sweden), May 2016.

[56] K. Hauser, “Learning the Problem-Optimum Map: Analysis and Application to Global

Optimization in Robotics,” in Robot Learn. and Plan. Workshop at RSS, (Ann Arbor, MI),

June 2016.

[57] G. Pannocchia, S. J. Wright, B. T. Stewart, and J. B. Rawlings, “Efficient Cooperative

Distributed MPC using Partial Enumeration,” in IFAC Intl. Symposium on Adv. Control of

144

Chemical Process., pp. 607–612, July 2008.

[58] M. E. Taylor and P. Stone, “Transfer Learning for Reinforcement Learning Domains: A

Survey,” J. of Machine Learning Research, vol. 10, pp. 1633–1685, 2009.

[59] P. Ruvolo and E. Eaton, “ELLA: An efficient lifelong learning algorithm,” in Intl. Conf.

on Machine Learning, pp. 507–515, 2013.

[60] A. Saha, P. Rai, H. D. e, and S. Venkatasubramanian, “Online learning of multiple tasks

and their relationships,” in Intl. Conf. on Artif. Intell. and Stat., pp. 643–651, 2011.

[61] R. S. Sutton, “Integrated Architectures for Learning, Planning, and Reacting Based on

Approximating Dynamic Programming,” in Int. Conf. on Machine Learning, vol. 02254,

pp. 216–224, 1990.

[62] W. Y. Kwon, I. H. Suh, and S. Lee, “SSPQL: Stochastic shortest path-based q-learning,”

International Journal of Control, Automation and Systems, vol. 9, no. 2, pp. 328–338,

2011.

[63] B. Bakker, V. Zhumatiy, G. Gruener, and J. Schmidhuber, “Quasi-online reinforcement

learning for robots,” Proceedings - IEEE International Conference on Robotics and Au-

tomation, pp. 2997–3002, 2006.

[64] L. A. Stein, “Imagination and situated cognition,” Journal of Experimental & Theoretical

Artificial Intelligence, vol. 6, no. 4, pp. 393–407, 1994.

[65] A. G. Di Nuovo, D. Marocco, S. Di Nuovo, and A. Cangelosi, “Autonomous learning

in humanoid robotics through mental imagery,” Neural Networks, vol. 41, pp. 147–155,

2013.

[66] H. Fukushima, T. Kim, and T. Sugie, “Adaptive model predictive control for a class of

constrained linear systems based on the comparison model,” Automatica, vol. 43, no. 2,

pp. 301–308, 2007.

[67] Y. K. Ho, H. K. Yeoh, and F. S. Mjalli, “Generalized Predictive Control Algorithm

145

with Real-Time Simultaneous Modeling and Tuning,” Industrial & Eng. Chem. Research,

vol. 53, no. 22, pp. 9411–9426, 2014.

[68] S. Vijayakumar, A. DSouza, and S. Schaal, “Incremental Online Learning in High Dimen-

sions,” Neural Comp., vol. 17, no. 12, pp. 2602–2634, 2005.

[69] A. Gijsberts and G. Metta, “Real-time model learning using Incremental Sparse Spectrum

Gaussian Process Regression,” Neural Networks, vol. 41, pp. 59–69, 2013.

[70] D. Mitrovic, S. Klanke, and S. Vijayakumar, “Adaptive optimal feedback control with

learned internal dynamics models,” From Motor Learn. to Inter. Learn. in Rob., vol. 264,

pp. 65–84, 2010.

[71] W. Langson, I. Chryssochoos, S. V. Raković, and D. Q. Mayne, “Robust model predictive

control using tubes,” Automatica, vol. 40, pp. 125–133, Jan. 2004.

[72] D. Q. Mayne, M. M. Seron, and S. V. Raković, “Robust model predictive control of con-

strained linear systems with bounded disturbances,” Automatica, vol. 41, pp. 219–224,

Feb. 2005.

[73] A. Richards, “Robust Model Predictive Control for Time-Varying Systems,” in Proc. of

the IEEE Conf. on Decision and Control, (Seville, Spain), pp. 3747–3752, Dec. 2005.

[74] I. Kolmanovsky and E. G. Gilbert, “Theory and computation of disturbance invariant sets

for discrete-time linear systems,” Mathematical Problems in Engineering, vol. 4, no. 4,

pp. 317–367, 1998.

[75] V. Adetola and M. Guay, “Robust adaptive MPC for constrained uncertain nonlinear sys-

tems,” Intl. J. of Adaptive Control & Signal Process., vol. 25, no. 2, pp. 155–167, 2011.

[76] Y. Kuwata, A. Richards, and J. How, “Robust Receding Horizon Control using General-

ized Constraint Tightening,” in Proc. of the Amer. Control Conf., (New York City, NY),

pp. 4482–4487, July 2007.

[77] J. Yan and R. R. Bitmead, “Incorporating state estimation into model predictive control

146

and its application to network traffic control,” Automatica, vol. 41, pp. 595–604, 2005.

[78] D. Q. Mayne, “Model predictive control: Recent developments and future promise,” Au-

tomatica, vol. 50, pp. 2967–2986, 2014.

[79] M. Farrokhsiar, G. Pavlik, and H. Najjaran, “An integrated robust probing motion planning

and control scheme: A tube-based MPC approach,” Robot. Auton. Syst., vol. 61, no. 12,

pp. 1379–1391, 2013.

[80] G. Pannocchia, J. B. Rawlings, and S. J. Wright, “Fast, large-scale model predictive con-

trol by partial enumeration,” Automatica, vol. 43, no. 5, pp. 852–860, 2007.

[81] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “Experimental evaluation of multi-

robot aerial control algorithms,” IEEE Robotics & Automation Magazine, Sept. 2010.

[82] A. Droniou, S. Ivaldi, V. Padois, and O. Sigaud, “Autonomous online learning of velocity

kinematics on the iCub: A comparative study,” in Proc. of the IEEE/RSJ Intl. Conf. on

Intell. Robots and Syst., (Vilamoura, Algarve, Portugal), pp. 3577–3582, Oct. 2012.

[83] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning. MIT

Press, 2006.

[84] V. R. Desaraju and N. Michael, “Experience-driven Predictive Control,” in Robot Learn.

and Plan. Workshop at RSS, (Ann Arbor, MI), June 2016.

[85] R. Platt, Jr., R. Tedrake, L. Kaelbling, and T. Lozano-Perez, “Belief space planning as-

suming maximum likelihood observations,” in Proc. of Robot.: Sci. and Syst., 2010.

[86] D. Q. Mayne, E. C. Kerrigan, E. J. van Wyk, and P. Falugi, “Tube-based robust nonlinear

model predictive control,” J. Robust and Nonlin. Control, vol. 21, p. 13411353, 2011.

[87] F. Domes and A. Neumaier, “Rigorous Enclosures of Ellipsoids and Directed Cholesky

Factorizations,” SIAM J. on Matrix Analysis and Appl., vol. 32, p. 62285, 2011.

[88] C. Conte, M. N. Zeilinger, M. Morari, and C. N. Jones, “Robust distributed model predic-

tive control of linear systems,” in Euro. Control Conf., p. 5, July 2013.

147

[89] D. Q. Mayne and W. Langson, “Robustifying model predictive control of constrained

linear systems,” , vol. 37, pp. 1422–1423, 2001.

[90] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. How, and G. Fiore, “Real-Time Motion

Planning With Applications to Autonomous Urban Driving,” IEEE Trans. Control Syst.

Technol., vol. 17, pp. 1105–1118, Sept. 2009.

[91] V. R. Desaraju and N. Michael, “Hierarchical adaptive planning in environments with

uncertain, spatially-varying disturbance forces,” in Proc. of the IEEE Intl. Conf. on Robot.

and Autom., (Hong Kong, China), pp. 5171–5176, May 2014.

[92] G. S. Aoude, B. D. Luders, J. P. How, and T. E. Pilutti, “Sampling-Based Threat Assess-

ment Algorithms for Intersection Collisions Involving Errant Drivers,” in IFAC Symposium

on Intell. Auton. Vehicles, (Lecce, Italy), Sept. 2010.

[93] S. M. LaValle and J. J. Kuffner, “Randomized Kinodynamic Planning,” Intl. Journal of

Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

[94] B. D. Luders, Robust Sampling-based Motion Planning for Autonomous Vehicles in Un-

certain Environments. PhD thesis, Massachusetts Institute of Technology, 2014.

[95] G. Ullah, W. J. Bruno, and J. E. Pearson, “Simplification of Reversible Markov Chains by

Removal of States With Low Equilibrium Occupancy,” J. of Theoretical Biology, vol. 311,

p. 117129, 2012.

[96] G. E. Henter and W. B. Kleijn, “Minimum Entropy Rate Simplification of Stochastic Pro-

cesses,” IEEE Trans. Pattern Analysis and Machine Learn., vol. 38, 2016.

[97] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.

Ng, “ROS: An open-source Robot Operating System,” in ICRA Workshop on open source

software, (Kobe, Japan), p. 5, 2009.

[98] C. Richter, A. Bry, and N. Roy, “Polynomial Trajectory Planning for Aggressive Quadro-

tor Flight in Dense Indoor Environments,” in Proc. of the Intl. Sym. of Robot. Research,

148

(Singapore), Dec. 2013.

[99] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl, “qpOASES: A paramet-

ric active-set algorithm for quadratic programming,” Mathematical Programming Compu-

tation, vol. 6, no. 4, pp. 327–363, 2014.

[100] S. G. Johnson, “The NLopt nonlinear-optimization package,” 2014.

[101] K. Ahnert and M. Mulansky, “Odeint Solving Ordinary Differential Equations in C++,” in

Intl. Conf. on Num. Analysis and Applied Math., vol. 1586, (Halkidiki, Greece), pp. 1586–

1589, Sept. 2011.

[102] C. Sanderson and R. Curtin, “Armadillo: a template-based C++ library for linear algebra,”

J. of Open Source Software, vol. 1, p. 26, 2016.

[103] “OpenBLAS: An optimized BLAS library.” http://www.openblas.net/, 2016.

[104] E. A. Nelson, Environment Model Adaptation for Autonomous Exploration. PhD thesis,

Carnegie Mellon University, 2015.

[105] W. H. Kwon, A. M. Bruckstein, and T. Kailath, “Stabilizing state-feedback design via the

moving horizon method,” Intl. J. of Control, vol. 37, no. 3, pp. 631–643, 1983.

[106] W. Kwon and A. Pearson, “A modified quadratic cost problem and feedback stabilization

of a linear system,” IEEE Trans. Autom. Control, vol. 22, pp. 838–842, Oct. 1977.

[107] H. Michalska and D. Q. Mayne, “Robust receding horizon control of constrained nonlinear

systems,” IEEE Trans. Autom. Control, vol. 38, no. 11, pp. 1623–1633, 1993.

[108] A. Zheng and M. Morari, “Stability of model predictive control with mixed constraints,”

IEEE Trans. Autom. Control, vol. 40, no. 10, pp. 1818–1823, 1995.

[109] M. N. Zeilinger, M. Morari, and C. N. Jones, “Soft constrained model predictive control

with robust stability guarantees,” IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1190–

1202, 2014.

[110] A. Bemporad, F. Borrelli, and M. Morari, “Optimal controllers for hybrid systems: sta-

149

bility and piecewise linear explicit form,” in Proc. of the IEEE Conf. on Decision and

Control, (Sydney, NSW, Australia), pp. 1810–1815, Dec. 2000.

[111] M. Cannon, B. Kouvaritakis, and X. Wu, “Probabilistic Constrained MPC for Multiplica-

tive and Additive Stochastic Uncertainty,” IEEE Trans. Autom. Control, vol. 54, no. 7,

pp. 1626–1632, 2009.

[112] P. Mhaskar, N. H. El-Farra, and P. D. Christofides, “Stabilization of nonlinear systems

with state and control constraints using Lyapunov-based predictive control,” Systems &

Control Letters, vol. 55, pp. 650–659, 2006.

[113] D. Liberzon and A. S. Morse, “Basic Problems in Stability and Design of Switched Sys-

tems,” IEEE Control Sys. Mag., pp. 59–70, Oct. 1999.

[114] P. Peleties and R. DeCarlo, “Asymptotic Stability of m-Switched Systems using

Lyapunov-Like Functions,” in Proc. of the Amer. Control Conf., (Boston, MA), pp. 1679–

1684, June 1991.

[115] J. P. Hespanha and A. S. Morse, “Stability of switched systems with average dwell-time,”

in Proc. of the IEEE Conf. on Decision and Control, vol. 3, (Phoenix, AZ), pp. 2655–2660,

Dec. 1999.

[116] M. Diehl, H. Ferreau, and N. Haverbeke, “Efficient numerical methods for nonlinear MPC

and moving horizon estimation,” in Nonlinear Model Predictive Control, pp. 391–417,

2009.

150

	1 Introduction
	1.1 Core Challenges
	1.2 Thesis Contributions

	2 Background
	2.1 Feedback Control
	2.2 Model Predictive Control
	2.3 Fast Nonlinear Model Predictive Control
	2.3.1 Online NMPC
	2.3.2 Explicit MPC and NMPC
	2.3.3 Semi-Explicit MPC

	2.4 MPC with Plant and State Uncertainty
	2.4.1 Adaptive MPC
	2.4.2 Robust MPC

	2.5 Online Dynamics Model Learning

	3 Nonlinear Partial Enumeration
	3.1 Approach
	3.1.1 Receding-Horizon Control Formulation
	3.1.2 NPE Algorithm

	3.2 Results
	3.2.1 Simulation Studies
	3.2.2 Experimental Validation

	3.3 Conclusions

	4 Experience-driven Predictive Control
	4.1 Approach
	4.1.1 Online Model Adaptation
	4.1.2 Receding-Horizon Control Formulation
	4.1.3 EPC Algorithm

	4.2 Results
	4.2.1 Simulation Studies
	4.2.2 Experimental Validation

	4.3 Conclusions

	5 Robust EPC
	5.1 Approach
	5.1.1 Adaptive Stochastic Dynamics Model
	5.1.2 Chance-constrained Tube MPC
	5.1.3 Robust EPC formulation
	5.1.4 Online Model Adaptation
	5.1.5 Algorithm Overview

	5.2 Results
	5.2.1 Simulation Studies
	5.2.2 Experimental Evaluation

	5.3 Conclusions

	6 Efficient Explicit Adaptive Nonlinear MPC
	6.1 Approach
	6.1.1 Predictive Control Formulation
	6.1.2 Controller Search via Randomized Trajectories
	6.1.3 Controller Database Generation via Sampling
	6.1.4 Online Database Query

	6.2 Simulation Results
	6.2.1 Pendulum Control
	6.2.2 Quadrotor Attitude Control

	6.3 Experimental Evaluation
	6.4 Conclusions

	7 Conclusion
	7.1 Summary of Contributions
	7.2 Future Work

	A Experimental Architecture and Platforms
	A.1 Software Architecture
	A.2 Infrastructure
	A.3 Evaluation Platforms
	A.3.1 Quadrotor Micro Air Vehicle
	A.3.2 Skid-steer Ground Robot

	B Stability Properties
	B.1 NPE Stability
	B.1.1 Mode 1: In-Database Operation
	B.1.2 Mode 2 - Intermediate Controller
	B.1.3 Stable Switching

	B.2 EPC Stability

	Bibliography

