Query-Specific Learning and Inference for
Probabilistic Graphical Models

Anton Chechetka

CMU-RI-TR-11-18

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics

The Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

August 2011

Thesis Committee:
Carlos Guestrin, Chair
J. Andrew Bagnell
Eric Xing
Pedro Domingos, University of Washington

Copyright ©) 2011 Anton Chechetka

Abstract

In numerous real world applications, from sensor networks to computer vision to natural
text processing, one needs to reason about the system in question in the face of uncertainty. A
key problem in all those settings is to compute the probability distribution over the variables of
interest (the query) given the observed values of other random variables (the evidence). Prob-
abilistic graphical models (PGMs) have become the approach of choice for representing and
reasoning with high-dimensional probability distributions. However, for most models capable
of accurately representing real-life distributions, inference is fundamentally intractable. As a
result, optimally balancing the expressive power and inference complexity of the models, as
well as designing better approximate inference algorithms, remain important open problems
with potential to significantly improve the quality of answers to probabilistic queries.

This thesis contributes algorithms for learning and approximate inference in probabilistic
graphical models that improve on the state of the art by emphasizing the computational as-
pects of inference over the representational properties of the models. Our contributions fall
into two categories: learning accurate models where exact inference is tractable and speeding
up approximate inference by focusing computation on the query variables and only spending
as much effort on the remaining parts of the model as needed to answer the query accurately.

First, for a case when the set of evidence variables is not known in advance and a single
model is needed that can be used to answer any query well, we propose a polynomial time
algorithm for learning the structure of tractable graphical models with quality guarantees,
including PAC learnability and graceful degradation guarantees. Ours is the first efficient
algorithm to provide this type of guarantees. A key theoretical insight of our approach is a
tractable upper bound on the mutual information of arbitrarily large sets of random variables
that yields exponential speedups over the exact computation.

Second, for a setting where the set of evidence variables is known in advance, we pro-
pose an approach for learning tractable models that tailors the structure of the model for the
particular value of evidence that become known at test time. By avoiding a commitment to a
single tractable structure during learning, we are able to expand the representation power of
the model without sacrificing efficient exact inference and parameter learning. We provide a
general framework that allows one to leverage existing structure learning algorithms for dis-
covering high-quality evidence-specific structures. Empirically, we demonstrate state of the
art accuracy on real-life datasets and an order of magnitude speedup.

Finally, for applications where the intractable model structure is a given and approximate
inference is needed, we propose a principled way to speed up convergence of belief propa-
gation by focusing the computation on the query variables and away from the variables that
are of no direct interest to the user. We demonstrate significant speedups over the state of the
art on large-scale relational models. Unlike existing approaches, ours does not involve model
simplification, and thus has an advantage of converging to the fixed point of the full model.

More generally, we argue that the common approach of concentrating on the structure of
representation provided by PGMs, and only structuring the computation as representation al-
lows, is suboptimal because of the fundamental computational problems. It is the computation
that eventually yields answers to the queries, so directly focusing on structure of computation
is a natural direction for improving the quality of the answers. The results of this thesis are a
step towards adapting the structure of computation as a foundation of graphical models.

Acknowledgments

First and foremost, I am deeply grateful to my advisor, Carlos Guestrin, for all his sup-
port, guidance, encouragement, challenging questions and patience. Carlos is really the best
advisor I could ask for, always a source of deep insights and inspiration. From minute details
of algorithms, to handling research setbacks and even simply looking on the positive side of
things, I have learned a lot from him. Thank you, Carlos!

Thank you to the rest of my thesis committee: Drew Bagnell, Eric Xing, and Pedro
Domingos, for their valuable feedback that made this thesis better. I am also thankful to
Geoff Gordon for the many insightful comments on this work at the SELECT lab meetings.
Thank you to Katia Sycara for guiding me through the first two and a half years at CMU.

Summer internships were a great experience, and I would like to thank Moises Gold-
szmidt, Michael Isard, Denver Dash, David Petrou and Gabriel Taubman for the opportunities
to tackle exciting new problems and for passing on their knowledge.

I am thankful to the SELECT labmates, Danny Bickson, Byron Boots, Joseph Bradley, Kit
Chen, Miroslav Dudik, Khalid El-Arini, Stanislav Funiak, Joseph Gonzalez, Arthur Gretton,
Sue Ann Hong, Jonathan Huang, Andreas Krause, Aapo Kyrola, Yucheng Low, Dafna Shahaf,
Sajid Siddiqi, Ajit Singh, Le Song, Gaurav Veda, Yisong Yue, and Brian Ziebart, for being
both great labmates and good friends, for great memories and for making life at CMU much
more fun. Thank you to Mary Koes and Young-Woo Seo for helping me along for the first
two years of grad school. Thank you to Kostya Salomatin for being a great roommate.

Michelle Martin and Suzanne Lyons Muth have always been extremely helpful and made
sure that at school, research is the only thing that required effort. I am especially thankful to
Suzanne for her patience with my seemingly constant pushing of deadlines.

Finally, I will always be grateful to my family for their love and encouragement, and for
always supporting me along the way no matter which direction in life I took. Thank you!

Contents

1 Introduction

1.0.1 Tradeoffsinmodel design
1.0.2 Inference in presence of nuisance variables
1.1 Probabilistic graphical models
1.1.1 Key problems and complexity results
1.1.2 Typical use cases and directions for improvement
1.2 Thesis overview and contributions oL oL

Low-Treewidth Graphical Models

Learning Generative Low-Treewidth Graphical Models with Quality Guarantees

2.1 Junction trees: bounded treewidth graphicalmodels
2.1.1 Junction trees of Jensenand Jensen
2.1.2 Almond-Kong junctiontreeso
2.1.3 Approximating distributions with junctiontrees

2.2 Structure learning e e e e e e e e
2.2.1 Constraint-based structure learning oL
2.2.2 Global independence assertions from local tests
2.2.3 Partitioning algorithm for weak conditional independencies
2.2.4 Implementing FindConsistentTree using dynamic programming
2.2.5 Putting it together: quality guarantees for the case of infinite samples
2.2.6 Sample complexity and PAC learnability guarantees

23 Scalingup
2.3.1 Finding the optimal threshold
2.3.2 Redundant edges: only looking at dependencies that matter
2.3.3 Lazy evaluation of mutual information

24 BXPEriments o vt it e e e e e e e e e
24.1 Syntheticdata.
242 Real-lifedata
2.4.3 Structure quality comparison oL o Lo
2.4.4 Empirical properties OVerviewo e e e e

2.5 Relatedwork
2.5.1 Constraint-based algorithms oL
2.5.2 Score-based algorithms
2.5.3 Bayesian model averagingo

v

IT

2.6 Discussionand future worko 62
2.6.1 Generalizing to junction trees with non-uniform clique size 63

2.6.2 Generalizing to junction trees with non-uniform dependence strengths 64

2.6.3 Fasterheuristics 65
Learning Evidence-Specific Structures for Rich Tractable CRFs 66
3.1 Log-linear models, generative and discriminative weights learning 67
3.2 Evidence-specific structure for conditional random fields 75
3.3 Learning tractable evidence-specific structures 78
3.3.1 Evidence-specific Chow-Liu algorithm 81

3.4 Relational CRFs with evidence-specific structure 82
3.4.1 Adapting low-dimensional conditional density estimation to the relational setting . 84

3.5 Alternative approaches for learning parameters of ESS-CRFs 86
3.5.1 Pseudolikelihood learning 87

3.5.2 Max-margin feature weights learning 88

3.6 EXperiments e e e e e e e e e e 89
3.6.1 Propositionalmodels 90

3.6.2 Relational data: hypertext classification 90

3.6.3 Relational data: image segmentation 92

377 Relatedwork e 98
3.8 Discussionand futurework oL oL 103
Query-Specific Inference in High-Treewidth Graphical Models 108
Query-Specific Belief Propagation 109
4.1 Factor Graphs and Belief Propagation 110
4.2 Measuring Importance of Messages tothe Query 112
4.2.1 Efficiently Computing Edge Importance 114

4.2.2 Edge Importance for Multi-Variable Queries 117

4.3 Query-Specific Residual Belief Propagation 117
4.3.1 Residual Belief Propagation, . 117

4.3.2 Edge Importance Weights and Query-Specific Inference 118

4.4 Anytime Query-Specific Residual BP oo oo oo 120
4.4.1 Pessimistic anytime query-specific belief propagation 125

4.5 Massively reusing computation via variable updates oL 128
4.5.1 Prioritization by cumulative variable residual 132

4.5.2 Anytime inference and variable weighting 0. 133

4.6 Related Work e 141
4.6.1 Query-specific model simplification 142

4.6.2 Estimating the effects of model simplification 143

4.6.3 Convergence analysis for belief propagation 145

4.6.4 Bounds on belief propagation beliefs 145

477 EXPeriments e e e e e e e e e e e e 147
477.1 Datasetsandmodels 147

4.7.2 Query selection, inference problems and error measures 148

4.7.3 Validating non-query-specific heuristics 151

474 Results e e 154

4.8 Discussionand futurework 159
4.8.1 Further improvements in the query-specific setting 160

4.8.2 Dealing with non-query-specificinference 162

4.8.3 Beyond belief propagation 164

5 Conclusions 166
A Proofs for chapter 2 168
A.1 Example: increasing treewidth does not preserve strong connectivity 168
A2 Proofs e e 169
Bibliography 197

Vi

Chapter 1

Introduction

Reasoning under uncertainty over high-dimensional structured spaces is a fundamental problem of ma-
chine learning with a multitude of applications. To optimally control air conditioning in a building, it is
necessary to infer the true distribution of the temperature throughout the building by only observing noisy
measurements of several sensors. For intelligent image retrieval, it is necessary to infer the identities and
locations of the objects in the images given the raw pixel brightness values, possibly corrupted by com-
pression. For accurate web search, one needs to infer the topics that any given webpage covers given the
text and the connectivity pattern of hyperlinks.

In all of the applications mentioned above, the state of the system can be modeled as a set of correlated
random variables X with joint distribution P(X). Moreover, a subset of variables E, which we will
call evidence can be typically observed at test time. The fundamental problem then is to compute the
conditional distribution of variables of interest (), which we will call the query, given evidence:
P(Q, E)

P(Q\E)—W- (1.1)
A major difficulty in computing the conditional distribution (1.1) arises from the fact that both query and
evidence may contain a very large number of variables. For example, a model of the Internet may have a
separate random variable for every webpage, and a model in computer vision may have a separate random
variable for every pixel of an image. The resulting random distributions have extremely high dimen-
sionality, making enumeration of the state space, and consequently the straightforward representation and
inference approaches, intractable.

Fortunately, probabilistic graphical models (PGMs, see Koller and Friedman (2009) for in-depth treat-
ment) have emerged as a powerful formalism for compactly representing high-dimensional distributions
and have been used successfully in a multitude of applications from computer vision (Li, 1995) to natural
language understanding (Blei et al., 2003) to modeling protein structure (Yanover et al., 2007) and many
others. Graphical models owe their success to two key features:

1. Intuitive interpretation. In graphical models, direct probabilistic dependencies between random
variables are encoded via edges of a graph, whereby the absence of an edge between two variables
means that those variables are conditionally independent given the rest of X. As a result, whenever
the problem domain can be described using local interactions (for example, for a model of the
Internet, by assuming only webpages that link to each other have directly dependent topics), such a
description is straightforward to map to a graphical model structure.

1

2. Efficient inference algorithms. Although even the problem of approximate inference is provably
hard for the vast majority of compact PGMs (Cooper, 1990; Dagum and Luby, 1993), a variety
of approximate inference algorithms have been developed that often work well in practice (Pearl,
1988; Geman and Geman, 1984; Jordan et al., 1999). As aresult, it is not necessary for practitioners
to become experts in probabilistic inference. Instead, usually once can simply pass the model
describing the problem domain to an off the shelf inference algorithm and obtain useful results.

While the approach of first, defining a PGM that captures all of the essential interactions of the prob-
lem domain in an easily interpretable way, and second, running a standard inference procedure to answer
probabilistic queries is undeniably convenient for the practitioners, often such an approach leads to sub-
optimal performance. In this thesis we identify two issues that often manifest themselves in practice.
First, too complex models are often chosen, which leads to excessive errors in inference results and high
computational cost of approximate inference. Second, standard inference algorithms lack a notion of the
importance of an unobserved variable to the end user, and have excessive computational cost in the pres-
ence of a large number of unobserved nuisance variables in the system. More generally, we claim the
following thesis statement:

By relaxing the requirement that a probabilistic graphical model structure closely re-
flects the interactions in the underlying application domain, and better exploiting the
information about query and evidence variables, it is possible to answer probabilistic
queries more accurately and efficiently than the state of the art approaches.

The main contributions of this thesis, discussed in more detail in section 1.2, are two novel approaches for
learning accurate tractable PGMs, and a novel inference approach that, by focusing computation on the
query variables at the expense of nuisance variables, significantly improves efficiency, especially test time
performance, without sacrificing the result accuracy. Before describing the contributions in more detail,
we review the issues with the typical way of applying PGMs that our approaches aim to resolve.

1.0.1 Tradeoffs in model design

The root of the model design problem lies in the need to trade off the accuracy that can be achieved by
using the model and the computational resources necessary to process the model. Somewhat counterin-
tuitively, the nature of the basic tradeoff is not simply “richer models are more accurate, but have higher
computational complexity”. Let us briefly review the impact of model complexity on both accuracy and
computational efficiency.

The eventual accuracy experienced by the end user of a graphical model is affected by two factors:
errors due to the simplified representation of the true distribution P(X) using a graphical model (repre-
sentation error) and the errors due to the approximate nature of the inference algorithms (inference error).
In general, simpler models with fewer direct dependencies yield larger representation errors, but more
accurate inference results. Complex models better reflect the properties of the problem domain and have
smaller representation error, but pose more difficult inference problems. The resulting tradeoff is show
schematically in Fig. 1.1.

Reaching the optimal tradeoff point in Fig. 1.1 is difficult in practice, because the two error sources possess
very different properties:

1. Representation error is straightforward to understand by thinking about causal dependencies in

2

optimal _ '
complexity typical complexity

A / /choice in practice
1

~ inference error

total error

error

representation
1 / error

model complexity

Figure 1.1: A qualitative illustration of a tradeoff between complexity of a probabilistic graphical model
and inference accuracy. Simpler models have low inference error, but do not approximate the true system
distribution very well. On the other hand, complex model can approximate a distribution of interest very
accurately, but high inference error does not allow one to realize this accuracy in practice. Often, overly
complex models are chosen in practice, because approximation error is easier to both understand and
affect for the practitioners.

the system or the strongest direct interactions. Moreover, representation error is also easy to af-
fect directly by adding edges to the model to capture more of the direct interactions between the
elements.

Consider Fig. 1.2, which shows the structure (i.e., direct dependencies) of two typical PGMs: for
labeling image segments with identities of the objects in the picture in Fig. 1.2a and for hypertext
classification in Fig. 1.2b. Both models have been constructed using straightforward pieces of
intuition: that adjacent segments tend to have correlated object identities for image segmentation
(a cow is often next to grass), and that webpages that link to each other tend to have correlated
topics (professors tend to link to webpages of their students). These simple pieces of intuition have
resulted in densely connected models, however, and it is counterintuitive that removing some of the
dependencies from the model can improve the model performance.

2. Inference, even approximate, is provably intractable in most graphical models. Therefore, inference
algorithms need to introduce approximations to achieve acceptable computational cost. The nature
of those approximations is specific to a concrete inference approach. As a result, inference error
is harder to understand and interpret, especially for a non-expert. Moreover, the limits in which
the inference error can be affected by adjusting parameters of an inference algorithm are also quite
narrow: the fundamental choices of the approximation are mostly made at the algorithm design
stage, not at parameter selection stage.

As a result, during the model design too much attention is often paid to optimizing the representation
error, as it is a more intuitive component of the total error: practitioners are reluctant to give up well-
understood benefits of a richer model for hard-to-characterize improvements in inference accuracy of a
simpler model.

The impact of model complexity on computational efficiency is more straightforward. The complexity of
exact inference grows extremely rapidly with the complexity of the model to the point of being infeasible
for most commonly used models, such as those in Fig. 1.2. Approximate inference is much more efficient.
However, for commonly used models even approximate inference is often not efficient enough. The main

(a) A graphical model for labeling image seg- (b) The structure of a graphical model used by

ments with the identities of corresponding ob- Taskar et al. (2002) for hypertext documents
jects. Every node corresponds to a random vari- classification. Every node corresponds to a web-
able. This picture is from Gould et al. (2008). page, every edge - to a hyperlink.

Figure 1.2: Connectivity patterns of typical graphical models. Both graphs above have a large number of
loops, making it necessary to use heuristic inference approaches without any quality guarantees.

problem with approximate inference is that not only does the cost of a single iteration grow with model
complexity, but also the number of iterations required for convergence grows. Moreover, while the cost
of single iteration grows in a predictable manner (linearly with the model size), the number of required
iterations can grow abruptly, and can be very different for two seemingly similar models. As a result,
existing approximate inference techniques are often too costly, especially during test time for applications
that are interactive or require near real-time results.

The issue of inference complexity is further exacerbated by the limits in theoretical understanding and
ability to predict the inference complexity given a model. Merely predicting whether belief propagation,
a popular approximate inference approach, will converge at all for a given model is a hard open problem,
with solutions only for special cases (Mooij and Kappen, 2007). The limits in understanding the total
computational cost of approximate inference lead practitioners to concentrating on the complexity of a
single iteration (notice the analogy with the two sources of approximation error discussed above). As a
result, the overall inference complexity is often underestimated.

In this thesis, we argue that by eliminating the requirement that the model be interpretable in terms of
the application domain, and instead learning simpler models that admit efficient exact inference, one can
not only obtain the same or better accuracy as the state of the art approaches involving approximate
inference, but also significantly reduce the computational requirements. We propose two novel approaches
for learning tractable model (chapters 2 and 3) and demonstrate their performance empirically on real-
world datasets.

1.0.2 Inference in presence of nuisance variables

In general, the variables of the full model can be subdivided into three groups: query), evidence E and
nuisance NN. At test time, the assignment to only F is known, and the user is interested in the conditional
distribution P(Q | E). However, the standard inference procedures (e.g., Pearl, 1988; Geman and Geman,
1984), only distinguish between known and unknown variables. As a result, not only does computing the
distribution of interest P(Q | F) involve implicit computation of P(Q, N | E), but also the conditionals
P(Q | E) and P(N | E) are computed with the same accuracy, thereby wasting computation on the
irrelevant information.

In chapter 4, we introduce an approximate inference approach that improves on the successful residual
belief propagation algorithm by focusing the computation on the query and only inferring the nuisance
conditional to the extent necessary for approximating the query conditional well. Unlike existing ap-
proaches, ours does not affect the accuracy of the inference results for the query at convergence, and as
we demonstrate empirically on large-scale real-life models, brings significant speedups over the state of
the art.

Although the three general topics of this thesis are quite distinct in terms of the technical approach, they all
share the focus on significantly improving the testing-time computational efficiency. Fast computations
during testing make it possible for a whole new class of applications that are either interactive or require
close to real time inference to benefit from the formalism of probabilistic graphical models and related
techniques. Note that the training time efficiency is not as crucial for many applications, because the model
can be trained in advance.

1.1 Probabilistic graphical models

To place the contributions of this thesis in context, here we review the formalism of probabilistic graphical
models, along with the key complexity results and their impact on the standard process of applying PGMs
in practice.

There are several different formulations of probabilistic graphical models, but they all share a key idea of
approximately representing a high-dimensional probability distribution as a product of low-dimensional
components:

P(X) :% H wa(Xa)’ 1.2)

Yo €EF

where! the low-dimensional nonnegative components 1, are called factors of potentials and Z is the
normalization constant, also called a partition function. The set F of model factors induces a graphical
structure on X, whose properties determine the complexity of inference in the model. Generally, the graph
edges T link the variables of X that belong to the same factor 1/,. Depending on the edges, there exist
directed and undirected graphical models:

1. Undirected graphical models. The most common instance of this class is the formalism of Markov
networks, where there is a node in the graph for every variable x; € X, and an edge (i —j) € T(F)
if and only if there exists a factor that depends both on x; and x; : di, € F s.t. 75,25 € X,. An

! Notation remark: throughout the document, we use small letters (x, y) to denote variables, capital letters (X, C') to denote
sets of variables, boldface (a, C) to denote assignments, and double-barred font (C, D) to denote sets of sets.

advantage of Markov networks, besides their simplicity and versatility, is the fact that most of the
inference and learning complexity results are stated in terms of the Markov network graph structure,
making such models easier to analyze theoretically.

There are also alternative formalisms for undirected graphical models, which are somewhat more
specialized, but also have useful properties that Markov networks lack. We will introduce two such
formalisms, junction trees and factor graphs in the main body of this thesis, as required to describe
and analyze our learning and inference approaches.

2. Directed graphical models. The most common models of this class are Bayesian networks, where
there is a node for every variable of X and the directed edges are such that the resulting graph is
acyclic. Given a directed acyclic graph (DAG) over X, a Bayesian network defines a factorized
distribution as a product of conditionals:

P(X) =[] P(xi|Pa(:)), (1.3)

T, €X
where Pa(x;) is a set of parents of x; in the DAG defined by the directed edges T.

Observe that there are two key differences between the Bayesian network factorization (1.3) and the
general factorization (1.2). First, there is no normalization constant Z in (1.3) - implicitly, Z = 1.
Second, instead of arbitrary nonnegative factors v,, Bayesian network factorization uses condi-
tional distributions. Efficient parameter learning via using conditional distributions as potentials,
along with the absence of a normalization constant, are attractive properties of Bayesian networks.
However, inference in general is no easier in Bayesian networks than in undirected models, and
keeping the graph with edges T acyclic may be problematic in some models, especially in relational
settings. As a result, neither directed nor undirected graphical model formulation can be said to be
uniformly better than the other.

All of the novel approaches described in this thesis operate with undirected graphical models. When nec-
essary to put our work in context, we will also discuss relevant existing results for directed models.

Because the factorized distributions (1.2) and (1.3) have fewer degrees of freedom (the number of indepen-
dent values of the factors) than the total number of assignments to X, it follows that not every distribution
P(X) can be represented exactly as a compact factorized model. To better understand the constraints that
the factorization (1.2) places on the set of distributions that can be represented exactly, it is useful to think
about the statistical dependencies encoded by the graphical model structure. For a Markov network with
variables X and edges T, denote M B(z;,T) = {z; | ({ — j) € T} the Markov blanket of ;. In other
words, the Markov blanket of a variable in a Markov network is simply the set of the immediate neighbors
of that variable in a graph. It follows that a variable is independent of all other variables given its Markov
blanket:

Theorem 1 (Hammersley and Clifford, 1971). For any distribution P(X) that factorizes as (1.2) with the
corresponding Markov network edges T, it holds that

Moreover, with some restrictions, the reverse also holds. Denote I(T) to be the set of conditional in-
dependence assertions (1.4) induced by the edges T. Analogously, for an arbitrary distribution P(X),
denote I(P) to be the set of conditional independence assertions that hold for P(X). Then P(X) can be

6

factorized according to the Markov network structure T whenever the graph structure does not introduce
additional independence assertions compared to P :

Theorem 2 (Hammersley and Clifford, 1971). For a positive distribution P(X) and a set of edges T
between the elements of X such that I(T) C I(P), there exists a set of factors F such that P(X) =

% Hwae]-‘ %(Xa) and T(f) =T.

An analogous set of theorems connecting the form of factorization (1.3) with the set of conditional in-
dependence assertions for the factorized distribution P(X) also holds for the Bayesian networks, with
I(T) = Uyg,ex (zi L NonDescendants(z;) | Pa(z;)).

Theorems 1 and 2 formalize the intuitive notion that edges in probabilistic graphical models encode direct
dependencies of the variables on each other, which is key to understanding the approximations that are
introduced by a given PGM structure T.

1.1.1 Key problems and complexity results

Having established the connection between the factorization (1.2) corresponding to a probabilistic graph-
ical model and the induced approximations in the form of conditional independence assertions, we now
review the basic problems that need to be solved in order to use a PGM in practice. A factorized distri-
bution (1.2) and the corresponding graphical model are only approximation tools, and the real-world data
D is not sampled from graphical models. Therefore, to successfully apply a PGM in a certain problem
domain, one needs to first identify a graphical model that approximates the underlying real-world distri-
bution accurately, and second, to be able to perform accurate inference in that model. In turn, identifying
an accurate graphical model is typically decomposed into structure learning, where one determines the
scopes X, of the potentials ¢, in (1.2), and parameter learning, where the actual values of factors v, are
determined given the known scopes X, . In this thesis, we restrict the attention to learning PGMs from the
fully observed data, where D is assumed to be a set of samples X from the true unknown distribution
Pp(X), where the value of every x; € X is known for every sample.

Next, we review the existing complexity results, discuss their implications for the typical workflow of
applying graphical models, and propose alternatives that eliminate some of the existing drawbacks.

Probabilistic inference

Inference is a fundamental problem in probabilistic graphical models that arises not only at test time,
but also often during parameter and structure learning. The basic operation of probabilistic inference is
marginalization:

PY) = > P(Y,Xiys -5 Xip),
{xil 7"'7xim}€X\Y

where P(X) is a factorized distribution (1.2). It is assumed that the set of factors F is known, but the
value of the normalization constant Z is unknown. In general, even for compact models, not only is
exact inference NP-hard in general (Cooper, 1990), but even computing bounded approximations is NP-
hard (Dagum and Luby, 1993). However, there exists an exact inference algorithm, namely sum-product
(Shafer and Shenoy, 1990), with complexity exponential in the treewidth of the graph induced by the
model edges T(F). Treewidth (Robertson and Seymour, 1984) is the size of the largest clique in the

7

triangulated graph defined by the edges T. It follows that for models with low treewidth exact inference
is tractable.

The existence of an exact inference algorithm with complexity exponential only in graph treewidth does
not contradict the NP-hardness results for the general case, because even compact models with bounded-
degree graph can have large treewidth. For example, a 2D grid over variables X, where every variable is
directly connected to at most 4 others, has treewidth of \/W , making exact inference in grid-structured
models intractable. In fact, most of the “naturally occurring” PGM structures have high treewidth.

Low-treewidth models are the most extensively studied class of tractable models, but there also other
classes, such as feature graphs (Gogate et al., 2010) and arithmetic circuits (Lowd and Domingos, 2008),
which allow for high treewidth and instead restrict the internal structure of the potentials v),,. To obtain
efficient exact inference, high-treewidth tractable models rely on exploiting context-specific independence
(Boutilier et al., 1996), whereby certain variable assignments X “disable” some of the dependencies for
the rest of the variables X \ X that are in general present in the model. For example, in a car engine
diagnostic system, the variable “engine starts” is in general dependent on the variable “battery charge
level”, but if the variable “tank has gas” is false, then the engine will not start regardless of the battery
charge, making the two variables independent.

To summarize, even approximate inference in compact graphical models is intractable in general, unless
some extra properties, such as low treewidth or context-specific independence, hold for the factoriza-
tion (1.2). As a result, approximate inference algorithms with few guarantees on the result quality (Pearl,
1988; Geman and Geman, 1984; Jordan et al., 1999) are typically used in practice.

MAP inference

Often, the user is interested in inferring the most likely state of the system in question given the evidence.
This class of problems, called structured prediction problems, spans areas from optical character recogni-
tion (Kassel, 1995) to natural language processing (Taskar et al., 2004) to image segmentation (Ladicky
et al., 2009) and scene understanding in computer vision. In the context of probabilistic graphical models,
structured prediction problems give rise to the problem of maximum a posteriori (MAP) inference:

X' = argm}zgxP(X),

where P(X) is a factorized distribution (1.2). In general, similar to the marginalization problem, MAP
inference is NP-hard in general for compact PGMs (Shimony, 1994). Moreover, computing the MAP
assignment for a marginal P(Y) for Y C X is NPPP-complete (Park, 2002). However, for important
special cases the MAP inference problem is tractable.

First, the graph structure T(F) of the graphical model for (1.2) can be exploited in a similar way to the
marginalization problem. Whenever exact marginalization is possible due to low treewidth of the graph
or context-specific independence, exact MAP assignment can be found using the max product algorithm
(essentially, dynamic programming), which replaces summations in the sum-product algorithm with max-
imizations (Pearl, 1988).

Second, for intractable PGMs, when (a) max-product algorithm converges and (b) a joint assignment
X is found that is consistent with all the local max-marginals, the resulting X* can be shown to be a

2We will also say that a model is tractable if it admits tractable exact inference.

strong local optimum (Weiss and Freeman, 2001a). The term strong here refers to the fact that any X’
that differs from X * in only a few variable values (the number of the different variables depends on the
model) is guaranteed to have P(X’) < P(X™). Moreover, for convexified variations of max-product,
a joint assignment consistent with max-marginals at convergence can be shown to be globally optimal
(Wainwright et al., 2005). However, the max-product algorithm is not guaranteed to converge in general,
and in practice tends to have more brittle convergence properties than sum-product.

Finally, in the case of binary variables and submodular pairwise factors ;;(x;, ;) (which is an important
special case of PGMs, popular in e.g., computer vision), the MAP inference problem can be cast as a
graph cut problem (Kolmogorov and Zabih, 2004). As a result, the most probable assignment can be found
exactly and efficiently using any existing graph cut algorithm even for densely connected models (Boykov
and Kolmogorov, 2004). Importantly, the marginalization problem for such models remains intractable.
This mismatch in complexity of the two problems stems from the fact that computing the normalization
constant Z from (1.2) is only required for marginalization, but not for MAP inference. Still, even though
many models important in practice are covered by the exact graph cuts-based techniques, such approaches
are not universally applicable. Even restricting attention to pairwise interactions, many models do not
admit a graph cut MAP formulation.

We also notice that in practice one needs to choose carefully between MAP approaches and maximizing
one-dimensional marginals P(x;) of P(X), depending on the actual penalty function of the problem
domain. For example, in the OCR setting one can argue that it is better to measure accuracy by the
number of words that have been correctly decoded as opposed to the number of individual characters,
and therefore MAP decoding is the optimal answer. On the other hand, in image segmentation problems
(Shotton et al., 2006) the accuracy is typically measured by the total number of correctly labeled pixels,
not by how many full images have been labeled perfectly. In the applications where such Hamming
distance-like error measures are used, it is typically better to use the assignment that maximizes the one-
dimensional marginals P(x;), thereby returning to the marginalization problem.

Parameter learning

Given the model structure, it is desirable to find the parameters that result in the best approximation of the
true distribution Pp(X) that generated the data D with the factorized distribution (1.2). With KL diver-
gence (Kullback and Leibler, 1951) as the measure of approximation quality, we need to minimize

KL(Pp(X)||P) = ZPD ((XX)) ZPD)log P(X),

where the first component is the entropy of the true distribution that does not depend on the model, and
the second component is the negative log-likelihood of the model. Because the true distribution Pp(X)
cannot be observed directly, it is replaced with the empirical distribution Pp (X) of the data, resulting in
the log-likelihood

LLH(P|D) = ZPD)log P(X ZlogP
XGD

It follows that one needs to maximize log-likelihood of the model. Because of the finite number of
the datapoints, the empirical distribution Pp (X) is only an approximation of the unknown underlying

9

distribution from which the data is generated. Therefore, to prevent overfitting (i.e., learning the noise
in the data), a regularization term, which introduces a bias towards uniform potentials, is added to the
log-likelihood.

For Bayesian networks, maximizing the likelihood is achieved simply by plugging in the empirical condi-
tional probabilities Pp (z; | Pa(z;)) , so the parameter learning problem is trivial. For undirected models,
however, there is no closed form expression for the optimal parameters. Moreover, even computing the
value of the likelihood itself requires inference in the model, which is typically intractable, as was dis-
cussed above. As we discuss in detail in chapter 3, if exact inference with the model is feasible, then
optimizing the log-likelihood is a convex optimization problem that can be solved very efficiently with
state of the art techniques such as L-BFGS (Liu and Nocedal, 1989), despite high dimensionality of the
parameters. Therefore, for low-treewidth and other tractable models efficient exact parameter learning is
possible. For some low-treewidth PGM formalisms, closed-form expressions for optimal parameters also
exist (c.f. chapter 2). There also exist closed-form expressions for approximately optimal parameters for
high-treewidth models (Abbeel et al., 2006), but the more dependencies not reflected by the PGM struc-
ture the true underlying distribution has, the worse is the approximation quality of such parametrization,
and in practice it is used rarely.

In general, for high-treewidth models there are few alternatives to optimizing log-likelihood, even though
computing the objective exactly is intractable. It follows that one needs to introduce approximations to
make the objective tractable. Two main types of approximations are possible. First, one can replace
the log-likelihood objective with a more tractable alternative, such as pseudolikelihood (Besag, 1974).
Pseudolikelihood is the sum of likelihoods of single variables conditioned on their respective Markov
blankets:

PLLH(P |D,w)= Y Y logP(xi | MB(x;), E,w), (1.5)
XeDx;eX

where MB(x;) denotes the values of all the variables of X that share a feature with x;. Second, one
can apply an approximate inference method to the model and use the results as if the inference was
exact. Pseudolikelihood objective is attractive because it is both tractable, and, for sufficiently expressive
models, in the large sample limit yields the same parameters as optimizing the log-likelihood (Gidas,
1988). However, the requirement of sufficient expressivity of the model is essential: it is required that
the model be able to represent the generating distribution Pp exactly. Because graphical models used
in practice usually represent simplifications of the true underlying distribution, the requirement of the
sufficient expressive power of the model is often violated, invalidating the guarantee.

Using approximate, instead of exact, inference for computing the value and gradient of the log-likelihood
during parameter learning is problematic, because even approximate inference is NP-hard, and therefore
there are no guarantees on the accuracy of the computed objective, or on the quality of the resulting
parameters. Moreover, log-likelihood convexity may be violated with approximate inference, resulting in
convergence issues of the convex optimization techniques.

To summarize, just as with the problem of inference in probabilistic graphical models, with the problem
of parameter learning there exists a sharp contrast between tractable models, where efficient exact param-
eter learning is possible, and the general compact high-treewidth models, where one needs to resort to
approximations with little, if any, guarantees on the result quality.

10

Structure learning

Learning the optimal structure of a factorized model (1.2) from finite data D has two conflicting objec-
tives. On the one hand, one needs to discover the direct dependencies that hold in the true distribution Pp
to obtain a model that is expressive enough to approximate the true distribution well. On the other hand,
it is desirable to avoid spurious dependencies that exist in the empirical distribution Pp (X)), but not in
the true generating distribution, because of the finite-sample noise. Spurious edges, and the corresponding
potentials introduced into the factorization (1.2), not only make the model more prone to overfitting during
the parameter learning stage, but also increase the computational complexity of inference in the model.
Maximizing the likelihood of the structure T favors including as many edges into the learned structure as
possible. In fact, a fully connected PGM can represent any distribution over X exactly, and therefore will
have the highest possible likelihood. Therefore, to prevent overfitting and overly complex models, one
needs to bias the learning process towards sparser models. There are two main methods of introducing
such a bias towards simplicity. First, one can explicitly restrict the space of models over which the likeli-
hood maximization is performed, for example, to low-treewidth models, or to graphs with a uniform bound
on the variable degree. Secondly, one can maximize over the space of all possible models, but introduce
a regularization term penalizing model complexity. In both cases, however, structure learning typically
contains intractable steps, and the approaches used in practice have few quality guarantees.

Learning optimal models over restricted space of structures is provably intractable for most settings. A
notable exception is the classical result of Chow and Liu (1968), which states that the most likely tree
structures can be learned efficiently in O(| X |? log | X |) time. However, even extending the space of struc-
tures to polytrees (directed trees where variables are allowed to have more than one parent) makes learning
the most likely structure an NP-hard problem (Dasgupta, 1999). Learning most likely low-treewidth mod-
els is NP-complete (Karger and Srebro, 2001) for treewidth greater then 1, as is learning the structure of
general directed models (Chickering, 1996). However, graphical models with limited degree graphs can
be learned in the probably approximately correct (PAC) sense (Abbeel et al., 2006). Also, one can learn
in polynomial time low-treewidth structures which are within a constant factor of the log-likelihood of the
optimal structure (Karger and Srebro, 2001).

Explicitly regularizing the likelihood to favor simpler structures can in turn take two forms. First, one
can use a regularization term that penalizes the number of parameters in the model, such as BIC score
(Schwarz, 1978). Then, a local search is performed in the space of structures T to maximize the regularized
likelihood (e.g., Teyssier and Koller, 2005). Second, one can use sparsity-inducing prior for the model
parameters, such as an L penalty, and reduce the structure learning to (a) parameter learning in the full
model and (b) dropping the uniform factors from the model afterwards (e.g., Lee et al., 2006). Both
general approaches to structure regularization require inference to compute the objective. Therefore,
for high-treewidth models there are no guarantees on the quality of the resulting structure, because even
approximate inference is intractable. Notably, if inference were tractable, L-regularized likelihood would
be possible to optimize exactly, because the corresponding optimization problem is convex. For local
search approaches, even with exact likelihood computation the resulting structure is only guaranteed to
be a local optimum in the space of possible structures. In practice, both structure learning techniques
based on local search, and L;-regularized parameter learning with approximate inference are quite popular
because of their moderate computational efficiency and good quality of the learned models in practice.
However, the fundamental limitations arising from intractability of inference lead to a lack of formal
quality guarantees.

To summarize, in most settings learning the optimal PGM structure is provably intractable. Moreover, the

11

Data 2 8 | Structure design
= iyt using @

domain knowledge

High-treewidth @
structure learning ﬂ

N

Vv

L -regularized | High-treewidth structure T B |
parameter learning
Parameter learning @
with approximate inference
A4 G
High-treewidth probabilistic graphical model over X={Q,N,E} a |

Approximate inference:

instantiate E=E, marginalize out N

A3

| Query conditional P(QIE) Sl

(a) Typical approaches of applying probabilistic graphical models
involve high-treewidth structures. As a result, parameter learning
and inference are intractable and one needs to resort to algorithms
without quality guarantees. Different paths from top to bottom of
the diagram represent different complete approaches. For example,
learning the PGM parameters with a sparsity-inducing L; regular-
ization can be replaced with a combination of separate structure
learning and parameter learning steps.

| Data D 8|
O

Low-treewidth @
structure learning

| Low-treewidth structure T’ Bl

&

&

[Parameter learning J]

with exact inference

&

| Low-treewidth PGM over X:{Q,N,E}a|

&

Exact inference: instantiate E=E,
marginalize out N

| Query conditional P(QIE) a|

(b) An alternative workflow
based on low-treewidth graphi-
cal models. Although the set of
available models is not as ex-
pressive as in the high-treewidth
case, parameter learning and
inference can be done exactly,
reducing the number of sources
of error to only one (structure
learning).

Figure 1.3: A comparison of standard high-treewidth graphical models workflows (a) and an analogous
process in the low-treewidth setting (b). Symbol + denotes stages of computation where there are no
quality guarantees for the approaches that are used in practice. A check mark symbol v' denotes the

stages where the computation can be performed exactly.

existing structure learning approaches that do posses quality guarantees in the finite sample case restrict the
model connectivity in advance (Chow and Liu, 1968; Karger and Srebro, 2001; Abbeel et al., 2006).

1.1.2 Typical use cases and directions for improvement

The overview of complexity of the different stages in working with high-treewidth probabilistic graphical
models is roughly summarized schematically in Fig. 1.3a. Typically, practitioners choose to use high

treewidth models, because of the following advantages:

1. Representational power. The set of compact high-treewidth models is more broad than that of
low-treewidth models. Therefore, high-treewidth models are likely to be able to approximate the

true underlying distribution of the system more accurately.

2. Computational benefits in structure learning. Maintaining low treewidth of the candidate struc-
tures during learning adds a significant burden either computationally, because even computing the

12

treewidth of an arbitrary graph is NP-complete (Arnborg et al., 1987), or in terms of representation
and algorithm design, to guarantee that every candidate structure has low treewidth and does not
need explicit checking.

3. Straightforward use of domain knowledge. Sometimes, information about the direct dependen-
cies in the system in question is available. For example, in a plant monitoring scenario, the connec-
tivity of different subsystems of a plant is known, and it is highly desirable for the model structure
to reflect that information. In such cases, an expert may even design the structure of a model by
hand, according to the domain knowledge and without regard to the treewidth.

Also, high-treewidth structures arise naturally in relational models (Friedman et al., 1999; Richard-
son and Domingos, 2006; Taskar et al., 2002), where every edge corresponds to an instance of a
relation, such as friendship for social network modeling, and the connectivity of the model is then
determined by a social graph of the population in question.

4. Interpretability. Sometimes the structure of a PGM not only serves as an intermediate result of
computing the query conditional P(Q | E), but is of interest in its own right to the practitioner.
For example, the edges of a model learned from data may be used to select possible causal links
between different components of the system that need to be investigated (Friedman, 2004).

However, if computing the query conditional P(Q | E) is the only goal of applying a graphical model, as
is often the case, then some of the concerns above are irrelevant (interpretability and to some extent domain
knowledge issues). Moreover, as Fig. 1.3a indicates, even the advantages of high-treewidth models that
are directly related to the accuracy of answering the probabilistic query (representational power and extra
difficulties with learning low-treewidth models), are counterbalanced by intractability of the fundamental
problems on every step of the process and lack of quality guarantees for the involved algorithms.

Because the high-treewidth models are typically unable to realize the full potential of the representation
power due to inference difficulties, it is natural to attempt to achieve the same end results using simpler
models, where the decrease in the representative power is compensated for by the improvements in infer-
ence accuracy. This is exactly the approach we take in chapters 2 and 3 of this thesis. The key idea of
our alternative approach, shown schematically in Fig. 1.3b, is to restrict consideration to the models that
admit efficient exact inference. In particular, we restrict the models to have low treewidth. Let us review
the advantages of the low-treewidth workflow of Fig. 1.3b.

1. Exact computations on most of the steps of the pipeline. In contrast to Fig. 1.3a, in the low-
treewidth workflow of Fig. 1.3b the only source of approximation errors is the structure selection
stage. In this thesis, we argue that in many applications the advantages of the low-treewidth ap-
proach, namely exact inference and parameter learning, will compensate for the smaller expressive
power of the low-treewidth structures. In other words, we argue that while high-treewidth models
can potentially approximate the query conditional distribution more accurately than low-treewidth
models, the lack of algorithms to construct such an approximation and process it efficiently largely
prevents one from realizing that potential advantage.

2. Significantly higher test-time computational efficiency. Exact inference in low-treewidth graph-
ical models is much faster than approximate inference in high-treewidth models. Moreover, the
complexity of exact inference in low-treewidth models is highly predictable. As a result, low-
treewidth models are well-suited for applications that are sensitive to the response time. Because
the total complexity of approximate inference for high-treewidth models is often hard to predict
(e.g., Mooij and Kappen, 2007), high-treewidth are often inapplicable in latency-sensitive settings.

13

Let us briefly illustrate some of the opportunities that models with low test-time latency open up. In
a web search setting, the user may wish to restrict the search to the webpages of a certain type, such
as homepages of university professors. A model exists that uses the link structure of the webpages to
improve the classification accuracy (Craven et al., 1998; Taskar et al., 2002) see also experimental
results in chapters 3 and 4 of this thesis). However, classifying every webpage in advance using
such a model on a full index of the internet stored by a search engine is problematic for two reasons.
First, the sheer scale of the web graph, with modern search engines having petabyte-sized web
indices (Peng and Dabek, 2010), makes inference extremely demanding computationally. Second,
search engines continuously change their web indices, with many popular pages being updated once
every several minutes (Peng and Dabek, 2010). As a result, the underlying model does not stay fixed
for a long enough time for the inference to finish. An alternative to pre-classifying every web page
in an index is to first retrieve the results without regard to the webpage type, and then, for the final
filtering, to use the model for type inference only on the much smaller subgraph corresponding to
those results. Such an on-demand approach is much less demanding computationally, but requires
the inference in the model to be guaranteed to run in a fraction of a second - otherwise the user will
have to wait too long for the search results.

In computer vision, applying graphical models to the problem of detecting objects in images yields
state of the art accuracy (Gould et al., 2008). However, for applications such as pedestrian detection
and terrain labeling for autonomous driving (Thrun et al., 2006; Enzweiler and Gavrila, 2011) it
is crucial to provide near-realtime results, which is beyond the capabilities of approaches using
approximate inference with high-treewidth models. In the experimental results of chapter 3, one
can see that traditional high-treewidth models take 1 second on average to perform inference. Our
approach building on low-treewidth models, on the other hand, takes only 0.02 seconds per image,
sufficient for real-time processing of video data, without sacrificing accuracy.

3. Lack of algorithm-specific adjustments. Approximate inference approaches for high-treewidth
models often involve algorithm-specific parameters that have to be adjusted for the algorithm to
work well on a given model. As result, the end user typically has to bear an additional burden of
configuring the approximate inference algorithm (setting the damping level for belief propagation
(Mooij and Kappen, 2005) or the umber of samples for Gibbs sampling (Geman and Geman, 1984)).
Because inference is typically required in the inner loop to compute model likelihood and gradient
during parameter learning, the tweaking of an approximate inference algorithm is required during
both training and testing. In contrast, exact inference in low-treewidth models does not require any
parameters. As a result, the only parameter the end-user needs to set with low-treewidth models is
the regularization constant during training (for example, using cross-validation).

In this thesis, we identify and explore two directions of improving the graphical model workflows of
Fig. 1.3, both for the case when the exact form of the model does not matter to the end user, and for the
case when a high-treewidth model is required because of domain-specific concerns:

1. For cases when the exact form of the model is not important to the practitioner, and the accuracy
and efficiency of computing the query conditional distribution P(Q | E) are the only criteria for
success, we argue that the low-treewidth approach of Fig. 1.3b is often a better alternative than the
high-treewidth approach of Fig. 1.3a. As the resulting accuracy of the low-treewidth is effectively
determined by the quality of a structure learned from data, we propose novel algorithms for effi-
ciently learning accurate low-treewidth models for both propositional and relational settings. We
demonstrate empirically that the resulting tractable models yield the same or better accuracy of the

14

conditional query distribution P(Q | E) compared to the high-treewidth approaches.

2. For settings where a high-treewidth model is necessary, we propose an approach that allows one to
speed up marginalizing the nuisance unobserved variables N out of the conditional P(Q, N | E).
In many settings, it is often the case that only a small number of unobserved variables @) is of
interest to the user, but there is a large number of unobserved nuisance variables that have to be
marginalized out. For example, in an automated system for patient monitoring (Beinlich et al.,
1988), the only variable of direct interest may be whether the patient needs immediate attention of
the hospital staff. In a smart home setting (Pentney et al., 2006), the variable of interest may be
whether a certain room is likely to be occupied in the near future: to save energy, the smart home
would turn the air conditioning off in rooms that are not likely to be occupied soon.

Our approach exploits the observation that not every nuisance variable affects the query conditional
P(Q | E) to the same extent. It incrementally refines the estimate of the query conditional by
taking the strongest dependencies into account first, and only touches the nuisance variables to
the extent necessary for computing the query conditional. For example, in the extreme case that
(z; L Q| E), the nuisance variable z; would be ignored altogether. As a result, we demonstrate
significant speedups in the convergence of the estimate of the query conditional P(Q | E).

1.2 Thesis overview and contributions

Here, we outline the organization of the thesis and the main contributions.

Chapter 2. Here, we consider a problem of learning a low-treewidth probabilistic graphical model that
accurately approximates a given distribution P(X) given data D. We propose an novel polynomial time
algorithm with quality guaranteed for learning fixed-treewidth graphical models. More specifically, we
claim the following contributions:

1. A polynomial time algorithm for learning fixed-treewidth graphical models with PAC learnability
guarantees for distributions exactly representable with strongly connected maximal fixed-treewidth
graphical models, and graceful degradation guarantees for distributions that are only approximately
representable with fixed-treewidth graphical models.

2. A theoretical result that provides a polynomial time upper bound on conditional mutual information
of arbitrarily large sets of random variables, which not only forms a basis of our structure learning
algorithm, but can also be used by other constraint-based structure learning approaches.

3. A heuristic version of the algorithm mentioned above that forgoes the result quality guarantees of
the original version, but works much faster in practice.

4. Evaluation on real datasets showing that low-treewidth model have competitive approximation qual-
ity with high-treewidth models.

Chapter 2 is a significantly extended version of (Chechetka and Guestrin, 2007).

Chapter 3. In this chapter, we consider a problem of learning a low-treewidth probabilistic graphical
model that accurately approximates the query conditional P(Q | E). Compared to the setting of chapter 2,
here we have additional information about both the set of evidence variables F and its assignment at test
time E. This extra information lets us failor the structure of low-treewidth models to a particular value
of the evidence variables at test time. We propose a novel algorithm for learning adaptive low-treewidth

15

conditional models with evidence-specific structure. The use of evidence-specific structure lets one expand
the expressive power of the model beyond the capabilities of any single tractable structure, and at the same
time retain the advantages of efficient exact inference and parameter learning. More specifically, we claim
the following contributions:

1. A novel way to exploit information about the values of variables which are observed at test time
to select the structure of discriminative probabilistic graphical models that is specific to the evi-
dence values at hand. The key advantage of our approach over existing work on learning tractable
evidence-specific models is the ability to guarantee low treewidth of the resulting models, and thus
tractability of exact inference, not only in a propositional, but also in a relational setting.

2. A general framework that allows one to leverage the existing work on learning the structure of
propositional tractable models and low-dimensional conditional density estimation to construct al-
gorithms for learning discriminative models with evidence-specific structure.

3. An extension of the general framework for learning discriminative models with evidence-specific
structure to the relational setting. Importantly, with our generalization, one can still use propo-
sitional algorithms for structure learning and low-dimensional conditional density estimation as
building blocks.

4. An empirical evaluation demonstrating that in the relational setting our approach has equal or better
accuracy than the state of the art algorithms for densely connected models, and at the same time is
much more efficient computationally.

Chapter 3 is an extended version of (Chechetka and Guestrin, 2010b).

Chapter 4. Here, we consider the problem of speeding up the convergence of a particular approximate
inference algorithm, residual belief propagation (Elidan et al., 2006), for the query conditional P(Q | E)
in the presence of a large number of nuisance variables. In belief propagation, a belief (current approx-
imation of a single-variable marginal) is maintained for every variable z; € X, and beliefs are updated
iteratively depending on neighboring beliefs, according to local update rules. We analyze theoretically
the impact that any given nuisance variable has on the query beliefs, and propose a belief update sched-
ule that prioritizes updates according to their estimated eventual impact on the query, leading to faster
convergence. More specifically, we claim the following contributions:

1. A principled measure of importance of belief for an arbitrary variable x; with respect to a given
query, which can be computed efficiently and characterizes the magnitude of eventual change in
query beliefs per unit change of the belief for x;.

2. A general framework of importance-weighted residual belief propagation that allows one to signif-
icantly speed up convergence for query variables by focusing computation on the more important
beliefs. Unlike the previous approaches, ours does not involve any simplification of the original
graphical model, and thus does not change the eventual approximation result for P(Q | E).

3. An empirical evaluation demonstrating significant speedups for our approach compared to a state
of the art existing variant of belief propagation on real-life large-scale models.

Chapter 4 is an extended version of (Chechetka and Guestrin, 2010a).

16

The scope of this thesis

This thesis does not attempt to propose a single unified approach to using probabilistic graphical models
that would be optimal for every setting. The variety of possible applications, with the corresponding
requirements and available resources, make it extremely difficult, if not impossible, to come up with such
a framework. Indeed, we present here both approaches that deliberately construct low-treewidth models,
aiming to exploit exact parameter learning and inference, and a family of approaches designed to speed
up inference in high-treewidth models. We argue that for each of the approaches, there are circumstances
where it makes sense to apply that particular algorithm.

Rather than aiming for a unifying framework, we attempt here to shed light on some of the inherent
tradeoffs of graphical models, which are often forgotten, be it because of the established habits in a
sub-community, the wide applicability of existing generic approaches, the desire to have an intuitive inter-
pretation of the model, or the lack of suitable alternatives. Our results demonstrate that if one is conscious
of (a) those tradeoffs, such as inference error versus representation power of a model, and (b) of the end
goals of applying the model, then one can design approaches that significantly improve performance over
the generic state of the art algorithms.

17

Part I

Low-Treewidth Graphical Models

18

Chapter 2

Learning Generative Low-Treewidth
Graphical Models with Quality
Guarantees

In this chapter, we address a fundamental problem of learning the structure of tractable (low-treewidth)
probabilistic graphical models that accurately approximate the distribution P(X). In this problem of gen-
erative structure learning, it is assumed that the evidence and query sets £ and () are not known during
learning. The lack of commitment to any given query-evidence split provides an important advantage:
from the definition of conditional probability (1.1), the same low-treewidth generative model can be used
to approximate a conditional distribution P(Q | E) for an arbitrary split of X into () and E at test time
without re-learning.

The ability to decide on the particular way to split the variables into query and evidence is important in
many applications. For example, in sensor networks, which can be used to monitor environmental pa-
rameters for the purposes of climate research or air conditioning and lighting control in a smart building
(Mainwaring et al., 2002; Pottie and Kaiser, 2000), nodes often fail in an unpredictable manner and com-
munication errors lead to some of the sensor measurements being lost. To maintain an accurate estimate of
the state of the complete deployment area, one needs to recover the most likely values of the missing mea-
surements (query) conditioned on the measurements of the remaining nodes (evidence), which is makes
it a natural domain for applying probabilistic graphical models (Paskin and Guestrin, 2004). Because the
failures of the sensor nodes are impossible to predict in advance, it is important for the model to be able
to accommodate any possible query-evidence split at test time.

In system diagnosis applications, such as troubleshooting printer failures (Breese and Heckerman, 1996),
even though the set of variables that can in principle be measured directly is known in advance, the
measurements are costly in terms of time, user workload, or other resources. Therefore, a model of the
system needs to be able to handle an arbitrary set of evidence E and both infer the likely state of the
unknown variables, and, based on the known variables, to recommend the most useful further measure-
ments (Krause and Guestrin, 2005). Similarly to the sensor network setting, here it is infeasible to learn a
separate model for every possible combination of known and unknown variable sets, and a single accurate
model is needed.

Generative model learning is not always the optimal approach. When the evidence set E' is known in

19

advance, one can exploit this extra knowledge to learn a discriminative model that directly approximates
the conditional distribution P(Q | E) an is typically more accurate (c.f. chapter 3) of this thesis. However,
in chapter 3 we also show that a generative structure learning approach can be used as a building block for
discriminative learning. To summarize, an approach for learning high-quality low-treewidth models in the
generative setting is useful both directly in applications and as a basis for discriminative models.

Before proceeding to the algorithmic aspects of our structure learning approach, we review a PGM formal-
ism, namely junction trees, that is especially suited for representing low-treewidth models. This special
formalism is needed, because for general graphs the treewidth is intractable to even compute exactly
(Arnborg et al., 1987). Junction trees serve as a more restricted fundamental data structure of our ap-
proach. Next, we describe the main theoretical result (Lemma 16) that underlies the quality guarantees
of our approach, and the structure learning algorithm itself (Alg. 2.6) and its quality guarantees. Ours is
the first algorithm to be able to probably approximately correctly (PAC, Valiant, 1984) learn a subset of
low-treewidth distributions. Next, we describe the heuristics and efficiency improvements that are cru-
cial for making the baseline algorithm practical. Finally, we show empirically on real-life datasets that
our algorithm is able to learn models of better or equal quality than other low-treewidth approaches and
competitive with the high treewidth methods.

2.1 Junction trees: bounded treewidth graphical models

In this section, we review junction trees (for details, see Cowell et al. 2003) and discuss the quality of
approximation of distributions by junction trees. We review two alternative definitions of junction trees:
the more commonly used one of Jensen and Jensen (1994), and an alternative based on the definition
of Almond and Kong (1991). The representative power of the two definitions is the same, and mutual
conversion is simple. We argue that the latter is better suited for structure learning, because it is less
prone to the problem of having two different structures that represent the same family of distributions and
thus, from the perspective of distribution representation, are indistinguishable. In particular, for maximal
Almond-Kong junction trees, no two structures represent the same family of distributions.

2.1.1 Junction trees of Jensen and Jensen

Let C = {C1,...,Cy,} be a collection of subsets of X. Elements of C are called cliques. Let T be a set
of edges connecting pairs of cliques such that (T, C) is a tree.

Definition 3. Tree (T,C) is a Jensen and Jensen junction tree if and only if it satisfies the running
intersection property (RIP): VC;, C; € C and VCj, on the (unique) simple path between C; and C}, it
holds that (C; N C;) C C,.

For an edge (C; — C;j) € T, the set S;; = C; N C} is called the separator. The size of a largest clique in
a junction tree minus one is called the treewidth of that tree. For example, in a junction tree in Fig. 2.1a,
variable x is contained in both cliques C3 and (', so it has to be contained in clique C5, because C5 is
on the unique simple path between C3 and C’5. The largest clique in Fig. 2.1a has size 3, so the treewidth
of that junction tree is 2.

A distribution P(X) is representable using junction tree (T,C) if for every separator S;;, instantiat-
ing all variables of S;; renders the variables on different sides of S;; independent. Denote the fact that
A'is independent of B given S by (A L B | S). Let Cg, ¢, be cliques that can be reached from

20

c, cC,
X, Xg
X, X
2 CS
X, X,
Xy, Xgs Xy
C3
(a) Example of a Jensen and (b) A Jensen and Jensen junc- (c) An Almond-Kong junction
Jensen junction tree. Rounded tion tree inducing the same fac- tree inducing the same fac-
rectangles are cliques, separa- torization as that in Fig. 2.1a. torization as junction trees in
tors are marked on the edges. Fig. 2.1a and 2.1b. Rounded

rectangles are cliques, regular
rectangles are separators.

Figure 2.1: Examples of junction trees.

C; in (T, C) without using edge (C; — Cj). In particular, C; € Cg;¢; and C; ¢ Cg;¢,. De-
note X¢;—¢; to be the set of variables that are covered by (ch_@i, but are not in the separator S;; :

Xoj-0; = (Ucecccj_,ci C) \ Sij.

For example, in Flg 2.13., 512 = {561, CL‘5}, X2*>1 = {I‘4, LL’6}, X14)2 == {:EQ, xrs3, ZL‘7}.
Definition 4. P(X) factors according to junction tree (T, C) if and only if for every edge (C;—C}) € T,
it holds that (X¢, ¢, L Xc,mc, | Sij)-

Let us define a projection Pt ¢ of an arbitrary distribution P(X) on a junction tree (T, C) as

[Ieec P(C)
[lic,—cper P(Si)

Prrey(X) = 2.1

If P(X) factors according to (T, C), the projection Pt c) is equal to P itself. The projection expression
(2.1) is the key element of the representation of probability distributions using junction trees: if two
junction trees have the same projection expression, then a distribution P(X) will factor according to one
of them if and only if it factors according to the other. Thus there would be no reason to prefer one of
those two structures to the other, a troubling ambiguity for structure learning. Unfortunately, for junction
trees of Jensen and Jensen this ambiguity is quite common: for every junction tree (T, C) that has at least
two edges associated with the same separator, there exists at least one other junction tree that has the same
projection expression as (T, C). For example, in Fig. 2.1a edges C; — Cy and Cy — C5 are associated with
the same separator: {1, z5}. The alternative junction tree in Fig. 2.1b has the same projection as that in
Fig. 2.1a, but a different graphical structure. To remedy such ambiguities, although not completely, we
turn to an alternative definition of junction trees given by Almond and Kong (1991).

21

2.1.2 Almond-Kong junction trees

The main difference between the definition of Jensen and Jensen and that of Almond and Kong is that in
the latter the separators are first-class objects. Let C = {C4,...,Cp},S = {S1,...,Ss} be collections
of subsets of X. As before, C; are called cliques, S; — separators. Let (T,C,S) be a tree with edges T’
and cliques and separators as nodes. Following Almond and Kong (1991), define

Definition 5. Tree (T, C,S) is an Almond-Kong junction tree with unique nodes (AKU junction tree) iff

1. Every edge in T connects a clique C' € C to a separator S € S such that S C C.

2. The running intersection property is satisfied: VC;,C; € C and VC}, Sy, on the (unique) simple
path between C; and C}, it holds that (C; N C;) C Cy, and (C; N C;) C Spy.

3. No separator S € Sis aleafin (T,C,S).
4. Every node of (T, C,S) corresponds to a unique subset' of X.

Analogously to Def. 4, we can define what it means for a distribution P(X) to factor according to an
AKU junction tree:

Definition 6. P (X) factors according to an AKU junction tree (T, C,S) iff for every edge (C'—S) € T
connecting a clique C' € C and separator S € S it holds that® (X¢ s L Xg_,c | S).

For a separator S from a junction tree (T, C,S), denote dg to be the degree of node S (that is, the number
of cliques that are neighbors of .S in the graph). Similarly to the case of Jensen and Jensen junction trees,
we can define the projection P ¢ s of any distribution P(X) on (T, C,S) as

P(C
Pr.cs)(X) = Hg:;ﬁ (sgds)—l : 2.2)

Lemma 7. A distribution P(X) factors according to (T, C,S) if and only if Pi7c5)(X) = P(X).

(The proofs of all the lemmas, propositions and theorems of this chapter are given in the Appendix A.2.)
Lemma 8. Let P((T, C,S)) to be the set of all distributions that factorize according to (T, C,S). Then for
any P(X), the projection Py ¢ s)(X) minimizes the KL divergence K L(P||P") for P' € P((T,C,S)) :

KL(P|[Prcg) =, min_ KL(P|[P)

We see that the properties of the two different formulations of junction trees are very similar, and indeed
the two definition are equivalent in the following sense:

Lemma 9. Whenever a Jensen and Jensen junction tree (T, C) exists, a AKU junction tree (T, C,S) with
the same treewidth as (T, C) and the same projection expression exists, and vice-versa.

! Although Almond and Kong (1991) did not have this uniqueness requirement, they have shown that for every junction tree
satisfying parts 1-3 of Def. 5, there exists an AKU junction tree with the same projection expression. Therefore, the uniqueness
requirement does not restrict expressive power.

Notice that the independencies in Def. 6 are of the form “if we remove the variables of S from the graph, then the variables
of every resulting connected component X s_,¢ are conditionally independent of all other variables given S” as opposed to a
weaker statement “all connected components are pairwise conditionally independent”. For example, in Fig. 2.1c it holds that
(x4, 26 L w2, 23,27 | 1,25), not just (x4, x¢ L x3 | x1,25) and (x4, x6 L w2, 27 | 21, T5).

In general, pairwise independence does not imply joint independence: for example, consider two independent uniformly
distributed binary variables {z1, 2} and x3 = XOR(x1, z2). Then every two variables of the set {z1, z2, 23} are independent,
but (z1 L z2x3).

22

The drawback of Jensen and Jensen junction trees is that multiple trees may correspond to the same
projection. Although different AKU junction trees, in general, may also have the same projection, we can
avoid the ambiguity by restricting ourselves to the subclass of maximal junction trees:

Definition 10. A junction tree (T, C, S) of treewidth & is called maximal iff every clique C' € C has size
|C| = k + 1, and every separator S € S has size |S| = k.

Every maximal junction tree induces a unique projection:
Theorem 11. If two maximal AKU junction trees (T1,C1,S1) and (Tq, Ca,S2) of the same treewidth and
over the same variables X are different, then there exists a distribution P(X) that factors according to

(Tl, (Cl, Sl), but not to (TQ, CQ, SQ)

In fact, one can show that if two maximal AKU junction trees are different, then almost all (in the measure-
theoretic sense) distributions that factor according to one of the junction trees do not factor according to
the other. This uniqueness property will be useful in the theoretical guarantees for our structure learn-
ing algorithms. Intuitively, we will estimate a set of properties of the distribution in question, and the
uniqueness property of Thm. 11 helps prove that those properties match a single structure, so there is
no danger of trying to construct a junction tree whose properties are a mix of properties of two different
structures.

2.1.3 Approximating distributions with junction trees

In practice, conditional independence is often too strong a notion: in real-life data the variables are rarely
exactly conditionally independent, especially when the conditioning set is small. However, often the
variables are almost conditionally independent (in other words, only weakly conditionally correlated)
and the probability distribution can be well approximated by a graphical model. It is desirable then to
extend the applicability and analysis of structure learning algorithms to such cases. A natural relaxation
of the notion of conditional independence is to require sets of variables to have low conditional mutual
information (-, - | -). Denote by H (A) the entropy of A and H(A|S) = H(AS)— H(S) the conditional
entropy of A given S. Then by definition

I(A,B|S)=H(A|S)— H(A|BS)>0. 2.3)

Conditional mutual information is always nonnegative, and zero if an only if (A L B | S). Intuitively,
I(A, B |S) shows how much new information about A can one extract from B if S is already known.
Using the low mutual information requirement instead of conditional independence, it is straightforward
to relax the definition of a distribution factoring according to a JT:

Definition 12. (T, C,S) is an AKU e-junction tree for P(X) iff for every edge (C' — S) € T connecting
a clique C and separator S it holds that I (X¢c_5, Xs—¢c | S) < e.

Definition 13. If there exists an AKU e-junction tree (T, C, S) of treewidth at most & for P(X), we will
say that P is k-JT e-representable.

One can guarantee, in terms of Kullback-Leibler divergence, the quality of approximation of P by a
projection of P on its e-junction tree:
Lemma 14. If (T, C,S) is an AKU e-junction tree for P(X), then KL(P, Prrcs)) < ne.

The bound of Lemma 14 means that if we have an AKU e-junction tree for P(X), then instead of per-
forming inference on P, which is intractable in general, we can use Pt cg) that both approximates P
well and admits tractable exact inference.

23

Algorithm 2.1: Naive approach to structure learning

Input: X, conditional mutual information oracle [(-, - | -), treewidth k, threshold &
1L« /'L is a set of “useful components”
2 for every S C X s.t. |S| =k do
3 for every Q C X_g do
4 if I(Q,X.QS ’ S) < ¢ then
5 L | add (5,Q) to L

6 return FindConsistentTree(IL)

In the remainder of the chapter, we will only consider AKU junction trees and drop the AKU prefix for
brevity.

2.2 Structure learning

In this chapter, we address the following problem: given data, such as multiple temperature readings from
sensors in a sensor network, we treat each datapoint as an instantiation X of the random variables X and
seek to find a good tractable approximation of P(X). Specifically, we aim to find a é-junction tree of
treewidth k£ for P with € as small as possible. Note that the maximal treewidth k& is considered to be a
constant and not a part of problem input. The complexity of our approach is exponential in k. In practice,
k < n.

The majority of existing approaches to structure learning belong to one of the two broad categories.

Score-based methods (for example, Teyssier and Koller, 2005; Choi et al., 2005; Singh and Moore, 2005)
assign a measure of quality to every structure and try to find the structure with maximal quality. Usually the
quality measure is some form of regularized likelihood. Exact maximization of the score is NP-complete,
so, as a rule, these algorithms use local search over the structures and can only find a local optimum.
Constraint-based algorithms (for example, Spirtes et al., 2001; Narasimhan and Bilmes, 2004) use hy-
pothesis testing to enumerate the (approximate) conditional independencies of the underlying distribution.
Constraint-based approaches then try to find a structure consistent with those independencies. Because
the data is finite, the independencies recovered by hypothesis testing are usually different from the true
ones. Thus most of the constraint-based approaches only have quality guarantees in the limit of infinite
data. Also, most constraint-based algorithms need to test whether (A L B | S) is true for sets A, B, S
such that |A| 4+ |B| + |S| = ©(n). The tests used to decide conditional independence with fixed accuracy
have complexity exponential in |A| + |B| + |S|, so most constraint-based approaches have complexity
that is exponential in n. In contrast, our algorithm, which is also constraint-based, has polynomial in n
complexity, as well as quality guarantees for the finite data case.

24

2.2.1 Constraint-based structure learning

Consider Alg. 2.1, a general naive constraint-based approach to learning junction trees of treewidth k. For
simplicity, let us start with a strict and unrealistic assumption: assume to have an oracle I (-,- | -) that
can compute the mutual information I (A, B | S) exactly for any disjoint subsets A, B, S C X. In Sec-
tion 2.2.6, we will replace this unrealistic oracle with estimation of mutual information from data.

Because the value of e for which an e-junction tree for a given distribution P(X) exists is in general not
known, Alg. 2.1 takes a parameter § > 0 and aims to find a d-junction tree. Recall that for a J-junction
tree (T, C,S), for every separator S € S and any clique C' € C that is directly connected to S it holds
that

I(Xcos, Xsoo | S) <o. (2.4)

Using the oracle I and observing that X¢_,5, Xg_,¢c and S are mutually disjoint and cover all of X, one
could exhaustively evaluate for every possible pair of sets (.5, () whether the necessary requirement (2.4)
holds, that is whether (.5, Q) can play a role of a pair (S, Xs_,¢) in some d-junction tree (c.f. lines 3—4
of Alg. 2.1). Since we are only concerned with maximal junction trees of treewidth k, the size of S has
to be |S| = k (line 2). Every pair (S, Q) such that* I(Q, X.gs | S) < § would be recorded into a list L
(line 5). Then every d-junction tree for P(X) will be consistent with L in the following sense:
Definition 15. A junction tree (T, C,S) is consistent with a component list L if and only if for every
separator S € S and clique C' € C such that S and C' are connected: (S — C) € T, it holds that
(S, Xs-c) € L.

Because L consists of pairs (.5, Q) such that I (Q, X_gs | S) < 4, any junction tree consistent with L is
by definition an J-junction tree for P(X). Therefore, it is sufficient to set § = ¢ and find a junction tree
consistent with the resulting I, which will then be an e-junction tree for P.

Let us denote FindConsistentTree a procedure that takes I and outputs a junction tree consistent with IL (or
a failure to find one). Such a procedure could be implemented, for example, using constraint satisfaction.
We provide a concrete form of FindConsistentTree in Section 2.2.4.

Unfortunately, using Alg. 2.1 directly is impractical because its complexity is exponential in the total
number of variables n. To make the approach outlined in Alg. 2.1 tractable, one needs to address the
following problems:

1. For every candidate separator S, there are 2"~ % possible subsets Q C X_g. Thus, for every candi-
date separator S, Alg. 2.1 requires O(2") mutual information computations (lines 3-4). (Addressed
in Section 2.2.3).

2. Every call to the mutual information oracle on line 4 of Alg. 2.1 involves n variables. In general,
the best known way to compute mutual information with fixed accuracy takes time exponential in
the number of variables. (Addressed in Section 2.2.2).

3. A concrete efficient form of FindConsistentTree is needed. (Addressed in Section 2.2.4).

In the rest of this section, we address all of the above problems. Then, in Section 2.2.6, we replace the
exact I (-, | -) oracle with estimation of mutual information from data. Together, our solutions form a
polynomial-time structure learning algorithm with quality guarantees.

3This paragraph contains the minimal information necessary to put our work in context. We defer the detailed discussion of

the related work (Section 2.5) until after the presentation of our approach.
*Notation note: for any sets A, B, C' we will denote A \ (B U C) as A-pc to lighten the notation.

25

| I(A, X 4y Y)=77? |

Figure 2.2: Illustration to the statement of Lemma 16. To upper-bound the conditional mutual information
between arbitrarily large sets A and X_4y given Y, one only needs to compute the mutual information
between the fixed-sized subsets such as W N Aand W N X_4y.

2.2.2 Global independence assertions from local tests

Testing for (approximate) conditional independence, which can be cast as estimating conditional mutual
information from data, is a crucial component of most constraint-based structure learning algorithms
(Narasimhan and Bilmes, 2004; Spirtes et al., 2001). Similarly to Alg. 2.1, constraint-based approaches
often need estimates of form I (A, B | S) for sets A, B and S of total size ©(n). Unfortunately, the
best known way of computing mutual information, as well as estimating I from data with fixed accuracy,
has time and sample complexity exponential in |A| 4+ |B| + |S|. Previous work has not addressed this
problem. In particular, the approach of Narasimhan and Bilmes (2004) has exponential complexity, in
general, because it needs to estimate I for sets of size ©(n).

Fortunately, our first new result (Lemma 16) shows that it is possible to upper bound the conditional mu-
tual information of two arbitrarily large sets A, X_ay (see Fig. 2.2 for an illustration) given a small
set Y, by only computing conditional mutual information for fixed-sized subsets of the large sets in
question. For example, in Fig. 2.2 one wold only need to compute mutual information values of form
I(WNAWNX_ay | Y) for small sets W instead of computing I (A, X_4y | Y') directly. The fact that
we only need to look at fixed-sized subsets reduces the complexity from exponential in | X| to polynomial.
The following lemma, stating the formal result, is not only the foundation of our structure learning ap-
proach, but is also applicable more broadly, to any setting where an upper bound on mutual information is
needed:

Lemma 16. Let P(X) be a k-JT e-representable distribution. LetY C X, A C X.y. If

VW C Xy st |W| < k+ 1, it holds that (AN W, X.ay N\W | Y) < 6,

then
IHA, X ay | Y) <n(e+)).

The tightness of the upper bound on the conditional mutual information depends, through the value of ¢
for which P(X) is k-JT e-representable, on how well the distribution P can be approximated by a junction
tree of treewidth k. However, it is important to notice that applying Lemma 16 does not require knowledge
of any &-JT for P(X), and no relationship of the conditioning set Y and elements of an (unknown) &-JT
for P(X) is needed. Moreover, the size of the set Y on which one conditions does not depend on the
treewidth k of the true e-junction tree (T, C, S) for P(X). Although in the rest of the chapter we will apply
Lemma 16 to sets Y of size k in an attempt to recover the “true” structure, one just as well use this upper
bound for smaller or larger candidate separators Y in alternative approaches to structure learning.

We can use Lemma 16 to bound (A, X_4y | Y) from above using O(kil) = O(nF*1) calls to the

mutual information oracle. Each call will involve at most |Y'| 4k + 1 variables. For discrete variables with

26

cardinality r, the total complexity is O (nkHr‘YHkH) . In Alg. 2.1, candidate separators .S play the role
of Y, s0 |Y| = k. Replacing the exact computation of I (A, X_45 | S) with the upper bound of Lemma 16,
we reduce the complexity of every call on line 4 from O (r™), exponential in n, to O (nkHr%“) ,
polynomial in n.

One can use Lemma 16 not only to discover weak conditional dependencies, but also to bound the quality
of approximation of P(X) by a projection on any junction tree (T, C,S):

Corollary 17. If for every separator S and clique C of a junction tree (T, C,S) such that (S — C) € T,
the conditions of Lemma 16 hold withY = S and A = Xs_,¢, then (T,C,S) is a n(e + §)-junction tree

for P(X).

2.2.3 Partitioning algorithm for weak conditional independencies

Now that we have an efficient upper bound for conditional mutual information, let us turn to reducing
the number of calls to this bound in Alg. 2.1 from exponential (2"~ for every candidate separator S) to
polynomial. For every S, Alg. 2.1 finds all subsets () C X_g such that

1(Q X.qs]8) <e 2.5)

For every S there may be, in general, exponentially many such subsets. For example, if every variable
x € X_g is conditionally independent of all other variables, that is, (z L X_.g, | S), then every @ C
X_g satisfies property (2.5). The fact that even enumerating all possible “good” subsets may require
exponential time suggests that it is necessary to relax the requirements of the problem to get a tractable
algorithm. We will use the following relaxation: instead of looking for all Q C X_g satisfying (2.5), look
for one partitioning Qg of X_g such that

e Elements of Qg do not intersect: VQ;,Q; € Qgs.t.i#j: Q;NQ; = 0.

* Qg covers all of X_g: Ugeg @ = X_g.

* V(@ € Qg, it holds that I (Q, X.gs | S) < €, where € is some function of ¢ (the concrete form will
be provided shortly).

Narasimhan and Bilmes (2004) considered the same relaxation and presented a solution that relies on
the existence of an efficient approximation of oracle I (-, | -) (as opposed to an efficient upper bound
that we provide). Their key observation was that the function Fs(Q) = I (Q, X.gs | S) is symmetric
submodular: Fg(A) = Fs(X.s4) and Fg(A) + Fs(B) > Fs(AU B) + Fg(AN B). A symmetric
submodular function of n arguments can be minimized using an algorithm by Queyranne (1998) at a cost
of O(n?) function evaluations. Starting with all variables X_g being in the same partition (Qg = {X_g}),
Narasimhan and Bilmes (2004) combine Queyranne’s algorithm with divide-and-conquer approach to
iteratively refine Qg. Unfortunately, their algorithm requires evaluations of mutual information for sets
of size ©(n). The best known way to estimate mutual information with fixed accuracy has complexity
exponential in n (for example, see Hoffgen, 1993). Therefore, algorithm of Narasimhan and Bilmes
(2004), in general, has complexity exponential in n.

“Low-Treewidth Conditional Independencies” partitioning algorithm

Our approach (Alg. 2.2), called LTCI for “Low-Treewidth Conditional Independencies”, in contrast to that
of Narasimhan and Bilmes (2004), has polynomial complexity, provided that the following two quantities

27

Algorithm 2.2: LTCI: find Conditional Independencies in Low-Treewidth distributions

Input: X, candidate separator S, oracle I (-, - | -), threshold &, max set size ¢

1 Qg ¢+ Ugex.o{z} // Qg is a set of singletons
// In the loop below, choose sets W in the order of increasing size

2 for W C X gs.t. |[W| <qgAND #Q € Qs s.t. W C Q do

3 if mingcw [(U Wy | S)>6 // Find min with Queyranne’s algorithm
4 then

5 L merge all Q; € Qg, s.t. Q;NW #)

6 return Qg

are O(1): size of separator S in question and the maximum size ¢ of subsets of X_g that LTCI considers.
In our structure learning algorithm, which uses Alg. 2.2 as a subroutine, these requirements hold: |S| = k
and g =k + 2.

To gain intuition for LTCI, suppose there exists a e-junction tree for P(X), such that S is a separator and
cliques C1, ..., Cqq are directly connected to S. Then the sets Xg_,c,, ..., Xs-¢, is partition X_g. For
example, in Fig. 2.3a, X_g is partitioned by Xs_,c,, Xs—c,, X5 5. Consider a set W C X_g such that
W has variables from more than one set Xg_,¢;:

W N Xgse, £0and W N Xe, g # 0.

By definition of an e-junction tree, I (Xs_,c;, X¢,—s | S) < e. Therefore, by the monotonicity® of
conditional mutual information, we have

IWNXsso, WNXe,s|S) <e. (2.6)

Notice that X_g = Xg_,c, U X¢,sgand W C X.g, so {W N Xg_c,, W N X 55} is a partitioning of
W. Such partitioning is shown by a dashed line in Fig. 2.3a. It follows from (2.6) that

AU C Wsit. I(U,W_]S) < e, namely U = W N Xs_,¢,. 2.7)

Note that Equation 2.7 is a necessary property of every W that includes variables from sets Xg_,¢, for
more than one clique C;. Therefore a contrapositive of (2.7),

YU C W it holds that I (U, W.i/|S) > e, 2.8)

is a sufficient condition for W to be within a set Xg_, ¢, for a single clique C;.

To find the partitioning, Alg. 2.2 starts with every variable of X_g forming its own singleton partition
(line 1). Alg. 2.2 then checks for every subset W C X_g of size at most ¢ whether condition (2.8) holds
(line 3). If yes, then all variables of W are assigned to the same partition. Being in the same partition is a
transitive relationship, so all partitions that have variables in W are merged (line 4).

An example trace of LTCI is depicted in Fig. 2.3b (for simplicity, the separator .S is not shown). The
pairwise values of I (-,- | S) are on the left. The threshold in this example is 6 = 0.35 and ¢ = 2. First,
LTCI checks the edge x5 — x3. The mutual information is above the threshold, so x> and 3 are merged.

> Monotonicity of conditional mutual information: for every P(X), every non-intersecting A, B, S C X and every C' C
A,D C Bitholdsthat I (C,D | S) <I(A,B|S).

28

x,
\
%

e
)Cj 3\
4N\ | —
X, X

(a) Intuition for LTCI. For every W that intersects (b) Example trace of LTCI. The values of pair-
Xs—sc; for more than one Cj, there exists a split wise conditional mutual information are on
(dashed line) into two weakly dependent subsets, the left. § = 0.35.

for example, B = W N C;, and W_g. Thus if no

such split can be found, W must be a subset of a

single Xg_,¢;.

splitof W with
low (e elS)

Figure 2.3

Then x1 — x3 is checked, the dependency strength is not high enough, so nothing happens. Finally, LTCI
checks 1 — x2, the mutual information is again above threshold, so {z;} and {223} are merged to form
a single connected component.

As Lemma 18 shows, the complexity of LTCI is exponential in k£ and ¢, but polynomial in n. Therefore,
for small k and ¢, LTCI is a tractable algorithm.

Lemma 18. The time complexity of LTCI with |S| = k is O (nq <q3 J %{1 + n)) , where J ,%r{] is the time
complexity of computing I (A, B | S) for |A| + |B| + |S| =k + q.

Partitioning quality guarantees

Suppose we call the partitioning algorithm for a separator S € S of a true e-junction tree (T, C,S) for
P(X). Itis natural to require that the partitioning algorithm returns partitions that are as close as possible
to the true sets of variables X g_, on the same side of separator S. In this section, we will show that even
though LTCI, in general, may not find exactly the correct partitions, it finds a solution close to optimal.
Let Qg be the result of calling LTCI for separator S € S of an e-junction tree (T, C,S). Then two types
of mistakes are possible in Qg with respect to (T, C, S):

1. There are variables x, y that are on the different sides of S in (T, C,S):

r € Xs0,,Y € Xsooy,t # J,

but x and y are in the same partition in Qg. We will say that a partitioning algorithm is correct if
and only if it never makes a mistake of this type. Formally, we have

Definition 19. A partitioning algorithm A is called correct if and only if for every distribution
P(X) with an e-junction tree (T, C,S), algorithm A called with S € S and the value of threshold
set to & = € will output a set Qg such that

V@ € Qg itholds that 3C' € Cs.t. (S—C) € Tand Q C Xg,c-

29

Figure 2.4: Example result of running a correct (Def. 19) partitioning algorithm for separator S = {z1x5}
for the junction tree in Fig. 2.1c.

A correct algorithm, called with with 6 = ¢, is guaranteed to output a refinement of the “true”
partitioning {Xsﬁcl, ... ,Xsﬂcds } . For example (see Fig. 2.4), for separator S = {zx5} of the
junction tree in Fig. 2.1c,

Xsooy = 46, X5y = 2277, X505 = X3.

Assume that the junction tree in Fig. 2.1c is an &-JT for P(X). Then, for separator .S, a possible
partitioning result of a correct algorithm with § = ¢ would be

Quyzs = {{za}, {w6}, {z227}, {23} }.

2. The other type of error is the opposite of type 1: there are variables z, y that are on the same side of
Sin (T,C,S): z,y € Xs—,c, but the partitioning algorithm puts = and y in different partitions in
Qg. Let us define the class of algorithms that guarantee a limited magnitude of such mistakes:
Definition 20. A partitioning algorithm A is called a-weak if and only if for every distribution
P(X) with an e-junction tree (T, C,S) of treewidth k, algorithm A, when called with a candidate
separator S of size k, maximum subset size ¢ > k -+ 1, and the value of threshold §, will output a
set Qg such that

V@ € Qg it holds that I (Q, X_gs | S) < a(e,).

Intuitively, an a-weak algorithm will not mistakenly put variables in different partitions, provided
that the dependence between those variables is strong enough.

It is desirable for a partitioning algorithm to be correct and a-weak for as small an « as possible, ideally
a = 0. For § = ¢ and a separator S from the true e-junction tree (T, C, S), by Def. 19, a correct algorithm
would always separate variables that are on different sides of S in (T, C,S). At the same time, provided
that there is no way to split the variables of Xg_,¢ into several weakly independent subsets (intuitively,
this requirement means that the conditional independencies of P(X) that are not reflected by (T, C,S)
are not very significant), a J-weak algorithm with § = ¢ will not separate the variables on the same
side of S. Therefore, a correct and J-weak algorithm would recover the true graph-theoretic partitioning
Qs = {Xss0ys-- - XS—>CdS }. LTCI, which we use instead of lines 3-5 in Alg. 2.1, satisfies the first
requirement (correctness) and a relaxed version of the second (§-weakness):

Lemma 21. For k-JT e-representable distributions, LTCI, for ¢ > k + 1, is correct and n(e + kd)-weak.

To summarize, we can use LTCI to efficiently find a partitioning Qg for any candidate separator .S. More-
over, if S is an actual separator of an e-junction tree (T, C,S), the partitioning Qg is guaranteed to be
similar to the graph-theoretical partitioning imposed by S on (T, C,S).

30

2.2.4 Implementing FindConsistentTree using dynamic programming

After the exhaustive tests for low conditional mutual information on lines 3—5 of Alg. 2.1 are replaced
with LTCI (Alg. 2.2), a concrete form of FindConsistentTree procedure is the only remaining step needed
to make Alg. 2.1 practical. For this purpose, we adopt a dynamic programming approach of Arnborg et al.
(1987). Narasimhan and Bilmes (2004) used the same dynamic programming algorithm to construct a
junction tree, but did not address the additional complications that arise in the structure learning setting
as opposed to the original problem that Arnborg et al. (1987) solved. This difference will be discussed in
detail after we review the intuition for the dynamic programming approach.

Intuition

Consider a junction tree (T, C,S). Let S € S be a separator, and C' € C be a clique directly connected
to S. Let Cs_,¢,Sg_c be the set of cliques (including C' itself) and separators reachable from C' with-
out using edge (S — (), and Tg_,¢ the set of edges from T that connect cliques and separators from
Cs—c,Sg—e. If (T, C,S) is an e-junction tree for P(X), then (Ts_,c, Cs—¢c,Ss—¢) is an e-junction
tree for P(Xs_,c U S). Moreover, the subtree (Ts_,c, Cs—c, Ss—c) consists of a clique C' and several
sub-subtrees that are each connected to C' via some separator other than S.

For example, in Fig. 2.1a the subtree over cliques C, Cs, Cy, C5 can be decomposed into clique C5 and
two sub-subtrees: one including cliques {C,Cy} and one with clique C5. This recursive structure sug-
gests a dynamic programming approach: to check whether a component (S, Q) € L can play a role of
(S, Xs—¢) in some junction tree, check if smaller already known subtrees, corresponding to subcompo-
nents (S, Q’), can be put together to form a larger subtree that covers exactly the variables of (.5, Q).
Formally, we require the following property defined in a recursive way:

Definition 22. (.5, Q) is L-decomposable if and only if SNQ = () and either |Q| = 1 (base case) or there
exist

1. x € Q (C = SU{z} would be the clique for which (S, Q) = (S, Xs-¢)).

2. D = Ui{(S;,Qi)}, D C L. D is the set of subcomponents with associated subtrees that together
will form a subtree over (5, Q).

such that

1. V(S;,Q:) € D, it holds that (S;, Q;) is L-decomposable: there is a subtree associated with each
(Si, Qi)-

2. U Qi=Q)\{x} : the subtrees cover exactly the variables of (SUQ) \ C.
(8:,Qq)€D

3. V(S;,Q;) € D, it holds that S; C S U {z} : each subcomponent can be connected directly to the
clique S U x.

4. Y(S;,Qi), (S;,Q;) € D, s.t. 4 # j, it holds that @Q; N Q; = () : ensure the running intersection
property within the subtree over S U Q.

The set D is called a decomposition of (S, Q).

Note that any component (.5, Q) with |Q| = 1 is trivially decomposable with D = () and z = @ — such
components correspond to leaf cliques of a junction tree. The dynamic programming algorithm (Alg. 2.3)

31

Algorithm 2.3: FindConsistentTreeDP (adapted from Arnborg et al. 1987)

Input: List L of components (S, Q)
for (S, Q) € L in the order of increasing || do
L D(S, Q) = FindDecomposition((S, Q),L)

if 35 s.t. for every Q € Qg it holds that D(S, Q) #) OR |Q| = 1 then
// Recursively unroll the decompositions to get a junction tree
T=0,C=0,S={S}

for every Q € Qg do

L {C",(T",C,S")} < GetSubtree((S, Q))

N =

w

N S A

C+ Cul, S« SUS, T« TUT U((S -C"
8 | return (T,C,S)

9 else return failure

checks for all (S, Q) € L, in the order of increasing size of @), whether (S, @) is LL-decomposable and
records the decomposition whenever it exists.

Suppose a separator S is found such that for every @ € Qg the pair (S, @) is L-decomposable. Then
a junction tree consistent with IL can be constructed by creating a separator node S and connecting the
subtrees corresponding to every (S,Q) € L to S, which is exactly what Alg. 2.3 does on lines 4-8. To
guarantee the running intersection property in the result of Alg. 2.3, we need to make mild assumptions
on the contents of IL (these assumptions will hold for our method of constructing IL):

Lemma 23. Suppose the set L is such that

e Forevery (S,Q) € L it holds that |S| = k.
e For every pair (S,Q"), (S, Q") € L such that Q" # Q" it holds that Q' N Q" = .
® For every candidate separator S it holds that Ug s 1. (5,0)eL.l = X-s-
Then Alg. 2.3 returns either a failure or an AKU junction tree of treewidth k over X consistent with L.
Observe that if Qg is the result of calling LTCI for candidate separator .S, then the list
L= U {(@.9)}
(5,Q) 8.t |S|=k,Q€Qs

satisfies the conditions of Lemma 23. Indeed, given a separator .S, one can verify that throughout the
execution of Alg. 2.2 it holds that the elements of Qg are mutually exclusive and cover all of X_g. Because
LTClI is only called for every separator .S once, partitions () corresponding to the same S remain mutually
exclusive in L.

Greedy construction of decompositions

Note that Alg. 2.3 depends on the ability to check whether (S, @) is L.-decomposable (line 2). Unfortu-
nately, this problem, in general, is provably hard. Suppose we fix the variable x in the notation of Def. 22.
We can form a set L' C IL of all pairs (S, Q") that can possibly participate in a decomposition of (S, Q)
with clique Sz by checking the necessary conditions:

32

Algorithm 2.4: GetSubtree
Input: Decomposable component (.S, Q)
17 Q\ U gens,Q @
2 T=0,C={Sz},S=10
3 for every (57,Q") € D(S,Q) do
4 if S’ ¢ S then
5 LAddS’toS, (Sz—5)toT

{C",(T",C",S')} «+ GetSubtree((S’, Q’))
7 | CCUC, S+SUS, T« TUT U(S —C)

8 return {Sz, (T,C,S)}

=)

Algorithm 2.5: FindDecompositionGreedy
Input: Pair (S, Q), list L of pairs (S’, Q’), already known decompositions D(S’, Q')

1 L'+ {(9,Q) e L|D(5Y,Q) is already known }

2 if || = 1 then

3 ‘ D(S, Q) = 0, mark (5, Q) as L-decomposable

4 else

5 for r €) do

6 D(S,Q) =0

7 for (5',Q') € L' s.t. do

8 if S’ C StAND Q' CQ\ (ac U U Q”) then
(87,Q")eD(S,Q)

9 L add (57,Q") to D(S, Q)

10 if U Q' = Q \ z then
11 mark (S, Q) as L-decomposable
12 | Dis a valid decomposition of (S, Q); return D(S, Q)

13 did not find a decomposition for (S, Q) in L; return failure

e (5,Q) is L-decomposable.
e S C Su{z}.
* Q@ CQ\{z}.

Denote Q" = U/ oner/{Q'}- Then finding the decomposition of (S, Q) is equivalent to finding a subset
Q" C Q' such that the elements of Q" do not intersect and cover all of Q)_,.. The latter problem is known
as exact cover and is, in general, NP-complete (Karp, 1972). However, by placing additional restrictions
on the structure of I, one can identify tractable subclasses of the problem. For example, Arnborg et al.
(1987) provide a method to check for decomposability in a restricted setting: their approach requires that
Q' is such that

VQL, Q4 € Q' s.t. Q) N QY # (it holds that Q) C Q5 or Q) C Q. (2.9)

33

Algorithm 2.6: Efficient approach to structure learning

Input: X, oracle I (-, - | -), treewidth k, threshold 6, L. = ()
1 for S C X s.t. |S|=Fk do
2 for Q € LTCI(X,S, 1,0,k + 2)do
3 | L+ LU(S,Q)

4 return FindConsistentTreeDPGreedy(1L)

Provided that property (2.9) holds, whenever a suitable Q" exists, it can always be constructed by taking
Q' and removing all sets)} € Q' that have a superset Q; € Q,Q; C Q;. Because Arnborg et al. (1987)
used a graph-theoretical separation oracle with a fixed graph to find components (.S, Q)), they were able to
guarantee property (2.9).

Unfortunately, to use the separation oracle from Arnborg et al. (1987) one needs a partitioning oracle that
for every candidate separator S returns partitioning components (.S,) consistent with the same one graph
shared across all possible S. Such an oracle would guarantee property (2.9). However, the separation
oracle based on conditional mutual information, which we use, may return partitionings not consistent
with any single graph for different separators and the property (2.9) does not necessarily hold. Therefore,
we need a more general method to find decompositions than Arnborg et al. (1987). The previous work on
learning limited-treewidth models has not addressed this problem. In particular, Narasimhan and Bilmes
(2004), in a setting similar to ours, rely on the method of Arnborg et al. (1987), which is not guaranteed
to work.

To keep complexity polynomial, we use a simple greedy approach (Alg. 2.5): given a candidate pair
(S,Q), for every x € @, starting with an empty candidate decomposition D, add (S’,Q’) € L to D
if parts 1,3 and 4 of Def. 22 hold for (S;, Q;). If eventually Def. 22 holds, return the decomposition D,
otherwise return that no decomposition exists. We call the resulting procedure FindDecompositionGreedy,
and Alg. 2.3 with greedy decomposition check, correspondingly, FindConsistentTreeDPGreedy.

Lemma 24. For separator size k, time complexity of FindConsistentTreeDPGreedy is equal to O(nk+2k).

Combining Alg. 2.2 and FindConsistentTreeDPGreedy, we arrive at Alg. 2.6, a polynomial-time structure
learning algorithm. Overall complexity of Alg. 2.6 is dominated by Alg. 2.2:
Proposition 25. For separator size k, time complexity of Alg. 2.6 is O (n2k+2 (k?’J%_{Q + n)) .

2.2.5 Putting it together: quality guarantees for the case of infinite samples

In general, FindDecompositionGreedy may fail to find a decomposition even when one exists. For ex-
ample, suppose for a component (S, Q) and a fixed x there are 3 candidate subcomponents (S1,Q1),
(SQ, Qz), (Sg, Qg) € L such that 57,52, 53 C S U {:E} and

QiNQ2=0, QrUQ2=Q\{z}, Q3NQ1#0, Qz3NQ2#0.

The relationship between)1,)2 and ()3 is depicted in Fig. 2.5b. One can see that a decomposition
D(S, Q) = {(S1,Q1), (S2,Q2)} exists. However, suppose Alg. 2.5 first adds (S3, Q3) to the candidate
decomposition. Then neither (S7, Q1) nor (S2,Q2) can be added afterwards, so the existing decompo-
sition will be missed. Therefore, FindConsistentTreeDPGreedy may miss a consistent with IL junction

34

N

7
1
1
f
f
i
1
1
1
f
f
i
q
1
1

<:l Q,

(a) An example of a nonmax- (b) A potentially problematic in-
imal junction tree. stance of the exact cover problem.

Figure 2.5

tree, and consequently fail to output a junction tree even if the distribution P(X) is k-JT e-representable.
However, there is a class of distributions for which Alg. 2.6 is guaranteed to find a junction tree.

Intuitively, FindConsistentTreeDPGreedy will always find a junction tree if

1. LL contains the component (S, Xg_,¢) for every directly connected pair of S € S and C' € C from
the “true” (T, C,S).

2. There are no components (S’, Q') in LL that can interfere with the “true” decomposition of Xg_,¢
in the way that (S3, 3) does in the above example.

Indeed, if both requirements hold, then the greedy decomposition check will succeed for every Xg_.c,
and (T, C, S) will be found, or some other junction tree (T, C’, S’) will be found before (T, C,S). In both
cases, Alg. 2.6 will return a junction tree. One way to ensure that the above properties hold is to require
(T, C,S) to be sufficiently strongly connected:
Definition 26. A junction tree (T, C,S) for P(X) is a-strongly connected if and only if for every S € S,
C € Citholds that

VYU C C.-githolds that I (U,C.sy | S) > «a. (2.10)

Intuitively, in a strongly connected junction tree instantiating a separator .S makes variables on the different
sides of S weakly dependent, but the variables within every clique remain strongly dependent: there is
no way to split any clique into two weakly dependent parts.® Note that the clique C and separator S in
Def. 26 do not have to be directly connected in (T, C,S); property (2.10) has to hold for every pair of C
and S. Also, observe that Def. 26 is stronger than similar definition of strong connectivity by Narasimhan
and Bilmes (2004): instead of requiring high conditional mutual information within every clique (2.10),
Narasimhan and Bilmes (2004) only require high conditional mutual information within full connected
components X g_,c. However, both for our structure learning approach and for that of Narasimhan and
Bilmes (2004), strong connectivity in the sense of Def. 26 is in fact needed to guarantee that a junction
tree will be found.

If there exists a maximal junction tree (T, C,S) for a distribution P(X) that both approximates P(X)
well and is, at the same time, sufficiently strongly connected, then LTCI is guaranteed to find the correct

®It is still possible for a subset of a clique to consist of two weakly dependent parts, this point is discussed in detail in
Section 2.2.5.

35

partitionings Qs = { X g_,c} for every separator S € S, and Alg. 2.6 is guaranteed to find a good tractable
approximation for P(X):

Theorem 27. If there exists a maximal AKU e-junction tree (T, C,S) of treewidth k for P(X) such that
(T, C,S) is (k + 2)e-strongly connected, then Alg. 2.6, called with § = ¢, will output a n(k + 1)e-JT for
P(X).

Notice that the combination of maximality and strong connectivity required by Theorem 27 places signifi-
cant restrictions on the space of learnable junction trees. Essentially, the conditions of Theorem 27 require
the order (number of variables involved) of probabilistic dependencies to be the same throughout the true
model. For example, the junction tree in Figure 2.1c¢ is maximal, but a similar one in Figure 2.5a is not
(because clique C and separators {x2} and {z4} are non-maximal). Therefore, even when both JTs are
strongly connected, Theorem 27 only guarantees that a good approximation to the JT in Figure 2.1c will
be learned, but makes no guarantees about the JT in Fig. 2.5a. Extending the guarantees of Theorem 27 to
nonmaximal junction trees is an important direction for future work.

Even though the theoretical guarantees of Theorem 27 are limited to the maximal junction trees, in Sec-
tion 2.4.1 we demonstrate empirically that a variant of Alg. 2.6 can be successfully applied to learning a
wide range of non-maximal distributions. Our empirical results suggest the feasibility of generalizing our
theoretical guarantees beyond the case of maximal JTs.

Learning models of larger than optimal treewidth

Directly applying Theorem 27 to guarantee the success of Alg. 2.6 requires knowledge of the treewidth &
of the “true” e-junction tree (T, C,S). However, in practice, the “true” treewidth of the distribution is usu-
ally unknown. On the other hand, it is known that for every m < k, any distribution that factors according
to a (not necessary maximal) junction tree of treewidth m also factors according to some junction tree
of treewidth k. Moreover, it is straightforward to construct such a JT of treewidth £ as follows. Denote
C™ € C to be a clique of size m + 1 in the original (T, C,S) of treewidth m. Choose an arbitrary subset
U C X_.¢m such that [U| = k — m and add U to every clique and separator of (T,C,S). Denote the
resulting junction tree to be (T',C’,S’). One can see that C’ contains the clique C"™U of size k 4+ 1 and
no cliques of size larger than k + 1, so the treewidth of (T’,C’,S') is k. Let us show that (T’,C’,S’) is
also an e-junction tree. Take any S’ € S’ and C” € C’ directly connected to S’. Denote S and C' to be the
counterparts of 5" and C” in (T, C, S). It holds that

I (XS’%CUXC/%S’ | S,) =1 (Xso\Us, Xoss\Us |UsS) <I(Xsoo, Xoss | S) =c¢,

where the inequality follows from the chain rule (A.1) and monotonicity (A.3) of conditional mutual
information. Therefore, whenever (T, C,S) is an e-JT, (T',C’,§') is also an e-JT.

For example, in Figure 2.6, we show the results of increasing the treewidth of a junction tree from Fig 2.6a
using U = {c} (Fig 2.6b) and U = {¢, d} (Fig 2.6¢).

Given that “fattening” the model does not decrease the approximation quality, a natural approach to deal-
ing with unknown treewidth is to learn models with the highest treewidth that is feasible given the available
data and computational resources. Therefore, it is desirable to have a guarantee that Alg. 2.6, called with
treewidth parameter k, will find a high-quality structure whenever the true distribution factors according
to some strongly connected maximal junction tree (T, C,S) of treewidth m < k. Unfortunately, a fatten-
ing of (T, C,S) is not necessarily strongly connected, even when (T, C, S) itself is (see Appendix A.1 for

36

(abcde] (bcdeg]
C

4 CS

[a,c,d,h,w] [a,c,d,e,h] [c,d,e,h,v]

C C, Co
acdh] [cdeh
[a,c,d,h,x] [c,d,e,h,z]
ClO

(a) An Almond-Kong JT. (b) An junction tree obtained (c) An junction tree obtained from
Rounded rectangles are from thatin (a) by adding cto thatin (a) by adding c and d to every
cliques, regular rectangles every clique and separator. clique and separator.

are separators.

Figure 2.6: Increasing treewidth of junction trees while preserving approximation quality.

an example). Therefore, the guarantee of Theorem 27 does not apply to fattened JTs directly. However,
for the special case of (T, C,S) that can be fattened to treewidth k using all of the variables of several
leaf subtrees attached to the same separator as the extra variables set X, we provide such a learnability
guarantee:

Theorem 28. Suppose there exists a maximal AKU e-junction tree (T™,C™,S™) of treewidth m < k for
P(X) such that

1. (T™,C™,S™) is (k + 3)e-strongly connected.

2. There exists a separator S™ € S™ and cliques C1", ..., Ci" directly connected to S™* such that

1 Xgmeyom = (k—m).
Then Alg. 2.6, called with 6 = € and treewidth parameter k, will output a n(k + 1)e-JT for P(X).

Note that the strong connectivity requirement in condition 1 of Theorem 28 depends on the treewidth k of
the model we are trying to learn, and not on the treewidth m of the “true” junction tree. Also observe that
the condition 2 of Theorem 28 is not vacuous. For example, the junction tree in Fig. 2.6a can be fattened
according to the requirements of Theorem 28 by one variable using separator S™* = {a,b} and clique
C" = (4, or by two variables using separator S = {a,b} and cliques C* = C; and C3* = (3, but
not by three variables. However, for any maximal AKU junction tree, it is always possible to increase
the treewidth by one or two variables according to the requirements of Theorem 28. Therefore, as long
as the original JT is sufficiently strongly connected, learning a JT with treewidth higher by one or two
is safe in the sense of graceful degradation of guarantees: increasing treewidth by one results in relaxing
the quality guarantees on the result by ne. Moreover, depending on the structure of the true junction tree,
larger increases of treewidth are often possible.

Setting k& = m in Theorem 28 yields a very similar statement to Theorem 27, because the requirement
of having cliques C7", ..., C}“ such that > 7_; X gmx_cm = k — m is satisfied trivially by an empty set
of cliques. The only difference is in the required level of strong connectivity of the “true” junction tree:

37

(k + 2)e for Theorem 27 versus (k + 3)e for Theorem 28. The extra ¢ of strong connectivity is necessary
for k > m.

To summarize, Theorem 28 provides a graceful quality degradation guarantee on the learned structures
with respect to the treewidth parameter of the algorithm and shows that it is often possible to learn high-
quality junction trees even when the treewidth of the “ground truth” structure is unknown. In particular, if
the target distribution P(X) factorizes exactly according to a thin junction tree, learning a higher treewidth
JT often leads to no result quality decrease at all’, because € = 0. Although Theorem 28 does not extend
the learnability guarantees beyond the set of maximal junction trees, it does allow for learning the models
for distributions of different “true” treewidth values m using the same result treewidth k. In other words,
the requirement for all the dependencies within the same model to have the same order m is not relaxed,
but the order of dependencies across the different true models can be different.

Strong connectivity is a weaker property than a perfect map

The reader may find the definition of strongly connected junction tree similar to that of a perfect map
(P-map); the latter property is also often called faithfulness of a distribution to a structure (c.f., Spirtes
et al., 2001). Recall the P-map definition (generalized to use conditional mutual information):

Definition 29. A junction tree (T,C,S) is an a-perfect map for P(X) iff for every non-intersecting
A,B,S C X such thatin (T, C,S) the set S does not separate A from B, it holds that I (A, B | S) > a.

Intuitively, this means that the distribution P(X) possesses only the (approximate) conditional indepen-
dencies that are encoded in its perfect map (T, C,S) and no others. It is easy to see that every a-perfect
map is also a-strongly connected by taking C', X, S from Def. 26 and setting in Def. 29 A = U, B = C_gp.
Importantly, the reverse does not hold: a-P-map is a stronger property than a-strong connectivity. In par-
ticular, if (T, C,S) is a P-map, then property (2.10) holds not only for cliques C, but also for all subsets
of C' down to pairwise dependencies.

In contrast, a-strong connectivity does not require anything of the lower-order dependencies within a
clique. In fact there may be none at all. For example, if the variables of a junction tree in Fig. 2.1c
are binary and the conditional distribution P(z1x2x7 | z4x5) is such that x7 = XOR(z1,z2) and z;
and x, are independently uniformly distributed, then pairwise conditional mutual informations, such
as I (z1,x9 | z4x5) are all equal to 0, meaning exact conditional independence. At the same time,
I (21,2927 | x4w5) = 1. Thus the clique C' = (x1x927) and separator S = (x425) do not satisfy the
definition of an a-perfect map, for any o > 0, but satisfy the definition of an a-strongly connected junc-
tion tree for 0 < o < 1.

To summarize, the guarantees of Theorems 27 and 28 are more widely applicable than just the (quite nar-
row) class of distributions with perfect maps. This is in contrast to many other constraint-based algorithms,
such as that of Spirtes et al. (2001), that require the underlying distribution to have a P-map.

"Here, we assume perfect mutual information measurements and do not consider the question of sample complexity. Insuffi-
cient data can lead to worse overfitting with larger treewidth models, because of the larger number of required parameters. The
question of sample complexity is addressed in the next section.

38

2.2.6 Sample complexity and PAC learnability guarantees

So far we have assumed that a mutual information oracle I (-, - | -) exists for the distribution P(X) and
can be efficiently queried. In real life, however, one only has data (that is, samples from P(X)) to work
with. Fortunately, it is possible to estimate (A, B | S) from data with accuracy +A with probability
1 — =, using number of samples and computation time polynomial in % and log% (but exponential in
|A| + |B| + |S|). In this section, we will show that, using straightforward estimation of I (-, | -) from
data, our structure learning approach has polynomial sample complexity. To simplify discussion, we will
concentrate on the sample complexity in the setting of Theorem 27, that is, assume that the treewidth of
the “true” junction tree is known a priori. Similar guarantees can be extended to larger treewidth values
of Theorem 28 in a straightforward manner.

Recall from (2.3) that conditional mutual information can be expressed as a difference of entropies. The
following result can be then adapted directly for estimating I (-, | -):

Theorem 30. (Hoffgen, 1993). For every A,~y > 0, the entropy of a probability distribution over m
discrete variables with domain size r can be estimated with accuracy A with probability at least (1 —)

using f(m,r,A;v) = O <i—;ﬂ log? (%) log <§>> samples from P and the same amount of time.

Notice that the complexity of this estimator is polynomial in % and log £, but exponential in the number
of variables m. However, since our approach only needs estimates of I(A, B | S) for |A| + |B| + |S| <
m = 2k + 2, in our algorithm m is a constant. Therefore, employing the estimator from Thm. 30 keeps
the complexity of our approach polynomial.

Replacing the ideal exact estimator of 7 (-, - | -) with a probabilistic one affects the performance guarantees
of our approach: it is now only possible to guarantee success with high probability 1 — . Also, it is
necessary to allow for possible inaccuracies of the estimate within =A range. Taking these two factors
into account, after working out technical details we get a variant of Theorem 27:

Theorem 31. If there exists a maximal (k + 2)(e + 2A)-strongly connected AKU e-junction tree of
treewidth k for P(X), then Alg. 2.6, called with § = ¢ + A and I (-,- | -) based on Thm. 30, using
u= f(2k+2,7, A, —+3) samples and O(n* 2 (uk® + n)) time, will find a (k + 1)n(e + 2A)-junction
tree for P(X) with probability at least (1 — 7).

A particular implication of Thm. 31 is that if P(X) is exactly representable by a maximal junction tree
(T, C,S) of treewidth k& (that is, if ¢ = 0), and (T, C,S) is strongly connected, it is possible to achieve
an arbitrarily good approximation with probability arbitrarily close to one, given the amount of time and
data polynomial in % and log % In other words, the class of strongly connected maximal junction trees is

probably approximately correctly (PAC) learnable:®
Corollary 32. If a maximal c-strongly connected AKU junction tree of treewidth k for P(X) with o > 0

exists, then for any (8 € (0, an2@], Alg. 2.6, using threshold value § =

k+2 2(k+1)n2>

0] ("4]“26T24k+4 log? ”QETk log ”Trk> samples from P(X) and O ("2k+6§;7"4k+4 log? "275716 log ”%k) compu-
tation time, will learn, with probability at least 1 — , a junction tree (T',C',S') such that
KL(P, P v 1)) < B.

8A class P of distributions is PAC learnable if for any P € P,§ > 0, > 0 there exists a learning algorithm that will output
P’ : KL(P, P'") < & with probability 1 — - in time polynomial in % and log %

39

2.3 Scaling up

Our structure learning algorithm (Alg. 2.6) requires the value of threshold § as part of the input. To get the
tightest possible quality guarantees on the resulting structure, we need to choose the smallest ¢ for which
Alg. 2.6 finds a junction tree. A priori, this value is not known, so we need a procedure to choose the
optimal 4.

A possible way to select ¢ is binary search. The only input necessary for binary search is the range in
which to search for the value §. Because I (-, - | -) > 0, it is natural to select 6 = 0 as the lower bound of
the range. The upper bound can also be chosen independently of the distribution P(X), by exploiting the
fact that for discrete random variables with domain size r, for any distribution P(X), variable = and set
S it holds that I (z, X_g, | S) < logr. Therefore, for every candidate separator .S, LTCI with threshold
0 > logr will output partitioning Qg consisting only of singleton sets. Consequently, for any § > logr
Alg. 2.6 is guaranteed to find a junction tree (with all cliques connected to the same separator). Therefore,
we can restrict binary search to range ¢ € [0, logr].

Unfortunately, one problem remains with threshold selection using binary search: there is no guarantee
that the smallest possible threshold, or the thresholds prescribed by Thm. 27 or Thm. 31, will be found.
The reason for it is that neither Thm. 27, nor Thm. 31 guarantee that a junction tree will be found for all
values of § above a certain threshold. Instead, they only guarantee success for a certain single value of ¢.
More generally, the success of Alg. 2.6 is not monotonic in §. Therefore, Alg. 2.6 with threshold selection
using binary search can give arbitrary bad results even if sufficiently strongly connected junction tree
exists for the true distribution: the guarantees of Thm. 31 and Corollary 32 do not hold for Alg. 2.6 with
0 unknown a priori.

2.3.1 Finding the optimal threshold

Fortunately, it is possible to find the optimal value of § efficiently. In this section, we will demonstrate
that although threshold ¢ can take any nonnegative real value, for every distribution P(X) it is sufficient
to only look at a polynomial number of different threshold values to obtain the full range of the outcomes
of structure learning.

Observe that there is only one place where 0 is used: on line 3 of Alg. 2.2 that partitions X_g given a
candidate separator .S. If for every candidate S the partitioning results Q_g are the same for two different
values of d, then these two threshold values are indistinguishable from the point of view of the rest of the
Alg. 2.6. For the remainder of the chapter, we return to the assumption that an exact mutual information
oracle exists. It is straightforward to replace the idealistic exact oracle with the realistic estimator from
Thm. 30, and to extend theoretical results in the same way as Thm. 31 extends Thm. 27.

The partitioning results Q¢ depend only on the outcomes of the comparisons between § and

mingcw I (U, Wy | S) for all S of size k and W of size at most k + 2. Therefore, if we were to start
with 6 = 0 and continuously increase 9, the only values at which the partitionings Qg can possibly change
are exactly

{Unéi{le(U,W_U 1S)|SCX,WCXg,|S|=k|[W| < k+2}. @2.11)

There are 0(2 k’:_Q) = O(n2k+2) (a polynomial number) possible combinations of W and S. Therefore,

it is possible to first compute all the threshold values (2.11) at which the outcome of the partitioning

40

Algorithm 2.7: Efficient structure learning with optimal threshold selection

Input: X, conditional mutual information oracle 7 (-, - | -), treewidth k
1 W0
2 forevery S C X, W C X.gs.t. |S|=k,|[W|<k+2 do
3 6+ minUCwI(U, W | S)
4 add (9;S) to W

5 for every S C X s.t. |S| =k do

6 | Qs {Xs}

7 for (6;.5) € W in the order of increasing 6 do

8 Qs <+ LTCI(X,S,1,0,k+2)

9 (T,C,S) < FindConsistentTreeDPGreedy(UsQg)
0 if (T, C,S) # failure then

11 | return (T, C,S)

=y

algorithm (Alg. 2.2) may change, and then to try every one of those values, in the increasing order, as
an input to Alg. 2.6. This approach is guaranteed to find the optimal threshold at the cost of a factor
of O(n?*2) increase in computation time as compared to Alg. 2.6, so the overall time complexity will
remain polynomial.

Although the optimal threshold § can be found in polynomial time, a major inefficiency remains in the
approach described above: for every value of 4, the outcome of the comparisons on line 3 of Alg. 2.2
changes for only one pair of X and S (excluding degenerate cases). However, re-running Alg. 2.6 for
every value of ¢ will lead to performing O (n?#+2) such comparisons, a major waste of computation time.
Fortunately, this problem is easy to fix: simply record Qg between invocations of Alg. 2.6 for different
values of § and only recompute those Qg that may actually differ for the new and old values of §. This
approach is summarized in Alg. 2.7. The complexity of Alg. 2.7 can be calculated as follows:

Stage Complexity
Compute, cache, sort all necessary mutual informations O(n%”(J% Jfrzkf3 + klogn))
Do for every § = mingcw I (U, Wy | S) O(n?+2)
Recompute the corresponding Qg using LTCI. O(nF+3)
Run GetConsistentTreeGreedy O(nF+?)
Total O (n* 231 k3 + n3F)

Summarizing the properties of Alg. 2.7, we get:

Lemma 33. Alg. 2.7 has time complexity O (anHJ%f_Qk?’ + n3k+5) . If there exists an AKU e-junction
tree (T,C,S) for P(X) such that (T,C,S) is (k + 2)e-strongly connected, then Alg. 2.7 will output a
é-junction tree for P(X) with € < n(k + 1)e.

2.3.2 Redundant edges: only looking at dependencies that matter

The complexity of Alg. 2.7 can be improved even further. In this section, we will show that for the vast ma-
jority of the values of § used by Alg. 2.7 the partitioning Qg right before a call to LTCI on line 8 and right
after the call to LTCI will be the same. For such values of §, one can skip calling FindConsistentTree,

41

Figure 2.7: An example of evolution of partitioning Qg.

because the input to FindConsistentTree will not have changed since the previous call. We will also
show how to identify such redundant values of J efficiently, without having to call LTCIL.

It will be useful for the remainder of this section to think of partitions) € Qg as of connected components
of a hypergraph over variables X_g with hyperedges Wg. Every hyperedge W € Wg of the hypergraph
is annotated with its strength:

strengthg(W) = (}nciglvl(U, W | S)>0.

Let Wg[d] be the set of all hyperedges W C X with strength greater than ¢ and such that || < ¢:
Ws[o] ={W | W C X g, |[W| < g,strengthg(W) > 6} (2.12)

Observe that for every pair 1, d2 such that §; > 09 it holds that Wg[d1] € Wg[d2]. In particular, for every
d > 0 it holds that Wg[6] C Wg[0]. To simplify the discussion, we will assume for the remainder of
this section that no two hyperedges of nonzero strength (that is, no two edges from Wg[0] have the same
strength). This uniqueness assumption, however, can be relaxed without affecting any of the results of this
section.

Let us set the initial value of § to) = 0 and consider the evolution of connected components Qg of a graph
with nodes X_g and hyperedges Wg[d] as § increases. As the threshold grows, the hyperedges with the
least strength disappear, potentially splitting a connected component () € Qg into several smaller ones.
Fig. 2.7 shows an example of the evolution of Qg for X_g = {x12923} if only pairwise dependencies are
taken into account.

Observe in Fig. 2.7 that the removal of the hyperedge ;1 — x3 did not affect the connected components.
We will call such hyperedges redundant. Analogously, when the removal of an edge (with edge removals
ordered by the increasing strength) changes the connected components Qg for separator S, we will call
such edge non-redundant for that separator. For example, the edge =1 — x2 in Fig. 2.7 is a non-redundant
edge. Denote NRIDg to be the set of non-redundant edges for separator S.

Notice that there are at most |X_g| — 1 non-redundant edges: as ¢ increases, every removal of a non-
redundant edge increases the number of connected components in Qg by at least one, and after all edges
are removed, Qg consists of | X_g| singleton sets. Now, observe that typically a candidate separator S
does not partition the variables of X_g into several conditionally independent sets (in the extreme case,
for a distribution faithful to a given junction tree (T, C,S), only S € S involve non-trivial conditional
independencies). Therefore, usually Wg[0] contains O(kfb) = O(n**+2) hyperedges. Since there are
at most |X_g| = O(n) non-redundant edges, the vast majority of hyperedges from Wg[0] typically are
redundant. In other words, when the threshold ¢ crosses the value 6 = strengthg(W) for some S and
W, then Wg[d] will necessarily change, but in most cases all connected components Qg will remain the
same. Because the rest of the structure learning algorithm only depends on Qg, we would like to identify
the non-redundant hyperedges and skip the runs of LTCI and dynamic programming if the partitionings
Qg do not change.

42

Algorithm 2.8: Discover the non-redundant hyperedges

Input: X, mutual information oracle I (-, - | -), separator S, max hyperedge size g

Wg 0

for every W C X_g s.t. |[IW| < ¢ AND strengthg(W) > 0 do

3 add W toWg

// Below, strengthg(W) is computed using oracle I (-, - | -) and Queyranne’s algorithm
4 for every Y € Wy s.t. strengthg(Y) < strengthg(W), includingY = W, do

5 if Y is redundant w.rt. S and Wg as per Def. 34 then

L L remove Y from Wg

N =

7 return Wg

Intuitively, an edge W is redundant whenever there exist stronger edges that connect all the variables of
W (and probably also some other variables). Formally, we have

Definition 34. A hyperedge W is redundant w.r.t. separator S and set of hyperedges W iff either
strengthg (W) = 0 or there exists a set of hyperedges R(W | S, W) = {W1,...,W,,} C W, which we
call a redundant set for W w.r.t. S and W, s.t.

e W CU™ W,
e forevery W; € R(W | S, W) it holds that strength(W;) > strengthg(W),

e All the nodes w € W belong to the same connected component of a graph with hyperedges R(W |
S, W).

We will mostly discuss redundancy w.r.t. S and W = Wg[0]. To lighten notation, in the remainder of the
chapter we will only explicitly specify W if W # Wg[0].

Observe that redundancy is monotonic in the set W: for any W;, Wo s.t. W; C W, it holds that
W is redundant w.r.t. S and Wy = W is redundant w.r.t. S and W. (2.13)

Using the monotonicity of hyperedge redundancy, one can construct an algorithm (Alg. 2.8) to find all non-
redundant edges of size at most ¢ for a particular separator S (denoted Ng). Throughout its execution,
Alg. 2.8 maintains a set Wg of candidate non-redundant edges. For every edge W not seen previously,
Alg. 2.8 tries to determine (a) whether knowing W helps one conclude that any of the edges in Wg are
redundant and (b) whether W itself is redundant (lines 4-5). The redundancy check (line 5) is performed
only on edges with strength at most strength (W) (line 4), including W itself. By definition, W cannot
be in a redundant set of any edge stronger than itself, so not checking stronger edges for redundancy
saves computation without affecting the result. One can prove that Alg. 2.8 returns exactly the set Ng of
non-redundant hyperedges:

Lemma 35. Alg. 2.8 has time complexity O (nqq3 J q]ﬂ: + nq+2q> (the first component is the complexity

of computing strengthg(-) of the hyperedges, the second—of checking Def. 34 on line 5). Alg. 2.8 outputs
Wg = Ng, where Ng id the set of non-redundant hyperedges for separator S.

Using Alg. 2.8, we can modify the algorithm that finds the optimal threshold (Alg. 2.7) to skip the attempts
to find partitioning Qg using LTCI when it is known that only redundant edges disappear from Wg. The
new algorithm (Alg. 2.9) is much more efficient:

43

Algorithm 2.9: Efficient structure learning exploiting non-redundant hyperedges

Input: X, conditional mutual information oracle 7 (-, - | -), treewidth k
N« 0
for every S C X s.t. |S| =k do

Ng «+Alg. 2.8(X, 1,5,k +2)

for every W € Ng, add (S; W) to N

or every (S; W) € N in the order of increasing strength (W) do

// strengthg (W) is computed using I (-, - | -) within Alg. 2.8 and cached
0 = strengthg(W)

recompute Qg using hyperedges from Ng with strength above d
(T,C,S) < FindConsistentTreeDPGreedy(UsQgs)

if (T, C,S) # failure then

10 L return (T, C,S)

B W N o=

(9]
e

o e 9

Stage Complexity
For every candidate separator... O(nF)
Run Alg. 2.8 O 23T k3 + knF 1)
For every non-redundant edge... O(nF+1)
Recompute Qg O(n)
Run GetConsistentTreeGreedy | O(nFT2)
Total O 2]I k3 + kn 1)

Lemma 36. Alg. 2.9 has time complexity O (n2k+2JéVk[i2k3 + kn2k+4) . If there exists an AKU c-junction
tree (T,C,S) for P(X) such that (T,C,S) is (k + 2)e-strongly connected, then Alg. 2.9 will output a é-
Jjunction tree for P(X) with € < n(k + 1)e.

Comparing the complexity of Alg. 2.9 (Lemma 36) with that of Alg. 2.7 (Lemma 33), one can see that the
time complexity component related to mutual information computation , O (n%*?J% i2k3) , is the same
for both algorithms, but exploiting edge redundancy helps bring down the complexity of constructing the
actual structure by a factor of n¥! : O(kn?*+4) for Alg. 2.9 versus O(n3#*?) for Alg. 2.7.

2.3.3 Lazy evaluation of mutual information

Let us now look at structure learning from slightly different perspective: what if we had a procedure
to make (educated) guesses (T, C,S) of the structure of a good junction tree. Then we could use the
following approach:

e Getanew guess (T,C,S).
e Use Corollary 17 to evaluate the quality of (T, C, S).

e If (T, C,S) is a high-quality structure (that is, an £-junction tree for some small £), stop and output
(T, C,S). Otherwise repeat.

The advantage of the above approach is that evaluating the quality of one junction tree using Corollary 17
is relatively cheap: (T,C,S) has |X| — k = O(n) separators. Using the complexity discussion of Sec-

44

Algorithm 2.10: Structure learning with lazy evaluation of conditional mutual information

Input: X, conditional mutual information oracle 7 (-, - | -), treewidth k
for every S C X s.t. |S| =k do

—

2 | Wg «Alg.28(X, 1, S,2)
3 N=Ug Uwewg (5;X) // When W g change, N is updated correspondingly
4 for every (S; W) € N in the order of increasing strengthg(X') do
5 d = strengthg (W)
6 recompute Qg using hyperedges from Wg with strength above ¢
7 (T,C,S) < FindConsistentTreeDPGreedy(UsQgs)
8 if (T, C,S) # failure then
// Note that CheckJTQuality routine below may modify W and consequently N
9 if CheckJTQuality((T,C,S), {Wg | S € S}, k, §) = success then
10 L return (T,C,S)

tion 2.2.2, observe that the complexity of evaluating one junction tree using Corollary 17 is thus
O(n) x O (n*1 A1,) = 0 (20301, |

which is a factor of n* better than Alg. 2.9.

Of course, the performance of this “guess-evaluate-repeat” approach depends on how good the guessed
structures are, and what is the complexity of the guessing procedure. In this section, we show how to
modify Alg. 2.9 in the spirit of “guess-evaluate-repeat” approach. Although this modification has fewer
theoretical guarantees, it performed well in practice.

Observe that for many separators, namely those not included in the resulting junction tree, it is often an
overkill to find the exact set of non-redundant edges. Consider again the evolution of Qg in Fig. 2.7.
Suppose S is not actually used in the resulting junction tree and Alg. 2.9 finds a JT with § = 0.05. For
this value of threshold, it is sufficient to examine any pair of pairwise dependencies in X_g, for example
x1 — x2 and 1 — x3, even though x1 — x5 is a redundant edge, to conclude that Qg consists of a single
connected component {z1z2x3}. Generalizing, we conjecture that for many candidate separators it may
be possible to only compute mutual information for low-order dependencies (pairwise, triplets, etc) and
to never need to compute mutual information for larger subsets.

Let us describe a heuristic that aims at exploiting this phenomenon. The key idea is to interleave parti-
tioning of sets X_g with dynamic programming. Observe that throughout its execution Alg. 2.8 maintains
a set of candidate non-redundant hyperedges Wg. Therefore, we can interrupt Alg. 2.8 at any time and use
current W instead of the true non-redundant hyperedges NRIDg. Stopping early helps avoid evaluating
the strength of higher-order hyperedges. This idea is summarized in Alg. 2.10, where lines 1-7 correspond
to the “guess” phase and line 9 (Alg. 2.11) corresponds to the “evaluate” phase.

The problem with stopping Alg. 2.8 early, of course, is the risk of missing the high-order dependencies
and losing the guarantee that the connected components are weakly dependent (a-weakness in terms of
Lemma 21). To fix this problem, we need to check all the higher-order dependencies for the separators
that are involved in the junction tree that FindConsistentTree actually finds (see line 9 of Alg. 2.10 and
Alg. 2.11). If a higher-order dependency is discovered that involves more than one connected component

45

Algorithm 2.11: CheckJTQuality—check for strong dependencies contradicting the JT structure;
modify candidate set of non-redundant hyperedges if needed.

Input: (T, C,S), candidate non-redundant edges Wg for every S € S, treewidth &, edge strength
threshold

1 forevery S € S do

2 for every W C X.gs.t. [W| <k+1do

3 if strengthg (W) > ¢ then

4 L add W to Wg, remove from Wg the edges redundant w.r.t. S and Wg
5 if Qg has changed then

6 L return failure

7 return success

Q1,...,Qmn € Qg, the junction tree found is rejected (line 6 of Alg. 2.11) and the process repeats with
an updated set of candidate relevant hyperedges for Qg (c.f. line 9 of Alg. 2.10). This after-the-fact check
ensures the a posteriori quality guarantee of the resulting structure:

Theorem 37. The worst case complexity of Alg. 2.10 is O (n2k+1J%i1k3 + n3k+3). Alg. 2.10 always
returns a junction tree (T, C,S). If §* is the value of 6 when Alg. 2.10 returns (T, C,S), then (T,C,S) is
an n(e + ko*)-junction tree for P(X).

Although there are no formal guarantees of complexity improvements for the lazy heuristic, we found it to
work quite well in practice. Moreover, because only a small number of dependencies is examined before
the calls to dynamic programming, Alg. 2.10 finds the first candidate junction trees very fast, making it an
almost any-time algorithm.

2.4 Experiments

To gain more insight about the behavior of our approach, we have coded a proof of concept implementation
of Algorithms 2.9 and 2.10 with slight modifications for efficiency and applied them to several synthetic
and real-life datasets.

2.4.1 Synthetic data

To compare the worst-case sample complexity bounds of Theorem 31 and Corollary 32 with the average-
case behavior, we have generated a-strongly connected junction trees of treewidth £ = 2 with varying
strong connectivity a € {0.002,0.005,0.01,0.02,0.05}, number of variables n € 10.. .30, and variable
cardinality R € {2,3,4,5}. We then applied Alg. 2.9 to recover the structure of the junction trees. Because
the true tractable models are known in this case, we are able to calculate exactly both the KL divergence
K L(P, P ¢ gy) from the true distribution to the projection on the learned structure (T', C’,S'), and the
similarity of the true and learned structures in a purely graphical sense.

The random junction trees were generated as follows:

1. Start with a single clique C = {C'} of size k + 1. Set degree(C') < 0.

46

2. While X # UgecC do:
(a) randomly select a clique C' € C such that degree(C') < r = 5.

(b) select a variable 2z € C' uniformly at random, add separator S = C_, to S and edge (C' — 5)
toT.

(c) setdegree(C') < degree(C) + 1.
(d) select any variable y € X_,_.c, add clique C’ = Sy to C and edge (C' — S) to T..
(e) setdegree(C’) «+ 1.

The degree of every clique has been restricted in step 2a to be at most » = 5 to avoid the shallow star-like
junction trees, which are relatively easy to learn. For every combination of parameters, 10 different JTs
were generated. For every junction tree, we sampled sets of 100 . .. 200000 samples from the correspond-
ing distribution to be used as training data.

Impact of the number of variables and strong connectivity

In this section, we concentrate on the dependence of sample complexity on the strong connectivity « and
the number of variables n. First, we consider a purely graph-theoretical notion of quality of the learned
structures. We will say that the structure has been exactly recovered if and only if the result (T", C’, S') of
the structure learning algorithm is exactly the same as the ground truth junction tree (T, C, S) from which
the data has been sampled.

Observe that for every distribution P that factorizes exactly according to (T, C, S), the condition (T’,C’,S') =
(T,C,S) is at least as strong as K L(P, Pipr ¢ gy) < 3 for every 8 > 0. Therefore, the probability of
exactly recovering a structure is a lower bound on the probability of recovering a structure within 5 in
KL divergence of the optimum. Here, we validate the sample complexity bounds of Corollary 32 by
empirically demonstrating that the sample complexity of exactly recovering a structure is within those
bounds.

For distributions that factorize exactly according to an a-strongly connected junction tree, for fixed

variable cardinality R and treewidth k, Corollary 32 guarantees that, for any 3 € (0, an? Zi;], using

) (g—; log? ”T; log %) samples, a junction tree (T’, C’,§') such that K L(P, P ¢ sy) < B will be found
with probability at least 1 — . Sample complexity of Corollary 32 is decreasing in K L upper bound

B. Therefore, the hardest case from the perspective of exactly recovering the ground truth structure is

achieved with the maximal 5 = an%—ié, and the smallest number of samples O (é log? é log %) . For

a fixed failure probability v, we get a required sample size s of

1 1
s=0 <2 log? — logn> . (2.14)
« a

Denote

80[2

n(s,a,n) = (2.15)

log? é logn

to be the effective sample size. The asymptotic dependence (2.14) leads to the conjecture that the effective
sample size 1)/ (s, v, n) is the parameter that controls the success of Alg. 2.9. In other words, the conjecture
is that the probability of Alg. 2.9 successfully learns a high-quality junction tree depends on the parameters

47

Variable cardinality R=3

[

0.8 -+0=0.02, n=30
+0=0.02, n=15
0.6 --0=0.01, n=30
©0=0.01, n=15

I
~

~-0=0.005, n=30||
4 1=0.005, n=15]

o
[N}

P(discovering true structure)

20 40 60 80

100
control parameter n = #samples [t / log(n)

(a) Empirical share of recovered true
JTs vs. effective sample size.

Variable cardinality R=3

0.2
@ Q -+0=0.02, n=30
R TR +-0=0.01, =30
5 0.5 B ~-0=0.005, n=30
g +0=0.02, n=15
> ©0=0.01, n=15
u 01 <+ 0=0.005, n=15
E
o
o
=
X

10
log(control parameter n = #samples (o / log n)

(c) Normalized KL divergence from
ground truth vs. effective sample size.

Variable cardinality R=5

® 1 S S +o
2 | g

2038 +a=0.05, n=30
o +0=0.05, n=15
208 -+-0=0.02, n=30
Zoul | ©a=0.02, n=15
E ?-‘ --0=0.01, n=30
202 4a=0.01, n=15
s

o

N 500 1000 1500
control parameter n = #samples [/ log(n)
(b) Empirical share of recovered true
JTs vs. effective sample size.

Variable cardinality R=5

n=30
n=30|
n=30
n=15
n=15|
n=15

e, “+0a=0.05,

e +-0=0.02,
4-0=0.01,
+0=0.05,
©0=0.02,
+0=0.01,

log(control parameter n = #samples [/ log n')

(d) Normalized KL divergence from
ground truth vs. effective sample size.

Sample complexity depending on variable cardinality

8|

log(minimal n necessary)

log minimal n to learn
trees in every fold correctly

--y=5.7x-2.7

1 l:5
log(variable cardinality R)

[
2

(e) log-effective sample size needed to recover all
ground truth JTs vs. variable cardinality.

Maximal vs. Nonmaximal JTs
Share of Recovered Edges

1 .
. share of edges . .*
recovered)
@208y 02 -
larl — . -
_ ===y =x+0.09 X ‘9’ I
g 0.6|—y=x '_."' 0"
-§ L@ A
£ 0.4 % S
c .
S .2
Z02 .
. o .7
0 .
0 0.2 0.4 0.6 0.8 1
Maximal JTs

(f) Comparison results of Alg. 2.9 on
max and nonmax JTs - recovered edges.

Maximal vs Nonmaximal JTs
Normalized KL from True Distribution

1
@ 0.8
=
g 0.6 -+"| , normalized KL
=3 from true P
S04 --y=x+0.34
< . ==y=x-0.14
S e : o
0.2r g Y007
e ---y=x+0.25
0 0.2 0.4 0.6 0.8 1
Maximal JTs

(g) Comparison results of Alg. 2.9 on
max and nonmax JTs - normalized KL.

Figure 2.8: Results on synthetic data.

48

s, a,, n only through the value of 7'(s, «, n). In our experiments, however, we have found that a different
effective sample size function, namely

S

n(s, o, n) (2.16)

- logn’
describes the success probability much better than 7’. Observe that 1 decreases slower than 7’ when
o — 0 (linearly versus almost quadratically), which suggests that the average case sample complexity of
our approach is smaller than the worst-case bounds of Theorem 31 and Corollary 32 suggest.

In Fig. 2.8a and 2.8b, we plot, as a function of the effective sample size 7, the empirical share of cases
where the structure of the ground truth junction trees was successfully exactly recovered. For every
combination of parameter settings, the share of successes is averaged over 10 random junction trees. One
can see that for a fixed variable cardinality R (R = 3 in Fig. 2.8a and R = 5 in Fig. 2.8b), the dependence
of share of exactly recovered structures on 7 for different variable numbers n and strong connectivity
values « is very similar. Such similarity suggests that 7 is the practically important effective sample size
in the average case.

So far in this section we have treated -y as the failure probability of discovering the ground truth structure.
However, Theorem 31 and Corollary 32 only make statements about discovering a structure within a cer-
tain K L divergence from the ground truth, and not necessarily the ground truth itself. We would like to
compare the behavior of K L(P, P ¢ gy), where (T', C', §') is the junction tree learned by Alg. 2.9, as
a function of effective sample size for different parameter settings. To make a meaningful comparison, we
first need to scale the KL divergences for different parameter settings so that they are comparable. Observe
that Corollary 32 can be equivalently restated as “for any 8’ € (0, %], a junction tree (T',C’,S’) such
that ﬁK L(P, Py ¢ 5y) < B’ will be found with high probability, given enough samples and compu-
tation time”. In this alternative formulation, the range of 3’ does not depend on the strong connectivity o
and number of variables n, which suggests that normalizing KL divergence by an? will provide a measure
of model quality that is directly comparable across different values of strong connectivity and number of
variables. Let us define

KL(P, Py ¢ s1)

an?

KLnorm(P, P(']I",(C’,S’)) =

In Fig. 2.8c and Fig. 2.8d we plot K Lnorm (P, P(r+ ¢/ s)) for variable cardinality R = 3 and R = 5
correspondingly. For each cardinality, we vary the strong connectivity of the original distribution and
the number of variables in the model. Notice that the values of the K Lporm cover approximately the
same range for different values of o and n, suggesting that scaling the absolute KL by ﬁ yields a
useful parameter-independent structure quality measure. One can see that the behavior of the K Lnorm
as a function of the effective sample size 7(s, a,n) is very similar for different combination of model
parameters, again suggesting that O (a1 log n) is the average case sample complexity of our approach in
practice.

Impact of variable cardinality

Let us now consider the dependence of sample complexity on the variable cardinality. From Corollary 32,
assuming 3 = n?a, we have the required sample size s of

Ak+4 1
s:O<R 3 logQIOgn>,
o o y

49

R4k+4

and, for a fixed failure probability v, we get s = O (— log? é log n) . Equivalently, we get

SOé2

—51—— = O(R*™™) & v/ (a,n,5) = O(R™?), (2.17)
log® = logn

where 7)'(s, v, n) is the effective sample size defined in (2.15). In the previous section, we have discussed
that using n(a, n, s) = s« log~! n provides a better way to control for the number of variables and sample
size. We thus conjecture that the average-case sample complexity for a fixed failure probability v has the
form

logn(a,n,s) =0log R+ O(1).

Corollary 32 and Equation 2.17 show that § < 4k + 4.

For a given strong connectivity « and number of variables n, define s*(«, n, R) to be the smallest number
of samples for which all 10 junction trees in our data generated with strong connectivity «, and n variables
of cardinality R each were learned successfully. To test our conjecture, for variable cardinalities 2, ..., 5,
and different values of « (ranging from 0.002 to 0.05) and n (ranging from 10 to 30), we have computed the
average log n(«a, n, s*(a, n, R)), and plotted it against log R in Fig. 2.8e. One can see that for R = 3,4, 5
the dependence can be characterized with a very high accuracy by a straight line with § = 5.7. Observe
that = 5.7 < 12 = 4k + 4, so the average case sample complexity is, as in the case of dependence on «
and n, grows slower than the worst-case bounds suggest.

Performance on non-maximal junction trees

The theoretical guarantees of our approach are only applicable to maximal junction trees, that is JTs where
every clique is of size k + 1 and every separator is of size k. In practice, however, most interesting dis-
tributions are described by non-maximal trees. Fortunately, nothing prevents one from running Alg. 2.9
or Alg. 2.10 even when the assumption of the ground truth JT being maximal is violated. In this section,
we investigate the empirical performance of Alg. 2.9 on nonmaximal junction trees. We have generated
random strongly connected JTs of treewidth 2 with strong connectivity o € [0.002, 0.05], number of vari-
ables n € 10... 30 and variable cardinality R ranging from 2 to 5. For every combination of parameters
10 JTs were generated. The generation procedure was the same as described in Section 2.4.1, except that
on step 2b with probability 0.5 we select two variables x and y to be replaced instead of one. The resulting
separator C_;, then has size 1. Thus, in our nonmaximal junction trees half of the separators on average
were of size 1 instead of 2. All the cliques were of size 3.

To single out the effect that non-maximality of the true junction trees has on the results of Alg. 2.9, we
compared the results of learning the nonmaximal distributions with results for maximal JTs generated
with the same combination of («, 7, R). Unfortunately, the metrics used previously in this section (prob-
ability of successfully learning the true structure and KL divergence) are not directly applicable. Alg. 2.9
always returns maximal structures, so the probability of learning a non-maximal one is always 0. Because
nonmaximal JTs describe a distributions with fewer dependencies, and thus are easier to approximate, the
KL divergences from the ground truth have to be scaled to make the values for maximal JTs comparable
with those for nonmaximal JTs.

As a graph-theoretical quality measure of the learned structures, in this section we use the share of the
recovered pairwise edges of the ground truth structure. The set of pairwise edges for (T, C,S) is defined
as all pairs of variables that belong to the same clique: E(T,C,S) = {(z —y) | 3C € Cs.t. 2,y € C}.

50

For the ground truth junction tree (T, C, S) and a learned JT (T’, C’, §’) the share of the recovered pairwise

edges is thus
T,C',S') N E(T,C,S)|
|E(T,C,S)|

The attractive properties of r((T',C’,S), (T, C,S)) are as follows:

H(T', T8, (T,C, §)) = £ c0.1].

1. When (T",C’,S') and (T, C, S) are both maximal JTs of the same treewidth, then »((T’,C’, '), (T, C,S)) =
1 if and only if (T’,C’,S') and (T, C, S) are the same.

2. Whenever r((T’,C’,S'), (T, C,S)) = 1, for every distribution P that factorizes according to (T, C, S),
it holds that P ¢/) = P, regardless of whether (T', C’,S') and (T, C, S) are maximal.

In Fig. 2.8f, for every combination of parameters o, n, R and sample size s, we have plotted the average
share of recovered pairwise edges by Alg. 2.9 for nonmaximal a-strongly connected JTs over n variables
of cardinality R using s samples (we will call this quantity mnonmax) versus the same quantity, but for
maximal JTs (which we will call rmax). Every point on the plot thus represents a fixed combination of
a,n, R, s. One can see that on average Alg. 2.9 recovers fewer true pairwise edges if the ground truth
distribution factors according to a nonmaximal JT, so the nonmaximality does have an adverse effect on
performance. On the other hand, that adverse effect is limited: mnonmax € [max — 0.22, rmax + 0.09]
for all combinations of parameters.

To directly assess the quality of approximating the ground truth distribution, in Fig. 2.8g we plot the
averaged normalized KL distances

KL(P, Prr o1 57y)
K Lporm-ME(P P o s7)) = KL(P, Ppean field)’

where Poan field(X) = [l.ex P(x) is the mean field approximation, which assumes that all the vari-
ables are independent. The normalization is necessary to make the KL divergences directly comparable
across different parameter values and both maximal and nonmaximal ground truth junction trees. As
in Fig. 2.8f, every point in the plot corresponds to a fixed combination of parameters o, n, R and sam-
ple size s. Similarly to Fig. 2.8f, in Fig. 2.8g one can see that the performance of Alg. 2.9 in terms of
approximation quality suffers from nonmaximality of the ground truth JTs, but the quality decrease is
limited: K Ly qm-MF for nonmaximal junction trees is within [—0.14, 0.34] of that for maximal JTs for
all parameter combinations, and within [—0.07, 0.14] for 99% of all parameter combinations.

To summarize, even though the theoretical guarantees of Theorem 31 and Corollary 32 do not extend to
the case of non-maximal junction trees, we have demonstrated empirically that our approach can still be
successfully applied to such distribution, with only a moderate performance decrease as compared to the
case of maximal JTs.

2.4.2 Real-life data

Here, we test the performance of Alg. 2.10 the following three real-life datasets:

dataset variables number | data type citation
TEMPERATURE 54 real-world Deshpande et al. (2004)
TRAFFIC 32 real-world | Krause and Guestrin (2005)
ALARM 37 synthetic Beinlich et al. (1988)

51

Notice we placed the ALARM data in the “real-life” datasets, even though the data has been sampled
from a known Bayesian network, because the ALARM network has not only graphical structure, but also
the parameter values that are very different from the typical randomly-generated graphical models such as
those of Section 2.4.1.

We compared the implementation of Alg. 2.10, which we call LPAC-JT (from Lazy PAC-learning of
Junction Trees) in this section, with the following baselines:

¢ Chow-Liu algorithm introduced by Chow and Liu (1968), an efficient algorithm that learns the
most likely trees (that is, junction trees of treewidth 1).

¢ Order-based search (OBS) by Teyssier and Koller (2005). For OBS, the maximum number of
parents in the Bayesian network was always set to the same value as junction tree treewidth for
LPAC-JT.

e Karger-Srebro algorithm (Karger and Srebro, 2001) with the same model treewidth as LPAC-JT.
¢ Elidan-Gould algorithm (Elidan and Gould, 2008) with the same model treewidth as LPAC-JT.

¢ Local search directly in the space of junction trees. This algorithm greedily applies the search step
that yields the highest increase in the training likelihood of the model among the candidate steps,
until a local optimum is found. The candidate steps were as follows:

* Leaf relocation. Choose a leaf clique C, the separator .S connected directly to C', and another
clique C’ from the current junction tree.

— We are working with maximal junction trees, so |C_g| = 1. Denote C_g = z.
— Remove C' from the structure.
— Choose a subset S” C C” of size k.

— Add a new separator S’ (unless such a separator already exists) and a new clique C” =
S’ U x to the junction tree.

— Connect S’ to C’ and C".

* Variable propagation. Replace a connected subcomponent of the current junction tree of form
Ajzy — S1x — Asxz (clique-separator-clique), with a subcomponent A zy — S1z — Asxz,
provided that the running intersection property will hold in the resulting structure (RIP may
cease to hold in the context of a larger component of a junction tree, for example if we replace
Agzv — Sox — Ayxy — S1x — Asxz with Aszv — Sox — Ajzy — S12 — Agxz).

The starting points for the local search were all the star-shaped junction trees (the JTs with one
separator S of size k and every clique connected directly to .S). There are (Z) = O(n*) possible
separators S and therefore O(n*) star-shaped junction trees.

e LPAC-JT + Local search. This approach uses the same search steps as the local search described
above, but instead of using all star-shaped junction trees as starting points, it runs Alg. 2.10 and uses
the candidate junction trees constructed on line 7 of Alg. 2.10 as starting points for local search.

All experiments were run on a Pentium D 3.4 GHz. Because most of the algorithms have local nature, the
runtimes were capped to 10 hours to obtain the complete picture of the search behavior. The necessary
entropies were computed in advance.

52

2.4.3 Structure quality comparison

In this section, we compare the quality, in terms of the log-likelihood on test data, of the structures learned
by the algorithms on different datasets.

ALARM. This discrete-valued data was sampled from a known ALARM Bayesian network (Beinlich
et al., 1988) intended for monitoring patients in intensive care. The treewidth of ALARM network is 4,
but, because of computational concerns, we learned models of treewidth 3 (at most 3 parents per variable
for OBS algorithm). Fig. 2.9a shows the per-point log-likelihood of learned models on test data depending
on the amount of training data.

We see that on small training datasets LPAC-JT finds models of similar quality to a basic hill-climbing
approach, but worse than the OBS and Elidan-Gould. For large enough datasets all variable-treewidth
algorithms achieve the maximal possible likelihood of the model. The superior performance of OBS and
Elidan-Gould algorithms in the small sample size regime persists for all the datasets and can be explained
by the fact that out of the methods being compared, OBS and Elidan-Gould, are the only one to use regular-
ization and favor sparser structures. All other variable-treewidth algorithms use unregularized likelihood
as a quality criterion. Moreover, LPAC-JT and local search operate in the space of maximal junction trees
and do not consider sparser structures at all. Chow-Liu algorithm uses a much more restricted model
space than other algorithms, which can also be thought of as a way of regularization. Such implicit regu-
larization leads to superior performance of Chow-Liu algorithm for small training set sizes. As the results
for large enough training sets show, none of the algorithms supporting arbitrary model treewidth values
suffer from insufficient expressive power of their respective model spaces. On the other hand, Chow-Liu
algorithm performs much worse, since it is limited to models with treewidth 1, which do not have enough
expressive power to capture all the dependencies of the distribution.

TEMPERATURE. This data consists of temperature readings from a network of 54 sensors taken over
the course of 2 months (Deshpande et al., 2004). The readings were averaged over a 2-minute window
and discretized into 4 bins. For this data, we learned models of treewidth 2. The sensors in the network
were arranged in a 8-shaped pattern, allowing for complex dependencies between the readings of different
sensors. The log-likelihoods of the learned models are shown in Fig. 2.9b.

One can see that on this data OBS outperforms junction tree-based methods, suggesting a difference in ex-
pressive power from using a larger model space (limited in-degree Bayesian networks). In turn, LPAC-JT,
Elidan-Gould algorithm and local search dominate Karger-Srebro algorithm, which operates with wind-
mills instead of general junction trees. Windmills are essentially junction trees of small diameter, so we
conjecture that the difference in the results is due to the difficulties of windmills in capturing long chains
of indirect dependencies. Chow-Liu algorithm, as expected, provides very good results on the smallest
training sets, but loses to other methods by a significant margin if there is enough data available.

TRAFFIC. This data, a part of a much larger dataset from Krause and Guestrin (2005), contains traffic
flow information measured every 5 minutes in 32 locations in San Francisco Bay area for 1 month. The
values were discretized into 4 bins and we learned models of treewidth 3. The resulting models log-
likelihoods are shown in Fig. 2.9c¢.

For traffic data, all non-regularized algorithms, including LPAC-JT, give results of essentially the same
quality. Moreover, given enough data, all algorithms except Chow-Liu achieve the same model likelihood,
suggesting that the difference in model spaces is not an issue for this dataset. Also, Chow-Liu algorithm
performs very well on traffic data, which means that most of the strong dependencies between the variables

53

ALARM - |09—|ike“h00d-|-rue model TEMPERATURE - log-likelihod

-15 i
R _0_40 OBS<_ .
T T g Elidan-Gould _—— PR RREREERE
g g L o s
_8 _20“:‘ .“ ChOW—Liu, g _50, -3 SPPPPEYEEIEE LS bk o
% [o* "',‘ Elldan GOUld g ‘‘‘‘‘ O SRR N AT ST
X R A \ = | oAl
= R4 Local = .
1 B I | Chow-Liu
5 7 g:—GOv s Karger-Srebro
25/ LPACJT - £ LPACJT
3 LPACJT+Local 7 LPACJT+Local
[0] ¢
— —70/
Karger-Srebro Local ‘
- ‘ ‘ 2 3 4
K('3 10° 10° 10 o100 10
Training dataset size Training dataset size
(a) ALARM log-likelihood (b) TEMPERATURE log likelihood
TRAFFIC - log-likelihood
- —-30 Elidan— Gould
o seesmpaeRS s -
_8 Chow-Liu
— _40, 4
__GEJ LPACJT
T
8-50 LPACJT+Local
? Local
[?
| 4
60 Karger-Srebro
200 500 1000
Training dataset size
(c) TRAFFIC log likelihood (d) ALARM structure
TEMPERATURE sample run, 2K training points TEMPERATURE sample run, 2K training points
-46.2 ; ; ; 3000 " " "
464 | 25007nk6(T*,C*,s*)‘ quality of the best JT found so far |
: /
3 2000}
£ -46.6
g 1500~
1-46.8 _
9 1000 LPAC-JT stopping threshold ’kd
—47 500
% 1 2 3 % 1 2 3
Time, seconds % 10" Time, seconds % 10"
(e) TEMPERATURE sample run (f) Example evolution of LPAC-JT threshold

n?k§ and the quality ané(T*vc*yg*) of the best
JT found so far for Alg. 2.10

Figure 2.9: (a),(b),(c): comparison of log-likelihoods of learned models.
(d): an example structure learned by LPAC-JT (nodes denote variables, edges connect variables that be-

long to the same clique, solid gray edges belong to both true and learned models, thin dashed black—only
to the learned model, solid black—only to the true one).

(e): an example evolution of the test set likelihood of the best found model.
(f): an example evolution of the computable part of K L(empirical, model) and of the stopping threshold
of Alg. 2.10 for that component n2ké (see the end of Section 2.4.4 for explanation).

54

are pairwise and exact tree likelihood maximization by the Chow-Liu algorithm offsets the reduction in
the expressive power compared to the other algorithms. Elidan-Gould algorithm demonstrates that with
proper regularization it is possible to simultaneously match the performance of Chow-Liu for small sample
sizes and higher treewidth methods for larger sample sizes.

To summarize, we have shown that, given enough samples, LPAC-JT is competitive with other approaches,
achieving the maximum model likelihood for 2 out of the 3 datasets, which confirms the viability of our
approach.

2.44 Empirical properties overview

Besides the likelihood of the final structure, other properties of structure learning algorithms, such as
runtime or tendency to miss important edges in the learned model, are of large practical interest. In this
section, we briefly review some of these properties of LPAC-JT.

Comparison with the true model

It is important for the learning algorithms to include in the learned models all the the edges that are
necessary to explain the significant dependencies in the data and at the same time to not include spurious
edges. Such behavior is not only desirable from the model likelihood perspective, but also makes the
models easier to interpret.

To investigate the behavior of LPAC-JT, we compared the learned models for the ALARM dataset with the
known true graphical model (triangulated Bayesian network) from which the data was sampled. A typical
comparison is in Fig. 2.9d, where the edges that LPAC-JT missed are thick solid black and the spurious
edges (those added by LPAC-JT, but missing from the true model) are thinner dotted black. Observe that
LPAC-JT captured almost all of the true edges, missing only 3 of them. At the same time, our algorithm
introduced several spurious edges, because it always constructs a maximal junction tree and the true model
is not maximal. Spurious edges make the learned model more difficult to interpret, but do not hurt density
estimation on large datasets: given enough data, the learned models achieve the same test likelihood as the
true model. For small datasets, however, dense connectivity significantly increases overfitting (by making
the number of model parameters too large to be learned reliably). Thus, generalizing LPAC-JT to sparser,
non-maximal junction trees is a crucial future research step.

Runtime

Even though LPAC-JT never reached the stopping criterion within the allocated 10 hours for any of the
experimental runs, it typically found candidate models of very good likelihood very early on in the process.
In an example run shown in Fig. 2.9¢e (showing the test log-likelihood of the best structure found so far
versus time), the first candidate structure was found within 5 minutes. That first candidate structure
already had likelihood within 2% of the eventual result. The eventual result was found within 1 hour. The
following table shows that the run shown in Fig. 2.9¢ is a typical one for real-life datasets:

55

Dataset ALARM TEMPERATURE TRAFFIC
Mean time to first structure 1037 sec. 59 sec. 126 sec.
LLH(final)-LLH(first) |) _3 _ 9
Mean |LLH(ﬁnal)| 5.4 x 10 3.3 x 10 1.9 x 10
Mean time to final result 16721 sec. 630 sec. 3247 sec.

One can see that for real-life datasets the first structure was found, on average, in less than 15 minutes, and
achieved, on average, the test likelihood just 3.3% worse than the eventual result for TEMPERATURE
data and 1.9% better than the eventual result for TRAFFIC data. Similarly, on ALARM dataset, the first
structure was on average 5.4% better than the final result (although on this artificial data it took LPAC-
JT significantly longer to find a first structure). Therefore, we believe that in practice LPAC-JT can be
stopped much earlier than the current stopping criterion prescribes, almost without degradation in result
quality. Also the uniform stopping criterion (for every separator S from (T, C,S) and for every small
W C X_g it must hold that strength (1) < 0) looks to be overly restrictive. A different criterion, better
relating to the model likelihood may improve the runtime and should be a focus of future work.

Theoretical guarantees

In addition to the log-likelihood of the candidate models that LPAC-JT finds, another important perfor-
mance indicator is the upper bound on K L divergence from the empirical distribution P to its projec-
tion on a candidate junction tree, K L(ﬁ, ﬁ(’]l(c’g)), that follows from Lemma 14 and Corollary 17. De-
note (¢ s) to be the strength of the strongest conditional dependency not captured by the junction tree
(T,C,S) :

dres) = strengthg (X U X»)

max
SeS,CeC,X1€Xs50,X2€X 05, X1+ Xa|<k+1

Observe that Alg. 2.11 returns success iff §(p cs) < 9. For k-JT e-representable distribution 13, from
Lemma 14 we have the upper bound

KL(P,Prcg) < n’e +n’kdrcs) (2.18)

Unfortunately, the upper bound (2.18) depends on an unknown parameter ¢ and thus cannot be evaluated
in the experiments. However, for any junction tree it is possible to evaluate the second component of upper
bound (2.18), namely n2k5(T,(C,S)a that gives the value of (2.18) up to a distribution-dependent constant.
Observe that the stopping criterion of Alg. 2.10 can be equivalently stated as n2k’(5(']1‘7(c7g) < n2kd.

As execution of Alg. 2.10 progresses, the stopping threshold n2ké increases. Simultaneously, as more
candidate junction trees are discovered (c.f. line 7), the quantity ané(T*S*’C*), computed for the best
candidate JT (T*,S*, C*) discovered so far, decreases. Empirical rates of change of both quantities are
of interest: for example, if n2k5(T*,§*,@*) decreases quickly, one can conclude that Alg. 2.10 improves
significantly on the candidate junction trees throughout the execution.

An example evolution of n2k:6(qr* ,s*,c*) (dashed line) and of the threshold n?ks (solid line) over time for
one run on the TEMPERATURE data is shown in Fig. 2.9f. Similarly to the evolution of log-likelihood in
Fig. 2.9e, the upper bound component n2kd (T*,5+,c*) does not improve significantly after the first structure
is found very early in the process. Fig. 2.9f suggests that the the stopping threshold will eventually be
crossed mostly because of the threshold itself increasing, not because of improvements in the quality of
the results, which is another argument in favor of stopping LPAC-JT early.

56

Table 2.1: Representative examples of prior work.

class model guarantees(true P) samples time representative reference
score all global any exp Singh and Moore (2005)
score tract./all local any poly'/exp’ Della Pietra et al. (1997)
score comp. local any poly' Teyssier and Koller (2005)
score tract. const. factor any poly Karger and Srebro (2001)
score tract. local any poly' Bach and Jordan (2002)
score tract. local any poly' Lowd and Domingos (2008)
score tract. local any poly' Elidan and Gould (2008)
score tree global any O(n?) Chow and Liu (1968)
constr. comp. global(comp.) 00 poly(tests) Spirtes et al. (2001)
constr. comp. gr:cAe(f:u(f(([))I:)lsligie) poly poly Abbeel et al. (2006)
constr. tract. PAC(k-JT) exp? exp? Narasimh., Bilmes (2004)
constr. tract. PAC(k-JT)/gracef.(s-k-JT) poly poly this chapter

tract. (tractable) means that the result is guaranteed to be of limited treewidth.

comp. (compact)—limited connectivity of the graph, but not necessarily low treewidth.

Guarantees column shows whether the result is a local or global optimum, a constant factor approximation
of the optimum, whether there are PAC guarantees or graceful degradation guarantees in terms of K L
divergence. For guarantees that hold only for a restricted class of input distributions, the restriction is
given in parentheses.

In time complexity column, 1 superscript means per-iteration complexity of local search approaches,
poly — O(n®®),

expt — exponential in general, but poly for special cases.

poly(tests) — polynomial complexity with an additional requirement of access to an exact conditional
independence oracle (such an oracle is impossible to construct using any finite number of samples).

2.5 Related work

To place our work in context, we first review the existing results on complexity of structure learning for
graphical models, restricting the discussion to the approaches that deal with fully observed data, that is
data where for every datapoint the value of every variable is known.

As we discussed in section 1.1.1, in most settings, learning the optimal (i.e., most likely) PGM struc-
ture is provably hard: NP-hard for polytrees (Dasgupta, 1999), NP-complete junction trees of treewidth
greater than 1 (Karger and Srebro, 2001) and general directed models with limited in-degree (Chickering,
1996). The exception to the negative results is the case of tree-structured models, which can be learned in
O(n?logn) time (Chow and Liu, 1968). Also, approximately optimal structures can be learned in poly-
nomial time. For general limited-degree graphical models, PAC-learning is possible (Abbeel et al., 2006),
while for junction trees one can learn in polynomial time a structure within a fixed factor of log-likelihood
of the optimum (Karger and Srebro, 2001). In the remainder of this section, we discuss the existing struc-
ture learning algorithms and their relation to our approach. For a concise summary, we refer the reader to
Table 2.1.

57

2.5.1 Constraint-based algorithms

As discussed in Section 2.2, our structure learning algorithm belongs to the class of constraint-based
approaches. Given the training data, constraint-based algorithms attempt to enumerate the conditional
independencies of the underlying distribution and then to construct a structure consistent with those inde-
pendencies. The exact formulation of a constraint-based algorithm is essentially determined by its way of
dealing with two fundamental problems:

1. Because of finite training data amount, the estimated independencies may differ from the true inde-
pendencies of the underlying distribution.

2. Constructing a structure consistent with a given set of independencies is not trivial.

Learning general compact models

Spirtes et al. (2001) assumed that a perfect conditional independence oracle exists and concentrated on ad-
dressing the problems of constructing a suitable structure of a Bayesian network. For distributions faithfu!l
to a Bayesian network with at most k parents per variable, the algorithm of Spirtes et al. (2001), called
PC, is guaranteed to discover the minimal I-map® for the distribution in question. PC has polynomial in
n complexity, requiring O(n**+1) independence tests that involve at most k 4 2 variables each. Unfortu-
nately, the guarantees of Spirtes et al. (2001) only hold for perfect independence oracle (in other words, in
the limit of infinite samples). Also, the PC algorithm does not have graceful degradation guarantees when
a limited in-degree Bayesian network can only represent the true distribution approximately.

Closer to our theoretical guarantees is the work of Abbeel et al. (2006), who presented an algorithm
for learning factor graphs (a variant of Markov networks) with polynomial time and sample complexity.
Similar to our results, Abbeel et al. (2006) provided both a PAC-learnability result for the case when the
true distribution can be represented by a factor graph exactly, and graceful degradation guarantees (in K L
divergence) for distributions that can only be represented approximately by limited-size factor graphs. The
main difference between our theoretical guarantees and those of Abbeel et al. (2006) is that our approach
is guaranteed to return a limited-treewidth model that admits efficient exact inference, while the algorithm
of Abbeel et al. (2006) may return an intractable model.

Learning tractable models

Narasimhan and Bilmes (2004) introduced an algorithm that is guaranteed to return a limited-treewidth
junction tree and has a PAC learnability guarantee. However, their approach requires fixed-accuracy
estimates of conditional mutual information values I (A, B | C) for sets A and B of size O(n). Currently,
the best known methods for mutual information estimation have exponential in n complexity on such
queries. Therefore, the approach of Narasimhan and Bilmes (2004) has exponential complexity. Also,
Narasimhan and Bilmes (2004) do not provide graceful degradation guarantees for their algorithm for
distributions that are only approximately representable by limited-treewidth junction trees. In contrast, our
approach has polynomial complexity, and in addition to PAC learnability result has graceful degradation
guarantees.

° A minimal I-map is a graph (T, X) such that (a) every conditional independence encoded by (T, X) is present in the true
distribution and (b) every subgraph of (T, X) encodes some spurious conditional independence absent from the true distribution

58

Although low-treewidth models are the most extensively studied class of tractable probabilistic graphical
models, there has also been progress in learning high-treewidth tractable models. Tractable inference in
high-treewidth models is possible in the presence of context-specific independence (CSI, Boutilier et al.,
1996), which imposes additional equality constraints on the values of the parameters, making it possible
to deal with groups of assignments simultaneously instead of individually. However, analogously to how
compactness does not guarantee tractability, not every PGM with compact potentials encoding context-
specific independence is tractable. To achieve tractability, the equality constraints for different potentials
have to act together to induce a specific inner structure of all the potentials.

As the standard notion of PGM structure does not take context-specific independence into account, to learn
tractable high-treewidth models it is more convenient to use PGM formalisms that explicitly represent CSI
via the structure, such as arithmetic circuits (Darwiche, 2003) or feature trees (Dechter and Mateescu,
2007; Gogate et al., 2010). Building upon Lemma 16 and Alg. 2.2 of this thesis, Gogate et al. (2010) have
shown that approximately optimal feature trees can be learned with similar quality guarantees to those we
provide for junction trees. A notable advantage of the approach of Gogate et al. (2010) over ours is that
by conditioning on binary features instead of all possible joint assignments of separators simultaneously,
as we do, their approach achieves better computational efficiency and, in practice, sample complexity.
Gogate et al. (2010) also described a greedy version of their approach, which does not have theoretical
guarantees, but works much faster in practice, and demonstrated high empirical performance of their
approach.

2.5.2 Score-based algorithms

Given the inherent difficulty of structure learning, many researchers resorted to variations of heuristic
search for high-likelihood structures. A large class of score-based structure learning algorithms (for ex-
ample, Bach and Jordan, 2002; Lee, Ganapathi, and Koller, 2006; Chickering and Meek, 2002; Teyssier
and Koller, 2005; Della Pietra, Della Pietra, and Lafferty, 1997) work by associating a score (usually, a
form of regularized likelihood) with every possible structure, and performing a hill-climbing search in
the space of structures. For certain classes of structures (limited-treewidth junction trees, Bayes nets with
limited in-degree), the structure score is decomposable, that is, can be represented as sum of components,
each of which only depends on a small subset of variables, and can be computed efficiently. When the
score is decomposable, local hill-climbing search can be quite efficient in practice (Teyssier and Koller,
2005; Deshpande et al., 2001; Malvestuto, 1991; Chickering and Meek, 2002). However, likelihood is not
decomposable for general undirected models: computing the likelihood requires inference in the model,
which is in general intractable even for compact models. Consequently, score-based algorithms for gen-
eral undirected models evaluate the scores of candidate structures only approximately (for example, Lee
et al., 2006; Della Pietra et al., 1997; Choi et al., 2005).

Learning general compact models

Most hill-climbing approaches work directly in the space of Bayesian networks or junction trees, but
search space design is an important research direction in score-based structure learning. A well-designed
search space lets one take larger and better informed local steps, which decreases the chances of getting
trapped in local optima. For example, Teyssier and Koller (2005), for learning Bayesian networks struc-
ture, instead of directly searching in the space of directed acyclic graphs with limited in-degree, perform
search in the space of topological orderings of variables induced by such graphs. Given an ordering of

59

the variables, for every variable it is possible to exhaustively enumerate all of O(n*) candidate sets of
parents, evaluate their respective scores and pick the optimal set of parents. Because the log-likelihood
score of a Bayesian network decomposes into a sum of the scores of the network families (a family is
a variable and all of its parents), decisions about optimal parent sets for different variables can be made
independently. Therefore, the complexity of evaluating the score of one particular variable ordering is
O(n x n*) = O(n*+1), which is polynomial in the number of variables, but exponential in the in-degree.
Teyssier and Koller (2005) perform such exact maximization to score a concrete variable ordering and
find the best structure. Intuitively, using a globally optimal procedure as a subroutine decreases the de-
gree of “myopia” during the local search, leading to larger changes per step and better quality of those
changes.

Recently, L; regularization of graphical model parameters has become a popular tool for learning the
structure of exponential family graphical models. L; regularization tends to give sparse results, that is,
the optimal parameters have many components that are exactly zero. When a model has exactly one
parameter per edge, such as Ising model with binary variables, setting a parameter to zero corresponds
to removing the corresponding edge from the graph. Thus L; regularization of parameters implicitly
imposes sparsity of the graphical model structure. As Wainwright et al. (2006) showed, for Ising models
with binary nodes, L;-regularized logistic regression provides a consistent estimator of the structure using
a polynomial number of samples. L;-regularized regression can also be used to restrict the search space of
any local search algorithm for structure learning (Lee et al., 2006). In practice, the choice of regularization
parameter is an important problem. Schmidt et al. (2007) showed that optimal model scores can be only
achieved for the regularization parameters that correspond to discontinuities of the regularization path and
proposed a way to efficiently find the approximate discontinuity locations. Restricting attention to the
parameters at the discontinuities of the regularization path is similar to the idea that we employ in this
chapter, namely to restrict the values of threshold ¢ to the set of the actual strengths of hyperedges.

Because of the local nature of score-based approaches, relatively few of them have performance guaran-
tees. For modest sized problems, it is possible to search the space of all structures exhaustively by reusing
computation (Singh and Moore, 2005). Provided that the underlying distribution has a perfect map, Chick-
ering and Meek (2002) have shown that in the infinite data limit a two pass greedy edge addition-removal
algorithm will recover the true structure. Unfortunately, infinite data assumes infinite computational cost,
so this guarantee, while interesting theoretically, is inapplicable in practice.

Learning tractable models

Approaches based on local search are also a popular choice for learning tractable structures. Here also
designing well-behaved search spaces and high-quality local step selection procedures is an important
research direction. For example, Meild and Jordan (2001), aiming to learn the most likely mixtures of
trees, use EM algorithm to iteratively optimize the structure and parameters for every mixture component
and use Chow-Liu algorithm to find exactly optimal trees for every component of the mixture in the M step.
Again, as is the case with the work of Teyssier and Koller (2005), here, exact maximization by Chow-Liu
algorithm allows for larger search steps than local search directly in the space of structures.

To learn low-treewidth Bayesian networks, Elidan and Gould (2008) developed developed an algorithm
for discovering sets of edges that, when added all together to a given Bayesian network, increase the
treewidth of the network by at most 1. Moreover, Elidan and Gould (2008) also show that, given a fixed
ordering over the variables, a locally optimal edge set can be found efficiently, immediately leading to a

60

greedy structure learning algorithm. Here, again, the building blocks of larger local search steps (adding
sets of edges instead of a single edge at a time), optimal decisions as subroutines and a higher-level search
space representation (topological orderings over variables) combine to yield an approach that works very
well in practice, as section 2.4.2 demonstrates. Theoretically, however, the approach of Elidan and Gould
(2008) is still a local search at its core, so only local quality guarantees are provided.

A number of approaches go beyond the local perspective and provide global approximation guarantees.
The algorithm of Chow and Liu (1968) is guaranteed to learn the most likely structure. Moreover, Das-
gupta (1999) showed that the same most likely tree also provides a constant-factor approximation of the
optimal solution to the polytree learning problem. More precisely, the Chow-Liu tree has likelihood at
most a factor (% + %%) worse than the optimal polytree, where U is the maximum entropy of a single
variable for the given distribution, and L is the minimum entropy of a single variable.

Close to our problem setting is the work of Karger and Srebro (2001). They consider a subclass of
junction trees, which they call windmills and use the difference in log-likelihoods of the learned model
and the model where all variables are independent as a quality criterion:

Quality(learned) = (LLH (learned) — L L H (all independent)). (2.19)

Karger and Srebro (2001) show that, using a linear programming relaxation and a special rounding
scheme, one can always find a windmill of treewidth k that achieves at least a constant fraction of the
quality of the MLE junction tree of treewidth k :

1
Quality(learned windmill of width k) > WQuality(MLE junction tree of width k). (2.20)

The main difference of the theoretical guarantees of Karger and Srebro (2001) and our work is in their
behavior for k-JT representable distributions. As the amount of data grows, the approximation factor in
the guarantee of Karger and Srebro (2001) does not improve. Our algorithm, in contrast, according to
Thm. 31, will find a §-junction tree with § — 0 as the number of samples increases, so an arbitrary quality
of approximation can be achieved given enough data.

High-treewidth tractable models can also be learned via local search. Lowd and Domingos (2008) show
that for arithmetic circuits (Darwiche, 2003), inference complexity can be used directly as a regularization
term in a local search for the optimal structure, leading to an algorithm with good performance in practice,
but few global guarantees.

To summarize, score-based algorithms provide state of the art performance in practice, but many practical
approaches are based on local search and lack theoretical quality guarantees. Although our approach is
not a score-based one, it is possible to incorporate some ideas from the score-based methods into our
algorithm. In particular, it is possible to define a decomposable score over the sub-junction trees. Then,
in the greedy decomposition search (Alg. 2.5) one can prioritize the candidate subcomponents that are
being added to the decomposition on line 7 by their score (or score normalized by subcomponent size).
Although not a primary objective in our algorithm, such prioritization by the score may increase the score
(and thus likelihood) of the result.

2.5.3 Bayesian model averaging

Sometimes, instead of finding a single best fitting structure, one is interested in the probability of the
true structure having a particular structural feature, such as an edge between two variables or existence

61

of a directed path from variable = to y. Computing the probabilities of such features is especially useful
when one aims to recover the underlying causal structure of the domain, for example, when studying gene
interaction. A point estimate, such as an MLE structure, would lead to many over-confident conclusions
about the domain interactions structure.

Approaches that place a prior probability on every possible structure and compute the posterior probability
of a given feature given the data form the class of Bayesian model averaging algorithms. For n variables,

there are 2(2) undirected graphs and O (n!Q(Q)C_”> directed acyclic graphs (for some constant C),

so exact Bayesian model averaging is in general intractable. Instead of trying to compute the posterior
exactly, the standard approach (Madigan and York, 1995) is to use Metropolis-Hastings sampling with a
proposal that locally modifies a structure by adding or removing an edge. One can also sample from the
space of topological orderings of the variables and compute the posterior given the ordering analytically
(Friedman and Koller, 2003) to get a faster mixing Markov chain. Using dynamic programming (Koivisto
and Sood, 2004), it is possible to compute the posterior probability of a given edge exactly using O(n2")
time. One can also use the results of dynamic programming to guide the Metropolis Hastings sampling
(Eaton and Murphy, 2007).

Bayesian averaging algorithms have an attractive property of taking all possible structures into account
instead of concentrating on a single one, which is especially useful when the structure is not just a part
of distribution representation, but an object of the primary interest. Bayesian averaging approaches can
also be modified to perform density estimation. The main drawbacks of Bayesian averaging are high
computational complexity (for example, exact averaging algorithms have complexity exponential in the
number of variables) and the fact that Bayesian averaging does not result in a model that admits efficient
inference (essentially, Bayesian averaging itself is the inference procedure).

2.6 Discussion and future work

In this chapter, we have described three main contributions:

1. A theoretical result (Lemma 16) that allows one to bound conditional mutual information of arbi-
trarily large sets of random variables in polynomial time.

2. A polynomial time algorithm (Alg. 2.6 and Alg. 2.9) for learning fixed-treewidth junction trees with
PAC learnability guarantees for distributions exactly representable with strongly connected maximal
junction trees and graceful degradation guarantees for distributions approximately representable
with such junction trees.

3. A more practical development of algorithm Alg. 2.9, namely Alg. 2.10, which only considers higher-
order conditional dependencies that arise in candidate junction trees constructed based on low-
order dependencies. In practice such an approach significantly improves computational efficiency
by “pruning” a large share of high-order conditional dependencies, although the speedup is not
guaranteed theoretically and the result quality guarantees of Alg. 2.9 are lost with the lazy approach.

Here, we outline some of the directions for future work aimed at making the algorithms of this chapter
more practical. Broadly, we will focus on two goals: generalizing to junction trees with non-uniform
properties and designing computationally efficient heuristics.

62

The algorithms presented in this chapter rely on two assumptions that are rather restrictive. First, all
the junction trees in question are assumed to be maximal, that is have uniform clique and separator size
throughout the structure. Second, the global conditional mutual information threshold ¢ used to partition
the variables X_g into weakly dependent components by LTCI enforces uniform dependence strength for
every candidate separator S.

2.6.1 Generalizing to junction trees with non-uniform clique size

Generalizing the approach of this chapter to deal with non-maximal junction trees, including structures
containing cliques and separators of different sizes will be useful in both small and large sample regimes:

¢ In the small-sample regime, it is important for the learning algorithm to be able to output non-
maximal structures to prevent overfitting in learning parameters. The more densely connected a
structure is, the more parameters it requires to be learned, and the more prone to overfitting it is.
As the experimental results of Section 2.4.2 demonstrate, when the training data is scarce, learning
sparser structures is crucial to achieve good approximations.

¢ In the large-sample regime, the parameters overfitting is not a factor, as can be seen from the
results of Section 2.4.2 for large sample sizes. Much more important is the issue of learnability
of non-maximal junction trees. Even learning a maximal fattening (in the sense of Section 2.2.5)
of a non-maximal strongly connected ground truth JT would yield a high-quality approximation
in the large sample limit. Current guarantees of Theorems 27 and 28, however, only extend to
maximal junction trees. Most real-life distributions have nonmaximal structure of dependencies, so
modifying our algorithms and analysis to guarantee the learnability of nonmaximal models would
drastically extend the applicability of the guarantees in applications.

Out of two major components of our approach, namely estimating the strength of conditional dependencies
via Lemma 16 and construction of junction trees based on dynamic programming, the former can be
used for non-maximal junction trees without any modifications. Because the size of the conditioning
set Y in Lemma 16 does not depend on the treewidth of a “true” e-junction tree (T, C,S), one can use
Lemma 16 for candidate separators of arbitrary size, including separators of different sizes for the same
distribution.

Modifying the second component of our approach, namely dynamic programming-based structure con-
struction, to allow for simultaneous handling of cliques and separators of different sizes would be much
more challenging. Although it is rather straightforward to modify the FindDecompositionGreedy proce-
dure (Alg. 2.5) to try out the available non-maximal separators and cliques during the greedy construction
of a subtree over a component (.5, @), extending the learnability guarantees of Thm. 27 to non-maximal
junction trees is likely to be difficult. Recall that requiring the “true” e-junction trees for the ground truth
distribution to be strongly connected made it possible to guarantee that components (.5, Q) for differ-
ent separators would not interfere with each other during the greedy construction of a supercomponent
decomposition. When components with separators of different sizes are available for constructing a de-
composition, we have an additional potential source of interference: components (S1, Q1) and (S2, Q2)
where S1 C S5 and @1 and ()2 overlap, which our theoretical results do not allow for. Possible ways to
address this issue:

e Show that if there exists a strongly connected non-maximal true junction tree, the greedy approach
will still succeed, i.e. the additional component interference is guaranteed not to happen.

63

e Show that for strongly connected non-maximal junction trees (T, C,S) it is possible to filter out
the separators S’ that are supersets of the true separators S € S before the candidate components
list L is formed, probably using independence testing or mutual information estimation to exclude
extraneous variables and find the minimal separators.

¢ Replace the greedy approach with a different technique based on exact cover algorithms, for exam-
ple from Knuth (2000), and identify assumptions under which the new approach will successfully
discover the necessary decompositions even with some inter-component interference.

Finally, when learning nonmaximal JTs in the small-sample regime, it is also important to bias the al-
gorithm towards sparser structures. For example, one can score the candidate components (S, Q) in
Alg. 2.3 by regularized likelihood computed using the decomposition ID(S, Q) with a regularization term
depending on the number of parameters needed for D(S,)). Trying higher-scoring components first in
the greedy decomposition construction would then bias the learning towards sparser junction trees.

2.6.2 Generalizing to junction trees with non-uniform dependence strengths

A robust method for learning non-maximal junction trees would also present a way, although a somewhat
crude one, to deal with non-uniform strength of dependencies throughout the model and retain the global
conditional dependence strength threshold §. One would simply set J high enough to recover correct
partitionings Qg for separators S € S such that I (Xg_,c, Xc— s | S) is the largest. Although setting &
high enough would lead to overly fine partitionings for other separators S’ € S, it should be still possible
in principle to recover a subtree of smaller treewidth involving S” and related variables. Essentially, with a
robust enough approach for constructing non-maximal junction trees one could trade off non-uniformity in
the strength of dependencies for non-uniformity in the clique and separator sizes. Moreover, after a good
non-maximal tree has been discovered, one could selectively merge some of the non-maximal cliques to
obtain better approximation quality.

A more straightforward possible approach to learn maximal junction trees with non-uniform dependence
strengths is based on the following observation: whenever there is a non-redundant hyperedge W such
that increasing the conditional mutual information threshold ¢ above strengthg(W) splits a component
(S,Q) into (S,Q1) and (S, Q2), it means that it is possible, but not required for ()1 and ()2 to be on
different sides of S. Therefore, one can keep both the connected component (.S, @) and its smaller sub-
components (S, Q1) and (5, Q2) in the list IL that is used as input for FindConsistentTreeDPGreedy. The
issue with this approach is that there is an exponential number of combinations of small subcomponents
into larger ones: suppose for a certain value of threshold ¢ the partitioning of X_g found by LTCI is
Qs = {Q1,Q2,Q3}. Then, in addition to the elementary components (S, Q1), ..., (S, @3), all potential
merges, namely (S, Q1Q2), (S, Q1Q3) and (S, Q2Q)3) are potentially useful. In addition to exponential
growth in the number of components per separator, including all possible merge results into . will in-
evitably violate property (2.9) that forms the basis of the learnability guarantees. It follows that some
compromise is needed between including al possible components for a given separator S and conditional
mutual information threshold § and the approach of this chapter of only including the smallest possible
components.

One possible way to select components (S, Q) for consideration by FindConsistentTreeDPGreedy is to
use only the maximal connected components of hypergraps with edges W([¢'] for &' € [0,] (c.f. Equa-
tion 2.12). For example, in the setting of Fig. 2.7, we would use components (S, x1), (S, zax3), (S, x2)
and (S, x3), but not (S, x1x3), because {x1, z3} has never been the maximal connected component of a

64

hypergraph with the strengths of hyperedges above certain threshold (even though {z1, 23} was a non-
maximal connected component for & < 0.2). Restricting the attention to maximal connected components
of W[¢'] makes property (2.9) hold for components corresponding to the same separator. However, im-
portant open questions remain: (a) whether additional strong connectivity or other assumptions are needed
to ensure property (2.9) for components with different separators and (b) whether including such a subset
of potential components into consideration will result in more broad learnability guarantees.

2.6.3 Faster heuristics

Two factors contribute to relatively large runtimes of our approach compared to the state of the art: ex-
pensive separator scoring procedure and a large number of separators and corresponding partitionings that
need to be processed both before the structure construction can begin and in the process of constructing
candidate structures.

First, computing the quality of an element of the structure (in our case, a separator .S and a partitioning
Qg) requires estimating distributions P(SW) with |S| 4+ |[W| = 2k + 2 to get a model of treewidth
k, while score-based methods such as those of Elidan and Gould (2008) or Teyssier and Koller (2005)
rely on scoring only cligues of candidate models and require estimating P(C') only for |C| = k + 1.
Because representing (an estimating) a probability distribution over m discrete variables with cardinality
r has time and space complexity of O(r™), our approach has a factor of r*+! disadvantage in scoring
complexity.

Second, because score-based approaches do not attempt to learn the “true” structure and aim instead for a
high-quality local optimum, they are able to make certain choices at the start of a run that drastically prune
the space of structures that can be “seen” by the algorithm, and do not spend any resources evaluating
structures that are inconsistent with the initial choices. For example, a local search algorithm only needs
to look at structures that are reachable from the starting point via a series of hill-climbing local steps (the
search space may be the space of actual structures, or the space of topological orderings over variables
as in Teyssier and Koller (2005), but the general point stands). In contrast to such aggressive implicit
pruning, our approach has to spend at least some computation on every possible separator.

Of the two above issues, the latter (more local perspective and implicit pruning) is much easier to address:
as algorithms 2.10 and 2.11 demonstrate, it is straightforward to use Lemma 16 to evaluate the quality
of candidate structures regardless of the exact way of generating those candidates. Moreover, it is also
straightforward to make such quality evaluation incremental for structures that are only a local step away
from an already evaluated structure (i.e., only evaluate separators S and partitionings Qg that have actually
changed as compared to the starting point). An alternative approach would be to explicitly restrict the set
of candidate separators, for example by using a greedy heuristic similar to Gogate et al. (2010) to find
the separators that are connected the strongest internally (i.e., all possible ways to split S result in subsets
with high mutual information).

Although there are no obvious ways to reduce the dimensionality of probability distributions P(SW)
needed to apply Lemma 16 it may be possible to show that under certain assumptions, for example,
similar to strong connectivity, it is sufficient to only look at pairwise conditional dependencies (i.e., have
W = 2 instead of k£ + 2) to recover high-quality partitionings Qg. If one were to check only pairwise
conditional dependencies, the total dimensionality of distributions that need to be estimated would be only
k + 2. Correspondingly, the time complexity of evaluating any individual dependence strength would be
O(r**2), which is only a factor of r slower than evaluating the likelihood of a single clique.

65

Chapter 3

Learning Evidence-Specific Structures for
Rich Tractable CRFs

The flexibility of generative probabilistic graphical models in choosing the sets of evidence and query
variable at test time is a useful feature required by many applications. However, there is also a large num-
ber of problem domains, where the set E' of the evidence variables is known in advance. For example,
in computer vision problems the colors and brightness levels of the pixels are always known, and the
higher-level semantic information about the scene, such as identities and locations of the objects in an
image, has to be inferred (Ladicky et al., 2009; Kumar and Hebert, 2005). In natural language process-
ing, the words and their order in the document are known, and information such as part of speech tags
for every word (Lafferty et al., 2001), a parse tree for a sentence (Taskar et al., 2004), or the topic of the
document (Craven et al., 1998) needs to be inferred.

In applications where the set of evidence variables F is fixed and does not change at test time, the flexibil-
ity of generative models in terms of handling arbitrary evidence sets at test time is not needed. Moreover,
generative learning is fundamentally unable to exploit the extra information about the identities of the
evidence variables. Instead, discriminative learning aims to find accurate models that directly represent
the conditional distribution P(Q | E). Although discriminative models tend to be more prone to over-
fitting, they typically provide better accuracy that generative models, if given enough training data (Ng
and Jordan, 2001). Discriminative PGMs have been very successful in practice (e.g., Ladicky et al., 2009;
Lafferty et al., 2001; Vail et al., 2007).

So far, learning probabilistic graphical models in a discriminative setting was approached mainly from
the perspective of parameter learning (Lafferty et al., 2001; Schmidt et al., 2008; Sutton and McCallum,
2007). Model structure has been typically assumed to be fixed, and the aspect of inference complexity in
the resulting models has been largely ignored. In this chapter, we propose a novel approach for learning
tractable discriminative models with evidence-specific structure.

The main difference of our approach from existing algorithms is in explicit dependence of the model struc-
ture on the particular assignment E of the evidence variables E. The extra flexibility of the dependence
of the low-treewidth structure on the evidence values E lets one improve the representative power of the
resulting model beyond what is possible with any fixed tractable structure. At the same time, our approach
retains the advantages of efficient exact inference at test time. As a result (c.f. section 3.6), tractable dis-
criminative models with evidence-specific structure achieve the same accuracy as high-treewidth models

66

on real-life datasets, while being an order of magnitude faster at test time (and also at train time for some
settings).

Importantly, our approach directly builds on generative structure learning, making it straightforward to
adapt many of the existing or future generative structure learning algorithms for discriminative struc-
ture learning. Moreover, because our approach affects only one step in the graphical model workflow of
Fig. 1.3b, namely structure selection, it follows that existing algorithms for all the remaining steps of the
workflow can be used without any changes. For example, both evidence selection via L; regularization
(Andrew and Gao, 2007; Vail and Veloso, 2008) and fast approximate discriminative parameter learning
by optimizing the pseudolikelihood (Besag, 1974) can be seamlessly integrated with our evidence-specific
model structures. Finally, as we will show in detail in this chapter, evidence-specific structure learning
relies on the same input data as the standard discriminative graphical models. As a result, our approach
is attractive from the point of view of a practitioner for two reasons. First, there is no loss of general-
ity: whenever a standard discriminative probabilistic graphical model is applicable, so are our models
with evidence-specific structures. Second, for any existing application-specific “pipeline” switching to
evidence-specific model structures is almost effortless: one only needs to replace the existing structure
learning component with our approach and retain the rest of the legacy workflow.

Before proceeding to the algorithmic aspects of our approach, we review the particular PGM formalism
used in this chapter, namely log-linear models, and the key differences between generative and discrimi-
native learning.

3.1 Log-linear models, generative and discriminative weights learning

As we have discussed in section 1.1.1, the problem of learning a probabilistic graphical model, which is
equivalent to selecting factors 1), to define a factorized distribution

P(x) = 5 [T va(Xa),

is typically decomposed into structure learning - selecting the scopes X, of the factors, and parameters
learning - choosing the actual values of 1, given the structure. The motivation behind such a decomposi-
tion is three-fold:

1. Discrete versus continuous optimization. There are few good approaches for optimization prob-
lems that have both discrete (structure) and continuous (parameters) facets. One widely used excep-
tion is optimizing parameters with a sparsity-inducing regularization term such as L; penalty (c.f.,
Schmidt et al., 2007). On the other hand, purely discrete and purely continuous optimization are
well-studied fields, with a wealth of existing techniques that can be transferred to the PGM setting.
For example, to avoid getting trapped in local minima when searching for an optimal structures,
Teyssier and Koller (2005) used tabu lists, which is a standard trick in the search literature and not
specific to graphical models. Moreover, in practice, learning the parameters given a fixed structure
is relatively easy. As a consequence, it is convenient to use parameter learning as a subroutine for
evaluating the quality of candidate PGM structures.

2. Computational complexity. In very high-dimensional settings (for example, when every variable
represents a pixel in a high-resolution image), many structure learning approaches are prohibitively
expensive, because there are too many candidate edges (O(]X|?)) to be considered, even without

67

looking at higher-order cliques. Moreover, in relational settings (Friedman et al., 1999; Richardson
and Domingos, 2006; Taskar et al., 2002; Getoor and Taskar, 2007), where every variable rep-
resents a property of a unique object and an edge represents an instance of a relation that links
different properties, every variable only occurs once in a dataset, and traditional structure learning
is altogether impossible. At the same time, there is often domain knowledge or common sense
that make it possible to define a model structure that closely reflects the nature of the domain. For
example, webpages that are connected via a hyperlink are more likely to have related content than
the ones that are not, pixels that are next to each other are more likely to belong to the same object,
and so on. For such applications, restricting oneself to learning only the parameters of the model
and constructing the structure using domain knowledge is more useful in practice than attempting
to explore a huge space of possible structures.

3. Interpretability. This is a different aspect of relying on domain knowledge for defining a model
structure. Often, practitioners are not graphical model experts, but have extensive domain knowl-
edge about the structure of direct dependencies for the distribution in question. For example, in a
power plant monitoring scenario, one can deduce the possible direct dependencies from the infor-
mation on which systems or machines are directly connected to each other. In such applications,
practitioners need to continue to operate with the existing domain-specific notions and either are
unable to interpret the learned model or have little confidence in the output of a model that does not
reflect the known underlying processes of the system in question. In such cases it is also useful to
restrict the learning only to model parameters.

Weighted features and log-linear models

One can see from paragraphs 2 and 3 that it is often useful to be able to let the user guide the selection of
the model structure. However, instead of explicitly specifying the factor scopes X, it has proven much
more convenient to define the models structure via defining features f, : X, — R and have the potential
1), be an exponent of a weighted feature:

VYa(Xa) = expl{wa fo(Xa)}- (3.1)
The weight w, determines the relative scale of the feature f,.

Defining the model structure via the choice of features is at least as expressive as via the choice of fac-
tor scopes: choosing the factor scope X, is equivalent to introducing a separate feature féX”)(Xa) =
Z(X, = X4), with its own separate weight w&x‘*), for every possible assignment X, of X,,. Importantly,
the reverse does not hold: explicitly specifying the features introduces ways to make use of certain types
of domain knowledge that are impossible to express via just the factor scopes. Consider an example fea-
ture, expressing the intuition that nearby pixels in an image are more likely to belong to the same segment

if they have similar color:
f(z4,z;,color;, colorj, loc;, loc;) = Z(x; = xj A |color; — color;| < dcolor A [loc; —loc;| < djoc). (3.2)

Feature (3.2) illustrates two important properties that are impossible to achieve by describing the model
structure only via factor scopes:

1. Parameters dimensionality and sample complexity. Feature (3.2) enforces additional constraints
on the values of the corresponding factor. In (3.2), the constraint being enforced is that the factor

68

1o can only have values 1 or e"> for all possible assignments to {x;, x;, color;, color;, loc;, loc; }.
Restricting the set of values of a factor is not the only possible type of a constraint. For example
f(zi,z;) = |z; — x| may take infinitely many different values for real x; and x;. What is important
is that the same weight w,, is used for every assignment to X,. Because the values of a feature are
fixed, and only feature weights need to be learned, significantly reducing the weights dimensionality
of a model dramatically reduces overfitting.

2. Inference efficiency. Feature (3.2) is zero for all assignments except for some special subset (pixels
that are close by both in color space and in physical location). Boutilier et al. (1996) have shown
that whenever it is known that the feature f,, (and hence the corresponding factor 1),,) has the same
value for a group of assignments to X, the efficiency of inference can be significantly improved by
dealing with that group of assignments as a single entity instead of iterating over every individual
assignment X,,.

Moreover, for features similar to (3.2), it often holds that the values of some of the variables are
observed at test time and in many instances f, = 0 for every assignment to the unknown part of X, .
For example, in (3.2) the colors and locations of the pixels can be directly observed from the input
image. Whenever from the available information about the values of some of the variables in X
one can guarantee that f, = 0, it follows that the factor 1, can be dropped from the model without
affecting the distribution P(X), thereby simplifying the model structure and reducing inference
complexity. In the approach of this chapter, we will heavily rely on the possibility of dropping
constant features from the model to dramatically speed up inference without affecting the resulting
distribution.

The resulting class of factorized models with factors of form (3.1) is called the log-linear models (because
the function under the exponentiation is linear in feature weights we):

P(X |w) = Z(lw) exp {Zwafa(Xa)} , (3.3)

where Z(w) is the normalization constant. The exponentiation in (3.1) and (3.3) brings about significant
computational and theoretical benefits. Here, we will only rely on some basic properties of log-linear
model and refer the reader to Wainwright and Jordan (2008) for thorough theoretical treatment.

Generative parameter learning

In the log-linear model (3.3), the features are assumed to be fixed by the user, and the parameter learning
problem is equivalent to learning optimal feature weights. There exist different notions of optimality,
leading to different optimization objectives. In the most basic case, when either the nature of the questions
about the distribution P(X) is not known in advance, or it is necessary to have a single model for many
different queries, one aims to optimize the quality of approximation of the empirical distribution of the
data D by the factorized model (3.3). The standard measure of approximation quality is log-likelihood,
leading to the objective

LLH(D |w) = Xzejplog (Z(lwexp{;wafa(xa)D

_ Xzejp log <§aj Wa fo(Xa) — log Z(w)> :

3.4)

69

Maximizing the log-likelihood LLH (D | w) is equivalent to minimizing the KL divergence from the
empirical distribution Pp(X) :

Pp(X)
P(X | w)

= ZPD Ylog P(X | w)

KL(Pp (X)[|[P(X |w)) = ZPD) log

—H(Pp) — - LLH(D | w).

D
Observe that the entropy H (Pp) of the of the empirical distribution does not depend on the model param-
eters w, so feature weights w can only affect KL divergence via changing the log-likelihood.

Log-likelihood (3.4) is an attractive optimization objective not only because of the direct connection to
the KL divergence from the empirical distribution, but also because of its very convenient computational
properties in the case of log-linear models. Namely, log-likelihood (3.4) is concave in w :
Definition 38 ((Boyd and Vandenberghe, 2004), Def. 3.1.1). A function F'(w) is concave if dom F’ (the
set of points on which F' is defined) is a convex set and for every w1, wo € dom F and 0 € [0, 1], it holds
that

F(0wi+ (1 —60)wa) > 0F(wq) + (1 — 0)F(wa).

Fact 39 (e.g., (Getoor and Taskar, 2007)). Log-likelihood (3.4) is concave as a function of w.

An important property of concave functions is that any local maximum w* is also a global maximum (see
e.g. (Boyd and Vandenberghe, 2004) for the detailed discussion). Moreover, the log-likelihood (3.4) is
continuously differentiable:

Fact 40 (e.g., (Getoor and Taskar, 2007)). For the log-likelihood (3.4), it holds that

OLLH(D |w) _ > (falXa) = Ep(xojuw)[fa(Xa)]) - (3-5)

ow
a XeD

Maximizing a concave continuously differentiable objective (equivalently, minimizing a convex objec-
tive) is a well-studied problem that lies at the basis of convex optimization (Boyd and Vandenberghe,
2004). Many highly efficient algorithms, such as L-BFGS (Liu and Nocedal, 1989) or conjugate gradient
(Fletcher and Reeves, 1964) have been developed can reliably maximize a concave continuously differen-
tiable objective F'(w) and require only the ability to compute the values of F'(w) and the gradient VF'(w).
Moreover, state of the art convex optimization techniques converge in just a few iterations, and correspond-
ingly require only a few objective and gradient evaluations, even when the dimensionality of parameters
w is very high. Therefore, one can efficiently find the optimal optimal parameters w* maximizing (3.4)
by plugging (3.4) and the gradient (3.5) into an off-the-shelf convex optimization algorithm.

The only obstacle, but a very significant one, in directly applying standard convex optimization techniques
to learning the graphical model parameters w* that maximize the log-likelihood (3.4) is the need to com-
pute the expected feature values Ep(x,, w)[fa(Xa)] in the gradient expression (3.5). Computing expected
features requires inference in the graphical model corresponding to the factorized distribution (3.3) with
the structure induced by the features f,, : the set of edges T is such that (i — j) € T < 3f, s.t. z;, 25 €
X,. As we have discussed in section 1.1.1, inference in graphical models is intractable in general, except
for special cases such as low-treewidth models. Therefore, in practice one needs to choose one of the two
options:

70

1. Low treewidth, exact parameters. Restrict the set of features so that the resulting graphical model
has structure with low treewidth. As a result, inference in the graphical model (3.3) and computing
feature expectations £ P(Xa|w) [fa(X4)], the log-likelihood gradient (3.5) and the log-likelihood (3.4)
itself can be done exactly. Consequently, convex optimization techniques can be used to efficiently
find optimal feature weights w*.

2. High treewidth, approximate parameters. Keep a more expressive high-treewidth model and use ap-
proximate inference approaches such as belief propagation (Pearl, 1988) or Gibbs sampling (Geman
and Geman, 1984) to compute the log-likelihood (3.4) and gradient (3.5). Because the objective and
gradient can only be computed approximately, the optimization with respect to feature weights w
can also be only done approximately. Moreover, approximate computation will typically break the
concavity of the log-likelihood objective, and gradient-based optimization techniques would only
find a local optimum with respect to w.

In chapter 2, we have demonstrated that low-treewidth structures, despite their smaller expressive power,
can be competitive with high-treewidth model in overall approximation accuracy because of better pa-
rameter estimation and inference accuracy. In this chapter, we will develop a way to further improve the
expressive power of low-treewidth models, by adjusting the structure depending on the observed evidence,
without sacrificing the advantages of exact inference and parameter learning.

Discriminative parameter learning

The advantage of log-likelihood (3.4) as maximization objective for learning the optimal feature weights
w for a log-linear model (3.3) is that it provides a single model with a good approximation for answering
a wide range of queries about the distribution P(X). However, often one has a priori information about
the types of queries of interest that the factorized model (3.3) will be used to answer. When information
about test time queries is available, the wide applicability of a maximum likelihood model becomes not an
advantage, but a drawback. Intuitively, because (3.3) only approximates the true distribution, optimizing
the model to have good accuracy on irrelevant queries “consumes the approximation power” that could be
used to improve accuracy on the queries that are actually important for the end user.

Consider the kind of information about test time queries that is available particularly often: the knowledge
of which variables will have their values known at test time. Typically, the set of variable whose values can
be directly observed at test time is determined by the application and is the same from query to query. For
example, in computer vision problems the colors and brightness levels of individual pixels of the images
can be observed directly, while the variables encoding the characteristics about the objects present in the
scene need to be inferred using the graphical model. In automated medical diagnosis systems, variables
such as patient’s temperature and heart rate can be measured directly, while the most likely diagnosis needs
to be inferred. Importantly, the inverse problems, such as inferring the most likely image given the objects
in the scene, or the patient’s most likely temperature given the diagnosis are typically not relevant to the
end user (and even when they are relevant, usually a different model needs to be constructed, because
the same model cannot produce results of acceptable quality for both problems). Similar settings arise in
natural text processing (Lafferty et al., 2001), heart motion abnormality detection (Schmidt et al., 2007),
and other applications. To formalize this intuition, the random variables describing the application domain
can be partitioned into two sets:

1. The variables whose values can be measured directly at test time. We will call these variable the
evidence and denote E.

71

2. The variables whose values are unknown at test time and need to be inferred given the evidence. We
will call these variable the query and denote X.

Given the partitioning of all the variables of the model into query X and evidence FE, it follows that
one is interested in the conditional distribution P(X | E). To approximate the conditional distribution
P(X | E), it is possible to employ a generative approach: define a generative log-linear model for
P(X,FE | w)as

P(X,E|w) = Z;w) exp {Z Wo fo(Xas Ea)} , (3.6)

learn the parameters w* my maximizing the log-likelihood

LLHD |w)= Y log(Zwafa(Xa,Ea)—logZ(w)>. (3.7)

(X,E)eD o
with gradient

OLLH(D | w)

T 3" (faXas Ba) = Ep(xo mojwfa(Xas Ea)])

(X,E)eD
and use the conditional probability formula

P(X,E]w) P(X,E | w)
PXTE) = "5 ey, ~ Sx POX.E | w) G8)

to compute the conditional distribution. However, as one can see from (3.8), such a generative approach
involves modeling the evidence prior P(E) as an intermediate step. A more direct way to approximate
the conditional distribution P(X | F) is to model it directly as

P(X ‘ va) = Z(Elw)eXp {Z wafa(Xaan)} s (3.9

and learn the parameters that maximize the conditional log-likelihood

CLLH(D |w)= Y logP(X|Euw)= Y_ (Zwafa(Xa,Ea)—logZ(E,w)> (3.10)

(X,E)eD (X,E)eD \ «

Conditional log-likelihood (3.10) has similar properties to the log-likelihood 3.4:
Fact 41 (e.g., (Getoor and Taskar, 2007)). Conditional log-likelihood (3.10), is concave in w. Moreover,

Olog P(X | E,w)
Owgy

- foz(Xon Eoz) - EP(XQ\Ea,w) [foz(Xon Ecx)]) (3.11)

where [Ep denotes expectation with respect to a distribution P.

It follows that the same convex optimization techniques that can be used to optimize log-likelihood (3.4)
and (3.7) can be also used to efficiently optimize the conditional log-likelihood (3.10). Learning param-
eters by optimizing conditional log-likelihood is called discriminative learning (in contrast to generative
learning using (3.7) as an objective; see Ng and Jordan (2001) for a detailed comparison of the two ap-
proaches). The structured log-linear model (3.9) with parameters w learned by optimizing (3.10) is called

72

a conditional random field (CRFs). Conditional random fields were introduced by Lafferty et al. (2001)
and have been successfully applied to domains from natural text processing (Lafferty et al., 2001) to
computer vision (Saxena et al., 2008) to activity recognition (Vail et al., 2007).

Although conditional random fields (3.9) and generative log-linear models (3.6) have very similar form,
modeling the conditional distribution P(X | F, w) directly leads to several key distinctions between the
two approaches:

1. Inference complexity. At test time, inference complexity of both approaches is determined by the
treewidth of the graph over variables X induced by the features f,,. The same inference complexity
follows from the fact that in both generative and discriminative approaches the concrete assignment
E to evidence variables E is known and can be directly plugged into feature f, (X4, Fy), resulting
in a log-linear model over X with features fZ(X,) = fu(Xa, Es).

At training time, however, inference complexity of the two approaches is very different. Given a
fixed set of weights w, for a generative model it is sufficient to perform inference once to compute
the log-likelihood LLH (D | w) and its gradient, because neither the normalization constant Z (w)
in (3.6) nor the feature expectations Ep(X, E‘a|w)[fa(Xa, Eq)] in (3.1) depend on the data. In
contrast, conditional random fields require inference to be done for every datapoint (X, E) €
D, because both the normalization constant Z(E, w) in (3.9) and conditional feature expectations
Ep(x,|Eaw) [fo(Xa, Eq)] in (3.11) depend on the particular values E of evidence. However, the
complexity of an individual inference problem is also different for generative models and CRFs:
generative models require inference in a PGM over variables (X, F), while CRFs only require
inference in a model over variables X, because the values of the evidence F are fixed.

To summarize, if exact inference is used during training, generative models require solving one
inference problem of per iteration, with complexity exponential in the treewidth of a graph over
(X, E) induced by the features fo (X4, Ey). Conditional random fields, on the other hand require
solving | D| inference problems per iteration, but every problem only has complexity exponential in
the treewidth of a graph over X induced by the features fF(X,) = fu(Xa, Eo).

2. Representational complexity. There are two key aspects related to the representation. First, given
the same set of features f, (X, Eo), a discriminative model will typically yield a better approxi-
mation of the conditional distribution P(X | E) than a generative one, because the discriminative
model does not have to adjust the weights to also approximate P(E) well. However, in the small
sample regime, as Ng and Jordan (2001) have discussed, a generative model may perform better
because of smaller sample complexity: although the asymptotic accuracy of the generative model
is worse, than for a discriminative one, a generative model reaches its optimal accuracy using fewer
samples.

The second important difference between the discriminative and generative approaches in terms
of representational power is closely connected with the training complexity of the two techniques.
Recall that training a generative model requires inference in a graphical model over (X, F) with
structure defined by features f, (X4, Fy), while for a discriminative model, one only needs to
perform inference in a “projection” of a generative model on the unknown variables X via the
features fF(X,). It immediately follows that in a discriminative model one can use features that
depend on evidence E in an arbitrarily complex manner, in particular any feature f, may depend
on arbitrarily large number of evidence variables, and adding those features will not increase either
training or test complexity as long as the structure of direct dependencies between the variables

73

of X does not change. In other words, discriminative models let one use much more expressive
features compared to the generative models, without any significant computational penalty. The
extra freedom in choosing features often greatly simplifies the feature design.

3. Types of supported variables. Closely related to the question of feature complexity is the question
of which kinds of variables can be handled in practice by a particular model formalism. Inference
approaches for graphical models, both exact and approximate, are typically formulated for the case
of finite discrete variables (e.g., Yedidia et al., 2000) or for real-valued variables with very restricted
types of potentials, such as Gaussians' (Weiss and Freeman, 2001b). As a result, in a generative
setting, both query and evidence variables have to be discrete or Gaussian.

In a discriminative setting, however, because one needs to deal only with a concrete known assign-
ment E to the evidence variables F/, and not with all possible assignments to F/, it follows that
evidence variables E can be of any type, including countably infinite discrete variables, arbitrary
real-valued variables, etc. In fact, in a discriminative setting one can disregard completely the na-
ture of the evidence variables, and consider instead the feature values f£(X,) to be the ultimate
inputs to the model. As will be shown in this chapter, our evidence-specific discriminative struc-
ture learning approach also only takes into account the feature values f£(X,) corresponding to the
observed evidence assignments E. As a result, our approach can also handle arbitrary types of evi-
dence variables, including countably infinite and arbitrary real-valued evidence, in a straightforward
manner.

The discriminative setting shares the restrictions on the type of query variables X with the genera-
tive setting. Because in a discriminative setting inference in the model over the query variables X is
required, it follows that the query variables in both generative and discriminative settings, including
our approach of models with evidence-specific structures, have to be finite discrete or Gaussian.

To summarize, above we have discussed how one can take advantage of the knowledge of the set of
variables F that are guaranteed to be known at test time to (a) improve the approximation quality for
the conditional distribution of interest P(X | E) and (b) loosen the restrictions on the possible types of
evidence variables F via discriminative parameter learning for log-linear models. There has also been
work on learning the model structure in a discriminative way (see, for example, (Schmidt et al., 2007)
and section 3.7 for more detailed discussion). However, existing structure learning approaches can only
learn a fixed CRF structure. In other words, the information about the identities of the evidence variables
FE is taken into account during structure learning. In this chapter, we make a step further and propose an
approach that takes into account not only the identities of the evidence variables, but also their values E
to learn conditional random fields with tractable structures specific to the concrete evidence assignment
that occurs at test time.

In chapter 2, we have shown that fixed-structure low-treewidth models can yield approximation quality
competitive with high-treewidth models because the former admit exact inference and parameters learning.
By adopting evidence-specific CRF structures, we further increase the representational power of low-
treewidth models, without sacrificing the advantages of exact inference and optimal feature weights over
high-treewidth CRFs.

!There is also recent work on inference for real-valued variables in a more general setting (Song et al., 2011), but it is much
less widespread in practice.

74

Si2 ~ S23 fi2 Py Jo3 "J:2_3"_
Xj X2 X3 X X2 X3 X3
S14 Sos Sf36 Jia Js S36 S36
X4 x5 x6)C4 .x5 x6 x6
@ AEEEEEEN EEEEEER
Jas Ss6 45 56 Ss6

(a) The set of all features of (b) For E = EW, features fy5 (c) For E = E®, features fos
a model forms a high-treewidth and fs¢ are identically zero, re- and f,3 are identically zero, re-
graph. sulting in a tree-structured effec- sulting in an effective model that
tive model. is also tree-structured, but the tree

is different from that in Fig. (b).

Figure 3.1: An example of a high-treewidth conditional random fields with low-treewidth effective struc-
ture (c.f. Definition 42). Features that are identically zero given a particular evidence assignment are
marked with dashed lines.

3.2 Evidence-specific structure for conditional random fields

Given the set F of features f,(Xa, Fo) of a conditional random field (3.9), define the set T of edges of
the CRF as

T={(G—j)|3fa € Fstaj,z; € Xo} (3.12)
Observe that, given a particular evidence value F, the set of edges T in the CRF formulation (3.9) actually
can be viewed as a supergraph of the conditional model over X. An edge (i — j) € T can be “disabled”
in the following sense: if for E' = E all the edge features involving (i — j) are identically zero regardless
of the values of z,. and x4,

Vfa € F st ai,x; € X, and VX, it holds that f(X,, E) =0,

then

Z Wa fo(Xa, E) = Z Wo fo(Xa, E),

fa€F fa€EF s.t. {Ii,Ij}ZXa

and so for evidence value E, the model (3.9) with edges T is equivalent to (3.9) with (i — j) removed
from T'. The following notion of effective CRF structure, captures the extra sparsity:

Definition 42. Given the CRF model (3.9) and evidence value E = FE, the effective conditional model
features F(E = E) are those that are not identically zero:

F(E=E)={fo| fa € Fst. IX, s.t. fo(Xqy, E) # 0}
and the effective structure T(E = E) is the set of edges corresponding to the effective features:

T(E=E)=T(F(E=E))={(i—j) | 3fs € F(E) st z;,2; € Xa} . (3.13)

Example. Consider the conditional random field with features shown in Fig. 3.1. To reduce clutter, we
do not show graphically the dependence on the features on the evidence. Suppose the model contains
pairwise features that together form a grid graph as shown in Fig. 3.1a. The treewidth of such a grid

75

graph is 2: edges (zo2 — x4) and (x3 — xg) yield an example triangulation with maximum clique size of
3. However, suppose that for £ = E(l), features fy5 and fsg are identically zero. Then those features
can be removed from the model, resulting in a structure in Fig. 3.1b. One can see that the effective
structure corresponding to evidence value EW is a tree and has treewidth of 1. Similarly, for £ = E®)
Fig. 3.1c also shows an effective structure that is a tree, but a different tree from Fig. 3.1b. Suppose the
training dataset D is such that for every datapoint (X, E) it holds that either E = EW or E = E®.
Then the discriminative weights learning can be done with inference cost of |D|exp(O(1)) instead of
|D| exp(O(2)), where exp(O(1)) is the complexity of exact inference in tree-structured models (i.e., with
treewidth 1) and exp(O(2)) is the complexity of exact inference in a grid-structured model with treewidth
2. The same reasoning applies to exact inference complexity at test time.

In general, the notion of effective structure is important, because it is the treewidth of effective structure
that determines inference complexity given the particular evidence assignment E. In particular, if T(E)
has low treewidth for all values E of E, then inference and parameter learning using the effective structure
are tractable, even if a priori structure T has high treewidth. Unfortunately, in practice the treewidth of
T(E) is usually not much smaller than the treewidth of T. Low-treewidth effective structures are rarely
used, because treewidth is a global property of the graph (even computing treewidth is NP-complete Arn-
borg et al. (1987)), while feature design is a local process. In fact, it is the ability to learn optimal weights
for a set of mutually correlated features without first understanding the inter-feature dependencies that
is the key advantage of conditional random fields over other probabilistic graphical model formulations.
Achieving low treewidth for the effective structures requires elaborate feature design, making model con-
struction very difficult. Instead, in this work, we separate construction of low-treewidth effective structures
from feature design and weight learning, to combine the advantages of exact inference and discriminative
weights learning, high expressive power of high-treewidth models, and local feature design.

Observe that the CRF definition (3.9) can be written equivalently as

P(X | E,w)= Z(Elw)exp{zwa X (Z(fa € F(E)) - fa(XouE))}' (3.14)

Even though (3.9) and (3.14) are equivalent, in (3.14) the structure of the model is explicitly encoded
as multiplicative component of the features. In addition to the feature values f, the set of effective fea-
tures and the corresponding effective structure of the model are now controlled by the indicator functions
Z(-). These indicator functions provide us with a way to control the treewidth of the effective structures
independently of the features.

Traditionally, it has been assumed that the effective feature set 7 (E) is defined implicitly as in Def. 42:
every feature that is not identically zero for the given evidence value E is included in the conditional
model. However, such an assumption is not the only one possible. Here, we propose to add another
level of “filtering” that, given the evidence assignment E, would remove some of the nonzero features
from F(E) so as to obtain a low-treewidth model. To achieve good approximation accuracy, such a filter
cannot be arbitrary. Intuitively, we will aim to find a low-treewidth “backbone” of the most important
features for evidence E and discard the rest.

More formally, we will assume that the effective feature set F(E) is determined by some algorithm that
takes the value of E and parameters u as input. Denote F(FE,u) to be the resulting effective features.
Different approaches can be used to determine which features to retain in F(E,u), we will make the
notion of the feature selecting algorithm more concrete shortly. For now, let us leave the algorithm F (-, -)
a parameter of the model:

76

Dense CRF with
features F:

X X X
X X
Low-treewidth ! 2
mask T(E, u): Xy cxs X5
f]2
ESS-CRF instance X; X3
with features S ., e x J36
F(T(FE, :
(T2, w) T O

Figure 3.2: An example of ESS-CRF workflow (Alg. 3.2).

Definition 43. Given a set of query variables X, evidence variables £ and feature selection algorithm
F(E,u) parametrized by parameters u and feature weights w, a conditional random field with evidence-
specific structure (ESS-CRF) defines a conditional distribution P(X | E, w, u) as follows:

1

P(X ‘ E,w,u) = m

exp{ Y wa X (Z(fa € F(E,u)) - fo(Xa, E)) ¢ - (3.15)
fa€F

ESS-CRFs have an important advantage over the traditional parametrization: in (3.15) the parameters u
that determine the model structure are decoupled from the feature weights w. As a result, the problem of
structure learning (i.e., optimizing «) can be decoupled from feature selection (choosing f) and feature
weights learning (optimizing w). Such a decoupling makes it much easier to guarantee that the effective
structure of the model has low treewidth by relegating all the necessary global computation to the feature
selection algorithm F(F, u). For any fixed choice of a feature selection algorithm F(-,-) and structure
parameters u, as long as T(F(FE, u)) is guaranteed to have low treewidth for any evidence value, learning
optimal feature weights w™* and inference at test time can be done exactly, because Fact 41 directly extends
to feature weights w in ESS-CRFs:

Observation 44. Conditional log-likelihood log P(X | E,w,u) of ESS-CRFs (3.15) is concave in w.
Also,

Jlog P(X | E,w,u)

Owyg,

- Z(fa €]:(Evu)) (foa(XomE) - IEP(XME,w,u) [fa(XonE)]) : (3-16)

To summarize, instead of the standard CRF workflow (Alg. 3.1), we propose ESS-CRFs (Alg. 3.2). Key
to our proposal is the requirement that the feature selection algorithm F(F, u) always returns feature sets

77

Algorithm 3.1: Standard CRF approach

1 Define features f, (X, E), implicitly defining the high-treewidth CRF structure T.
2 Optimize weights w to maximize conditional LLH (3.10) of the training data.
Use approximate inference to compute CLLH objective (3.10) and gradient (3.11).
3 foreach E in test data do
4 Use conditional model (3.9) to define the conditional distribution P(X | E, w).
Use approximate inference to compute the marginals or the most likely assignment to X.

Algorithm 3.2: CRF with evidence-specific structures approach

1 Define features fo (X, E).
Choose feature selection alg. F(F,u) that is guaranteed to return feature sets with low treewidth of
induced structures T(F(E, u)).
2 Define or learn from data parameters u for the feature selection algorithm F (-, -).
3 Optimize weights w to maximize conditional LLH log P(X | E, u, w) of the training data.
Use exact inference to compute CLLH objective (3.10) and gradient (3.11).
4 foreach FE in test data do
5 Use conditional model (3.15) to define the conditional distribution P(X | E, w,u).
Use exact inference to compute the marginals or the most likely assignment to X.

with low treewidth of induced structures T(F(E, u)). Then, in contrast with the standard approach that
has approximations (with little, if any, guarantees on the result quality) at every stage (lines 1,2,4), in our
ESS-CREF approach only feature selection (line 1) involves an approximation.

Next, we will describe a general framework that allows how a wide range of existing structure learn-
ing algorithms to be adapted in a straightforward manner to perform feature selection F(E, u). We will
demonstrate the general approach on a concrete example of Chow-Liu algorithm (Chow and Liu, 1968),
a simple yet efficient algorithm that is guaranteed to learn the most likely tree structure in the generative
case.

3.3 Learning tractable evidence-specific structures

Observe that selecting the most important features F(E, u) given the evidence is essentially a structure
learning problem. Although in Def. 42 the evidence-specific structure set F(E,) is the primary object
and the evidence-specific structure T(E, u) is defined in terms of F(E, u), it is easy to reverse the causal-
ity. One can define the evidence-specific set of edges T(FE, u) as the basis and obtain the corresponding
set of features as

F(T) = {fa | fo € FandVa;,z; € X, it holds that (i — j) € T}. (3.17)

A straightforward link with the properties in Def. 42 follows:
Observation 45. For any set of features F over (X, F) and set of edges T over X, for functions F(T)
defined in (3.17) and T'(F) defined in (3.13) it holds that

VF' C Fitholds that 7/ C F(T(F)). (3.18)

78

Proof. From (3.13), we have
Vfo(Xa, E) € F' Va;,x; € X, itholds that (i — j) € T(F'),

and therefore from (3.17) we have f, € F(T). Also, it is not necessary for 7" and F(T(F’)) to be the
same: there may be fg € F\ F’ such that Vz;, z; € Xg3fy € F's.t. x5,z € Xo. Then fg € F(T(F'))
and 7/ ¢ F(T(F")).0

From (3.17) and Observation (45), one can see that the problem of optimal evidence-specific feature selec-
tion F(E, u) can be formulated as a problem of learning the optimal evidence-specific structure T(E, u).
As we have discussed in section 2.5, learning high quality structures for probabilistic graphical models is
provably hard even in the generative case, that is, when E = (). It follows that (a) the evidence-specific
structure selection problem is also hard and (b) it therefore desirable to take advantage on the existing
research and state of the art structure learning approaches instead of designing specialized algorithms for
evidence-specific feature selection from scratch. Thus, we adopt selecting the evidence-specific structure
T(E,u) as the primary problem and will use (45) to select the corresponding features.

Fortunately, most algorithms for learning low-treewidth generative PGMs in the generative setting can be
adapted to the problem of learning evidence-specific structure T(E, u) in a quite straightforward manner.
Such an adaptation is possible because of a common property shared by most of the low-treewidth struc-
ture learning algorithms: the only information about the joint distribution P(X') these approaches rely on
is a set of marginal distributions P(X.,) for small subsets X of X, where small means the size of the
subsets is | X | = O(k) for treewidth k. For example, the approach of chapter 2 of this thesis only requires
entropies for subsets of size | X | < 2k 4+ 2 to compute conditional mutual information values, Karger and
Srebro (2001) only require the entropies for candidate cliques with | X,| < k + 1, approaches of Chow
and Liu (1968) and Shahaf et al. (2009) only require the pairwise and single-variable entropies.

The problem of approximating conditional distributions P(X, | E) for small |X,| is relatively easy in
the case of discrete variables, because the number of possible joint assignments X, to X, is also small
(r1% for variable cardinality r) and therefore one can treat X, as a single variable x., with a state space
equal to a Cartesian product of state spaces of individual variables x; € X,. Moreover, the problem of
conditional density estimation P(z~ | E) for a single variable X, is one of the fundamental problems in
machine learning, with a number of efficient high-quality solutions available (c.f., for example, Bishop,
2007; Hirdle et al., 2004).

From the observations that (a) approaches for low-treewidth structure learning in the generative case rely
only on low-dimensional marginals P(X,) and (b) the problem of estimating conditional distributions
P(X, | E) is well-studied with a variety of high-quality approaches available, we arrive at a straight-
forward approach of evidence-specific structure learning. Namely, one first learns the conditional density
estimators P(X. (X5 | E) for every small subset X, C X that may be considered by a structure learning al-
gorithm. Then, given a particular assignment £/ of the evidence variables £, one computes the conditional
density estimates P(X ~ | E) and runs the generative structure learning algorithm with P(~ | E)inplace
of the marginal distributions P(.X). This general framework is summarized in Alg. 3.3 and 3.4.

Observe that for the purposes of constructing the low-dimensional conditional density estimators P (X5 |
FE) in Alg. 3.3 and 3.4, the evidence F is only available via feature values F (X, E), where F, is the
subset of F that is “fully covered” by X, (c.f. lines 2, 4 and 5 of Alg. 3.3). The choice of only allowing
the low-dimensional estimators to use the features included in the full ESS-CRF (3.15) is motivated not

79

Algorithm 3.3: Learning low-treewidth evidence-specific structures: training

Input: Training data Dy;.q;p, low-treewidth structure learning algorithm Ag,
conditional density estimation algorithm Ap, feature set F.
1 foreach X, that may be used by Ag do
Fy={fa € F|Xa € X,} // The subset of features relevant to X,
f’y('7E) = {fa('aE) | Ja € -7:7}
Dy = U(X,,E)eDirain (X’Yv f’}’('a E))
u~ < parameters from training the estimator of P(X, | F5(-, E)) using Ap on dataset D,

L7 B NS)

6 return conditional density parameters v = U, {u. }

Algorithm 3.4: Learning low-treewidth evidence-specific structures: test time

Input: Evidence assignment E, low-treewidth structure learning algorithm Ag,
conditional density estimation algorithm .Ap, conditional density parameters .
1 foreach X, that may be used by Ag do
2 L ﬁ(X7 | E) < Ap(F+(E), u,) //]3(X7 | E) is only a function of X, because E is fixed

~

3T« As(P(-| E)) // Use ﬁ(X,y | E) whenever Ag needs a marginal P(X.)
4 return F(T) per the equation (3.17)

simply by the convenience concerns. Such a reuse of features also helps avoid including features with
poor predictive power in the full model (3.15). If the features 7, do not contain enough information to
predict X, well, then typically

1. The entropy of the conditional distribution P(X | F(E)) is large, and correspondingly likelihood-
based clique scores for X, used by score-based structure learning approaches will be low.

2. Features F, are also not useful in predicting the full distribution P(X'), because they can only affect
P(X) via variables X,.

Therefore, in situations when in principle the evidence E contains enough information to predict the
values of X,