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ABSTRACT 

Battery cost, limited battery life and range anxiety are some barriers to widespread 

adoption of electrified vehicles. This thesis examines the implications of these issues with a 

particular focus of analyzing the effect of temperature by addressing several questions: How do 

range, emissions, and battery life vary with regional climate and driving patterns? How much 

does thermal management affect these outcomes? How does the cost-minimizing battery design 

change with chemistry? 

A modeling and simulation approach is followed throughout the thesis, where physics 

based models, as well as models based on real world and experimental data are developed to 

address the aforementioned questions. Battery electrical, thermal and life models are created to 

estimate battery degradation under various different usage scenarios, and the effect of air-cooling 

on improving battery life is investigated. Real world driving data and dynamometer test data are 

used to estimate driving behavior, and are combined with regional effects of climate and 

electrical grid mix to evaluate emissions benefits of vehicle electrification across different 

regions. A battery cost model is used as an objective function in a mixed integer nonlinear 

program to find the battery design that minimizes the purchase cost for different battery 

chemistries. Sensitivity analyses are performed to understand the effect of modeling assumptions 

and design decisions on the results.  

Results indicate that battery degradation is particularly sensitive to battery and vehicle 

design characteristics, such as battery size and powertrain control strategies. In addition, 

operational factors that change regionally, such as driving cycle and climate, can have significant 

implications. Aggressive driving can decrease battery life by 67% compared to average driving 

conditions, and battery life is about 46% shorter in Phoenix than in San Francisco. However 

battery life can be doubled if battery is thermally conditioned by air-cooling. Regional climate 

has also significant implications on battery electric vehicle range and energy consumption. 

Annual energy consumption of battery electric vehicles can increase by an average of 15% in the 

Upper Midwest or in the Southwest compared to the Pacific Coast due to temperature 

differences, and cold climate regions can encounter days with substantial reduction in EV range.  
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Environmental benefits of electrified vehicles vary substantially by vehicle model and 

region: The Nissan Leaf battery electric vehicle creates lower GHG emissions than the most 

efficient gasoline vehicle (Toyota Prius) in most of the country except in the Midwest and the 

South. The Chevrolet Volt plug-in hybrid electric vehicle has higher emissions than the Prius 

everywhere. Regional grid mix, temperature, driving patterns, and vehicle model all have 

significant implications on the relative benefits of PEVs versus gasoline vehicles.  

Similar to degradation profile and environmental benefits, the cost minimizing design 

depends on battery energy requirement as well. As the energy requirement from the battery pack 

increases and the pack gets bigger, optimum design uses the maximum allowable cathode 

thickness. Among the chemistries explored, Lithium Manganese Oxide (LMO) provides the 

battery design with the least expensive production cost for vehicles with small size batteries; 

however as battery size increases it becomes comparable with other chemistries. Lithium Iron 

Phosphate (LFP) based batteries lead to most expensive design.  
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1 Introduction and Motivation 

1.1 Background 

1.1.1 Electrified Vehicles 

Vehicle electrification has the potential to reduce operating cost, greenhouse gas (GHG) 

emissions, and petroleum consumption in transportation sector [1,2]. The transportation sector is 

responsible for 32% of U.S. CO2 emissions and 28% of U.S. greenhouse gas emissions [3]. In 

addition, 70% of U.S. petroleum demand is consumed by the transportation sector [4]. Replacing 

the fuel source with electricity is promising to reduce transportation related emissions. 

‘Electrified vehicles’ is a broad term used to describe various powertrain technologies 

that use electricity partly or solely as fuel source. Vehicle technologies that are considered in this 

thesis are summarized in Table 1.1.  

Table 1.1 Vehicle technologies considered  

 

 

Vehicle technologies Energy Source Power  
Convertor 

 Gasoline Electricity  

 
Conventional Vehicle (CV) 

(or gasoline vehicle) 
+  Engine 

El
ec

tri
fie

d 
V

eh
ic

le
s  Hybrid-electric vehicle (HEV) +  

Engine &  
Motor 

Pl
ug

-in
 v

eh
ic

le
s 

(P
EV

) 

Plug-in hybrid electric vehicle 
(PHEV) + + 

Engine &  
Motor 

Battery electric vehicle (BEV) 
(or Electric Vehicle (EV) ) 

 + Motor 

 

HEVs use gasoline as fuel source; however they utilize an electrical system to improve 

vehicle efficiency, therefore they can be categorized as an electrified vehicle.  
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PHEVs have two modes of operation. Charge depleting (CD) mode and charge sustaining 

(CS) mode. According to the control strategy in CD mode, PHEVs can further be grouped into 

two: 1) Blended PHEVs use a mix of gasoline and electricity until the usable battery charge is 

depleted, 2) Extended Range Electric Vehicles (EREVs) behave like a pure electric vehicle in 

CD mode, and switches to CS mode when charge is depleted. Toyota Prius PHEV is an example 

to a blended mode PHEV and GM Chevy Volt is an example for an EREV.  

BEVs (or EVs) use electricity as the fuel source and propelled by an electric motor only. 

Note that, although the term EV usually refers to a battery electric vehicle, it is used 

inconsistently in public literature and press to refer to electrified vehicles in general. 

Despite the benefits, there are various barriers to be overcome for widespread adoption of 

electrified vehicles such as high purchasing cost, range anxiety and battery life [5–9].  Batteries 

lose capacity and performance with time and use, therefore might not satisfy driver needs after a 

certain duration is exceeded. Battery is one of the most expensive components of electrified 

vehicles and if it has to be replaced before the vehicle’s end of life, it increases the costs to the 

customers. Range anxiety, i.e. the fear of not having enough range to complete a trip, is 

particularly an issue for BEVs, since there is no engine to support for long trips and battery 

recharging can take long. Inherent battery and vehicle design characteristics determine the extent 

to which these issues will be significant. However, operational condition such as climate and 

driving patterns are also crucial.   

1.1.2 Lithium Ion Batteries 

An electrified vehicle battery pack consists of individual modules and cells. A cell is the 

smallest packaged form of a battery. Several cells are connected in series and/or parallel to 

construct a module. A pack is then constructed by connecting modules. Figure 1.1 shows Nissan 

Leaf battery pack for demonstrating this hierarchy. In public literature or presss, it is common to 

use the term ‘battery’ to refer to individual ‘cells’, although in the vehicle electrification context 

battery means the pack.  
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Figure 1.1 Nissan Leaf battery pack, module and cell (Image Source: livingleaf.info, [10] ) 

The mainstream battery currently in use in vehicle electrification is lithium-ion (Li-ion).  

Li-ion batteries are rechargeable batteries in which lithium ions move back and forth between the 

positive electrode (cathode) and negative electrode (anode) during charge and discharge. Li-ion 

cells employ lithium intercalation compounds as cathode and anode [11]. The anode material is 

typically graphite. There are various cathode material alternatives. ‘Li-ion battery chemistry’ is a 

term usually used to refer to the differences in cathode material, which results in differences in 

performance, cost, and life characteristics. Table 1.2 shows the li-ion battery cathode materials 

currently in use in vehicle electrification. 

In addition to chemistry, individual cells can also have different characteristics based on 

their physical specifications like dimensions, packaging alternatives (cylindrical or prismatic), 

and electrode thickness. In addition, two packs might still be different even if they use the exact 

same cells because of the variances in connection types, as well as in thermal management and 

energy management systems design. All of these design parameters and decisions have effects on 

cost, performance and safety.  

Pack 

Module 

Cell 
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Table 1.2 Li-ion cathode materials used in vehicle electrification. Values obtained from Nelson 

et al., 2012 [12] 

 Vehicles/Batteries Specific 
capacity 
(mAh/g) 

Nominal 
voltage 

(V) 

Cost per 
gram 
($/g) 

Lithium Nickel 
Manganese Cobalt 

Oxide, 
LiNixMnyCozO2 

(NMC) 

Chevy Volt 
Nissan Leaf 150 3.67 31 

Lithium Manganese 
Oxide, LiMn2O4 

(LMO) 

Nissan Leaf 
Chevy Volt 100 3.95 10 

Lithium Nickel 
Cobalt Aluminum 

Oxide, LiNiCoAlO2 
(NCA) 

Tesla Model S 160 3.68 33 

Lithium Iron 
Phosphate, LiFePO4  

(LFP) 

A123 Systems 
Hymotion Battery 

Pack 
150 3.28 20 

 

1.1.3 Litium-Ion Battery Degradation and Life 

Li-ion batteries experience capacity and power fade with time and use, and ageing 

mechanisms are complex. Degradation does not occur due to a single cause and it is usually a 

combination of various electrochemical reactions, as well as mechanical processes that causes 

ageing. Furthermore, different processes can also interact with each other in different ways and 

processes that occur change with chemistry.  

 Battery degradation mainly stems from ageing of the anode [13]. Most of the current li-

ion batteries use graphite as anode material and degradation of the anode occurs due to various 

causes. Among these, the most significant causes can be summarized as follows [14,15].  

1. Loss of lithium due to solid electrolyte interface (SEI) growth. 

2. Loss of active material due to volume changes occurring during cycling 

3. Impedance rise with SEI growth, decrease of accessible surface area and changes in 

volume due to cycling.  
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Degradation can also occur on the cathode side, and the degradation mechanism and 

profile depends on the cathode material. Some general causes of cathode ageing can be 

summarized as the wear of active mass, electrolyte degradation and interaction between the 

positive electrode element dissolved within the electrolyte and the negative electrode [13]. 

The dominant degradation mechanism changes between different batteries. For example, 

while the main degradation mechanism in LFP cells is SEI growth, in NCA the dominant 

mechanism is the substantial decrease in the electrode surface conductivity [16].   

SEI growth occurs due to irreversible electrochemical decomposition of the electrolyte. It 

occurs in all Li-ion batteries that use graphite as anode, because typical electrolytes used in Li-

ion batteries  are not stable at the operating voltages of graphite during charging [16]. SEI is 

formed in the early cycles, and it is in fact useful for the cell since it prevents electrode’s further 

interaction with the electrolyte. However, SEI continues to grow continuously during battery’s 

life, although with a slower rate as time passes. It has been shown that, the time dependence of 

SEI growth shows depends on the square root of the time. In addition to time effects, cycling can 

induce new SEI formation. During cycling, volume expansion and contraction can create cracks 

in the SEI layer, exposing new areas of the graphite electrode to electrolyte, therefore forming 

new SEI [17,18].  

Apart from material properties, storage and cycling conditions also have significant 

effects on battery degradation. Operational factors such as temperature, charge/discharge rate, 

depth of discharge (DOD) and state of charge (SOC) can all influence the aforementioned 

degradation mechanisms. As an example, SEI morphology and composition changes at high 

temperatures [14]. However, low temperatures can also induce ageing since the diffusion of 

lithium in the SEI layer and the graphite slows down at low temperatures, which can result in 

lithium plating and consequently loss of lithium [13,14]. Storage at both very low and SOCs can 

advance ageing [14]. In addition, high charge/discharge rates and depth of discharge can 

introduce new mechanisms that enhance ageing.  

Due to its complex nature, characterizing battery degradation behavior and estimating 

battery life is a complicated and challenging task.  Modeling and simulating electrified vehicle 

battery degradation under real world operation conditions introduce extra challenges. To obtain 

the exact battery life, cycling and storage tests would need to be performed at all possible 
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conditions until the end of life is reached, which will require years of testing and therefore not 

practical. Using empirical models based on accelerated tests is one way for addressing this 

challenge. Accelerated tests can be performed at various stress factors by continuously cycling 

the cells and can provide invaluable predictions of battery life. However, the accelerated 

conditions can lead to different results than real world behavior. In addition, interaction between 

the stress factors may not be clearly understood since during tests usually one or two factors are 

varied at a time. Physics based models, which quantify degradation based on physical and 

electrochemical formulations provide better insight, however physical modeling requires 

identification of underlying mechanisms. There is currently no model in literature that can 

accurately model degradation under all conditions.  

For electrified vehicles, a battery’s end of life (EOL) is typically defined as the time 

when the battery capacity drops by 20% compared to its initial (beginning of life) value, or when 

30% internal impedance growth is reached, whichever comes first [19]. However, it is not clear 

if this criteria will hold in real life applications. Saxena et al argues that, electric vehicles can 

satisfy the travel needs of 85% of the US drivers even after 20% capacity loss from the battery 

[20]. Individual drivers can make different decisions in terms of when to replace the vehicle 

battery.  

1.1.4 Vehicle Greenhouse Gas (GHG) Emissions 

Vehicle emissions can be broadly categorized as tailpipe emissions, emissions related to 

the production of the vehicle fuel source and vehicle production emissions. Battery electric 

vehicles have zero tailpipe emissions. However, there will still be greenhouse gas emissions 

associated with driving a battery electric vehicle that stems from the emissions during the 

production of electricity used to fuel the vehicle. This is strongly dependent on the source of 

electricity production. For example, electricity produced from coal has considerably higher 

emissions than electricity produced with natural gas. Therefore, GHG emissions associated with 

driving a BEV will show strong regional heterogeneity across different regions.  

1.1.5 Temperature Effect and Thermal Management 

Vehicle energy consumption, emissions and battery life will vary across different regions 

and drivers due to differences in operating conditions. One of the factors that is crucial is 
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temperature. Battery degradation increases exponentially with rise in the temperature [21–23]. In 

addition, temperature affects vehicle and battery efficiency. At cold temperatures, the internal 

resistance of the battery increases, decreasing the power capability of battery in all types of 

xEVs. Cold temperatures will also decrease engine efficiency, causing it to consume more 

gasoline in case of HEVs and PHEVs. In addition, in cold weather, cabin heater will induce  

extra load, which is especially important in BEVs, since in BEVs there is no engine whose 

excess heat can be used, and the extra load due to heater use will be all on the battery. A similar 

decrease in efficiency is also observed at high temperatures due to air conditioning use. The 

efficiency decrease results in more energy consumption per miles driven and reduction in the 

electric range. Up to 40% decrease in battery electric vehicle range is reported when the vehicle 

is driven at cold ambient temperatures [24]. The change in vehicle and battery efficiency will 

also change the CO2 emissions associated with the vehicle. 

The battery temperature should therefore be controlled and kept at certain limits in order 

to improve battery life. This is achieved by thermal management systems. Thermal management 

techniques can be classified depending on the purpose (heating only versus heating and 

cooling1), the source (passive if ambient air is used without any pre-heating/cooling before 

entering the battery, active if a heating/cooling device is built-in to the system) and the cooling 

medium (air versus liquid) [25]. Currently, different vehicles in the market apply different 

cooling strategies. Toyota Prius PHEV uses air-cooling, whereas Chevy Volt has a complex 

active liquid cooling strategy. Nissan Leaf does not have a thermal management system, and it is 

claimed that pure electric vehicles do not need thermal management due to their high energy 

capacity and low heat generation characteristics. On the other hand, Tesla Model S, an electric 

vehicle with almost three times energy capacity than Nissan Leaf has an active liquid cooling 

system.  

1.2 Thesis Scope 

This thesis aims to investigate the implications of various operating scenarios and design 

decisions on the main challenges of vehicle electrification: battery cost, battery life, range and 

                                                
1 Heating will be required at cold temperatures for preconditioning purposes, to enhance the battery performance 
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emission benefits, with a particular focus on temperature. The scope of the thesis in terms of the 

addressed issues is summarized in Figure 1.2. The dissertation aims to answer the following 

research questions: How do electrified vehicle range, emissions, and battery life vary with 

regional climate and driving patterns? How much does thermal management affect these 

outcomes? How does the cost-minimizing battery design change with chemistry? In order to 

address these questions, 4 studies are presented each of which focuses on a certain portion of 

these questions.   

 

Figure 1.2 Challenges in vehicle electrification and factors affecting them (Images sources: 

evlanka.com, ecofriend.com, lifehacker.com, and stockfreeimages.com) 

The rest of this document is organized as follows: 

Chapter 2 aims to identify the change in battery life across climates and driving patterns, 

as well as to quantify the effect of thermal management on battery life. For this purpose, the 

study presented in this chapter creates a simulation model to simulate battery temperature, 

current and voltage profile, and subsequent degradation under different driving cycles in three 

cities from different regions. The vehicle technology focused on is a PHEV with a small 5 kWh 

battery. The main reason behind this selection is the fact that, due to its small size, a PHEV 

battery is more prone to temperature increase and issues from high charge/discharge rates 
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compared to bigger batteries. To examine the effect of thermal management, an air-cooling 

strategy is considered. Air-cooling is a simple cooling methodology that can be applied, and it 

was selected to evaluate how effective this basic cooling method is.  

Chapter 3 focuses on a BEV to quantify the effect of regional climate on vehicle energy 

consumption, range and GHG emissions. A BEV is selected to examine the isolated effect of 

temperature on these issues due to two main reasons: 1) There is no excess engine heat available 

for cabin heating, therefore the effect of cabin heating on vehicle energy consumption is 

significant in BEVs. 2) Although reduced range with extreme temperatures is experienced in all 

vehicle technologies, only for BEVs it can cause a trip not to be completed. To address the 

related question, real world driving and climate data based models are used together with 

marginal grid emissions to make regional comparisons.  

Chapter 4 aims to extend the study in Chapter 3 by comparing the BEV emissions to 

alternatives (PHEVs, HEVs and CVs) in terms of regional GHG emissions. Rather than focusing 

only on the temperature, the study presented in this chapter aims to investigate the joint effect of 

several different factors that might result in regional differences. For this purpose, dynamometer 

test data is used to estimate the relationship between energy consumption and temperature for 

various vehicle technologies, and average CO2 emissions are compared based on regional 

differences in climate, marginal emission factors and driving patterns. 

Finally, Chapter 5 turns the focus from operating factors to design decisions, and aims to 

find the cost minimizing battery design for different battery chemistries. A process based cost 

model of a NMC based battery developed in Carnegie Mellon Vehicle Electrification Group is 

extended to determine the optimal design for three other chemistries: LMO, NCA and LFP. The 

roles of various design parameters on cost and performance outcomes are discussed.  
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2 Plug-in Hybrid Electric Vehicle LiFePO4 Battery Life 

Implications of Thermal Management, Driving Conditions, 

and Regional Climate 

This chapter aims to investigate the impact of regional climate, driving conditions and 

thermal management on battery life, with a particular focus on an air-cooled PHEV battery. For 

this purpose, a mathematical model of the battery pack composed of cylindrical 

LiFePO4/graphite cells is developed and simulations are performed using real world driving data 

and climate conditions. In addition, case studies are performed to test the sensitivity of the results 

to modeling and simulation assumptions. Results indicate that battery life estimates are sensitive 

to driving patterns, powertrain control strategy, pack size and battery end of life criteria. Given 

the base case assumptions, the use of air cooling can double battery life in a hot climate like 

Phoenix while extending battery life by 31% in a mild climate like San Francisco. Aggressive 

(US06) driving results in battery life estimates 67% shorter than drive cycles based on GPS data, 

suggesting significant heterogeneity of battery degradation implications across drivers. 

This chapter is based on a working paper with Jeremy Michalek [26]. An early version of 

this work has been presented in SAE World Congress, 2012 and available as an SAE publication 

[27]. 

2.1 Background 

Plug-in hybrid electric vehicles (PHEVs) have the potential to reduce operating cost, 

greenhouse gas (GHG) emissions, and petroleum consumption in the transportation sector. 

Despite these benefits, there are barriers to market penetration and high battery cost is among the 

most significant [1,28–30]. For many plug-in vehicles, the battery is the most expensive 

component [31], so if batteries need to be replaced before the vehicle’s end of life (EOL), cost 

competitiveness suffers. Although different design choices can lead to different battery EOL 

criteria [32], EOL is typically defined as the time when the battery capacity drops by 20% 
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compared to its initial (beginning of life) value, or when 30% internal impedance growth is 

reached, whichever comes first.  

There are two definitions that are usually used in describing battery life: Cycle life is the 

number of complete discharge and charge cycles that can be expected from the battery before it 

reaches its end of life, i.e. it is the life of the battery under active use. Calendar life on the other 

hand is the total life expected from the battery whether it is being actively used or not.  

According to the goals set by US Advanced Battery Consortium (USABC), a PHEV battery is 

targeted to have 15 years of calendar life and 300,000 cycles of cycle life [33]. It is also possible 

to define storage life (or shelf life) of the battery, which refers to the duration that a battery can 

be stored without being used. 

Batteries degrade with time and usage, and degradation depends on the inherent 

characteristics of the battery such as its technology and design. Currently, PHEVs use Li-ion 

batteries due to superior power and energy characteristics. However, battery characteristics such 

as power, energy, life and safety can vary among Li-ion batteries. The main factor causing 

different behavior is battery chemistry, which is characterized by the materials being used in 

cathode and anode. The most commonly used anode material is graphite, however there are 

various different cathode materials being used in automobile applications. Therefore, in 

literature, Li-ion chemistry is often specified by cathode material. On the other hand, two 

batteries of the same chemistry still can show different characteristics due to their differences in 

design. Design parameters both in cell level (shape, electrode thickness, electrolyte material, 

etc.) and pack level (distance between the cells, connection elements, etc.) affect performance 

and life.  

Apart from the specific type and design of the battery, the conditions and stress factors 

during storage and cycling also affect how quickly the battery will degrade. There are various 

factors that affect battery life such as time, charge/discharge rate, temperature, depth of discharge 

(DOD) and state of charge (SOC). However these factors are not independent from the design 

characteristics, and how much each of these factors will affect degradation will vary depending 

on the chemistry and design. Therefore, estimating the battery life is a complicated and 

challenging task, and it is not possible to obtain a generic estimation that would apply to all li-ion 

batteries. To obtain the exact battery life characteristics cycling and storage tests need to be 
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performed at all possible conditions until the end of life is reached, which will require years of 

testing and therefore not practical because the cells will be obsolete by the time the tests are 

complete. For this reason, accelerated tests are performed to come up with estimates. Still, the 

results can be very different depending on the test conditions, even when just a single chemistry 

is considered. 

One type of chemistry that has been extensively tested in the public literature is LiFePO4 

(LFP). LFP is promising due to its safety and longer life characteristics [34–36]. Table 2.1 

provided a list of reviewed studies that perform accelerated tests at different temperature, 

discharge/charge current rates (C-rate) and depth-of-discharge (DoD) to quantify degradation 

and to identify the effects of these factors on degradation. Most of these studies also provide 

insight on the underlying degradation mechanisms and conclude that the main mechanism of 

degradation for LFP chemistry is shown to be usable lithium loss due SEI growth. Although SEI 

growth occurs during both storage and cycling, there is more capacity fade during cycling due to 

fresh SEI formation in the cracks that occur on the SEI layer with volume expansion and 

contraction during cycling [17,18]. The SEI growth usually increases with temperature and C-

rate, however the degree of the increase shows variances between different studies. In addition, 

asymmetric cycles with different C-rates during charge and discharge can lead to different 

degradation behavior [15]. While Peterson et al. shows that LFP degradation is independent from 

DoD [37], Wang et al. and Groot et al report cycling at high DoD might create significant 

changes in degradation at high C-rates. Liu et al. argues that there is not a significant impedance 

growth in this chemistry. On the other hand Groot et al. reports up to 30% impedance growth 

when the cycle C-rates are different during charge and discharge. However, capacity fade is 

always faster than impedance growth. To sum up, various studies performed on this chemistry 

show differences in the results they report and there is not a generalized single model that can 

define the degradation.   

Storage fade is dependent on temperature and the state-of-charge (SOC) level the cells 

are stored at. Several studies report that cells stored at higher SOC degrade at a faster [38,39].  

The difference between capacity fade at two SOC levels decreases as SOC levels increase 

[18,40].  
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Table 2.1 LFP cycling fade studies reviewed 

 
 

Cell  
Description 

Temp 
[oC] C-rate 

Reported with 
cycles (n) or 
throughput 

(Ah) 

DOD [%] Cap. 
Fade 

Imp. 
Growth 

A123 
Datasheet 

[41] 

A123 26650 
2.3 Ah 

25,45, 
60 

Discharge: 
1C,2.2C, 
Charge: 
1C,1.3C 

n N/A Yes No 

Wang et al 
[42] 

A123 26650 
2.3 Ah (paper 
says 2.2 Ah) 

15,45, 
602 

C/2,2C, 
6C, 10C 3 Ah 10,50,80,90 4 Yes No 

Peterson 
et al [37] 

A123 26650 
2.3 Ah ~25 Simulated 

drive cycles both 

Drive cycles 
corresponding to 

DODs between 34-
97% 

Yes No 

Omar et al 
[43] 

2.3 Ah, 3.3 V 
No brand 
mentioned 

-18,0, 
25,40 

Discharge: 
1C,5C, 

10C,15C 
Charge: 

0.25C,0.5C, 
1C,2C,4C 

n 20,40,60, 
80,100 Yes Yes5 

Song et al 
[44] 

1.2 Ah 18650 
No brand 25,55 N/A n N/A Yes No 

Li et al 
[45] 11 Ah 30, 45 

Discharge: 
1/3C,4C 
Charge: 

1/3C, 1.5C 

n N/A Yes No 

Zhang et 
al 

[35] 

16.4 Ah 
No brand 

-10,0, 
25,45 UDDS n6 N/A Yes Yes 

Groot et al 
[15] 

A123 26650 
2.3 Ah 

Between 
23 to 53 

Discharge: 
1C,2,3.75,4 

Charge: 
1,2,3.75,4 

Ah 60%,100% Yes Yes 

 

Among the operational factors that influence degradation, temperature is one of the most 

significant, because degradation increases exponentially with rise in the temperature [21,22,42]. 

The battery temperature should therefore be controlled and kept at certain limits in order to 

                                                
2 Document says they tested 0oC and 25oC as well but data is not provided 
3 Data provided only for C/2, models provided for other C-rates 
4 Not enough data for DOD dependence, it looks like it matters at high C-rates but the model does not include DOD 
dependence 
5 There was actually quite significant resistance growth, but capacity fade was always faster, so no model for 
impedance growth 
6 Capacity fade and impedance growth is measured after 300 and 600 cycles only 
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improve battery life. This is achieved by thermal management systems. Table 2.2 shows the 

classification of thermal management systems. Currently, different vehicles in the market apply 

different cooling strategies. Toyota Prius PHEV uses air-cooling, whereas Chevy Volt has a 

complex active liquid cooling strategy. Nissan Leaf does not have a thermal management 

system. On the other hand, Tesla Model S, an electric vehicle with almost three times energy 

capacity than Nissan Leaf, has an active liquid cooling system.  

Table 2.2 Thermal Management Systems Classification [25] 

Purpose 
Heating 
Heating and Cooling 

Cooling medium 
Air 
Liquid 

Source 
Active (cooling medium pre-conditioned 
before entering the battery) 
Passive 

 

There are many studies in literature that examine and model cell/pack level thermal 

behavior [46–50] and thermal management design and control for battery packs [51,52]. 

However, studies that examine the battery life implications of thermal management are rare. In 

addition, the effects of various stress factors on cell level degradation are explored considerably, 

however there are only a few studies that investigate the implications of these factors in real 

world vehicle usage conditions. Table 2.3 shows the studies that characterize the regional 

implications of one or more stress factors on battery life. Gross and Clark investigate the effect 

of thermal management on battery life using a generic battery life model, whose parameters they 

estimate based on the assumption that the capacity fade of the battery at the end of 15 years will 

be 20% when stored at 30oC [53]. They then scale these parameters for other temperatures, by 

assuming that each 10oC increase in temperature will double the fade rate. Smith et al. uses a 

comprehensive semi-emprical battery life model based on nickel-cobalt-aluminum (NCA) 

chemistry, however they do not specify a thermal management strategy in their analysis [54]. 

The most comprehensive analysis in this area is performed by Neubauer and Wood [55], in 

which they use the same battery life model as Smith et al, and compare the effect of different 

liquid cooling thermal management strategies on battery life.   
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Table 2.3 Studies that characterize the regional implications of battery life 

 
 

Regional 
comparison 

Thermal 
Management Life Model Battery 

chemistry Powertrain 
Drive cycle 
comparison 

Gross and 
Clark, 
2011  

Yes Air vs Liquid  

Function of 
temperature and time. 
Parameters estimated 

assuming 20% 
capacity fade at 30oC, 
in 15 years, fade rate 
is doubled with each 

10oC increase  

Not 
known 

PHEV 
BEV 

Yes 

Smith et 
al. 2012 

[54] 
Yes N/A 

Function of 
temperature, time, 

number of cycles and 
depth of discharge. 

Parameters based on 
literature and 

experimental data  

NCA PHEV  Yes 

Neubauer 
and Wood, 
2014 [55] 

Yes 

No cooling vs 
liquid cooling, 

with three 
different control 

strategies 

Function of 
temperature, time, 

number of cycles and 
depth of discharge. 
Parameters based 

literature and 
experimental data 

NCA BEV Yes 

This study Yes No cooling vs air 
cooling 

Function of 
temperature, Ah-

throughput, C-rate 
and time. Parameters 

based on literature 

LFP PHEV Yes 

 

In this study, we aim to asses the regional and drive cycle implications of degradation of 

a PHEV battery. For this purpose we construct a comprehensive and modular simulation model 

to address three main questions: 1) How much improvement can be obtained in a PHEV battery 

life with passive air-cooling? 2) How does this improvement vary across different regions and 

different driving and usage profiles? 3) What is the sensitivity of the results to the model 

parameters and assumptions? Various case scenarios are simulated for an air-cooled PHEV 

battery pack with LiFePO4/graphite chemistry cells.  

In the following sections of this manuscript the approach of the study is described, details 

of each module is given with underlying assumptions, the simulations performed are explained, 

and finally results, limitations and future work are discussed. 
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2.2 Approach 

To address the questions listed above, we begin by creating hypothetical scenarios for 

one year long of daily driving, charging and rest conditions and record the battery usage history. 

We use the battery usage history to estimate the degradation over years, assuming that every year 

the same usage profile repeats itself.  

We consider a vehicle with specifications similar to a Toyota Prius and assume that this 

vehicle has a battery pack which has the same characteristics of a Hymotion conversion pack 

with ANR26650 LiFePO4/Graphite cylindrical cells manufactured by A123 systems [41]. Based 

on these assumptions, we develop a comprehensive simulation model to estimate battery 

temperature, current and state of charge profiles under the hypothetical scenarios mentioned 

above. The model consists of three main simulation blocks: driving, charging and rest. In 

addition to these blocks, we have sub-models, which can be used by one or more of the 

simulation blocks to perform necessary calculations. These sub-models are: battery equivalent 

circuit model (ECM), performance model, thermal model, and battery life model. Each of these 

components is independent function scripts in Matlab and can be decoupled from the whole 

system model to perform their own calculations with the proper inputs. For the purposes of the 

simulations in this study, we also create a decision algorithm that decides which simulation block 

to run based on the travel patterns. The interactions between model components as well as the 

main simulation inputs are given in Figure 2.1and each model component is explained in detail 

in the following sections.  

2.2.1  Travel Data 

To estimate daily travel behavior of the vehicle, we use GPS sample data from Atlanta 

Regional Commission (ARC)-Regional Travel Survey with GPS Sub-Sample, available in 

Transportation Secure Data Center (TSDC) by National Renewable Energy Laboratory (NREL) 

[56]. GPS sub-sample contains data for 1653 vehicles. We filtered the data for the vehicle types 

and models that might be comparable to plug-in hybrid vehicles available in the market. We 

selected four vehicle types; Auto Sedan, Auto 2-Seat, SUVs and Station Wagons, whose models 

are newer than the year 2000, which decreased the total number of vehicles to 921. Each of these 

vehicles has 3 to 7 days of travel data information available, and the total number of travel days 
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in this subset of data is 𝑁!"# =4940. Here, it is assumed that each travel day in this dataset 

represents a different day of a single vehicle. For each GPS travel day 𝑘, the travel profile 

(𝜑!!"#) contains information on the number of trips the vehicle made each day (𝑇!!"#), the onset 

(𝑡!"!"#$") and end times (𝑡!"!"#$") of each trip 𝜏 on travel day 𝑘 and speed versus time (𝑡)  points 

for each trip 𝑣!"#!"# as also provided in Equation ( 2.1 ). 

 

 

Figure 2.1 Schematic of the approach followed in the study 

  

 𝜑!!"# = 𝑣!"#!"#, 𝑡!"!"#$", 𝑡!"!"#       ,          

𝑡 = 0,1, . . , 𝑡!!"#$%&    
𝑡!"!"#$%&   = 𝑡!"!"# − 𝑡!"!"#$" , 𝑖𝑛  𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑘 = 1,2,… ,𝑁!"#  
𝜏 = 1,2,… ,𝑇!!"#

 ( 2.1 ) 

To create a one year long hypothetical usage scenario, we first assume there will be no 

travels for 121 days [57] and the vehicle will be at rest. For the rest of the year, we pick 

𝑁!"#$ =244 travel days from 𝑁!"# =4950 available in the GPS data to represent 1 year of 
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driving conditions. The travel days are selected randomly, such that the total miles traveled 

during the year is between 11,000 and 15,000 miles:  

 

𝜑!!"# = 𝑣!"# , 𝑡!"!"#$", 𝑡!"!"#

𝑠𝑢𝑐ℎ  𝑡ℎ𝑎𝑡

11,000  𝑚𝑖𝑙𝑒𝑠 ≤
𝑣!"# + 𝑣!"(!!!)

2

!!!!"
!"#$%&!!

!!!

!!!!

!!!

!!!!"#

!!!

≤ 15,000  𝑚𝑖𝑙𝑒𝑠
 

(

(2.2) 

where 𝜑!!"# is randomly selected travel profile for day 𝑑 of the year.  

To test the sensitivity of the results to drive cycle, we also perform simulations using two 

fuel economy test cycles by Environmental Protection Agency (EPA). The first cycle, Urban 

Dynamometer Driving Schedule (UDDS) represents city driving conditions [58]. The second 

cycle we use is US06, which refers to a high acceleration driving schedule [58]. To incorporate 

test cycles into the simulations, we employ two different approaches, which we describe in 

Section 2.3.  

2.2.2 Decision Algorithm 

Decision algorithm decides which block (driving, charging or rest) to run based on the 

travel pattern each day. If the day is a rest day, i.e. the vehicle is not driven at all, ‘rest’ block is 

simulated. If it is a travel day, each block is called in an order that is determined by onset times 

of the trips and duration between trips. Charging occurs right after the last trip of the day. The 

vehicle is assumed to be at rest in between trips and after charging until the next day’s trip. The 

decision algorithm schematic is provided in Appendix A.  

2.2.3 Simulation Procedure 

In this section, a sample day of simulations with a single trip is explained. For this 

simulation day, it is assumed that, the driving, charging and rest blocks are simulated one after 

another.  

Driving block takes trip speed profile 𝑣(𝑡) as an input and uses performance, battery and 

thermal models to estimate the dynamic current and temperature profile during the trip.  
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In this study we assume convenience charging, i.e. charging starts immediately after the 

last trip of the day. We assume a constant current charging at 4.6 A. This value is estimated 

based on the Hymotion battery pack specifications, in which it is mentioned that it takes 5.5 

hours to charge the 25.3 Ah battery [59]. Charging block first decides the duration of the 

charging based on the remained capacity in the battery after driving. During this duration, it uses 

battery and thermal models to estimate the battery temperature. Charge duration is calculated as: 

 𝑡!"# =
0.9 𝐶!"#$% − Φ!!"#$%!

!"# 𝐶!"#$%

𝐼!"#  (2.3) 

where 𝑡!"# is the charge duration, 𝐶!"#$% is the battery rated capacity, Φ!!"#$%!
!"#  is the 

SOC level at the end of driving, and 𝐼!"# is the charging current. 

Once charging is complete, rest block determines the duration the vehicle will be at rest 

based on the charging duration and the start of the next day’s trip. Rest duration is then used as 

an input to the thermal model to estimate battery temperature. 

2.2.4 Performance Model 

The performance model calculates the power drawn from the battery to sustain a certain 

speed profile based on the vehicle specifications, and is then used as an input to the battery 

model and thermal model to estimate the current and temperature profiles. The model estimates 

power assuming two modes of operation: charge depleting (CD) and charge sustaining (CS) 

modes. We assume that PHEV we model is an extended range electric vehicle (EREV), therefore 

during CD mode it behaves like a battery electric vehicle, battery being the only energy source in 

this mode. Only the battery provides the energy required to sustain the power load until the state-

of-charge (SOC) reaches a minimum preset value, which is set to be 20% in this paper. When the 

minimum SOC level is reached, the vehicle switches to CS mode: 

 
𝑃! =

𝑃!!" 𝑣! ,𝑎! ,𝜓!"# , 0 ≤ 𝑡 ≤ 𝑡!",!"#  
𝑃!!" 𝑣! ,𝑎! ,𝜓!"# , 𝑡!",!"# < 𝑡 ≤ 𝑡!"#

𝑡!",!"# = 𝑚𝑖𝑛 𝑡:Φ!
!"# ≤ 20%

𝜓!"# = 𝑚!"#,𝐶!"#$,𝐴!"#$%,𝐶!!, 𝜂!", 𝜂!"

 

(2.4) 
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where 𝑃! is the power drawn from the battery at time step 𝑡, which is either equal to the 

power at CD mode (𝑃!!") or CS mode (𝑃!!").  𝑣! and 𝑎! are the vehicle speed and acceleration 

during the trip,  Φ!
!"# is the state-of-charge at time step 𝑡 ,  and 𝑡!",!"# is the time step when 

Φ!
!"# ≤ 20% for the first time. 𝜓!"# is a vector of constant parameters: vehicle mass (𝑚!"#), 

drag coefficient (𝐶!"#$), vehicle frontal area (𝐴!"#$%), tire rolling resistance coefficient (𝐶!!), 

efficiency of power transfer from regenerative breaking to battery (𝜂!") and efficiency of power 

transfer from battery to wheels (𝜂!"). The inputs-output relation of the model is illustrated in 

Figure 2.2. 

 

Figure 2.2 Performance model inputs and outputs at each time step 

In CD mode, the power load on the battery is calculated using a similar approach 

presented in Peterson et al. [37]. The power 𝑃!!" drawn from the battery in CD mode  can be 

calculated using Equation (2.5) 7.  

 

𝑃!!"

=
𝜂!" 𝑚!"#𝑎! +

1
2 𝜌

!"#𝑣!!𝐶!"#$𝐴!"#$% + 𝐶!!𝑚!"#𝑔 𝑣! , 𝑟𝑒𝑔𝑒𝑛𝑎𝑟𝑎𝑡𝑖𝑣𝑒  𝑏𝑟𝑎𝑘𝑖𝑛𝑔

𝑚!"#𝑎! +
1
2 𝜌

!"#𝑣!!𝐶!"#$𝐴!"#$% + 𝐶!!𝑚!"#𝑔 𝑣!
𝜂!" , otherwise

 
(

2.5) 

where 𝑔 is the gravitational acceleration, and 𝜌!"# is the air density.  

When the SOC of the battery decreases to the minimum level set, the vehicle operation 

switches to charge sustaining (CS) mode. In CS mode, the battery SOC is kept at the target level. 
                                                

7 Hymotion battery pack does not receive any regenerative charging, however the NiMH battery in a Prius 
conversion does. Here, since we assume the only pack in the vehicle is Hymotion, we assume regenerative charging 
is accepted by this pack.  

Performance 

Model 
𝑣! 𝑃! 

𝜓!"# Φ!
!"# 
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So, in order to obtain the battery current and voltage profile, it is necessary to model the power 

control strategy. In this study, the dynamic model of Toyota Hybrid system powertrain 

developed by Liu and Peng is used for this purpose [60].  The MATLAB/Simulink® based 

model was developed to test powertrain control strategies. It takes the vehicle specifications and 

the drive cycle as inputs, and evaluates the vehicle performance using mathematical models of 

the engine, generator, electric motor, controller, and battery. We replace the battery model in 

their model with an equivalent circuit model described in Section 2.2.5. We also incorporate a 

thermal model (Section 2.2.7). The rest of the Simulink model is treated as a black-box function 

that determines power load on the battery (𝑃!!"). For more details on the Simulink model 

interested reader is referred to [60,61].  

2.2.5 Battery Model 

Battery model estimates the current and voltage profiles of the battery under a power 

load. The Hymotion battery pack modeled in this study consists of 14 modules, connected in 

series. Each module has 44 cells, and the cells are connected with a 11 parallel- 4 series 

configuration [62]. Pack current and voltage profiles can be estimated by evaluating each cell’s 

electrical performance. The current drawn from each cell of the pack at each time step 𝑡 is: 

 𝐼! =
(𝑃! + 𝑃!!"#)/𝑁!"##,!"#$

𝑉!
, 𝑑𝑟𝑖𝑣𝑖𝑛𝑔

𝐼!"#/𝑁!"##,!"#"$$%$, 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔
 (2.6) 

Where 𝑃! is the power required to sustain a drive cycle, 𝐼! is the current drawn from each 

cell (or recharged back to battery during regeneration braking and charging), 𝑁!"##,!"#$ is the 

total number of cells in the battery pack, 𝑁!"##,!"#"$$%$ is the number of the cells connected in 

paralle and 𝑉! is the cell voltage. 𝑃!!"# is power consumed by the auxiliary equipment. The main 

auxiliary power we consider in this study is the HVAC power consumption, which is described 

in Section 2.2.7. 

The electrical behavior of the cells can be modeled using an equivalent circuit model 

(ECM). In this study, we use the ECM given in Figure 2.3. 
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Figure 2.3 Cell equivalent circuit model 

In this model, 𝑉!"#is the open circuit voltage of the battery, 𝑅!"# is the ohmic 

resistance, and 𝑉 is the battery voltage. The voltage drops 𝑉!" and 𝑉!"  across the resistance-

capacitor (RC) couples represent the dynamic voltage losses. The generic equations for this 

circuit model can be defined as follows:  

 𝑉 = 𝑉!"# − 𝐼 ∙ 𝑅!"# − 𝑉!" − 𝑉!" (2.7) 

 𝑉!" = −
1

𝑅!"𝐶!" 𝑉
!" +

1
𝐶!" 𝐼 

(2.8) 

 𝑉!" = −
1

𝑅!"𝐶!" 𝑉
!" +

1
𝐶!" 𝐼 

(2.9) 

where the current 𝐼 is assumed to be positive during discharge. Equations (2.8) & (2.9) 

are ordinary differential equations, which can be discretized for each time step:  

 𝑉!!!!" = 𝑉!!"𝑒
! !
!!
!"!!

!"!
!

+ 𝑅!!"𝐼! 1− 𝑒
! !
!!
!"!!

!"!
!

 (2.10) 

where 𝑡! is the sampling period ( i.e. the time difference between two time steps, 1 

second in our case). Then the battery voltage at each time step can be solved as:  

 𝑉! = 𝑉!!"# − 𝐼! ∙ 𝑅!!"# − 𝑉!!" − 𝑉!!" (2.11) 

The ECM parameters are functions of SOC and battery temperature. Perez et al. estimate 

the model parameters for A123 Systems 26650 LFP/graphite cells [63] and they provide the 

𝑉!"# 

𝑅!"# 
𝐶!" 𝐶!" 

𝑅!" 𝑅!" 

+	  	      𝑉!!	  	  	  	  -‐ +	  	      𝑉!"	  	  	  	  -‐ 

𝐼 

+	  

	      𝑉	  	  	  	  

-‐ 
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parameters as look-up tables for each parameter, consisting of their values at 8 different 

temperature and 9 different SOC index points in [64]. We estimate the parameters at each time 

step by linear interpolation between the values provided in each look-up table. For example, 

ohmic resistance at each time step is: 

 𝑅!!"#   Φ!
!"#,𝑇!!"##,Φ!"#$%&'(,T!"#$%  (2.12) 

where, Φ!
!"# is the state of charge and 𝑇!!"## is the cell temperature at each time step 𝑡 , 

and Φ!"#$%&'(  and T!"#$% are the SOC and temperature indexes of the look-up table . The look-

up tables for each parameter are given in Supplemental Information. 

Although some studies showed that open circuit voltage (𝑉!"#) depends on the 

temperature [65],  many studies in literature neglect the temperature dependence of the open 

circuit voltage. In addition, Lam et. al. [66] showed that the deviation of 𝑉!"# at different 

temperatures from its reference value at 25oC is less than 2mV at most temperatures. Therefore, 

it is safe to assume that 𝑉!"# will not change with temperature; and depends only on SOC, i.e. 

 𝑉!!"# Φ!
!"#  (2.13) 

We use 𝑉!"# data from Perez et. al. [63] for the simulations in this study.  

2.2.6 State-of-Charge Estimation 

The state-of-charge (SOC) of at each time step needs to be estimated to be used in ECM 

parameters interpolation as well as to decide which operation mode the vehicle is at (CD or CS). 

In this study, we define the SOC based on the rated capacity of the cell and approximate Φ!
!"# as 

follows: 

 Φ!!!
!"# =

Φ!
!"#𝐶!"#$% − 𝐼!(

𝑡!
3600)

𝐶!"#$%  (2.14) 

where 𝐶!"#$% is the cell rated capacity in ampere-hours (Ah) and 𝑡! is the time 

difference between two steps in seconds. In our simulations, assume that SOC of the battery 

swings between 90% and 20%, i.e. only 70% of the capacity is used.  
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2.2.7 Thermal Model 

The thermal model approximates the battery temperature at each time step by8: 

 T!!!!"# = T!!"# +
Q!
!"#,!"# − Q!

!",!"#

𝑀!"# 𝑡! (2.15) 

where  T!!"# is the battery temperature,  Q!!"# is the heat generation rate inside the 

battery, Q!
!",!"# is the heat transferred to or from the battery, and 𝑀!"# is the battery thermal 

mass.  

In constructing this thermal model, a series of assumptions were made. First, the 

temperature difference across the cell is neglected. The temperature of a cylindrical cell under 

dynamic conditions may vary radially (core and surface temperature difference) due to different 

layers of materials the cell spiral consists of, as well as in longitudinal direction due to the 

location of tabs and connectors. What determines the cell degradation and performance is in fact 

cell core temperature rather than the surface temperature. There are many studies in literature 

that aim to model this thermal behavior of the cell [67–69], however, none of these studies 

provide validation since it is not always easy to measure the core temperature of the battery. 

Most of these studies show by modeling and simulation that, the difference between the cell core 

and surface temperatures is negligible under low C-rates, but may increase up to 5oC at higher C-

rates.  Ye et. al. [70], on the other hand, shows that, the temperature difference for a cylindrical 

LFP cell -with similar parameters to the cell used in this study- can reach up to 10oC under 

strong forced convection conditions, which might alter the final degradation profiles for the 

batteries.  However, the possible temperature difference across the cell is assumed to be 

negligible in this study and further investigation of this issue is left for future work. In this study, 

it is also assumed that the temperature is uniform across the battery pack, i.e. there is no cell-to-

cell temperature variance. We neglect any conduction between the cells as well as between cells 

and outer materials. 

                                                
8 Heat removed from the battery is considered positive (+) and heat transfer into the battery is negative (-). 
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The heat generated in the battery pack is equal to the sum of the heat generation in each 

cell. Since we assume the uniform temperature in the pack, heat generation can be approximated 

as: 

 𝑄!
!"#,!"# = 𝑁!"##,!"#$𝐼! 𝑉!!"# − 𝑉!  (2.16) 

Note that in this approximation, we consider heat generation only due to ohmic losses 

and neglect reversible heat generation.  

The heat transfer mechanisms we consider in this study are the convection from the 

battery pack to cabin and ambient, and forced convection heat transfer with air cooling:   

 

 𝑄!!" =
𝑄!
!"#,!" + 𝑄!

!"#,!",   𝑣!"# ≠ 0  
𝑄!
!"#,!",      𝑣!!"# = 0

 
(

2.17) 

where 𝑄!!" is the total heat transfer from the battery, 𝑄!
!"#,!"  is the heat transfer by 

forced air convection, 𝑣!!"# is the speed of the air entering the battery during cooling and 

𝑄!
!"#,!" is the natural convection to the cabin and outside. To estimate 𝑄!

!"#,!", we construct an 

air cooling model of the Hymotion pack. We evaluate 𝑄!
!"#,!" using the thermal network model 

developed in NREL [55,71]. The details of these models are explained in the following sections. 

2.2.7.1 Air Cooling Model 

The battery pack is cooled by a fan that draws cabin air into the battery. An illustration of 

this cooling strategy is shown in Figure 2.4. We assume a simple on-off thermal control strategy, 

in which the fan is turned on and off when the battery temperature reaches and falls down to pre-

determined threshold values, as given in Equation (2.19). When the fan is on, the air speed is 

fixed at 17 m3/h (cubic meter per hour), which is the lowest battery fan speed for Toyota Prius 

Hybrid battery [72].  

 𝑣!!"# =
17  [𝑚!/ℎ], 𝑇!!"# > 35!𝐶

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.18) 
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Figure 2.4 Air cooling thermal management system (Image Source: Paseran, 2001 [25]) 

The flow of air is divided in parallel so that same amount of air passes through each 

module in the pack [62]. Therefore, we only model and simulate one single module to obtain the 

temperature profile of the whole pack under air-cooling. A picture of the battery pack, as well as 

an illustration of the cell configuration inside a module is given in Figure 2.5.  

 
 

Figure 2.5 (a) A123 Systems Hymotion Li-ion conversion battery pack (Image Source: A123 

Hymotion Animation, [73] )(b) An illustration of the cell configuration inside a single module 

The heat transfer with forced air convection from cells inside the module can be 

estimated by : 	  

 𝑄!!" = 𝑁!"##,!"#$%&ℎ𝜋𝐷!"##∆𝑇!!"𝐿!"## (2.19) 

In this equation, ℎ is the overall heat transfer coefficient, 𝐷!"## is the cell diameter, 

∆𝑇!!"	  is	  the	  log	  mean	  temperature	  difference	  at	  each	  time	  step	  and	  𝐿!"##  is	  the	  cell	  length. 

The overall heat transfer coefficient ℎ is defined as:  

 ℎ = 𝑁!"𝑘 𝐷!"##   (2.20) 
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where 𝑁!"  is the Nusselt number, and k is thermal conductivity of air. The cell 

configuration inside the pack is neither fully aligned nor fully staggered. However, it has mostly 

a staggered arrangement and therefore in this study the correlation in Equation (2.21) by 

Zhukauskas [74] for “flow across staggered bank of tubes” is used to estimate the Nusselt 

number.  

 𝑁!" = 𝐶 𝑁!",!"# ! 𝑁!" !.!" 𝑁!" 𝑁!",! !.!" (2.21) 

𝑁!",!"#	   is	   the	  Reynolds	  number	   calculated	  at	  maximum	  air	  velocity	   ,	  C	   and	  m	   are	  

constants	  obtained	  empirically	  and	  tabulated	  for	  𝑁!",!"#,	  and	  	  𝑁!"	  is	  the	  Prandtl	  number.	  

𝑁!",!"#	  and	  𝑁!"	  are	  calculated	  at	  the	  film	  temperature,	  T!"#$,	  which	  is	  defined	  as:	  

 𝑇!"#$ ≡ (𝑇!"#$ + 𝑇!"#) 2   (2.22) 

where  𝑇!"#$	  is	  the	  cell	  surface	  temperature	  and	  	  𝑇!"#	  is	  inlet	  air	  temperature.	  𝑁!",!	  

is	  calculated	  at	    𝑇!"#$.	  	  

In	   this	   study,	   we	   assume	   that	   air	   inlet	   temperature	   T!"#	   is	   equal	   to	   the	   cabin	  

temperature,	  which	  is	  kept	  constant	  at	  24oC.	  In	  addition,	  we	  assume	  that	  cell	  temperature	  

is	   uniform	   radially	   and	   axially	   along	   each	   cylindrical	   cell.	   Therefore,	   cell	   surface	  

temperature	   is	   actually	   the	   cell	   temperature	   overall,	   i.e.	     𝑇!"#$ = 𝑇!"## .	   Since	   cell	  

temperature	   is	   time	   dependent,	   (𝑇!"##(𝑡)),	  𝑁!"	   and	  𝑁!",!	   should	   also	   vary	   at	   each	   time	  

step.	   However,	   change	   of	   air	   Prandtl	   number	  with	   temperature	   is	   considerably	   small	   as	  

given	  in	  Table 2.4,	  therefore	  we	  assume	  a	  constant	  Prandtl	  number	  𝑁!"=	  𝑁!",!=0.71	  in	  this	  

study.	  Therefore,	  a	  constant	  heat	  transfer	  coefficient	  ℎ	  is	  calculated	  for	  forced	  air-‐cooling.	  	  

Table 2.4 Air Prandtl Number with temperature [75] 

Temperature (oC) Prandtl Number 
20 0.713 
40 0.711 
60 0.709 

 

The	  log	  mean	  temperature	  ∆𝑇!!"difference	  in	  Equation	  (2.19)	  is	  defined	  as:	  
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∆𝑇!!" =

𝑇!!"#$ − 𝑇!"# − 𝑇!!"#$ − 𝑇!!

ln 𝑇!!"#$ − 𝑇!"#
𝑇!!"#$ − 𝑇!!"#$%&

           
(2.23) 

where 𝑇!!"#$%&	  is	  the	  temperature	  of	  air	  leaving	  the	  battery,	  and	  can	  be	  calculated	  by	  

using	   the	   relation	   given	   in	   Equation	   (2.24),	   which	   can	   be	   obtained	   by	   equating	   the	   heat	  

transferred	  from	  the	  cell	  surfaces	  to	  air	  (Equation	  (2.19))	  to	  the	  heat	  carried	  away	  by	  air.	  

 
𝑇!!"#$ − 𝑇!!"#$%&

𝑇!!"#$ − 𝑇!"#
= 𝑒𝑥𝑝 −

𝜋𝐷!"##𝑁!"##,!"#$%&ℎ
𝜌!"#𝑣!!"#𝐴!𝑐!"#  

   (2.24) 

where 𝜌!"# is air density, 𝑣!!"# is the air speed, 𝐴! is the air inlet area, and 𝑐!"# is the air 

constant specific heat.  

2.2.7.2 Thermal Network Model 

We estimate the heat transfer from the battery to the ambient and to the cabin using the 

thermal network model shown in Figure 2.6  developed in NREL [55,71]  

 

Figure 2.6 Thermal network model to predict battery temperature in various environments and 

under solar radiation (Image Source: Neubauer and Wood, 2014 [55]) 

The heat transferred from the battery is estimated as: 

 𝑄!
!",!" = 𝐾!" 𝑇!!"# − 𝑇!!"# + 𝐾!" 𝑇!!"# − 𝑇!!"#  (2.25) 
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where 𝑇!!"#, 𝑇!!"# and 𝑇!!"# are ambient, cabin and battery temperature.  1/𝐾!" is the 

thermal resistance between cabin and ambient, 1/𝐾!" is the thermal resistance between battery 

and ambient, and  1/  𝐾!" relates the battery convection to cabin. Thermal resistances were 

estimated by fitting values to the data collected in December 2008 in Golden, CO with a Gen 2 

Toyota Prius. Cabin temperature can be estimated as: 

 𝑇!!!!"# = 𝑇!!"# −
𝑄!!"#

𝑀!"# (2.26) 

where 𝑀!"# is the vehicle cabin thermal mass, and 𝑄!!"# is the heat transfer rate from the 

cabin defined by: 

 𝑄!!"# = 𝐾!" 𝑇!!"# − 𝑇!!"# + 𝐾!" 𝑇!!"# − 𝑇!!"# − 𝑄!!"# + 𝑄!!"#$ (2.27) 

where 𝑄!!"# is the radiative heat transfer and 𝑄!!"#$ is the heat removal from the cabin 

by HVAC system. We estimate the radiative heat transfer as: 

 𝑄!!"# = 𝑞!!"#$%𝜀𝐴!"# (2.28) 

𝑞!!"#$% is the global diffuse horizontal radiation per unit area that can be found in 

“Typical Meteorological Year” database compiled by NREL for various cities in United States 

[76]. 𝜀 is the surface emissivity and  𝐴!"# is the car surface area. In the model, 𝑄!!"#$ is 

estimated as: 

 𝑄!!"#$ =
4500  𝑊, 𝑇!!"# > 25!𝐶
−4000  𝑊, 𝑇!!"# < 19!𝐶

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2.29) 

The thermal model calculations with the input-output relationships are summarized in a 

schematic in Figure 2.7. 
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Figure 2.7 Schematic of the Thermal Model 

 

2.2.8 Battery Degradation Model 

Li-ion batteries degrade with time and usage. Degradation occurs due to various reactions 

and processes both in electrolyte and electrode level, and these can show differences between 

different chemistries.  

In this study, we focus on LiFePO4 (LFP) chemistry. The main reasons of this choice are: 

(1) the cells used in the actual Hymotion battery pack are of this chemistry, (2) due to its safety 

and longer life characteristic, this chemistry is a potential candidate to be used in automotive 

industry and extensively studied in public literature [23,35,37,42–45] , and (3) in this chemistry, 

the main aging is due to capacity loss rather than impedance growth [23,37], therefore the battery 
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life model can be simplified by considering only capacity loss criteria. In LFP batteries, the main 

aging mechanism is the SEI growth, therefore the degradation modeling approach we follow here 

can be assumed to be similar in other batteries where SEI growth is the dominant factor in 

ageing.  

Figure 2.8 shows the percent capacity fade versus Ah-processed obtained from the 

studies in Table 2.3 that tested A123 Systems ANR26650 cells. As can be seen from the figure, 

measurements and/or estimations of degradation vary a lot between studies. Therefore, it is not 

possible to just us model and expect an accurate result. In this study, we selected the model 

provided by Wang et al. [42] as our base case degradation model since it provides the most 

comprehensive analysis considering both temperature and C-rate as stress factors. To see the 

sensitivity of the results to this choice of degradation model, we also estimate the capacity loss 

based on manufacturer data.   

 

Figure 2.8 Percent capacity fade with Ah-processed during cycling of A123 Systems 

ANR26650 cell with 2.3 Ah capacity- comparison of results from different studies 

The generic capacity loss model described in Wang et al. is given in Equation (2.30): 
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 𝜃!"! = 𝐴 ∙ 𝑒𝑥𝑝
−31700+ 370.3× 𝐼!"##/𝐶!"##

𝑅!"# ∙ 𝑇!"## 𝜙!",!" !.!! (2.30) 

where 𝜃!"! is the percent capacity loss with cycling, 𝐼!"## is the current drawn from (or 

charged to) cell, 𝐶!"## is the nominal cell capacity in ampere-hours (Ah), 𝑅!"# is the universal 

gas constant, 𝑇!"## is the cell temperature and 𝜙!" is the ampere-hour (Ah) throughput. 𝐴 is a 

constant given at four different C-rates 𝐼!"##/𝐶!"##   in Table 2.5. 

Table 2.5 Values of coefficient 𝑨 in Equation (2.30) as given in Wang et al. [42] 

C!"#$ = 𝐼!"##/𝐶!"## 1/2 2 6 10 

𝐴 31,630 21,681 12,934 15,512 

 
The Ah- throughput in this model is defined as the energy delivered by the cell during 

cycling. Therefore, it does not involve the energy recharged to the cell during charging. In this 

study, we assume that the degradation mechanisms during the charging follow the same pattern 

as discharge, and we define a new parameter, Ah-processed (𝜙!",!") as the total energy 

processed in a cell, i.e. summation of energy delivered to and from the cell. Therefore, replacing 

𝜙!",!" with 𝜙!",!"/2 in Equation (2.30), we update the model as: 

 𝜃!"! = 𝐴 ∙ 𝑒𝑥𝑝
−31700+ 370.3× 𝐼!"##/𝐶!"##

𝑅!"# ∙ 𝑇!"## 0.5 !.!! 𝜙!",!" !.!! (2.31) 

We assume this generic model can be applied to estimate the cycling fade at each time 

step as follows: 

 

𝜃!!"! = Γ! ∙
𝜃!!!!"!

Γ!

!
!.!!

+ ∆𝜙!
!",!"

!.!!

  

Γ! = 0.5 !.!!𝐴! ∙ 𝑒𝑥𝑝
−31700+ 370.3×𝐶!!"#$

𝑅!"#𝑇!!"##
 

 

(2.32) 

where ∆𝜙!
!",!" is the ampere-hour processed between the time steps 𝑡 and 𝑡 − 1: 
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 ∆𝜙!!" = 𝐼!"##(𝑡) ∙ 𝑑𝑡
!

!!!
≅
1
2 𝐼!!"## + 𝐼!!!!"##  (2.33) 

We estimate 𝐴! for 𝐶!!"#$ by using linear interpolation between the tabulated values 

given in Table 2.5. 

The capacity loss during storage, i.e. whenever the vehicle is at rest, is obtained by a 

model fitted to data provided by the cell manufacturer [38]. In the given data, the percent 

capacity loss was observed to vary linearly with the logarithm of time in days. Therefore, the 

model form given in Equation (2.34) is used to estimate the storage fade. The constant 

parameters given in the formula are obtained using least squares regression fit to the data.  

 𝜃!"# = 10!.!"!"∙!!"##!!.!!" ∙ 𝑙𝑜𝑔10 𝑡!"#      (2.34) 

where  𝑡!"# is the storage duration in days. 

Using this model for the purpose of estimating battery life in electrified vehicle 

applications has several limitations:  

• The cycling tests were performed at static loading profiles, i.e. using constant 

current/discharge rates. We assume the same degradation model will be valid with 

under dynamic load, and that we can apply the model on second by second basis.  

• The tests were performed on single cells only. We assume the degradation 

behavior does not change when the cells are used in connection with other cells in 

a pack.  

• The coupled effects of stress factors are not clear. We assume the relationships 

observed in these tests are applicable when the model is used to estimate 

degradation at various other temperature and C-rate combinations. 

• We assume the ageing mechanisms are exactly the same during charge and 

discharge. Li et al. shows that fresh SEI formation with cycling occurs only 

during charging and although this SEI peels off and accumulates during 

discharge, no new SEI formation occurs [18]. In addition, Groot et al shows that 

different charge/discharge current combinations can lead to different capacity loss 

profiles depending on the temperature [15]. As an example, their test results 
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indicate that for temperatures higher than 30oC cycling with 1C discharge/ 3.75 C 

charge rates cause faster degradation than cycling with 3.75C both during charge 

and discharge.  

• When estimating the constant parameter 𝐴! in Equation (2.32) using Table 2.5, 

we assume for any C-rate lower or upper than the minimum and maximum index 

values given in the table, the constant 𝐴! is equal to its value at either in the 

lowest or highest C-rate. Therefore, we might be underestimating degradation for 

C-rates higher than 10C. 

 All these limitations might be causing over or underestimation of degradation depending 

on the conditions. However, to Authors’ knowledge, there is no model available in public 

literature that would address all these issues.   

2.3 Simulations and Sensitivity Analysis 

Using the procedure and models described above, we perform various simulations to see 

the effects of air-cooling, regional climate and drive cycle on battery life. The case studies 

simulated are summarized in Table 2.6.  

Table 2.6  Case Studies Simulated 

Test the effect of: Options  
Thermal 

Management 
No battery thermal management 

Air-cooling 

Region 
San Francisco, CA 

Phoenix, AZ 
Miami, FL 

Driving Cycle 
GPS data from Atlanta  
EPA US06 test cycle 
EPA UDDS test cycle 

Annual miles 
driven 

12,400 miles 
14,700 miles 

 

Thermal management effect: To test how much air-cooling improves battery life we simulate 

two cases. In the first case, there is no cooling system for the battery and only the interaction 
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between battery, ambient and cabin is considered using the thermal network model. In the second 

case, we assume battery is cooled with an air-cooling system described in Section 2.2.7.1. 

Regional effects: We perform simulations in three different cities. Phoenix represents a region 

where cold hours as well as high peak temperatures can be observed. Both Miami and San 

Francisco show little hourly and daily fluctuations in temperature. They represent a hot and a 

mild climate respectively. The factors that change with region are the ambient temperature and 

radiation inputs to the thermal model.  

Driving cycle: To test the effect of driving cycle, we follow two approaches:  

Approach 1. In the first approach, the speed profiles in the GPS data are replaced by UDDS and 

US06 speed profiles such that the total distance driven remains the same. In doing this, we 

assume that the start time of each trip in the GPS data doesn’t change. However, due to different 

speed profiles, trips can take longer or shorter with UDDS and US06, therefore trips end times 

are different than the GPS data. However, in particular with UDDS trips take longer since it is a 

low speed cycle, and the next trip start time in GPS data might be earlier than trip end time with 

UDDS. The algorithm does not check that, therefore this results in more than one trips to occur 

during the same hourly bin at certain days, which result in more driving and degradation than 

actual.  

Approach 2. To address this issue, in the second approach we follow a different methodology 

and assume the same driving pattern every day throughout the year, with the same drive cycle 

(UDDS or US06). We divide the total annual miles driven to 244 driving days, and assume half 

of this distance is driven in the morning starting at 8:30 am, and the other half in the evening 

starting at 5:30 pm, to represent a daily commute between home and work. We assume the 

battery is only charged after the last trip of the day and at rest in between trips. With this 

approach, we aim to prevent any biases that can be introduced in the results due to different trip 

times.  

Annual miles driven: We pick two different sets of driving days from the GPS data. The first 

set sums up to a total distance of 12,400 miles and the second set has an annual mileage of 

14,700 miles. Note that, we make these random selections based on distance only. Therefore, the 

two different sets can have different driving patterns. However, the rest days and the driving 

days throughout the year are assumed to be the same across the two sets.  
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2.4 Results and Discussion 

2.4.1 Annual Miles Driven:  

Figure 2.9 shows the capacity fade at the end of 15 years in Phoenix when two different 

sets of random driving days with different annual mileages driven are selected from GPS data. 

The figure shows the case when there is no air-cooling employed. The capacity fade follows very 

similar patterns in both cases, showing only minor difference at the end of 15 years.  

 

Figure 2.9 Total annual mileages comparison 

Since this comparison is based on randomly selected drive cycles from GPS data, there 

might be differences between driving patterns and aggressiveness between two sets that would 

prevent analyzing isolated effect of annual miles driven. To test if that is the case, we compare 

the simulations performed with UDDS using approach 2, i.e. assuming same driving cycle 

everyday. Figure 2.10 shows this comparison. As depicted from the figure, the difference 

between assuming two different total annual miles traveled is bigger in this case. This might 

indicate that, when the driving profiles are selected randomly, driving patterns (time of driving, 
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number of trips, duration between trips) and driving aggressiveness can dominate and effect of 

miles driven can become less significant.  

 

Figure 2.10 Annual mileages comparison with UDDS 

2.4.2 Drive Cycle  

Figure 2.11 shows the degradation profiles of assuming different driving cycles in 

Phoenix, in the case of no air-cooling. As expected, driving with US06 results in more 

degradation: battery life is halved compared to GPS when 20% capacity loss is assumed to be the 

end of life. UDDS results however are comparable to GPS. Furthermore, as shown in Figure 

2.10, with annual mileages of 14,700 miles, UDDS might result in even higher degradation than 

GPS. UDDS is a milder cycle, however driving the same distances with UDDS takes 

considerably longer compared to GPS. Although C-rates might be lower than in the case of GPS, 

they might not be high enough to dominate the time effects of degradation.  
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Figure 2.11 Comparison of drive cycles in Phoenix. Air-cooling is not active. Annual 

miles driven are 12,400 miles. UDDS and US06 results are obtained using Approach 2: assuming 

same driving profile and distance everyday 

Figure 2.12 shows a comparison of the degradation profiles between the two approaches 

we use to perform simulations with US06 data. As can be seen, assuming the same driving 

profile everyday results in less degradation compared to replacing trips in the GPS.  

In both approaches with US06, degradation is very fast and 20% capacity loss is reached 

in less than 3 years. To investigate this issue and test any model errors, we perform two 

additional case studies: In the first case, we test the effect of control strategy, and we assume a 

blended mode CD operation, and perform both CD and CS mode simulations using the Toyota 

Prius control system model in Simulink described in Section 2.2.4. In the second case, we 

investigate the pack size implications, and perform the simulations again assuming a pack with 5 

times more modules with the same cell configurations. As expected, in both cases significant 

reduction in capacity fade is observed. With blended mode strategy, the battery life quadruples.  

In the case of a bigger pack, degradation rate is very slow and battery EOL is not reached in 

fifteen years. These results are consistent with the observations that degradation is much slower 

in big batteries, and small-battery PHEVs are typically designed as blended-operation vehicles 

rather than EREVs.  
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Figure 2.12 Comparison of two approaches in using US06 drive cycle. Approach 1: replace 

every single trip in GPS data with corresponding US06 cycles that matches the same trip 

distance. Approach 2: assume same miles of travel everyday and two trips, one in the morning 

one in the evening.  

 
 

Figure 2.13 Investigation of capacity fade with US06 Left: comparison of powertrain control 

strategies. Right: comparison of pack size 
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2.4.3 Regional Effects 

The comparison of capacity fade at three cities is given in Figure 2.14. It is observed that, 

battery life in San Francisco is 75% longer than battery life in Phoenix, mainly because less 

cabin thermal conditioning use in a mild climate decrease the load on the battery, therefore 

increasing life. In Miami battery life is one year longer than Phoenix.  

 

Figure 2.14 Capacity fade comparison between cities using GPS data. No air-cooling is 

employed and total annual miles driven is 14,700 miles 

2.4.4 Effect of Thermal Management  

Air-cooling can improve battery life significantly. In Phoenix, battery life doubles with 

GPS data, and with US06 almost 8 times longer battery life can be obtained as shown in Figure 

2.15. The degree of improvement also depends on the city. As depicted in Figure 2.16, in San 

Francisco the improvement obtained by air-cooling is less than in Phoenix. Figure 2.17 

summarizes the improvement of battery life by air-cooling for different cases simulated. 
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Figure 2.15 Capacity Fade in Phoenix, with annual miles driven 14,700miles. The comparison 

of air cooling vs no cooling for two drive cycles. US06 simulations are performed using 

Approach 1. 

 

Figure 2.16 Capacity Fade in Phoenix and San Francisco, using GPS data with annual miles 

driven 14,700miles. The comparison of air-cooling vs. no cooling is provided for two cities 
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Figure 2.17 Improvement in battery life by air-cooling for different cases simulated. For all 

simulations, the annual miles driven=14,700 miles. US06 simulations were performed using 

Approach 1.  

2.4.5 Battery End of Life Criteria 

For all the results discussed so far, battery end-of-life (EOL) is assumed to be when 

battery loses 20% of its capacity. However, individual drivers might continue using their 

vehicles after this threshold. As an example, if the battery end-of-life is set to be at 30% capacity 

loss, in most of the cases battery life will be longer than 15 years.  

The change of battery life under various cases compared to base case simulation in 

Phoenix is summarized in Figure 2.18. In addition, Figure 2.19 shows the comparison of 

different cases which were simulated with a US06 drive cycle.   
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Figure 2.18 Comparison of battery life for various cases simulated. Vertical line presents the 

base case where; city: Phoenix, drive cyle: GPS, thermal management: none, annual miles 

driven=12,400 miles, battery EOL: at 20% capacity fade 

 

Figure 2.19 Battery life comparison change for US06 cases simulated at 14,700 miles. Vertical 

line presents the base case where; city: Phoenix, thermal management: none, battery EOL: at 

20% capacity fade 
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2.5 Limitations 

This study presents a comprehensive model and analysis to investigate battery life 

implications in PHEVs. However, several limitations in the models and simulations should be 

understood when interpreting our results: 

Driving data. We use GPS data from Atlanta region for our base case, and assume they 

are representative for the whole country. However, regional variances in driving profiles can lead 

to different degradation profiles, which we don’t consider in this study.  

Battery modeling. We use an ECM parameters of which were obtained by regression 

based on low C-rate constant current charge/discharge tests. We assume this model can be 

applied for dynamic current profiles that are experienced in this study. In addition, it is not clear 

if the ECM can predict battery behavior at high C-rates accurately. We neglect this issue and 

assume the model can predict battery electrical behavior in all cases. 

Thermal model. Although the thermal network model used in this study is developed 

based on testing a static vehicle, we assume it can be applicable in the case of a vehicle in 

motion. During driving, the movement of the air over the car would change the heat transfer 

characteristics. This is neglected. In addition, we only consider ohmic losses to model heat 

generation, and disregard any thermodynamic effects in heat generation. Further investigation is 

necessary to understand the effect of this assumption. For air-cooling, we consider a fan with a 

single level of cooling only and we assume airflow rate does not change. A fan with more stages 

can improve the cooling characteristics. Also, for cabin heating, we assume the heater will 

consume 4kW power, which might be larger than the typical heater power consumption in 

PHEVs [77].  

Battery degradation modeling. The limitations of using the assumed degradation model 

are explained in the corresponding section (2.2.8) and won’t be repeated here. To summarize, the 

lack of data that fully covers all aspects of degradation can result in inaccuracies in the 

degradation estimates.  

Cold temperature effect. We don’t consider any cities with extreme cold temperatures, 

although cold temperatures affect vehicle and battery performance. Cold temperatures can also 
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trigger different degradation mechanisms in the battery. We don’t address this issue, mainly 

because there is not enough data at cold temperatures for degradation modeling.  

2.6 Conclusion and Future Work  

We develop a comprehensive model and simulate various usage and storage scenarios to 

examine the battery life implications in PHEVs. Due to various uncertainties in the model 

described in the previous sections, we don’t expect that we can predict battery life exactly, but 

nevertheless the model can provide initial indications of the factors that have the largest 

influences on battery life. Performing various simulations, we show that, battery degradation can 

change significantly based on drive cycle, region and thermal management. Battery life will also 

strongly depend on how battery end of life is defined.  

There are various assumptions made in modeling and simulations, and the sensitivity of 

the results to these assumptions should be tested. Table 2.7 summarizes these sensitivity cases 

that should be addressed in future work.  

Table 2.7 Sensitivity Analysis for Future Work 

Sensitivity Case Change from Base Case Purpose 

Thermal 
Management 

Air-cooling where the fan has three 
stages with different on-off temperature 

thresholds and air-flow 

Test importance of thermal 
management control strategy 

Cabin thermal 
control 

Assume a single constant power 
consumption that does not change with 

cabin temperature 

Test the importance of HVAC 
use in regional temperature 

effects of battery life 

Degradation Model Use another set of literature data Test importance of 
degradation data and model on 

battery life 

Temperature 
Resolution 

Use daily average ambient 
temperatures instead of hourly 

temperatures 

Test importance of ambient 
temperature fluctuations 
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3 Effects of Regional Temperature on Electric Vehicle 

Efficiency, Range and Emissions in the United States 

The efficiency of vehicles varies with ambient temperature due to changes in vehicle 

efficiency and extra usage of cabin climate control. This effect, however, is particularly 

important in BEVs since reduced efficiency will result in shorter range, and there is no other 

propelling device to compensate for it. This chapter therefore focuses on characterizing the effect 

of regional temperature differences on battery electric vehicle (BEV) efficiency, range, and use-

phase CO2 emissions in the U.S. Results indicate that annual energy consumption of BEVs can 

increase by an average of 15% in the Upper Midwest or in the Southwest compared to the Pacific 

Coast due to temperature differences. Greenhouse gas (GHG) emissions from EVs vary 

primarily with marginal regional grid mix – which has twice the GHG-intensity in the Upper 

Midwest as on the Pacific Coast. However, even within a grid region, BEV emissions vary by up 

to 22% due to spatial and temporal ambient temperature variation and its implications for vehicle 

efficiency and charging duration and timing. Cold climate regions also encounter days with 

substantial reduction in EV range: the average range of a Nissan Leaf on the coldest day of the 

year drops from 70 miles on the Pacific Coast to less than 45 miles in the Upper Midwest. These 

regional differences are large enough to affect adoption patterns and energy and environmental 

implications of BEVs relative to alternatives. 

The study presented in this chapter has appeared in Environmental Science and 

Technology [78].  

3.1 Introduction 

The transportation sector is responsible for 32% of U.S. CO2 emissions and 28% of U.S. 

greenhouse gas emissions [3]. In addition, 70% of U.S. petroleum demand is consumed by the 

transportation sector [4]. Battery electric vehicles (BEVs), which are powered by electricity 

alone, have potential to reduce transportation related greenhouse gas emissions as well as 

petroleum consumption by replacing gasoline with electricity as energy source. However, there 

are some barriers to large-scale adoption of these vehicles. Range anxiety is a key factor 
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affecting consumer willingness to adopt electrified vehicles [6,7]. The driving range of a BEV 

depends on the energy capacity of the battery and vehicle efficiency, which are affected by 

design characteristics as well as some use phase factors, such as driving conditions [57],[79] and 

temperature [24].  

Battery performance depends strongly on temperature. At cold temperatures, battery 

efficiency, discharge capability and available energy decreases. In addition, battery internal 

resistance increases, decreasing the power that can be drawn from the battery. Battery 

performance increases with temperature rise, but batteries also degrade faster at high 

temperatures[80], increasing thermal management requirements. 

Ambient temperature determines initial battery temperature and thermal management 

loading (if the vehicle is parked outside, the battery is not thermally preconditioned, and solar 

radiation is negligible) as well as battery temperature and thermal management load during use. 

Weather conditions, therefore, have a direct impact on battery efficiency. Ambient temperature 

also drives use of cabin air conditioning to either heat or cool the cabin at cold and hot days 

respectively [55,81].  The net effect of these factors causes customers to report up to 40% 

decrease in their driving range on cold winter and/or hot summer days compared to the 

maximum range they achieve [24].  The cold temperature effect is generally larger for two main 

reasons: electric cabin heating consumes more power compared to cooling [77], and batteries 

have poorer performance at low temperatures.  

Air conditioning (A/C) use during hot days is an important factor affecting the fuel 

economy in all types of vehicles, since A/C is the largest auxiliary load in many vehicles [82]. 

Cold temperatures, on the other hand, are particularly disadvantageous for BEVs, since vehicles 

with internal combustion engines can use engine waste heat for cabin heating, whereas in BEVs 

heat must be generated using limited onboard stored electrical energy. Reduced efficiency results 

in increased energy consumption and increased emissions from the electricity grid when BEVs 

charge[5,83]. The net effect on emissions varies across the country due to source of electricity 

generation[84] as well as the regional differences in marginal electricity grid mix[85].  

Prior studies investigating the regional differences in energy consumption and emissions 

of electrified vehicles do not account for efficiency losses with temperature change: A 2012 

report by Union of Concerned Scientists (UCS) investigates the GHG emissions of gasoline 
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vehicles, gasoline hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs) and 

BEVs in different regions of the US using constant efficiency assumptions and average 

electricity generation emissions in each eGRID subregion [86]. They find that in certain regions 

like Colorado, some HEVs have lower use-phase emissions than BEVs. Another report by 

Climate Central performs a similar analysis but also includes the carbon emissions from vehicle 

manufacturing and uses average emissions factors for electricity generation by state [87].  They 

conclude that in 40 states a high-efficiency hybrid vehicle like the Toyota Prius is better for the 

climate, and in 10 states a gasoline-powered car is the best due to the electricity generation 

source being dirty. However, Graff Zivin et al. (2014) point out that such average emissions 

factors are not appropriate for estimating the net effect of new electric vehicle load due to 

differences between average and marginal generation mix and substantial trade among regions. 

They estimate marginal emission factors in each of the eight North American Electric Reliability 

Corporation (NERC) regions and use results to evaluate emissions of a Chevy Volt type plug-in 

hybrid electric vehicle.[85] They find that in some regions, such as upper Midwest, charging 

from midnight to 4 am will generate more CO2 emissions than even an average gasoline vehicle. 

Tamayao[88] uses the marginal emission factors proposed by Zivin et al and by Siler-Evans et al. 

[89] to compare various gasoline and electrified vehicle types while accounting for regional 

driving patterns. She finds that today’s BEVs and PHEVs reduce greenhouse gas (GHG) 

emissions relative to their gasoline counterparts in most urban regions, but they may increase 

GHG emissions in the Northern Midwest, and the comparison is inconclusive in much of the 

country due to uncertainty in marginal grid mix estimates.  

All of the analyses mentioned above assume constant efficiency for each of the vehicles 

they analyze, and none of them consider the ambient temperature effect. Neubauer and Wood 

analyze the impact of various factors, including climate, on electric vehicle miles travelled [55]. 

They use a vehicle performance model to estimate the change of vehicle efficiency with 

temperature by including a temperature dependent battery internal resistance term in their model, 

and they perform the analysis at three selected locations with different climates: hot, cold and 

mild. Their battery model (based on a nickel manganese cobalt oxide (NCA) Li-ion battery) 

suggests that battery resistance effects are negligible in their case, but cabin thermal conditioning 

can increase the per mile energy consumption by 24% percent in cold climates compared to the 

case when there is no heating or cooling. Kambly and Bradley also show that heating, 
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ventilation, and air conditioning (HVAC) systems can decrease BEV range depending on the 

region and time of day[81,90]. Their analyses, based on a thermal comfort model of a 

hypothetical BEV, suggest that the vehicle range is lowest at noon when the solar load is highest, 

and thermally preconditioning the cabin before the trip can improve range by about 10%[90]. 

According to their estimates, annual HVAC energy consumption is 50% higher in Arizona than 

in West Virginia[81].     

To the authors’ knowledge, there is no study focusing on the regional benefits of BEVs 

due to spatial and temporal ambient temperature differences. The studies investigating regional 

emissions do not include the effect of ambient temperature in their analysis, and studies that 

examine the effect of climate do not assess regional environmental benefits. We aim to fill this 

gap in the literature. In this paper, we quantify the variance in driving range, electricity 

consumption and related emissions due to regional ambient temperature using real world energy 

efficiency, climate, and driving pattern data. In the following sections the data used in the 

analysis are introduced; the analysis method is described; results of the regional analyses are 

presented; and a discussion of comparisons between different regions is provided.  

3.2 Data and Analysis 

To estimate regional effects of temperature on electric vehicle efficiency, range and 

emissions, we construct models of vehicle energy consumption vs. temperature; U.S. temporal 

and spatial temperature variation, vehicle driving and charging patterns; and U.S. regional grid 

emission factors. In the following sections, we explain the data used for each aspect and our 

analysis approach.  

3.2.1 Energy Consumption Versus Temperature  

To find a relationship between energy consumption and ambient temperature we use the 

publicly available data collected by Canadian company FleetCarma [24]. FleetCarma provides 

vehicle monitoring services for fleet owners, and they collect and analyze vehicle data to 

determine performance under various conditions. We adopt the aggregated results from Nissan 

Leaf users for more than 7000 trips across North America reported as average driving range 

versus ambient temperature. The use of these real world data has two key advantages over the 
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prior literature: (1) our results are based on results experienced by real drivers in actual driving 

conditions instead of simulation models, and (2) we include the net effect of both cabin 

conditioning and battery efficiency implications of ambient temperature in the analysis (as well 

as any other factors that may vary with temperature, such as road and driving conditions). 

Although these data were collected from locations across North America, we use only 

information about the average effect of temperature on vehicle efficiency in order to isolate the 

temperature effect from other location-specific factors, such as driving conditions. We convert 

range to energy consumption using the Nissan Leaf usable battery capacity of 21 kWh [91] 

applied to every data point provided in the FleetCarma dataset, and we obtain new data points for 

energy consumption, as given in Figure 3.1. We then fit a curve to these new data points by least 

squares regression using the lowest order polynomial that follows the trend of the data 

qualitatively and we obtain a generic functional relationship between the vehicle energy 

consumption per unit distance 𝑐 and ambient temperature 𝑇 as: 

 𝑐 𝑇 = 𝑎!𝑇!
!

!!!

 (3.1) 

where 𝑎!’s are the coefficients of the polynomial given in Wh/mi/°Fn 

𝑎 = 0.3950 −0.0022 9.1978𝑒 − 05 −3.9249𝑒 − 06 5.2918𝑒 − 08 −2.0659𝑒 − 10  

3.2.2 Spatial and Temporal Temperature Data 

We use Typical Meteorological Year (TMY) Database from the National Renewable 

Energy Laboratory (NREL)[76] to obtain time- and location-dependent ambient temperature 

data. The latest database, TMY3, provides hourly values of meteorological data, including 

ambient temperature. These data are given for 1020 different locations in United States[92],  

including Guam, Puerto Rico, and US Virgin Islands, but we filter the data and exclude the latter 

regions, which reduces the total number of locations in our study to 1011. The temperature data 

in this database represent typical hourly temperatures rather than extreme cases, based on 1976 

to 2005 records wherever available, and 1991-2005 records for other locations.  
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Figure 3.1 Nissan Leaf energy consumption per mile versus ambient temperature. The blue stars 

correspond to data points obtained by converting FleetCarma range data to energy consumption. 

The red curve is the polynomial fit given by Equation (3.1).   

3.2.3 Driving and Charging Patterns   

To obtain driving patterns, we use the National Household Travel Survey (NHTS) 2009 

dataset [93].  NHTS is conducted by US Department of Transportation and is an inventory for 

daily household travel. It contains information on all kinds of transportation activity of a 

household, including walking, public transport, biking, etc.  To obtain a subset of data for the 

purposes of this study, we filter this dataset to obtain the trips completed by private light-duty 

vehicles only. We also exclude the data points that are reported by the members of the household 

other than the driver to avoid counting the same trip by the same vehicle more than once. This 

reduces the total number of vehicles we include in the analysis to 87,777. The NHTS dataset has 

only one day of data for each vehicle. Therefore, NHTS does not provide information on day-to-

day variability for a single vehicle. By averaging over each driving profile and each day of the 

year, we thus estimate fleet average effects, and individual vehicle owners may experience 

higher or lower efficiency in a given climate. In addition, we treat the full distribution of driving 

patterns in the NHTS data as representative of every location in the country, and we ignore any 

systematic regional variation in daily driving patterns in order to isolate the effect of 

temperature.  
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The data set provides start time, end time, and distance of every trip made by each 

vehicle on the day surveyed. We use this information to determine what time of the day and how 

far the vehicle is driven, and we assume charging begins upon arrival at home after the last trip 

of each day and continues until the battery is fully charged.  

3.2.4 Grid Emission Factors 

To estimate the grid emissions related to increased load with BEV electricity 

consumption, we need to know the marginal emissions from the power plants that are utilized to 

meet the extra demand. The mix of the power plants that operate on the margin, and the resulting 

emissions, show significant variation across regions[85,89]. Graff Zivin et al [85] estimate the 

marginal CO2 emission factors by regressing the emissions in the corresponding interconnect as 

function of electricity consumption in each NERC region. In our analysis, we use their expected 

values of the seasonal time of day marginal emission factors (MEFs) for each NERC region (see 

supporting information). Since estimates of day to day variation of MEFs within one season are 

not available, we use the same MEFs for each day of the season. These MEFs estimate power 

plant emissions and exclude upstream emissions from feedstock supply. 

3.2.5 Analysis 

We start our analysis by estimating energy consumption per mile traveled every day and 

every hour at each location provided in the TMY3 dataset and for each vehicle driving profile in 

the data obtained from NHTS using the temperature-efficiency relationship extracted from the 

FleetCarma data.  In this calculation, we apply some boundaries to the temperature values that 

can be used in the computation. The lower bound is equal to the minimum temperature recorded 

in the FleetCarma dataset. For the upper bound (i.e. high temperatures), we extrapolate the curve 

to the point at which the energy consumption is equal to the maximum value recorded, as shown 

with the curve fit in Figure 3.1.b. This results in the lower and upper ambient temperature 

boundaries of -15oF and 110oF, respectively. The extrapolation is necessary for fair comparison 

of hot vs. cold regions. The regional hourly electricity consumption per distance traveled can 

thus be estimated for each vehicle as follows:  
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 𝑐!"!!"#$ =

𝑎! ∙ 𝑇!"! !,
!

!!!

−15!𝐹 < 𝑇!"! < 110°𝐹

𝑎! ∙ −15 !,
!

!!!

𝑇!"! ≤ −15°𝐹

𝑎! ∙ 110 !,
!

!!!

𝑇!"! ≥ 110°𝐹

 
( 3.2 ) 

where 𝑐𝑙𝑑ℎHOUR is the Nissan Leaf’s electricity consumption per unit distance (Wh/mi) and 𝑇!"! is 

the ambient temperature (°𝐹) at location 𝑙 ∈ 1,2,… ,𝑁!  day 𝑑 ∈ 1,2,… ,𝑁!  and hour 

ℎ ∈ 1,2,… ,𝑁! , where 𝑁! = 1011,𝑁! = 365,𝑁! = 24. In our base case, whenever the 

temperature is lower or higher than the given boundaries, we assume the energy consumption 

will be equal to the value calculated at the boundaries. 

To estimate the daily average electricity consumption per mile, we need to know how 

much each vehicle is driven at each hour of the day. We estimate this using the national driving 

patterns from the NHTS dataset. For all the vehicles in the subset of data we are using, we 

distribute the driving durations into hourly bins throughout the day by looking at the start and 

end time of each trip, and we compute ∆!!!"#, the amount of time (hours) each vehicle driving 

profile 𝑣 ∈ 1,2,… ,𝑁!  spent driving during the corresponding one hour bin ℎ (where 

𝑁! = 87,777 vehicle driving profiles):  

 Δ!!!"# =
      1                                                if  𝑡!! ≤ ℎ − 1  and  𝑡!! ≥ ℎ
0                                                if  𝑡!! ≥ ℎ  or  𝑡!! ≤ ℎ − 1
min ℎ, 𝑡!! −max ℎ − 1, 𝑡!!   otherwise!∈!!

 (3.3) 

where 𝑡𝜏S and 𝑡𝜏E are the start and end times of each trip 𝜏, respectively, and Τ! is the set 

of trips for vehicle profile 𝑣 in the data set. 

We then use Δ!!!"# to obtain weighted daily average energy consumption per unit distance 

for each vehicle driving pattern 𝑣 as follows: 
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 𝑐!"#!"# =
∆!!!"#𝑐!"!!"#$!

∆!!!"#!
, 𝑙 = 1,2, . . ,𝑁!

𝑑 = 1,2, . . ,𝑁!
   (3.4) 

where 𝑐!"#!"# is the daily average energy consumption per mile for vehicle driving profile 

𝑣 in location 𝑙 and at day 𝑑 (in Wh/mi).  

The expected daily range in each region can be found by first calculating the range for 

each vehicle driving profile and then averaging over all the profiles in the dataset.  

 𝑠!" =
1
𝑁!

𝐶!"#

𝑐!"#!"#!

 (3.5) 

where 𝑠𝑙𝑑 is the regional expected daily range averaged over all vehicles used in the 

analysis and 𝐶!"# is the battery usable energy capacity, taken as 21 kWh for Nissan Leaf battery 

[91].  

The distance driven by each vehicle profile on each day in each location is computed as 

 𝑠!"# = min 𝑠!!"#$,
𝐶!"#

𝑐!"#!"#
 (3.6) 

where 𝑠!!"#$ is the distance traveled by vehicle driving profile 𝑣 in the NHTS dataset. 

Here we assume that if the distance driven in a vehicle profile is longer than the all-electric range 

(AER) of the vehicle, the vehicle shortens travel on those days. We test robustness via sensitivity 

cases that include a larger battery (to reduce truncated trips) and a slower recharging rate (to shift 

charge timing). 

The regional average electricity consumption per mile 𝑐!!"# averaged over all vehicles 

and days of the year, can then be estimated as: 

 𝑐!!"# =
𝑠!"#𝑐!"#!"#!!

𝑠!"#!!
 (3.7) 
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Greenhouse gas emissions vary depending on charge timing. We first determine the total 

charging duration for each vehicle as: 

 𝑡!"# =
𝑠!"#𝑐!"#!"#

𝑟
 (3.8) 

where 𝑠!"# is total daily distance traveled by vehicle profile  𝑣,  𝑡!"# is the total charging 

duration in hours, 𝑟 is the constant battery charging rate, which is 6.6 kW for Nissan Leaf 

battery[94]. Then we distribute the total charging duration into hourly bins assuming charging 

starts right after the last trip of the day ends 

 Δ!"!!!"# =
      1                                  if  𝑡!! ≤ ℎ − 1  and  𝑡!! + 𝑡!"# ≥ ℎ
0                                if  𝑡!! ≥ ℎ  or  𝑡!! + 𝑡!"# ≤ ℎ − 1

min ℎ, 𝑡!! + 𝑡!"# −max ℎ − 1, 𝑡!!   otherwise!∈!!

 (3.9) 

where 𝐿! is the last trip of the day for vehicle profile v, and we obtain Δ!"!!!"#  which gives 

the charging duration that falls into hourly bin ℎ. Using this information, CO2 emissions can be 

estimated as: 

 Γ!"!! =
𝑟Δ!"!!!"#𝑀!"!

!"#

𝜂 , 𝑣 = 1, . . ,𝑁! (3.10) 

where Γ!"!! is the CO2 emissions in grams from charging vehicle 𝑣 at hour ℎ of day 𝑑 in 

location 𝑙, 𝑀!"!
!"# is the expected value of the regional seasonal time of day marginal emission 

factors in grams/kWh, and 𝜂 is the charging efficiency taken as 87%[95]. Note that, 87% represents 

the on-board charger + electric vehicle supply equipment (EVSE) efficiency. In other words, 87% of 

the energy delivered from grid is can be charged into battery. We neglect any losses that might occur 

between the onboard charger and the battery, therefore the efficiency value used here does not affect 

charging duration. We account here only for power plant emissions and ignore upstream emissions 

associated with feedstock supply. 

Regional average CO2 emissions in grams/mile, 𝛾! ,  (averaged over all vehicle profiles and 

days of the year) are then found by: 
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 𝛾! =
Γ!"!!!!!

𝑠!"#!!
 (3.11) 

3.3 Results And Discussion 

The variation of daily average driving range in selected cities is shown in  

Figure 3.2. In three of the cities, the median of the daily averages is around 70 miles (112 

km). In San Francisco the median is 76 miles (122 km) and the driving range is greater than 70 

miles 99% of the time. As the location changes to cities where more hot or cold extremes might 

be observed, we see a wider spread of vehicle range throughout the year. In Phoenix, where the 

daily average temperature can be as high as 105oF (41oC), the range can drop as low as 49 miles 

(78 km) – a 29% decrease from the median value of 69 miles (111 km). In cold climates, such as 

Rochester, MN, the decrease in the range compared to the median can be as high as 36%. 

 

Figure 3.2 Box plot of daily driving range distributions for selected cities. Red lines indicate 

median range; blue boxes capture the 2nd and 3rd quartiles across days of the year, the whiskers 
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extend to the most extreme data points that are not considered outliers, and the red + symbols 

indicate outlier days. 

As mentioned before, the temperature limits used in computations are -15 and 110oF (-26 

and 43oC), and we do not know exactly how the range or vehicle efficiency changes in excess of 

these values. In Figure 3.3 the locations where the temperature is outside the limits at least one 

hour on the worst day of the year are marked, indicating that actual range on the worst day of the 

year may be lower than estimated here. For comparison, we also make the same calculation by 

extrapolating the curve for a wider range of temperature values in the supporting information, 

and overall trends are robust. 

 

Figure 3.3 Average range across the fleet on the worst day of the year (day with the lowest 

predicted EV range). In the figure, dots ( ) represent the locations given in the TMY3 dataset, 

crosses (×) represent locations with temperatures colder than the minimum data point at least 

one time during the year, and plus signs (+) represent locations with temperature warmer than 

our imposed upper limit of extrapolation at least one time during the year. 
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Similar to the change in driving range, Figure 3.4 shows that the average energy 

consumption per mile can increase by 15% from 273 Wh/mi (170 Wh/km) along Pacific Coast or 

at certain parts of South Florida to 315 Wh/mi (196 Wh/km) in the Upper Midwest. It is also 

possible to observe that the energy consumption can vary inside the same state because of the 

temperature differences of different locations. In Southeast California, the average energy 

consumption is 323 Wh/mi (201 Wh/km), 18% higher than the coast.   

 

Figure 3.4 Energy consumption per mile averaged across the fleet over a full year (Wh/mi)  

As depicted in Figure 3.5, the most significant factor affecting the regional differences in 

emissions is the grid mix. The worst region in terms of CO2 emissions is MRO, where both the 

marginal emission factors and the energy consumption per mile are high. WECC, with the 

cleanest grid, has the lowest emissions – especially on the coast where energy consumption is 

lowest. When the mean value of average emissions in MRO is compared to the mean value in 

WECC, there is a 186% increase due primarily to grid mix. Within the WECC region, the 

emission rates can increase from 100 g/mi(62 g/km)up to 122 g/mi (76 g/km), a 22% increase 

inside the same NERC region due to ambient temperature. Note that this happens mainly because 
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of two reasons: energy consumption changes with temperature, but also as energy consumption 

changes so does the charging duration. This creates an impact on emissions, too, since marginal 

emission factors vary depending on the time of the day when the vehicle is being charged. For 

reference, tailpipe CO2 emissions for a Toyota Prius hybrid electric vehicle is reported as 179 

g/mi (111 g/km)[96]; however, gasoline vehicle emissions rates also vary with temperature.  

 

Figure 3.5 CO2 emissions per mile in eight NERC regions averaged across the fleet and over the 

year (g/mi) 

Since the main source of difference in the regional emissions is the grid mix, as the grid 

becomes cleaner for most of the country, as targeted by the Environmental Protection Agency’s 

Clean Power Plan [97] , the impact of location on the environmental benefits of electric vehicles 

will be reduced. However ambient temperature will remain a source of variation in EV benefits 

across the US. 

To see the sensitivity of these results to some of our assumptions, such as battery capacity 

and charging rate, we run two other cases: 1) with an increased battery capacity of 85 kWh and 

2) with a lower charge rate of 3.3 kW. Both of these assumptions can change emissions estimates 

up to 4%. Details are available in the Supporting Information.  
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3.4 Limitations and Assumptions 

 In this study, we use data only for a particular electric vehicle, the Nissan Leaf. Other 

electric vehicles differ in vehicle efficiency, HVAC efficiency, battery technology, and thermal 

management and may therefore have different temperature-specific range and emissions 

implications. Nevertheless, the trends observed here are fairly general because 1) heater and A/C 

use increases BEV energy consumption, and 2) electrochemical reactions in batteries are 

temperature dependent.  With improvements in battery technology and with the use of more 

energy efficient vehicle thermal conditioning systems, it might be possible to see a reduced 

effect of ambient temperature in the future.   

The driving range versus temperature dataset we use in this study is collected from real 

world trips. It therefore contains some effects due to different driving styles, trip conditions such 

as congestion on the road, driver preferences on climate control, vehicle differences such as the 

model year, and other weather elements, such as precipitation and humidity. We attribute the 

entire efficiency effect to temperature, which could introduce bias if temperature is correlated but 

not perfectly correlated with these other factors. In addition, the FleetCarma dataset reports 

average driving range observed across the fleet. Therefore, the results shown in Figure 2 do not 

show the worst range that can be experienced but rather the fleet average range on the worst day 

of the year. Some drivers may experience shorter range. In particular, the Nissan Leaf drivers 

observed in the data are early adopters and may have different behaviors than mainstream 

consumers (for example, with respect to HVAC use or driving style). Also, we assume the range 

at temperatures below -15oF or above 110oF are equal to the estimated range at the 

corresponding limit. The results using extended extrapolation are also provided in the supporting 

information, resulting in similar trends but increased magnitude in the hottest and coldest 

regions. 

The NHTS dataset provides information on the trips taken by each surveyed U.S. vehicle 

on a single survey day and does not include day to day variability for each vehicle. In this study 

we average over the vehicle profiles to assess implications for average driving distances and 

assume these daily distances are identical spatially and seasonally. Individual drivers may 
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experience different range and efficiency, and any correlations between driving distance and 

location or weather could influence results.  

We only consider convenience charging in this study. However, time of charging could 

have a significant effect on emissions. For example, delayed nighttime charging may avoid 

adding demand during peak times and reduce costs while increasing marginal emission rates in 

many areas because coal fired power plants tend to be on the margin at times of low demand[85]. 

In addition, we assume charging rate is constant during charging, and we neglect the effect of 

temperature on charging efficiency and duration. 

Finally, we use point estimates for marginal emission factors and for the curve fit in 

Equation (3.1). Uncertainty in marginal emission factors and vehicle efficiency implies 

uncertainty in implications of electric vehicle charging. Further, we attribute the estimated 

marginal emissions within each NERC region to every location in that NERC region. In practice, 

marginal emissions vary by location within each NERC region, but due to substantial 

interregional trade, differences of marginal emission rates at sub-NERC-region resolution are not 

known. Large penetration of electric vehicles could also have grid effects that are beyond 

marginal. Additionally, we estimate only power plant emissions associated with electric vehicle 

charging and do not consider the full life cycle (e.g.: including upstream emissions from 

feedstock supply or temperature-specific repair and maintenance), and we characterize only CO2 

emissions and do not estimate implications of other air emissions from electric vehicle charging. 
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4 Variation of Electric Vehicle Life Cycle Greenhouse Gas 

Reduction Potential across U.S. Counties due to Regional 

Electricity Sources, Driving Patterns, and Climate 

Chapter 3 focused on examining the effect of regional temperature differences on BEV 

efficiency and emissions, and showed that the effect can be large enough to affect environmental 

implications of BEVs relative to alternatives. This chapter aims to investigate this further and 

expands the focus by considering various other regional factors and vehicle technologies. The 

differences in life cycle greenhouse gas (GHG) emissions of gasoline and plug-in vehicles across 

U.S. counties are characterized by accounting for heterogeneity due to regional marginal grid 

mix, ambient temperature, patterns of vehicle miles traveled, and assumed driving conditions 

(city vs. highway). The potential of plug-in vehicles to decrease transportation related CO2 

emissions depends strongly on the region and vehicle type. Results indicate that PEV benefits 

vary substantially by vehicle model and region: The Nissan Leaf battery electric vehicle creates 

lower GHG emissions than the most efficient gasoline vehicle (the Toyota Prius) in Texas, 

Florida, the southwestern US, and urban counties of the western US and New England; whereas 

the Leaf has higher emissions in most of the rest of the country, especially the Midwest and the 

South. The Chevrolet Volt plug-in hybrid electric vehicle has higher emissions than the Prius 

everywhere, though both vehicles are lower emitting than most other vehicles. Regional grid 

mix, temperature, driving patterns, and vehicle model all have significant implications on the 

relative benefits of PEVs versus gasoline vehicles. 

This study is a working paper with coauthors Mili-Ann M. Tamayao, Chris Hendrickson, 

Ines Azevedo, and Jeremy J. Michalek [98].   

4.1 Introduction 

The greenhouse gas (GHG) emissions implications of plug-in electric vehicles (PEVs) 

vary regionally in the United States. Table 4.1 summarizes studies that aim to characterize 
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regional differences and their assumptions about life cycle scope, electricity grid emissions, 

driving patterns, and climate: 

• Life Cycle: While some studies use a life cycle scope that includes vehicle and battery 

manufacturing; petroleum extraction, processing, transportation, and combustion; power 

plant and fuel feedstock production and transportation; and end of life emissions, several 

examine only use-phase or only tailpipe and power plant emissions, making incomplete 

comparisons of emissions implications among alternative vehicle technologies. Several 

life cycle suggest that emissions implications from sources other than tailpipe and power 

plant emissions can comprise more than one third of life cycle GHG implications. 

• Electricity Grid: Critical to assessing life cycle emissions of PEVs is the mix of 

electricity sources used to generate electricity to charge the vehicle. While early studies 

used an attributional approach, assigning to the PEV the average emission rates for power 

plants in the same state or power grid region where it is charged, recent studies have 

taken a consequential scope, estimating the change in grid emissions resulting from new 

PEV charging in a region. Tamayao et al. (2015) show that differences between average 

vs. marginal emissions can affect whether PEVs are estimated to be higher or lower 

emitting than efficient gasoline vehicle models [99]. 

• Driving Patterns: Most regional US PEV GHG studies ignore regional differences in 

driving distance distributions and driving conditions that affect vehicle efficiency. 

Karabasoglu and Michalek show that driving conditions (drive cycle) can affect 

economic and environmental benefits of electrified vehicles substantially[79]. 

• Climate: Most regional US PEV GHG studies ignore the effect of regional temperature. 

But regional temperature has a significant effect on vehicle efficiency due to heating, 

ventilation, and air conditioning (HVAC) use and temperature-related battery efficiency 

effects. Compared to mild climate tests without HVAC use, Yuksel and Michalek [78] 

estimate that BEVs can consume an average of 15% more energy in hot and cold regions 

of the US; Neubauer and Wood [100] estimate that HVAC use can increase energy 

consumption by 24% in cold climates; Kambly and Bradley [81,90] note that HVAC use 

can decrease BEV range depending on the region and time of day; and Meyer et al.[101] 

observe a 60% drop in range in -20oC lab tests with maximum climate control use. 
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Despite interest in understanding regional variation of life cycle PEV GHG emissions, no 

study has accounted for regional differences in consequential grid emissions, driving patterns, 

and climate to assess regionally-specific life cycle implications of PEVs in the U.S. We construct 

a model to integrate these effects with a comprehensive life cycle scope to characterize regional 

differences in PEV GHG benefits relative to gasoline vehicles.  

Table 4.1 Studies that characterize regional variation in US PEV GHG emissions 

Study Life cycle Electricity grid Driving patterns Climate 

EPRI-NRDC, 
2007 

Yes Consequential 
Bottom-up modeled 

emissions 

Homogeneous 
Federal Urban Driving 

Schedule (FUDS) 

Ignored 

Anair and 
Mahmassani, 

2012 

Yes Attributional 
Average emissions rate in 

eGRID subregion 

Homogeneous 
EPA combined city/highway; 

Volt 64% eVMT 

Ignored 

MacPherson 
et al., 2012 

Yes  
 

? ? ? 

Thomas 2012 
 

Yes Consequential 
Average marginal emissions 
from Hadley and Tsvetkova 

(2009) 

Homogeneous 
EPA combined driving cycle 

Ignored 

Yawitz et al., 
2013 

Yes  
 

Attributional 
Avg emissions rate in state 

Homogeneous Ignored 

Graff Zivin et 
al., 2014 

No 
Tailpipe and 
power plant 

emissions only 

Consequential Interconnect 
emissions due to marginal 
load in each NERC region 

Homogeneous  
EPA combined city/highway 

(verify); 35 mi/day 

Ignored 

Onat et al, 
2015 

Yes Consequential 
Marginal emissions from 

ORNL 

Homogeneous  
EPA combined (verify), 

NHTS (check how they use it) 

Ignored 

Tamayao et 
al., 2015 

Yes Consequential  
Compares Graff Zivin et al. 
(2014) and Siler-Evans et al. 

(2012) marginal emission 
factors by NERC region. 

Homogeneous  
EPA combined 

Ignored 

Yuksel and 
Michalek, 

2015 

No 
Use-phase only 

Consequential  
Compares Graff Zivin et al. 
(2014) and Siler-Evans et al. 

(2012) marginal emission 
factors by NERC region. 

Homogeneous  
Efficiency based on 

FleetCarma on-road data; US 
NHTS driving distance 

distribution 

Regional 
Based on FleetCarma 

data for Nissan Leaf and 
regional temperature 

data 

This Study Yes Consequential 
Compares Graff Zivin et al. 
(2014) and Siler-Evans et al. 

(2012) marginal emission 
factors by NERC region. 

Regional 
city / hwy / combined based 
on county urbanization level; 

NHTS driving distance 
distribution from same state / 

urbanization level 

Regional 
Based on ANL 

laboratory test data at 
different temperatures 

and regional 
temperature data. 

 



 

 65 

4.2 Data and Approach 

We compare 5 existing vehicle models given in Table 4.2 to represent conventional 

vehicles (CVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and 

battery electric vehicles (BEVs). These models were chosen based on availability of Argonne 

National Laboratory vehicle test efficiency data at high, low, and moderate test chamber 

temperatures 

Table 4.2 Vehicle Types and Models Considered 

Brand Type Model Year Battery Energy Capacity 

Nominal (kWh) Usable (kWh) 

Nissan Leaf BEV 2013 24 21 

Chevy Volt PHEV (EREV) 2013 16.5 10.8 
Toyota Prius PHEV PHEV 2013 4.4 2.7 

Toyota Prius HEV 2010   
Mazda iLoop CV 2014 N/A N/A 

 

We use county-level data where possible and use regional data where we lack county-

level resolution. In particular, for our base case we assume the following: 

• Power Grid: We adopt regional 2011 marginal emission factors from Siler-Evans et al. 

[89] based on regressions of empirical, historical changes in power plant emissions with 

respect to changes in load within each North American Electric Reliability Corporation 

(NERC) region, and we estimate upstream feedstock-related emissions based on the 

marginal mix of fuel types. Lacking resolution to estimate county-level marginal 

emissions factors, we assume that new demand in each county within a NERC region has 

the same marginal emissions implications. 

• Driving Patterns: Daily trip length and timing for each county is drawn from the 

distribution of trips in the National Household Travel Survey (NHTS)[93] from all 

counties from the same state. For urban counties we use the urban dynamometer driving 

schedule (UDDS) test results, for rural counties we use the Highway Fuel Economy Test 



 

 66 

(HWFET) cycle results, and for outlying (suburban) counties we use the combined results 

to represent the dominant driving conditions in each case. Of course, individual drivers 

within each county observe a diverse set of driving conditions. 

Temperature: We use data from the National Renewable Energy Laboratory (NREL) of 

over 1000 data points in the contiguous US and interpolate temperature at the center of each 

county hourly for a typical meteorological year, and we interpolate vehicle efficiency as a 

function of temperature using Argonne lab test data. 

Figure 4.1 summarizes the analysis, and the following sections provide detail on the data 

we use and our calculations for the base case simulations. We also perform sensitivity analysis to 

test implications of several factors and assumptions and to test robustness of our results. 

Additional detail is provided in the Supplemental Information. 

4.2.1 Data: 

Vehicle Energy Efficiency. For each vehicle model we consider in this study, we first 

estimate how vehicle energy efficiency changes with driving cycle and temperature. For this 

purpose, we use the Downloadable Dynamometer Database (D3) by Argonne National 

Laboratory Advanced Powertrain Research Facility[102], which provides dynamometer test data 

for several vehicle models. The vehicles are tested at three different temperatures (20, 72 and 

95F), and EPA defined driving cycles UDDS, US06 and HWFET[58]. During the tests at 20 and 

95F, the air conditioner is set to keep the cabin temperature at 72F. We only use the results from 

UDDS and HWFET tests to represent city and highway driving respectively, and we take their 

weighted average to represent combined drive cycle. Total gasoline and/or electricity 

consumption is reported at the end of each test, as well as the distance of the drive cycle, which 

provides us the vehicle gasoline/electricity consumption per mile driven at different temperatures 

and driving cycles. 
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Figure 4.1 Analysis Schematic 
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𝑐 𝑇,𝜙

=   

𝑚! 𝜙 ∙ 𝑇 − 72 + 𝑐!"#$ 72,𝜙 , 20 ≤ 𝑇 ≤ 72
𝑚! 𝜙 ∙ 𝑇 − 72 + 𝑐!"#$ 72,𝜙 , 72 < 𝑇 ≤ 95

                                        𝑐!"#$ 20,𝜙 , 𝑇 < 20
𝑐!"#$ 95,𝜙 , 𝑇 > 95

𝜙 ∈ {UDDS,HWFET}

 ( 4.1) 

where 𝑐 𝑇,𝜙   is the energy consumption per mile at temperature 𝑇 and drive cycle 𝜙. 

𝑐!"#$ 𝑇,𝜙  refers to dynamometer test results at 𝑇 = [20,72,95] . 𝑚! and 𝑚! are the slopes of 

the piecewise linear curves defined as: 

 

 
𝑚! 𝜙 =

𝑐!"#$ 20,𝜙 − 𝑐!"#$ 72,𝜙
72− 20    

    𝑚! 𝜙 =
𝑐!"#$ 95,𝜙 − 𝑐!"#$ 72,𝜙

95− 72  

( 4.2) 

County Geographic Information. We adopt county geographical information (such as 

latitude, longitude, state, etc.) from a United States County Map shape file in ArcGIS. We use 

the MSA levels to determine the driving cycle (city, highway or combined) in each county, 

which is described in more detail in the following sections.  

Temperature Data. We use Typical Meteorological Year (TMY) Database from the 

National Renewable Energy Laboratory (NREL) [76] to obtain time- and location-dependent 

ambient temperature data . The temperature data in this database represent typical hourly 

temperatures rather than extreme cases.  The latest database, TMY3, provides hourly values of 

meteorological data, including ambient temperature. These data are given for 1020 different 

locations in United States, including Guam, Puerto Rico, and US Virgin Islands, but we filter the 

data and exclude these regions, which reduces the total number of locations to 1011. We then 

perform a spatial interpolation to find the temperature profiles at the center of each of the 3109 

counties in the continental US.  

NHTS Analysis. To obtain vehicle driving profiles, we use National Household Travel 

Survey (NHTS) 2009 dataset [93].  NHTS is conducted by US Department of Transportation and 
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is an inventory for daily household travel. We filter the dataset considering trips completed by 

private light-duty vehicles only. We also exclude the data points that are reported by the 

members of the household other than the driver to avoid counting the same trip by the same 

vehicle more than once. This reduces the total number of vehicles we include in the analysis to 

76,149. The vehicle driving profiles provide start time, end time, and distance of every trip made 

by each vehicle profile on the day surveyed. We use this information to determine what time of 

the day and how far each vehicle profile is driven. Although the dataset doesn’t give exact 

location of vehicle profiles, it reports the state and urbanization level of their locations. For our 

base case simulations, we match the vehicle profiles to counties based on the states only. In other 

words, we assume that the driving distance profiles in all the counties across one state are the 

same.  

Emission Factors. For grid emissions associated with PEV charging, we use marginal 

emission factors estimated by Siler-Evans et al [89] for 2011 in our base case simulations, since 

this is the most recent year available. The marginal emissions in some regions may have changed 

since 2011, given ongoing plant construction and retirement as well as changes in energy prices. 

However, consequential emissions from charging PEVs are primarily produced from fossil fuels 

in the US, since low-emitting generators like nuclear, wind, solar, and hydroelectric power plants 

typically will not produce any more or less energy in the presence versus absence of PEV load. 

Thus, regional differences in consequential grid emissions are primarily due to the portion of 

coal versus natural gas power plants on the margin, and the amount of change in current or future 

marginal grid mixes is thus practically bounded by coal and natural gas emissions rates (at least 

unless and until so much low-emitting capacity is installed that it would be curtailed in the 

absence of PEVs). We also use the marginal grid mix to compute upstream emissions using 

average emissions rate for production of coal and natural gas.  

For gasoline emissions, we use estimates for GHG emissions per gallon of gasoline 

combusted from and upstream oil production, transportation, and refining emissions estimates 

from Tamayao et al. [99].  

Finally, we adopt vehicle and battery manufacturing emissions estimates from the 

Tamayao et al. [99].  
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4.2.2 Calculations: 

Energy consumption. We start our analysis by estimating energy consumption per mile 

traveled every day and every hour at each county for each vehicle profile from NHTS, and for 

each vehicle model. The regional hourly electricity consumption per distance traveled then can 

be estimated as follows: 

 𝑐!"#!!!"#$ 𝑇!"! ,𝜙! =

𝑚!!" 𝜙! ∙ 𝑇!"! − 72 + 𝑐!"!"#$ 72,𝜙! , 20 ≤ 𝑇!"! ≤ 72
𝑚!!" 𝜙! ∙ 𝑇!"! − 72 + 𝑐!"!"#$ 72,𝜙! , 72 < 𝑇!"! ≤ 95

                                                                                    𝑐!"!"#$ 20,𝜙! ,                    𝑇!"! < 20    
                                                                                    𝑐!"!"#$ 95,𝜙! ,                    𝑇!"! > 20  

 (4.3) 

𝑐!"#!!!"#$  is either the electricity  or gasoline consumption of the vehicle model 𝑖 ∈ 1 =

BEV, 2 = PHEV, 3 = HEV, 4 = CV  per unit distance (Wh/mi) at location 𝑙 ∈ 1,2,… ,𝑁! , day 

𝑑 ∈ 1,2,… ,𝑁! , and hour ℎ ∈ 1,2,… ,𝑁! , where  𝑁! = 3109, 𝑁! = 365, and 𝑁! = 24. 𝑘 = 1 and 

𝑘 = 2 represents driving modes of charge depleting (CD) and charge sustaining (CS) in PHEVs. 

𝑘 = 0 for all other vehicle types, meaning CD and CS modes are not applicable for those. 

Energy consumption per unit distance depends on the driving cycle the vehicle is driven at, and 

𝜙! represents the driving cycle applicable in the county 𝑙 which is determined based on county’s 

MSA level. We use the classification by the U.S. Census Bureau, which classifies counties as 

nonmetropolitan, central and outlying, with MSA Levels 0, 1 and 2 respectively. Here we 

assume the driving profiles corresponding to each of these classifications can be represented by 

highway, city and combined driving cycles, respectively. Then, 𝜙! can be defined as: 

 𝜙! =
𝜙!", 𝛽!!"# = 0
      𝜙  !"!", 𝛽!!"# = 1

𝜙  !"#$%&'(, 𝛽!!"# = 2
 (4.4) 

Where 𝛽!!"# is the MSA level of each county 𝑙. The energy consumption per mile at 

highway and city driving conditions can be obtained by using the dynamometer test results with 

HWFET and UDDS driving cycles respectively. The energy consumption at combined drive 

cycle is a weighed average of highway and city energy consumptions which is estimated as 

follows:  
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𝑐!"#!!!"#$ 𝑇!"! ,𝜙!"#$%&'( = 0.55 ∙ 𝑐!"#!!!"#$ 𝑇!"! ,𝜙!"#$ + 0.45 ∙ 𝑐!"#!!!"#$ 𝑇!"! ,𝜙!"        (4.5) 

To estimate the daily average electricity consumption per mile, we need to know how 

much each vehicle is driven at each hour of the day. We estimate this using the driving patterns 

from the NHTS dataset. For all the vehicles in the subset of data we are using, we distribute the 

driving durations into hourly bins throughout the day by looking at the start and end time of each 

trip, and we compute ∆!!!"#, the amount of time (hours) each vehicle driving profile 𝑣 ∈

1,2,… ,𝑁!  spent driving during the corresponding one hour bin ℎ (where 𝑁! = 76,149 vehicle 

driving profiles):  

 Δ!!
!"# =

      1                                                if  𝑡!! ≤ ℎ − 1  and  𝑡!! ≥ ℎ
0                                                if  𝑡!! ≥ ℎ  or  𝑡!! ≤ ℎ − 1
min ℎ, 𝑡!! −max ℎ − 1, 𝑡!!   otherwise!∈Τ!

 (4.6) 

where 𝑡!! and 𝑡!! are the start and end times of each trip 𝜏, respectively, and Τ! is the set 

of trips for vehicle profile 𝑣 in the data set. 

We then use the Δ!!
!"# to obtain the daily weighted average energy consumption per unit 

distance (Wh/mi): 

 𝑐!"#$%!"# =
Δ!!

!"# ∙ 𝑐!"#!!!"#$
!

Δ!!
!"#

!
, 𝑖 = 1, . .4 𝑙 = 1,2, . .𝑁! 𝑣 = 1,2, . . ,𝑁!

𝑘 = 0,1,2 𝑑 = 1,2, . . ,𝑁! � = 1,2, . . ,��
 (4.7) 

where 𝑐!"#$%!"#  is the daily average electricity consumption ( 𝑐!"#$%
!"#,!"!#) in Wh/mi or daily 

average gasoline consumption ( 𝑐!"#$%
!"#,!"#)  in gal/mi for each vehicle type 𝑖, at location 𝑙 and day 

𝑑, for vehicle profile 𝑣 from NHTS and driving mode 𝑘. 𝑐!"#$%!"#  is used to estimate the all-electric 

range (AER) for BEVs and PHEVs as follows: 

 𝑠!"#$!"!# = 𝐶!!"# 𝑐!"#$%
!"#,!"!# , 𝑖 = 1,2

                                                0, 𝑖 = 3,4
𝑙 = 1,2, . .𝑁! 𝑑 = 1,2, . . ,𝑁! 𝑣 = 1,2, . . ,𝑁! 𝑘 = 0

   (4.8) 

where 𝑠!"#$!"!# is AER and 𝐶!!"# is battery usable capacity 

To estimate the total daily average energy consumption in Wh, we need to determine the 

daily distance traveled by each vehicle profile. For all vehicle types except BEVs, daily distance 

traveled is equal to the distance provided for each vehicle profile in NHTS. For BEVs, we 
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assume that if the distance driven in a vehicle profile is longer than the AER of the BEV, the 

vehicle shortens travel on those days. Then, the daily driving distance, 𝑠!"#$!"#, is defined as: 

 𝑠!"#$!"# =
𝑚𝑖𝑛 𝑠!"#$!"!#, 𝑠!"!"#$ , 𝑖 = 1
                                                𝑠!"!"#$, 𝑖 = 2,3,4

 (4.9) 

where 𝑠!"!"#$ is the daily vehicle miles traveled from NHTS for location 𝑙 and vehicle 

profile 𝑣.  

Then, daily average electricity consumption 𝐶!"#$!"!# in Wh and gasoline consumption 

𝐶!"#$!"# in gal for each vehicle type and vehicle profile can be estimated as: 

 𝐶!"#$!"!# = 𝑠!"#$!"# ∙ 𝑐!"#$%
!"#,!"!#,
0,

𝑖 = 1,2
𝑖 = 3,4

𝑙 = 1,2, . .𝑁! 𝑑 = 1,2, . . ,𝑁! 𝑣 = 1,2, . . ,𝑁! 𝑘 = 0
 (4.10) 

 

 

𝐶!"#$!"#

=
0, 𝑖 = 1

𝑐!"#$!
!"#,!"# ∙𝑚𝑖𝑛 𝑠!"#$!"!#, 𝑠!"!"#$ + 𝑠!"#$!"!# < 𝑠!"!"#$ ∙ 𝑠!"!"#$ − 𝑠!"#$!"!# ∙ 𝑐!"#$!

!"#,!"#, 𝑖 = 2
𝑠!"#$!"# ∙ 𝑐!"#$!

!"#,!"#, 𝑖 = 3,4
 

(

4.11) 

Electricity emissions. CO2 emissions due to electricity consumption vary depending on 

charge timing. We first determine the total charging duration for each vehicle as: 

 𝑡!"#$ =
𝐶𝑖𝑙𝑑𝑣
ELEC

𝜂! ∙ 𝑟!
, 𝑖 = 1,2 (4.12) 

where 𝑡!"#$ is the total charging duration in hours, and 𝑟! is the constant battery charging 

rate. 𝜂! is the efficiency between the charger and the battery. In this study, we neglect the 

efficiency loss between the EVSE equipment and the charger, since it is much lower compared to 

the losses between charger and the battery.  

Then we distribute the total charging duration into hourly bins assuming convenience 

charging for our base case simulations (i.e. charging starts right after the last trip of the day ends) 
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 Δ!"#!!
!"# =

      1                                  if  𝑡!! ≤ ℎ − 1  and  𝑡!! + 𝑡!"# ≥ ℎ
0                                if  𝑡!! ≥ ℎ  or  𝑡!! + 𝑡!"# ≤ ℎ − 1

min ℎ, 𝑡!! + 𝑡!"# −max ℎ − 1, 𝑡!!   otherwise!∈!!

 (4.13) 

where 𝐿! is the last trip of the day for vehicle profile v, and we obtain Δ!"#!!!"#  which gives 

the charging duration that falls into hourly bin ℎ. To test the effect of charging scheme on the 

results, we also run a case where we assume delayed charging instead of convenience charging, 

which is assumed to start at midnight. We then find the CO2 emissions as: 

 Γ!"#!!!"!# = 𝑟! ∙ Δ!"#!!!"# ∙ 𝐸!"!!"# + 𝐸!"!!"#$ , 𝑖 = 1,2 (4.14) 

where Γ!"#!!!"!# is the CO2 emissions in grams from charging vehicle 𝑣 at hour ℎ of day 𝑑 in 

location 𝑙.  𝐸!!!!"# is the expected value of the regional time of day marginal emission factors in 

grams/kWh, and 𝐸!"!!"#$is the expected value of the regional time of day electricity upstream 

emissions in grams/kWh.  

Regional average CO2 emissions due to electricity consumption in grams/mile, 

𝛾!"!"!#,  (averaged over all vehicle profiles and days of the year) are then found by: 

 𝛾!"!"!# =
Γ!"#!!!"!#

!!!

𝑠!"#$!"#
!!

, 𝑖 = 1,2 (4.15) 

Gasoline emissions. Total gasoline emissions due to combustion and gasoline upstream 

can be found by: 

 Γ!"#$!"# = 𝐶!"#$!"# ∙ 𝐺!"!!"#$ + 𝐺!"!!"#$  (4.16) 

where Γ!"#$!"# is the CO2 emissions in grams due to gasoline consumption, 𝐺!"!!"#$ is the 

expected value of the gasoline combustion emissions factor in g/gal, and 𝐺!"!!"#$ is expected value 

of the gasoline upstream emissions factor in g/gal.  

Regional average CO2 emissions due to gasoline consumption in grams/mile, 

𝛾!"!"#,  (averaged over all vehicle profiles and days of the year) are then found by: 
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 𝛾!"!"# =
Γ!"#$!"#

𝑣!

𝑠!"#$!"#
!!

, 𝑖 = 2,3,4 (4.17) 

Total average emissions are then defined as : 

 𝛾!" =
𝛾!"
!"!#, 𝑖 = 1

𝛾!"!"!# + 𝛾!"!"#, 𝑖 = 2,3
𝛾!"!"#, 𝑖 = 4

 (4.18) 

4.3 Results and Discussion 

Figure 4.2 summarizes the increase or decrease in life cycle GHG emissions from owning 

and operating a 2013 Nissan Leaf BEV, 2013 Chevrolet Volt PHEV, and 2013 Prius PHEV 

relative to the most efficient gasoline vehicle: the HEV Prius (modeled here using data from a 

2010 Prius). Relative to the HEV Prius: 

• the Leaf reduces emissions across most of the US but increases emissions for 

rural highway drivers of the Midwest and the South; 

• the Volt increases emissions everywhere; and 

• the PHEV Prius reduces emissions in Texas, Florida, and the southwestern US as 

well as for most urban drivers, and it increases emissions for many rural highway 

drivers, especially in the Northern Midwest. 

Figure Figure 4.2d also shows county urbanization levels, for reference.  

Similarly Figure 4.3 summarizes the increase or decrease in life cycle GHG emissions 

from owning an operating the same three vehicles relative to an efficient conventional gasoline 

vehicle with EPA-rated combined (5-cycle) fuel efficiency of 32 mpg: the 2014 Mazda 3 iLoop 

(the iLoop is an energy recovery braking system intended to capture a portion of the benefits that 

HEVs and PEVs capture in regenerative braking to displace accessory load without a full hybrid 

system). Relative to the CV Mazda 3: 

• the Leaf reduces emissions across most of the US but increases emissions for 

rural highway drivers of the Midwest. 
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• the Volt similarly reduces emissions across most of the US but increases 

emissions for rural highway drivers of the Midwest and the South.  

• the PHEV Prius reduces emissions everywhere 

 

 (a) (b) 

 
(c) (d) 

Figure 4.2 Estimated difference in life cycle GHG emissions (gCO2 eq/mi) relative to a 2010 

Toyota Prius (base case assumptions) (a) 2013 Nissan Leaf, (b) 2013 Chevrolet Volt, (c) 2013 

Prius PHEV, and (d) US counties color-coded with respect to their MSA levels. yellow: 

nonmetropolitan (highway driving), blue: central (city driving), green: outlying (combined 

driving) 

Figure 4.4 shows the breakdown of use-phase CO2 emissions for each vehicle in three 

selected counties: Alameda, CA, which includes the cities of Berkeley and Oakland, represents a 

mild climate region with a clean electricity grid; Maricopa, AZ, which includes the city of 
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Phoenix, represents a hot climate with a clean electricity grid; and Olmstead, MN, which 

includes the city of Rochester, represents a cold climate region with a coal-heavy electricity grid. 

The figure also shows that all vehicles are higher emitting in Minnesota, a colder state. However, 

the biggest effect is observed with the BEV, followed by the PHEVs. Batteries are less efficient 

when cold, and so are engines, but gasoline vehicles are able to use waste heat from the engine to 

heat the cabin, while BEVs and EREV PHEVs need to draw energy from the battery to heat the 

cabin. 

(a) (b) 

(c) (d) 

Figure 4.3 Estimated difference in life cycle GHG emissions (gCO2 eq/mi) relative to a 2014 

Mazda 3 iLoop (base case assumptions) (a) 2013 Nissan Leaf, (b) 2013 Chevrolet Volt, (c) 2013 

Prius PHEV, and (d) US counties color-coded with respect to their MSA levels. yellow: 

nonmetropolitan (highway driving), blue: central (city driving), green: outlying (combined 

driving) 
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Figure 4.4 CO2 emissions in g/mi in selected counties from three different states 

 

4.4 Sensitivity Analysis 

We perform sensitivity analysis to test assumptions, assess robustness, and isolate various 

effects. Details can be found in the Supplemental Information, but Table 4.3 summarizes key 

findings. Overall, we find that regionally specific temperature effects and driving patterns have 

significant effects on outcomes; delayed charging increases PEV GHG emissions in most regions 

and makes them less competitive with gasoline vehicles. 
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Table 4.3 Summary of findings from sensitivity analysis 

Sensitivity Case Change from Base Case Purpose Finding 

No Temperature Vehicle efficiency at 72ºF used 
for all counties all year 

Test importance of 
temperature effect 

Temperature effect can change 
comparison results for northern 

states 

MSA level VMT Each county’s VMT distribution 
is drawn from all NHTS data 

from the same state and 
urbanization level 

Test importance of 
differences in 

urban/rural driving 
distance 

No significant change in the 
results observed 

Delayed Charging Each PEV’s charging schedule 
begins at midnight, rather than 

upon arrival at home 

Test importance of 
charge timing 

Delayed charging increases 
GHG emissions of PEVs in most 

of the country and reduces 
competitiveness with the HEV 

Homogeneous 
Driving Conditions 

Vehicle efficiency on combined 
UDDS/HWFET used for all 

counties 

Test importance of 
drive cycle 

Drive cycle affects the relative 
benefits of PEVs versus HEVs 
(and especially versus CVs). 
Without differentiated drive 

cycles, urban counties are not 
distinct from nearby rural 

counties. 

 

4.5 Limitations 

Our analysis represents the most recent data available at the highest resolution available 

to account for regional grid emissions, driving patterns, and temperature effects on life cycle 

GHG emissions of PEVs and gasoline vehicles. However, several limitations in the available 

data should be understood when interpreting our results: 

• Regional Grid Emissions: Our marginal emissions estimates are historical and do not 

capture the current grid, a future grid, or changes in the grid that may occur during the 

vehicle’s life. Because marginal emissions come primarily from fossil fuel plants, the mix 

of natural gas versus coal on the margin determines the consequential emissions of PEV 

charging. If coal-heavy regions switch to more natural gas generation on the margin, 

comparisons in those regions will begin to look more like the cleaner regions in our 

analysis. Also, while we discuss county-level differences, we assume that in each NERC 

region all counties have identical marginal emission factors because we lack data 

sufficient to estimate high resolution marginal emission factors. In practice, it may be the 
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case that adding PEV load in some areas of a NERC region could have different emission 

implications than adding the same load in a different area of the same NERC region. 

• Driving Patterns: Our summary maps assign the UDDS test results to urban counties 

and the HWFET test results to rural counties, but in practice driving conditions are 

heterogeneous in all counties. Further, on-road driving conditions differ from these two 

laboratory tests, which are known to produce optimistic fuel efficiency estimates due to 

their relatively mild drive cycle demands. Driving distances also may vary for different 

urban counties in a state, but we lump counties together when estimating driving distance 

distributions because we lack data resolution to identify driving distance distributions for 

individual counties. The NHTS data set provides information on the trips taken by each 

surveyed U.S. vehicle on a single survey day and does not include day-to-day variability 

for each vehicle. In this study, we average over the vehicle profiles to assess implications 

for average driving distances and we assume these daily profiles are identical across the 

year.  

• Temperature: We treat temperature as the only factor affecting vehicle efficiency on a 

particular drive cycle, but in practice other regional factors, such as humidity, could 

affect HVAC use, and regional road conditions such as terrain, traffic, and wind can also 

affect efficiency. Our efficiency estimates are based on linear interpolation using test 

results at three temperatures for each drive cycle. Yuksel and Michalek[78] suggest that 

this captures the general trend well but coarsely. We also avoid extrapolation beyond the 

range of temperatures tested and therefore likely make conservative estimates of vehicle 

efficiency loss in extreme weather regions. 

• Vehicles: We examine only five specific vehicle models for which we have access to test 

data. Other vehicle models, including more recent model years of the vehicles examined, 

could have different performance characteristics, temperature sensitivity, etc. 

 



 

 80 

5 Optimization of Li-ion Batteries for Vehicle Electrification: A 

Case Study to Compare Chemistries 

Chapters 2 through 4 focused mainly on operational factors that would affect benefits of 

vehicle electrification. One significant barrier to widespread adoption of electrified vehicles is 

battery cost since battery is one of the most expensive components of electrified vehicles. The 

purchase cost of the battery depends on the optimal design that would satisfy the power and 

energy requirements of the vehicle. The battery chemistry is also important in determining the 

cost. The study in this chapter is a case study that builds up on a processed based cost model 

developed by Sakti et al [31]. This study extends the original model and finds the optimum 

battery design that minimizes the production cost of the battery pack for four different plug-in 

vehicles with different battery energy and power capacities, and for four different chemistries 

that are in use in vehicle electrification.  

This chapter is based on a working paper with coauthors Darshit Mehta and Jeremy 

Michalek.  

5.1 Introduction 

Battery is one of the most expensive components in an electrified vehicle. Battery cost 

depends on the cell level design parameters such as electrode thickness and cell surface area, as 

well as pack level design decisions like number of cells and modules. In addition, cost depends 

on the chemistry of the cells, which is mainly identified by the cathode material used.  

There are various studies in literature estimating li-ion battery cost. However, publicly 

available bottom-up models that estimate the cost and performance of a battery design are rare. 

Argonne National Laboratory (ANL) cost model BatPaC is a pioneer in addressing this issue 

[12]. The process based cost model (PBCM) introduced by Sakti et al. builds up on BatPaC [31]. 

The major improvement introduced by PBCM is that, it estimates resource requirements at 

process-step-level by considering yield rates at each step, therefore accounts for any discrete 

resource investments at each step to realize changes in production model. Sakti et al. uses this 

cost model to optimize the battery design for minimum cost assuming the power and energy 
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requirements of 4 different vehicle types: PHEV10, PHEV30, PHEV60 and BEV200. The study 

shows the optimal design based on cells with NMC333 chemistry, and investigates cathode 

thickness and power-to-energy ratio implications.  

The study presented in this chapter builds on the study by Sakti et al. and aims to carry it 

further by introducing two improvements to the study scope: 1) PBCM created in Sakti et al. is a 

model based on Microsoft Excel and the cost minimization problem is solved by evaluating the 

battery cost over a grid of values and using linear interpolation to estimate the cost of 

intermediate designs. In this study, the model is replicated in Matlab, which allows using the cost 

function directly in optimization and solving the problem using optimization techniques. This 

increases the precision of the solution. In addition, the speed of the approach is enhanced which 

enables fast study of more cases. 2) Using this replicated model, this study identifies the optimal 

battery design with 3 other chemistries also: NCA, LMO and LFP. By classifying the design 

across various chemistries, a significant component of battery cost is addressed. 

5.1.1 Optimization Problem 

The following optimization problem is introduced by Sakti et al.: 

𝑚𝑖𝑛. 𝐶 𝒙  Minimize battery cost 
with respect to cathode thickness, cell width, 
number of bi-cell layers, number of cells  per 
module and number of modules  
Such that:   

• Power capability of the battery should 
be bigger than the peak power required 

• Energy capacity should satisfy the 
energy required  

• Cell capacity and design variables 
should be within their bounds 

• Cathode thickness and cell width are 
continuous, number of bicell layers, 
number of modules and cells are 
integer variables 

𝑤. 𝑟. 𝑡   𝒙 = 𝑥!, 𝑥!, 𝑥!, 𝑥!, 𝑥!  
𝑠. 𝑡.   𝑃!"#$ − 𝑃 𝒙 ≤ 0 

𝐸!"# − 𝐸 𝒙 ≤ 0 
𝑐!"# ≤ 𝑐(𝒙) ≤ 𝑐!"# 
𝒙!"# ≤ 𝒙 ≤ 𝒙!"# 

𝑥!, 𝑥! ∈ ℝ 
𝑥!, 𝑥!, 𝑥! ∈ ℤ 

where 𝐶 𝒙  is the battery pack cost estimated by the PBCM that is explained in the 

following sections. 𝑥! is the cathode thickness, 𝑥! is the cell width, 𝑥! is the number of bi-cell 

layers, 𝑥! is the number of modules cells per module,  𝑥! is the number modules and 𝑐(𝒙) is the 
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cell capacity in Ah. The minimum and maximum bounds for the design variables (𝒙!"# and 

𝒙!"#), as well as for the cell capacity (𝑐!"# and 𝑐!"#) are given in Table 5.1 and calculation of  

𝑐(𝒙) is provided in the following sections.  

Table 5.1 Minimum and max values used for design variables and cell capacity. Values obtained 

from [31] 

 𝑥! 𝑥! 𝑥! 𝑥! 𝑥! 𝑐(𝒙) 

Min. 25 1 1 1 1 10 

Max 125 1000 1000 1000 1000 60 

𝑃 𝒙  is the power capability of the battery and 𝐸 𝒙  is the pack’s energy capacity. 𝑃!"#$ 

and 𝐸!"# represent the power and energy requirement of the vehicle respectively. These values 

are provided for 4 different vehicle types in Table 5.2. where the PHEVs considered are 

extended range electric vehicles.  

Table 5.2 Peak power and energy requirements. Values obtained from [31].  

  PHEV10 PHEV30 PHEV60 BEV200 

Peak power requirement (kW) 𝑃!"#$ 48.6 44 47.9 80 

Energy requirement (kWh) 𝐸!"# 3.6 8 16.5 48 

 

5.1.2 Battery Energy and Power Calculations 

5.1.2.1 Cell Capacity and Pack Energy 

Cell capacity 𝑐 𝒙  is defined as: 

 𝑐 𝒙 =
𝑥!𝐴!𝑠!"#𝑚!"𝜌!

10!  (5.1) 
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where 𝐴! it the cathode surface area, 𝑠!"# is the specific capacity of the cathode active material, 

𝑚!" is the mass fraction of the active material in the cathode (89%), and 𝜌! is the cathode 

density. 𝐴! is can be defined as : 

 𝐴! = 2𝑥!𝑟 𝑥! ! (5.2) 

where 𝑟 is the cell aspect ratio (length/width, assumed to be 3 in this study). 

Using cell capacity, pack energy can be calculated as: 

 𝐸 𝒙 = 𝑥!𝑥!𝑉!"#𝑐 𝒙  (5.3) 

where 𝑉!"# is the cell nominal voltage.  

5.1.2.2 Pack Power Capability 

Sakti et al. defines power capability by using hybrid pulse power characterization 

(HPPC) test results from Battery Design Studio (BDS) simulation software. HPPC test gives 10-s 

power capabilities of the cell in 10% DOD (depth-of-discharge increments). They perform the 

tests for 48 different cell designs that vary with cathode thickness and cell capacity, and fit a 

curve to the results to obtain the following relation for 𝑃 𝒙 : 

 𝑃 𝒙 = 𝑥!𝑥!
𝑥!𝑐(𝒙)

𝛽! + 𝛽! ∙ 𝑥! !!   
− 𝛽!𝑥!𝑐(𝒙)  (5.4) 

where 𝛽! = 149, 𝛽! = 0.281, 𝛽! = 2, and 𝛽! = 8.98×10!! are the constants obtained through 

regression. In this study, a different approach is followed for power calculation and the following 

relation from ANL’s BatPaC 2.1 is employed: 

 𝑃 𝒙 =
𝑥!𝑥!𝑉!"#,!  𝑉!"#,!" 1− 𝑉!"#,!" 𝐴! 𝒙

𝑅!"# 𝑥!  (5.5) 

where 𝑅!"# is the area specific impedance (ohm-cm2), 𝑥! is the number of cells per module, 𝑥! 

is the number of modules, 𝑉!"#,! is the open circuit voltage at the SOC for rated power (20% 

SOC for PHEVs and EVs), and   𝑉!"#,!" is the fraction of the open circuit voltage at which the 

designed power is achieved (0.8 default in BatPaC).  
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Area specific impedance is a function of various parameters, however for simplicity for it 

is simplified as: 

 𝑅!"# = 𝑅!"#$% + 𝑅!"# + 𝑅!"# + 𝑅!! + 𝑅!"##$"%& +
𝑅!"!#𝐴!

𝑥!𝑥!  (5.6) 

where 𝑅!"#$% is a lumped parameter used to define any resistance that are not defined 

with the other parameters in the equation, 𝑅!"# and 𝑅!"# are interfacial impedance for positive 

and negative electrode respectively, 𝑅!! is the current collector foil impedance, 𝑅!"##$"%& is the 

impedance of cell terminals, and 𝑅!"!# is the summation of resistances for cell terminals, 

module terminals, module interconnects and battery terminals. Gallagher et al. introduce this 

relation as a simplified calculation of the area specific impedance for battery design [103]. We 

further simplify this relation by neglecting the last three terms in Equation (5.6). This is just for 

simplicity purposes since the last three terms are estimated by a combination of various relations 

that require tracking down various variables and functions in the BatPaC model. Based on quick 

estimations in BatPaC, neglecting these terms results in less than 1% decrease in the total area 

specific impedance for a small battery. However, in large batteries, this decrease can be up to 

10% based on chemistry. This would result in an increase in the power capability calculated. The 

investigation of this issue has been left as future work and the area specific impedance is 

estimated by considering only the first three terms: 

 𝑅!"# = 𝑅!"#$% + 𝑅!"# + 𝑅!"# (5.7) 

𝑅!"#$%  is provided for the four chemistries inspected in Table 5.3. Impedance for 

negative electrode is given as:  

 𝑅!"# =
𝑅!"#𝑇

𝑖!𝑎!"#𝐿!"#𝐹
 (5.8) 

 

𝐿!"# is the negative electrode thickness, defined as:   
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 𝐿!"# = 𝑟!"
𝑠!"#𝜌!

𝑠!"#𝜌!  (5.9) 

The definition and values of the parameters used in equations (5.8) and (5.9) are provided in 

Table 5.3. 

Table 5.3 Parameter used in power and energy relations. Values obtained from ANL’s BatPaC 

[12] 

   NMC333-G NCA-G LFP-G LMO-G 

𝑽𝐎𝐂𝐕,𝐏 OCV at 20% SOC Volts 3.516 3.551 3.246 3.826 

𝑽𝐍𝐎𝐌 Nominal Voltage Volts 3.671 3.680 3.282 3.954 

𝑹𝐂𝐨𝐧𝐬𝐭 Lumped constant 
impedance 

𝑜ℎ𝑚 ∙ 𝑐𝑚! 33 27 30.5 23 

𝑹𝐆𝐀𝐒 Universal gas constant 𝑊ℎ/𝑚𝑜𝑙 ∙ 𝐾 2.3x10-4 2.3x10-4 2.3x10-4 2.3x10-4 

T Absolute temperature 𝐾 297 297 297 297 

𝒊𝒐 Exchange current density 𝐴𝑚𝑝𝑒𝑟𝑒/𝑐𝑚! 0.00015 0.00015 0.00015 0.00015 

𝒂𝐍𝐄𝐆 Ratio of interfacial area 
to (-) electrode volume 

𝑐𝑚!/𝑐𝑚! 74000 74000 74000 74000 

𝒓𝐍𝐏 Negative to positive ratio 
after formation 

 1.25 1.25 1.2 1.2 

𝑭 Faraday’s constant 𝐴ℎ/𝑚𝑜𝑙 26.801 26.801 26.801 26.801 

𝒔𝐏𝐀𝐌 (+) electrode active 
material capacity 

mAh/g 150 160 150 100 

𝝆𝐏 (+) electrode density g/cm3     

𝒔𝐍𝐀𝐌 (-) electrode active 
material capacity 

mAh/g 150 160 150 100 

𝝆𝐍 (-) electrode density g/cm3     

𝒂𝐏𝐎𝐒 Ratio of interfacial area 
to (+) electrode volume 

𝑐𝑚!/𝑐𝑚! 8900 8900 420000 49200 

𝑰𝑰𝑶𝑵𝑳𝑰𝑴 

 

Limiting ionic current for 
lithium cation transport 

through seperator 

𝐴𝑚𝑝𝑒𝑟𝑒/𝐴ℎ 120 120 120 120 

𝑰𝑴𝑨𝑿 C-rate at full power 𝐴𝑚𝑝𝑒𝑟𝑒/𝐴ℎ 5 5 5 5 

𝑰𝑪 Maximum current 
density at full power 

𝑚𝐴/𝑐𝑚! 20 20 20 20 

𝑰𝐂𝐋𝐈𝐌 Limiting current densitiy 𝑚𝐴/𝑐𝑚! 85 85 85 85 

 

Impedance for positive electrode is given as: 
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 𝑅!"# =
𝑅!"#𝑇

𝑖!𝑎!"#𝑥!𝐹
1−

𝐼!"#

𝐼!"#$!% 1−
𝐼!

𝐼!"#$

! !.!

 (5.10) 

The comparison of the power capabilities obtained from two different calculations is 

provided in Figure 5.1 for NMC chemistry at different cell capacities. As depicted from the 

figure, the power capability obtained from BatPac model is lower compared to BDS results. This 

can be explained by the fact that BatPac model designs the battery to allow for degradation and 

resistance growth so that required power rating from the battery is also satisfied at end of life. 

The further investigation of this issue is left as future work and for the optimization described in 

this study the power capability is calculated using Equation (5.5).  

 

Figure 5.1 Power capability calculation: Comparison of two approaches. Red: Power calculation 

using BDS HPPC test results as presented in Sakti et al. and given in Equation (5.4). Blue: 

calculation using the relation from BatPac given in Equation (5.5). Each of the 6 lines in each 

color represent the results between 10Ah and 60 Ah cell capacity with 10 Ah increments. 

5.1.3 Battery Cost Model 

Using the PBCM, the unit battery production cost can be obtained by considering the 

annual production cost at each process step:  
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 𝐶 𝒙 =
𝐶!"# 𝒙 + 𝐶!"# 𝒙 + 𝐶!"# 𝒙 + 𝐶!"# 𝒙 + 𝐶!"# 𝒙 + 𝐶!"# 𝒙 + 𝐶!"# 𝒙 + 𝐶!" 𝒙

𝑉!""
 

(5.1

1) 

where the cost terms in the numerator refers to annual material, equipment, labor, 

building, energy, auxiliary equipment, maintenance and overhead costs, respectively. 𝑉!"" is the 

annual production volume. In this study, we assume the annual production volume is fixed at 

𝑉!"" = 20,000 packs. More details on each cost parameter are available at Sakti et al.  

According to the BatPac and the PBCM, the differences that occur between different 

chemistries are due to differences in cell level design and cost parameters. All processes and 

equipment requirements are assumed to be the same for all chemistries.  

5.1.4 Optimization 

The optimization problem is introduced in section 5.1.1 is a non-convex mixed integer 

non-linear program (MINLP) This problem is solved using a branch and bound method that uses 

a randomized multi-start at each node. The optimization problem at each node is solved using a 

sequential quadratic programming algorithm.  

5.2 Results and Discussion 

Optimal design variables for each chemistry are tabulated in Table 5.4. Figure 5.2 shows 

the comparison of battery specific cost with vehicle range and for each chemistry, and Figure 5.3 

shows the cathode thickness at optimal design.  

In general, the lowest cost is obtained by using the thickest cathode thickness possible to 

satisfy the constraints of the problem. The specific cost of the battery decreases with pack size 

since packaging, thermal management and battery control systems costs are spread over a larger 

energy capacity. In addition, specific cost decreases as cathode thickness increases since thicker 

electrodes allow the designer to use less inactive material. Furthermore, for PHEV10 and 

PHEV30 a general trend of adding more cells to modules instead of increasing the number of 

modules is observed. This is expected since additional modules result in more module regulation 

costs, primarily from state-of-charge regulators [31]. However, as the energy requirement 
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increases with PHEV60 and BEV200, the number of modules increases as well. Further 

investigation is necessary to ensure global solution and to understand the causes of this trend.  

LMO is the cheapest option for all vehicle types, and LFP is the most expensive except 

for PHEV10.  The positive active material cost of LMO is cheapest among the alternatives. In 

addition, high power to energy ratio of LMO allows for bigger cathode thickness in PHEV10 

small battery applications and this decrease the cost. Similarly, LFP allows for thicker cathode 

thickness for PHEV10 and cost of LFP for this vehicle is lower than NMC and NCA Figure 5.4 

gives the comparison of the power capabilities of the 4 different chemistries considered. Both 

LFP and LMO uses the maximum cathode thickness allowable starting from PHEV30. This 

might be explained by the lower energy capabilities of these cathodes. For all chemistries, 

starting from PHEV60, optimum design is obtained at maximum allowable cathode thickness.  

LFP is a high cost option as the power-to-energy ratio decreases, i.e. energy requirement 

increases. Although active material capacity and cost are comparable to other chemistries, the 

energy capacity is lower. To satisfy the energy requirement, bigger surface area and increased 

number of cells are needed with this chemistry, which increases the unit and specific cost. These 

trends of comparison between chemistries are consistent with what is reported in literature [104]. 

Figure 5.5 shows that for PHEV10, the optimum is obtained at the intersection of power 

and energy constraint. As pack energy requirement increases, the upper capacity bound becomes 

active. As shown in Figure 5.6, with PHEV60 relaxing the upper bound on the capacity will 

improve the cost.  
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Table 5.4 Optimum design variables and cost for each chemistry and vehicle type.  

 
Cathode 

Thickness 
(µm) 

# of bi-
cell 

layers 

Cathode 
width 
(mm) 

# of cells 
per 

module 

# of 
modules 

Cell 
capacity 

(Ah) 

Pack cost 
($) 

Pack 
specific 

cost 
($/kWh) 

NMC         

PHEV10 28.5 106.0 87.6 9.0 2.0 54.5 2274.4 631.8 

PHEV30 83.4 38.0 87.8 19.0 2.0 57.3 2771.6 346.4 

PHEV60 125.0 23.0 94.2 25.0 3.0 59.9 4247.9 257.4 

BEV200 125.0 14.0 120.2 44.0 5.0 59.4 10640.3 221.7 

NCA         

PHEV10 29.1 105.0 86.9 9.0 2.0 54.3 2281.8 633.8 

PHEV30 85.0 40.0 83.5 13.0 3.0 55.7 2827.3 353.4 

PHEV60 125.0 23.0 94.1 25.0 3.0 59.8 4374.6 265.1 

BEV200 125.0 14.0 120.1 44.0 5.0 59.3 11007.9 229.3 

LFP         

PHEV10 59.2 79.0 96.7 10.0 2.0 54.8 2345.0 651.4 

PHEV30 125.0 37.0 100.0 14.0 3.0 58.0 3107.4 388.4 

PHEV60 125.0 30.0 112.9 21.0 4.0 60.0 5393.1 326.9 

BEV200 125.0 23.0 128.6 35.0 7.0 59.7 13694.0 285.4 

LMO         

PHEV10 83.4 69.0 86.0 8.0 2.0 56.9 1886.9 524.1 

PHEV30 125.0 36.0 99.4 17.0 2.0 59.5 2630.0 328.8 

PHEV60 125.0 33.0 104.0 14.0 5.0 59.6 4292.9 260.2 

BEV200 125.0 24.0 122.1 29.0 7.0 59.8 10793.7 224.9 
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Figure 5.2 Battery cost comparison with 4 different cathode materials for 4 vehicle types. Left: 

specific cost (cost per kWh energy). Right: Pack cost 

 

Figure 5.3 Cathode thickness at optimal design  
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Figure 5.4 Comparison of power capabilities of cells with different cathode materials 
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Figure 5.5 Contour plot of cost function with cathode thickness and # of bi-cell layers for the 

optimal PHEV10 design: Comparison of NCA and LMO. The feasible domain for both power 

and energy constraint is above the constraint line. 
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Figure 5.6 Contour plot of cost function with cathode thickness and # of bicell layers for the 

optimal PHEV60 design: NCA chemistry. The feasible domain for both power and energy 

constraint is above the constraint line.  
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5.3 Sensitivity Analysis 

Most of the boundaries introduced in Table 5.1 are arbitrary for modeling purposes. 

However, there can still be restrictions to the minimum and maximum values of the variables. 

Sakti et al. discusses that, although manufacturers are able to produce cathode thicknesses up to 

125 microns, thicker electrodes might generate defects and form cracks during drying. Too thin 

cells might be difficult to manufacture, and larger capacity cells are more prone to yield loss 

because more bi-cell layers must be stacked and wired [31]. Nelson et al. state that cell capacities 

of 200 Ah or larger are currently available for certain chemistries. However, it is not clear if a 

battery designer would select to combine smaller cells with parallel connections due to 

availability. They also argue that, it is not clear what will be the largest capacity cell in the near 

future [12]. All these in mind, we relax the boundaries upper bounds of the cathode thickness and 

cell capacity to repeat the optimization to see the effect of these bounds on the results. Table 5.5 

shows the new relaxed boundaries and Table 5.6 shows the new optimum design variables and 

cost. For PHEV10, the optimum cathode thickness with relaxed boundaries remains the same as 

the original case whereas the number of modules decreases since the cell capacity increases. As 

the pack energy increases, the cathode thickness hits the upper bound again however the upper 

bound on the cell capacity is not active anymore for most of the cases. Figure 5.7 shows how the 

specific cost of the pack changes across different vehicles and chemistries with relaxed 

boundaries compared to the original case. The biggest reduction in cost occurs with BEV200.  

Table 5.5 Relaxed boundaries for sensitivity analysis 

 𝑥! 𝑥! 𝑥! 𝑥! 𝑥! 𝑐(𝒙) 

Min. 25 1 1 1 1 10 

Max 200 1000 1000 1000 1000 200 
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Table 5.6 LMO Optimal design variables and cost, after relaxed boundaries 

 
Cathode 

Thickness 
(µm) 

# of bi-
cell 

layers 

Cathode 
width 
(mm) 

# of cells 
per 

module 

# of 
modules 

Cell 
capacity 

(Ah) 

Pack 
cost ($) 

Pack 
specific 

cost 
($/kWh) 

NMC         

PHEV10 28.5 167.0 93.7 5.0 2.0 98.1 2241.5 622.6 

PHEV30 83.4 94.0 99.3 6.0 2.0 181.6 2626.4 328.3 

PHEV60 166.3 45.0 103.2 8.0 3.0 187.3 3709.4 224.8 

BEV200 200.0 29.0 120.6 11.0 6.0 198.1 8513.0 177.4 

NCA         

PHEV10 29.1 165.0 93.1 5.0 2.0 97.9 2249.6 624.9 

PHEV30 85.0 92.0 99.3 6.0 2.0 181.2 2677.2 334.6 

PHEV60 169.4 44.0 103.3 8.0 3.0 186.8 3828.6 232.0 

BEV200 200.0 29.0 120.4 11.0 6.0 197.6 8889.6 185.2 

LFP         

PHEV10 59.2 134.0 105.0 5.0 2.0 109.7 2306.2 640.6 

PHEV30 145.9 73.0 110.2 5.0 3.0 162.5 2850.5 356.3 

PHEV60 200.0 45.0 128.4 9.0 3.0 186.2 4330.1 262.4 

BEV200 200.0 33.0 153.4 15.0 5.0 195.0 10512.7 219.0 

LMO         

PHEV10 83.4 118.0 93.0 4.0 2.0 113.8 1852.1 514.5 

PHEV30 200.0 63.0 100.0 4.0 3.0 168.6 2290.7 286.3 

PHEV60 200.0 51.0 120.9 7.0 3.0 199.3 3553.3 215.4 

BEV200 200.0 34.0 143.3 13.0 5.0 186.8 8273.8 172.4 
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Figure 5.7 Specific cost change with relaxed upper boundaries. Left side of each bar represent 

the cost with relaxed boundaries and right side shows the cost with original boundaries 

5.4 Limitations and Conclusion 

This study introduces the optimal design problem for minimizing the cost of plug-in 

vehicle battery considering the design parameters cathode thickness, cell width, bi-cell layers, 

number of cells per module and number of modules, and the cell chemistry.  

Results show that among different chemistries, LMO is the cheapest option, showing it as 

a good candidate. However, this study does not examine any other possible implications that 

might stem from chemistry choice. LMO has issues with Mn solubility, which affects cycle life, 

therefore it is not favorable for future electric vehicle applications [105].   

For small batteries where high power-to-energy ratio is required, the optimum design 

occurs at the intersection of power and energy constraints. This point can shift based on the 

formulation used for power capability calculations. As energy requirement from the pack 

increases, the energy constraint becomes more dominant. Relaxing the capacity upper bound  

improves the results for bigger batteries. In addition, production volume might have different 

applications for different chemistries. Further investigation and case studies are necessary to 

examine the implications of : 1) lower and upper boundaries on design variables and capacity, 2) 

the model to estimate the power capability of the battery, 3) production volume. 
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Finally, in this study we assume cells and modules are connected in series only. Parallel 

connections can change the cell capacity requirement. In addition, parallel connections create 

additional costs due to increased number of cell terminals and interconnects and formation 

cycling units in the manufacturing facility [12].   
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6 Conclusions 

In this thesis, a series of studies were presented to investigate battery life, range and 

emission benefits with a particular focus on the effect of temperature on these outcomes. In 

addition, driving cycle, thermal management and battery chemistry effects are examined in 

portion to understand these challenges. This chapter summarizes the contributions of the 

presented work, and makes suggestions for future research in the area. 

6.1 Contributions 

6.1.1 Methodological Contributions 

The methodological contribution from Chapter 2 is introducing a method for modeling 

the interactions between powertrain operations, battery performance, vehicle and battery thermal 

behavior and battery degradation, to be used for estimating temperature effect on battery life.  

Chapters 3 & 4 introduce a method to estimate regional variation in electrified vehicle 

range, efficiency and emissions by bringing together real world and test data for vehicle 

efficiency, climate, driving patterns and marginal emission factors.  

The methodological contribution of Chapter 5 is the solution of the MINLP problem of 

optimizing battery design that minimizes the production cost by using a branch-and-bound 

algorithm. 

6.1.2 Applicative Contributions 

Applicative contributions from Chapter 2 include comparison of temperature and various 

usage scenarios in terms of their effects on battery life and quantification the improvement by 

use of air-cooling as battery thermal management. Results suggest that, aggressive driving can 

decrease battery life by ~70% compared to real world driving profiles obtained from GPS data. 

This decrease in battery life with aggressive driving drops to 40% when air cooling is employed, 

indicating that the effect of temperature increase is reduced by conditioning the battery however 

the charge/discharge rates during driving can still cause significant difference. Regional climate 
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will have a noteworthy effect on battery life if thermal management is not used. Battery life in 

Phoenix is 25% lower than life in San Francisco, however use of thermal management reduces 

this difference.  

The applicative contribution of the study introduced in Chapter is the quantification of 

the effect of regional temperature variances on BEV range, efficiency and emissions.  In climates 

with hot temperature peaks, or in cold climates, the range can drop by 29-36%. Average vehicle 

energy consumption in Upper Midwest can increase by 15% compared to Pacific Coast or 

Florida. The main factor that affects regional differences in emissions is the grid mix, however 

temperature can still create up to 22% difference.  

Applicative contributions from Chapter 4 include comparison of light-duty vehicle 

technologies for personal use in terms of their average GHG emissions and investigating the 

factors that affect this comparison. Results suggest that compared to Toyota Prius, Nissan Leaf 

reduces emissions across most of the US except for rural highway drivers of Midwest and South. 

While Prius PHEV decreases emissions everywhere when compared to Toyota Prius, Volt on the 

other hand increases emissions everywhere. Charging in the midnight rather than upon arrival at 

time increases GHG emissions of PEVs. Temperature and driving cycles affect the relative 

benefits of PEVs over HEVs.  

Finally, the applicative contribution of the study presented in Chapter 5 is identifying and 

comparing the cost minimizing design variables for different chemistries. Results indicate that 

LMO is the cheapest option for all cases investigated and LFP is the most expensive option 

except for PHEV10.  Increasing the cathode thickness decreases the cost for all chemistries. 

6.2 Open Questions and Suggestions for Future Work 

Limitations and future work suggestions for each individual study are provided at the end 

of the corresponding chapter. There are still many open questions that remain beyond the scope 

of this dissertation that need to be investigated to fully address the research questions proposed 

in the beginning. Table 6.1 aims to summarize the portions of the questions addressed in this 

dissertation, as well as some other areas that can be investigated.   
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Hot temperatures are found to be significantly important both for life and range, 

efficiency and emissions benefits. Battery life analysis has been performed for a PHEV, and a 

case study with a bigger pack size showed that, the effect might not be as significant for BEVs. 

However, the study in Chapter 3 showed that cold temperatures can cause significant reduction 

in BEV efficiency, because battery load increases due to cabin heating requirements. This extra 

load at extreme cold temperatures won’t be significant enough to create significant degradation 

differences in BEVs and in PHEVs, the heating load will be lower due to available excess engine 

heat. However, cold temperatures can affect battery life since they can create different 

degradation mechanisms. Although it is not clear if the degree of this effect will be as high as it 

is at hot temperatures, it is worth investigating for a complete regional assessment of climate. In 

addition, although not explicitly shown in Table 6.1, battery life and range and emission benefits 

are related, since as battery experiences capacity and power fade, the efficiency will decrease, 

affecting the range and emissions benefits. This issue should be taken into account for a 

complete picture of temperature effect.  The lifetime cost of operating electrified vehicles under 

the temperature effect should also be incorporated. 

Air-cooling is shown to play an important role in increasing battery life in small pack 

PHEVs. However, the improvement should also be investigated for higher pack batteries. 

Furthermore, to fully understand thermal management benefit more needs to be done. Liquid 

cooling option should also be examined. In addition, heating the batteries might be a good 

solution for the efficiency loss problem in the cold temperatures that needs to be considered in 

the analyses. The trade-off between the benefits and cost advantages/disadvantages of employing 

different strategies remains a significant open question. For example, liquid cooling might 

provide better cooling characteristics, however it is more expensive and it adds more load on the 

battery, increasing the operational costs. In addition, this tradeoff can also change with vehicle 

technology and battery chemistry. A full trade-off analysis should cover all these issues.  

Chapter 2 focuses on a LFP chemistry PHEV pack with 5 kWh capacity to investigate 

life benefits, and Chapter 5 shows that LFP is a moderate cost alternative for a PHEV10 with a 

3.6 kWh battery. In the context of the studies performed, selection of the LFP in battery life 

study is not inconsistent with the cost benefits. However, LMO is still a cheaper option in terms 

of production cost. Furthermore, for all other vehicles considered in Chapter 5, LFP is the 

highest cost option. On the other hand, LFP shows good battery life characteristics as shown in 
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Chapter 2 unless it is used with very aggressive driving without cooling. Therefore, it is still 

possible that LFP lifetime cost might be better compared to alternatives. To determine this, the 

battery life studies can be performed for other chemistries as well, and the study in Chapter 5 can 

be extended to estimate lifetime cost rather than the production cost. 

Different chemistries might cause the temperature effect on EV range and emissions 

benefits to vary as well. Although the battery efficiency loss is a smaller portion of range loss at 

cold temperatures compared to heater use, different chemistries can show different performance 

characteristics with temperature, which might worth considering.  

In the end, this dissertation accomplishes to address only a small portion of the 

challenges in further adoption of electrified vehicles by creating models and comparing various 

scenarios. It is author’s hope that this dissertation can provide necessary knowledge and 

guidance in literature for the future research towards overcoming challenges in electrification of 

transportation.  
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Table 6.1 Summary of key findings and open areas for further investigation 

 

Battery Life Range/Efficiency/ 
Emissions 

Cost 

Production Cost Lifetime Cost 
Regional Climate   

Hot temperature 

þ  
In hot climates battery life can 
decrease by 46% for batteries 

with LFP chemistry 

þ 
Range can drop by 29% in hot 

regions and by 36% in cold 
regions compared to mild 
climates. Overall, energy 

consumption and emissions can 
increase by 15 and 22% 

respectively based on regional 
climate. 

 ☐ 

Cold Temperature ☐  
 
☐ 

 

 
Thermal Management 

  

Air Cooling 

þ 
Air-cooling can improve 

battery life by 2 to 8 times 
depending on region and drive 

cycle. 

☐ ☐ ☐ 

 
Liquid Cooling ☐ ☐ þ ☐ 

Heating ☐	 ☐	 ☐ ☐	 

     

Battery Chemistry     

LFP 

More than 15 years of life can 
be obtained if thermally 

controlled. For aggressive 
driving, the battery life can be 

much shorter.  

☐ 

For a BEV200 
specific cost 

range: 
 

219 – 285 $/kWh 

☐ 

NCA ☐ ☐ 185-229 $/kWh ☐ 

LMO ☐ ☐ 172-225 $/kWh ☐ 

NMC ☐ ☐ 177-235 $/kWh ☐ 
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Appendix A. Supplemental Information for Plug-in Hybrid Electric Vehicle LiFePO4 

Battery Life Implications of Thermal Management, Driving Conditions, and 

Regional Climate 

 

Figure A. 1 Decision Algorithm Schematic 
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Table A. 1 Parameters used in modeling and calculations 

Parameter Description Model Value 
𝜓
!
"#

  
(v

eh
ic

le
 p
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si

ca
l s
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cs

) 
𝑚!"# Vehicle mass Performance 1355 kg 

𝐶!"#$ Vehicle drag coefficient Performance 0.26 

𝐴!"#$% Vehicle frontal area Performance 2.23 m2 

𝐶!! Vehicle tire rolling resistance 
coefficient Performance 0.01 

𝜂!" 
Efficiency of power transfer 
from regenerative braking to 

battery 
Performance 0.4 

𝜂!" Efficiency of power transfer 
from battery to wheels Performance 0.8 

𝜌!"# Air density Performance 1.23 kg/m3 

𝐶!"#$% Cell rated capacity Battery 2.3 Ah 

𝑁!"##,!"#$ # of cells in the pack Battery 616 

𝑁!"##,!"#"$$%$ # of cells connected in parallel Battery 11 

𝑀!"# Vehicle cabin thermal mass Thermal 101,771 J/K 

𝑀!"#	   Battery thermal mass Thermal 45,500 J/K 

𝐾!" 
Inverse of the thermal 

resistance between cabin and 
ambient 

Thermal 22.6 

𝐾!" 
Inverse of the thermal 

resistance between battery and 
ambient 

Thermal 0.722 

  𝐾!" 
Inverse of the thermal 

resistance between battery and 
cabin 

Thermal 0.518 
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Appendix B. Supplemental Information for Effects Of Regional Temperature On Electric 

Vehicle Efficiency, Range and Emissions in the United States 

1) Additional Details on Data and Analysis 

In the main text, a brief description of each dataset is provided and the analysis approach 

is explained. We include additional details here.  

Energy consumption versus temperature data: To find a relationship between energy 

consumption and ambient temperature, we use the Nissan Leaf average range versus ambient 

temperature data points provided by the Canadian company FleetCarma. The graph from which 

we obtained the data points is shown in Figure B. 1.  

 

Figure B. 1 Nissan Leaf Range vs. Temperature graph as provided by FleetCarma [24] 

In this study, we use the average range data points as shown with the blue dots in Figure B. 1. 

These data are collected via data loggers on vehicles across all North America for 7375 trips. 
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However, no specific details on the spatial resolution are provided. In our study, we convert each 

of the range data points 𝑠!!"#  to energy consumption per mile by using the relationship: 

 𝑐! =
𝐶!"#

𝑠!!"#
 (B.1) 

where 𝑐! refers to energy consumption per mile driven for data point i and 𝐶!"# is the Nissan 

Leaf battery usable energy capacity. We then use the energy consumption versus ambient 

temperature information to obtain the functional relationship given in Equation (1) in the main 

text. Figure B. 2 shows the range data, as well as the energy consumption data points obtained 

using Equation (B.1). 

  

Figure B. 2 a) Nissan Leaf available range versus temperature data points from FleetCarma b) 

data points converted to energy consumption with function fit 

Note that, the data points given in Figure B. 1 are obtained by measuring the energy consumption 

by data loggers and converting the data to range based on a battery capacity value. We lack 

information on FleetCarma’s conversion method and assumption for battery capacity, however 
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we do not expect the error in battery capacity assumption to change the relative effect of 

different temperatures.  

Climate data. Figure B. 3 gives the locations of the stations where climate information in TMY3 

was measured, as provided in the National Solar Radiation Data Base [76]. In our study, we 

make our estimations for each of these locations given in the map, and we show the results for 

the continental United States. To estimate the results at any location other than given in TMY3 

results, we perform a triangulation-based cubic interpolation using the Matlab® function 

‘griddata’. [106] 

 

Figure B. 3 NREL TMY3 database measurement station locations 
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2) Sensitivity Analyses  

In this section, we test several assumptions by simulating alternative cases. 

Extrapolating range data. As mentioned in the main text, in this study we impose extrapolation 

limits to the ambient temperature vs. efficiency functional relationship. Here, we recompute the 

results without any lower or upper limits on extrapolation. The resulting daily range for selected 

cities is given in Figure B. 4. As can be seen from the figure, this approach does not cause any 

noticeable change in the results except in Rochester. In Rochester the average range on the worst 

day drops to 35 miles, about a 22% decrease from its previous value of 45 miles estimated in the 

main text. 

The average range at the worst day of the year (day with the lowest predicted battery electric 

vehicle (BEV) range) calculated with the new approach in this section is plotted across the 

country in Figure B. 5. Looking at the figure, we see that the range of temperature values used in 

the calculations affect mainly cold regions, where it is possible to observe hourly temperatures 

less than -15oF, the lower boundary used in the main text. There are only a few times per year 

when the temperature exceeds the upper data bound of 110oF across the country, therefore hot 

climate regions are not affected from this change in the temperature range.  

Note that in this study we only presented results for the continental US, although 86 of 1011 the 

location points mentioned in the main text are from Alaska and are from Hawaii. In addition, the 

most dramatic effect of temperature on range and energy consumption is observed in Alaska due 

to the cold climate. The worst-day range in Alaska is about 45 miles when using bounded 

extrapolation in the main text and drops to 8 miles when using full extrapolation. Given this wide 

uncertainty and the lack of data for extreme temperatures, we avoid making conclusions about 

range implications for Alaska. 
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We also recalculated the average energy consumption and average CO2 emissions per mile using 

full extrapolation. However, the plots for these variables are not provided here since almost no 

change is observed in their values across the country. This might be explained by the fact that 

when these parameters are averaged over the year, the effect is negligible since temperatures fall 

outside the range of the data on only a small subset of days).  

Figure B. 6 shows the expected vehicle range on an average day (rather than the worst day) 

across the fleet in each region. The plot uses bounded extrapolation, but results with full 

extrapolation are comparable.  

 

Figure B. 4 Updated daily driving range distribution for selected cities using full extrapolation 
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Figure B. 5 Average range across the fleet on the worst day of the year using full extrapolation 

 

Figure B. 6 Expected range on an average day across the fleet (miles) 
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Expected range can drop to 64 miles in cold regions like the Upper Midwest and in hot regions 

like Southeast California and Southern Arizona. Therefore, the expected range in those regions is 

11 miles less than the Environmental Protection Agency (EPA) rated 2013 Nissan Leaf range of 

75 miles [107]. 

Battery Capacity. To understand the effect of battery size on the results, we repeated the 

simulations for an 85 kWh battery. In doing this, we assumed that the energy consumption per 

mile versus temperature relationship that we obtained in Equation (1) will still stay the same, i.e. 

increase in the capacity does not cause any change in vehicle and battery efficiency. Using the 

same ratio of usable capacity to actual capacity as the base case, we performed the simulations 

for a usable battery capacity of 74 kWh. The results for average range on the worst day are 

shown in Figure B. 7. As expected, we see an increase in the range; however the proportional 

reduction in range on the worst day remains similar for all locations. The average energy 

consumption shows a slight increase in most of the locations, with a maximum increase of 0.8%, 

since with increased battery capacity, more trips from NHTS are able to be completed, increasing 

the total energy consumption slightly. This affects emissions as well, and we see an increase in 

emissions in many locations as given in Figure B. 8. However, there are certain locations where 

we actually see about a 4% decrease in the emissions. This can be explained with the fact that, 

because the trip is longer now, the charging starts at a different time, when the emission factors 

may be lower.  
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Figure B. 7 Average range on the worst day of the year with 85 kWh battery assumption 

Charging Efficiency. In the main text, the average emissions are calculated using a charging 

efficiency of 87%. To see how much this assumption can change results, in Figure B. 8 we 

provide the average emissions with 100% charging efficiency. As expected, we see a decrease of 

about 13% in the average emissions.  

Charge Rate. In the main text, we assumed a 6.6 kW charging rate, which corresponds to Level 

2 charging on a higher-current circuit. The Nissan Leaf also has the option to charge with Level 

2 at 3.3 kW on a lower-current circuit (early models were limited to the lower rate). To see the 

effect of this assumption, we repeated our simulations using a charging rate of 3.3 kW. 

Emissions increase in most locations due to delayed charging and greater availability of coal-

fired power plants on the margin at night; however, in certain locations emissions are up to 4.5% 

lower with lower charge rate. The emissions at selected cities for the base case and three 

sensitivity cases are provided in Figure B. 9.
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Figure B. 8 Average emissions for a) base case b) 85 kWh battery capacity c) 3.3 kW charge 

rate d) 100% charging efficiency. 
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Figure B. 9 Emissions in selected cities, comparison of cases simulated. Base case represents 

simulations using 87% charging efficiency, 6.6 kW charge rate and 24 kWh battery capacity. For 

any other point, only the variable tested is given in the legend, other variables match the base 

case. 

Marginal Emissions Factors. As mentioned in the main text, to estimate the grid emissions 

associated with increased load from BEV electricity consumption, we need to estimate marginal 

emissions from the power plants that are utilized to meet the extra demand. Although it is nearly 

impossible to identify exactly which power plants will change output in response to new 

demand, it is possible estimate the effect using past data. Two studies provide these estimates 

based on different approaches. 
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Graff Zivin et al. estimate the marginal emission factors (MEFs)  by regressing emissions in each 

interconnect as a function of consumption in each  North American Electric Reliability 

Corporation (NERC) regional reliability entity for each hour of the day[85] to identify marginal 

emission factors. They conduct the analysis both seasonally and annually. We use seasonal time 

of day estimates of the MEFs, an unpublished dataset that we obtained through personal 

communication with the authors, as our base case in the main text. To understand how much this 

time resolution affects our results, we perform the same analysis again using the overall time of 

day MEFs and present the results in Figure B. 10. Note that all of these MEFs we use here are 

point estimates (expectation of the marginal emission factor for each hour in each season). 

Siler-Evans et al.[89] provide an alternative approach to estimating MEFs by regressing change 

in emissions as a function of change in Environmental Protection Agency’s (EPA) Continuous 

Emissions Monitoring System (CEMS) fossil generation for each hour and in each NERC region. 

Their focus is on marginal electricity generation rather than consumption. Figure B. 10 shows 

analysis results using generation based seasonal and overall time of day point estimates for 

MEFs.  

The results for consumption-based MEFs by Graff Zivin et al. show that using overall time of 

day estimates results in increased CO2 emissions by about 4% on average (averaged over all the 

locations in the analysis) compared to seasonal time of day estimations. Figure B. 11 compares 

the results for selected cities (using a charging efficiency of 100%). In Phoenix, using the overall 

time of day MEFs can result in emissions 13% higher than using the seasonal MEFs. On the 

other hand, in Pittsburgh overall time of day MEFs result in about 2% lower emissions. The 

difference between overall and seasonal time of day MEFs is almost negligible for the generation 

based MEFs from Siler-Evans et al. When we compare the results using consumption based 
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MEFs versus generation based MEFs, we see that the difference is strongly regional. Two 

regions that show the most significant differences are WECC and MRO. In WECC, generation 

based MEFs result in emissions about 54% more than the consumption based MEFs. In MRO, on 

the other hand, the results with consumption based MEFs are on average about 10% higher. This 

shows that the estimation of CO2 emissions due to extra load on grid from charging BEVs is 

strongly dependent on how MEFs are estimated. Figure B. 12 shows a comparison of the overall 

time of day MEFs predicted by two studies mentioned. For a more detailed comparison of the 

approaches, see Graff Zivin et al.[85] and Tamayao[88]. 
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Figure B. 10 Average emissions using (a) Graff Zivin er al. seasonal time of day (b) Graff Zivin 

et al. overall time of day (c) Siler-Evans et al. seasonal time of day (d) Siler-Evans et al. overall 

time of day MEFs. 100% charging efficiency assumed. 

.
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Figure B. 11 Average emissions for selected cities, comparison of using different values for 

MEFs from Graff Zivin et al. and Siler-Evans et al..
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Figure B. 12 Comparison of overall time of day marginal CO2 emissions at 8 NERC regions 

from two different sources: Graff Zivin et al. and Siler-Evans et al.  
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3) Extended Discussion on Limitations and Assumptions: 

Battery Technology. All major US electric vehicles use lithium-ion (Li-ion) batteries. However, 

Li-ion batteries differ in material and design characteristics that affect temperature sensitivity 

The main reasons why cold temperature affects Li-ion batteries can be summarized briefly as 

follows: 

• As temperature decreases, ionic mobility decreases. This causes the reaction rate to 

decrease and makes it harder for the Li-ion to be inserted in the “intercalation spaces”. (Li-ion 

batteries depend on an “intercalation” mechanism where lithium ions are inserted into the 

crystalline lattice of the host electrode without changing its crystal structure)  

• Decreased mobility causes the internal impedance to increase. Increase in internal 

impedance has negative effects both on life and performance: terminal voltage of the cell 

decreases, and the voltage needed during charging increases, thus reducing the battery effective 

capacity as well as decreasing its charge/discharge efficiency.   

• With low temperatures electrolyte conductivity decreases.  

Higher temperatures usually have positive effects in battery performance but negative effects on 

battery life.  

Since all Li-ion batteries work on the same electrochemical principles, these effects will be 

observed in all currently available batteries. However, the extent of these effects may differ for 

different cell designs.  

Driving Patterns. As mentioned in the main text, vehicle efficiency is strongly dependent on 

driving patterns and conditions. In particular, energy consumption is strongly dependent on the 
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driving cycle[79], and driving cycle characteristics may be correlated with weather as well as 

location. We ignore regional variation in driving cycle to isolate effects of temperature from 

other effects such as degree of urbanization[88], but because our data are based on real-world 

driving, driving cycle effects that are correlated with temperature are implicitly captured in our 

efficiency vs. temperature model.  

Further, BEV driving patterns may differ systematically from gasoline vehicle driving patterns 

obtained from the NHTS dataset. Figure B. 13 shows the cumulative distribution of daily vehicle 

miles traveled (DVMT) by NHTS vehicles. As can be seen from the figure, even when the range 

of a Nissan Leaf is the EPA rated value of 75 miles, 10% of the vehicles in NHTS cannot finish 

their daily trips using a Nissan Leaf on a single charge. When the range drops to lower values 

due to the temperature effect, this percentage increases. For example, in the case when the range 

drops to 45 miles, 25% of the vehicles are not able to perform their daily trips using a Nissan 

Leaf on a single charge. In this study, whenever the trip length is longer than the electric range, 

that trip is only completed to the point where the range allows. While BEV owner behavior may 

deviate from this assumption, our large battery sensitivity case suggests that the proportional 

effects we identify hold with longer-range BEVs as well. 

Other climate elements. Temperature is not the only climate element that affects energy 

consumption. Other weather elements, such as snow, ice, rain and wind can all decrease vehicle 

efficiency due to resistance losses. Also, in addition to ambient temperature, humidity and 

radiation are other factors that determine cabin thermal comfort and therefore air conditioner use. 

With a temperature based comparison only, we may miss differences in efficiency between 

humid vs. dry regions that have similar temperature. 



 

 134 

 

Figure B. 13 Cumulative distribution of daily vehicle miles traveled (DVMT) by NHTS vehicle 
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Appendix C. Supplemental Information for Variation of Electric Vehicle Life Cycle 

Greenhouse Gas Reduction Potential across U.S. Counties due to Regional 

Electricity Sources, Driving Patterns, and Climate 

Testing the Importance of Temperature Effect 

We test the effect of temperature on the results by ignoring the temperature dependency 

of the energy (electricity and/or gasoline) consumption and assuming a single constant value per 

drive cycle, which we obtain by using the dynamometer test results at 72oF. In this case, hourly 

dependence of the energy consumption per mile is eliminated. The equations (3) to (5) can be 

removed from the analysis and Equation (6) becomes: 

 𝑐!"#$%!"# = 𝑐!"#!"#$ 𝜙!  (C.1) 

The rest of the analysis remains the same.  

Figure C. 1 shows results in comparison with the base case results. When temperature 

effect is ignored, the degree of comparison between Leaf and Prius emissions changes. Although 

relative comparison does not change, Leaf emissions decreases everywhere. Temperature affects 

the hourly and daily energy consumption of the vehicles. This also leads to changes in charge 

times and durations, shifting the MEFs. In addition, we also show results from simulations of a 

Nissan Leaf with model year 2012. We see that, with an older version of Nissan Leaf, the 

comparison between vehicles  in terms of emissions is much more significant, and Nissan Leaf is 

has higher emissions in most of the US except Texas, Florida , the southwestern US, and urban 

counties of the western US and New England. This shows that, with improvements in battery and 

vehicle technologies, it is possible to diminish the effect of temperature on emissions.  
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Figure C. 1 Leaf emissions-Prius HEV emissions, comparison of the temperature effect 
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Figure C. 2 Leaf versus Prius, Leaf model year 2012  

Testing the Importance of Regional Vehicle Drivng Patterns 

We base our assumptions on vehicle driving patterns (time of driving, driving distance) 

on vehicle driving profiles available in NHTS 2009, data based on household surveys. NHTS 

does not provide the exact location of the households, therefore we do not know what kind of 

driving patterns are representative in each county exactly. However, NHTS provides the state 

where the surveyed household resides, as well as the urbanization level of the location (urban or 

rural). In our base case simulations, we match the driving patterns to counties based on their 

states only, i.e. all counties in the same state have the same vehicle driving patterns. To test the 

importance of this selection, we run another case, where we increase the level of accuracy by 

using both the states and urbanization levels in the matching. With this assumption, all urban (or 

rural) counties in the same state are assumed to be represented by the same driving patterns. We 

therefore include the differences in driving patterns both in regional (state) and urbanization 

level.  

Figure C. 3 shows the results in comparison with the base case. No significant changes are 

depicted.  
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Figure C. 3 Leaf 2013 vs Prius Emissions, testing the importance of regional driving patterns, 

left: state level only; right: both state and urbanization level 

Testing the Importance of Charging Scheme 

In our base case simulations, we assume convenience charging, i.e. charging starts right 

after the last trip of the day. However, customers are usually advised to charge at night, due to 

lower electricity costs [Ref]. To test the effect of the decision on charging scheme, we simulate a 

case where charging starts at midnight for all vehicle profiles simulated.  

Figure C. 4 shows the results in comparison with the base case. With delayed charging, Nissan 

Leaf emissions increase in general. This is due to the fact that, at nighttime, the marginal power 

plants are usually the low cost coal plants, which increases the MEFs at nighttime. This is the 

case for all NERC regions except NPCC, where we actually see an improvement in emissions 

with delayed charging. The results indicate that, although nighttime charging is a more 

economical option for the customer, it results in higher CO2 emissions, with potential 

environmental and health costs. Note that this comparison was made using Nissan Leaf model 

year 2012.  
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Figure C. 4 Leaf 2012 vs Prius emissions comparison, testing the importance of charging 

scheme. Left: convenience charging, right: delayed charging 

Testing the Importance of Drive Cycle 

As explained in the main text, in our base case simulations, we consider the regional differences 

in drive cycles (speed-time patterns) by assigning each county either a city, highway or 

combined driving based on county’s MSA level. To test the importance of drive cycle, we also 

run a case where we neglect the differences MSA levels and consider combined driving only in 

all counties. 

  

Figure C. 5 Leaf vs Prius emissions comparison, testing the importance of drive cycle. Left: 

base case, right: combined driving only 


