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ABSTRACT 

 

The Cloud infrastructure has become an ideal platform for large-scale applications, such as 

Video-on-Demand (VoD). As VoD systems migrate to the Cloud, new challenges emerge. The 

complexity of the Cloud system due to virtualization and resource sharing complicates the Quality 

of Experience (QoE) management. Operational failures in the Cloud can lead to session crashes. 

In addition to the Cloud, there are many other systems involved in the large-scale video streaming. 

These systems include the Content Delivery Networks (CDNs), multiple transit networks, access 

networks, and user devices. Anomalies in any of these systems can affect users’ Quality of 

Experience (QoE). Identifying the anomalous system that causes QoE degradation is challenging 

for VoD providers due to their limited visibility over these systems. 

We propose to apply end user QoE in the management and control of large-scale VoD systems 

in the Cloud. We present a QoE-based management and control systems and validate them in 

production Clouds. QMan, a QoE based Management system for VoD in the Cloud, controls the 

server selection adaptively based on user QoE. QWatch, a scalable monitoring system, detects 

and locates anomalies based on the end-user QoE. QRank, a scalable anomaly identification 

system, identifies the anomalous systems causing QoE anomalies.  

The proposed systems are developed and evaluated in production Clouds (Microsoft Azure, 

Google Cloud and Amazon Web Service). QMan provides 30% more users with QoE above the 

“good” Mean Opinion Score (MOS) than existing server selection systems. QMan discovers 

operational failures by QoE based server monitoring and prevents streaming session crashes. 

QWatch effectively detects and locates QoE anomalies in our extensive experiments in production 
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Clouds. We find numerous false positives and false negatives when system metric based anomaly 

detection methods are used. QRank identifies anomalous systems causing 99.98% of all QoE 

anomalies among transit networks, access networks and user devices. Our extensive experiments 

in production Clouds show that transit networks are the most common bottleneck causing QoE 

anomalies. Cloud provider should identify bottleneck transit networks and determine appropriate 

peering with Internet Service Providers (ISPs) to bypass these bottlenecks. 
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GLOSSARY 

 

1. Cache agent is a management process running in each video server to collect users’ QoE 

and to learn SQS for video servers. 

2. CDN Content Delivery Network is an interconnected system of cache servers 

that use geographical proximity as a criterion to deliver content to users. 

3. Client agent is a management process running in the video player to monitor and report 

user’s QoE at run time. 

4. Chunk is a segment of video file that is delivered in one HTTP range request in 

HTTP based video streaming. Each chunk usually consists of a few 

seconds of video and has its own URL. 

5. Client is the software of video player or the process running in user’s device to 

assist video streaming. 

6. Client group is a group of clients who connect to the same cache agent as their “closest” 

cache agent. The “closest” denotes the shortest in network latencies. 

7. Crash fault are various faults that cause a service stopped. 

8. DASH Dynamic Adaptive bitrate Streaming over HTTP, is an adaptive bitrate 

streaming technique that enables high quality streaming of video content 

over the Internet using HTTP protocol. 

9. IaaS Infrastracture as a Service, is a form of cloud computing that provides 

virtualized computing resources over the Internet. 

10. Multi-tenancy is an architecture in which a single instance of a software application serves 

multiple customers. Each customer is called a tenant. 

11. P2P Peer to Peer, is a distributed application architecture that partition work 

loads among peers. 

12. Peer is a participant in a P2P system, who consumes and supplies resource such 

as processing power, disk storage or network bandwidth. 

13. Progressive download is the transfer of video files from a server to a client using HTTP 

protocol. 
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14. PM Physical Machine is a hardware-based device, such as a rack server. 

15. QoS Quality of Service, is a quantitative measure of overall network 

performance seen by the users. QoS metrics include error rates, bit rate, 

throughput, transmission delay, availability, jitter, etc. 

16. QoE Quality of Experience is a measure of a user’s subjective experience with 

the VoD service. 

17. QMan QoE based Management system for VoD in the Cloud. 

18. QWatch A QoE based monitoring system for VoD in the Cloud. 

19. QRank A QoE anomaly idenfication system for VoD in the Cloud. 

20. QS QoE Score, is our propsed QoE based system performance metric. 

21. Session QoE is the average of all chunks' QoE in a single video steaming session. 

22. SLA Service Level Agreement, is a contract between a service provider and 

service users that defines the level of service expected from the service 

provider. In our context, the service is either a Cloud IaaS service or a VoD 

service. 

23. User is a customer who uses VoD service. 

24. VM Virtual Machine, an emulation of an operating system or application 

environment that is installed on software, which imitates dedicated 

hardware. 

25. VoD  Video on Demand, are services that allow users to select and watch video 

content when they choose to.  

 

 

 

 



VII 

 

TABLE OF CONTENTS 

 

1. Introduction ............................................................................................................................1  

1.1 Background and Motivation ............................................................................................1  

1.2 The architectures of large-scale VoD system ..................................................................1 

1.3 Challenges ........................................................................................................................3  

1.3.1 Complexity of the Cloud ..................................................................................................4 

1.3.2 Various faults and anomalies degrading QoE ..................................................................5 

1.3.3 SLA, monitoring systems and QoE .................................................................................7 

1.3.4 Multiple systems involved in video streaming ................................................................7 

1.4 Contributions....................................................................................................................8  

1.4.1 Using user QoE for VoD Control ....................................................................................8  

1.4.2 QMan: The QoE based adaptive server selection system ................................................9 

1.4.3 QWatch: QoE based monitoring system ........................................................................10 

1.4.4 QRank: QoE anomaly identification system..................................................................10 

1.4.5 Persistent and recurrent QoE anomalies for video streaming in the Cloud ...................11 

2. QoE based Management and Control ................................................................................13 

2.1 Problem Statement .........................................................................................................13  

2.2 Related Work .................................................................................................................14  

2.2.1 Performance Metrics in the Cloud .................................................................................14  

2.2.2 Existing QoE Models .....................................................................................................15  

2.3 Chunk based Quality of Experience (QoE) Model ........................................................16 

2.3.1 Factors impacting QoE in DASH ..................................................................................16 



VIII 

 

2.3.2 QoE Model for Chunk ...................................................................................................17 

2.3.2.1 Linear QoE Model for Chunk ....................................................................................17 

2.3.2.2 Cascading QoE Model for Chunk ..............................................................................18 

2.4 System QoE Score .........................................................................................................18 

2.4.1 QoE based Monitoring ...................................................................................................18 

2.4.2 QoE as a Performance Metric ---- System QoE Score (QS) ..........................................18 

2.4.3 Learning of QoE Score (QS)..........................................................................................19 

2.5 QoE Anomaly ................................................................................................................20 

2.6 Evaluation ......................................................................................................................21  

2.6.1 Evaluation of QoE models .............................................................................................21  

3. QMan: A QoE based Mangement System for VoD in the Cloud ....................................23 

3.1 Introduction ....................................................................................................................23  

3.2 Related Work .................................................................................................................25  

3.2.1 QoE Based Controls .......................................................................................................25  

3.2.2 Server Selection in VoD ................................................................................................26 

3.2.2.1 Studies of client-side server selection schemes .........................................................26 

3.2.2.2 Popular server selection systems ...............................................................................27 

3.3 QMan System.................................................................................................................27 

3.4 Management tasks in QMan ..........................................................................................29 

3.4.1 Location Aware Overlay Network .................................................................................29 

3.4.2 Multi-Candidate Content Discovery (MCCD)...............................................................31 

3.4.3 Candidate Server Table (CST) Maintainance ................................................................33 

3.5 QoE based adaptive server selection ..............................................................................34 



IX 

 

3.5.1 Decentralized paradigm .................................................................................................34  

3.5.2 Distributed paradigm .....................................................................................................36  

3.5.3 QoE based adaptive server selection ..............................................................................37 

3.5.4 QoE based failover control ............................................................................................37  

3.6 System Evaluation .........................................................................................................38 

3.6.1 Experimental Setup ........................................................................................................38  

3.6.2 Study of QoE models in QMan ......................................................................................39 

3.6.3 SQS learning in QMan ...................................................................................................40 

3.6.4 Greedy action vs ɛ-greedy action in adaptive server selection ......................................43 

3.6.5 QMan vs. Other server selection systems ......................................................................44 

3.6.5.1 Comparison Systems ..................................................................................................44 

3.6.5.2 Experimental setting ..................................................................................................45  

3.6.5.3 Experiment in production Cloud environment (Google Cloud) ................................45 

3.6.5.4 Experiment under severe interference .......................................................................46 

3.6.5.5 Experiment under dynamic interference ....................................................................47 

3.6.6 Interference & Failures ..................................................................................................48 

3.6.6.1 Evaluation under various types of interference .........................................................48 

3.6.6.2 Evaluation under failures ...........................................................................................49 

3.6.7 Decentralized vs. Distributed QMan..............................................................................50  

3.7 Scalability Analysis .......................................................................................................53 

3.7.1 Communication cost for QoE based adaptive control ...................................................53 

3.7.1.1 Decentralized QMan ..................................................................................................53  

3.7.1.2 Distributed QMan ......................................................................................................54 



X 

 

3.7.2 Communication cost for management tasks ..................................................................54 

3.7.2.1 Communication cost in MCCD .................................................................................54  

3.7.2.2 Communication cost in CST Maintainance ...............................................................54 

3.8 Summary ........................................................................................................................55  

4. QWatch: A QoE anomaly detection and localization System for VoD in the Cloud .....57 

4.1 Introduction ....................................................................................................................57  

4.2 Related Work .................................................................................................................59  

4.3 System Overview ...........................................................................................................59  

4.3.1 Background ....................................................................................................................59  

4.3.2 System Design ...............................................................................................................61 

4.3.3 Scalability ......................................................................................................................62  

4.4 QoE anomaly detection ..................................................................................................62  

4.5 Topology discovery by traceroute  ................................................................................63 

4.6 QoE anomaly localization ..............................................................................................64 

4.6.1 Prototypes ......................................................................................................................64  

4.6.2 Implementation ..............................................................................................................66  

4.7 Experimental Setup ........................................................................................................68  

4.7.1 Controlled Environment Setup ......................................................................................68  

4.7.2 Production Environment Setup ......................................................................................69  

4.8 Evaluation of QoE anomaly detection ...........................................................................70 

4.8.1 Evaluation in controlled environment ............................................................................70 

4.8.2 Evaluation in production environment ...........................................................................73 

4.9 Evaluation of QoE anomaly localization .......................................................................74 



XI 

 

4.9.1 Evaluation in controlled environment ............................................................................74 

4.9.2 Evaluation in production environment ...........................................................................77 

4.10 Scalability Analysis .......................................................................................................79 

4.11 Summary ........................................................................................................................79  

5. QRank: A QoE anomaly identification System for VoD in the Cloud............................81  

5.1 Introduction ....................................................................................................................81  

5.2 Related Work .................................................................................................................83  

5.2.1 Analysis of QoE degradations .......................................................................................83  

5.2.2 QoE anomaly localization and diagnosis .......................................................................83 

5.2.3 QoE based learning of system performance ..................................................................84 

5.3 Background ....................................................................................................................84  

5.3.1 Root causes of QoE anomalies ......................................................................................84 

5.3.2 Systems incurring QoE anomalies .................................................................................85 

5.4 System overview and design ..........................................................................................87 

5.4.1 System overview ............................................................................................................87 

5.4.2 System design ................................................................................................................88 

5.5 QRank System ...............................................................................................................88  

5.5.1 QoE anomaly detection on cloud agent .........................................................................88 

5.5.2 Detection of anomalous systems ....................................................................................89  

5.5.3 System QoE Score learning ...........................................................................................92  

5.5.4 QoE anomaly identification ...........................................................................................93  

5.6 Evaluation of QRank in Controlled VoD.......................................................................96 

5.6.1 Experiment Setup ...........................................................................................................96 



XII 

 

5.6.2 QoE anomaly injected at server S2 .................................................................................99 

5.6.3 QoE anomaly injected in the Cloud network 1 ............................................................100 

5.6.4 QoE anomaly injected in the transit network T1 ..........................................................101 

5.6.5 QoE anomaly injected in the campus network B .........................................................103 

5.6.6 QoE anomaly injected in a type of devices ..................................................................104 

5.7 Evaluation of QRank for VoD in Azure Cloud ...........................................................106 

5.7.1 QoE anomalies in production Cloud ............................................................................107 

5.7.2 Accuracy of QRank......................................................................................................107 

5.8 Summary ......................................................................................................................108  

6. Insights from Persistent and Recurrent QoE Anomalies for DASH Streaming in the 

Cloud ...........................................................................................................................................111  

6.1 Introduction ..................................................................................................................111  

6.2 Descriptive statistics of QoE anomalies ......................................................................112 

6.2.2 Types of anomalous systems .......................................................................................117 

6.2.3 QoE anomalies identified in access networks ..............................................................118 

6.2.4 QoE anomalies identified in transit networks ..............................................................120 

6.2.5 QoE anomalies identified in devices............................................................................123 

6.3 Root cause analysis for QoE anomalies .......................................................................124 

6.3.1 Root Cause Analysis for Persistent QoE Anomalies ...................................................124 

6.3.1.1 Persistent QoE anomaly identified in access network .............................................125 

6.3.1.2 Persistent QoE anomaly identified in transit network .............................................126 

6.3.2 Root Cause Analysis for Recurrent QoE Anomalies ...................................................128 

6.3.2.1 Recurrent QoE anomaly identified in access network .............................................128 



XIII 

 

6.3.2.2 Recurrent QoE anomaly identified in transit network .............................................129 

6.3.2.3 Recurrent QoE anomaly identified in user devices..................................................130 

6.3.3 Root Cause Analysis for Occasional QoE Anomalies .................................................131 

6.4 Summary ......................................................................................................................132  

7. Conclusions .........................................................................................................................135  

8. Future work ........................................................................................................................137  

References ...................................................................................................................................139 

 





XV 

 

LIST OF FIGURES 

 

Figure 1:  The Evolution of VoD Architectures ............................................................................. 1 

Figure 2:  The Architecture of Commercial VoD System .............................................................. 3 

Figure 3:  The linear QoE model vs. the cascading QoE model in streaming sessions with and 

without freezing .................................................................................................................... 22  

Figure 4:  The agent-based design of QMan ................................................................................. 28  

Figure 5:  Construction of Location Aware Overlay .................................................................... 30  

Figure 6:  Multi-Candidate Content Discovery (MCCD) ............................................................. 32 

Figure 7:  QMan Overview ........................................................................................................... 35  

Figure 8:  The Locations of Clients and Servers in Experimental VoD System .......................... 39 

Figure 9:  The linear QoE model vs. the cascading QoE model in QMan ................................... 40 

Figure 10:  The averaging vs the weighted averaging in SQS learning in QMan ........................ 42 

Figure 11:  The greedy vs the ɛ-greedy actions in adaptive server selection................................ 43 

Figure 12: The CDF of session QoE for experiment in Google Cloud. ....................................... 46 

Figure 13: The CDF of session QoE for experiment under severe interference. .......................... 47 

Figure 14: The CDF of session QoE for experiment under severe interference. .......................... 48 

Figure 15:  SQS for all servers learned on cache agent 10S  .......................................................... 50 

Figure 16:  8S  SQS learned on all cache agents through time. ..................................................... 50 

Figure 17:  Comparison of session QoE between distributed and decentralized QMan .............. 51 

Figure 18:  Comparison of server switches between distributed and decentralized QMan .......... 52 

Figure 19:  Comparison of server switches over time (distributed vs decentralized QMan) ....... 53 

Figure 20:  The delivery chain of a VoD application ................................................................... 57  



XVI 

 

Figure 21:  An example video delivery path from AWS CloudFront to Carnegie Mellon 

University campus network .................................................................................................. 60 

Figure 22:  QWatch design with horizontal scaling...................................................................... 61 

Figure 23:  QoE Anomaly Detection Algorithm (QADA) ........................................................... 63 

Figure 24:  QoE Anomaly Localization Prototypes ...................................................................... 65 

Figure 25:  QoE Anomaly Localization Algorithm (QALA) ....................................................... 67 

Figure 26:  The topology of the controlled VoD .......................................................................... 68  

Figure 27:  The locations of QWatch locators and client agents for experiment in production 

environment .......................................................................................................................... 69  

Figure 28:  Anomalies in measurements vs. QoE anomalies........................................................ 71 

Figure 29:  Anomalies in Cloud CDN measurements vs. QoE anomalies ................................... 73 

Figure 30:  Topology of experimental VoD with entire nodes ..................................................... 74 

Figure 31:  Localization of QoE anomalies at S1 .......................................................................... 75 

Figure 32:  Localization of QoE anomalies at Cloud Network 1 ................................................. 75 

Figure 33:  Localization of QoE anomalies at Campus Network A ............................................. 76 

Figure 34:  Localization of QoE anomalies at client A2 ............................................................... 77 

Figure 35:  QoE anomalies located in different components in production envrionment ............ 78 

Figure 36:  The underlying topology involved in the video streaming from a cache server in 

Microsoft Azure CDN to a user in Carnegie Mellon University .......................................... 86 

Figure 37:  Example of QoE anomaly detection ........................................................................... 89 

Figure 38:  Localization result for an example QoE anomaly ...................................................... 91 

Figure 39:  Suspect systems for the example QoE anomaly ......................................................... 91 

Figure 40:  Network Topology of controlled VoD system ........................................................... 96 



XVII 

 

Figure 41:  Localization of suspect nodes for QoE anomalies injected at S2 ............................... 99 

Figure 42:  Localization of suspect nodes for QoE anomalies injected in Cloud network 1 ...... 101 

Figure 43:  Localization of suspect nodes for QoE anomalies injected in Transit network T1 .. 102 

Figure 44:  Localization of suspect nodes for QoE anomalies injected in campus network B... 104 

Figure 45:  Localization of suspect nodes for QoE anomalies injected on devices running EM-

DASH-ERR video player .................................................................................................... 105  

Figure 46:  Comparison of accuracy of QWatch vs QRank ....................................................... 108 

Figure 47:  The count and the average duration of QoE anomalies per user (Top 10 shown) ... 113 

Figure 48:  The count and the average duration of persistent QoE anomalies per user ............. 114 

Figure 49:  The count and the average duration of recurrent QoE anomalies per user .............. 115 

Figure 50:  The count and the average duration of occasional QoE anomalies per user ............ 116 

Figure 51:  The count and the average duration of QoE anomalies in access networks............. 118 

Figure 52:  The count and the average duration of persistent QoE anomalies in access networks

............................................................................................................................................. 119  

Figure 53:  The count and the average duration of recurrent QoE anomalies in access networks

............................................................................................................................................. 120  

Figure 54:  The count and the average duration of QoE anomalies in transit networks ............. 121 

Figure 55:  The count and the average duration of persistent QoE anomalies in transit networks

............................................................................................................................................. 122  

Figure 56:  The count and the average duration of recurrent QoE anomalies in transit networks

............................................................................................................................................. 123  

Figure 57:  The count and the ave duration of QoE anomalies in various types of devices ....... 124 

Figure 58:  A persistent QoE anomaly identified in access network .......................................... 125 



XVIII 

 

Figure 59:  A persistent QoE anomaly identified in transit network .......................................... 127 

Figure 60:  A reccurent QoE anomaly identified in access network .......................................... 128 

Figure 61:  A reccurent QoE anomaly identified in recurrent network ...................................... 129 

Figure 62:  QoE anomaly identified in device ............................................................................ 131 

Figure 63:  Occasional QoE anomaly identified in various networks ........................................ 131 



XIX 

 

LIST OF TABLES 

 

Table 1: Resource Provisioning & Content Caching in Experimental VoD System .................... 38 

Table 2: The ISP and location information of an IP ..................................................................... 90  

Table 3: QoE scores of suspect systems for the example QoE anomaly ...................................... 93 

Table 4: Video streaming sessions in the controlled VoD ............................................................ 97  

Table 5: QoE scores for suspect systems of QoE anomaly injected at S2 .................................. 100 

Table 6: QoE scores for suspect systems of QoE anomaly injected in the Cloud network 1 ..... 101 

Table 7: QoE scores for suspect systems of QoE anomaly injected in the Transit network T1 .. 102 

Table 8: QoE scores for suspect systems of QoE anomaly injected in the campus network B .. 104 

Table 9: QoE scores for suspect systems of QoE anomaly injected on devices running EM-

DASH-ERR video player .................................................................................................... 106  

Table 10: Number of users with different QoE anomalies ......................................................... 116  

Table 11: QoE anomaly statistics in each anomalous system type ............................................. 117 

 

  



XX 

 

 



1 

 

1. INTRODUCTION 

Equation Chapter 1 Section 1 

1.1 Background and Motivation 

In 2014, 52% of downstream traffic in North America were from popular Video-on-

Demand (VoD) providers including Netflix, YouTube, Amazon Video, and Hulu [1]. VoD is 

expected to become majority of the Internet traffic. More users are expected to subscribe the VoD 

service and they would expect better video streaming experience. The management and control 

system of VoD service should be able to accommodate the continued growth of users and the 

increasing demand in Quality of Experience (QoE).  

1.2 The architectures of large-scale VoD system 

 

Figure 1:  The Evolution of VoD Architectures 
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The architecture of VoD system evolves to support the growing number of users and the 

increasing expectation for user experience as shown in Figure 1. Back in the 1990s, a simple 

server-client architecture was used in early VoD systems. Centralized servers were deployed to 

store videos and provide streaming services. In early 2000s, Peer-to-peer (P2P) architecture was 

proposed and widely used to accommodate huge amount of traffic in VoD service [2][3][4]. In the 

P2P design, the uplink capacity of participating hosts, namely peers, was used to serve other 

clients. This greatly reduced the amount of bandwidth required at streaming servers in large scale. 

In late 2000s, VoD providers started using third party Content Delivery Networks (CDN) to 

provide VoD service [26]. CDN is an interconnected system of cache servers that use geographical 

proximity to deliver the content [5]. VoD users always stream videos from a cache server close to 

them to reduce the network latency in CDN. HTTP based video streaming such as progressive 

download and Dynamic Adaptive Streaming over HTTP (DASH) are widely supported in CDNs. 

Users stream videos via standard HTTP protocol. Lately the Cloud became popular as an 

infrastructure to provide on-demand server utilities to users anywhere anytime [7]. The Cloud 

infrastructure is a promising platform for VoD service because of its elasticity, reliability and cost 

effectiveness [8]. Netflix, as a pionior in using cloud infrastructure, started using Amazon Web 

Service (AWS) since 2010 [6]. However, due to the highly centralized design of Cloud datacenters, 

large-scale VoD systems today still have to rely on both the Cloud and the CDN to provide high 

quality video streaming for millions of users.  

Cloud providers own CDNs as well, such as Microsoft Azure CDN, Amazon CloudFront 

and Google Peering & Content Delivery. As shown in Figure 2, a typical architecture of a 

commercial VoD system consists of servers in the Cloud, the Content Delivery Networks (CDNs), 
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and ISP networks connecting servers in both Cloud and CDN to end users. We use CDN to refer 

to both the third party CDN and the Cloud CDN.  

 

Figure 2:  The Architecture of Commercial VoD System 

1.3 Challenges 

As VoD systems increase in scale and migrate into the Cloud, new challenges arise in the 

management of control of VoD system to provide consistently good Quality of Experience (QoE).  

1. Cloud is complex. The performance of CDN and Virtual Machines (VMs) in the Cloud are 

dynamically changing due to interferences from other VMs on the same Physical Machine 

(PM). In addition, the performance metrics monitored in the Cloud do not adequately reflect 

QoE. Complexity of Cloud makes it difficult to manage user QoE for VoD in the Cloud. 
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2. Various faults and anomalies can further degrade user QoE for VoD in the Cloud. These faults 

include various types of faults in the video servers, the Cloud, the networks and the CDNs and 

user’s device.  

3. Many systems are involved in large-scale VoD. These systems include the Cloud/Content 

Delivery Network (CDN) servers and caches, the Cloud/CDN networks, multiple transit 

networks, access networks, and user devices. Anomalies in any one of these systems can affect 

users’ Quality of Experience (QoE). Different stakeholders manage these systems. VoD 

providers have limited visibility over these systems. 

4. VoD systems have millions to billions of users [21][24]. The management and control of VoD 

system should be able to handle large number of users around the world. 

1.3.1 Complexity of the Cloud 

The Infrastructure as a Service (IaaS) in the Cloud is offered by a virtualized datacenter 

consisting of a cluster of physical machines (PMs) [7]. Each PM hosts multiple virtual machines 

(VMs) possibly belonging to different tenants. The video servers in a VoD system would be 

deployed in one of these VMs. Multiple VMs on the same PM are sharing physical resources such 

as CPU, disk, memory and network interface. Resource sharing may lead to performance 

interference from other VMs [8]. Cloud providers run monitoring system to record performance 

metrics for the resources provisioned to tenants [35]. These performance metrics are used to assist 

tenants to manage their applications. However, these performance metrics cannot be easily 

translated to end user QoE. Not all metrics showing good performance for a Virtual Machine (VM) 

can guarantee good QoE. Tenants in the Cloud have neither control nor visibility of the physical 

machines in the Cloud. 
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The Cloud provides CDN as IaaS with multi-tenancy. All tenants share the same Cloud 

CDN including edge servers and the global networks connecting edge servers. The traffic sent 

from one application impact the bandwith capacity of other applications.  The available cache 

locations and caching schemes in the CDN are usually determined by the Cloud provider [10][19]. 

They greatly affect user QoE in VoD service. However, VoD provider as a Cloud tenant, does not 

have control over these. The Cloud monitoring system usually monitor the CDN using productivity 

metrics, such as load and throughput, but end user QoE can not be represented by these metrics.  

1.3.2 Various faults and anomalies degrading QoE 

Faults come from all components in a VoD system, including video servers in the Cloud, 

the CDNs, the networks connecting servers, and clients. According to the symptoms of the fault, 

we classify faults into two categories: crash faults and performance degrading faults. The most 

common one is the crash fault, which includes various faults that cause service stopped on one 

component. If a fault does not fully stop the service but temporarily disables the service or poorly 

performs the service, we denote the faults as performance degrading faults.  

Provisioning Cloud resources on the fly may cause crash faults that are difficult to identify. 

The crash fault on a video server usually appear to be a server crash or hang. An exception in the 

server running in a VM in the Cloud can result in video server crash. VM crashes due to issues on 

the PM. Attacks exhausting resources in the VM (DoS attack) can also lead to a video server crash.  

Besides, some configuration errors would result in crash faults though the server is still running. 

For example, configuration errors of video file folder in the server can completely fail the service 

when the server is still up.  Firewall configurations may block inbound traffic. However, for a 

server in a production cloud environment, faults rarely be simple “up” or “down”. A server can 
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also have various faults that cause service performance degradation. The server may respond 

slowly when there are memory leaks. The server would be slow in response if VMs running in the 

background exhausting CPU or memory in the PM. The reading of video files can be slow if there 

are disk errors. A server deployed in a PM with a bad network interface card would have low 

network connections. 

The same crash and performance degrading faults occur in edge servers in the CDN. 

Besides, the CDNs usually balance load among multiple edge servers according to their non-

disclosed internal schemes. It has been found that there are errors in the server selection schemes. 

These errors can degrade user QoE [10]. Recent measurement study on YouTube show that 

Google’s CDN server selection scheme negatively impact the QoE of YouTube users at peak-load 

times [11]. Such faults can hardly be detected without knowing the end user QoE.  

Faults in network have been studied for a long time. Common faults in a network includes 

configuration errors and link failures [12]. These faults usually result in network unreachability or 

congestion. When one network is unreachable, all traffic going through the network will be re-

routed. This will result in congestion in other networks. For VoD users, network congestion always 

results in QoE degradation.Network faults are classified as performance degrading faults.  

The software of video player is running in users’ device to download, decompress and play 

videos for users. Various types of faults can occur in clients. We use “client” to denote the software 

of video player or the process running in user’s device to assist video streaming. The “user” 

denotes the customer who watches video in VoD. A common crash fault is a user’s device freezing 

due to CPU/memory exhaustion by some processes. A typical performance degrading fault is that 

the user device have low quality network connection. This would result in slow downloading speed 
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and bad QoE for users. For video players used in commercial VoD system, there are management 

processes running in the video player to assist the control [20].  

1.3.3 SLA, monitoring systems and QoE 

Existing Cloud platforms define service level agreements (SLAs) for different types of 

services. For example, Azure Cloud defines the uptime percentage as an SLA for virtual machines 

[76]. It refunds tenants when the monthly uptime percentage of a VM is below 95%. For Azure 

CDN service, Azure defines the percentage of HTTP transactions without error as its SLA. When 

the percentage of HTTP transactions without error is below 99.9%, it refunds users. These SLAs 

do not guarantee the QoE for users of video applications. 

The monitoring in the Cloud do not reflect user QoE either. According to our experiments, 

server system metrics, such as utilization and throughput of CPU, memory, disk and network 

cannot fully reflect the user experience of VoD in the Cloud. Many other factors in the CDN, cloud 

network, transit networks, and access networks impact user QoE. Commercial CDN services offer 

their own monitoring systems. They log errors in the cache servers that could influence end user 

QoE. Common metrics are the HTTP response time, the cache request status (cache/miss), and the 

HTTP response code. Errors logged in the cache server do not cause all QoE degradations. Some 

QoE issues do not correlate with these errors either. Network systems monitor latencies and 

throughput. These metrics are related to user QoE but do not reflect QoE directly. 

1.3.4 Multiple systems involved in video streaming 

VoD systems deliver videos via many heterogeneous systems including servers, 

Cloud/CDN networks, transit networks, access networks, and user devices. Any of these systems 



8 

 

could have anomalies degrading user QoE. As their objectives vary, maintaining QoE would be 

challenging. For example, YouTube monitors user QoE per ISP as they assume that access ISPs 

to be the most likely capacity bottlenecks for high-definition (HD) video streaming [13]. Studies 

in a large European ISP show that Googles CDN server selection policy might be the cause of QoE 

degradation [11] [17]. VoD providers do not have enough visibility over other systems. The 

Cloud/CDN systems select servers for users. Depending on the selected server, video traffic could 

go through different networks to get to the access network. The Cloud network, multiple transit 

networks and the access network together determine the route to deliver videos. Load balancing in 

these networks further complicates the video routes. Video from the same server could go through 

different routes to the user depending on load balancing policies. Without knowing the underlying 

network topology for a particular video delivery, it is very difficult to find the system that incurs 

QoE anomalies. 

1.4 Contributions 

To addresses the aforementioned challenges, we propose to apply end user QoE in the 

management and control of large-scale VoD systems in the Cloud. 

1.4.1 Using user QoE for VoD Management and Control 

We believe that end-users have the best perception of server performance in terms of their 

QoE rather than the servers themselves. What users perceive incorporate performance of all 

elements, such as network delay and server response time in VoD service. Different from common 

system performance metrics, we develop a performance metric from end user QoE directly, 

referred to as QoE Score (QS) hereafter. Our proposed system collects real-time QoE from clients 
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in the same network that stream videos from the same server. Then the system learns and updates 

the QS for all systems in video streaming. In this regard, we include user QoE in the management 

and control of VoD. 

1.4.2 QMan: The QoE based adaptive server selection system 

We propose QMan, a QoE based Management system for VoD in the Cloud, which 

controls the server selection adaptively based on user QoE at run time. To achieve scalability, 

QMan deploys client agents in video players to monitor real-time QoE and deploys cache agents 

in video servers to monitor the status of servers. In order to improve overall user QoE, QMan 

applies reinforcement-learning techniques in the control of server selection. We implement QMan 

in 2 paradigms, a decentralized paradigm [107] that controls on cache agents and a fully distributed 

paradigm [55] that controls on client agents. We evaluate QMan in an experimental VoD system 

in Google Cloud with hundreds of users emulated in Planetlab. Results show that given the same 

amount of resources, QMan guarantees from 9% to 30% more users having QoE above the Mean 

Opinion Score (MOS) “good” level than existing measurement based server selection systems. 

QMan discovers operational failures by QoE based server monitoring and prevents streaming 

session crashes. By applying reinforcement learning techniques, QMan achieves a tradeoff 

between exploration and exploitation in the control of server selection, which is necessary for the 

highly dynimic Cloud environment. By comparing two paradigms of implementation, we show 

that the decentralized paradigm achieves better overall QoE with less server switches than the fully 

distributed paradigm. Overhead analysis proves that both QMan implementations can be adapted 

to large-scale systems consisting of thousands of servers.  
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1.4.3 QWatch: QoE based monitoring system 

We propose QWatch, a scalable monitoring system for large-scale VoD in the Cloud. 

QWatch detects and locates anomalies using the end-user QoE in real time. We believe the end-

user QoE best reflects VoD system performance. The user satisfaction is the ultimate performance 

measure of any complex systems. Regardless of what traditional performance parameters indicate, 

if the end user QoE is satisfactory, the system is deemed to be operating properly. The end-user 

QoE masks the complexity of understanding proper operation of VoD systems using numerous 

system parameters. In QWatch, the end user devices cooperate and share their QoE and path 

information in order to detect the locate anomalies. We validate QWatch through extensive 

experiments in a controlled VoD system in Microsoft Azure Cloud and Amazon CloudFront CDN. 

Our experiments show that QWatch correctly detects QoE anomalies that cannot be detected using 

various network/system metrics. QWatch also avoids false positives in anomaly detection methods 

based on system metrics. QWatch successfully locates QoE anomalies. We also share several 

insights obtained from running VoD system with 200 geographically separated users in production 

Cloud. 

1.4.4 QRank: QoE anomaly identification system 

We propose QRank, an anomaly identification system that identifies the bottleneck system 

causing QoE anomalies. QRank detects QoE anomalies based on QoEs monitored on users at run 

time. QRank discovers the underlying network topology and all systems involved in video 

streaming by traceroute measurements. We assume that the system with users that experience more 

QoE anomalies or lower QoEs is more likely to be the system causing QoE anomalies. QRank 

identifies the anomalous system by ranking the QoEs in different systems. We validate the 
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effectiveness of QRank through extensive experiments in a controlled VoD. In our experiments, 

we inject QoE anomalies in user device, access network, transit network, cloud network, and server 

to degrade user QoE. QRank correctly identifies the anomalous system in these cases. Existing 

work, QWatch system can only locate anomalies in a wide range of nodes in multiple systems that 

are suspected to cause QoE anomalies. QRank can successfully pinpoint the anomalous system, 

which can be a server, a user device or a network managed by a specific provider at a specific 

location. We run QRank in a production VoD deployed in Azure Cloud with 100 users emulated 

in PlanetLab and 24 users emulated in Azure Cloud. The results show that access, transit networks 

and user devices contribute mostly for QoE degradations. 61.97% of QoE anomalies identify 

access or transit networks as anomaly systems and 38.14% identify the user devices as anomaly 

systems. Cloud networks and servers seldom incur QoE anomalies. 

1.4.5 Persistent and recurrent QoE anomalies for video streaming in the Cloud 

We run QRank in extensive experiments in production Cloud. We find several interesting 

insights about QoE anomalies of video streaming in Cloud environments. 91.4% of QoE anomalies 

are detected on 15.32% of users. These users experience QoE anomalies persistently and 

recurrently. The Cloud servers and networks seldom cause QoE anomalies. More than 99.98% of 

QoE anomalies are identified in anomalous systems including the transit networks, the access 

networks and user devices. We infer that transit networks are the actual bottleneck systems for 

QoE anomalies in production Cloud. More than 95% of persistent and recurrent QoE anomalies 

are identified in less than 10 transit networks. We collect latency measurements to anomalous 

networks and the analysis indicates that the limited capacity in transit networks are the major cause 

of QoE anomalies. Resulting anomalies impair user QoEs persistently or recurrently. In order to 
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provide good user QoE, the Cloud provider should identify transit networks that may become 

bottlenecks for high quality video streaming and appropriate peering with Internet Service 

Providers (ISPs) to bypass these bottlenecks. 
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2. QOE BASED MANAGEMENT AND CONTROL 

Equation Chapter 2 Section 1 

2.1 Problem Statement 

Various performance metrics are monitored in the Cloud, the CDN, the networks and the 

user devices. These metrics barely reflect end user QoE in VoD service. When VoD systems are 

deployed in the Cloud, the video server would be deployed in one of VMs. Multiple VMs on the 

same PM are sharing physical resources such as CPU, disk, memory and network interface. 

Resource sharing may lead to performance interference from other VMs. The impact of 

interference on end user QoE cannot be reflected in performance measurements on one VM. Even 

if there are no other VMs in the physical host, the performance of a particular physical machine in 

the data center could be unpredictable as the tenant has limited or no access to the PM. Various 

faults in the Cloud degrade end user QoE but some of those cannot be detected by resource 

measurements based monitoring. A user request might be sent to a server that has been removed. 

A new server might boot with an outdated cache table and directs the user request to a wrong 

server. Servers may hang due to sudden high workload from background VMs. A system 

administrator could misconfigure content folders. Cloud monitoring systems that monitor the VMs 

via the network probing and server load cannot detect these faults [35]. When a fault occurs, the 

VoD provider may not be able to detect the fault. VM interference in the Cloud and various types 

of faults in the VoD system negatively affects end user QoE. However, they are not reflected in 

server measurements and usually cannot be detected in the Cloud monitoring system.  

There are many other factors in the Cloud, the transit and access networks affecting the 

user QoE. The end-user device also plays a significant role in QoE. The VoD delivery chain 

consists of various application servers, CDN, ISP networks, local networks and user devices 



14 

 

including browsers. An anomaly in any of these components can degrade user experience. Each 

system in the VoD delivery chain only has a partial view of the VoD system. Different entities 

monitor anomalies independently. Thus, they fail to give a full picture of the VoD delivery chain. 

Detection and localization of anomalies are very challenging without a clear view of end-to-end 

VoD delivery chain. 

Low capacity and traffic congestion in access and transit networks degrade the quality of 

streaming videos. Different stakeholders, namely the Cloud provider, the CDN provider, the transit 

ISPs, the access ISPs and the users, manage the systems involved in the video delivery. These 

providers have their own monitoring systems and target different Service Level Agreements 

(SLAs). VoD providers do not have enough visibility over other systems. To identify the 

anomalies, VoD providers need a unified system performance metric that reflects user QoE.  

2.2 Related Work 

2.2.1 Performance Metrics in the Cloud 

Early work [32] on analyzing computer system performance use various types of metrics 

to monitor a system. There are three possible outcomes for each request made to the system: 1) the 

service is performed correctly; 2) incorrectly; and 3) the service is refused. According to these 

outcomes, system performance metrics are classified into three categories called speed, reliability 

and availability. Within the category associated with the outcome of successful service, the system 

performance can further be measured by the time taken to perform the service (responsiveness), 

the rate at which the service is performed (productivity), and the resource consumed while 

performing the service (utilization).  
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In the Cloud and the CDN, all above metrics are either defined in Service Level Agreement 

(SLA) or provided in their monitoring system. Generally, the Cloud providers define “Error Rates” 

for reliability and “Uptime Percentage” for availability [33] . They also propose a SLA on error 

rates and uptime percentage to guarantee tenants (namely application/service providers) a desirable 

Cloud/CDN service performance. However, for application providers, the Cloud/CDN SLA can 

not guarantee application performance for their customers. Recent works on Cloud monitoring 

system provide various types of VM performance metrics to assist the application/service 

mangement [35]. For responsiveness, servers’ response time is monitored and is used to infer the 

application QoS [36][37][38] or to perform fault/anomaly detection [39]. For productivity, the 

server throughput or the server load (i.e. the number of requests served per second) are monitored. 

For utilization, the server is monitored by utilization metrics of all types of resources including 

CPU, memory, I/O, disk and bandwidth. However, neither of above metrics reflects end user QoE. 

2.2.2 Existing QoE Models 

Quality-of-experience (QoE) is a subjective perception of user’s acceptability of an 

application or a service [31]. There have been many works attempting to model QoE by 

quantitative quality-of-service (QoS) metrics. Some works conducted subjective experiments for 

the video streaming under various network impairments. They applied machine learning methods 

or statistical analysis to model the QoE [42]. Other works developed analytical models for QoE 

over a measurable QoS metric, such as freezing time [43] or bitrate [44]. They then used subjective 

experiments to validate their assumptions. As video streaming over HTTP becomes popular and 

standardized these years, most recent works focused on QoE modeling for HTTP based video 

streaming. Ricky et al [49][46] studied how network QoS including network bandwidth, latency 
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and loss rate affect the user QoE in HTTP based video streaming. Work in Bell labs [50] modeled 

per chunk MOS value to estimate QoE for Dynamic Adaptive video streaming over HTTP 

(DASH), however, they only considered the impact of picture quality and ignored possible freezing 

time. 

2.3 Chunk based Quality of Experience (QoE) Model 

Existing QoE models generally consider QoE for a complete video session. Because we 

need a QoE model that can compute user QoE in real time, we model user QoE as a function of 

several time changing QoS metrics. We use DASH streaming through the whole project, so our 

QoE model is proposed for DASH streaming. 

2.3.1 Factors impacting QoE in DASH 

Existing works obtain QoE from various QoS metrics in DASH streaming. These metrics 

include the streaming bitrate [47], the frequency of bitrate switching [48], the freezing time [43], 

and the join time [42]. Our system requires a real-time QoE model, so we ignore the join time 

because it does not change once the streaming starts. The frequency of bitrate switching is only 

determined by the bitrate adaptation logic implemented in the video player [47], so it is not 

considered as the rate adaptation logic is out of our scope. DASH encodes a video in multiple 

bitrates and split each bitrate version into a series of fixed length segments, called Chunks. During 

streaming, the DASH player detects the network throughput in real time and adaptively selects the 

bitrate for every Chunk. We define QoE per each Chunk.  
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2.3.2 QoE Model for Chunk 

A psychology study shows that user perception in video streaming follows a logarithm law 

[44] on the bitrate as shown in equation (2.1), where r  is the bitrate of video streaming and maxr  is 

the maximum possible bitrate for reference. 1 1.3554a   and 2 40a   are empirical parameters 

learned from subjective experiments according to [44]. 
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A human vision study finds that user experience follows a logistic model of freezing time 

[43] as shown in equation (2.2). 
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  in equation (2.2)  is freezing time caused by a single buffering event. 1 6.3484c  , 2 4.4c   and 

3 0.72134c   are parameters learned by subjective experiments in [43]. Both above models follow 

Mean Opinion Score (MOS) standard [40] to value QoE on a scale of 1 to 5 that ranges bad to 

excellent. 

2.3.2.1 Linear QoE Model for Chunk 

We intuitively combine above models on bitrate in equation (2.1) and freezing time in 

equation (2.2) as our Chunk QoE model in equation (2.3). 

        , 1freezing bit rateq r q q r           (2.3) 

Ideally, in DASH streaming, the bitrate lower as much as possible to avoid freezing. There 

would be no freezing until the bit-rate drops to the lowest level.   denotes the ratio of the lowest 
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QoE without freezing over the possible best QoE. We use the linear combination of existing 

models as our Chunk QoE model. 

2.3.2.2 Cascading QoE Model for Chunk 

Linear QoE model combine two factor additively, but the impact of these two factors on 

QoE are multiplicative. We therefore model the QoE as a multiplication of the freezing time model 

and the bitrate model in. 

      1
,

5 freezing bit rateq r q q r      (2.4) 

The coefficient 1
5   is to normalize the QoE value within  0,5  . We later denote this QoE 

model as the cascading QoE model as it cascades the impact of the freezing time on the bitrate 

QoE model. In this dissertation, we only test above QoE models that are combinations of existing 

models. However, other real-time QoE models can be adapted to our system when necessary. 

2.4 System QoE Score 

2.4.1 QoE based Monitoring 

The key idea of our QoE based monitoring system is to learn a server’s SQS in real time 

from QoE of clients in the same network. 

2.4.2 QoE as a Performance Metric ---- System QoE Score (QS) 

We propose a QoE Score (SQS) as a QoE based performance metric to represent the value 

of QoE one system can provide for users using the system. We assume clients connecting using 

the same system are in a client group. They can be using the same server, the same router, the same 
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transit network, the same access network, or the same type of devices. The QS of one system is 

learnt from Chunk QoEs reported from the system’s client group. The QS should always update 

to reflect the latest QoE the system provides. Besides, as the system performance is non-stationary 

due to the changing workload, the varying network condition, and the dynamic background 

interference. Therefore, QS should be able to track non-stationary changes.  

2.4.3 Learning of QoE Score (QS) 

We collect QoE from users in each system. The system can be a server, a router, an access 

network, a transit network, a cloud network or a type of user devices. We assume any systems with 

lower QoE Scores have performance issues. The QoE itself is like the reward of using the system. 

The idea of learning system QoE score is from the reinforcement learning. In the multi-arm bandit 

problem in the reinforcement learning [54], the rewards of choosing a bandit can be used to 

evaluate and predict the expected reward the bandit can give in the future.  

Collected QoE on a particular system in VoD system presents as a series of rewards of 

using the system. The action in our system is the server selection and the total reward gain is the 

total QoE for all clients in the client group. The naive technique to learn QS is the averaging meth-

od that computes the value of an action by the average of all past rewards of the action. In VoD, it 

can be computed by all chunk QoE from users in a system, as shown in (2.5), 
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where  
it

q s   denotes the QoE of a user in system s   at time it  . (2.5) counts the average of 

all QoEs for system s  during time  ,t t  .   denotes the size of the time window to count the 

QoE score. The averaging method is appropriate for a stationary system. 

To track the non-stationary system performance, we use a learning method to weight recent 

rewards more heavily than long-past ones. Specifically, we use an incrementl rule with a constant 

step-size parameter to update Server QoE Score (SQS) as shown in equation(2.6). 

         t t t tQ s Q s q s Q s       (2.6) 

 tQ s  is the system s  ’s QS at time t .  tq s  is a QoE value received from a user in the system 

s  at time t .   is the weight of the latest QoE reward of using s  .  tQ s  denotes the QS of the 

system before t  .  

2.5 QoE Anomaly 

End-user QoE reflects the performance of complete end-to-end systems. Users’ perception 

of QoE reveals anomalies. Let 0q  be the minimum value of QoE that users would accept. Any QoE 

below 0q  would influence users’ decision to continue the VoD service. VoD providers need to 

maintain at least 0q  to retain users . VoD providers often conduct subjective studies to obtain 0q  

for QoE [77]. 

We define QoE anomaly to be any fault or congestion that degrades end user QoE such 

that users’ QoE values to below 0q  . Any possible faults and temporary congestion that do not 

degrade user QoE below 0q   are not considered to be a QoE anomaly.  
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2.6 Evaluation 

We only evaluate the QoE models in this chapter. The QoE scores and the QoE anomalies 

are used in systems described in later chapters. 

2.6.1 Evaluation of QoE models 

We compare QoE models in two streaming sessions. The server’s outbound bandwidth is 

throttled occasionally to varying degrees to incur QoE degradations. The client agent monitors the 

bitrate and the freezing time for each chunk and computes the linear QoE and the cascading QoE 

according to Equation (2.3) and (2.4) in Figure 3. In the linear QoE model, we weight the impact 

of the freezing time and the bitrate equally, i.e.  0.5   . 

In the streaming session shown in Figure 3 (a), the video player switches the chunk bitrate 

to the lowest level at around 7 minutes. The linear QoE evaluates the real-time QoE as “Fair” 

because the impact of bitrate is only weighted as half of the QoE and there is no freez-ing at that 

time. Comparably, the cascading QoE model considers both the impact of the bitrate dropping and 

the freezing, and evaluates the QoE as “Bad” because the bitrate drops. Similarly, in the streaming 

session shown in Figure 3 (b), the server bandwidth is throttled to emulate various length of 

freezing events. At those freezing events that last longer than 10 seconds, the cascading model 

evaluates the QoE as 0, while the linear model evaluates the QoE as “Poor” to “Fair”. The linear 

model cannot fully reflect the QoE degradation if the impact of one factor dominates. In contrast, 

the cascading QoE model can reflect the QoE degradation when either of the factors dominates. 

We expect that the adaptive control using the cascading QoE model is sensitive to both the bitrate 

dropping and the freezing events. 
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Figure 3:  The linear QoE model vs. the cascading QoE model in streaming sessions with 

and without freezing 
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3. QMAN: A QOE BASED MANGEMENT SYSTEM FOR VOD IN THE CLOUD 

3.1 Introduction 

The Cloud infrastructure has become an ideal platform for large-scale applications with 

periods of flash crowds, such as Video-on-Demand (VoD). The Cloud can provide elastic amount 

of resources to meet the dynamic user demand [8]. As VoD systems migrate to the Cloud, new 

challenges emerge for VoD providers to manage user Quality-of-Experience (QoE) [79]. Extra 

complexities due to virtualization, resource sharing and operational failures add to the challenge. 

The Cloud itself is complex. The Infrastructure as a Service (IaaS) in the Cloud is usually 

offered by a virtualized datacenter consisting of a cluster of physical ma-chines (PMs). Each PM 

hosts multiple virtual machines (VMs) possibly belonging to different customers. The video server 

would be deployed in one of these VMs. Multiple VMs on the same PM are sharing physical re-

sources such as CPU, disk, memory and network inter-face. Resource sharing may lead to 

performance interferences. The applications running on other customers’ VMs are not visible to 

the VoD provider. A VoD provider can neither predict its video server performance nor control 

the resource sharing among VMs. Even if there are no other VMs sharing the same physical host, 

the performance of a particular physical host in the data center can still be unpredictable, as the 

VoD provider has limited access to the data center. Existing works study the impact of interference 

by benchmarking the Cloud using CPU/disk/memory/network intensive tasks. However, how the 

Cloud interference affects the QoE of video streaming is unclear and can hardly be quantified [30]. 

Thus, we believe that the best way to understand such impacts is to observe the end-user QoE 

directly. Instead of modeling complex systems in the Cloud, we believe that the dynamics in QoE 

would re-flect the system performances in real time.  
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Provisioning Cloud resources on the fly may cause failures that are difficult to identify. A 

user request might be sent to a server that has been removed. A new server might boot with an 

outdated cache table and direct the user request to a wrong server. Operational failures happen 

often. Servers may hang due to surge in user demand. A system administrator could misconfig-ure 

content folders. Simple monitoring schemes like the network probing and the server load 

monitoring cannot identify these failures [31]. When a failure happens, the VoD provider may not 

know the cause of the failure but users can definitely experience early symptoms. For example, 

before a streaming session crashes, the video player on the user side may undergo several video 

Chunk request timeouts, observe buffer depleting, or experience the video freezing. One can take 

advantage of these early symptoms to prevent streaming crashes by adaptively selecting an 

alternative server for the user. 

We propose QMan, a QoE based management system that 1) monitors individual user QoE; 

2) infers server performance from users’ QoE; 3) adaptively selects servers based on server QoE; 

and 4) effectively responds to various failures according to QoE. To scale beyond millions of users, 

QMan adopts an agent-based design and controls the VoD system adaptively. To monitor end 

users’ QoE, agents are deployed in video players on the client side, referred to as client agents. To 

monitor the operational changes in the VoD system, such as content placement and the resource 

deployment, agents are de-ployed in video servers, referred to as cache agents. Cache agents are 

organized in a location aware overlay network. They communicate with neighbors in the overlay 

to discover videos cached in neighboring servers. For each video discovered, one cache agent can 

obtain the ad-dresses of neighboring servers that cache the video, also referred to as candidate 

servers. QMan implements the control of server selection for all users in two paradigms. A 

decentralized paradigm implements the control on cache agents. A fully distributed paradigm 
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implements the control on client agents.  For evaluation purpose, we test our system in an 

experimental VoD system deployed in Google Cloud with hundreds of users emulated in 

PlanetLab. We also evaluate the robustness of our system under various levels of injected 

interference and failures. Results show that our QMan outperforms existing measurement based 

server selection systems by improving the 90th percentile QoE up to 30% in production Cloud 

environment. By monitoring server performance using QoE, QMan discovers server failures 

timely and prevents session crashes accordingly. We also conduct experiments to emulate highly 

dynamic Cloud environment. Results show that the reinforcement learning used in QMan finds a 

good tradeoff between the exploration and the exploitation in server selection, which is necessary 

when servers’ performance change dynamically. Lastly, we compare two paradigms of QMan im-

plementation and show that the decentralized paradigm achieved better overall QoE with less 

server switches than the fully distributed paradigm. Overhead analysis shows that both 

implementations are scalable. 

3.2 Related Work 

3.2.1 QoE Based Controls 

With the recent advances in QoE modeling, existing work directly use QoE as a feedback 

in the control and management of video streaming system. [48] studies the QoE of the quality 

transitions and propose a QoE-aware rate-adaptation system for DASH streaming. In [47], the 

logarithm law is used to model the user QoE over bitrate. It proposes an optimal caching algorithm 

to maximize users’ QoE in wireless network. A varying QoE served from different servers in CDN 

is studied in [82]. It designs a client-side QoE based server selection algorithm for each client. 
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This method assumes that a special “iBox” device can be deployed in the client’s residential 

network and the device is pre-configured with addresses of servers in CDN. These assumptions 

limit its applicability in production systems as the installations of “iBox” in large-scale would be 

difficult. 

3.2.2 Server Selection in VoD 

The main task of a control system in VoD is to select servers for user requests. Server 

selection schemes are extensively studied for improving user QoE. 

3.2.2.1 Studies of client-side server selection schemes 

Client-side server selection schemes are proposed to control the server selection for 

individual users. Before the DNS based server selection [52] and HTTP redirection [63] were 

widely used, early researches focused on client-side server selection for web and video streaming 

services [62]. The benefit of client-side server selection is that the client can dynamically probe 

servers and can select a server considering both the server load and the network proximity to the 

client himself. In addition, the client-side server selection can achieve a flow-based control in 

video streaming service. It has an advantage when the group of servers is heterogeneous or widely 

dispersed across the network and when users are different in their network conditions and their 

proximities to servers vary. Flow based control can optimize the QoS for a single user and can 

adaptively tolerate faults that only affect an individual user. However, following researches found 

that the client-side server selection requires special software to be deployed in the client side. It 

also involved dynamic probing of multiple servers, which is very costly as the number of servers 

scaled up. Therefore, the DNS based server selection and HTTP redirection are combined to 
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perform server selection in modern content delivery network [52]. In present VoD system, video 

player such as DASH are running in client side. Powerful client-side scripting languages supported 

in browsers have made the client-side based control possible. In addition, clients can rely on their 

own QoE on servers to select servers thus avoiding the costly probing of servers. 

3.2.2.2 Popular server selection systems 

For VoD systems using CDN, DNS based server selection is used as a proximity aware 

server selection scheme [52]. To balance load among servers, various redirection schemes are 

combined with DNS based server selection at a finer level [53]. Such schemes are supposed to be 

effective in improving user QoE because they consider both the network proximity and the server 

load in server selection. Measurement studies in YouTube also reveal that network latency and 

server load are major factors in their server selection scheme [25]. However, recent studies reveal 

that these server selection schemes do not work as well as expected [10]. There remains many 

other factors affecting user QoE. These factors are neither considered completely nor be modeled 

accurately. 

3.3 QMan System 

The main idea of QMan is to use end users’ QoE to control and manage the VoD system 

in the Cloud environment. The management tasks include monitoring user QoE in real time and 

tracking operational changes including content caching and resource provisioning. The control is 

to select servers for each user adaptively. As it is impossible to use a single manager to perform 

all these tasks in a large-scale VoD system, QMan distribute these tasks to agents on video players 

in the clients and cache servers in the Cloud, as shown in Figure 4. Client agents are responsible 
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for monitoring real-time QoE and communicating with their superior agents deployed on the 

“closest” server, also known as cache agents. In the following of this dissertation, “closest” denotes 

the “closest” network distance in terms of latency. Cache agents are responsible for management 

tasks of monitor-ing operational changes. These tasks include 1) discovering multiple neighboring 

servers that cache a requested video, hereafter refered to as Multi-candidate Content Discovery 

(MCCD); 2) maintaining a Candidate Server Table (CST) that records K  neighboring servers for 

popular videos discovered from MCCD; 3) updating the CST of cache agents via sending the 

dynamic changes of the content caching/resource provisioning to neighboring cache agents. In 

order to discover neighboring cache agents, we deploy a centralized tracker in the Cloud to 

organize cache agents in a location aware overlay network. Thus, cache agents communicate with 

neighbors to discover changes in any part of the VoD system. 

 

Figure 4:  The agent-based design of QMan 
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QMan implements the control of server selection in two paradigms, a decentralized 

paradigm and a fully distributed paradigm. The decentralized paradigm controls on cache agents. 

Each cache agent controls the server selection for a group of users close by. The fully distributed 

paradigm controls on client agents. Each client agent only controls the server selection for itself. 

Control tasks include 1) evaluating how servers perform in terms of QoE, later refered to as Server 

QoE Score (SQS); 2) controlling the server selection adaptively according to SQS, namely the 

QoE based Adaptive Server Selection. 

3.4 Management tasks in QMan 

In this section, we explain the management tasks of QMan. These tasks include how the 

centralized tracker organized the location aware overlay network of cache agents; how cache 

agents communicate with each other to discover candidate servers; and how cache agents maintain 

their CSTs. Then, we explain control part of QMan in two paradigms. 

3.4.1 Location Aware Overlay Network 

The centralized tracker connects cache agents on all video servers in an overlay network. 

Operational changes on one video server spread to cache agents on all other servers in the overlay. 

Intuitively, in order to discover videos cached in one video server, the cache agent on the server 

floods its list of cached videos to neighboring cache agents in the overlay. To run the flooding like 

algorithm efficiently, the overlay network should connect cache agents in a way that each agent 

only forwards messages to closest agents with lowest network latencies. We construct such 

location-aware overlay network by the centralized tracker according to the algorithm shown in. It 

builds the overlay network in a tree graph, denoted as G .   1 2, , , MA A A A    are M  cache 
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agents to be connected. The algorithm initializes graph G  with nodes that are two agents with the 

minimum pairwise network latency. The average Round Trip Time (RTT) from ICMP pings 

measures the latency between two nodes. Next, the centralized tracker searches a new node not in  

G  that has the minimum RTT to the closest node in G . The algorithm runs iteratively from line 

4 to line 6 until all nodes are connected to G . The overlay network updates as nodes are provi-

sioned and deleted. When deleting an existing node dA , all child nodes of dA  need to be 

reconnected to nodes that are not in dA  's branch. Though the overlay construction introduces 

ICMP Ping traffic between all pairs of agents, we believe it is acceptable as it is a one-time cost at 

the overlay constructing stage. 

 

Figure 5:  Construction of Location Aware Overlay 

Data:     All cache agents,  1 2, , , MA A A A    
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3.4.2 Multi-Candidate Content Discovery (MCCD) 

Unlike unstructured P2P network, we run the content discovery once at bootstrapping stage 

and maintain the Candidate Server Table (CST) for popular videos in cache agents. We propose a 

distributed Multi-Candidate Content Discovery algorithm (MCCD), to build CST on each agent 

as described in the MCCD algorithm showin in Figure 6. 

For each cache agent iA ,  i tV v V    is the list of videos cached locally in iA  , where 

 | 1, ,tV v t T     denotes all available videos in VoD system. In MCCD, each agent builds its 

own CST at the bootstrapping stage by flooding its locally cached video list to neighbors. The 

agents receiving the list will add the server into their own CSTs and iteratively forward the newly 

added items to their neighbors until each agent's CST is completed. Different from popular 

flooding algorithms where updates are flooded to all nodes in the overlay, the cache agent in 

MCCD stops forwarding messages once K  candidate servers are discovered. We prove in theorem 

1 that the amount of MCCD traffic can be bounded by K  and does not increase as the overlay 

network grows. 
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Figure 6:  Multi-Candidate Content Discovery (MCCD) 

Theorem 1. The total outbound traffic for an agent A  to build ACST  is proportional to 

T K , where T  is the total number of videos and K  is the number of candidate servers. 
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Theorem 1 shows that the outbound traffic sent by one cache agent in MCCD is 

independent of the size of the overlay network. It increases linearly with the number of videos and 

the number of candidate servers. Therefore, it is bounded by K  as the number of popular videos 

is finite. Once the CST on an agent is completed, the cache agent can look up candidate servers 

for a video request and reponds directly. 

3.4.3 Candidate Server Table (CST) Maintainance 

Cache agents need a mechanism to update CST in case there are changes in the content 

placement and the overlay network. We develop following mechanisms to update CST. 

 Video Deletion: When agent A  deletes a video, the agent A  should notify all others who 

denote A  as the candidate server in their CSTs.  A  floods a message “DELETE dv   on A  ” 

to all neighbors. Agent receiving the message checks its CSTs and deletes A   accordingly if   

is a candidate server for dv  in its CST. The agent then forwards the message to its neighbors 

iteratively. 

 Video Addition: Agent  A  caching a new video  nv   does not need to notify all other agents. 

Only agents whose CST has candidate servers further than A   for nv  should be notified, so A  

sends a message “Add A   as candidate for nv  ” to neighbors iteratively and the message stops 

being forwarded at nodes whose CST hold K  candidate servers of nv  that are closer than A  . 

 Cache Agent Leaving: Before performing overlay changes as Algorithm in Figure 5 describes, 

the leaving agent sends out video deletion messages for all its cached videos. 
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 Cache Agent Joining: When an agent joins to the cache agent overlay, the agent adds all its 

cached items to an update message and floods the update message in the updated overlay 

network. 

 Periodic Maintenances: An agent's CST can be corrupted or miss items. In order to maintain 

the agent's CST, each cache agent periodically runs MCCD to fix corrupted CSTs. The period 

can be set to a relatively long period (i.e. several hours or one day). 

3.5 QoE based adaptive server selection 

In QMan, each cache agent maintains a list of servers that cache a particular video. Client 

agents obtain the list of candidate servers from cache agents. QMan implements the QoE based 

adaptive server selection in two paradigms. One controls on cache agents and the other controls 

on client agents. We then explain step-by-step how QMan operates in those two paradigms. 

3.5.1 Decentralized paradigm 

We then explain how QMan operates in the decentralized paradigm. As shown in the right 

part of Figure 7, each cache agent performs the QoE based adaptive server selection for a group of 

users near by. We have a VoD client B  requesting a video iv . B ’s client agent sends a query 

message with the requested video name iv   to its cloest cache agent MS  (Step ○1 ). Upon receiving 

the request query from B , B  looks up its CST and finds candidate servers that cache the requested 

video iv  . Each cache agent maintains a table of server QoE Scores for all servers. The server QS 

represents how a server performs and is learnt by the QoE of end users streaming from the server.  

The computation of server SQS is detailed in Section 2.4.2. B  then looks up the SQS for candidate 

servers, selects kS  according to the QoE based adaptive server selection algorithm denoted as the 
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blue box (detailed in section 3.5.3), and responds to B ’s query (Step ○2 ). Client B  downloads the 

initial segment of the video from  kS   (Step ○3 ). After receiving the initial segment, the video 

player on B  starts playing the video. The client agent gets the the freezing time and the bit-rate of 

the segment, to compute its QoE according to the chunk QoE models (Step ○4 ) (described in 

section 2.3). The client agent B  then reports the QoE to its cache agent MS . When the cache agent 

MS  receives B  ’s QoE, it updates the SQS for kS  according to the SQS learning algorithm 

denoted in the purple box (Step ○5 ),  described in section 2.4.2. Cache agent MS  then looks up its 

latest SQS table and runs the QoE based adaptive server selection algorithm to pick up xS  as the 

new server (Step ○6 ).  Client B   then switches to server xS   and downloads the next segment (Step 

○7 ). The client agent and its cache agent then runs iteratively from ○4  to ○7  for all segments of the 

video in the streaming session.  The segment is sufficiently sized to avoid unstable behavior. 

 

Figure 7:  QMan Overview 
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3.5.2 Distributed paradigm 

In the fully distributed paradigm, QMan controls on client agents. The client agent only 

needs to communicate with its cache agent once to get the list of candidate servers for each video 

request. Then it performs the QoE monitoring, the SQS learning, and the adaptive server selection 

all on itself. The fully distributed implementation does not involve any communications between 

the client agent and the cache agent in the process of server selection. Compared to the 

decentralized paradigm, the distributed paradigm gives more flexibility in the switching servers. 

The client agent can switch servers at any time without any limitation from periodical com-

munications.   However, the SQS of candidate servers can only be learnt from the client’s own 

QoE, which may not be enough to explore all candidate server’s performance in a timely manner. 

The left part of Figure 7 shows the detailed steps of how QMan operates in the distributed 

paradigm. We assume that there is a client A   requesting video iv   to its cache agent on iS   (Step 

○1 ). The cache agent  iS   responds the request with a list of candidate servers  (Step ○2 ). The client 

agent A   then initializes the SQS table for all candidate servers with an default QoE Q  . Then the 

client first randomly chooses a server jS   to download the first segment of the video and computes 

the QoE (Step ○3  to ○4 ). Similarly as the cache agent in the decentralized paradigm, the client 

agent updates the SQS   (Step ○5 ) of server jS   with its own QoE and runs the adaptive server 

selection algorithm (Step ○6 ) to select a new server kS   according to the updated SQS table. Then 

the client starts downloading the next segment (Step ○7 ).  The client agent runs step ○4  to ○7  

iteratively until all segments of the video are downloaded. The smallest segment size in the 

distributed QMan is a video chunk. 
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3.5.3 QoE based adaptive server selection 

The SQS of a server evaluates the QoE that a server can provide when it is selected. In 

order to maximize the QoE of next chunk, the server with the best SQS could be selected as 

denoted in Equation (2.7). 

Greedy action: 

  * arg max t
t s As Q s   (2.7) 

This is the greedy action in reinforcement learning. This method always exploits current 

knowledge to maximize immediate reward. It spends no time at exploring servers with poor QoE 

in the past, so it cannot be aware of the performance recovery of servers.  

An alternative is to behave greedily most of time but explore other servers once in a while 

with small probability ɛ, which is known as ɛ-greedy action described in (2.8). s   is randomly 

chosen from all candidate servers. p  is a random number in  0,1 . 

ɛ-greedy action: 

 
 arg max t

s A
t

Q s p
s

s p




 
   

  (2.8) 

3.5.4 QoE based failover control 

Failures can happen in various components of the VoD system. Some failures are hard to 

detect and identify. Administrators can accidentally delete videos. Video server can hang due to 

software errors. A virtual machine in the Cloud can terminate due to physical machine failures. 

From the user’s perspective, all these failures end up with a chunk request timeout or a HTTP 

request error. We designate these errors perceived by the user as unacceptable QoE (   0q s  ). 
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When the cache agent receives    0q s  , it sets   0Q s  . The agent then selects another server. 

The client then resends the chunk request to the newly selected server to prevent the streaming 

session crash. When the cache agent itself fails, then we rely on DNS to connect to a new cache 

agent. 

3.6 System Evaluation 

3.6.1 Experimental Setup 

We deploy cache agents and client agents in an experimental VoD system, which runs 12 

video servers in 10 datacenters in Google Cloud [81] and emulates near 300 users in PlanetLab. 

PlanetLab [80] is a global research Cloud with hundreds of servers around the world. We deploy 

client agents in 284 PlanetLab nodes to emulate VoD clients. “f1-micro” instances are provisioned 

in Google Cloud to serve as video servers. The servers are provisioned according to the number of 

users shown in Table 1. The locations of clients and video servers are shown in Figure 8. To 

emulate a large number of videos, we rename the same video clip (ten-minute video) as 1000 

distinct videos. The videos are encoded in 9 levels of bitrates for DASH streaming, varying from 

300 kbps to 10 Mbps. We assume the popularity of these videos follow Zipf distribution [58]. A 

user demand based caching method is used to cache videos, so videos would be cached in more 

servers as more users request them. The least popular video is guaranteed to be cached in at least 

3 servers.  The following experiments all run in this VoD platform, yet the detailed setup may vary 

according to the purpose of evaluation. 

Table 1: Resource Provisioning & Content Caching in Experimental VoD System 

Regions asia-east1 europe-west1 us-central1 
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Zones a b c b c d a b c d 

# of clients 42 123 132 

# of servers 1S   2S   3S   4S   5S   6S   7S   8S   9S   10S   11S   12S   

# of servers 1 0 1 2 2 1 1 2 1 1 

# of videos 307 346 326 332 331 344 324 313 333 337 

 

Figure 8:  The Locations of Clients and Servers in Experimental VoD System 

3.6.2 Study of QoE models in QMan 

In order to show how QoE models impact our server selection system, we then deploy two 

clients in the same zone of Google Cloud. Both clients run adaptive server selection in the same 

fashion but use different QoE models. They request the same video from server A   and adaptively 

select servers among the same candidate servers: A  , B  , C , which are deployed in the same zone 

of Google Cloud. To emulate QoE issues, we throttle the outbound bandwidth of A  to 2Mbps in 

the middle of the streaming session and study how clients adapt to the issue. Figure 9 plots the 

candidate servers’ SQS learned by two clients running the linear and the cascading QoE models, 
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repectively. We find that both clients change servers when the SQS of A  drops below other 

candidates’ SQS. This example shows that our QoE based server selection is operated via 

comparing the SQS among candidate servers. Only the relative SQS value matters and QoE models 

have little impact on the server selection logic.  Our agents always optimize the predefined QoE 

value. Readers can apply their own QoE models in our agents to optimize corresponding factors 

at their own discretion. 

 

Figure 9:  The linear QoE model vs. the cascading QoE model in QMan 

3.6.3 SQS learning in QMan 

In QMan, we use commonly used methods to learn SQS for candidate servers. One is the 

averaging method that use the average of all QoE on a server as its SQS. The other is the weighted 

averaging method that always assign higher weights to more recent QoEs. In order to show how 

the above two methods learn the SQS over time, we test clients running both SQS learning methods 
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on three candidate servers. We compare the SQS learning methods in two cases. First, we emulate 

a stationary scenario where the performance of candidate servers remains constant over time. 

Second, we emulate a non-stationary scenario where the server performance changes during the 

streaming. Candidate servers’ outbound bandwidth are throttled differently as if these servers’ 

performance vary. In the non-stationary scenario, we randomly change two servers’ outbound 

bandwidth in the middle of testing. In both cases, the clients use the cascading QoE model and 

select servers using greedy action. We run all testing clients and their candidate servers in the same 

datacenter in Google Cloud to exclude the impact of Internet condition.  

 

(a) Stationary Scenario. A: 2Mbps; B: 4Mbps; C: 1Mbps 
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(b) Non-stationary scenario. Intial: A: 2Mbps; B: 4Mbps; C: 1Mbps.  
After change: A: 2Mbps; B: 1Mbps; C: 4Mbps 

Figure 10:  The averaging vs the weighted averaging in SQS learning in QMan 

 

Figure 10 (a) compares how each agent learns SQS of candidate servers. The averaging 

SQS learning agent only explores candiate servers several times and then stays with server B  for 

the complete streaming session. In the averaging method, the first observed QoE is important. 

Because if the first QoE value is bad, the agent will not choose the server any more. In the weighted 

averaging method, the SQS of all three servers are initialized as the best QoE level and the agent 

then update SQS with recent QoEs. Because the weighted averaging method change SQS 

gradually, the agent needs to explore servers with more times to make SQS converge. In the non-

stationary case shown in Figure 10 (b), we can see that if the server performance change in the 

middle of the streaming session, the weighted averaging method can weigh recent QoE higher to 

track the changes. However, the averaging method weigh each QoE observation equally, so the 

recent QoEs do not change the SQS much. With greedy action, the averaging agent cannot even 
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select other servers to obtain better QoEs so the non-stationary changes in servers not being 

selected can never be discovered. 

3.6.4 Greedy action vs ɛ-greedy action in adaptive server selection 

As we noticed in the above experiments, the greedy action client always stays with the 

server with good SQS. Because the agent does not select the server with bad SQS again, the agent 

has no chance to learn if the server reverts to good performance later. The ɛ-greedy action can give 

small randomness in the action of server selection. In Figure 11, we compare the greedy action 

and ɛ-greedy action clients in a non-stationary scenario. Both the clients run the weighted 

averaging method for SQS learning. In the middle of the streaming session, we increase server C’s 

outbound bandwidth as if its per-formance recovers. At that time, both clients already learn that C 

has the worst SQS. The greedy client does not select C anymore even after C’s performance 

recovers. However, the ɛ-greedy client later randomly tries C and finds that C provides the best 

QoE, so the ɛ-greedy clients is able to switch to C after its performance recovers. 

 

Figure 11:  The greedy vs the ɛ-greedy actions in adaptive server selection 
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From the above comparison, we note that the weighted averaging method is effective in 

tracking non-stationary server performance and the ɛ-greedy action can provide some randomness 

to explore the perfor-mance changes in servers.  Both are necessary for servers in the Cloud as 

their performance change dynamically. 

3.6.5 QMan vs. Other server selection systems 

3.6.5.1 Comparison Systems 

We implement the following server selection schemes for comparison purpose. 

 HOP: Each request is redirected to the server with the minimum hop number among servers 

with the requested video. 

 LOAD: Each request is redirected to the server with the minimum load among servers with the 

requested video. 

 RTT: Each request is redirected to the server with the minimum RTT among servers with the 

requested video.  

 RAND: Each request is redirected to a randomly selected server from servers with the 

requested video. 

 QoE: Decentralized QMan system. We use the cascading QoE model. We apply the weighted 

averaging method in SQS learning with 0.1  . The greedy action is used for QoE based 

adaptive server selection. The cache agent selects servers for each user every 30 seconds. 

In all existing systems, the client selects server only once at the beginning of a video streaming 

session.  Theses systems represent server selection algorithms widely used in CDN [52]. In RTT 

and LOAD methods, each server periodically probes all other servers every 5 minutes. Smaller 
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probing period would incur large amount of probing traffic as the number of server increases. After 

redirection, the client remains with the selected server for the whole video session. 

3.6.5.2 Experimental setting 

We set up three scenarios to show the system performance under various levels of interference. 

First, we evaluate our QMan in a real production Cloud environment, namely in the Google Cloud 

without any additional stress on resources. Second, we evaluate QMan under severe interference. 

Because we do not have controls over the physical machines in Google Cloud, we emulated the 

severe interference as background traffic spike by throttling the outbound bandwidth to 4Mbps on 

two randomly selected servers. Third, we evaluate our system under dynamic interference by 

periodically throttling the outbound bandwidth to 4Mbps every other minute on two randomly 

selected servers. We let 284 PlanetLab nodes streaming videos at the same time as if they are 

watching online videos during a testing period of 10 minutes. 

3.6.5.3 Experiment in production Cloud environment (Google Cloud) 

Figure 12 shows the cumulative distribution of all users’ session QoE in a real production 

cloud environment. The session QoE is the average QoE of all Chunks in a single video streaming 

session. The results show that our QoE method gets the best session QoE for most users. We have 

over 76% users with above QoE value 3 (3 in MOS corresponds to the user satisfaction level 

“fair”). The RTT has 73% and the HOP has only 49%. We have over 47% of users with above 

QoE level “good” (QoE value 4). The RTT has 38% and the HOP has only 17%. Our system has 

9% and 30% more users with session QoE above “good” level than the RTT and the HOP 

respectively. It shows that, given the same amount of resources, “good” level QoE can be obtained 

for more users in our system. Our system has the 90th percentile QoE as 2.5708. The 90th 
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percentile QoE are 2.2393, 2.4187, 1.4445, 2.0423 for LOAD, RTT, HOP, and RANDOM 

respectively. Our system performs 6.29% better than the RTT. The poor performance of LOAD 

shows that the QoE degradation is not caused by the server overload but other factors .The HOP 

method is designed to select the closest server for users in terms of the network distance. However, 

it has the worst performance in Figure 12. We tested the same experiment in Google Cloud 

multiple times at different hours. The performance of the HOP varies a lot. We suspect that it is 

due to dynamic interference in Google Cloud or varying network conditions. The results show that 

our system always selects servers that serve better QoE without having to identify causes of 

performance degradation. 

 
Figure 12: The CDF of session QoE for experiment in Google Cloud. 

3.6.5.4 Experiment under severe interference 

Figure 13 shows that the QoE method has significant advantages over other methods for 

those clients affected by the severe interference. We observe that around 10% to 20% users receive 

session QoE below 1 when using server measurements for server selection. These clients suffer 
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more from freezing events and are apparently impacted by the emulated interference on servers. 

Our results imply that the measuments (including load, network latency and hops) on servers with 

interference may not change much, so the clients choose to stay with those servers and their QoE 

degrade accordingly. In the real-world systems, issues similar to our emulated interference can 

affect user QoE but may not be reflected in any server measurements, thus the measurement based 

server selection would always fail in these cases. In contrast, QMan learns server performance 

from user QoE directly and adaptively selects servers providing good QoE, thus it can go around 

the challenges of selecting a measurement that correlates with QoE. 

 

Figure 13: The CDF of session QoE for experiment under severe interference. 

3.6.5.5 Experiment under dynamic interference 

Figure 14 shows the QoE method has an absolute advantage over the RTT in providing 

users with better QoE. The RTT performs the worst. The RTT method probes servers every 5 

minutes but the interference appears every other minute, so it misses the interferences. Periodic 

probing fails to capture the dynamic changes of background interference. 
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Figure 14: The CDF of session QoE for experiment under severe interference. 
 

3.6.6 Interference & Failures 

3.6.6.1 Evaluation under various types of interference 

We also test our system under various types of interference in CPU, I/O, and memory. We 

emulate these interferences by stressing corresponding resources on two randomly selected 

servers. Our system outperforms other methods similarly. With regard to different types of 

interference, there is a slight difference on how much the interference impacts user QoE. I/O and 

bandwidth interference seem to have higher QoE impact than CPU and memory. Extensive 

experimental results show that our system can manage QoE better. There are more users obtaining 

QoE above a pre-defined level and better QoE guarantees. 
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3.6.6.2 Evaluation under failures 

We study how our SQS reacts to two types of crash faults on servers in the Cloud. The first 

one emulates an unresponsive video server on a working VM due to various software errors and 

bursty user demand. This fault leads a server to hang or crash. The second one emulates an 

unresponsive VM. This is caused by PM to hang or crash due to various failures in other coexisting 

VMs. 

In Figure 15 and Figure 16, we show an example on how our system reacts to the 

unresponsive server fault on a working VM. To emulate the fault, we stop the HTTP service on 8S  

and stop the VM of 3S  in the middle of the streaming. Figure 15 shows the SQS of all servers 

learned on cache agent 10S . It shows that at time 0:15, the SQS of 8S  dropped to 0 and at time 

0:30, the SQS of 3S  dropped to 0. Cache agent 10S  successfully detected the server crash faults. 

Figure 16 shows the SQS curves of server 8S  learned from all cache agents through time. These 

SQS curves show that at time 0:15, the SQS of 8S  dropped to 0 on all cache agents. It shows that 

all cache agents have successfully detected crash fault on 8S  right after 0:15. 
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Figure 15:  SQS for all servers learned on cache agent 10S  

 

Figure 16:  8S  SQS learned on all cache agents through time. 

3.6.7 Decentralized vs. Distributed QMan 

As explained earlier, in the decentralized implementation, the cache agent can obtain QoE 

from many clients to learn the SQSs. In the distributed implementation, the client agent learns 

SQSs of candidate servers from its own QoE. At a certain time, the cache agent can collect QoE 

data from multiple users on different candidate servers so it learns the SQS of multiple servers at 

the same time. However, the decentralized paradigm assumes that all clients in its group have 

similar QoE on the same server. This assumption may not always hold when clients sharing the 

same closest cache agent connect to the server through different networks. As a result, the cache 

agent may select a wrong server for a client.  

We then run the RTT based server selection, the decentralized QMan and the distributed 

QMan in our experiment VoD systems. Around 200 planetlab clients are tested in each run. The 

cascading QoE model, the weighted averaging SQS learning and the greedy action of server 
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selection are used in all runs. We stress the outbound capacity of two servers in the experimental 

system as if there are severe interference on those servers. We draw the cumulative distribution of 

user session QoE as shown in Figure 17.  

 

Figure 17:  Comparison of session QoE between distributed and decentralized QMan 

In RTT based system, we can see that almost 20% of users are heavily impacted by the 

server interference and they have low QoE ( 0.12  ) all the time. QMan systems have greatly 

improved the QoE for those users. If we look at the 90th percentile QoE, our distributed QMan 

can guarantee 90% of users having QoE greater than 0.86 and the decentralized QMan can 

guarantee their QoE greater than 1.57. Compared to the decentralized QMan, the distributed QMan 

only has its own QoE data to learn SQS so it would take longer time for the agent to explore the 

performance of servers. During the exploration period, the agent switches servers often to learn 
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how each candidate servers perform. We infer that the long exploration period in the distributed 

QMan lead to less optimal server selections.  

 

Figure 18:  Comparison of server switches between distributed and decentralized QMan 

We draw the cumulative distribution of server switches for all clients in Figure 18. It shows 

that the server selection changes more frequently in the distributed paradigm than in the decen-

tralized paradigm. We pick up two clients at the same location that run the distributed QMan and 

the decentralized QMan respectively. We plot their QoE and server switches in Figure 19. It shows 

that the decentralized QMan only switches servers when QoE drops. The distributed QMan 

changes servers frequently in the beginning to explore candidate servers. The exploration period 

lasts up to 3 minutes. As in our experiment the testing videos are clipped in 10 minutes, the 3-

minute exploration period can degrade user QoE severely. Meanwhile, we also note that in Figure 
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17, the decentralized QMan obtains better session QoE at almost all percentiles than the distributed 

QMan. It shows that our assumption about decentralizd QMan suffices for most testing clients. 

 

Figure 19:  Comparison of server switches over time (distributed vs decentralized QMan) 

3.7 Scalability Analysis 

3.7.1 Communication cost for QoE based adaptive control 

3.7.1.1 Decentralized QMan 

In the experimental VoD system running QMan, there are 284N   clients connecting to  

12M   cache agents to report their Chunk QoE periodically. On average, each cache agent 

receives N
M   messages per period. Considering the value N cM   as a constant, the resource 

is provisioned according to the user demand. The average number of QoE update messages sent 

to each cache agent is determined by c  , i.e., the average number of clients served per server. 
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3.7.1.2 Distributed QMan 

In the distributed QMan, the client agent only queries the cache agent once to obtain a list 

of candidate servers at the beginning of the streaming session. The message size is fixed and is 

determined by the number of candidate servers configured. 

3.7.2 Communication cost for management tasks 

In QMan, cache agents run the MCCD algorithm to discover candidate servers and 

maintain CST updates according to dynamic operthational changes. There is communication cost 

involved in such management tasks. 

3.7.2.1 Communication cost in MCCD 

For MCCD algorithm, we have proved in Theorem 1 that the total outbound traffic to create 

a CST on each cache agent is proportional to  K T  , where K   is a constant number of candidate 

servers to be chosen. The traffic is linearly increasing with the number of videos T . Considering 

that the MCCD only runs once at bootstrapping stage, we believe it is acceptable.  

3.7.2.2 Communication cost in CST Maintainance 

To maintain the CST on each cache agent, QMan considers both the agent joining/leaving 

and the video adding/deleting. For agent joining/leaving, one agent needs to notify all other agents 

to add/delete about its cached video items. It generates at most M  messages in the whole system.   

M  is the total number of cache agents. However, because each agent only forwards the message 

to its neighbors in the overlay network, the per-agent communication is bounded by the maximum 

node degree in the overlay graph G  . Similarly, for the video addition/deletion, our algorithm only 

notifies the agent’s neighbors and the message is forwarded in the overlay network. 
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3.8 Summary 

We propose QMan, a QoE based Management system for VoD in the Cloud. We run QMan 

in an experimental VoD system deployed in Google Cloud. From extensive evaluations with 

hundreds of users emulated around the world, we show that by using QoE as a principle to select 

servers, overall user QoE can improved over common measurement based server selection. The 

improvement of QoE management lies in the following aspects. First, QMan provides 9% to 30% 

more users with QoE above the MOS “Good” level than the existing measurement based server 

selection systems. Second, for users who are impacted by dynamic and severe interference in the 

Cloud, QMan can improve the QoE from the “bad” to “fair” in MOS level. Third, QMan discovers 

operational failures by QoE based server monitoring and prevents streaming session crashes. 

Evaluations also show that the reinforcement learning used in QMan achieves a tradeoff between 

exploration and exploitation in the server selection. The exploration and exploitation are both 

necessary in the highly dynimic Cloud environment. By comparing two QMan implementation, 

we show that the decentralized QMan achieves better overall QoE with less server switches than 

the fully distributed paradigm. Though the decentralized QMan may introduce more 

communication cost, we also prove that the per-agent cost is acceptable and the system can adapt 

to large-scale systems consisting of thousands of servers.   
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4. QWATCH: A QOE ANOMALY DETECTION AND LOCALIZATION SYSTEM 

FOR VOD IN THE CLOUD 

4.1 Introduction 

Video on Demand (VoD) systems are complex. VoD providers, such as Netflix and Hulu, 

rely heavily on third-party systems including Cloud providers and Content Delivery Networks 

(CDNs) [26]. CDN, such as Akamai [83], Level 3 Communications and Limelight Networks, 

provide the content delivery [84]. Cloud providers, such as Microsoft [86] and Amazon [87], 

manage and provision resource for VoD systems. As there are multiple entities involved in the 

end-to-end video delivery, it is quite challenging to detect and locate performance problems. 

 

Figure 20:  The delivery chain of a VoD application 
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In Cloud, anomalies arise when Service Level Agreements (SLAs), such as virtual machine 

(VM) uptime and availability, are violated. We find that Cloud SLA violations sometimes do not 

influence user QoE. SLA is not sufficient to ensure QoE. System metrics, such as CPU speed, 

CPU/disk utilizations, disk/memory throughput and network throughput do not fully reflect the 

user experience of video streaming in the Cloud. There are many other factors in Cloud including 

transit and client networks affecting the user QoE. The end-user device also plays a significant 

role in QoE. 

Figure 20 shows all components in the VoD delivery chain. Any anomaly in any one of 

these components can degrade user experience. Each system in the VoD delivery chain only has a 

partial view of the VoD system. Different entities monitor anomalies independently. Thus, they 

fail to give a full picture of the VoD delivery chain. Detection and localization of anomalies are 

very challenging without a clear view of end-to-end VoD delivery chain.  

We propose QWatch, a scalable framework, which detects and locates anomalies based on 

the end-user QoE in real time. The end-user QoE clearly gives meaningful performance of VoD 

systems. We assume that the user satisfaction is the ultimate performance measure of any complex 

systems. Regardless of what traditional performance parameters indicate, if the end user QoE is 

satisfactory, the system is deemed to be operating properly. The end-user QoE masks the 

complexity of understanding numerous system parameters in various entities in the VoD delivery 

chain. In QWatch, the end user devices cooperate and share their QoE and path information to 

detect the location of anomalies or narrow down the areas of possible problems. 

We validate QWatch through extensive experiments in a controlled VoD system in 

production Cloud (Microsoft Azure [86]) and CDN (Amazon CloudFront [87]). Our experiments 

show that QWatch correctly detects QoE anomalies that cannot be detected using various 
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network/system metrics. QWatch also avoids false positives in anomaly detection methods based 

on system metrics. QWatch successfully locates QoE anomalies. We also share several insights 

obtained from running VoD system with 200 geographically separated users in production Cloud. 

4.2 Related Work 

Earlier works of anomaly detection in VoD services use different system parameters to 

infer QoE issues. Ajay et al [92] collect various system metrics in a large IPTV network and apply 

supervised learning algorithm to learn how anomalies detected in these metrics are related to 

customer call records. In Cloud and CDN, studies focus on detecting anomalies [30][15][10] based 

on critical network/server metrics. These metrics are believed to impact end-user QoE. They tend 

to have many false positives and false negatives. The selection of these metrics is difficult in end-

to-end video delivery with many different entities. End-user QoS metric is also used to detect 

anomaly in [14]. Its detection requires off line computation. There are several works on 

identifying, locating and diagnosing QoE issues. Junchen et al analyze end-user data by 

unsupervised learning to find the root cause of QoE problems [14]. Giorgos et al diagnose QoE 

issues by supervised learning on various network and system metrics from different vantage points 

[93]. There are also commercial data analysis programs that statistically infer possible root causes 

of QoE issues (YouTube) [65][17]. 

4.3 System Overview 

4.3.1 Background 

VoD systems mainly use third-party CDNs for the content caching and content delivery. 

CDNs cache popular videos in their edge servers distributed in different geographical locations. 
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Video contents are delivered to users from the closest edge server. CDN could reduce network 

latencies from servers to users to improve end user QoE. 

 

Figure 21:  An example video delivery path from AWS CloudFront to Carnegie Mellon 

University campus network 

Figure 21 illustrates CDN operations. We use a device in Carnegie Mellon University 

network to stream a video from a VoD website cached in Amazon CloudFront [87]. The video in 

the CDN goes through several networks. These networks are managed by the Cloud/CDN provider 

and multiple transit Internet Service Providers (ISPs) and a local ISP. Anomalies can occur in any 

part of this delivery path shown in Figure 2. In this particular experiment, there are five ISPs 

involved in the end-to-end video delivery path. When the user experiences a poor QoE, it would 

be very difficult to locate the problem, as there is no viable way to access information from these 

independent entities in the path. 
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4.3.2 System Design 

QWatch deploys an agent in the video player of the client, referred to as client agent. It 

evaluates user QoE in real-time. We determine that the VoD has an anomaly when the user QoE 

drops below pre-determined QoE value 0q . 

 

Figure 22:  QWatch design with horizontal scaling 

When an anomaly is detected, locating the source of anomaly can be challenging, as there 

are multiple entities involved in the end-to-end video delivery. QWatch reconstructs the underlying 

network topology using traceroute from users to their CDNs. QWatch then correlates multiple 

users’ QoEs with their network paths to locate the source of QoE anomalies. Correlating QoE data 

from multiple users allows us to infer normal operating nodes and abnormal nodes. If a user has 

an acceptable QoE, we assume that all nodes in its video delivery path are functioning properly. If 

any of these nodes intersect with other video delivery paths, they are excluded from the possible 

set of anomalous nodes. We develop locator agent to collect traceroute data from users 
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periodically. The locator agent also collects the end-user QoEs from client agents in real time for 

the localization of QoE anomalies. Figure 22 illustrates the operation of QWatch. 

4.3.3 Scalability 

The commercial Cloud allows us to scale QWatch to accommodate the increasing number 

of users in the VoD system. QWatch clusters users by regions in the Cloud and applies horizontal 

scaling for locator agents within each Cloud region. Specifically, DNS based load balancing is 

used to direct users to locator agents in the closest Cloud region. The commercial Clouds, such as 

Google Cloud, Amazon Web Service [85] and Microsoft Azure [86], provide DNS load balancing 

services. Within a Cloud region, QWatch provisions one locator agent for   clients. For   clients,   

locator agents are provisioned in one Cloud region. Within a Cloud region, simple load balancing 

mechanisms [88][89] in commercial Clouds can be configured to schedule localization requests 

among locator agents. The topology is maintained in a database that are shared among all locator 

agents in one region. 

4.4 QoE anomaly detection 

The client agent runs the QoE anomaly detection algorithm (QADA) as shown in . The 

client agent traces its path to the video server and reports to its locator agent. For each video chunk, 

the client agent evaluates the chunk QoE  q i   and compares with 0q  . If the chunk QoE is greater 

than 0q  , there is no QoE anomaly. The client agent then reports acceptable QoE to its locator 

agent periodically. If the chunk QoE  q i   is lower than 0q  , QoE anomaly is detected and the 

client agent sends unacceptable QoE update to the locator agent immediately. The client agent runs 

QADA until the streaming session ends. 
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Figure 23:  QoE Anomaly Detection Algorithm (QADA) 

4.5 Topology discovery by traceroute  

A locator agent receives the route data from client agents and constructs the network 

topology for the video sessions on those clients. Client agents in QWatch probe their video servers 

Data:      Reporting period T   
 Video chunk length: 0T   

 Minimum acceptable QoE: 0q    

 Current client agent: C   
1: Connect to the closest locator kL  by domain name  

2: Get the DASH description file (MPD) from a CDN host by URL 
3:  Obtain the cache server address S  from the MPD file response 
4: Probe S  by traceroute  and report the route  ,R C S  to the locator kL  .  

5: The reporting period in the number of chunks: 0TN T T   

6: while video streaming not ends do 
7:  Download chunk i    
8:  Compute the QoE for current chunk  q i     

9:  Obtain current server iS  from the chunk response 

10:  if iS S  then 

11:   Get the route to the current server:  ,i iR C S   

12: Report the route iR  to the locator kL   

13:   end 
14: Get the receiving time of current chunk it   

15:  if   0q i q  then 

16:   Acceptable QoE status: iQ True        

17: if  0i   and    mod  0Ti N   then 

18:  Report update:  , ,i i iU t Q R  to the locator kL   

19: end 
20: else 
21:  Unacceptable QoE status: iQ False     

22:   Report update:  , ,i i iU t Q R  to the locator kL   

23: end 
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at the start of each video streaming session and at the time when they change servers. Client agents 

report traceroute  data to their locator agents. Clients in the same geographical region could 

possibly stream from the same video server. We use traceroute data from client agents to construct 

a server rooted tree graph for the underlying topology. If one client streams videos from multiple 

servers, then the locator constructs a client-rooted tree graph from traceroute  to multiple video 

servers. Upon receiving a route data, the locator agent updates the regional topology accordingly. 

Route data do not reveal all routers along the path when the router disables the ICMP echo replies. 

Some routers return private IP addresses. The locator agent eliminates private IP addresses and 

hidden addresses when it is constructing the topology. The locator agent treats adjoining nodes as 

connected by a link. QWatch maintains the topology graphs per Cloud region. The locator agent 

updates if it discovers new nodes and links. The locator agent obtains the ISP name and the AS 

number of a valid IP node from a commercial API [94]. Router level topology discovery has been 

well studied in [95][96][97][98] and these methods can be applied in QWatch. 

4.6 QoE anomaly localization 

4.6.1 Prototypes 

If a streaming session has an acceptable QoE, all nodes in its path are assumed to be 

functioning well. We assume that if a node has an anomaly, all video sessions going through that 

node would have unacceptable QoE. 

We show examples of how anomalies can be located by analyzing path information of 

video sessions affected by anomalies. There are three types of nodes. 

 Normal node: All nodes on a session’s delivery path with acceptable QoE. 
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 Suspect node: Node on a session’s delivery path with unacceptable QoE but does not belong 

to other delivery paths with good QoE. 

 Abnormal node: Node is the only suspect node on a session’s delivery path with unacceptable 

QoE.  Rest of the nodes in this delivery path are normal. 

If there are multiple suspect nodes in a streaming path, any one or more of these nodes 

could be the cause of QoE anomaly. When there are not enough clients to resolve the exact 

location of the anomaly, we classify these nodes as suspect nodes. 

 

Figure 24:  QoE Anomaly Localization Prototypes 

Figure 24 show prototypes on how anomalies in server, router and client can be located. 

These prototypes assume all users’ QoE can be observed at the same time. In Figure 24 (a), there 

are two video sessions A  and B  sharing the same path to server S . Client X  perceives QoE 

anomaly. Client Y  has an acceptable QoE and all the nodes through its path are labeled normal. 

The session A   then labels node X  suspect. Session A   only has one Suspect node in its path. It 

is clear that the client itself has the anomaly and is labeled abnormal. Figure 24 (b) shows three 

sessions A , B  and  C   sharing the same path to two servers 1S  and  2S  . There is one anomaly 

 

(a) QoE anomaly on client (b) QoE anomaly on server S1 (c) QoE anomaly on router R 
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server 1S   and A   is connected to  1S  . Sessions B  and C   are connected to 2S  and have 

acceptable QoE. All nodes in their paths are labeled normal. Then nodes X  and 1S  are labeled 

suspect. If session A  does not change its server, we cannot exclude client X  from suspect nodes. 

If session A   changes its server to 2S  , client X   would have acceptable QoE and can be excluded 

from suspect nodes thus the server anomaly can be located. Figure 24 (c) shows three sessions A   

, B   and C  going through different paths to two servers 1S  and 2S  . Session A   and B  connect 

to server 2S  . Session C  connects to server 1S  . There is one anomaly router R  . Sessions B  and 

C   have acceptable QoE and all nodes in their path are normal. Session A   has two nodes labeled 

suspect. The router  R  is then located as suspect. In Figure 24 (a), X  is the only suspect node so 

it can be determined anomaly. In (b) and (c),  X  is not on the paths of other sessions with 

acceptable QoE so X  cannot be excluded from anomalies. QWatch labels both the anomaly node 

and the client as suspect nodes. QWatch can provide better resolution if there are more sessions 

sharing the particular path in question. 

4.6.2 Implementation 

When the locator agent receives a QoE update, it processes the updates according to the 

QoE anomaly localization algorithm (QALA) as shown in Figure 25 to label the nodes. It locates 

the suspect nodes. When the locator agent receives an acceptable QoE update, it retrieves all nodes 

in the path of the session and labels all nodes normal. If there are no sessions reporting QoE, the 

node labels expire in t  seconds. If there is only one suspect node in the path, the node is labeled 

abnormal. The locator then logs the localization results and listens for the next update messages. 
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Figure 25:  QoE Anomaly Localization Algorithm (QALA) 

Data:      Time window t    
 Node status labeled within t  is assumed as the present status 
1: while receiving update  , ,U t Q R  from a client do 

2:  Get all nodes  iN  in R   

3:   if Q True  then 

4:   for iN R  do  

5:    Update node status: 
iNS Normal    

6:    Label the node:  ,
i iN NL t S   

7:   end  
8:  else  
9:   Initialize the number of suspect nodes 0Sn     
10:   for iN R  do 

11:    Get the latest label on iN  ,  ,
i i iN N NL t S   

12:   if 
iNt t t     and 

iNS Normal  then 

13:      continue 
14:     else 
15:      Determine current node status as 

iNS Suspect   

16:      Label iN  with 
iNL Suspect   

17:      1sn     
18:     end 
19:    end 
20:  if 1sn   then 
21:    Find the node sN  with the latest label  

      ,
s s sN N NL t S  where 

sNS Suspect   

22:   Update the label for sN  with the latest label  as 

 ,
s sN NL t Abnormal     

23: end 

21:  Find all nodes  |   or  
aA a NN N S Suspect Abnomal     

22:   Log QoE anomaly event  , , ,t AE t Q R N    

23: end 
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4.7 Experimental Setup 

We evaluate QWatch in two environments. The first one is a controlled environment that 

emulates anomalies at different locations in a small-scale VoD system. The second one is a 

production environment that deploys the VoD system in Microsoft Azure CDN and AWS 

CloudFront. 

4.7.1 Controlled Environment Setup 

 

Figure 26:  The topology of the controlled VoD 

The VoD system runs in 3 servers and 8 clients. The network topology of the VoD system 

is shown in Figure 6. Three servers are deployed in two regions of Microsoft Azure Cloud [86]. 
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Eight clients are deployed in three campus networks in PlanetLab [80]. A  is the network in 

Rutgers University. B  is the network in University of South Florida. C  is the network in Emory 

University. Each campus network connects to the Cloud via different transit ISP networks. There 

are 4 transit ISPs, 1 Cloud provider, and 3 campus network providers in the experimental VoD 

system. Clients 1A  , 1B  , 1C  stream from 0S  .  Clients 2A  , 2B  , 2C  stream from 1S  .  Clients 3A  

, 3B  stream from 2S . 

4.7.2 Production Environment Setup 

 

Figure 27:  The locations of QWatch locators and client agents for experiment in 

production environment 

We deploy QWatch in production CDNs (Azure CDN and AWS CloudFront) and analyze 

QoE anomalies. We configure the caching of CDN to use all edge locations that provide the best 

performance. We run 200 clients in PlanetLab to emulate users around the world. We provision 5 

locator agents in different regions in Azure Cloud to serve 200 clients at different geographical 
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locations as shown in Figure 27. We choose 100K   and provision locator agents in 5 available 

zones in Azure. 

4.8 Evaluation of QoE anomaly detection 

4.8.1 Evaluation in controlled environment 

We first consider the effectiveness of system metrics, such as CPU/I/O/memory 

utilizations, network latency and throughput for anomaly detection in VoD in the Cloud. These 

system metrics can be obtained in commercial Clouds, such as AWS CloudWatch [90] and Azure 

Cloud monitor [91]. We show several examples of false positives and false negatives resulting 

from anomaly detection systems based on system metrics. We then compare QWatch with existing 

anomaly detection methods. Existing anomaly detection methods find outliers in system metrics 

[99]. The statistical outlier is defined as data outside the range of 3 standard deviation [100]. We 

use the statistical outlier detection for a comparison. We let client 3A  stream videos from 2S   and 

collect various server and network metrics on 2S  . These metrics include CPU, I/O utilization, 

memory utilization, server outbound traffic throughput (Net Out), network latency between the 

server and a vantage point (RTT from VP), and the number of TCP retransmissions (TCP retrains 

#). All the metrics are collected by Performance Co-Pilot [101]. The ICMP ping is probed from 

0S  . We inject several faults that appear often in Cloud and networks. These faults include CPU, 

I/O and memory interferences, network congestion in Cloud/client networks, and packet drops in 

client network. VM interference are emulated by Stress tool [102] and various network errors are 

emulated by the Linux network emulator [103]. 

 



71 

 

 

Figure 28:  Anomalies in measurements vs. QoE anomalies 

 

(a) CPU interference (b) I/O interference 

 

(c) Memory interference                                          (d) Cloud network congestion (Outbound bandwidth throttled on S2) 

 

 (e) Client network congestion (Long latency to clients in A)        (f) Unstable client network (Packet drops in A) 
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Figure 28 shows numerous false positives and false negatives when system metrics are 

used to detect QoE anomalies. Figure 28 (a) compares CPU utilization metric in the Cloud with 

the end user QoE. Although the CPU metric triggers an anomaly alarm when the CPU interference 

is injected, it is not sufficient to create QoE degradation thus resulting in false positives. Figure 28 

(b) considers I/O utilization metric with QoE anomalies. Many false positive alarms result from 

I/O interferences. However, I/O interferences do not influence end user QoE. Similarly, in Figure 

28 (c), we show a false positive case where memory interferences impact memory utilization 

metric but have little impact on user QoE.  Figure 28 (d) and (e) compare QoE anomalies with 

network metrics on server 2S  with network errors. Figure 28 (d) shows that network congestions 

in the Cloud greatly impact end user QoE. However, the metric based system fails to trigger an 

anomaly alarm as the vantage point do not capture such QoE degradation. Figure 28 (e) shows that 

the client network congestions generate QoE anomalies in the client. The metric based system 

again fails to trigger an alarm in the network throughput of 2S  . These represent false negative 

cases. The metric based system sometimes correctly detects QoE anomalies when there are 

numerous TCP retransmissions, namely when the network is unstable. Figure 28 (e) further shows 

that many other anomalies detected by the TCP retransmission metric do not indicate QoE 

anomalies.  

Cloud monitoring systems use metrics such as CPU speed, CPU/disk utilizations, 

disk/memory throughput and network throughput [104][105]. These metrics poorly reflect the user 

experience of video streaming in the Cloud. They fail to account for many other factors that impact 

user QoE, such as faults in Cloud/transit/client networks and user devices. 
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4.8.2 Evaluation in production environment 

Commercial CDN providers offer their own monitoring systems. It logs errors in the cache 

server that could impact end user QoE. Common metrics are the HTTP response time, the cache 

request status (cache/miss), and the HTTP response code. We show how these errors logged in 

CDN are correlated to QoE anomalies. We run QWatch with a VoD site deployed in Amazon 

CloudFront on Jan. 9, 2016 from 00:00 am to 01:00 am. CDN logs are compared with several user 

QoEs shown in Figure 29.  

 

Figure 29:  Anomalies in Cloud CDN measurements vs. QoE anomalies 

Figure 29 (a) shows the logged HTTP response time and detected anomalies. There are 

numerous anomalies detected before 00:10. Figure 29 (b) shows QoE anomalies detected by 

QWatch. Anomalies in Figure 29 (a) correlate with some QoE anomalies but not all users are 

affected. Errors logged in the cache server do not cause all QoE anomalies as shown. Video players 

usually have failover schemes on error responses and maintain a buffer to tolerate temporary cache 

misses. Other QoE anomalies are shown in red bars after 00:10 in Figure 29 (b). These anomalies 

 

(a) Cloud CDN measurement anomalies      (b) QoE anomalies on end users 
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are not captured by measurement in CDN as shown in Figure 29 (a). These experiments in 

production environment demonstrate that there are numerous false positive and negatives in 

existing measurement based anomaly detection methods. 

4.9 Evaluation of QoE anomaly localization 

4.9.1 Evaluation in controlled environment 

We inject anomalies at various components including server S1, Cloud Network 1, Campus 

Network A and Client A1 to evaluate QWatch’s QoE anomaly localization. We use the network 

emulator to throttle the bandwidth capacity for all packets going through different locations. 

Clients A1, B1, C1 stream from S0.  Clients A2, B2, C2 stream from S1.  Clients A3, B3 stream from 

S2. Figure 30 shows the entire nodes involved in the experimental VoD system. Later figures only 

show affected components. 

 

Figure 30:  Topology of experimental VoD with entire nodes 
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Figure 31:  Localization of QoE anomalies at S1 

Figure 31 shows the localization results for two QoE anomalies caused by S1. Client A2 

and B2 are affected and their QoEs degrade. A2 and B2 have neighbors A1 and B1 streaming from 

another server S0. They share the same path and shared nodes on their paths are labeled normal. 

Client A2, B2 and server S1 are labeled Suspect. S1 is then correctly found as the cause of the 

anomaly. 

 

Figure 32:  Localization of QoE anomalies at Cloud Network 1 
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Figure 32 shows two QoE anomalies caused by the Cloud network 1. Client A2 and B1 

stream videos from S1 and S0 through Cloud network 1. Their neighbors A3 and B3 both stream 

from S2 in Cloud network 2 and they have acceptable QoE. All common nodes shared in client 

networks and transit ISPs are labeled normal. Nodes in Cloud network 1 are correctly labeled as 

suspects. Servers connecting to the Cloud network 1 have no anomalies. However, these servers 

do not provide good QoE and they are labeled Suspect. In this example, Cloud network 1 and 

servers connecting to Cloud network 1 are both located as suspects. Further troubleshooting is 

required to obtain localization with higher resolution. 

 

Figure 33:  Localization of QoE anomalies at Campus Network A 
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 An anomaly is injected in the campus network A in Figure 33. Clients A1, A2 and A3 

connect to campus network A. QWatch correctly labels all nodes in the client network as suspects. 

 

Figure 34:  Localization of QoE anomalies at client A2 

 An anomaly is injected at client A2 in Figure 34. QWatch correctly locates the cause of 

QoE anomaly by labeling client A2 as suspect. Two nodes that are exclusively on A2’s streaming 

path are also labeled as suspects. These nodes can be excluded from anomalous nodes if further 

analysis of topology is performed.  Six nodes in the red circle in Figure 34 connect to the same set 

of nodes that are both on the path (A1 to S1) and on the path (A2 to S1). We infer that these nodes 

belong to load balancing networks. These nodes should be excluded from Suspects as a whole 

because these load-balancing networks are on the path of client A1 with acceptable QoE. 

4.9.2 Evaluation in production environment 

We run QWatch on Windows Azure CDN on April 14, 2016 from 15:30 to 16:30. Results 

of QoE anomaly localization are similar to those shown in Figure 31 to Figure 34.  Figure 35 shows 

the count of QoE anomalies located in different components. The data are collected from the 
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locator agent in the east US region. There are 219 QoE anomalies detected during 1 hour in the 

region. Figure 35 shows that all QoE anomalies label clients as Suspects. Interestingly, we do not 

observe any adaptive server selection strategies in Azure CDN. There are 35 clients in east US 

region and they all stay with the same video server during the period of experiment. Therefore, 

when a client has QoE anomalies, there is no other video delivery path providing better QoEs. 

Thus, the client itself remains as a Suspect node. We find that Azure CDN assigns users in a very 

broad area (i.e. from Ottawa to Florida) to the same server. In a large geographical area (i.e. US 

east, US west, Europe), users are assigned to servers that are relatively close to them in terms of 

network or geographical distances. We do not know the details of Azure’s server allocation 

algorithm. Surprisingly, Azure’s algorithm is not as dynamic as we would expect. 

 

Figure 35:  QoE anomalies located in different components in production envrionment  

A large number of QoE anomalies are also located in transit ISPs. Our 200 clients around 

the world connect to Azure CDN through different ISPs. Results show that a majority of QoE 
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anomalies are located in transit ISPs and clients as Suspects. We notice that there are few 

anomalies located in servers and there is no anomaly located in the Cloud network. The localization 

graphs for QoE anomalies in servers show that most of these anomalies label server and other 

components as Suspects at the same time due to the limited number of video sessions. The number 

of QoE anomalies located in the servers is relatively small compared to QoE anomalies located in 

clients and transit ISPs. QWatch would have better resolution identifying server and transit ISP 

anomalies if our experiments had larger number of users. 

4.10 Scalability Analysis 

The locator agents are deployed on Basic A1 VMs in Microsoft Azure. The average time 

to locate a QoE anomaly is 200 ms. We have only one locator agent per region and the topology 

database is deployed in the locator agent. All client agents in one region report QoE updates to the 

locator agent every minute. The processing time per update depends on the number of hops in the 

video delivery path.  100K    does not result in request failures in locator agents. As the number 

of users increases, QWatch can horizontally scale the locator agents. The network size per region 

is bounded by K   and the length of the path. The length of the path is usually below 50 hops. As 

the number of users in one-region increases, the distributed database can adapt to maintain the 

underlying topology. 

4.11 Summary 

QWatch uses end-user QoE to detect QoE anomalies and correlate users’ data to locate 

QoE anomalies. We run extensive experiments in a controlled VoD system and production Cloud 

(Azure Cloud and CDN) to validate QWatch’s accuracy in detection and localization. We find 

numerous false positives and false negatives in production Cloud when system metric based 
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anomaly detection methods are used. QWatch correctly detects and locates anomalies in controlled 

experiments. In production Cloud, we validate QWatch with 200 users. Results show that a major 

of QoE anomalies are located in clients and in transit ISPs. No QoE anomalies are found in Cloud 

networks. Compared to clients and transit ISPs, servers and Cloud networks are less likely to cause 

QoE anomalies. Interestingly, Azure CDN’s server allocation algorithm may not be as dynamic as 

we would expect. 
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5. QRANK: A QOE ANOMALY IDENTIFICATION SYSTEM FOR VOD IN THE 

CLOUD 

5.1 Introduction 

Modern commercial VoD systems, such as Netflix, HBO, and Amazon Prime Video, are 

complex. Their videos are produced and stored in Clouds [106], such as Amazon Web Service, 

Microsoft Azure, Google Cloud. The video contents are distributed and cached in Content Clouds 

[83], such as Netflix open connect, Akamai, Level 3, and Limelight. The video traffic is delivered 

to users via Internet. Multiple stakeholders, including the VoD provider, the Cloud providers, the 

CDN providers, and the Internet Service Providers are involved in the video streaming. When 

users have poor Quality of Experience (QoE), it is important for the VoD provider to identify 

faulty or overloaded systems for QoE degradations. 

VoD systems deliver videos via many heterogeneous systems including servers, 

Cloud/CDN networks, transit networks, access networks, and user devices. Any of these systems 

could have anomalies degrading user QoE.  For example, resource exhaustion on servers can 

increase the servers’ response time thus degrading user QoE. Similarly, the resource exhaustion 

on user devices may freeze the video playback or crash the video player. Low capacity and traffic 

congestion in access and transit networks degrade the quality of streaming videos. Different 

stakeholders, namely the Cloud provider, the CDN provider, the transit ISPs, the access ISPs and 

the users, manage the systems involved in the video delivery. These providers have their own 

monitoring systems and target different Service Level Agreements (SLAs). As their objectives 

vary, maintaining QoE would be challenging. For example, YouTube monitors user QoE per ISP 

as they assume that access ISPs to be the most likely capacity bottlenecks for high-definition (HD) 
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video streaming [13]. Studies in a large European ISP show that Google’s CDN server selection 

policy might be the cause of QoE degradation [17]. To identify the anomalies, VoD providers need 

a unified metric that reflects user QoE. VoD providers do not have enough visibility over other 

systems. The Cloud/CDN systems select servers for users. Depending on the selected server, video 

traffic could go through different networks to get to the access network. The Cloud network, 

multiple transit networks and the access network together determine the route to deliver videos. 

Load balancing in these networks further complicates the video routes. Video from the same server 

could go through different routes to the user depending on load balancing policies. Without 

knowing the underlying network topology for a particular video delivery, it is very difficult to find 

which system causes QoE anomalies. 

In this chapter, we propose QRank, an anomaly identification system that identifies the 

bottleneck system causing QoE anomalies. QRank detects QoE anomalies based on QoEs 

monitored by users at run time. QRank discovers the underlying network topology and all systems 

for video streaming by traceroute measurements. We assume that the system with users that 

experience more QoE anomalies or lower QoEs is more likely to be the system causing QoE 

anomalies. QRank identifies the anomalous system by ranking the QoE scores in different systems. 

We validate the effectiveness of QRank through extensive experiments in a controlled VoD. In 

our experiments, we inject QoE anomalies in user device, access network, transit network, cloud 

network, and server to degrade user QoE. QRank correctly identifies the anomalous system in 

these cases. QWatch locates anomalies in a wide range of suspect nodes in different systems. 

QRank successfully pinpoint the anomalous system, which can be a server, a user device or a 

network managed by a specific provider at a specific location. We run QRank in a production VoD 

deployed in Azure Cloud with 100 users emulated in PlanetLab and 24 users emulated in Azure 
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Cloud. The results show that access, transit networks and user devices contribute mostly for QoE 

degradations. 61.97% QoE anomalies identify access or transit networks as anomaly systems and 

38.14% identify the user devices as anomaly systems. Cloud networks and servers seldom cause 

QoE anomalies. 

5.2 Related Work 

5.2.1 Analysis of QoE degradations 

Existing studies collect and analyze the QoE measurement from YouTube [11][17], large-

scale video streaming events [109], and Internet streaming services [14]. Casas et al study the 

correlation between the server changes and the QoE relevant degradations [11][17]. They find that 

the root causes of QoE degradations are Google CDN’s server selection strategies. The 

measurement is done in one ISP and their conclusion may not be true for users worldwide. Conviva 

[14] collects QoE measurement data worldwide from 379 video service providers. They cluster 

QoE anomalies over the space of client/session attributes, including the CDN, the client AS and 

the connectivity type. They ignore many other systems involved in the video delivery, e.g. transit 

networks. Adnan et al analyze QoE for a live streaming event in North America and find lower 

engagements for users with low QoE [109]. 

5.2.2 QoE anomaly localization and diagnosis 

QWatch locates nodes that are exclusively on the routes of users with QoE anomalies as 

suspect nodes [108]. However, node-level localization provides little insights about the systems 

and had low accuracy when there is a dynamic routing. Dimopoulos et al diagnose QoE anomalies 
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for video streaming on mobile devices by correlating QoE anomalies with anomalies detected in 

network/device system measurements. Intrusive measurements are hard to obtain from 

commercial VoDs [93]. 

5.2.3 QoE based learning of system performance 

QoE driven control systems [55][107] learn dynamic server performance via end user QoE 

at run time and perform adaptive server selections to optimize overall user QoE. Pytheas [110] 

correlates user QoE over session attributes, including CDN and bitrates, and adaptively control the 

combination of CDN and bitrate selections by reinforcement learning techniques. They learn 

server or CDN performance via QoE measurements. QRank uses end user QoEs to learn the 

performance of all systems involved in video delivery, including the Cloud/transit/access networks 

and user devices. 

5.3 Background 

5.3.1 Root causes of QoE anomalies 

Various studies analyze QoE anomalies through collecting QoE measurements from video 

streaming service on mobile devices [93], YouTube streaming service [11][17] and various 

anonymous Internet streaming services [14]. They apply statistical analysis and machine learning 

techniques on collected QoE data. They highlighted following systems as anomalous systems 

causing QoE degradations. 

 Cloud/CDN servers [11][17]: Users can be directed to congested, disconnected or faulty CDN 

servers.   
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 Internet [17]: Inter-AS routing changes and inter-AS path congestion reduce the network 

capacity from end user to server, consequently degrading end user QoE. 

 Transit network [17]:  Within a transit network, the latency increases due to burst traffic, 

equipment failures or routing misconfigurations. 

 Access network [14] [17] [93]: Overloading at logical access aggregation points, 

misconfigurations in access networks, and equipment failures are noted. Limited capacity in 

access networks also slow down users’ connection impacting user QoE.  

 User devices [17] [93]: Various devices including tablets, TVs, mobile devices, home routers, 

and set-top boxes have issues such as resource exhaustion, misconfiguration, device memory 

leaks and software/hardware failures. 

5.3.2 Systems incurring QoE anomalies 

VoD systems mostly use third-party CDNs for content caching and delivery. CDNs usually 

cache popular videos in the edge servers that are closer to users. When a user requests a video, the 

“closest'” server1 responds with the video. We use a Planetlab server in a campus network to stream 

a video cached in Microsoft Azure CDN. We probe the CDN server that caches the video and 

discover the underlying network topology as shown in Figure 36. The video traffic is delivered 

from the CDN server to the user server through multiple networks: the Cloud network, several 

different transit networks, and the campus network. VoD providers do not have control and direct 

access to routers. As routers belong to different ISPs, VoD providers need to work with ISPs when 

                                                 

1 CDN providers usually determine the criterion of choosing the “closest” server for a user. DNS based server selection 
[29] is generally used to approximate selecting the “closest”' server in terms of network latencies. 
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routers in their networks incur QoE anomalies. We therefore group routers into networks. Each 

network is composed of routers managed by a specific ISP. We further classify those networks 

into Cloud networks, transit networks and access networks. Cloud/CDN providers manage servers 

and users manage devices. The VoD providers need to identify if these systems cause QoE 

anomalies and work with the Cloud/CDN providers and users to improve user QoE. In summary, 

servers, user devices, and networks are possible anomalous systems causing QoE anomalies.  We 

see that the possible anomalous systems are the server (72.21.71.200), the cloud network (AS 

15133), several transit networks (AS 11537, AS 11164, AS 11834, AS 14877), the access network 

(AS 9) and the user device (planetlab-3.cmcl.cs.cmu.edu). 

 

Figure 36:  The underlying topology involved in the video streaming from a cache server in 

Microsoft Azure CDN to a user in Carnegie Mellon University 
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5.4 System overview and design 

5.4.1 System overview 

QRank has 3 main operations: 1) select suspect systems that may cause QoE anomalies, 2) 

evaluate the performance of suspect systems with user QoEs, 3) identify the true anomalous system 

among suspect systems by ranking the QoE scores in suspect systems. QRank needs to determine 

whether a server/device/network could be a suspect system. According QWatch, nodes including 

server and routers on well-experienced user’s route have no anomalies. Therefore, the server with 

high user QoE cannot be a possible anomalous system. The network consisting of routers only on 

well-experienced users’ routes is less likely to be an anomalous system. QRank extends the 

QWatch system by clustering the suspect nodes into suspect systems including servers, networks 

and devices, and identify the anomalous system by ranking the aggregated QoEs among suspect 

systems. 

QRank system operates in following steps. 1) QoE anomaly detection: QRank detects 

QoE anomalies for all users. 2) QoE anomaly localization: QRank uses anomaly localization 

algorithm QALA in QWatch to locate suspect nodes that may cause QoE anomalies. 3) Detection 

of QoE anomaly systems: QRank groups suspect nodes into suspect systems, namely servers, 

networks and devices. 4) System QoE score learning: QRank computes the QoE scores in suspect 

systems during the anomaly period, to represent the system performance. 4) QoE anomaly 

identification: QRank ranks all suspect systems according to their QoE scores (from low to high) 

and identify the one with the lowest QoE score as the true anomalous system. 
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5.4.2 System design 

We implement QRank as a decentralized agent based system. QRank deploys client agents 

to run on all user devices to monitor chunk QoEs at run time. Client agents probe cache servers 

periodically. QRank also deploys decentralized cloud agents in Microsoft Azure Cloud to collect 

QoE and traceroute  measurements from client agents in each region. The client agent measures 

QoE for every chunk and reports QoEs to the closest cloud agent every N  chunks.  The client 

agent probes cache servers every 10 minutes and reports the traceroute  data. The client agents 

only monitor and report QoE and traceroute measurements. The cloud agents analyze collected 

data and identify QoE anomalies in run time. 

5.5 QRank System 

5.5.1 QoE anomaly detection on cloud agent 

Client agent on a user device reports QoE measurements to its cloud agent every N  

chunks. If a chunk of video is a T  second video segment, the client agent reports N   chunk QoE 

values every T N  seconds when there is no freeze. The length of a video chunk is commonly  

5T   seconds. In QRank implementation, we choose 12N   and when there is no freezing the 

client agent reports QoE values every 1 minute.  Smaller N  would incur more QoE reporting 

traffic and larger N   would delay the detection of QoE anomalies. 

The cloud agent then detects QoE anomalies based on N  chunk QoE measurements. If 

there is any chunk with QoE value less than 0q , the cloud agent alarms that there is a QoE anomaly. 

Sometimes, the cloud agent alarms QoE anomalies in every N  chunk period for a user. These 

alarms are regarded alarms for the same QoE anomaly that last more than T N  period, as shown 
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in Figure 37. In such cases, the cloud agent determines the start and the end of the anomaly by the 

time-stamps of receiving the first and the last chunk with QoE below 0q  . 

 

Figure 37:  Example of QoE anomaly detection 

5.5.2 Detection of anomalous systems 

By running QALA, the cloud agent obtains a list of suspect nodes for QoE anomaly. These 

nodes can be routers, servers or user devices. Suspect routers can belong to different networks. 

QoE anomalies are usually incurred by issues in those network systems instead of faults on routers.  

A network with limited capacity can cause QoE anomalies but all routers in the network may 

function well. In QRank, a network consisting of suspect routers is determined as a suspect system. 

If a suspect node is a server, the server is also a suspect system.  Servers can have various issues 

causing QoE anomalies, such as insufficient capacity, resource exhaustion, etc. The server as a 

suspect system impacts QoE for all users streaming from it. If a suspect node is a client node, the 

QoE anomaly can be caused by various faults on the user device. Thus, user devices are also 

suspect systems. 

QRank determines suspect network systems by all suspect routers. Each suspect router is 

associated with a public IP address. Given an IP address, QRank uses public databases including 
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ipinfo [94], iplocation [111], and bgpview [112] to find the ISP the router belongs to. The 

Autonomous System (AS) number and the geographical coordinates of the router can also be 

discovered.  As information among those 3 databases may not be consistent, QRank queries all 

three databases and chooses the information that is agreed by more databases as an accurate 

information of an IP. QRank also maintains a database to cache information for all discovered IPs 

as shown in Table 2. Given the geographical location, the AS number, the ISP name of routers, 

etc., QRank discovers suspect network systems. 

Table 2: The ISP and location information of an IP 

IP ISP Name AS # Geo- Location City, Region, Country 

205.213.119.30 WiscNet 2381 (43.1184, -89.5207) Middleton, Wisconsin, USA 

As QoE anomalies incurred by devices are usually software bugs or hardware issues, those 

anomalies can reoccur on other users who use the same type of devices. Thus, we define a suspect 

device system as a type of devices that have same attributes leading to similar faults. In a 

production VoD system, these attributes can include but not limited to the device type (e.g. Tablet, 

Laptop, TV, mobile phone, etc.), the device Operating System (e.g. android, iOS, MacOS, 

Windows 10), the mobile application version or the browser version (FireFox, Chrome, IE, etc.), 

and the software version of the video player (dash.js, Adobe Flash Player, Azure media player). 

VoD providers can study common device faults affecting QoEs to determine what attributes to 

choose. In all experiments, we emulate users in PlanetLab nodes and Azure VMs. The device type 

can be PlanetLab server (abbreviated as PL) or Azure VM (abbreviated as AZ). The PlanetLab 

servers are installed with Fedora and CentOS and Azure VMs are installed with Ubuntu, so the OS 
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version can be Fedora/CentOS/Ubuntu. All emulated users ran an emulation code of DASH player 

we wrote in Python. Thus, the software framework version is the Python framework version and 

the video player is the emulated DASH player, denoted as EM-DASH. We later injected faults in 

the emulated DASH player denoted as EM-DASH-ERR. 

 

Figure 38:  Localization result for an example QoE anomaly 

 

Figure 39:  Suspect systems for the example QoE anomaly 
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We use an example QoE anomaly to show how the suspect systems are detected. Figure 38 

shows the localization result for an example QoE anomaly detected on “planetlab2.cs.purdue.edu” 

at 7:11 am on June 4, 2017. Given suspect nodes located in Figure 38, QRank then detects suspect 

systems in brown as shown in Figure 39. The suspect systems detected for the example QoE 

anomaly include the followings. A transit network managed by Indiana University at (39.2499, -

86.4555), a transit network managed by Purdue University at (40.3689, -86.8774), an access 

network managed by Purdue University at (40.4259, -86.9081) and a device. 

The device is a Planetlab server installed with Fedora 14 OS running our emulated DASH player 

in Python 2.7 framework. Such type of devices is denoted as “<PL, Fedora14, Python2.7, EM-

DASH>”. 

5.5.3 System QoE Score learning 

QRank infers the performance of these systems via end user QoEs. We compute a QoE 

score based on QoEs of users using the system (also refer to as related users). If the suspect system 

is a network, QoE of related users whose video traffic deliver through the network are counted. If 

the suspect system is a server, QoE of related users who stream videos from the server are counted. 

If the suspect system is a device, then QoE of related users using the same type of devices are 

counted. As users’ QoEs change over time, we compute the QoE score for a system by the 

averaging of QoE in a shifted time window.  The system QoE score is computed by Equation (2.9)
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  oU u  denotes the set of users using the system o .  uq t  denotes the chunk QoE value 

for user u  at time t .  1 2,n t t  denotes the number of video chunks received on u  during time 

 1 2,t t . QRank learns the QoE scores for all suspect systems during the anomaly period. The time 

range  1 2,t t  denotes the start and the end time of a QoE anomaly to be identified. In Table 3, we 

compute the QoE scores for all suspect systems retrieved for the example QoE anomaly. For the 

network managed by Indiana University at (39.2499, -86.4555), there are 3 users streaming 

through the network. Except two “Purdue” users, “pl2.ucs.indiana.edu” is also streaming videos 

through the network and has good QoEs during the anomaly period. Though “pl2.ucs.indiana.edu” 

is not detected to be active when QALA is running, its QoE indicates how the network performs 

in terms of QoE. For the Purdue networks, they both only have two “PURDUE'” users going 

through and they obtain the same QoE score. 

Table 3: QoE scores of suspect systems for the example QoE anomaly 

System Name AS # Geo- Location 
% of anomalous 

users 
QoE 
Score 

Network Indiana Univ. 19782 
(39.2499, -
86.4555) 

66.66% (2/3) 2.1161 

Network Purdue Univ. 17 
(40.4259,-
86.9081) 

100% (2/2) 0.6742 

Device 

<PL, 
Fedora14, 

Python2.7,EM-
DASH> 

17 
(40.4259,-
86.9081) 

18.18% (4/22) 3.9587 

5.5.4 QoE anomaly identification 

Given suspect systems that are likely to incur the anomaly, QRank identifies the QoE 

anomaly in the anomalous system that 1) has the maximum percentage of related users with QoE 
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anomalies and 2) has the lowest QoE score. In summary, QRank identifies QoE anomalies in 

systems following the below two rules. 

RULE I: Given a QoE anomaly and suspect systems that may cause the anomaly, a system 

with larger percentage of related users with QoE anomalies during the anomaly period is more 

likely to cause the QoE anomaly. 

RULE II:  Given a QoE anomaly and suspect systems that may cause the anomaly, a 

system with lower QoE score is more likely to incur the QoE anomaly. 

RULE I bases that a network/server/device system is more likely to cause QoE anomalies 

if there are higher percent of related users having QoE anomalies. For a suspect network system, 

related users are all users who stream through the network. If the percentage of related users with 

QoE anomalies is high, it indicates the network has insufficient capacity to provide good QoE for 

all users streaming through the network. For example, as shown in Table 3, both the network in 

AS 17 and the network in AS 19782 have two related users with QoE anomalies. However, the 

network in AS 17 has a higher percentage of related users with QoE anomalies. Considering one 

user streaming through the network in AS 19782 has good QoE, the network is less likely to have 

capacity issues. As all users streaming through the network in AS 17 have QoE anomalies, it is 

more likely that the network in AS 17 has limited capacity. Similar reasoning can be applied to a 

suspect server. For a suspect device, if the percentage of related users with QoE anomalies is high, 

it means there is a higher chance to have QoE anomalies when using this type of devices. For 

example, as shown in Table 3, during the time of the QoE anomaly, there were 22 users using the 

same type of device (PlanetLab server) installed with the same type of OS (Fedora 14), running 

the same type of software framework (Python 2.7) and the same emulation code of DASH 

streaming.  There are only 4 of those having QoE anomalies, which indicates the anomaly is not a 
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reproducible anomaly caused by those device attributes. It is possible that the attributes of device 

we choose is not complete enough to cover all reproducible anomalies caused by devices. To 

choose a device attribute, VoD providers can collect various user device attributes and user QoE 

data in long term to study if one attribute is highly correlated with QoE anomalies. 

RULE II identifies anomalous system when two suspect systems have that same percentage 

of related users with QoE anomalies. When two networks both have insufficient for all their related 

users and they both have the same percentage of related users with QoE anomalies, the one with 

lower QoE score has lower average QoEs for all its related users during the anomaly period, which 

indicates it is more likely to be a capacity bottleneck. To make a hypothetical example in Table 3, 

we let the user “pl2.ucs.indiana.edu” have one chunk QoE value just below the anomaly threshold, 

such as 1.9999q   , then it would be detected to have QoE anomaly during the example anomaly 

period. The network in AS 19782 would also have 100% of related users with QoE anomalies. 

However, if the capacity of network in AS 19782 is higher than the network in AS 17, its QoE 

score would still be higher than the QoE score of the network in AS 17. We then go through the 

suspect systems for the example QoE anomaly. As the network managed by Purdue University has 

the highest percent (100%) of related users with QoE anomalies and the lowest QoE score 

(0.6741), it is identified as the anomalous system for the example QoE anomaly. 
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5.6 Evaluation of QRank in Controlled VoD 

5.6.1 Experiment Setup 

We deploy a controlled VoD system in Azure Cloud to evaluate QRank. Figure 40 shows 

the network topology of the controlled VoD system. We deploy 3 servers S1, S2 and S3 in two 

Cloud networks 1 and 2. We emulate 9 users in 3 campus networks A, B and C. 

 

Figure 40:  Network Topology of controlled VoD system 
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Table 4: Video streaming sessions in the controlled VoD 

User 
Campus 
Network 

Transit Networks Cloud Network Server 

A1 
A T1 T2 

1 
S1 

A2 S2 
A3, A4 2 S3 

B1 
B T3 

1 
S1 

B2 S2 
B3 2 S3 
C1 C T4 T1 

1 S1 
C2 2 S3 

  

As Table 4 shows, users A1, B1, C1 stream videos from the server S1, A2 and B2 stream 

videos from the server S2. Users A3, A4, B3 and C2 stream videos from S3. All users in campus 

network A connect to the Cloud via transit network T1 and T2. All users in campus network B 

connect to the Cloud via transit network T3. All users in campus network C connect to the Cloud 

via transit network T4 and T1. We inject QoE anomalies on server S2, the total capacity of Cloud 

network 1, the transit network T1, the campus network B and the user device A1. For servers and 

networks, we inject anomalies by limiting their capacity so users stream through the network or 

from the server will have QoE anomalies. To achieve the purpose of limiting capacity in servers 

and networks, we use the network emulator “netem tc” [103] to throttle the outbound bandwidth 

on all server hosts. If the capacity limit is on a server, “netem tc” can be applied directly on server 

host. If the capacity limit is on a network, we apply “netem tc” rules on all servers with destination 

ip prefexes denoting users who go through the network. We determine the capacity to throttle 

according to the number of users streaming through the component. For anomaly to inject on S2, 

we limit the capacity on the server S2 to 1 Mbps. There are 2 users streaming through S2 so each 

one on average gets 500 kbps. For anomaly to inject in the Cloud network 1, we limit the capacity 

of the Cloud network 1 to 2.5Mbps. Specifically, we throttle the outbound capacity on S1 to 1.5 
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Mbps for users A1, B1, C1 and we throttle the outbound capacity on S2 to 1 Mbps for users A2, B2. 

For anomaly to inject in the transit network T1, we limit the total capacity in T1 to 3.0 Mbps. There 

are 6 users streaming through T1. Specifically, the capacity on S1 is throttled to 1Mbps for IPs of 

A1 and C1. The capacity on S2 is throttled to 0.5Mbps for IP of A2. The capacity on S3 is throttled 

to 1.5Mbps for IPs of A3, A4, and C2. For anomaly to inject in the campus network B, we limit the 

total capacity in B to 1.5 Mbps as there are 3 users in campus network B. Specifically, S1, S2 and 

S3 throttle their outbound network capacity to 0.5 Mbps for IP prefix of network B. When we inject 

anomalies on a specific user device, we inject faulty code in our emulated DASH player to add 

delays for all packets received, denoted as EM-DASH-ERR. All users start streaming videos at the 

same time for 10 minutes. Anomalies are injected throughout the streaming period. 
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5.6.2 QoE anomaly injected at server S2 

 

Figure 41:  Localization of suspect nodes for QoE anomalies injected at S2 

QRank detects QoE anomalies spanning the whole streaming period on A2 and B2. In 

Figure 41, we show the localization of suspect nodes for the QoE anomaly on B2. It shows that 

only the server S2, a router connecting to S2 and user devices on A2 and B2 are suspect nodes. Then 

in Table 5, QRank computes the percentage of related users with QoE anomalies for all suspect 

systems retrieved from suspect nodes. QRank then identifies the server S2 as the anomalous system 

for the QoE anomaly. It has the highest percent (100%) of related users with QoE anomalies and 

the lowest QoE score (1.3049). It shows that the ranking rules further narrow down the number of 
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suspect systems from 3 to 1, namely successfully identify the anomalous system with injected 

anomaly. 

Table 5: QoE scores for suspect systems of QoE anomaly injected at S2 

System Type Name 
% of related users 

with QoE 
anomalies 

# of related users 
with QoE 
anomalies 

QoE Score 

Server S2 100% 2 1.3049 
Network Cloud Network 2 40% 5 3.4512 

Device 
<PL, …EM-

DASH> 
22.22% 9 4.1263 

5.6.3 QoE anomaly injected in the Cloud network 1 

As expected, it is observed that 5 users (A1, A2, B1, B2, and C1) who were streaming from 

the Cloud network 1 had chunk QoE anomalies while users A3, A4, B3, C2 had good QoEs all the 

time. In Figure 42, we show the localization of suspect nodes for QoE anomaly detected on B1. 

From suspect nodes colored in brown, QRank then detects the suspect systems and computes their 

QoE scores as shown in Table 6. QRank identifies the Cloud network 1 as the anomalous system 

for the QoE anomaly, because it has the highest (100%) percentage of anomalous related users and 

the lowest QoE score (1.2911). 
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Figure 42:  Localization of suspect nodes for QoE anomalies injected in Cloud network 1 

Table 6: QoE scores for suspect systems of QoE anomaly injected in the Cloud network 1 

System Type Name 

% of related 
users with 

QoE 
anomalies 

# of related users 
with QoE 
anomalies 

QoE Score 

Network Cloud Network 1 100% 5 1.2911 
Server S1 100% 3 1.3090 

Network Transit Network T3 66.7% 2 2.5638 
Network Campus Network B 66.7% 2 2.5638 
Device <PL, …EM-DASH> 55.56% 5 2.9764 

5.6.4 QoE anomaly injected in the transit network T1 

As expected, QoE anomalies are detected on all T1 related users throughout the experiment. 

In Figure 43, we show the localization of suspect nodes for QoE anomaly on A4. It shows that all 

nodes on user A4's path to the server S3 are labeled as suspect nodes except the server S3 as B3 was 

having good QoE. QRank then retrieves all suspect systems for the anomaly in Table 7. By ranking 
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the percentage of related anomalous users, QRank narrows down the suspect systems to the transit 

network T1, the campus network A, and the transit network T2. Then, via comparing the QoE 

scores, QRank successfully identifies the transit network T1 as the anomalous system. 

 

Figure 43:  Localization of suspect nodes for QoE anomalies injected in Transit network T1 

Table 7: QoE scores for suspect systems of QoE anomaly injected in the Transit network T1 

System Type Name 
% of related 

users with QoE 
anomalies 

# of related 
users with QoE 

anomalies 
QoE Score 

Network Transit Network T1 100% 6 0.4966 
Network Campus Network A 100% 4 0.5493 
Network Transit Network T2 100% 4 0.5493 

Device 
<PL, …EM-

DASH> 
66.67% 6 1.9466 

Network Cloud Network 2 66.67% 6 1.9466 
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5.6.5 QoE anomaly injected in the campus network B 

As expected, all users in campus network B have QoE anomalies. Figure 44 shows the 

localization of all suspect nodes that are exclusively on anomalous user B1's path. As annotated, 

user B1 was streaming videos from S1 through routers in the campus network B and the routers in 

the transit network T3. The suspect systems retrieved from suspect nodes are the user device on 

B1, the campus network B and the transit network T3, as shown in Table 8. It is shown that the 

campus network B and the transit network T3 had the same highest percentage (100%) of users 

with QoE anomalies and the same lowest QoE score (1.2657). They are both identified as 

anomalous system causing the QoE anomaly. However, the campus network B is the true 

anomalous system. In this experiment, QRank is not accurate enough to pinpoint the system with 

injected anomaly but it successfully narrows down the anomalous systems from 3 suspect systems 

to 2. If there were some users in other access networks streaming through the transit network T3, 

they would not have QoE anomalies as the anomaly is injected in campus network B. Then, the 

percentage of related anomalous users in T3 would be less than 100% and the original QoE score 

on T3 would be higher. This experiment shows that the accuracy of QRank depends on the number 

of users related to a system. If more related users are available for a suspect system, the more 

accurate QoE score can be learnt, which in turn improves anomaly identification accuracy. 
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Figure 44:  Localization of suspect nodes for QoE anomalies injected in campus network B 

Table 8: QoE scores for suspect systems of QoE anomaly injected in the campus network B 

System Type Name 
% of related 

users with QoE 
anomalies 

# related users 
with QoE 
anomalies 

QoE Score 

Network Campus Network B 100% 3 1.2657 
Network Transit Network T3 100% 3 1.2657 

Device 
<PL, … EM-

DASH> 
33.33% 3 3.7230 

5.6.6 QoE anomaly injected in a type of devices 

In the previous experiments, all users ran our emulated DASH players (EM-DASH) written 

in Python 2.7 on PlanetLab (PL) servers installed with Fedora 14, thus all users' devices belonged 

to the same category, denoted as <PL, Fedora 14, Python 2.7, EM-DASH>. In order to test if 

QRank is able to identify anomalies caused by software issues on user devices. We inject faults in 

our emulated video player to add delay for all packets it receives, denoted as EM-DASH-ERR. We 
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let user A1 and C2 use EM-DASH-ERR and all others use EM-DASH for video streaming in this 

experiment. As expected, A1 and C2 have QoE anomalies while others have good QoE. Figure 45 

shows the localization of suspect nodes for QoE anomaly on C2. From the ranking of possible 

anomaly origins shown in Table 9, we notice that though the Cloud network 1 is detected as a 

suspect system as there are routers in the network exclusively on user C2's streaming path, the 

Cloud network 1 has higher QoE score compared to the type of device C2 is using. It shows that 

QRank successfully identifies QoE anomalies on user devices if the anomalies is a reproducible 

software issues. 

 

Figure 45:  Localization of suspect nodes for QoE anomalies injected on devices running 

EM-DASH-ERR video player 
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Table 9: QoE scores for suspect systems of QoE anomaly injected on devices running EM-

DASH-ERR video player 

Origin Type Name 
% of related 

users with QoE 
anomalies 

# of related users 
with QoE 
anomalies 

QoE Score 

Device 
<PL, Fedora 14, Python 
2.7, EM-DASH-ERR> 

100% 2 1.2657 

Network Cloud Network 2 33.33% 2 3.8378 

5.7 Evaluation of QRank for VoD in Azure Cloud 

We run QRank in production Azure Cloud and find the access network, the transit network 

and user devices are major anomalous systems causing QoE anomalies in production Cloud 

environment. The Azure Cloud itself does not incur any QoE anomalies during 2 days. We deploy 

a VoD website in Microsoft Azure with video content cached in Azure CDN. We emulated 100 

users worldwide in PlanetLab and 24 users in two types of VMs in all regions of Azure Cloud to 

stream videos. Two types of Azure VMs are the A0 and A2 instances installed with Ubuntu 16.04 

and all Azure emulated users run EM-DASH player in Python 2.7. We deploy QRank cloud agents 

in 5 regions (east US, central US, west US, west Europe and Japan west) of Azure Cloud. The 

cloud agents collect QoE measurement for both Planetlab and Azure users in each region. All users 

request 55 minute-long videos at the beginning of every hourto run DASH streaming continuously 

for 48 hours. The chunk size is 5 seconds for all videos. QRank cloud agents collect QoE 

measurement every 12 chunks every minute if there is no freezing. 
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5.7.1 QoE anomalies in production Cloud 

QRank detects 9,367 QoE anomalies in total. 65 users among 124 emulated users 

experienced QoE anomalies. We observe that 61.98% (5806 in 9367) QoE anomalies identify 

networks as the anomalous systems. Among those anomalies, 94.64% (5495 in 5806) QoE 

anomalies identify access networks as anomalous systems; 22.39% (1300 in 5806) QoE anomalies 

identify transit networks as anomaly systems; only one QoE anomaly lasting one chunk period 

was identified in Cloud network. As 97.23% QoE anomalies (5343 in 5495) incurred by access 

networks and 95.38% QoE anomalies (3408 in 3573) incurred by devices were experienced by 

PlanetLab users, it is reasonable to infer that the capacity of PlanetLab servers were limited 

intentionally. In production environment with real users, transit networks would be the major 

causes of QoE anomalies. For all QoE anomalies caused by devices, we notice that 95.38\% were 

caused by Palnetlab nodes with average duration of 89.97 seconds, 2.23% were caused by Azure 

A0 instances with mean duration of 46.212 seconds and only 2.37% were caused by Azure A2 

instances with mean duration of 12.49 seconds. It can be inferred that a device used in multi-tenant 

environment can caused QoE anomalies more likely. The anomalies also last longer on devices 

with low hardware resource configurations. 

5.7.2 Accuracy of QRank 

QWatch only locates anomalies in suspect nodes. QWatch assumes these nodes are likely 

to cause anomalies. QRank system further retrieves suspect systems from suspect nodes and 

identifies anomalous system by ranking the percent of anomalous users and their QoE scores. The 

ranking algorithm can further narrow down the range of suspect systems and identify the true 

anomaly system. Figure Figure 46 compares the cumulative distribution of the number of suspect 
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systems obtained by QWatch only and the number of anomalous system obtained by QRank for 

all QoE anomalies detected. It shows that the ranking algorithm successfully identified the unique 

anomalous systems for 74.26% of QoE anomalies. 

 

Figure 46:  Comparison of accuracy of QWatch vs QRank 

5.8 Summary 

By injecting anomalies in different systems in a controlled VoD system, we verify that 

QRank can correctly identify the anomalous system causing the QoE anomaly. We test QRank in 

a VoD deployed in Azure Cloud with users emulated in Planetlab and Azure Cloud around the 

world for 2 days. The practice of QRank shows that QoE data is an effective measurement to 

evaluate how different systems in VoD perform in run time. With enough users sharing their QoE 
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dada and route information, QRank can identify the anomalous systems for QoE anomalies without 

detailed monitoring in involved systems.  
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6. INSIGHTS FROM PERSISTENT AND RECURRENT QOE ANOMALIES FOR 

DASH STREAMING IN THE CLOUD 

6.1 Introduction 

In this chapter, we analyze the QoE anomalies for DASH streaming from a production 

Cloud CDN. We run a QoE anomaly identification system, QRank. QRank uses real-time QoE 

measurements to identify the anomalous systems. QRank assumes that the system with users who 

experience lower QoEs is more likely cause QoE anomalies. QRank identifies anomalous system 

by ranking the QoEs in all systems in the video streaming. We consider Cloud CDN servers, Cloud 

CDN networks, transit networks, access networks and different types of user devices. We deploy 

124 users worldwide in PlanetLab and Azure Cloud to run DASH video streaming sessions for 

100 hours. QoE measurements from 124x100=12400 video sessions are collected. 9440 QoE 

anomalies with average length of 127.48 seconds are detected on 65 emulated users.  

Our extensive experiments in production Cloud find the following insights. 

 Users experience QoE anomalies very differently. a) Recurrency: 12.1% users experience QoE 

anomalies recurrently and experience 87.83% of QoE anomalies. b) Persistency: 8.87% of 

users experience persistent QoE anomalies with duration over 15 minutes. c) Sparcity: During 

100 hours’ video streaming, 41.1% of users experience only less than one QoE anomaly per 

hour and all QoE anomalies last less than 900 seconds. 47.58% of users do not experience QoE 

anomalies at all.  

 According to QRank, access networks, transit networks and user devices incur more than 

99.98% of QoE anomalies. Among those, 58.66% of QoE anomalies are identified in access 

networks, 38.14% in user devices, and 13.89% in transit networks.  
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 95.38% of QoE anomalies in user devices and 97.23% in access networks are experienced by 

PlanetLab users. These users are emulated on 48 PlanetLab nodes that belong to 21 campus 

networks. We infer that PlanetLab nodes in those campus networks are capacity limited, 

causing QoE anomalies.  

 QoE anomalies incurred in access networks and devices are due to PlanetLab conditions. We 

infer that transit networks could be the major cause of QoE anomalies for real world video 

application in the Cloud. For all QoE anomalies identified in transit networks, more than 95% 

of QoE anomalies are identified in only 10 transit ISPs.  

These results have an important implication. In order to provide good user QoE, the Cloud 

provider should identify transit networks that may become bottlenecks for high quality video 

streaming and appropriate peering with Internet Service Providers (ISPs) to bypass these 

bottlenecks. 

6.2 Descriptive statistics of QoE anomalies 

6.2.1 Prevalence of QoE anomalies among users 

During 100 hours of video streaming from 124 emulated users in PlanetLab and Azure, 

QRank detects totally 9440 QoE anomalies. 65 users out of 124 experience QoE anomalies. We 

count the number of QoE anomalies per user. Results show that a small number of users experience 

a huge number of QoE anomalies while most users have no QoE anomalies or very small number 

of QoE anomalies in two days. The top 10 users account for 8049 QoE anomalies in total of 9440 

QoE anomalies (85.26%). Most QoE anomalies are severe (4485 out of 9440) and medium (4861 

out of 9440) anomalies. Among all QoE anomalies, only less than 1% (94 out of 9440) are light 

QoE anomalies. More than 99% of QoE anomalies are severe and medium QoE anomalies. It 
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indicates that during anomaly period, users have more than 20% chunks with QoE values less than 

0q  . They probably stream videos at two lowest bit-rate all the time. 

 

Figure 47:  The count and the average duration of QoE anomalies per user (Top 10 shown) 

 We notice that some users experience QoE anomalies with an average anomaly period 

longer than 30 minutes. We denote QoE anomalies lasting longer than 900 seconds (i.e. 15 

minutes) as persistent QoE anomalies. QRank detects that there are 11 users experiencing 332 

persistent QoE anomalies. The top 6 users experience more than 97% (323 in 332) persistent QoE 

anomalies. All of them are PlanetLab users.  
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Figure 48:  The count and the average duration of persistent QoE anomalies per user  

We list the number and the average duration of all persistent QoE anomalies they 

experience in Figure 48. Almost all persistent QoE anomalies are severe and medium QoE 

anomalies. There are users experiencing short QoE anomalies that occur frequently. These QoE 

anomalies last less than 15 minutes but occur recurrently, on average occurring more than once 

per hour. We denote these QoE anomalies as recurrent QoE anomalies. All users with recurrent 

QoE anomalies are shown in Figure 49. Among 65 users with QoE anomalies, there are 14 users 

experiencing recurrent QoE anomalies. The top 4 users with most recurrent QoE anomalies 

experience 77.8% (6453 out of 8292) of recurrent QoE anomalies. 
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Figure 49:  The count and the average duration of recurrent QoE anomalies per user  

 All other QoE anomalies are occasional QoE anomalies. Occasional QoE anomalies last 

less than 900 seconds and on average occur less than once per hour. Figure 50 shows that 

occasional QoE anomalies among users follows a long-tail distribution. 47 users only have 

occasional QoE anomalies and 4 users experience both occasional and persistent QoE anomalies. 

Among all 9440 QoE anomalies, there are 332 persistent QoE anomalies, 8292 recurrent QoE 

anomalies and 812 occasional QoE anomalies.  Around 91.4% of QoE anomalies are persistent 

and recurrent QoE anomalies. These anomalies occur only on 19 users. (15 users with recurrent 

QoE anomalies plus 11 users with persistent QoE anomalies minus 7 users with both anomalies as 

shown in Table 10.) From above results, we show that persistent and recurrent QoE anomalies are 
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not prevalent and only occur on a small number of users. Occasional QoE anomalies are prevalent 

among users and its distribution over users seems like a long-tail distribution. We later show that 

these occasional QoE anomalies are mostly caused by occasional traffic congestion in different 

networks. 

 

Figure 50:  The count and the average duration of occasional QoE anomalies per user  

Table 10: Number of users with different QoE anomalies 

Types of QoE anomalies on 
emulated users 

# of 
users 

Emulated User Examples 

Total # of emulated users 124 
 Emulated users got QoE 

anomalies 
65 

Emulated users get occasional 
QoE anomalies 

51 
azuser-canadacentral-a2, 
planetlab2.cs.okstate.edu 
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Emulated users get recurrent 
QoE anomalies 

15 planetlab1.rutgers.edu, planetlab-2.sysu.edu.cn 

Emulated users get persistent 
QoE anomalies 

10 
planetlab2.cs.purdue.edu, 

planetlab1.temple.edu 

6.2.2 Types of anomalous systems 

Table 11: QoE anomaly statistics in each anomalous system type 

Types of 
Anomalous 

systems 
Networks Client Server 

Anomalous 
sytems  

Cloud 
Network 

Transit 
Network 

Access 
Network 

All 
Networks 

User 
devices/Home 

network 
Servers 

# of QoE 
anomalies 

1 1373 5568 5887 3573 0 

Mean Anomaly 
Duration 

5.0 185.992 139.22 133.97 secs 87.153 N/A 

QRank identifies QoE anomalies in user devices/home networks, access networks, transit 

networks, cloud networks and CDN servers. When a QoE anomaly is detected on a video session, 

all systems in the video streaming are analyzed. QRank identify the system with the lowest average 

QoE value during the anomaly period. We count the number and the average duration of QoE 

anomalies identified in different types of anomalous systems in Table 11. We observe that 62.36% 

(5887 out of 9440) QoE anomalies identify network systems as the anomalous systems. Among 

those anomalies, 94.58% (5568 out of 5887) QoE anomalies identify access networks as their 

anomalous systems. 23.32% (1373 out of 5568) QoE anomalies identify transit networks as 

anomalous systems. Only 1 QoE anomaly identify Cloud networks as anomalous systems. QoE 

anomalies identified in access and transit networks usually last long time on average. QoE 

anomalies identified in access networks last 139.22 seconds on average. Anomalies identified in 

transit networks on average last 185.992 seconds. Client devices/home networks are identified as 
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anomalous systems for 3573 QoE anomalies (37.85%) and these anomalies on average last around 

87.153 seconds. We now describe in detail anomalous systems in each category. 

6.2.3 QoE anomalies identified in access networks 

In Figure 51, we count the number and the average duration of QoE anomalies over access 

networks. The top three access networks totally incur 78.8% (4392 out of 5568) of all QoE 

anomalies in access networks. The top three access networks are AS4538 with Name “China 

Education and Research Network Center”, AS17 with name “Purdue University” and AS4134 with 

name “No.31,Jin-rong Street”. We study users connecting through these networks and we find that 

AS4538 is the access network of planetlab-1.sysu.edu.cn and planetlab-2.sysu.edu.cn. AS17 is the 

access network for planetlab1.cs.purdue.edu, planetlab2.cs.purdue.edu. AS4134 is the access 

network for user “planetlab-js1.cert.org.cn”. These users experience a large number of QoE 

anomalies as shown in Figure 47.  

 

Figure 51:  The count and the average duration of QoE anomalies in access networks 
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As shown in Figure 52, AS17 and AS4134 also incur persistent QoE anomalies. There is 

also another access networks, AS 3778 with ISP name “Temple University”, incurring persistent 

QoE anomalies that on average last more than 38 minutes (2299.9 seconds). Among 238 persistent 

QoE anomalies identified in access networks, these three access networks incur 233 persistent QoE 

anomalies. 

 

Figure 52:  The count and the average duration of persistent QoE anomalies in access 

networks 

As shown in Figure 53, most recurrent QoE anomalies occur in a small number of access 

networks. The top three access networks totally incur 83.36% (4067 out of) of QoE anomalies in 

access networks. The top six access networks incur total 95.88% (4678 out of 4879) recurrent QoE 

anomalies identified in access networks. The recurrent QoE anomalies they incur last from 9 

seconds to 2 minutes (110.9 seconds) on average. There are also anomalous networks that only 
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cause QoE anomalies occasionally, such as AS46357 with ISP name of California Polytechnic 

State University and AS 88 with ISP name of Princeton University. 

 

Figure 53:  The count and the average duration of recurrent QoE anomalies in access 

networks 

6.2.4 QoE anomalies identified in transit networks 

In Figure 54, we count the number of QoE anomalies that are identified in transit networks. 

There are totally 38 anomalous transit networks and these networks totally cause 1373 QoE 

anomalies. AS262589 with ISP name “INTERNEXA Brasil Operadora de Telecomunicacoes S.A” 

is identified to cause the largest number of QoE anomalies. The distribution of QoE anomalies 

among transit networks has a long tail. The top 10 transit networks totally incur more than 82.45% 

(1132 out of 1373) of all QoE anomalies identified in transit networks.  
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Figure 54:  The count and the average duration of QoE anomalies in transit networks 

From Figure 55, we notice that AS 7922 (Comcast Cable Communications, LLC) and AS 

3491 (PCCW Global, Inc.) cause 94.68% of persistent QoE anomalies (89 out of 94).  
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Figure 55:  The count and the average duration of persistent QoE anomalies in transit 

networks 

In addition to AS 3491, there are four other transit ISPs that incur many recurrent QoE 

anomalies. As shown in Figure 56, they are AS19037 (AMX Argentina S.A.), AS262195 

(Transamerican Telecomunication S.A.), AS262589 (INTERNEXA Brasil Operadora de 

Telecomunicacoes S.A), and AS6762 (TELECOM ITALIA SPARKLE S.p.A). AS3491 incurs 

recurrent QoE anomalies lasting longer than 100 seconds on average.  The other three transit 

networks incur recurrent QoE anomalies lasting less than 10 seconds on average. 
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Figure 56:  The count and the average duration of recurrent QoE anomalies in transit 

networks 

6.2.5 QoE anomalies identified in devices 

Around 37.85% (3573 out of 9440) QoE anomalies identify devices as anomalous systems. 

In Figure 57, we show the count and the average duration of all QoE anomalies identified in 

different types of devices. In our experiments, we use PlanetLab nodes to emulate users so the 

users’ devices are PlanetLab servers. 
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Figure 57:  The count and the ave duration of QoE anomalies in various types of devices 

6.3 Root cause analysis for QoE anomalies 

6.3.1 Root Cause Analysis for Persistent QoE Anomalies 

Transit and access networks in our experiments cause most persistent QoE anomalies. We 

analyze two persistent QoE anomalies that are identified in transit/access networks. From the 

latency measurements to those anomalous systems, we show that latencies to the anomalous 

networks increase and fluctuates. 
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6.3.1.1 Persistent QoE anomaly identified in access network 

 

Figure 58:  A persistent QoE anomaly identified in access network 

In Figure 58, we show an example of persistent QoE anomaly on user 

“planetlab2.cs.purdue.edu” identified in access network AS17 (Purdue University). Figure 58 (a) 

draws the located suspect nodes that are exclusively on the routes of users with QoE anomalies. 

Figure 58 (b) highlights the access network that is identified by QRank as the anomalous system. 

QRank compares QoE scores among all networks involved and identify the one with the lowest 

aggregated QoE (0.835) as the anomalous system. We then show the probed latencies to all routers 

  

(a) Localization of suspect nodes                                               (b) QoE Anomaly Origins identified by QRank 

 

(c) Latencies to all routers involved in the video streaming            (d) Inferred latencies of all links in the video streaming 
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that are on the user’s path in Figure 58 (c). It shows that the latencies from the user to the routers 

in the network AS 17 fluctuate a lot. AS17 is the access network. The latencies to those routers are 

expected to be much lower than routers in other networks. However, we observe that the latencies 

to the router 128.10.127.251 in AS17 is similar to or just slightly lower than the latencies to the 

server 72.21.81.200. Sometimes, the latencies to 128.10.127.251 can increase up to longer than 80 

milliseconds. The maximum latency to the router is even longer than the maximum latency to the 

server. It indicates that the end-to-end latency to the server is mainly induced by the latency in 

access network AS17. We then estimate the link latencies from per traceroute data probed every 

10 minutes. We draw the estimated latencies for all links on the user’s path in Figure 58 (d). We 

observe that the latencies for links in AS17 are on average larger and fluctuate more. Both users 

through AS17 network experience persistent QoE anomalies. It indicates the emulated DASH 

users choose the lowest bitrate during the anomaly. It is reasonable to infer that there is not enough 

capacity in network AS17, which incur the QoE anomalies 

6.3.1.2 Persistent QoE anomaly identified in transit network 

In Figure 59, we show the network measurements during an example persistent QoE 

anomaly. The anomaly is identified in transit network AS7922 (Comcast Cable Communications, 

LLC). The QoE anomaly last 2193 seconds on emulated user “planetlab1.temple.edu”. We probe 

all routers on the user’s path to its cache server. The latencies to all routers from the user is shown 

in Figure 59 (a). The monitoring agent on the user probes all routers with 10 pings every minute. 

The latency is estimated by the mean of round trip times of 10 pings. It shows that the latencies 

from user to several routers in AS7922 increases frequently. These routers include 69.241.67.106, 

50.207.243.129, and 69.241.67.186.  
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Figure 59:  A persistent QoE anomaly identified in transit network 

We also probe the cache server with traceroute measurement every 10 minutes. We 

estimate link latencies from latencies of adjoining hops. The link latencies during the QoE anomaly 

period is shown in Figure 59 (b). It shows that the latencies on link between router 50.207.243.129 

and the router 69.139.192.169 are on average higher than latencies on other links. It can be verified 

in Figure 59 (a) as well. The probed latencies to router 69.139.192.169 is low. The maximum RTT 

probed on 69.139.192.169 is 2.5259 ms. However, the probed latencies to router 50.207.243.129 

is on average high (4.7534 ms) and is with a lot of fluctuations. The maximum RTT to 

50.207.243.129 is 33.4833 ms. This can be caused by dynamic queue length on this router or. It 

also indicates that the traffic through the transit network is bursty. This might cause the QoE 

anomalies on users who stream through this network. 

   

(a) Left: Mean latencies probed from a user to all routers on the session’s path  (Mean latencies from 
10 pings) (b) Right: Inferred latencies on all links (Traceroute) 
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6.3.2 Root Cause Analysis for Recurrent QoE Anomalies 

During 100-hour experiments, we find that access networks, transit networks and the user 

devices incur recurrent QoE anomalies. We in the following give examples to analyze possible 

root causes of these recurrent QoE anomalies. 

6.3.2.1 Recurrent QoE anomaly identified in access network 

 

Figure 60:  A reccurent QoE anomaly identified in access network 

Figure 60 (a) showed recurrent QoE anomalies on user “planetlab-1.sysu.edu.cn” and 

“planetlab-2.sysu.edu.cn” who both access Internet through the network AS4538. The QRank 

identifies the access network AS4538 as the anomalous system. We then probe latencies from a 

monitoring agent in the closest Azure region to several routers in the network AS4538 and some 

routers in transit network AS10026. In Figure 60 (b). It shows that the probing latencies to the 

routers in AS4538 increase above 200 ms frequently. We also highlighted all anomaly periods in 

red and pink bars in Figure 60 (b). Many QoE anomalies co-occur with those latency peaks. From 

  

(a) Left: QoEs on anomalous users (b) Right Latencies probed from a monitoring agent to 
routers in suspect networks. 
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Figure 60 (a), we see that both emulated users have QoE just above 2 when there are no QoE 

anomalies. It can be inferred that there is not sufficient capacity for them to stream higher bitrates. 

When the probing latencies to routers in AS4538 increases, the packets going through the network 

gets longer delays, resulting QoE below 2. We also study the probing latencies to various routers 

in AS4538 through a 2-day period. The latencies show strong fluctuations. We find that the peak 

latencies (larger than 200 ms) occur recurrently with an average interval of 83.83 seconds. It 

always goes up to 250 ms. 

6.3.2.2 Recurrent QoE anomaly identified in transit network 

 

Figure 61:  A reccurent QoE anomaly identified in recurrent network 

In Figure 56, we show the count of recurrent QoE anomalies identified in various transit 

networks. The top anomalous transit networks are AS 3491, AS19037, AS262195, AS262589, etc. 

We pick up a QoE anomaly on a user streaming through AS262589 to show possible root causes 

of QoE anomalies in transit networks. The recurrent QoE anomaly is on user “planet-lab4.uba.ar”. 

The anomaly occurs very often during the streaming. We only draw QoE curve in a 10-minute 

 

(a) Left: QoEs on the user with recurrent QoE anomaly (b) Right: Latencies probed from the 
user to all routers on user’s path to its cache server 
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time window as shown in Figure 61 (a). QRank identifies the anomaly in the transit network 

AS262589.  We let a monitoring agent on the user probing all routers on its route to the cache 

server. Figure 61 (b) shows the latencies to all routers. The latencies to all routers seem very steady. 

There is one router 177.84.161.134 in AS262589 with long latency (around 150 ms). The probed 

latency to the router is even longer than the probed latency to the server, which is 192.16.48.200 

in AS15133. It is either due to the long queue length on the router or the low priority of Ping traffic 

on the router. Long queue indicates that the capacity of the router is barely adequate to handle the 

traffic. We also observe that user “planet-lab4.uba.ar” overall has a medium QoE with chunk QoE 

values from 2 to 3. The QoE frequently drops below 2 but the QoE anomalies usually last less than 

10 seconds. We infer that the recurrent QoE anomalies are related to the recurrent increases of 

traffic in AS262589. As the capacity in AS262589 is barely adequate and can provide QoE just 

above 2, a slide increase in traffic can decrease the user QoE. Besides, given a certain bitrate, the 

volume of video traffic also dynamically changes according to its content. 

6.3.2.3 Recurrent QoE anomaly identified in user devices 

From Figure 49, we notice that the user with the most number of recurrent QoE anomalies 

is “planetlab1.rutgers.edu”. The anomalous system for the anomaly is identified in the device. The 

device is a PlanetLab node installed with Fedora 14 Laughlin OS. It runs our emulation code of 

DASH player in the environment of Python 2.7.0. In Figure 62, QRank identifies the client node 

as the anomalous node because it is the only node exclusively on anomalous user’s path. There are 

many such QoE anomalies. We find that all persistent and recurrent QoE anomalies in devices are 

on PlanetLab nodes. We infer that these PlanetLab nodes may have outbound capacity limit. There 

are only 4.9% QoE anomalies identified in Azure A0 and A2 instances. These are all occasional 
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QoE anomalies. Azure A0 and A2 instances are the most economical virtual machines that share 

physical resources with other tenants. Their performance can degrade occasionally under 

interference.   

 

Figure 62:  QoE anomaly identified in device 

6.3.3 Root Cause Analysis for Occasional QoE Anomalies 

 

Figure 63:  Occasional QoE anomaly identified in various networks 

 

(a) Access networks                                           (b) Transit networks 
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Occasional QoE anomalies are widely identified in various types of networks. In the above 

sections, we discuss persistent and recurrent QoE anomalies. More than 95% of all persistent and 

recurrent QoE anomalies are identified in 3 access and 2 transit networks. The occasional QoE 

anomalies are identified in more networks. The occasional QoE anomalies distribute over various 

anomalous networks following long tail distributions as shown in Figure 63. There are no special 

patterns observed on latencies to these networks. These anomalies usually last very short period 

and do not recur. We therefore infer that these occasional QoE anomalies are caused by occasional 

bursty traffic in these networks. There is only one occasional QoE anomaly identified in the Cloud 

network. It is on user “planetlab1.cesnet.cz”. We study the anomaly identification result from 

QRank. We find that the anomaly is identified in all systems in the video streaming. QRank 

identifies anomalous system purely based on users’ QoE. If there is no other users using the same 

network, QRank assumes the network is a suspect to cause the anomaly. We notice that the only 

QoE anomaly identified in Cloud network is due to the insufficient accuracy of QRank system. If 

more users are using the Cloud network, the QRank would be able to identify the QoE anomaly in 

one true anomalous system rather than in all networks. 

6.4 Summary 

As video services starts migrating to the Cloud, video service providers are wondering 

whether the Cloud can provide good Quality of Experience (QoE) for their users. In this paper, we 

ran 124 emulated users around the world to perform DASH video streaming from Microsoft Azure 

Cloud CDN to measure the performance of the Cloud CDN in terms of user QoE. We collected 

QoE anomalies from 12400 video sessions and identified the anomalous systems that cause those 

QoE anomalies. Interestingly, the Cloud CDN does not incur any QoE anomalies. Instead, transit 



133 

 

networks, access networks and devices are major causes of QoE anomalies. Besides, more than 

91.4% QoE anomalies are experienced by only 15.32% users and these users experience QoE 

anomalies either persistently or recurrently. 2 transit networks and 3 access networks incur more 

than 95% of all persistent QoE. 6 access networks and 10 transit networks incur more than 95% 

of all recurrent QoE anomalies. If capacity in these anomalous networks can increase, more than 

95% QoE anomalies would not occur. We conclude that to provide good QoE for video services, 

the Cloud provider should work with access/transit ISPs to increase the capacity of end-to-end 

connections. 
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7. CONCLUSIONS 

 

We believe that end-user QoE provides accurate assessment of the system performance. 

We propose to apply end user QoE in the management and control of large-scale VoD systems in 

the Cloud. Specifically, we verify the effectiveness of QoE based management and control in three 

systems. 

QMan controls the server selection adaptively based on end user QoE. Our extensive 

evaluations show that by using QoE as a principle to select servers, QMan improves overall user 

QoE over common measurement based server selection. QMan system provides 9% to 30% more 

users with QoE above the MOS “Good” level than the existing measurement based server selection 

systems. For users who are impacted by dynamic and severe interference in the Cloud, QMan can 

improve the QoE from the “bad” to “fair” in MOS level. Results also show that QMan can discover 

operational failures by QoE based server monitoring and prevents streaming session crashes. 

QWatch uses end-user QoE to detect QoE anomalies and correlate users’ data to locate 

QoE anomalies. We run extensive experiments in a controlled VoD system and production Cloud 

(Azure Cloud and CDN) to validate QWatch’s accuracy in detection and localization. We find 

numerous false positives and false negatives in production Cloud when system metric based 

anomaly detection methods are used. QWatch correctly detects and locates anomalies in controlled 

experiments. 

QRank learns the performance of various suspect systems via end user QoE and identifies 

the QoE anomaly in the systems with low QoE scores. By injecting anomalies in different systems 

in a controlled VoD system, we verify that QRank can correctly identify the anomalous system 

causing the QoE anomaly. We run QRank for video streaming in the production Cloud 
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environment for 2 days. By analyzing 9140 QoE anomalies from 12400 video sessions in the 

Cloud, we find that the Cloud CDN server does not incur any QoE anomalies. Instead, transit 

networks, access networks and devices are major causes of QoE anomalies. Among those 

anomalies, a small number of users (15 out of 124) experience around 87.8% anomalies 

recurrently.  11 out of 124 users experience long QoE anomalies, on average lasting more than 15 

minutes. From QRank identification results, we show that more than 95% of persistent and 

recurrent QoE anomalies are incurred by less than 10 networks.  We argue that to provide good 

QoE for video services, the Cloud provider should identify networks that may become bottlenecks 

for high quality video streaming and appropriate peer with Internet Service Providers (ISPs) to 

improve the capacity of end-to-end connections. 
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8. FUTURE WORK 

 

QMan system shows that applying user QoE in the adaptive control of server selection is 

effective in improving overall user experience. In order to apply QMan, VoD providers need to 

have the access to select at server level. Most CDN providers do not grant this control to VoD 

providers. To have some flexibility in choosing server, VoD systems adopts multi-CDN strategies. 

Netflix and Hulu use Akamai, Level 3, and Limelight at the same time. As QoE is an effective 

measurement to predict the performance of various systems including the CDN, the QMan system 

can be extended to multi-CDN adaptation systems in the future. 

By running QRank systems in three production Clouds, Microsoft Azure, Google Cloud 

and Amazon Web Service, we find that popular Cloud providers differ a lot in infrastructure 

deployment, technology adoption, network peering and pricing. All of these would affect user QoE 

for a particular application. How an application provider chooses the Cloud to achieve both cost-

efficient services and good overall user QoE is a challenging task.  

From our experiments, we show that the accuracy of QWatch and QRank heavily relies on 

the number of users using a system. The more user QoE observed on a system, the more accuate 

the QoE based monitoring can provide. If end user QoE data can be collected from large-scale 

commercial VoD, such as YouTube and Netflix, interesting insights can be gained about the 

performance issues in Internet, production Cloud and CDN systems. 
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