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Abstract

For decades, humans have dreamed of making cars that could drive themselves,
so that travel would be less taxing, and the roads safer for everyone. Toward this
goal, we have made strides in motion planning algorithms for autonomous cars,
using a powerful new computing tool, the parallel graphics processing unit (GPU).

We propose a novel five-dimensional search space formulation that includes
both spatial and temporal dimensions, and respects the kinematic and dynamic
constraints on a typical automobile. With this formulation, the search space grows
linearly with the length of the path, compared to the exponential growth of other
methods. We also propose a parallel search algorithm, using the GPU to tackle
the curse of dimensionality directly and increase the number of plans that can be
evaluated by an order of magnitude compared to a CPU implementation. With
this larger capacity, we can evaluate a dense sampling of plans combining lateral
swerves and accelerations that represent a range of effective responses to more
on-road driving scenarios than have previously been addressed in the literature.

We contribute a cost function that evaluates many aspects of each candidate
plan, ranking them all, and allowing the behavior of the vehicle to be fine-tuned
by changing the ranking. We show that the cost function can be changed on-line
by a behavioral planning layer to express preferred vehicle behavior without the
brittleness induced by top-down planning architectures. Our method is particu-
larly effective at generating robust merging behaviors, which have traditionally
required a delicate and failure-prone coordination between multiple planning lay-
ers. Finally, we demonstrate our proposed planner in a variety of on-road driving
scenarios in both simulation and on an autonomous SUV, and make a detailed
comparison with prior work.
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Chapter 1

Introduction

I must commandeer your vehicle.

Robocop
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For decades, humans have dreamed of making cars that could drive them-
selves, so that travel would be less taxing, and the roads safer for everyone. This
thesis brings us one step closer to realizing that dream. We have made strides in
motion planning algorithms for autonomous cars, using a powerful new comput-
ing tool, the massively parallel graphics processing unit (GPU).

Autonomous on-road vehicles sophisticated enough to drive safely and reli-
ably in any traffic condition would be of great benefit to society. They would
decrease traffic accidents, lower costs in the transportation industry, decrease con-
gestion and commute times, and grant independence to millions of people who
are currently unable to drive because of age or infirmity.

An autonomous on-road vehicle requires a robust motion planning system.
The motion planning system generates a trajectory specifying the movement of
the vehicle over the next several seconds, using information provided by the per-
ception system about the vehicle’s current state, the shape of the road ahead, and
the locations of other vehicles and objects on the road. As conditions on the road
change, the planner must be able to provide updated plans quickly. It is a chal-
lenging problem to generate a trajectory that manifests good driving behavior in
complex traffic scenarios within the tens of milliseconds available. Existing mo-
tion planning algorithms do not provide the levels of robustness and reliability
required of a practical system. It is evident that both new ideas and increased
computational resources must be brought to bear on this problem.

In recent years, graphics processing units have evolved from specialized chips
dedicated to rendering three-dimensional graphics for video games and CAD mod-
els, into powerful general-purpose parallel processors that can run some parallel
algorithms much faster than a normal CPU can run their sequential counterparts.
In order to solve a problem using parallel algorithms, we need to think about it
in new ways. Not only can the motion planning problem for on-road vehicles be
solved using parallel methods, as we will show, but the additional power made
available by the GPU allows us to make qualitative improvements in system ro-
bustness and flexibility.
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In the rest of this document we describe the new advances we have made in
motion planning for autonomous on-road vehicles using the GPU. In the following
section we motivate our selection of the motion planning problem as a worthwhile
application domain, and argue that parallel computation in general and GPUs in
particular will become increasingly important in the future.

1.1 Motivation

The field of motion planning encompasses applications as diverse as computing
protein interactions, creating assembly plans for complex manufactured products,
deriving humanoid walking gaits, plotting dynamic aircraft trajectories, and driv-
ing ground vehicles through rough terrain. A broad range of solution methods are
needed to address these disparate problem domains. For this thesis we narrow our
scope to parallel motion planning algorithms for autonomous on-road vehicles, an
application of considerable importance.

1.1.1 Why Autonomous Vehicles?

According to the National Highway Traffic Safety Administration (NHTSA), ap-
proximately two million vehicle crashes occurred in the US in 2007[1]. The vast
majority are attributable to driver error. For example, 20% of crashes involved
inadequate surveillance of the roadway by the driver, and 10% involved a distrac-
tion within the vehicle. The automotive industry has been developing increasingly
capable active safety systems to prevent crashes or mitigate their consequences.
Numerous auto makers offer a lane departure warning system that warns the driver
when the vehicle drifts out of the current lane without first signalling. Mercedes
and Infiniti offer vehicles that can actively brake the wheels on the opposite side
in order to slow or stall the drift. Mercedes and Infiniti offer a blind spot interven-
tion system that detects when the driver is about to collide with another vehicle
while changing lanes and similarly nudges the vehicle back. The Lexus LS 460
can actively apply torque to the steering wheel in order to keep within the lane
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Typical event in crash scenario class Cost Fatalities
Left turn at junction, hit opposing traffic $10.8B 1200
Left or right turn at junction, hit lateral traffic $7B 1200
Pass a vehicle on a highway, hit an oncoming car $0.9B 520
Turn at intersection, hit a pedestrian $0.8B 280
Start a left-hand turn from right-hand lane, hit vehicle
traveling in the same direction

$2.8B 190

Total $32.3B 3690

Table 1.1: Crash scenarios that are beyond the ability of modern active safety systems
to mitigate; data are for the USA from the year 2004[73]

on curving roads. Crash-imminent braking systems are able to detect imminent
collisions to which the driver has not yet responded and begin braking in order
to lessen the impact of the collision. All of these systems are relatively new and
available on expensive luxury vehicles. We are not aware of studies that estimate
the number of crashes prevented and lives saved by these technologies, but they
are no doubt effective. However, we contend that there are several significant
types of crashes which neither gentle braking, nor minor steering corrections, nor
panic braking can prevent. Table 1.1 lists a few of these types of crashes, with
the estimated economic costs and loss of life they cause. In the case of a poorly-
judged left hand turn, for example, panic braking in the middle of an intersection
would not necessarily be helpful. To prevent this and other types of crash would
require the vehicle to decide when to initiate the turning maneuver. Unless the
vehicle and driver were to trade control frequently back and forth, this implies
that the vehicle should drive autonomously all of the time, necessitating a com-
plete competence over all driving tasks. We expect the cutting-edge active safety
systems available in the luxury vehicle market to save more and more lives as they
trickle down to less expensive vehicles. However, thousands of lives and tens of
billions of dollars per year will continue to be lost until fully autonomous vehicles
are able to do all of the driving.

In addition to the lives that would be saved as a direct result of the crashes
prevented by autonomous vehicles, hundreds of thousands more lives would be
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improved by the enhanced mobility they could offer. As people age, their ability
to drive safely diminishes. The American Medical Association states that “motor
vehicle crash rates per mile begin to increase at age 65”[6]. Drivers age 65 and
above are four times more likely to be struck while making a left-hand turn than
adult drivers aged 18 to 64[2]. The average person spends the last 8 years of his
or her life without the functional ability to drive[6], significantly decreasing their
independence and quality of life. Autonomous vehicles could grant independence
to millions of older people who are able to move around on their own but are
unable to drive safely.

Finally, it is estimated that 3 trillion vehicle-miles were driven in the United
States in 2010[76], with 2 trillion of these in urban areas. Freeing humans from the
burden of attending to the driving task would have an enormous impact, allowing
tens or hundreds of billions of commuting hours to be spent more productively
and affecting nearly everyone’s life for the better.

1.1.2 Importance of Motion Planning

A competent motion planner is a necessary part of a capable autonomous on-road
vehicle. As mentioned at the beginning of this chapter, the motion planner must
generate a precise trajectory for the vehicle to follow in a limited amount of time.
Current autonomy systems include motion planners that are able to handle some,
but not all, scenarios required for an autonomy system to be competent at all driv-
ing tasks. Motion planners in the literature exist to change lanes[58, 105], turn at
intersections[28] and avoid some obstacles[43], but no single one can perform all
necessary actions of normal driving, let alone handle emergency evasive maneu-
vers in complex environments. Motion planning on-road is a complex task that
requires large amounts of computing power. So far the existing algorithms and the
traditional sequential computers on which they are designed to run have not been
able to solve the problem. We must invent new ideas and find more computational
resources to solve this problem. In the next section we will show that GPUs are a
promising potential resource.
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1.1.3 Parallel Computing Approach

Performance increases in traditional sequential computers are expected to remain
slight for the foreseeable future. Past increases have come from architectural im-
provements made possible by increases in transistor count and clock speed. Al-
though companies like Intel have been able to keep increasing transistor counts,
additional architectural improvements for sequential computing have become harder
to develop, and clock speeds have stopped increasing altogether. The result is that
future performance increases will come mainly in the form of increasing paral-
lelism.

Figure 1.1 shows the clock speeds of CPUs sold by Intel[20, 19, 72] since
1993. In that year the Pentium R© processor was introduced at 60 MHz. Processor
clock speeds doubled every two years for the next twelve years after that, cul-
minating in 2005 with a Pentium 4 R© processor running at 3.8 GHz. The last
six years, by contrast, have not seen a significant increase in the maximum clock
speeds of processors sold by Intel. Further increases in clock speed became dif-
ficult to achieve due to the increasing power demands and the heat generated at
higher clock speeds.

Though its processor clock speeds have plateaued, Intel has continued to in-
crease transistor density. Gordon Moore, a co-founder of Intel, predicted in 1975
that transistor density on computer chips would double approximately every 2
years[18]. This prediction has held true and become known as Moore’s Law. Ac-
cording to Intel researchers[41], Moore’s Law is expected to hold true for at least
the next decade, resulting in computer chips with many billions of transistors and
tens or hundreds of cores. Figure 1.2 shows the number of transistors actually put
onto each processor sold by Intel. The wide variation is explained by the fact that
the number of transistors on a chip is a significant factor in its cost.

Figure 1.3 shows that Nvidia Corporation, a major maker of GPUs, has also
increased the number of transistors on their chips, as well as the number of ba-
sic parallel computing elements that they compose. The compute cores of an
Nvidia processor are individually much smaller than an Intel processor core, but

17



Figure 1.1: Log plot of CPU clock speeds of desktop and server processors sold by
Intel from 1993–2008[20, 19, 72].

Figure 1.2: Log plot of numbers of transistors in desktop and server processors sold
by Intel from 1993–2008[72, 19, 72].
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(a) (b)

Figure 1.3: Nvidia GPUs designed for general-purpose parallel computing have
shown rapid increases in the numbers of (a) transistors and (b) parallel computing
cores they comprise.

the continued growth in their numbers is striking. We will explore the differences
between styles of parallelism in Intel CPUs and in Nvidia’s GPUs in the next
chapter. Briefly, while Intel processors are designed primarily to execute sequen-
tial tasks quickly, with small amounts of parallelism added in opportunistically,
the GPU is designed from scratch to run massively parallel computing tasks.

The key observation is that processor clock speeds are no longer increasing,
while transistor counts are still increasing. The implication is that faster proces-
sors will deliver increased performance mainly through parallelism, which will
require new algorithmic approaches to motion planning. In the following sections
we specify our thesis and give an overview of our approach.

1.2 Problem Statement

Autonomous on-road driving systems require more robust and capable low-level
trajectory planners before they are able to handle all of the eventualities that may
occur when driving on public roads. New parallel computers offer a way to in-
crease the amount of computational resources available to the trajectory planner.
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This thesis presents new planning ideas necessary to take advantage of these new
resources.

1.3 Thesis Statement

Our aim is to create a motion planner that can generate effective high-speed ma-
neuvers for robots in complex driving scenarios. This thesis shows that:

Parallel algorithms can improve the speed and quality of motion plan-

ning, enabling otherwise unattainable levels of performance for real-

time applications.

By the speed of motion planning we mean:

• The latency of the motion planner from reception of input to completion of
its output.

By performance we mean:

• The planner’s ability to plan complex maneuvers through complex situa-
tions, and at highway driving speeds.

By complex we mean:

• A driving scenario requiring multiple lateral motions and multiple phases
of acceleration and deceleration.

By real-time we mean:

• The planner must be guaranteed to produce a plan within a deadline. A
real-time planner is not necessary for low-speed applications where a panic
stop is always a viable and safe response should the planner fail to gen-
erate a plan in time to avoid an obstacle. However, Urmson showed[103]
that above a certain speed that depends on the vehicle dynamics and sensor
horizon, a swerve response may be necessary. Such a swerve response must
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Figure 1.4: The GPU enables candidate plans to be sampled at increased density.

be calculated at least within the time that would have been needed to stop
instead, setting an upper bound on the minimum latency allowed for the
planner. Hence, on-road driving is a real-time application.

By quality of plan we mean:

• The correspondence of the plan to the actual abilities of the robot.

• The expressiveness of the plan; i.e., can we express a complex desire and
expect the motion planner to return a solution optimized to satisfy it?

1.4 Approach

A contemporary graphics processing unit (GPU) from Nvidia Corporation con-
tains a general-purpose parallel computer that can run some workloads at a sig-
nificant speedup over typical CPUs. We have found that the trajectory planning
problem can be significantly accelerated on a GPU. The additional cycles allowed
us to take several new approaches, increasing the density of candidate plans our
planner analyzes, as illustrated in Figure 1.4. The net benefit is to increase the
overall robustness and flexibility of the planner. That is, a quantitative increase
in computing performance allows us to make a qualitative leap in planner perfor-
mance by several methods:

Search Space Decomposition Autonomous driving, like any interesting planning
domain, presents a space of possible actions too large to search naı̈vely. We
must decide how to ignore large portions of the search space a priori and
decompose the remainder into smaller, tractable subproblems which can
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be solved independently and combined into a solution to the full problem.
We propose a sampling method that samples the search space sufficiently
sparsely to render the problem feasible, yet with great enough coverage to
find reasonable plans in a range of driving situations.

Cost Scheduling A common approach to decomposing the search space is to fac-
tor the planning system into a hierarchy, where each planner in the hierarchy
operates on a simpler model of the world than the one below, but makes de-
cisions on a broader scope. Planners receive commands from above and
turn them into more detailed plans to send downwards. This rigid command
structure can lead to undefined behavior when commands turn out to be in-
feasible upon closer examination. We contribute a mode of communication
between layers that eliminates the rigidity in the chain of command: upper
layers modify the cost function used by lower layers to determine which
plan to follow, but do not issue direct commands. Our other contributions
enable this more robust method of communicating, which requires the lower
layers to take responsibility for examining many more plans.

Resolution-Equivalent Grid In a nonholonomic system such as a car traveling
on a public road, temporal and spatial planning dimensions are coupled,
meaning it is impossible to factor the problem along these dimensions into
independent subproblems. This constrains the options available for Search

Space Decomposition. Our planner searches in a unified space includ-
ing spatial and temporal dimensions. To resolve nonholonomic constraints
without increasing the grid resolution, we adapt the locations of grid points
on the fly, similar to the concept of resolution-equivalence enunciated in the
Incremental Search Engine[99], used in Hybrid A*[25], and the method of
Barraquand and Latombe[11].
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1.5 The Rest of This Document

In Chapter 2 we survey related work in motion planning for autonomous on-road
vehicles, both parallel and sequential approaches, and show how the work of this
thesis fills an important gap in the literature. We also present a brief overview of
the GPU architecture, and review the other types of parallel computers. In Chap-
ter 3 we describe our planning algorithm for the on-road vehicle motion planning
problem. We show how to use a boundary-value problem solver to connect sam-
pled points in the search space with high-fidelity kinematic paths, turning the
exponential growth of complexity with path depth into a tractable linear growth.
In Chapter 4 we look at how to set up the planning space described in the previ-
ous chapter to achieve specific driving behaviors. We show the effect of tuning
cost function parameters on the vehicle’s behavior, and how the behavioral layer
can effect interesting and useful driving behaviors by making changes to the cost
function while the vehicle is in motion. In Chapter 5 we discuss implementation
issues for our planning algorithm: how we integrated it into the existing Tartan
Racing infrastructure, and how we implemented our algorithm on the GPU to
achieve substantial acceleration compared to a sequential version on the CPU. In
Chapter 6 we evaluate the performance and capabilities of our planning algorithm
compared to previous works, showing that our planner advances the state of the
art in emergency evasive maneuvers. We conclude in Chapter 7, summarizing our
contributions and discussing future research directions.
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Chapter 2

Related Work
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In this chapter we provide background on three areas related to this thesis.
First, we discuss the related work in motion planning for on-road vehicles, and
work on parallel motion planning in general. Second, since we have chosen the
GPU parallel computing architecture to address the motion planning problem, we
give the reader an introduction to the major concepts of the GPU computing archi-
tecture, which will be useful in understanding the planning algorithms presented
in later chapters. Third, to justify our choice of the GPU, we review other types of
parallel computing architectures available and the typical applications for which
they are suited.

2.1 Planning Approaches

In this section we look at related work in motion planning, including algorithms
and applications specific to vehicles, algorithms and planning ideas that are not
specific to vehicles but which are used in or related to our algorithm, and general-
purpose parallel planning algorithms presented for the GPU.

2.1.1 Sampling Approaches for Off-Road Planners

In this section we look at some early progress in planning algorithms for vehicles
in off-road situations. We observe a trend towards increasing fidelity of the vehicle
model to reality, and an attempt to generate more complex plans.

Krogh and Thorpe[52] divide the planning algorithm for a mobile robot in a
cluttered environment into two parts: a global planner which uses a simple grid to
plot a rough path to the goal through the environment, and a local planner which
follows a potential-field formed by nearby obstacles and the path. They remarked
(in 1986) that “Computational complexity precludes the use of optimal control
or dynamic programming for real-time steering control.” Later authors were able
to break this barrier as available computational power increased, a trend that we
sustain through this thesis.
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Kelly and Stentz[50] explicitly abandon planning methods based on geomet-
rical analysis of robot configuration space (C-space) such as visibility graphs
through polygonal obstacles[64], and pursue a sampling approach, or generate-

and-test. Their method samples constant-steering command trajectories, simulat-
ing each one’s effect on a high-fidelity model of the system dynamics and envi-
ronment. Their algorithm scores these short-range, high-fidelity trajectories based
on criteria such as proximity to obstacles, roll angle, and heading towards goal,
then arbitrates between candidate trajectories based on a weighting function.

Lacaze et al. propose ego-graphs[54], an approach to generating more com-
plex motions than [50], while using a kinematic vehicle model sufficiently realistic
to navigate around obstacles. They precompute a tree of steering and acceleration
actions that cover the space in front of the vehicle. The size of the tree is expo-
nential in its depth. A weakness of this work is that nodes with similar states are
not coalesced. For example, if a left swerve followed by a right and a right swerve
followed by a left both come to the same place, then each of their children will be
evaluated, duplicating effort. As we will see, our planner coalesces similar states
and is polynomial, rather than exponential, in the depth of the search graph. Bacha
et al.[7] report their use of an ego-graph approach at the 2007 DUC, employing
an A* search to find a sequence of steering actions in a precomputed table.

A common approach to planning for robotic vehicles, especially in earlier
work, is to use a crude model of the vehicle kinematics and its environment to
create a roughly optimal planned path. The path may then be followed in simu-
lation by a local planning algorithm using a higher-fidelity model including more
accurate kinematics and dynamics, and tested for safety. For example, Leedy
et al.[59] use a crude model of a vehicle to generate a rough path for a vehicle
traveling along a dirt road using A* search. They then smooth the path using a
pure-pursuit path tracker[21] with a higher-fidelity model. A final safety check is
performed on the resulting path before it is executed on the vehicle. Two prob-
lems with this approach became evident: first, if the vehicle approximation is an
underestimate of the vehicle’s true capabilities, then the global path can be much
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Figure 2.1: The Tartan Racing motion planner for structured driving in lanes[29]

more expensive than the true optimal path. Second, if the planner overestimates
rather than underestimates the vehicle’s abilities, then the local planner will be
unable to find a way to follow the global path at all, leading to a stalled vehicle,
or worse.

Alternatives to the pure-pursuit path tracker[21] are reviewed by Snider[96].
Even high-fidelity plans may benefit from tracking using closed-loop control rather
than using model-predictive control. We will discuss the control architecture used
in our implementation in Chapter 5.

2.1.2 Swerve-Sampling On-Road Planners

The literature contains several approaches to on-road vehicle planning that sample
a variety of swerves, and a variety of acceleration profiles, evaluate each according
to some criteria, and pick the best.

Ferguson et al.[29] present a “local planner” which drives along a lane us-
ing a reference center line describing the road shape. It samples candidate end-
points spaced evenly across the road at some distance ahead, and for each end-
point optimizes a velocity-independent cubic polynomial that steers the vehicle
directly onto the point with an orientation parallel to the road, illustrated in Fig-
ure 2.1. Over each such path it samples several acceleration profiles to find the
best overall trajectory. This planner was demonstrated in the 2007 DARPA Urban
Challenge(DUC)[23], where their robotic vehicle drove in a suburban environ-
ment with other vehicles. The overall system is described by Urmson et al. in
[28].
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Figure 2.2: Lateral offsets sampled from a reference trajectory by Stanford’s
Junior[68]

Similar to [29], Montemerlo et al.[68] propose a planner that samples paths as
swerves, offset from a reference path defined by the center of the lane, as shown in
Figure 2.2. This approach was sufficient for simple traffic interactions involving,
for example, changing lanes to pass a single slow-moving vehicle. This planner
was also fielded in the 2007 DUC, within a broader system described in [69].

Werling et al.[105] propose a planner that samples a set of lateral motions
away from or towards the road center line, another set of motion profiles along
the road center line, and evaluates all combinations of the two sets. They use
quintic polynomials for both types of motion, and show that these polynomials are
optimal solutions for paths that minimize jerk. By also using a jerk-minimizing
cost function to select plans, their method minimizes transients introduced by
replan cycles. Their goal is a low-level planning layer that can carry out simple
strategies mandated by a higher-level behavioral planning layer while reacting
quickly and flexibly to unexpected situations.

While the preceding planners represent paths as essentially a single swerve
action, Kuwata et al.[53] use a rapidly-exploring random tree[57] to generate
on-road plans containing longer sequences of motions. Their RRT-based motion
planner samples in the space of target points for the steering controller(Figure 2.3)
and longitudinal accelerations. The set of sampled plans is represented as a tree
of potential vehicle trajectories. The tree is extended by forward-simulating the
entire vehicle system with the steering controller’s reference point set to a newly
sampled point. Planner efficiency is increased by heuristically biasing the sample
distribution. Some sample points are designated to accelerate the vehicle down to
zero velocity. The planner runs until it finds an acceptable path that ends with the

28



Figure 2.3: RRT-based motion planner for MIT’s Talos, from[60]

vehicle at a stop. It then selects the best of these paths, which the vehicle follows
to the ending stop unless a new plan can be generated in time. This planner can-
not guarantee that it will react quickly to sudden changes in the environment. It
was demonstrated on MIT’s Talos vehicle[60] at the 2007 DUC, and we discuss it
further in Chapter 6 where we compare it to our planner.

2.1.3 Lane Change Maneuvers

In this thesis we seek a general-purpose motion planner to generate trajectories
realizing a variety of behaviors. Several researchers have examined the gener-
ation of an optimal lane change maneuver, and safety bounds required for such
maneuvers, outside of a general-purpose motion planning context.

Kanaris et al.[47] determined minimal vehicle spacing requirements before a
lane change could be initiated in order to ensure that an accident could be avoided
should the leading or merging vehicle suddenly brake, taking into account the
varying performance of the tire in braking when undergoing lateral motion. They
include the possibility that the merging vehicle must change speeds in order to
complete the merge, and they examine the potential behavior of the vehicles in-
volved given six different degrees of communication between the vehicles in an
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Automated Highway System context. Jula et al.[46] perform similar work, though
limited to a kinematic mode of the vehicle.

Papadimitrious and Tomizuka[79] analyze lane changing in the presence of
multiple obstacles. They claim that a search-based method is not desirable be-
cause of its lower computational efficiency. They propose instead a geometric
formula to generate the path for the maneuver, devised to efficiently perform colli-
sion checking. They show a solution for the emergency “three-vehicles problem”,
where a vehicle traveling in a lane with a static obstacle ahead must merge into a
short gap between two vehicles in a neighboring lane before hitting the obstacle.

Godbole et al.[38] propose a trajectory generation method for the “three-vehicles
problem” with lane changing/merging. Their plan involves several stages, where
the gap is first selected, then the vehicle aligns with it, and finally moves into it.

Lee and Litkouhi[58] propose a lane change maneuver using a quintic poly-
nomial that accounts for lateral forces on the tire. They sample several candidate
solutions to find one that satisfies lateral acceleration bounds, but they do not ad-
dress obstacle avoidance.

The planners reviewed in this section and the preceding one work by gener-
ating a tree of sampled swerve actions. With most of them, the forms of plan
considered are single, simple swerve actions – a single level in the tree. The ego-
graphs[54] of the previous section and the RRT[53] just mentioned are exceptions.
In those cases, a longer sequence of actions can be considered, but we note that
the computational complexity is exponential in the length of the sequence. We
look next at attempts to reduce that complexity.

2.1.4 State Lattice

As an attempt to bridge the fidelity gap between local and global planning lay-
ers mentioned previously[52, 59], Kelly and Pivtoraiko[83] introduced the state
lattice, a means of embedding a discrete graph into the continuous robot configu-
ration space, where vertices in the graph represent robot states, and edges joining
vertices represent trajectories that satisfy applicable constraints on the robot’s mo-
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Figure 2.4: A simple state lattice.

tion. Figure 2.4 illustrates a simple state lattice. The benefit of the state lattice is
that plans generated via a search through a state lattice are closer to the robot’s
actual abilities than prior approaches, though it typically requires more compu-
tational resources to generate and search the lattice. An enabling technology to
build the state lattice is a boundary value problem solver for the robot that can find
a path between pairs of vehicle states it is desired to connect in the lattice. A fast
solver and accompanying polynomial spiral path representation is given by Kelly
and Nagy[49].

The state lattice approach has been shown to be effective for planetary rover
navigation applications[83] and a wheeled indoor assistant robot[91]. It was also
used at at the 2007 DARPA Urban Challenge(DUC)[23], where the Tartan Racing
team[28] used it for driving situations such as parking lots and error recovery[62,
31, 29].

The benefit of the state lattice approach to plan quality and performance is
that all paths within the lattice use a relatively high-fidelity kinematic model of
the vehicle, and these paths may split and re-join, turning a tree into a graph, and
potentially reducing the exponential amount of work done in the length of the path
to polynomial.
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(a) (b)

Figure 2.5: (a) Naive application of the state lattice to a road. Many edges in the
lattice are not useful. (b) The state lattice conformed to a road.

2.1.5 On-road Lattice Planners

The lattice planner concept has been applied to on-road vehicles driving in traffic,
although the naive approach of laying the structure depicted in Figure 2.4 on top
of a road is not workable. Figure 2.5(a) shows how an attempt at this might look.
The state lattice as formulated by Pivtoraiko et al.[84] is suitable for unstructured
environments where any robot heading could reasonably be in the final solution.
However, on a road the selection of feasible headings is highly constrained. At
each point along the road, only a small range of headings close to the orientation
of the road should appear in a reasonable plan. Therefore, the state lattice must be
adapted to the environment such that it includes only states that are a priori likely
to be in the optimal path. Figure 2.5(b) illustrates the idea.

Rufli and Siegwart[90] assume that using the iterative method of [49] to con-
struct the paths in a lattice like Figure 2.5(b) is too time-consuming. Defining a
road line as a C1 path, they propose a closed-form calculation for constructing
a lattice warped onto the road. Their method generates the lattice vertices and
edges given some constraints on the sampling strategy of the steering and throttle
input variables, limited to robots with kinematics including typical vehicles. They
present resulting paths through the lattice on a road with static obstacles, but do
not report the number of lattice edges that can be generated per second using their
formula.

Ziegler and Stiller[106] propose an augmentation of a conformal state lattice
with time and velocity dimensions in order to plan with moving traffic. They
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sample lattice points in a space warped along the road center line, and use quintic
polynomials defined as a function of time over the longitudinal and lateral motions
along the road to join the lattice points. Their approach requires the trajectories
connecting lattice points to start and end at one of a fixed set of times T and
velocities V . The use of fixed values in T and V makes it difficult to plan to
merge between two vehicles traveling with velocities not contained in V , and
requires a finer discretization in order to use low accelerations. They point out that
it is difficult to compose A* search heuristics for the energy cost terms useful for
tuning vehicle behavior, such as squared jerk of the path. They therefore propose
an exhaustive, rather than heuristic search in order to find the optimal path.

These adaptations of the state lattice concept to an on-road context don’t deal
satisfactorily with the time and velocity dimensions that we must consider for
higher-speed driving applications, but which could be neglected for the low-speed
rover and parking lot applications mentioned in the previous section. For low-
speed applications, actions can be devised to modify the (x, y, θ) configuration
variables independently, allowing the search to proceed on a simple grid. At
higher speeds, time and velocity must be added as state variables to enable naviga-
tion among moving obstacles. Dynamic constraints induce a coupling that makes
it impossible to modify the variables independently of one another. A simple grid
structure is untenable in this case since it assumes that state variables may be
changed independently.

In the next section we survey attempts to overcome this coupling in high-
dimensional search spaces.

2.1.6 Resolution-Equivalent Grid

Many planning methods factor the space of possible system states into a discrete
grid and search for a plan as a sequence of moves from the start state, through
a sequence of grid points, to a goal state. Such methods have been proposed
both for driving problems and more general classes of search. An important class
of grid we call the resolution-equivalent grid, following a name suggested by
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Tompkins et al.[98] for its use in constructing a resolution-complete planner. In
this type of grid, each cell has one distinguished interior point, and the plan is a
sequence of moves through these movable interior points, rather than the corners.
The distinguished point is determined in the progress of the search. This method
is often used for nonholonomic systems, including car-like vehicles, where state
variables are coupled. Tompkins[99] proposed the Incremental Search Engine
(ISE), which uses the resolution-equivalent grid concept to search for long-term
mission plans for autonomous mobile robots. ISE divides the state variables into
two sets: independent and dependent. The independent variables are manipulated
directly by the action set, and can be modified independently of one another, hence
the name. For example, a holonomic robot moving in the plane can change its
x and y coordinates independently to land on a grid point in the (x, y) space.
However, it cannot change its time t and velocity v coordinates independently
of these to land at desired grid points along the t and v axes. If acceleration
were infinite, then x2 = x1 + vt and we could choose one of t and v to join x

as an independent variable, but in the realistic case of bounded acceleration it is
practical to treat both variables as “dependent”. Dependent variables typically
change as a side effect of the independent variables. Therefore they are identified
by the grid cells they fall into, as opposed to the grid corner points that identify
the independent variables. Two states in the space that have the same values for
their independent variables, and whose dependent variables fall into the same grid
cells, are considered equivalent.

Barraquand and Latombe[11] use a resolution-equivalent grid in a planner for
a nonholonomic car-like mobile robot with a trailer. Their planner builds a tree of
states by iteratively selecting a state already in the tree and extending it outwards
using some control trajectory. The first trajectory endpoint state to land in a cell
becomes the distinguished state, and later trajectories whose endpoints land in the
same cell are pruned away.

Dolgov et al.[25] propose Hybrid A*, an adaptation of the classic A* search
algorithm[74] to finding trajectories for a car-like vehicle using the resolution-
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equivalent grid concept. Edges in the Hybrid A* search graph are represented
as vehicle trajectories, and vertices in the graph as grid cells in the vehicle state
space. In contrast to the algorithm of Barraquand and Latombe[11], where the first
trajectory endpoint to reach a cell becomes its distinguished point, with Hybrid A*
the distinguished point of a cell may be reassigned if the A* search portion of the
algorithm finds a lower-cost way to reach any other point in the cell.

In this section we looked at methods to search for plans within a grid with-
out being constrained to the grid points, which can be problematic when there
are dependencies between state variables. The works we surveyed did not deal
simultaneously with spatial and temporal dimensions for a robot with nonholo-
nomic kinematics. Our aim in this thesis is to take this step by combining the
resolution-equivalent grid with a state lattice conformed to the road. In the next
section we look at related work in solving the boundary value problem needed to
connect edges in the lattice.

2.1.7 Boundary-Value Solvers

As mentioned in the previous section on state lattices, a boundary-value problem
solver is necessary to connect states in the lattice. The solver must be fast enough
to generate many edge paths, and the paths must be suitable for driving.

Dubins[26] showed how to generate minimal-length continuous paths between
two points given that the paths have a bounded curvature R−1. This is a good
approximation to a vehicle driving forward with a limited turning radius. The
resulting paths consist of straight lines and circular arcs of minimum radius R.
These are not suitable for real vehicles, since to follow the paths precisely would
require the vehicle to turn the steering wheel at an infinite velocity at transitions
between the path elements.

Reeds and Sheep[87] extend the Dubins model to allow paths to reverse direc-
tion. Again, the shortest paths are composed of straight lines and arcs of minimum
radius.

Shin and Singh[94] propose that a sequence of clothoids can interpolate de-
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sired waypoints for the vehicle to travel while maintaining continuous curvature
and with a piecewise constant steering rate. Scheuer and Fraichard[92] propose a
“bi-elementary” path - a concatentation of two clothoids which can connect any
two configuration endpoints for a car-like robot. They use this to construct a com-
plete planner. Real vehicles have finite steering acceleration, but at low speeds,
we can assume that infinite accelerations will induce negligible error. At higher
speeds, paths with finite acceleration may be necessary.

Kelly and Nagy[49] propose that a cubic polynomial spiral, that is, a curve de-
fined by a third-order polynomial function of curvature with respect to arc length,
can neatly connect pairs of vehicle states specified by position (x, y), heading θ,
and curvature κ. They present a fast root-finding method to solve for the param-
eters of a cubic polynomial spiral joining two states of the form (x, y, θ, κ), and
also for higher-order polynomials, also called generalized Cornu spirals, to en-
force continuity in higher-order derivatives of κ. In this thesis we use the cubic
and higher-order polynomial described in this paper to generate paths with con-
tinuous curvature.

In their swerve-sampling approach to on-road motion planning, Werling et
al.[105] propose that at higher speeds, the dynamic constraints on the vehicle are
more restrictive than the nonholomic kinematic constraints. Therefore they use
quintic polynomials with a simple closed-form solution to solve independently
for endpoint constraints in a two-dimensional space conformed to the road. At
lower speeds the planner must use a different trajectory representation to avoid
violating constraints, and a translation step is required to express the dynamic
path in terms of the vehicle kinematics.

2.1.8 Trajectory Deformation

Paths are expensive to compute from scratch, but once obtained they may be
cheaper to keep updated as obstacles move. Trajectory deformation approaches
attempt to continuously deform a path or trajectory in order to improve its utility.

Brock and Khatib propose the Elastic Strips method[14], which deforms a path
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according to virtual forces, representing the robot dynamics as internal forces, and
repulsive fields formed by obstacles as external forces. Their approach does not
take moving obstacles into account, and must begin with a valid path obtained by
some other method.

Fraichard and Delsart[35] describe Teddy, a trajectory deformation algorithm
that extends the potential fields formed by obstacles along the time axis. Their
method samples fixed points on the robot and uses the Jacobian of the point lo-
cation with respect to the configuration variables to allow an articulated robot
to avoid moving obstacles. Like Elastic Strips, Teddy requires an independent
global motion planner to provide a valid path as input.

Ratliff et al. present CHOMP[85], similar in spirit to Teddy, but able to take
an invalid path as input, and better able to induce control changes at points earlier
in the path in order to satisfy constraints on points later in the path, resulting in
smoother paths. CHOMP does not handle moving obstacles.

In this thesis we are concerned with global path generation for on-road ve-
hicles. Trajectory deformation approaches in the literature either do not handle
moving obstacles or require a valid global path in the first place. We note that
they may be useful for improving paths once they are found by the global planner,
though this is outside the scope of this thesis.

2.1.9 Obstacle Representations and Heuristics

In this section we survey research on the general problem of planning in dynamic
environments, and representations for moving obstacles. The on-road driving
problem can be seen as a special case of this general problem.

Early work in planning amongst dynamic obstacles for real-time applications
tended towards reactive techniques, due mainly to the high computational de-
mands compared to the available computing power. Fox et al.[33] propose the
Dynamic Window approach, which searches in the space of velocities for a holo-
nomic robot given dynamic constraints, moving obstacles, and a fixed time in-
terval. Minguez and Montano propose Nearness Diagrams[67], which perform a
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geometric analysis of nearby obstacles in order to produce a reactive action which
avoids getting the robot stuck in dead ends, a persistent drawback of reactive meth-
ods.

Fiorini and Shiller[32] propose a search method for dynamic environments
based on the idea of velocity obstacles. Their method transforms the planning
domain into velocity space, and searches for avoidance maneuvers for the robot in
that space. They consider disk obstacles and consider constraints on accelerations,
which they call dynamic constraints. They avoid the complexity of nonholonomic
kinematic constraints by observing that at high speeds the dynamic constraints
are typically more restrictive. They demonstrate their method in a simulated high-
speed driving problem.

Fraichard and Asama defined an Inevitable Collision State(ICS)[34] as a state
s of a robotic system which is guaranteed to result in a collision with an obstacle
no matter what action is taken. The ICS notion is an extension to static collision
checking, which simply tells whether a robot is currently in collision with an
obstacle.

Erdmann and Lozano-Perez[27] introduced the idea of a configuration space-
time in planning motions for multiple bodies considering constraints on velocity.
They formed a discretization of the configuration spacetime and computed all
valid poses for a robot over a time range. They then searched a graph connected
by regions where valid configurations overlapped in consecutive spacetime slices.
Their solution did not consider dynamic or kinematic constraints and could only
search for feasible, but not optimal paths.

Compared to these earlier works, in this thesis we propose an algorithm that is
focused specifically on the on-road driving problem, where it searches for a global
optimum considering space and time dimensions, and upgrades the discrete binary
collision test to a continuous cost function that can take many more factors into
account.
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2.1.10 Catalog Approaches

Autonomous vehicles will need to be extremely reliable in order to be viable in
the market. Some researchers take the view that in order to achieve the required
level of reliability they must be engineered by starting with a complete catalog of
all entities that could appear on the road, and then constructing an automaton with
a specified response to each one.

Furda and Vlacic [36] construct an automaton comprising every situation one
could encounter while driving, and use it to select the driving behavior most appro-
priate to the situation. They state that they are concerned with generating behavior
in real-time with a verifiable system taking explainable actions. They demonstrate
preliminary results showing the overtaking of a stopped vehicle with no oncoming
traffic, overtaking with one oncoming vehicle, and queueing at a stop sign.

Horst et al. have applied the 4D/RCS[3] design methodology for complex
electro-mechanical systems (CEMS) to autonomous on-road driving. Their design
philosophy is fleshed out into a detailed model which offers an interesting contrast
to our approach.

In [10], the authors distinguish between deliberative, reactive, and behavioral
architectures. A reactive system has no world model and reacts according to direct
sensory-actuator mappings. An example of a behavioral architecture is Brooks-
style subsumption[15], where a reactive system is augmented with more complex
and time-extended procedures but still lacks a coherent world model. A delib-
erative system has a coherent world model and reasons explicitly about possible
actions and their outcomes. 4D/RCS is conceived of as an architecture and de-
sign methodology for deliberative systems. The authors of [10] propose a layered
architecture where higher layers are concerned with abstract representations and
long-term goals, with each of them sending “commanded subgoals” down to the
next-lower layer to implement, recursively. Layers send “status” messages back
up to higher layers if required to re-evaluate their plans. For autonomous driving,
they propose a hierarchy of decision tables containing an exhaustive specification
of all entities one could encounter on the road and each distinct situation that could
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condition the vehicle’s actions.
In [43] the same authors propose a trajectory-generation layer similar in scope

to the planner presented in this thesis. They eschew a search-based approach,
assuming that a higher-level behavior planner will be able to cheaply determine
a sequence of pose checkpoints such that the trajectory generator’s task is simply
to interpolate between the checkpoints and modulate the velocity to stay within
relevant dynamic constraints. If a collision would be inevitable given the pose
checkpoints, then the trajectory generator sends a failure status up the hierarchy,
but it is not clear what they propose the upper levels would do to fix the situation.

Using a hard-coded set of decision tables requires one to embed the (implicit)
cost function into the planner’s search algorithm in an intimate way which may
make it difficult to change. We believe that as long as the search space contains
the required action, and the cost function is engineered to rank it first, it should be
immaterial by what method the planner produces the desired action. Compared
to the 4D/RCS approach, we propose an implementation of a trajectory planning
layer (designated “ElementalManeuverSubsystem” in [9]) and suggest an alter-
native organization of the layers - rather than commands coming down from the
behavior layer to the trajectory layer and “status” going back up to it, we pro-
pose that the behavior layer express preferences by modifying the cost function
that ranks potential plans, and allow lower layers to examine an exhaustive set of
plans in order to determine the best available plan given the cost function. The
status returned is either a plan or a failure.

2.1.11 Motion Planning in Parallel

In this section we present related work on parallel planning algorithms. Some par-
allel planning algorithms in the literature are presented specifically for the GPU,
although in some cases they could as well be used on other parallel platforms.
Other planning algorithms are presented in a more general context.

Henrich[42] reviewed a variety of parallel approaches to motion planning in
the literature in 1997. His review does not include any attempts at planning in
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dynamic environments. A variety of methods are presented for parallel construc-
tion of potential fields; representation of C-space using sets of bitmaps; graph
search algorithms including parallel Dijkstra and parallel randomized search; and
Voronoi diagrams for cell decomposition. None of the methods in the literature is
of particular use in driving tasks. Effective parallel algorithms are usually devised
with a specific computing architecture in mind, and the various parallel computers
available at the time do not resemble the contemporary GPU.

Martinez-Gomez and Fraichard[65] applied GPUs to the problem of checking
inevitable collision states for a robot moving among dynamic obstacles in a planar
domain. Their technique depends on the identification of a set of evasive and
imitative maneuvers, such that it is reasonable to assume that if no maneuver in
the set can avoid all obstacles, it is not possible to do so. The benefit of the ICS
is that it can help to eliminate states early in a recursive search such as A*, thus
preventing their descendant states from being considered.

Kider et al. propose R*GPU[51], a parallel extension of R*[63], which is
itself a randomized modification of A*[74]. R* periodically stops searching to-
wards the usual A* goal and searches instead towards randomly chosen subgoals
in order to escape from local minima. The R*GPU performs multiple random-
ized subsearches in parallel. The authors report between 5 and 35 times as many
successful search results on a planar 6-DOF arm planning problem within a fixed
time window when running on a 128-core Nvidia GPU(cf. Figure 1.3), as com-
pared to a sequential implementation of the algorithm running on a single core of
a conventional CPU.

Pan et al. present a parallel extension[78] to Probabilistic Roadmaps(PRMs)[48]
implemented on a GPU. They focus on the problem of a high-degree-of-freedom
robot in a static environment, a typical application of PRMs. Their method sam-
ples the vertices for the PRM graph in parallel, performs collision detection for
pose samples in parallel, and performs the local planning to build edges between
vertices in parallel. In addition, they use parallel data structures implemented on
the GPU such as a parallel k-nearest neighbor search[77] and a recursive obstacle
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volume representation[55]. They also use a parallel breadth-first search to acceler-
ate single queries to the PRM. They present results for a simulated high-dof robot
arm in a static environment.

Gayle et al.[37] use a GPU to accelerate collision detection in a planner for a
deformable robot in a complex stationary environment.

The distance transform takes a binary image as input and computes the dis-
tance from each unset grid cell in the image to the closest set cell. This is useful
both to check for collisions of robot configurations with the environment, and
building potential fields to define cost functions over robot trajectories. Rong
and Tan[88] present an approximation algorithm to the distance transform for the
GPU. Cao et al.[16] propose an exact distance transform(EDT) algorithm for the
GPU which is faster than previous approximate solutions.

In summary, GPUs have been applied to a variety of algorithms related to
motion planning. Collision checking is a particularly suitable application area for
GPUs, since it is essentially an operation on images, a task for which GPUs were
originally designed. GPU applications to the planning algorithms themselves have
been limited to general-purpose solutions that assume expansive search spaces
with massive, readily exploitable parallelism. Specialized problem domains such
as on-road vehicles will require tailored solutions to benefit from the GPU.

2.1.12 Summary

We have reviewed a range of work in motion planning relevant to our aims for
autonomous on-road vehicles. On-road driving can be seen as a problem of sam-
pling swerve-like actions. We have taken inspiration from the state lattice ap-
proach for off-road driving as a means of composing sequences of such swerve
actions while avoiding the exponential blow-up in states to which naı̈ve sampling
methodologies are prone. Motion planning at high speeds introduces coupling
between state variables that must be incorporated into the search space. We have
identified the resolution-equivalent grid method as a means to accomplish this
while avoiding yet another potential source of exponential blow-up. We have se-
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lected a boundary-value problem solver for polynomial spirals in order to generate
feasible edges between states in the lattice graph.

2.2 Parallel Computing

In the following section we introduce the reader to the GPU, and provide the
reader with a survey of alternative parallel programming models to the GPU, to
compare their various strengths and weaknesses and show why the GPU is a suit-
able choice for on-road motion planning. We also give a brief introduction to the
major concepts in complexity analysis of parallel algorithms.

2.2.1 Introduction to the GPU

In this section we describe the major architectural features of the GPU that are
most salient when selecting and designing algorithms to maximize performance.
The interested reader can refer to Appendix A for an in-depth introduction.

The GPU processor is composed of a variable number of scalar cores. Each
scalar core can execute one instruction per clock cycle, though complex instruc-
tions such as division and built-in transcendentals may take longer. The scalar
cores are gathered into groups of eight that share a small cache of programmer-
addressable local memory, and each scalar core has a large number of registers to
support the private storage needs of hundreds of threads. Each scalar core within
a group shares a single instruction issue unit, so each of the eight scalar cores
execute the same instruction at the same time, albeit on different data. Groups
of scalar cores can only exchange data by storing to and reading from the global
device memory. Higher-performance GPUs are obtained mainly by increasing the
number of scalar cores on the chip.
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Data-Parallel Operations

An operation that performs the same computation on several pieces of data at once
is termed data-parallel. Data-parallelism stands in contrast to task-parallelism

where multiple threads of control may simultaneously perform entirely different
functions. In order to gain the benefits of the GPUs for motion planning, it is
necessary to develop algorithms that can use data-parallel operations

Data-parallel computers typically organize data elements into fixed-size vec-
tors. On the Nvidia GPU for example, data-parallel operations are performed
on vectors of 32 elements. Conditionals such as an if() statement conditioned
on the element values suffer reduced performance as operations are performed
sequentially on the elements taking the “true” branch, and then those elements
taking the “false” branch. This data-parallel computing model where the same in-
struction is run on multiple data elements is also called single-instruction multiple-

data (SIMD).

Memory Architecture

In traditional CPU architectures, cache misses are extremely detrimental to perfor-
mance. All execution stops until the desired information is retrieved from memory
further away from the CPU. The most common way to mitigate this problem is by
using larger caches. Another way is to build hardware that can switch instantly to
another runnable thread when one thread is stalled.

GPUs use a comparatively small amount of cache memory, and rely on the
programmer to write algorithms that use hundreds of threads. The GPU schedules
threads in hardware at a fine grain, so that when a thread stalls waiting for a
memory access to complete, another thread can be run immediately. If enough
threads are available, then the GPU cores can be kept working even when threads
must frequently wait for memory operations to complete.

Memory bandwidth is the aggregate amount of data that can be transported
between main memory and the processor per unit time. GPUs have a considerably
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higher memory bandwidth than CPUs. The Intel Core 2 Duo, for example, has a
theoretical bandwidth of 8.5 GB/s, whereas the Nvidia GTX 260 has a memory
bandwidth of 112 GB/s. The higher memory bandwidth of the GPU comes as a
result of a wider data path, implying that peak bandwidth is only achieved when
vector loads or stores access contiguous memory locations.

The GPU for Motion Planning

GPUs are a data-parallel SIMD architecture that hides memory access latency by
using many threads rather than a cache. A high memory bandwidth allows the
GPU to process large amounts of data, as long as memory accesses issued at the
same time are contiguous. The GPU is an excellent fit for the on-road motion
planning problem. Referring to Figure 2.5(b), we note that at each step along the
road, the lattice contains many similar path structures that do not depend on one
another, and so can be evaluated in parallel. We will argue in more detail later
that the hard real-time requirements of on-road driving requires all trajectories
edges to be evaluated in order to guarantee a feasible solution. The highly regular
structure, and the requirement that all trajectories must be evaluated, allows the
efficient use of the SIMD operations offered by the GPU. Lastly, the large numbers
of independent trajectories in the lattice ensure that there will be enough work to
occupy many threads, allowing the latency-hiding features of the GPU to come
into play and maximize utilization of the scalar cores.

In the following section we review other parallel computing architectures and
introduce some background in complexity analysis of parallel algorithms.

2.2.2 Alternatives to the GPU

We chose the Nvidia GPU with its proprietary CUDA development environment
to demonstrate our planner. One alternative would have been GPUs from AMD,
which use the industry standard OpenCL GPU programming framework that works
on chips from Nvidia, AMD, IBM, and Intel. Intel recently cancelled a GPU in de-
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velopment called Larrabee[93], which would have combined CPU elements onto
the GPU, allowing tasks that could not be executed efficiently with data-parallel
operations to be handled on the GPU, avoiding the slow transfer of data to the sys-
tem’s main CPU which is currently necessary with Nvidia GPUs. Intel has since
begun to released graphics processors such as Sandy Bridge which are integrated
onto the CPU die, but they are not powerful enough to be considered for this work.

We used an Nvidia GPU with CUDA for three reasons. First, OpenCL was
not available when we started this project, high-performance Intel products sup-
porting OpenCL acceleration are still not available, and IBM’s Cell[81] processor
is older and more difficult to program. Second, since we were writing experimen-
tal software rather than releasing a product, we had no need to develop portable
software by switching to OpenCL. Third, by using CUDA we were able to fully
exploit features of the GPU that might not be exposed by the OpenCL abstraction.

We believe that fundamental design constraints will ensure that the algorithms
we have devised for the Nvidia GPU will be applicable to future parallel pro-
cessors. Traditional CPUs are designed to execute a single sequential thread of
control with low latency by allocating a large proportion of transistors to such
optimizations as speculative execution, branch prediction, a provision of excess
functional units, analysis of instruction-level parallelism, and code translation.
Both Nvidia and AMD GPUs, as well as IBM’s Cell and the cancelled Larrabee
eschew these optimizations and allocate more transistors to processing units. They
use data-parallel operations to run a large number of independent threads of con-
trol with a higher latency on the individual level, but with a higher aggregate
throughput due to the greater number of processing units. We will expand on
these principles of operation in Section 5.3.1.

With a future device that provides higher bandwidth and lower latency be-
tween GPU and CPU, for example by integrating the components onto the same
chip, it may be possible to simplify or otherwise improve some of the GPU-
specific algorithms we present in Section 5.3. The overall design, however, should
remain stable.
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2.2.3 Distributed Systems

While GPUs accelerate data-parallel operations, a more general class of parallel
systems are distributed systems. Distributed systems use large clusters of comput-
ers to solve large problems that can be broken into smaller chunks. The largest par-
allel computer systems are distributed systems composed of many smaller com-
puting nodes. For example, the smallest supercomputer sold by Cray, the CX1,
resembles a network of normal servers. It uses Xeon processors, with the largest
configuration offering 6 computer “blades” connected with Infiniband network
adapters, and each with dual quad-core Xeon processors.

Google’s MapReduce[24] application is a well-known example of a software
framework for programming distributed systems computing the results of mas-
sively parallel problems.

Some robotics applications use ad-hoc distributed approaches. Robotics ap-
plications typically have a profusion of software processes, handling a variety of
perception and planning tasks, as well as ancillary functions such as a user inter-
face. In the DARPA Urban Challenge[23], many entrants[60, 80, 28, 86, 70, 13,
7, 66, 17] used distributed computing systems.

While distributed systems can increase throughput for large computations, just
as the SIMD parallelism employed by GPUs can, the latency of communications
between computing nodes can make meeting real-time requirements of on-line
motion planning more challenging.

2.2.4 Exotic Multi-core Platforms

In this thesis we are concerned with exploiting parallelism using SIMD opera-
tions such as those used by GPUs. We are interested in GPUs because they serve
a large niche market that we expect will continue to be a rich source of fast and
cheap parallel computers. However, other niche markets are also served by pro-
cessors that use multiple cores on a single chip, but without the use of SIMD
instructions. For example, the Tilera Corporation TILE64 processor[12] has 64
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general-purpose cores on a single chip with a high-bandwidth interconnection be-
tween them. One application of this style of many-core computer is for network
switches that perform extensive analysis on streams of packets. While such pro-
cessors likely could be used to accelerate motion planning, their present and likely
future inaccessibility renders them unsuitable for motion planning at this time.

There are important applications where vector operations cannot be used, be-
cause the problem does not admit of any way to organize data so that they can
be accessed together in vector form. Parallel sorting, operations on linked lists,
random access into hash tables, and operations on large sparse matrices are a few
examples. The Cray XMT[22] architecture uses processors that run 128 threads
simultaneously. The 128 threads share a single set of functional units to hide mem-
ory latency. The processors are distributed, but share a global memory space, and
are connected by a very fast network fabric. The XMT architecture is optimized
to maximize throughput when random access to very large data sets is required.
Motion planning problems typically do not deal with such large data sets, so this
form of parallel computer is not suitable for solving motion planning problems.

2.2.5 Complexity Analysis in Parallel Programming

A full introduction to complexity analysis for parallel programming, that is, the
theoretical comparison of running times for parallel algorithms, is beyond the
scope of this document. However, we introduce a few important terms. The reader
can consult [100] for a deeper introduction.

Sequential algorithms perform their task one step at a time, while parallel
algorithms may execute multiple steps at once. The time taken by a sequential al-
gorithm is simply proportional to the number of steps it must take. For sequential
computers, the theoretical time taken is usually a good predictor of the time actu-
ally taken by an implementation of the algorithm. Since there are so many ways
to organize a parallel computer, it can be difficult to choose an appropriate model
to predict the performance of a parallel algorithm. The work-depth model focuses
on the number of operations performed by an algorithm and the dependencies be-
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tween these operations, without regard to a parallel machine model. The work W

of a parallel algorithm is the total number of operations it executes. The depth D

is the length of the longest sequence of dependencies among the operations. We
define P = W/D as the parallelism of the algorithm. For a sequential algorithms
W = D so P = 1. The greatest degree of parallelism is achieved when all opera-
tions are independent, that is D = 1. A parallel algorithm is called work-efficient

if it performs at most a constant factor more operations than a sequential algorithm
to solve any problem instance. For tasks where results must be computed within a
short time frame, such as the real-time motion planning problem we are concerned
with, a work-efficient algorithm is not necessarily preferred, if a work-inefficient
algorithm with a smaller depth is available.

2.3 Summary of Related Work

Several threads run through the motion planning literature: a move from local, re-
active planning to global, deliberative planning as available computational power
increases, epitomized by the state lattice approach; the improvement of methods
to join vehicle states by paths that vehicles can follow precisely, for example with
polynomial spirals; the orderly sampling of states and actions within a constrained
environment as with the conformal state lattice; and enhanced approaches to grid
decomposition of planning state spaces to deal with dependencies between state
variables, as with the resolution-equivalent grid approach. Table 2.1 illustrates
where this thesis contributes to the literature. No work yet has addressed the
area of our contribution: real-time deliberative planning with an accurate vehicle
model using a scalable parallel algorithm.

While much has been done, it is evident that more work is necessary before
the dream of a motion planner with capabilities equivalent to a competent human
driver can be realized. This thesis ties these threads together to create a robust
and effective planner for high speed on-road driving applications. We will use the
increased computational power made available by GPUs to create a global planner
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Table 2.1: Where this thesis fits into the literature.

that exhaustively analyzes all paths through a road-conformed state lattice with a
resolution-equivalent structure to generate precise trajectories in real-time.
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Chapter 3

Planning Algorithm
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In this chapter we describe the core ideas behind the planner presented in this
thesis. We start with a conceptual overview of the planner operation that lays
out the main ideas guiding the structure of the search space. Then we specify
precisely the form of the paths and trajectories that make up the plans. With those
basic structures in hand we describe the graph we construct and search to generate
complex sequences of paths, and the search algorithm we use. Then we describe
the numerical methods we use to obtain the paths and trajectories in practice.

3.1 Overview

The overall approach of the planner is to sample a variety of trajectories specifying
the future location of the vehicle on the road as a function of time, evaluate each
trajectory numerically using a cost function, and then pick the best trajectory.

3.1.1 Paths

We start with Figure 3.1, showing how potential paths are sampled, i.e., chosen
from among the infinite set of possible paths. At this stage we only specify pose
and curvature along the path, but not yet the temporal dimensions, i.e., time, ve-
locity, and acceleration. We select a variety of end poses along the roadway and
plan a path ρ from the current vehicle pose to each sampled pose. The paths are
constructed to be smooth, with curvature varying continuously as a function of arc
length, so that the vehicle can follow them precisely. Depending on the speed of
the vehicle, we may use paths that are continuous in curvature up to the second
derivative with respect to arc length.

3.1.2 Trajectories

With several sampled paths, we next sample several acceleration profiles, speci-
fying the velocity v(s) along the path from s = 0 to s = sf (see Figure 3.2). That
is, for each path, we sample several different ways to drive along the path. In this
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Given the current pose of the
vehicle...

...regularly sample many
poses xi further down the
road...

...and generate a simple path
to each of them.

Figure 3.1: Endpoint pose sampling strategy for the planner.

example, we sample three ways: speeding up with a constant acceleration, slow-
ing down with a constant acceleration, or keeping at the same speed, with zero
acceleration. The result of each acceleration profile is a trajectory τ that specifies
the velocity of the vehicle at each point along a path over the roadway. From these
it is easy to calculate derived quantities such as the time, velocity, steering rate,
and lateral acceleration of the vehicle at each point along the trajectory, which are
used to evaluate its cost.

3.1.3 Trajectory Evaluation

Each trajectory τ defined by a path and acceleration profile fully specifies a pos-
sible future for the vehicle. What remains is to decide which trajectory to follow.
We do this by evaluating each trajectory τ with a cost function c(τ) that gives a
numerical ranking to each one (Figure 3.3). The cost function scores the estimated
safety of the trajectory, e.g. by measuring the minimum distance it passes away
from obstacles, the comfort of the trajectory, e.g. by finding the sum or maximum
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Figure 3.2: Acceleration sampling strategy for the planner. Three acceleration pro-
files are sampled along a single path - accelerate (black, solid), stay at the same
velocity(green, long dash) and decelerate (red, short dash). While each profile takes
the vehicle to the same path endpoint, they arrive at different times and with different
velocities.

{6,4,5} {3,1,2} {1,2,2}

{1,1,1}{2,4,3}{4,4,5}

Figure 3.3: Cost function: each path sample depicted in Figure 3.1 is multiplied by
the set of acceleration profiles to gives rise to several trajectories τ . Each trajectory
τ is evaluated using a cost function c(τ) to find the desirability of having the vehicle
follow that trajectory.

of the lateral acceleration along it, and its conformance with the behavioral goals
specified at higher levels of the planning hierarchy – e.g. whether it stays within
the preferred lane. For a pair of trajectories with the same cost c(τ), the trajectory
that travels further and in less time is more desirable. In the following, tf (τ) is the
time at which the trajectory τ ends, and sf (τ) is the road station, or longitudinal
distance along the road, reached by the end of the trajectory. The position of the
vehicle at the start of a planning cycle is defined to have station s = 0. Since the
sampled trajectories may travel different distances and end at different times, we
need to compensate for these variations and pick the best overall trajectory that
minimizes the overall cost function

Ω(τ) = c(τ) + Φ(τ) (3.1)
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The first term c(τ) is a weighted sum of the costs to traverse the trajectory, mea-
suring its safety, comfort, and behavioral aspects. The second term Φ(τ) is the
final cost assigned for the destination of the trajectory,

Φ(τ) = Φc(τ) + Φh(τ). (3.2)

The Φc(τ) term gives an incremental score to the achievement of the trajectory in
terms of time taken and distance traveled, specifically

Φc(τ) = −kssf (τ) + kttf (τ), (3.3)

a discount for trajectories that go further (ks term), and a penalty for those that
take extra time (kt term). The Φh(τ) term penalizes horizons, related to the need
to ensure that the plan lasts a minimum amount of time, and to the fact that we
would prefer a path that goes to the end of the lattice, as long as it would not
require aggressive maneuvering:

Φh(τ) = hd(sf (τ)) + ht(tf (τ)), (3.4)

where hd(s) gives an additional discount for driving further than a given station
(we typically set the cut-off dh simply to be the end of the lattice),

hd(s) =

{
−kd if s ≥ dh

0 otherwise,

and ht(t) levies an infinite penalty for not exceeding the time horizon:

ht(t) =

{
∞ if t < th

0 otherwise,

where the time horizon th should at least as large as the time required for a panic
stop.
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Figure 3.4: A scenario in which a double lane change maneuver is necessary to plan
a safe trajectory.

Figure 3.5: Paths joining the sampled poses, in addition to the paths reaching from
the current vehicle position to the sampled poses.

3.1.4 Extended Trajectories

With the planning scheme so far, it could turn out that none of the trajectories τ is
valid up to the minimum time horizon th. Multiple lane changes or other swerving
maneuvers may be required to achieve a safe path, as in Figure 3.4. To overcome
this problem we need to generate longer and more complex trajectories. First we
sample additional paths to join the poses originally sampled in Figure 3.1. Fig-
ure 3.5 shows the original sample poses and sample paths from the current vehicle
pose, in addition to paths joining the sample poses with each other. Extending the
paths is simple, but extending the trajectories requires some care to avoid an ex-
ponential blowup in their number. When two or more trajectories end at the same
point, at close times, and with a similar velocity, they can be pruned to leave only
one. Figure 3.6 illustrates this pruning. With our planner, two such trajectories are
“close” when they fall into the same cell in a simple grid defined over the t and
v axes. When trajectories are pruned, we keep just one representative from each
acceleration profile, retaining the one from each cohort with the minimum-cost
trajectory, according to Equation 3.2. That is, out of the trajectories that are all
“speeding up”, all “slowing down”, or all keeping the same speed, and land in the
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Figure 3.6: Extended trajectories (left) before pruning, and (right) after pruning

Figure 3.7: Extended trajectories before (above) and after (below) pruning. Compare
to Figure 3.6.

same cell, we retain only one of each type. In Section 3.4.5 we will discuss the
motivation for keeping one trajectory from each acceleration profile in each cell,
rather than just one trajectory per cell. Figure 3.7 renders the effect of this pruning
on the effective number of extended trajectories.

3.1.5 The Rest of this Chapter

In the first part of this chapter we have given the reader the overall concept of our
planner. With the rest of this chapter we will describe the core planner mecha-
nisms in detail. We start with our model of the vehicle and the road. Then we
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describe the structure of the search graph and the cost function we use to evaluate
trajectories. Finally we describe the formulation of the paths and trajectories we
use and how we identify the path parameters required to drive the vehicle from a
starting point to a specified ending point.

3.2 Vehicle Model

We model the state of the vehicle with five variables, x = [x y θ κ v]. The vehicle
has a location (x, y), a heading θ, a curvature κ, which is the rate of change of θ

as a function of distance traveled, and a longitudinal velocity v. The equations for
the motion of the vehicle are

ẋ = v cos θ

ẏ = v sin θ

θ̇ = vκ

κ̇ = input.

(3.5)

These equations express the motion of the vehicle with respect to time. Paths pro-
duced by our planner express the motion of the vehicle as a function of curvature
κ with respect to distance traveled s, from the start of the path, in which case we
express the system as

dx/ds = cos [θ(s)] (3.6)

dy/ds = sin [θ(s)] (3.7)

dθ/ds = κ(s). (3.8)

We often drop velocity from the vehicle state and use just the four elements x =

[x y θ κ]. In our simplified model, the vehicle can change its curvature κ at the
same rate, no matter the current value of θ. In a real front-wheel steered vehicle
the curvature is a nonlinear function of the steering wheel position. Figure 3.8
illustrates with a simple bicycle model, where the curvature κ = (tan(ω))/L is a
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Figure 3.8: The standard bicycle model.

function of steering angle ω and wheel base L. We neglect this discrepancy for
planning purposes and use the minimum value of the rate of change in curvature
over the domain of ω.

3.2.1 Road Model

The road is defined by its center line, taken as a sampled function

r(s) = [rx(s) ry(s) rθ(s) rκ(s)], (3.9)

of arc length s, also known as station when referring to the road structure. We
can define a point p(s, `) away from the road center at a given lateral offset `, or
latitude, from the center line as p(s, `) = [xr(s, `) yr(s, `) θr(s, `) κr(s, `)] where

xr(s, `) = rx(s) + ` cos(rθ(s) + π
2
)

yr(s, `) = ry(s) + ` sin(rθ(s) + π
2
)

θr(s, `) = rθ(s)

κr(s, `) = (rκ(s)
−1 − `)−1.

(3.10)

The heading θ is a function of station only, and curvature κ increases towards
the inside of a turn and decreases towards the outside. We are using a right-
handed coordinate system. At the origin facing towards positive x, latitude in-
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Figure 3.9: The SL coordinate frame laid over the road in X-Y space.

creases along the y-axis, to the left. Each lane of the road can be expressed as a
set {p(s, `k) : s ∈ R+} for some constant `k unique to each lane. Here, the curva-
ture κ is the rate of change of heading θ with respect to change in station s.1 We
call the domain of the mapping p(s, `) the SL coordinate system.

3.3 Path Model

In this section we describe the family of paths we use to represent motions of the
vehicle, how they are represented, and how specific paths are obtained. While the
structures we describe here are sufficient to specify the behavior of the search, in
Section 3.5 we will revisit these formulations in order to refine their numerical
behavior.

A path is defined as a continuous function ρ mapping the interval [0, 1] into a
space of robot configurations, e.g. C = {(x, y, θ, κ)}:

ρ : [0, 1]→ C.

The starting configuration of the vehicle is ρ(0) = qinit ∈ C, and the configu-
ration at the end of the path is ρ(1) = qgoal ∈ C. We aim to find a path that

1This is the reciprocal of the curvature typically used in automotive applications. Automotive
applications express curvature as the radius of the circle with the curvature we define here.
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Figure 3.10: A cubic polynomial spiral, rendered (left) as a graph κ(s) of curvature
as a function of distance traveled, and (right) as the path driven by a vehicle using
Equations 3.6–3.8. Dashed arcs show the starting and ending curvatures.

respects relevant constraints, i.e., one that drives the vehicle smoothly between
the two configurations. Following Kelly and Nagy[49] and Howard[44], we rep-
resent paths as polynomial spirals. A polynomial spiral is a plane curve whose
curvature is a polynomial function of its arclength, i.e., of the form κ(s). We use
either a cubic(third-order) polynomial,

κ(s) = κ0 + κ1s + κ2s
2 + κ3s

3, (3.11)

or a quintic(fifth-order) polynomial,

κ(s) = κ0 + κ1s + κ2s
2 + κ3s

3 + κ4s
4 + κ5s

5, (3.12)

at different phases of the plan and at different driving speeds, depending on the
need for continuity in the higher-order derivatives of the curvature. Fourth-order
polynomials would be a reasonable intermediate between the quick steering re-
alized by the cubic polynomial and the smooth steering by the fifth-order poly-
nomial, but we didn’t find it necessary to implement this intermediate level of
smoothness for our experiments in this work.

The cubic spline allows us to maintain a continuous curvature, but for reasons
we will see in the next section, it can result in a discontinuous steering rate. At low
speeds, the resulting path tracking error can be neglected, but at higher speeds the
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Figure 3.11: Contrast between a cubic polynomial spiral(upper, dash-dot curve) and
quintic polynomial spiral(lower, solid curve) starting and ending at the same con-
figuration. The starting and ending steering curvatures are shown with the dashed
arcs. The quintic path satisfies the constraints dκ

ds (0) = 0 and d2κ
ds2 (0) = 0 while the

cubic cannot accept these constraints and in effect picks arbitrary values for the two
quantities.

discontinuity is too big to ignore. Using the quintic polynomial allows us to main-
tain continuity of both the curvature rate of change and its derivative. It is estab-
lished in the literature[82, 5, 106, 105] that fifth-order polynomials lead to smooth
robot motions, when used to control motion with respect to time, since they can
solve a one-dimensional boundary-value problem of the output with equality con-
straints up to the second derivative (acceleration). Although we formulate the cur-
vature as a function of distance rather than time, the two are practically equivalent
at higher speeds, where velocity changes slowly relative to distance traveled. For
this same reason, the fifth-order polynomials when expressed in terms of distance
rather than time are not necessary or practical for moving at low speeds, where
they produce exaggerated motions. In the example of Figure 3.11, the starting
constraints for the quintic path are set to dκ

ds
(0) = 0 and d2κ

ds2 (0) = 0. For the cubic
path there is no solution given these constraints. We relax these constraints to find
a solution, which usually gives us a discontinuous dκ

ds
(0) and d2κ

ds2 (0) if the vehicle
was already in motion. The result is that the quintic path takes longer than the
cubic path to start turning back in the desired direction, which leads to a wider
swing outwards. Whether a cubic or quintic polynomial is used to generate a path
between two particular points depends on the vehicle’s speed, and on where it
would be used in the overall planning lattice. We discuss the particulars of this
choice in Section 3.4.2 and Section 4.5.3.

The polynomial spirals are a convenient formulation that affords quick and
reliable convergence using a simple gradient descent search, while adequately
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representing the space of paths that are reasonable for a vehicle to follow while
driving down a road. We will show in a later section how these parameters can be
found quickly. Next, we formulate them precisely.

3.3.1 Polynomial Spirals

We wish to plot a path with continuous curvature leading from a starting vehicle
configuration qinit = [xI yI θI κI ] to an ending configuration qgoal = [xG yG θG κG].
We can use the cubic polynomial spiral to specify κ(s) in Equations 3.6–3.8 as

κ(s) = κ0 + κ1s + κ2s
2 + κ3s

3. (3.13)

Note that since s = 0 at the initial state qinit , Equation 3.13 implies that κ0 = κI .
This leaves the four unknown coefficients κ1...3 and the total path length sG to
solve for the four elements of qgoal .

At high speeds, we wish to ensure the continuity of higher derivatives of κ.
In that case, we extend the initial vehicle state qinit = [xI yI θI κI ] to include the
derivatives of κ with respect to arc length s at the initial state, where s = 0:

dκ

ds
(s),

d2κ

ds2
(s),

calling these dsκ(s) and d2
sκ(s) for short, and using dsκI = dsκ(0) and d2

sκI =

d2
sκ(0), so that qinit = [xI yI θI κI dsκI d2

sκI ]. We note that just as Equation 3.13
implies that κ0 = κI , it also implies that

dκ(0)

ds
= κ1,

and
d2κ(0)

ds2
= 2κ2.

Constraining κ1 and κ2 in this way leaves only two free input variables, κ3 and
sG, to satisfy the four independent output variables in qgoal . It is simple to extend
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Equation 3.13 to a quintic polynomial to gain two more free inputs

κ(s) = κ0 + κ1s + κ2s
2 + κ3s

3 + κ4s
4 + κ5s

5, (3.14)

or, expressed using the variables from qinit ,

κ(s) = κI + dsκIs + d2
sκIs

2 + κ3s
3 + κ4s

4 + κ5s
5, (3.15)

leaving us again with four unknowns consisting of κ3...5 and total path length sG

to find in order to complete the curve starting at qinit and ending at qgoal .
Now that we have defined the objects and terms we need, such as cubic and

quintic path splines and trajectories, we turn to specifying precisely the structure
of the planning graph and the algorithm we use to search through it for the best
plan.

3.4 Search Graph

The lattice planner conducts its search for a plan within a graph representing dis-
cretely sampled vehicle configurations along the road. These discrete samples are
combined with continuous regions in the time and velocity dimensions of the ve-
hicle state space, as we showed in the overview of this chapter (Section 3.1). In
the following we discuss some observations that guide our design of the search
graph, then specify our graph design precisely and define the algorithm we use to
search it.

3.4.1 Graph Design Considerations

Since we conduct our search in a dynamic environment, we consider both time
and space dimensions. The state lattice[83] we reviewed in Section 2.1.4 is a
proven method for systematically searching through static environments; however,
naı̈vely adding time and velocity dimensions can cause an unacceptable blowup
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(a) (b) (c)

Figure 3.12: Attempted motions through a three-dimensional grid of time t, velocity
v, and position p show how the dynamic constraints push an increase in the grid
resolution. In (a) a path begins with v = 1 and continues for two time steps to arrive
at (t = 2, v = 1). In (b) a path accelerates from (t = 0, v = 0) to (1, 1) using an
acceleration a = 1, then stays at v = 1 to reach (2, 1). Part (c) shows the trajectories
of these two paths along the position dimension. The path of part (b) does not pass
through the grid points.

in the size of the search space. Vertices in the state lattice for static spaces are
normally defined by the vehicle state vector [x y θ κ], such that the vehicle tra-
verses paths that satisfy starting and ending boundary constraints coincident with
the lattice vertices. The key point is that values of all state variables associated
with the lattice vertices are fully specified before the edges are evaluated.

We would like to take this approach with a time-enhanced state vector [x y θ κ t v],
sampling points from this higher-dimensional space to construct a graph we can
search for a trajectory. Three factors make this difficult. First is the usual curse
of dimensionality. The number of sample points in the lattice increases exponen-
tially with each added dimension, as does the number of edges. That is, if we
add a velocity dimension with ν different velocities, then we would multiply the
number of vertices in the graph by ν, and the number of paths by ν2. To see this,
suppose we have a graph of n vertices {xi} representing positions along the x

axis, connected by e edges {(xi, xj)}. Adding the time dimension to create ver-
tices {[xivk]} would increase the number of vertices to nν. The new edges would
be {([xivk], [xjvl])} with vk < vl, numbering O(eν2).

The second difficulty is that the edges joining the vertices must satisfy the

65



(a) (b) (c)

Figure 3.13: An attempted motion through the grid of position p, time t, velocity
v. In part (a) and (b) two paths starting with velocity 0 accelerate with constant rate
from (t = 0, p = 0) and reach grid points (2, 1) and (3, 1) respectively, and (c) shows
the velocities of the paths. The path from (b) does not reach a grid point along the
velocity dimension.

kinematic and dynamic constraints of the vehicle model. These constraints neces-
sitate that when an action changes one dimension of a state, other state variables
must also change as a side effect. For example, a car cannot shift to the left with-
out also moving forward or backward, nor change its velocity without also moving
through time, since acceleration is constrained. If we were to use a standard fixed
grid it would impose additional constraints on the values of the grid points that
could only be satisfied by adding more grid points. Figures 3.12 and 3.13 illus-
trate the problem. Part 3.12(b) shows a valid path through the grid points in the
(t, v) dimensions which does not pass through the grid points in the (t, p) dimen-
sions. The resolution of the grid would have to be increased in order to represent
this path. Note that if there were no constraint on acceleration, i.e., a = ∞ were
valid, then path 3.12(b) could jump straight to v = 1 at time 0, and the t-p grid
shown in 3.12(c) would be sufficient. Figure 3.13 shows that the pressure to in-
crease resolution flows the other direction as well. If we plot a course through the
t-p plane first, then we would still have to increase resolution along the velocity
dimension.

The final difficulty is that no prior placement of points along the velocity di-
mension will suffice for all circumstances. For example, if the robot needs to
follow another vehicle traveling at velocity v, then v must be a grid point along
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the velocity dimension. Since v could be any value, we must be able to move grid
points on the fly in order to plan in moving traffic.

In summary, the influences we consider in the design of our graph are:

Consideration-1 The curse of dimensionality.

Consideration-2 Constraints on motion require finer discretizations when using
a fixed grid.

Consideration-3 No prior placement of fixed grid points fits all scenarios.

In the next section we specify our graph considering these forces. Following
Tompkins[99], which we mentioned in Section 2.1.6, we classify each dimension
as independent or dependent and treat each differently in the construction of the
graph.

3.4.2 Graph Definition

In this section we define the directed search graph G = (V, E) and in following
sections we will describe each part in detail.

The vertices n ∈ V of the graph are in the form of a five-dimensional tuple
n = [sh `i aj [t]k [v]m], where

• sh is drawn from {s}, a set of discrete samples of distance along the road,
i.e., station.

• `i is drawn from {`}, discrete samples of lateral distance from the road
center line.

• aj is the index of an element in {a}, a set of acceleration policies such as
one of those described in Section 3.8.1.

• [t]k is an interval [tk, tk+1) ∈ R+ along the time dimension, together with a
distinguished value tk in the interval, which may change during the search.
The intervals {[t]k} are contiguous, and the last interval has tk+1 = ∞ so
that arbitrarily large times can be represented in the graph.
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• [v]m is just like [t]k, an interval [vm, vm+1) ∈ R+ along the velocity dimen-
sion, together with a distinguished value vm which may change during the
search. The intervals are also contiguous and the top interval has no upper
limit, so that we don’t need to specify a prior maximum value on velocity.

We write s(n), `(n), etc. to denote the components of the vertex tuple. In Sec-
tion 3.4.5 we will discuss why the vertex tuple includes the acceleration policy
index aj as a dimension.

The points {s} and {`} are sampled in a regular pattern using a discrete grid
(h, i) and a mapping (s(h), `(i)) from the discrete grid points to station-latitude
space using the affine functions

s(h) = ash

`(i) = a` + b`i
(3.16)

so that station is monotonic increasing starting from zero and moving right in
the station-latitude, or SL coordinate frame, and latitude may be positive (left)
or negative (right) with respect to the center line. The warped coordinate grid in
Figure 3.9 can be read as an instance of such a mapping. The states generated
this way are locally parallel to the road, i.e., a vehicle driving forward from such
a state and maintaining its steering curvature would continue along the road in-
definitely, assuming the road were circular. Nothing prevents us from expanding
the graph to include increments of heading and curvature away from parallel as
e.g. (s(h), `(i), θ(j), κ(k)), but we did not encounter a need for this to satisfy the
performance requirements of on-road driving. This choice implies that all plans
appear as a sequence of lateral swerves interspersed with brief periods where the
vehicle is not moving laterally. The actual behavior is made smoother by frequent
replanning.

Given a road center line r(s) as in Equation 3.9 and using Equation 3.10, the
elements [s, `] of each vertex define a complete configuration

[xr(s, `) yr(s, `) θr(s, `) κr(s, `)]
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in the road model described in Section 3.2.1.
There is an additional vertex n0 ∈ V representing the current state of the robot.

It has the form
n0 = [x0 y0 θ0 κ0 v0 dsκ(0) d2

sκ(0)], (3.17)

giving the robot’s current configuration, velocity, and steering rate derivatives.
Without loss of generality we assume t = 0 at the start state.

The edges e ∈ E of the graph are of the form e = (ni, nj), each joining two
vertices ni = [si `i ai [t]i [v]i], and nj = [sj `j aj [t]j [v]j]. The edge is defined
by a trajectory τ(e) = (ρij, aj) composed of a cubic path spline ρij of the type
described in Section 3.5.1, and an acceleration profile aj from Section 3.8.1. The
path ρij connects the start point

[xr(si, `i) yr(si, `i) θr(si, `i) κr(si, `i)],

and end point
[xr(sj, `j) yr(sj, `j) θr(sj, `j) κr(sj, `j)].

We can group the vertices into SL-equivalence classes that all have the same value
for s and `,

ni
s`∼ nj ⇐⇒ s(ni) = s(nj) and `(ni) = `(nj).

Two edges e1 = (ni, nj), e2 = (nk, nm) use the same path when ni
s`∼ nk and

nj
s`∼ nm. We also say e1

s`∼ e2. We constrain sj > si always, so that the graph
only contains paths driving forwards. Driving backwards is done at low speeds
and in parking lots and so is outside the scope of this work.

For edges (n0, nj) proceeding from the start vertex, the start point for the cubic
spline is [x0 y0 θ0 κ0] from Equation 3.17. As discussed in Section 3.3, a quintic
spline may also be used from the start state, using dsκ(0) as dsκI and d2

sκ(0) as
d2

sκI in Equations 3.30–3.35. Quintic splines cannot be used for other edges in
the graph since these derivatives are not uniquely specified by the other values in
the vertices. To do this the vertices would have to be extended with dimensions
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[dsκ] and [d2
sκ] for the curvature rate derivatives in the manner of [t] and [v]. By

joining a quintic spline from the start state to cubic splines at the subsequent edges,
we create discontinuities in the plan’s curvature rate, but these discontinuities are
rarely encountered since the plan is regenerated frequently.

Referring to Section 3.8.1 the acceleration profile aj(s, t0, v0) uses t0 = ti,
the distinguished point of [t]i, or t0 = 0 for the start state, and v0 = vi, the
distinguished point of [v]i. At the end of the trajectory, the final time tG and final
velocity vG must fall into their respective intervals, i.e., tG ∈ [t]j and vG ∈ [v]j . In
practice, the edges of the graph are constructed as the search for a plan progresses,
and the tj , vj are discovered. The distinguished points in the intervals are assigned
to be the tG or vG of an incident edge as they are discovered.

When two edges e1 = (ni, nj), e2 = (nk, nm) have the same second vertex,
i.e., nj = nm, then in general tG(nj) 6= tG(nm). However, the intervals are the
same, [t]j = [t]m, but there is only one distinguished point in the interval. One of
the edges is in effect a dead end since any edge (nj, np) proceeding onwards must
use the distinguished point from nj to calculate the acceleration profile. There-
fore, once the graph is constructed there is in effect only one edge incident on each
vertex. The same argument applies to the distinguished point in the velocity in-
terval. This procedure reveals that the s, `, and a dimensions are the independent

dimensions, i.e., they are selected independently, and the t and v are the dependent

dimensions, i.e., their values depend on the choices of s, `, a. This simultaneoulsy
resolves Consideration-2 and Consideration-3.

In the next section we discuss how the winning edge is selected, i.e., which
edge’s ending t and v are selected to become the distinguished points of their
respective intervals.

3.4.3 Graph Construction

In the previous section we said that the graph is not completely specified before the
search begins. The actual edges of the graph are realized from a set of potential
edges as the search proceeds. Out of multiple edges from the potential set that
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arrive at the same vertex, only one is selected to become part of the graph. The
selection criteria are based on the cost to reach the vertex via the edges. For each
vertex n ∈ V we maintain a lowest known cost g(n) to reach it.

A candidate edge ẽik = (ni, ñ
k
2) has tentative values for the distinguished

points in n2. We use ñk
2 to denote the vertex n2 with tentative values for the

distinguished points drawn from the candidate edge ẽik. Among a set of candidate
edges {ẽik}, ẽik = (ni, ñ

k
2) potentially connecting ni and n2, the edge ei2 that is

retained is the one which minimizes a cost

ei2 ← arg min
ẽk

g(ni) + c(τ(ẽk)) + Φc(τ(ẽk)), (3.18)

where g is the lowest cost to reach ni from the start node, c is the cost function
of the trajectory spline, and Φc the incremental portion of the final cost function
defined in Equation 3.3. All other edges are discarded. The distinguished values
in n2 are set from ei2. The cost g(n2) is then set,

g(n2)← g(ni) + c(ei2), (3.19)

as the lowest cost known to reach n2. We don’t include Φc in this expression since
Φc(n2) is an increment of the final cost earned up through n2, not the cost to reach
n2 from the start node. The expressions in Equations 3.18 and 3.19 look like the
familiar f -value

f(n) = g(n) + h(n),

from the standard A* algorithm[40]. Whereas A* operates on a graph that is
already (though usually implicitly) specified, we can see Equation 3.18 as guiding
the construction of our graph by selecting the candidate edges in such a way that
the f -value of each vertex is minimal. The A* search algorithm itself can be
readily adapted to address the problem of a graph with path-dependent edge costs,
which is another way of looking at our problem. Note that Φ(n) is not a good
choice for the A* heuristic function h(n). To use Φ(n) as part of an admissible
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heuristic we would need to add an (under)estimate of the sum
∑

c(τ) for the
succeeding trajectories.

3.4.4 Graph Search

Since driving is a real-time application where the vehicle cannot stop and delib-
erate on its next action, we are concerned with minimizing the worst-case time to
find a solution path through the graph.

Using the A* algorithm, the worst case is that all vertices in the graph would
have to be expanded in order to find the optimal path. If all vertices may be
expanded, then it is better to use an algorithm that does this as rapidly as possible,
dispensing with the priority queue and other overhead that accompanies a typical
A* implementation.

The worst-case outcome for A* is rendered all the more likely considering that
admissible heuristic functions are in general difficult to invent. While effective
functions have been found for parking lot and rover applications (cf. [25], [62]),
it seems a daunting task to find an effective heuristic for the much more complex
cost function that we employ with the high-speed driving problem. We describe
this cost function in the next chapter.

An anytime algorithm would not improve our worst-case scenario. Although
some (low-speed) driving applications have used anytime algorithms[62] to obtain
a suboptimal path that can be refined as it is followed, even these algorithms must
find a feasible path before it can be refined to an optimal path, and in the worst
case these algorithms also expand all vertices before any path is found.

We propose a dynamic programming algorithm that simultaneously builds and
traverses the graph. The majority of the search is carried out in the course of the
graph construction process, where edges are evaluated and selected, and vertex
locations are decided. The only constraint on the order in which edges are eval-
uated is that all candidate edges leading into a vertex n must be evaluated before
edges leading out of n can be evaluated, so that the distinguished t and v points
are determined. Figure 3.14 outlines the algorithm. For each vertex n we store
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function SEARCH-DP
∀n : g(n)←∞
for each station sh ∈ {s}
∀n s.t. s(n) = sh : φ(n)←∞
for each vertex n = [sh `i aj [t]k [v]m] at station sh

if g(n) 6=∞
Form the vector

x̂n = [x(n), y(n), θ(n), κ(n), t(n), v(n)]
for each outgoing edge ẽ = (n, n′)

Form the trajectory τ(ρ(e), a(e))
if g(n) + Φc(τ) < φ(n′)

φ(n′)← g(n) + Φc(τ)
g(n′)← g(n) + c(τ)
t(n′)← tf (τ)
v(n′)← vf (τ)
incoming(n′)← n // backtrace info

end if // ĉ(n)
end for // a

end if // 6=∞
end for // vertex

end for // station

Figure 3.14: The dynamic programming search algorithm for the search graph.
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g(n), the trajectory cost to reach n, and φ(n), the trajectory cost to reach n plus
the final cost to end the plan at that vertex. The former is used when extending
edges from n to later vertices, and the latter is used when deciding which edge
incoming to n should be chosen. To more easily reconstruct the path once g(n)

has been calculated for all vertices, the incoming table stores the winning edge
incoming to each vertex.

Once the dynamic programming search algorithm is complete and all vertices
have their cost-to-come g(n) set, a final vertex nf is added to V . One edge is
added from each node n ∈ V to nf , with cost Φ(n). The overall plan becomes
the lowest-cost sequence of edges connecting n0 to nf . In practice we don’t add
nf . Rather, we pick the vertex n∗ with minimum cost-to-come plus final cost as
the final vertex in the plan,

n∗ = arg min
n

g(n) + Φ(n). (3.20)

Since an edge (ni, nj) always has s(ni) < s(nj), we can evaluate all edges
(ni, nj) with the same s(ni) in parallel. We will describe our parallel algorithm
for the GPU in Chapter 5.

Finally, a note about the optimality of our graph search. In the previous section
we mentioned that our graph has path-dependent edge costs. We use path in the
sense of a sequence of edges through the graph, rather than a spline path ρ. Two
different sequences of edges may both start from vertex n0 and reach vertex nk

with the same cost but slightly different values for the distinguished t- and v-
points. Since they have the same cost, the choice of which incoming path to use to
set the distinguished points of nk is arbitrary. The costs of the subsequent edges
from nk may vary based on this choice. For example, if the first path is followed
to reach nk there may be no subsequent path to the goal should the t-value it
brings to nk lead to an unavoidable collision. The second path with the different
t-value with which it arrives at nk might have subsequently avoided the collision
and reach the goal, but the distinguished points of nk would already be set based
on the first path, so the path to the goal via the second path could never be found.
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Our algorithm is optimal within the limitations imposed by the need to discard all
but the lowest-cost edge incoming to each vertex.

In practice this suboptimality is not a problem as long as the t and v regions
are not too large, so that the endpoints of all of the plans that fall into the same
region are effectively equivalent for planning purposes. We have encountered a
situation where paths that undergo hard braking for long periods are not consid-
ered, because the final cost Φc retains edges that travel the same distance in less
time. In the next section we will see how including acceleration as a dimension in
the state space mitigates this problem.

Now that we have described the structure of the graph and how it is searched,
we next justify our design decisions in terms of the design factors discussed in
Section 3.4.1.

3.4.5 Why include acceleration in the vertex tuple?

In this section we address Consideration-1 by discussing why the acceleration
profile should be included as a dimension in the vertex tuple, i.e., why should the
form of the vertex be

n = [sh `i aj [t]k [v]m],

and not simply
n = [sh `i [t]k [v]m].

Consider two edges e1 = (n1, n2) and e2 = (n1, n4) where n2
s`∼ n4, so they start

at the same graph vertex and use the same path ρ, but have differing acceleration
profiles. If their final times and velocities t1 = tf (τ(e1)), v1 = vf (τ(e1)) and t2,
v2 land in the same [ti, ti+1) and [vj, vj+1) (Figure 3.15), and acceleration were not
included as a dimension, then only one of the accelerations would be represented
in the result. Rather than simply refining the discretization of the intervals [t]

and [v] along their dimensions by the amount required to overcome this problem,
we found that we could include acceleration in the graph and thereby represent a
greater diversity of trajectories. We also found that this more consistently yielded
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aj

Figure 3.15: If acceleration is not a dimension in the lattice, multiple trajectories pro-
ceeding from the same starting lattice vertex and differing only in their acceleration
profiles may interfere by ending in the same vertex.

final trajectories that use the same acceleration profile across consecutive edges,
which is beneficial for passenger comfort.

In the previous section we mentioned that plans that undergo hard braking for
long periods are not considered, because Φc favors and instead retains plans that
travel further in less time. Using acceleration as a dimension in the state space
mitigates this problem by ensuring that hard braking is always considered. Plans
that apply hard braking over two consecutive edges may still be starved, however.
This is an issue we must consider in future work.

Now that we have precisely defined the planning graph, we need to revisit
the cubic and quintic path formulations. In the rest of this chapter we delve into
the details of the path formulation we use in the planner, the algorithm we use to
solve the boundary value problem connecting vehicle states by the paths, and the
acceleration profiles we use to turn paths into trajectories. In the next section we
look at an alternate formulation of the polynomial needed to improve numerical
stability.

3.5 Stable Path Model

In Section 3.3 we described the polynomial spiral path model. In this section we
change the formulation of the polynomial in order to improve numerical stability,
so that in Section 3.6 we can show how to solve for the polynomial coefficients in
order to satisfy the endpoint constraints.
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3.5.1 Stable Cubic Paths

In practical applications, the formulation given in Equation 3.13 of Section 3.3.1
introduces round-off errors due to the large discrepancies in magnitude between
κ1 and κ3. The coefficient κ1 of the s term is typically much larger than the co-
efficient κ3 of the s3 term, for instance, and this problem worsens as the required
path length sG increases. It becomes especially problematic later when we need
to compute and invert the Jacobian of the spiral endpoint with respect to the coef-
ficients.

To improve numerical accuracy, the parameters to be solved for should be of
a similar scale. To this end, we introduce new parameters p = [p0...3, sG], again
following [44], and compute the polynomial coefficients indirectly as

κ(s) = a(p) + b(p)s + c(p)s2 + d(p)s3 (3.21)

where the parameters are constrained to be equal to the path curvature at equally
spaced points along the path:

κ(0) = p0 (3.22)

κ
(sG

3

)
= p1 (3.23)

κ

(
2sG

3

)
= p2 (3.24)

κ(sG) = p3, (3.25)

thus ensuring that the parameters are of comparable scale since the curvature is
bounded by the steering limits of the vehicle. The exception is sG. The dis-
crepancy in scale between sG and the {pi} is up to approximately three orders of
magnitude, for example for a curvature at one-third the length along the path of
p1 = 0.1 and path length of sG = 100 meters. However, we have found in prac-
tice that this magnitude of discrepancy is not a problem. Values of sG are usually
on the order of 20. The coefficients from Equation 3.21 can be solved using the
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constraints of Equations 3.22–3.25, giving

a(p) = p0 (3.26)

b(p) = −11p0 − 18p1 + 9p2 − 2p3

2sG

(3.27)

c(p) =
9(2p0 − 5p1 + 4p2 − p3)

2(sG)2
(3.28)

d(p) = −9(p0 − 3p1 + 3p2 − p3)

2(sG)3
. (3.29)

Since paths are intended to join a specified starting vehicle state qinit with an
ending vehicle state qgoal , we note that Equation 3.26 implies p0 = κI and Equa-
tion 3.25 implies that p3 = κG. This leaves just three unknowns p̂ = [p1 p2 sG],
one fewer than we had in Section 3.3.1.

Stable Quintic Paths

We can extend the stable cubic polynomial presented in [44] to formulate a stable
quintic polynomial. As with the cubic polynomial, we define new parameters
p = [p0...5, sG] to optimize in place of the original {κi} of the naive formulation
in Equation 3.14. The constraints defining the pi in this case are similar to the
cubic constraints (Equations 3.22–3.25), but use the additional elements in the
start state:

κ(0) = p0 = κI (3.30)

dsκ(0) = p1 = dsκI (3.31)

d2
sκ(0) = p2 = d2

sκI (3.32)

κ
(sG

3

)
= p3 (3.33)

κ

(
2sG

3

)
= p4 (3.34)

κ(sG) = p5 = κG. (3.35)
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To use the parameters, we restate Equation 3.14 using functions of the parameters
p:

κ(s) = a(p) + b(p)s + c(p)s2 + d(p)s3 + e(p)s4 + f(p)s5.

Solving for the constraints of Equations 3.30–3.35, we obtain

a(p) = p0 (3.36)

b(p) = p1 (3.37)

c(p) =
p2

2
(3.38)

d(p) = −575p0 − 648p3 + 81p4 − 8p5 + 170p1sG + 22p2(sG)2

8(sG)3
(3.39)

e(p) =
9 (37p0 − 45p3 + 9p4 − p5 + 10p1sG + p2(sG)2)

2(sG)4
(3.40)

f(p) = −9 (85p0 − 108p3 + 27p4 − 4p5 + 22p1sG + 2p2(sG)2)

8(sG)5
. (3.41)

As with the stable cubic formulation of the previous section, this leaves just three
unknowns, this time p̂ = [p3 p4 sG].

In this and the previous section we derived a more numerically-stable param-
eterization of the polynomial spirals. That is, the unknowns are closer in magni-
tude, which will make it easier to solve for them using numerical methods. We
now turn to describing that method, a gradient-descent search.

3.6 Path Optimization

In the following we describe how we find the parameters p for each of the cubic
polynomial spirals and quintic polynomial spirals.

3.6.1 Path Optimization, Cubic Case

We wish to find the unknown parameters p̂ = {p1, p2, sG} extending a cubic poly-
nomial spiral between two given states, a starting position qinit = [xI yI θI κI ] and
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desired ending position qgoal = [xG yG θG κG]. For simplicity and better numeri-
cal behavior, we can transform qinit and qgoal together to place qinit at the origin,
to derive a new start point qinit = [0 0 0 κI ] and new end point qgoal . Given a
candidate p, we can calculate the endpoint as

xp(s) =
∫ s

0
cos [θp(s)] ds

yp(s) =
∫ s

0
sin [θp(s)] ds

θp(s) = a(p)s + b(p)s2/2 + c(p)s3/3 + d(p)s4/4

κp(s) = a(p) + b(p)s + c(p)s2 + d(p)s3,

(3.42)

denoting the dependency on p by the subscript. That is, for a given parameter
vector p, we write the x-coordinate at a distance s along the path described by p

as xp(s), and similarly for the other variables.

Gradient Descent Algorithm

We use a shooting method to solve for the unknown parameters p̂ that will satisfy
the endpoint constraints. Extending the notation introduced in the previous sec-
tion, we use xp(sG) to refer to the endpoint of the path implied by the sG element
in p itself, i.e., sG = sG(p). The configuration at the endpoint of the path defined
by p is qp

init(sG) = [xp(sG) yp(sG) θp(sG) κp(sG)]. Treating it as a function of
the parameters p, we can calculate the Jacobian of the endpoint state vector with
respect to the unknown parameters,

Jp̂(qp
init(sG)) =


dxp

dp1
(sG) dxp

dp2
(sG) dxp

dsG
(sG)

dyp

dp1
(sG) dyp

dp2
(sG) dyp

dsG
(sG)

dθp
dp1

(sG) dθp
dp2

(sG) dθp
dsG

(sG)

 .

We don’t need the derivative for κ since κp(sG) = p3, i.e., the value at the endpoint
is not a function of the unknowns. We can then solve the problem using Newton’s
method.

We wish to find the p that makes qp
init(sG) = qgoal . We assume a reasonable
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initial guess for the unknowns p̂ (we’ll discuss how to select the initial guess in
Section 5.1.4), and use the Jacobian Jp̂(qp

init(sG)) to iteratively refine p̂ into a
better estimate p̂′ by following the gradient of qgoal − qp

init(sG) towards zero.

J ← Jp̂(qp
init(sG))

∆q ← qgoal − qp
init(sG)

∆p̂ ← J−1∆q

p̂′ ← p̂ + ∆p̂.

(3.43)

We can repeat this procedure substituting p̂′ for p̂ until ∆q is sufficiently small for
our purposes, or a maximum number of iterations has been reached, indicating that
the initial guess was not close enough to the true value of p to ensure convergence.

Calculating the Jacobian

Calculating the Jacobian is non-trivial. Both θp(s) and κp(s) can be evaluated in
closed form, but the elements xp(sG) and yp(sG) are a special case of the gener-
alized Fresnel integrals (as per [49]) and have no closed form solution. To solve
for these, we integrate numerically. Since the cubic polynomial is not stiff, and
few function evaluations are necessary to achieve sufficient error bounds, we can
use a simple quadrature method to evaluate the integrals. We use the composite
Simpson’s rule:

∫ b

a

f(x) dx ≈ h

3

[
f(x0) + 2

n/2−1∑
j=1

f(x2j) + 4

n/2∑
j=1

f(x2j−1) + f(xn)

]
(3.44)

where xj = a + jh for j = 0, 1, . . . , n− 1, n with h = (b− a)/n. Other authors
computed the Jacobian numerically using central differencing[44]. By using small
integration steps, that method can handle inequality constraints such as saturation
of the steering angle at points along the path, but we assume that in highway
driving scenarios kinematic limits would not be reached until well after dynamic
limits have been surpassed. Therefore, since we assume no inequality constraints
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need be enforced during the integration, we can use fewer integration steps than
previous approaches to calculate the endpoint. We use n = 8 in Equation 3.44,
and symbolically differentiate the entire expression to obtain a function closely
approximating the true derivative, which allows us to calculate the Jacobian very
efficiently, compared to calculating the Jacobian numerically using a differencing
method. Generating a single C++ function containing the entire calculation also
allows us to optimize the code by, for example, factoring out common subexpres-
sions between values of j in Equation 3.44. Our implementation of our method
to calculate the Jacobian is approximately 6 times faster than our implementation
that follows [44] using a forward differencing method with the same number of
Euler integration steps. In practice, one must use more Euler integration steps to
achieve the same degree of accuracy.

3.6.2 Path Optimization, Quintic Case

The quintic polynomial optimization is the same as the cubic case, with the nec-
essary substitutions:

xp(s) =
∫ s

0
cos [θp(s)] ds

yp(s) =
∫ s

0
sin [θp(s)] ds

θp(s) = a(p)s + b(p)s2/2 + c(p)s3/3 + d(p)s4/4 + e(p)s5/5 + f(p)s6/6

κp(s) = a(p) + b(p)s + c(p)s2 + d(p)s3 + e(p)s4 + f(p)s5,
(3.45)

using Equations 3.36–3.41. Out of the parameters {p0...5, sG} defining the quintic
polynomial spiral between the transformed start configuration qinit = [0 0 0 κI ]

and the end configuration qgoal = [xG yG θG κG], only p3, p4, sG are unknown,
with the others given in Equations 3.30, 3.31, 3.32, 3.35. For the rest of the
optimization, we follow the method of the previous section - using a symbolic
differentiation of an expression derived from Simpson’s method to calculate the
Jacobian quickly, and employing the procedure of Equation 3.43 to find the un-
known parameters.
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3.7 Path Integration

We noted in the previous section that we don’t need to calculate points along a
path in order to find its endpoint. However, we do need points along the path in
order to evaluate it in the search. We use a trapezoidal integration method for
x(s) and y(s). It has sufficient accuracy for our purposes and allows convenient
incremental evaluation of the integrals at several regularly-spaced points along the
path. Recall the trapezoidal integration formula is∫ b

a

f(x)dx ≈ b− a

2N
[f(x0) + 2f(x1) + · · ·+ 2f(xN−1) + f(xN)] , (3.46)

with
xk = a + k

b− a

N
, for k = 0, 1, . . . , N.

We want to calculate the integral at the intermediate steps:∫ xk

a

f(x)dx, for k = 0, 1, . . . , N.

This can be done incrementally, using

sk ← ksG

N

θk ← a(p)sk + b(p)s2
k/2 + c(p)s3

k/3 + d(p)s4
k/4 + e(p)s5

k/5 + f(p)s6
k/6,
(3.47)

for all k = 0, 1, . . . , N , initializing

x0, y0, ∆x0, ∆y0 ← 0,
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and then for k > 0, iteratively calculating

∆xk ← ∆xk−1
k−1

k
+ cos θk+cos θk−1

2k
for k > 0

∆yk ← ∆yk−1
k−1

k
+ sin θk+sin θk−1

2k
for k > 0

xk ← sk∆xk

yk ← sk∆yk.

(3.48)

This gives us an evenly-spaced sequence of points (si, xi, yi, θi, κi) along the path
which can be evaluated individually through the cost function and summed to give
a cost for the overall path. Next we look at how we augment paths with times and
velocities to create alternative trajectories.

3.8 From Paths to Trajectories

We define a trajectory τ as an extension of a path ρ traveling through configuration
space C into a more general state space manifold M that includes time. The
definition of τ is similar to that of ρ in Section 3.3:

τ : [0, 1]→M,

where M = {(x, y, θ, κ, t, v)}. A trajectory is produced from a path by apply-
ing an acceleration profile a(s), given v(0), the velocity at the start of the path
segment, and t(0), the starting time.

As we have said, the path is defined by a polynomial function of curvature κ as
a function of arc length s. In order to evaluate the goodness of a trajectory in terms
of such quantities as its curvature rate, and ensure smooth steering across replan
cycles, we need the time-derivatives of curvature, which we can obtain using the
chain rule once we have v(s) = ṡ:

κ̇cubic(s) = b(p)ṡ + 2c(p)sṡ + 3d(p)s2ṡ, (3.49)
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and

κ̇quintic(s) = b(p)ṡ + 2c(p)sṡ + 3d(p)s2ṡ + 4e(p)s3ṡ + 5f(p)s4ṡ. (3.50)

3.8.1 Accelerations

We use two types of acceleration profile a(s, t0, v0) to generate trajectories given
t0 = t(0) and v0 = v(0):

• A constant acceleration a(s) = a

• An acceleration produced by a PD-controller for distance-keeping to a ve-
hicle in front

Constant Accelerations

For the constant-acceleration case, we can determine a in one of two ways. The
first way is to select a constant a directly, for example using a = 0 to travel
at a constant speed, or using a large deceleration like −5ms−2 to represent the
vehicle’s performance limits. The second way is to select a desired final velocity
v(sG) = vG to be reached by the end of the path, such as a local speed limit, so
that the value for a is

a =
v2

G − v2
0

2sG

. (3.51)

Given a constant acceleration a, the time and velocity reached at each point along
the path is

va(s) =
√

2as + v2
0

ta(s) = 2s
v0+va(s).

(3.52)

An implementation note - numerical round-off errors can lead to undesirable re-
sults. If the acceleration a is intended to yield a target velocity at the end of
the path of va(sf ) = 0, then the radicand in Equation 3.52 could be a small
negative number at the end of the path. For this reason we also perform the
test

85



if radicand > −ε then
v =

√
max(0, radicand)

else
no solution

end

In the case of no solution, we set v to a small positive value and continue at
that constant rate until the end of the path. We will have more to say on this in
Chapter 4.5.2.

Distance-keeping accelerations

For the PD-controlled distance-keeping acceleration, we need the obstacle-detection
code to identify a vehicle in the same lane ahead of the robot. If there is such a
vehicle, the obstacle-detection code must predict its future motion. We assume a
simple model identifying the current road station So(0) at time zero (“now”, the
start of the planning cycle) and a constant velocity vo, so that the road station So(t)

of the obstacle at time t is

So(t) = So(0) + vo.

We could easily imagine a more complex predictive model with a changing veloc-
ity. Note that here we use S for station to distinguish from the arc length s of the
robot’s path. We set parameters to construct a desired following gap gdes(t) using
the current velocity of the robot

gdes(t) = kg
a + kg

bv(t), (3.53)

so that as the robot drives faster the desired gap becomes larger. The actual gap at
time t we name g(t). The desired acceleration for distance-keeping mode is

adk(t) = kg
1(g(t)− gdes(t)) + kg

2(vo − v(t)), (3.54)
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the first term closing the gap and the second term equalizing the velocity. The
desired acceleration adk(t) is further clamped within desired acceleration and de-
celeration bounds to keep it within the bounds of what the vehicle is capable of
and to ensure comfort. For example, we do not want distance-keeping mode to
involve hard acceleration, though hard deceleration is acceptable when necessary.
The time ta(s) and velocity va(s) at points along the path are computed numeri-
cally using a simple Euler integration based on Equation 3.52.

3.9 Summary

In this chapter we gave an overview of our planner, and described the structure
of its constituent paths and trajectories, with the path optimization approach that
makes the planner possible. The planner rests on the ability to solve a boundary-
value problem in the spatial dimensions. We then looked at the problems caused
by trying to form a search grid in a high-dimensional space when the system
is subject to dynamic constraints. We proposed that allowing the grid points to
move along some dimensions could resolve these difficulties. Considering this, we
showed our scheme for concatenating the constituent trajectories in order to build
sufficiently long and complex overall trajectories to be confident that it can gen-
erate safe and reasonable plans in challenging circumstances. We described our
approach to evaluating component trajectories and how we decide which overall
plan to accept, given that driving to the end of the planning horizon is not always
the best choice.

The main idea of our planner is that it is necessary to evaluate a dense and
diverse set of candidate plans in order to find a safe one, let alone one that max-
imizes a complex set of desired behavior preferences. The cost function and the
search graph structure together determine the space of behaviors the planner can
generate. Our aim has been to devise a search space that is likely to contain a
desirable plan no matter the circumstances, so that the only remaining question
is what the cost function should be. In the next chapter we will look at how to
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manipulate the cost functions c(τ) and Φ(n) in order to select the one plan from
the many considered that most closely achieves the behaviors we desire for a safe
and comfortable ride. We will find that the search space structure mostly satisfies
our aims, but in the course of tuning the cost function we will bump against lim-
itations imposed by the search space. This will lead us to consider improvements
to the search space for future work.
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Chapter 4

Cost Functions and Behavior Tuning
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The philosophy of our planner is to examine many candidate plans while ex-
cluding as little of the search space a priori as possible. We use a cost function to
rank the plans numerically, and pick the lowest-cost plan to execute.

We use an iterative process to specify the cost function. First, we identify
physical quantities that should be penalized or discounted, such as lateral acceler-
ation, vehicle speed, and proximity to obstacles. Second, we compose terms that
measure these quantities and assign weights to them. Third, we run experiments
and observe the resulting behavior. The experiments may clarify the behavioral
tradeoffs implicit in the weightings, or point to new quantities that should be reg-
ulated. We repeat these three steps until we obtain satisfactory behavior in the
scenarios of interest.

In this chapter we aim to show that our approach of using a cost function to
rank a large number of plans is viable. That is, we demonstrate a cost function that
is inexpensive to compute while generating reasonable behaviors. The amount of
engineering effort required to compose and tune an ideal cost function is outside
the scope of this thesis, but we aim to convince the reader that the ideal cost
function is within reach.

In the rest of this chapter we present the principles that guide our search for the
cost function, the terms of our proposed cost function, and the reasoning behind
each of them.

4.1 Relentless Optimization

In designing our cost function we must contend with the phenomenon of relent-

less optimization, whereby a planner tends to select “brittle” plans that fail in the
presence of errors in modeling or execution.

The trajectories of interest in autonomous driving tend towards an extreme,
where it is incrementally better to increase or decrease some quantity of interest,
right up to a catastrophic limit. A small error in the vehicle or environmental
model, or in the execution of a plan, can push the system to the other side of such
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a limit. For example, it is sensible to select trajectories that drive faster, all other
things being equal, as long as the speed limit is not exceeded. When approaching
a corner, trajectories that start braking later will tend to score higher on time. The
braking force that can be applied by the vehicle has some limit beyond which the
vehicle will skid. If speed is the only objective, the best trajectory will therefore
be one which applies braking force just below that limit, and starts braking as late
as possible. The slightest error in perception or control execution may therefore
lead to a catastrophic failure. The cost function must be designed to promote both
safety and efficiency.

The main idea in mitigating the effect of relentless optimization is to identify
the terms in the cost function that lead towards a precipice, and add more expen-
sive regions leading up to the precipice that cancel out the benefits of approaching
the limit. For example, we can surround lethal static obstacles with higher-cost
areas that increase sharply in cost closer to the vehicle. This keeps the planner
from approaching them too closely unless absolutely necessary. We can also take
perception noise into account by expanding obstacles that are further away from
the vehicle, to keep the planner from committing to a plan that will turn out to be
infeasible as the robot draws nearer to the object.

When a limit is inadvertently crossed, we would like the cost function to pro-
mote a rapid return back to safety without making the situation worse by causing
a panic stop. For example, if the vehicle’s lateral acceleration is already over the
limit when the planning cycle begins, we would like the cost function to guide
the planner smoothly back below it, rather than, for example, simply slamming on
the brakes. Where static or moving obstacles are involved, we would like a cost
function that allows the vehicle to collide with obstacles, should that be inevitable,
while keeping it away in all other circumstances. When a collision is inevitable,
we would like to actively plan to minimize damage, rather than simply braking as
hard as possible and hoping for the best. However, once we permit collisions, we
must take care that the planner only uses them as a last resort. This is an open
problem which we leave for future work. For this work, we try to avoid using
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Figure 4.1: Hysteresis motivating scenario: two equally good but different paths
around an obstacle can cause indecision when replanning.

lethal, or infinite values in the cost function which can leave the planner with no
feasible plan if the vehicle should happen to stray into a lethal-cost region. We do
use infinite costs for obstacles in our experiments, since for the traffic conditions
and the safety protocols we use in our testing on the robot, we would rather the
vehicle brake hard when it can’t find a plan rather than reason that it should collide
with something.

4.2 Hysteresis and Stability

Slight changes in the world model used by the planner can result in highly dissim-
ilar plans having the lowest cost in successive planning cycles. Figure 4.1 shows
an example scenario with two dissimilar ways to get around an obstacle, though
they would have a similar cost. Sensor noise and discretization artifacts can cause
the left and right plans to appear best in successive planning cycles. It is better to
pick one path at the beginning and stick with it. Rapidly alternating between com-
mands to steer left and right may prematurely wear vehicle actuators and alarm
passengers. Hysteresis is a robust way of filtering spurious changes to the plan
that is independent of the vehicle modeling and control. We apply a cost discount
to those plans that are most similar to the previous plan. Expressing the plan as a
sequence of graph vertices n:

n = [n0, n1, . . . nf ] ,

we propose a scheme for promoting stability through hysteresis on the notion that
it is most important to maintain consistent plans at the start of the path. We do
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(a) Plan cycle 1 (b) Plan cycle 2

Figure 4.2: Hysteresis applied to vertices in the world-fixed road lattice. The black
vertices in 4.2a mark the first two lattice points in the plan. By the second planning
cycle (4.2b), the vehicle has passed the first station in the lattice. The lattice is ex-
tended along the road. The green vertex receives a discount due to its inclusion in the
previous plan and is chosen for the plan, but the plan is different after that point since
only the first two points in the first cycle received a discount. The first two vertices
in the new plan are marked to receive a discount in the third cycle.

two things to effect hysteresis.
First, we ensure that similar trajectories are actually available in the space

searched, and second, we apply a cost bonus to similar trajectories. To achieve
the first point, we fix the lattice to the world frame rather than letting it slide with
the vehicle. This ensures that after the vehicle moves, the same path segment
from the vehicle to the lattice point p0 is still available, though without the initial
portion that just was traversed.

Second, we decrement the cost c(τ(e)) of any graph edge e that terminates at
a vertex with the same (s, `) index as either of the first two vertices (after the start
state n0) of the previous plan, with an additional discount if the a coordinate also
matches. The indices are adjusted if the lattice just advanced an increment for the
later planning cycle. Figure 4.2 illustrates. We assign the discount only to the
first two lattice points along the plan because it is most important to filter spurious
changes to the first part of the plan.

The hysteresis cost we just discussed was calculated across plans, i.e., so that
the cost of a plan is affected by the previous plan. We also promote stability by
penalizing spurious acceleration changes within a single plan. An edge

e = ([s1 `1 a1 . . .], [s2 `2 a2 . . .])
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Figure 4.3: Sample points along a path. The cost function c(x̂) is evaluated at these
discrete sample points.

receives an additional penalty kchange
accel when a1 6= a2.

4.3 Trajectory Costs

For each sampled trajectory corresponding to a single edge in the plan, the cost
of having the vehicle traverse the trajectory is computed using a function c(x̂)

evaluated over a set of k samples {x̂i}ki=1 along the trajectory, as in Figure 4.3.
We use c(τ) for the cost over the whole trajectory, or c(x̂) for a single sample
along the trajectory, depending on the context. The extended state vector used to
evaluate the cost is x̂ = [x y θ κ t v a κ̇]. Terms used in the cost function include:

cstatic(x̂) Static cost term based on the state of the vehicle without regard to quan-
tities dependent on time. This is broken into further cost terms:

cobs
static(x, y) Static obstacle cost term, used to avoid static hazards on the

road, such as potholes, stopped cars, and debris detected by the per-
ception system.

clane
static(x, y) Static road potential cost terms, used to promote lane centering

and control the magnitude and direction of deviations during emer-
gency maneuvers.

ccurv
static(κ) Static curvature cost term, used to exclude paths that exceed the

steering limits of the vehicle. Does not account for additional effective
limitations such as slip angle, which is dependent on velocity.
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cdynamic(x̂) Dynamic cost term based on vehicle quantities that depend on time.
This is broken into further cost terms:

cobs
dynamic(x, y, t) Dynamic obstacle cost term based on the location of the

vehicle and the time at which it reaches the location. Used to avoid
other traffic on the road.

caccel
dynamic(a) Penalize hard acceleration and decelerations, to stay within the

passenger comfort zone.

cspeed
dynamic(v) Penalty based on longitudinal speed of the vehicle. Used to en-

sure that the vehicle stays below the speed limit when possible.

clataccel
dynamic(κ, v) Penalty based on the absolute lateral acceleration of the ve-

hicle, |κ|v2, used to avoid uncomfortably high or dangerous lateral
accelerations.

ccurv
dynamic(κ̇) Penalize high steering wheel turning rates.

The total cost of traversing each trajectory τ is the sum of the static terms and
dynamic terms applied to its underlying path samples {x̂i}ki=1. The sum of these
costs is scaled by the path length and divided by the number of samples, so that the
total cost for a path or trajectory depends on its arc length and not on the number
of samples used,

c({x̂i}ki=1) =
sf (τ)

k

k∑
i=1

(
cdynamic(x̂i) + cstatic(x̂i)

)
. (4.1)

In the following sections we describe these cost terms in more detail.

4.4 Static Costs

Paths are evaluated by sampling points x = (x, y, θ, κ) along their length and
evaluating the cost function cstatic(x). Two cost functions are prepared from exter-
nal perception data: the first, clane

static, assigns a cost to points based on their position
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with respect to the desired lane of travel, and the second, cobs
static, gives a cost for

their proximity to obstacles. In the next section we define clane
static.

4.4.1 Lane Centering

We want the vehicle to drive in the center of the selected lane, but obstacle avoid-
ance and other emergency maneuvers may require the vehicle to depart from the
lane center. We balance these demands using a cost function clane

static based on the
lateral deviation of a point (x, y) from the center of the desired travel lane. We
assume that descriptions of the available lanes on the road are provided, either by
prior knowledge obtained from a map, or on-line from a road-detecting perception
system.

The premise of our lane centering cost function is that it should cost little for
the robot to make minor corrections within its own lane, but it should tend back
towards the center. If it needs to swerve outside its desired travel lane, it should
prefer lanes in the same travel direction over opposing lanes. Finally, the cost
should be monotonic increasing away from the center of the desired travel lane,
to avoid getting stuck in a distant local minimum after an evasive maneuver.

Our scheme is depicted in Figure 4.4. The tuning parameters we use to shape
the cost potential are:

cdes
a Constant term for desired traveling lane. This should be lower than all other

lanes, and we typically set it to zero.

ctrav
a Constant term for other traveling lanes, i.e., those in the same direction as

the desired lane. This gives a base cost to each alternate lane. We set it
high enough to mark a boundary between minor in-lane lateral deviations
and more consequential maneuvers.

copp
a Constant term for opposing lanes. This gives a very high base cost to enter

opposing lanes, so that it is only done in emergencies.
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ctrav
b Linear term for desired and traveling lanes. This creates a ‘V’-shaped cost

centered on the desired lane, to encourage staying in the center of the lane.
We use a small value for ctrav

b to allow the vehicle to depart from the lane
center for long periods, allowing smooth deviations around obstacles. The
same slope is extended over other traveling lanes, encouraging the vehicle
to stay close to the desired lane even when it must make a large departure.

copp
b Linear term for opposing lanes. We make it more expensive the further the

vehicle departs into opposing lanes.

Other values extracted from the road shape and used to form the cost potential are

`des Latitude of the center of the desired traveling lane.

`div Latitude of the line dividing the traveling lanes from the opposing lanes.

`w Width of lanes, assumed to be the same for all lanes.

For each point (s, `) on the road, the cost potential is computed as

c(`) =


copp
a + copp

b |`− `div| if ` > `div

cdes
a + ctrav

b |`− `des| if ` ≤ `div and |`− `des| < `w/2

ctrav
a + ctrav

b |`− `des| if ` ≤ `div and |`− `des| ≥ `w/2

(4.2)

Finally, there is a high penalty in the shoulders on either side of the road. The
lane centering cost map is defined in (s, `) coordinates, but we need to evaluate
the path using its (x, y) coordinates. We use a map

XYSL : (x, y)→ (s, `)

which performs this transformation. The implementation of this map is described
further in Section 5.3.3.

Further experimentation in lane costs might consider increasing the cost of
opposing lanes as a function of station, to discourage committing the vehicle to a
plan that ends in an opposing lane.
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Figure 4.4: A lane cost potential function that encourages driving in the center of the
desired lane while allowing necessary deviations.

4.4.2 Static Obstacles

Each (x, y) point in the world is assigned a cost cobs
static(x, y) based on its proximity

to static obstacles identified by the perception system. Like clane
static, this cost is

assigned without regard to the velocity of the vehicle, or the time. Note that the
orientation θ of the vehicle is not considered in this cost function - we assume that
the vehicle will remain essentially parallel to the road during highway driving so
that its orientation will not appreciably affect the cost we would like to assign. We
will justify this assumption later in this section.

For simplicity, we define the cost as a potential function over the plane which
can take on just three distinct values:

lethal A path causing the vehicle to intersect with an obstacle is assigned the
maximum cost, cobs

static(x, y) = ∞. No path will be accepted if it passes
through such a region.

high A finite but expensive cost to penalize paths that pass near an obstacle but
don’t contact it.

zero Regions a safe distance away from any obstacle are assigned a value of zero.
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We use only three values because in practice the potential function is implemented
as a coarse grid on the order of 30 cm. Since 1 meter, for example, is a safe lateral
distance from other vehicles, this leaves little space for a smoother gradient of
costs in the map. We said in Section 4.1 that lethal costs should be used sparingly
lest they leave the planner with no way to recover from an error. We address this
later in the section.

The nonzero-cost (lethal and high) regions are drawn around each obstacle
according to its distance from the vehicle. Figure 4.5 illustrates. Given ŝ, the dis-
tance from the vehicle’s current position to the obstacle, the obstacle is expanded
longitudinally by as

0+as
1ŝ and laterally by a`

0+a`
1ŝ to obtain the lethal-cost region.

For the constants as
0 and a`

0 we use the half-length and half-width of the vehicle,
so that this region is locally a C-space expansion of the vehicle. The linear coef-
ficients as

1 and a`
1 cause this C-space-expanded region to grow with the distance

from the vehicle. This mitigates the tendency towards relentless optimization, as
we discussed in Section 4.1. If we did not so expand the object, an error in obsta-
cle perception or plan execution could cause the planner to commit to a plan that
later turns out not to be feasible as the vehicle draws closer to the obstacle. The
high-cost region is constructed similarly, but with larger coefficients bj

i . When
obstacle regions overlap we take the maximum value. It would be worthwhile to
investigate an enhancement such as max(as

0 + as
1ŝ, a

s
2) and similarly for the other

variables to limit the expansion of distant obstacles beyond a certain size. Prelim-
inary experiments suggest that a nonlinear growth rate would be desirable, where
the dilation increases rapidly with distance at first and then levels off. For our
high-speed experiments we used a simulation environment where we assumed a
high enough perception accuracy that the a1, b1 terms were relatively small. For
robot experiments we use lower speeds and object distances which lie within the
rapid-growth dilation regime.

As we said at the start of this section, cobs
static(x, y) does not consider the ori-

entation θ. In highway driving, even during rapid lateral maneuvers the vehicle
remains almost parallel to the road. To mitigate the small error that does exist, we
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Figure 4.5: Construction of the cost function potential field generated by static obsta-
cles. The red squares are the obstacles themselves. The cross-hatched regions have
infinite cost. The hatched regions have a high, finite cost. The boundaries of the
regions are defined by first-order polynomials, growing with ŝ, the distance from the
vehicle to the obstacle in station.

dilate the obstacles by the size of the error. Assuming a vehicle with the dimen-
sions of Boss[101], i.e., 5.6 meters long by 2.3 meters wide, a six-degree deviation
from parallel to the road, which is a typical deviation during a rapid lane change,
yields a 30-cm lateral displacement of the corner of the vehicle. We dilate the
obstacles by approximately this much. Larger deviations in orientation can occur
at lower speeds. For example, a 24-degree deviation is possible while changing
lanes from behind a stopped vehicle, which translates to a 1-meter lateral devi-
ation in the corner of the vehicle. This additional error is mitigated by the fact
that our planner considers entire paths. The kinematics of the vehicle ensure that
while our collision checking scheme may wrongly estimate a single pose to not
be in collision, other poses in the path will be estimated correctly, as Figure 4.6
shows. We have not fully quantified this effect, but in empirical tests we did not
observe any unanticipated collisions.

The lane potential cost function clane
static and the static obstacle potential cobs

static

are combined to compute the cost of a path ρ. To evaluate a trajectory, we need
to complete cdynamic, the cost for the extended state vector that includes time and
derived quantities, x̂ = [x y θ κ t v a κ̇].
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Figure 4.6: The kinematics of the vehicle mitigate the error due to ignoring θ in
the occupancy grid. The left figure shows the real vehicle (solid line) colliding with
an obstacle, while the road-parallel vehicle actually used for the collision checking
would not (dashed line). The right figure shows that even though the vehicle is turning
away from the obstacle, its kinematics ensure that the road-parallel version collides
with the obstacle.

4.5 Dynamic Costs

Once the paths ρ are evaluated, we need to evaluate the trajectories τ . We use
several terms to evaluate aspects of the vehicle’s behavior. The first is a potential
function cobs

dynamic(x, y, t) to penalize getting too close to moving obstacles.

4.5.1 Dynamic Obstacles

We create a cost potential function for dynamic obstacles similar to the one for
static obstacles. We add the time dimension t to create a cost function cobs

dynamic(x, y, t)

giving the cost for the vehicle’s center point to occupy a given point in space at
the given time. As with cobs

static, and for the same reasons, we neglect changes in θ.
For each moving obstacle we predict its location and velocity as a function of

time up to some horizon. At a given plane of the (x, y) space for a fixed value of t,
the obstacles are treated much like static obstacles. Each (x, y) point is assigned
a cost based on its proximity to the obstacles. As with cobs

static, we assign to each
point one of three values: lethal, for intersections of the robot with the obstacle,
high for being in close proximity, a linear cost follow(∆s) for points behind the
vehicle, or zero, for further distances.

Just like static obstacles, the moving obstacles are dilated along the station
and latitude dimensions. We define a function that gives the amount each obstacle
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sample should be dilated along the station direction to create a lethal cost region,

DS
lethal(t, v) = as

0 + as
1tv.

Obstacles are dilated more when they are further away in time, thus diminishing
the impact that noisy sensor readings could have in tricking the robot into com-
mitting to brittle maneuvers near other vehicles several seconds into the future.
Faster-moving obstacles are dilated even more, since a small error in estimating
the velocity of an approaching vehicle is more consequential at higher speeds.

We define another function for the lateral expansion of the lethal-cost region,
similar to DS

lethal(t) but without the factor of v,

DL
lethal(t) = a`

0 + a`
1t.

For the lateral expansion we can dispense with the dependency on velocity since
lateral motion is very slow compared to longitudinal motion, diminishing the mar-
gin of safety required in case the perception system’s estimate of a vehicle’s lateral
velocity is in error.

We define functions DS
high(t, v) and DL

high(t) similarly to DS
lethal(t, v) and DL

lethal(t).
Regions of cobs

dynamic with the boundaries defined by these functions are assigned ei-
ther high or lethal.

To make the planner follow the vehicles ahead at a safe distance, we can create
a region of graduated cost behind each vehicle. The length flen of the follow-
cost region is proportional to the velocity of the vehicle, so that we follow faster
vehicles at a larger distance. The constant ksize

follow is simply the following gap in
terms of time, multiplied by the vehicle velocity to get the following gap in terms
of distance.

flen = ksize
followvo.

The cost of the region starts at 0 at a distance flen and increases linearly closer
to the vehicle, using a factor kslope

follow. We use the lateral dilation of the obstacle
Dlethal(t) to bound the region’s size laterally. We denote the distance from a point
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Figure 4.7: Shape of the cost function for moving obstacles. The cross-hatched area
is lethal for the center of the to robot occupy, the hatched area is high-cost, and the
graduated hatched area is low cost, diminishing in cost towards the left.

(x, y) to the vehicle by fdist = So(t) − s(x, y), where So(t) is the station of the
obstacle at time t, and s(x, y) is the station of the point (x, y) in the road model.
The resulting function is

cfollow(x, y, t) =

{
kslope

follow(flen − fdist) if 0 ≤ fdist ≤ flen and `(x, y) ∈ Dlethal(t)

0 otherwise,
(4.3)

where `(x, y) is latitude of the point (x, y). Figure 4.7 illustrates the resulting cost
potential cobs

dynamic(x, y, t) at a single value of t.
The dynamic obstacle cost potential we have described treats vehicles behind

the robot the same as vehicles in front of it, i.e., as though their motions are
determined independently of the robot’s motion. For example, if a vehicle behind
the robot is traveling faster than the robot, the planner may select a trajectory
that causes the robot to accelerate or move aside, rather than the more desirable
behavior of expecting the following vehicle to regulate its own speed and position
in response to the robot’s behavior. This is arguably the best response when a very
fast-moving vehicle is approaching from behind, but in most normal driving it is
not. We leave this problem for future work. A possible solution is to predict future
locations of vehicles behind the robot as though they were braking starting at the
current time.

The moving obstacle cost function controls how close the robot can get to
other vehicles. We must balance the need to stay a safe distance from other vehi-
cles against the need to avoid them using graceful movements. This is the subject
of the next section.
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4.5.2 Velocities and Accelerations

Autonomous vehicles must respect speed limits, their own mechanical limitations,
and their passengers’ comfort. To keep the vehicle’s behavior in line, we levy
costs on the velocities and accelerations over a trajectory τ , making use again of
the extended vehicle state vector

x̂ = [x y θ κ t v a κ̇] ,

and the sampling {x̂i}ki=1 of states along τ .

Speed Limit

We encourage the vehicle to stay below the speed limit by imposing a constant
cost kspeed

dynamic if at any point along τ it exceeds the speed limit limit, i.e.,

cspeed
dynamic(τ) =

kspeed
dynamic if max

i
v(x̂i) > limit

0 otherwise.

Given a speed limit of vmax, this binary cost scheme will prevent the planner from
selecting a plan that goes over the speed limit as long as the gain kt in Equation 3.3
doesn’t outweigh kspeed

dynamic. The vehicle will not speed unnecessarily as long as
kspeed

dynamic is chosen so that

kspeed
dynamic >

ktsf (τ)

limit
.

This scheme costs the same regardless of whether the vehicle edges ε over the limit
or doubles it. In scenarios where speeding is necessary, more experimentation
is needed to find a suitable schedule of penalties for higher speeds. Note that
the vehicle’s speed is limited absolutely, though indirectly, by the time horizon
ht from Equation 3.4 and the largest station value sh of any vertex in the graph
(Section 3.4.2). No plan can be generated that contains a velocity vbig so high that
the vehicle would travel a distance sh in time less than ht, even were it to start
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braking as hard as possible after reaching vbig.
An enhancement to investigate for future work would be making cspeed

dynamic de-
pendent on station as well as velocity, for regions where the speed limit is about
to change and we wish the robot to anticipate and adjust its speed smoothly.

Longitudinal Acceleration

Any vehicle has a limited ability to accelerate given its weight and engine power,
and to decelerate, given its tires, brakes, the road conditions, and other factors. We
wish to avoid generating trajectories that exceed these limits. For simplicity, we
use a pair of constants amax

hard and amin
hard for the maximum acceleration and decelera-

tion the vehicle can sustain at any speed. Even when they are within the abilities
of the vehicle, unnecessarily sharp acceleration and braking are undesirable. They
cause premature brake and tire wear, waste fuel, and are uncomfortable to the pas-
senger and potentially hazardous for other users of the road. We define a second
set of limits amax

soft and amin
soft on acceleration to draw the line between normal and

unusual accelerations.
The acceleration profiles described in Section 3.8.1 are selected or modified

according to these limits. For constant accelerations (Equation 3.52), we simply
avoid configuring the planner to use a value for a outside the allowed range. For
a constant acceleration obtained by a target-velocity profile (Equation 3.51), we
clamp the value of a within [amin

hard, a
max
hard]. In these two cases, the value of a is con-

stant over the trajectory. For distance-keeping acceleration profiles, a changes at
each sample. In this case, we clamp a within the range [amin

hard, a
max
soft ] at each inte-

gration step. That is, we are willing to brake hard when in distance-keeping mode
to avoid a collision, but since the purpose of distance-keeping mode is smoother
driving, we don’t want to accelerate hard to just to catch up to traffic ahead. We
discuss the distance keeping behavior further in Section 4.6.

In order to choose between normal accelerations, i.e., those within [amin
soft, a

max
soft ],

and unusual ones, those within [amin
hard, a

max
hard] but outside [amin

soft, a
max
soft ], we use a binary

cost, similar to the one we use to set speed limits. If the acceleration a is outside
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Value Description
a = amax

hard Hardest possible acceleration
a = amin

hard Hardest possible braking
a = amax

soft Hardest acceleration allowed without penalty
a = amin

soft Hardest braking allowed without penalty
a = 0 Maintain current speed
vf = 0.99∗ Speed limit Stay a hair below the speed limit.
vf = 1m/s Make sharp turns at low speeds
vf = 0.01m/s Come to a virtual stop by trajectory end
a = adk(t) Distance keeping (Equation 3.54)

Table 4.1: Acceleration profiles used in the planner

the range [amin
soft, a

max
soft ] at any point along the trajectory τ , then a cost penalty is

applied, that is,
caccel

dynamic(τ) = caccel(τ) + cdecel(τ),

where

caccel(τ) =

k+
accel if max

i
a(x̂i) > amax

soft

0 otherwise,

and

cdecel(τ) =

k−accel if min
i

a(x̂i) < amin
soft

0 otherwise.

This binary scheme, much like the speed limit cost function cspeed
dynamic, is sufficient

to discourage unnecessarily hard acceleration, but does not discriminate between
degrees of hard acceleration. We set k+

accel and k−accel small enough to allow hard
acceleration to be used to avoid the high cost areas of obstacles. We leave finer
distinctions among acceleration for future work.

The behavior of the planner depends on the family of acceleration profiles
given it to choose from. Table 4.1 lists the acceleration profiles we use in our
experiments. We cover both the soft and hard constant acceleration limits, ensure
that we can reach the speed limit smoothly, maintain our current speed, and use
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low target velocities to make hard turns at low speeds and come smoothly to a
stop.

A large constant deceleration may bring the vehicle to a stop at some station
sstop before the end of a trajectory. This would mean the trajectory had effectively
an infinite stopping time, and thus infinite cost. Emergency braking would thus be
impossible along long paths. To remedy this, we fix v at a small value for stations
s > sstop. This ensures that the stopping time is finite, and that an emergency
braking plan should be available.

We discuss the distance keeping behavior in Section 4.6, but we note here that
when a trajectory τ uses the special distance keeping acceleration profile defined
in Equation 3.54, it receives a cost bonus, i.e., when a2 = adk(t) in its correspond-
ing graph edge e = ([s1 `1 a1 . . .], [s2 `2 a2 . . .]), it receives a discount (−kdistkeep

accel ).
Future work should focus on a smoother set of acceleration profiles, defined

for example by a higher-order polynomial. The cost functions we discussed in
this section were applied to control inputs determined directly by the planner. In
the next we section we describe the cost function for lateral acceleration, which is
not determined directly by the planner. This requires a different way of assigning
costs.

Lateral Acceleration

Just like the longitudinal acceleration, the lateral acceleration must be kept within
reasonable limits. The lateral acceleration of the vehicle is the rate of change of
velocity in the axis perpendicular to its heading. For our vehicle model, we derive
a⊥ from Equation 3.5. For simplicity, and without loss of generality, we pose the
vehicle with θ = 0, so that the lateral axis of the vehicle is aligned with the y axis.
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Then the lateral acceleration is

a⊥ = ÿ =
d

dt
ẏ =

d

dt
v sin θ

= a sin θ + θ̇v cos θ = 0 + (vκ)v

= κv2,

so a⊥ depends just on v and κ.
Unlike the speed limit, the vehicle cannot physically exceed the limit on a⊥.

If the planner were to issue a plan that exceeds that limit the vehicle would not
follow it. We would be justified in marking any trajectory that exceeds the limit as
having an infinite cost. However, the control architecture we chose for our system
renders this a doubtful measure. We used the architecture of the Tartan Racing
system[28], where the state of the vehicle is perceived by the inertial navigation
system (INS) and control system and fed into the planner. This means that an
error in the vehicle control effort or noise in the perception could yield a starting
state for the planner that is already above the limit on a⊥. If we were to set
trajectories that exceed a⊥ to infinite cost, such a situation would leave us with
no plans. Another possible control architecture is to set the starting state of the
vehicle for the planner to the state predicted by the previous plan for the starting
time, and depend on the controller to track that plan closely. In this case it may be
reasonable to set non-conforming trajectories to infinite cost, because the planner
would always use a starting state that was expressed in a previous plan and thus by
construction would have to be below the limit. We will discuss the control system
further in Section 5.2.1.

With the preceding discussion in mind, we set a limit a⊥soft on absolute lateral
acceleration that is below the actual capabilities of the vehicle. Any trajectory that
goes above a⊥soft is penalized by a large constant ksoft

a⊥ . That is, we define

csoft
a⊥ (τ) =

ksoft
a⊥ if max

i
|a⊥(x̂i)| > a⊥soft

0 otherwise.
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This allows the planner to continue on a plan that is already above a⊥soft while
encouraging it to select a plan that is below it. A possible disadvantage is that
since it costs the same to exceed the limit no matter by how much, a trajectory
may be selected that goes above the absolute, hard limit on lateral acceleration
a⊥hard. We have not observed such behavior in practice, but future work should
address this concern.

Besides the binary penalty csoft
a⊥ that marks the absolute limits of lateral accel-

eration, we use a linear penalty cmax
a⊥ that increases proportionally to the maximum

lateral acceleration over the trajectory,

cmax
a⊥ (τ) = kmax

a⊥ max
i
|a⊥(x̂i)|.

We choose to penalize the maximum rather than, for example, the integral of the
lateral acceleration, since we reason that e.g. a constant |a⊥| = 0.3g over τ is
preferable to a constant 0.1g with a brief spike at 0.5g, but that integrating a⊥

could cause the latter option to receive the lower cost. Note that applying a linear
weighting to the max is non-linear: breaking a trajectory into two pieces at a
particular point and evaluating them separately may give a different overall cost
versus breaking the trajectory at some other point. In summary, the cost penalty
for lateral acceration along a trajectory is

clataccel
dynamic(τ) = csoft

a⊥ (τ) + cmax
a⊥ (τ).

Future work should investigate whether a linear penalty is most appropriate, or
whether for example clataccel

dynamic(τ) should increase with the square of the maximum
a⊥(x̂i).

Curvature Rate

Just like longitudinal acceleration, the rate at which the vehicle can turn the steer-
ing wheel has a hard limit. The turning rate is a pure output of the planner, that is,
it does not depend on prior actions taken by the controller or any information from
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the perception system. Therefore we can assign an infinite cost to any candidate
edge in the graph where κ̇ exceeds its limit, that is, we define

ccurv
dynamic(κ̇) =

{
∞ if |κ̇| > kcurv

dynamic

0 otherwise.

There is no need to penalize higher turning rates, since this does not affect pas-
senger comfort except indirectly through lateral acceleration, which is already
penalized with clataccel

dynamic(τ).

4.5.3 Choosing the Path Type

In Section 3.3 and Section 3.4.2 we discussed whether to use a cubic or quintic
polynomial to generate the paths from the vehicle vertex n0 onto the sampled
vertices ni in the planning search graph. The purpose of the quintic spline was to
ensure smooth steering at high speeds, since it ensures continuity in the curvature
rate with respect to arc length, and its derivative, i.e.,

dκ

ds
,

d2κ

ds2
∈ C0,

while the cubic spline guarantees only κ ∈ C0. At low speeds, the cubic spline
is acceptable because the discontinuities of curvature rate with respect to time
are negligible, since arclength is changing slowly. Our question is how to choose
between when to use a cubic, and when a quintic spline, for edges (n0, ni) coming
from the start vertex.

One possibility is to set a cutoff point for some quantity, e.g. longitudinal
velocity, and refuse to use cubic splines above that value. A disadvantage of this
approach is that it can cause plan inconsistency by abruptly removing the plan
most similar to the previous one as the vehicle’s speed increases. Another option
is to allow cubic splines at any speed, but ramp up the cost as speed increases. This
has the disadvantage that it can allow the vehicle to make harsh, abrupt maneuvers,

110



which may be hard for the controller to follow, increasing tracking error outside
the margin of error. However, assuming the cost is high enough, this would only
occur in emergency situations. An even better solution would be to measure the
practical limits on steering rate and its derivative and filter out trajectories that
cannot be executed, as we did with ccurv

dynamic in the previous section.
Since we were not able to run a real robot at high speeds to compare the effects

of these policies, we chose a quadratic cost,

cchoose(τ) =

{
kchoosev

2
0 if τ is cubic

0 if τ is quintic,

where τ is the trajectory for an edge at the start vertex, i.e., (n0, ni), v0 is the
velocity of the vehicle at the start vertex n0, and kchoose is a constant.

4.5.4 Cost Function Summary

In the foregoing we have described one possible cost function for our planner. It
was not our goal to find the best cost function, just to demonstrate that a feasi-
ble cost function can be found relatively easily, and demonstrate a few variations,
which we will see in the next section. Naturally, there are many ways to struc-
ture the cost function. Much more engineering would be necessary to settle on a
function that engenders the desired behaviors, making tradeoffs between possible
actions in various scenarios, assessing ride quality, and testing the vehicle in an
exhaustive catalog of scenarios to show that it responds as desired in each.

We used an iterative approach to construct and tune the cost function. The first
step is to identify physical quantities evaluated along the trajectory that should be
either penalized or discounted. For example, lateral acceleration should be kept
low, vehicle speed should be limited except in exceptional circumstances, and the
trajectory should not come too close to obstacles. The second step is to combine
constant, linear, and quadratic terms with step functions based on the characteris-
tics of the quantity. For example, we combine step functions to penalize proximity
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to obstacles, since it is not necessary to stay more than a few meters distant from
another vehicle. As another example, we use a linear penalty against lateral ac-
celeration up to a critical limit where the penalty steps up sharply. The third step
in the iterative process is to evaluate a candidate cost function by running the
planner through a variety of scenarios. Observations of its behavior suggest new
quantities that should be penalized or discounted in the cost function. They also
clarify the tradeoffs implicit in the weights of the terms. Tuning the parameters is
a matter of trading x amount of one quantity, such as making forward progress,
with y amount of another quantity, such as lateral acceleration when cornering or
changing lanes.

In Chapter 6 we will see a system-level demonstration of the planner’s behav-
ior. In the following sections we investigate two emergent behaviors that come out
of the planner and its cost function. We will see how a distance-keeping behavior
emerges naturally from our planner and its cost function, and how we added spe-
cial cases to refine its performance while staying within the planner framework.
We will also see how we can build a safe lane changing behavior by adding a
higher-level planner to manipulate the lane costs.

4.6 Distance Keeping

Adaptive cruise control (ACC) was one of the first and simplest autonomous be-
haviors to be sold in a stock commercial vehicle. The function of ACC is to
regulate the speed of a vehicle so that it follows at a safe distance behind a lead-
ing vehicle, automatically adjusting speed as the lead vehicle speeds up or slows
down.

To implement a distance-keeping behavior with our planner, we can use either
the special distance-keeping acceleration profile adk(t) (Equation 3.54), or the
follow-cost region cfollow(x, y, t) (Equation 4.3). In fact, these two are alternatives
that can be used independently of one another. First we look at the behavior of
cfollow(x, y, t) without adk(t).
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Figure 4.8: Distance-keeping behavior using only constant acceleration profiles.

Without adk(t), the final cost function Φc(Equation 3.3) encourages forward
motion, while clane

static keeps the robot in its current lane, and cfollow keeps the robot
from getting too close to the vehicle ahead. Figure 4.8 shows an instance of this
behavior with the robot following a leading vehicle at a constant speed. In this
case adk(t) is removed from the set of acceleration profiles (Table 4.1). We can
see a problem with the behavior shown in Figure 4.8. The robot cannot arrive at
exactly the same speed as the leading vehicle using the set of constant acceler-
ations, causing it either to encroach into the follow-cost region or gradually fall
behind. Though it may remain at the same velocity for long periods, it repeatedly
accelerates in order to increase Φc or decrease the penalty due to follow.

We can add small constant acceleration and deceleration profiles of smaller
magnitude than amin

soft and amax
soft (from Table 4.1) so that the planner can make small

corrections without overshooting. Figure 4.9 shows the results of adding a =

±0.1ms−2. Using these smaller accelerations, the robot is able to stay closer to
the leading vehicle’s speed and maintain a more consistent following distance.
However, it makes adjustments almost constantly.

We have just seen that a small set of fixed accelerations can create an emer-
gent distance-keeping behavior without explicitly identifying a leading vehicle to
follow. If in the behavior planning layer we choose which vehicle to follow, we
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Figure 4.9: Distance-keeping behavior using only constant acceleration profiles, in-
cluding small constant accelerations.

can take another approach. We can add an acceleration profile alv that converges
directly to the velocity of the leading vehicle using Equation 3.51. This allows
the planner to stabilize at the same speed as the leading vehicle. Figure 4.10
shows the result of adding this acceleration profile. The robot encroaches into the
follow-cost region, then retreats and settles on the alv profile, matching the lead-
ing vehicle’s velocity perfectly. The length of the robot’s encroachment into the
follow-cost region is governed by kslope

follow(Equation 4.3). We can cure this overshoot
by increasing kslope

follow. Figure 4.11 shows the result of increasing kslope
follow by a factor

of 5 over the experiment in Figure 4.10.
To obtain an even smoother velocity profile, we devised a PD-controlled accel-

eration profile adk(t) especially for distance-keeping. We described this scheme
in Section 3.8.1. We use the leading vehicle’s velocity and location for So(t) and
vo. To encourage the planner to use adk(t), we apply a cost discount −kdistkeep

accel

to each trajectory edge that uses it, as we said in Section 4.5.2. We tune kdistkeep
accel

compared to kt in Equation 3.3 to exceed any cost discount that could be gained
from the kttf (τ) term by accelerating and drawing closer to the leading vehi-
cle. This ensures that the planner uses the distance-keeping profile whenever it is
trailing another vehicle, even if the PD setpoint is outside the follow-cost region.
Figure 4.12 shows adk(t) in action. The planner begins using adk as soon as the
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Figure 4.10: Distance-keeping behavior with an acceleration profile that mimics the
lead vehicle’s velocity using Equation 3.51. The robot comes too close to the lead
vehicle before falling back.
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Figure 4.11: Distance-keeping behavior with an acceleration profile that mimics the
lead vehicle’s velocity using Equation 3.51, and an increased value for the follow-cost
penalty k

slope
follow to prevent the encroachment we saw in Figure 4.10.
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Figure 4.12: Distance-keeping behavior using the PD-control acceleration profile
adk.

leading vehicle comes within view. The velocity adjustment downward is smooth
and gradual. The desired spacing constants ka and kb from Equation 3.53 are set
to prefer a larger following distance than the length of the follow-cost region.

In this section we explored several strategies for tuning our planner to make
it exhibit a distance-keeping behavior. Given a diverse enough set of constant
accelerations, we can obtain an emergent distance-keeping behavior without any
special effort in the structure of the planning graph itself, as we showed in Fig-
ure 4.9. We can get smoother driving by using the higher-level behavior to identify
the vehicle to follow and then adding edges to the planning graph, for example,
by adding acceleration profiles that explicitly match the leading vehicle’s velocity
(Figure 4.11), or use a PD-control formula (Figure 4.12). Finally, we tuned pa-
rameters in the cost function to balance competing tendencies, getting the planner
to draw up smoothly behind the leading vehicle, without overshooting. We finish
the chapter in the next section by looking at a lane changing behavior.
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Figure 4.13: The SELECT-LANE behavioral algorithm (Figure 4.14) avoids passing
other traffic on the right. It changes into the left lane and waits for the leading vehicle
to move aside.

4.7 Lane Changing

When multiple lanes are available, the planner must choose which to use. We need
to consider the speeds of vehicles in the current and neighboring lanes compared
to the desired speed of the robot, i.e., the speed limit. The planner should attempt
to drive in the lane that allows it to get closest to the speed limit without exceeding
it. Given multiple such lanes, it should drive in the rightmost lane, as long as
that would not cause it to pass another vehicle to its left. We must also consider
whether the global road map shows a highway exit or turn coming up. The planner
should change lanes well in advance of the turn.

We developed a simple behavioral algorithm SELECT-LANE, shown in Fig-
ure 4.14, that examines the available lanes and the other vehicles detected by the
perception system, then selects a desired lane and changes the value of `des in
Equation 4.2 accordingly. The policy is to pick the right-most lane that has no
leading vehicle, or has a leading vehicle that is going at least as fast as the speed
limit, or, if it has a leading vehicle that is going slower than the speed limit, is
still far ahead (lines 7–9). It will not pass on the right (line 10), as shown in
Figure 4.13. The planner should not try to change lanes right in front of a trail-
ing vehicle (lines 11–16). There is also a limit on how frequently the behavior
can choose a different lane. E.g. it will not change the value of `des more than
every 5-seconds. The SELECT-LANE policy does not account for faster-moving
traffic in the lane behind it. For example, if the speed limit is 100 km/h, and the
traffic in the left lane is traveling at 110 km/h, while in the right lane it is 90
km/h, SELECT-LANE will choose to drive 100 km/h in the left lane. Our intention
with SELECT-LANE was only to demonstrate that a simple algorithm can create
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function SELECT-LANE

1: require: lanes – list of available lanes
2: require: vehicles – list of other vehicles
3: global: `des – current desired lane
4: global: lanetime – time of last change in `des

5: `new ← leftmost lane in lanes
6: for lane l in lanes from leftmost to rightmost do
7: if ∃ closest vehicle va ahead of robot in lane l then
8: if va exceeds speed limit or va is far ahead then
9: `new ← l

else
// Stop searching; don’t pass on the right

10: break
end if

11: else if ∃ closest vehicle vb in lane l behind robot then
12: if vb is far behind robot then
13: `new ← l
14: else // v is close behind
15: if l 6= `des then

// Stop searching; don’t cut off v by changing into l
// (But do stay in l if already in it)

16: break
else

17: `new ← l
end if

else
// No vehicles ahead or behind in this lane

18: `new ← l
end if

end for
// Avoid frequent lane changes

19: if `new 6= `des and time− lanetime > hysteresislane
20: `des ← `new

21: lanetime ← time
end if

Figure 4.14: The SELECT-LANE algorithm selects the desired lane based on the lo-
cation and speed of other traffic.
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Figure 4.15: The SELECT-LANE behavioral algorithm (Figure 4.14) chooses the left
lane based on the traffic ahead, but ignores static obstacles. The clane

static and cobs
static cost

functions cause the best plan to remain in the current lane, biased to the left, until the
desired lane is clear.

reasonable lane-changing behavior that does not require careful engineering to
ensure safety, since the trajectory planner can be relied upon to choose a safe ac-
tion regardless of the errors in the planning layers above. Figure 4.15 illustrates
that even though SELECT-LANE doesn’t consider static obstacles when deciding
which lane to be in, the robot plans to drive in its current lane until space opens
up. The architecture of our system ensures that the flaws in SELECT-LANE never-
theless do not prevent safe vehicle behavior. This attribute stands in contrast to the
top-down approaches reviewed in Section 2.1.10, where correct decision-making
in the higher layers are needed to ensure safe behavior in the lower layers. In the
next chapter we will show failures of other planners in the literature to cope with
this situation.

A production lane selection behavior would be more complex, and we can
see several flaws with this algorithm. For example, it does not take into account
upcoming turns or exits, and the insistence on not passing other traffic on the right
could cause our planner to park behind a stalled car in the left lane even when
the right lane is free, if the cost penalty imposed by clane

static for driving around the
vehicle were high enough.

An alternative method is to simplify behavior algorithms such as SELECT-
LANE even further by letting the trajectory planner choose the lane. Figure 4.16
illustrates an alternative clane

static function. Each lane in the direction of travel has
a valley shape to encourage lane centering. The trajectory planner automatically
balances the potential amount to be gained in Φc (Equation 3.3) by changing lanes
to get around a slow vehicle against the penalty of crossing the “hump” between
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Figure 4.16: A lane cost potential function that allows the trajectory planner to choose
the desired lane automatically, without the intervention of a higher-level behavioral
planner.

the two lanes, to discourage frequent lane changing. The lower overall cost of
the right-hand lane encourages the trajectory planner to choose the rightmost lane
when there is no slower traffic ahead. We wil present the results of experiments
with this method in Chapter 6. Preliminary results show a tendency to change
lanes frequently around curves and when foliage is close to the edge of the road.
One solution to the former would be to apply a higher base level of cost based
on the curvature of each lane. We would need to invent additional mechanisms
in the cost function to replace the behavioral considerations we made in SELECT-
LANE. For example, to forbid passing on the right using this alternate lane selec-
tion method, we might add penalties in the cobs

dynamiccost function over large areas
to the right of each moving obstacle. We could also add a penalty similar to the
follow-cost region of cobs

dynamic, but in front of each moving obstacle, to discourage
the planner from cutting them off.

A partial solution to these concerns is a combination of the preceding two ap-
proaches, shown in Figure 4.17. We can use SELECT-LANE to select a desired
lane, but use it to draw lane costs in a manner similar to Figure 4.16. The se-
lected lane has the lowest cost, and more distant lanes have progressively higher
costs, but each with its own local minimum to promote centering when the vehi-
cle must depart from the selected lane. In Chapter 6 we will compare all three
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Figure 4.17: A lane cost potential function that blends the high-level lane selection
behavior SELECT-LANE (Figure 4.14) with the approach in Figure 4.16.

lane-changing approaches experimentally.

4.8 High-Level Behaviors

In this work we have focused mainly on the challenges of highway driving. We
have been particularly concerned with developing a planner that can respond to
emergency situations, which we demonstrate in Chapter 6. We have left complex
traffic interactions for future work, particularly those that involve coming to a
complete stop. This includes stop signs, traffic lights, and making unprotected
left-hand turns. In this section we briefly discuss how we might approach the
creation of such behaviors within our planning framework.

For stop signs, we would need a high-level behavior planner similar in spirit
to SELECT-LANE to determine where the robot should stop and when it is safe to
proceed. A possible means of bringing the planner to a stop would be to manip-
ulate the weightings in the final cost function (Equation 3.2) to give a discount to
final states that have a velocity near zero in the vicinity of the stop line. If there
is traffic in front then the normal distance keeping behavior would work until it
was the robot’s turn to stop at the line. It may be necessary to shorten the distance
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between station samples {s} (Section 3.4.2) in order to ensure that a feasible plan
exists in the search space. Such an approach would allow the robot to stop at the
stop line in normal situations, and to make alternate plans in emergency situations.
Another method might be to keep the weights in Equation 3.2 the same and set the
area covered by the intersection in the static cost map to high values, ensuring that
paths which enter the intersection would cost more than paths which stop before
it, even after factoring in the discount given in Equation 3.2 to paths that travel
further.

For an unprotected left-hand turn, the high-cost areas projected by the pre-
dicted future locations of oncoming vehicles into the dynamic obstacle map should
prevent the planner from proceeding with a turn until the way was clear. However,
a vehicle should not proceed with a turn until the crosswalk is clear of pedestrians.
A higher-level behavior could monitor the pedestrians and use either a high-cost
area in the static cost map or manipulate Equation 3.2, just like the stop sign case
previously.

When approaching a yellow traffic light, a car should stop if possible. Yellow
lights could be handled by calculating the time at which the vehicle would reach
the intersection while braking at the comfortable braking level amin

soft . The dynamic
cost map would then be painted with higher costs for all later times, increasing
sharply at the time the light is anticipated to turn red. If the light would turn red
before the vehicle could stop at this rate, then the planner would select a plan using
a harder degree of braking up to amin

hard, as long as the penalty for hard braking was
lower than the penalty for entering the intersection.

In summary, we envision the approach to planning for intersections and other
complex interactions as similar to the approach we took for distance-keeping and
lane-changing. That is, higher level behavior algorithms would manipulate the
cost function to reflect changing priorities, in keeping with the overall philosophy
of the planner we articulated at the beginning of this chapter.
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4.9 Summary

In this chapter we presented a trajectory cost function and higher-level behavior
algorithm for highway driving. Our cost function blends safety and efficiency by
using safety-oriented cost terms to mitigate the tendency of efficiency-oriented
cost terms to push the system towards a catastrophic limit. We showed that we
can satisfy higher-level behavioral constraints such as distance keeping and lane
changing by manipulating the cost function and action set rather than specifying
plans directly. Our planner provides a safety cushion against errors in higher-level
behavioral routines.

The cost function we presented in this chapter was intended to draw an outline
of the scope of the problem, and give an example of our reasoning process for
designing a cost function to obtain desired vehicle behavior. A production system
would require further engineering. For example, the cost function we proposed in
this chapter would allow the robot to drive in another vehicle’s blind spot. This
and many other behavioral tweaks, some obvious, and some that would have to
be uncovered through extensive testing, would have to be addressed through ad-
ditional cost function refinements.

In the next chapter we will describe the implementation of our planner. The
GPU is a novel parallel computing platform that will be unfamiliar to most read-
ers. Programming strategies particular to the GPU are needed to reach their per-
formance potential. These strategies can affect the design of the planner itself and
therefore we consider the implementation itself to be a contribution of this thesis.
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Chapter 5

Implementation and System
Integration
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In this chapter we describe the implementation of the planner. That is, we
show how the theoretical ideas of the previous two chapters can be put into prac-
tice in an effective motion planning system integrated into a robot. We begin with
the overall sequence of operations conducted by the core planner in Section 5.1,
breaking down the order of operations. In Section 5.2 we describe how the planner
is integrated into the Tartan Racing system, interfacing with the existing percep-
tion, planning, and control systems, and overcoming friction between the theoret-
ical assumptions about the robot and its physical reality. Finally in Section 5.3 we
return to the core planner and the cost functions of the previous chapter and show
that we must invent new data structures and algorithms to accelerate the planner
on a GPU.

5.1 Core Planner Implementation

In this section we describe the basic order of operations and data structures in
the core planner implementation, assuming an “ideal” CPU implementation. We
describe modifications to use the GPU beginning in Section 5.3.

5.1.1 Overall System Flow

Figure 5.1 shows the flow of major events in the planner. Each of these blocks is
broken out into an additional block diagram.

Planner initialization (block (0) of Figure 5.1) sets the size and scale of the
lattice in station-latitude and in time-velocity space, and the number of acceler-
ation profiles to use when generating trajectories out of each lattice vertex. In
the present implementation these quantities are set once and cannot be changed
again. Other quantities that are more readily changed between planning cycles
are the boundaries of the lookup tables for cobs

static and cobs
dynamic, the limits on longitu-

dinal acceleration and deceleration to be considered by the planner, penalties on
excessively high lateral or longitudinal acceleration and the boundaries of what is
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Figure 5.1: Block diagram of the overall flow of the planning system. Numbered
blocks are broken down further in other figures as (1): Figure 5.2, (2): Figure 5.9,
(3): Figure 5.12, (4a) and (4b): Figure 5.14.

considered excessive, and constraints on the steering system, including the maxi-
mum curvature that can be obtained and the maximum rate of change of curvature
in the bicycle model.

The planning procedure repeated at every planning cycle is to update the
search space representation with the perceived road shape and the obstacles and
other vehicles perceived by the perception system (block (1)). These items are
used to prepare data structures used for evaluating and comparing trajectories.

Using the terminology of Section 3.4.2, two types of candidate search graph
edges are evaluated following the search space update. The first type, represented
by block (2), are edges that start at the current vehicle state n0. The second type,
represented by block (3), are all other edges. The procedures for generating and
evaluating each of these two types of trajectories are similar, but differ sufficiently
to deserve separate descriptions.

After all trajectories are evaluated, the cost table g(n) has a value for each
vertex, giving the lowest cost known to reach the vertex. The next stage is to
select the vertex representing the end of the best trajectory available, as per Equa-
tion 3.20. Given the vertex that represents the endpoint of the best trajectory, the
actual trajectory that is the final output of the planner must be reconstructed using
information stored alongside the cost table. The planner cannot store the full rep-
resentation of the trajectory segments while it is planning due to space constraints
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Figure 5.2: Detail of block (1) in Figure 5.1: Block diagram for the procedure to
update the road search space representation, including the road shape and obstacle
data structures.

- there is only room to store a small amount of information. The diagrams detail-
ing the two blocks for selection (block 4a) and reconstruction (block 4b) of the
best trajectory are represented in a single figure, Figure 5.14.

5.1.2 Update of the Road Search Space

At the start of each planning cycle, data structures representing road shape and
perceived obstacles are updated based on information from the perception sys-
tem. Figure 5.2 shows the major stages of this process. The first major input is
the road center line r(s) = [x, y, θ, κ] given in the vehicle coordinate frame for
a set of samples {s}. The Tartan Racing software system distinguishes between
obstacles that are judged to be intrinsically static, and those that are inferred to be
vehicles, either moving or with the ability to move. These two types of obstacles
are provided in separate maps, and this distinction carries into the planning sys-
tem, since the Tartan Racing platform was the first testbed for the implementation.
The static obstacle map is expected to be a grid indexed by (x, y) in a world-fixed
frame, which is translated and rotated into the vehicle coordinate frame. The
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Figure 5.3: Detail of block (1b) in Figure 5.2: Block diagram for the procedure for
sampling lattice vertices from the perceived road shape.

construction of the static map look-up table used by the planner is broken down
further in Figure 5.5. The moving obstacles are expected to be accompanied by a
prediction of their future locations in either of two forms: either in XY space as
a set of samples indexed by time, or in station-latitude (a.k.a. SL) space, again as
time-indexed samples. Figure 5.6 shows the stages in rendering the dynamic cost
map.

We use a look-up table mapping from XY space to SL space (Block (1a)
of Figure 5.2). The trajectories are generated and evaluated using (x, y) points,
but some of the quantities making up the static and dynamic cost map tables are
given in terms of (s, `) points. Examples are the penalty for departing from the
lane centers, and the extended shapes of moving obstacles, when painted into the
dynamic cost map. We describe the construction of this table in Section 5.3.3.

The grid defining the embedding of the search graph in the vehicle state space
(Equation 3.16) is updated in this stage (Block (1b) of Figure 5.2) using the road
center line. This is described further in Figure 5.3. From the updated positions
of the lattice, the cubic polynomial spiral paths ρ shared by the graph edges are
updated so that they join the samples at their new locations.
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Figure 5.4: Detail of block (2) in Figure 5.2: Block diagram for the procedure
of updating the parameters for splines describing the paths connecting the lattice
vertices.

5.1.3 Sample Lattice Vertices

Figure 5.3 is a block diagram showing the process of constructing the lattice rep-
resentation from the road center line. To maintain stability, the lattice does not
move with the vehicle, but rather remains fixed to the road (requiring an estimate
of vehicle station displacement since the last planning cycle), with vertices at the
earliest station removed once the vehicle passes them, and vertices added at the
furthest station. This helps the planner produce stable plans by ensuring that the
plan produced in one planning cycle is still part of the search space on the sub-
sequent planning cycle. The lattice (s, `) coordinates are translated to (x, y, θ, κ)

values by reference to the center line using Equation 3.10.

5.1.4 Update Lattice Path Splines

Figure 5.4 shows the block diagram for updating the parameters for cubic polyno-
mial spirals that connect the vertices within the lattice. These spline parameters
are used later in the search to generate candidate trajectories between lattice ver-
tices.

The path splines that are to be computed are defined by an edge connectivity
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pattern given as input to the planner (bottom input, Figure 5.4). Each set of SL-
equivalent vertices, i.e., sets of vertices having the same (s, `) coordinates as per
Equation 3.4.2 are connected to other vertices using a set of station–latitude offsets
{(δsi, δ`i)}ki=1, so that a vertex

n1
s`∼ [sj `k . . .]

is connected to all other vertices

n2
s`∼ [sj+δsi

, `k+δ`i
],

for such n2 as are in the graph. Since the (x0, y0, θ0, κ0), (x1, y1, θ1, κ1) coordi-
nates of the samples only change slightly from one planning cycle to the next, the
spline parameters from the paths of the previous cycle can be used as the initial
input to the next cycle, reducing the number of iterations required to re-converge.
If the corresponding path did not converge in the previous cycle, it is re-initialized.

When a path from the previous cycle is not available, either because it is the
first planning cycle, or it did not converge, the spline initial guess table (top input,
Figure 5.4) is used.

5.1.5 Initial Guess Table

The initial guess table is a precomputed table that stores initial values of p for the
parameters in Equation 3.21 for use in the optimization algorithm of Section 3.6
to generate the cubic polynomial spiral paths used in the planner.

The table is constructed by solving boundary value problems for a start point
(x, y, θ, κ) = (0, 0, 0, κ0) and end point (x1, y1, θ1, κ1) by sampling in the space
I = (κ0, x1, y1, θ1, κ1), which defines the initial guess table. Table 5.1 shows
sampling scheme of the initial guess table. A value for an initial guess can
be obtained for any start- and end-point pair (x0, y0, θ0, κ0), and (x1, y1, θ1, κ1)

by a rigid transformation of the pair that brings the start-point into the form
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Parameter Value/Range
Steps 16
κ0, κ1 [−0.19, 0.19] radm−1

x1 [1, 50] m
y1 [−50, 50] m
θ1 [−π/2, π/2] rad

Table 5.1: Sampling scheme of the initial guess table.

x̂0 = (0, 0, 0, κ0) and changes the end-point to x̂1 = (x̂1, ŷ1, θ̂1, κ1), then using a
nearest-neighbor lookup into the guess table.

The initial guesses themselves are obtained using a relaxation method. The
transformed start point x̂0 = (0, 0, 0, κ0) is replaced with a simplified x̃0 =

(0, 0, 0, 0), and the transformed end point x1 is replaced with a simplified x̃1 =

(x̂1, 0, 0, 0). The path parameters are initialized to p = [p3 p4 sG] = [0 0 x̂1].
The gradient-descent algorithm from Section 3.6 is then run for a fixed number of
iterations k on x̃0 and x̃1. Before each iteration j the endpoints are adjusted,

x̃0 ← (0, 0, 0, (j/k)κ0)

x̃1 ← (x̂1, (j/k)ŷ1, (j/k)θ̂1, (j/k)κ1).

Finally the gradient descent algorithm is run to convergence with the endpoints
set to x̂0 and x̂1.

We do not use an initial guess table for the quintic splines. Since they are
only used for the initial edges (n0, ni), there are fewer of them. We use a similar
relaxation method to find the parameters for each spline as it is needed in the
search.

5.1.6 Static Cost Map

Paths are evaluated by sampling points x = (x, y, θ, κ) along their length and
evaluating the cost function cstatic(x̂), one term of which is cstatic-map(x, y), the static
map term, which is a look-up table prepared in Figure 5.2. The static cost map is
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Figure 5.5: Detail of block (3) in Figure 5.2: Block diagram for the procedure to
render the road shape and perceived static obstacles into a look-up table giving the
cost for the vehicle to occupy any given (x,y) point at an orientation parallel to the
road.

constructed using the lookup table mapping XY to SL space; the description of
the number of lanes in their roads and lateral distances of their center lines from
the main center line of the road; and the static obstacles detected by the perception
system. These quantities are used to construct a look-up table that can quickly give
the cost for the vehicle to occupy a point (x, y), regardless of the time or velocity
at which it does so.

The static cost map is constructed using two types of data provided by the
perception and higher-level behavioral system. First are the descriptions of the
available lanes on the road, and their lateral distance from the road center line
which defines the lattice search space. These should come from prior knowledge
of the road obtained through mapping, or from the road detection system. Sec-
ond are static obstacles detected by the perception system. The system currently
assumes that anything moving is a vehicle. Static obstacles are provided as an oc-
cupancy grid with a given scale, origin and orientation with respect to the vehicle
coordinate frame.
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Input:
LUT from (X,Y) 
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space
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Figure 5.6: Detail of block (4) in Figure 5.2: Block diagram for the procedure to
render perceived dynamic obstacles into a lookup table indexed by x, y, and time,
giving the cost for the vehicle to occupy any given (x,y) point at an orientation parallel
to the road, at a given time.

[t0, t1)

[t1, t2)

[t2, t3)

Figure 5.7: Using the (x, y, t) components of trajectory samples to index into the
dynamic cost map.

5.1.7 Dynamic Cost Map

The dynamic cost map described in Section 4.5 is implemented as a lookup table
CDYNAMIC that gives the cost for a trajectory to pass through a given (x, y, t)

coordinate. Each cell in the table represents the presence of an obstacle at a range
of times and locations described by a grid cell [xi, xi+1), [yj, yj+1), and [tk, tk+1).
The future locations of perceived vehicles are sampled at multiple time steps {tm}
and “painted” into the (x, y) layer for the time step [tk, tk+1) such that tk ≤ tm <

tk+1. The painting is done similarly to static obstacles. Figure 5.8 shows how the
predicted future locations of an object are painted into the appropriate t-layer of
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Predicted future locations of
obstacle

[t0, t1)

[t1, t2)

[t2, t3)

Figure 5.8: Painting a dynamic obstacle’s future locations into CDYNAMIC.

the dynamic cost map CDYNAMIC. The footprint of the obstacle vehicle is dilated
by two sets of distances. The first longitudinal dilation distance is half the length
of the robot, and the first latitudinal dilation distance is half the width of the robot.
Cells with (x, y) coordinates that fall within this dilation boundary are assigned
the infinite “lethal” cost value. The next dilation distance is configurable, and
cells falling within that distance are painted with a “hazard” cost unless already
assigned “lethal”. This penalizes trajectories that would bring the robot too close
to other vehicles, either beside, behind, or in front.

At present, the dynamic map as constructed and used by the planner causes it
to treat vehicles behind it the same as vehicles in front of it, so that, for example,
if a vehicle behind the robot is traveling faster than the robot, the planner may
select a trajectory that causes the robot to accelerate or move aside, rather than
the more desirable behavior of expecting the following vehicle to regulate its own
speed and position in response to the robot’s behavior. We leave this problem for
future work. A possible solution is to predict future locations of vehicles behind
the robot as though they were braking starting at the current time.
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Figure 5.9: Detail of block (2) in Figure 5.1: Block diagram for the procedure to
evaluate all candidate trajectories that start at the vehicle pose and end on the lattice.

5.1.8 Trajectories From the Vehicle to the Lattice

Once the steps for updating the road representation are completed, the trajectories
for the edges (n0, ni) leading from the vehicle’s position onto the lattice must be
generated and evaluated. One of these trajectories will form the first segment of
the full trajectory produced by the planner. The first step (Figure 5.9 block (1))
is to compensate for the latency in the planner and the execution latency of the
control system. Since the vehicle continues moving while the planner works, we
must estimate the future state of the vehicle at the time the plan to be produced
is expected to come into effect and use that state at n0. This procedure depends
on the control system and is described further in Section 5.2, which describes the
integration with the Tartan Racing system. Once the future vehicle start state is es-
timated, the planner can begin to generate paths that start at the vehicle’s projected
future static state x = [x y θ κ], and end on the lattice. Once these endpoints are
selected from the lattice, the planner optimizes path splines satisfying the end-
point constraints and samples along them to provide (x, y) points for evaluation
with the cost function (block (2) of Figure 5.9). Then the planner samples a set of
acceleration profiles along each path to generate trajectories, which are also eval-
uated (block (3)), and the costs of each are applied to the cost table (final block).
The workings of blocks (2) and (3) are described further in the next sections.
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Figure 5.10: Detail of block (2) in Figure 5.9: Block diagram of the procedure for
generating candidate path splines from the predicted future vehicle state onto the
lattice vertices.

Generating Candidate Paths Onto the Lattice

The first stage in evaluating trajectories from the vehicle onto the lattice is to de-
rive the underlying path splines. The actual optimization procedure is the same as
the one used to update the splines joining the lattice (Section 5.1.4), though selec-
tion of endpoints in the lattice and the initial guesses differ, which we describe in
this section.

The nodes of the lattice that are selected to be path endpoints are those close
enough to the vehicle to:

• Keep numerical errors in the integration to obtain path (x, y) samples be-
low a desired threshold. As we described in Section 3.6.1, the integration
method (Simpson’s with 8 steps) used to quickly optimize the path spline
is different from that used to generate sample points along the path spline
(Trapezoidal with up to 128 steps). For very long paths, these two methods
can yield path points that diverge sufficiently to cause small though appre-
ciable error. Out of the 379030 paths in our initial guess table (described in
the next section) that are less than 60 meters long, 374955 of them, or 99
percent, had less than 30 cm error. The paths with large errors tend to con-
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tain large changes in heading and yaw that are not feasible at high speeds.
Of the 65928 paths that could be traveled at faster than 10 meters per second
while experiencing less than 1 g of lateral acceleration, all had less than 15
cm error, with 99.7% less than 10 cm. Paths with error beyond a reasonable
amount can be discarded in the search.

• Ensure that the spacing between (x, y) samples along each path are close
enough together to ensure that almost all cells in the static and dynamic
costs maps along the path are considered in the trajectory evaluation. If the
path passes through a small corner of a cell it is reasonable to expect that
no sample will fall in that cell. We rely on a safety margin in the obstacle
dilation to mitigate the effects of such omissions.

Once the subset of lattice vertices to be sampled as path endpoints is selected, ini-
tial guesses are derived for the splines, as described for the intra-lattice splines in
Section 5.1.4. For splines going onto the path, we use the initial guess table only.
Once the guesses are obtained, the spline optimizer is invoked. Next, trajectories
based on the paths are generated, sampled, and evaluated.

Evaluating Trajectories Onto the Lattice

Figure 5.11 illustrates the parts of the planner described in this section. The paths
obtained in the previous section are sampled, using the predicted vehicle state and
the spline parameters to integrate the system forward using Equation 3.21 and
Equations 3.6–3.8. Samples are spaced at even values of arc length s. For each
sample (x(s), y(s), θ(s), κ(s)) along a path spline, the static cost terms of the
cost function are evaluated. Then for each path, several trajectories are generated
by sampling time and velocity coordinates using either a constant acceleration
profile according to Equation 3.52 or the distance-keeping profile acceleration
from Equation 3.54. For constant accelerations provided as a target velocity to
be reached by the end of the path, the actual value av for the acceleration will be
derived for the trajectory using the starting velocity v0 of the vehicle, the length
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Figure 5.11: Detail of block (3) in Figure 5.9: Block diagram of the procedure to
evaluate candidate trajectories using the path splines proceeding from the vehicle
pose onto the lattice (Figure 5.10), and update the cost table.

of the path sf , and the target ending velocity vf . If av is outside the vehicle’s
abilities, it is clamped to the feasible range.

Given the acceleration profile, the trajectory is evaluated at the path samples,
calculating the time t and velocity v at each sample given its arclength s. For
a constant deceleration, the velocity may reach zero before the end of the path,
making the time value at the end of the path infinite. We then bump up the velocity
to a small constant value and run the rest of the path to obtain a finite ending time.
We describe the implementation of the cost function further in Section 5.1.11.

5.1.9 Trajectories Within the Lattice

Figure 5.12 frames the discussion in this section. In the previous section we de-
scribed the procedure for generating trajectories that originate at the vehicle and
end on the lattice. In this section we describe the generation and evaluation of
internal trajectories, i.e., those that start and end within the graph and are not
connected to the start vertex n0.

The internal path splines are generated and updated during the road represen-
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Figure 5.12: Detail of block (3) in Figure 5.1: Block diagram for the procedure to
evaluate all candidate trajectories interior to the lattice, and update the cost table with
the values of the best trajectories incoming to each lattice point.

tation update phase (Section 5.1.2). Beginning at vertices with s(n) = 0, vertices
that already have a finite cost assigned are extended by sampling their outgoing
edges, which necessarily land at later stations due to the structure of the graph.
In this phase, multiple candidate trajectories are likely to end in the same cost
table cell, and the planner chooses the lowest-cost trajectory to represent the cell
among the candidates. At the end of this phase, all edges have been generated and
evaluated, and we know the lowest cost to reach each vertex in the graph.

Referring to Figure 5.13, we see that the procedure to generate and evaluate
trajectories within the lattice is similar to that used to generate and evaluate trajec-
tories onto the lattice (Figure 5.11 and Section 5.1.8). The main difference is that
instead of starting from a single state, the predicted future vehicle state when the
plan takes effect, for each station s, the planner iterates over all (l, a, [t], [v]) coor-
dinates, extracting the precise time t([t]) and velocity v([v]) of the best trajectory
ending at that cell. For each spline path p leading out of the (s, l) coordinate, each
of the acceleration profiles a is applied in turn, and the trajectory is evaluated.

Referring to block (3) of Figure 5.12, each trajectory τ is assigned a cost c(τ)

using the cost function, and ends on a lattice node (s, l, a, [t], [v]). When two
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Figure 5.13: Detail of block (2) in Figure 5.12: Block diagram for the procedure
to evaluate candidate trajectories starting at all lattice vertices at a given station, and
proceeding to some lattice vertex at a greater station.

trajectories τ1, τ2 end at the same point (s, l) on the lattice, were generated by the
same acceleration profile a, and have ending times t1f = t(sf (τ1)), t2f = t(sf (τ2))

falling in the same time index range t1f , t
2
f ∈ [t], and likewise for ending velocities,

then the trajectory with the lowest cost is selected for assignment to the cell. In
order to reconstruct the best trajectory at the end of the search, besides the cost,
we also store:

• the ID of the originating vertex of the lowest-cost incoming edge

• the final time of the trajectory

• the final velocity of the trajectory

• the acceleration profile of the trajectory

• the spline parameters used to generate the underlying path ρ
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Figure 5.14: Detail of block (4a) and (4b) in Figure 5.1: Block diagram for the
procedure for reconstructing the best trajectory through the lattice by analyzing the
the cost table.

5.1.10 Reconstructing the Best Trajectory

Once the cost table has been completed, each entry represents the end of a trajec-
tory starting at the vehicle position and transiting through possibly several inter-
mediate entries. Each entry (s, l, a, t, v) contains a cost along with other data used
to reconstruct the trajectory ending at that entry.

We use the final cost function g(n) + Φ(n) given in Equation 3.20 to choose
the best vertex nf at which to end the trajectory. From this vertex we trace back
the sequence of edges and vertices ni that led to it through the graph from the start
vertex n0. The final trajectory in the form of a sampled function of time τ(t) =

(x, y, θ, κ, v, a) is reconstructed by concatenating the trajectories generated for the
edges, in the same way the trajectories are first generated during the evaluation
phase of planning. This trajectory is the final output of the planner, to be passed
to the controller.

5.1.11 Cost function

In Section 4.3 we described the trajectory cost function. In this section we de-
scribe how the terms of the cost function are actually evaluated in the implemen-
tation.
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function STATIC-COST(ρ,{si})→ cstatic

cstatic ← 0
for each sample (x, y, θ, κ) = ρ(sj), sj ∈ {si}

if |κ| > κmax then cstatic ←∞
cstatic ← cstatic + clane

static(x, y) + cobs
static(x, y)

cstatic ← (cstatic) (sf (ρ)) / (#si) // Normalize by steps/meter

Figure 5.15: Algorithm for computing the static cost of a spline path given as sam-
ples.

Path (static) cost function

For each spline path ρ(s) = (x(s), y(s), θ(s), κ(s)) expressed as a set of samples
over station {si}, ρ({si}) → {(x(si), y(si), θ(si), κ(si))}, the cost is assigned
according to the algorithm in Figure 5.15. The cost is the sum of the static map
costs, normalized by the number of samples and the length of the path, so that
neither changing the number of samples nor evaluating the path in smaller pieces
changes the value.

Trajectory (dynamic) cost function

Terms in the cost function including time and velocity are computed separately
from the path (static) cost function. Figure 5.16 shows the algorithm used to to
evaluate the trajectory. First, the acceleration profile index is mapped to an ac-
tual constant acceleration to apply over the course of the trajectory (lines 2–4).
Next, the cost of the trajectory samples is computed (line 5). Finally, if the accel-
eration(or deceleration) exceeds a soft limit demarcating the boundary between
comfortable and uncomfortable levels of throttle and braking, a further penalty is
applied to the cost (lines 6–7). Figure 5.17 describes the cost function applied to
the trajectory samples. For each sample along the path ρ, the time and velocity at
which the sample is reached are computed (line 3), given the velocity starting the
trajectory, the arc length of the sample, and the acceleration profile being applied.
From the velocity, the lateral acceleration a⊥ is calculated (line 5). We track the
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function DYNAMIC-COST(n, ρ, aindex)→ cdynamic

1: cdynamic ← 0
2: if aindex is an acceleration value type then
3: a← a(aindex)

else
// aindex is a final-velocity value type

4: a← ACCEL(v0(n), sf , vf (aindex))
end

5: cdynamic ← DYNAMIC-COST-SAMPLES(ρ, {si} , t0(n), v0(n), a)
// Penalize extreme longitudinal accelerations

6: if a > soft-limit[accel] then cdynamic ← cdynamic + penalty
7: if a < soft-limit[decel] then cdynamic ← cdynamic + penalty

Figure 5.16: Algorithm for computing total cost of a trajectory segment, also invok-
ing DYNAMIC-COST-SAMPLES (Figure 5.17)

maximum lateral acceleration maxa⊥ and longitudinal velocity encountered over
the course of the trajectory (lines 4–6). The curvature rate κ̇ is calculated using the
spline parameters and velocity and compared to a limit derived from the abilities
of the steering system (line 7). If it exceeds the limit then the path cannot be fol-
lowed at that speed and acceleration, and thus the trajectory is rejected. The cost
is then incremented by the dynamic obstacle cost function (line 8). After all sam-
ples have been evaluated, the table-based costs are normalized by the path length
and the number of samples (line 9) as with the static cost function (Figure 5.15).
The maximum lateral acceleration is penalized in two ways. The first is a linear
weighting (line 10). We choose this approach rather than apply a penalty based on
the integrated lateral acceleration over the trajectory because we reason that e.g. a
constant 0.1g acceleration is preferable to a constant 0g acceleration with a brief
spike at 0.3g – and that integrating the acceleration could cause the latter option
to receive a lower cost. Note that applying a linear weighting to the maximum
lateral acceleration along a trajectory is non-linear: breaking two trajectories into
two pieces each and evaluating them separately might give costs with a different
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function DYNAMIC-COST-SAMPLES(ρ,{si} , t0, v0, a)→ cdsamp

1: cdsamp, maxa⊥ , maxv ← 0
2: for each sample (x, y, θ, κ) = ρ(sj), sj ∈ {si}
3: (t, v)← TIME-VELOCITY(v0, si, a(si))
4: maxv ← max(maxv, v)

// a⊥ is lateral acceleration
5: a⊥ ← κv2

6: maxa⊥ ← max(maxa⊥ , |a⊥|)
7: if |κ̇| > hard-limit[κ̇] then cdsamp ←∞
8: cdsamp ← cdsamp + cobs

dynamic(x, y, t)
end for

9: cdsamp ← (cdsamp) (sf (ρ)) / (#si)
// Linear penalty for maximal lateral acceleration

10: cdsamp ← cdsamp + (maxa⊥) (penalty[maxa⊥ ])
// Constant threshold penalty for maximal lateral acceleration

11: if maxa⊥ > soft-limit[a⊥] then cdsamp ← cdsamp + penalty[a⊥]
// Penalty for exceeding the speed limit

12: if maxv > speed-limit then cdsamp ← cdsamp + penalty[speed]

Figure 5.17: Algorithm for computing the cost of trajectory samples.
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ordering. The second way is to add a constant (typically high) penalty if the lat-
eral acceleration exceeds a safety limit derived (line 11) from the performance
envelope of the vehicle.

5.1.12 Accessing the Cost Table

The cost table stores the cost of the best trajectory known to reach each vertex in
the search graph (Section 3.4.2).

Cost Table Indexing

The cost table is in five dimensions, indexed (s, `, a, [t], [v]). The major indices
are the integer coordinates (s, `) designating a particular pose (x, y, θ, κ) along the
road. The acceleration profile index a = aindex of the best trajectory is also part of
the index for reasons discussed in the next section. Finally, the time and velocity
are included, with a particular final acceleration profile. The final two coordinates
are the indices of the ranges [t] and [v], containing the exact time and velocity at
which the best trajectory arrives at the lattice vertex.

As an example, take a trajectory segment τ with cost c(τ), ending at the lattice
point indexed (sτ , `τ ). Suppose τ is obtained from its underlying path by applying
acceleration profile index aτ , so as to arrive at time tτ carrying a velocity vτ . The
cost table entry will be indexed (sτ , `τ , aτ , j, k) such that tj ≤ tτ < tj+1 and
vk ≤ vτ < vk+1.

Cost Table Updating

As each trajectory τ is evaluated, the cost table cell C[τ ] = C(s, `, a, [t], [v]) in
which it lands is identified according to Section 5.1.12. If c(τ) is less than the
current value, then the table is updated with c(τ) and additional data needed to
reconstruct the path up to that point are also stored. See Algorithm Cost-Table-
Update in Figure 5.18.
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function COST-TABLE-UPDATE(ρ, τ )
cost-index← (sτ , `τ , aτ , [tτ ], [vτ ])
if c(τ) < C[cost-index].c then

C[cost-index].c← c(τ)
C[cost-index].t← tτ
C[cost-index].v ← vτ

// The actual constant acceleration applied, as opposed to the profile index
C[cost-index].a← rendered-accel(aτ )
// start(τ) is the cost table index from which τ originates
C[cost-index].cost-pred← start(τ)
C[cost-index].ρ← ρ

end

Figure 5.18: The cost table update algorithm applied to the end point of each trajec-
tory after it is evaluated.

5.2 Tartan Racing Integration

The implementation of the planner was tested by integrating it into the Tartan Rac-
ing Urban Challenge (TR) system, replacing the “local planner” task[30]. In the
race system there is an intimate relationship between the “behavior executive”[8],
which infers a semantic state from the traffic and the structure of the nearby road
network, and the local planner which drives along a lane center line inferred by
the behavior task as the correct course, up to a speed suggested as appropriate
given the speed limit and traffic conditions. Our proposed lattice planner holds a
similar position in the planner hierarchy to the local planner, but replicating the
interaction with the behavior planner would have been overwhelmingly complex.
We effectively replaced the behavior task by limiting our tests to road networks
with simpler structure, and avoiding complex interactions with traffic that would
not help to demonstrate the contributions of our planner. An example is waiting
for the robot’s turn in a four-way stop scenario.
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Figure 5.19: The system block diagram including the planner (block “Planner”)

5.2.1 Control Architecture

Figure 5.19 outlines the control architecture of the Tartan Racing system, showing
how the planner relates to the controller that turns commanded path curvatures
and velocities into signals to the steering wheel, throttle, and brake actuators. The
local planner is responsible for producing a trajectory [κ(t) v(t) a(t)], expressing
path curvature, longitudinal velocity, and longitudinal acceleration as a function
of time. The local planner generates these trajectories at a rate of 10 Hz, and sends
them to a controller task that issues [κ(t) v(t) a(t)] vectors at a rate of 100 Hz to
a vehicle control system that translates these quantities into control signals for the
vehicle’s steering, throttle, and brake actuators.

By the time the planner produces a trajectory from its input, the vehicle has
moved on. The planner must compensate for this latency, as well as the latency in
the vehicle’s physical response to the actuator commands. That is, control signals
that have already been issued for the steering, throttle, etc. have yet to actually
take effect on the vehicle. The local planner (and our proposed planner) uses
an estimate of the delay in the control system and the delay of the planner itself
to forward-simulate the effect of the plan generated at the previous (or earlier if
necessary) planning cycle on the vehicle, starting from the given current estimate,
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using the same bicycle model of Figure 3.8 used to generate the plan. We estimate
the control delay on Boss to be 80 ms, and our planning latency is estimated to
be 200 ms, so that the given vehicle state x̂ is run through the simulator using
the segment of the previously generated plan starting 80 ms earlier and ending
200 ms later than the current time. The planner’s current assumption is that the
vehicle steering and velocity controllers will execute the plan sufficiently well that
any error in plan execution can be neglected. This is a flawed assumption, which
should be addressed in future work.

5.2.2 Trajectory Queue

The trajectory τi sent to the controller is a vector-valued function [κi(t) vi(t) ai(t)],
defined over t ∈ [t0i . . . tfi ]. The planner and controller maintain a list {τi} of the
trajectories produced by the planner, such that each trajectory meshes smoothly
with the next, i.e., κi(t

0
i+1) = κi+1(t

0
i+1) and vi(t

0
i+1) = vi+1(t

0
i+1). The acceler-

ation a is permitted to be discontinuous in our implementation due to the design
of our search space. When multiple trajectories τi are valid over a time t, the con-
troller picks the trajectory with the most recent start time. It is necessary to retain
older trajectories to perform latency compensation, which we describe next.

5.2.3 Latency compensation

We would like each trajectory to start from the current state of the vehicle. This
is impossible because the vehicle state will have changed by the time the trajec-
tory has been generated and is ready for the controller to execute. In addition,
commands already sent by the controller do not immediately take effect on the
vehicle. Latency in the actuators causes additional latency in trajectory execution.
To compensate for this latency, the future state x̂ of the vehicle when the next
trajectory is expected to actually begin to take effect is used in place of x. This
future state x̂ is derived by simulating the effect of the trajectories already issued
and in the queue on the most recent perceived state x.
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Figure 5.20: Latency compensation in the planner. We begin with a trajectory τ0 that
was generated from a predicted future state x̂0[t0 + λp]. At time t1 we receive a new
observation x1[t1] of the vehicle state. We extract the portion of τ0 for the time range
[t1 − λa, t1 + λp] and apply it to the vehicle model (Equation 3.5) with initial state
x1[t1] to obtain the predicted future state x̂1[t1 +λp]. The predicted state x̂1[t1 +λp]
is used as the current state n0 of the robot (Equation 3.17) in the planning algorithm
to produce a new trajectory τ1.

We define λp as the latency due to the time taken to generate the plan, and
λa the actuation latency. The future state x̂ is derived by extracting the trajectory
commands in [t − λa, t + λp] from the queue of past trajectories. The interval
[t − λa, t + λp] is discretized into samples {tj} and the command for each tj

is drawn from the most recent τi that contains it. The samples are then applied
in open-loop fashion to the latest perceived state x. Figure 5.20 illustrates this
process.

5.3 GPU Implementation

Getting maximum performance out of the Nvidia GPU can require some tricky
algorithmic maneuvering. The GPU offers the greatest speedup when a problem
can be divided into thousands or millions of independent subproblems, where one
thread solves each subproblem, and where threads can be grouped a priori into
cohorts that can be expected to usually follow the same branches in the program,
and usually access near-contiguous memory locations.

In the rest of this section we describe our implementation of the lattice planner
on the GPU, with a discussion of how we structured the data and operations in
order to get the most performance within the constraints set by the platform.
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The planning cycle goes through several phases, which we will describe in
order:

• initialization

• plan-onto-lattice

• plan-within-lattice

• extract best trajectory

The control flow of the GPU acceleration version is the same as the CPU version,
so we can refer back to Figure 5.1 for the following, and we describe the changes
made to accelerate the planner on the GPU in the same order.

The reader is referred to Appendix A for an overview of the Nvidia GPU and
the main features that the programmer must take into account when programming
it. In the following we focus on the interplay between the GPU features and the
lattice planner data structures and functions. We begin in the next section with a
brief recapitulation of the concepts that guide programming on the GPU.

5.3.1 Processing Concepts

At a gross design level, we arrange the interaction between CPU and GPU accord-
ing to the following general principles:

Minimize size and frequency of data transfer
Data transfer between the CPU and GPU is restricted, with relatively high
latency and low bandwidth. Ideally one would transfer input data to the
GPU, allow all processing to happen on the GPU, and then copy results
back. However, some algorithms run so poorly on the GPU that it may be
better to transfer intermediate results back to the CPU, process them, then
send them back to the GPU. These situations often require clever program-
ming in order to keep the performance advantage of the GPU from leaking
away.
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Minimize number of distinct kernel invocations
The kernel is the basic CUDA function. Threads are invoked to run the
same function, and they must all run until completion before another kernel
can be invoked (see Section A.3 for more). The overall computation takes
place on the CPU, and parts that can be done in parallel are delegated to
the GPU to run in a batch processing mode. When all threads in a batch
need to synchronize, a new kernel must be run (at least on contemporary
GPUs). When the data organization changes between phases such that the
number of discrete data items and therefore threads changes radically, it
is usually better, again, to invoke a distinct kernel. For many algorithms,
these concerns are not relevant, but for the lattice planner, multiple global
synchronization steps are required to correctly update the cost table. A
kernel cannot be launched until the previous one is finished, and due to
the block organization of threads, it is possible for most of the processors
on the GPU to be idle while the last few threads in a kernel finish.

Asynchronous and interleaved processing and copying of data
Memory transfers between CPU and GPU can be performed simultaneously
with computations on both of them. Independent sequences of operations
in the overall computation should be arranged to maximize simultaneity.

Batch processing of concise data items
On a CPU it poses no problem to performance to process one data item all
the way through from beginning to end using a single function. On a GPU
it may be better to break a processing pipeline up into discrete kernels in
which each thread loads one data item from global memory, processes it,
stores the results back, and exits to make way for the next kernel in the
pipeline. In the lattice planner we do this if a data item d must be fissioned
into multiple items di, which can be processed independently. This happens
with paths in the planner as they are multiplied into many trajectories each.
On a CPU the di for each d can be processed in a loop, but on the GPU we
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struct S {
int item1[ArraySz];
int item2[ArraySz];

};
S array;

struct S {
int item1;
int item2;

};
S array[ArraySz];

(a) (b)

Figure 5.21: The two typical ways of organizing arrays of structured data are (a)
Structure-of-Arrays(SoA), and (b) Array-of-Structures(AoS).

prefer to have one thread process each data item. Since the total number
of di is much greater than the number of d, we launch distinct kernels each
with the appropriate numbers of threads.

Consecutive threads should access consecutive data
The GPU achieves a high memory bandwidth using a wide memory bus,
with some versions up to 512 bits. The bus can transfer a lot of data when
memory accesses are contiguous. It is important to choose the correct layout
for data considering how the algorithm will access it. It may be beneficial
to change the layout of a large data structure between phases of processing.
This can mean transposing a matrix when the access pattern changes from
iterating along rows to iterating along columns, or changing an array of
structures into a structure of arrays, as shown in Figure 5.21.

Having these processing concepts in mind, we can now describe how they are
applied to the lattice planner. We begin with the initialization phases.

5.3.2 Center Line-Derived Data Structures

At the beginning of each planning cycle, we use the center line estimated by the
perception system (in the Tartan Racing system, it is extracted from the global
road map) to prepare the road-related data structures. Figure 5.2 shows the pieces.
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The road center line is given in an array of evenly-spaced samples indexed by
station, where s is station, and s = 0 where the current vehicle projects onto the
center line.

{(si, xi, yi, θi, κi)}i .

Since they are evenly spaced, the station of each sample is implicit in the index,
and the remaining four elements (x, y, θ, κ) fit conveniently into float4, a 4-
element float structure that is supported natively by the GPU texture lookup and
interpolation hardware.

struct float4 {

float x, y, z, w;

};

Although the GPU texture hardware is built specially for indexing into and option-
ally interpolating within 1-, 2-, and 3-D graphical textures to apply to polygons,
it is useful for other kinds of data and operations, as long as they are read-only.
Rather than have threads access the center line array directly from global memory,
we deposit it into a one-dimensional GPU texture.

When we should choose to use a texture over the global RAM depends on
the expected access patterns. For best memory performance with regular global
RAM, threads in the same “warp” should access a contiguous block of memory.
When it is not feasible to make this arrangement, and if all the accesses are read-
only, textures can be used instead. Texture accesses perform best when threads in
the same warp access locations that are spatially near one another. Vanilla RAM
is accessed directly, with no intervening cache. Textures, however, are accessed
from the RAM through a special cache that opportunistically groups nearby re-
quests. The main constraint on textures is that they are read-only during the life
of a single kernel invocation, they can only be changed in between kernels, and
they use fixed global names, i.e., they cannot be passed as parameters. Since the
center line texture is relatively small, the texture cache should be able to hold all
or most of it.
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The first data structure derived from the center line is the array of lattice points,
mapping a grid (i, j) to points (s(i), `(j)), as described in Section 5.1.3. This is
inexpensive and is performed on the CPU.

5.3.3 Mapping from X-Y to S-L Space

The map entry is constructed for each XY cell by projecting onto the road center
line and interpolating to find the smallest perpendicular distance from the cell to a
segment joining center line samples. The station of the interpolated point is used
as the station corresponding to the XY cell, and the distance is the latitude.

We will make much use later of XYSL, a continuous mapping from (x, y)

space to (s, `) space. We need this mapping because the paths are represented as
(x, y) coordinates in the vehicle frame, but some of the cost functions are defined
in terms of station and latitude on the road, for instance, the lane centering cost
term, the occupancy grid for moving obstacles, and the distance keeping action.

The mapping XYSL is constructed by sampling a regular grid of discrete (x, y)

points, then for each point (xi, yi), finding the closest center line sample point
(sj, xj, yj, . . .). The closest point (xc

i , y
c
i ) along the center line is linearly interpo-

lated between adjacent sample points along with the station sc
i . The latitude of the

point (xi, yi) is finally calculated as the signed distance to (xc
i , y

c
i ) - negative if to

the right of the center line and positive if to the left.
For each point we search recursively for the closest center line sample, using

a rough linear search in station increments of 10 meters, then recurse and search
exhaustively to find the closest sample.

On the GPU, one thread is allocated per (xi, yi) output sample. Each thread is
completely independent, and the algorithm requires no special measures be taken
for the GPU except accessing the center line through the texture cache.

When XYSL is accessed, the texture hardware is used to linearly interpolate
between the sample points. The road shape r(s) is defined for some latitude `,
and is transformed to other latitudes using Equation 3.10. Figure 5.22 shows the
error that can result from this approach. It is typically below 3cm, which we
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Figure 5.22: Left: Histogram of error magnitude in XYSL for sample points. We
sampled points in SL space, mapped them to XY using r(s) to generate ground
truth, then compared them to the SL values obtained through the XYSL map. Right:
the sample points were taken from a sharply curving road. The highest error points
were at the inside of the turn.

consider to be acceptable, except for a few points at the very inside of a sharp
turn. At these points, the station coordinate is in error, but the latitude is close to
correct. In this case, r(s) was defined as the center of the outside lane, and was
transformed to the inner latitudes using Equation 3.10. We could reduce the error
by requiring the perception system to provide an independent r(s) for each lane,
rather than a single r(s) for the entire road.

5.3.4 Lattice Internal Paths

Paths proceeding from one lattice vertex to another are optimized once the ver-
tices’ poses are determined. One thread is allocated per path. The core optimiza-
tion routine for the paths operates on a large array of inputs, so a dedicated routine
sets up the inputs defining the initial guess, the starting states, and the desired final
state along each path. Automatic variables used by the optimization routine de-
mand more registers than are available, so scratch space in global memory for the
Jacobian, its inverse, and other intermediate results is allocated by the host rou-
tine. Going to global memory for these intermediate quantities is acceptable since
accesses are infrequent compared to the computational load, so that the ALUs can
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be used by some threads while other threads wait for memory.

5.3.5 Internal Static Cost Map

As described in Section 4.4.1, the behavior layer selects a preferred lane to drive
along and an optional bias away from the center of the lane. To encourage the
planner to generate a plan following these preferences, a cost function clane

static(x, y)

is defined over the coordinates of the road, with lower values where we prefer to
drive.

We implement clane
static as a grid of (x, y) points in the vehicle frame. As with the

XYSL map, the clane
static map is constructed using one thread per (x, y) output sample,

and each thread is almost completely independent. The one exception stems from
the input data arrays used to describe the latitudes of the lane centers, their base
costs, and their directions. Since each array is accessed several times by each
thread, it should be accessed through a cache. One could use the texture cache,
but since the number of lanes even on a large road is only on the order of tens,
we load the lane data into the programmable shared memory cache, which is large
enough for this purpose and more convenient to program.

5.3.6 External Static Cost Map

We use a static cost function cobs
static (Section 4.4.2), constructed from perception

data of static obstacles imported from the Tartan Racing (TR) software system.
These data form a binary grid G0 with 0 representing safe areas, and 1 repre-
senting perceived lethal obstacles. No part of the vehicle may touch a lethal ob-
stacle. This map is represented separately from the lane cost map clane

static because
the internal static cost map is expressed in the vehicle frame, while the TR sys-
tem expresses the external map in a world frame. Rotating or resampling them
along the same orientation would introduce error, so instead we represent each
map independently.

We represent the static cost function cobs
static using a table, CESTATIC. This table
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approximates the C-space expansion of the obstacles so that the many collision
checks done later during path cost evaluation can be done quickly. As discussed
in Section 4.4.2, we assume that the vehicle will remain sufficiently aligned with
the road, so we compute the expansion in SL space, thereby saving the effort of
computing an expansion that supports checking against multiple orientations.

As discussed in Section 4.3, we wish to score a path by sampling (x, y) points
and computing a score derived from the proximity of the position to obstacles in
the perception map. If the vehicle would overlap an obstacle in the grid, the (x, y)

point is given infinite cost so that no plan can be formed that passes through an
obstacle. To promote plans that stay a healthy distance from obstacles, the vehicle
shape is dilated and tested for overlaps again – those (x, y) points that overlap get
a soft penalty - a high cost value that allows paths to pass through if no lower-cost
path is available.

The obstacle dilation is implemented using a distance transform in SL space.
Since we dilate obstacles separately along the S and L dimensions, we can use the
Manhattan metric, which leads to a simpler and faster algorithm than a Euclidean
metric. Parallel Euclidean distance transforms for GPUs are an active research
topic, see [16] for some recent progress. Since the SL space is a warped version
of x− y space, we correct the dilation threshold along S by the local curvature at
each cell, ŝ = s(1− κ`), in order to get correct dilations in XY . The steps of the
algorithm are as follows. The algorithm is repeated for the separate soft (finite)
and hard (lethal) cost dilations.

• We allocate a grid G1in SL space with a higher resolution than the input
grid, to retain accuracy in the intermediate dilations.

• Using one thread per cell of G0 in XY space, we use the XYSL map to trace
the outline of the SL-dilation of each occupied cell into G1.

• Due to implementation time constraints, we compute the 1-D distance trans-
form along S on the CPU, although a prefix-sum algorithm could be used
on the GPU. The result is a grid G2.
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• On the GPU, we generate a grid G3 using one thread per station increment
of G2 to compute a thresholded distance transform along L for those cells
that are within the dilation threshold along S, as adjusted by ŝ = s(1− κ`).

Having used the above algorithm twice to generate two G3 grids, Gsoft
3 represent-

ing the soft-cost obstacle dilation and Glethal
3 representing the lethal-cost dilation

in SL-coordinates, we generate the output grid G4 with the same scale and di-
mensions as G0 by taking

G0[x, y] = max(Gsoft
3 [XYSL(x, y)], Glethal

3 [XYSL(x, y)]).

5.3.7 Dynamic obstacle cost map

Moving obstacles are expressed by the TR system as a set of j time-indexed sets
of kj samples {(ti, xi, yi, θi)}

kj

i=0 giving the predicted future locations of other ve-
hicles detected on the road. Vehicles are assumed to be the same size. We use
these to construct a three-dimensional lookup table CDYNAMIC. The GPU sup-
ports a three-dimensional texture format we use to represent CDYNAMIC, which
we can index using discrete (x, y, t) coordinates. Taking a similar approach to
CESTATIC, we assume that both the robot and the detected vehicles are and will
remain parallel to the road, and use a simplified C-space expansion method. For
each obstacle, we iterate over nearby (x, y) points, look up the corresponding
(s, l) value, and compute a penalty based on the station, latitude, time, and veloc-
ity. The obstacle shape is dilated more when it is further away in time, thereby
diminishing the impact noisy sensor readings may have on tricking the robot into
committing to brittle maneuvers near other vehicles several seconds into the fu-
ture. Faster-moving obstacles are dilated even more. In our implementation, we
define a function D∞

S (t, v) that gives the amount each obstacle sample should be
dilated along the station direction to create a lethal cost region as

D∞
S (t, v) = 1k∞s + 2k∞s tv.
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Figure 5.23: Left: Pattern in which threads (numbered) evaluate cells surrounding a
single obstacle sample in CDYNAMIC. Referring to Figure 5.24, Γx = 3 and Γy = 2.
Right: the resulting CDYNAMIC cost map at a single time slice. The center line
(curved) indicates the direction of expansion in S-L space.

The function D∞
L (t) for the lateral expansion of the lethal-cost region is defined

more simply as
D∞

L (t) = 1k∞s + 2k∞s t.

We dispense with the dependency on velocity since we assume the perception
system’s estimate of a vehicle’s lateral position does not depend on its longitudinal
velocity. Functions DH

S (t, v) and DH
L (t) for the higher-cost regions surrounding

the lethal region are defined similarly.
Each sample set {(ti, xi, yi, θi)}

kj

i=0 must be spaced closely enough to prevent
gaps in the map. There is a many-to-many relationship between obstacle samples
and the cells they affect. One could choose to

• Use one or more threads per obstacle sample and iterate over nearby cells.

• Use one or more threads per cell and iterate over obstacle samples.

We chose the former after experimenting with both approaches. We use one block
of threads for each obstacle sample, and each thread evaluates a subset of cells in
CDYNAMIC according to the pattern in Figure 5.23. The procedure is formalized
in function INIT-DYNAMIC-MAP, shown in Figure 5.24.
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function INIT-DYNAMIC-MAP:
// Obstacle samples

input: {(xo
i , y

o
i , t

o
i , v

o
i )} // Obstacle samples

input: XYSL // Mapping from X-Y to S-L space
input: ∆ // Size of XY area surrounding obstacle

// sample in which to limit expansion.
input: D∞

S (t, v) // S-dilation factor for obstacle lethal cost
// region as function of its time toi and velocity vo

i .
input: D∞

L (t) // L-dilation factor for obstacle lethal cost region
// as function of its time toi

input: DH
S (t, v), DH

L (t) // Dilation factors for high-cost region
output: CDYNAMIC // Dynamic cost map
forall obstacle samples {(xo, yo, to, vo)} do

(so, `o)← XYSL(xo, yo)
launch thread block of dimensions (Γx, Γy)
forall threads (γx, γy) in thread block do

for δx ← −∆/2 + γx to ∆/2 incrementing by Γx do
for δy ← −∆/2 + γy to ∆/2 incrementing by Γy do

(x, y)← (xo
i + δx, y

o
i + δy)

(s, `) = XYSL(x, y)
if |s− so| < D∞

S (toi , v
o
i ) or |l − lo| < D∞

L (toi ) then
c←∞

else if |s− so| < DH
S (toi , v

o
i ) or |l − lo| < DH

L (toi )
c← H

end if
if c > 0

CDYNAMIC[x, y]
atomic← min(CDYNAMIC[x, y], c)

end if
end for

end for
end for

end for
end for

Figure 5.24: Dilate obstacles in the moving obstacle map
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5.3.8 Cost Table

The cost table is in Structure-of-Arrays (SoA) format, as per Figure 5.21. The
update phase requires special handling for parallel access on the GPU, but in the
initialization phase we can simply set the initial values using one thread per entry.

5.3.9 Summary of Initialization Phase

The main effort of initialization is in preparing the XYSL map and static and dy-
namic cost map lookup tables CSTATIC, CESTATIC, and CDYNAMIC. Once these
are completed, the planner can begin generating and evaluating trajectories, as we
see in the next section.

5.3.10 Planning Onto The Lattice

For planning onto the lattice, the cost table update is simple since there is no
need to coordinate parallel update. Each trajectory has a unique tuple (s, `, a)

defining its path’s endpoint in the lattice and the acceleration profile over the path.
Since these are dimensions in the lattice, each trajectory is guaranteed to land on
a unique cost table cell.

Optimizing Initial Paths Onto Lattice

Optimizing paths from the vehicle state onto the lattice proceeds similarly to paths
within the lattice, as in Section 5.3.4, but each path has the same starting pose. The
fifth-order spline (Section 3.5.1) optimization code is currently implemented only
on the CPU.

Index Preparation

Several indices and sizes characterize each path and its family of trajectories. As
noted under “Batch processing of concise data items” in Section 5.3.1, it is often
better on the GPU to divide a processing pipeline into multiple kernels. Many
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of these indices and sizes are used in several of the kernels, and as they may be
expensive to recompute in each kernel invocation, we compute them once and
store them in SoA format in global memory. This approach works because of
the high memory bandwidth and latency hiding of the GPU programming model.
These indices and sizes are described in the following:

• Each trajectory is evaluated by one thread, combining a path spline and an
acceleration profile. In an array indexed by the thread identifier we store the
path spline index and the acceleration profile index.

• Each path is sampled with a number of steps derived from its arc length.
This number is computed once and stored in an array indexed by the path
spline index.

• The starting time of the trajectory.

• The starting velocity of the trajectory.

Sampling of Paths

Once the initial paths are optimized they are sampled. One thread is allocated per
path. The thread loads the spline parameters, the number of samples (which may
be different for each path, depending on its length), and the start pose.

As we said in Section 5.3.1, memory accesses are fastest on the GPU when
threads access consecutive memory locations. Given N paths, with pi the ith path
and pij the jth sample along path pi, the x-coordinate of sample pij is stored at
x[jN +i], the y-coordinate at y[jN +i], and likewise for the θ, κ, and s (arclength)
coordinates.

Static Cost Evaluation of Paths

Cost function terms that do not depend on time are evaluated over all paths. The
path indexing is as described in the previous item. Samples pij are loaded and
evaluated. The (x, y) coordinates are discretized and indexed into the two static
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cost maps CSTATIC and CESTATIC. We do not perform interpolation to smooth
the texture.

Monitoring and diagnosing problems with the behavior of the planner is much
more difficult when it runs on a GPU, due to the large volume of data and lack
of ready access to debugger breakpoints and assertions. To assist in diagnosing,
the cost function over the samples is evaluated one step at a time. At each step,
it is tested against∞, and if equal, an array cause[i] is set to an ID unique to the
cause. The causes identified are

• NaN - the path parameters diverged and the path did not integrate to a real
value

• The curvature limits were exceeded

• The path is out of bounds of the static cost map.

• The CSTATIC entry is a fatal value.

• The CESTATIC entry is fatal.

• No cost term was∞, but when summed together they overflowed the finite
range and are treated as∞.

These causes are used later in the visualization to show the operator which paths
failed and why.

Once computed, the static cost for each path is stored in an array and used
later to compute the total cost for each trajectory based on it.

Dynamic Cost Evaluation of Trajectories

Each trajectory is evaluated for just the cost function terms that depend on time,
those terms depending on position but not on time having been evaluated in the
previous section. A sequential implementation would be able to store the best
trajectory as it was generated and evaluated, but with a parallel implementation
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the synchronization requirements would be prohibitively expensive. Nor can we
store all the trajectories, due to the large volume of trajectory data generated. With
a GPU implementation we must be careful to store sufficent data to regenerate the
trajectories after the best cost has been determined. Once the dynamic cost has
been computed it is stored in an array indexed by trajectory identifier.

5.3.11 Planning Within The Lattice

Planning within the lattice is similar overall to planning onto the lattice - we eval-
uate the static cost terms on the paths, then the dynamic cost terms on the tra-
jectories. The main difference is that the starting times and velocities for the
trajectories must be extracted from the cost table before the dynamic cost terms
can be computed.

The trajectories in the lattice are evaluated in order of station. Evaluating
them in order of station guarantees that all trajectories incoming to a vertex have
been evaluated before the outgoing trajectories, since the vehicle is constrained
to always move forward. We could also evaluate in order of increasing time, but
this would require moving back and forth between stations. This would reduce
performance by requiring the path samples to be regenerated (since there is no
room to store all of them), and unlike station-ordering it would not employ the
regular memory access patterns that promote performance on the GPU.

The data items needed to initialize each trajectory are:

• Starting time for the trajectory.

• Starting velocity for the trajectory.

• Starting cost for the trajectory.

• Spline index for the trajectory, as in Section 5.3.10.

• Acceleration index for the trajectory, as in Section 5.3.10.
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• Cost table index of the search graph vertex from which the trajectory origi-
nates, used after all trajectory evaluations have completed to trace back the
best trajectory through the graph.

These are extracted in a kernel function that reads entries from the cost table at
the desired station and prepares tables of data for the next kernel function.

Each (s, `, a, t, v) vertex originates nansp edges to other vertices, where na

is the number of acceleration profiles used in the search, and nsp the number of
splines. So the number of trajectories outgoing at each station (ignoring splines
that would go out of the station or latitude bounds of the lattice) can be up to

(n`nantnv)(nansp),

depending on whether any splines go out of the lattice bounds, the vertex is actu-
ally reachable, etc. One thread processes each of the n`nantnv cost table entries
at the station index, and initializes nansp trajectories according to Table 5.2.

We ensure that consecutively-numbered threads read consecutive cost table
entries, and write consecutive outputs. That is, threads are indexed by

ithr = iv + nv(it + nt(ia + na(i` + n`s))),

where the station s is the same for all threads, and the threads range over all
combinations of values iv ∈ (0, . . . , nv − 1), it ∈ (0, . . . , nt − 1), and so on for
each of the indices. The outputs are indexed similarly,

jout = ithr + nthr(ka + naksp),

so that consecutively-numbered threads write consecutive values at the same (ja,jsp)

output pair.
Writing the data in this order ensures that in the subsequent trajectory evalua-

tion phase (Section 5.3.10), consecutive threads will usually evaluate trajectories
with the same acceleration profile and path indices, differing only in starting time,
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ithr Thread index/cost table index(identical)
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
ka Outgoing acceleration index
0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2
ksp Outgoing spline index
0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1
jout Outgoing index
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Cycle at which output is written
0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

Table 5.2: Sample thread and data indices for preparation of trajectories outgoing
from a station after all cost table values at the station have been settled. The threads
read consecutive cost table entries (top row) and write consecutive outgoing trajectory
entries (second-to-bottom row).

velocity, and incoming accleration profile index. Table 5.2 gives an example of
the thread indexing. In this example, three threads set up initial states for trajec-
tories from a cost table with n` = 1, na = 3, nsp = 2, nt = 1, and nv = 1.
Each thread reads from one cost table entry, and writes the data for all trajectories
starting from it. At each iteration, the threads write consecutive entries.

Cost Table Update

The vertices in the search graph are in the form (s, `, a, [ti, ti+1) , [vj, vj+1)), indi-
cating the discrete station s and latitude ` of the vertex along the road, the acceler-
ation profile index a of the last trajectory segment, and a time range [ti, ti+1) and
velocity range [vj, vj+1) of arrival at (s, `).

The cost table stores the best known cost of any trajectory to reach each ver-
tex in the search graph, along with the actual time tf ∈ [ti, ti+1) and velocity
vf ∈ [vj, vj+1) of the trajectory as it reaches the vertex. There is a many-to-one
relationship of trajectories to the cost table entries they fall into, and since we
are updating the table in parallel, we must take care to maintain consistency. The
GPU only provides atomic operations on 4-byte integer quantities. There is no
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way to lock a cost table entry and update the several related quantities we require.
Therefore we must perform the update in three stages. We use the algorithm
UPDATE-COST-TABLE, shown in Figure 5.25 and described in the following.

1. Using one thread per trajectory, each thread writes the cost of its trajectory
to the table cell corresponding to its ending state, if its cost is lower. The
built-in atomic memory operation atomicMin() is used to avoid race
conditions. A global barrier then ensures that the table is completely up-
dated before any thread executes the next step. On the GPU a global thread
barrier can only be effected by all threads exiting the kernel function and
the host invoking a new one.

2. Since multiple trajectories landing at the same cost table cell could have
the same value, we must select one of them for its tf and vf values. Each
thread/trajectory examines the lowest cost written at the previous stage. If
it is identical to its own cost, it writes its index into a separate table. In the
algorithm we use an atomicMin() to ensure that the lowest-index τ is
retained when multiple trajectories have the same, lowest, cost. Since writ-
ing an integer is an inherently atomic operation, using the atomic minimum
is not strictly necessary, and extracts a small cost in performance. However,
doing so eliminates the non-determinism inherent in the plain integer store
operation that can hamper repeatability useful in debugging. A global bar-
rier ensures that the index of the winning trajectory at each table cell has
been written before the next stage.

3. Each thread/trajectory again examines the winning index written in the pre-
vious stage, and if it is identical to its own, writes its tf and vf values into
the appropriate cell, along with other data items used to reconstruct the final
trajectory.
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function UPDATE-COST-TABLE:
require: ct[ ] – cost table
require: τ ∈ [0 . . . ntraj) – indices of trajectories in update
require: f(τ) – cost table index of final state (s, `, a, [ti, ti+1) , [vj, vj+1)) of

trajectory τ
require: c(τ) – cost of trajectory τ
require: cb[ ] – index of trajectory with lowest cost ending at cost table cell
require: tf (τ), vf (τ) – actual final time and velocity of trajectory τ
require: cv[ ], ct[ ] – actual final time and velocity of lowest-cost trajectory

ending at cost table index
forall trajectories τ ending at cost table index f(τ) do

ct[f(τ)]
atomic← min(ct[f(τ)], c(τ))

end for
global thread barrier
forall trajectories τ ending at cost table index f(τ) do

if ct[f(τ)] = c(τ) then
cb[f(τ)]

atomic← min(cb[f(τ)], τ)
end if

end for
global thread barrier
forall trajectories τ ending at cost table index f(τ) do

if cb[f(τ)] = τ then
ct[f(τ)]← tf (τ)
cv[f(τ)]← vf (τ)
and additional traceback data to reconstruct the final trajectory...

end if
end for

Figure 5.25: Algorithm to update cost table from trajectory costs and final states
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5.3.12 Extracting the Best Trajectory

Once all trajectories have been evaluated and the cost table contains the best
known cost to reach each trajectory cell, we can search the cost table for the
lowest cost-to-come plus final-cost and traceback through the parent pointers in
the table for the trajectory. Since the cost table is relatively small, for simplicity’s
sake we copy it and the related data to reconstruct the path exactly back to the host
memory, and the remainder of the planning algorithm is performed on the CPU.

5.4 Summary

In this Chapter we presented our planner implementation, describing the non-
trivial implementation details needed to turn the theory of Chapter 3 and Chap-
ter 4 into a working planner. We began with the overall system organization and
described the order of operations in the planner. We got into the details of how the
planner interfaces with the Tartan Racing system, particularly the control system.
In this chapter we learned the principles of how to use the GPU effectively, and
particularly how to use it for our planning problem. We made sure to describe how
to efficiently construct the data structures needed to accelerate the whole planning
effort, such as the various spatial and temporal maps.
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Chapter 6

Evaluation

170



In previous chapters we have described the method and operation of our lattice
planner, illustrating its features through demonstrations in a variety of situations.
In this chapter we undertake a final, systematic evaluation of its capabilities. We
evaluate our contribution in two major ways. First, we show that it works as
claimed, producing reasonable plans that guide a robot through challenging driv-
ing scenarios. We demonstrate the planner working on a real robot and in simu-
lation. Second, we compare the features and capabilities of our planner to similar
work, showing that it advances the state of the art.

6.1 Experimental Results

In this section we describe several experiments we conducted with our planner,
both on a real robot and in simulation. We used a real robot for normal driving
scenarios at low speeds. For normal driving at higher speeds, and for emergency
driving scenarios, we used a simulation. We also compare the performance in-
crease of the GPU over the CPU in practice.

Many of our experiments revolve around merging. Merging is one of the most
frequently executed complex driving tasks. The causes of a marge may include
but are not limited to:

• Slow-moving traffic,

• Obstruction in the current lane,

• An upcoming exit or turn.

There may be plenty of time to prepare for the merge, or a suddenly perceived ob-
stacle may require a rapid reaction. In the following we will demonstrate several
scenarios that are variations on this theme.
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Parameter Value
Station increments 6
Latitude increments 14
Accelerations 9
Outgoing paths 4̃0
Time discretizations 1
Velocity discretizations 4
Total trajectories evaluated per cycle
(actual)

≈ 200 000

Table 6.1: Parameters of the lattice used in the experiments

6.1.1 Experimental Configuration

We implemented our planner on an Nvidia GeForce GTX 260 containing 216
computing cores. We installed the Nvidia on a computer with an Intel Core 2
Quad processor. We used this same computer to run simulation experiments and
experiments on our robot. In both cases the parameters defining the size of the
search lattice were similar, shown in Table 6.1.

Robot Experiments

For robot experiments, the planner was run on Boss, our autonomous SUV. We
ran the planner on a 10 Hz update cycle, providing curvature, velocity, and accel-
eration commands to a controller which converted them into steering and throttle
actuation commands to the vehicle. Since Boss cannot be run on public roads, nor
at speeds greater than 30 mph, our tests were limited to a small private roads with
low speeds and our own traffic vehicles. The values we assigned to parameters
controlling the size of the search lattice are given in Table 6.1. We found that
these values could generate acceptable plans within the allowed planning latency.
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Simulation Experiments

For simulation experiments, our planner ran at 5 Hz. This was necessary be-
cause at the higher speeds we used in simulation, we needed to use a larger static
occupancy grid than we used for the lower-speed robot experiments. The static
occupancy grid needs to be reformatted and copied from the Tartan Racing system
to the GPU, which takes more CPU time than the rest of the planning cycle. An
enhancement for future work would be to make this transfer more efficient.

6.1.2 High speed evasive maneuvers

A core claim of our work is that our planner has the novel ability to plan evasive
maneuvers at high speeds where panic stopping is not viable and a response re-
quires deciding quickly between a rapid merge into a neighboring lane at freeway
speeds, or if that is not possible, venturing into an oncoming lane. In this section
we show two scenarios illustrating our planner’s response to an obstacle suddenly
appearing in the robot’s lane. The vehicle must judge whether it can complete a
merge into the lane to its right or complete a maneuver into the oncoming lane.

In the first scenario, shown in Figure 6.1, the robot and other traffic are travel-
ing initially at 55 mph, or 24.3m/s. An obstacle suddenly appears in the robot’s
lane, only 65 meters ahead. There is no room to stop from 55 mph before reach-
ing the obstacle. The planner must either merge into the right lane if it is able, or
venture into the oncoming lane if it is open. In this case, a merge is possible, but
first the planner must brake to merge into the gap in the next lane. It brakes for
one second at −7ms−2, reaching 17.3m/s, and then re-accelerates just before it
starts the merge to avoid being rear-ended by the vehicle behind it. It then merges
back into its desired lane.

In the second scenario, shown in Figure 6.2, the right-hand lane is too dense
with traffic to execute a merge when the obstacle appears, again at only 65 me-
ters away. In this case, however, traffic in the oncoming lane will clear in time to
for the robot to swing left around the obstacle. In this case, planner commences
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Figure 6.1: An obstacle (red circle) suddenly-appears, causing the planner to plan
a merge into a neighboring lane. The thick dashed line is the plan at the final state
sampled in each figure. The obstacle is at the same coordinates through all three
images.

braking, though in this scenario it need not brake as hard to reach the gap behind
the oncoming vehicle. It brakes alternately between −7ms−2 (the hard deceler-
ation limit amin

hard) and −1.5ms−2 (the soft deceleration limit amin
soft). It slows from

24.3ms−2 down to 18.4ms−2 just as the vehicle in the nearest oncoming lane is
alongside.

This is a difficult scenario which tests the limits of our planner. While our
planner is usually able to find a plan where one would seem to be available, often
a much better response is obvious but is outside the planner’s search space. For ex-
ample, the best response may be a long swerve with an initial sharp deceleration
followed by an acceleration phase beginning before the swerve has completed.
Since we only use constant acceleration profiles (not including the PD-controlled
distance keeping acceleration, which is not tuned for emergency maneuvers), our
planner’s search space does not include any such action. For tight merges at high
speeds, it may be necessary to generate an acceleration profile that specifically
targets the gap between vehicles in a neighboring lane. Another reasonable re-
sponse would be for the planner to accept that it will collide with the obstacle, and
simply brake as hard as possible to mitigate the impact. Since our implementa-
tion assigns obstacles an infinite cost, it currently cannot plan such an outcome.
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Figure 6.2: A suddenly-appearing obstacle causes the planner to plan to move into
the oncoming lane, since there is no room to stop and there is no room to merge into
the lane to the right.

Allowing the planner to plan explicitly for unavoidable impacts is a subject for
future work. Regardless of these limitations, we are not aware of another planner
in the literature that can make any response to these scenarios.

6.1.3 Merging into slower traffic

To test merging into slower traffic on short notice, we ran a simulated scenario
on an oval track with two lanes, both in the same direction, and a speed limit of
55 mph. In the right lane we put slow-moving traffic, moving steadily at 26 mph
and spaced between 30 and 40 meters apart. At four evenly-spaced points around
the oval we placed static obstacles in the left lane. Each set of obstacles blocks
more of the left lane than the previous one, requiring the robot to merge further
into the right lane. The robot used the lane selection scheme LANE-BEHAVIOR,
which uses the algorithm SELECT-LANE in Figure 4.14 to select a value for `des,
the desired driving lane, then uses it to construct a lane cost profile like the one
illustrated in Figure 4.4. As a result, it preferred to travel in the left lane to avoid
being slowed by the traffic in the right lane. It would make deviations into the
right lane only to avoid obstacles. Figure 6.3 shows a merge requiring only a
small deviation. Figure 6.4 shows a merge requiring a larger deviation into the
neighboring lane. Here, the planner has kept a slightly larger gap between itself
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0 15 30meters

Figure 6.3: Small merge into neighboring lane due to an obstacle intruding 1.25
meters into the lane, with 3 meters remaining. This figure represents 2.8 seconds
elapsed time.

0 15 30meters

(a) Deceleration, 0 - 2.4 s (b) Merge, 2.4 - 4.8 s

Figure 6.4: The obstacles reach 1.9 meters into the left lane, leaving 2.3 meters open.
The planner merges all the way into neighboring lane

and the obstacle than the previous case. In Figure 6.5 the obstacle almost com-
pletely blocks the left lane, and in Figure 6.6 it blocks the left lane completely
and intrudes into the right lane. In these cases the planner uses the shoulder to get
around the obstacles. We ran this scenario for fifty minutes with no accidents,
covering 45 km with approximately 300 merges.

6.1.4 Freeway lane-changing

In Section 4.7 we described three policies to effect freeway lane changes. In
this section we present a sample scenario using one of these policies, which was

(a) Deceleration, 0 - 2.2 s

0 15 30meters

(b) Merge, 2.2 - 4.4 s

Figure 6.5: The obstacle leaves 25 cm open in the left lane
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0 15 30meters

(a) Deceleration, 0 - 2.4 s (b) Merge, 2.4 - 4.8 s

Figure 6.6: The obstacle blocks the left lane completely and intrudes 40 cm into the
right lane

illustrated in Figure 4.17, and which we refer to here as LANE-COMBO. This
method uses the behavioral algorithm SELECT-LANE (Figure 4.14) to select a
desired driving lane. The chosen lane is assigned the lowest cost in clane

static, but
other lanes are only a small amount higher. The trajectory planner implicitly
chooses a lane by balancing between the cost assigned to each lane in clane

static, the
cost of nearby dynamic obstacles in cobs

dynamic, and the final cost Φ (Equation 3.2).
There are higher costs in cobs

dynamic in front of and behind other vehicles to penalize
following or leading too close, and Φ penalizes taking longer to reach the end
of the planning horizon, for example by staying in a lane with slow traffic. The
pattern in clane

static allows the lattice planner to drive in a different lane from the lane
selected by SELECT-LANE when it is unsuitable for reasons that SELECT-LANE

did not take into account.
Figure 6.7 shows a driving scenario using the LANE-COMBO scheme. The

lane selected by SELECT-LANE is shown in grey. The speed limit is 24.3 ms−1

(55 mph), traffic in the right lane travel at 10 ms−1, and vehicles in the middle
lane travel at 15 ms−1. In Figure 6.7a, the vehicle starts in the right lane, as
though it has just entered the freeway. Here, we have tuned SELECT-LANE to
delay changing lanes when following slower traffic. As a result, the trajectory
planner chooses to override the behavioral layer’s selected lane, and change into
the middle lane. In Figure 6.7b SELECT-LANE chooses the left lane because the
trailing vehicle in the middle lane is too close behind. The trajectory planner
accedes, and then SELECT-LANE (Figure 6.7c) chooses the middle lane since the
trailing vehicle is now far behind. Finally, in Figure 6.7d SELECT-LANE changes
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(a) 0.0 - 2.4 s

(b) 2.6 - 5.0 s

(c) 7.6 - 10.0 s

(d) 12.8 - 13.6 s

Figure 6.7: Freeway lane changing using LANE-COMBO. The selected lane is col-
ored in grey.

to the left lane to pass the next vehicle ahead – this time early enough to avoid
being overridden by the trajectory planner.

We ran 30 minutes of freeway driving experiments for LANE-COMBO cov-
ering 30 km with approximately 100 lane changes. We ran an additional hour
combined for LANE-BEHAVIOR and LANE-AUTO covering a total of 60 km and
approximately 200 lane changes. There were no accidents in any of these experi-
ments, and the planner showed safe behavior throughout.

This example shows that by planning exhaustively out to a long planning hori-
zon and using a complex cost function, our planner can plan and execute complex
merge calculations while maintaining safe and robust behavior. Whereas prior
works take a brittle top-down approach, with higher-level planners commanding
lower levels to change lanes based on limited summary information, our planning
is bottom-up, taking all data into account before making a decision.
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(a) Pass first bicycle, 0 - 4.7 s

0 25 50meters

(b) Pass second bicycle, 4.7 - 8.6 s

Figure 6.8: The robot passes two bicycles in a row with oncoming traffic, merging
between the bicycles before passing the second one.

6.1.5 Merging with oncoming traffic

On an oval course with one lane in each direction, we show the planner driving
around bicycles in the presence of oncoming traffic. We placed four bicycles
around the oval with speeds of 5 m/s, 5.5 m/s, 6 m/s, and 6.5 m/s. The bicycles
were represented as normal vehicles displaced laterally 2.5 meters from the lane
center. There is room for the robot to pass the bicycles without hitting oncoming
traffic, but the lateral obstacle cost dilation is such that the robot prefers to wait
until oncoming traffic has cleared and give them a wider berth.

The changing positions of the bicycles and the oncoming traffic led to several
unique scenarios. Figure 6.8 shows two bicycles being passed in a row, with a
merge between them to avoid a second oncoming vehicle.

Figure 6.9 shows the robot passing one bicycle, but in this case an oncom-
ing vehicle is detected after the robot has already accelerated into the oncoming
lane. The robot must slow down, merge back behind the bicycle, wait until the
oncoming vehicle passes (Figure 6.9a), and then re-initiate the passing maneuver,
merging back in front of the bicycle before the next oncoming vehicle arrives (Fig-
ure 6.9b). In these simulations the planner assumes that the oncoming vehicle is
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(a) Cancel pass of bicycle, 0 - 6 s

0 25 50meters

(b) Resume pass of bicycle, 6 - 12 s

Figure 6.9: The robot attempts to pass a bicycle, cancels the attempt when it detects
an oncoming vehicle, and then resumes passing when it detects enough open space
in the oncoming lane.

on rails and will not slow down or move aside to avoid a collision with the robot.
We ran this scenario for 1.5 hours, covering 65 km. The robot passed a bicycle

with oncoming traffic present over 100 times. In some experiments we shortened
the robot’s perception horizon below what would be prudent for the speed it was
traveling. The result was that an oncoming vehicle could appear while the robot
was passing a bicycle, leaving no time to merge back into the travel lane. The
planner would in that case stop. Since the traffic vehicles are not responsive to
the robot’s actions, they would continue to travel through the robot. These were
the only collisions we observed, but we consider them acceptable since there was
plenty of time for the traffic to slow down or possibly move aside, which a real
driver would do. In fact, it is what our own planner would do, as we show in the
next section.
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Figure 6.10: The robot moves aside to avoid an oncoming vehicle encroaching into its
lane and returns back to the center of the lane after it passes by (5 seconds elapsed).

(a) Move aside and wait, 0 - 4.4 s

(b) Resume circumvention of obstacle, 4.4 - 10.3 s

Figure 6.11: The robot cannot move right to avoid oncoming traffic encroaching into
its lane because of a static obstacle in its lane ahead. It slows and waits until the
oncoming traffic has passed. The vehicle slows from 30 mph (portion shown: from
21 mph) down to 9 mph and then accelerates back up to speed.

6.1.6 Misbehaving oncoming traffic

We demonstrate our planner’s ability to smoothly avoid oncoming vehicles that
encroach into its lane. Figure 6.10 shows the robot in a simulated scenario, where
a oncoming vehicle is straddling the center line and encroaching into our robot’s
intended path. The planner smoothly moves aside, driving over the shoulder line,
and returns to the center of its lane after the oncoming vehicle passes.

Figure 6.11 shows a more complex scenario with two oncoming vehicles strad-
dling the center line and a static obstacle on the right-hand side of the lane. The
robot must slow to wait for the oncoming vehicles to pass before swinging out
to avoid the static obstacle. We ran the simulated scenario for an hour with mis-
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Figure 6.12: With a cost function term penalizing lateral accelerations, the planner
automatically slows the vehicle in anticipation of a sharp turn. The distance between
successive samples shows the deceleration coming into the turn and acceleration be-
ginning near the apex of the turn. Samples are spaced at 300 ms intervals.

behaving oncoming traffic and static obstacles placed by the side of the road.
The robot covered 40 km and moved aside to avoid an oncoming vehicle approxi-
mately 400 times, including 200 instances where it had to negotiate around a static
obstacle on the right while a vehicle was oncoming. The planner’s behavior was
consistent, with no accidents or near misses.

6.1.7 Real robot tests

On the robot we performed a more limited range of tests, due to safety and lo-
gistical constraints. On the robot, we did experiments in lane changing, distance
keeping, and obstacle avoidance. Videos are available from the author for all of
these scenarios. In this section we present figures illustrating a few of our tests.

Figure 6.12 demonstrates that the planner can choose an appropriate speed to
round a tight corner. In this case the planner penalizes trajectories with higher
lateral accelerations up to a hard limit of clataccel

dynamic = 0.3g. At the first sample in
the figure, the robot is traveling at 33 km/h. It slows to 13 km/h with a lateral
acceleration of 0.11 g to round the corner at the tenth sample and accelerates back
to 32 km/h at the last sample.

Figure 6.13 demonstrates a passing scenario executed on the robot, using the
LANE-AUTO lane-changing scheme, that is, the right lane is given a slightly lower
cost to traverse than the left lane, encouraging the robot to stay in the right lane.
The robot prefers to travel at approximately 35 km/h, but a human-driven vehicle
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(a) [0 - 3 s]

(b) [6 - 10 s]

(c) [10 - 14 s]

Figure 6.13: In a test conducted at 30 km/h, the robot passes a slower-moving human-
driven vehicle in the right lane by (a) moving into the left lane, then (b) remaining
there until it passes the other vehicle, and (c) finally merging in front of it. Samples
are spaced at 100 ms intervals.

traveling at 20 km/h is ahead of it in the same lane. Since the bonus awarded for
driving further by the final cost coefficient ks (Equation 3.3) exceeds the slight
penalty for driving in the left lane, the planner selects a trajectory that moves into
the left lane, passes the slower vehicle, and merges back in front of it.

Over a variety of tests during the development of the planner, we ran the robot
in autonomous mode 73 separate times, for a total of 2 hours 7 minutes, covering
49 km and reaching a maximum speed of 44.8 km/h.

The safety and robustness of a system is partially demonstrated by consistent
behavior that does not require a human to intervene. The safety protocol used
by Tartan Racing was to have two people in the vehicle. The “safety driver”
sat in the driver’s seat and was prepared to take control of the vehicle instantly.
The “software operator” watched the planner’s status on a laptop and was able to
anticipate either that the robot would be able to execute an upcoming higher-risk
maneuver safely, or that it was about to do something dangerous.

Due to logistical constraints, in our experiments we employed only a safety
driver who had to take control during higher-risk maneuvers where a software op-
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erator would have been needed to watch the vehicle’s perception state and plans
closely and tell the driver that a takeover was not needed. Out of those exper-
iments, we took control of the robot for safety reasons 9 times. Later review
showed that most of these were unnecessary.

• In early testing the vehicle habitually weaved back and forth about 1.5 me-
ters across the road due to a software flaw. In one instance the driver took
control when approaching a pole close to the side of the road while the ve-
hicle was weaving to the right. Reviews of the logs later showed that the
vehicle would not have come close to hitting the pole.

• In early testing the planning task crashed and was automatically relaunched,
leaving the robot without a plan for about one second. The bug was fixed.

• While tuning system control delays in early experiments, weavy runs were
terminated twice when the safety driver could not be sure that the vehicle
was not diverging. Later reviews should the vehicle remained under control.

• A police cruiser showed up on the course, and the safety driver took control
out of caution.

• Three times during passing experiments the robot was passing a vehicle
while taking a tight corner. Since a software operator was not available to
confirm that the neighboring vehicle was properly perceived and the plan
was safe, the safety driver took over.

• The safety driver took over when a goose aggressively protecting its nest
came onto the road. The perception system is not well able to perceive
small animals as lethal obstacles, nor for that matter to identify them as
animals at all. Our cost function does not include a prediction of the likely
motion of an animal, nor any terms to shape desirable responses when an
animal is on the road.
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Examining the above list, we conclude that after early testing phases to flush out
bugs and tune the control system, the vehicle did not perform any unsafe maneu-
vers that required a human to intervene. All takeovers were precautionary and
could have been avoided given the manpower to follow the Tartan Racing safety
protocol.

6.1.8 Tuning Parameters

In some of the preceding experiments, the cost function weightings had to be tuned
in order to demonstrate the desired behavior. These tuning changes were small in
number and size, and a future high-level behavior could tune them depending
on its assessment of the traffic situation. Aside from the various lane-changing
behavior parameters for the simulation experiments in Section 6.1.4 and the robot
experiments in Section 6.1.7, we only changed a few cost function parameters for
the experiments presented in this chapter.

The first set of weights we tuned related to lateral acceleration (Section 4.5.2).
These were the lateral acceleration soft limit ksoft

a⊥ , which we tuned lower in robot
experiments as a precautionary measure, and the linear penalty cmax

a⊥ , which we
lowered for the evasive maneuvers we presented in Section 6.1.2. We believe
it would have been easier to tune a single value of cmax

a⊥ to work in multiple sit-
uations had we used a quadratic rather than linear penalty, which more closely
reflects the actual constraints we wish to apply to lateral accelerations. We used
lower-magnitude values of the longitudinal acceleration soft limits amax

soft and amin
soft

(Section 4.5.2) on the robot, to save on fuel and brake wear.
The second set of weights we tuned were related to the lane cost potential

function clane
static (Equation 4.2). Specifically, for the bicycle-passing scenario (Sec-

tion 6.1.5) we lowered copp
a , the constant cost term for opposing lanes, and ctrav

b ,
the linear cost term for travel lanes. These changes encouraged the planner not
to stay behind bicycles, but rather to perform passes that would require it spend
relatively long periods away from the lane center or encroach into the oncoming
lane. A high-level behavior could be coupled with a bicycle-detecting perception
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Search Phase GPU Time CPU Time Speedup
Plan trajectories from source pose
onto lattice

2 ms 12 ms 6

Update all paths in lattice 0.1 ms 4 ms 40
Plan all trajectories coming out of a
single station

2 ms 42 ms 21

Whole planning cycle 45 ms 650 ms 15

Table 6.2: Time taken on the CPU and GPU for stages of the planning cycle

system to make this adjustment on a case-by-case basis.
In summary, while most cost function weights changed from their initial as-

signments during the development of the planner, over repeated experiments and
adjustments we settled on values that worked in a wide variety of scenarios, with
just a few minor changes needed to evoke specific desired responses for demon-
stration purposes. Even these few adjustments could be eliminated by adding new
high-level behaviors and additional refinements to the form of the cost function.

6.1.9 Performance

To compare the performance improvement gained by using the GPU, we also
implemented the planner on the CPU only and run it in simulation on a single
core. Table 6.2 displays the time taken in each phase of the search by each of the
GPU and CPU. The GPU provides a considerable speedup overall even accounting
for the fact that only one core is used in the CPU implementation, although the
GPU is much faster at certain tasks. Both implementations are reasonably well-
optimized, so this comparison is strongly suggestive of the relative merits of the
platforms for our algorithm.

6.1.10 Summary

In this section we have shown that our planner works in practice as in theory,
generating reasonable plans in a variety of scenarios. In the next section we will
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compare our planner to previous works and show that its dense sampling of tra-
jectories in space and time advances the state of the art, particularly in emergency
evasive maneuvers.

6.2 Comparison to the State of the Art

Having shown in the previous section that the planner performs as desired, we
turn to comparing our planner to other works. In most cases we do not have
access to implementations of other planners for use even in simulation, let alone
to run on our robot. Therefore we cannot run head-to-head comparisons of our
planner against others in order to see which performs best in a variety of scenarios.
Instead, we identify planner features that are necessary to robustly handle several
critical driving scenarios, and compare other planners based on their exhibition of
said features. We will show that our planner exceeds other works on features vital
to robust driving performance.

Figure 6.14 lists features we have identified as necessary for a robust driv-
ing planner. Each column indicates how well various related works provide the
features we have identified.

6.2.1 Description of Planner Features

In the following we expand on the features listed in Figure 6.14. We have chosen
these features to conduct our comparative evaluation because we believe they are
necessary to a robust planner. In the following we describe these features and
justify why we believe they are important.

Hard real-time response

In a dynamic and hazardous environment, a planner must have the ability to gener-
ate a set of candidate trajectories, and this set must be very likely to contain a safe
alternative. Further, it must do so in an amount of time guaranteed to be small. A
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Figure 6.14: Comparison of our spatiotemporal lattice planner (first column) features
and capabilities against related work. From left: “Rule-based/command-fusion” is
a class of driving systems including Navlab-related work[97] through to systems
fielded at the DARPA Urban Challenge[86, 104]; “CMU UC”[45] is the planning
stack used for on-road driving by the Tartan Racing team[28] in the 2007 DARPA Ur-
ban Challenge(DUC); “Stanford UC”[71] is the Stanford DUC entry; “MIT UC”[53]
is the DUC entry from MIT; “Karlsruhe/Werling”[105] and “Karlsruhe/Ziegler”[106]
are recent contributions similar in spirit to our lattice planner.
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Not necessary

Helpful

Not necessaryContains multiple lateral 
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Helpful

Figure 6.15: Traffic scenarios that justify the features we use to evaluate our planner
against the state of the art in Figure 6.14.

Figure 6.16: An emergency scenario where the robot must come to a complete stop.
A planner must have a hard real-time guarantee to respond correctly to this situation.

soft real-time guarantee, where the planner must produce satisfactory results in a
small amount of time on average, is insufficient. Some authors, such as [53], have
attempted to finesse the issue, but we do not believe it can be avoided. Figure 6.16
and Figure 6.17 illustrate emergency scenarios where the planner must be able to
guarantee a hard real-time response to obtain a safe outcome.

Contain multiple lateral shifts in one trajectory

In complex emergency scenarios, making the correct high-level planning decision
can require a detailed evaluation of all possible maneuvers, one of which may re-
quire at least a double lane change. Figure 6.17 illustrates an emergency scenario
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Figure 6.17: An emergency scenario that would require a double lane change to plan
optimally, as well as a hard real-time response. The robot (blue) is at the left, heading
right, in the inner lane. An obstacle has suddenly appeared on the roadway and there
is no time to stop. A plan to swerve right must verify that there is time to brake in
order to merge behind the vehicle(red) next to it. A plan to swerve left must verify
that there is time to vacate the opposing lane before hitting one of the oncoming
vehicles. If neither swerve can be performed safely, it may be better to brake as hard
as possible before hitting the obstacle.

that requires a full evaluation of a double lane change maneuver in order to de-
termine the best course of action. Our planner can also generate trajectories with
additional consecutive lateral maneuvers if necessary.

Feasibility with limited vehicle acceleration

We have mentioned (Section 3.4.1) that grid-based approaches to constructing a
search space can fail when nonholonomic constraints are present. Some authors,
e.g. [106] finesse this problem by assuming that the vehicle will be able to reach
grid points by using high accelerations, or by using widely spaced grid points and
limiting their experiments to scenarios where rapid maneuvering is not required.
We believe that an effective planner must be able to function on a vehicle with low
accelerations even when undertaking challenging maneuvers.
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Deliberative planning approach

We maintain that a deliberative approach, one that explicitly and realistically sim-
ulates the likely outcome of a plan before committing to it, is necessary to a suc-
cessful autonomous driving robot. Deliberative approaches stand in contrast to
reactive approaches like the subsumption architecture[15] that wire sensor read-
ings directly to actuators, taking actions without explicitly predicting the outcome
in a world model. Some authors[49][105] describe a deliberative approach as
“reactive” if it is performed rapidly enough and on a relatively limited horizon,
but we are careful to make the distinction between the two. We propose that the
most effective and reliable planner is the one that explicitly evaluates the great-
est number of plans in the most thorough and realistic way. Figure 6.17 shows
that in complex emergency situations, a planner that can consider a wide variety
of plans and reason explicitly about the likely outcome is better able to pick the
safest response.

Simultaneous planning in spatial and temporal dimensions

Constraints on computing drive some authors to pursue a staged approach to plan-
ning, where for example the planner will first generate and commit to a path cal-
culated to avoid static obstacles, and then search for a velocity profile over the
path that will also avoid dynamic obstacles, for example [43]. With such an ap-
proach there will be scenarios where a feasible plan exists but will be discarded
early. Increasing the coupling between spatial and temporal dimensions helps the
planner accurately plan maneuvers like merging into moving traffic Figures 6.18
and 6.19.

Scale performance with bigger parallel computers

We believe, as mentioned in the section justifying a deliberative planning ap-
proach, that the more plans evaluated by the planner, the better. As we showed
in Chapter 1, recent performance increases in computing operations per second
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Figure 6.18: The robot must be able to merge into traffic to go around a slow-moving
vehicle. This scenario is not safety-critical, but it illustrates the benefits of a planner
with the features we propose.

Figure 6.19: The robot must merge into traffic to go around a slow-moving vehicle,
as in Figure 6.18, but this time mindful that it must merge back soon to make an exit.

per dollar have come primarily from increasing parallelism, and this trend will
continue into the foreseeable future. Therefore, a planner that is ready to translate
increasing parallelism into increasing plan quality will be better able to meet new
challenges in the future.

Real-robot tests

Testing a planner on a real robot in a variety of scenarios reveals weaknesses that
could remain hidden if it were only tested in simulation. Even when simulation
test scenarios have been carefully selected to uncover failure modes, significant
flaws that can only be revealed in an encounter with the real world may still lurk
within. Significant re-thinking may be required once a planner has left the lab and
suffered the shock of an encounter with the real world. Access to a robot with
sufficient perception capabilites and the space to run it is a significant obstacle
to mounting a true demonstration of a planner’s effectiveness. For that reason
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planners that have only be tested in simulation must be taken seriously, but with
caution.

Summary

We have described several of the planner features that we believe are important
to focus on when evaluating competing approaches to planning for autonomous
driving. In the following we use these features to compare our planner to the
representatives of the state of the art.

6.2.2 Comparison to Rule-based Approaches

Compared to unstructured driving tasks such as roving around a desert looking at
rocks, driving on public roads requires adherence to a complex set of rules. The
rules of the road must be in some way reflected in the planner so that it generates
compliant behavior.

This need for the planner to follow the rules of the road has led some researchers[9,
36] to advocate that the planner should be organized around a decision tree of rules
that analyze the current road situation into a taxonomy of perhaps thousands of
individual cases, with a prescribed response for each. To these authors, the com-
plete taxonomy of driving scenarios serves not only as a road map for an imple-
mentation, but a guarantee of correct behavior as well. We do not make a detailed
evaluation of our work against this kind of planner since we are not aware of a
reasonably fleshed out implementation that embodies this approach.

Rule-based planning can also be seen as a way of coping with the apparent
intractability of the search space compared to the available computational re-
sources. When it is not possible to evaluate a large variety of plans, rule-based ap-
proaches use heuristics to narrow down the search space, discarding large swathes
of the space so that only a small set of plans needs to be evaluated in any de-
tail. Sukthankar’s MonoSAPIENT[97] is an example of this rationale for taking
a rule-based approach. All planners apply some degree of a priori narrowing of
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the search space to turn the continuum of plans into a finite set of discrete op-
tions. MonoSAPIENT is a finite state machine with major driving modes such
as following a vehicle or changing lanes, with hand-coded case analysis to tran-
sition between states while considering safety and the rules of the road. It does
not explicitly anticipate the outcome of a planning decision, rather, the rules are
carefully designed so that the outcome should be safe. By contrast, our planner
explicitly evaluates the outcomes of all candidate plans and so offers a stronger
guarantee of safety.

6.2.3 Comparison to Command Fusion Approaches

A command fusion approach identifies an abstract set of actions and deploys in-
dependent reasoning objects to assess each possible action. Each reasoning object
assigns a weight to each action, and an arbitrator sums the weights and picks the
best action. The essential proposition of an arbitration approach is that it is possi-
ble to abstract a small set of local actions out of the whole space of possible plans,
such that each action can be evaluated by looking at just a few aspects in isolation.

Sukthankar’s PolySAPIENT[97] is an arbitration framework that begins with
an abstract set of actions such as speed-up, slow-down, change-left, change-left-

and-slow-down, etc. A set of reasoning objects independently evaluate each action
according to its own understanding of what the action means and issue a numerical
vote indicating the desirability of each action. Reasoning objects might include
a reasoner that pays attention only to the car in front, voting on all actions based
only on the likelihood of a collision with that vehicle - voting to slow down if
the vehicle ahead is slowing down, or even to change lanes if there is no room
to slow down enough. Another reasoning object tracks the car ahead in the right
lane, another to the car behind in the right lane, and likewise for the left lane. An
arbiter tallies the votes from all the reasoning objects and picks the action with the
highest score. An action can be effectively vetoed with a score of −∞. As with
MonoSAPIENT, the reasoning objects do not explicitly evaluate the outcome of
each action. After an action has been selected by the arbiter, a trajectory generator
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turns the action selection into an actual vehicle motion. To achieve robustness with
this approach it is vital to ensure that the generated trajectory is consistent with
the implicit expectation each reasoning object has about what an abstract action
like “change-left” means and how it will actually be carried out.

Complex plans such as the double lane change shown in Figure 6.17 are diffi-
cult to address with the arbitration-based approach, since it requires very precise
evaluation of all plans ahead of time, while the reasoners deal with only abstract
actions that are not completely spelled out before they are decided upon. Suk-
thankar’s PolySAPIENT, for example, reaches the pinnacle of its performance
with a single lane-change emergency maneuver that requires a merge into traffic
([97] Section 7.3.5). Voting weights and tuning parameters had to be carefully set
to obtain this behavior.

More realistic action sets have been used in open-country navigation applica-
tions without dynamic obstacles, such as constant steering angles[89, 50]. At the
DARPA Urban Challenge, the Team AnnieWAY and CarOLO entries[104, 86]
also used a command-fusion approach based on constant curvature arcs. These
required complex heuristics to regulate the interpretation of the arc paths in the
context of driving on a narrow road with moving traffic.

Although command-fusion approaches are evidently more capable than rule-
based approaches, complex emergency maneuvers at high speeds and in the pres-
ence of moving obstacles seem to be an insurmountable challenge for them as
well. None of the command-fusion based systems we have examined have demon-
strated an ability to handle the double-lane change maneuver illustrated in Fig-
ure 6.17. They would also scale poorly with increasing parallelism, since the
number of practically distinguishable constant steering commands is relatively
low compared to the degree of parallelism readily available even today.

6.2.4 Comparison to the CMU Urban Challenge Planner

The Carnegie Mellon team (also known as the Tartan Racing Team[101]) won the
DARPA Urban Challenge. The work presented in this thesis is inspired by their
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Figure 6.20: The Tartan Racing lane changing method is unable to avoid obstacles in
its current lane while a change is pending.

lane planner. They sample states along the roadway, as our planner does, and used
a cubic polynomial spiral to solve a boundary value problem connecting the cur-
rent vehicle state to each sampled state[45]. They ran several acceleration profiles
over the path to generate multiple trajectories, each of which was evaluated, with
the best one chosen.

In this sense their planner is similar to phase one of our planner, where paths
are generated to go from the vehicle’s current position onto the planning lattice.
It is there that they stop, and where our approach continues to generate more
complex plans. The Tartan Racing planner offers a real-time guarantee, since it
evaluates a discrete and limited number of plans with predictable computational
complexity. It would not scale well with additional parallel computing. While
each candidate path and trajectory can be evaluated independently, the existing
path endpoint sampling strategy already covers the roadway fairly well. There
is not much benefit to sampling even more lateral points, except when changing
lanes.

We had access to the Tartan Racing planner, and performed experiments to
highlight its limitations compared to our planner. Figure 6.20 shows a scenario
where the vehicle must swerve around in an obstacle in the current lane while a
lane change is pending. Since only one path sample is generated for the current
lane in this case, the vehicle must come to a full stop and revert to its unstructured
planning mode to get around the obstacle. Our planner has no problem with this
scenario.

Figure 6.21 shows that the short planning horizon of the Tartan Racing planner
can cause it to make suboptimal decisions. Much as our lane selection algorithm
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Figure 6.21: The Tartan Racing lane changing method changes lanes based on the
locations of other vehicles, but does not account for static obstacles beyond the stop-
ping distance.

SELECT-LANE (Figure 4.14) does, the Tartan Racing planner ignores static obsta-
cles when planning a lane change, attending only to the locations and velocities
of moving obstacles. In the scenario of Figure 6.21, a static obstacle is beyond the
planning horizon, so the vehicle initiates a lane change only to come to a full stop
in the new lane. Our planner is able to plan out to a much longer horizon. While
it may change into a lane containing an obstacle beyond the planning horizon, in
practice the planning horizon is so long that it has much more time to change back
without coming to a stop.

6.2.5 Comparison to the Stanford Urban Challenge Planner

The lane planner for the Stanford Urban Challenge entry was similar in spirit to
the CMU entry. A set of trajectories parallel to the lane, each at different lateral
offsets from the road center line, are rolled out from the current vehicle state. This
allows moving around small obstacles, but it cannot handle complex emergency
maneuvers. As with the Tartan Racing planner, increased parallel computation
would not add much benefit since athere are only so many usefully distinct trajec-
tories that swerve once at the beginning and then run out at the same offset along
their entire length.

6.2.6 Comparison to the MIT Urban Challenge Planner

MIT’s entry[61, 53] into the Urban Challenge was unique in their use of a rapidly-
exploring random tree (RRT) approach for all planning tasks, not only in unstruc-
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tured environments such as parking lots, but also in simply driving straight down
a lane.

The RRT is very versatile and would appear to be promising. Any trajectory
plan can theoretically be generated by an RRT. Further, as one allows the algo-
rithm to run for unbounded time, the probability that a valid plan will be found
converges to 1, if a feasible plan exists at all.

In practice there are a few problems with using RRTs for a real-time appli-
cation in a relatively low-dimensional environment. While the MIT authors take
pains to ensure that the planner always maintains a valid plan with a safe final
state, the RRT cannot guarantee that it has examined a well-dispersed set of tra-
jectories. Experimental results reported in [53] seem to show that the planner was
unable to drive at a consistent speed along a softly curved road with no traffic.

6.2.7 Comparison to other regular sampling approaches

The “Karlsruhe/Werling”[105] and “Karlsruhe/Ziegler”[106] columns in Figure 6.14
have been published since the DUC by researchers affiliated with Team AnnieWAY,
though not based on the approach used by that team in the DUC.

The “Ziegler”[106] approach is closest in spirit to our own - the authors use
a regular lattice defined in SL-coordinates along the road center line. In a first
stage they sample plans going from the vehicle onto the lattice, and then complete
the plan using regularly sampled transitions within the lattice. In this respect their
approach is identical to ours. Where it differs is that they sample time and velocity
as discrete points rather than intervals as we do. As we noted in Section 3.4.1 this
places undue strain on the system: either the vehicle must be capable of large
accelerations to make the transition from one grid point to another, or else there
must be an infeasibly dense state sampling and large action set joining them in
order to ensure a feasible trajectory can be found. They have demonstrated their
planner in a few simulated merging and passing scenarios but we do not know of
a demonstration on a real robot.

The “Werling”[105] approach resembles the first stage of our planner. Our
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approach is to sample paths terminating in a set of regularly sampled endpoints,
then traverse each path with a variety of acceleration profiles to produce trajec-
tories. In contrast, the Werling approach generates a set Tlat of samples of the
lateral position of the vehicle with respect to the road center line as a function of
time, and independently samples a set Tlon of the longitudinal position also as a
function of time. All pairs of lateral and longitudinal samples with matching end
time T are then paired to generate a set of trajectories Tlat × Tlon. The result is
a set of single swerve actions that can be evaluated for comfort, adherence to the
center line, and collision with other vehicles. Unlike our approach, theirs does not
append additional swerve actions and so cannot generate a double lane-change
evasive maneuver. However, they can sample the Tlon endpoints in order to pro-
mote specific behaviors such as distance keeping, merging, and velocity keeping.
They also have a scheme to promote stability across replan cycles by ensuring
that the search space always includes the previous cycle’s plan. Our planner has a
similar feature enabled by the static global pose of the lattice, which we described
in Section 4.2. They report having used the planner on their autonomous vehicle
JUNIOR with no traffic, and simulation results showing robust behavior driving in
well-behaved traffic. They do not report real or simulated vehicle speeds, so we
cannot fully evaluate the robustness and performance of their approach.

6.3 Summary

In this chapter we have demonstrated not only that our planner works in a variety
of normal and emergency driving scenarios, but that it advances the state of the
art, handling emergency situations better than other planners in the literature.

In the next chapter we draw final conclusions, summarize the contributions of
this thesis, and discuss directions for future work.
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Chapter 7

Conclusions

Waste makes haste. For time is

fleeting. A rolling stone is worth

two in the bush.

Robocop
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7.1 Conclusions

Our planner is able to generate reasonable plans in real-time for a variety of traffic
situations. The planner can use a GPU to exploit the parallel structure of the search
space and significantly reduce the planning latency.

The cost function plays an important role in shaping the final behavior, and
more work is necessary to develop cost functions for more complex behaviors,
such as cruising outside of other vehicles’ blind spots, moderating distance from
obstacles based on velocity, or passing on the highway in the presence of oncom-
ing traffic. We may also need the cost function to distinguish between emergency
maneuvers and normal maneuvers, so that an emergency maneuver, however brief,
would only be selected when no normal maneuver is available, however long.

An obvious next step in the development of the planner is to investigate more
sophisticated acceleration profiles while maintaining execution efficiency. Using a
constant acceleration over the course of the path can lead to execution errors, since
vehicles typically cannot change acceleration abruptly. At low speeds, construct-
ing paths using a cubic polynomial spiral while staying strictly within steering
rate constraints overly limits the maneuverability of the vehicle. A refinement to
the types of actions considered may be necessary at low speeds.

We have not yet looked at reachability in the lattice. If there are large portions
of the lattice which are never part of the solution, they may be trimmed in order
to increase trajectory density in other parts.

7.2 Contributions

Before an autonomous passenger vehicle can drive safely and efficiently in traf-
fic, we must overcome many difficult motion planning challenges. A planner for
an autonomous passenger vehicle must generate a variety of complex behaviors
executed over varying time scales while maintaining safety and comfort for the
passengers and other users of the road. In this thesis we present a novel combina-
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tion of planning ideas into a low-level trajectory planner for autonomous highway
driving. The low-level planner is responsible for making planning decisions at
a frequency on the order of 10 Hz, with a planning horizon on the order of 10
seconds. Our approach increases the range of behaviors that the low-level planner
can intentionally produce over the state of the art, as well as the robustness of its
interaction with higher levels of the planning stack.

7.2.1 Search Space Decomposition

We contribute a decomposition of the search space for on-road driving into a plan-
ning graph that uses a resolution-equivalent grid approach to include both spatial
and temporal dimensions in the search graph while respecting the kinematic and
dynamic constraints on a typical automobile. The structure of our graph allows us
to sample the search space with enough coverage to generate acceptable plans over
a wide variety of driving scenarios, while sampling sparsely enough to generate
plans in real-time.

Our method overcomes two hurdles. First is the usual curse of dimension-
ality, where the number of paths within a search space increases exponentially
with the number of dimensions in the space. The second problem is that the pres-
ence of nonholonomic constraints in the domain necessitate that when an action
changes one dimension of a state, other state variables must also change as a side
effect. The use of a standard fixed grid imposes additional constraints on the
values of state variables along the path that are hard to satisfy without greatly in-
creasing the resolution of the grid. To resolve nonholonomic constraints without
increasing the grid resolution, we adapt the locations of grid points on the fly, sim-
ilar to the concept of resolution-equivalence enunciated in the Incremental Search
Engine[99], used in Hybrid A*[25], and the anonymous method by Barraquand
and Latombe[11].
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7.2.2 Cost Scheduling

It is a well-known problem in planning that the models used by hierarchies of
planners tend to be inconsistent with one another, leading to undesirable behavior.
In this thesis we contribute a solution to this problem. Our planning framework
assumes more responsibility at the lower levels of the planning hierarchy by in-
creasing the scope and number of plans that are evaluated at that level. Higher-
level planners responsible for making decisions with longer-term scope, such as
selecting which lane to be in for an upcoming turn or exit, can communicate with
the low-level planner by modifying the cost function in order to encourage desired
behavior, rather than directly specifying goals that may be impossible to attain.

Our planner searches a richer space of possible plans than previous planners,
and by doing so is able to support a richer language of communication with higher-
level planners through the cost function it uses to select trajectories. Not only
does our planner mitigate the problem of infeasible commands being issued by
higher levels by taking on more responsibility, it further reduces this problem
by changing the way the layers interact. Our planner does not directly accept
commands from higher levels for it to implement. Rather, higher levels simply
manipulate the cost function in order to nudge our planner towards the desired
result, for example, changing into a specific lane when feasible.

7.2.3 Parallelization

The sequential planners typically used in search-based planning, such as A*, are
not readily parallelizable. A problem-specific analysis of the search space is nec-
essary to reveal opportunities for parallel evaluation of search nodes. Our de-
composition of the search space for driving exposes considerable scope for par-
allel computation. We show how our planner can be implemented on a graphics
processing unit (GPU) vector-parallel processor to achieve a significant parallel
speedup.
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7.2.4 Implementation

We contribute an implementation of our planner in an autonomous passenger vehi-
cle. The planner is implemented using an Nvidia GPU and integrated into the Tar-
tan Racing software system developed for the 2007 DARPA Urban Challenge. An
important part of our implementation is a cost function that balances the compet-
ing desires for brisk driving, comfort, and safety. The cost function must contend
with the phenomenon of relentless optimization whereby a planner tends to select
plans that fail in the presence of errors in modeling or execution. We validate our
implementation with real-world experiments.

7.2.5 Virtual Terminal State

We contribute a method for selecting the terminal state of the plan in a repeated
planning task with no fixed endpoint. Whereas other driving planners choose
a fixed goal distance or time at each planning cycle[105, 29], we use an adaptive
planning horizon that minimizes current costs combined with an estimate of future
costs. This allows our planner to adapt to changing road conditions by changing
the length of the plan.

We adapt the standard formulation to evaluate a final state for a control or
planning problem, which is to sum a cost functional over a trajectory and a cost
function for the state at the final time, as in [56] Chapter 10.6:

L(x̃tF , ũtF ) =

∫ tF

0

l(x(t), u(t))dt + lF (x(tF )).

7.3 Future Work

In the course of this research project we have identified many directions for future
work. Some are particular to our approach, and some are broader in scope.
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7.3.1 Search Space Improvements

First we review directions for future enhancements of the structure of the search
space to speed the planner or improve the quality of its plans.

Planning at the Limits

The evasive maneuvers described in Section 6.1.2 need to be more drastic. Our
approach generates trajectories by combining polynomial spirals and constant ac-
celerations, then filters out those that the vehicle cannot execute, for example due
to steering rate limits and limits on lateral acceleration. However, the generated
trajectories do not fully exploit the abilities of the vehicle. For example, a trajec-
tory that is just within the lateral acceleration limits of the vehicle at one portion
is very likely to exceed them at some other points and to fall short of them at other
points. The net effect is that trajectories which are feasible throughout their full
length may fall very short of the vehicle’s ability at some points. In an emergency
situation, we need the planner to exploit the full abilities of the vehicle. Future
work should look at ways to solve this problem, perhaps by planning directly in
terms of the performance envelope of the vehicle, that is, the dynamic, or acceler-
ation constraints.

Our planner is not effective at making sharp swerves at low speeds, for ex-
ample when changing lanes from a stopped position immediately behind another
stopped car. This limitation is due to similar causes to those that limit our ability
to fully exploit the vehicle’s performance abilities for high speed evasive maneu-
vers. At low speeds we need to plan in terms of the relevant performance limits
of the vehicle, i.e., the speed at which the vehicle can turn its steering wheel.

Finally, the use of different trajectory forms at different speeds raises the ques-
tion of how to smoothly switch between plans made in different forms as the ve-
hicle changes speed.

205



Number of Swerves

The planner currently demands a lot of computational power to explore a large
range of candidate plans at each cycle. Future increases in computational power
will mitigate the impact of these demands. However, more work will be needed to
reduce the total amount of computation done by the planner. The planner as cur-
rently constituted can plan multiple swerves in a single trajectory. It is arguable
that this many swerves are never necessary. More work should be done to deter-
mine whether limiting the plan complexity to two swerves would be sufficient for
all conceivable situations. If so, the planner could do less work.

Long acceleration profiles

The cost function 3.2 favors higher-speed trajectories than lower ones, so we in-
clude the acceleration policy index as a dimension in the search space in order
to maintain plan diversity (Section 3.4.5. Despite this measure, long emergency
braking maneuvers that start from high speeds and require more than two con-
secutive trajectory segments through the lattice to come to a complete stop may
be eliminated from the search. This and similar special cases yet to be identified
need to be addressed in a principled way.

7.3.2 Behavioral Improvements

To demonstrate the feasibility of our planning approach, we contributed an imple-
mentation and a sample cost function to rank candidate plans. The cost function is
largely independent of the search method, although some implementation details
may need to be taken into account to ensure efficiency. Since the cost function
encodes our preferences for how the vehicle should behave in all conceivable sit-
uations, much more experimentation in a variety of scenarios, and a great deal
of cost function tuning is needed. Methods for automated parameter tuning from
expert examples, such as the LEARCH algorithm[95], may be a useful tool.

Automated parameter tuners do not answer the question of what parameters

206



should exist. For example, are binary cost penalties on proximity to obstacles,
speed limits, etc., sufficient, or should we use more intermediate levels? Should
we add additional penalties for passing near an obstacle at higher velocities?
These and similar questions need to be identified and answered.

The point of diminishing returns on increasing the size of the search graph
is yet to be determined. How many more acceleration profiles should we add, if
computational resources are available? Should we change the size of the lattice
based on the speed of the vehicle? If so, how? How small should we make the
lateral discretizations?

In order to continue making definite progress, future work should catalog traf-
fic scenarios in more detail and outline an acceptable range of desired responses.
This research area has matured to the point where it is necessary for new con-
tributions to be evaluated against an objective list of agreed-upon performance
criteria.

Our planner treats other traffic as though it were on rails, unable to change
velocity, and completely unyielding. This applies even to traffic following our
own vehicle, and for future states several seconds away. In real life, vehicles
react to each other’s movements. A full multi-agent search seems intractable, but
we suspect that simple heuristics expressed through the cost function might be
sufficient. In this work, for example, moving obstacles project an infinite cost
into the dynamic cost map for the full planning horizon several seconds into the
future. Lowering that cost to a finite level after a few seconds, and predicting
that other vehicles will veer to the right and slow down rather than travel straight
at the same speed, would allow the planner to generate evasive maneuvers that
nudge into oncoming lanes while oncoming traffic is still several seconds away
and would have time to react, in essence creating a self-fulfilling prophecy for the
behavior of other vehicles.
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7.3.3 Planner Architecture

The control approach described in Section 5.2.1 introduces a discontinuity in the
control loop by generating new plans from the perceived vehicle state. An ap-
proach that some have found to be more effective is to “plan from the plan”[102].
That is, initialize the planner state from the vehicle state at planner startup and
from then on ignore the actual vehicle state in the planner, depending on a path
tracker such as one of those described by [96] to keep the actual vehicle state close
to the planned state.
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Appendix A

Overview of the GPU Architecture
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Multi-core graphics processors(GPUs), developed most notably by Nvidia and
AMD, are very different from CPUs. While both GPUs and contemporary CPUs
are multi-core computers, and both are equally capable of solving decidable prob-
lems, they are designed to solve different types of problems quickly.

In this appendix we describe the major architectural features of the GPU, and
most importantly, why some of the peculiarities of the GPU architecture will con-
tinue to be common, so that developing algorithms that take advantage of them
is likely to be a worthwhile effort. We first contrast the two architectures before
delving into the details of the GPU.

A.1 Major Differences between CPUs and GPUs

Contemporary personal computers are typically available with Intel or AMD pro-
cessors containing between two and six traditional processor cores. These cores
each typically run one sequential thread of execution at a time, and devote large
amounts of chip space to running that single sequential thread of execution as
quickly as possible. Speculative execution, branch prediction, a provision of ex-
cess functional units, analysis of instruction-level parallelism, and code translation
are a few of many optimizations developed to squeeze performance out of a se-
quential thread of execution. Each of these consumes chip space. The functional
units are designed to compute complex operations quickly, with diminishing re-
turns in performance for each additional transistor. As opportunities to increase
performance in sequential execution by adding transistors have dwindled, chip de-
signers have resorted to utilizing the space available for additional transistors on
a die by adding copies of the entire CPU.

GPUs also use many cores, numbering in the dozens or even hundreds. In con-
trast to contemporary CPUs, GPUs make no effort to execute any single thread
quickly. Rather, they attempt to maximize the aggregate throughput of many
threads. Hundreds or thousands of threads running the same algorithm must be
available to execute in parallel for this strategy to be effective.
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Figure A.1: Comparison of transistor allocation to functional components in tradi-
tional CPU architecture vs. Nvidia GPU, reproduced from [75]

Figure A.1 illustrates the broad design features that CPUs and GPUs incorpo-
rate to reach their respective performance goals. Whereas the CPU allocates large
numbers of transistors to on-chip cache and control functions, the GPU allocates a
relatively small number of transistors to cache and control, leaving the majority of
chip space available for arithmetic logic units(ALUs), which actually compute the
results. To achieve the maximum theoretical benefits requires an understanding of
the architectural features of the processor.

A.2 Chip Architecture

Figure A.2 illustrates the architecture of the Nvidia GPU. The processor is com-
posed of a variable number of multiprocessors, each of which is composed of
exactly eight scalar cores. Each scalar core can execute one instruction per clock
cycle, though complex instructions such as division and built-in transcendentals
may take longer. The eight scalar cores within each multiprocessor share a small
cache of programmer-addressable local memory and each scalar core has a large
number of registers to support the private storage needs of hundreds of threads.
The multiprocessor has just one instruction issue unit, so each of the eight scalar
cores execute the same instruction at the same time, albeit on different data. Mul-
tiprocessors can only share data by storing to and reading from the global device
memory. Higher performance GPUs are obtained mainly by increasing the num-
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Figure A.2: Architecture diagram of nvidia GPU, reproduced from [75]
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ber of multiprocessors on the chip.

A.3 Compute Unified Device Architecture

Early tools for employing graphics processors in general-purpose computing, an
effort broadly termed General-Purpose GPU(GPGPU), were difficult to use and
came with many restrictions, requiring the programmer to frame their algorithms
as special programs for shading pixels, with debilitating restrictions on access to
data and especially a lack of ways to synchronize between different operations.
GPU manufacturers have been developing their graphics processors into more
capable, general, and accessible parallel computing platform. One of these efforts
is Nvidia’s Compute Unified Device Architecture(CUDA).

Several multi-core processors share important architectural features with the
Nvidia GPU, so we shall describe the particulars of the Nvidia architecture as
concretely as possible in order to make it easier to understand, and then show the
similarities it shares with other multi-core platforms.

CUDA consists of syntax enhancements to C++, with an accompanying com-
piler and a runtime library. It works beneath the graphics layer and leaves the pro-
grammer to program in C with a few simple additions to the language to utilize the
parallel features of the processor. AMD, another supplier of GPUs, is developing
a similar effort using their own Stream SDK[4]. Additionally, a portable language
for heterogeneous computing using CPUs and GPUs known as OpenCL[39] is
newly available. At the moment, CUDA is the most accessible and the most ad-
vanced, so we will be demonstrating results using CUDA.

In CUDA, threads are organized into blocks which may contain up to 768
threads. All threads in the same block may synchronize with each other using a
barrier operation, but threads from different blocks may not synchronize. Each
of the threads within a block is addressed with a unique three-dimensional index
(x, y, z). Threads can retrieve their indices using a hardware instruction. Blocks
are organized into a grid, and like threads, are uniquely numbered by the schedul-
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ing hardware. Exactly one grid of thread blocks is run on the GPU per kernel in-
vocation from the host CPU. Figures A.3 and A.4 show the core syntax of CUDA.
Code running on the CPU invokes parallel functions called kernels to be run on
the GPU. Each thread is designated to handle a small piece of the work. The
one-dimensional convolution code shown in these figures illustrates the use of the
programmer-controlled cache memory, also called shared memory. It also demon-
strates the synchronization of threads within a block. The function shown in Fig-
ure A.3 runs on the GPU. Threads with the same blockIdx can access the same
shared memory locations and synchronize with the built-in syncthreads() bar-
rier primitive. Since each element of the kernel and image arrays will be accessed
many times and by different threads, they are loaded into the shared memory.
Then, each thread computes one element of the result and stores it. Figure A.4
shows the code run on the host CPU. This is normal C++ code that runs in the
usual way. The programmer must explicitly schedule data to be copied between
buffers allocated on the host and GPU. The special ≪≫ syntax is used to invoke
a GPU “kernel” function with the grid and block size layout within the brackets.

A.4 Features Common to GPUs

In the previous section we described the Nvidia GPU and the CUDA programming
model. In this section we argue that the interesting features of the Nvidia GPU are
also present in other platforms, such as AMD’s Radeon graphics processors and
Intel’s upcoming Larrabee[93], and that their architectures are driven by the same
design forces. The Nvidia GPU with its CUDA language extension is currently the
most advanced and accessible platform for general-purpose parallel computing,
but efforts made to develop algorithms and approaches will generalize to future
platforms.
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// 1D convolution with CUDA.
// This function runs on the GPU.

global void convolve1d( float *image, int imgsize,
float *kernel, int ksize, float *result ) {
const int ksize2 = ksize / 2;

// Index of this thread block’s portion of the input image.
const unsigned int img0 = blockIdx.x * (blockDim.x - ksize2*2);

// Cache entire kernel and portion of image in block-shared memory.
shared float kcache[ MAXKSIZE ], imgcache[ MAXTHREADS ];

// Load image cache, one thread per element, including padding.
const int imgidx = img0 + threadIdx.x - ksize2;
if( imgidx < 0 || imgidx >= imgsize ) imgcache[ threadIdx.x ] = 0;
else imgcache[ threadIdx.x ] = image[ imgidx ];

// Load kernel from global memory into shared cache.
if( threadIdx.x < ksize ) kcache[threadIdx.x] = kernel[threadIdx.x];

// Synchronize all threads in block; ensures data loaded into cache
syncthreads();

// One thread responsible for each cell of result.
// Some threads do nothing here; they exist only to load data above
if( threadIdx.x >= ksize2 && threadIdx.x < blockDim.x - ksize2 ) {

float r = 0;
for( int i = -ksize2; i <= ksize2; ++i )

r += kcache[i + ksize2] * imgcache[i+threadIdx.x];
result[img0 + threadIdx.x - ksize2] = r;

}
}

Figure A.3: First part of the CUDA code sample showing a parallel one-dimensional
image convolution operation. This “kernel” runs on the GPU.
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int main( int argc, char *argv[] ) {
// input: img, imgsize, kernel, ksize

const int blocksize = MAXTHREADS, cells per block = blocksize - ksize - 1;
const int gridsize = (imgsize + cells per block - 1) / cells per block;

// Allocate room on the graphics card to store a copy of the image.
void *img device; cudaMalloc( &img device, imgsize*sizeof(float) );
// Copy img from host (CPU) to device (GPU).
cudaMemcpy( img device, img, imgsize * sizeof(float), cudaMemcpyHostToDevice );
// Similarly: allocate space for result and kernel on GPU, copy from host...
void *result device; cudaMalloc( &result device, imgsize*sizeof(float) );
void *kernel device; cudaMalloc( &kernel device, ksize*sizeof(float) );
cudaMemcpy( kernel device, kernel, kernelsize * sizeof(float), cudaMemcpyHostToDevice );

// Call CUDA convolution code.
// gridsize blocks will be run, of blocksize threads each.
convolve1d≪ gridsize, blocksize ≫

( img device, imgsize, kernel device, ksize, result device );

// Allocate space on the host for the result, and copy from GPU.
float *result host = malloc( imgsize*sizeof(float) );
cudaMemcpy( result host, result device, imgsize * sizeof(float), cudaMemcpyDeviceToHost );
// output: result host

}

Figure A.4: Second part of the CUDA code sample showing a parallel one-
dimensional image convolution operation. This code runs on the “host”, or CPU,
and interacts with kernel code (Figure A.3) through the CUDA API.
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Data-Parallel Operations

The performance achieved by GPUs comes from their devotion of large numbers
of transistors to computational rather than control elements, as illustrated in Fig-
ure A.1. The control elements are responsible for instruction decoding, handling
branches in the code, calculating addresses for operations on memory, analyzing
code for instruction-level parallelism, and more. In order for the GPUs to keep
these computational elements, or ALUs, supplied with work, the control elements
must accomplish more with less. The simplest way to do this is by having each
instruction cause the same operation to be performed simultaneously on multiple
data elements. This is easy to do in many graphics applications, where rendering
an image involves performing the same operations on many pixels.

An operation that performs the same computation on several pieces of data at
once is termed data-parallel. Data-parallelism stands in contrast to task-parallelism

where multiple threads of control may simultaneously perform entirely different
functions. In order to gain the benefits of the GPUs for motion planning, it is
necessary to develop algorithms that can use data-parallel operations.

Data-parallel computers typically organize data elements into fixed-size vec-
tors. In CUDA for example, data-parallel operations are performed on vectors of
32 elements. Figure A.5 illustrates. Part (a) of the figure shows a normal program
using scalar variables. Part (b) shows the same program running simultaneously
on several copies of the variables organized into vectors, denoted <v>. Control
flow is accomplished by creating a new vector variable that contains the results
of a logical test performed on independent vector elements. Computations for el-
ements corresponding to positions that tested false are still performed, but their
results are not stored. With appropriate hardware support, the program could skip
lines 3 or 4 entirely if mask1 had all the same value.

In CUDA, the operations appear to be computed by independent threads. How-
ever, threads are grouped into warps of 32 elements. Threads within a warp ex-
ecute the same instruction at the same time, but warps may run completely in-
dependently of each other. Figure A.6 illustrates this idea with an abbreviated
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1: a = C[d];
2: if( a == 0 )
3: d++;
4: else e--;
5: f += b * e;

1: <a> = C[ <d> ];
2: <mask1> = (<a> == 0);
3: <d> = ( <mask1> & (<d>+<1>))

| (˜<mask1> & <d>);
4: <e> = (˜<mask1> & (<e>-<1>))

| ( <mask1> & <e>);
5: <f> += <b> * <e>;

(a) (b)

Figure A.5: Comparison of (a) a program using familiar scalar variables with (b)
explicit use of vector-parallel operations. Each operation is performed element-wise
on the vector variables, and constants are also vectors. Note that identifier C is an
array, but not a vector variable.

Clock 1 a = C[d];

if( a == 0 )

    d++;

else e--;

f += b * e;

Clock 2

Clock 3

Clock 4

Clock 5

Figure A.6: Serialized execution of threads in an eight-thread warp on the GPU

warp of 8 elements. Each vector element is represented as a local variable for
one thread, but threads in the same warp run the same instruction. When the code
branches, only the threads that take the “true” branch run, simultaneously. When
those threads reach the end of their branch, the threads that take the “false” branch
run until the branches merge, when all threads can run again. If all threads were
to take the same branch, then no time would be wasted with the alternate branch,
an improvement over the mask-vector concept of Figure A.5.

Modern CPUs typically have vector instruction sets and vector registers in ad-
dition to their traditional scalar instructions and registers. For example, the Intel
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SSE and PowerPC Altivec instruction sets can operate on vectors of 4 elements.
However, the CPU vector instructions cannot perform operations on vector ele-
ments conditionally, nor can they use a vector element as an index for a memory
access. That is, traditional CPU SIMD instructions lack support for the instruc-
tion on line 1 of Figure A.5(b), where the vector elements of <d> are used as
indices into the array C[]. They also lack support for line 2, where the results
of a conditional expression evaluated on each element of a vector are stored in
another vector. Nor do they have an efficient built-in way of performing the mask
operation expressed in lines 3 and 4.

Note that CUDA’s warps are equivalent to the explicit use of operations con-
ditioned on mask registers shown in Figure A.5. AMD GPUs, IBM’s Cell[81],
and Intel’s Larrabee all depend for their high performance compared to CPUs
on the conditional vector-parallel operations just described. The motivation for
vector-parallel operations from a performance perspective is that they allow more
work to be done with the same number of clock cycles and transistors devoted to
instruction decoding, out-of-order instruction issue, and address translation. The
challenge for the software developer and algorithm designer is to find ways to
compose algorithms using vector-parallel operations. To achieve maximum per-
formance using vector operations, we must be careful to organize our computation
to ensure that all elements of each vector branch in the same direction as often as
possible.

Memory Architecture

In this section we contrast the memory architecture of contemporary GPUs and
CPUs and their effect on program performance. We then attempt to anticipate
which aspects of the GPU architecture are likely to persist.

In traditional CPU architectures, cache misses are extremely detrimental to
performance. All execution stops until the desired information is retrieved from
memory further away from the CPU. The most common way to mitigate this prob-
lem is by using larger caches. Another way is to build hardware that can switch
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instantly to another runnable thread when one thread is stalled. For example,
Intel’s Hyper-Threading feature allows one secondary thread to be run simulta-
neously with the primary thread. When the primary thread is forced to wait, the
secondary thread may continue running. This can provide a speed boost to some
applications.

GPUs use a comparatively small amount of cache memory, and rely on the
programmer to write algorithms that use hundreds of threads. The GPU schedules
threads in hardware at a fine grain, so that when a thread stalls waiting for a
memory access to complete, another thread can be run immediately. If enough
threads are available, then the ALUs can be kept working even when threads must
frequently wait for memory operations to complete. This is the major rationale
for the GPU architecture - if an algorithm can muster enough threads to keep
the ALUs busy, then the work done may be maximized, even though individual
threads may have a higher latency than they would on a sequential processor.

Memory bandwidth and latency limitations require many operations to be per-
formed on each piece of data loaded from memory in order to achieve peak perfor-
mance. Algorithms that run best on the GPU therefore must intersperse memory
accesses with a significant amount of work. Algorithms that frequently permute
global memory are not suitable for the GPU.

CPUs use a cache memory structure that automatically stores the values in
recently-accessed memory close to the processor in anticipation that they will
be used again soon. In place of these, the shared memory of the Nvidia GPUs
requires the programmer to explicitly determine when data will be transferred
between the large, global memory from the small, fast memory near the processor.

Memory bandwidth is the aggregate amount of data that can be transported be-
tween main memory and the processor per unit time. GPUs have a considerably
higher memory bandwidth than CPUs. The Intel Core 2 Duo, for example, has a
theoretical bandwidth of 8.5 GB/s, whereas the Nvidia GTX 260 has a memory
bandwidth of 112 GB/s. The higher memory bandwidth of the GPU comes as a re-
sult of a wider data path. In current designs, the peak bandwidth is only achieved
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when vector operations access consecutive memory locations. The higher band-
width and lack of cache memory are complementary tradeoffs, in that multiple
loads of the same data from main memory can be tolerated because of the high
bandwidth available. Algorithms that must operate on large amounts of memory
are good candidates for the GPU.

Graphics applications demand high memory bandwidth because of the numer-
ous large images used to texture 3D objects, the large numbers of triangles used
to represent the shapes of the objects, the several stages in the rendering process
and the dozens of frames that must be rendered per second in games, their major
market. Since high memory bandwidth is vital to graphics, future generations of
GPUs are likely to retain this advantage over CPUs. However, the reliance on
a programmer-controlled shared memory in favor of an automatically managed
cache may not persist. The designers of Intel’s Larrabee, for example, chose the
latter.

Summary

We have described some of the major architectural features of GPUs that deter-
mine which algorithms they run most efficiently. These are the SIMD operations
with a related threading model, the high bandwidth and high latency of memory
operations, limited communications abilities between multiprocessors, and small,
manually allocated cache memory. We believe that with the possible exception of
the latter, these architectural features are likely to persist through future genera-
tions of GPUs and that therefore they should be considered when designing and
assessing algorithms that are likely to retain their value.
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