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Abstract

Recent advances in sensor technologies and the growing interest in context-
aware applications, such as targeted advertising and location-based services, have
led to a demand for understanding human behavior patterns from sensor data.
People engage in routine behaviors. Automatic routine discovery goes beyond
low-level activity recognition such as sitting or standing and analyzes human
behaviors at a higher level (e.g., commuting to work). The goal of the research
presented in this thesis is to automatically discover high-level semantic human

routines from low-level sensor streams.

One recent line of research is to mine human routines from sensor data using
parametric topic models. The main shortcoming of parametric models is that
they assume a fixed, pre-specified parameter regardless of the data. Choosing
an appropriate parameter usually requires an inefficient trial-and-error model
selection process. Furthermore, it is even more difficult to find optimal parameter
values in advance for personalized applications.

The research presented in this thesis offers a novel nonparametric framework
for human routine discovery that can infer high-level routines without knowing
the number of latent low-level activities beforehand. More specifically, the frame-
work automatically finds the size of the low-level feature vocabulary from sensor
feature vectors at the vocabulary extraction phase. At the routine discovery
phase, the framework further automatically selects the appropriate number of
latent low-level activities and discovers latent routines. Moreover, we propose
a new generative graphical model to incorporate multimodal sensor streams for

the human activity discovery task.

The hypothesis and approaches presented in this thesis are evaluated on public



datasets in two routine domains: two daily-activity datasets and a transportation
mode dataset. Experimental results show that our nonparametric framework can
automatically learn the appropriate model parameters from multimodal sensor
data without any form of manual model selection procedure and can outperform

traditional parametric approaches for human routine discovery tasks.
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Chapter 1

Introduction

Recent advances in mobile phone technologies and the significant growth of sensor deploy-
ments make continuous and large-scale sensory data more accessible [64]. For example, in
our daily lives, we make phone calls, go for a run, or pay a parking ticket. In such a dig-
ital and networked world, these tiny transactional events leave a digital breadcrumb trail
captured by sensors in mobile phones, wearable devices, or security cameras [63]. With the
massive amount of raw sensor data, we have the opportunity to learn the basic activity
units that compose our daily routines and mine the regularities of these routines. The more
precisely we can model or reason about our daily routines from raw sensor data, the more
proactive context-aware or user-centric mobile applications can be provided. In order to add
value to these digital crumbs collected from individuals, we need to understand them. As
a result, discovering representations from rich sets of sensory data and capturing high-level

abstractions of human behavior patterns play a crucial role beyond data collection.



1.1 Motivation

The idea of recognizing basic human activities or uncovering regular patterns in a human’s
behaviors from observed sensor data has been explored in several prior works [17, 21]. Many
techniques have been proposed to perform low-level activity recognition such as walking,
sitting, or opening a door [1, 7, 49, 83]. While low-level activity recognition provides us with
building blocks to understand human behaviors, they are not enough to convey higher-level
semantic meaning. For example, people usually describe what they did during the day using
high-level routines (e.g., “commuting to work” or “having lunch”) rather than a sequence of

¢

low-level activities such as “walk-walk-stand-sit-sit-run-walk-stand”.

Discovering high-level semantic meanings of human activities not only helps understand
how people behave and communicate in our daily lives, but also provides the core component
for potential context-aware applications, such as detecting changes in activities for elderly
care, targeted advertising, and location-based services [32, 57]. For example, human location
patterns can be learned from GPS data. These human location patterns can further be used

for anomalous activity detection in the remote elder-care monitoring systems [10].

In this thesis, we focus on recognizing high-level human behaviors using statistical learn-
ing techniques. We refer to the term “human behavior” as a relatively short, measurable
pattern of activity instead of the definition in psychology related to a person’s intention or
ability. More specifically, human routine discovery is about extracting temporal regularities
in people’s daily lives [22]. A routine can be seen as a composition of multiple low-level
activities. Multiple low-level activities can occur within the same routine. Different rou-
tines may contain the same kinds of low-level activities, but with different proportions. For
example, the “Grocery Shopping” routine may involve more “standing” and “walking” ac-
tivities compared to the “0ffice Work” routine, in which “sitting” is the major part. The

composition of multiple low-level activities in a routine is similiar to a document can contain



’ Text \ Sensor data ‘

topic proportions low-level activity proportions
topics low-level activities
documents sensor data segments (temporal windows)
bag-of-words bag-of-features
vocabulary a set of discrete labels of data features
text words discretized data features

Table 1.1: List of the analogy of terms between text and sensor data.

multiple topics. Based on the common properties of text mining and human activity model-
ing, we can make an analogy between text and sensor data in the topic modeling paradigm.
Table 6.1 lists the analogy of terms between sensor data and text used in this thesis.
Figure 1.1 shows the analogy of sensor data and text modeling using topic models. In
the context of mining a sequence of sensor data, sensor data features are first mapped into
a set of discrete labels (vocabulary). Each mapped data feature becomes a word. Then,
the bag-of-features in each temporal window is used to train the topic model. Sensor data
segments belong to the same routine if they have similar topic proportions. Most existing
approaches for automatic high-level activity discovery are built on the bag-of-words concept
using parametric topic models, such as latent Dirichlet allocation (LDA) [22, 35]. The bag

of features in each temporal window (document) is used to train the topic model.

1.2 Challenges

There are at least two issues that have not solved in previous parametric topic model-based
approaches: First, in the parameteric setting, the aforementioned topic proportion learning
procedure requires two types of parameters to be predefined: the size of the vocabulary
and the number of latent topics. Typically, they are chosen in a trial-and-error fashion. Fig-
ure 1.2 shows the overview of the comparison between the parametric and the nonparametric

topic model framework for human routine discovery. For parametric methods, the size of
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Abstract—People engage in routine behaviors. Automatic rou-
ine discovery goes beyond low-level activity recognition such as
itting or standing and analyzes human behaviors at a higher
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parameter regardless of the data. Choosing an appropriate
parameter usually requires an inefficient trial-and-error model

Figure 1.1: Comparison between topic model-based approach to human routine discovery
and text modeling.



vocabulary and the number of topics must be specified in advance. Since the appropriate
parameters are difficult to specify initially, searching through the parameter space to achieve
the best performance is necessary. Our proposed framework uses nonparametric methods to

automatically select the proper size of vocabulary and the number of topics from the data.

For routine discovery, such parameter specification poses several challenges. The best
parameter values for personalized models may be different for different users. For example,
due to the fact that different people usually have very distinct behavior patterns based on
their lifestyles, gender, marital status, job types, or ages, their routine patterns may require
a significantly different number of latent topics to model appropriately. Moreover, even for a
single user, it is possible that his/her behavior patterns change over time. The best parameter
values must also be adjusted accordingly. Hence, we need the model to automatically select

parameter values based on individual users’ behavior patterns.

Second, these previous topic model-based approaches incorporate only a single sensor
modality (e.g., accelerometer or GPS) or use simple concatenation from different modali-
ties [22]. They do not take into account informative relationships among different modalities
of sensor data. For example, accelerometer data can help recognize different activities at a
single location shown by closely related GPS readings. Conversely, GPS readings can tell if
you are driving or sitting in front of the computer that a motion sensor alone cannot distin-
guish because sitting occurs most of time in two different activities. Given the limitations
of the existing approaches, this thesis aims to solve two research problems:

Problem 1: How to discover human behavior patterns and automatically learn model
parameters from data?

Problem 2: Given a sequence of multimodal data, how to model the complex relation-
ships among different modalities of data with nonparametric settings for human behavior
discovery?

In this thesis, we propose a novel human routine discovery framework using nonparametric
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Figure 1.2: Comparison of parametric (e.g., K-means or latent Dirichlet allocation [LDA])

and nonparametric methods (e.g., Dirichlet process Gaussian mixture model [DPGMM] and
hierarchical Dirichlet process [HDP]) for routine discovery.
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Figure 1.3: Overview of our two-phase nonparametric routine discovery framework.

Bayesian methods. The goal is to address two aforementioned research questions.

Our framework consists of two major phases: vocabulary extraction and routine extrac-
tion shown in Figure 1.3. During the first phase, we build up the feature vocabulary and
automatically determine the size of vocabulary (low-level feature representation) from raw
sensor data to create a vocabulary and provide the bag-of-features representation for each
temporal window. In the second phase, we infer low-level activity proportions for each sen-
sor data segment with the automatically determined number of latent low-level activities
and extract latent routines. Moreover, in order to take advantage of the informative multi-
modal data, we propose a graphical model to capture the relationships among multimodal
data sources for high-level routine discovery. The details of the proposed framework will be

presented in Chapter 4 and Chapter 5.

1.3 Contributions

This thesis makes contributions to human behavior discovery in the field of mobile computing
and to Bayesian nonparametric topic modeling in the field of statistical machine learning.

The main contributions of this thesis are summarized as follows:



e The design and implementation of a nonparametric framework for high-level human

behavior discovery without the need of a trial-and-error model selection process.

¢ The novel representation and automatic generation of sensor data vocabulary for topic

modeling using nonparametric clustering methods.

e The design and implementation of a probabilistic graphical model that models the re-

lationships among a sequence of multimodal sensor data for human behavior discovery.

e The evaluation of the proposed framework on three real-world public datasets in human

activity and transportation mode domains.

1.4 Thesis Organization

This thesis is organized as follows:

Chapter 2 - Related Work provides the overview of related work in the areas of
human activity recognition and discovery and topic modeling for text mining. The main
design considerations such as activity granularity, sensing modality, and learning paradigm
in the previous work of human behavior modeling are reviewed.

Chapter 3 - Background of Nonparametric Bayesian Modeling introduces the
probabilistic graphical representation of topic models. The background of the Dirichlet
process, one of the most widely used nonparametric Bayesian distributions, and its realization
algorithms are discussed. The details of basic probabilistic topic models such as latent
Dirichlet allocation (LDA) and hierarchical Dirichlet process (HDP) are also introduced.

Chapter 4 - Nonparametric Discovery of Human Behavior presents a novel non-
parametric framework for human behavior discovery from sensor data. We describe two
major phases in the framework for automatic low-level data feature vocabulary creation and
high-level routine discovery. Moreover, experimental ressults on two real-world datasets of

daily life activity and transportation mode domains are also described.



Chapter 5 - Towards Multimodal Discovery of Human Behavior presents the
design, implementation, and evaluation of a probabilistic graphical model (i.e., multimodal
hierarchical Dirichlet process [MHDP]) for modeling the complex relationships among mul-
tiple modalities of sensor data for human behavior discovery.

Chapter 6 - Conclusion and Future Work summarizes the contributions and limita-
tions of work in this thesis. Based on this research, future research directions and challenges

on human routine discovery from sensor data are described.
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Chapter 2

Related Work

The research reported in this thesis draws heavily on the intersection of two existing research
areas. One is human activity discovery in the field of context-aware computing. The other
is topic modeling in the field of text mining. In this chapter, we will review the most
relevant previous work in these two research areas. More specifically, we will first introduce
three common modules used in human activity recognition and discovery frameworks: 1) the
sensing module, 2) the feature extraction module, and 3) the statistical inference module.
Then, we will discuss three design choices commonly considered in activity discovery research:
1) activity granularity, 2) sensing modality, and 3) learning paradigm. Following that, we will
review the concept of topic modeling and how it was previously applied in activity discovery

research. Lastly, we will discuss limitations of existing approaches.

Input — LOW-L&V(ZI ?ensing Featu':;la Iéxtlraction Statistli\;aldlr]ference — Output
Human odule odule odule Activity
Activity Label

Figure 2.1: An overview of basic components for human activity recognition.
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2.1 Activity Recognition and Discovery

The goal of activity recognition and discovery is to recognize human activity patterns in
daily life settings [39]. Figure 2.1 shows an overview of a general human activity recognition
framework. The framework consists of three major modules: the low-level sensing module,
the feature extraction module, and the statistical inference module.

The sensing module measures signals that are associated with human activities. For
example, different activities result in different acceleration signals. Running causes repetitive
changes in acceleration values while sitting causes fixed acceleration values. Therefore, one
common approach is to attach accelerometers on the human body and record the acceleration
signals in x, y, and z axes.

Next, the feature extraction module converts raw sensor data to a set of features, repre-
sented as feature vectors. For example, we can calculate the mean and variance of accelera-
tion signals every second along each axis as features. Then, we can concatenate the features
within the same time window into a multidimensional feature vector.

Finally, the statistical inference module learns a mapping from feature vectors to an
activity label. There are two types of learning tasks. For an activity recognition task, we
have a predefined set of activity classes to map to. On the other hand, for an activity
discovery task, we do not have a predefined set of activity classs. Instead, an inference

module discovers patterns in observed feature vectors and segment them into clusters.

2.2 Design Choices in Activity Recognition and Dis-
covery

Figure 2.2 shows a conceptual three dimensional design space for activity recognition re-

search. Each dimension corresponds to a design choice. First, what is the granularity of

12
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Supervised Unsupervised Semi-supervised
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Figure 2.2: A conceptual three dimensional design space (i.e., activity granularity, sensing
modality, and learning paradigm) for the activity recognition research.

activities we would like to recognize? Second, what signals are we capturing? Third, what
learning paradigm to use for inference? In this section, we review each of the design choices

explored in existing activity recognition and discovery research.

2.2.1 Activity Granularity

In the field of human activity recognition and discovery, the definition of “human activity”
varies in the literature. In this thesis, we adopt the definition of physical activities proposed
by Huynh [34], where physical activities are grouped in three different granularities: (1) low-
level movements, (2) low-level activities, and (3) high-level routines. Next, we will describe
how physical activities are categorized into these granularity levels based on the observed

duration and complexity.

Low-Level Movement

Low-level movements usually happen on a timescale of seconds or less. Examples of low-level

movements include raising the forearm and climbing a step. This kind of low-level movement

13



recognition is used in the applications of fall detection in elder care [46] and hand gesture

recognition in human computing interaction [47].

Low-Level Activity

For a sequence of low-level movements on a timescale of minutes, we consider it to be a low-
level activity. For example, walking consists of a regular sequence of low-level movements
that are stance and swing movements. Many techniques have been proposed to perform
low-level activity recognition such as walking, sitting, or opening a door. This is performed
using various kinds of sensor data such as motion data [1], GPS/Bluetooth/WiF1i signals [83],

ambient sound [49], and RFID-tagged objects [7].

High-Level Routine

Beyond low-level activity recognition, we consider a collection of low-level activities as a high-
level routine. High-level routines typically last longer, with durations from several minutes
to a few hours. Extracting routines (e.g., dining, office work, or taking a bus) has received
attention because routine information provides high-level semantics for understanding human
behaviors. Eagle et al. [21] use principal component analysis (PCA), a general-purpose
dimensionality reduction method, to obtain main components that comprise human daily

routines.

2.2.2 Sensing Modality

Many sensing techniques have been proposed to recognize different types of activities. Re-
searchers have extensively explored two major types of approaches: One is to use on-body
wearable sensors, and another is to use ambient sensors installed in the environment for
activity recognition [43]. For the on-body sensing approach, the wearable sensors are usually

positioned on the human body to recognize activities of interest. Ambient sensors such as
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cameras or microphones are used to monitor and analyze the activities of users in a space

such as smart homes or offices.

Wearable Sensors

For basic body movement classification such as walking, running, standing, and climbing
stairs, simple tri-axial accelerometers have been used and placed on the body to capture
body motions and recognize activities of interest [53, 84]. With the advance of mobile phone
technology, more and more researchers have leveraged the sensing power of a smart phone’s
on-board sensors (e.g., accelerometer, compass, and gyroscope) and used the phone as a
wearable sensor to recognize gestures and motion patterns [26, 42]. As an increasing number
of sensor types are available, researchers have gathered and fused multimodal sensor data
streams for the activity recognition task. Choudhury et al. conducted pioneering work in ac-
tivity recognition using a wearable multi-sensor board called Sociometer [17]. The Sociometer
contains an accelerometer, a microphone, and IR sensor to capture human interaction ac-
tivities within a group of people. As many physiological sensors become miniaturized, they
also provide the opportunity for continuous physiological signal monitoring and recognition.
Sun et al. combined motion data and electrocardiogram (ECG) data from a wearable sensor
to develop a continuous stress monitoring system excluding the effects of physical activ-
ity [72]. Saponas et al. developed a muscle sensing technique to recognize gestures using an

electromyogram (EMG) sensor in a form of an armband [67].

Ambient Sensors

Ambient sensors include video cameras, microphones, and wireless signal transceivers (e.g.,
WiFi, infrared, and radio-frequency signals). They are usually pre-installed in the environ-
ment where participants’ activity patterns can be recorded and analyzed. There has been

extensive research on activity recognition using cameras once a conventional 2D camera be-
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came inexpensive, with the video sequence containing rich information. For example, video
collected from smart home residents can be analyzed to recognize activities [66, 77]. As depth
cameras have become widely available, researchers have been able to recognize more complex
activities using depth informantion [62]. The signature of wireless signals such as Bluetooth
and WiFi was also used for indoor activity pattern recognition [83]. For other activities that
are not be able to be classified with body movements alone, researchers have observed the
pattern of an individual’s interaction with objects in a space such as the kitchen and the
living room. For example, objects such as refrigerators, doors, and cookwares are tagged

with motion sensors or RFID tags and the objects’ usage patterns are recorded [18, 80].

2.2.3 Learning Paradigm

Learning paradigm is a critical step to model observed data and provide activity inference
results. In the field of activity recognition and discovery, researchers have developed and
applied several machine learning paradigms such as supervised learning, semi-supervised
learning, unsupervised learning, or zero-shot learning to recognize human activities given
different problem settings and various types of sensor data. Cheng presented a table of
learning paradigms in related work of human activity recognition [13], which serves as a
complete summary and comparison of this area of research. In the following subsections, we
will briefly introduce several different problem settings and how different statistical learning
methods aim to recognize human activities. At the same time, we will review related work

of different learning paradigms in the field of activity recognition and discovery.

Supervised Learning

In the supervised learning setting, the learning task is to infer a mapping function from la-
beled training data to predict the labels of unseen testing data. Supervised learning has been

extensively used in human activity recognition research [1, 70]. More specifically, discrimi-
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native classifiers (e.g. Support Vector Machine) and generative models (e.g. Hidden Markov
Model) are trained on a large set of labeled samples of every target activity [50, 54, 80].
However, one well-known drawback of supervised learning in human activity recognition is
that the collection of labeled samples is usually time consuming and requires lots of effort

in human annotation for ground truth labels [70, 71].

Semi-Supervised Learning

The design of semi-supervised learning is to eliminate the aforementioned limitation that oc-
curs during labeled data collection in supervised learning approach. Semi-supervised learning
makes use of the large amount of unlabeled data with the limited amount of labeled data in
the training stage. More specifically, semi-supervised learning improves recognition perfor-
mance by assigning high-confidence predicted labels to unlabeled samples. Previous work has
shown the promise of applying semi-supervised learning to the human activity recognition

task [48, 51, 58, 71].

Zero-shot Learning

Zero-shot learning aims to learn a classifier that can predict new classes that do not appear
in the training data [28, 37]. This situation occurs when we predict a new activity class with
a classifier trained on data of an exclusive set of activity classes. In order to predict new
activity classes, a semantic attribute representation is introduced to describe basic elements
characterizing an activity class. Recently, zero-shot learning was successfully introduced and

used in human activity recognition to model unseen new activity classes [14, 15].

Unsupervised Learning

Unsupervised learning focuses on performing pattern discovery and clustering based on the

similarity of observed samples without providing any ground truth labels [35, 56]. Sometimes,
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the ground truth labels are not available or the ground truth classes are hard to defined,
but we are still interested in discovering similar activity samples. In contrast to activity
recognition which identifies the activity class given a new observed sample, activity discovery
finds similiar activity segments in terms of raw sensor data signatures in an unsupervised
learning fashion. Based on the similarity of sensor data samples, an automatic activity
discovery system can detect the boundary of sensor data sequences, segment sensor data

samples, and cluster similiar samples together [16, 35].

2.3 Topic Modeling for Text Mining

Topic modeling is a method to model, analyze, and manage a large amount of unlabeled
data. A topic model is a generative model describing the relationship between a group
of observed and latent random variables. Moreover, it specifies a probabilistic procedure to
generate topics [65]. Topic models were initially developed to model a collection of documents
using a mixture of a number of topics where a topic is a multinomial distribution over the
vocabulary [5]. In a topic model for text mining, a document is a mixture of a number of

hidden topics which can be represented by a multinomial topic proportion [5].

2.4 Topic Modeling for Routine Discovery

The same idea of topic modeling can be applied to mine high-level human routine from sensor
data. We can make an analogy between text and sensor data. In the context of mining a
sequence of sensor data, sensor data features are first mapped into a set of discrete labels
(vocabulary). Each mapped data feature is equivalent to a text word. Then, the bag-of-
features in each temporal window (document) is used to train the topic model. Sensor data

segments belong to the same routine if they have similar topic proportions. More specically,
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routine discovery is about extracting temporal regularities in peoples’ daily lives [22]. A
routine can be seen as a composition of multiple low-level activities. Multiple low-level
activities can occur within the same routine. Different routines may contain the same kinds
of low-level activities, but with different proportions. For example, the “Grocery Shopping”
routine may invovle more “standing” and “walking” activities as compared to the “0ffice

Work” routine.

Most existing approaches for automatic routine discovery are built on parametric topic
models such as latent Dirichlet allocation (LDA) [22, 35]. In the parametric setting, the
above procedure requires two types of parameters to be predefined: the size of vocabulary and
the number of latent topics. Typically, they are chosen in a trial-and-error fashion [35][22].
However, for routine discovery, such parameter specification poses several challenges. First of
all, the best parameter values for personalized models may be different for different users. For
example, due to the fact that different people usually have very distinct behavior patterns
based on their lifestyles, job types, or ages, their routine patterns may require different
number of latent topics to model appropriately. Moreover, even for a single user, it is
possible that her behavior patterns change over time. The best parameter values must also
be adjusted accordingly. Hence, we need the model to automatically select parameter values

based on individual users’ behavior patterns.

Recently, the concept of nonparametric methods has shown promise in the field of mobile
computing. For example, Hu et al. [33] solve low-level abnormal activity recognition problem
by using hierarchical Dirichlet process hidden Markov model (HDP-HMM) to automatically
decide the right number of states for HMM. Similarly, Zhu et al. [87] segment a small
number of activities using HDP-HMM. Nguyeh et al. [61] apply HDP model to extract

users’ proximity patterns from sociometric badge data.
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2.5 Conclusion

In this chapter, we reviewed the related work of activity recognition and discovery. We first
introduced the common modules in human activity recognition and discovery frameworks.
More, we reviewed three design choices commonly considered in activity discovery research:
1) activity granularity, 2) sensing modality, and 3) learning paradigm. Finally, we described
how parametric topic models are used for human routine discovery in previous work and
discuss the limitations of existing approaches.

In this thesis, we extend previous work by proposing a new nonparametric framework for
human routine discovery that can construct low-level activity primitives and extract high-
level routines from raw sensor data without the need of model selection procedures based on

the topic modeling approach.
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Chapter 3

Background of Nonparametric

Bayesian Modeling

In the previous chapter, we reviewed the related work of activity recognition research and
discussed the design choices commonly considered in the development of activity recognition
and discovery frameworks. In this chapter, we will review the background of nonparametric
Bayesian modeling by introducing the concept of Dirichlet distribution, Dirichlet process
(DP), and Dirichlet process mixture model (DPMM). Then, we will cover parametric and
nonparametric topic models such as the latent Dirichlet allocation (LDA) and hierarchical

Dirichlet process (HDP) used in our human routine discovery framework.

3.1 Nonparametric Bayesian Modeling

Researchers regularly have the situation that they need to decide appropriate model param-
eters while exploring and modeling their data [25]. For example, the number of clusters
should be chosen in the mixture model or the number of factors should be prespecified in

the factor analysis. Traditionally, researchers tackle this problem by a trial-and-error model
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selection procedure. They first fit several candidate models and then select the most ap-
propriate one based on model evaluation metrics [81]. In constrast to the traditional model
selection procedure, nonparametric Bayesian methods provide a different approach to this
problem [30]. Nonparametric Bayesian methods allow the model complexity to change as

more data become available and automatically select parameters to fit a single model.

In the following subsections, we will first describe statistical foundations in order to
better understand and develop nonparametric Bayesian models. Then, we will detail an
application of nonparametric methods that is built on a mixture model by beginning with
a finite mixture model and extending to its infinite version such as the Dirichlet process

mixture model.

3.1.1 Dirichlet Distribution

A Dirichlet distribution is a distribution over multinomial distributions. It is parameter-
ized by a vector of {a,...,an}. A random vector (mi,...7m,) (34, m = 1) is Dirichlet

distributed if

I'(Seon) 1T _(ar-1)

P(my,...mp) = =————= | | 7 " (3.1)

(a0 LL7

where aq,...,a, > 0. The support of an m-dimensional Dirichlet distribution is the
(m — 1)-dimensional probability simplex.

The random vector (my,...m,,) ~ Dirichlet(aq, ..., a,,) defines the possible parameters

for a multinomial distribution on the discrete space © = 6y, ..., 0, such that P(0 = 6;) = ;.

From Eq (3.1), we see that, if (ai,...,a,) = (1,...,1), the distribution of (mq,...7y) is

uniform.
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3.1.2 Dirichlet Process

The Dirichlet process was first developed by Ferguson [23]. The Dirichlet process is an
infinite-dimensional generalization of the Dirichlet distribution. Like the Dirichlet distribu-
tion, the Dirichlet process is also a distribution over distributions. A Dirichlet process can be
denoted as G ~ DP(a, Gg), where a > 0 is the concentration parameter, Gy is the base dis-
tribution, and G is a random distribution drawn from a Dirichlet process. Mathematically,

G can be written as:

G=> md(0=0) (3.2)
k=1

In the equation 3.2, G is the random distribution drawn from the Dirichlet process and it
places its probability mass on a countably infinite collection of points called “atoms” [23].
Ty is the probability assigned to the kth atom and §(f = 6y) is a Dirac delta function at 6y
which is the location of the atom.

Given a finite set of partitions of ©, #; U... U0k = O, if a random distribution measure
G ~ DP(a, Gy), then each partition of © is Dirichlet distributed. Mathematically, it can be

written as

(G(0)), ... G(0x)) ~ Dirichlet(aGo(6)), ..., aGo(0x)) (3.3)

The two parameters of the Dirichlet process have the following interpretations [25, 85]:

e The base distribution Gy is like the mean of the Dirichlet process, where E[G(0)] =
Go(0). If we draw a random distribution G from a Dirichlet process and sum up the
probability mass in the partition § € ©, the average mass in that partition will be
Go(0).

e The concentration parameter « is like the inverse-variance of the Dirichlet process,

where Var[G(0)] = €eDU=60)  Fqp 4 higher value of o, the probability mass G(#) is
a+1

more centered around Go(6).
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Figure 3.1: An illustration for generating 7 by breaking a stick of length 1 into segments.

There are several representations to describe and simulate a Dirichlet process. In the fol-
lowing subsections, we will introduce three representations of the Dirichlet process such as
the stick-breaking construction, the Pélya urn scheme, and the Chinese restaurant process

(CRP) [76].

Stick-Breaking Construction

Recall that a random distribution drawn from a Dirichlet process can be written as G(6) =
Y re m0(0 = 0x). The infinite sequence of mixture weights 7, can be constructed by the
stick-breaking construction [69]. With the stick-breaking construction, a stick of the unit
length is divided into an infinite number of segments, with the kth segment’s length being
7. Figure 3.1 illustrates the process of generating 7 via the stick-breaking construction.

More specifically, the construction process follows the steps:
e Consider a stick of unit length. Break the first segment out of the stick according to
the proportion /31, where 5; ~ Beta(1, «), and set m = .

e For the remaining stick, we keep breaking off segments according to the proportion

B ~ Beta(1, a), and set 7, = Sy.
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The process of of generating m can be written as follows:

By ~ Beta(l, a)

7T1:51

k—1
me =B [ J(1 = B) for k=2,3,.... (3.4)
=1

Pélya Urn Scheme

The Pélya urn scheme is yet another way to produce a sequence of independent and iden-
tically distributed (i.i.d.) random variables ¢y, - - - , ¢, distributed according to G, where G
is a random distribution drawn from a Dirichlet process [45]. It is equivalent to inferring
the posterior predictive distribution of a Dirichlet process. Using the analogy of drawing
colored balls from an urn, we can consider a Pdlya urn sampling scheme with the following

properties:

e Start with an urn with a black ball.

Balls are drawn with probability proportional to their mass.

The sole black ball has mass «.

When the black ball is drawn, put it back and add a ball of a new color according to

the base distribution Gj.

When balls are drawn from the urn (not black), add a ball with the same color.

Mathematically, the procedure to generate the sequence of the i.i.d. random variables

{¢;}2°, as follows:

¢1NGO

aGy i E;‘L;115<¢n B ¢J)

Ponldrn-1) ~ a+n—1 a+n—1
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Chinese Restaurant Process

The Dirichlet process can also be constructed by the Chinese Restaurant Process (CRP) [75].
In a CRP metaphor, the Dirichlet process can be described in the following way:

e A restaurant has an unlimited number of tables 6, k =1, ...0c0.
e The first customer comes in and sits at the first empty table.
e Given K tables that are occupied before the i-th customer comes in, the customer can

either sit at table k (k < K)) with probability oc —*— or at a new table K + 1 with

probability o¢ —=5—, where ny, is the number of customers already sitting at table k.
For a set of random variables ¢1,--- ¢, (the table assignment for each customer), the
distribution of the random variable ¢; conditioned on the previous random variables can can

be written as

—nk 0o, —O.[ 0g-
a+i1—1 a+1—1

[~

P(¢i|p1, ..., pi—1, o, Go) ~

e
Il
—

where k represents a new table K + 1.

3.1.3 Dirichlet Process Mixture Model

So far, we have reviewed the statistical foundations of Dirichlet process and its various
representations. Let us now introduce the main application of the Dirichlet process in the
context of data clustering using mixture models. In particular, we will provide an overview
of the Dirichlet process mixture model (DPMM), a mixture model whose parameters of
mixture components have Dirichlet process distributed random measure as a prior.

DPMM generalizes traditional finite mixture models by allowing the number of mixture
components to be infinite. Let’s start by considering the finite case. In traditional finite
mixture models, it is assumed that the number of mixture components is given. For example,

let x1,...,z5 be N observation data points, and they are exchangeable. It means that any
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order of data points to be observed is equally likely. In a mixture model, a data point
z; is assumed to be drawn from the distribution p(z) = & 7 f(z|0;) where K is the
number of mixture components, 7 is the mixture weight of component k, and f(x|0y) is the
mixture component parameterized by 6. For example, one common choice is a Gaussian
distribution of the mixture components, which is parameterized by mean and variance. The

mixture weights sum to one.

In the mixture model problem, given the observation data points, it is convenient to
introduce a latent discrete random variable, ¢;, associated with each data point. It is often
referred to as the indicator variable, whose domain is {1,..., K'}. It specifies which compo-
nent the corresponding data point belongs to. Therefore, the generative process of the finite

mixture model can alternatively be described by:

ple; = k) = g

z; ~ f(2]Ok=c,)- (3.7)

This describes how each data point z; has been generated by first sampling the component

indicator ¢;, and then sampling from the distribution of that mixture component.

Since the mixture weight @ = {my, ..., 7} is a multinomial distribution, it is convenient
to use the Dirichlet distribution as the prior. We can thus use the Dirichlet distribution to

construct the finite mixture model by the following steps:
., ~ G for ¢; ={1,...,K}
(71, ...,7k) ~ Dirichlet(a/K, ... a/K)
¢; ~ Multinomial(my, ... 7k)
x; ~ f(z|0,). (3.8)
where G is the base distribution encoding the prior beliefs about the parameters of the
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Figure 3.2: Graphical model of the Dirichlet process mixture model.

mixture components.

Next, consider the limiting case where k£ — oo, so that the mixture model becomes

p(a) = S mf (al6h). (3.9)

The model described in Eq (3.8) then becomes

G ~ DP(a, Go)

x; ~ f(x]6;). (3.10)

Here, the Dirichlet distribution becomes the Dirichlet process. Therefore, the infinite mixture

model is also called the Dirichlet process mixture model. In DPMM, each component is still

described by some set of parameters. These parameters come from the Dirichlet process.
Figure 3.2 illustrates the graphical model of DPMM. First, the prior distribution function

G is drawn from a Dirichlet process G ~ DP(«, Gy) where « is the concentration parameter
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and (5 is the base prior. Second, given GG, we sample 6;, the parameters for the component

that x; belongs to. Finally, given the parameters 6;, we generate each data point x;.

Learning via Gibbs Sampling

To perform the parameter estimation of DPMM, we can use the Gibbs sampling algo-
rithm [60] based on the Chinese restaurant process. It starts by randomly initializing ¢;’s

for all x;’s and then iterates the following steps:

1. Pick a data point z;.

2. Sample its corresponding indicator variable ¢; conditioned on fixing all other indicator

variables {c_;} using the Chinese restaurant process [4]:

T

Ple; =k, k < Klcj,a) = mf@ﬂ@k)
o
P(Ci =K + ].|C_Z',Oé) = mf[(_‘_l(xl) (311)

where NN is the total number of data points, n; is the number of data points being
assigned to component k, and fx1(x;) = [ f(2:]0)Go(6)df. Note that with probability

m, x; is assigned to a new component K + 1.

3. If we get a new component, we can draw its corresponding parameter values 01 by

P(Ori1|zi) oc f(2:]0k11)Go(Ok41)- (3.12)

3.2 Probabilistic Topic Models

Topic modeling is a method to model, analyze, and manage a large amount of unlabeled
data. A topic model is a generative model describing the relationship between a group
of observed and latent random variables. Moreover, it specifies a probabilistic procedure to

generate topics [65]. Topic models were initially developed to model a collection of documents
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Figure 3.3: Graphical models of the latent Dirichlet allocation.

using a mixture of a number of topics where a topic is a multinomial distribution over the
vocabulary [5]. Topic models also have been widely and successfully used for many different
types of sensor data rather than text [22, 73].

Given the aforementioned details of the Dirichlet distribution and Dirichlet process, we
are able to now introduce two specific topic models that are the latent Dirichlet allocation
(LDA) and the hierarchical Dirichlet process (HDP). LDA is considered as a parametric
topic model since the assumption about LDA is that the number of topics is assumed known
and fixed [3]. However, HDP relaxes the assumption that the number of topics is known and

automatically selects the appropriate number of topics based on nonparametric Bayesian

methods [76].

3.2.1 Latent Dirichlet Allocation

The intuition of topic modeling is that documents exhibit multiple topics because words
in a single document can be related to different topics [3]. For example, an article pub-

lished at a computational biology conference might consists of words such as “accuracy” or
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“prediction” related to topic data analysis and words such as “cell” or “gene” related to
topic biology. And LDA is one type of statistical mixture model to capture this intuition.

LDA is a generative model that specifies how documents in a large set of texts (text
corpus) are generated. In the context of text modeling, we first define a document as a
collection of words, usually represented as a bag-of-words (BoW) representation. A topic is
a multinomial distribution over a wvocabulary of the fixed size |V|. We assume we have K
latent topics.

Informally, we can describe the generative process of LDA for each document as follows:

1. Randomly choose a distribution over topics (a multinomial distribution of size K)

2. For each word x4 in the document
2.a Given the chosen multinomial distribution in step 1, randomly choose a topic k
from the distribution.
2.b Given the chosen topic in step 2.a, randomly choose a word x4 from the corre-
sponding distribution over the vocabulary (a multinomial distribution of size |V]).
Figure 3.3 shows the graphical model of LDA, where « is the parameter of the Dirich-
let prior on per-document topic distributions, [ is the parameter of the Dirichlet prior on
per-topic word distributions, 6, is the topic distribution for document d, ¢, is the word
distribution for topic k, zg4; is the topic assignment for the ith word in document d, and x4
is the ith observed word in document d. The Ny plate represents the collection of words in
documents. Similiarly, the D plate represents the collection of documents and the K plate
denotes K latent topics ( the multinomial distribution over the vocabulary). The shaded
node is the observed words of the documents. The unshaded nodes are latent variables
represented in the word generation process.
With the graphical model representation, we can describe the generative process of LDA
in details. Two major steps to generate words in each document can be described as follows:

1. Draw a topic distribution 64 ~ Dirichlet(«), where Dirichlet(a) is a draw from a
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uniform Dirichlet distribution with the scaling parameter .

2. For each word z4 in the document d
2.a Draw a topic assignment z4 ~ Multinomial(6y).

2.b Given the chosen topic assignment z,4; in step 2.a, draw a word z4; ~ Multinomial(¢y—.,, ).

3.2.2 Hierarchical Dirichlet Process

In the previous subsection, we discussed the generative process of the topic model that is
achieved by first selecting a topic from the topic distribution. Then, choose a word from
the word distribution defined by the topic. In LDA, the topic distributions and the word
distributions both have the Dirichlet prior. In particular, each document has its own topic

distribution over a finite and fixed number of topics.

In hierarchical Dirichlet process (HDP), we relax the assumption that the number of
topics is known. Thus, HDP can also be thought of as a nonparametric generalization of
the LDA. Figure 3.4 illustrates the graphical model of HDP, which consists of two levels of

Dirichlet processes.

Assume that each document is indexed by d = 1,..., D and that x4 denotes the ith

word in document d. This generative model of HDP can be described as:

GONDP(/%H)
Gqg~ DP(a,Gy) ,ford=1,...,D
ediNGd,fOIizl,...,Nd

zai ~ f(x]04). (3.13)

In the upper level, Gy is the distribution of an infinite mixture of topics for all documents.

It is drawn from a Dirichlet process with the base distribution H and the concentration
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Figure 3.4: Graphical models of the hierarchical Dirichlet process.

parameter 7. In the lower level, G4 defines the mixture of topics of document d. The words

are generated by repeatedly drawing from the corresponding topic distribution.

From the graphical model, we can see that the base distribution of G4 is Gy which is
also a random draw from another Dirichlet process. The reason that we need two levels of
Dirichlet processes is because we want G to be the common base distribution that is shared
across all G4. In this way, we achieve the goal that different documents share the same

mixture components but with different mixture weights.

Recall that in DPMM, the Dirichlet process allows us to avoid pre-specifying the number
of mixture components. In HDP, the number of topics activated in G also need not to be

specified.
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3.3 Conclusion

In this chapter, we review the background of nonparametric Bayesian modeling and topic
modeling. We first introduce the statistical foundations of nonparametric Bayesian methods
and their applications such as Dirichlet process and Dirichlet process mixture model. Then,
we discuss the concept of topic modeling and the generative process of topic modeling. At
the end, we review two important topic models such as LDA and HDP, that we use going
forward. Also, we demonstrate how nonparametric Bayesian methods can be applied in HDP
to relax the limitations of LDA.

In the next chapter, we will show how the core idea of a nonparametric Bayesian methods
can be applied to human routine discovery. This idea is based on the intuition that human
routines can be recognized in a fashion similar to how topics are uncovered from text corpus
using a bag-of-words approach [39]. Then, we will detail the experimental results evaluated

on two real-world datasets.

34



Chapter 4

Nonparametric Discovery of Human

Behavior

In the previous chapter, we reviewed the background of nonparametric Bayesian modeling
and two topic models such as the latent Dirichlet allocation (LDA) and the hierarchical
Dirichlet process (HDP). In this chapter, we will emphasize on the discussion of our non-
parametric human routine discovery framework. More specifically, we will talk about how
topic modeling can be applied to discover human routines. The basic idea is similiar to how

topics are uncovered from text corpus using a bag-of-words approach [39].

4.1 Human Routine Discovery

Human routine discovery is about extracting temporal regularities in people’s daily lives [22].
Daily routines typically have a hierarchical structure such that higher-level activities (longer
duration of time) can be decomposed into a set of lower-level activities (shorter duration
of time) [2]. More specifically, a routine can be seen as a composition of multiple low-level

activities. Multiple low-level activities can occur within the same routine. Different routines
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may share and contain the same kinds of low-level activities, but with different proportions.
For example, the “Grocery Shopping” routine may invovle more “standing” and “walking”

activities compared to the “0ffice Work” routine.

Based on the hierarchical structure of human activities, we can make an analogy between
text and sensor data modeling using topic models. In the context of mining a sequence
of sensor data, sensor data features are first mapped into a set of discrete labels (feature
vocabulary). Each mapped data feature is treated as if it were a text word. Then, the
bag-of-features in each temporal window, and is used to train the topic model. Sensor data
segments belong to the same routine if they have similar topic proportions. Figure 4.1

visualizes the analogy of sensor data and text modeling using topic models.

According to the intuitive analogy of sensor data to text while applying topic models,
most existing approaches for automatic routine discovery from sensor data are built on para-
metric topic models such as LDA [5]. In the parameteric setting, the generative procedure
requires two types of parameters to be predefined: the size of feature vocabulary and the
number of latent topics. Typically, they are chosen in a trial-and-error fashion [35][22].

However, for routine discovery, such parameter specification poses several challenges.
First of all, the best parameter values for personalized models may be different for different
users. For example, due to the fact that different people usually have very distinct behavior
patterns based on their lifestyles, job types, or ages, their routine patterns may require
different number of latent topics to model appropriately. Moreover, even for a single user,
it is possible that her behavior patterns change over time. The best parameter values must
also be adjusted accordingly. Hence, we need the model to automatically select parameter

values based on individual users’ behavior patterns.

The limitations of parametric settings motivate the development of the nonparametric
human routine discovery framework presented in this chapter. Figure 4.2 shows each compo-

nent of the routine discovery framework. The framework consists of two phases: vocabulary
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Figure 4.1: Comparison between topic model-based approach to human routine discovery
and text modeling.
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extraction and routine extraction. During the first phase (vocabulary extraction), we build
up the vocabulary and automatically determine the size of feature vocabulary (low-level
activity representation) from raw sensor data using the Dirichlet process Gaussian mix-
ture model (DPGMM). In the second phase (routine extraction), we infer topic proportions
(high-level routine representation) for each data segment with the automatically determined
number of latent low-level activities using hierarchical Dirichlet process (HDP) and extract

latent routines.

4.2 Dataset Description

To evaluate our nonparametric Bayesian framework for routine discovery, we experimented

with two public datasets including realistic daily life routines and transportation modes [35][86].

4.2.1 Daily Life Routine Dataset

The daily life routine dataset was released by Technische Universitat Darmstadt (TU Darm-
stadt)!. Tt contains 34 daily low-level activity classes (including the unlabeled class). In
addition to the low-level activity class annotations, this dataset also provides 4 high-level
routine class annotations (i.e., commuting, lunch, office work, and dinner). Figure 4.3 shows
the ground truth labels of low-level activity and high-level routines in one day of data. The
sensor data were collected from two wearable 3-axis accelerometers worn on the right hip
pocket and the dominant wrist. The accelerometer data were sampled at a rate of 100Hz,

and the features (i.e., mean and variance of acceleration of each axis) were computed over a

window of 0.4 seconds (i.e., 2.5Hz).

Thttp://www.ess.tu-darmstadt.de/datasets/tud-ubicomp08
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Figure 4.3: Hlustration of the ground truth labels of daily activity dataset.

40



4.2.2 Transportation Mode Dataset

The transportation mode dataset was collected by Microsoft Research Asia (MSRA)?2. This
dataset contains GPS trajectory data from 182 users over a period of five years. A GPS
trajectory is represented by a sequence of timestamped coordinates including longitude,
latitude, and altitude. The GPS data were sampled approximately every two seconds (i.e.,
0.5Hz). Each GPS trajectory was provided with a specific transportation mode annotation
such as bike, walk, bus, and subway. In this experiment, we extracted a week of GPS

trajectory data from one user for the routine discovery task.

4.3 Human Routine Discovery Framework

4.3.1 Feature Preprocessing

Our framework is agnostic to the type of input sensor data. Once the low-level features are

extracted from raw sensor data, we input them to the activity vocabulary extraction module.

For the daily life routine dataset, we use 12 features consisting of mean and standard
deviation of accelerometer data in dimension z, y, and z from wrist and pocket sensors.
These features have been proven effective in previous work [35]. Figure 4.4 shows an example
of feature distributions across four different daily routine classes. We see that the histograms

of the same feature type behave quite differently across different routine classes.

The features for the transportation mode dataset include welocity, heading direction
change rate, and stop rate derived from the GPS trajectory data. Previous work identified
that this set of GPS features are robust to traffic conditions [86]. Figure 4.5 illustrates the

distributions of one GPS feature (i.e., velocity) across four different transportation modes.

Zhttp:/ /research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/
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that feature density distributions of different routines can be modeled by Gaussian mixture
models with different numbers of components.

4.3.2 Vocabulary Extraction

Figure 4.4 and 4.5 show that feature density distributions of different routines look like

Gaussian distribution with multiple components. It suggests that feature distributions can
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be modeled by Gaussian mixture models with different numbers of components.

Hence, we describe how we use DPGMM to infer the set of discrete feature labels from
the feature vectors in the context of the daily life routine dataset. Recall that in the daily life
routine dataset, each data point is represented by a 12-dimensional feature vector (itz—pocket,
Tu—pockets - » Tz—wrist). Assume that there are N number of data points. One way to model
these N data points with DPGMM is to use 12-dimensional Gaussian distributions as the
component distributions. Each component is parameterized by a 12-dimensional mean vector
and a 12 x 12 covariance matrix. However, a large number of parameters in the covariance

matrix would create the problem of overfitting [41].

Therefore, we use the idea of dividing the feature space into lower-dimensional feature
subspaces, fitting a different DPGMM for each subspace, and then combining the results
together. More specifically, we organize the feature vectors into 6 subspaces by their sensor
types and axis types. For example, one subspace corresponds to data points collected by the

pocket sensor in the x-axis, (ftz—pockets Tz—pocket ) -

To simplify the notation, we use t;; to denote the ¢th data point in subspace j where
1=1,...Nand j=1,...,6. The use of DPGMM to fit the data in subspace j can then be

formulated as:

G, ~ DP(a, N(A\,v ™))
Gs ~ DP(a, Gamma(B,w™))
I'I'Ci]' ~ G/’«

S, ~Gg

C’L]

tij|ecij ~ N(/*l’ciju Scij)

(4.1)
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where ¢;; is an indicator variable specifying the cluster associated with ¢;;, and {p.,, S, } is
the set of parameters of the Gaussian component for cluster c;;. p.,; and S, are generated
by Dirichelet processes with base distributions Gaussian and Gammas, respectively. Four
hyperparameters A, v, B and w specify the base distributions, expressing the strength of
the prior belief in the distribution of the parameter space.

During inference, we run Gibbs sampling for 500 iterations with a burn-in period of
100 iterations to infer ¢;; for each t;; [60]. Finally, for each data point, we concatenate
the corresponding cluster assignments from the 6 subspaces to form a discrete feature label
w; = (¢, - -+, ¢ig). Note that we do not need to specify the number of unique artificial words
(vocabulary size) beforehand.

Similarly, for the transportation mode dataset, we applied DPGMM for each of the three
feature vectors (i.e., wvelocity, heading direction change rate, and stop rate) to construct

feature labels representing the data points.

4.3.3 Routine Extraction

Based on the artificial word representation for the sensor data, we now describe how to
construct bag-of-features and extract routines using HDP.

To construct bag-of-features from a stream of feature labels, we represent each temporal
window as a histogram of feature label occurrences in a sliding window with overlapping.
For the daily routine dataset, the sliding windows are set to 30 minute duration with 2.5
minute overlapping, similar to previous work by Huynh et al. [35]. For the transportation
mode dataset, the sliding window is 10 minutes duration with 1 minute overlap.

Using a Gibbs sampling scheme similar to the inference stage of DPGMM, we obtain the
mixture proportion of latent topics for each data segment.

Finally, we cluster low-level activity proportions using the affinity propagation (AP) algo-

rithm since it is also a nonparametric clustering algorithm and successfully applied in many
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applications [20, 24, 61]. Given the data points {z;,...,zx}, the AP clustering algorithm
takes the similarity of pairs of data points {sij}me{l’_“, ~y as input and forms cluster assign-
ments {c1,...,cn}, ¢; = argmax|a(i, k) + (i, k)] by finding data points that are examplars of
clusters. r(i, k) denotes an 7Jelement of the responsibility matrix R, and it quantifies how well
xy can be as the exemplar for x;. a(i, k) represents an element of the matrix A, and how
it is appropriate if z; picks x as its exemplar. Then, the AP algorithm updates matrices
R and A by executing two message passing steps iteratively: Mathematically, two update

steps can be defined as follows [19]:

Vike{l,..N}: r(i,k) =s(i, k) — rg}ii([s(i, k') + a(i, k)]

>z max(0, 7 (i, k)] (k=i (42)

min[0, r(k, k) + 3 ugp py max(0,r(i', k)l (k #9)

Vi,k e {l,...N}: a(i, k) ={

We use Jensen-Shannon divergence as the distance function. Let m; and 7; denote the

topic proportions of document ¢ and j. Their Jensen-Shannon divergence is defined by
1 1
JSD(mi, mj) =5 Dcr(mil|M) + 5 Drcr(mj][ M)

Z. (4.3)
Dy (PlIQ) =3 tn( 1)

~)P(7

o

where M = 1(m;47;) and Dy (P||Q) is the Kullback-Leibler divergence of two distributions.
Then, the similarity between two topic proportions are computed by

D(’/TZ‘, ’/Tj) = G_JSD(m’ﬂ-j) (44)

Each cluster corresponds to a discovered routine. Intuitively, two sliding windows (data
segments) are assigned to the same gorund truth routine label if their low-level activity
proportions are similar. Using the AP algorithm to perform routine clustering, the number

of routines needs not be pre-specified.
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4.4 Evaluation

In this section, we present qualitative and quantitative evaluation results of our nonparamet-
ric routine discovery framework. First, we show the discovered routines from both the daily
life routine dataset and the transportation mode dataset. Second, we compare DPGMM
and K-means, the baseline clustering method used in previous work [35], for vocabulary
construction. Finally, the performance comparison of nonparametric (HDP) and parametric

(LDA) topic models is presented.

4.4.1 Qualitative Analysis

We first show the output of our routine discovery method on the two datasets. Figure 4.6
illustrates the extracted routines for one day from the daily life routine dataset. The top
chart shows how the learned topic proportion vectors change over time. The documents

are constructed using a 30-minute sliding window with 2.5 minutes overlap. (Data between

14:00-16:30 are unlabeled.)
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Figure 4.6: The chart (top) visualizes topic proportions inferred from HDP during the course
of a day in the daily routine data. The chart (bottom) shows the comparison of the ground
truth routine labels and the discovered routines from our framework. Note that the inferred
topics reveal high correlation with annotated routine labels. For example, “0ffice Work”
and “Lunch” correspond to higher proportion of Topic#1 and Topic#3 respectively. Hence,
topic proportions allow us represent and discover high-level daily routines.
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The middle chart shows the extracted routine classes by clustering these topic proportion
vectors using affinity propagation clustering algorithm. The bottom chart shows the ground
truth. The ground truth label of a specific sliding window is assigned with the most frequent
routine class label in that window. Different colors indicate different routines. We see that
the discovered routines “R1” (green), “R2” (pink), and “R3” (yellow) match ground truth

labels “Commuting”, “Office Work”, and “Lunch”.

Our method extracted more routines than the ground truth labels. For example, 17:00-
18:00 is labeled as “R4” while the ground truth label is still “0ffice Work”. We examined
the ground truth activity labels in the dataset and found that “walking freely” occurs more
frequently during this period of time compared to other parts of the “0ffice Work”. Thus,

it is expected that our method would identify it as an additional routine.

Moreover, our method labels “R2” in the last part of the “Dinner” period. This is
because the labeled “Dinner” period consists of “cooking in the kitchen” and “sitting at the
table to dine”. From the accelerometer sensors’ point of view, “sitting at the table to dine”
and “sitting at the office table” have similar feature distributions. Therefore, based on the
sensor data, our method is not able to distinguish them. This scenario suggests that using

other types of sensor data, such as location and time, might be useful.

Similarly, Figure 4.7 shows the inferred transportaion modes on a week of transportation
mode data. The documents are constructed using a 10 minute sliding window with 1 minute
overlap. We reorder and group documents with the same ground truth labels for better
visualization. We see that the discovered routines are highly correlated to the ground truth

transportation modes.
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Figure 4.7: The chart (top) illustrates topic proportions inferred from HDP for a week of
the transportation mode data. The chart (bottom) shows the comparison of the ground
truth transportation mode labels and the discovered routines from our framework. Note
that the inferred topics reveal high correlation with annotated transportation mode labels.
For example, “Bike” and “Walk” correspond to higher proportion of Topic#5 and Topic#4
respectively. Hence, it suggests that we can use topic proportions to represent and discover
transportation mode routines.

Figure 4.8 shows two similarity matrices of the extracted topic proportion vectors on the
daily routine and the transportation mode datasets using Eq (4.4). The red color refers to
higher similarity, and the green color refers to lower similarity. For better visualization, we
group documents based on their ground truth routine labels. In both similarity matrices,
we see that topic proportion vectors of documents with the same ground truth label are
similar, forming red sub-blocks. Moreover, the green bands in the “0ffice Work” block in

Figure 4.8(a) correspond to “0Office Work” with more “walking freely” activity occurrences.

4.4.2 Quantitative Evaluation
Evaluation metrics

To measure the alignment between the discovered routines and the ground truth routines, we
compute three widely used clustering evaluation metrics: the cluster purity, the Rand index
and the pair-counting F-measure [52]. Given clustered documents, cluster purity assigns

the cluster to the ground truth routine label which is most frequent in the cluster, and
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Figure 4.8: Similarity matrix for (a) the daily routine dataset and (b) the transportation
mode dataset of the low-level activity proportion vectors learned from HDP. Red color refers
to higher similarity and green color refers to lower similarity. Note that learned activity
proportions of data segments with the same ground truth labels have higher similarity.
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then computes the percentage of documents whose ground-truth label is the same as its
cluster label. The Rand index looks at all pairs of documents and caculates the percentage

of document pairs that are correctly classified, 75 +§£i£]]§ —7x+ Where TP, T'N, F'P, and

F'N are true positives, true negatives, false positives, and false negatives respectively. More
specifically, T'P is the number of similar document pairs that are assigned to the same cluster

and T'N is the number of dissimilar document pairs that are assigned to different clusters. F-

(8241)PxR

measure is defined as Fjg = PR

where P is precision and R is recall. In this experiment,

2-TP

we set = 1 and F-measure becomes STPYFPIEN

in which true positive are double counted.

Intuitively, F-measure penalizes false negatives more than false positives.

DPGMM vs. K-means

We first study the effect of using nonparametric and parametric methods in the vocabulary
construction phase. We consider K-means as the baseline parametric method for construct-
ing vocabulary. Given a set of feature vectors {fi,..., f,}, K-means clustering aims to
separate the n feature vectors into K clusters, where K is less than n. The process of
K-means is to minimize the within-cluster sum of squares. Mathematically, the process of
minimizing the objective function (i.e., squared error function) can be written as follows:
K
argmin 3 3 |1f; — pul? (1.5
C I fec

where p; is the mean of feature vectors belong to cluster C; and || f; — pil|* is a chosen
distance measure between a feature point f; and the cluster center p;.

Figure 4.9 shows results on the daily routine dataset using K-means and DPGMM. The
high level topic model is LDA. For the K-means baseline, we use K = 60 because it was
reported as the optimal parameter value in previous routine discovery work on the same
dataset [35]. We see that DPGMM performs consistently better than K-means in all three

evaluation metrics as we change the number of topics. This demonstrates the advantage of
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nonparametric methods.
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Figure 4.9: Performance comparison of DPGMM (nonparametric) against K-means (para-
metric) for vocabulary extraction on the daily routine dataset, in terms of the F-measure
(top), the purity (middle), and Rand index (bottom) over different numbers of topics in
LDA.

HDP vs. LDA

Next, we fix the vocabulary construction scheme (DPGMM) and compare the performance
of HDP and LDA with various number of topics shown in Figure 4.10. The number of topics
used in LDA varies from 4 to 12. Since the number of topics is not part of the problem
formulation in HDP, they are horizontal lines in the charts. As we would expect, LDA is
sensitive to the selection of the number of topics. Also, HDP and the optimal setting in

LDA have comparable performance. Note that the number of topics does not correspond

52



to the number of routines. Therefore, even if we know that we have 4 routines in advance,
the optimal number of topics is not 4. The number of topics inferred in HDP on the daily

routine and the transportation datasets is 12 and 10, respectively.
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Figure 4.10: Performance comparison of HDP+DPGMM (nonparametric) against
LDA+DPGMM (parametric) on the daily routine and the transportation mode dataset in
terms of the F-measure (left), the purity (middle), and Rand index (right). We can see
that HDP+DPGMM performs as well as the best LDA model without a model selection
procedure.

4.5 Discussion

In this chapter, we have presented a novel routine discovery framework which adopts non-

parametric topic modeling techniques. Basically, this idea is based on the intuition that
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human routines can be recognized in a fashion similar to how topics are uncovered from text
corpus. Most previous work in topic model based routine discovery used parametric methods
such as K-means for low-level feature clustering and LDA for routine discovery. However,
model selection (e.g., via a trial-and-error process) is the main challenge for the adoption
of parametric models. Our two-phase nonparametric routine discovery framework uncovers
latent routines from sensor data in a fully unsupervised fashion. More specifically, the frame-
work automatically finds the size of the low-level activity vocabulary from multi-dimensional
feature vectors using DPGMM at the vocabulary extraction phase. At the routine discovery
phase, the framework further applies HDP to automatically select the appropriate number
of latent topics and discover latent routines. The framework has been validated on two
public datasets. Experimental results show that our nonparametric framework can achieve
better performance against parametric models without the need of specifying parameters in

advance.
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Chapter 5

Towards Multimodal Discovery of

Human Behavior

In the previous chapter, we presented the core idea, the implementation, and the evaluations
of the nonparametric human routine discovery framework. Experimental results show that
the proposed nonparametric framework can achieve better performance against parametric
models without the need to specify parameters in advance. However, so far we have only
incorporated a single sensor modality (e.g., accelerometer or GPS) with the proposed non-
parametric framework. We have not incorporated several different modalities of sensor data

to increase the performance of the human routine discovery framework.

Most of the related work using topic models only makes use of a single modality of sensor
data or applies simple concatenation from different sensor data modalities [22]. A learning
model with multimodal data should be the core of many multisensory applications. Previous
work has shown that multimodal data is useful for modeling human activities [27, 29]. Hence,
it motivates us to extend our nonparametric Bayesian model to take into account multimodal

information.

The concept of multimodal topic modeling has shown promising results for tasks such as
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object categorization and image label prediction in the field of robotics and image recogni-
tion [59, 82]. In this chapter, we will present the design, implementation, and evaluation of
the multimodal hierarchical Dirichlet process, an extension of hierarchical Dirichlet process
(single modality), to model the relationships among multimodal data sources for recognizing

human behavior patterns.

5.1 Dataset Description

To evaluate the proposed multimodal nonparametric Bayesian framework for daily activity
discovery, we experimented with the realistic public dataset [27]. This dataset is different
than the daily life activity dataset containing only a single sensor modality (i.e., accelerom-
eter) used in Chapter 4. The dataset consists of 42 days (11,721 minutes) of multisensory
data with four types of sensor features (i.e., accelerometer, GPS, image, and audio) and three
types of annotations that are activity, location, and people as shown in Table 5.1. The user
carried the smartphone by a neck strap during the daytime. As for the annotation process,
a user reviews his/her visual log of data recordings, segments each day’s data into a few
events, and labels these events with tags [27]. Figure 5.1 illustrates three types of ground
truth annotations of one day of sensor data. At any point in time, there are three types
of ground truth annotations that are activity, location, and people. The following sections
describe the four types of sensory features and how we extracted the feature vocabulary and

routines from the sensor data.
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Ground Truth Label

use a computer -
talk/chat/discuss & use a computer -
talk/chat/discuss -
restaurant/cafe -
other's office -

other place -

other people -

other activity -

my office -

my home -

eat/drink -

drive/inside a vehicle -

colleague(s) -

Annotation Type .ﬂ.w activity _o_ location .m.”umo—o_m

1000  11:00  12:00  13:00  14:00
Time of Day

15:00

16:00

Figure 5.1: Ilustration of the ground truth labels of multimodal daily activity dataset.
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’ Annotation type \ Annotation classes ‘

Activity walk, drive/inside a vechicle, eat/drink,
talk /chat/discuss, chores, tend to baby,
use a computer, read/write on paper/board, other ac-

tivity

Location outdoor, restaurant/cafe, other’s office,
classroom/meeting room, my office, my home, other
place

People family, colleague(s), other people

Table 5.1: List of annotation types and classes used in the daily activity dataset.

5.2 Feature Preprocessing

Accelerometer

The tri-axial accelerometer data was collected at a sampling rate of 16 Hz. Time-domain
(i.e., mean, variance, zero-crossing rate, etc.) and frequency-domain features (i.e., Fast
fourier transform [FFT] coefficients, spectral entropy, etc.) were extracted to form a 27-
dimensional feature vector over a window of 1 second. These features have been proven

effective in previous activity recognition work [1].

Audio

Raw audio data was sampled at a rate of 11,025 Hz in 16-bit pulse-code modulation (PCM)
format. The Mel-frequency cepstral coefficients (MFCC) have enough information to re-
construct the partial speech content [49]. In order to further protect privacy, a sparse and
short-duration (i.e., 250 ms shorter than the typical duration of a word) audio segment was
sampled every 5 seconds. The final 126-dimensional feature vector was composed of MFCC

coefficients over non-overlapping windows for each audio segment.
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Image

A 24-bit color JPEG image of size 480 x 640 was captured every minute. To obtain features
from raw image data, a subset of MPEG-7 feature descriptors were used [6]. The extracted
64-bin HSV-space color histogram and 80-bin edge histogram were concatenated as a 144-

dimensional feature vector.

GPS

A GPS coordinate reading (i.e., latitude, longitude, and altitude) was acquired every minute.
However, the coordinate readings were often unavailable due to the lack of signal inside the
buildings, and the missing data was handled by computing the mean value within a one-

minute window.

5.3 Vocabulary Extraction

After the feature preprocessing stage, we now have feature vectors for each sensor modality.
In order to train topic models for high-level activity discovery, we need to create a set of
discrete labels (vocabulary) from the obtained multimodal feature vectors and compose the
bag-of-features representation for each data segment. The feature vectors from each modality
are mapped into a set of discrete labels using K-means clustering [38]. As mentioned in
Chapter 4, feature vectors {fi, ..., .}, K-means clustering aims to separate the n feature
vectors into K clusters, where K is less than n. The process of K-means is to minimize
the within-cluster sum of squares. Mathematically, the process of minimizing the objective
function (i.e., squared error function) can be written as follows:
K
argmin 3 3 15— pul (5.1
C U1 fec
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where p; is the mean of feature vectors belong to cluster C; and || f; — pil|* is a chosen
distance measure between a feature point f; and the cluster center p;.

In this dataset, K is assigned to be 50 during the pre-processing stage for feature vectors
from each sensor modality. Then, we represented each data segment as a histogram of
discrete label occurrences (bag-of-features) in a sliding window with overlapping. For the
daily routine dataset, the sliding windows were set from 1 to 30 minute durations with 25%

overlap.

5.4 Routine Extraction
oloe
@ 6

y

/
Q

f N, ] f NI fo f N? f NY ]
A ) ‘ i oo\ A A
(a) Hierarchical Dirichlet Process (b) Multimodal HDP

Figure 5.2: Graphical models of (a) the hierachical Dirichlet process (HDP) and (b) the
multimodal hierachical Dirichlet process (MHDP).

In this section, we first briefly review the fundamental knowledge of nonparametric
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’ Symbol \ Description

Qg concentration parameter
¥ concentration parameter
15} Dirichlet prior parameter
ki index assignment of 6 associated with random variable
L jn,
A Dirichlet prior parameter for all 6y,
0 parameters of multinomial distributions that generate
the value of random variable x;,
j parameters of multinomial distributions that generate
index assignment of t;,
tin index assignment associated with z,, j
Tin n-th random variable in the grouped data j

Table 5.2: List of notations used in the graphical models.

Bayesian modeling such as Dirichlet process (DP) and the standard hierarchical Dirich-
let process (HDP). The details of nonparametric Bayesian modeling have been reviewed in
Chapter 3. Second, we focus on the details of multimodal hierarchical Dirichlet process
(MHDP) including the graphical model representation and the parameter estimation pro-
cess. Finally, we describe how MHDP is applied to obtain the output information in the

context of high-level activity discovery.

5.4.1 Dirichlet Process

The basic building block of HDP is the Dirichlet process, which is an infinite-dimensional
generalization of the Dirichlet distribution as described in Chapter 3 [75].

The DP is denoted as DP(«g, Gop), where aq is the concentration parameter and Gy is
the base distribution. Like the Dirichlet distribution, the DP is also a distribution over
distributions. A distribution G() is DP distributed if G ~ DP(ayg, Go).

The DP can be constructed by the Chinese Restaurant Process (CRP) [75]. In a CRP
metaphor, the DP process can be described in the following way: (1) A restaurant (doc-

ument) has an unlimited number of tables 0, k = 1,...00. (2) The first customer (word)

61



comes in and sits at the first empty table (topic). (3) Given K tables are occupied before

the i-th customer comes in, the customer can either sit at table k& (k < K) with probability

x aoi’;_l or at a new table K + 1 with probability o ﬁ, where ny, is the number of
customers already sitting at table k.
For a set of random variables ¢y, -+ , ¢, (the table assignment for each customer), the

distribution of the random variable ¢; conditioned on the previous random variables can can

be written as

N (o)
k5 %
oag+1i—1 9’“+a0+i—1

K
P(¢ilo1, ..., pi—1, g, Go) ~ Z

k=1

8o (5.2)

where k represents a new table K + 1.

5.4.2 Standard Hierarchical Dirichlet Process (HDP)

The HDP model consists of two levels of DP. The base distribution of the lower level DP
is drawn from the upper level DP. Figure 5.2(a) shows the graphical model of HDP for
the document classification, and the notations are listed in Table 5.2. Similar to DP’s CRP
metaphor, the generating process of HDP can be described as a Chinese Restaurant Franchise
(CRF). In the CRF metaphor, all restaurants (documents) share the same dish menu. The
J-th restaurant has 7j tables, and the n-th customer z;, sits at table ¢ with dish k;; on
it. The types of dishes represent the classes of data. CRF is essentially a two-level CRP:
(1) Within a restaurant, customers choose tables. (2) Within all restaurants, tables choose

dishes from the dish menu.

5.4.3 Multimodal Hierarchical Dirichlet Process (MHDP)

We now develop the extension of HDP to model multimodal data. In this subsection, we

focus on the daily activity dataset with four modalities of sensor data. However, MHDP can
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’ Human activity discovery \ Chinese restaurant franchise ‘

low-level sensor feature data points | customers

data segments (temporal windows) | restaurants

types of sensor modalities (e.g., mo- | types of customers (e.g., genders or
tion or audio) ages)

clusters of sensor features within a | tables in a restaurant

data segment
types of latent low-level activities in | dishes on the menu
the dataset

Table 5.3: Comparison of terminology in the human activity discovery domain and in the
Chinese restaurant franchise metaphor.

be applied to different and more modalities of sensor data without loss of generality.

Graphical Model Representation

Figure 5.2(b) shows the graphical model of MHDP. In the graphical model, 7, , x5, , z%,, and
xjgn denote the n-th motion, audio, visual, and GPS sensor feature data point in the j-th
temporal window. The sensor feature data point from each sensor modality s € {m, a,v, g}
is drawn from multinomial distributions parameterized by @°. Note that each multinomial
distribution ¢ is drawn from a Dirichlet distribution parameterized by of (s € {m,a,v, g}).

Simliar to HDP, the data generation process of the MHDP can be also realized by the
Chinese Restaurant Franchise process (two-level CRP). In the following context, we describe
the parameter estimation process of MHDP with terms used in the human activity discovery
domain rather than in the CRF metaphor.

Table 5.3 lists the detailed terminology mapping in the human activity discovery domain
and in the CRF metaphor. All restaurants are data segments (temporal windows) and each
sensor feature data point is a customer. Different modalities of sensor data feature can be
considered as different types of customers (e.g, different genders or ages) and types of dishes

represent different low-level activity classes of data. Tables in a restaurant can be seen as

clusters of sensor feature data points within a data segment.
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Parameter Estimation of MHDP via Gibbs Sampling

In order to extract the low-level activity proportion of each data segment (temporal window),
we need to first estimate the cluster and activity class assignments using Gibbs sampling.
Algorithm 1 demonstrates the detailed Gibbs sampling steps for two level DP based on the
CRF process: data segment-level cluster selection and overall dataset-level activity selection

processes.

Algorithm 1 Parameter estimation process of MHDP.
repeat
for all je{1,---,J}, s€{m,a,v,g}, n€{l,--- ,N;} do
(a) sensor feature data point %, is first removed from cluster ¢ = #5,:
Ni-e, Njee, Nizy =
(b) cluster assignment ¢ is sampled:
oo P Gl (T
mn P(a5| Xioy,,) - o, =T +1)
(c) If a new cluster is generated (¢t = T; + 1) in step (b), a corresponding activity
class assignment k£ is sampled:
P(X ;1| Xy) - 3= (k < K)

kje ~ { AR
P(X | Xy) - AT (k=K+1)
(d) sensor feature data point z3, with a new cluster assignment ¢ = 3, is assigned
to activity class k = kj:
Ni++, Nj++, N,jx%—l——i—
(e) delete empty clusters that no sensor feature data point belongs to.
end for
for all j, t do
(a) activity class k = kj; is first removed from cluster ¢ in the data segment j:
N ==, Nip-- for all 2° € X, Mj--
(b) a new activity class is sampled:
by ~o { Dl X - 55 (b < )
P(Xjt| Xy) - = (k=K +1)
(c) activity class k = kj; is assigned to cluster ¢ in the data segment j for sensor
feature data points X;:
Np s+, Np++ for all 2° € X, My++
(d) delete activity class that no sensor feature data point belongs to.
end for
update concentration parameters o and ~y
until converge
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Data Segment-Level Cluster Assignment

The posterior probability that the sensor feature data point x5, (s € {m,a,v,g}) is within
cluster t is proportional to the product of the prior probability that a sensor feature data point
in the j-th data segment is within cluster ¢ and the probability that the sensor feature data
point is likely assigned to activity class k (i.e., P(t5, = t|X* ) oc P(t5, = t|A) P(z°| X})).
The prior probability that a sensor feature data point in the j-th data segment within a

cluster ¢ can be formulated as:

Nj _ ,
P, =ty = { T =1 T)

O¢0+0]l{)7j71 (t = ,I’] + 1>

(5.3)

where T is the number of clusters in the j-th data segment, N; is the number of sensor
feature data points in data segment j, and Nj; is the number of sensor feature data points

within cluster ¢ in data segment j.

Moreover, the probability that the sensor feature data point is likely to be assigned to

activity class k can be written as follows:

ngzs + &8

Plat|X;) = e
k 0

(5.4)

where N and Nj,. denote the number of sensor feature data points that have been assigned
to activity class k£ and the number of sensor feature data point z* that belong to activity
class k respectively. The vector X is the set sensor feature data points of type s that have

activity class k and d® represents the dimension of sensor modality s.

Hence, the posterior probability that the sensor feature data point z3, (s € {m,a,v,g})

is within cluster ¢ can be written as:

S S N't
P(a5| Xick,) - s (E<TH)

P(t5, = 1|X°A) oc P(t, = t{A) P(2°| XF) = {

P(a5| Xiok,) - goan (E=T5+1)

jn ao—‘,—Nj—l
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where Nj; represents the number of sensor feature data points assigned to activity class k
in data segment j. X h—k;¢ denotes a set of sensor feature data points of type s assigned to

activity class k. T} is the total number of clusters in data segment j.

Dataset-Level Activity Class Assignment

Similarly, the posterior probability that the activity class k is assigned to cluster ¢ is pro-
portional to the product of the prior probability that activity class k is assigned to cluster ¢
and the probability that the sensor feature data points Xj; within cluster ¢ are likely to be
assigned to activity class k (i.e., P(kj: = k| X, v) o< P(kji = k|v)P(X ;| Xk))-

The prior probability that an activity class k is assigned to the cluster ¢ can be formulated

as:
M (k=1,..,K)
P(kj, = kly) = { "™ (5.6)

where K is the number of assigned activity classes, M is the total number of clusters, and
M. is the number of clusters with activity class k served. Next, the probability that the
sensor feature data points X;; within cluster ¢ are likely to be assigned to activity class k

can be expressed as P(X | X}).

Finally, the posterior probability that the activity class k is assigned to cluster ¢ can be

written as:
P(Xj|Xy) - i~ (k< K)
Pk = k| X,7) o P(kje = k) P(Xpl X)) = { e (5.7)

The activity classes are picked with respect to the posterior probability and the choice of

k = K + 1 means the generation of a new activity class.
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Low-Level Activity Proportion Estimation

Once the parameter estimation process shown in Algorithm 1 converges, we can derive the
low-level activity proportion of each data segment by calculating the proportion of activ-
ity class assignments of clusters in a data segment. Mathematically, the low-level activity

proportion of data segment j can be written as:

(k)N 0 0k (k) Ny,
AL <

J J

D) = (651, by} = {22 ) (5.8)

where Ejt and N i+ represent converged values of k;; and Nj;. The low-level activity proportion

in a temporal window can be seen as a feature vector to represent a high-level routine.

5.5 Evaluation

5.5.1 Evaluation Methodology

As for the evaluation of the proposed MHDP model, we consider a supervised approach for
three classification tasks: activity, location, and people recognition. For each classification
task, we compare the performance using individual modal data and multimodal data. We
also investigate the effect of temporal window duration.

In order to perform classification tasks, we first run parameter estimation on MHDP
with multimodal data and HDP with each single modal data. Then, we train a support
vector machine (SVM) classifier using the obtained low-level activity proportion vectors
and ground truth annotations [8]. The results are validated using standard 10-fold cross-
validation. To measure the classification performance, accuracy that is the most standard

metric to summarize the overall performance for all classes is used [44]. Accuracy can be

defined by:
TP+TN
TP+TN+ NP+ FN

Accuracy = (5.9)
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, where TP, TN, FP, and F'N are true positives, true negatives, false positives, and false

negatives respectively.

5.5.2 Effect of Modalities

Figure 5.3 shows classification accuracy over different window durations on the activity,
location, and people recognition. Each graph contains five curves, which are acceleration,
audio, image, GPS, and all (multimodal) sensory data. The results show that the MHDP
model achieves a best accuracy of 80%, 87%, and 83% on activity, location, and people
recognition, respectively, which outperforms the results using HDP with a single modality of
data. Moreover, the results show that audio information gives suboptimal accuracy over three
classification tasks. For people recognition in Figure 5.3(c), the audio data with the HDP
model even outperforms the MHDP model with a ten-minute window duration setting (80%
against 75%). We also see that in Figure 5.3(b), GPS cannot give high location recognition
accuracy. Possible reasons for this are that the GPS has missing data in indoor environments
and the vocabulary of the GPS data is unable to distinguish between two locations that are

located near each other. The similar effect was also reported in previous work [9].

Let us further look into the detailed accuracy rate of each activity, location, and people
class shown in Figure 5.4. In Figure 5.4(a), we can see that accelerometer data results in
better performance for the activity class such as “walk” that is highly correlated to body
movement. Moreover, image data outperforms other sensor modalities for activity classes
such as “drive.inside.a.vehicle” and “use.a.computer”. The explanation might be that the
images of computer displays or windshields are usually brighter and have salient features.

However, GPS data have relatively low accuracy across different activities.
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(a) Activity recognition accuracy
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(b) Location recognition accuracy
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Figure 5.3: Accuracy measure on activity (top), location (middle), and people (bottom)

recognition over different window durations (from 1 to 30 minutes). Each single modality of
data is used to train a separate HDP model, while MHDP is trained with multimodal data.
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In Figure 5.4(b), GPS data have better performance for location classification compared
to activity classification. However, as we mentioned before, GPS has missing data in indoor
environments so that it cannot distinguish locations between “my office” and “other’s of-
fice”. Furthermore, audio information provides good accuracies on locations such as “restau-
rant/cafe”, “my home”, and “my office” due to the ambient sound signatures are quite
distinguishable at these three locations.

For the detailed accuracy of each people class shown in Figure 5.4(c), we can see that
audio data capture the conversation between the user and people surrounding to him/her

and results in high accuracy rate.

5.5.3 Effect of Window Duration

Figure 5.3 shows the MHDP model has optimal accuracy with window durations of 5 minutes
(activity), 20 minutes (location), and 30 minutes (people). Moreover, the MHDP model
achieves stable ranges of recognition accuracy of 75 — 80% (activity), 78 — 87% (location),
and 70 — 83% (people) over different window durations. We also see that the performance of
HDP with any modality of data and MHDP with all data tends to increase with the window
duration. This effect has also been reported in [68]. In particular, we observe that HDP
with audio data significantly improves and results in a stable performance with the increase

of window duration from 1 minute to 5 minutes on activity and location recognition.

5.6 Discussion

In this chapter, we present the design, implementation, and evaluation of MHDP to model
the relationships among multimodal data sources for human behavior discovery. Most of
the previous topic model-based approaches incorporate only a single sensor modality (e.g.,

accelerometer or GPS) or applies simple concatenation from different modalities. They do

70



ASO_
o\o modality
g accel
>60-
8 I audio
5 image
8 40- gps
< . multi

20-

0-
drive.insid:e.a.vehicle eat.éirink talk.chatl.discuss use.a.ccl)mputer walalk
(a) Activity Classification

/—\ .
\° modality
= . accel
5’60 . audio
g Bl ops
8 40° image
O . multi
<(

1
classroom/meetmg room my home my offlce other place other' s office outdoor restaurant/cafe

(b) Location Classification

100-
A8O 7
2 modality
g accel
>60- )
8 audio
5 gps
O 40- image
2 . multi
20-
0-

1 1 1
colleague(s) my family other people

(c) People Classification

Figure 5.4: Accuracy rate of each activity, location, and people class using the multimodal
daily activity dataset.



not take into account the informative relationships among different modalities of sensor data.
Our proposed MHDP model automatically selects the appropriate number of latent topics
and models the relationships among multisensory data streams. Experimental results show
that our proposed model can achieve accuracy of 80%, 87%, and 83% on activity, location,
and people recognition, respectively, and outperforms the results when using HDP with only

a single modality of data.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis presents a study of human behavior pattern discovery and introduces a novel
nonparametric framework based on probabilistic topic models that can infer high-level hu-
man routines from multimodal sensor data. While there have been a few research projects on
high-level human behavior modeling, most existing parametric approaches of mining human
behavior patterns have major limitations. Specifically, they assume a fixed, pre-specified
parameter regardless of the data. Choosing an appropriate parameter usually requires an
inefficient and trial-and-error model selection process. In the context of developing person-
alized applications, it is even more difficult to find optimal parameter values of models in

advance.

Essentially, the proposed framework makes an analogy between sensor data and text in
the topic modeling paradigm. Table 6.1 lists the analogy of terms between sensor data and
text used in this thesis. In the context of mining a sequence of sensor data, low-level sensor
data features are first mapped into a set of discrete labels (vocabulary). Each mapped data

feature is equivalent to a text word. Then, the bag-of-features in each temporal window is
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’ Textual data \ Sensor data ‘

topic proportions low-level activity proportions
topics low-level activities
documents sensor data segments (temporal windows)
bag-of-words bag-of-features
vocabulary feature vocabulary
text words discretized data features

Table 6.1: List of the analogy of terms between text and sensor data.

referred to as a sensor data segment (document) and used to train the topic model. Sensor
data segments belong to the same routine if they have similar topic proportions. The devel-
oped approaches discover the latent high-level routines (e.g., “office work” or “commuting”)
in a fully unsupervised fashion from raw sensor data obtained on mobile devices. Moreover,
in order to further model the relationships among concurrent multimodal data, a generative
probablistic model is proposed and evaluated by performing activity classification tasks.

To overcome the existing challenges in parametric settings, the proposed approach applies
nonparametric Bayesian methods for two major phases: (1) low-level feature vocabulary
creation, and (2) high-level routine discovery. At the low-level feature vocabulary creation
phase, we applied Dirichlet process Gaussian mixture model (DPGMM) to automatically
find the size of the vocabulary from sensor feature vectors and compose the bag-of-features
representation for each temporal window. Next, at the routine discovery phase, we further
used hierarchical Dirichlet process (HDP) model and its extension to automatically select
the appropriate number of latent activities and estimate the latent activity proportion from
a collection of sensor data segments represented by the bag-of-features format. Finally,
by using affinity propagation (AP) clustering algorithm, sensor data segments with similar
low-level activity proportions are discovered as the same latent routine.

The approaches and results presented in this thesis are evaluated on public datasets
in two routine domains: two daily-activity datasets and a transportation mode dataset.

Experimental results show that our nonparametric framework can automatically learn the
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appropriate model parameters without any form of manual model selection procedure and the
proposed nonparametric models outperforms traditional parametric approaches (i.e., latent
Dirichlet allocation [LDA] and K-means) for human routine discovery tasks. Moreover, the
proposed generative model with multimodal data (i.e., multimodal hierarchical Dirichlet
process [MHDP]) can achieve accuracy of 80%, 87%, and 83% on activity, location, and
people recognition, respectively, and have better results when using HDP with a single

modality of data.

6.1.1 Contribution

Based on the previous work in the fields of activity recognition and text modeling, this
thesis made contributions on developing a nonparametric framework for high-level human
routine discovery from multimodal data. More specifically, the design and implementation
of a nonparametric framework for high-level human behavior discovery without the need of
a trial-and-error model selection process are presented. A probablistic graphical model that
models the relationships among a sequence of multimodal sensor data for human behavior
discovery is developed. Finally, the proposed framework is evaluated on three realistic public

datasets in human activity and transportation mode domains.

6.2 Future Work

Although we have made several valuable contributions to the field of human routine discovery,
our framework can be further improved. In the next subsections, we outline possible future
research directions to extend the work done in this thesis. First, the temporal information of
low-level data features within a temporal window can be taken into account while discovering
high-level routines. Second, if we can further learn the hierarchical structure of human

routines from sensor data, users’ lifestyles can be better profiled. Third, a fixed temporal
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window duration to compose the bag-of-features representation can be adjusted to a variable
duration based on the similarity of sensor data features. Finally, in terms of developing a
practical mobile application, an online inference algorithm is important because it only

requires to train with new data rather than the entire dataset.

6.2.1 Temporal Order of Low-Level Data Features

The human routine discovery framework presented in this work is based on the “bag-of-
features” representation. The bag-of-features representation assumes that the order of fea-
tures (i.e., mapped sensor data features) within each temporal window is ignored. However,
when a person performs an activity, the captured sensor data stream is a time-series signal
with strong temporal dependancy. By incorporating n-gram statistics with a unigram topic
model, it allows us capture and model the pattern of activity sequences within a data seg-
ment [79]. This concept of combining n-gram statistics with the probabilistic topic model
has shown promise in the field of computer vision [74, 78|. By extending the proposed non-
parametric framework to encode n-gram statistics, we can take into account temporal order
of low-level activities within each temporal window and achieve a better routine discovery

performance.

6.2.2 Hierarchies of Routines

The approaches presented in this thesis aim to discover high-level routines using topic models.
However, using topic models such as latent Dirichlet (LDA) or hierarchical Dirichlet process
(HDP), the topics are discovered in a flat structure rather than organized into a hierarchical
structure such as that naturally exhibited in text data [40]. There have been previously
proposed topic models that learn the correlations and the hierarchical structure of topics for

the text corpus [4, 40, 55]. Similarly, human activities in daily life can be categorized into a
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hierarchy [2, 36]. For example, a user’s daily life might consist of major routines (e.g., recre-
ation) and sub-routines (e.g., eat meal outside or wisit friends/relatives) [36]. Considering
the hierarchy of human routines as a tree, one branch of the tree might have the routine
recreation as a parent topic and the routines eat meal outside and wvisit friends/relatives as
child topics. This hierarchical structure learning can be done with a tree generation process
based on the Chinese restaurant process [40]. Hence, as an improvement, we can better
understand the structure of human routines by learning hierarchies of human routines from

sensor data.

6.2.3 Automatic Selection of Temporal Window Duration

The framework presented in this thesis uses a fixed duration of temporal window (e.g., 30
minutes) to compose bag-of-features for high-level routine discovery tasks. We assume that
each temporal window’s duration is shorter than each routine to be discovered. We exhaus-
tively evaluated the influence of temporal window duration in terms of routine discovery
performance. Since the stability of topic model-based routine discovery might vary accord-
ing to the durations of routines and temporal windows, it is reasonable to have a more
systematic method to determine the duration of sensor data segments [68]. Some previous
work in the field of activity recognition focused on recursive segmentation of the sensor data
based on the similarity between two adjacent windows [12]. However, we should avoid the
possibility that segments are too small that reflect to the changes of low-level features and

lack the bag-of-features property for latent routine discovery tasks.

6.2.4 Online Inference of Routines

In the proposed routine discovery framework, we assume that inference algorithms (i.e.,

topic proportion estimation) run over an entire dataset of sensor streams after they have
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been collected. But, in many ubiquitous computing applications, large amounts of sensor
data are continuously generated from multiple mobile devices and the model must also be
adjusted accordingly. It makes inference algorithms infeasible to run offline repeatedly due to
the computational complexity. This problem has been addressed in the text mining domain
by using online inference algorithms that update topic estimations when a new document is
observed for topic modeling [11, 31]. Therefore, future work in this direction can make the
proposed routine discovery framework more applicable to real world scenarios that are more

dynamic.

6.3 Final Thoughts

With the groundwork of technologies such as sensors, networking, and cloud computing in
place, continuous and large amounts of sensory data from heterogeneous sources are more
accessible nowadays. It is an exciting time for us to study the field of human behavior pattern
modeling from sensor data. As we investigated in this research, text mining and human
activity modeling share many common properties. Hence, as a future research direction, it
will be interesting to adopt and integrate real-time textual stream mining techniques (e.g.,
mining the semantics of social media textual streams) in human activity recognition and
discovery domains. It will enable us to handle large-scale sensor data streams and develop

more proactive context-aware applications.
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