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Abstract

This thesis contains a theoretical analysis of the Horizontal Ribbon Growth (HRG)

process for growing silicon wafers. In the HRG process, a thin silicon ribbon is

crystallized and extracted continuously from the melt, using the fact that silicon

floats on its melt just like ice floats on top of water. In our work, we assess two

technical issues reported in previous experimental studies: meniscus stability and

interface stability.

The first law of thermodynamics along with the tools of variational calculus are

used to find the existence and stability conditions of the meniscus formed between

the silicon wafer and the surface of the crucible. Analytical expressions describing

the shapes of the meniscii are found in terms of a single-valued function and in

parametric form. These functions give the feasible configurations of the HRG system

in terms of operating parameters and material properties, such as ribbon length and

thickness, melt level, pulling angle, contact angle, and crucible edge geometry. From

the existence conditions we show that the feasible configurations place a part or the

entire meniscus above the melt level. The stability condition shows that every part

of the meniscus must remain above the surface of the crucible.

A dynamic crystallization model that incorporates an extended version of the

Mullins-Sekerka analysis describes the stability of the solid-liquid interface. The

effect of solute segregation in the system and its effect on interface stability is mea-

sured as a function of the crystallization velocity. Two surface cooling methods

-active and passive- are used to model the crystallization of a silicon ribbon of a
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given thickness. We show that low temperature gradients promote the homoge-

neous segregation of impurities in the melt, whereas high temperature gradients

induce the formation of a solute enriched boundary layer. For both cases we found

the thermal conditions that impede the growth of applied sinusoidal perturbations

to the interface. We found that setting the crystallization model in a Lagrangean

frame of reference provides an alternative way to calculate the shape of the silicon

wafer.
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Chapter 1

Introduction

1.1 The photovoltaic industry

The growing need to rely less on fossil fuels for electricity generation has encour-

aged the development of renewable energies, such as those provided by the wind

-eolic-, the sun -solar-, the ocean -tidal- and the earth itself -geothermal-. These

sources of energy have existed since the beginnings of times and played various and

important roles in human development until the industrial revolution. In the 21st

century society acknowledged their value once again, and industry started shifting

their manufacturing processes to more more clean and efficient ones. Currently,

the share of renewable technologies in the energy market, though increasing, is still

small compared to traditional energy sources like coal and oil. According to the

Renewables 2014 Global Status Report [18], fossil fuels represent 80% of the total

energy consumption worlwide. This scenario is due in part to the well established

energy policies that favor fossil over renewable, as well as the lack of technological

breakthroughs that reduce the manufacturing costs of alternative processes.

Silicon-based photovoltaic systems are one of the most promising renewable en-

ergy sources. Covering just 0.1% of the surface of the earth with 10% efficiency

solar cells can satisfy our current energy needs [23]. The capacity of PV systems

continues to increase throughout the years, as we show in Figure 1.1. We see from

1



1.2. THE SOLAR SILICON SUPPLY CHAIN

Figure 1.1: Installed solar PV Capacity from 2004 to 2013. As a point of comparison

we note that a large coal plant provides about 1 GW per turbine-generator pair.

Graphic taken from the Renewables 2014 Global Status Report [18].

this figure, that the worldwide capacity almost doubled from 2011 to 2013. This

trend, along with the decrease in production costs and improvements in conversion

efficiency [18], make continued growth in the PV markets very likely.

1.2 The solar silicon supply chain

The two current trends in the PV markets, increasing capacity and decreasing man-

ufacturing costs, could become more pronounced by “simplifying” the solar cell

supply chain. One of the most notable bottlenecks in the supply chain concerns the

manufacture of the silicon wafer. The production process of the wafers is energy and

capital intensive, and therefore limit the potential of the rapid expansion needed to

meet the increasing demand for PV systems.

The wafering process begins with the transformation of silica into metallurgical

grade silicon via thermal decomposition in an electrical arc furnace. In this part of

the process, large amounts of electricity are used to break the silicon-oxygen bond.

CHAPTER 1. INTRODUCTION 2



1.2. THE SOLAR SILICON SUPPLY CHAIN

About 10 MWh are needed per metric ton of product. The thermal decomposition

brings the purity level of silicon to around 98.5%. The processed silicon is further

purified via the Siemens process, in which silicon is reacted with hydrochloric acid

to produce trichlorosilane (TCS). TCS is distilled to high purity and decomposed

in the Siemens bell reactor where highly pure silicon (99.9999999%) is deposited.

Besides being energy intensive, this process is also energy inefficient. Approxi-

mately 90% of the input power is lost through the cold walls of the bell reactor [8].

The resulting polycrystalline material is melted in large furnaces in order be grown

as monocrystalline ingots via the Czochralski (CZ) process. The silicon ingots are

grown batch-wise from the melt by dipping and slowly pulling a silicon seed attached

to a rotating rod. The Czochralski process is also an energy intensive process since

large amounts of silicon are heated at elevated temperatures for long periods of time.

A posterior diamond wire-sawing process produces wafers between 100 and 600 mi-

crons in thickness. The Czochralski process along with the Bridgman (B) technique

(not mentioned in this work) contribute to more than 80% of the silicon substrate

used in both the semiconductor and the solar cell industry. The disadvantage of

these processes is the large amount of material losses and high costs incurred in the

ingot sawing; around 50% of the ingot material is lost in the sawing process. In

other words, a silicon wafer is lost for each one that is produced. Also, it is difficult

to realize the economy of scale observed with a batchwise operation. Scale-up of CZ-

and B-processes implies duplicating equipment, resulting in a nearly linear relation-

ship between CAPEX, OPEX and plant size. The crystal growth process represents

one third of the wafer manufacturing cost, and sawing approximately another third,

as we show in Figure 1.2. Developing more efficient techniques to grow the crystal

and avoid the sawing process, via direct wafer growth methods, could considerably

reduce the cost of the wafer significantly.

CHAPTER 1. INTRODUCTION 3



1.3. ALTERNATIVE SILICON WAFERING PROCESSES

Module 
Fabrication, 25% 

Cell, 10% 

Silicon Wafer, 
65% 

Starting 
Material, 

36% 

Crystal 
Growth, 

35% 

Sawing, 
29% 

Figure 1.2: Cost distribution of a silicon wafer (2011). Adapted from Rodriguez et

al. [49].

1.3 Alternative silicon wafering processes

Many processes have been proposed to produce wafers continuously and directly

from the melt. Extensive research has been done in developing the scientific ground-

work since the 1960s. The growth techniques can be categorized depending of the

direction of pulling. Vertical growth methods include the Edge-defined Film-fed

Growth (EFG) [10, 12, 58], Dendritic Web technique (WEB) [51, 52], and the

String Ribbon (SR) [49]. Horizontal growth techniques include the Horizontal Rib-

bon Growth (HRG) [33, 3, 53], and the Ribbon Growth on Substrate (RGS) [34].

Table 1.1 compares the production rates of some of these ribbon growth technologies.

All of these processes address the two almost-conflicting issues of the future solar

supply chain: to produce high quality crystals at a high production rate [9]. Tech-

nologies such as the RGS and the SR have already been commercialized, but they

have not had a significant impact due to the high production cost (SR) and poor

product quality (RGS). Commercialization of more mature technologies, like the

EFG, the longest-living ribbon growth technology, has been recently interrupted.

Others, like the HRG -the focus of this work-, are still in the research and develop-

CHAPTER 1. INTRODUCTION 4



1.4. OUTLINE OF THE THESIS

Method Pull Speed [cm/min] Width [cm] Throughput [cm2/min]

EFG Octagon 1.65 8 x 15.6 165

WEB 1-2 8 5 - 16

STR 1-2 5-8 5-16

RGS 600-1000 15.6 7500-12500

Table 1.1: Current continuous processes to manufacture silicon ribbons and their

characteristics. Adapted from [49].

ment phase. It is still not clear which emerging technique will dominate, but it is

certain that a continuous process is urgently required to produce solar cell wafers

1.4 Outline of the thesis

We begin this thesis by summarizing the main scientific results obtained in the study

of the Horizontal Ribbon Growth process and the technical challenges that have

persisted since the discovery of the technique (Chapter 2). In Chapter 3, we address

the problem of meniscus stability using the first law of thermodynamics and the

methods of variational calculus. We find conditions for the existence and stability

of the meniscus. The analysis is based on the first and second variation of the

thermodynamic-based energy functional. This approach provides us with analytical

expressions for the equilibrium height and shape of the meniscus, two findings we

consider to be new. We show that the single-valued analytical solutions are stable

if the conditions of existence are met. We show that this criterion is constrained by

the Gibbs’s pinning limits (the derivation of these are found in Appendix D). We

illustrate the results by generating the feasible configurations for two different pulling

angles. We validate our analytical solution with computational results reported in

the literature, one concerning the HRG process, and the other two concerning the

EFG process.

In Chapter 4, we address the problem of finding the additional solutions which

CHAPTER 1. INTRODUCTION 5



1.4. OUTLINE OF THE THESIS

might be unstable. We do so by resorting to Weierstrass’s variational theory, for

which give brief summary at the beginning of the chapter. Using Weierstrass’s ap-

proach, we find analytical solutions representing the meniscus shape in parametric

form and a generalized stability condition. The stability condition coincides with

that derived in Chapter 3 but a range of unstable solutions are found as well. We

validate the analytical solution with our own computational results. We show that

the expression of the equilibrium height obtained in Chapter 2 is valid for the para-

metric solution as well. We find that for a given melt level height, there exist two

possible confiugrations in the HRG process, one stable and one unstable. We believe

this observation and the mathematical analysis that supports it is novel and hasn’t

been reported in the literature. We compare the shape of the unstable curves quali-

tatively with a proof of concept experiment, and observe that the unstable meniscus

shapes are qualitatively similar to the shapes of a meniscus about to spill over from

a container.

Chapter 5 deals with the issue of the impurity segregation and morphological

stability of the interface. We construct a mathematical model using the Stefan [43]

approach to describe the crystallization dynamics coupled with an extended version

of the Mullins-Sekerka [41] formulation to analyze interface stability. The mathe-

matical model is composed by the transient diffusion equations for heat and mass,

and the interfacial moving boundary conditions for both fields. As an illustrative

example, we perform the simulation of the segregation of aluminum when 50 ppm

are present in the initial silicon melt. With the model we capture information about

the concentration profiles in both the wafer and the melt, as well as the evolution

of the temperature gradients as the ribbon grows. The extended Mullins-Sekerka

formulation gives us the value of the perturbation function and hence the stabil-

ity condition as a function of the position of the interface. We show that for the

proposed operating parameters it is possible to achieve rates of crystallization that

guarantee the formation and evolution of a stable interface. These values correspond

closely to those observed experimentally by Kudo [33].

CHAPTER 1. INTRODUCTION 6



Chapter 2

The Horizontal Ribbon Growth

Process

2.1 Introduction

The Horizontal Ribbon Growth (HRG) process is one of the most promising tech-

niques for growing silicon wafers directly from the melt. In this technique, a thin

crystal ribbon is produced and extracted continuously from a molten substrate. By

inserting a thin film -the crystal seed- into the melt, and cooling the top surface

using active and passive cooling (cooling devices and relying on heat released by

radiation), it is possible to achieve the continuous production of a thin rectangular

crystal from the melt. The HRG exploits a simple property of silicon: its solid

phase is less dense than its liquid phase. Hence the silicon ribbon would float on

top of its melt just like ice floats on top water. Its main advantage over the rest of

the direct methods is its potential to achieve high growth rates since the direction

of crystallization is perpendicular to the direction of pulling. In addition, the la-

tent heat released by crystallization is easily dissipated from the surface. The HRG

process does not require shaping dies or a strong reliance on surface tension forces.

Also, the horizontal pulling diminishes the amount of mechanical stresses that are

7
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otherwise induced with the vertical pulling, since the ribbon is always resting on its

melt. With this process it is also possible to produce wafers with large areas, in

theory as large as the melt surface.

In this chapter, we summarize the efforts made in advancing the HRG technique

for the past sixty years, and expose three of the main technical challenges that have

been mentioned throughout the literature: melt spill-over, ribbon freeze-over and

dendritic crystal growth. These three challenges motivate the work of this thesis.

2.2 A chronological review of the HRG process litera-

ture

The first design of the HRG process was proposed by William Shockley [53] at the

beginning of the 1960’s. In his patent, he illustrates the main ideas of the process:

a planar thin film of crystal (e.g. silicon) is formed on top of a molten immiscible

substrate (e.g. lead) in a furnace, by careful surface cooling close to the outlet of the

system. A seeding process takes place at the outlet, allowing the thin sheet to grow

in the direction opposite to the pulling direction. Pulling begins once the crystal

grows and extends across a given portion of the melt surface. Inert gases are flown

over the melt to prevent any undesirable reaction with ambient oxygen. Shockley

was also the first to note the fact that this process serves as a purification process,

similar to current industrial zone refining methods.

A decade afterwards, Carl Bleil [3], applied the concept for the first time to

produce ice and germanium ribbons. In his experimental setup, he placed the crys-

tal seed in contact with the melt and a heat sink (see Figure 2.1). Under these

conditions, he claims the viability of the process if three conditions are met: 1)

the crystal formed does not adhere to the sink, 2) the seed is properly placed so

that it does not melt and 3) the crystal is thin enough so that it can be extracted

from the crucible. In order to achieve this, he used an auxiliary heat sink to permit

nucleation to occur away from the principal sink. To avoid melting of the seed, this
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Figure 2.1: Schematic of Bleil’s HRG design [3].

must cover a considerable area of the melt, extending beyond the heat sink before

pulling it. Finally, the crystal can be prevented from growing too thick by imple-

menting an independent temperature controller at the edge of the crucible. The ice

and germanium ribbons he obtained in his experiments are shown in Figure 2.2.

From these two photographs we see that despite the robustness of the experimental

set-up, the crystals exhibit many and very visible irregularities. Bleil attributed this

to the difficulty in maintaining and controlling a contant thermal heat flux to and

from the ribbons.

In 1979, Bossi Kudo [33], inspired by Bleil’s ideas, proposed a similar design, but
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Figure 2.2: The ice and germanium ribbons obtained by Carl Bleil via the HRG

process [3].

this time replacing the heat sink with a gas cooling system above the melt and close

to the edge of the system. This in order to convect the heat of solidification away

from the melt-crystal interface. With this improvement, Kudo successfully managed

to manufacture silicon wafers for the first time in the history of the process. In his

investigation he reported the pulling of polycrystalline ribbons at speeds up to 14

mm/s, and monocrystalline ribbons at speeds up to 7 mm/s. In his experiments,

Kudo allowed the ribbon to achieve a large length-to-thickness ratio (approximately

10), which differed from Bleil’s operation, where small ratios were used.

Despite his success, Kudo also reported several issues arising in the development

of the concept. Most of them boiled down to the controllability of a system that

is inherently sensitive to any perturbation and operating conditions, given the de-

sired properties of the final product (uniform thickness and “smoothness” of a very

thin film). Design issues such as the angle of the inserted seed with respect to the

melt and controlling the dynamics of growth provided several complications. Also

were the simultaneous supply of fresh melt and the extraction of the wafer, the

excessive growth of material in a direction perpendicular to the pulling direction

(down-growth) and its subsequent attempts to suppress it, the formation of poly-

crystalline dendritic crystals and the problem of melt spilling-over from the crucible

CHAPTER 2. THE HORIZONTAL RIBBON GROWTH PROCESS 10
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Figure 2.3: Schematic of Kudo’s HRG design [33].

due to an unstable meniscus. Also mentioned but not thoroughly studied were the

effects of convection in the melt, which in the case of all crystal growth processes,

are of utmost importance [7]. Unfortunately, the silicon ribbons that Kudo obtained

are not visible in the original research paper.

While these studies were being carried in Japan (1978-1980), John Zoutendyk

[68], at the Jet Propulsion Laboratory in the United States, was evaluating the ef-

fects of forced convection in the melt due to the pulling of the seed (Zoutendyk’s

and Kudo’s papers were published in the same journal edition). He acknowledged

the influence of a velocity and thermal boundary layer underneath the melt-crystal

interface and used this finding to suggest the inclusion of an “active” cooling zone

(opposed to passive cooling due to radiation) in the HRG design, in order to sup-

port the crystal growth process and enhance the heat transport from the melt.

Zoutendyk [67] was also the first person to develop an expression correlating the

thickness and the pulling rate of the ribbon. In his theoretical model, Zoutendyk [67]

assumed the ribbon to be of triangular shape, the operation to be at a steady state,

and the effects of convection negligible. Under these assumptions, he used the fun-
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Figure 2.4: Schematic of Daggolu et.al. HRG system and its temperature and

velocity profiles [44, 45].

damental energy transport equation to derive an analytical expression describing

the relationship between the wafer thickness and its pulling velocity. He proved

that the accuracy of his expression is valid for low values of pulling velocity. This

theoretical analysis was complemented by Glicksman and Voorhess [22], where they

assumed a wedge of parabolic shape. They limited the analysis to the cooling of a

ribbon through a heat clamp (fixed temperature at the surface of the ribbon).

Also around 1980, Rhodes and co-workers [48] were investigating the issue of

melt spill-over reported by Kudo [33] in his work. They developed a mathematical

model based on hydrostatics, to describe the shape of the meniscus that must be

formed between the ribbon and the crucible. They found that the hydrostatically

feasible configurations, require the meniscus to be “taller” than the melt height, and

that the ribbon be pulled at slight angle, which coincided with Kudo’s experimental

operation.

The academic output on the HRG process subsided completely from the be-

ginnings of the 1980’s until very recently. In 2012, Carl Bleil and researchers at

the University of Minnesota -Parthiv Daggolu, Andrew Yeckel and Jeffrey Derby-

[44, 45], started a joint project to implement a state-of-the-art computational model

CHAPTER 2. THE HORIZONTAL RIBBON GROWTH PROCESS 12
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1. 

2. 

3. 

Figure 2.5: Schematic of HRG design used at CMU.

of the HRG proces. Daggolu and co-workers constructed a thermal-capillary, finite

element model, describing the interaction between fluid flow and heat transfer oc-

curing in the system, as shown in Figure 2.4. In their results, they calculated

the relationship between the thickness and the pulling rate and found good agree-

ment with Zoutendyk’s [67] approximation. In addition, they were able to capture

the nonlinearities in this relationship. Namely, the existence af multiple values of

wedge-factors (l/t) for a given value of pulling speed. Their model also captures

critical phenomena resulting in the interaction of momentum and energy transport:

Marangoni currents and buoyant forces [7]. These two forces induce a vortex-type

of flow at the free surfaces of the system (the melt surface and the meniscus be-

tween the ribbon and the crucible) and inside of the melt. The problems of melt

spilling over and freezing to the crucible were assessed by doing a sensitivity anal-

ysis on the effects of the meniscus length as a function of the melt height and the

pulling angle. Very recently, Daggolu and co-workers [15] included the effects of

solute segregation in the melt in their thermal-capillary model. They found that

Marangoni convection impacted the classical segregation profile seen in crystalliza-

tion processes, but nonetheless the impurities kept being concentrated underneath

the solid-liquid interface.

With regards to recent experimental efforts, since 2008, researchers at Carnegie
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Mellon University, including the author, have been working on an experimental

proof of concept of the HRG process, mimicking Kudo’s design and using water as

the working fluid. We constructed a small plastic bath (18 x 8 x 2.5 cm), shown

in Figure 2.5, where liquid water is transported from an inlet orifice (1.) and exits

through a curved surface at the end of the bath (3.) The free surface of the bath is

cooled using liquid nitrogen flowing through a heat exchanger; the amount of cooling

provided is controlled by the nitrogen flow from the tank and the distance between

the water surface and the cold plates. The lateral walls of the bath are kept at a

relatively high temperature using cartridge heaters to avoid undesired nucleation

sites (2.). Once the ice sheet forms inside the bath, it is extracted by placing it on

top of a conveyor belt.

In order to start the process, we used a long flat plastic piece previously cooled

with liquid nitrogen and placed it into the middle of the water bath (shown in the

left photograph of Figure 2.6). The cold piece acts as a nucleation point in which ice

attaches preferentially since the walls of the bath are kept at a higher temperature.

As ice builds up, the piece is moved by the conveyor belt outside of the system. The

velocity should be high enough to prevent the attachment of the crystal to the lip

of the bath and guarantee the placement of the wafer into the belt before it melts.

Once the ribbon is grown and placed into the conveyor belt it was possible to keep

the process running as long as there was enough traction between the ribbon and the

melt (see right photograph in Figure 2.6). We found that the extraction of the film

was easier if the film was slightly inclined upwards with respect to the horizontal

axis, as suggested by both Kudo [33] and Rhodes [48].

Similar to previous investigations, we found that the seeding and the pulling

angle play an important role in the production of the thin ribbon. With respect to

the seeding, it is very difficult to know the optimal time for extracting the seed. If

the seed is pulled slowly, the formation of an excessive amount of ice starts forming

near the lip of the bath. If extracted too fast, the ice would get detached from the

flat piece that serves as a nucleation point.

CHAPTER 2. THE HORIZONTAL RIBBON GROWTH PROCESS 14
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Figure 2.6: Ice ribbons obtained via the HRG process by CMU researchers.

Figure 2.7: AMG Idealcast Solar Corporation HRG design.

In 2009, AMG Idealcast Solar Corporation [13] developed yet another HRG

design, shown in Figure 2.7. The main parts of the system consist of a quartz

crucible resting on a graphite crucible, a feed container surrounded by an induction

coil, and a chimney located on top of the quartz crucible. Solid silicon chunks are

melted via the induction heater and the melt is fed to the quartz crucible. A seeding

process takes place close to the outlet of the furnace as the melt surface temperature

is controlled by adjusting the aperture of the chimney. This equipment, now at

CMU’s laboratories, is currently being tested for process feasibility.

In December 2011, succesful experimental efforts were reported by researchers

at Varian Semiconductor Equipment [30, 29, 27, 28, 50, 63, 31, 32, 54, 38]. Their

HRG design, shown in Figure 2.8, comprises a vessel that holds the silicon melt, a
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Figure 2.8: Varian Semiconductor Equipment HRG design.

set of panels and cooling plates. Molten silicon is replenished through the feed and

conveyed to another section of the vessel, where the melt remains undisturbed due

to the separating panel between the two sections. The outlet consists of a small

ramp where the melt spills over and the ribbon is formed through a seeding process,

similar to previous designs. The surface temperature is controlled by water-cooled

panels located close to the surface of the melt.

Figure 2.9 shows the silicon ribbons extracted from the vessel for two different

runs. The researchers were able to pull single-crystals ribbons of 2 centimeters in

width, and 10 centimeters in length, at a velocity of around 0.5 mm/s (right photo-

graph), and were able to produce a single crystal up to velocities of 2 mm/s, where

dendritic growth started developing in the crystal (left photograph). These experi-

ments are the most recent milestone in the development of the HRG technique. They

attributed their success to the careful heat removal operation via the water-cooled

panels, the stabilization of the meniscus provided by negative hydrostatic pressure,
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Figure 2.9: Silicon ribbons obtained by Varian Semiconductor Equipment. Ribbon

to the left exhibits dendritic structure. Ribbon to the right is single crystal with

(111) facets.

a) b) c) 

Figure 2.10: The three main technical issues in the HRG process: a) Dendritic

growth, b) Melt spill-over, c) Ribbon freeze-over.

and improved seeding and extraction process. These last two were accomplished by

exploiting the effect of buoyant forces in the melt and the elasticity of the formed

ribbon.

2.3 Technical challenges in the HRG process

Ever since Kudo [33] first achieved the continuous extraction of the ribbon from the

melt, three technical issues have constantly appeared in the reported experiments:

the growth of dendrites in the crystal, the stabilization of the meniscus/melt spilling-

over the crucible, and the problem of ribbon freezing into the crucible (also known

as down-growth). The problem of dendritic growth have been attributed to the
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fluid flow disturbances in the melt (surface tension driven flow and buoyant forces)

affecting the crystal growth kinetics -and therofore the micro-structure-, as well as

the potential undercooling underneath the solid-liquid interface. The melt spill-over

problem is attributed to incorrect seeding and growth process and inappropriate

melt level control, which affect the stability of the meniscus between the ribbon

and the crucible. Lastly, the freezing of the ribbon to the surface of the crucible is

attributed to insufficient heat transport underneath the edge of the crucible, very

low pulling angles, and insufficient melt -in the form of a meniscus- between the

ribbon and the crucible.

In the following chapters we develop theoretical and computational solutions to

these three main challenges, which have not yet been considered in the literature. We

categorize these problems into two separate studies: meniscus stability and interface

stability. The approach we take is to focus on each issue independently and study

the fundamental physics that describe each problem. The analysis methods we use

are based on the application of the fundamental concepts of thermodynamics and

transport phenomena, and the solution methods we employ are based on variational

and numerical discretization techniques.
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Chapter 3

Meniscus Stability in the HRG

Process. Part I: A Classical

Approach

I hope that this application of analysis to one of the most curious objects of physics,

may interest mathematicians, and excite them to increase more and more these ap-

plications, which unite the advantage of confirming physical theories and improving

analysis itself, by requiring new processes of calculation.

– Pierre-Simon, marquis de Laplace on his theory of capillary attraction.

3.1 Introduction

The study of capillarity and meniscus stability is a necessary component in the

understanding of crystal growth processes. The starting point of these studies is the

well-known Young-Laplace equation, whose solution gives the shape of the meniscus

as a function of the pressure exerted over it. Analytical and numerical solutions

have been investigated since Laplace [35] first studied the phenomenon, and the use

of these solutions in several crystal growth problems have been reported extensively
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for the last fifty years.

For the case of capillary-shaped systems (such as the edge-defined film-fed growth

process), Tatarchenko found analytical solutions for the governing Young-Laplace

equation in terms of Legendre’s elliptic integrals [36], and found the conditions

under which the feasible meniscii achieve concave, convexo-concave or convex shapes.

The dynamic and static stability was addressed numerically by Tatarchenko [61,

62] using Lyapunov-based techniques and variational principles, respectively. For

the specific case of the EFG process, the effects of capillarity and the shape of

the feasible meniscii were calculated numerically by Swartz, Surek, Chalmers and

Mlavksy [58, 59]; the problem of stability was addressed by Surek [56] using fact

that the contact angle between the crystal and the melt should converge towards a

constant value (11◦ in the case of silicon), for a given change in the shape of the

crystal. For the Czochralski process a capillary analysis was developed by Hurle

[26, 25] to find an approximate analytical solution of the shape of the meniscus

in the Czochralski growth. For the Czochralski process a linearization of one of

the principal curvatures is made in order to obtain a solution in analytical form.

The shapes and static stability of the meniscii were also analyzed by Mika and

Uelhoff [40] using a combined analytical and numerical approach. Using the concept

of meniscus energy minimization along with the formalism of variational calculus,

they found stationary curves which are unstable beyond a certain joining angle. For

the case of the Bridgman process, analytical approximations and numerical studies

regarding the shapes of meniscii have been reported by Braescu et al. [5, 6], Epure

et al. [16] and by Volz and Mazuruk [65]. Very recently, Volz and Mazuruk [39]

also addressed the static stability problem using numerical simulations to solve the

governing variational problem.

A continuous crystallization process that has yet to produce substantial under-

standing meniscus stability is the HRG process. One of the principal problems

reported by Kudo [33] was the freezing of the ribbon to the end lip of the crucible,

also known as down-growth. The reason for down-growth is that there is no melt

CHAPTER 3. MENISCUS STABILITY IN THE HRG PROCESS. PART I: A
CLASSICAL APPROACH
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Figure 3.1: Representation of the Horizontal Ribbon Growth. A meniscus must be

formed between the ribbon and the crucible to prevent melt spill-over and ribbon

freeze-over.

present between the ribbon and the crucible, in the form of a meniscus. The solid

surface of the crucible provide nucleation points for the ribbon to crystallize onto it

as it is being pulled. The opposite problem can also arise: an excess of melt flow

that causes the melt to spill over the crucible. In an ideal operation, a space between

the ribbon and the lip of the crucible is maintained to avoid undesired nucleation

points, and a meniscus is pinned between the crucible lip and the ribbon, to avoid

melt spill-over, as illustrated in Figure 3.1.

Conditions that guarantee the existence of the meniscus and its pinning at the

corner would solve these two problems. The issue was first addressed around the

same time of Kudo’s experiments by Rhodes and co-workers [48]. In their study,

they used a mathematical model based on fluid hydrostatics to describe the section

of the HRG process where down-growth takes place (depicted in Figure 3.1 as well).

CHAPTER 3. MENISCUS STABILITY IN THE HRG PROCESS. PART I: A
CLASSICAL APPROACH
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Using numerical methods they determined the shape of the meniscus for several

operating conditions as well as the relationship between melt height and meniscus

height. They concluded from the computer simulations that in order to obtain a

statically stable meniscus, the melt height should be below the meniscus height

(h2 < h1) and therefore a slightly inclined pulling angle would be propitious for

the stable operation of the process. In two recent papers, Daggolu et al. [44, 45],

using a thermal-capillary model, analyzed the relationship between the pulling rate

of the ribbon and the length of the meniscus. Using numerical simulations, they

found a critical value of the pulling velocity for which the meniscus recedes and the

melt spills over. They also found that due the highly non-linear dynamics of the

process, multiple solutions for the meniscus length exist for a given pulling velocity.

The numerical studies of Rhodes et al. [48] and Daggolu et al. [44, 45] raise the

question whether it is possible to derive a general theory for the stability of the

lower meniscus in the HRG process.

In this chapter we use an energy-based model to calculate the shapes and stability

of the meniscus in the HRG process. Analog to the work of Pitts [46] and Mika et

al. [40], we use the first law of thermodynamics to construct an energy functional,

and, using variational principles, calculate the shape and stability of the meniscus.

We first give a brief overview of the fundamental variational concepts, mainly, the

Euler-Lagrange equation, used to calculate stationary curves, and the Legendre

and Jacobi tests to find whether the stationary curve is stable or not. By solving

analytically the Euler-Lagrange equation derived from the first variation (which

is equivalent to the governing Young-Laplace equation), we find the shape of the

meniscus as function of the operating parameters of the system, such as the pulling

angle and the geometry of the wafer. Once the existence conditions have been

found, we use the second variation (Legendre’s and Jacobi’s tests) to prove that

the curves found by the analytical solution are stable. Based on this analysis, we

show a straighforward practical methodology to find the existence of hydrostatically

permissible configurations of the HRG system.

CHAPTER 3. MENISCUS STABILITY IN THE HRG PROCESS. PART I: A
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3.2 Fundamentals of the calculus of variations

The calculus of variations deals with integrals of the form [20]

U0 =

∫ H1

0
F

(
Y,X,

dX

dY

)
dY, (3.1)

where F represents a given functional form, and the relationship between X and Y

is not known. The problem consists in finding the function X(Y ) for which U0 is

a maximum or a minimum. In many applications, including the study of capillary

stability, U0 represents the energy of the system.

The problem is solved as follows: let X(Y ) be the equation of a stationary curve,

and let X(Y ) + εW (Y ) a perturbation to such curve, where ε is a “small” arbitrary

constant and W (Y ) is any arbitrary function of Y that satisfies

W (0) = 0 and W (H1) = 0. (3.2)

These type of perturbations are usually referred to as weak variations. The concept

is illustrated in Figure 3.3.

We represent the integral for which U0 is stationary by

U s0 =

∫ H1

0
F (Y,Xs, X

′
s) dY, (3.3)

and the neighbouring curve by

U s0 + δU s0 =

∫ H1

0
F (Y,Xs + εW,X ′s + εW ′) dY. (3.4)

In these last two expressions, the prime represents differentiation with respect to Y .

Expanding the right hand side term of the last equation in a Taylor series expansion

around the stationary curve we have

F (Y,X + εW,X ′ + εW ′) = F (Y,X,X ′) + ε

(
W
∂F

∂X
+W ′

∂F

∂X ′

)
+

ε2

2

(
W 2 ∂

2F

∂X2
+ 2WW ′

∂2F

∂X∂X ′
+W ′2

∂2F

∂X ′2

)
+O(ε3).

(3.5)
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So we can represent the variation in the energy as

δU s0 = ε

∫ H1

0

(
W
∂F

∂X
+W ′

∂F

∂X ′

)
dY+

ε2

2

∫ H1

0

(
W 2 ∂

2F

∂X2
+ 2WW ′

∂2F

∂X∂X ′
+W ′2

∂2F

∂X ′2

)
dY +O(ε3).

(3.6)

The first term on the right hand side of the equation is referred to as the first

variation and the second term as the second variation. Neglecting the higher order

terms of ε, it is clear from this expression that if δU s0 is negative then U0 is a

maximum, and if δU s0 is positive then U0 is a minimum. Given the structure of

these two integrals, we also see that the sufficient conditions for having a maximum

are that the first variation of the energy function vanishes and its second variation

is less than zero. Similarly the sufficient conditions for a minimum are that the first

variation vanishes and the second variation is greater than zero. The findings of

Euler, Legendre and Jacobi allowed for a very convenient treatment of the first and

second variation, and are summarized in the next sections.

3.2.1 The first variation

In 1744, Leonhard Euler (1707-1783) discovered an expression that, when satisfied,

yields the stationary curves of U0, which make the first variation equal to zero. The

first variation in equation (3.6) can be transformed since∫ H1

0
W ′

∂F

∂X ′
dY = W

∂F

∂X ′

∣∣∣∣
Y=0

−W ∂F

∂X ′

∣∣∣∣
Y=H1

−
∫ H1

0
W

d

dY

(
∂F

∂X ′

)
dY, (3.7)

and W (0) = W (H1) = 0. So the expression for the vanishing of first variation can

be expressed as ∫ H1

0
W

[
∂F

∂X
− d

dY

(
∂F

∂X ′

)]
dY = 0. (3.8)

From this expression Euler deduced that if W is an arbitrary function of Y , then

the above equation can be satisfied if and only if

∂F

∂X
− d

dY

(
∂F

∂X ′

)
= 0, (3.9)
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for all values of Y between 0 and H1. The solution to this equation yields the

stationary curves X(Y ) of U0. We summarize this result in the following theorem:

FUNDAMENTAL THEOREM I (Euler): Every function X(Y) which min-

imizes or maximizes the integral

U0 =

∫ H1

0
F (Y,X,X ′) dY, (3.10)

must satisfy the differential equation

∂F

∂X
− d

dY

(
∂F

∂X ′

)
= 0. (3.11)

This equation is commonly known as the Euler-Lagrange equation, and represents

the first building block in the development of the calculus of variations.

3.2.2 The second variation

Once a stationary curve is found by means of the Euler-Lagrange equation, it is

necessary to find whether such curve represents a maximum or a minimum. For a

stationary curve, the total variation reduces to

δU s0 =
ε2

2

∫ H1

0

(
W 2 ∂

2F

∂X2
+ 2WW ′

∂2F

∂X∂X ′
+W ′2

∂2F

∂X ′2

)
dY. (3.12)

In this expression we neglected the terms of third order and higher. In order to prove

that U0 is a minimum, we need to show that the sign of δU s0 is positive regardless of

the choice of W (Y ). In the same manner, in order to prove that U0 is a maximum

we need to show that the sign of the second variation is negative.

In 1786, Adrien-Marie Legendre discovered a necessary criterion to distinguish

between a maximum or a minimum. He added to the expression of the second

variation the following term

ε2

2

∫ H1

0
(2WW ′Z +W 2Z ′)dY, (3.13)

where Z is an arbitrary function of Y . This integral is equal to zero since∫ H1

0

d

dY
(W 2Z)dY = ε

(
W 2Z

∣∣∣∣
Y=H1

−W 2Z

∣∣∣∣
Y=0

)
, (3.14)
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and W vanishes at the end points. Legendre thus converts the expression for the

second variation into

δU s0 =
ε2

2

∫ H1

0

[(
∂2F

∂X2
+ Z ′

)
W 2 + 2

(
∂2F

∂X∂X ′
+ Z

)
WW ′ +

∂2F

∂X ′2
W ′2

]
dY,

(3.15)

and finds the arbitrary function Z using the condition that the discriminant of the

quadratic form in the variables W and W ′ in the integrand vanish:(
∂2F

∂X∂X ′
+ Z

)2

− ∂2F

∂X ′2

(
∂2F

∂X2
+ Z ′

)
= 0. (3.16)

This reduces the the second variation to the following expression:

δU s0 =
ε2

2

∫ H1

0

 ∂2F

∂X ′2

(
W ′ +

∂2F
∂X∂X′ + Z

∂2F
∂X′2

W

)2
 dY. (3.17)

From this expression, Legendre concludes that ∂2F/∂X ′2 must not change sign in

the interval (0, H1). We summarize this result in the following theorem:

FUNDAMENTAL THEOREM II (Legendre): For a minimum (maxi-

mum) it is necessary that

∂2F

∂X ′2
≥ 0 (≤ 0) in (0, H1). (3.18)

This is commonly known as Legendre’s test and it is a necessary condition for an

extrema.

We are only left with the study of the differential equation (3.16); Legendre’s

condition is valid if and only if there exist an integral to such equation that is

continuous and finite. In 1837, Karl Jacobi (1804-1851) analyzed this differential

equation by using the change variable

Z = − ∂2F

∂X∂X ′
− ∂2F

∂X ′2
,
V ′

V
, (3.19)

transforming (3.16) into[
∂2F

∂X2
− d

dY

(
∂2F

∂X∂X ′

)]
V − d

dY

(
∂2F

∂X ′2
dV

dY

)
= 0. (3.20)
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This equation is commonly known as Jacobi’s differential equation or Jacobi’s acce-

sory equation. If V has a solution different from zero throughout (0, H1) then the

solution forms an integral for W as well. However, if the integral vanishes at least

at one point, then Legendre’s construction is not applicable throughout the interval

(0, H1), and no conclusion can be established on the nature of the stationary curve.

Jacobi’s criterion is usually put in terms of the concept of conjugate points. We

say that if there exists a point P between 0 and H1 such that V (0) = V (P ) = 0

with V (Y ) 6= 0 for all Y ∈ (0, H1), then P is a point conjugate to 0. The concept is

illustrated in Figure 3.2.

Jacobi’s accesory equation is linear and homogeneous, therefore if any nonzero

solution V (Y ) has a conjugate point, every constant multiple of it (e.g. kV (Y )) will

also have a conjugate point. If we can find any nonzero solution that doesn’t vanish

in the interval (0, H1) then Jacobi’s test is satisfied. Without loss of generality we

thus impose

V (0) = 0 and
dV

dY

∣∣∣∣
Y=0

= 1, (3.21)

and find whether the solution V (Y ) has any conjugate points. We summarize this

analysis in the following theorem:

FUNDAMENTAL THEOREM III (Jacobi): Let X = F (Y ) be the equa-

tion of the extremal through the points 0 and H1 for which the integral U0 =∫ H1

0 F (Y,X,X ′) dY is stationary. Let 0 and P be two adjacent conjugate points

on the curve. If H1 lies between 0 and P and ∂2F
∂X′2 has constant sign for all points

of the arc (0, H1), then for weak variations U0 is a maximum when ∂2F
∂X′2 is negative

and a minimum when it is positive.

In the next section we show that, in our HRG system, the stationary curve

defines the meniscus located between the ribbon and the surface of the crucible (see

Figure 3.3), and is calculated by solving the Euler-Lagrange equation. The stability

of the feasible meniscii with respect to weak variations is calculated using Legendre’s

and Jacobi’s analyses.
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H1 

V(Y) 

Y 
0 

Conjugate point 

Figure 3.2: Two possible solutions of a Jacobi differential equation, dashed line has

a conjugate point.

3.3 Problem statement

In order to address the issues of melt spill-over and down-growth, we study the

mechanical equilibrium of the section of the HRG process depicted in Figure 3.1: a

crystal ribbon of length l and thickness t rests on top of the melt and is pulled out

of the crucible at an angle β with respect to the melt surface. The use of an inert

gas or cooling fluid flowing through a set of plates placed on top of the surface serve

as a suitable means to dissipate the heat of crystallization flowing from the bath.

The length of these plates determine the length of the ribbon inside of the molten

bath, and the gas flow rate help control -along with the pulling rate- its thickness.

It is assumed that the upper meniscus location (the point where the melt surface

joins the ribbon) is determined by the melt height, the pulling angle by the length

of the cooling plates (which gives rise to a fixed ribbon length).

As we mentioned before, a meniscus must be formed between the ribbon and the

crucible so that no attachment of the ribbon to the crucible occurs. The meniscus
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y 

x 

X = X(Y) 
X = X(Y) + ϵ W(Y) 

ϵ W(Y) 

Figure 3.3: A variation is made to a stationary curve representing meniscus in the

HRG process. Dashed line is the perturbed curve X = X(Y ) + εW (Y ).

is assumed to be pinned at the outer corner of a crucible (that for now we assume

to be rectangular). At this pinning point, the melt forms a contact angle θ with

respect to the positive horizontal axis. The fact that the meniscus is hinged at a

corner allows it to achieve a wide range of contact angles that might differ from the

equilibrium angle θeq. The theoretical foundation of this phenomenon was developed

by Gibbs [21] and is explained further in this work. Also, a growth angle σ is formed

between the meniscus and the crystal; the observations of Surek and Chalmers [58]

found that for a silicon system, the value is approximately 11◦. For our theoretical

analysis, we neglect the effects of convection and the effects of thermal gradients.

We also assume that the width of the ribbon is wide enough so that the meniscus

is represented accurately in two dimensions.
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3.4 The energy functional of the HRG process

In order to perform a variational treatment of the HRG process, we use the first law

of thermodynamics to construct an expression for the total energy of the system.

We have that the amount of energy required to add a melt slice of thickness dy (see

Figure 3.1) into the system is

dU = δQ+ dWt, (3.22)

where δQ is the incremental heat supplied to the system (which we assume to be

zero), and dWt is the total work done by the system on the melt slice. In our system

the total work is that caused by the melt pressure on the volume differential, the

increase in the surface area of the meniscus, and the change in the area of the melt

in contact with the ribbon, thus

dU = −PdV + γdA− (γsv − γsl)dA′. (3.23)

In the above equation P is the total pressure exerted over a slice of fluid of volume

dV , γ is the liquid-vapor surface tension, dA is the change in the surface area of

the meniscus, γsv is the solid-vapor interface tension, γsl the solid-liquid interfacial

tension, and dA′ the change in the surface area of the melt in contact with the

ribbon. The overall pressure is given by the weight of the liquid plus the weight of

the ribbon. In a two dimensional Cartesian coordinate system we have

P = ρlg(h2 − y) + ρsgt, (3.24)

and

dV = xdy. (3.25)

Also, in a two dimensional Cartesian coordinate system we also have that

dA = ds =

√
1 +

(
dx

dy

)2

dy, (3.26)

where ds is an element of length along the meniscus profile. Similarly, we have that

dA′ = ds′ =

√√√√1 +

(
dx

dy

∣∣∣∣
x=xr

)2

dy =
√

1 + cot2(σ + β)dy =
dy

sin(σ + β)
. (3.27)
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Putting all these terms together, yields the following expression:

dU = −(ρlg(h2 − y)) + ρsgt)xdy + γ

√
1 +

(
dx

dy

)2

dy − (γsv − γsl)
sin(σ + β)

dy. (3.28)

Thus, the total change in energy of the HRG system is

∆U

(
y, x,

dx

dy

)
=

∫ h1

0

−(ρlg(h2 − y)) + ρsgt)x+ γ

√
1 +

(
dx

dy

)2

− γ cot(σ + β)

 dy.
(3.29)

In the last term of the integral we used Young’s relationship:

γsv − γsl = γ cos(σ + β). (3.30)

Nondimensionalizing length scales with respect to the capillary constant,

a =

√
γ

ρlg
, (3.31)

yields the following expression

U0

(
Y,X,

dX

dY

)
=

∫ H1

0

−(H2 − Y +
ρs
ρl
T

)
X +

√
1 +

(
dX

dY

)2

− cot(σ + β)

 dY,
(3.32)

where

U0 = ∆Uγ−
3
2 (ρlg)

1
2 , x = aX, y = aY , t = aT , h1 = aH1 and h2 = aH2. (3.33)

We see that the form of the energy functional of the HRG process allows us to use

the classic variational concepts.

3.5 Existence of the meniscus in the HRG process

We find the stationary curves of our system by solving the Euler-Lagrange equation

[20]:
∂F

∂X
− d

dY

(
∂F

∂X ′

)
= 0. (3.34)

CHAPTER 3. MENISCUS STABILITY IN THE HRG PROCESS. PART I: A
CLASSICAL APPROACH

31



3.5. EXISTENCE OF THE MENISCUS IN THE HRG PROCESS

In our case we have,

F = −(H2 − Y +
ρs
ρl
T )X +

√
1 +

(
dX

dY

)2

− cot(σ + β), (3.35)

∂F

∂X
= −(H2 − Y +

ρs
ρl
T ), (3.36)

∂F

∂X ′
=

dX
dY√

1 +
(
dX
dY

)2 , (3.37)

d

dY

(
∂F

∂X ′

)
=

d2X
dY 2(

1 +
(
dX
dY

)2)3/2
, (3.38)

so the resulting Euler-Lagrange equation is

−(H1 − L sinβ − Y +
ρs
ρl
T )−

d2X
dY 2(

1 +
(
dX
dY

)2)3/2
= 0. (3.39)

In the equation above we used the geometrical relationship

H2 = H1 − L sinβ, (3.40)

where L is the dimensionless ribbon length.

We see that the first variation of the energy function, yields the governing Young-

Laplace equation for the HRG process. The Young-Laplace equation is a second

order differential equation and requires two boundary conditions to close its formu-

lation. We set the pinning condition and the contact angle condition

X = Xc when Y = 0, (3.41)

dX

dY
= cot θ when Y = 0. (3.42)

In equation (3.39) the value of the equilibrium height H1 is unknown. Nonethe-

less, we know that at this point the following condition must hold

dX

dY
= cot(σ + β) when Y = H1. (3.43)

This last additional expression is used to find the value of H1. This approach

is different from the one taken by Rhodes and collaborators (see Section 3.8). In
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their work they integrate numerically the Young-Laplace equation up to the point

at which condition (3.43) is satisfied; this point corresponds to the value of the

meniscus height but there is no previous knowledge if this value is attainable or not.

In the next section we find an explicit expression of the equilibrium height, and use

the calculated expression for solving the Young-Laplace equation.

3.5.1 The equilibrium height of the meniscus

Using dX
dY = cot Ω, we transform equation (3.39) into

(−H1 + L sinβ + Y − ρs
ρl
T )dY = − sin ΩdΩ. (3.44)

In this equation Ω is the angle formed between the tangent line to the meniscus at

any point (X,Y ) and the horizontal (see Figure 3.1). Integrating the left hand side

from 0 to H1, the right hand side from θ to σ + β, and solving for H1, we obtain

H1± = L sinβ − ρs
ρl
T ±

√(
ρs
ρl
T − L sinβ

)2

+ 2 cos θ − 2 cos(σ + β) = H11 ±H12.

(3.45)

The existence of a real value of the equilibrium height H1 is a necessary condition

for the existence of the meniscus. Thus we require that

1

2

(
ρs
ρl
T − L sinβ

)2

≥ cos(σ + β)− cos θ. (3.46)

In addition, we also require the equilibrium height to be always positive, i.e.

H11 ±H12 > 0. (3.47)

3.5.2 Shape and existence of the meniscus

Integrating equation (3.44) from the lower limits (Y = 0 and Ω = θ) to an arbitrary

set of values Y and Ω, we solve for the angle Ω in terms of Y ,

Ω(Y ) = arccos

(
Y 2

2
∓H12Y + cos θ

)
. (3.48)
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Putting this expression into dX
dY = cot Ω yields the following differential equation:

dX

dY
= cot

(
arccos

(
Y 2

2
∓H12Y + cos θ

))
=

Y 2

2 ∓H12Y + cos θ√
1−

(
Y 2

2 ∓H12Y + cos θ
)2
,

(3.49)

with initial condition

X = Xc when Y = 0. (3.50)

The solution to this equation is

X(Y ) = Xc+
√
A+ 2[E(ΨY , κ)−E(Ψ0, κ)]− 2√

A+ 2
[F(ΨY , κ)−F(Ψ0, κ)], (3.51)

where F(Θ, κ) and E(Θ, κ) are the incomplete elliptic integrals of the first and

second kind respectively and,

ΨY = arcsin

(
Y ∓

√
2 cos θ −A√
2−A

)
, (3.52)

Ψ0 = arcsin

(
∓
√

2 cos θ −A
2−A

)
, (3.53)

A = 2 cos(σ + β)−
(
ρs
ρl
T − L sinβ

)2

, (3.54)

κ =

√
A− 2

A+ 2
. (3.55)

The complete solution method is shown in Appendix A. The form of this solution

is akin to the results found in the literature of capillarity phenomena and shaped

crystal growth (see Laplace [35], Tatarchenko [60], Myshkis [42] and Anderson [1]).

Also, single-valuedness of the solution is presupposed. The plus and minus signs in

the equation indicate that the solution is composed by two branches. We analyze

their existence using the argument of the inverse cosine in equation (3.48):

f(Y )∓ =
Y 2

2
∓H12Y + cos θ. (3.56)

This function must be continuous and must satisy the following condition:

−1 < f(Y )∓ < 1 ∀ Y ∈ [0, H1± ]. (3.57)
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Note that the use of a minus sign in f corresponds to the use of a positive sign in

the expression for the equilibrium height shown in equation (3.45), and viceversa

when the plus sign is used. In order to have a feasible meniscus, conditions (3.47)

and (3.46) must satisfied as well as the following conditions (see Appendix B):

• The branch f(Y )+ exists if:

θ > σ + β ∧ β > arcsin

(
ρsT

ρlL

)
. (3.58)

• The branch f(Y )− exists if:

1 + cos(σ + β) ≥ 1

2

(
ρs
ρl
T − L sinβ

)2

, (3.59)

[θ < σ + β] ∧
[
θ > σ + β ∧ β > arcsin

(
ρsT

ρlL

)]
. (3.60)

• Both solution branches f(Y ) exist if:

1 + cos(σ + β) ≥ 1

2

(
ρs
ρl
T − L sinβ

)2

, (3.61)

θ > σ + β ∧ β > arcsin

(
ρsT

ρlL

)
. (3.62)

3.6 Stability of the meniscus in the HRG process

To guarantee that the stationary curve X(Y ) is stable, the Legendre test must be

satisfied and the nontrivial solution to the governing Jacobi’s differential equation

must have no conjugate points. The (strengthened) Legendre conditions for a min-

imum requires that the condition,

∂

∂X ′

(
∂F

∂X ′

)
> 0, (3.63)

must be satisfied at every point of the stationary curve. In our case we have that,

∂

∂X ′

(
∂F

∂X ′

)
=

1(
1 +

(
dX
dY

)2)3/2
, (3.64)
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which is always positive at every point of the admissible stationary curve described

by equation (3.51) and its existence conditions. Thus, Legendre test is satisfied.

The Jacobi differential equation[
∂2F

∂X2
− d

dY

(
∂2F

∂X∂X ′

)]
V − d

dY

(
∂2F

∂X ′2
dV

dY

)
= 0, (3.65)

with conditions

V (0) = 0 and
dV

dY

∣∣∣∣
Y=0

= 1, (3.66)

applied to our case yields

∂2F

∂X2
= 0, (3.67)

∂

∂X

(
∂F

∂X ′

)
=

∂

∂X

 dX
dY√

1 +
(
dX
dY

)2
 = 0, (3.68)

∂

∂X ′

(
∂F

∂X ′

)
=

∂

∂X ′

 dX
dY√

1 +
(
dX
dY

)2
 =

1(
1 +

(
dX
dY

)2)3/2
. (3.69)

So our Jacobi differential equation reduces to

− d

dY

(
∂2F

∂X ′2
dV

dY

)
= 0. (3.70)

Integrating once we have
∂2F

∂X ′2
V ′ = K1. (3.71)

Imposing V ′(0) = 1, and knowing that at the origin X ′ = cot θ we get

1

(1 + cot2 θ)
3/2
· 1 = sin3 θ = K1. (3.72)

Updating our differential equation, we have

dV

dY
= sin3 θ

(
1 +

(
dX

dY

)2
)3/2

. (3.73)

Imposing the remaining boundary condition gives,

V (Y ) = V (0) + sin3 θ

∫ Y

0

(
1 +

(
dX(Y )

dY

)2
)3/2

dY

= sin3 θ

∫ Y

0

(
1 +

(
dX(Y )

dY

)2
)3/2

dY .

(3.74)
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The above function does not vanish for any value of Y ∈ (0, H1) and values of

θ ∈ (0◦, 180◦). Thus, the solution V (Y ) has no conjugate points, and the stationary

curves described by equation (3.51) are a minimum and stable with respect to weak

perturbations. The values θ = 0◦ and θ = 180◦ represent stability limits, but as

we show in the next section, these angles are never realized due to the pinning

conditions found by Gibbs.

3.6.1 Analyzing the pinning condition via the Gibbs’s limit

So far we have worked under the assumption that the meniscus remains hinged at

the corner of the crucible. However, this assumption is only valid for a given range

of contact angles. In his work on thermodynamics, Gibbs [21] found the range of

contact angles under which the surface of a liquid placed at the corner of a solid

surface remains at equilibrium (see Figure 3.4). These criteria allows us to know the

contact angles at which the meniscus either recedes or spills over from the corner of

the crucible. The classical representation of the limits is (see Appendix E):

θeq < θg < 180◦ − φ+ θeq. (3.75)

The angle θg in this expression is the supplement of the angle θ that we employ

throughout this work, φ is the angle of the corner of the two solid surfaces (90◦

for a rectangular crucible) and θeq is the equilibrium wetting angle. Angles below

the lower limit forces the meniscus backwards into the crucible and those above the

upper limit induces the melt to spill over.

3.7 Illustration of the theory

In order to illustrate the applicability of our theory, we present an analysis using

the properties and parameters for a silicon system. All the equations and results

presented above are dimensionalized using the values in Table 3.1. The values of

the wetting angles were taken from the observations by Swartz et al. [59], Surek
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x 

y 

Φ 

θeq 

180° – Φ + θeq 

Figure 3.4: The contact angle θ must be between the Gibbs’ limits to ensure its

pinning to the corner of the crucible. The values of θ must lie within the shaded

region (see equation (3.75)).

et al. [57] and Champion et al. [11]. The wetting angles are measured from the

liquid-solid interface to the liquid-vapor interface, as shown in Figure 3.5. With

these values, we develop a straightforward methodology to find the hydrostatically

feasible configuration for producing a silicon ribbon of 6 centimeters in length and

400 micrometers in thickness. The decision variables are the pulling angle β and the

type and shape of crucible to use (which determines the range of possible contact

angles θ).

3.7.1 The existence of the meniscus in terms of θ and β

The conditions of existence found in Section 3.5.2 allows us to know all the possible

hydrostatically feasible configurations that satisfy the boundary conditions for a

given set of operating parameters (wafer thickness, wafer length and pulling angle).

From a process design perspective, the ribbon length and thickness can be considered

degrees of freedom, so we can exert controllable actions on them: the length of the
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Parameter Symbol Value

Density of solid silicon ρs 2293 [kg m−3]

Density of liquid silicon ρl 2570 [kg m−3]

Acceleration of gravity g 9.8 [m s−2]

Surface tension of silicon γ 0.72 [J m−2]

Silicon growth angle σ 11◦

Melt-graphite wetting angle θeqc 30◦

Melt-quartz wetting angle θeqs 87◦

Table 3.1: Material properties and parameters used in the illustrative example.

θeq θeq 

Figure 3.5: The contact angle for a wetting material (left) and a non-wetting mate-

rial (right). A silicon melt in contact with a graphite crucible exhibits high wettabil-

ity, whereas low wettability is observed in a silicon melt sitting on a quartz crucible.

See Table 3.1.
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Condition Expression/Function

Existence θ(β) = arccos

(
cos(σ + β)− 1

2

(
ρs
ρl
T − L sin(β)

)2
)

f± to f− boundary θ(β) = σ + β

f± to f+ boundary 0 = 1
2

(
ρs
ρl
T − L sin(β)

)2
− 1− cos(σ + β)

βcrit β = arcsin
(
ρsT
ρlL

)
Spill-over θ = φ− θeq

Receding meniscus θ = 180◦ − θeq

Table 3.2: Functions constraining the area of static stability for molten silicon on a

graphite crucible. The value of β in the equation describing the f± to f+ boundary

is calculated numerically.

wafer can be controlled by setting the length of the cooling plates placed on top of

the melt. And the thickness of the ribbon can be controlled by adjusting the cooling

rate and the pulling speed of the ribbon. With these values under control, we are

left with an additional degree of freedom, the pulling angle, and a process variable

that depends primarily on the wetting properties of the interacting materials, the

contact angle. Although this last variable cannot be controlled while the system is

in operation, we address this issue by finding feasible configurations that, given a

pulling angle, allow for the existence of a wide range of contact angles. Once we

find this range, we show its correlation with the range of permissible melt levels.

Figure 3.6 and Figure 3.7 show the regions of existence for a HRG system cor-

responding to the production of a silicon ribbon of 6 centimeters in length and 400

microns in thickness. We assume that the crucible is made of graphite and that we

have two possible crucible edge geometries: one with a rectangular corner (φ = 90◦)

and one with a relatively sharp corner (φ = 45◦). The solid curves representing the
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conditions found in Section 3.5.2 divide the β − θ space into six operating zones,

three of which give rise to hydrostatically feasible configurations (where the solution

branches f±, f− or f+ exist). The dashed lines representing the Gibbs’ limits for

both the rectangular and sharp-cornered crucible constrain further the feasible val-

ues of the contact angle θ. The uppermost horizontal line is the value of the contact

angle where the meniscus recedes from the corner and displaces towards the inner

surface of the crucible. The other horizontal lines are the values of the contact angle

where the meniscus unpins from the corner of crucible and the melt spills over. We

see that the use of a sharp-edged crucible is preferable over a rectangular-edged one.

Within the three regions where we have feasible configurations, we find that there

exists values of pulling angles that further enhances the flexibility of the operation.

We mentioned earlier that the contact angle is a variable that cannot be controlled

in the system, and that, what we would like to find is a set of pulling angles that

correspond to the existence of a wide range of contact angles. For example, when

the ribbon is pulled at an angle of 10◦ and the meniscus is pinned to a sharp-

edged corner, the hydrostatically feasible configuration corresponding to the solution

branch f− exist for values of θ ranging from 15◦ (the spill-over limit) to 146.8◦

(the existence limit); for the case of the solution branch f+ it exists from a value

of 21◦ (the f± to f− boundary) to 146.8◦ (the existence limit). By pulling the

ribbon at 10◦, the range of possible contact angles for both solution branches is

relatively wide, which implies a more flexible operating condition. Contrasting this

with pulling the ribbon at 5◦, we have that in order to obtain a feasible configuration,

the contact angle is constrained from below by values between 15◦ and approximately

56.9◦ for both solution branches. The case worsens if one uses relatively large

pulling angles (e.g. 12◦, as only one solution branch exists). Also pulling the ribbon

completely horizontal is an inflexible operating condition, both from the point of

view of hydrostatics (the window of operability in terms of θ is very small) and

thermodynamics (the feasible contact angle corresponding to a zero pulling angle

are below the Gibbs’ limits).
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Figure 3.6: Regions of meniscus existence for a 6 centimeter long and 400 microns

thick ribbon. Solid lines are the existence conditions found in Section 3.5.2. The

dashed lines represent the Gibbs’ limits. Meniscii shown in Section 3.7.3 correspond

to the circles in the existence diagram.
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Figure 3.7: Expanded view of existence region close to the origin.

Another aspect to mention, not shown in the figure, is the difference in the Gibbs’

limits between the graphite crucible and a silica crucible. In the figure we show that

for a rectangular-cornered graphite crucible, the Gibbs’ limits are between θ = 60◦

and θ = 150◦, and that the lower limit can be reduced to θ = 15◦ by using of a sharp-

edged crucible. In the case of silica, the limits for a rectangular-cornered crucible

are between θ = 3◦ and θ = 93◦. The value of the lower limit implies that there

is very little difference in using a sharp-edged silica crucible, since the lower limit

could be reduced by at most three degrees. This means that the large enhancement

of the pinning condition that is achieved by using a sharp-edged crucible cannot be

obtained in silica crucibles.

3.7.2 The equilibrium height of the meniscus and its relationship

with the melt height

In the previous section, we showed that there are pulling angles that ensure the

existence of the meniscus for a wide range of contact angles. In Figure 3.8 we plot
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Figure 3.8: Equilibrium height as a function of the contact angle for two different

pulling angles. The realization of a wider range of contact angles can be achieved

by using large values of β.

the equilibrium height as a function of the contact angle, for the cases when β = 5◦

and β = 10◦. We see clearly that a wider range of possible meniscii are achievable

when a pulling the ribbon at 10◦ than at 5◦. The “trajectory” of the solution

corresponding to β = 10◦ encompasses a wider range of feasible meniscii. We also

see the behaviour of the two solution branches, f− and f+, each corresponding

to the dashed and solid line respectively. The equilibrium height for the solution

branches have the opposite trend as the contact angle increases: for the case of f−

it decreases monotonically and for the case of f+ it increases monotonically. Both

solution branches have the same equilibrium height at the vertex of the parabola,

where they reach the existence limit described by equation (3.46) with the equality

enforced. Since the meniscus height is related to the melt height by h2 = h1− l sinβ,

the behaviour of the solution also means that as the melt level increases from a lower

bound to a critical point (the value of h2 at the vertex) the contact angle increases;

once it crosses this point, as the melt level keeps increasing, the contact angle will
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decrease until it reaches the spill-over limit. The vertex of the parabola represents

the point where the combined pressure of the ribbon and the melt acting upon the

meniscus is equal to zero (i.e. ρsgt+ ρlgh2 = 0), so that the overall pressure across

the meniscus ∆P (y) is always less than or equal to zero at this point. As the melt

level increases, the exerted pressure across a section of the meniscus can be positive

in one section and negative in another section. This change in pressure induces the

formation of meniscii with convexo-concave shapes.

The solution branch f− exists for values of θ ranging from 0◦ to 146.8◦, but is

constrained by the spill-over condition at θ = 15◦. The case for f+ is different, for

its existence is constrained by the condition θ > σ + β, represented by the diagonal

line in the existence diagram. For β = 5◦, θmin = 16◦, and for β = 10◦, θmin = 21◦.

At these contact angles, the equilibrium height of the configuration corresponding

to the solution branch f+ is zero and the ribbon is at risk of freezing to the crucible.

The union of these two solution branches with their imposed constraints represent

the overall solution of the hydrostatic problem of the HRG process.

Finally, we correlate the existence of the meniscus heights to their corresponding

melt levels. From Figure 3.9 we see that pulling a 6 centimeter long, 400 microns

thick ribbon at 10 degrees is a feasible configuration if the surface of the silicon melt

is kept at around 1 centimeter above or below the crucible lip. Values outside this

range provoke the freezing of the ribbon to the crucible or the melt spilling over

from it. For the case when the ribbon is pulled at 5 degrees, these limits narrow

to approximately ±0.5 centimeters. This result offers useful insights as it points

directly into a variable that can and must be measured and controlled while the

process is in operation.

3.7.3 The shape of the meniscus and the hydrostatically feasible

configurations

Having already calculated the relationship between the height of the meniscus and

the height of the melt, we proceed to plot the shape of the meniscii for both solution
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Figure 3.9: Meniscus height as a function of the melt height.

branches. In Figure 3.10 we plot several meniscii that correspond to the solution

branch f+. From Figure 3.9 we see that this branch gives us the minimum melt

level allowed in the system, which is equal to approximately 10.4 milimeters below

the edge of the crucible. Starting from this point, as the melt level increases, the

equilibrium height and the contact angle increase as well; the meniscus takes a

concave shape, up to the critical value of approximately 0.35 milimeters below the

crucible edge (corresponding to θ ≈ 146◦). At this point the shape of the meniscus

is described by the solution branch f− shown in Figure 3.11; as the melt level

increases, it starts exerting pressure over the meniscus, which explains the bulking

of the meniscus close to its pinning point and the decrease in the value of the

contact angle. This induces the formation of a meniscus with a convexo-concave

shape. The concave portion of the meniscus corresponds to a negative pressure

differential exerted over it, and the convex to a positive differential. This pressure

differential is attributed more to the melt level than to the weight of the wafer. In
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this particular configuration, the contact angle starts decreasing as we increase the

height of the melt, up to a value of approximately 9.79 milimeters (corresponding

to θ = 15◦), where we reach the spill-over limit.

In Figures 3.12 and 3.13 we plot the different meniscus shapes when pulling the

ribbon at 5 degrees for each solution branch. Pulling the ribbon at β = 10◦ gives

rise to meniscii with larger heights and permits the extraction of the ribbon at a

wide range of melt levels. This is specially important if the static equilibrium is per-

turbed by a sudden increase or decrease of the melt level. This flexible configuration

also gives rise to meniscii with surfaces closer to the inside of the crucible. Poten-

tially unstable meniscii are flatter and more elongated towards the outside of the

crucible, and a narrower range of melt heights guarantees hydrostatic equilibrium.

Figures 3.14 and 3.15 illustrate two hydrostatically feasible configurations drawn

to scale. In Figure 3.14 we sketch the configuration of an HRG system with the

melt placed at a level slightly below the surface of the crucible lip, in Figure 3.15

we sketch a configuration with the surface of the melt at the maximum level; a

higher pressure exerted over the meniscus will induce the meniscus to unpin from

the corner of the crucible and cause the melt to spill over.

3.7.4 Stability analysis

In this section we illustrate the stability of the meniscii by plotting the dimensional

form of the perturbation function, v(y), as a function of y. In Section 3.6 we found

that the Legendre test is satisfied and that the stationary curves correspond to a

minimum; we also found that the solution of the Jacobi differential equation has no

conjugate points, and therefore the meniscii described by our analytical solution are

always stable. Figure 3.16 shows the solution of the Jacobi differential equation for

the meniscii curves shown in Figure 3.11. These curves correspond to the integration

of expression (3.73), which we solved using MATLAB’s ode15s function.
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Figure 3.10: Plots of analytical solution (equation (3.51)) of the governing Young-

Laplace equation for the HRG process. Plots show the shape of the meniscus for

a 400 microns thick and 6 centimeters long ribbon and a pulling angle of β = 10◦.

Meniscii shapes correspond to the solution branch f+.
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Figure 3.11: Plots of analytical solution (equation (3.51)) of the governing Young-

Laplace equation for the HRG process. Plots show the shape of the meniscus for

a 400 microns thick and 6 centimeters long ribbon and a pulling angle of β = 10◦.

Meniscii shapes correspond to the solution branch f−.
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Figure 3.12: Plots of analytical solution (equation (3.51)) of the governing Young-

Laplace equation for the HRG process. Plots show the shape of the meniscus for

a 400 microns thick and 6 centimeters long ribbon and a pulling angle of β = 5◦.

Meniscii shapes correspond to the solution branch f+.
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Figure 3.13: Plots of analytical solution (equation (3.51)) of the governing Young-

Laplace equation for the HRG process. Plots show the shape of the meniscus for

a 400 microns thick and 6 centimeters long ribbon and a pulling angle of β = 5◦.

Meniscii shapes correspond to the solution branch f−.
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Figure 3.14: Schematic of hydrostatically feasible operation for producing a 6 cen-

timeter long and 400 microns thick wafer.
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Figure 3.15: Schematic of hydrostatically feasible operation for producing a 6 cen-

timeter long and 400 microns thick wafer. This configuration is prone to melt-spill

over, as the contact angle θ is equal to the lower value of the Gibbs’ limit.

3.8 Comparison of analytical solution with existing lit-

erature

In this section, we compare our theoretical findings with three works reported in the

ribbon growth literature. The first is the computational work carried by Rhodes and

co-workers [48] on the shape of the meniscus in the HRG process. The other two are

computational calculations on the shape and equilibrium height of the meniscus in

the EFG process. In both processes, the meniscus is described by the Young-Laplace

equation that we derived in the main section. The only differences are the terms

describing the value of the pressure differential, ∆P , sustained across the meniscus.

3.8.1 The analysis by Rhodes, Sarraf and Liu on the HRG Process

(1980)

In order to validate our solution strategy, we compare our results with the computa-

tional work of Rhodes and coworkers [48]. In their investigation, Meniscus stability
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Figure 3.16: The solution of Jacobi’s differential equation in dimensional form for

the meniscii plotted in figure 3.11. The function v(y) has no conjugate points in the

interval (0, H1).
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a) b) 

Figure 3.17: Meniscus shapes for different contact angles and melt levels calculated

by Rhodes and collaborators. a) Meniscus shapes for H2 = 0, b) Meniscus shapes

for H2 = 1.5. Figures are extracted from the original research paper (see reference

[48]).

in horizontal ribbon growth, they perform a capillary analysis of the lower meniscus

of the HRG process. Using the Young-Laplace equation as the starting point and

neglecting the weight of the wafer, they calculate numerically the shapes of several

meniscii as a function of the melt height, H2. The differential equation they solve

is (equation (4) in their paper)

H2 − Y =
d2Y
dX2(

1 +
(
dY
dX

)2)3/2
, (3.76)

with boundary conditions Y = 0 at X = 0 and dY/dX = tan(θ) at X = 0. They

solved the initial boundary value problem by integrating via finite differences up to

the point where the condition dY/dX = tan(σ + β) is attained. This is the point

where Y = H1. With our solution strategy shown in Section 3.5.1, we find an a

priori analytical expression for the equilibrium height,

H1 = H2 ±
√
H2

2 + 2(cos(σ + β)− cos(θ)), (3.77)
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Figure 3.18: Meniscus shapes for H2 = 0 calculated with equation (3.78). The

meniscus shapes calculated analytically match the modeling results by Rhodes [48].

and the analytical expression describing the shape of the meniscus

X(Y ) =
√

2 +A

[
E

(
arcsin

(
Y −H2√

2−A

)
A− 2

A+ 2

)
−E

(
arcsin

(
−H2√
2−A

)
A− 2

A+ 2

)]
− 2√

A+ 2

[
F

(
arcsin

(
Y −H2√

2−A

)
A− 2

A+ 2

)
− F

(
arcsin

(
−H2√
2−A

)
A− 2

A+ 2

)]
,

(3.78)

with

A = 2 cos(θ)−H2
2 . (3.79)

Figure 3.18 and 3.19 show plots of the analytical solution corresponding to the

two cases studies by Rhodes and co-workers (H2 = 0 and H2 = 1.5). The values

of equilibrium heights are determined by equation (3.77) using the positive sign.

From this equation we see that if H2 = 0, σ = 0 and β = 0, as θ → π, H1 tends to

the maximum equilibrium height, which is 2. Also, we see that if H2 = 1.5, σ = 0

and β = 0, as θ → 0, H1 tends to 3. It’s worth noting that in the latter case, the

meniscus shape corresponding to θ = 0◦ is the stability limit.

CHAPTER 3. MENISCUS STABILITY IN THE HRG PROCESS. PART I: A
CLASSICAL APPROACH

55



3.8. COMPARISON OF ANALYTICAL SOLUTION WITH EXISTING LITERATURE

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

X

Y

θ = 0°

H1 = 3

θ = 31°

H1 = 3.09
θ = 45°

H1 = 3.18

Figure 3.19: Meniscus shapes for H2 = 1.5, calculated with equation (3.78). The

meniscus shapes calculated analytically match the modeling results by Rhodes [48].
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Figure 3.20: A sketch of the EFG process to grow silicon ribbons.

3.8.2 The analysis by Swartz, Surek and Chalmers on the EFG

process (1974)

In one of the seminal works on the Edge-defined, film-fed growth process, The EFG

Process Applied to the Growth of Silicon Ribbons, Swartz, Surek and Chalmers [59]

perform a capillary analysis to calculate the shape of the meniscus as a function of an

effective height heff . The meniscus existence and stability is critical in determining

the thickness of the ribbon (see Figure 3.20). The formulation they use to calculate

the shape of the meniscus of the ribbon side is the following (equations (2), (3) and

(6) of their paper):

ρg(heff − z) = γ

 d2x
dz2(

1 +
(
dx
dz

)2)3/2

 . (3.80)

The boundary conditions are x = t/2 and dx/dz = tanφ0 at z = 0. Here t is

the thickness of the ribbon (0.04 cm), φ0 is the growth angle (10◦), γ the surface
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tension (720 erg/cm2) and ρ is the fluid density (2.53 g/cm3). The problem was

integrated numerically, so we can use it to compare it with our theoretical solution.

The explicit expression of the height of the meniscus is given by

heq = heff ±

√
h2
eff −

2γ(sinα− sinφ0)

ρg
. (3.81)

In this equation, α is the angle attained at the lower part of the meniscus. The

limiting meniscus height mentioned in the original research paper is calculated by

setting this value to 90◦. The analytical solution for this problem in dimensionless

form is

X(Z) =
Tr
2

+

√
2 +A

[
E

(
arcsin

(
Z −Heff√

2−A

)
A− 2

A+ 2

)
−E

(
arcsin

(
−Heff√

2−A

)
A− 2

A+ 2

)]
− 2√

A+ 2

[
F

(
arcsin

(
Z −Heff√

2−A

)
A− 2

A+ 2

)
− F

(
arcsin

(
−Heff√

2−A

)
A− 2

A+ 2

)]
,

(3.82)

with,

A = −2 sin(φ0)−H2
eff , (3.83)

and

x = aX, z = aZ, tr = aTr, heff = aHeff , (3.84)

where a is the capillary constant.

Figure 3.21 shows the the original meniscus shapes calculated numerically by

Surek an co-workers and the meniscus shapes calculated with the analytical expres-

sion given by equation (3.82). We show that with our solution strategy it is possible

to calculate the shapes of the meniscii, as well as the limiting meniscus heights.

3.8.3 The analysis of Balint and Balint on the EFG process (2008)

We finalize the validation of our analytical work by comparing a recent result on

the EFG process, which concerns the dependency of the equilibrium height of the
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Figure 3.21: Meniscus shapes calculated by Swartz, Surek and Chalmers [59] (left),

and calculated with theoretical expression (3.82) (right). The values of the limiting

meniscus heights are determined by equation (3.81) with the negative sign.

meniscus on the total applied pressure of the system. The form of the starting

Young-Laplace equation is

z′′ =
ρgz − p

γ
[1 + z′2]3/2. (3.85)

The two boundary conditions and the condition required to satisfy the growth angle

condition are

z′(x1) = − tan(π/2αg), z′(x0) = − tanαc, z(x0) = 0. (3.86)

Using our solution strategy, we find the relationship between the applied pressure

and the equilibrium height

h(p) =
p

ρg
±

√(
p

ρg

)2

− 2γ(sinαg − cosαc)

ρg
. (3.87)

Figure 3.22 shows the plot of equation (3.87) and the plot in the original paper.

We see that both curves are identical to each other.
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3.9. THE VALIDITY OF THE HYDROSTATIC APPROXIMATION IN THE HRG
PROCESS

-4000 -3500 -3000 -2500 -2000 -1500 -1000 -500
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

h 1 [
m

m
]

p [Pa]

h(p) calculated by theory. Figure 6. in paper by Balint (2008)

Figure 3.22: Relationship between meniscus height and applied pressure in the

system. Figure on the left calculate by Balint and Balint [2]. Right figure is plotted

using analytical expression (3.87).

3.9 The validity of the hydrostatic approximation in the

HRG process

The validity of the hydrostatic assumption is tested by estimating two dimensionless

numbers: the Weber number and the Froude number. The Weber number compares

the effect of the inertial forces with respect to capillary forces and is defined by We =

ρlV
2
pullh1/γ. For a pulling velocity of 85 cm/min (value reported by Kudo [33]), and

using an equilibrium height of 10 milimeters, the Weber number is around 0.0072.

The Froude number relates the inertial forces to gravity forces and is defined by Fr =

Vpull/(gh1)1/2. For the conditions mentioned above, the Froude number is around

0.045. Since these two values are smaller than unity, the hydrostatic assumption is

a reasonable approximation to describe the optimal operating configurations in the

HRG process.

3.10 Conclusions and contributions

We presented a theoretical analysis of the lower meniscus in the horizontal ribbon

growth process. By using a relatively straighforward solution method, we found

an analytical expression for the height of the meniscus, an explicit solution of the

CHAPTER 3. MENISCUS STABILITY IN THE HRG PROCESS. PART I: A
CLASSICAL APPROACH

60



3.10. CONCLUSIONS AND CONTRIBUTIONS

governing Young-Laplace equation for the HRG process and the stability criteria

for such meniscii. The solutions obtained with the analytical expressions are stable

for values of θ ∈ (0, 180◦). We noted that the stability of the meniscus is further

constrained by the Gibbs’s pinning limits. With these expressions, we analyzed the

areas of existence of the solution for a fixed ribbon geometry, and used them to find

a range of optimal pulling angles. Then, we correlated the values of the optimal

region of the θ − β space to the corresponding values of melt levels that must be

maintained to guarantee hydrostatic stability. Our results support the current design

guidelines reported in the literature for an efficient extraction of a thin ribbon from

the melt. Specifically, pulling the wafer at a non-zero angle in order to guarantee

the existence of the lower meniscus. Pulling at an angle, implies that, the point at

which the meniscus contacts the ribbon will always be higher than the melt level.

Additionally, we mentioned that the use of a graphite crucible with a sharp corner

is preferable over one made of silica due to its ability to allow for a wide range of

contact angles. The analysis of this work presupposed that the curves describing the

meniscii are single valued. In the next chapter, further theoretical analysis is done

to find analytical expressions describing multi-valued solutions and their stability.
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Chapter 4

Meniscus Stability in the HRG

Process. Part II: The

Weierstrass’s Approach

All the truths of mathematics are linked to each other, and all means of discovering

them are equally admissible.

– Adrien-Marie Legendre.

4.1 Introduction

The solution to geometrical problems that use variational principles can rarely be

described by functions of the form Y = F (X) in a Cartesian coordinate system,

as we did in Chapter 3. In most cases, the stationary curves arising from the

solution of the Euler-Lagrange equation are complex multivalued functions, and

therefore require a less restricting and “natural” representation. Describing such

curves in parametric form not only satisfies these requirements, but, as we show in

this chapter, expands the solution space of the original variational problem. The

variational treatment of such curves differ substantially from the classical approach
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4.1. INTRODUCTION

that we deem it merits a separate discussion.

We begin this chapter by summarizing the fundamental concepts and main re-

sults of the variational problem in parametric form. The principal contributor to

this topic was the German mathematician Karl Weierstrass (1815-1897), who, in his

lectures laid the mathematical groundwork for the calculation of the first and second

variation of functionals represented in parametric form. The also German mathe-

matician Oskar Bolza (1857-1942)) presented Weierstrass’s analysis in his book on

calculus of variations [4], from which our summary is based upon (other useful refer-

ences on this topic that we used in this section are the books by Andrew Forsyth [19]

and Charles Fox [20]). We then formulate the meniscus problem within this theo-

retical framework, by constructing the corresponding energy function in parametric

form and finding the stationary curves via the solution of the Weierstrass’s form

of the first variation. We find single-valued analytical solutions for the shape of

the meniscus in terms of Jacobi’s elliptic functions and Legendre’s elliptic integrals,

which we compare with a computer simulation. After finding the stationary curves,

we assess their static stability by employing Weierstrass’s transformation of the sec-

ond variation, and finding a stability function that allows us to categorize whether

a meniscus curve is at a minimum or not, via Legendre’s and Jacobi’s test. The

hydrostatically stable curves are defined as those curves in which the total variation

of the energy is positive, and the unstable curves are defined as curves in which is

not possible to ensure the positivity of the variation in the energy. After finding the

statically unstable shapes, we show by doing a simple proof-of-concept experiment

that these unstable curves resemble the shapes of a real meniscus spilling over the

corner of a crucible.

We also show how the solution to this problem is simply a special case of a more

generalized Young-Laplace problem.
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4.2 Fundamentals of Weierstrass’s theory

In this section we present a review of Weierstrass’s study of the variational problem

represented in parametric form. In brief, Weierstrass found conditions under which

the “classical” variational integral remains invariant when it is subject to a para-

metric transformation. Using straightforward calculus, he derived an expression for

the first variation that provides the stationary solutions of the variational problem

in terms of functions X = ζ(S) and Y = χ(S). Using a nonlinear transforma-

tion, Weierstrass also simplified the lengthy expression of the second variation and

turned it into a classic quadratic functional. This transformation allowed him to

apply directly the traditional results of the calculus of variations, namely Legendre’s

condition and Jacobi’s test. A brief review of these ideas is provided next.

4.2.1 Curves in parameter representation and the condition for in-

variance of the integral U0

In a two dimensional Cartesian coordinate system, a curve represented in parametric

form is defined by the two equations

X = ζ(S), Y = χ(S), (4.1)

where ζ and χ are functions of the parameter S, defined and continuous in the

interval [0, St]. Consequently, the “classical” variational integral

U0 =

∫ H1

0
F

(
X,Y,

dX

dY

)
dY, (4.2)

becomes

U0 =

∫ St

0
G

(
X,Y,

dX

dS
,
dY

dS

)
dS. (4.3)

In performing this transformation, the value of U0 must remain invariant for any type

of parametric form chosen for X and Y . Weierstrass showed that the necessary and

sufficient condition for the invariance of U0 is that the functional G be homogeneous

and of degree one in the variables X ′ and Y ′, i.e.

G(X,Y,KX ′,KY ′) = KG(X,Y,X ′, Y ′), (4.4)
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where the prime represents differentiation with respect to S. From this homogeneity

condition, there follow several relationships between the partial derivatives of G,

which are useful in constructing the expressions for the first and second variation of

U0.

4.2.2 The Weierstrass’s form of the first variation

Let a stationary curve of X − Y coordinates (ζ(S), χ(S)) be displaced by a small

variation to the position (ζ(S)+ξ(S), χ(S)+η(S)), where ξ(S) and η(S) are arbitrary

functions of S that vanish at the end points, so that

ξ(0) = ξ(St) = η(0) = η(St) = 0. (4.5)

Let also consider the following type of variations:

ξ = εP (S), η = εQ(S), (4.6)

where ε is a constant and P and Q are arbitary functions of S. Under these condi-

tions, the first variation is defined similarly to the classical approach:

δU0 =

∫ St

0
(GXξ +GY η +GX′ξ

′ +GY ′η
′) dS. (4.7)

In this expression the subscripts of G represent differentiation with respect to

X,X ′, Y and Y ′. The structure of this formulation allowed Weierstrass to use

the same logic employed in the classical variational analysis. Mainly that U0 is

stationary if X and Y , being functions of S, satisfy the Euler-Lagrange equations,

GX −
d

dS
GX′ = 0, GY −

d

dS
GY ′ = 0. (4.8)

Due to the homogeneity condition (4.4), these two equations are not independent

of each other, as we proceed to show. Differentiating equation (4.4) with respect to

K, and putting K = 1, yields

X ′GX′ + Y ′GY ′ = G. (4.9)
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4.2. FUNDAMENTALS OF WEIERSTRASS’S THEORY

Differentiating this expression with respect to X ′ and then to Y ′, Weierstrass showed

that
1

Y ′2
GX′X′ = − 1

X ′Y ′
GX′Y ′ =

1

X ′2
GY ′Y ′ = G1, (4.10)

where G1 is the common value of these expressions. Weierstrass used this property

to derive a single expression for the calculation of the first variation in the following

way: Differentiating (4.4) partially with respect to X he gets

GX = X ′GXX′ + Y ′GXY ′ . (4.11)

Using (4.10) and (4.11) in the Euler-Lagrange equation for X, yields:

GX −
d

dS
GX′ = Y ′(GXY ′ −GY X′ −G1(Y ′X ′′ −X ′Y ′′)). (4.12)

Doing the same two operations for Y yields:

GY −
d

dS
GY ′ = −X ′(GXY ′ −GY X′ −G1(Y ′X ′′ −X ′Y ′′)). (4.13)

Assuming that X and Y don’t vanish simultaneously in the interval [0, St], the two

expressions above are equivalent to the following differential equation:

GXY ′ −GY X′ −G1(Y ′X ′′ −X ′Y ′′) = 0. (4.14)

This equation is the Weierstrass’s form of the Euler-Lagrange equation. In order

to solve this equation, we need to define the parameter S and its relationship with

X and Y . The choice of the parameter must be such that both functions come out

as single-valued functions of S; once defined, it is possible to obtain the stationary

values X = ζ(S) and Y = χ(S).

4.2.3 The Weierstrass’s form of the second variation

Using Taylor series representation, the second variation in parameter representation

is expressed as follows:

δ2U0 =

∫ St

0
δ2GdS, (4.15)
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where

δ2G = GXXξ
2 + 2GXY ξη +GY Y η

2 + 2GXX′ξξ
′ + 2GY Y ′ηη

′+

2GXY ′ξη
′ + 2GY X′ηξ

′ +GX′X′ξ
′2 + 2GX′Y ′ξ

′η′ +GY ′Y ′η
′2.

(4.16)

Recall that in order for the curve described by Y (S) and X(S) to be a minimum -and

therefore stable-, its second variation should be positive; so the value of the intgral

above must be always positive in the range of integration. Using a lengthy factor-

ization, Weierstrass transformed the second variation into the classical quadratic

functional

δ2U0 =

∫ St

0

[
G1

(
dω

dS

)2

+G2ω
2

]
dS. (4.17)

In the above integral we have that

ω = Y ′ξ −X ′η, (4.18)

and G2 satisfies the following relationships:

G2 =
L2

Y ′2
=

M1

−X ′Y ′
=

N1

X ′2
, (4.19)

with

L2 = GXX − Y ′′G1 −
dL1

dS
, (4.20)

M2 = GXY +X ′′Y ′′G1 −
dM1

dS
, (4.21)

N2 = GY Y −X ′′2G1 −
dN1

dS
, (4.22)

L1 = GXX′ − Y ′Y ′′G1, (4.23)

M1 = GXY ′ +X ′Y ′′G1 = GY X′ + Y ′X ′′G1, (4.24)

N1 = GY Y ′ −X ′X ′′G1. (4.25)

The form of the integral allowed Weierstrass to apply the classical results of the

calculus of variations. Namely, Legendre’s necessary condition and Jacobi’s test.

Legendre’s necessary condition for a minimum requires that,

G1 ≥ 0, (4.26)
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4.3. DEFINING AN ENERGY FUNCTIONAL IN PARAMETRIC FORM FOR THE
HRG PROCESS

along the stationary curve described by X(S) and Y (S).

Jacobi’s test requires that the solution to the differential equation,

G2u−
d

dS

(
G1

du

dS

)
= 0, (4.27)

must not have conjugate points in the integration interval, i.e:

u(S) 6= 0 for 0 < S < St. (4.28)

The strength of this theory lies in the fact that it is possible to find an extended so-

lution space to the original meniscus problem and a more general criterion for static

stability, which is not possible to accomplish with the usual Cartesian representation

of a function, such as X = X(Y ).

4.3 Defining an energy functional in parametric form

for the HRG process

In this section we use Weierstrass’s theory to assess the problem of finding the

additional meniscus shapes and find the unstable modes that until now we have not

found. In the previous chapter, we showed that the change in the energy of the

HRG process by reversibly adding a slice of melt of infinitesimal thickness is

dU = −PdV + γdA− γ cos(σ + β)dA′. (4.29)

We also showed that in a two dimensional Cartesian coordinate system we have

P = ρlg(h2 − y) + ρsgt, dV = xdy. (4.30)

In order to find the shapes of feasible meniscii described by the curves X = ζ(S)

and Y = χ(S), we use the arc length s to parameterize x and y, thus defining dA

as follows

dA =

√(
dx

ds

)2

+

(
dy

ds

)2

ds, (4.31)
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where ds is an element of length along the meniscus profile. Similarly, we have that

dA′ =

√√√√(dx
ds

∣∣∣∣
s=sr

)2

+

(
dy

ds

∣∣∣∣
ds=sr

)2

ds = ds. (4.32)

Putting all these terms together, yields the following expression

dU = −(ρlg(h2− y)) + ρsgt)xdy+ γ

√(
dx

ds

)2

+

(
dy

ds

)2

ds− γ cos(σ+ β)ds. (4.33)

Nondimensionalizing length scales with respect to a capillary constant

a =
√
γ/(ρlg), (4.34)

and integrating yields the expression for the energy functional of the HRG process

U0

(
X,Y,

dX

dS
,
dY

dS

)
=

∫ St

0

X (Y −H2 −
ρs
ρl
T

)
dY

dS
+

√(
dX

dS

)2

+

(
dY

dS

)2

− cos(σ + β)

 dS, (4.35)

where

U0 = ∆Uγ−
3
2 (ρlg)

1
2 , x = aX, y = aY , t = aT , st = aSt and h2 = aH2. (4.36)

The functional inside of the integral is homogeneous degree one in the variables X ′

and Y ′, thus the results of Weirstrass’s can be applied to find the stationary curves

and stability conditions.

4.4 Calculating the stationary curves via the first vari-

ation

The stationary curves are found by solving the Weierstrass’s form of the Euler-

Lagrange equation

GXY ′ −GY X′ −G1(Y ′X ′′ −X ′Y ′′) = 0. (4.37)
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4.4. CALCULATING THE STATIONARY CURVES VIA THE FIRST VARIATION

In our case we have that

G1 =
1

(X ′2 + Y ′2)3/2
, (4.38)

GXY ′ = Y −H2 −
ρs
ρl
T, (4.39)

GY X′ = 0. (4.40)

So the Euler-Lagrange equation becomes:

H2 +
ρs
ρl
T − Y =

X ′Y ′′ −X ′′Y ′

(X ′2 + Y ′2)3/2
. (4.41)

Equation (4.41) is the governing Young-Laplace equation of the HRG process in

parametric form. The term to the right hand side of the equation is also known as

the curvature. In order to find the parametric solutions X = ζ(S) and Y = χ(S)

we use the relationships

X ′ = cos Ω, (4.42)

Y ′ = sin Ω, (4.43)

X ′′ = − sin ΩΩ′, (4.44)

Y ′′ = cos ΩΩ′, (4.45)

where Ω is the tangential angle to the meniscus, and turn the Young-Laplace equa-

tion into

Ω′ = H2 − Y +
ρs
ρl
T = H1 − L sinβ − Y +

ρs
ρl
T. (4.46)

From this transformation, we see that the Young-Laplace equation is split into a

system of three differential equations: equations (4.42), (4.43) and (4.46). The

conditions at the boundary are

X(0) = Xc, Y (0) = 0, Ω(0) = θ. (4.47)

The integration of this system of equations is carried up to the point where the

following conditions are met

Y (St) = H1, (4.48)

Ω(St) = σ + β. (4.49)
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The analytical solution for Y (S) is given by

Y (S) = ±

√(
ρs
ρl
T − L sinβ

)2

+ 2 cos θ − 2 cos(σ + β)

+
√

2−A sn

(√
2 +A

2
S + F(Ψ0|κ)

∣∣∣∣κ) ,
(4.50)

where sn(Θ|κ) is one of the twelve Jacobi elliptic functions, F(Ψ0|κ) is the incom-

plete elliptic integral of the first kind, and

Ψ0 = arcsin

(
∓
√

2 cos θ −A
2−A

)
, (4.51)

A = 2 cos(σ + β)−
(
ρs
ρl
T − L sinβ

)2

, (4.52)

κ =

√
A− 2

A+ 2
. (4.53)

The solution for X(S) is given by

X(S) = Xc − S +
√
A+ 2

[
E(am(ΨS |κ)|κ)

√
1− κ2 sn(ΨS |κ)2

dn(ΨS |κ)

]
−

√
A+ 2

E(Ψ0|κ)
√

1− κ2 sn (F(Ψ0|κ)|κ)2

dn (F(Ψ0|κ)|κ)

 , (4.54)

where E(Θ|κ) is the incomplete elliptic integral of the first kind, am(Θ|κ) is the

Jacobi amplitude, dn(Θ|κ) is a Jacobi elliptic function, and,

ΨS =

√
2 +A

2
S + F(Ψ0|κ). (4.55)

Lastly, the solution for Ω(S) is:

Ω(S) = 2 am

(
∓
√

2−A
2

S + F

(
θ

2

∣∣∣∣ 2

2−A

) ∣∣∣∣ 4

2−A

)
. (4.56)

The detailed solution method for the system of differential equation and its

comparison with the numerical integration are shown in the Appendix C. The

definitions of the elliptic functions and elliptic integrals are found in Appendix D.
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4.5 Finding the conditions for stability via the second

variation

Assuming that the curves are perturbed by the same function (i.e. η = ξ), Weier-

strass’s transformation

δ2U0 =

∫ St

0

[
G1

(
dω

dt

)
+G2ω

2

]
dS, (4.57)

applied to our problem yields

ω = Y ′ξ −X ′η = η(Y ′ −X ′),

L1 = GXX′ − Y ′Y ′′G1 = −Y ′Y ′′,

N1 = GY Y ′ −X ′X ′′G1 = X −X ′X ′′,

M1 = GXY ′ +X ′Y ′′G1 = GY X′ + Y ′X ′′G1 = Y −H2 −
ρs
ρl
T +X ′Y ′′ = Y ′X ′′,

L2 = GXX − Y ′′2G1 − L′1 = Y ′Y ′′′,

M2 = GXY +X ′′Y ′′G1 −M ′1 = −X ′Y ′′′ = Y ′ − Y ′X ′′′,

N2 = GY Y −X ′′2G1 −N ′1 = −X ′ +X ′X ′′′.

Weierstrass showed that there exists a function G2 such that,

G2 =
L2

Y ′2
=
−M2

X ′Y ′
=

N2

X ′2
. (4.58)

In our case, we have that

G2 =
X ′′′ − 1

X ′
=
Y ′′′

Y ′
. (4.59)

Also, recall that

G1 =
1

(X ′2 + Y ′2)3/2
. (4.60)

We see immediately from these expressions that Legendre’s condition for a minimum

is satisfied, since G1 ≥ 0 throughout the curve.

In order to have the Jacobi test satisfied we require that the solution to the

differential equation

G2u− (G1u
′)′ =

Y ′′′

Y ′
u− u′′ = 0, (4.61)
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must not have conjugate points in the interval of integration, i.e.

u(S) 6= 0 for 0 < S < St. (4.62)

Expression (4.61) is equivalent to:

(Y ′u′ − Y ′′u)′ = 0. (4.63)

Thus

Y ′u′ − Y ′′u = K1. (4.64)

Dividing the expression above by Y ′2 we get:

Y ′u′ − Y ′′u
Y ′2

=
( u
Y ′

)′
=
K1

Y ′2
. (4.65)

So the condition for stability becomes,

u(S) = K1Y (S)′
∫ St

0

dS

Y (S)′2
6= 0 for 0 < S < St. (4.66)

The integral in expression (4.66) is always positive as long as Y (S) 6= 0 between 0

and St (given St > 0), otherwise the integral does not converge. The term K1Y (S)′

does not change sign as long as Y (S)′ does not change sign in the (0, St) interval.

Therefore the issue of stability reduces to finding the range of values for which

Y (S)′ crosses zero in the (0, St) interval. This is easier to analyze recalling the fact

that Y (S)′ = sin Ω(S), where Ω(S) is the tangential angle of the meniscus with

respect to the horizontal axis. If sin Ω(S) is always positive or always negative in

the integration interval, the function u(S) will be a well defined function with no

conjugate points. Thus we simplify our stability criterion to the following expression:

sin(Ω(S)) > 0 ∨ sin(Ω(S)) < 0 ∀ S ∈ (0, St), (4.67)

where,

sin(Ω(S)) = P (S) = 2 sn

(
∓
√

2−A
2

S + F

(
θ

2

∣∣∣∣ 2

2−A

) ∣∣∣∣ 4

2−A

)
×

cn

(
∓
√

2−A
2

S + F

(
θ

2

∣∣∣∣ 2

2−A

) ∣∣∣∣ 4

2−A

) (4.68)

In this expression, cn(Θ|κ) is a Jacobi elliptic function. Thus, Jacobi’s necessary

condition requires that P (S) does not change sign in the interval (0, St).
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Figure 4.1: The extended diagram of the relationship between the equilibrium height

and the contact angle. Circles correspond to the meniscii plotted in figures 4.2

and 4.3.

4.6 Illustration of the results

In this section we show that the parametric solutions to the meniscus problem

capture an array of feasible multivalued functions that satisfy the Young-Laplace

equation but are not necessarily stable. We use the same case study as in previous

chapter: a silicon ribbon of 400 microns in thickness and 6 centimeters in length

pulled out from the molten bath at angles of 5◦ and 10◦; the melt rests on a graphite

crucible with a sharp edge (φ = 45◦). In order to plot the meniscii, we first use the

expression for the meniscus height to calculate the point where the ribbon touches

the ribbon at an angle of σ + β; then, using the analytical expression for Y (S), we

find the value of the arc length St that yields the value of Y (St) = H1. Once we

find this value, we plot parametrically the curve described by X(S) and Y (S) from

0 to St.
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In Figure 4.1 we show the extended diagram of the relationship between the

equilibrium height of the meniscus and the contact angle, for pulling angles of 5◦

and 10◦. The extended region is the symmetric counterpart to the region we showed

in the previous chapter. We see that all meniscii in this region lie outside the Gibbs’s

limits defining spill-over and receding conditions, and therefore are never pinned to

the corner of the crucible. The fact that these additional configurations lie to the

left of the spill-over limit, can be interpreted as snapshots of meniscii that are “in

the process” of spilling over from the corner of the crucible. From the diagram we

also see that due to symmetry of the curves it is possible to obtain two different

meniscii with the same equilibrium height, and therefore the same melt level (since

h2 = h1 − l sinβ); this means that a transition from a pinned stable to a pinned

unstable configuration can occur while keeping having the same melt level, pulling

angle, ribbon thickness and ribbon length.

The additional meniscii are those corresponding to values of contact angles lower

than zero, and are represented by the parametric solution, which we plot in Fig-

ures (4.2) and (4.3). These curves correspond to the blue and red circles in the h1−θ

digram, respectively. With our parametric solution, we capture the whole solution

space of the meniscus problem (in figures 4.2 and 4.3 we show two meniscii with

values of θ > 0), and show that the newly found curves are characterized mathe-

matically by the multi-valued relationship between X and Y . From a physical point

of view, these meniscii are “bulked” at the bottom, suggesting a hydrostatically

unstable configuration.

In order to illustrate the concept of the stability of the newly found curves, we

focus on the results obtained from Jacobi’s test (Legendre’s condition for a minimum

is always satisfied for all shapes). Figures 4.4 and 4.5 show the stability function

P (S) for the two cases under study. As we mentioned before, the stability function

must not have conjugate points between 0 and St. In other words, the function

P (S) must not cross zero in the said interval. From these figures we see that the

stability limit is given by θ = 0. Contact angles greater than zero are statically
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Figure 4.2: The additional meniscus shapes obtained with the analytical solution in

parametric form. Curves correspond to a value of β = 10◦.
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Figure 4.3: The additional meniscus shapes obtained with the analytical solution in

parametric form. Curves correspond to a value of β = 5◦.
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Figure 4.4: The stability function P (S) for different contact angles and β = 10◦.

The cross in each curve indicate where the curves cross zero.

stable, as we show in the case when β = 10◦ and θ = 15◦ in figure (4.2), and in the

case when β = 5◦ and θ = 20◦ in figure (4.3). The stability function in these two

cases is always positive, never crossing zero, whereas the curves for values of contact

angle lower than zero cross the horizontal axis and therefore have conjugate points.

All meniscii with contact angles less than zero are pinned unstable and statically

unstable.

A possible cause of transition from the stable to unstable modes in an HRG

operation is better understood by constructing a representation to scale of the HRG

system. Figures 4.6 and 4.7 show to sets of HRG configurations, where we repre-

sent graphically the melt level, the ribbon length, the crucible, and the shape of

the meniscus (ribbon thickness is the only variable not drawn to scale). Each HRG

configuration shows a stable (solid line) and an unstable mode (dashed line). We

plot configurations that correspond to opposite points in the h1 − θ diagram which

yield the same melt height for two different values of contact angle. In both repre-
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Figure 4.5: The stability function P (S) for different contact angles and β = 5◦. The

cross in each curve indicate where the curves cross zero.

sentations, the unstable modes place the melt-gas-ribbon triple point to the right

of the stable mode, which intuitively suggest that the unstable modes and potential

spill-over could be caused by a sudden increase in the pulling speed of the system.

In order to test qualitatively our hypothesis of the proposed spill-over mechanism

we use a miniature proof-of-concept HRG system, in which we use a polyethlyene

ribbon (ρpe = 0.93kg/m3 > ρwater), resting on water contained in the plastic bath.

The ribbon rests completely on top of the water and is extracted from the batch

with a conveyor belt. We induce the spill-over by slowly increasing the conveyor

belt speed while photographing the change in the shape of the water meniscus. Fig-

ure (4.8) shows the bulking of the meniscus as the pulling speed increases. Despite

the difference in the materials, the shapes of the stable (top-left photograph) and

the spilling meniscus (bottom-right photograph) are very similar to those obtained

with our theoretical findings. We would expect the same pattern in a silicon system.
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Figure 4.6: A sketch of a hydrostatically stable (green) and unstable (red) configu-

ration for β = 10◦. The unstable mode does not satisfy the Jacobi test nor Gibbs’

pinning condition.
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Figure 4.7: A sketch of a hydrostatically stable (green) and unstable (red) configu-

ration for β = 5◦. The unstable mode does not satisfy the Jacobi test nor Gibbs’

pinning condition.
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1 2 

3 4 

Figure 4.8: A sequence of photographs showing the meniscus spilling over from the

corner of the plastic bath.
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4.7. GENERALIZED SOLUTIONS OF A YOUNG-LAPLACE EQUATION

4.7 Generalized solutions of a Young-Laplace equation

For a two dimensional curve described in parametric form by X(S) and Y (S), a

general form of the Young-Laplace equation can be stated as follows:

H − Y =
X ′Y ′′ −X ′′Y ′

(X ′2 + Y ′2)3/2
, (4.69)

where H is the applied -and dimensionless- pressure. We showed that this equation

can be split into a system of three differential equations

dY

dS
= sin Ω,

dX

dS
= cos Ω,

dΩ

dS
= H − Y. (4.70)

For a general case, the initial conditions are

Y (0) = 0, X(0) = 0, Ω(0) = θ, (4.71)

where θ is angle at which the curve departs from the origin. In this chapter we

derived analytical solutions for X(S), Y (S) and Ω(S), and use them in the analysis

of stability of the meniscus in the HRG process. From a purely mathematical point

of view, the solution to this differential equation presents very interesting behaviours

beyond the integration limits imposed by the conditions of the meniscus problem.

Figures 4.9 and 4.10 show the analytical solution to the general form of the Young-

Laplace equation for different values of H and θ. The solutions are plotted for a

value of arc-length equal to 20. These curves vary greatly in their shape, exhibiting

sinusoidal-type patterns and and cyclic-type patterns (the case when H = 1 and

θ = 120◦ does exhibit a regular pattern when plotted beyond ST = 20), which could

never be captured by a single-valued function such as X = F (Y ).

Looking for an exception in this regular-pattern behaviour, we did a sensitivity

analysis and plotted solutions for the same value of θ while changing the parameter

H, and found that the system is very sensitive to small changes in this parameter.

Figure 4.11 shows two solutions for the case when θ = −150◦. We see that the

curves exhibits a regular pattern when H = 0.52, but does not when H = 0.51. The

explanation for this behaviour is beyond the scope of this work, but this finding
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Figure 4.9: Several solutions to the Young-Laplace equation (equation (4.69)) for

H = 0.
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Figure 4.10: Several solutions to the Young-Laplace equation (equation (4.69)) for

H = 1.
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Figure 4.11: Sensitivity of solutions to a small change in the parameter H.

explains very well the fact that, even though the system of differential equations

looks very simple, the underlying behaviour of its solution is rather complex. And

this is very well seen in the mathematical structure of the analytical solution. To

the best of the author’s knowledge, this analytical solution in parametric form has

not yet been reported in the literature. We believe that these analytical solutions

could not only be studied and exploited in a purely mathematical sense, but also be

applied in many physical and engineering applications, far beyond crystal growth

processes.

4.8 Conclusions and contributions

In this chapter, we formulated and solved the generalized meniscus problem of the

HRG process. Using Weierstrass’s variational theory, we found analytical expres-

sions describing the shapes of the additional meniscii in parametric form. These

curves, which are represented in terms of Jacobi’s elliptic functions and Legendre’s

elliptic integrals, are statically unstable whenever the contact angle is below zero.
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This criterion, along with the fact that such curves are beyond the pinning conditions

established by Gibbs, imply that the newly obtained meniscii can be interpreted as

“snapshots” of a spill-over configuration. We supported this argument by doing a

simple experiment, in which we recreate the spill-over phenomena using a polyeth-

lyene ribbon resting on a bath of water. The shapes of the spill-over configurations

are in good qualitative agreement with the shapes found with our theoretical cal-

culation. Finally, we noted that the analytical shapes of the meniscii in the HRG

process are part of a general solution space of a type of Young-Laplace equations.

All these findings are novel contributions to the field.
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4.9. LIST OF SYMBOLS USED IN PREVIOUS TWO CHAPTERS

4.9 List of symbols used in previous two chapters

Symbol Definition

α Contact angle in Swartz et. al [59] work

αg Growth angle in Balint and Balint [2] work

αc Contact angle in Balint and Balint [2] work

β Pulling angle

γ Liquid-gas interfacial energy

γsl Solid-liquid interfacial energy

γsv Solid-vapor interfacial energy

θ Angle between horizontal and meniscus curve

θeq Equilibrium contact angle

θg Contact angle (supplement of θ)

κ Elliptic modulus

σ Silicon growth angle

ρl Density of molten silicon

ρs Density of solid silicon

Ω Tangential angle to the meniscus

φ0 Growth angle in Swartz et. al study [59]

a Capillary constant

g Acceleration of gravity

h1 Meniscus height

h2 Melt level

heff Effective height in Swartz et al. [59] work

l Length of the ribbon

t Ribbon thickness

Table 4.1: List of variables and parameters used in the previous two chapters.
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Chapter 5

Crystallization Dynamics and

Interface Stability in the HRG

Process

5.1 Introduction

In the growth of the silicon ribbon, it may be necessary to process a raw mate-

rial with a wide range -and often large amount- of impurities. The quality and

efficiency of the solar panel depends critically on the purity level of the elements

present in the wafer. Impurities such as iron, nickel, cobalt and copper diminish

considerably the minority carrier lifetime, whereas aluminum and titanium reduce

the effciency of the cell. Metallurgical grade silicon, the predecessor of solar-grade

silicon, containts at least ten or more impurities, each of them affecting the quality

of the final product (see Table 5.1). In addition, some impurities present in the final

product are incorporated in the growth process: crystals grown in quartz crucibles

are prone to oxygen entrainment into the melt, and those grown in graphite cru-

cibles are susceptible to carbon entrainment and the formation of silicon carbide.

Lastly, crystallization of the silicon melt also affects the amount of impurities of
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Argon Flow 

Molten Silicon Bath 

Zone III 

Silicon Film 

Solute rejection at interface  

Figure 5.1: Solute is rejected at the interface due to the large difference in impurity

solubility in the two phases.

the final material, due to the difference in the segregation coefficients between the

solid and liquid phase. The segregation of impurities might induce the formation

of a solute-enriched boundary layer close to the interface, which might trigger the

growth of dendrites, which in turn affect the quality of the wafer. In the HRG

process, Kudo [33] and Kellerman [63] reported the formation of dendrites at the

interface, which we attribute to perturbations applied to a crystallization system

with a high concentration of solutes near the interface.

In this chapter we focus on the phenomena of solute rejection and its effect on

the stability of the solid-liquid interface in the HRG process. First, we give a brief

overview of the fundamentals of crystallization and interfacial stability; then we

develop a mathematical model to describe the crystallization dynamics in the HRG

system, when a given concentration of aluminum is present in the silicon melt. Once

the unperturbed dynamics have been studied, we formulate and solve the problem

of stability for the conditions given by the mathematical problem.
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5.2. BASIC PRINCIPLES OF SOLUTE SEGREGATION IN CRYSTAL GROWTH
FROM THE MELT

5.2 Basic principles of solute segregation in crystal

growth from the melt

The process of crystallization is also a process of purification, since there is usually

a large difference in the solubility of impurities between the melt and the crystal.

Impurity atoms tend to diffuse preferentially in the liquid; as the crystal grows,

impurities are rejected from the solid and transported from the interface to the

melt. This manifests in the formation of a solute enriched boundary layer close

to the crystallization front. Quantitatively, this difference in solubility is given by

the segregation coefficient, which represents the extent of solute rejection from the

solid to the liquid. As solidification proceeds, solute is redistributed among the two

phases depending on the magnitude of this coefficient and the mass diffusivities of

each individual impurity. The velocity of the crystallization front determines the

extent of the diffusion boundary layer at the interface [55]. At low velocities, the

concentration profile in the melt is uniform throughout the sample, whereas at high

velocities, solute will build up close the the front. In many cases, low solidification

velocities guarantee an equilibrium type behaviour in the system, i.e. segregation

follows the exact path of the phase diagram. An estimate of the extent of the

boundary layer thickness dependency on both the interface velocity, V , and the

liquid diffusivity, DL, of the solute neglecting the effects of convection is given by

δ =
DL

V
. (5.1)

For a given diffusivity coefficient, large interface velocities tend to “trap” the solute

in a small region close to the interface. The formation of the impurity layer at the

liquid-solid interface is detrimental for the process since it can cause steep concen-

tration gradients that induce morphological instabilities, i.e. dendritic growth [41].

The inclusion of impurities in the ribbon leads to defects that cause recombination

and reduced solar cell efficiency.
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5.3. BASIC PRINCIPLES OF THE MULLINS-SEKERKA STABILITY THEORY

Element k0 Element k0

B 0.75 Ti 3.6× 10−4

Al 0.002 Cr 1.1× 10−5

Ga 0.008 Mn 1× 10−5

N 7× 10−4 Fe 8× 10−6

P 0.35 Co 8× 10−6

As 0.3 Ni 8× 10−6

C 0.07 Cu 4× 10−4

O 0.85 Zn 1× 10−5

Table 5.1: Segregation coefficients for some elements in silicon at the melting point.

Adapted from [8].

5.3 Basic principles of the Mullins-Sekerka stability

theory

Mullins and Sekerka [41] developed the theoretical foundation for the conditions

required to maintain a stable crystallization front when it is subject to an arbitrary

sinusoidal perturbation of the form I(x, t) = δ(t)sin(ωx) (see Figure 5.2). Under

this theory, surface tension and temperature gradients at each side of the interface

promote stability and favor the decay of the perturbation. On the other hand liquid

concentration gradients next to the interface caused by solute rejection, promote

the growth of the perturbation. The physical explanation of this phenomena is the

following: by applying a perturbation to a flat surface, the thermal and concen-

tration fields are also perturbed. A hill or valley of the sinusoidal wave ahead or

behind the rest of the interface, finds itself in a thermally unfavorable situation.

If a tip of solid protruded into the liquid is surrounded by a domain that is at a

higher temperature (above the melting point), heat will flow from the liquid to the

solid tip to equilibrate the thermal profile. Thermal gradients -in the form of heat

flow-, then, are stabilizing forces. The stabilizing effect of surface tension is given
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Figure 5.2: Representation of the Mullins-Sekerka stability analysis.

by the fact that it will always try to minimize the surface area of the system, hence

the low free energy planar morphology is preferred over the high free energy curved

interface.

Concentration gradients, on the other hand, are destabilizing. It has been

demonstrated through experiments that these gradients can overcome the stabiliz-

ing effects of the thermal gradients and the interfacial free energy. The destabilizing

effect can be understood as follows: the effect of melting point depression due to

the presence of solutes creates a phenomenon known as solutal undercooling close to

the front. When a sufficiently undercooled tip is protruded into the melt, it might

not be immediately surrounded by a domain of a higher temperature since the un-

dercooling lowers the temperature around the tip and acts as a counteracting force

to the heat flow coming from the liquid. If the undercooled tip overcomes the heat

flux and surface tension, the morphology of the interface changes from planar to a

cellular pattern, and the flat interface breaks down. These cellular patterns are the

precursors of the dendritic structure generally present in most casting operations.

For our system, the formation of these dendrites is detrimental since we aim to pro-

duce a crystal with a morphologically smooth surface, leading to the production of

a perfect, mono-crystalline sheet of silicon.

Mullins and Sekerka derived stability conditions that take into account the phe-

nomena described above to show how stability depends on mass and energy trans-
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5.3. BASIC PRINCIPLES OF THE MULLINS-SEKERKA STABILITY THEORY

port together with material properties. In their analysis, they assumed a system

operating at steady state with a constant interfacial velocity (in an experimental

set-up, this is equivalent to having a furnace moving at a velocity V relative to

the sample). These factors allowed them to find an analytical expression for the

growth or decay of the perturbation. The stability conditions were given in terms of

a frequency dependent ratio between a perturbation in the gradient of the velocity

of the freezing front relative to a perturbation in its velocity so that

δ̇

δ
= F (ω). (5.2)

The parameter ω represents the angular frequency and

F (ω) =
V ω

{
−2TMΓω2

[
ω∗ −

(
V
Dl

)
p
]
− (G′ +G)

[
ω∗ −

(
V
Dl

)
p
]}

(G′ −G) [ω∗ − (V/D)p] + 2ωmGc

+
2mGc

[
ω∗ −

(
V
Dl

)]
(G′ −G) [ω∗ − (V/D)p] + 2ωmGc

.

(5.3)

They show that the flat surface is stable if F (ω) < 0 for all ω > 0. In this expression

V is the velocity of the interface, TM the melting point, Γ a capillary constant, Dl

is the solute diffusivity in the liquid, G′ and G are the temperature gradients of

the crystal and the melt at the interface respectively, multiplied by an average

conductivity, k̄ = 0.5× (ks+kl), m is the slope of the liquidus line in a binary phase

diagram. Gc is the concentration gradient at the interface and p = 1− kseg, where

kseg is the segregation coefficient. Finally

ω∗ =
V

2Dl
+

[(
V

2Dl

)2

+ ω2

] 1
2

. (5.4)

With these concepts in mind, the goal of the proceeding analysis is to calculate the

extent of purification that can be achieved in the crystallization of the thin wafer via

the HRG process and the potential formation of a solute enriched boundary layer.

Then, we perform a stability analysis based on our mathematical model, which

accounts for transient effects, variable interface velocities and a finite domain.

CHAPTER 5. CRYSTALLIZATION DYNAMICS AND INTERFACE STABILITY IN
THE HRG PROCESS

93



5.4. MODELING CRYSTALLIZATION IN THE HRG PROCESS

5.4 Modeling crystallization in the HRG process

We describe crystallization in the HRG process by assuming a system composed

by a solid and liquid subdomains divided by a sharp interface. We assume that

transport phenomena at the surface of the melt will be dominated by heat and

mass diffusion, since for the formation of the film, only a thin layer of the melt is

affected (less than half a milimeter) and bulk phenomena such as the fluid currents

can be offset by maintaining an appropriate thermal gradient and inlet velocity.

These assumptions transform the mathematical formulation of the problem into an

extension of the classical Stefan (1835-1893) problem [43]. Also, we calculate the

shape of the ribbon by constructing a one-dimensional model which is embedded in

a moving reference frame, which has a velocity Vpull. So we follow the growth of the

the crystal as we move along the horizontal coordinate.

In the liquid domain (melt), the transient heat transfer and mass diffusion equa-

tions are respectively

∂Tl
∂t

= αl
∂2Tl
∂y2

, (5.5)

∂Cl
∂t

= Dl
∂2Cl
∂y2

, (5.6)

where αl is the thermal diffusivity and Dl is the mass diffusivity of the impurity in

the melt.

In the solid domain (silicon film) we assume that solute diffusion is negligi-

ble, hence we calculate the the amount of impurities present in the solid using the

segregation coefficient obtained from the phase diagram. Thus, the mathematical

description for heat and mass transport reads respectively

∂Ts
∂t

= αs
∂2Ts
∂y2

, (5.7)

Cs = ksegCl, (5.8)

where αs is the thermal diffusivity in the solid and kseg is the segregation coefficient.

The conditions at the interface must be such that energy and mass are conserved

throughout the system. For the case of energy transport, the heat conducted from

CHAPTER 5. CRYSTALLIZATION DYNAMICS AND INTERFACE STABILITY IN
THE HRG PROCESS

94



5.4. MODELING CRYSTALLIZATION IN THE HRG PROCESS

Parameter Symbol Value

Ambient temperature (radiation case) Tamb 1084 [K]

Top temperature (heat clamp case) Tcold 1684 [K]

Melting temperature Tmelt 1687 [K]

Bottom temperature Tb 1773 [K]

Initial temperature Tini 1773 [K]

Conductivity of solid silicon ks 18 [W m−1 K−1]

Conductiviy of liquid silicon kl 58 [W m−1 K−1]

Density of solid silicon ρs 2293 [kg m−3]

Density of liquid silicon ρl 2570 [kg m−3]

Heat capacity solid silicon Cp 1040 [J kg−1 K−1]

Thermal diffusivity liquid silicon αl 2.33 ×10−5[m2 s−1]

Thermal diffusivity solid silicon αs 7.54 ×10−6[m2 s−1]

Mass diffusivity Al-Si Dl 7 ×10−8[m2 s−1]

Emissivity ε 0.64

Stefan-Boltzmann constant σ 5.67 ×10−8[W m−2 K4]

Latent heat of fusion ∆H 1.79 ×106[J kg−1]

Segregation coefficient Al-Si kseg 2.83 ×10−3

Capillary constant Γ 8.99 ×10−11[m]

Slope of the liquidus line m -9.5 ×10−5[K ppm−1]

Height of the bath B 0.03 [m]

Table 5.2: Material properties and parameters used in the crystallization model.
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the liquid bath to the interface and the heat conducted from the film to the surface

of the system must balance the heat of crystallization released at the interface. For

mass transport, since we assume that no diffusion occurs in the solid, the amount

of impurities rejected from the solid to the interface must be equal to the amount of

impurities diffusing in the liquid. An additional relation between the thermal and

concentration field is required due to the dependency of the melting point of the

material on the amount of impurities, a colligative property. This dependency can

be found in phase diagrams and accurate information is readily available for several

materials, including silicon and its impurities. The mathematical description of the

moving boundary conditions at the interface are:

Energy Balance: ρs∆H
∂y

∂t
= ks

∂Ts
∂y
− kl

∂Tl
∂y

. (5.9)

Mass Balance: −Dl
∂Cl
∂y

=
∂y

∂t
(Clint

− Csint). (5.10)

Melting Point for Binary Mixture: Tint = Tmelt +
dTliq
dC

Cl. (5.11)

In these equations, dy/dt represents the velocity of the crystallization front, ∆H is

the latent heat of crystallization, ρs is the density of the solid phase, ks and kl are

the thermal conductivities of the solid and the liquid respectively, Clint
and Csint are

the solute concentration the liquid and solid respectively, the term dTliq/dC is the

slope of the liquidus line in a binary phase diagram. In general it is assumed that the

slope of the liquidus line does not vary within a specific temperature range, hence it

can be assumed that dTliq/dC = constant. Hence, the last expression represents a

linear decrease in the melting point as impurities accumulate close to the interface,

a phenomenon commonly known as undercooling. At the bottom of the silicon melt,

we keep the temperature constant, i.e.

T = Tbottom. (5.12)

With respect to the top boundary condition, we test two cases, first, the so called

“heat-clamp” [67] case (active cooling), where we crystallize the ribbon by placing
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a cold plate at a temperature slightly above the melting point, i.e.

T = Tcold, (5.13)

and radiative (passive) cooling

k
∂T

∂y
= εσ(T 4 − T 4

amb). (5.14)

These last conditions provide a complete description of the transient energy and

mass transport dynamics of the solid-liquid phase system. The equations were

discretized using finite differences [43] and solved using MATLAB. The values of

the parameters and properties used in the simulation are shown in Table 5.2.

As a case study we use aluminum as the only impurity present in the melt,

with a concentration of 50 ppm, which is the usual content in metallurgical grade

silicon [17]. Our goal is to find the thermal and concentration profiles resulting from

the crystallization of a silicon ribbon of 350 microns in thickness. The height of the

silicon bath is assumed to be 3 centimeters.

5.4.1 Crystallization under the heat clamp condition

Figure 5.3 shows the velocity profile as the interface moves from zero to around 350

microns, our desired thickness in this example. Starting crystallization by suddenly

cooling the melt surface (Tcold = 1411◦C) makes the interface to initially move fast

due to the sharp temperature gradients created in the melt (initially at 1500◦C)

and in the first layer of crystal formed. As latent heat starts dissipating from the

interface and heat starts flowing from the bottom of the bath (kept at 1500◦C), the

difference between temperature gradients at each side of the interface diminishes

and the velocity of the interface descreases proportionately. This effect can be seen

in Figure 5.4, where we plot the decreasing trend in both temperature gradients as

a function of the position of the interface. The values of the temperature gradients

are relatively high (compared to the radiative cooling shown in the next section),

ranging from 120 K/mm to 10 K/mm in the solid, and 25 K/mm to 5 K/mm in the

liquid.
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Figure 5.3: The velocity of the interface for the heat clamp boundary condition.
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Figure 5.4: The temperature gradients at each phase for the heat clamp boundary

condition.
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Fast interfacial velocities and steep temperature gradients have a strong impact

on the segregation of aluminum in the melt and its distribution across the silicon

wafer. Figure 5.5 shows the concentration profile of aluminum in the silicon melt.

These concentration profiles are very typical of a classical solidification system under

diffusive conditions [55]. It can be seen that the high initial interfacial velocities

tend to trap aluminum impurities very close to the interface. A solute enriched

boundary layer harboring almost 65 ppm of aluminum is formed at the beginning of

crystallization, while keeping the bottom of the bath almost pure. As the interface

velocity decreases, the impurities start diffusing throughout the bath, as it can

be seen in the final concentration profile of the melt. Nonetheless, most of the

aluminum remains concentrated in only the top fifth of the bath height. In the

HRG process, this could become a problem, since more impurities will be present

next to the interface as more of the ribbon crystallizes. In a continuous operation,

one would expect a non-homogeneous impurity distribution across the length of the

silicon ribbon.

The decrease in impurity concentration and the “broadening” of the boundary

layer as crystallization proceeds, generates a nonhomegenous impurity distribution

across the silicon wafer as well. Figure 5.6 shows the aluminum distribution in

resulting silicon film. The concentration at each point of the wafer is proportional

to the concentration of aluminum in the liquid immediately below the solid-liquid

interface, and thus also proportional to the length of the boundary layer. However,

even under this rather “aggressive” crystallization conditions, it is still possible

to obtain a 50-fold reduction in the impurities present across the ribbon. This

suggests that the rejection of aluminum -coming from metallurgical grade silicon- can

be effectively performed by the proposed crystallization process under heat-clamp

thermal conditions. The maximum amount of impurities allowed in solar-grade

silicon is less that 2 ppm, which is much more than the maximum concentration

found in our simulated wafer.

Finally, Figure 5.7 shows the resulting shapes of the ribbon using the Lagrangian
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Figure 5.5: Impurity concentration profiles in the melt at different stages of the

crystallization process. Vertical lines represent the position of the interface.
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Figure 5.6: Distribution of aluminum in the wafer for the heat-clamp case.
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Figure 5.7: The shape of the ribbon for different pulling velocities.

approach. We plot the shape of the wedge for four different thickness values, 325

µm, 440 µm, 960 µm and 1470 µm. The profiles were obtained assuming that the

length of the cooling plates is 6 centimeters. The shape of the wedge exhibits a

parabolic profile, which is the same result that Zoutendyk found in his theoretical

calculations [67] on the heat-clamp case, as shown qualitatively in Figure 5.8. In his

theoretical model, he found the characteristic shape of the wedge by neglecting the

effect of the liquid temperature gradient adjacent to the interface (∂Tl/∂y = 0). We

show that the parabolic profile is preserved when accounting for this term as well.

The thickness of the wafer decreases as the pulling speed increase, as it is expected.

5.4.2 Crystallization under radiative cooling

Figure 5.9 shows the evolution of the temperature profiles in the melt and the

silicon ribbon for the case when the surface is being cooled via radiation. The slope

discontinuity represents the interface. The linear profiles are explained by the slow

dynamics of the crystallization process. Cooling due to radiation is slow compared

to the heat-clamp cooling, hence any change in the thermal and solutal fields on the

surface of the system or close to the crystallization front is reflected in a “diffusion
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Figure 5.8: Zoutendyk’s [67] theoretical prediction of the shape of the wedge.

time” away from the interface.

The shallow thermal gradients close to the interface are reflected in low veloc-

ities of the crystallization front, resulting in a high quality wafer. The results in

Figure 5.10 show that the temperature gradients are approximately 9.36 K/mm to-

wards the solid and 2.9 K/mm towards the liquid, respectively. The conductivity

of the solid silicon film is approximately three times lower than the conductivity of

molten silicon and it follows that the magnitude of the gradient in the solid domain

is about three times higher than the liquid. In his experimental analysis, Kudo sug-

gested that a temperature gradient of 2 K/mm is present in the liquid phase [33].

This corresponds well with our results and shows that simple models of the type

above can provide accurate results at the conceptual design stage for this process.

Figure 5.11 shows the concentration profile of aluminum in molten silicon close

to the crystallization front. The velocity of the crystallization front is shown in

Figure 5.12. As the velocity of the crystallization front decreases (dy/dt ≈ 0) the

length of the solute enriched boundary layer increases and the concentration profile

“flattens”.

Figure 5.13 shows the solute distribution across the thin film. We see that the
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Figure 5.9: Evolution of the temperature profile in both phases close to the crystal-

lization front.
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Figure 5.10: Evolution of the temperature gradient in both phases.
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Figure 5.11: Impurity concentration profiles at different stages of the crystallization

process. Vertical lines represent the position of the interface.
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Figure 5.12: The velocity of the interface for the case of radiative cooling.
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Figure 5.13: Final impurity concentration across the silicon film.

film contains much less than 1 ppm aluminum impurity. This is due to the low

crystallization velocities in the system which allows a homogeneous distribution of

aluminum in the melt. This contrasts with the case when the melt is subject to

a heat-clamp type of cooling, where most of the impurities remain close to the

solid-liquid interface.

Several important design implications follow: first, impurity levels of 50 ppm or

(or slightly higher) for elements with segregation coefficient higher than aluminum

are tolerated. Second, as we see in the next section, the morphological stability of the

system is guaranteed. Finally, solute buildup in the melt can be calculated as well

as the maximum concentration of impurities that the wafer can withhold without

trespassing the quality requirements for the manufacturing of the solar cell. Once

the system reaches a saturation limit, the system can be purged and replenished

with fresh melt.
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5.5 Transient Mullins-Sekerka stability analysis for the

heat clamp case

In this section, we formulate the problem of interface stability of the crystallization

system, using a Mullins-Sekerka-type analysis. We extend the classical formulation

to account for the time dependency of the system, the non-constant interface velocity

and the finite nature of the domain. A few extensions of this kind have been reported

in the literature. In the work of Coriell and co-workers [14], they compare the

classical stability criterion with an extented model that accounted for the initial

transient, while assuming a constant interface velocity. They found a similar trend

between both models, but observed that the transient constant-velocity system is

slightly more stable that the classical approach. They attributed this to the fact that

the time dependent model accounts for past concentration gradients in the system,

which tend to be lower for a constant interface velocity, and therefore more stable.

Greven and collaborators [24] built a rapid solidification model of a Si-Sn alloy,

and compared the results with experimental data. They also performed a stability

analysis, similar to that of Coriell [14], and observed that in some experiments, the

interfacial breakdown occured at the initial transient.

In the previous two models, it is assumed that the interface velocity, dI/dt, of

the interface remains constant. In our model, as we showed in the previous section,

the velocity of the interface varies as the crystal is growing (the initial transient).

We account for this variable in the formulation of our stability problem.

Considering small perturbations, we state the temperature and concentration

profiles as the superposition of a base state and a Fourier-perturbed state as follows:

Tl(y, t) = Tl(y, t)
base + Tl(y, t)

pertsin(ωx) (5.15)

Ts(y, t) = Ts(y, t)
base + Ts(y, t)

pertsin(ωx) (5.16)

Cl(y, t) = Cl(y, t)
base + Cl(y, t)

pertsin(ωx) (5.17)

h(t) = y(t) + δ(t)sin(ωx) (5.18)
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The unperturbed and perturbed modes are independent from each other in both

subdomains (solid and liquid) due to the linearity of the diffusion equations. The

only coupling occurs at the solid-liquid interface, where the perturbation is applied.

The perturbed interfacial conditions are found by equating the perturbed coefficients

up to the first order that result from a Taylor series expansion around δ:

Tl(y, t) = Tl(y, t)
base +

(
Tl(y, t)

pert + δ(t)
∂Tl(y, t)

base

∂y

)
sin(ωx), (5.19)

Ts(y, t) = Ts(y, t)
base +

(
Ts(y, t)

pert + δ(t)
∂Ts(y, t)

base

∂y

)
sin(ωx), (5.20)

Cl(y, t) = Cl(y, t)
base +

(
Cl(y, t)

pert + δ(t)
∂Cl(y, t)

base

∂y

)
sin(ωx), (5.21)

dh(t)

dt
=

dy(t)

dt
+
dδ(t)

dt
sin(ωx). (5.22)

where in the last expression we take the time derivative of the position function.

Equating coefficents of Fourier modes, yield the following perturbed interfacial con-

ditions

ρ∆H
(
dδ
dt

)
= ks

(
∂T pert

s
∂z + δ ∂

2T base
s

∂z2

)
− kl

(
∂T pert

l
∂z + δ

∂2T base
l

∂z2

)
, (5.23)

−D
(
∂Cpert

l
∂z + δ

∂2Cbase
l

∂z2

)
= dy

dt (1− k)
(
Cpertl + δ

∂Cbase
l
∂y

)
+ dδ

dt (1− k)Cbasel ,(5.24)

T pertl + δ
∂T base

l
∂z = T perts + δ Ts

base

∂z , (5.25)

T pertl + δ
∂T base

l
∂z =

dTliq
dC

(
Cpertl + δ

∂Cbase
l
∂z − TmeltΓω2δ

)
. (5.26)

The boundary conditions are such that the perturbed fields vanish at the boundaries.

This system of four linear equations provide the solution for the evolution for

the four perturbed fields T pertl ,T perts ,Cpertl and δ. In practical applications, the value

of the angular frequency, ω, must be such that the wavelength of the perturbation

is much more smaller than the characteristic length of the system, i.e

DAl

V
� 2π

ω
. (5.27)

Figure 5.14 shows the perturbation δ as a function of the position of the in-

terface, for both the numerical case and the classical case. To better show the
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Figure 5.14: Transient Mullins-Sekerka perturbation function versus the classical

Mullins-Sekerka criterion.

difference between the two cases, we crystallize the whole system (we keep in mind

that our region of interest is the region where the depth of the bath is less than 0.5

milimeters).

In the classical case, we apply the stability criterion (equation (5.2)) at each time

step, using the instantaneous values of the temperature and concentration gradients.

We see that for the proposed amount of impurities, the interface remains stable in

both cases. Nonetheless, we see that, with the modified Mullins-Sekerka formulation,

the stability function is higher and the initial transient, since the interface velocity

is higher (so more solute is trapped close to the front). Also, the perturbation tends

to decrease rapidly as the the interface reaches the bottom of the bath (where the

velocity of the front tends to zero).
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5.6 Conclusions and contributions

In this chapter, we assessed the problem of stability of the interface in the HRG

process. We constructed a crystallization model to show that a 50 fold improvement

can be expected in the final wafer purity when there are aluminum impurities present

in the feed. Thus the process can reduce 50 ppm aluminum impurities to 1 ppm or

less.

The Mullins-Sekerka theory shows that the flat interface is stable for the pro-

posed operating conditions. Interfacial breakdown does not occur for large amount

of impurities. The calculations show that continuous solutal build-up in the system

is not a serious concern in insuring a morphologically stable front in the HRG pro-

cess. The instabilities observed as dendritic growth in the Kudo study are likely to

be due to impurity levels higher than 50 ppm or other factors leading to sharp gradi-

ents near the interface. Such factors include mechanical perturbations/vibrations in

the system, very high cooling levels when pulling at high velocities, and Marangoni

and buoyant currents in the melt.

The findings in this chapter can serve as a starting point for future experimental

validation of the HRG process, model refinement, control and optimization. One

major problem that eludes solution at this point is how to remove a uniform thin

sheet from the melt in a continuous manner.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we assessed three of the main technical challenges of the Horizontal

Ribbon Growth process for manufacturing silicon wafers. Namely, the problem of

the melt spilling over the crucible, the problem of the ribbon crystallizing onto the

surface of the crucible, and the problem of dendritic growth.

In order to solve the first two problems, we relied on the the first law of thermo-

dynamics and the tools of variational calculus, to find the conditions of existence

and stability of the meniscus located between the ribbon and the surface of the

crucible. The shape and existence conditions of the feasible meniscii are found by

solving the Euler-Lagrange equation, derived from the vanishing of the first vari-

ation of the energy functional. This equation yields the governing Young-Laplace

equation of the HRG system, which we solve analytically in terms of a single-valued

function X(Y ). The stability of the feasible meniscii is calculated by finding the

conditions under which the second variation of the energy functional is positive. We

found that all the single-valued functions describing the shape of feasible meniscii

are statically stable.

The question of whether there existed additional meniscii that were statically

unstable, was answered using Weierstrass’s parametric approach to the variational
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problem. With this approach, we found parametric solutions to the governing

Young-Laplace equation, which broadened the solution space of the original prob-

lem. The new curves that we can capture with the solution correspond to values

of contact angle below zero, which we proved to be statically unstable. The shapes

of the unstable meniscii are in good qualitative agreement with a simple proof-of-

concept experiment, where we mimicked the process of meniscus detachment and

melt-spill over.

We also found a solution to a type of Young-Laplace equation of the form H −

Y = (X ′Y ′′ − X ′′Y ′)/(X ′2 + Y ′2)3/2. To the best of the author’s knowledge, this

analytical solution has not been reported in the literature, and constitutes one of

the contributions of this thesis.

To solve the problem of dendritic growth, we developed a crystallization model

incorporating an extended form of the classical Mullins-Sekerka analysis. The math-

ematical model is used to described the evolution of the thermal profile in the melt

and the ribbon, as well as the segregation of solute in the melt. As an illustrative

example, we use a silicon system with 50 ppm of aluminum present in the melt. We

show that for the proposed crystallization velocities, it is possible to achieve a stable

crystallization front and the purification of the ribbon.

6.2 Future work

Several issues remain to be addressed in the study of the HRG process. In the

context of the developments and findings of this work, the effects of capillarity next

to the triple phase of the system (melt top surface-ribbon-gas) would be a natural

next step in the analysis. The tools that we developed in Chapters 3 and 4 can be

directly applied to this section of the system. As of now, it is assumed that the top

surface of the melt remains flat, but we conjecture that this is not the case given

the non-zero contact angle between the ribbon and the melt.

The coupling of interfacial and thermal phenomena could be another step to
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take in the HRG analysis. It is well known that the surface tension of silicon

is highly dependant on temperature; this dependency gives rise to surface-tension

driven flows, commonly known as Marangoni convection, which affects the thermal

profile at the interface, and also alter the shape of the free surfaces of the system,

including the lower meniscus. A potential line of research could be developed by

formulating a theoretical model (or set of models) describing the interaction between

these two phenomena in the HRG process. Since the nature of the mathematical

problem is expected to be complex, we suggest the use of asymptotic/analytical

techniques to study the interaction between the thermal field and the evolution of

the free surfaces. The computational calculations of Marangoni convection that

have been reported in the HRG literature [44, 45] could be used to validate the

approximations of the theoretical model. From the computational observations, we

would expect a more restricting stability criterion for the pinning of the meniscus to

the corner of the crucible, since Marangoni currents can be viewed as an additional

disturbance at the free surface.

Another possible direction of this project is the analysis of heat transport in the

silicon ribbon, in order to obtain a more accurate theoretical relationship between

the thickness and the pulling speed of the ribbon. The building block for this idea

is the analysis by Zoutendyk [67]. In his theoretical model, Zoutendyk neglected

the effects of convection, the heat removed due to ribbon pulling, and the transient

effects. From these three assumptions, accounting for the heat removal due to the

pulling seems to be the less challenging improvement that could be made to the

model. Mathematically this would be done by adding the additional convective

term to the energy equation. Zoutendyk’s analysis is limited to low pulling speeds,

which might be inaccurate for future technical advances, where large pulling speeds

can be accomplished. The laboratory experiments currently being realized at CMU

with ice and water could help in testing the validity of an improved theoretical

expression.

The development of improved theoretical approximations describing the physics
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of the HRG process would serve as the basis of two research activities: the design of

theory-based experiments and the computational implementation of control strate-

gies. The theoretical models could be used to find sets of optimal configurations and

operating guidelines prior to experimenting. These include: the optimal length of

the ribbon resting on the melt (which determines the length of the cooling plates),

the most favorable pulling angles, the lower and upper limits of the melt level, the

amount of heat that needs to be removed from the surface of the melt, the optimal

melt temperature profile that minimizes Marangoni convection, et cetera. With re-

gards to potential control strategies, we would be interested in testing the ability

of a controller to maintain the thickness of the ribbon constant when the system is

subject to disturbances in the cooling profile and the pulling velocity.

All these previous tasks concern mostly the macroscopic scale of the crystalliza-

tion system. Looking at the smaller length and time scales of the HRG process,

there are many issues that were not addressed in this work. Mainly, the effect of

momentum, mass and heat transport in the microscopic structure of the silicon

crystal. The question to answer would be, how does transport variables affect the

arrangement of the atoms along the crystal? Two approaches to “micromodel” the

crystallization processes could be used to solve this issue [55]: the deterministic

and the stochastic. In the first approach we would solve the continuity and con-

servation equations coupled with the nucleation and growth kinetics model [64]. In

the second, we would use physics-based rules describing dendritic growth kinetics

along with “randomization” of the attachment location of the atoms. Among these

techniques are the cellular automata and Monte Carlo methods [47].
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Appendix A

Method for solving the

governing Young-Laplace

equation in the HRG process

We begin the mathematical treatment with equation (3.49)

dY

dX
=

√
1−

(
Y 2

2 ∓H12Y + cos θ
)2

Y 2

2 ∓H12Y + cos θ
. (A.1)

1. Invert ODE and factorize the characteristic polynomial:

dX

dY
=

1
2

[
(Y ∓H12)2 +A

]√
1− 1

4 [(Y ∓H12)2 +A]2
, (A.2)

where

A = 2 cos(σ + β)−
(
ρs
ρl
T − L sinβ

)2

. (A.3)

2. Split and factorize the square root of the denominator:

dX

dY
=

(Y ∓H12)2 +A

√
2−A

√
2 +A

√
1−

(
Y∓H12√

2−A

)2
√

1−
(
Y∓H12√
−2−A

)2
. (A.4)
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3. Perform a change of variables:

r =
Y ∓H12√

2−A
, (A.5)

dr =
dY√
2−A

. (A.6)

The ODE becomes:

dX

dr
=

(2−A)r2 +A
√

2 +A
√

1− r2
√

1− κ2r2
, (A.7)

with

κ2 =
A− 2

A+ 2
. (A.8)

4. Expand right hand side in partial fractions:

dX

dr
=

2−A√
2 +A

(
1

κ2
√

1− r2
√

1− κ2r2
−
√

1− κ2r2

κ2
√

1− r2

)

+
A

√
2 +A

√
1− r2

√
1− κ2r2

.

(A.9)

5. Group similar terms:

dX

dr
=
√

2 +A

(√
1− κ2r2

√
1− r2

)
− 2√

2 +A

(
1√

1− r2
√

1− κ2r2

)
. (A.10)

6. Integrals of terms in parentheses are the elliptic integrals of the

first and second kind respectively. We integrate and change the variables

back to Y to obtain the analytical solution:

X(Y ) = Xc+
√
A+ 2[E(ΨY , κ)−E(Ψ0, κ)]− 2√

A+ 2
[F(ΨY , κ)−F(Ψ0, κ)]. (A.11)

where F(Θ, κ) and E(Θ, κ) are the incomplete elliptic integrals of the first and

second kind respectively and,

ΨY = arcsin

(
Y ∓

√
2 cos θ −A√
2−A

)
, (A.12)

Ψ0 = arcsin

(
∓
√

2 cos θ −A
2−A

)
. (A.13)
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Appendix B

Analyzing meniscus existence in

the HRG process in Cartesian

form

Starting from expression (3.57), the solution branch corresponding to f(Y )+ requires

that

min

(
Y 2

2
+H12Y + cos θ

)
> −1, (B.1)

max

(
Y 2

2
+H12Y + cos θ

)
< 1. (B.2)

The critical point of the function f(Y )+ is located at Y = −H12, which is always

negative number for real valued meniscii, and thus located outside of the physical

domain of Y . We thus have that the function f(Y )+ is a monotonic function in the

[0, H1− ] interval. In this case is monotonically increasing, so we have

min f(Y )+ = f(0) = cos θ, (B.3)

max f(Y )+ = f(H1−) = cos(σ + β). (B.4)

Therefore we require

θ > σ + β. (B.5)
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Besides this condition, we require the existence of positive real values of the equi-

librium height H1− . In other words, equation (3.46) must hold, and, from (3.47),

we see that in order to obtain positive values for H1− we require the pulling angle

to be above a critical value,

β > arcsin

(
ρsT

ρlL

)
. (B.6)

Using the same procedure, the solution branch corresponding to f(Y )− has to

satisfy

min

(
Y 2

2
−H12Y + cos θ

)
≥ −1, (B.7)

max

(
Y 2

2
−H12Y + cos θ

)
≤ 1. (B.8)

The critical point of the function in parenthesis is located at Y = H12, which is a

minimum. So we have that

min f(Y )− = f(H12) ≥ −1. (B.9)

which gives

1 + cos(σ + β) ≥ 1

2

(
ρs
ρl
T − L sinβ

)2

. (B.10)

The maximum is then located at either f−(0) = cos θ or at f−(H1+) = cos(σ + β),

whose values always lie within the [-1,1] interval. If max f(Y )− = cos θ, it implies

θ < σ + β, (B.11)

and from (3.47), we see that H1+ is always positive under these conditions. However

if max f(Y )− = cos(σ + β), then we have that

θ > σ + β (B.12)

and from (3.47), we require that

β > arcsin

(
ρsT

ρlL

)
, (B.13)

in order to obtain positive values of the equilibrium height.

APPENDIX B. ANALYZING MENISCUS EXISTENCE IN THE HRG PROCESS IN
CARTESIAN FORM
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Appendix C

Method to solve the governing

Young-Laplace equation in the

HRG process in parametric

form

Dividing equation (4.46) by (4.43) yields

dΩ

dY
=
H1 − L sinβ − Y + ρs

ρl
T

sin Ω
. (C.1)

In the previous chapter we showed that separating variables in this equation and

integrating Y from 0 to H1, and Ω from θ to σ + β, and then solving for H1, we

obtain

H1± = L sinβ − ρs
ρl
T ±

√(
ρs
ρl
T − L sinβ

)2

+ 2 cos θ − 2 cos(σ + β) = H11 ±H12.

(C.2)

We also showed that integrating the differential equation from the lower limits (Y =

0 and Ω = θ) to an arbitrary set of values Y and Ω, we solved for the angle Ω in

terms of Y

Ω(Y ) = arccos

(
Y 2

2
∓H12Y + cos θ

)
. (C.3)
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Plugging this value in equation (4.43) yields the following ODE:

dY

dS
=

√
1−

(
Y 2

2
∓H12Y + cos θ

)2

, (C.4)

We separate variables and factorize the polynomial inside the parenthesis to obtain,

2dY
√

2−A
√

2 +A
√

1− (Y∓H12)2

2−A

√
1 + (Y∓H12)2

2+A

= dS, (C.5)

where,

A = 2 cos(σ + β)−
(
ρs
ρl
T − L sinβ

)2

. (C.6)

Using the substitution,

r =
Y ∓H12√

2−A
, dr =

dY√
2−A

, (C.7)

transforms the differential equation into

2dr
√

2 +A
√

1− r2
√

1− κ2r2
= dS, (C.8)

where

κ =
A− 2

A+ 2
. (C.9)

Integrating the left hand side from r(Y = 0) to an arbitrary r, the right hand side

from S = 0 to an arbitrary S, and changing back to the variable Y , we obtain

S(Y ) =
2√

2 +A

[
F

(
arcsin

(
Y ∓H12√

2−A

) ∣∣∣∣κ)− F

(
arcsin

(
∓H12√
2−A

) ∣∣∣∣κ)] .
(C.10)

In this expression F(Ω|κ) is the incomplete elliptic integral of the first kind. In order

to find an expression for Y (S), we use the inverse of F(Ω|κ), given by the Jacobi

amplitude

F−1(Θ|κ) = am(Θ|κ), (C.11)

so we get,

arcsin

(
Y ∓H12√

2−A

)
= am

[√
2 +A

2
S + F

(
arcsin

(
∓H12√
2−A

) ∣∣∣∣κ) ∣∣∣∣κ] . (C.12)
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Solving for Y and using the property

sin(am(Θ|κ)) = sn(Θ|κ), (C.13)

yields equation (4.50).

The expression for Y (S) is used to solve for X(S) in the following way:

dX

dS
= cos Ω =

Y 2

2
∓H12Y + cos θ =

A

2
+

2−A
2

sn

(√
2 +A

2
S + F(Ψ0|κ)

∣∣∣∣κ)2

.

(C.14)

We separate variables and use the following property:∫
sn(Θ|κ)2dΘ =

Θ

κ
−

E(am(Θ|κ)|κ)
√

1− κsn(Θ|κ)2

κ dn(Θ|κ)
+ C, (C.15)

to get expression (4.54).

Lastly, we solve for Ω(S). With the aid of equation (3.45) we put equation (4.46)

in the following form:
dΩ

dS
= ±H12 − Y. (C.16)

An expression for Y (Ω) is derived using expression (3.48) and plugged into the above

ODE to get:
dΩ

dS
= ∓
√

2 cos Ω−A. (C.17)

Using simple manipulation and trigonometric properties we transform the right hand

side of the ODE:

dΩ

dS
= ∓
√

2−A

√
1− 4

2−A
sin2

(
Ω

2

)
. (C.18)

Separating variables and integrating yields equation (4.56).

The test case we use to compare and validate the analytical solution with the

numerical simulationis that corresponding to β = 10◦ and θ = −63◦. The shape

of the corresponding meniscus is shown in figure 4.2. We compare the analytical

solution values of X(S), Y (S) and Ω(S) with the computer simulation values. Both

calculations are carried in Mathematica. The input script is shown in figure C.1

and the output is shown in figure C.2. The analytical solution matches perfectly

the numerical simulation.
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In[1183]:= ClearAll@"Global`∗"D
Off@General::spell1D;

Off@General::spellD;

rhol = 2570;

rhos = 2293;

g = 9.8;

gamma = 0.72;

a = Sqrt@gamma ê Hrhol ∗ gLD;

t = 400 ∗ 10^ −6;

l = 6 ∗ 10^ −2;

T = t ê a;

L = l ê a;

sigma = 11 ∗ Pi ê 180;

thetadeg = −63;

limsup = 5.78;

theta = thetadeg ∗ Pi ê 180;

beta = 10 ∗ Pi ê 180;

H1pos � L ∗ Sin@betaD − Hrhos ∗ T ê rholL +

Sqrt@ H Hrhos ∗ T ê rholL − L ∗ Sin@betaDL ^2 − 2 ∗ Cos@sigma + betaD + 2 ∗ Cos@thetaD D;

H1neg = −L ∗ Sin@betaD − Hrhos ∗ T ê rholL +

Sqrt@ H Hrhos ∗ T ê rholL − L ∗ Sin@betaDL ^2 − 2 ∗ Cos@sigma + betaD + 2 ∗ Cos@thetaD D;

H12 = Sqrt@ H Hrhos ∗ T ê rholL − L ∗ Sin@betaDL ^2 − 2 ∗ Cos@sigma + betaD + 2 ∗ Cos@thetaD D;

psiode = −H12;

A = 2 ∗ Cos@thetaD − H12^2;

ksq = HA − 2L ê HA + 2L;

phizero = ArcSin@H12 ê Sqrt@2 − ADD;

parametricsystem :=

8x'@sD == Cos@z@sDD, y'@sD == Sin@z@sDD, z'@sD == −psiode − y@sD, x@0D == 0, y@0D == 0, z@0D == theta<;

NDSolve@parametricsystem, 8x, y, z<, 8s, 0, limsup<D;

9xansAs_E, yansAs_E, zansAs_E= =

8x@sD, y@sD, z@sD< ê. Flatten@NDSolve@parametricsystem, 8x@sD, y@sD, z@sD<, 8s, 0, limsup<DD;

graphx = Plot@xans@sD, 8s, 0, limsup<, PlotStyle → 8Blue, Dashed, Thick<,

PlotLabel → "Numerical solution of XHSL", AxesLabel → 8S, X@SD<, PlotLegends → 8"Numerical"<D
graphy = Plot@yans@sD, 8s, 0, limsup<, PlotStyle → 8Blue, Dashed, Thick<,

PlotLabel → "Numerical solution of YHSL", AxesLabel → 8S, Y@SD<, PlotLegends → 8"Numerical"<D
grapho = Plot@zans@sD, 8s, 0, limsup<, PlotStyle → 8Blue, Dashed, Thick<,

PlotLabel → "Numerical solution of ΩHSL", PlotLegends → 8"Numerical"<, AxesLabel → 8S, Ω@SD<D
graphxan = Plot@−s + Sqrt@A + 2D ∗

8HEllipticE@JacobiAmplitude@HSqrt@2 + AD ∗ s ê 2L + EllipticF@phizero, ksqD, ksqD, ksqD ∗

Sqrt@1 − ksq ∗ JacobiSN@HSqrt@2 + AD ∗ s ê 2L + EllipticF@phizero, ksqD, ksqD ^2D ê
JacobiDN@HSqrt@2 + AD ∗ s ê 2L + EllipticF@phizero, ksqD, ksqDL − HEllipticE@phizero, ksqD

Sqrt@1 − ksq ∗ JacobiSN@EllipticF@phizero, ksqD, ksqD ^2D ê JacobiDN@EllipticF@phizero, ksqD, ksqDL<,

8s, 0, limsup<, PlotLabel → "Analytical solution of XHSL",

AxesLabel → 8S, Y@SD<,

PlotStyle → 8Red<,

PlotLegends → 8"Analytical"<D
graphyan = Plot@H12 + Sqrt@2 − AD ∗

JacobiSN@H−Sqrt@2 + AD ê 2L ∗ s + EllipticF@−ArcSin@Sqrt@H2 ∗ Cos@thetaD − AL ê H2 − ALDD, ksqD, ksqD,

8s, 0, limsup<, PlotLabel → "Analytical solution of YHSL", AxesLabel → 8S, Y@SD<,

PlotStyle → 8Red<, PlotLegends → 8"Analytical"<D
graphoman = Plot@2 ∗ JacobiAmplitude@HHSqrt@2 − AD ∗ s ê 2LL + EllipticF@theta ê 2, 2 ê H2 − ALD, 4 ê H2 − ALD,

8s, 0, limsup<, PlotLabel → "Analtyical solution of ΩHSL",

AxesLabel → 8S, Ω@SD<, PlotStyle → 8Red<, PlotLegends → 8"Analytical"<D
Show@graphx, graphxan, PlotLabel → "Analytical Solution vs. Numerical Solution for XHSL"D
Show@graphy, graphyan, PlotLabel → "Analytical Solution vs. Numerical Solution for YHSL"D
Show@grapho, graphoman, PlotLabel → "Analytical Solution vs. Numerical Solution for ΩHSL"D

Printed by Wolfram Mathematica Student Edition

Figure C.1: Mathematica script showing the commands to solve the system of dif-

ferential equations and the commands to plot the analytical solution.
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Out[1216]=
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S
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1.0

X HSL
Analytical Solution vs. Numerical Solution for XHSL

Numerical

Analytical

Out[1217]=

1 2 3 4 5

S

0.5

1.0

1.5

2.0

2.5

3.0

3.5

YHSL
Analytical Solution vs. Numerical Solution for YHSL

Numerical

Analytical

Out[1218]=

1 2 3 4 5

S

-1.0

-0.5

0.5

1.0

1.5

2.0

2.5

WHSL
Analytical Solution vs. Numerical Solution for WHSL

Numerical

Analytical

4     OliverosHRG.nb

Printed by Wolfram Mathematica Student Edition

Figure C.2: Mathematica output showing the comparison between the analytical

and numerical solution for X(S), Y (S) and Ω(S).
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Appendix D

Elliptic integrals and elliptic

functions

The incomplete elliptic integral of the first and second kind are defined respectively

as

u = F(Θ, κ) =

∫ Θ

0

dθ√
1− κ2 sin2 θ

, (D.1)

u = E(Θ, κ) =

∫ Θ

0

√
1− κ2 sin2 θ dθ. (D.2)

In these expressions, κ is the elliptic modulus and the angle Θ is called the amplitude

of u. The Jacobi amplitude is the inverse function of F(Θ, κ), so that

Θ = am(u, k) = F−1(u, k). (D.3)

The Jacobi functions are defined as follows

sin Θ = sn(u, κ), (D.4)

cos Θ = cn(u, κ), (D.5)√
1− k2 sin2 Θ = dn(u, k). (D.6)

Additional properties of the elliptic integrals and elliptic functions can be found

in the book by Abramowitz and Stegun [37].
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Appendix E

Derivation of the Gibbs’ limit

In his work, Gibbs [21] derived the conditions under which a liquid surface remains

pinned at the edge of a solid surface (see figure E.1)

γsv − γsl ≥ γlv cos θ, (E.1)

γsl − γsv ≥ γlv cosα, (E.2)

where γ are the surface tensions, and the subindices correspond to the interacting

surfaces (liquid l, vapor v, solid s). These set of inequalities can be put in the

following way:

− cosα ≥ γsv − γsl
γlv

≥ cos θ. (E.3)

From Young’s equation [21] we also have that if the liquid is resting on a flat surface,

the following equilibrium condition holds:

γsv − γsl = γlv cos θeq. (E.4)

Therefore, we can relate the Gibbs’ conditions to the equilibrirum angle as follows:

− cosα ≥ cos θeq ≥ cos θ, (E.5)

which is equivalent to

cos θeq ≥ cos θ, (E.6)

− cos(2π − θ − φ) ≥ cos θeq. (E.7)
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θ α 

Liquid Vapor 

Solid 
Φ 

Figure E.1: The meniscus pinned at the edge of a solid surface must satisfy the

Gibbs’ conditions.

From the first inequality it follows that, for all values of θ and θeq between 0 and π,

θ ≥ θeq. (E.8)

We simplify the second inequality using trigonometric properties. Since − cos(2π −

θ − φ) = cos(θ + φ− π), we have that

cos(θ + φ− π) ≥ cos θeq. (E.9)

For all values of θ + φ− π between 0 and π, it follows that

θ ≤ π − φ+ θeq. (E.10)

Putting the two inequalities together yields the Gibbs’ limits in terms of the contact

angles:

θeq ≤ θ ≤ π − φ+ θeq. (E.11)

This condition put in terms of the supplementary angle of θ gives equation (3.75)

in section 3.5.2. In order for the meniscus to stay pinned, the strict inequalities

must be satisfied. Whenever the equality holds, the meniscus is displaced to either

of the flat surfaces, receding or spilling-over. It can also be seen that if we have a

flat surface, i.e. φ = π, the Gibbs condition reduces to the equilibrium condition

given by equation (E.4), which is the classic Young’s equation. In case the reader is

interested, the work by White [66] provides a theoretical explanation of the Gibbs’

limit using variational principles.
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Kalejs, and H.J. Möller. Bulk Crystal Growth and Wafering for PV. In Hand-

book of Photovoltaic Science and Engineering, pages 218–239. John Wiley and

Sons, Ltd, United Kingdom, 2011.

BIBLIOGRAPHY 130



BIBLIOGRAPHY

[50] C.A. Rowland, P.L. Kellerman, F. Sinclair, J.G. Blake, and N.P.T Bate-

man. Floating sheet measurement apparatus and method. US Patent

US2009/0231597 A1, September 17, 2009.

[51] R.G. Seidenstricker. Dendritic Web Silicon for Solar Cell Application. Journal

of Crystal Growth, 39:17–22, 1977.

[52] R.G. Seidenstricker and R.H. Hopkins. Silicon Ribbon Growth by the Dendritic

Web Process. Journal of Crystal Growth, 50:221–235, 1980.

[53] W. Shockley. Process for growing ssingle crystals. U.S. Patent 3,031,275, April

24,1962.

[54] F. Sinclair and P.L. Kellerman. Apparatus for float grown crystalling sheets.

US Patent US014/0096713 A1, April 10, 2014.

[55] D.M Stefanescu. Science and Engineering of Casting Solidification. Springer,

New York, 2009.

[56] T. Surek. Theory of shape stability in crystal growth from the melt. Journal

of Applied Physics, 47:4384–4393, 1976.

[57] T. Surek and B. Chalmers. The direction of growth of the surface of a crystal

in contact with its melt. Journal of Crystal Growth, 8:1–11, 1975.

[58] T. Surek, B. Chalmers, and A.I. Mlavsky. The Edge-defined Film Fed Growth

of Controlled Shape Crystals. Journal of Crystal Growth, 42:453–465, 1977.

[59] J.C. Swartz, T. Surek, and B. Chalmers. The EFG process applied to the

growth of silicon ribbons. Journal of Electronic Materials, 4:255–279, 1975.

[60] V.A. Tatarchenko. Capillary shaping in crystal growth from melts: I. Theory.

Journal of Crystal Growth, 37:272–284, 1977.

[61] V.A. Tatarchenko. The possibility of shape stability in capillary crystal growth

and practical realization of shaped crystals. In Crystal Growth Processes Based

BIBLIOGRAPHY 131



BIBLIOGRAPHY

on Capillarity: Czochralski, Floating Zone, Shaping and Crucible Techniques,

pages 51–114. John Wiley and Sons, Ltd, New York, 2010.

[62] V.A. Tatarchenko, V.S. Uspenski, E.V. Tatarchenko, J.Ph. Nabot, and T. Duf-

far. Theoretical model of crystal growth shaping process. Journal of Crystal

Growth, 180:615–626, 1997.

[63] R. Thronson and P.L. Kellerman. Floating silicon method (FSM). Technical re-

port, Applied Materials, Varian Semiconductor/DOE Final Report, December

21, 2013.

[64] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber,

J. Han, S. Nas, and Y.-J. Jan. A Front-Tracking Method for the Computations

of Multiphase Flow. Journal of Computational Physics, 169:708–759, 2001.

[65] M.P. Volz and K. Mazuruk. Existence and shapes of menisci in detached Bridg-

man growth. Journal of Crystal Growth, 321:29–35, 2011.

[66] L.R. White. The equilibrium of a liquid drop on a nonhorizontal substrate

and the Gibbs criteria for advance over a sharp edge. Journal of Colloid and

Interface Science, 73:256–259, 1980.

[67] J.A. Zoutendyk. Theoretical analysis of heat flow in horizontal ribbon growth

from a melt. Journal of Applied Physics, 49:3927–3932, 1978.

[68] J.A. Zoutendyk. Analysis of forced convection heat flow effects in Horizontal

Ribbon Growth from the melt. Journal of Crystal Growth, 50:83–93, 1980.

BIBLIOGRAPHY 132


