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Abstract

Simultaneous Localization and Mapping (SLAM) has been an active area of research

for several decades, and has become a foundation of indoor mobile robotics. However,

although the scale and quality of results have improved markedly in that time period, no

current technique can eUectively handle city-sized urban areas.

The Global Positioning System (GPS) is an extraordinarily useful source of localization

information. Unfortunately, the noise characteristics of the system are complex, arising

from a large number of sources, some of which have large autocorrelation. Incorporation of

GPS signals into SLAM algorithms requires using low-level system information and explicit

models of the underlying system to make appropriate use of the information. The potential

beneVts of combining GPS and SLAM include increased robustness, increased scalability,

and improved accuracy of localization.

This dissertation presents a theoretical background for GPS-SLAM fusion. The pre-

sented model balances ease of implementation with correct handling of the highly colored

sources of noise in a GPS system.. This utility of the theory is explored and validated in the

framework of a simulated Extended Kalman Filter driven by real-world noise.

The model is then extended to Smoothing and Mapping (SAM), which overcomes the

linearization and algorithmic complexity limitations of the EKF formulation. This GPS-

SAM model is used to generate a probabilistic landmark-based urban map covering an area

an order of magnitude larger than previous work.
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Chapter 1

Introduction

1.1 Motivation

Autonomous transportation is a puzzle which, if solved robustly, has the potential to yield

immense beneVts in safety, ecology, and economy. Yet, despite an immense amount of eUort

in the Veld, general autonomous transportation remains an elusive goal.

Although some of the problems of autonomous transportation have been addressed in

speciVc scenarios, such as semi-structured highway scenes, the more generalized problem

appears to be less tractable; there are currently no good models that allow robots to navigate

in general outdoor environments with anything approaching the eXciency of a natural

intelligence.

So what is needed before autonomous transportation can be considered a solved prob-

lem, ready to be reVned and commercialized?

Autonomous robots cannot yet safely and robustly navigate urban environments. The

reasons for this are many: in cities, the simplicity and orthogonality that would be friendly

to robot reasoning are trumped by history and geography. At a macroscopic level, cities

are like organisms; they evolve in response to an astounding range of stimuli. The result is

complex, and doesn’t typically map well to the kinds of simpliVcations and assumptions of

which roboticists are fond. Additionally, cities are full of pesky humans who signiVcantly

complicate the requirements of an autonomous system by being simultaneously the least

predictable and the most consequential actors in a given scene.

1
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There are two obvious ways to approach the problem of autonomy in such an environ-

ment. One is to computationally generate enough semantic understanding of environments

to enable reasoning about proper courses of action. In eUect, this approach seeks to create

a robot that serves as a drop-in artiVcial replacement for a human driver. This is, in some

respects, the ideal solution; such a robot would be Wexible and general-purpose without the

need for speciVc domain- (or city-) speciVc prior knowledge.

I believe that this is a hopeless task in the near term. No robot has come close to dis-

playing the level of cognition necessary to deal with the unstructured and dynamic environ-

ments encountered in an urban setting. Perhaps projects in the same spirit as the DARPA

Urban Challenge will push this envelope, but I believe that this is fundamentally the wrong

approach to urban autonomy at the present time.

The alternative approach is to limit the necessary amount of semantic understanding

as much as possible by injecting domain-speciVc prior knowledge into the system. This

approach implicitly rejects the idea that mimicking humans is the most eXcient way to

approach autonomous transportation. Instead, the problem is approached by attempting to

eXciently decompose the larger challenge into pieces that robots can handle eXciently and

robustly.

This work is a piece in the larger puzzle of autonomous urban transportation. By demon-

strating a tractable, eUective way to build localization maps in very large-scale environ-

ments, we limit the need for semantic understanding to a much smaller, and hopefully

more tractable, set of problems.

1.2 Integrating GPS with SLAM

There is a great deal of useful work to be done in bringing the Velds of SLAM and GPS

navigation together. I believe that the combination of the two Velds will enable the creation

of maps of large, urban-sized areas, which are typically hundreds of square kilometers.

High-accuracy large-scale outdoor mapping is not something that can be accomplished

with GPS alone. Although high-precision GPS receivers exist, they rely on having a con-

tinuous, clear line of sight to multiple satellites to function. In areas without a continuous

clear view of a wide part of the sky, the location information available from GPS will be
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degraded or nonexistent. Dense urban areas represent a particularly challenging environ-

ment for GPS operation, yet it is in such environments that accurate localization would be

most valuable. Furthermore, the use of more elaborate techniques to improve GPS precision

imposes ever more stringent requirements on signal availability. In short, increasing GPS

precision comes at a cost of decreased availability. This can be mitigated to some extent

by incorporating a self-contained integrating error motion estimate into the system, such as

odometry or inertial sensing, but this is not a satisfactory solution; during a period of GPS

outage, the unbounded growth of pose uncertainty quickly makes high-precision navigation

impossible.1

Broadly speaking, we wish to be able to bound our localization error whether or not

GPS is currently available. Looking to the Veld of SLAM, we Vnd ideas on how to bound

our localization without the beneVt of a bounded error pose sensor, and how to propagate

high-precision information through a map to improve our estimates of both the location of

landmarks and our pose when we next traverse the area of high uncertainty.

Scaling SLAM systems to large-scale environments is diXcult. Although some promis-

ing recent work addresses some of the strictly computational issues of large-scale SLAM

in a variety of clever ways, signiVcant problems remain, such as robustly associating land-

marks at the end of large loop closures, preventing catastrophic failure due to the inevitable

occasional incorrect associations, and dealing with long-term feature management.

In addressing these questions, research in outdoor SLAM largely ignores the existence of

GPS, instead trying (with mixed results) to scale algorithms that work well indoors to envi-

ronments both less regular and larger by several orders of magnitude. There is some amount

of perception that SLAM and GPS navigation are discrete Velds – if you have GPS, the con-

ventional wisdom goes, add an IMU and a Kalman Vlter and don’t bother with mapping;

with suXciently good GPS and a high quality IMU, navigation is a solved problem. How-

ever, as evidenced by the lack of widespread autonomous vehicles, the GPS-IMU solution

is neither suXciently robust nor (with reasonably priced hardware) suXciently accurate to

cope with complex unstructured environments.

We can do signiVcantly better by using GPS to augment a SLAM system. The two largest

1Given a suXciently high-precision (and high-cost) sensor the problem may be delayed, but not indeV-
nitely.
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problems of GPS-based navigation are outages and limits in accuracy. SLAM brings to the

table methods for continually reVning positional estimates and dealing with long periods

of error integration. On the other hand, one of the primary diXculties in scaling SLAM is

that accurately closing loops becomes an increasingly diXcult problem as a robot’s local-

ization certainty decreases. Providing a non-integrating source of localization information

signiVcantly eases this task.

This work moves towards the uniVcation of GPS and SLAM in urban environments. By

demonstrating it is feasible to create high-precision, high-coverage maps large enough to

encompass signiVcant urban areas, we get closer to the goal of enabling autonomous, robust

urban navigation.

1.3 Document Outline

The rest of this document is organized as follows. Chapter 2 highlights signiVcant related

work, particularly in the areas of SLAM and GPS navigation. Chapter 3 analyzes the various

sources of error and noise in a GPS system with an eye to how GPS information can be used

consistently and appropriately in SLAM systems. Chapter 4 integrates GPS into a classical

EKF-SLAM system to demonstrate GPS-SLAM integration on a well-understood model. In

chapter 5, an integrated GPS-SAM system is presented to show how GPS can be integrated

into scalable probabilistic mapping implementations. Finally in chapter 6 we conclude and

discuss future directions of work.



Chapter 2

Related Work

Localization and mapping has been a very active area of research recently. This section

summarizes some of the major themes which appear in the literature.

2.1 GPS/INS/Odometry integration

GPS integration with Inertial Navigation Systems (INS) is, in some respects, the classic

example of sensor fusion. The two sensing modalities are extremely complimentary. GPS

provides bounded error, slow-update positional information with bad noise characteristics

in high frequencies, and excellent error characteristics in low frequencies. INS systems

provide largely the opposite: unbounded integration error, fast update rate with excellent

high frequency error characteristics, and pathological low-frequency errors. In situations

where GPS is highly available, this sensing combination can provide extremely high-Vdelity

localization estimation.

The Veld is suXciently mature that several books are dedicated to the topic, such as

[Grewal et al., 2001] and [Farrell and Barth, 1999].

The techniques for fusing GPS and IMU data typically are categorized as tightly or

loosely coupled. Speaking generally, a loosely coupled system uses the GPS as a black box

which generates positional and velocity information. This information is then fused with

the IMU acceleration and integrated velocity and position terms to generate an overall state

estimate. A tightly coupled system, in contrast, uses the pseudorange and pseudorange rate

5
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as direct inputs into the Vlter, and solves for vehicle state and dynamics estimates in an

integrated manner.

Unfortunately, this is not a complete solution for most urban environments, wherein

GPS availability is typically discontinuous. Although there are inertial systems with enough

precision to compensate for long GPS outages without introducing signiVcant error, the cost

of such units is prohibitively expensive at this time.

This work is very related to tightly coupled methods; by doing more detailed estimation

in SLAM using the individual parts of the GPS system instead of treating positional and

velocity Vxes as black boxes, we seek to improve and appropriately model the underlying

probabilistic systems.

2.2 Simultaneous Localization and Mapping

For the past two decades, SLAM has been a hot topic of research. This work nearly univer-

sally assumes a lack of any bounded-error beacons for localization, and uses landmarks to

both build a map of a robot’s environment and localize the robot within the map.

The primary feature which distinguishes SLAM from odometry augmentation is loop

closure. When a robot revisits an area in which it has previously operated, ideally it can

then bound the error accumulated over the course of the odometry walk both forward and

backwards in time; previously visited points can be corrected to become more consistent

with a Euclidean space, and the current uncertainty estimate for the robot’s location can be

reduced (relative to some starting point). The Veld was essentially started by [Smith and

Cheeseman, 1986], who proposed both the problem and a solution based on simultaneously

estimating the robot pose and the position of landmarks in a single extended Kalman Vlter

(EKF). The original solution is amazingly elegant, but does not scale well; the matrix inver-

sion required in updating makes the complexity of the approach O((m+ dn)3), wherem is

the dimensionality of the pose estimate, d is the dimensionality of landmark estimates, and

n is the number of landmarks in the map. In addition to the computational issues, the EKF

solution uses linear approximations to nonlinear processes at each timestep. The addition

of this linearization error can cause problems for accuracy and stability of the Vlter.

Even though it is not immediately applicable to more than very small sized environ-
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ments, this theoretical framework is the starting point for the bulk of SLAM research which

has come since.

Most of the work in the Veld since Smith and Cheeseman’s original paper attempts to

address some combination of the linearization issue, the computational complexity issues,

or the required data association issues.

Linearization Improvements

Within the linearized frameworks, the linearization process has traditionally involved cal-

culating the Jacobian of the nonlinear process around some point of interest to generate the

linearized estimate. The usual justiVcation given for this process is that the Jacobian incor-

porates the Vrst element of the Taylor series expansion of the nonlinear function. [Julier and

Uhlmann, 1997] presented an alternative method for linearization based on nonlinear trans-

formation of a small number of carefully selected sample points from the distribution. This

method of linearization yields better results than the Extended Kalman Filter in virtually

all scenarios, and does not require that the underlying nonlinear mapping be diUerentiable.

The Unscented Transformation at the heart of this work is both more general and better

at capturing nonlinear transformation than the EKF’s Jacobian approximations, and is gen-

erally a drop-in replacement for the EKF. Although it can signiVcantly improve the linear

approximation to nonlinear processes, cumulative linearization errors arising from signiV-

cant excursions prior to landmark revisitation in large-scale SLAM can still be problematic.

Computational Complexity

In EKF-SLAM, the computational complexity can be thought of as arising from the algo-

rithm being rather obsessive about keeping information about relationships between land-

marks. As the EKF solution runs, all landmarks become correlated through the maintained

covariance matrix; this means that any observation propagates eUects through every land-

mark interrelationship in the entire map.

The key observation being exploited by most modern methods is that this complete

cross-landmark information does not actually contribute to the accuracy of the map. In

other words, while we can track the relationship between features which are far, far apart,
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we usually shouldn’t, since the theoretical gain in accuracy is tiny (or, in the case of lin-

earized approaches, even negative), and any such gains come at an extremely high compu-

tational cost.

Sparse Extended Information Filters

One way to approach this issue is to look to the dual, equivalent formulation of the EKF

which relies on the inverse covariance matrix and a projected state estimate. In this form

of the Vlter, uncertainty is represented by an inverse covariance matrix, usually called an

information matrix1. Mathematically, the Vlter is equivalent in operation to a Kalman Vlter.

Computationally, it has a number of advantages: the information matrix directly represents

landmark and positional relationships, making removal of tenuous relationships a relatively

straightforward task. Additionally, sparse matrix methods can be used to greatly reduce

computational load. This approach, generally known as Sparse Extended Information Fil-

tering (SEIF), has been explored in a number of works, notably [Liu and Thrun, 2003], in

which it was proposed, and [Thrun et al., 2004], which showed that, under some constraints,

it is possible to run the SEIF algorithm in constant time. [Eustice et al., 2005] explored the

basis for and consequences of the sparsiVcation used in these techniques. These techniques

do still share the linearization problems of their EKF dual. Additionally, [Walter et al.,

2007] showed that the naïve method of sparsiVcation of the information matrix is inher-

ently “overconVdent”, reducing error estimates inappropriately, and provided an alternative

sparsiVcation method which can be shown to be consistently conservative.

These methods retain the problem of linear approximation becoming very inaccurate as

loop size increases; incorporation of GPS can keep such approximations bounded to allow

for large scale usage.

Hierarchical Methods

There is also a large body of work which attempts to address both scalability and lineariza-

tion errors through the use of imposed hierarchy, or fused topological-metric maps [Bulata

and Devy, 1996] [Bosse et al., 2004] [Guivant and Nebot, 2001]. Typically in this work, a

1This is not to be confused with the information theory structure of the same name.
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linear Vlter is used to build a map of a relatively small area. This map then becomes the

building block of a higher level map, which relates the positions of the submaps. Solving

for submap relationships becomes a chained optimization problem, but linearization of the

individual links allows for more Wexible representation of nonlinear relationships. Scalabil-

ity is improved by limiting the pathological algorithms to small sets of landmarks within a

small number of submaps at a time. However, loop closure and cross-map boundaries incur

an additional computational cost. Related is the work of [Williams, 2001], in which compu-

tational eXciency is much improved by maintaining a local submap that is synchronized to

a global map at longer intervals.

Of particular interest is the work of Tim Bailey in [Bailey, 2002]. This work deals explic-

itly with scaling SLAM up in outdoor environments within a hierarchical EKF framework.

In addition to introducing an alternative submap formulation to limit computational com-

plexity and contemplating long-term feature management, the work also delves brieWy into

augmenting GPS with what is termed Partial SLAM. This is an interesting Vrst step in the

direction explored here. However, in this work, the SLAM algorithm used simply “forgets”

about any landmarks which are not currently in view, turning the SLAM algorithm into a

local estimator akin to an IMU or odometry. This work, in contrast, takes full advantage of

“true” SLAM.

Also related is the recent work of [Paz et al., 2007], in which a divide-and-conquer

approach is used to reduce the algorithmic complexity of computing exact Vlter updates.

Non-recursive Methods

Another major development of late is the cross-pollination of the SLAM and Structure From

Motion (SFM) Velds in robotics. In the computer vision community, SFM, which has been

studied for much longer than SLAM, can be reformulated as a special case of camera-based

SLAM. In the SFM literature, bundle adjustment, or sparse bundle adjustment, serve the

same general purpose as loop closure in the SLAM literature.

From this departure point, it’s possible to look at loop closure as a global optimization

problem, with a dual and equivalent formulation in Graph Theory. Instead of being recur-

sive, this formulation is global in nature; the entire trajectory is kept and re-optimized at
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each time step. The solutions are found via linearization of the problem, but the lineariza-

tions do not iteratively accumulate error – they are recalculated at each time step. This has

the additional advantage that the history allows data association decisions to be reevalu-

ated. Incorrect loop closures can, in theory, be undone; in recursive formulations, the data

do not exist to reevaluate such decisions, making incorrect data association a serious issue.

In GraphSLAM [Thrun and Montemerlo, 2006], a graph of robot poses and landmark

observations is obtained. To obtain a global map, landmark observations from multiple

poses are refactored into constraints between those poses. GraphSLAM chooses to explic-

itly marginalize out landmarks to improve the pose estimates. The resulting graph and

associated matrix are, under most conditions, very sparse and can be eXciently optimized.

Of particular relevance to this dissertation is the addition of the capability of using GPS

readings to improve the resulting solutions. The implicit extremely optimistic white-noise

assumption in this work is mitigated by only allowing inputs into the Vlter to be extremely

“occasional”, allowing process noise to dominate the system in between readings.

In [Paskin, 2002], SLAM is approached as a graph problem where nodes group “related”

landmarks and edges contain information matrices and associated vectors. In the natural

implementation of such a scheme, the graph would quickly become complete, removing

any advantage over the linear Vlter approaches, but the work cleverly develops an eXcient

maximum-likelihood edge-removal algorithm to remove weak links between nodes with-

out introducing overconVdence. Using the generated map is akin to querying an inference

network. Similar work was done simultaneously in [Frese, 2004]. The latter work has been

extended in [Frese, 2007] to very large numbers of landmarks, though the source of data as-

sociation is oracular and there is no provision made for recovering from association errors.

Closely related is the Square Root Smoothing and Mapping (colloquially known as
√
SAM ) work in [Dellaert and Kaess, 2006]. In this work, it is noted that an informa-

tion matrix formulation in which past robot motion states are not marginalized out remains

naturally sparse. This formulation naturally causes a much faster growth in the size of the

information matrix, but the maintained sparseness gives rise to very eXcient least square

solutions, to the extent that much larger systems can be optimized than can be reasonably

handled by classical naïve Vlter formulations.

The Wexibility of this approach comes at the cost of long-term computational eXciency;
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the computational and memory cost of resolving a map grows without bound. In the typical

case, sparsity of landmark observations allows for a computation cost linear in the number

of observations and the robot trajectory length, with a very low constant. The authors argue

that such non-recursive methods are suXciently eXcient to bootstrap a localization system,

postulating that if the system were to run to the point that the lack of recursion is a problem,

it would be reasonable to “Vnalize” the map, converting the problem into one of localization

using a Vxed map.

More recent work has addressed this weakness in two ways. [Kaess et al., 2007] and

[Kaess, 2008] present a method of incrementally factoring the information matrix, greatly

reducing the computational load, but not the memory requirements. [Ni et al., 2007]

presents an alternative approach using submaps with independent coordinate frames which

are periodically merged back into a global estimate. This divided approach does not reduce

overall storage requirements, but does bound core memory requirements in a promising

way.

The scalable implementation presented in this work builds on the foundation of recent

SAM research.

Particle Filters

Other recent work in SLAM has used particle Vlters. Particle Vlters tend to be extremely

computationally intensive to run, and the simple implementation would require O(n) stor-

age per landmark to sample accurately from the distribution of possible locations of that

landmark, where n is the number of particles used, and tends to be quite high to make di-

vergence of the Vlter unlikely. Recent work made the key observation that, given the robot

pose, landmark positions in the SLAM problem are independent, leading to a representation

which factorizes landmark posteriors into independent estimations given samples of the

pose posterior. Within the framework of a particle Vlter, this means that each landmark can

be represented by one n×n Kalman Vlter per particle, where n is the dimensionality of the

mapping space. Loop closure simply becomes a matter of discarding those particles (and as-

sociated landmark maps) which are inconsistent with the current sensing data [Montemerlo

et al., 2002] [Montemerlo, 2003].
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These methods are particularly compelling in that they provide one of the most elegant

solutions to coping with potential misassociation errors. Sample-driven methods of this

style have provided some of the most interesting results in large-scale SLAM to date.

However, sampling methods can run into diXculties accurately approximating distribu-

tions in high-dimensional spaces. As will be seen, integrating GPS into the system directly

increases the dimensionality of the problem signiVcantly. Hybrid particle-distribution meth-

ods such as [Montemerlo et al., 2003] may provide a suitable foundation for GPS integration,

but that possibility is not explored in this work.

Landmark-Free Methods

Not all SLAM methods represent maps as sets of landmarks. In [Lu and Milios, 1997], a

method was proposed to align raw laser scans of an indoor environment in a globally con-

sistent manner. This work was extended by [Gutmann and Konolige, 2000] by improving

the computational eXciency and implementing a computer-vision inspired method for de-

tecting closure of large loops.

A landmark-free particle method, in which the state of the world is maintained as a

modiVed occupancy grid map, has been developed in a series of papers [Eliazar and Parr,

2003] [Eliazar and Parr, 2004] [Eliazar and Parr, 2005]. This approach incorporates both

the full map posterior and the pose posterior into a uniVed particle Vlter. Although the

theoretical complexity of the most recent iteration of this approach is linear in the number of

particles and the size of a single observation, the number of particles needed for convergence

in nontrivial cases is extremely large, limiting utility in large-scale environments.

2.3 Other Work of Interest

The idea of using GPS information in SLAM systems has come up in the literature from time

to time. Of note, the work in [Lee et al., 2007] treats GPS and digital road map information

as prior constraints to aid their SLAM algorithm in data association and loop closure. In

contrast, this work integrates GPS into the SLAM system directly, providing for better es-

timates and obviating the need for an artiVcial separation between a priori knowledge and
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SLAM inputs.

There are several ongoing eUorts to generate 3-D maps of urban areas with varying goals

and methodology. Microsoft and Google, among other industry players, are known to be

developing automated collection systems, but the work is not currently being published in

the publicly available literature.

There has also been some work which uses aerial or satellite imagery to provide post-

processing global constraints to a ground-based system. This allows the the construction

of very large, visually appealing maps of urban areas, but does not provide probabilistic

bounds on the accuracy of those maps for localization purposes [Früh and Zakhor, 2003].
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Chapter 3

GPS Errors and Mitigation Strategies

3.1 Introduction

“Global Positioning System” (GPS) is a generic name for a wide array of technologies and

techniques used to generate localization information. Multiple systems which are accurately

described as GPS may diUer in almost every implementation detail, from the satellites used

to how ranges are measured to how time is measured and propagated. Additionally, the

uses of GPS span an extraordinary range, from navigation to surveying to precise time

synchronization.

To eUectively integrate GPS into a larger system, an understanding of the sources, mag-

nitudes, and characteristics of systemic errors is critical. In this chapter, we will examine the

magnitude and characteristics of GPS errors. We will take advantage of the large body of

published reference station data to analyze error sources individually where observability

permits. While we will devote some time to a basic overview of core concepts, it is not our

intention to give an in-depth exposition on how GPS works; most of the various systems

involved are already well-documented. For deeper general GPS information see [Kaplan,

1996], [Parkinson et al., 1996], and [Arinc, 2000] among others.

15
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3.2 Constellations

Without qualiVcations, GPS usually refers to the United States’ NAVSTAR system, which is,

at this time, the only fully functional global navigation satellite system system (GNSS). The

Russian GLONASS system, which achieved global coverage in the 1990’s, has deteriorated

due to a lack of satellite replenishment, but is now being restored by a joint eUort of the

Russian and Indian governments. Additionally, China is developing a new system called

Compass, while the European Union is planning Galileo; both Compass and Galileo are

launching test vehicles with the goal of having an operational system in the next decade.

All four systems operate or are anticipated to operate on similar principles. With ap-

propriate hardware, it will be possible to improve accuracy and reliability by using multiple

systems. However, because the newer constellations are not yet operational, such hybrid

conVgurations are left as future work. References to GPS within this document should be

understood to be limited to the NAVSTAR constellation.

Basic Functionality

GPS is enabled by a constellation of satellites in medium earth orbit. The orbits are designed

to provide high availability of 5 or more satellites above the horizon at nonextreme latitudes.

Each satellite carries highly accurate cesium and/or rubidium clocks. At present, satellites

broadcast on two frequencies: 1.57542 GHz (L1) and 1.2276 GHz (L2). A coarse acquisi-

tion (C/A) 1.023 MHz repeating pseudorandom code modulates the L1 frequency, and an

encrypted precise (P) 10.23 MHz code modulates both the L1 and L2 frequencies. Although

the precise code is not available to civilian receivers, techniques exist to utilize the second

band without access to this code. These will be brieWy discussed later.

Each satellite also broadcasts Keplerian orbital parameters, which make it possible to

calculate the position of the satellite with a high degree of precision at a given time.

Given a suXciently accurate and synchronized clock in the GPS receiver, time of signal

Wight from the satellite to receiver could be measured and multiplied by the speed of light to

obtain a range from receiver to satellite. Each satellite would provide a range measurement

of the form:

ρ[i] =

√
(rx − s[i]

x )2 + (ry − s[i]
y )2 + (rz − s[i]

z )2
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where r = (rx, ry, rz)
T is the position of the receiver and s[i] =

(
s

[i]
x , s

[i]
y , s

[i]
z

)T
is the

position of satellite i at the time of transmission. Three such measurements from a non-

degenerate geometry would be required to solve for the user’s position in three dimensions.

In practice, receivers rarely contain oscillators of suXcient precision to derive range

directly. Instead, the oUset of the receiver clock is represented as an additional unknown

for which a solution is found. Each satellite then provides a measurement known as a

pseudorange, which is of the form1:

ρ[i] =

√
(rx − s[i]

x )2 + (ry − s[i]
y )2 + (rz − s[i]

z )2 + cδt

where δt is the oUset of the receiver’s clock from the “true” system time.

The addition of δt as an unknown in the system brings the number of satellites required

to calculate a solution to four, though additional satellites are typically used to improve the

accuracy of a solution through standard least-squares techniques.2

Pseudoranges lead to positional Vxes. In addition to pseudorange information, GPS re-

ceivers commonly measure the Doppler shift of satellites’ signals with respect to the carrier

frequency.

With the frequency known, the shift is a measurement of the dot product of the relative

velocity of the satellite and receiver with the unit-normalized vector which is the direction

of the satellite:

d[i] =
s[i] − r
|s[i] − r|

· (ṡ[i] − ṙ) + v

where d[i] is the measured Doppler shift from satellite i, s[i] is the position of the satellite, r

is the position of the receiver, and v is noise.

1C/A pseudorange is a derived value. The C/A signal repeats every 1 ms, which means the raw data we
have for the pseudorange is the true value modulo .001 light-seconds. Resolving this ambiguity requires either
searching for positional solutions with a “reasonable” amount of residual error or having some very rough
(˜300km) estimate of the position of the receiver to start with. This presents no particular diXculty, and so this
ambiguity will be ignored.

2See [Kaplan, 1996] pp. 43–47
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Figure 3.3.1: East-North-Up coordinate frame Vxes every 30 seconds over an 8-hour win-
dow from using a base station with a Vxed antenna. Modeling the outputs of this system is
a decidedly nontrivial task.

3.3 Error Sources and Characteristics

GPS is complex; errors arise from a wide variety of sources with diUering dependencies and

characteristics. This complex error model is the largest barrier to accurate integration of

GPS with other systems.

Using position Vxes directly is problematic due to the noise characteristics of the pro-

cessed receiver output. In addition to being highly non-white, the noise in the processed

output is dependent on the set of satellites used in calculations. EUorts to formally model

positional oUsets as drifts are hampered by oUsets which suUer “jumps” at unpredictable

times when the constellation of visible satellites changes.

Figure 3.3.1 illustrates the complicated nature of using the position as a “black box”

output of a GPS subsystem. Instead of attempting to use positional Vxes directly, we need to

move to a tighter level of integration which exposes the underlying sources of error directly.

Satellite Orbits and Clocks

There are two common ways to calculate the position of a satellite. In an online application,

satellite positions are calculated using orbital parameters which are collectively referred

to as the ephemeris. This ephemeris is broadcast by the satellite itself every 30 seconds.

Ephemeris parameters are predictive, rather than measured, values, and are generated us-
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ing higher order models and long-term ground station observations of satellite positions.

Predictions from given set of ephemeris parameters become increasingly inaccurate over

time, and become unacceptably large in a matter of hours. Error bounds for ephemerides

have been improving over time due to improvements in measurement and modeling [Crum

et al., 1997], but orbital errors remain a signiVcant source of error in the system.

The rubidium and/or cesium beam clocks carried by satellites are highly stable by most

metrics, but still may drift tens of nanoseconds per day. Thus, the satellite clock oUset

must also be taken into account when calculating pseudoranges. The broadcast ephemeris

includes a second order polynomial model of the clock oUset. However, the residual error

after correcting with the ephemeris model is still signiVcant.

If online operation is not necessary, satellite locations can be determined by Vtting both

past and future satellite positional readings to a long-term orbital model. The National

Geological Survey (NGS) makes these “precise” orbits available for download. The precise

orbits carry a stated positional 1-σ error of approximately 2.5 cm, and a 1-σ clock error of

60 ps, or approximately 2 cm. [Kouba, 2009]

Using the precise orbits as a baseline, we can estimate the broadcast ephemeris positional

and clock errors. Figure 2.1 shows these oUsets for a single satellite over a 24-hour period.

The total oUset is the magnitude of the full positional error. Some of this error—any error

which maintains the range between satellite and receiver—does not aUect the accuracy of

a receiver’s readings. The radial oUset shows the total broadcast oUset dotted with a unit

vector pointing towards the center of the earth, and represents an approximation to the

error that a receiver would perceive. The clock oUset is also shown.

Atmospheric EUects

During the roughly .15 light-second journey from a satellite to a receiver, the signal is

refracted by the atmosphere. The dominant source of this refraction is the charged particles

of the ionosphere.

Refractive angles are frequency-dependent. A receiver capable of decrypting and track-

ing the P-codes on the L1 and L2 frequencies can use the diUerence in measurements to
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Figure 3.3.2: OUset between ephemeris-derived and precise orbits and clock oUsets for a
single satellite over a 24-hour period

estimate refractive eUects and compensate.3 Unfortunately, decrypting the P-codes is not an

option for civilian users. Without access to the unencrypted P-codes, it is still possible to es-

timate the ionospheric delay using a dual-frequency receiver. The encrypted P codes on the

L1 and L2 frequencies are identical. It is therefore theoretically possible (albeit technically

diXcult) to determine the propagation delay oUset between L2 and L1 by using the correla-

tion of the (unknown, but identical) encrypted P codes. Implementations of this approach

are called codeless tracking.

In practice, the data derived from codeless tracking are of greatly diminished quality.

Figure 3.3.3 uses data gathered from several codeless tracking reference stations to estimate

ionospheric delay over a long period of time. A true dual-frequency receiver shows a signif-

icant increase in estimated refractive error as the elevation angle of the satellite decreases.

As can be seen in the plot, codeless trackers have a tendency towards increased uncertainty

at low elevation angles, but do not show an increase in median refractive error.

In addition to refraction, the signal is slowed by passing through atmospheric gases, in-

ducing a perceived delay in signal arrival by the receiver. The troposphere contains the bulk

of the atmospheric mass. The amount of delay in a signal depends primarily on atmospheric

thickness (approximated by latitude), local temperature, atmospheric pressure, and humid-

3See the GPS ICD section 20.3.3.3.3 for the Vrst-order correction terms.
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Figure 3.3.3: Measured ionospheric disturbance vs. satellite elevation angle measured from
several codeless-tracking base stations.

ity. The largest delays occur when the transmitting satellite is low on the horizon, causing

signals to pass through larger portions of the troposphere. Global models for the state of the

troposphere parameterized by altitude, latitude, time of day, and season have been devel-

oped, such as [Herring and Shimada, 2001]. Local models using weather information can

also be used to estimate tropospheric eUects.

Selective Availability

In the past, the United States government intentionally dithered the broadcast signal, adding

an additional, slowly varying error on the order of 150 meters per satellite. This system

degradation was called “selective availability”, and was disabled in 2000. There do not ap-

pear to be plans to reactivate selective availability, but the capability remains in the system.

Velocity

In contrast with receiver position Vxes, velocity Vxes are much more straightforward to use

in a probabilistic model.
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Consider the Doppler measurement from a single satellite, as discussed in 3.2:

d[i] =
s[i] − r
|s[i] − r|

· (ṡ[i] − ṙ) + v (3.3.1)

Consider the signiVcant sources of colored noise in a GPS system: ionospheric refraction,

receiver clock drift, multipath, tropospheric delay, and satellite ephemeris error. Ionospheric

refraction and ephemeris error are similar in that both are the result of the signal taking a

diUerent path from satellite to receiver than is accounted for in the solution. In particular,

the satellite and receiver positions are only used to determine a signal direction. Given that

the satellite is, at a minimum, thousands of kilometers away from the receiver, small errors

in the calculated position of the satellite (or receiver) tend to be negligible for the purposes

of calculating velocity Vxes. Tropospheric delay aUects the signal time of Wight, but not the

perceived frequency, and so can be neglected.

Multipath errors are more worrisome, as a reWected signal will have a perceived Doppler

which is entirely incorrect. This can be mitigated through use of an appropriate antenna,

and many modern receivers actively discard questionable Doppler readings when the sys-

tem is overconstrained.

In the receiver, unmodeled clock drift rate errors would lead to biases in Doppler mea-

surements, but over short windows the second order drift of commercial oscillators, being

driven primarily by temperature shifts, varies quite slowly. This allows us to actively esti-

mate the drift rate of the receiver with suXcient accuracy as to make biases introduced into

the Doppler measurement negligible.

The uncertainty of a velocity Vx is not readily available, and is largely dependent on the

constellation of satellites used to generate the Vx. However, in applications needing a simple

implementation, a conservative, diagonal Gaussian is a reasonable choice to incorporate the

information into a consistent probabilistic model.

Satellite-Associated Errors

In a high-accuracy system, the errors in the satellite position parameters cannot be ne-

glected. The magnitude of this error has decreased over time due to improvements in the

underlying dynamic models and measurement, and varies from satellite to satellite depend-
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ing on the vehicle capabilities. According to [Warren and Raquet, 2003] the combined RMS

positional and clock oUset error from ephemeris estimates is approximately .8 m. Velocity

errors are several orders of magnitude smaller.

If immediate results are not required, these errors can be greatly diminished through

post-processing. Additional ground station observations can be used to generate more ac-

curate orbital estimates over a longer period. There is a basic latency-accuracy tradeoU

in satellite parameters; the initial ephemeris predictions are immediately available. At the

limit, a “Vnal” orbital solution for each satellite, averaging readings from multiple stations

over a long period, is published by the International GNSS service with a latency of 14 days.

These Vnal orbital positional solutions carry a RMS error of under 1 cm.

3.4 DiUerential Techniques

There are a number of techniques used to improve the accuracy of a GPS system though

removal of some of the signiVcant sources of error.

Local Area DiUerential GPS

Many of the signiVcant error sources, including atmospheric eUects and ephemeris error, are

highly dependent on the location of the receiver. Local area diUerential GPS uses a second

GPS receiver in a known location close to the primary receiver. The second receiver uses its

known location to generate a correction to the satellites in view.

If

rb,i =
√

(xb − xi)2 + (yb − yi)2 + (zb − zi)2

is the true range from satellite i to the base station, and can be calculated because (xb, yb, zb)

is known, then

ρb,i = rb,i + εb,geo + εb,local + cδtb

is the pseudorange to satellite i measured by the base station. Here we group the many

spatially dependent sources of error, such as atmospheric eUects and satellite ephemeris
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error εb,geo, and other sources of error, such as receiver noise, in εb,local. Simultaneously,

ρu,i = ru,i + εu,geo + εu,local + cδtu

is the pseudorange to satellite imeasured by the user. Using the two pseudoranges, we Vnd

ρu,i − (ρb,i − rb,i) = ru,i + εu,geo − εb,geo + εu,local − εb,local + cδtu − cδtb (3.4.1)

Because, assuming that the distance between user and base station is small,

εu,geo ≈ εb,geo

we Vnd that

ρu,i − (ρb,i − rb,i) ≈ ru,i + εu,local − εb,local + cδtu − cδtb

In general, εgeo � εlocal. While εgeo, being caused by conditions which slowly vary over

time, tends to be extremely highly autocorrelated, εlocal removes much of the autocorrelated

error.

Wide Area DiUerential GPS

Wide area diUerential systems attempt to estimate individual error terms over a large area

through interpolation of data from multiple base stations that can be signiVcantly further

from the user. Corrections are broadcast via satellite to the receiver. WADGPS systems can,

in the best case, bring the single-reading variance down to 1-2 meters, but error autocorrela-

tion tends to remain high. Various WADGPS systems, both commercial and governmental,

exist.

Carrier Phase GPS

In civilian GPS receivers, range is determined using a phase oUset of a 1.023 MHz C/A signal

modulating a 1575.42 MHz carrier signal. When using a LADGPS system, accuracy can be
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further improved by calculating the phase oUset of the higher frequency carrier signal, and

using a diUerential correction from a Vxed base station also tracking carrier phase. This is

a tricky proposition; the C/A signal is designed to have a low autocorrelation at incorrect

phase oUsets, while the carrier signal has a strong carrier-frequency ambiguity which must

be resolved. Various techniques exist to lock onto the carrier phase given communication

between receiver and base station and an uninterrupted line of sight to the satellite. How-

ever, such locks are fragile, depending on continual signal reception; interruption of the line

of sight requires a costly reaquisition of the lock. When Carrier Phase GPS is available, it

can drive extremely accurate readings. It is very useful for aviation and other work in open

spaces, but ill-suited for urban environments, in which satellite line-of-sight is frequently

interrupted.

3.5 NondiUerential Error Characterization

Unfortunately, many of the error sources in GPS have a high degree of autocorrelation,

making them unsuitable as direct inputs into systems that require noise sources to be rea-

sonably white. Figure 3.5.1 shows the raw error in clock-bias-adjusted pseudorange for a

single satellite over the course of several hours.

The sources of error which are most highly autocorrelated are related to the location of

the receiver. When using an LADGPS system, the εlocal noise is “close enough” to white

that it is reasonable to incorporate pseudorange readings into Vlters as a direct observation

of the vehicle position and receiver clock bias:

ρik = h(xk) + vk︸︷︷︸
∼N(0,Rk)

Furthermore, due to the large distance of the satellite from the receiver, as long as we

have even a very approximate location estimate, discarding the nonlinear portion of h re-

sults in extremely minimal distortion of the resulting function:

ρik ≈ Hxk + vk︸︷︷︸
∼N(0,Rk)
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Figure 3.5.1: Raw error of a single satellite range measurement
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Figure 3.5.2: Autocorrelation of raw satellite pseudorange error

Coverage with even the relatively modest requirements of an LADGPS system is in-

termittent in urban areas; most of the time some mix of diUerentially and either non-

diUerentially or wide-area-diUerentially corrected signals are available. A robust system

needs to be able to account explicitly for the autocorrelation characteristics of the various

types of errors in such systems. Doing so requires explicitly incorporating the current error

into the system model.4

To Vnd the desired characteristics of the system, we look to the autocorrelation5 of the

error, and Vnd that the Power Spectrum Density (PSD) of the Vlter is well modeled by an

exponential decay. The PSD and Vt function are shown in Vgure 3.5.2.

Since pseudorange measurements are processed at regular intervals, we’ll use a diUer-

4This following derivation skips many details, but is similar to derivations which can be found in [May-
beck, 1979], [Bar-Shalom and Li, 1993], and [Gelb, 1974].

5Autocorrelation here is used in the Signal Processing (e.g. unnormalized) sense.
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ence model for the system. Consider εk, the error of a pseudorange measurement at time k.

Given the autocorrelation function characteristics, it seems reasonable to model the system

as the Gauss-Markov process:

εk+1 = Aεk + vk

with autocorrelation function

Rv(τ) = 30.5e−.0005|τ |

The power spectrum density of this process can be factored:

PSDv(jω) =

∫ −∞
−∞

30.5e−.0005|τ |e−jωτdτ

=

∫ ∞
0

30.5e−(.0005+jω)τdτ +

∫ 0

−∞
30.5e(.0005−jω)τdτ

=
30.5

.0005 + jω
+

30.5

.0005− jω

=
.0305

(.0005)2 + ω2

= .0305︸ ︷︷ ︸
PSDww(jω)

(
1

.0005 + jω

)
︸ ︷︷ ︸

H(jω)

(
1

.0005− jω

)
︸ ︷︷ ︸

H∗(jω)

(3.5.1)

From linear systems analysis, we recognizeH(jω) from (3.5.1) as a stable causal system,

which leads to this state model:

εk+1 = e−.0005τ εk + vk︸︷︷︸
∼N(0,.0305τ)

(3.5.2)

This model implies the addition of a bias variable for each satellite to the states being es-

timated by the underlying system, and modiVcation of the observation model to incorporate

this “hidden” state variable.
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3.6 Conclusion

GPS provides an extremely useful source of information for outdoor mapping. However, if

we wish to use this information in mathematically rigorous models, we incur a signiVcant

cost in additional complexity. In this chapter, we have outlined the major sources of errors

corrupting GPS receiver observations, and presented a simple-to-implement model which

we believe is both suXciently detailed to accurately represent GPS information in a fusion

system. In the next chapter, we will derive and test a sample realization of the model in a

fused GPS-SLAM system.
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Chapter 4

Sample Extended Kalman Filter

Implementation and Analysis

4.1 Introduction

Having looked at the characteristics and proposed some ways to model the characteristics

of GPS signals, we now present an model implementation using an Extended Kalman Filter

(EKF).

This choice of model may be surprising at Vrst; the EKF has been improved upon in

virtually every way by a wide variety of algorithms, and it has been some time since it

could be termed state-of-the-art. However, the EKF is arguably the most well-understood

(and easiest to understand) approach to the SLAM problem. This makes it ideal for our

purpose—demonstration and analysis—and so we set the practical matter of scalability aside

for a moment. We will present a solution more suitable for practical implementations in

chapter 5.

The EKF model will provide us a platform on which we can develop some intuition

about how we can expect a GPS-augmented SLAM system to behave. We will also leverage

the simulation as a source of ground-truth for validating the correctness of the approach.

31
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4.2 Simulation Model

Consider a 4-wheel Ackermann steered robot, with control parameterized as a commanded

velocity and steering angle, pose parameterized by an s := (x, y, φ) tuple, and landmark

positions parameterized as (x, y, θ) three-dimensional locations. In EKF-SLAM, estimates

of the current pose of the robot and positions of all the landmarks the robot knows about

are comingled in a single state vector:

xt =

(
st

Θ

)
=



sx,t

sy,t

sφ,t

θx,1

θy,1
...

θx,n

θy,n


(4.2.1)

The process model for our system is:

xt+1 = f(xt,

(
uv,t

uγ,t

)
︸ ︷︷ ︸

ut

,

(
wv,t

wγ,t

)
︸ ︷︷ ︸
wt∼N(0,Qt)

)

= xt +



(wv,t + uv,t) cos(wγ,t + uγ,t + sφ,t)δt

(wv,t + uv,t) sin(wγ,t + uγ,t + sφ,t)δt
(wv,t+uv,t) sin(wγ,t+uγ,t)

kwb
δt

0
...

0


where kwb is the (constant) wheelbase of the robot, uv,t and uγ,t are the commanded speed

and steering angle of the vehicle at time t, respectively, and wt is white noise.

The vehicle is equipped with a sensor that supplies vehicle-relative ranges and bearings
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to landmarks, again corrupted by white noise:

zt :=

(
zd,t

zψ,t

)

= h(xt,

(
vd,t

vψ,t

)
︸ ︷︷ ︸
vt∼N(0,Rt)

)

=

(√
(sx,t − θx,i)2 + (sy,t − θy,i)2

tan−1(
sy,t−θy,i
sx,t−θx,i )

)
+ vt

where i is the identiVer of the landmark being observed.1

Using this process model and observation model, our EKF prediction step is:

x̂t+1 = f(x̂t, ût, 0) (4.2.2)

Pt+1 = Pt +WtQtW
T
t

and our update step is:

Kt : = P−t H
T
t (HtP

−
t H

T
t +Rt)

−1

x̂t = x̂−t +Kt(zt − h(x̂−t , 0)) (4.2.3)

Pt = (I −KtHt)P
−
t

where Ht is the Jacobian matrix2 of h with respect to x̂t:

d̂t : = (ŝx,t − θ̂x,i)2 + (ŝy,t − θ̂y,i)2

Ht =

 θ̂x,i−ŝx,t
d̂t

θ̂y,i−ŝy,t
d̂t

0
. . .

ŝx,t−θ̂x,i
d̂t

ŝy,t−θ̂y,i
d̂t . . .

ŝy,t−θ̂y,i
(d̂t)2

θ̂x,i−ŝx,t
(d̂t)2

−1
θ̂y,i−ŝy,t

(d̂t)2
ŝx,t−θ̂x,i

(d̂t)2


1The data associations (nt in our SLAM notation) come from an oracle for this example; the vehicle always

knows the true mapping from observations to landmarks.
2Although this example uses Jacobian matrices as approximate linearizations of the underlying uncer-

tainty, the Unscented Transform [Julier and Uhlmann, 1997] is almost certainly a better method if one is
optimizing for anything other than clarity of derivation.
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andWt is the Jacobian matrix of f with respect to wt:

Wt =


cos(uγ,t + ŝφ,t)δt −uv,t sin(uγ,t + ŝφ,t)δt

sin(uγ,t + ŝφ,t)δt −uv,t cos(uγ,t + ŝφ,t)δt
sin(uγ,t)

kwb
δt uv,t cos(uγ,t)

kwb
δt

 (4.2.4)

This gives us our “standard” EKF-SLAM formulation, capable of closing loops and the-

oretically capable of reducing the uncertainty of landmarks. The limits of the theoretical

map accuracy attainable are bounded by the initial uncertainty of the vehicle position.

Next, we add satellites to the simulation. At the time of data collection, there were 31

satellite vehicles active in the GPS constellation. In our simulation, 31 virtual satellites were

assigned Vxed positions evenly spaced on a circle 1,000 km in radius.

Each satellite provides an observation of the distance from the satellite to the vehicle.

However, this particular measurement is corrupted by exponentially correlated noise of the

type discussed in section 3.3. To accommodate this noise, four “bias” terms are added to the

state vector:

xt =


st

bt

Θ

 (4.2.5)

where

bt =


b1,t

b2,t

b3,t

b4,t

 (4.2.6)

is the current bias of the four beacons. To a Vrst order approximation, these terms represent

the sum of the errors due to geographic eUects, such as unmodeled ionospheric refraction,

tropospheric eUects, etc.
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The process model must be modiVed as well to reWect the new bias terms:

xt+1 =


I 0 0

0 (ekbδt)I 0

0 0 I


︸ ︷︷ ︸

At

xt +



(wv,t + uv,t) cos(wγ,t + uγ,t + sφ,t)δt

(wv,t + uv,t) sin(wγ,t + uγ,t + sφ,t)δt
(wv,t+uv,t) sin(wγ,t+uγ,t)

kwb

wb1,t

wb2,t

wb3,t

wb4,t

0
...

0



(4.2.7)

where the constant kb and the variance of the wbi,t terms come from the power spectrum

density analysis of 3.5.2.

Within the augmented model, range observations can now be attributed to the sum of

the beacon bias with the beacon-vehicle distance:

zt =
∣∣βi − st∣∣+ bi,t + vβi,t

≈



−βx,i−ŝx,t
|βi−ŝt|
−βy,i−ŝy,t
|βi−ŝt|

0
...

1

0
...

0


︸ ︷︷ ︸

Ht

xt + vβi,t

where βi is the pose of the beacon and vbi,t is zero-mean white noise.

Our modiVed process model means we need a slightly more complicated predict step
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than was presented in 4.2.2:

x̂t+1 = f(x̂t, ût, 0) (4.2.8)

Pt+1 = AtPtA
T
t +WtQtW

T
t

We now have three diUerent types of observations: landmark observations, orientation

observations, and global distance observations. This poses no particular diXculty; each type

of update has well deVnedRt andHt matrices, which makes multiple applications of update

step 4.2.3 straightforward.

To understand the completed system, it is useful to discuss the function of the mecha-

nisms added to the Vlter.

During the predict stage of the Vlter, the At matrix pulls the current biases towards 0.

Without this pull, the movement of the biases would be a simple Markov walk. Additionally,

the At matrix decays the entries of Pt covariance that track the correlation between the bias

terms and landmarks; if we don’t observe a landmark over a long period of time, the estimate

of that landmark’s position becomes decorrelated from the current bias estimate.

If our localization estimate is dominated by beacon data, then repeated observations of

a landmark in a short period of time cause the landmarks’ localization to become correlated

with the bias terms of the beacons in use, mitigating the overconVdence that would result

from oversimplifying the system with a simple white noise assumption about beacon data.

However, if the same landmark is observed again after a signiVcant time lapse, the beacon

bias becomes decorrelated from the landmark position, allowing for a further reduction in

uncertainty.

4.3 Pseudorange Noise Simulation

How we simulate noisy measurements is of critical importance to the validity of the simu-

lation. If we attempt to generate pseudorange noise using the derived model for that noise,

any results presented would not give any useful data to support or refute the appropriate-

ness of the model. Instead, we formulate a method to “record” and “replay” the noise from
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a real receiver in the simulated model.

The National Geodetic Survey (NGS) publishes, in downloadable form, data from a

volunteer-run set of continuously operating reference stations (CORS) all over the globe.

The location of a given CORS, calculated by integrating GPS readings over a long time

series, is typically known with sub-centimeter level precision. Raw code phase data from

tracked satellites is published at a rate of 1 Hz.

If we lump all sources of pseudorange error into a single term, we have:

ρik =
∣∣sik − rk∣∣+ γk + εk (4.3.1)

where ρi is the pseudorange, si is the location of the ith satellite at the time of transmission,

r is the antenna location, γ is the receiver clock oUset, and ε is the residual error.

In the case of the CORS, the unknown quantities in 4.3.1 are γ and ε. At each epoch,

we can generate an estimate of γ, and can use these as observations driving a model of the

oscillator state.

This stripping of the receiver clock oUset from the residual has a side eUect of shifting

E[ε] towards zero. The sources of the errors which comprise ε are not naturally zero-

mean; the dominant components consist of delays in the signal propagation from satellite to

receiver. However, if all of the pseudoranges in an epoch are biased in the same direction,

then the calculated solution for the clock oUset will subsume the common bias.

Simulated pseudorange observations were generated by adding the measured ε residual

to the true simulated satellite-vehicle range.

This model is far from perfect; it ignores, among other things, satellite error correla-

tions due to constellation geometry and receiver clock modeling errors, but it does have the

signiVcant advantage of being data-driven.

4.4 Correlation Discussion

SLAM provides answers to the questions “Where am I?” and “Where are things of interest

in my environment?”. When looking at SLAM-generated maps, the most intuitive and

visible results are global positions and uncertainties of poses and landmarks. Results such
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Figure 4.4.1: A classic SLAM loop closure with an EKF. The robot moves counterclockwise
around the edge of the presented area.

as a classic EKF loop shown in 4.4.1 make this information very clear. This kind of visual

representation, while useful, elides the preponderance of information accrued in the model.

The most signiVcant piece of information which is hidden from view is knowledge about

the relative positions of landmarks. In the common case, observations in quick succession

of multiple landmarks give much more precise information about their positions in relation

to each other than in relation to whatever larger frame underlies the generated map.

In the EKF model, this relative positioning information is maintained in the form of co-

variances between landmarks. This hidden information is exposed at times of loop closure.

In Vgure 4.4.1, the knowledge of the global position of the most recently seen landmarks

was quite imprecise until the robot closed the loop. At loop closure, the relative positioning

information already in the model allowed for the chained collapse of uncertainty backwards

along the robot’s path.

As as been noted in several papers, such as [Liu and Thrun, 2003], and [Thrun and Mon-

temerlo, 2006], and [Eustice et al., 2005], landmark-landmark relative information comes
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Figure 4.4.2: Inverse covariance for the single loop EKF example

into the model by way of the pose estimate. Observations of landmarks correlate them

with the pose estimate at the time of observation. Pose updates transfer pose-landmark

correlations to inter-landmark correlations.

The relative information in the model can also be revealed by looking at the inverse co-

variance, or information matrix. Figure 4.4.2 shows the inverse of the landmarks covariance

from the single-loop EKF example.3 Landmarks are added to the model as they are ob-

served. The resulting information matrix is strongly diagonal; landmarks tend to be highly

correlated with other landmarks which were added to the model at about the same time.

The oU-diagonal patch in the matrix is the loop closure, which relates the positions of the

Vrst and last landmarks added to the model.

A crucial insight into GPS-SLAM is that whitening Vlters also introduce inter-landmark

correlations. Counterintuitively, GPS provides far better relative positioning information

than absolute positioning. It is for this reason that high precision GPS localization tech-

niques are diUerential: even though the system provides globally bounded estimates for

positions without any diUerential reference, the bulk of the error sources confounding such

an estimate are unobservable in short time spans.

The process through which whitening Vlters cause dependencies is illustrated in Vgure

3The whiteness of most of this Vgure should not be taken to mean it is actually sparse, it is only nearly
sparse. Although no values in this matrix are zero, several are within machine precision of being so.
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4.4.3. When a GPS reading is taken, the pose of the robot becomes dependent on the state

of the whitening Vlter at the time of the GPS observation. The state of the whitening Vlter

is independent of the landmark positions given the pose at the time of the GPS reading.

The robot moves, and the previous pose is marginalized out of the EKF. This marginal-

ization induces direct dependences between previously observed landmarks and the state

of the whitening Vlter. However, the inter-landmark dependencies at this point are at-

tributable to the robot motion. There are no GPS-induced direct inter-landmark dependen-

cies yet because the whitening Vlter state at the time of observation is still in the model, and

d-separates the landmarks with respect to GPS information.

Finally, the robot receives another GPS reading, and so updates the state of the whitening

Vlter. The previous whitening Vlter state is marginalized out, pushing GPS information into

the inter-landmark dependencies.

The importance of this distinction between motion- and GPS-induced inter-landmark

dependencies lies in the diUerent ways the pose and whitening Vlters are updated: the

accuracy of a pose prediction tends to be a function of distance, whereas the accuracy of

a Vlter state prediction is a function of time. Consider a GPS-equipped robot which sees

landmark a, then sometime later sees landmark b. Broadly speaking, the robot motion

contribution to an a–b dependency will be determined by how far the robot has traveled

between the observations, whereas the GPS contribution will be governed by the elapsed

time.

Consider, then, what this means for landmark estimates in a SLAM system. If the robot

observes two landmarks in rapid succession while receiving GPS information, the nonwhite

sources of error (ionosphere, troposphere, etc) will be almost identical for both landmarks.

The independent noise sources are typically on the order of centimeters instead of meters.

If at some point in the future, we suddenly gain an excellent global estimate of the

positions of one of the landmarks, then we have implicitly gained information about the

state of these slow-varying non-white noise sources at the time of landmark observations.

This in turn allows us to collapse the uncertainty of landmark positions seen by the robot

soon before or after the oracular landmark.

Without very high-quality (and high-cost) odometry or inertial measurement, these

landmark relationships borne of GPS information can be signiVcant over a far wider area
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Figure 4.4.3: How dependencies enter the EKF model. The circles, triangles, and stars
represent whitening Vlters, poses, and landmarks, respectively. Blue dashed lines are de-
pendencies created solely by pose updates, while green dot-dashed lines show tightened
dependencies created by updates of the whitening Vlters.
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than those arising from motion.

Within our EKF model, we can illustrate this eUect in a number of ways. Figure 4.4.4

revisits the simple loop example but makes two modiVcations: the initial pose of the robot

is not known, and GPS readings arrive at 1 Hz. The autocorrelated error terms become

apparent in the associated scatter plot of the landmark estimate errors. The lower map

and plot show how the Vlter reacts when the system is conditionalized on the true value

of the lower left landmark. The collapse in uncertainty propagates throughout the entire

trajectory, and the plot of errors is centered on the true value.

We can also observe the diUerence in the information matrix of the GPS-enabled system,

as can be seen in Vgure 4.4.5. The strong diagonal band which also appeared in 4.4.2 is still

present. However, the oU-diagonal entries now show a non-negligible dependency mesh of

all landmarks in the model.

4.5 Model Validation

This EKF-GPS-SLAM model generates results which map well to intuitions of how a prob-

abilistic mapping system which integrates GPS should behave, but thus far we have no real

quantitative evidence that the presented model is “correct”.

“Correctness” in the context of a probabilistic model is, ironically, a rather fuzzy propo-

sition. The approximations used in the foundation of this formulation remove any straight-

forward way to show optimality under useful criteria.

One very important question for which we can provide a robust answer is how the

uncertainty estimate of the Vlter compares to the actual errors in estimate.

The EKF is, at heart, a single Gaussian distribution of high dimensionality. In simulation

we have access to the true global state, so at any timestep we can calculate the squared

Mahalanobis distance of the estimate from the true value, e.g.:

(x̂− x)T P−1 (x̂− x) (4.5.1)

From statistics, we know that if we take samples from a Gaussian distribution, the re-

sulting distribution of squared Mahalanobis distances of samples from the mean follows a
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Figure 4.4.4: Top row: single loop with GPS availability, and scatter plot of resulting land-
mark estimate error. Bottom row: same data after conditionalizing the Vlter on the true
position of the lower left landmark.
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Figure 4.4.5: Inverse covariance of a large loop with GPS.

chi-square distribution:

P (x) =
x(k/2−1)e−x/2

2k/2Γ(k/2)
(4.5.2)

where k is the number of degrees of freedom, and Γ is a Gamma function.

This provides the basis for validating our model. If the model is “correct”, then the

squared Mahalanobis distance of errors should be drawn from the appropriate chi-squared

distribution.

Ideally, we would like to be able to use the full error vector and covariance to calculate

distances, but the size of the state vector is dependent on the number of unique landmarks

observed. This prevents us from holding the degrees of freedom constant. Instead, we take

a marginal distribution of 8 random landmarks from the model as the basis for our squared

Mahalanobis calculation.

The results from three scenarios are presented. All scenarios use the grid landmark set

shown in 4.4.1. Each scenario consists of 500 trials, each of which is made up of 20 short

paths driven by the robot. A path consists of a random starting point, a random waypoint,

and Vnally a random ending point. At the beginning of each path, the robot has no prior

estimate of its pose. At the end of each trial, the squared Mahalanobis distance between

the estimate and true values of 8 landmarks under the relevant covariance marginal are
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Figure 4.5.1: No time lapse between successive paths

recorded.

In each scenario, a diUerent amount of time elapses between path runs. The Vrst scenario

involves no time lapse; the robot eUectively “teleports” between locations and continues to

operate. In the second scenario, an hour passes between the end of one path and the start of

the next. In the third scenario, 5 hours passes between path runs.

Figures 4.5.1, 4.5.2, and 4.5.3 show the results of the trials. Statistically, if the error

models were exact and Gaussian, the recorded Mahalanobis distances would be drawn from

a 16 degree-of-freedom chi-square distribution. As can be seen from the histograms, in all

three cases, the Mahalanobis distance histogram is shifted towards zero with respect to the

expected distribution. This means our uncertainty estimates are conservative, which should

help to keep the system stable.

4.6 Conclusion

In this chapter, having developed a model for GPS noise whitening, we have derived and

implemented a fused EKF-GPS-SLAM system, thus providing a concrete example of how we

can integrate GPS signals and their associated whitening Vlters into a probabilistic mapping

system. This model has been used to discuss how GPS signals aUect information propaga-

tion in probabilistic maps. We have also taken advantage of simulation’s ability to provide
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Figure 4.5.2: 1 hour time lapse between successive paths
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Figure 4.5.3: 5 hour time lapse between successive paths
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absolute ground truth values to generate quantitative metrics of how well the fused system

functions.

All of this work was done in the context of the EKF, which has well-known draconian

limitations in scalability. In the next chapter, we will show how to apply the same noise

models to a very diUerent system which greatly improves our scalability.
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Chapter 5

Integrating GPS into a Smoothing and

Mapping System

5.1 Introduction

Chapter 4 showed how to integrate GPS into a classical EKF-based SLAM solution, and

showed how intermittently available GPS can make the linearization assumptions under-

lying the method more consistently valid. Unfortunately, GPS does nothing to address the

underlying algorithmic complexity issues which prevent the method from scaling to very

large environments.

The preponderance of novel mapping approaches in recent years have capitalized on the

observation that inter-landmark dependence is the root cause of computational ineXciency.

This is most easily seen in the context of Kalman-Vlter based approaches. At the moment of

observation of new landmarks, the positions of those landmarks are conditionally indepen-

dent given the pose. However, when the robot moves, that independence-preserving pose is

marginalized out, causing all landmarks to be dependent not only on landmarks observed

from the same pose, but on all previously observed landmarks.

Smoothing and mapping (SAM) takes what may be the most straightforward approach

to the problem of maintaining these conditional independences: it uses the full trajectory

of the robot in estimating the map. In this way marginalization-induced dependencies are

prevented from entering the model. In a sense, SAM trades size for independence; SAM

49
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estimates many more parameters than a Vlter-based approach, but in doing so it gains a

structure which allows it to estimate the variables much faster. Figure 5.1.1 illustrates the

tradeoU: marginalization decreases the number of variables, but increases interconnect.

The use of GPS in a mapping system brings with it a problem which parallels the pose-

marginalization problem. In the GPS-mapping problem, landmark positions are condition-

ally independent given the pose and the hidden parameters used to whiten the noise of the

GPS measurements. The parallel problem can be solved using a parallel solution to the SAM

pose problem; we can maintain sparsity in the estimation problem if we estimate the state

of the hidden variables at all relevant timesteps throughout the robot’s operation.

In this chapter, we provide a detailed example of how the ideas of this thesis can be

realized to enable large-scale urban mapping. We Vrst review the basic probabilistic formu-

lation for batch SAM. The formulation is then extended to accommodate GPS readings over

multiple trajectories.

The basic motivation for SAM comes from reasoning about the conditional indepen-

dences in the mapping problem. As shown in Vgure 5.1.1, landmark estimates are condition-

ally independent given the poses at the time of observations. If poses are not marginalized

out of the model, then landmarks remain independent.

The surprising result is that the much larger, much sparser full-trajectory-and-map prob-

lem can frequently be solved more eXciently than updating a Vltering system with dense

inter-landmark dependencies.

5.2 Vanilla SAM

For reference purposes, a brief review of the SAM least-squares formulation will be pre-

sented, which I will refer to as “Vanilla SAM”. For a more thorough discourse, refer to

[Dellaert and Kaess, 2006].

A mobile robot’s process model, which provides the relationship between successive

poses, can be written abstractly as:

xi = f(xi−1, ui) + wi︸︷︷︸
∼N(0,Λi)

(5.2.1)
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Figure 5.1.1: The eUects of marginalization on the underlying Markov random Veld. Trian-
gles represent landmarks; diamonds represent vehicle poses. In the top diagram, previous
poses are continually marginalized out. This reduces the number of parameters being es-
timated, but increases interconnect. In the bottom diagram, the full trajectory remains in
the system. This increases the number of parameters, but vastly diminishes interconnect;
nodes are only connected by process model constraints and observations.
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where xi is the pose at time i, ui is the control input, and wi is noise1

Observations, which provide the relationship between a given pose and a landmark, can

be abstractly deVned as:

zk = h(xi, lk) + vk︸︷︷︸
∼N(0,Σk)

(5.2.2)

where xi is the pose at the time the observation is taken, lk is the landmark being observed,

and vk is noise.

Making use of the strong assumption thatwi and vk are Gaussian leads to the probability

distributions:

P (xi|xi−1, ui) =
1

√
2π||Λi||

1
2

exp

(
−1

2
(xi − f(xi−1, ui))

TΛ−1
i (xi − f(xi−1, ui))

)
∝ exp

(
−1

2
||f(xi−1, ui)− xi||2Λi

)
(5.2.3)

P (zk|xik , lj) =
1

√
2π||Σk||

1
2

exp

(
−1

2
(h (xik , lj)− zk)

T Σ−1
k (h (xik , lj)− zk)

)
∝ exp

(
−1

2
||h (xik , lj)− zk||2Σk

) (5.2.4)

where ||e||2Σ is used to denote the squared Mahalanobis distance of vector e under covari-

ance matrix Σ.

To facilitate discussion of a full smoothing problem, let

X , {x0 . . . xM} U , {u1 . . . uM} L , {l0 . . . lN} Z , {z0 . . . zK} (5.2.5)

be the sets of all poses, landmark positions, control inputs, and observations of interest,

respectively.

1There is a subtle, but important, diUerence between this process model and that which is typically used
in Kalman Vltering and related techniques. SAM requires that the noise be in the same space (and of the same
dimension) as the pose. In contrast, variants on Kalman Vltering allow the noise to be in a diUerent space
(typically that of the control inputs) and transformed into the pose space without requiring the resulting pose
space covariance matrix to be full-rank.
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We wish to Vnd the a posteriori estimate maximizing:

P (X,L, Z, U) = P (x0)
M∏
i=1

P (xi|xi−1, ui)
K∏
k=1

P (zk|xik , lj) (5.2.6)

In 5.2.6, the observations Z and the control inputs U are known. The poses X and the

landmark locations L are unknown. We group together the parameters to be estimated as

Θ , {X,L}, and note:

Θ∗ , argmax
Θ

P (Θ|Z,U)

= argmax
Θ

P (X,L, Z, U)
(5.2.7)

Using the standard log-likelihood transformation, we arrive at a minimization problem:

Θ∗ = argmax
Θ

P (X,L, Z, U)

= argmin
Θ
− logP (X,L, Z, U)

= argmin
Θ

{
M∑
i=1

||f(xi−1, ui)− xi||2Λi +
K∑
k=1

||h(xik , lj)− zk||2Σk

} (5.2.8)

Note that 5.2.8 is similar to, but is not quite, a least-squares problem; the summed terms

are squared Mahalanobis distances. We set this quibble aside for the moment and continue

as if we were solving a standard least-squares problem using a series of linear approxima-

tions. We will resolve the Mahalanobis distance issue later.

To proceed we need points around which to linearize, which means we require some

prior estimate for X and L. We will write these as:

X0 = {x0
0 . . . x

0
M} L0 = {l00 . . . l0N} (5.2.9)

The initial estimate for these values typically comes from odometry.

We now linearize f and h around X0 and L0 with respect to the quantities being esti-
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mated:

F i−1
i , ∂fi(xi−1,ui)

∂xi−1

∣∣∣
x0i−1

H i
k ,

∂hk(xi,lj)

∂xi

∣∣∣
x0i ,l

0
j

J jk ,
∂hk(xi,lj)

∂lj

∣∣∣
x0i ,l

0
j

(5.2.10)

Next, we deVne

δxi = xi − x0
i (5.2.11)

to be the oUset between the ith pose estimate and the true value. This leads to an approxi-

mation of the process model:

fi(xi−1, ui) ≈ fi(x
0
i−1, ui) + F i−1

i δxi−1 (5.2.12)

And now, manipulating the process terms of 5.2.8, we Vnd:

fi(xi−1, ui)− xi ≈ {fi(x0
i−1, ui) + F i−1

i δxi−1} − {x0
i + δxi}

= F i−1
i δxi−1 − δxi −

(
x0
i − fi(xi−1, ui)

)︸ ︷︷ ︸
,ai

(5.2.13)

Note that we’ve consolidated some terms into a new variable, ai, which is the diUerence

between a pose estimate and the prediction of that pose estimate using the previous pose

estimate and control input.

Using the deVnition

δlj = lj − l0j (5.2.14)

as the error in the jth landmark estimate, the observation model is approximated as

hk(xi, lj) ≈ hk(x
0
i , l

0
j ) +Hkδxi + Jkδlj (5.2.15)

From the observation terms of 5.2.8 we Vnd:

hk(xi, lj)− zk ≈ {hk(x0
i , l

0
j ) +Hkδxi + Jkδlj} − zk

= Hkδxi + Jkδlj − (zk − hk(xi, lj))︸ ︷︷ ︸
,ck

(5.2.16)
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where again we have consolidated some terms. ck is what is sometimes called the innova-

tion; it is the diUerence between our actual observation and what we expect that observation

to be given our landmark estimate and pose estimate.

Substituting approximations 5.2.13 and 5.2.16 into 5.2.8, we Vnd a linearized version of

5.2.8:

δ∗ = argmin
δ
{
M∑
i=1

∣∣∣∣∣∣F i−1
i δxi−1 − δxi − ai

∣∣∣∣∣∣2
Λi

+
K∑
k=1

∣∣∣∣∣∣Hkδxi + Jkδlj − ck
∣∣∣∣∣∣2

Σk
} (5.2.17)

The only thing keeping 5.2.17 from being a standard least-squares problem is still that

squared Mahalanobis distance. Recall that the squared Mahalanobis distance is deVned as

||v||2Σ , vTΣ−1v (5.2.18)

Σ, being a covariance matrix, is symmetric positive deVnite. This implies that Σ−1 is

also symmetric positive deVnite, and can be factorized via Cholesky decomposition as2

Σ−1 = Σ−
1
2 Σ−

T
2 (5.2.19)

From 5.2.18:

||v||2Σ , vTΣ−
1
2 Σ−

T
2 v

= Σ−
1
2vΣ−

T
2 v

=
∣∣∣∣Σ−T

2 v
∣∣∣∣2

2

(5.2.20)

This means we can “normalize” the troublesome squared Mahalanobis distance terms

in 5.2.17, turning them into squared L2-norms by premultiplying by the square root of the

relevant inverse covariance.

For notational purposes, we deVne some new variables which incorporate this premul-

2The shorthand A−T
2 , used here to keep notation from becoming unwieldy, should be interpreted as(

A− 1
2

)T
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Figure 5.2.1: Factor graph for the scenario in 5.2.22. The system involves 3 poses (triangles),
4 landmarks (stars), 7 landmark observations (green boxes) and 2 motion updates (blue
boxes).

tiplication:

F̂ i−1
i , Λ

−T
2

i F i−1
i

âi , Λ
−T

2
i ai

Ĥk , Σ
−T

2
k Hk

Ĵk , Σ
−T

2
k Jk

ĉk , Σ
−T

2
k ck

(5.2.21)

We can now gather our constraints into a familiar matrix form. The A matrix of this

problem is sparse with block non-zero entries. An example factor graph is shown in Vgure

5.2.1; the corresponding least squares setup is shown in 5.2.22. The correspondences between

the representations can easily be seen: each pose motion factor and landmark observation
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factor in the graph correspond to a block row of the A matrix.

A =



−Λ
−T

2
1

F̂ 1
2 −Λ

−T
2

2

F̂ 2
3 −Λ

−T
2

3

Ĥ1 Ĵ1

Ĥ2 Ĵ2

Ĥ3 Ĵ3

Ĥ4 Ĵ4

Ĥ5 Ĵ5

Ĥ6 Ĵ6

Ĥ7 Ĵ7



δ =



δx1

δx2

δx3

δl1

δl2

δl3

δl4


b =



â1

â2

â3

ĉ1

ĉ2

ĉ3

ĉ4

ĉ5

ĉ6

ĉ7


(5.2.22)

Finally, we use standard least-squares techniques to solve for:

δ∗ = argmin
δ
||Aδ − b||22 (5.2.23)

The solution to 5.2.23 yields the oUset terms δ∗, which are used to correct X0 and L0.

If desired, these corrected poses and landmark locations can be used as the basis of a new

iteration of the algorithm.

The eXciency of solving this system depends heavily on maintaining sparsity in the

associated matrices. This will be addressed in the context of GPS additions.

5.3 Extending SAM to use GPS

Having now reviewed basic SAM, we now look at what modiVcations need to be made to

incorporate GPS readings. We will assume that the model being used is the bias model

developed in 3.5.
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Working in a global coordinate system

In its vanilla formulation, SAM makes two assumptions which we now reexamine. First, as

is commonly the case with SLAM systems, the original formulation deVnes the origin of the

global coordinate system to be coincident with the Vrst pose. Second, SAM assumes that

the set of poses to be smoothed is a single contiguous trajectory.3

GPS deVnes many values with respect to its own global coordinate system. DeVning an

arbitrary coordinate system which only references the robot trajectory is no longer advanta-

geous; maintaining such a system adds the complexity of estimating a coordinate transform

to our problem without signiVcant beneVts. The latter assumption, that of a single con-

tiguous trajectory, is rooted in assumptions about data association. If we run a robot for a

time, then kidnap it, moving it arbitrarily far from its previous known pose, the robot eUec-

tively has inVnite uncertainty about its position with respect to the existing landmarks in

the system. If, in the robot’s new pose, it cannot associate any observations with landmarks

from the pre-kidnapped state, it may as well start over with a new map and new coordinate

system. However, the availability of a global reference changes the situation. A long-term

eUort to generate a map of an extensive area can span weeks or more, and it is entirely likely

that the robot would, at several points during the mapping eUort, be moved while oYine,

breaking the chain of poses into multiple trajectories.

These two problems have a shared solution; Vnding a solution for initializing x0 can be

reapplied to any xn which starts a new trajectory chain.

We can look at this initial-pose problem in two distinct cases: with and without a (Gaus-

sian) prior for x0.

If

x0 ∼ N(x̄0,Φ) (5.3.1)

then we can slot this into 5.2.6. Equation 5.2.8 gains an additional term:

Θ∗ = argmin
Θ

{
||x0 − x̄0||2Φ +

M∑
i=1

||f(xi−1, ui)− xi||2Λi +
K∑
k=1

||h(xik , lj)− zk||2Σk

}
(5.3.2)

3Interestingly, these two assumptions will also have to be revisited in the case of multi-robot SAM.
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Figure 5.3.1: An example trajectory chain without a prior for the Vrst pose. The robot be-
gins operating, but has no information about its global location. After moving, it observes
a landmark, and after moving again it receives GPS information.

The new term is already linear; we don’t need to take any Jacobians to Vt within the

linear least-squares framework. However, we do need to write the initial pose terms in

a form which separates out the residual error we are solving for in one iteration of the

algorithm:

x0 − x̄0 =
{
x0

0 + δx0

}
− x̄

= δx0 − (x̄− x0
0)︸ ︷︷ ︸

,α

(5.3.3)

Using the same premultiplication “trick” from 5.2.20, we can collect the terms into the

matrices:

A =



Φ−
1
2

...
F̂ 0

1 −Λ
−T

2
1

F̂ 1
2 −Λ

−T
2

2

F̂ 2
3 −Λ

−T
2

3

. . .


δ =



δx0

δx1

δx2

δx3

...


b =



Φ−
1
2α

â1

â2

â3

...


(5.3.4)

It may also be the case that we have no prior for x0. It may be counterintuitive, but this
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is the common case in GPS-SAM. A typical scenario is illustrated in Vgure 5.3.1. The robot

is operating for a time before it has any information about its global location. In a sense, the

start of the trajectory chain is “dangling”, constrained in position only by the process model

linking it to future poses.

To accommodate this scenario, we need only remove the prior constraint, which is rep-

resented by the top of the matrix and residual vector in 5.3.4:4

A =


F̂ 0

1 −Λ̂
−T

2
1

...
F̂ 1

2 −Λ̂
−T

2
2

F̂ 2
3 −Λ̂

−T
2

3

. . .

 δ =



δx0

δx1

δx2

δx3

...


b =


â1

â2

â3

...

 (5.3.5)

Note this is not a return to the original form presented in 5.2.22. We are estimating δx0

in addition to the rest of the trajectory chain. This can easily be seen by looking at a SAM

problem which has no observations. In this hypothetical scenario, if we Vx the initial pose

to the origin and use 5.2.22, A is a square, full-rank matrix. If we do not so constrain the

initial pose, then we use 5.3.5; the resultingAmatrix has more columns than rows, revealing

that the system is underconstrained.

Bias Estimation

biasestimation Next let’s look at how the whitening Vlter developed in 3.5 can be incorpo-

rated into the SAM system. The fundamental idea behind a whitening Vlter is the augmen-

tation of estimated state to include nonwhite error sources. Consider an abstract example,

represented by the equation

a = f(xi, . . .) + vi (5.3.6)

where a is some result of interest (typically an observation or subsequent state), x is the sys-

tem state (which we are trying to estimate), and v is corrupting noise which has undesirable

4This can also be seen by imagining a prior with inVnite variance. If Φ− 1
2 is zero, then the terms in the

dropped rows are 0.
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characteristics, such as a non-zero mean or autocorrelation.

Whitening vi involves decomposing it into white noise and a new parameter to be esti-

mated:

vi = qi + wi (5.3.7)

where wi is white and qi models some underlying phenomenon, such as exponential decay

correlation, sinusoidal periodicity correlation, constant oUset, or some other characteristic.

Our abstract example equation, then, becomes:

a = f(xi, qi, . . .) + wi (5.3.8)

where wi becomes a parameter which we wish to estimate as a part of the model.

Much like poses, the states of a whitening parameter form a dependency chain in the

Markov random Veld representation of a SAM problem. For our GPS-SAM system, in which

pseudorange noise is being whitened using an exponential decay parameter, we have ap-

proximately 32 chains of “bias” variables, one for each observed satellite, which are being

estimated in the system. The most conceptually straightforward path to incorporating these

bias variables is simply to integrate them into the vehicle model and extend the process

model to handle the new terms.

This augmented-state model is correct, but a poor match for the problem at hand; by

injecting this additional state into the process model, we eUectively estimate the state of

every bias term at every pose time-step in the system. Our model of the random process

of the noise in the readings is stationary: the autocorrelation of the noise at two points

is parameterized only by the time diUerence. Adding intermediate estimates of this state

will only result in interpolation of the bias at those points. In the unlikely event that we

want to recover the bias estimates at every pose, then this is easily and more appropriately

accomplished by post-processing. The situation is illustrated in Vgure 5.3.2; we have no

need to know the state of bias term k except at times when we are actually taking a reading

from satellite k.

Instead, we deVne a parallel bias process model which is responsible for updating the
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Figure 5.3.2: Factor graphs of two bias augmentation strategies. Constraints from process
models or measurements are represented by small squares. The top diagram shows the least
invasive way to augment the system mathematically: augmenting the robot state with bias
information and propagating this through the existing process model. This has an appeal-
ing simplicity but hides signiVcant ineXciency; since the entire set of biases is estimated at
every pose step. The lower Vgure illustrates separating out the bias process model to avoid
adding unnecessary terms to the system; biases are estimated only when we take a reading
from the associated satellite. The dotted lines group terms which are coincident in time.
(Note: landmarks have been omitted for clarity, and satellite representations are included
to clarify groupings; they do not represent variables being estimated.)
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bias terms between observations:

βkj+1 = f ∗(βki , δt) + υj︸︷︷︸
∼N(0,Υ)

(5.3.9)

where δt is the time elapsed from the previous observation.

The receiver clock oUset also has a process model which propagates it from observation

epoch to observation epoch:

ηj+1 = f ′(ηi, δt) + ξj︸︷︷︸
∼N(0,Ξ)

(5.3.10)

Pseudorange Observations

A GPS reading can be thought of as an observation without an associated landmark. While

landmark observations add constraints to the relative position of a particular pose and a

landmark, GPS observations add a global constraint to a pose. These observations don’t Vt

into the model deVned in 5.2.2, so we deVne an additional observation model for the GPS

readings:

ρi = g(xj, β
k
l , ηm, γi) + ψj︸︷︷︸

∼N(0,Ψj)

(5.3.11)

where ρi is the pseudorange, ηm is the receiver clock oUset5, γ is the state of the GPS system,

and ψj is the (Gaussian) measurement noise. Let

ri ,


rx,i

ry,i

rz,i

 (5.3.12)

5GPS clock oUsets are typically measured in meters, meaning the time oUset multiplied by the speed of
light.
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be the global frame position of the GPS receiver antenna at pose xi. A GPS reading can be

written as:

g(xi, β
k
l , ηm, s

t
k) = ||ri − stk||2 + βkl + ηm (5.3.13)

where we take γi to be the complete state of the GPS system, stk to mean the global frame

position of satellite k at the time of transmission, and βkl to be the satellite’s associated bias

oUset.

As with 5.2.3 and 5.2.4, this leads directly to the (in this case, 1-dimensional) probability

densities:

P (βi|βi−1, δt) =
1√

2πΥi

exp

(
−(βi − f ∗(βi−1, δt))

2

2Υi

)

∝ exp

(
−1

2
||f ∗(βi−1, δt)− βιi ||2Υi

) (5.3.14)

P (ηi|ηi−1, δt) =
1√

2πΞi

exp

(
−(ηi − f ∗(ηi−1, δt))

2

2Ξi

)

∝ exp

(
−1

2
||f ∗(ηi−1, δt)− ηιi ||2Ξi

) (5.3.15)

P (ρj|xi, γi) =
1√

2πΨi

exp

(
−(ρj − g(xi, γj))

2

2Ψi

)

∝ exp

(
−1

2
||g(xi, γj)− ρj||2Ψi

) (5.3.16)
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Least Squares Formulation

We Vrst gather our bias terms and observation terms into new vectors:

B , {β0
0 . . . β

0
m, β

1
0 . . . β

1
n, . . .}

Y , {ρ0 . . . ρn}

H , {η0 . . . ηn}

(5.3.17)

We can now write a joint probability model for the system:

P (B,H, Y,X, U, Z, L) =

k∏
i=1

P (βi0)︸ ︷︷ ︸
Bias priors

m∏
i=1

ni∏
j=1

P (βij|βij−1, δt)︸ ︷︷ ︸
Bias process model

m∏
i=1

P (ηi|ηi−1, δt)︸ ︷︷ ︸
Clock oUset process model

κ∏
i=1

P (ρi|xji , ηj, βsk, γ)︸ ︷︷ ︸
GPS observations

M∏
i=1

P (xi|xi−1, ui)︸ ︷︷ ︸
Motion process model

K∏
i=1

P (zi|xj, lk)︸ ︷︷ ︸
Landmark observations

(5.3.18)

Θ, the vector of unknowns, is expanded to include the state of satellite biases at obser-

vations times:

Θ , (B,H,X,L)

Θ∗ , argmin
Θ
− logP (B,H, Y,X, U, Z, L)

(5.3.19)

This begets the non-linear minimization problem:

Θ∗ = argmin
Θ

{
k∑
i=1

||βi0 − E[βi0]||2Γ +
m∑
i=1

ni∑
j=1

||f ∗(βij−1, δt)− βij||2Υj

+
m∑
i=1

||f ′(ηi− 1, δt)− ηi||2Ξi +
κ∑
i=1

||g(xj, β
s
k, γ)− ρi||2Ψj

+
M∑
i=1

||f(xi−1, ui)− xi||2Λi +
K∑
i=1

||h(xj, lk)− zi||2Σk

}
(5.3.20)
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The motion model and landmark observation terms of 5.3.20 have not changed from the

vanilla formulation. The bias prior terms need no linearization; we simply write each of

them as estimate plus a residual error:

βi0 − E[βi0] = βi,00 + δβi0 − E[βi0]

= δβi0 − (E[βi0]− βi,00 )︸ ︷︷ ︸
,αi

(5.3.21)

The bias and clock oUset process models linearize in much the same way as the robot

motion model:

F s,∗
i ,

∂f ∗(βsi , δt)

∂βsi

∣∣∣
βs,0i

f ∗(βij−1, δt)− βij ≈ {f ∗i (βi,0j−1, δt) + F ∗,i−1
i δβij−1} − {β

i,0
j + δβi,0j }

= F ∗,i−1
i δβij−1 − δβij −

(
βi,0j − f ∗(βij−1, δt)

)︸ ︷︷ ︸
,di

(5.3.22)

F ′i ,
∂f ′(ηi, δt)

∂ηi

∣∣∣
ηi

f ′(ηj−1, δt)− ηj ≈ {f ′i(ηj−1, δt) + F ′iδηj−1} − {ηj + δηj}

= F ′iδηj−1 − δηj − (ηj − f ′(ηj−1, δt))︸ ︷︷ ︸
,εi

(5.3.23)

Pseudorange observations must be linearized with respect to the relevant pose, bias, and



5.3. EXTENDING SAM TO USE GPS 67

receiver clock oUset:

Ci ,
∂g(xj, β

s
k, ηl, γ)

∂xj

∣∣∣
x0j

Di ,
∂g(xj, β

s
k, ηl, γ)

∂βsk

∣∣∣
x0j

∆i ,
∂g(xj, β

s
k, ηl, γ)

∂ηl

∣∣∣
x0j

g(xj, β
s
k, γ)− ρi ≈

(
g(x0

j , β
s,0
k , γ) + Ciδxj +Diδβ

s
k + ∆iδηl

)
− ρi

= Ciδxj +Diδβ
s
k + ∆iδηl − ei︸︷︷︸

,ρi−g(x0j ,β
s,0
k ,ηl,γ)

(5.3.24)

Pulling all the linearized terms together, we come to a large linear least-squares problem:

δ∗ = argmin
δ

{
k∑
i=1

∣∣∣∣∣∣δβi0 − αi∣∣∣∣∣∣2
Γ

+
m∑
i=1

ni∑
j=1

∣∣∣∣∣∣F ∗,i−1
i δβij−1 − δβij − dij

∣∣∣∣∣∣2
Υj

+
κ∑
i=1

||Ciδxj +Diδβ
s
k + ∆iδηl − ei||2Ψj

+
M∑
i=1

∣∣∣∣∣∣F i−1
i δxi−1 − δxi − ai

∣∣∣∣∣∣2
Λi

+
K∑
k=1

∣∣∣∣∣∣Hkδxi + Jkδlj − ck
∣∣∣∣∣∣2

Σk

}
(5.3.25)

Assuming we apply the same premultiplication described in 5.2.20, we can again gather

terms into a large, sparse matrix. We can revisit the scenario presented in 5.2.1, adding an

observation from the same satellite in the Vrst and third pose. The new scenario is shown

in Vgure 5.3.3.
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Figure 5.3.3: The scenario for 5.3.26 and 5.3.27

A =



−Λ
−T

2
1

F̂ 1
2 −Λ

−T
2

2

F̂ 2
3 −Λ

−T
2

3

−Ξ
−T

2
1

F ′12 −Ξ
−T

2
2

−Υ
−T

2
0,1

F̂ ∗,01 −Υ
−T

2
1,1

Ĉ1 ∆1 D̂1
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Ĥ3 Ĵ3
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δ =


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

b =


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

(5.3.27)

In the absence of external information, the linearization points for the satellite bias

terms are seeded with 0, which is their expected value. The clock oUset can be initialized by

interpolating the calculated receiver oUset when Vxes are available.6

Integration of DiUerential Corrections

As was discussed in 3.4, we can substantially improve the accuracy of our GPS readings

by incorporating diUerential corrections from a Vxed base station at a known location. As

illustrated by equation 3.4.1, using a diUerential correction can remove a substantial portion

of errors introduced by the local environment. However, use of the diUerential correction

introduces the clock oUset of the base station as a new parameter in the system. There are

6Note that receivers take varying approaches to managing receiver clock oUset. Some systems discipline
their clocks to GPS time, while others allowed the receiver clock to drift freely. Inevitably receivers of the
latter type have discontinuities in clock bias estimates; typically the estimate wraps around at ±.5ms × c.
This presents no particular diXculty, but must be taken into account when calculating oUset innovations.
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several ways we can proceed.

If we always have diUerential corrections to a given satellite, then there is a clear path

forward. In this case, we have no need for the clock oUsets of the base station and the

roving station to be independently observable; we can treat them as an aggregate parameter

to be estimated. In this case, no modiVcations to the underlying derivation need to be made,

although the speciVc parameters of the bias process model and observation noise would

change accordingly.

Ideally, we want to be able to use this diUerential information opportunistically. Due to

diUerences in sky visibility and hardware limits on the number of satellites a given receiver

can track, it is common for readings from a satellite to have corrections available some but

not all of the time.

To accommodate this opportunistic usage of information, we must add parameters to the

model representing the clock oUset of the base receiver at each time diUerential corrections

are used.

The base station receiver clock oUset has an independent process model with the same

form as 5.3.10. If we take as our diUerential observations the diUerence between the mea-

sured pseudorange to a satellite and the known range to the satellite, we have the following

observation model:

g∗(βkl , η
′
m) = βkl + η′m (5.3.28)

where η′m is the clock oUset of the base station at time m. By applying the appropriate

variance premultiplication, these extra diUerential terms can be folded directly into equation

5.3.25.

Conceptually, this can be thought of as using the base station diUerential readings as

observations of the bias terms in the model. When we have diUerential corrections, we

can place tighter bounds on the bias terms. When we don’t have diUerential corrections

available, we can still use the information with the looser bias model.
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5.4 Conclusion

In this chapter, we have presented a thorough derivation of a fused SAM-GPS system. This

model intelligently accounts for the nonwhite error models of a GPS system and allows for

the incorporation of diUerential corrections on an opportunistic basis. In the next chapter

we will give a real-world example implementation of the framework.
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Chapter 6

Application: Integrated GPS-SAM using

Navlab 11

6.1 Introduction

In chapter 5 we established a theoretical framework for GPS-SAM integration. In this chap-

ter, we present a concrete implementation of the framework on a real-world robot. The

maps built use more than 100 km of robot trajectories. We demonstrate loop closure after

arbitrarily large explorations and show how time-correlated GPS data aUects landmark es-

timation via revisitation. The same data is also used to show how diUerential corrections

can also be integrated into the model to improve accuracy and lower convergence rates.

The platform for this test is the Navlab 11 vehicle. Navlab 11, pictured in 6.1.1, is a

street-legal Jeep Wrangler which carries a wide variety of sensors.

The sensing used in this work is provided by:

• encoders on each of the 4 wheels.

• a Trimble AgGPS 114 using a roof-mounted choke ring antenna.

• 2 SICK LMS laserscanners providing range returns parallel to the ground plane on the

left and right sides of the vehicle.

• a strapped-down KVH-5000 Vber optic gyroscope for yaw measurements.

73
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Figure 6.1.1: The Navlab 11 vehicle

• a strapped-down Crossbow VG400 3-axis inertial measurement unit.

In the conVguration used, the vehicle does not provide steering angle information.

6.2 Coordinate Frames

The “native” GPS earth-Vxed Cartesian frame could be used as our global frame. However,

it will be more convenient to deVne our earth-Vxed frame as one in which the z axis is

parallel to the local gravity vector at a point central to our work. This frame is simply a

rotation of the canonical ECEF frame, and is deVned rather than estimated.

This eUectively deVnes our own projection of the surface of the earth, assuming the

world is locally Wat. For our purposes, this is Vne, but for very large scale applications

this would need to be revisited; the alignment of the “correct” frame shifts approximately 1

degree per 100km away from the central point.

The coordinate frame tied to the vehicle is deVned with x forward, y right, and z down,

with its origin at the midpoint of the rear axle.
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6.3 Vehicle State

The state of the vehicle is deVned to be:

x = (gx, gy, gz, φ, θ, ψ)T (6.3.1)

where the Vrst three terms are the position of the vehicle in the global frame, and the latter

three terms are the roll, pitch, and yaw of a Tait-Bryan system.

From a given (φ, θ, ψ)T, we can create a matrix which will rotate a vehicle-frame vector

into the global frame:

Rg
v =


cψ −sψ 0

sψ cψ 0

0 0 1




cθ 0 sθ

0 1 0

−sθ 0 cθ




1 0 0

0 cφ −sφ

0 sφ cφ



=


cθcψ cψsθsφ− cφsψ cφcψsθ + sφsψ

cθsψ cφcψ + sθsφsψ −cψsφ+ cφsθsψ

−sθ cθsφ cθcφ


(6.3.2)

As our inputs to the system, we take the odometry and angular rates provided by the

gyroscopes:

u = (v, ω̇x, ω̇y, ω̇z)
T (6.3.3)

where v is the speed of the vehicle in the vehicle-frame x direction and the ω̇ terms denote

angular rates around the vehicle-frame axes. These vehicle-frame angular rates can be

transformed into global-frame roll-pitch-yaw rates using:1
φ̇

θ̇

ψ̇

 =


1 sφtθ −cφtθ

0 cφ sφ

0 − sφ
cθ

cφ
cθ


︸ ︷︷ ︸

,Ωgv


ω̇x

ω̇y

ω̇z

 (6.3.4)

1The derivation of this matrix can be found in [Kelly, 1994] pp 33-34.
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This brings us to our motion update rule:

f(x, u, δt) =




gx

gy

gz

+Rg
v


v

0

0


φ

θ

ψ

+ Ωg
v


ω̇x

ω̇y

ω̇z

 δt



=



gx + dcθcψ

gx + dcθsψ

gz − dsθ

φ+ ω̇x − ω̇zcφtθ + ω̇ysφtθ

θ + ω̇ycφ+ ω̇zsφ

ψ + (ω̇zcφ−ω̇ysφ)

cθ



(6.3.5)

Recall that SAM uses motion model additive noise in the pose space with covariance Λ.

We have control space variance:

Σu =


σd 0 0 0

0 σω̇x 0 0

0 0 σω̇y 0

0 0 0 σω̇z

 (6.3.6)

We linearize around the current pose estimate to transform this covariance into the pose

space:

W ,
∂f(x, u)

∂u

∣∣∣
x̂

Λ = WΣuW
T

(6.3.7)

However, SAM requires an inverse Λ, which means Λ must be full rank. 6.3.7 will result
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in a matrix which is rank 4 at most. In reality the uncertainty between poses is always going

to span the full dimensionality of the pose space.

We can skirt this problem by using several intermediate linearizations of the variance

between pose steps.

The frequency of pose estimates is an engineering decision which is constrained by the

rate of observations, the linearity of the motion, and the size of the overall system to be

smoothed. Clearly, we need a pose estimate at each observation time. Additionally, using

smaller time-steps between pose estimates improves our linear approximation to the true

nonlinear motion covariances.

However, fewer pose states decrease the size of our model, which is good for computa-

tional eXciency. There is also numerical stability to consider. If the uncertainty between

two pose states is too small, the inverse covariance used in the least squares system becomes

unstable.

After empirical observations, the minimum update frequency was set to 10 Hz, with a

maximum update frequency of 20 Hz.

6.4 Landmark observations

Landmarks are identiVed using two SICK LMS laserscanners mounted on opposite sides

of the vehicle. We search for strong “corners” in the plane of the scan, where a corner

is deVned to be a pair of line segments for which two endpoints are within a threshold

distance, and the interior angle is within a threshold range. Interior angles which are too

small are discarded as likely noisy reading, and angles which are too large are discarded

because they diminish the accuracy with which the location of the corner can be calculated.

The idea of such a model is well-known; however, several heuristics are used to help

generate high-quality landmarks. These heuristics are fairly speciVc to the environment in

which the robot operated.

A “good” landmark is one which is stationary and which we can Vnd again when we

revisit the area in the future. In the data presented, by far the largest source of “bad”

landmarks is vehicles. Stationary buses, in particular, present very strong, linear corners

which are very diXcult to distinguish from buildings or other permanent structures.
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To reduce the number of vehicles added to the system as landmarks, we implement

some basic Vlters on any landmark candidates. Any landmark which forms an interior

angle close to 90 degrees is suspect, and is required to pass through more gates before it is

considered to be a true landmark observation. The “suspicious” landmark will be included

only if it is large enough that it is unlikely to be a vehicle, or it is concave with respect to the

scanner. The landmark decision Wow is illustrated in Vgure 6.4.1. Some common scenarios

are illustrated in Vgure 6.4.2.

Because the laserscanners being used sense only in a 2-dimensional plane, we make as

assumption, based on qualitative observations of urban scenes, that corner features extend

inVnitely in the vertical direction. In other words, our expectation is that the global x–

y location of the landmark is constant regardless of the height at which the landmark is

observed.

lk =
(
lkx, l

k
y

)T
(6.4.1)

It is helpful to think of landmarks as vertical lines in the global space; we expect to Vnd

a corner when a sensor observes that line at any height.

An observation i on sensor j is parameterized in Cartesian form in the sensor frame.

Note that the discussion of observations is speciVc to a sensor, but extra subscripting has

been dropped for the sake of notational simplicity.

zi = (zi,x, zi,y)
T (6.4.2)

Consider the (homogeneous) sensor matrix for converting from the sensor frame to the

vehicle frame:

S =


s11 s12 s13 s14

s21 s22 s23 s24

s31 s32 s33 s34

0 0 0 1

 (6.4.3)

A scan is coincident with the x–y plane of the corresponding sensor frame. Equation

6.3.2 gives the rotation from the vehicle frame to the global frame. From this, we can create
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Figure 6.4.1: Landmark Vltering. These gates are used to minimize vehicles inappropriately
being incorporated into the map as landmarks.
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Figure 6.4.2: Common scan scenarios. The scanner is at (0, 0).
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the homogeneous transform from the sensor frame to the global frame:

T jg =


gx

Rv
g gy

gz

0 0 0 1

Sj (6.4.4)

If landmarks were 3-dimensional points, our observation model would come directly

from the inverse of this transform. However, because our landmark model is not fully

constrained in 3 dimensions, we need to Vnd the intersection of the sensor plane with the

landmark “line” in global coordinates.

If we deVne P ∗ = (lx, ly, λ)T to be the global-frame point at which the landmark is

expected to be observed, then we proceed by solving for λ in terms of the the landmark

position and the vehicle pose. The most straightforward way to do this requires a global-

frame normal to the sensor plane, and a point on that plane. A global-frame normal can be

found with:

N = Rv
g


s13

s23

s33

 (6.4.5)

The most readily available global-frame point on the sensor plane is the origin of the

sensor frame:

P = T jg


s14

s24

s34

1

 (6.4.6)

P ∗−P lies in the sensor plane, and N is normal to that plane. Assuming P and P ∗ are

not the same point, it must be true that:

N · (P ∗ − P ) = 0 (6.4.7)
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Expanding 6.4.7 and solving for λ, we Vnd:

λ =
[
−s13s14 − s23s24 − s33s34 + s13gzsθ

+ (s23cφ− s33sφ)((ly − gy)cψ + (x− lx)sψ)

+ sθ(s33cφ+ s23sφ)((lx − gx)cψ + (ly − gy)sψ) (6.4.8)

− cθ(s33gzcφ+ s13(gx − lx)cψ + s23gzsφ+ s13(gy − ly)sψ)
]

/(s13sθ − cθ(s33cφ+ s23sφ))

In the case of the Navlab vehicle, the sensor frames of the relevant laser scanners are

aligned in z axis with the vehicle frame. This means that (s13, s23, s33) = (0, 0, 1), which

leads to considerable simpliVcation of 6.4.8:

λ =
s34 + sφ((ly − gy)cψ − (lx − gx)sψ)− sθcφ((lx − gx)cψ + (ly − gy)sψ) + cθcφgz

cθcφ
(6.4.9)

And at last we have all the pieces to state our landmark observation model:

h(x, l) , (T jg )−1


lx

ly

λ

 [1 : 2]

=

(
cφ((lx−gx)cψ+(ly−gy)sψ)−s34sθ+sθsφ((lx−gx)sψ−(ly−gy)cψ)

cφcθ
((ly−gy)cψ+s34sφ−(lx−gx)sψ)

cφ

) (6.4.10)

Here the [1 : 2] is taken to mean the Vrst two elements of the resulting vector.

6.5 Data Association

Data association is a critical part of any landmark-based mapping algorithm. When we

observe a landmark, the answer to the question “Have I seen this landmark before, and if

so, where?” has a dramatic eUect on the map estimate. When mapping works well, robots
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close loops and suddenly the uncertainty of the pose and recently seen landmark locations

is sharply reduced. When associations go awry, the results are frequently catastrophic,

sometimes irrecoverably so.

For this work, observation associations are divided into two categories: trivial and loop

closures. A trivial association is one in which the observation is associated with a land-

mark which has been seen “recently”. If the robot sees a landmark, moves a small amount,

then sees the same landmark again, the relative uncertainty of observation and landmark

is extremely low. In our particular case, where the density of landmark observations is

low compared to odometry accuracy, these trivial data associations can be implemented by

keeping a set of recently observed landmarks and using simple thresholding for association

of observations with this set.

Loop closures are more complicated; when the relative position of the vehicle and a land-

mark is not tightly constrained, it is more diXcult to Vnd correct associations. This work

implements two strategies to increase data association accuracy: out-of-band information

and joint compatibility tests.

Out-of-band information refers to the idea, argued for in [Ho and Newman, 2007], that

use of information sources other than positional compatibility to determine associations is

good practice in a mapping system. With our corner-based landmarks, we have two can-

didate external information sources: the interior angle and the global orientation of the

corner. Interior corner angle is certainly helpful in disambiguating landmarks. Barring ex-

treme pitching or rolling of the vehicle, we expect that the interior angle of observations of

a landmark will remain consistent. Orientation would not be useful as a stand-alone asso-

ciation compatibility metric in a system which has unbounded yaw error; the “expected”

orientation observation is compounded by the robot’s yaw error.2 With GPS, however, our

expectations vis-a-vis yaw error are no longer unbounded error during exploration; this

makes stand-alone use of observation orientation feasible.

Generating robust in-band loop closure information requires a representation of the

relative uncertainties. [Golub and Plemmons, 1979] presents some results that are helpful

to us in recovering those portions of the covariance needed to do data association. Golub

2One possibility (not explored here) in such a system is to use orientation in a joint compatibility test
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shows that, given a Cholesky factorization of the inverse covariance:

Σ−1 = LLT (6.5.1)

where L is n × n and lower triangular, then entries of the covariance can be recursively

calculated using the following recurrences:

σii =
1

lii

(
1

lii
−

n∑
j=1

ljiσji

)
(6.5.2)

σij =
1

lii

(
−

j∑
k=i+1

lkiσkj −
n∑

k=j+1

lkiσjk

)
(6.5.3)

Note that the summation terms pair sparse L entries with covariance entries. This limits

the number of covariance entries required to recover a given entry.

As shown in [Kaess, 2008] this recursive recovery can be eXciently implemented using

dynamic programming by memoizing values of the covariance matrix as they are calculated.

This approach is used to Vnd relevant covariance entries in this work.

In a classical mapping system, the uncertainty of the pose estimate increases without

bound until the robot revisits a previously seen landmark. In the limit, the long-wandering

robot has eUectively useless information about its current global position and must consider

the possibility that any new observation could correspond with an arbitrarily large set of

previously seen landmarks. We can increase conVdence in association by working with sets

of observations and landmarks as a unit; this is the basic idea behind techniques such as

joint compatibility branch and bound (JCBB) [Neira and Tardos, 2001].

One obvious and immediate beneVt of folding GPS into a SAM system is the global

bounding of pose uncertainty; no matter how long the robot wanders without revisiting

an area, GPS provides pose information from an absolute reference. When using a tech-

nique such as JCBB, no modiVcations need to be made to the algorithm; the thresholds used

naturally incorporate the additional GPS information.

However, urban environments have some characteristics which make them particularly

prone to occasional misassociation even when using joint compatibility techniques. As

illustrated in Vgure 6.5.1, it is common to Vnd sets of landmarks in repeating conVgurations,
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which lead to high joint compatibility assignments, and can lead to association failure.

6.6 Testing Dataset and Naïve Approaches

To enable large-scale testing, data was collected over the course of 5 days using the Navlab

11 vehicle. To demonstrate the scalability of the GPS-SAM fusion system, it was run on a

dataset consisting of approximately 6 hours of data gathered primarily from the Shadyside

and Friendship neighborhoods in Pittsburgh. The total trajectory length of the vehicle is

approximately 115 kilometers. The dataset covers approximately 43km of roads in an urban

area of approximately 2 square kilometers. Including revisited areas, approximately 2.3

square kilometers was directly viewed by the laser scanners

The odometry provided by the vehicle is far from ideal. Figure 6.6.1 shows the trajec-

tory resulting from integrating odometry over 45 minutes of data. Figure 6.6.2 shows the

same trajectory using GPS updates to naïvely bound error by simply replacing the current

position of the robot with information from a GPS Vx whenever possible. The two plots are

complementary: the former has relatively small error locally, while the latter has jumps as

GPS constellations change and occasional multipath errors occur.

Alternatively, the two types of data can be understood using signals terminology: the

odometry estimate has little high-frequency error and is quite “smooth” but has signiV-

cant (unbounded) low-frequency error. In contrast, the GPS-derived data has little low-

frequency error but does suUer from corruption at higher frequencies; this is visible in the

plot where the estimate “jumps” around the underlying trajectory.

When given the single trajectory such as the one shown Vgure 6.6.1, Vanilla SAM fails

to converge to a reasonable map. The accumulated error stretches the linearization assump-

tions past the breaking point, even correct data-associations are provided and a “region-of-

trust” method such as Levenburg-Marquardt is used. The results of such an experiment can

be seen in Vgure 6.6.3. The algorithm strains to bring loop closures, highlighted in yellow,

into alignment, but converges to a local minimum in the larger optimization problem.

A minimal (but suboptimal) use of GPS Vxes can be used to improve the chance of

SAM to converge to the proper solution. Figure 6.6.2 has signiVcant trajectory discontinu-
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Figure 6.5.1: Association failure. Urban environments can have ambiguously repeating
landmark patterns. The highlighted area shows one such area. Even using joint compat-
ibility methods, it is diXcult to associate such patterns correctly. The bottom diagram
shows the same area with a corrected association.
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Figure 6.6.1: Approximately 45 minutes of data, unaligned



88 CHAPTER 6. APPLICATION: GPS-SAM USING NAVLAB 11

Figure 6.6.2: Approximately 45 minutes of data using GPS updates to bound global error
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Figure 6.6.3: Results of smoothing using odometry, oracular data associations and Leven-
berg Marquardt descent. Several loop closures have been highlighted with yellow circles.
Even relatively small examples do not converge to a correct map.
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Figure 6.6.4: Smoothing a trajectory that used GPS for initial estimates, but did not use any
GPS information in the smoothing process itself. This is a minimal, consistent use of GPS
that allows the smoothing to converge to a consistent map.
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ities. However, using the nonholonomic constraints of the vehicle, the yaw3 can be esti-

mated with bounded error when the vehicle is moving. Because yaw error is the single

largest source of nonlinearity in the optimization problem shown in 5.3.20, incorporating

GPS in this way improves the linearized approximation underlying SAM tremendously. If

we smooth the same trajectory as shown in 6.6.1, but instead use the estimates in 6.6.2 as

the initial linearization points, the resulting smoothed trajectory, shown in 6.6.4, converges

to a consistent map despite GPS information being ignored during the smoothing process.

It is tempting to try to use an oversimpliVed GPS model within the smoothing process

itself – the common tactic, in [Thrun andMontemerlo, 2006] among others, is to assume that

GPS measurements are independent, leading to a simple model for integration. Figure 6.6.5

illustrates how such an assumption rapidly leads to model divergence. In the example, an

independence assumption is made, and two diUerent datasets with overlapping regions are

smoothed. The independence assumption leads directly to landmark uncertainty estimates

are clearly overconVdent and incorrect.

The extend to which the model diverges can be quantiVed by taking the Mahalanobis

distance between corresponding landmarks in the datasets under the sum of their variance

estimates. If the underlying distributions were correctly modeled, we would expect to see

these Mahalanobis distances drawn from a 2 degree-of-freedom chi square distribution. A

histogram of the actual Mahalanobis distances is shown in Vgure 6.6.6; landmark estimates

under the GPS-independence assumption are wildly overconVdent.

6.7 SAM-GPS Results

If, instead of using the naïve approaches of the previous section, we use the full system

developed in chapter 5, we can use all of the GPS information available to us in a consistent,

disciplined way to improve the scalability, convergence, and error characteristics of the

system.

First, we present some visual representations of the full system output. Figure 6.7.1

shows the entirety of the dataset with raw scan data shown in red, landmarks in green, and

3Pitch error can also be estimated in this way, but as pitch can already be measured with bounded error
using an inclinometer, it is not overly useful to add this estimation to the model.
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Figure 6.6.5: Detail from an overlay of smoothing output from two diUerent datasets. Land-
mark correspondence between the two datasets are shown with green dashed lines. In the
leftmost detail, GPS readings are assumed to be independent and the standard pseudorange
noise model is used; the results illustrate how the independence assumption leads rapidly
to model overconVdence and divergence. In the middle, the same noise model is used, but
variances are artiVcially inWated by a factor of 10 to attempt to compensate for the inde-
pendence assumption, but the model still diverges. On the right, explicit bias estimation is
enabled, leading to a consistent landmark uncertainty estimate.
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Figure 6.6.6: Mahalanobis distances between estimates of the location of the same land-
mark using multiple datasets. Ideally, the distances should be drawn from a chi square
distribution with 2 degrees of freedom. The top histogram is the divergent result when the
naive independence assumption is used. The bottom histogram shows the conservative,
but consistent results when using explicit bias estimation.
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the trajectories of the robot in blue. Figure 6.7.2 shows the same data overlaid upon aerial

imagery of the mapped region.

Moving closer, Vgure 6.7.3 shows a detail segment from the larger map. The sources of

landmarks become visible at this level of detail, and it is easier to see the trajectories of the

robot.

Convergence Rates

As has been noted, the SAM technique solves a linearized version of the least squares prob-

lem 5.3.20. The accuracy of this linear solution depends on linearization points being of

suXcient accuracy to make the linear assumption reasonable for the region between the

linearization point and the desired maximization.

The addition of more variables increases the nonlinearity of the underlying system. As

can be seen in the generated maps, this doesn’t cause the incremental linearized solutions to

diverge from the nonlinear maximum a posteriori result, but it is reasonable to expect that

the additional terms being estimated will slow convergence.

Figure 6.7.4 illustrates the convergence rate of SAM applied to this dataset. Although

initial corrections move quickly toward the Vnal value, it can take up to 10 iterations before

all estimated variables move less than 1 cm after a smoothing pass.

Maintaining Sparsity

Finding a good variable ordering is critical to keeping the system sparse and eXcient. [Del-

laert and Kaess, 2006] explores this topic, and suggests using the column approximate min-

imum degree ordering (colamd) described by [Davis et al., 2004] to Vnd a good ordering. In

particular, it is noted that calling colamd on groups of related parameters (i.e. considering

all variables from a given pose as a unit) is a way to use domain knowledge to reduce Vll-in

in the factored representation.

It is unclear how GPS-related variables should be treated with respect to variable order-

ing. As such, several experiments were run using diUerent reordering strategies to see the

results on the factored representation.

The Vrst case, presented as a baseline, does no grouping of variables; colamd is left free
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Figure 6.7.1: Entire aligned dataset
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Figure 6.7.2: Satellite imagery overlay
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Figure 6.7.3: Map detail overlaid on aerial imagery. North is to the right of the page.
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Figure 6.7.4: Convergence rates of the various types of parameters being estimated in the
Pittsburgh dataset without diUerential corrections. Scale is logarithmic.

to consider all variables individually. In the second case, each pose is considered as a single

column, as is each landmark. All receiver clock bias terms and satellite bias terms are left

ungrouped. In the third case, in addition to the groupings of the second case, GPS terms

from the same epoch are grouped together. In the Vnal case, GPS terms are grouped together

with the pose of the same epoch.

The (unpermuted) A matrix of the system can be seen in 6.7.5. The resulting Cholesky

factors of the information matrix are shown in Vgure 6.7.6. Interestingly, using pose and

landmark groupings is helpful, though the large number of poses relative to observations

makes the 30% reduction in Vll-in less dramatic than other published results. Grouping GPS

terms by epoch appears to be detrimental to Vll-in, though grouping epochs and poses into

a single group is signiVcantly better than grouping poses and epochs independently.
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Figure 6.7.5: The A matrix of the full mapping run. The top rows of the matrix are the pose
updates. These are followed by the GPS observations and then the landmark observations.
Columns are poses, then clock oUsets and satellite biases, then landmark positions. The
matrix is 245498 × 232094, and contains 1890688 nonzero entries.
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(a) No groupings, 5849844 nonzero
entries

(b) Groupings: (pose) (landmark),
4156978 nonzero entires

(c) Groupings: (pose) (landmark) (gps),
5656914 nonzero entries

(d) Groupings: (pose gps) (landmark),
4507412 nonzero entries

Figure 6.7.6: L factors of ATA for various variable groupings. All matrices are 232094 ×
232094.
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Figure 6.8.1: Map of an infrequently visited neighborhood without diUerential corrections.
2-σ error ellipses around landmarks are shown.

6.8 Using Local Area DiUerential Corrections

The University of Pittsburgh Department of Geology and Planetary Science maintains a

continuously operating reference station, named papt, in close proximity to the Pittsburgh

datasets. They generously publish make this data freely available for download.

Using the reference station logs, LADGPS readings can be opportunistically incorpo-

rated into the model as described in 5.3. Doing so results in a signiVcant reduction in the

uncertainty of our map. Note that no coordination between base station and mobile receiver

is required to use the diUerential corrections; we merely take advantage of any overlaps in

satellite selection as they occur.

The reduction in uncertainty only becomes obvious when we add error ellipses to our

output, as has been done in Vgures 6.8.1 and 6.8.2. Generation of these error estimates is

made possible by the dynamic programming algorithm presented in [Kaess, 2008].

The base station also can act as a source of ground truth to help validate the output of

the algorithm. Ideally, we would have a statistically signiVcant number of our map land-
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Figure 6.8.2: The same neighborhood as the previous Vgure, but including 30-second inter-
val local area diUerential corrections from the papt base station. 2-σ error ellipses around
landmarks are shown.
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Figure 6.8.3: Normalized histogram of variance-normalized satellite oUsets.

marks surveyed with a high degree of conVdence. However, the integrated SAM-GPS model

makes no distinction between the estimated per-satellite biases and landmark positions in

its estimation process. If we can show that the per-satellite bias estimates are valid, this

indirectly improves our conVdence in the landmark estimates.

We do not have precise ground truth data from the base station, we do have a source of

data with well-characterized error. [Parkinson et al., 1996]. The sources of noise from the

base station are not perfectly white, but base station autocorrelation eUects are negligible

given a suXciently long time-series such as the one gathered here.

In section 4.5, we took advantage of the ground truth available in simulation to generate

a set of squared errors normalized by variance. We can follow a similar process here. We

start by smoothing a map without using the papt diUerential corrections. This generates

approximately 130,000 bias estimates at a minimum interval of 1 second.

Of these readings, we have 2,663 readings in common with the 30-second interval papt

base station logs. The square of the oUset of the base station derived oUset and the SAM-

estimated oUset is normalized by the sum of the SAM-estimated variance and base station

variance.

If our model were perfect, then we would expect the resulting distribution of normal-

ized oUsets to be drawn from a 1-DOF chi-square distribution. The normalized histogram,

shown in Vgure 6.8.3, shows that the SAM-generated satellite bias information is somewhat



104 CHAPTER 6. APPLICATION: GPS-SAM USING NAVLAB 11

conservative, but not excessively so. This in turn gives us conVdence that our landmark

maps have appropriate uncertainty characteristics.

6.9 Conclusion

In this chapter, we began with the standard batch SAM formulation, and extended the the-

oretical framework to incorporate GPS readings. The extended framework encompasses the

use of multiple runs, global coordinate systems, and nonwhite noise measurements from

global sensors. Furthermore, we have demonstrated a successful implementation of the ex-

tended system on a real world robot, showing that the combined system is capable of dra-

matically increasing the scale at which it is feasible to generate probabilistically grounded

maps.
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Conclusions

Outdoor mobile robotics is a rapidly maturing Veld. With ever-increasing amounts of data

storage, network bandwidth, and sensing, the development of large geographic databases,

both formally and informally, is inevitable. Increasingly relevant questions facing us include

how do we process, organize, and use this data?

Probabilistic mapping methods from the SLAM community give us excellent frame-

works for organizing data into forms which can answer interesting questions, such as

“Where am I?” in a way which allows robots to reason about and perform useful tasks

in an uncertain world. GPS, on the other hand, is an engineering marvel which has been

extensively used in outdoor robotic navigation, but has not been extensively integrated with

SLAM algorithms before now.

The reasons for a lack of GPS-SLAM integration were primarily a lack of good proba-

bilistic error models for integration and a bias in the SLAM literature towards loop-closure

as the sole source of uncertainty reductions.

In the case of outdoor robotics, this separation of SLAM and GPS is unwarranted. As

has been shown in this dissertation, relatively simple models for per-satellite GPS errors can

be used to augment SLAM with GPS readings, improving its accuracy and robustness, and

increasing the usefulness of generated maps in long-term applications.

105
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Future Directions

One of the most diXcult aspects of this work was resisting the urge to explore the wide

variety of problems which are related but not core to GPS-SLAM.We content ourselves with

discussing some of the more interesting roads-not-taken as possible directions for future

research.

In chapter 5, the underlying system scales well as the size of the map grows, but the

growth of computational complexity still requires a presupposition that mapping and nav-

igation are separate tasks; we can spend a lot of time and memory building the map as

a Vxed up-front cost, and then use the map statically to navigate. [Kaess, 2008] presents

an alternative view which does not require full information matrix factorization at each

timestep. One path of future investigation is how incremental and amortized variable re-

ordering would mesh with the presented models of GPS noise.

Wide area diUerential GPS (WADGPS) is left largely untouched by this document. Find-

ing and implementing a reasonably accurate WADGPS error model which is of suXcient

mathematical elegance to incorporate into probabilistic mapping would be extraordinar-

ily useful. As the name suggests, WADGPS has a much wider range of applicability than

LADGPS; a good framework for WADGPS integration would increase the applicability of

GPS-SLAM tremendously.

The problem of long-term map maintenance is an open question. In this work, speciVc

steps are taken to identify good landmarks which we believe will be stable over a long

period of time, but no environment is truly static. Even landmarks as solid as buildings

and walls are torn down, built, or rebuilt in slightly diUerent conVgurations given a long

enough operation time. Some initial work has looked at this problem in the context of indoor

systems, but the problem in the context of long-term outdoor operation remains signiVcant.

Global navigation is evolving rapidly; there are opportunities to examine the eUects

of new capabilities as they come online. As mentioned in chapter 3, new constellations

of global navigation satellites are being put into place by China and the European Space

Agency. If current planned launches come to fruition, in the next decade a receiver capable

of processing signals from multiple systems may face scenarios in which 20 or more usable

satellites are being tracked at once. Additionally, the NAVSTAR system is slated to begin

broadcasting a second civilian coarse acquisition code which can and should be character-
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ized for use in a merged system.

In short, as researchers in outdoor mobile robotics, we have an interesting future with

many challenges ahead of us.
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