
Learning Preference Models for
Autonomous Mobile Robots in Complex

Domains

David Silver

CMU-RI-TR-10-41

December 2010

Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania, 15213

Thesis Committee:
Tony Stentz, chair

Drew Bagnell
David Wettergreen

Larry Matthies

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Robotics

Copyright c© 2010. All rights reserved.

Abstract

Achieving robust and reliable autonomous operation even in complex unstruc-
tured environments is a central goal of field robotics. As the environments and
scenarios to which robots are applied have continued to grow in complexity, so
has the challenge of properly defining preferences and tradeoffs between various
actions and the terrains they result in traversing. These definitions and parame-
ters encode the desired behavior of the robot; therefore their correctness is of the
utmost importance. Current manual approaches to creating and adjusting these
preference models and cost functions have proven to be incredibly tedious and
time-consuming, while typically not producing optimal results except in the sim-
plest of circumstances.

This thesis presents the development and application of machine learning tech-
niques that automate the construction and tuning of preference models within com-
plex mobile robotic systems. Utilizing the framework of inverse optimal control,
expert examples of robot behavior can be used to construct models that generalize
demonstrated preferences and reproduce similar behavior. Novel learning from
demonstration approaches are developed that offer the possibility of significantly
reducing the amount of human interaction necessary to tune a system, while also
improving its final performance. Techniques to account for the inevitability of
noisy and imperfect demonstration are presented, along with additional methods
for improving the efficiency of expert demonstration and feedback.

The effectiveness of these approaches is confirmed through application to sev-
eral real world domains, such as the interpretation of static and dynamic perceptual
data in unstructured environments and the learning of human driving styles and
maneuver preferences. Extensive testing and experimentation both in simulation
and in the field with multiple mobile robotic systems provides empirical confir-
mation of superior autonomous performance, with less expert interaction and no
hand tuning. These experiments validate the potential applicability of the devel-
oped algorithms to a large variety of future mobile robotic systems.

Keywords: Mobile Robots, Field Robotics, Learning from Demonstration, Im-
itation Learning, Inverse Optimal Control, Active Learning, Preference Models,
Cost Functions, Parameter Tuning

2

Contents

1 Introduction 9
1.1 Mobile Robotic Systems . 10
1.2 Real World Challenges of Robotic Systems 10
1.3 Real World Requirements of Autonomous Systems 13

2 Related Work in Autonomous Mobile Robotic Systems 15
2.1 Mobile Systems in Semi-Structured Environments 16
2.2 Mobile Systems in Unstructured Environments 20
2.3 Recent Trends in Mobile Robotic Systems 25

3 Behavioral Preference Models in Mobile Robotic Systems 27
3.1 Continuous Preferences over Behaviors 28
3.2 Manually Constructing Behavioral Preference Models 30
3.3 Problem Statement . 32

4 Automating Construction of Preference Models 35
4.1 Expert Supervised Learning and Classification 36
4.2 Self-Supervised Learning from Experience 38
4.3 Supervision through Explicit Reinforcement 41
4.4 Supervision through Expert Demonstration 42

5 Learning Terrain Preferences from Expert Demonstration 45
5.1 Constrained Optimization from Expert Demonstration 46
5.2 Extension to Dynamic and Unknown Environments 55
5.3 Imperfect and Inconsistent Demonstration 57
5.4 Application to Mobile Robotic Systems 66
5.5 Experimental Results . 72

3

CONTENTS CONTENTS

6 Learning Action Preferences from Expert Demonstration 85
6.1 Extending LEARCH to State-Action Pairs 86
6.2 Learning Planner Preference Models 89
6.3 Application To Mobile Robotic Systems 103
6.4 Experimental Results . 107

7 Stable, Consistent, and Efficient Learning
from Expert Demonstration 125
7.1 Different Forms of Expert Demonstration and Feedback 126
7.2 Active Learning for Example Selection 133
7.3 Experimental Results . 138

8 Conclusion 149
8.1 Contributions . 150
8.2 Future Work . 153

Acknowledgements 154

Bibliography 155

4

List of Figures

1.1 Deployed Systems . 11
1.2 Experimental Systems . 13

3.1 Preference Models and Robot Behavior . 29
3.2 Backpropagation Signal Degradation . 31

4.1 Near-To-Far Learning . 39

5.1 LEARCH Example . 53
5.2 LEARCH Generalization . 54
5.3 Unachievable Example Paths . 59
5.4 Replanning with Corridor Constraints . 62
5.5 Plan/Behavior Mismatch . 65
5.6 Boosted Features . 67
5.7 Constrained Planners . 72
5.8 Crusher . 73
5.9 Crusher Data Flow . 73
5.10 Cost Ratio . 74
5.11 Corridor Size . 75
5.12 Static Learned vs Hand Tuned . 76
5.13 Hand Tuned vs. Learned Prior Costmaps . 77
5.14 Static Learned vs Hand Tuned . 79
5.15 Crusher Perception Example . 80
5.16 Offline Experiments on Logged Perceptual Data 81
5.17 Filtering . 81
5.18 Crusher Perception Comparison . 82

6.1 Driving Styles . 86
6.2 Cost-to-go and Heading . 90
6.3 Motion Planner Action Set . 91
6.4 Receding Horizon Effects . 95
6.5 Learned Planner Preference Models . 108
6.6 Learned Planner Preference Models . 109
6.7 Learned Planner Preference Models . 110
6.8 Effects of Slack Re-scaling . 111
6.9 Planning Results . 112

5

LIST OF FIGURES LIST OF FIGURES

6.10 PD-LEARCH vs DR-LEARCH . 113
6.11 Planning Results . 114
6.12 Planner Hand Tuning . 115
6.13 Best vs Final Performance . 115
6.14 E-Gator . 117
6.15 E-Gator Learning . 118
6.16 E-Gator Perception Costs . 120
6.17 E-Gator Hand Tuning . 121
6.18 Best vs Final Performance . 122

7.1 Relative Examples . 128
7.2 Acceptable Examples . 130
7.3 Dynamic Range . 131
7.4 Test Site . 138
7.5 Redundancy of Expert Demonstration . 139
7.6 Relative Examples . 140
7.7 Lethal Examples . 141
7.8 Acceptable Examples . 142
7.9 Novelty Based Active Learning . 143
7.10 Density Estimation . 144
7.11 Uncertainty Based Active Learning . 145
7.12 Active Learning From Scratch . 146
7.13 Active Learning . 147

6

List of Tables

5.1 Online Performance of Learned vs. Hand Tuned Prior Costmaps 76
5.2 Online Perception Comparison Results . 84

6.1 Online Perception and Planning Comparison Results 123

8.1 Summary of Experiments . 150

List of Algorithms

1 The linear MMP algorithm . 50
2 The LEARCH algorithm . 54
3 The Dynamic LEARCH algorithm . 58
4 The Dynamic Robust LEARCH algorithm . 64
5 The linear LEARCH algorithm with a feature learning phase 69
6 D-LEARCH for planner preference models with known perception cost 93
7 PD-LEARCH for planner preference models with known perception cost 102
8 Learning perception and planner preference models 104
9 Novelty Based Active Learning . 136
10 Uncertainty Based Active Learning . 137

7

LIST OF ALGORITHMS LIST OF ALGORITHMS

8

Chapter 1

Introduction

The field of robotics is poised to have a dramatic impact on many industrial, scientific, and mil-
itary domains. Already, complex robotic systems are moving pallets in warehouses, dismantling
bombs or finding mines in volatile regions, and searching for water on Mars. These applications
demonstrate the capability of robotic systems to increase efficiency, improve safety, or perform
tasks that would otherwise be prohibitively expensive. In the near future, the size and scope of
robotic applications is sure to continue expanding.

Unfortunately, in many regards robotics still remains an experimental field. Building robots
to perform simple, well structured tasks a limited number of times is a sufficiently simple goal
to be frequently achieved by elementary school students. However, when robots must interact
with the real world and demonstrate high reliability, the challenges are greatly magnified. Under
these circumstances, constructing and fielding robotic systems still requires an enormous initial
investment of resources and labor in order to engineer a system capable of operating in real world
domains. Despite this high cost, such systems often still require a high degree of human monitoring
and maintenance to ensure that they continue to perform their tasks.

This document focuses on some of these problems that are inherent in developing and fielding
autonomous robotic systems for challenging, unstructured and dynamic environments. Specif-
ically, the problem of constructing and tuning preference models in mobile robotic systems is
explored. Automated techniques are proposed, developed and demonstrated to address both the
inefficiency and sub-optimality of traditional labor-intensive approaches to hand tuning system be-
havior, which involve large amounts of manual engineering and expert interaction. This document
is structured as follows: this chapter introduces some of the basic challenges of autonomous mobile
robotics. Chapter 2 sketches a brief outline of recent mobile robotics research and development.
Chapter 3 analyzes this overview and identifies the problem of preference model construction as
central to the continuing development of autonomous mobile robotics. Chapter 4 explores differ-
ent possible approaches for tackling this class of problem, before deciding on the idea of Inverse
Optimal Control based Learning from Demonstration. Chapter 5 describes the Maximum Margin
Planning framework and the associated LEARCH, R-LEARCH, and DR-LEARCH algorithms for
learning preferences over terrain types for mobile robot perception, with Chapter 6 extending this
approach to the PD-LEARCH algorithm for learning driving styles and preferences from expert
demonstration. Additional issues relating to the efficiency, stability and consistency of such learn-
ing frameworks are discussed and addressed in Chapter 7, and the document concludes with a
discussion and directions for future work in Chapter 8.

9

1.1. MOBILE ROBOTIC SYSTEMS CHAPTER 1. INTRODUCTION

1.1 Mobile Robotic Systems
Mobile robotic systems have an enormous potential to benefit society. In many cases, robotic sys-
tems (either experimental or hardened) have already undergone initial deployment. An application
with which many are now familiar is that of simple mobile systems for performing coverage tasks,
such as cleaning floors or mowing lawns. These systems have the advantage of requiring relatively
little intelligence or sensing, and therefore are capable of being priced for the individual consumer
market.

Robotic systems have long been used in industrial settings. However, the industrial application
of robotics is beginning to grow beyond the automation of assembly lines and other high preci-
sion tasks. For instance, large warehouses and storage facilities are beginning to integrate mobile
robotic systems for moving pallets and other large or heavy items. As a consequence, the logis-
tics of such sites are greatly simplified. The deployment of these systems is beginning to fulfill
the promise of efficient robotic load handling that has already been briefly glimpsed in automated
container handling [1]. In addition to industrial applications, mobile robotic systems have begun to
make their way into the mining industry. Experimental systems for performing Load-Haul-Dump
(LHD) operations have been deployed for over a decade [2]. In addition, systems are also under
development to aid in surface mining operations from haul trucks to large excavators [3]. Another
industrial application of mobile robots is in the area of inspection and mapping. In this applica-
tion, robots have already touched the traditional 3 D’s of robotics applications; mobile systems
have handled dirty jobs such as pipe and sewer inspection [4], dangerous jobs such as probing
a nuclear reactor or mapping abandoned mines [5], and dull jobs such as large scale survey and
mapping.

Mobile robots are also being applied to the office setting. An initial deployment success has
been in hospitals, many of which now routinely use robots to deliver supplies from central storage
to individual rooms, freeing personnel to deal with actual medical issues. The broader scientific
community has also begun to make use of robotic systems. Mobile systems have made contribu-
tions ranging from exploration of volcanoes [6] to the depths of the ocean [7]. Perhaps the greatest
success in this area has undoubtedly been the NASA MER missions to Mars, which have allowed
remote exploration and geology to take place for over 6 years (including the recent addition of
autonomous target selection for scientific study [8]).

The single field that has seen the most recent impact due to robotics is the military domain.
The use of Unmanned aerial vehicles for both extended reconnaissance and precision strikes has
grown rapidly. Ground systems such as the Packbot and Talon have become an essential tool for
detecting and disarming IEDs in Iraq and Afghanistan [9]. These system have to date been mostly
tele-operated, which is one reason for their effectiveness and popularity.

1.2 Real World Challenges of Robotic Systems
Despite the preceding list of actual applications and varying degrees of success, most mobile
robotic systems are not yet ready for mainstream adaptation. The true killer applications of mobile
robotics, such as the generic self driving vehicle, remain out of reach. In an attempt to diagnose
what is still lacking that prevents such deployments, it is useful to investigate some of the common
properties of the previously described successes:

10

CHAPTER 1. INTRODUCTION 1.2. REAL WORLD CHALLENGES

Figure 1.1: Examples of deployed mobile robotic systems

Custom, Highly-Engineered Solutions All of the systems were designed for very specific appli-
cations and scenarios. To some degree, this is inevitable; one wouldn’t attempt to use a robot
designed for aerial reconnaissance in a sewer inspection task. Each proposed task naturally
comes with its own requirements and constraints in terms of the size, shape, mobility, ef-
fectors etc. of the robotic system. However, this specificity can also be used as a crutch.
A robot that performs a LHD task in a mine could potentially move pallets in a warehouse
with just a change of end effectors. However, by designing a robotic system to be used only
in specific scenarios and environments, numerous simplifying assumptions can be made to
reduce the complexity of the system’s software.

Structured or Semi-Structured Environments In addition to assumptions about the tasks to be
performed, many of these systems make explicit assumptions about the environments in
which they operate. In some cases, the environment must be explicity structured for the
robot (e.g. warehouse transport). Other systems do not require explicit engineering of their
operating environment as long as it conforms to certain standards (e.g. supply delivery in
hospitals). Still other systems can tolerate some degree of ambiguity in the definition of their
operating environment, as long as certain key assumptions still hold (e.g. home coverage
tasks or underground LHD).

Varying Degrees of Manual Control All these robotic systems require some level of human in-
put. In some cases, input consists only of high level instructions (clean this room, begin
daily deliveries, etc.). In other cases, individual tasks are continually specified by a human
operator (drive to a certain location, move a pallet to a specific workstation, etc.). The ex-
treme end of this spectrum is direct tele-operation, where a human operator specifies all of
the robot’s motion commands.

Low Sensitivity to Robot Failure Any complex system is likely to have a number of possible
failure modes, and robots are no exception. The acceptable failure rate for a specific appli-
cation is one of the factors determining when a robotic system becomes deployable. Many
current applications have a very low sensitivity to a failure by the robotic system. If a robot
vacuum cleaner becomes stuck and shuts off, floor cleaning is simply delayed by a day. If
a robot in a warehouse shuts down, the flow of pallets is temporarily slowed; in a pinch a
human in a fork-lift can substitute. While all of these scenarios are undesirable and would
result in a certain degree of annoyance, none of them could be said to result in the failure of
a mission critical system.

11

1.2. REAL WORLD CHALLENGES CHAPTER 1. INTRODUCTION

These common features of the mobile systems that are actually field deployed provide clues as
to the key challenges that remain to be solved before truly wide real-world deployments will be
possible:

Unstructured Environments In general, no permanent assumptions can be made about the ap-
pearance or structure of the world. Not all environments can be easily classified into naviga-
ble freespace and obstacles, or easily partitioned into sets of objects with semantic meaning.
Further, this lack of assumed structure results in the requirement of a higher signal to noise
ratio in perception and world modeling, in order to properly perceive the meaningful struc-
ture of the environment. Therefore, the added complexity of unstructured or un-engineered
environments necessitates higher resolution sensors, sensor processing, and modeling capa-
bilities in mobile systems.

Dynamic and Partially Known Environments The world is constantly changing, and any obser-
vation that is not current has a chance of being stale and incorrect. Further, not every location
is constantly observable. Interaction with and modeling of unobserved or partially observed
terrains or locations is almost always necessary.

Unpredictable Environments and Reactions The world is not deterministic. Every action has a
degree of unpredictability. A patch of floor that was dry several minutes ago may now be
wet, impacting mobility. Or a mine corridor that is reported as clear may suddenly become
blocked. Robotic systems must be able to account for such uncertainty in order to interact
with a nondeterministic world.

Mission-Critical Scenarios Some potential robotic tasks are truly mission-critical, with an ex-
ceptionally high cost of failure. In the case of a robotic car or a fully autonomous armed
robot, a mistake may literally be fatal. Therefore in some scenarios, due to moral and le-
gal reasons, a mobile robotic system must not just meet but far exceed human safety and
dependability before adoption can be mainstream.

Full Autonomy The ultimate goal of many mobile robots is to perform some task in lieu of a
person all the time, not some of the time or with the continual aid of a person. If the desire for
a mobile system is driven by any requirement aside from tele-presence, then mobile systems
must become capable of operating without any but the highest level and lowest frequency of
human input in order to become truly ubiquitous.

Development Effort Building a mobile system that conquers the preceding challenges is difficult
enough. Unfortunately, the cost of development must also be considered. A significant man-
ual engineering effort is often necessary, consisting not only of an initial design and devel-
opment but also a considerable amount of system tuning and tweaking. Additionally, system
testing and validation can also occupy a significant amount of time and other resources; in
some cases even more than the initial design and development.

A common thread amongst these challenges is the requirement that a mobile system must
be autonomously capable of the correct behavior under vague and complex circumstances. The
difficulty in fulfilling this requirement lies in the intricacy necessary to properly encode a mobile
system with the ability to generate correct behaviors, along with the ability to model and understand
the correct behavior under particular circumstances.

12

CHAPTER 1. INTRODUCTION 1.3. REAL WORLD REQUIREMENTS OF AUTONOMOUS SYSTEMS

Figure 1.2: Examples of experimental mobile robotic systems

1.3 Real World Requirements of Autonomous Systems
With a clear picture of the challenges that await any widely deployed mobile system, it is now
possible to define high level requirements for such a system. That is, in order to claim that the
preceding challenges have been overcome, autonomous mobile systems will require at least the
following properties

Reliable The system must have a sufficiently high rate of success, mean time to failure, etc. Defin-
ing reliability is tricky, as it is a relative measure depending on the form and price of failure.
If a robot fails to pick up a pallet that is a very low cost failure in comparison to a robot
crashing that pallet into a wall. However, reliability can also be defined in terms of confi-
dence in the system. For example, the braking system of a car is not 100% reliable, and yet
it is rarely something that is thought about at the start of a ride. Therefore, it is sufficiently
reliable that we assume it will work, and if that assumption proves faulty the consequences
are dealt with. Continuing this analogy, mobile robotic systems must become sufficiently
reliable that rather than requiring monitoring in preparation for a failure, they are simply left
to their own devices; the cost and probability of a failure are such that it is better to respond
to the consequences of a failure after the fact.

Robust The system must perform well in the face of uncertain or novel scenarios. Robustness
and reliability are partially coupled; a system that is not sufficiently robust will almost cer-
tainly not be sufficiently reliable. However, there is more to robustness than simply reliably
handling rare circumstances. Again, it is a question of confidence. For a system to truly
be considered robust, there must exist sufficient confidence that it will perform reliably in
completely novel circumstances (including scenarios or inputs for which it has never been
tested) or that performance will degrade gracefully. In the same way sufficiently reliable
can be defined as when constant monitoring of the system is no longer required, sufficiently
robust can be defined as when monitoring of the environment is no longer required.

Rapid Development Mobile systems must be simpler and faster to design and implement. This
does not imply that the overall complexity or power of the systems must decrease. Rather,
the human resources requirement must be reduced. Specifically, the amount of time from
system design and development to final deployment must be reduced. Currently, this period
is occupied by enormous amounts of system tweaking and redesign, parameter tuning and
optimization, and numerous rounds of validation testing, and can go on for years. Again, this

13

1.3. REAL WORLD REQUIREMENTS CHAPTER 1. INTRODUCTION

requirement is somewhat relative and depends on the complexity of the system and its pur-
pose, but fundamentally the proportion of time spent on system optimization and validation
must decrease.

Reusable Mobile systems must be increasingly built using off the shelf components. Great strides
have already been made with respect to hardware; many mobile systems now use exclusively
off the shelf computing and sensors. However, most software components are still custom
built, even when the component simply re-implements standard algorithms or heuristics. In
some regards, this is more a software engineering than a systems or robotics engineering
issue, and is a problem shared with many other disciplines. However, where robotics differs
is in the latter stages of system development. Initial designs for mobile robotic systems often
make use of off the shelf algorithms if not off the shelf software. However, later stages of
system development often result in new components or parameters that are very platform or
task specific. Usually, this is in response to system failures or shortcomings demonstrated
through early testing. As previously discussed, a great deal of engineering resources are
often spent during this period; even worse, most of these resources are spent in such a way
as to have no further benefit to any future systems. It would be useful if not only software
components but the results of tuning such components were reusable and could generalize
across systems and operating conditions.

These four requirements encapsulate much of the work that remains before mobile systems are
widely deployable. The next Chapter will explore previous work in field deployed mobile robotic
systems, and Chapter 3 will discuss how well these systems meet these requirements.

14

Chapter 2

Related Work in Autonomous Mobile
Robotic Systems

The field of mobile robotics is often partitioned into systems designed for either indoor or outdoor
environments. These two scenarios each present a very distinct set of challenges and requirements,
and often result in very different solutions for both software and hardware. However, in many ways
this distinction between indoor and outdoor mobile robots is not optimal. For instance, some robots
that operate indoors must still solve complex perception tasks that are more common in outdoor
settings, and some outdoor systems operate in simplified or engineered environments that are more
similar to indoors. Therefore, it is more useful to use the following taxonomy when describing the
operating environment of a mobile system

Structured Environments: Very strong assumptions can be made about properties of the envi-
ronment. Environments that can be reliably partitioned purely into navigable freespace and
obstacles are a classic example. Most indoor environments fall into this category, as would
an engineered outdoor environment consisting only of flat ground and positive obstacles. A
high level of environmental engineering is implied; that is the environment will be modified
to enforce any assumptions made about it.

Semi-Structured Environments: Some assumptions can be made about the environment. Ur-
ban environments are a classic example: it is assumed that there are certain proper places
to drive (roads) that are easy to detect but may be occupied by dynamic obstacles. Under-
ground mines are another good example: the overall tunnel structure of the mine is taken as
a given, but debris or equipment may also be present. A moderate level of environmental en-
gineering is implied. It is often the case that the environment was originally (at least in part)
artificially constructed. However, continuous modification to enforce strong environmental
assumptions does not occur.

Unstructured Environments: No assumptions can be made about the environment. True cross-
country traverses are a good example: while roads or flat areas may be present, they can not
be assumed to exist. Negative obstacles and other difficult to detect hazards are a possibility.
Positive obstacles may consist of rigid objects or of easily traversable vegetation. A low to
nonexistent level of environmental engineering is implied; in any case none can be assumed
to have taken place.

15

2.1. MOBILE SYSTEMS IN SEMI-STRUCTURED ENVIRONMENTS CHAPTER 2. RELATED WORK

Unlike the indoor/outdoor distinction, this categorization is not strictly well defined. However,
it remains useful as a method for indicating how complex a world model will be necessary for op-
erating in a given environment. Structured environments require simple world models; any part of
the environment that is too complex can be modified to fit assumptions about structure. In contrast,
unstructured environments require complex world models; as no assumptions are made about the
environment, any property of the terrain that would affect a robot’s decisions or interactions must
be modeled.

In this document, mobile robots in structured environments are not discussed or explicitly
addressed. This is not to say that the problem of autonomy in such environments is ’solved’ by
any means. However, the state of the art in such scenarios is significantly more advanced, due to
both the structure of the environment, and the constraints that places on behavior. Instead, this
document is concerned with the challenges inherent in understanding and interpreting semi and
unstructured environments, as well as making decisions in such environments. What follows is a
brief (and by no means complete) chronological history of research for robotic systems in such
environments, with the goal of fashioning an understanding of the current state of the art, as well
as what problems and trends are developing and where this will lead research in the future. Prior
work in mobile systems operating in semi-structured environments are described first, followed
by systems designed for unstructured environments in Section 2.2. The focus of these sections
is on wheeled or tracked autonomous mobile robots , and the perception and motion planning
challenges inherent in such robots. Systems that are primarily tele-operated or rely heavily on
tele-operation are not discussed. The higher dimensional planning and control problems inherent
in legged locomotion are also outside the scope of this work (although similar approaches have
been applied with success [10]).

2.1 Mobile Systems in Semi-Structured Environments
The first mobile robot to operate outdoors was the Stanford Cart [11, 12]. While exceedingly
simple by current standards, the Cart pioneered many of the technologies still used today. A Sense-
Plan-Act architecture was utilized, with stereo vision as the single mode of both perception and
positioning. Motion plans were computed using an approach similar to visibility graphs, computed
on a configuration-space expansion of perceived obstacles. A single Sense-Plan-Act cycle took 10-
15 minutes, and would result in approximately 1m of traverse. The longest single run was 20m.
Despite this simplicity, many of the problems encountered by the Cart while operating outdoors
are still challenges to modern mobile systems. For instance, the stereo vision perception system
had difficulty finding sufficient visual features to locate and track; the assumption of a sufficiently
feature rich environment that held indoors did not hold outdoors. Additionally, a static environment
assumption no longer held, and even slow dynamics such as shadows moving due to the sun’s
position could effect the system. Finally obstacles were defined as those features which were
“sufficiently above” the floor, with the floor being computed from a planar ground assumption.
While seemingly simple to define, the definition of “sufficiently above” is an early example of
system a parameter that could drastically affect the Cart’s behavior if not properly tuned.

The Terregator mobile robot [13] was the first robotic platform designed specifically for op-
erating in more complex and potentially off-road outdoor environments. Over the years, multiple
autonomy systems were developed on top of Terregator, including a system for following roads

16

CHAPTER 2. RELATED WORK 2.1. SEMI-STRUCTURED ENVIRONMENTS

and sidewalks [14], a system for the exploration and navigation of mine corridors, and a system for
the navigation of more complex off-road terrains [15, 16]. The latter of these modes of operation
is most relevant to the challenges faced by modern robots. In this mode, 3D range data was used
to classify terrain as either explicitly passable (smooth and flat) or possibly not passable (obsta-
cles or rough terrain). However, even this seemingly simple distinction could result in unexpected
behavior, as sometimes flat off-road terrain such as grass would be preferred to roads and paths
when potholes were present. Additionally, this conservative classification would sometimes result
in no surrounding terrain appearing as passable, resulting in an autonomy failure even when Ter-
regator was physically capable of continuing to traverse (obstacles up to 15 cm in height could be
surmounted).

Early work on the Navlab vehicle [17] continued the work of Terregator and combined road
following and obstacle avoidance capabilities, while adding robustness to real world operating
conditions such as changing weather and lighting, or dynamic obstacles [18]. In addition to op-
erating in on road environments, simple off road operation was also possible. 3D Range images
would be processed to identify ’inadmissible’ regions of terrain [19]. These regions were iden-
tified by analyzing the terrain geometry for regions which would violate constraints on vehicle
tilt, ground clearance, or a minimum amount of contact between wheels and the support surface.
This demonstrates one of the key assumptions that often helps to distinguish systems for structured
and semi-structured environments: the assumption that the visible geometry of a scene represents
something close to the supporting ground surface.

Also during this time, a great deal of work took place in Europe under the umbrella of the
PROMETHEUS project that focused primarily on purely vision based approaches for autonomous
on road vehicles. The result was the VaMoRs and VaMP vehicles [20, 21] which were capable of
driving in actual traffic conditions at highway speeds. Computer vision algorithms and hardware
was used to identify lane markings as well as other vehicles, allowing for both lateral and velocity
control for highway operation. In later stages of development range sensors were integrated for
distance keeping in traffic. Along with the goal of producing fully autonomous systems, there
was also work to develop component sensing technology that could be integrated into consumer
vehicles.

The early to mid nineties continued to see development in vehicles designed to autonomously
detect and track lane markings for highway driving [22]. By 1996, there were two large demonstra-
tions of the potential of such approaches. The “No Hands Across America” demonstration [23, 24]
involved Navlab traveling nearly 5000 km, operating autonomously 98% of the time. The VaMP
vehicle also completed a demonstration of 1600 km of travel, operating autonomously 95% of the
time. Both demonstrations took place at actual highway speeds, demonstrating reliability and ro-
bustness under real world operating conditions. The next decade saw several efforts to continue
to improve this performance, as well as extending operation to urban driving [25, 26, 27, 28, 29].
Along with lane tracking and collision avoidance, this required the additional integration of pedes-
trian tracking and road sign detection capabilities, along with the capability to plan intelligently
and reasonable given the unpredictable nature of the environment being observed.

In 2005, the DARPA Grand Challenge produced a number of high performance systems for
navigating long distances in semi-structured environments. There is some debate as to whether the
Grand Challenge took place in unstructured terrain or not. Based on the previously described def-
initions, the Grand Challenge should be considered as a navigation task in semi-structured terrain
for the following reasons

17

2.1. SEMI-STRUCTURED ENVIRONMENTS CHAPTER 2. RELATED WORK

• The race took place on unpaved roads. Although more difficult than paved roads, unpaved
roads are still specifically constructed for ground vehicle mobility

• There were no significant negative obstacles. Positive obstacles could always be avoided, as
it was assumed that the route contained reasonably flat ground to traverse 1

• The required route was well defined and constrained a priori through GPS waypoints, and in
some cases was later modified by hand.

Regardless of this distinction, the Grand Challenge was an enormous step forward in reliable au-
tonomous systems, as 5 vehicles successfully completed the 220 km (132 mile) course without
human aid, with top average speeds of almost 9 m/s (32kph or 19 mph) [30, 31, 32, 33]. These
vehicles serve as further demonstrations of the coupling between robustness and reliability. De-
spite issues with drive by wire systems, individual sensors, or even temporary failure of software
processes, these vehicles were able to gracefully recover without human aid and complete their
task.

The successful systems had many properties in common. Their perception systems were pri-
marily range data driven (usually gathered via LiDAR). Although the details varied, geometric
properties of the collected range data were used to identify driveable and non-driveable regions
of the local environment. Various local motion planning approaches were used to produce safe
and feasible actions. Velocity control was also taken into account, trading off the maximization
of safety with the minimization of race time. Finally, the systems were heavily tested, with some
teams reporting thousands of kilometers of full system testing [30, 31].

One of the most important results of the Grand Challenge was the demonstration that percep-
tion can be robust in general, even in the face of semi-structured terrain, changing weather and
lighting conditions, dust, and other sources of noise in calibration and positioning. Notable in this
regard was the Stanford racing team. Stanford used supervised learning to map from range data
to obstacle classifications [30], as opposed to manually tuning and adjusting this mapping. This
resulted in a more robust classification model, that was robust even to errors in other components
of their system (such as positioning). This demonstrates that sometimes it is easier to train a sys-
tem than to manually tune it. Additionally, Stanford also used online near-to-far learning, with the
system learning online to interpret camera images from processed range data [30, 34]. Adaptive
online learning was also used by the CMU team to predict the presence of roads just outside of
LiDAR range [31]. From a systems standpoint, what is most notable is that adaptive components
were trusted as part of a mission critical system. This demonstrates that learning algorithms and
modules, once properly verified, validated and characterized, do not require human monitoring any
more so than manually engineered algorithms and components.

Perhaps as important as the successful completion of the Grand Challenge was the demonstra-
tion of just how difficult the necessary level of reliability was to attain. Nearly 200 teams originally
petitioned to enter the competition, with only 40 attending the qualifier event and 23 participating
in the final race. Of the 18 teams that participated but did not finish, the average distance to failure
was approximately 42 km (25 miles), or less than 20% of the full course length [35]. The causes
of failure ranged from mechanical and hardware failures to both previously known and unknown

1This assertion is backed up by the fact that many of the teams, including the winning vehicle, classified terrain in
a binary manner

18

CHAPTER 2. RELATED WORK 2.1. SEMI-STRUCTURED ENVIRONMENTS

software bugs or algorithmic issues. These failures serve to demonstrate an important point about
reliability and robustness, namely that individual component reliability is necessary but not suffi-
cient. Instead, not only must each system component behave properly, but the manner in which
components are coupled must produce a reliable system as well.

In 2007, the DARPA Urban Challenge served as another incentive for the development of high
quality mobile robotic systems. The attrition rate was similar to the Grand Challenge: 89 teams
petitioned to participate, 35 were invited to the qualifier, 11 participated in the final race, and
6 vehicles [36, 37, 38, 39, 40, 41] successfully completed the 96 km urban course, with a top
average speed of just over 22 km/h. The successful teams all had several components in common:
perception systems that could detect not only static but track dynamic obstacles, multiple layers of
planning systems for both mission level and local motion planning, and higher level reasoning to
make decisions regarding passing, merging, yielding, etc.

Unlike in the Grand Challenge setting, urban environments are engineered to provide a much
clearer distinction between terrain that should and should not be traversed by a vehicle. De-
spite this benefit, many systems still had occasional issues with obstacle false positives (even
in static settings). Due to the binary nature of the obstacle/freespace distinction, this would re-
sult in traversable routes appearing blocked, and the implementation of sub-optimal low level and
high level maneuvers. This form of error is common in systems that only consider obstacles and
freespace as opposed to a more analog representation.

The Urban Challenge also provided a context where preferences and tradeoffs between various
high and low level behaviors could have a drastic effect on final vehicle performance. Despite the
use of different algorithms for local path and trajectory selection, the 6 finishing teams all used
some subset of the following considerations when selecting amongst possible actions:

• Time to execute

• Distance traveled

• Distance to static obstacles

• Distance from dynamic obstacles

• Cross-track error from chosen path/lane

• Heading error from chosen path/lane

• Curvature

• Smoothness/change in curvature

• Velocity (sign and magnitude)

• Acceleration

The various implementations of mission planning systems were even more similar, with con-
sideration given to time and distance of a planned route, complexity of encountered intersections
and necessary maneuvers, and both the presence and age of perceived blockages. In turn, each
team had to weigh the relative tradeoffs related to all of these considerations within their planning
systems. In all cases, this was accomplished by manually setting the value of appropriate param-
eters, and validating the settings through either actual or simulated vehicle behavior. Many teams
continued to modify these and other settings during and even after the final qualifying event, in an
attempt to correct observed poor or incorrect behavior.

19

2.2. MOBILE SYSTEMS IN UNSTRUCTURED ENVIRONMENTS CHAPTER 2. RELATED WORK

2.2 Mobile Systems in Unstructured Environments
The first full cross country navigation by an autonomous vehicle was achieved with the Au-
tonomous Land Vehicle (ALV) in 1987 [42, 43]. The ALV was an eight wheeled vehicle capable
of traversing off road terrain and slopes of up to 15 degrees. It was equipped with an ERIM laser
range finder, onboard computing, and a radio link to additional offboard computing. Range data
was used to create a local elevation map; this map was then used to identify traversable and non-
traversable regions. This identification was made by simulating the effects of the local terrain on
the ALV’s suspension; patches of terrain that caused a suspension limit, were of sufficient slope, or
resulted in insufficient ground clearance were labeled as non-traversable. On board planning was
achieved through a reactive behavior based architecture. One behavior was tasked with turning
towards a local subgoal and then moving until its path was blocked. Once its path was blocked, the
ALV would invoke a second behavior that would consider first gentle turns and eventually point
turns to avoid obstacles and face a navigable area. Parameters guiding individual behaviors and
their interactions were tuned in simulation.

Subgoals were extracted at key points along long range route plans. These routes were gener-
ated offline, using available prior data about an environment, including elevation maps, locations
of roads, canopy cover, etc. This information was generally available in rasterized or grid form. It
was processed by assigning costs to grid cells based on the available data, and then using A* or
other grid planners to generate the minimum cost path to goal [44, 45]. This is a key distinction
between the offline and online planning systems of the ALV: the offline route planner considered a
continuum of cost values for each terrain patch, while the onboard system only considered a binary
notion of traversability. The offline planner’s use of costs is an instance of the “weighted region”
planning problem [46, 45, 47]. The advantage of such an approach is that it allows a hierarchy of
preferences: open areas are better than canopy covered areas, but canopy covered areas are still
better than steep slopes. However, this advantage also creates a new challenge: the relative weight-
ings of different terrain features must be determined. The tuning of these preferences in turn has a
large effect on the vehicle’s eventual long range route plan.

The final route is especially important when it is computed offline and then explicit attempts
are made to follow it. Several experiments demonstrated instances where the ALV would diverge
significantly from its route due to obstacles, and then struggle to get back onto the route when
an easier path to the final goal was available. This lead to work to encode the result of offline
planning not just as a final route, but as a route from any point in the environment (encoded in a
vector field) [44]. The result of this distinction is a better fusion of online and offline knowledge
of the environment. However, taking advantage of this fusion requires a consistency in the form of
the data being fused.

It is interesting to note the performance of this early system for the purpose of comparison
to modern systems. The 1987 experiments resulted in a system which could repeatedly traverse
courses that averaged 600 m in length at average speeds of 3 km/h. The best reported experiment
was a 735 m traverse at 3.5 km/h. In the unstructured setting, speed is often a difficult metric to use,
as it is highly dependent on the specific terrain and vehicle. For example, in the ALV experiments
it is reported that a human driven pickup truck could only traverse the terrain at an average speed
of 10 km/h [43].

Following the ALV, a great deal of work took place in the context of the UGV/DEMO II
program [48]. An important milestone was the development of stereo vision algorithms that were

20

CHAPTER 2. RELATED WORK 2.2. UNSTRUCTURED ENVIRONMENTS

sufficiently robust and efficient for use in outdoor navigation. This approach was then applied to
the Robbie rover, resulting in autonomous traverses on the order of 100m through rugged terrain
[49]. This also marked an early instance of stereo vision being used as the sole mode of perception
in complex terrain while using solely onboard computing. Obstacles were detected and avoided
by thresholding the height of stereo points. Further characterization and modeling of this stereo
perception system led to approaches for determining the value of the height threshold and other
system parameters to constrain risk, or alternatively to determine the risk of a given parameter
configuration [50, 51].

Concurrently, the Navlab II autonomous HMMWV was developed [52]. This vehicle served
as a useful testbed for several different components and final systems. Notable was the SMARTY
local navigation system and the DAMN system for action arbitration [53, 54]. Using an ERIM
LiDAR scanner, Navlab II constructed and fused local elevation maps [55]; obstacles were then
defined as regions of high slope or height discontinuities. Possible constant curvature arcs were
then scored by the distance from and along an arc to the nearest obstacle. Scores for possible
actions were converted to votes, which were then sent to the arbiter. The arbiter would weight the
votes of both the SMARTY local navigator, and a goal directed behavior, and choose the action
with the highest weighted vote. Additional behaviors could also be added to the system, such
as explicit road following or avoiding excessive tilts [56]; however, this required a more careful
tuning of the weights between these behaviors.

Different configurations and tunings of this system resulted in different vehicle behavior, ca-
pabilities, and results. The system described in [53, 54] contained a goal directed behavior that
always preferred to turn directly towards the goal. This system could traverse waypoints on the
order of 100m spacings at speeds of 2 m/s; However, the lack of any global planning prevented
the system from dealing with cul de sacs and dead ends. In comparison, the system described
in [57] used a D* [58] based global navigator that received obstacle information from SMARTY,
and could traverse kilometer scale waypoint spacing. The global navigator considered regions as
either obstacle, near obstacle, or traversable, and would plan an appropriate policy (treating areas
near an obstacle as five times the cost of normal traversable areas); individual actions would then
be voted on based on the cost to goal from the end of the arc. A given configuration of the total
system could have its behavior adjusted by modifying the relative weighting given to the local and
global votes. Another version of Navlab II paired D* with the RANGER [59] local navigator. As
opposed to considering just the distance of an arc to nearby obstacles, RANGER simulated the
results of each possible control action, resulted in predicted configurations of the vehicle for each
potential action. As with the ALV, constraints on tilt, ground clearance, and stability were enforced
to ensure vehicle safety; the safe action preferred by the global navigator was then executed. This
configuration eventually resulted in reliable mobility over distances of 15km at average speeds of
7 km/h [60].

The UGV/DEMO II program produced 4 key demonstration events. Demo A in July of 1993
used tele-operated vehicles. Demo B in June of 1994 demonstrated semi-autonomous navigation
over several hundred meters. Demo C in July of 1995 featured multiple autonomous vehicles navi-
gating cross country terrain. The final Demo II was held in May of 1996, and featured autonomous
traverses of multiple kilometers [61]. The success of the DEMO II program led to the creation of
the Demo III program [62]. In a similar manner to DEMO II, this program resulted in not only
integrated systems on the target eXperimental Unmanned Vehicle (XUV) platform, but additional
prototype systems that allowed for easier component research and development. Additionally, one

21

2.2. UNSTRUCTURED ENVIRONMENTS CHAPTER 2. RELATED WORK

of the technology goals of DEMO III was to create mobile systems that could factor in tactical
considerations (such a stealthiness) when determining local and global actions, instead of purely
mobility based considerations.

Building on this goal, development of the NIST autonomous HMMWV [63] led to a percep-
tion system that separated terrain into three classes instead of two: ground (traversable), obstacle
(non-traversable) and canopy/overhanging [64, 65]. This third class represented traversable terrain
that would be stealthier than open ground. By modifying the relative costs or preferences with
respect to covered versus non-covered terrain, the vehicle could be tuned to exhibit different de-
grees of stealthy behavior [66]. Different sets of actions through equally traversable terrain were
also preferred based on the necessary changes in steering angles [63]. Additionally, speed was
an important consideration as the system was capable of speeds up to 35 km/h. This led to the
introduction of parameters to increase the berth given to obstacle at higher speeds [67].

Component technologies from the NIST system were also ported to the XUV platform. This
implementation [68] made use of the planning sub-system described in [63], which considered
a precomputed set of possible actions based on possible changes in speed and steering rate. As
opposed to simply classifying terrain as traversable versus non traversable, the perception system
produced an analog estimate of the density or porousness of obstacles [69]. A cost was assigned to
patches of terrain based on these densities and other terrain features, such as roughness, predicted
ground clearance, and the degree to which the vehicle had directly observed the terrain, as well as
more high level properties such as stealthiness [70]. The model mapping from these features to
costs was implemented as a linear function with a set of weight parameters controlling the relative
contributions of different features. A rule-based model was also used to determine preferences
based on higher level considerations, such as obeying traffic laws [71]. By using different param-
eters and rules in various preference models, different overall behaviors were demonstrated such
as preferring roads, attempting to stay hidden, or even attempting to stay visible to a stationary
supervisor.

Research utilizing the XUV platform continued under the Robotics Collaborative Technology
Alliance (RCTA) with a great deal of full system integration and testing, as well as additional
work on component perception technologies. For instance work at JPL [72, 73] continued to
explore more complex notions of traversability. Patches of terrain were first identified as potential
positive or negative obstacles based on their geometric properties. Positive obstacles were then
classified into one of a set of material classes (e.g. soil, rock, green vegetation, dead vegetation,
etc.) based on their perceived color. A rule-based model then mapped from geometric properties
and the material class to a traversable/non-traversable distinction. Later work also explored this
classification approach using 2-D LiDAR statistics [74] and image texture [75]. Along with more
intelligent geometric approaches to obstacle detection [76], these approaches were later fused into
a single, robust obstacle classification scheme [77].

Additional work involving terrain classification from richer data sets was also performed on the
XUV. Advances in sensing and positioning accuracy, along with increased computational power
allowed for creation and classification of full 3D point clouds from LiDAR, as opposed to ap-
proaches that processed 2D line scans or 2.5D elevation maps. As with previous classification
approaches, statistical properties of the input 3D data were computed and used to classify terrain
into different semantic categories [78, 79]. Additional work allowed for a hierarchy of classifiers
at the data fusion level, in an attempt to reduce the necessary human parameter tuning [80]. More
recent work has also explored the use of more contextual information to aid in classification of

22

CHAPTER 2. RELATED WORK 2.2. UNSTRUCTURED ENVIRONMENTS

adjacent areas [79, 81].

Given how important accurate perception and terrain understanding had proved to be to au-
tonomous navigation, the PerceptOR program was undertaken with the goal of “understanding
this critical enabling perception technology as it applies to robotic mobility” [82]. Much of the
work performed under the PerceptOR umbrella resulted in specialized approaches for detecting
vegetation [83, 84], water [85], trees [86], and negative obstacles [87, 88]. Further research into
stereo vision for mobile platforms was also performed [89, 90, 91]. In addition, several fully inte-
grated systems were developed to further evaluate and validate these technologies for autonomous
navigation [92, 93, 94, 95]. One of the core principles of this effort was to perform unrehearsed
experiments; the various mobility systems would be evaluated on terrain on which there had been
no prior testing, challenging the systems to be both both generalizable and robust [96]. One of the
results of this evaluation approach was that individual system tuning and testing was given more
focus, and had to be performed over a much wider range of potential environments and operating
scenarios.

Another characteristic of the PerceptOR program was its use of prior and remotely collected
environmental data. Previous uses of prior data [45] for mobile robot navigation had dealt with
processed, GIS style data sets such as road networks, elevation maps, and canopy maps. How-
ever, PerceptOR (and to a degree DEMO III) made use of unprocessed prior data such as aerial or
satellite imagery and aerial LiDAR scans. In this way, processing prior data became yet another
perception task, using similar techniques and requiring similar solutions [97, 98, 99]. Similarly,
PerceptOR also at times made use of a separate robotic helicopter, that could be tasked with au-
tonomously observing terrain prior to the ground vehicle encountering it. Although the use of prior
or remotely collected data would seem to be a clear performance enhancer, it also provided new
challenges. The use of multiple heterogeneous sources of perceptual data creates an interesting
data fusion problem. Fusing the data early in a processing pipeline leaves open the possibility of
data not being available in all locations for all sensors; a separate processing function for each
possible subset is therefore required. However, fusing the data later in the pipeline requires the
results of each individual sensor processing component to “speak the same language”; that is, the
relationship between the units of each result must be known or derived. When these individual
results are a more abstract quantity such as cost, it adds to the difficulty of designing the individual
processing functions [95].

Overall, results from PerceptOR were highly terrain dependent. Average speeds for a test site
ranged from 0.15 to 0.65 m/s , and were on average approximately a third of the speed with which
the system could be tele-operated. Over the life of the program, there were approximately 130
km of official autonomous traverse. During this time, the average number of safety interventions
per kilometer traversed decreased by a factor of 20 [96]. Use of prior data was not found to
significantly affect mobility performance in most instances.

Serving as a follow on to the PerceptOR program, the UPI program combined the use of a
custom designed robotic mobility platform (Crusher) [100] with an autonomy system descended
from PerceptOR [101, 102]. As with PerceptOR, UPI continued to leverage machine learning ap-
proaches for better terrain understanding. Additionally, online adaptive learning was also demon-
strated [103, 104]; as with the Grand Challenge, this served as further validation that online adap-
tation could be a part of a reliable system. The UPI program also made further use of prior terrain
data; however, in contrast to PerceptOR prior data was shown to have a significant positive affect

23

2.2. UNSTRUCTURED ENVIRONMENTS CHAPTER 2. RELATED WORK

on vehicle performance2 [105]. Over the length of the program, Crusher autonomously for several
thousand kilometers, including over a thousand kilometers of experiments in unrehearsed com-
plex unstructured terrain. Average speeds were highly dependant on the difficulty of the terrain
and the amount of prior data available; at times the average speed approached 14 km/h. This was
sufficiently fast over complex terrain that safety teams in pickup-trucks or HMMWVs often had
difficulty keeping up with Crusher, occasionally incurring damage to the chase vehicles in an effort
to stay close.

Occurring in parallel to the Demo III and PerceptOR programs was research and development
geared for the use of robotics for scientific and planetary exploration (as opposed to specifically
terrestrial navigation). A planetary mobile robot has one distinct advantage over terrestrial sys-
tems, in that there is no vegetation; the supporting ground surface is usually directly observable.
However, this advantage is more than negated by the complex nature of the ground surface, often
requiring precise understanding of the local terramechanics. Additionally, as opposed to motion
planning purely for mobility purposes, there is also the need for higher level scientific mission
planning, and the decomposition of such high level goals into lower level navigation goals [106].
For instance, planetary mobile robots must no only choose where and how to drive based on what
is traversable, but on the energy expenditure [107, 108]. Similarly, instead of simply striving to
traverse to a goal region, a scientific robot must also determine what to study and when, balancing
the relative tradeoffs between difficulty of traverse and scientific value [109, 110, 111, 112, 113].
Even relative preferences amongst different scientific targets must be considered.

Of course, with planetary robotics the primary challenge to date is not science autonomy, but
that of designing, building, transporting, and operating a reliable autonomous mobile system that
just happens to be on another planet. While previous planetary rovers had been completely tele-
operated in 1997 the Sojourner rover provided the first demonstration of rover autonomy in space
[114, 115, 116]. Utilizing low resolution stereo range data, Sojourner was capable of low level
reactive autonomy to prevent collisions with obstacles, as well as specific pre-programmed behav-
iors that could be commanded remotely. In 2004, the MER rovers Spirit and Opportunity began
autonomous operation and exploration on the Martian surface. As with Sojourner, MER utilizes
stereo vision for terrain assessment and (additionally) position estimation [117]. The rovers can
operate with varying degrees of autonomy and safe-guarded tele-operation [118, 119]; the tradeoff
is often that of substituting human planning time for autonomous planning time. When operating
in its most autonomous mode, the rovers utilize a terrain assessment approach named GESTALT
[120, 121, 122], derived from an earlier approach named MORPHIN [123, 124, 125]. These ap-
proaches are geometry based, and assign continuous cost values based on the slope and roughness
of various terrain patches. Possible local motion arcs are then scored according to these costs, as
well as the difficulty of achieving a motion and progress towards a goal. As with previous arbiter
based schemes, the final action is chosen through a weighted vote. A global planning vote was
added to the rover’s software in 2006 [126, 127]. To date, the two rovers combined have driven
more than 25 km across the Martian surface demonstrating high reliability for a mobile robotic
system under extreme conditions.

2It is the opinion of the author that this difference may have been primarily due to increased waypoint spacing,
which places more of burden on autonomous route planning

24

CHAPTER 2. RELATED WORK 2.3. RECENT TRENDS IN MOBILE ROBOTIC SYSTEMS

2.3 Recent Trends in Mobile Robotic Systems
From this brief look at the evolution of mobile robotic systems over the past several decades, a
number of long term trends and milestones can be identified:

• Geometric perception techniques have greatly increased in accuracy, resolution and com-
plexity, along with the availability of associated sensors.

• Appearance and semantic based perception has become integral (both in semi-structured
and unstructured environments) for identifying structures from road surfaces and signage to
vegetation to different surface materials. Making these distinctions accurately has in turn
become more critical to reliable and robust autonomy.

• Perception systems have increased their use of machine learning techniques, perhaps most
usefully in the use of supervised semantic or material classification.

• As opposed to simply modeling a (presumed) static world, perception systems have become
more and more capable of identifying, tracking and predicting the future location of moving
obstacles.

• It is becoming less and less common for perception systems to only produce a binary distinc-
tion of the traversability of terrain. Instead perception is increasingly required to produce a
higher dimensional description of terrain, and a more continuous measure of its preferability.

• Planning systems for autonomous navigation have grown from simple location based path
planners and reactive controllers to hierarchical motion planning systems that can operate
in kinodynamic state spaces. Arbiters are becoming less popular for determining low level
controls; instead the recent trend is for low level planners to use high level planners as
guidance.

• Planning systems have made more extensive use of predictions or simulations about how
the world will evolve and interact with the robot, from predicting where moving objects are
likely to be in the future to simulating how the robot will respond to certain terrain features
when making specific maneuvers.

• As opposed to only trying to identify or produce a feasible motion plan, planning systems
are capable of performing multi-criterion optimizations over such factors as maximizing
velocity, minimizing accelerations, obeying rules of the road, etc.

A unifying thread amongst many of these trends is that a robot’s model of the world (produced
by perception) has grown in complexity and dimensionality, while a robot’s planning system is
now tasked with producing longer range plans over state and actions spaces of similarly increased
dimensionality. In addition, along with more complex world models and planning states, there are
now a range of considerations that must be accounted for, and it is no longer concretely defined
what is the correct, desired, or optimal behavior for the robot. This last issue proves to be of critical
importance, and will be explored in detail in the next chapter.

25

2.3. RECENT TRENDS CHAPTER 2. RELATED WORK

26

Chapter 3

Behavioral Preference Models in Mobile
Robotic Systems

Comparing the systems described in the previous chapter to the requirements described in Section
1.3 reveals much that remains lacking

Reliable Some autonomous mobile systems have achieved high levels of reliability, notably the
Grand and Urban Challenge finishers, and the MER rovers. There is a clear correlation
between the amount of validation testing of the final (frozen) system, and the reliability
of said system. Unfortunately (as lamented in [36]) such testing is currently the only way
to properly ensure reliability. Reliability also appears correlated with the complexity of
the operating environment; systems operating in unstructured terrains have higher rates of
component errors that lead to system failure.

Robust Achieving robustness requires proper interaction and layering of multiple components
and sub-systems, to account for potential component failures or errors. It can also require
making decisions or choosing actions that would not normally be considered. For example,
multiple Urban Challenge teams reported instances in either the qualifier or final competition
where their vehicle become extremely close to either a real or perceived static obstacle. In
some cases very tight wiggle maneuvers resulted in sufficient clearance to continue normally,
while in other cases only pose drift allowed the vehicle to move again. While it may seem
prudent to permanently eliminate certain sets of actions (such as those that move too close
to perceived obstacles), there may be novel scenarios where all actions must be at least
considered for robustness.

Rapid Development For the most part, rapid development and deployment still escapes the mo-
bile robotics community, as most capable systems require design and development times on
the order of at least a year. Some of this is to be expected, as robotics remains an emerging
technology, and research projects by their nature are attempting something novel. However,
a great deal of time is still spent tuning and then validating system performance1. At the
moment, reliability and rapid development are in direct conflict and seem almost mutually
exclusive.

1As an example, [95] reports “integration and tuning on the PerceptOR program alone required perhaps 30 man
years of effort”

27

3.1. CONTINUOUS PREFERENCES OVER BEHAVIORS CHAPTER 3. BEHAVIORAL PREFERENCES

Reusable Much of the time spent on system development goes into tuning a system for a spe-
cific environment or scenario, rather than continuing development of component capabili-
ties. Therefore, the results of this effort provide little benefit towards development of future
systems, and disappear once the current system is no longer used. Further, a great deal of
this effort must be repeated if the system or a component design is changed significantly, or
the environment or expected use scenario is altered.

While great strides have been made in the last 20 years towards advancing the capabilities
of mobile systems, there clearly remain several barriers to achieving the above requirements. One
such issue is the complexity of the tasks mobile systems now deal with. On the ALV, the perception
system was tasked with simply making a binary traversable or non-traversable distinction, and the
planning system simply chose actions that did not result in crossing untraversable terrain and drove
closer to a short-range goal. In contrast, the XUV or Crusher must consider a range of traversability
measures, and the Urban Challenge scenario required considerations of safety, time, distance, and
rules of the road.

The end result is that as the complexity of both the systems and their tasks increase, mobile
robots are increasingly producing and considering continuous preferences over both where and
how to drive. As internal models of both the environment and potential vehicle interactions become
more accurate and informative, it becomes increasingly difficult to identify the proper behavior,
even when only considering traversability. However, additional considerations are also being added
to the equation, such as monitoring energy usage [107, 108], remaining stealthy [71, 128], or
performing a socially acceptable driving maneuver or behavior [129].

Unfortunately, the issue does not stop at just identifying the proper behavior given the context.
If mobile systems are going to be truly robust to the unexpected and reusable in new environments,
they must be able to choose the correct (or at a minimum reasonable) behavior in contexts for which
they have never previously been explicitly tested. This requires that mobile systems be encoded
not with the correct behavior, but with the mechanisms for choosing the correct behavior given
the context; a model of preferences over various behaviors and choices is necessary. As world
models, simulated interactions, and planning considerations continue to increase in sophistication,
interpreting this complexity into preference models2 over possible decisions becomes increasingly
challenging.

3.1 Continuous Preferences over Behaviors
The issue of continuous preferences has perhaps been most evident in the perception domain. Sys-
tems that used a binary measure of traversability have clear limitations. In unstructured environ-
ments, this results in no distinction between seemingly traversable but distinctly different terrains
(e.g. there is no way to encode that one ditch crossing site is safer than another if they both meet a
traversability threshold). The result is that binary measures of traversability produce either overly
aggressive or conservative behavior (Figure 3.1). Similar problems can occur in semi-structured
environments (see Figure 6.1), as demonstrated by Urban Challenge systems that preferred to

2In this document, a preference model refers to a mapping from a state or decision to a scalar cost, reward or utility
value. This is in contrast to other work [130] which uses a probabilistic mapping representing the likelihood of a desire
to move between semantically defined states.

28

CHAPTER 3. BEHAVIORAL PREFERENCES 3.1. CONTINUOUS PREFERENCES

Figure 3.1: Examples illustrating the effect of different preference models on a robot’s behavior.
Left: In simple environments with only well defined obstacles and freespace, a wide range of
preferences will produce nearly equivalent behavior. Center: With a single class of intermediate
terrain (bushes), several different paths are optimal depending on the relative preference between
bushes and freespace. Right: With multiple classes of intermediate terrain, the variety of paths
that could be optimal (depending on the relative preferences between bushes, grass, and freespace)
is further increased. In such scenarios, the tuning of a preference model will dramatically affect a
robot’s behavior. If only binary traversability were utilized, the variety of possible behavior would
be diminished.

remain permanently stationary than risk a incredibly low speed collision. Human drivers occa-
sionally encounter similar scenarios (e.g. tight parallel parking), and understand that actions that
may result in very low speed collisions, while undesirable, are preferable to never moving. As
these issues have become better understood, the result has been a move to systems that use a more
continuous measure of traversability, such as [68, 92, 95, 121, 101, 102, 124, 125].

While using an analog definition of traversability allows more intelligent behavior, it also in-
creases the complexity of deploying a properly functioning system. Systems that used a traversable
or non-traversable distinction only had to solve a binary classification problem. This mapping to
traversable or non-traversable completely determined the behavior of the robot (with respect to
where it preferred to drive); essentially, the desired behavior of the robot was encoded in the clas-
sification function mapping perceptual data to traversable or non-traversable. This mapping often
took the form of a small set of thresholds on various terrain properties (e.g slope, step height, etc.).

However, in a system with an analog measure of traversability, in essence a full regression
problem must be solved. That is, the desired behavior of a robot is encoded not in a mapping from
terrain properties to a binary class, but in a model mapping from terrain properties to a scalar value
that encodes preferences. When the desired behavior is to maximize traversability or safety, this
measure is often called traversability cost or mobility risk, or just cost for short. This mapping
from terrain properties to cost (the cost function) is far more complex than a binary mapping, as it
encodes far more complex behavior (through continuous output). Therefore, as the behaviors and
actions that mobile systems are expected to exhibit become more complex, the task of encoding
these behaviors in a generalizable model of preferences will become both more difficult and more
central. Unfortunately, this problem has not received a great deal of focus; it is often only briefly
mentioned in the literature. With respect to costs defined over patches of terrain, the mapping to

29

3.2. MANUALLY CONSTRUCTING BEHAVIORAL PREFERENCE MODELSCHAPTER 3. BEHAVIORAL PREFERENCES

costs from terrain parameters or features is rarely described in detail, usually with the caveat that
it was simply constructed to provide good empirical performance.

For instance, the MORPHIN [123, 124, 125] and GESTALT [120, 121, 122] systems simply
assume direct linear relationships between sets of terrain features and traversability, with user-
defined thresholds denoting maximum cost obstacles. A similar approach is also applied in [131,
132, 133], where cost is a weighted combination of geometric properties such as terrain slope and
roughness. The NIST system for DEMO III [70] also assumed a linear relationship for both local
and high level terrain features, with user tuned relative weightings of different features. Rule-
based [71, 86, 106] or fuzzy logic [134, 135, 136, 137, 138, 139, 140, 141] approaches also require
explicit human definition of the rules for of costing. [142] uses a cost function proportional to the
probability that the terrain is traversable; however, this probability is based solely on a simplistic
sensor model, and therefore is essentially a smoothed version of binary traversability. Further, it
requires a user-defined weighting between probability and distance. Other work [57, 143, 144, 145,
146, 147] simply assigns different costs to different terrain patches or classes with little mention
of the intuition behind these decisions, or how the mapping is implemented. The current state of
defining preferences over terrains is perhaps best summarized in [95]3.

Preference models are also necessary in the planning domain, and are often similarly con-
structed. For instance, systems that utilize arbiters [52, 53, 54, 56, 57, 92, 123, 124, 125, 136, 138,
126, 127] often provide little intuition for relative weighting between votes from different behav-
iors or modules, aside from empirical validation. More deliberative planning systems are generally
tuned in a similar manner to preferences over terrain patches, by manually modifying preferences
over prospective actions until desired behavior is achieved [36, 37, 38, 39, 40, 41, 63, 71, 148].
Higher level route or mission planners must also make use of preference models in order to balance
metrics such as time, distance, risk, energy, observability, etc. This problem is solved one of two
ways. In some instances, there is only a desire to constrain some metrics while optimizing another
[45, 107, 108, 149, 150]; this still requires an accurate model of the metric to be optimized. In the
more complex case, there are no hard constraints, and the desired behavior is a weighting between
various models (i.e. a multi-criterion optimization) [66, 70, 71, 109, 110, 111, 112, 113, 129]; the
source of this weighting is again often manual tuning.

3.2 Manually Constructing Behavioral Preference Models
The result of this purely empirical approach is that most mobile systems are simply manually
’tuned’. That is, designer intuition is used to construct a parameterized model mapping from
terrain or action features to scalar preferences or costs. A final set of parameter values for the
model is then determined through what is essentially a generate and test procedure. Candidate
parameter values are produced by an engineer, and the system is then tested to see if it performs
the correct (or at least acceptable) behavior. As long as the system does not behave in a desirable
manner, the model and its parameters are continually modified and each new configuration tested

3“The costs used represent (roughly) mobility risk. The tuning of these costs/risks emerged as a major design issue
during the execution of the work. Correct system behavior was only obtained by squarely addressing the question of
what amount of extra excursion is justifiable to avoid a given level of risk. Nonetheless, we can report few principled
methods beyond understanding that the tradeoff exists and tuning the costs in order to get correct behavior under
various circumstances.” [95]

30

CHAPTER 3. BEHAVIORAL PREFERENCES 3.2. MANUAL CONSTRUCTION

A = F6(P6, F5(P5, F4(P4, F3(P3, F2(P2, F1(P1, S))))))

∂A

∂Pi
= (

i+1∏
j=n

[
∂Fj(Pj, �)

∂Fj−1(Pj−1, �)
])
∂Fi(�, Fi−1)

∂Pi

Figure 3.2: A sample mobile robot architecture, represented in a feed-forward manner. Application
of the chain rule demonstrates how the effect of changing a parameter on the final output can be
difficult to determine the earlier the parameter is used in the system.

until the engineer is satisfied. Testing a particular model can take many forms. It can involve
simply visualizing the resulting output of a specific configuration4, or it may involve full system
testing.

Unfortunately, such a manual approach is rife with problems:

• It requires a good amount of intuition as to how the modification of particular parameters
will affect the end behavior of the system. Without such an intuition, the engineer will
essentially be performing a local ’hill-climbing’ style optimization. Since each parameter
presents a trinary decision (increase, decrease, or remain constant), there are 3D possible
unit changes for a D dimensional parameter space.

• Even for an engineer well versed in the system design, this intuition can be hard to come by.
This is especially true the more removed a parameter is from the final behavior. If a robotic
system is viewed not as a continues loop but as a feed-forward network (mapping sensor
inputs and perceived state to behaviors), then each parameter’s effect on end behavior can
be computed via backpropagation [151]. As with backpropagation in neural networks, the
more layers between a parameter and the final output, the more the error signal degrades due
to repeated application of the chain rule (Figure 3.2). This lack of intuition only gets worse
as the dimensionality of the parameter space is increased.

4[125] specifically mentions the construction of visualization tools for this purpose

31

3.3. PROBLEM STATEMENT CHAPTER 3. BEHAVIORAL PREFERENCES

• With a properly designed preference model, good intuition or a sufficiently low dimensional
parameter space, manual optimization can sometimes produce an approximately tuned re-
sult quickly. However, there is a rapidly diminishing return on the investment of human
resources. Once an approximate tuning is achieved, it is even more difficult to determine the
effect of a parameter change on the output behavior. Additionally, one never knows when
the true optimal result has been achieved. Therefore, if the system later demonstrates poor
performance, it is unclear whether the preference models are simply not appropriate, or if
the problem lays in system design or component capability.

• The system must be tuned not just for one scenario but for a sufficiently representative sam-
ple. Each evaluation of a new setting must consider all such scenarios, otherwise a setting
that improves performance in one instance may hurt performance in others. Therefore, any
parameter modification requires validation through a large set of regression tests. If these
tests must be performed at the full system level, they can be enormously time consuming.

• It may be necessary to design and tune multiple models for the same task, when the system
inputs are not constant (such as in the case of fusing multiple sensors). It may also be
necessary to tune these models such that the result outputs are compatible. For instance,
when costs generated independently from different data sources are fused [95, 101, 102],
this adds an additional constraint over all cost functions: each function must reproduce the
correct behavior both individually, and when fused. Essentially, costs from different sources
must all be in the same ’units’.

• Even if all of the above issues are overcome, it may be necessary to repeat this process of
model design and hand parameter tuning whenever

– The system design or data flow is changed

– A component design or implementation is modified

– A significant failure is observed that can be traced to parameter tuning

– The desired behavior or operating environment of the system is significantly changed

The issues associated with determining preference models over behaviors does not only result
in potentially large amounts parameter tuning; it can also affect system design. Specifically, com-
ponent or sub-system solutions that result in a high dimensional interpretation problem are often
simplified, condensed or avoided, even if the resulting solution is less powerful or generalizable.
The result is systems that essentially throw away or ignore potentially useful information, because
hand tuning a mapping to interpret this extra data into behavioral preferences is too complex (see
Section 4.1 for examples).

3.3 Problem Statement
The advancement of mobile robotics has resulted in the production of models of environments and
potential plans of action of ever increasing complexity. At the same time, the various considera-
tions that a mobile robot must take into account have greatly expanded from simply ensuring robot
safety and task completion. These trends have resulted in the increasing difficulty of a robot’s

32

CHAPTER 3. BEHAVIORAL PREFERENCES 3.3. PROBLEM STATEMENT

task of choosing its next behavior, and have led to approaches that require a clear ordering of
preferences over potential actions to take and terrains to traverse.

Current approaches to producing preference models over possible behaviors are a clear bar-
rier to the previously defined requirements for mobile systems. With these manual approaches,
reliability and rapid development are in direct conflict: reliability can only be achieved through a
tedious and time consuming process of manually constructing, tuning and validating the necessary
models and parameterizations. Additionally, manual approaches tend both to limit the scope of
scenarios for which the system is tested, and to overfit to those scenarios; this serves to hinder the
robustness and reusability of mobile systems when they encounter novel scenarios. The possibil-
ity of having to repeat this process if the system or its operating considerations change is always
present. Finally, it is never fully understood how well the preference model has been optimized,
making it difficult to understand which parts of the system require improvement when presented
with poor system performance.

As opposed to manual design and tuning, automated approaches offer an attractive solution.
An automated process that required significantly less human interaction but produced similar re-
sults would seemingly allow for both reliability and rapid development to coexist. Additionally,
an automated approach would have several advantages that might allow for better performance.
Even with rapidly diminishing returns, an automated process could continue to improve the model
and its parameterization if the only cost is computational cycles. Further, an automated process
would have the advantage of being able to consider numerous scenarios at once, and would be
less likely to continually contradict itself. Finally, an automated process could handle much higher
dimensional parameter spaces than a human engineer reasonably could be expected to.

This last advantage might even impact mobile robot system design. If the complexity and
dimensionality of world models, simulated interactions, etc. is no longer a concern, then there is
no longer an incentive to simplify these constructs purely for ease of implementation5. Further, a
large portion of the human resources and testing time that are currently devoted to hand parameter
tuning and validation could instead be used for further system development.

Therefore, the problem statement of this thesis is as follows: The performance of mobile
robotic systems in complex environments and scenarios is increasingly dependant on the proper
design and parameterization of preference or utility models that are difficult and costly to con-
struct and tune manually. Principled, automated methods of determining and validating prefer-
ence model design and parameter settings are required that involve at least an order of magni-
tude less human interaction, while producing equivalent if not better system performance.

As this problem statement mentions parameter tuning, a final clarification is necessary with
regards to parameters and the scope of this thesis. Parameters in a mobile robotic system fall into
one of the following general categories:

• Physical parameters that are directly measurable (e.g. vehicle dimensions)

• Model parameters that are directly measurable or can be empirically observed (e.g. center
of gravity)

5This is not to imply that more complex representations are always better. Rather, the complexity of a representa-
tion should be based on how well the representation is correlated with that which it is attempting to model, not on how
difficult it is for a human to interpret the representation

33

3.3. PROBLEM STATEMENT CHAPTER 3. BEHAVIORAL PREFERENCES

• Model parameters that can be computed analytically or through simulation (e.g tip-over an-
gles)

• Control parameters that can be computed analytically (e.g. PID gains)

• Rate or resolution parameters that involve tradeoffs in computational resources (e.g. internal
map resolution)

• Environmental parameters that can be measured for a specific terrain (e.g. friction coeffi-
cients)

• Unit-less parameters that help define relative costs, benefits and preferences (e.g. cost func-
tion parameters), and have a direct or indirect effect on robot behavior

Physical and model parameters are generally considered as constants of a specific vehicle. Con-
trol parameters require proper tuning, but the formalism of controls theory provides the necessary
framework. Rate and resolution parameters require design tradeoffs only if there is a scarcity of
resources; in this case a system cost-benefit analysis is usually performed, often with the aid of
experimental performance data. Environmental parameters can be measured or learned once if op-
erating conditions are not expected to change drastically; if this is not the case then the framework
of self-supervised learning provides a clear solution (Section 4.2).

Therefore, this thesis addresses only the final category of parameters: those that help define
a model mapping from world or action models to preferences over various actions and terrains.
Further, the problem is not only to determine the proper parameterization of a specific model; it
may include constructing the model from scratch.

34

Chapter 4

Automating Construction of Preference
Models

Many previous attempts at principled approaches to defining preferences over behaviors have re-
sulted in manually designed and tuned solutions. These solutions are often based on sets of thresh-
olds or simple functions, and are often designed to perform well at the extremes. That is, states or
actions that are close to ideal or to be avoided at all costs are usually ranked as such. The result
is systems that can perform well when only faced with these extremes (such as when operating
in structured environments). However, it is when environments and considerations become more
complex, with no obvious ’right or wrong’ choices, that these approaches begin to break down.
Since it is not only necessary to order possible behaviors, but to assign accurate costs to continually
weigh and consider possible behaviors , the hand tuning task becomes more and more time con-
suming. As the complexity of possible behaviors increases, this problem approaches intractability:
for example, weighing the relative cost of traversing two patches of terrain is hard enough, but
what if traversing one patch involves a much harder turn than the other as well? Attempting to
hand define every possible preference over such decisions is clearly an exercise in futility.

Attempts to formalize the manual construction of preference models still result in a parameter
tuning problem. For example, the MORPHIN [123, 124, 125] and GESTALT [120, 121, 122]
approaches define reusable preference models over terrains; however, each model must be properly
parameterized in order to result in a robot achieving the proper behavior. The same is true with
rule based or fuzzy logic [134, 135, 136, 137, 138, 139, 140, 141, 132] approaches to traversability.
On the planning side, arbiter based systems provide a formalism for the weighing of different
behaviors with different individual goals, but again the proper vote weighting must be hand defined
to produce desired behavior.

Another approach to engineering this problem away is the use of accurate physical simula-
tion, such as the previously described RANGER system [59] or the ALV [42, 43]. More recent
work in this area can be found in [152, 153, 154, 155, 156]. However, simulation does not solve
the problem; at times it can make it even harder1. Using an accurate simulation to predict the
consequences of a specific behavior (in terms of its affect on the kinematic or dynamic state of
the vehicle) necessitates a preference model defined over these consequences. Again, for certain
structured environments this may be easy; known vehicle tolerances and thresholds can define

1If the simulation results are higher dimensional than the alternate feature space

35

4.1. EXPERT SUPERVISED LEARNING AND CLASSIFICATION CHAPTER 4. AUTOMATED MAPPINGS

kinematic or dynamic states that are certain to cause failure; However, in unstructured environ-
ments the task remains to construct a model mapping from a high dimensional description of a
behavior to preferences over possible behaviors.

It would therefore appear that more automated approaches to constructing preference models
can not be based on simply engineering the problem away. As opposed to an intensive manual
effort solely to construct and tune a preference model, this work considers a different approach:
rather than hand tune a model and its parameterization, learn a model and its parameterization.
Machine learning techniques have continually proven themselves to be first useful and then es-
sential to producing high performance mobile robotic systems. Therefore, as opposed to manual
tuning, it is proposed that mobile robotic systems be trained to produce the desired behavior.

Some applications of learning for mobile robotic systems have taken the approach of end-
to-end learning [157, 158]. That is, they attempt to completely replace all mid and high level
software by learning to map directly from raw proprioceptive and exteroceptive inputs to control
signals. This approach results in the construction of a single complex learning task. In contrast, this
work takes a different approach. Enormous progress has been made in the realms of mobile robot
perception and planning; there is no reason not to reuse that effort. Therefore, individual compo-
nent problems for which manually designed and engineered approaches have proven effective will
continue to utilize these solutions; learning will be applied where engineering efforts have proven
ineffective or inefficient. Essentially, both human engineers and machine learning algorithms will
solve the problems for which they are best suited.

The remainder of this chapter explores previous work in machine learning as applied (directly
or indirectly) to the task of learning preferences over possible mobile robot behaviors.

4.1 Expert Supervised Learning and Classification
Supervised classification is perhaps the machine learning technique most commonly used by mo-
bile robots, especially in the realm of perception. The intuition behind its use is straightforward:
while an expert may have difficulty in designing rules to classify different patches of terrain, he
can much more easily define the class that each patch should belong to2. Rather than manually
constructing rules to map from perceptual features to classifications, a learning system can au-
tomatically generate the necessary rules or models, given examples of sets of features and their
desired classification.

The primary advantage (with respect to autonomous behavior) of performing a supervised clas-
sification is a remapping of a perceptual feature space into one that is lower dimensional and poten-
tially more intuitive. Some perceptual features have an intuitive, monotonic relationship to metrics
such as safety and speed. For example, the rougher a patch of terrain, the more dangerous it is
to traverse; this intuition allows for easier hand tuning of parameters that depend on roughness.
However, many perceptual features do not provide this intuition; for example, if a terrain patch has
a high blue tint, does that make it more or less dangerous?

If a supervised classification stage is inserted after perceptual feature generation but before
costs are produced from said features, it can enormously simplify the parameter tuning problem.
The dimensionality of the problem is significantly reduced, and each feature has a clear intuition

2if the correct classification is not known by the expert, than the problem is ill-posed, and there would be no
possibility of manually constructing a solution

36

CHAPTER 4. AUTOMATED MAPPINGS 4.1. SUPERVISED LEARNING

behind it, especially if the classes are defined as semantic or material distinctions (bush, rock,
tree grass, dirt, etc.). For this reason, this approach has been widely popular for the purpose of
perceptual interpretation in unstructured environments, and has been used in the context of the
ALV [159], DEMO II/III [160, 74, 75, 76, 77, 78, 79], PerceptOR [83, 84, 95] and UPI [101, 102]
programs, in addition to numerous other mobile robot contexts [140, 80, 117, 161, 162, 163, 164,
165]. It has also been widely used for prior data interpretation [97, 98, 99, 105, 166] and terrain
classification from proprioception [167, 168, 169, 170].

However, while supervised multi-class classification certainly makes hand tuning a cost func-
tion more tractable, it does not actually solve core the problem; the parameter tuning task has
only been simplified. While classifier outputs may have a more intuitive relationship to the correct
behavior, it can still be difficult and time consuming to determine the proper relative weightings
of various classes. Additionally, there is no guarantee that the selected taxonomy is relevant to
mobility and behavior. It may require considerable effort for a classification system to distinguish
varying classes of vegetation, but that effort is wasted if those vegetation classes are indistinguish-
able with regards to mobility. Likewise, it may be important to distinguish between types of rocks
with near identical appearances, if one class tends to be less weathered and rougher. Defining
classes specifically with regards to relative mobility [171, 172, 173] somewhat works around this
problem, but makes data labeling far less intuitive. Finally, while the classification approach may
make it easier to define a cost function with respect to patches of terrain, the challenge of balancing
those costs with costs over actions remains unchanged.

Even if supervised classification eases the task of tuning a final terrain preference model, it
can have additional negative consequences if leaned on too heavily. One issue is the potential
loss of information. If classification is used to compress a high dimensional perceptual space
into a lower one, it can be viewed as a form of dimensionality reduction, with the axes defined
by the classes. However, as stated previously, such classes are often defined based on semantic
or material properties, not mobility properties or other behavioral considerations. Therefore, this
dimensionality reduction may not take into account the final use of the data, and can potentially
obscure or eliminate potentially useful information (while at the same time potentially emphasizing
potentially useless information). Furthermore, classification is often a very non-smooth mapping,
which can further exacerbate the problem (small errors in classification can produce large errors
in the resulting cost, and vice versa). Finally, while supervised classification can reduce the time
and effort required in one tuning problem, the total effort throughout the system is not necessarily
reduced; the classification system now must be trained. Labeling a large representative data set
for training and validation also entails a significant manual effort. Additionally, whenever the
classifier changes, due to perception system change or additions to the training set, the costing of
the classifications must be re-examined and possibly re-tuned.

An alternate approach that makes use of supervised classification has been to treat the task as
a specific two class problem: classifying terrain as either traversable or non-traversable. Such an
approach could result in either a binary output of traversable or non-traversable (as used in older
systems without continuous terrain preferences), or a continuous probability of belonging to the
traversable class. [174] makes use of supervised labeling of both traversable and non-traversable
terrains. As opposed to offline labeling, [30, 175, 176] produce examples of traversable terrain
by observing what terrain a human drives through3; nearby terrain that is not traversed is treated

3This approach is fundamentally different from standard imitation learning in that demonstration is used purely as

37

4.2. SELF-SUPERVISED LEARNING FROM EXPERIENCE CHAPTER 4. AUTOMATED MAPPINGS

as having been labeled non-traversable/non-preferable in a noisy manner. [177] uses a similar
data collection approach, but only for labeling of traversable terrain; explicit examples of non-
traversable regions are not required. [137, 138] use human labeling of a fuzzy traversability value
as opposed to a hard classification; these labels are then used to tune parameters within a previously
designed traversability model.

The fundamental issue with this approach is the assumption that all that matters is whether
terrain is traversable or not. It does not address the issue of relative preferences of terrain. For
instance, a small rock and a small bush may both have an equal medium probability of being
traversable; however, one could argue that a robot should still heavily prefer the bush to the rock to
minimize potential damage (or the rock to maximize traction). At the other extreme, a road and an
open field may both have a high probability of traversability, but the road is most likely preferable
4. Additionally, traversability is rarely the only metric under consideration, even for conservative
systems. For example, open road may appear to have a 100% chance of being traversable, but that
does not imply that driving on a road is free of risk; the longer a robot travels over any terrain, the
likelihood slowly increases of a system failure of some form. Therefore, traversable probability
and distance must be relatively weighed. The end result is that an analog probability of non-
traversability does not easily map to a preference or cost, and (as with multi-class approaches) this
mapping must be re-tuned whenever the system is changed anywhere along the input pipeline.

4.2 Self-Supervised Learning from Experience
In contrast to learning approaches that require explicit supervision from an (usually human) expert,
self-supervised approaches require no expert interaction. Instead, a robot uses its own interactions
with the world to slowly learn how to interpret what it perceives; essentially the robot is learning
and adapting from experience. The principal advantage of online self-supervision is that a robot
can adapt to its environment. As opposed to requiring outside supervision and instruction, the
robot can learn from its own mistakes. This allows robots equipped with self-supervision to adapt
to novel environments or scenarios with little to no human intervention, and is a powerful tool for
achieving both robustness and reusability. Not surprisingly, online self-supervised approaches to
learning have gained increasing popularity in recent years, especially in the context of the DARPA
LAGR program [178].

Approaches for self-supervised online learning can be divided into two distinct classes. The
first is near-to-far learning, the goal of which is to learn how to interpret a far-range, lower reso-
lution sensor using a near range, higher-resolution sensor. LAGR robots provide a clear example
of the potential utility of this approach, with a monocular camera system that can perceive terrain
at an order of magnitude farther range than their stereo camera system. Near-to-far learning is
achieved by remembering how specific patches of terrain were perceived by a far range sensor, and
then later observing them with a near-range sensor. This provides a correspondence between the
output of the two sensing modalities, and provides the necessary data to learn a mapping between
the outputs of the far-range and near-range sensors.

Near-to-far approaches serve two key goals: they automate the difficult process of interpreting
a far range, low resolution sensor, and they allow this interpretation to adapt online. The previously

a data labeling technique; offline hand labeling could also be used with similar results
4This very issue is discussed in [176]; however the proposed approach does not fundamentally address the problem

38

CHAPTER 4. AUTOMATED MAPPINGS 4.2. SELF-SUPERVISED LEARNING

Figure 4.1: An example of near-to-far learning from [104]. In this example, as a robot drives
through an environment (left to right) it uses its short range sensors to train the interpretation of a
far range sensor (in this case the satellite image at left)

discussed technique used by the Stanford Grand Challenge team [30, 34] is one example, making
use of a short range laser to learn the appearance of road in a monocular camera system. Other
near-to-far learning implementations include alternate techniques for learning the appearance of
roads [179], learning the appearance of different classes (based on a near-range supervised multi-
class classification) [148, 180, 181, 182, 183, 184], learning the appearance of traversable terrain
(based on a near-range supervised classification of traversability) [174, 185, 186, 187] and even
learning terrain costs directly (using costs from a near-range sensor) [103, 104](Figure 4.1). A
more complex implementation learned to predict sets of geometric features from far-range sensors
(based on the features produced from near-range sensors) [171].

While near-to-far learning can make interpretation of far-range sensors much easier or even
automatic, it does not actually solve the core problem of constructing preference models. That is,
near-to-far learning still requires a pre-existing, correct interpretation of near-range sensors. In fact,
this near-range interpretation is increased in importance, since it is being used as the ground truth
signal for learning. For example, when learning to map a near-range to a far-range cost function
[103, 104], the assumption is that the near-range cost function has already been properly tuned,
an assumption that only holds with an intensive manual tuning effort. Approaches that instead
map features or traversability from near-to-far in turn require a cost function defined over the
learned far-range interpretation. Therefore, while near-to-far learning can improve robustness and
reliability, as well as eliminate some hand tuning problems, it does not address the core problem
of completely automating construction of preference models.

The other distinct class of self-supervised learning is learning from proprioception, also called
learning from underfoot. As opposed to near-to-far learning, the ground truth signal comes not
from a higher resolution exteroceptive sensor, but from proprioceptive sensors. Aside from this
distinction, the methodology is quite similar: when the robot drives over a patch of terrain, it recalls
how that terrain appeared in its near-range sensors just moments ago. This sets up a correspondence
between how terrain appears, and how the robot interacts with it. If the action undertaken by
the robot is also taken into account, this allows for correspondences from terrain and action to
proprioceptive experience to be learned.

Previous work in learning from proprioception has taken differing approaches. One approach is
to attempt to learn the traversability of terrain. If a robot is able to drive through a patch of terrain,
then it is labeled as traversable. If a robot becomes stuck over a patch of terrain, is unable to move
through an obstacle, or is forced into a dangerous state (e.g. motor currents are too high, roll/pitch

39

4.2. SELF-SUPERVISED LEARNING CHAPTER 4. AUTOMATED MAPPINGS

approaches stability limits, etc.) then the terrain is labeled as non-traversable. This basic approach
has been explored by a number of researchers [180, 181, 188, 189]; however, it does contain
serious drawbacks. The first is the same issue as with supervised classification (Section 4.1) into
traversable and non-traversable terrain: focusing purely on traversability ignores the possibility of
relative preferences amongst traversable terrain, and does not allow other considerations to be taken
into account. Additionally, this method of labeling terrain requires explicit robot interaction with
non-traversable terrain; the robot must drive into a tree or off a cliff before it can learn that those
actions are dangerous. Finally, there is the issue of blame assignment; when the robot encounters
a failure, it is not necessarily clear which patches of terrain contributed to the failure, and in what
way.

The other approach to learning from proprioception has been to learn to model rather than clas-
sify the robot’s interactions with terrain. This has taken the form of attempting to learn and predict
various terramechanical properties, such as terrain roughness [190], vehicle slip [191, 163, 192,
193], soil cohesion [194] and resistance [170], and vegetation height and stiffness [195, 196, 197].
These predicted terrain properties can then either be used directly to affect robot behavior, or used
to improve the accuracy of a physical vehicle simulation [156, 192, 193]. In and of itself this is a
very useful result, and can provide much more accurate and robust predictions. However, this ap-
proach to learning from proprioception still does not address the fundamental problem of learning
relative preferences between various terrains and actions. Instead, as with supervised classifica-
tion, it simply converts this problem to a new space. Now, instead of determining terrain cost based
solely on their appearance, they can be costed based on the robot interaction predicted from ap-
pearance. This new proprioceptive feature space may be lower dimensional than the exteroceptive
feature space; it may also be more intuitively related to safety or some other metric, or even allow
for more informed decision making [192, 193]. Regardless, the fact remains that it will still be
necessary to map this space into relative preferences over possible outcomes in order to be useful
for planning5.

There are also some issues that are shared between both approaches to learning from propri-
oception. Learning from proprioception requires actual robot interaction with a wide variety of
terrain. The higher resolution and dimensionality of the proprioceptive properties the robot wishes
to predict, the more training data will be necessary. This contradicts the desire for rapid develop-
ment and deployment of mobile robotic systems. Additionally, these experiences must not just be
sampled from safe regions; experience with harsh and dangerous terrain will be necessary in order
to learn how to characterize such structures. This allows for the possibility of damage to the robot
or its environment, including a catastrophic failure that would permanently cripple it. Especially
in mission critical scenarios such as planetary exploration, this possibility cannot be allowed.

Therefore, this work makes the following claim: in order to achieve reliability and rapid de-
velopment, mobile robotic systems cannot solely learn online from scratch; they must be given
sufficient capability to ensure safety and reliability in a supervised manner. In a way, this is com-
mon sense, and is evident in nature: all animals have some degree of necessary survival instinct at
birth, and many are supervised and taught by their parents until they are capable of surviving on
their own. In addition, the very notion of a preference model implies some sort of outside expert

5This is not to say that proprieceptive metrics are not useful; they are in fact used as important empirical evidence
later in this work (Chapters 5 and 6). Rather, the issue lies in combining multiple such metrics into a single measure
of preference.

40

CHAPTER 4. AUTOMATED MAPPINGS 4.3. SUPERVISION THROUGH EXPLICIT REINFORCEMENT

or oracle, and not necessarily a single, objective truth to be discovered.
However this is not to say that online self-supervised learning is not incredibly valuable. Con-

tinuing the nature metaphor, higher animals do not learn everything they know from genetics or
parents; they continue to learn and adapt from experience. In this way, near-to-far learning can be
incredibly useful by only necessitating the development and tuning of near-range perception sys-
tems; as long as the robot can ensure safety through just this near-range system, it can experience
the world (perhaps in a degraded manner) and learn to interpret its far-range sensors. Additionally,
there is also a place for learning from proprioception. The exteroceptive feature space is not nec-
essarily stable with respect to terrain preferences and interactions: between different environments
patches of terrain may look similar, but have very different mobility properties. This can hap-
pen even within the same environment as it evolves over time (e.g. lighting, weather or seasonal
changes). Learning from proprioception can help to map from an unstable, appearance based fea-
ture space to a more stable, interaction based appearance space 6. If terrain and action preferences
are expressed in this proprioceptive feature space, they will in turn be more accurate if the map-
ping from appearance to predicted interaction adapts over time. Therefore, while self-supervised
learning does not directly address the problem of choosing preferences over terrain and actions, it
can serve as an important complement to an approach that does address this problem.

4.3 Supervision through Explicit Reinforcement
An alternate formalism that combines the notion of expert supervision with learning from expe-
rience is Reinforcement Learning. In reinforcement learning, the robot is provided with a reward
(or penalty) signal based on its behavior (in the case of a mobile robot, where it drives or how it
drives). By observing what behaviors maximize reward or minimize penalty, the robot can learn to
generalize to desirable behavior that leads to greater rewards both immediately and in the future.
Reinforcement learning has proven effective as a way to to learn a control policy ([198] connects
reinforcement learning directly to adaptive optimal control). This effectiveness is due to a sim-
ilar theme as other forms of learning: while it may not be easy to define how to get to a good
configuration of a state space, it should be easier to at least define which configurations are good;
reinforcement learning can then generalize to a full policy.

Within mobile robotics, applications of reinforcement learning have mostly been successful
when applied to the task of learning a control policy under complex dynamics [7, 199] or learning
trajectories based on perceptual data [200, 201, 202, 203]. The latter is somewhat similar to the
task of constructing a preference model; the catch is that using reinforcement learning in such a
context requires a certain amount of structure be built on top of the perceptual data. In addition,
a reward function must be defined that expresses which states are better than others. For instance,
[200] defines a reward function that favors open areas while balancing turning, while [203] rewards
velocities similar to a desired input while penalizing collisions with a defined obstacle class. In
other words, the reward function must encode the relative preferences and tradeoffs the designer
wishes the robot to exhibit; the reward function is now the preference model. Manual construction
of such a reward function will therefore suffer the same pitfalls.

6This same issue of stability occurs with near-to-far learning. For example, [171] learns a mapping from near-to-
far geometry, and then maps from geometry to cost. Because geometry is more stable, small changes or errors in this
near-to-far mapping do not affect cost as significantly as would a direct appearance to cost mapping

41

4.4. SUPERVISION THROUGH EXPERT DEMONSTRATION CHAPTER 4. AUTOMATED MAPPINGS

An alternative is the idea of sparse rewards [201, 202], where the reward signal is zero in most
cases, but positive or negative after specific good or bad events (such as reaching a goal or colliding
with an obstacle). However, this still requires an explicit model or classification defining which
states deserve reward or penalty (which also is similar to a preference model). In addition, with
sparse rewards blame assignment remains a problem. Finally, as with learning from proprioception
the robot must actually traverse bad terrain to receive a penalty and learn from it; that is, driving
off a cliff to learn it is a cliff is again required.

Rather than specifically defining a model of such sparse rewards, a human expert can instead
observe robot behavior and present a reward or penalty when corresponding behavior is observed.
This can also provide a measure of safety, as the robot can be stopped (and penalty awarded)
before a dangerous event actually occurs. However, this new paradigm requires a human expert
to be present while learning is in progress. Since the rewards are sparse, learning will be much
slower than with a dense reward function, requiring even more expert time. [202] specifically
proposes seeding the learning procedure via the expert controlling the robot’s behavior initially,
and specifically demonstrating penalty and reward rich areas. However, this is not an efficient use
of expert time; if an expert is required to actually operate a robot in order for it to learn, than an
approach is needed which learns faster from such demonstration.

4.4 Supervision through Expert Demonstration
A different approach to supervised learning for mobile robots is supervision through demonstra-
tion, also known as imitation learning7. A key principle of imitation learning is that while it may
be very difficult to quantify why a certain behavior is correct, the actual correct behavior is usually
known8 by a human expert. Therefore, rather than asking a human expert to hand tune a system
to achieve a desired behavior, the expert can simply demonstrate it and the robot can tune itself to
match the demonstration. Learning from demonstration can take many different forms. One form
is task-specific imitation learning, where expert demonstration is used to learn how to reliably
perform a specific task [204, 205]. However, this specific nature precludes usefulness to mobile
robotic systems that must be robust to novel experiences and reusable in different environments;
therefore it is not covered in this document (for a complete survey see [206]). Instead, the focus
is on generalizable imitation learning, where demonstration in one domain can be generalized into
other, novel domains.

Generalizable learning from demonstration has a long history with mobile robotics. The first
notable use was the Autonomous Land Vehicle In a Neural Network, or ALVINN, system [157].
A part of the original NavLab platform (Section 2.1), ALVINN consisted of a neural network
trained to map from an input monocular camera image to a vehicle steering command; in this
way ALVINN was trained to drive Navlab within a specified road lane. Other examples of this
form of imitation learning are the DAVE system [158], Behavioral Cloning [207, 208, 209], and
an application to planetary exploration [210]. These systems are examples of end-to-end learning:
the learning task is structured to map directly from raw sensory input to control actions. Other
approaches attempt to learn a mapping from input to actions, but explicitly partition this task into
multiple learning problems. For example, the MAMMOTH system [211] learned a mapping to

7In this document the terms ’learning from demonstration’ and ’imitation learning’ are used interchangeably
8If it is not, then the problem is ill posed

42

CHAPTER 4. AUTOMATED MAPPINGS 4.4. LEARNING FROM DEMONSTRATION

actions not from raw sensor inputs, but from the outputs of supervised classification [160]. Sim-
ilarly, the SHOSLIF-N system [212] first performs an independent dimensionality reduction and
feature extraction before mapping to actions. Other approaches maintain a database of demon-
strated actions, and select the most appropriate action from the database based on the current state
[213, 214, 215, 216].

These approaches to learning from demonstration all fall into the category of action prediction:
given the state of the world, or features of the state of the world, they attempt to predict the action
that the human demonstrator would have selected. In this sense the action prediction approach is
closely related to supervised classification; if each possible action is treated as a class label, action
prediction attempts to determine which action class a given input falls into. They also fall into
the realm of model-free approaches; that is, they attempt to map directly to an action without any
internal model of how actions are generated (or why an action is appropriate). This is in contrast
to model-based approaches, which contain engineered models for producing control actions, and
attempt to learn parameters for these models. For example, [217, 218] uses a a reactive model
derived from studies of human behavior, and learns parameters for the model based on human
demonstration. [176] makes use of the DAMN architecture [53, 54] (Section 2.1), and learns
weights for an arbiter that chooses amongst multiple reactive behaviors.

The fundamental problem with pure action prediction is that it is a purely reactive approach
to planning. There is no attempt to model or reason about the consequences of a chosen action.
Therefore, all relevant information must be encoded in the current state or features of the state. For
certain scenarios this is possible; path trackers are a classic example. However, in general the use
of purely reactive systems is incredibly difficult for planning long range, goal directed behaviors
through complex environments . Therefore, while at times it has been argued that purely reactive
approaches are sufficient [219], it has become clear within the mobile robotics community that at
least some level of deliberative planning is necessary for reasoning about complex and long range
tasks.

Therefore, what is needed is a form of generalizable learning from demonstration that works
with deliberative planning. Such a form would have to be model-based, since longer-range deliber-
ative planning results in an incredibly large (and possibly infinite) space of possible plans. Inverse
Optimal Control (IOC) provides a potential formalism for exactly such learning from demonstra-
tion. While optimal control attempts to find a trajectory through a state space that optimizes some
metric, inverse optimal control seeks to discover a metric such that a trajectory through a state
space is optimal under said metric. Inverse optimal control was first proposed in [220]; over the
years it has been extended to linear systems of increasing generality [221].

The problem that inverse optimal control offers a solution to is exactly that which this thesis
also seeks to address: learning a metric (that encodes the desired preferences). When manually
constructing a cost function over possible terrains and actions, an engineer usually continues to
tweak the mapping until the combination of the perception system, the current mapping, and the
planning system produce a desired (or at least acceptable) behavior. IOC automates this exact
process: it seeks to find a cost function such that demonstrated behavior will be optimal under
said cost function. Therefore, the core technical approach of this thesis is to apply inverse optimal
control based techniques to the task of learning mappings from features of state-actions pairs to
costs. As opposed to a pure state to action mapping, such a feature to cost mapping can generalize
as well as the feature representation generalizes.

The advantages of an approach using IOC to learn preference models from demonstration are

43

4.4. LEARNING FROM DEMONSTRATION CHAPTER 4. AUTOMATED MAPPINGS

in stark contrast to the disadvantages of a manual approach listed in Section 3.2

• It requires no intuition or knowledge about how the autonomy sub-system of a robot is
constructed. All that is necessary is the proper knowledge of how the robot should behave.

• An automated approach will not suffer as much from diminishing returns; since there is no
human interaction involved in the learning phase (once the demonstration phase is complete),
learning can continue as long as necessary.

• It is clear when learning has produced at least a locally optimal preference model. In some
cases, global optimality can also be guaranteed.

• An automated learning approach can consider a large set of demonstrations at once, and
therefore can prevent itself from overfitting to one example at the expense of another.

• Multiple preference models, based on different subsets of possible inputs, can be learned
from the same demonstration. Therefore, the amount of necessary human interaction is
not affected by the number of different preference models required. Additionally, since
these models are learned to reproduce the same demonstrations, they will automatically be
compatible (if they need to be fused)

• Whenever a new preference model is required due to a system or component change, no
additional human interaction is necessary; previously recorded demonstration can be used to
learn the new model.

• Whenever a new preference model is required due to a preference model failure or change
in desired behavior, new demonstrations can be quickly added to the training set (including
demonstration that specifically addresses the desired changes).

For these reasons, the learning by demonstration paradigm is proposed for automating the con-
struction of preference models, in order to reduce the human interaction previously required for this
task. The use of such an approach can not only lead to more rapid development of mobile robotic
systems, but also offers the possibility of improving reliability and robustness by constructing
potentially better preference models. Finally, the less work that goes into platform specific devel-
opment and tuning, the more work can go into reusable aspects of mobile robotic systems.

44

Chapter 5

Learning Terrain Preferences from Expert
Demonstration

Since most deliberative planning systems can be represented in the framework of Markov Decision
Processes (MDPs), it is in this framework that the most work in applying inverse optimal control
to robotics has been performed. The first attempt was the Inverse Reinforcement Learning (IRL)
approach of [222]. Since the reinforcement learning framework is well suite to the task of solving
optimal control problems for mobile robotic systems, it stands to reason that the inverse might be
well suited for solving inverse optimal control problems. Based on this intuition, the IRL approach
sought to find a cost function such that a demonstrated behavior was optimal; that is, it was equal or
lesser cost than any other trajectory through the state space with the same start and end. However,
this original formulation was ill-posed, as there may be a wide variety of cost functions that meet
this criteria (for example, the zero everywhere cost function).

The original IRL framework was later modified by [223] into a new approach known as Ap-
prenticeship Learning. Apprenticeship learning assumes a linear cost function; for a state-action
pair described by a feature vector F , the cost is equal to wTF for some weight vector w. Under
this assumption, the problem can be reformulated in terms of finding a w such that the planned tra-
jectory has equal cumulative feature counts to the demonstrated trajectory (the cumulative feature
counts are simply the sum of F at every state along a trajectory). By linearity, if the cumulative
feature counts match, then the cumulative costs will match as well. While this new formulation
results in fewer trivial solutions, there still may be many policies that match feature counts without
actually matching behavior (apprenticeship learning contains no mechanism for explicitly match-
ing demonstrated behavior). Choosing amongst cost functions requires either additional expert
input, or a random mixture of cost functions.

The Maximum Margin Planning (MMP) framework [224] addressed this problem by refor-
mulating the task of feature count matching as a constrained optimization problem, which in-
cludes an upper bound on the error between the demonstrated and produced trajectory. The MMP
framework also provides a convex objective function, ensuring that there is a single global so-
lution. While the original MMP formulation also assumes linear cost functions, a similar con-
strained optimization approach has been extended to non-linear cost functions [225, 226, 10].
The MMP framework has since proven applicable to a variety of real-world robotics applications
[225, 227, 228, 229, 230, 231, 232].

Therefore, the MMP framework for performing inverse optimal control is used in this work.

45

5.1. CONSTRAINED OPTIMIZATION FROM EXPERT DEMONSTRATIONCHAPTER 5. TERRAIN PREFERENCES

Specifically, the next section builds on the MMP framework to first derive the LEARCH algorithm,
allowing the use of nonlinear cost functions in learning from demonstration. Next, the R-LEARCH
and DR-LEARCH algorithms are developed1 for the purpose of learning preferences over terrain
types. Chapter 6 then extends these techniques to allow learning preferences over various driving
styles and robot actions.

5.1 Constrained Optimization from Expert Demonstration
Maximum Margin Planning frames learning from demonstration as a constrained optimization
problem. In decision theory, a utility function is defined as a relative ordering over all possible
options. Since most mobile robotic systems encounter an infinite number of possible plans or
behaviors, such an explicit ordering is not possible. Instead, possible behaviors are mapped to a
scalar cost function, and the cost value defines the ordering. However, this core idea of an ordering
over preferences remains useful. If an expert can concretely define a relative ordering over even a
small subset of possible plans, this ordering becomes a constraint on the cost function: the costs
assigned to each behavior must match the relative ordering. The more information on relative
preferences an expert provides, the more the cost function is constrained.

This section first derives the basic MMP algorithm for learning a linear cost function to repro-
duce expert demonstration. Next the LEARCH algorithm (LEArning to seaRCH) [10] is presented
for extending this approach to non-linear cost functions. Extension of the LEARCH algorithm to
dynamic and partially known environments is presented, along with adaptations to add robustness
to noisy and imperfect expert demonstration. Finally, experimental results are presented in ap-
plying these techniques to a complex mobile robotic system operating in rough and unstructured
environments.

The full MMP algorithm is defined over general Markov Decision Processes. However, the
following derivation is presented with two simplifications. First, as preferences over terrain types
in a robotic system correspond to costs defined over locations in the environment, for now cost
functions are defined over features of states, as opposed to features of state-action pairs. This sim-
plification does not result in a loss of generality; extension to full state-action pairs is presented
in Chapter 6. Second, this derivation is restricted to deterministic MDPs with a set of absorbing
states; that is, goal directed path or motion planners. This change is purely for notational simplifi-
cation, as most mobile robotic systems use planners of this form (including all the planners directly
addressed in this work).

5.1.1 Maximum Margin Planning with Linear Cost Functions
Consider a state space S over which a planner operates (e.g. S = R2). A feature spaceF is defined
over S. That is, for every x ∈ S, there exists a corresponding feature vector Fx ∈ F . Fx can be
considered as the raw output of a perception system at state x2. For the output of a perception
system to be used by a planner, it must be mapped to a scalar cost value; Therefore, C is defined
as a cost function, C : F → R+. The cost of a state x is C(Fx). For the moment, only linear cost

1A version of this chapter has been previously published in [232]
2For now it is assumed that the assignment of a feature vector to a state is static; the extension to dynamic assign-

ment is addressed in Section 5.2

46

CHAPTER 5. TERRAIN PREFERENCES 5.1. CONSTRAINED OPTIMIZATION

functions of the form C(F) = wTF are considered; the weight vector w completely defines the
cost function. Finally, a path P is defined as a sequence of states in S that lead from a start s to a
goal g. The cost of an entire path is simply defined as the sum of the costs of all states along the
path, or alternatively the cost of the cumulative feature counts

C(P) =
∑
x∈P

C(Fx) =
∑
x∈P

wTFx = wT
∑
x∈P

Fx (5.1.1)

Now consider an example path Pe from a start state se to a goal state ge. If this example path
is provided via expert demonstration, then its is reasonable to consider applying inverse optimal
control; that is, seeking to find a cost function C such that Pe is the optimal path from se to ge.
While a single example demonstration does not imply a single cost function, it does constrain the
space of cost functions C: only cost functions that consider Pe the optimal path are acceptable
3. If a regularization term is also added to encourage simple solutions, then the task of finding an
acceptable cost function from an example can be phrased as the following constrained optimization
problem:

minimize O(w) = ||w||2 (5.1.2)
subject to the constraints∑

x∈P̂

(wTFx) ≥
∑
x∈Pe

(wTFx)

∀P̂ s.t. P̂ 6= Pe, ŝ = se, ĝ = ge

Unfortunately, this optimization has a trivial solution: w = ~0. This issue can be addressed by
including an additional margin in each constraint; essentially the problem is rephrased as Maxi-
mum Margin Structured Classification [228, 233]. A margin not only removes the trivial solution,
it improves generalization by ensuring the stability of any solutions.

As opposed to a constant margin, the size of the margin can be scaled [234] based on the
similarity between paths; that is the example only needs to be slightly lower cost than a very
similar path, but should be much lower cost than a very different path. Similarity between Pe
and an arbitrary path P is encoded by a loss function L(Pe, P), or alternatively Le(P)4. The
definition of the loss function is somewhat application dependant (aside from the requirement that
L(P1, P2) = 0⇐⇒ P1 = P2); the simplest form would be to simply consider how many states the
two paths share (a Hamming loss). The constrained optimization can now be rewritten as

3For now, it is assumed that all Pe are at least near optimal under at least one C ∈ C; Section 5.3 will relax this
assumption

4As a path in this context is considered just a sequence of states, the loss function can be defined either over a full
path or over a single state.

47

5.1. CONSTRAINED OPTIMIZATION CHAPTER 5. TERRAIN PREFERENCES

minimize O(w) = ||w||2 (5.1.3)
subject to the constraints∑

x∈P̂

(wTFx − Le(x)) ≥
∑
x∈Pe

(wTFx)

∀P̂ s.t. P̂ 6= Pe, ŝ = se, ĝ = ge

Le(x) =

{
1 if x ∈ Pe
0 otherwise

Depending on the state space, and the distance from se to ge, there are likely to be an infeasible
(and possibly infinite) number of constraints; one for each alternate path to the demonstrated ex-
ample. However, it is not necessary to enforce every constraint. For any candidate cost function,
there is a minimum cost path between any two waypoints, P∗. It is only necessary to enforce the
constraint for P∗, as once it is satisfied by definition all other constraints will be satisfied. With this
single constraint, (5.1.3) becomes

minimize O(w) = ||w||2 (5.1.4)
subject to the constraint∑

x∈P∗

(wTFx − Le(x)) ≥
∑
x∈Pe

(wTFx)

P∗ = arg min
P

∑
x∈P

(wTFx − Le(x))

It may not always be possible to exactly meet this constraint (the margin may make it impossi-
ble). Therefore, a slack term ζ is added to allow for this possibility

minimize O(w) = λ||w||2 + ζ (5.1.5)
subject to the constraint∑

x∈P∗

(wTFx − Le(x)) −
∑
x∈Pe

(wTFx) + ζ ≥ 0

The slack term ζ accounts for the error in meeting the constraint, while λ balances the tradeoff in
the objective between regularization and meeting the constraint. Due to the scaling of the margin
by the loss function, a concrete relationship can be shown between minimizing this objective, and
minimizing the loss

Theorem 5.1.1. The aggregate loss of P∗, Le(P∗) =
∑
x∈P∗

Le(x), is bounded by ζ

Proof. Consider the following cases

Case 1 P∗ = Pe

Then trivially ζ = Le(P∗) = 0

48

CHAPTER 5. TERRAIN PREFERENCES 5.1. CONSTRAINED OPTIMIZATION

Case 2 P∗ 6= Pe

The constraint in (5.1.5) can be rewritten as∑
x∈P∗

(wTFx) −
∑
x∈Pe

(wTFx) ≥
∑
x∈P∗

(Le(x))− ζ

By definition
∑
x∈P∗

(wTFx) ≤
∑
x∈Pe

(wTFx) which implies

=⇒
∑
x∈P∗

(wTFx) −
∑
x∈Pe

(wTFx) ≤ 0

=⇒
∑
x∈P∗

(Le(x))− ζ ≤ 0

=⇒
∑
x∈P∗

(Le(x)) ≤ ζ

Since ζ is in the objective to be minimized, performing the MMP optimization will also reduce
the aggregate loss.

The constraint in (5.1.5) can alternatively be rearranged as

ζ ≥
∑
x∈Pe

(wTFx) −
∑
x∈P∗

(wTFx − Le(x)) (5.1.6)

Since ζ is in the minimizer, it will always be tight against this constraint that is ζ will always be
exactly equal to the difference in (loss augmented) path costs. Therefore, ζ can be replaced in
the objective by the constraint in (5.1.6), resulting in the following (unconstrained) optimization
problem

minimize O(w) = λ||w||2 + (5.1.7)∑
x∈Pe

(wTFx) −
∑
x∈P∗

(wTFx − Le(x))

or alternatively

minimize O(w) = λ||w||2 + (5.1.8)∑
x∈Pe

(wTFx) − min
P̂

∑
x∈P̂

(wTFx − Le(x))


The final optimization seeks to minimize the difference in cost between the example path Pe

and the (loss augmented) optimal path P∗, subject to regularization. O(w) is convex, but non-
differentiable; therefore, instead of gradient descent, it can be minimized using the sub-gradient

49

5.1. CONSTRAINED OPTIMIZATION CHAPTER 5. TERRAIN PREFERENCES

Algorithm 1: The linear MMP algorithm
Inputs : Example Paths P 1

e , P
2
e , ..., P

n
e , Feature Map F

w0 = ~0;
for j = 1...K do
M = buildCostmap(wj−1,F);
Fe = F∗ = ~0;
foreach P i

e do
P i
∗ = planLossAugmentedPath(start(P i

e),goal(P i
e),M);

foreach x ∈ P i
e do

Fe+ = Fe + Fx;
foreach x ∈ P i

∗ do
F∗ = F∗ + Fx;

wj = wn−1 + ηi[F∗ − Fe − λwj−1];
enforcePositivityConstraint (wj ,F);

return wK

method with learning rate η. The sub-gradient of O with respect to w is

∇O = 2λw +
∑
x∈Pe

Fx −
∑
x∈P∗

Fx (5.1.9)

Intuitively, (5.1.9) says that the direction that will most minimize the objective function is found
by comparing feature counts. If more of a certain feature is encountered on the example path than
the current minimum cost path P∗, the weight on that feature (and therefore the cost) should be
decreased. Likewise, if less of a feature is encountered on the example path than on P∗, the weight
should be increased. Although the margin does not appear in the final sub-gradient, it does affect
the computation of P∗ (a key difference between MMP and apprenticeship learning [223]). The
final linear MMP algorithm consists of iteratively computing feature counts and then updating the
cost function until convergence. One additional caveat is to ensure that only cost functions that
map to R+ are considered (a requirement of most motion and path planners).This is achieved by
identifying F such that wTF ≤ 0, and projectingw back into the space of allowable cost functions.

The MMP framework easily supports multiple example paths. Each example implies its own
constraints as in (5.1.4), its own objective as in (5.1.8), and its own sub-gradient as in (5.1.9).
Updating the cost weights can take place either on a per example basis, or the feature counts can
be computed in a batch with a single update. The latter is computationally preferable, as it may
result in fewer cost function evaluations, and projections back into the space of allowable cost
functions. In the (likely) case that no cost function can perfectly satisfy all the constraints from
multiple examples, the optimization will converge to a consensus cost function that balances the
preferences implied by each path. The final linear MMP algorithm is presented in Algorithm 1.

5.1.2 MMP with Non-Linear Cost Functions

The derivation to this point has assumed that the space of possible cost functions C consists of all
functions of the form C(F) = wTF . Extension to other, more descriptive spaces of cost functions

50

CHAPTER 5. TERRAIN PREFERENCES 5.1. CONSTRAINED OPTIMIZATION

is possible by considering (5.1.8) for any cost function C

minimize O[C] = λREG(C) +
∑
x∈Pe

C(Fx) − min
P̂

∑
x∈P̂

(C(Fx)− Le(x))

 (5.1.10)

O[C] is now an objective functional over a cost function, and REG represents a regularization
functional. We can now consider the sub-gradient in the space of cost functions

∇OF [C] = λ∇REGF [C] +
∑
x∈Pe

δF (Fx) −
∑
x∈P∗

δF (Fx) (5.1.11)

P∗ = arg min
P

∑
x∈P

(C(Fx)− Le(x))

where δ is the Dirac delta at the point of evaluation. Simply speaking, the functional gradient is
positive at values of F corresponding to states in the example path, and negative at values of F
corresponding to states in the current planned path. If the paths both contain a state corresponding
to F , their contributions cancel.

Applying gradient descent directly in this space would result in an extreme form of overfit-
ting; essentially, it would involve raising or lowering the cost associated with specific values of F
encountered on either path, and would therefore involve no generalization whatsoever. Instead, a
different space of cost functions is considered

C ={C | C =
∑
i

ηiRi(F), Ri ∈ R, ηi ∈ R} (5.1.12)

R ={R | R : F → R ∧ REG(R) < ν}

C is now defined as the space of weighted sums of functions Ri ∈ R, where R is a space of
functions of limited complexity that map from the feature space to a scalar. Choices of R include
linear functions, parametric functions, neural networks, decision trees, etc. As in gradient boosting
[235], this space represents a limited set of ‘directions’ for which a small step can be taken; the
choice of the direction set in turn controls the complexity of C.

With this new definition, a gradient descent update takes the form of projecting the functional
gradient5 onto the direction set by finding the element R∗ ∈ R that maximizes the inner product
〈−∇OF [C], R∗〉. The maximization of the inner product between the functional gradient and the

5For the moment, the regularization term is ignored.

51

5.1. CONSTRAINED OPTIMIZATION CHAPTER 5. TERRAIN PREFERENCES

hypothesis space can be understood as a learning problem:

R∗ = arg max
R
〈−∇OF [C], R〉

= arg max
R

∑
x∈Pe∩P∗

−∇OF [C]R(Fx)

= arg max
R

∑
x∈Pe∩P∗

αxyxR(Fx) (5.1.13)

αx = | 5 OFx [C]| yx = −sgn(5OFx [C])

In this form, it can be seen that finding the projection of the functional gradient involves solving a
weighted classification problem; the element ofR that best discriminates between features vectors
for which the cost should be raised or lowered maximizes the inner product. Alternatively, defining
R as a class of regressors adds an additional regularization to each individual R∗ [10]. Intuitively,
the regression targets yx are positive in regions of the feature space that the planned path visits
more than the example path (indicating a desire to raise the cost), and negative in regions that the
example path visits more than the planned path. Each regression target is weighted by a factor αx
based on the magnitude of the functional gradient.

In comparison to the linear MMP formulation, this approach can be understood as trying to
minimize the error in visitation counts instead of feature counts. For a given feature vector F and
path P , the visitation count U is the cumulative count of the number of states x ∈ P such that
Fx = F . The visitation counts can be split into positive and negative components, corresponding
to the current planned and example paths. Formally

U+(F) =
∑
x∈P∗

δF (Fx)

U−(F) =
∑
x∈Pe

δF (Fx)

U(F) = U+ − U− =
∑
x∈P∗

δF (Fx) −
∑
x∈Pe

δF (Fx) (5.1.14)

Comparing this formulation to (5.1.11) demonstrates that the planned visitation counts minus the
example visitation counts equals the negative functional gradient (ignoring regularization). This
allows for the computation of regression targets and weights purely as a function of the visitation
counts, providing a straight forward implementation (Algorithm 2).

A final addition to this algorithm involves a slightly different approach to optimization. Gra-
dient descent can be understood as encouraging functions that are ’small’ in the l2 norm; by con-
trolling the learning rate η and the number of epochs, it is possible to constrain the complexity
of the learned cost function. However, instead we can consider exponentiated functional gradient
descent, which is a generalization of exponentiated gradient to functional gradient descent [10].
Exponentiated functional gradient descent encourages functions that are ‘sparse’ in the sense of
having many small values and a few potentially large values. This change results in C being rede-
fined as

C ={C | C = e
P
i ηiRi(F), Ri ∈ R, ηi ∈ R} (5.1.15)

52

CHAPTER 5. TERRAIN PREFERENCES 5.1. CONSTRAINED OPTIMIZATION

Figure 5.1: An example of the LEARCH algorithm learning to interpret satellite imagery (Left) as
costs (Right). Brighter pixels indicate higher cost. As the cost function evolves (top to bottom),
the current plan (green) recreates more and more of the example plan (red). Quickbird imagery
courtesy of Digital Globe, Inc. Images cover approximately 300 m X 250 m.

Another beneficial effect of this redefined space is that C naturally maps to R+ without any need
for projecting the result of each gradient descent update into the space of valid cost functions. This
final algorithm for non-linear inverse optimal control is called LEARCH [226, 10, 229, 232] and
is presented in Algorithm 2. An example of the algorithm in action is presented in Figure 5.1

It should be noted that while seemingly similar, LEARCH is fundamentally different from su-
pervised classification approaches presented in [30, 176]. While examples of ’good’ terrain are
collected in a similar manner, these approaches simply assume that terrain near where the vehicle
was demonstrated driving should be labeled as ’bad’; the assumption is that a classifier will be

53

5.1. CONSTRAINED OPTIMIZATION CHAPTER 5. TERRAIN PREFERENCES

Figure 5.2: Generalization of the LEARCH algorithm. The cost function learned from the single
example in Figure 5.1 generalizes over terrain never seen during training (shown at approximately
1/2 scale) resulting in similar planner behavior. 3 sets of waypoints (Left) are shown along with
the corresponding paths (Center) planned under the learned cost function (Right).

Algorithm 2: The LEARCH algorithm
Inputs : Example Paths P 1

e , P
2
e , ..., P

n
e , Feature Map F

C0 = 1;
for j = 1...K do
M = buildCostmap(Cj−1,F);
U+ = U− = ~0;
foreach P i

e do
P i
∗ = planLossAugmentedPath(start(Pe),goal(Pe),M);

foreach x ∈ P i
e do

U−(Fx) = U−(Fx) + 1;
foreach x ∈ P i

∗ do
U+(Fx) = U+(Fx) + 1;

Tf = To = Tw = ∅;
U = U+ − U−;
foreach Fx such that U(Fx) 6= 0 do

Tf = Tf
⋃
Fx;

To = To
⋃

sgn(U(Fx));
Tw = Tw

⋃
|U(Fx)|;

Rj = trainWeightedRegressor(Tf , To, Tw);
Cj = Cj−1 ∗ eηjRj ;

return CK

able to deal with the noisy labeling. In contrast, LEARCH determines a set of states for which
the total cost must be increased; otherwise the demonstration would have traversed through those
states. Essentially, negative examples of where to drive are implied by where the demonstrator
explicitly chose not to drive, rather than simply nearby regions that the demonstrator could have
driven through. Additionally, the terrain that the demonstration traversed is not explicitly con-
sidered as ’good’ terrain; rather its costs are only lowered until the path is preferred (for specific
waypoints);there could still be high cost regions along it. This distinction allows LEARCH to
generalize well over areas for which it was not explicitly trained (Figure 5.2).

54

CHAPTER 5. TERRAIN PREFERENCES5.2. EXTENSION TO DYNAMIC AND UNKNOWN ENVIRONMENTS

5.2 Extension to Dynamic and Unknown Environments

The previous derivation of MMP and LEARCH only considered the scenario where the mapping
from states to features is static and fully known a priori. In this section, the ideas of [225] are ap-
plied to extend the LEARCH algorithm to the scenario where neither of these assumptions holds,
such as when features are generated from a mobile robot’s perception system. The limited range
inherent in onboard sensing implies a great deal of the environment may be unknown; for truly
complex navigation tasks, the distance between waypoints is generally at least one or two orders
of magnitude larger than the sensor range. Further, changing range and point of view from en-
vironmental structures means that even once an object is within range, its perceptual features are
continually changing. Finally, there are the actual dynamics of the environment: objects may
move, lighting and weather conditions can change, etc.

Since onboard perceptual inputs are not static, a robot’s current plan must also be continually
recomputed. The original MMP constraint must be altered in the same way: rather than enforcing
the optimality of the entire example behavior once, the optimality of all example behavior must be
continually enforced as the current plan is recomputed. Formally, we add a time index t to account
for dynamics. F t

x represents the perceptual features of state x at time t. P t
e represents the example

behavior starting from the current state at time t to the goal, with associated loss function Lte. The
objective becomes

minimize O[C] = λREG(C) +
∑
t

∑
x∈P te

C(F t
x) − min

P̂ t

∑
x∈P̂ t

(C(F t
x)− Lte(x))

 (5.2.1)

the new functional gradient is

5OF [C] =
∑
t

∑
x∈P te

δF (F t
x) −

∑
x∈P t∗

δF (F t
x)

 (5.2.2)

P t
∗ = arg min

P t

[∑
x∈P t

(C(F t
x)− Lte(x))

]

The cost function C does not have a time index: the optimization is searching for the single cost
function that best reproduces example behavior over an entire time sequence.

It is important to clarify exactly what P t
e represents. Until now, the terms plan and behavior

have been interchangeable. This is true in the static case since the environment never evolves; as
long as a plan is sufficiently followed, it does not need to be recomputed. However, in the dynamic
case, an expert’s plan and behavior are different notions: the plan is the currently intended future
behavior, and the behavior is the result of previous plans. Therefore, P t

e would ideally be the
expert’s plan at time t, not example behavior from time t onwards.

However, this information is generally not available: it would require the recording of an ex-
pert’s instantaneous plan at each point in time. Even if a framework for such a data collection
were to be implemented, it would turn the collection of training data into an extremely tedious and
expensive process. Therefore, in practice we approximate the current plan of an expert P t

e with
the expert’s behavior from t onwards. Unfortunately, this approximation can potentially create

55

5.2. DYNAMIC AND UNKNOWN ENVIRONMENTS CHAPTER 5. TERRAIN PREFERENCES

situations where the example at certain timesteps is suboptimal or inconsistent. The consequences
of this inconsistency and possible solutions are discussed in Section 5.3 (see Figure 5.5).

Once dynamics have been accounted for, the limited range of onboard sensing can be ad-
dressed. At time t, there may be no perceptual features available corresponding to the (potentially
large) section of the example path that is outside of current perceptual range. In order to per-
form long range navigation, a mobile robotic system must already have some approach to planning
through terrain it has not directly sensed. Solutions include the use of prior knowledge [105, 229],
extrapolation from recent experience [236, 31], or simply to assume uniform properties of un-
known terrain.

Therefore, we define the set of visible states at time t as V t. The exact definition of visible
depends on the specifics of the underlying robotic system’s data fusion: V t should include all
states for which the cost of state x at time t is computed with the cost function currently being
learned, C6. For all other states V̄ t, we can assume the existence of some alternate function for
computing cost, CV̄(x); again this could be as simple as a constant.

Since we have explicitly defined V t as the set of states at time t for which C is the correct
mechanism for computing cost, the cost of a general path P t is now computed as∑

x∈P t∩Vt
C(F t

x) +
∑

x∈P t∩V̄t
CV̄(x)

It is important to note that CV̄(x) is not dependent on F t
x. With this new formulation for the cost

of a path, the objective functional becomes

minimize O[C] = λREG(C) (5.2.3)

+
∑
t

 ∑
x∈P te∩Vt

C(F t
x) +

∑
x∈P te∩V̄t

CV̄(x)


−
∑
t

min
P̂ t

 ∑
x∈P̂ t∩Vt

(C(F t
x)− Lte(x)) +

∑
x∈P̂ t∩V̄t

CV̄(x)


with functional gradient

5OF [C] =
∑
t

 ∑
x∈P te∩Vt

δF (F t
x) −

∑
x∈P t∗∩Vt

δF (F t
x)

 (5.2.4)

P t
∗ = arg min

P̂ t

 ∑
x∈P̂ t∩Vt

(C(F t
x)− Lte(x)) +

∑
x∈P̂ t∩V̄t

CV̄(x)


since the gradient is computed with respect to C, it is only nonzero for visible states; the CV̄(x)
terms disappear. However, CV̄ still factors into the planned behavior, and therefore does affect the
learned component of the cost function. Just as LEARCH learns C to recreate desired behavior
when using a specific planner, it learns C to recreate behavior when using a specific CV̄ . However,

6For instance, all locations that are within current sensor range and have been observed by said sensors.

56

CHAPTER 5. TERRAIN PREFERENCES 5.3. IMPERFECT AND INCONSISTENT DEMONSTRATION

if the example behavior is inconsistent with CV̄ , it will be more difficult for the planned behavior to
match the example. Such an inconsistency could occur if the expert has different prior knowledge
than the robot, or interprets the same knowledge differently. Inconsistency can also occur due to
the previously discussed mismatch between expert plans and expert behavior. A solution to this
problem is discussed in Section 5.3.

The projection of the functional gradient onto the hypothesis space becomes

R∗ = arg max
R

∑
t

 ∑
x∈(Pe∪P∗)∩Vt

αtxy
t
xR(F t

x)

 (5.2.5)

Contrasting the final form forR∗ with that of (5.1.13) helps to summarize the changes that result
in the LEARCH algorithm for dynamic environments. Specifically, a single expert demonstration
from start to goal is discretized by time, with each timestep serving as an example of what behavior
to plan given all data to that point in time. For each of these discretized examples, only visitation
counts in visible states are used. The resulting Dynamic LEARCH (D-LEARCH) algorithm is
presented in Algorithm 3.

A final detail for a D-LEARCH implementation is the source of the input perceptual features.
Rather than computing and logging these features online, it is useful to record all raw sensor data,
and then to compute the features by simulating perception offline. This allows existing expert
demonstration to be reused if new feature extractors are added, or existing ones modified; percep-
tion is simply re-simulated to produce the new inputs. In this way, learning a cost function when
the perception system is modified requires no additional expert interaction.

5.3 Imperfect and Inconsistent Demonstration

The MMP framework implicitly assumes that one or more cost functions exist under which demon-
strated behavior is near optimal. Generally this is not the case, as there will always be noise in
human demonstration Further, multiple examples possibly collected from different environments
and different experts may be inconsistent with each other (due to inconsistency in human behavior,
a different concept of what is desirable, or an incomplete perceptual description of the environment
by the robot). Finally, sometimes experts are flat out wrong, and demonstrate behavior that is not
even close to optimal (under nearly any definition).

While the MMP framework is robust to poor training data, it does suffer degraded overall
performance and generalization (in the same way that supervised classification performance is
degraded by noisy or mislabeled training data). Attempting to have an expert sanitize the training
input after initial demonstration is disadvantageous for two reasons. First it creates an additional
need for human involvement, eliminating much of the time savings promised by this approach.
Second, it assumes that an expert can detect all errors; while this may be true for extreme cases,
a human expert is no more capable of identifying small amounts of noise than he is of preventing
that noise in the first place. Even if detecting and filtering out noisy demonstration is automated
(as in Section 5.3.3), removing any and all noisy or imperfect demonstration would remove a large
percentage of available training data. This would greatly increase the amount of effort that must be
expended to produce a viable training set; it may also remove example demonstrations from which

57

5.3. IMPERFECT DEMONSTRATION CHAPTER 5. TERRAIN PREFERENCES

Algorithm 3: The Dynamic LEARCH algorithm
Inputs : Example Behaviors P 1

e , P
2
e , ..., P

n
e , Sensor HistoriesH1,H2, ...,Hn, Cost Map CV̄

C0 = 1;
foreach P i

e do
for τ =firstTime(P i

e): ∆τ :lastTime(P i
e) do

P τ,i
e = extractPathSegment(P i

e , τ,lastTime(P
i
e));

[F τ,i,Vτ,i] = simulatePerception(Hi,firstTime(P i
e),τ);

for j = 1...K do
U += U− = ~0;
foreach P t,i

e do
Mt,i = buildCostmap(Ci−1,F t,i,V t,i,CV̄);
P t,i
∗ = planLossAugmentedPath(start(P t,i

e),goal(P t,i
e),Mt,i);

foreach x ∈ P t,i
e

⋂
V t,i do

U−(F t,ix) = U−(F t,ix) + 1;
foreach x ∈ P t,i

∗
⋂
V t,i do

U+(F t,ix) = U+(F t,ix) + 1;

Tf = To = Tw = ∅;
U = U+ − U−;
foreach F t,ix such that U(F t,ix) 6= 0 do

Tf = Tf
⋃
F t,ix ;

To = To
⋃

sgn(U(F t,ix));
Tw = Tw

⋃
|U(F t,ix)|;

Rj = trainWeightedRegressor(Tf , To, Tw);
Cj = Cj−1 ∗ eηjRj ;

return CK

something could still have been learned. Therefore, a practical and robust learning approach must
be able to handle a reasonable amount of error in provided demonstration. This section describes
modifications to the LEARCH algorithm that can increase robustness and improve generalization
in the face of noisy, imperfect or inconsistent expert demonstration.

5.3.1 Unachievable Example Behaviors

Experts do not necessarily plan their example behavior in a manner consistent with a robot’s plan-
ning system: this assumption is not part of the MMP framework. However, what is assumed is
that there exists at least one allowable cost function that will cause the robot’s planner to repro-
duce demonstrated behavior (by scoring said behavior as the minimum cost plan). Unfortunately,
this is not always the case: it is possible for an example to be unachievable. An unachievable
example is defined as one such that no consistent cost function, when applied to the available
perceptual feature representation, will result in the specified planning system reproducing the ex-
ample demonstration. For example, an expert may give an inconsistently wide berth to obstacles,
or make wider turns than are necessary. Perhaps the most intuitive single case is if an expert turns

58

CHAPTER 5. TERRAIN PREFERENCES 5.3. IMPERFECT DEMONSTRATION

(a) 3 Example Training Paths (b) Learned costmap with unbalanced weighting

(c) Learned costmap with balanced weighting (d) Ratio of the balanced to unbalanced
costmaps

Figure 5.3: The red path is an unachievable example path, as it will be less expensive under any
cost function to cut more directly across the grass. With standard unbalanced weighting (b), the
unachievable example forces down the cost of grass, and prevents the blue example from being
achieved. Balanced weighting (c) prevents this bias, and the blue example is achieved. Overall,
grass is approximately 12% higher cost with balanced than unbalanced weighting (d)

left around a large obstacle, when turning right would have been slightly shorter. The consequence
is that example paths often take slightly longer routes through similar terrain than are optimal (for
any consistent costing of similar terrain) [229, 231, 232]; depending on planner details (such as
c-space expansion and dynamic constraints) such examples are often unachievable.

It is instructive to observe what happens to the functional gradient with an unachievable ex-
ample. Imagine a section of an environment where all states are described by the identical feature
vector F ′. Under this scenario, (5.1.11) reduces to

∇OF ′ [C] =

{ ∑
x∈Pe 1 −

∑
x∈P∗ 1 if F = F ′

0 if F 6= F ′

59

5.3. IMPERFECT DEMONSTRATION CHAPTER 5. TERRAIN PREFERENCES

The functional gradient depends only on the lengths of the example and current plan, independent
of the cost function. If the paths are not of equal length, then the optimization will never be
satisfied. Specifically, if the example path is too long, there will always be an extra component
of the gradient that attempts to lower costs at F ′. Intuitively, an unachievable example implies
that the cost of certain terrain should be 0, as this would result in any path through that region
being optimal. However, since costs are constrained to R+, this will never be achieved. Instead
an unachievable example will have the effect of unnecessarily lowering costs over a large section
of the feature space, and artificially reducing dynamic range. Depending on the expressiveness of
R, an unachievable example counteracts the constraints of other (achievable) paths, resulting in
poorer performance and generalization (see Figure 5.3).

This negative effect can be avoided by performing a slightly different regression or classifica-
tion when projecting the gradient. Instead of minimizing the weighted error, the balanced weighted
error is minimized; that is, both positive and negative targets make an equal sum contribution. For-
mally, in (5.2.5) R∗ is replaced with RB

∗ defined as

RB
∗ = arg max

R

∑
t

∑
ytx>0

αtxR(F t
x)

N+

−
∑
ytx<0

αtxR(F t
x)

N−


N+ =

∑
t

∑
ytx>0

αtx = |U+|1 N− =
∑
t

∑
ytx<0

αtx = |U−|1 (5.3.1)

In the extreme unachievable case described above, RB
∗ will be zero everywhere; the optimization

will be satisfied with the cost function as is. The effect of balancing in the general case can be
observed by rewriting the regression operation in terms of the planned and example visitation
counts, and observing the correlation of their inputs.

R∗ = arg max〈R,U+ − U−〉 RB
∗ = arg max〈R, U+

N+

− U−
N−
〉

Theorem 5.3.1. The regression targets of R∗ and RB
∗ are always correlated, except when the

visitation counts between the example and planned path are perfectly correlated.

Proof.

〈U+ − U−,
U+

N+

− U−
N−
〉 =
〈U+, U+ − U−〉

N+

+
〈U−, U− − U+〉

N−

=
〈U+, U+〉
N+

− 〈U+, U−〉
N+

+
〈U−, U−〉
N−

− 〈U+, U−〉
N−

=
|U+|2

N+

+
|U−|2

N−
− 〈U+, U−〉

N+

− 〈U+, U−〉
N−

=
|U+|2

N+

+
|U−|2

N−
− (

1

N+

+
1

N−
)〈U+, U−〉 (5.3.2)

By the Cauchy-Schwarz inequality, 〈U+, U−〉 is bounded by |U+||U−|, and is only tight against this

60

CHAPTER 5. TERRAIN PREFERENCES 5.3. IMPERFECT DEMONSTRATION

bound when the visitation counts are perfectly correlated, which implies

〈U+, U−〉 = |U+||U−| ⇐⇒ U− = κU+ =⇒ |U−| = κ|U+| , N− = κN+

for some scalar κ. By substitution

|U+|2

N+

+
|U−|2

N−
− (

1

N+

+
1

N−
)〈U+, U−〉 ≥

|U+|2

N+

+
|U−|2

N−
− (

1

N+

+
1

N−
)|U+||U−|

=
|U+|2

N+

+
κ2|U+|2

κN+

− (
1

N+

+
1

κN+

)κ|U+||U+|

=
|U+|2

N+

+
κ|U+|2

N+

− |U+|2

N+

− κ|U+|2

N+

= 0

When 〈U+, U−〉 is not tight against the upper bound

〈U+ − U−,
U+

N+

− U−
N−
〉 ≥ 0

By (5.3.2) the similarity between inputs to the projections is negatively correlated to the overlap
of the positive and negative visitation counts. When there exists clear differentiation between what
features should have their costs increased and decreased, the projection inputs will be similar. As
the example and current planned behaviors travel over increasingly similar terrain, the inputs begin
to diverge; the contribution of the balanced projection to the current cost function will level out,
while that of the unbalanced projection will increase in the direction of the longer path. Finally,
in a fully unachievable case, the balanced projection will zero out, while the unbalanced would
drive the cost in the direction of the more dominant class. Due to the projection of the functional
gradient, these effects hold not only when the terrain in question is identical, but also when it is
sufficiently similar as to be indistinguishable to the chosen class of regressor. These effects are
observed empirically in Section 5.5. The implementation of this balancing is shown in Algorithm
4.

5.3.2 Noisy Demonstration: Replanning and Corridor Constraints
A balanced regression can help to account for large scale sub-optimality in human demonstration.
However, sub-optimality can also occur at a smaller scale. It is unreasonable to ever expect a
human to drive or demonstrate the exact perfect path; it is often the case that a plan that travels
through neighboring or nearby states would be a slightly better example. In some cases this exam-
ple noise translates to noise in the cost function; in more extreme cases it can significantly affect
performance (Figure 5.4). What is needed is an approach that smoothes out small scale noise in
expert demonstration, producing a better training example.

Such a smoothed example can be derived from expert demonstration by redefining the MMP
constraint: instead of example behavior being interpreted as the exact optimal behavior, it can be
interpreted as a behavior that is spatially near to the optimal path. The exact definition of close

61

5.3. IMPERFECT DEMONSTRATION CHAPTER 5. TERRAIN PREFERENCES

(a) Example Paths (b) Planned Paths (No Replanning) (c) Planned Paths (With Replanning)

Figure 5.4: An example of how noisy demonstration can hurt performance. The red and green
example paths in (a) are drawn slightly too close to trees, preventing the cost of the trees from
increasing sufficiently to match the red example (b). However, if the paths are allowed to be
replanned within a corridor, the red and green path are essentially smoothed, allowing the cost of
trees to get sufficiently high (c). On average, the trees achieve three times the cost in (c) as in (b).

depends on the state space; the loss function will always provide at least one possible metric. If the
state space is Rn, then Euclidean distance is a natural metric. Therefore, rather than an example
defining the exact optimal path, it would define a corridor in which the optimal path exists.

Redefining the original MMP constraint in (5.1.4) in this way (and converting to general as
opposed to linear cost functions) yields

minimize O[C] = λREG[C] (5.3.3)
subject to the constraint∑

x∈P∗

(C(Fx)− Le(x)) ≥
∑
x∈P ∗e

C(Fx)

P∗ = arg min
P

∑
x∈P

(C(Fx)− Le(x))

P ∗e = arg min
P∈Ne

∑
x inP

C(Fx)

Instead of enforcing that Pe is optimal, the new constraint is to enforce that P ∗e is optimal, where
P ∗e is the optimal path within some set of paths Ne. The definition of Ne determines how ‘close’
is defined. Using the above example of a corridor in a Euclidean space, Ne would be defined as

Ne = {P | ∀x ∈ P ∃y ∈ Pe s.t. ||x− y|| ≤ β}

with β defining the corridor width. In the general case, this definition can always be rewritten in
terms of the loss function

Ne = {P | ∀x ∈ P ∃y ∈ Pe s.t. L(x, y) ≤ β}

It is important to note that the definition of Ne is only dependent on individual states. Therefore,

62

CHAPTER 5. TERRAIN PREFERENCES 5.3. IMPERFECT DEMONSTRATION

P ∗e can be found by an optimal planner, simply by only allowing traversal through states that meet
the loss threshold β with respect to some state in Pe.

Reformulating (5.3.3) as an optimization problem yields the following objective

minimize O[C] = λREG(C)

+ min
P̂e∈Ne

∑
x∈P̂e

C(Fx)


− min

P̂

∑
x∈P̂

(C(Fx)− Le(x))

 (5.3.4)

The resulting change in the LEARCH algorithm is to carry through the extra minimization to
the computation of the visitation counts. That is, at every iteration, a new, smoothed, example is
chosen from withNe; example visitation counts are computed with respect to this path. Combining
this new step (example replanning) with weight balancing results in an algorithm known as Robust
LEARCH (R-LEARCH). These robust extensions, combined with the dynamic adaptations, are
presented in Algorithm 4 as the Dynamic Robust LEARCH (DR-LEARCH) algorithm

It should be noted that as a result of this additional, non-negated min term, the objective is no
longer convex. It is certainly possible to produce individual examples where such a smoothing
step can result in poor local minima; however, it has been observed empirically that this effect is
neutralized when using multiple examples. The experimental performance of this smoothing step
is presented in Section 5.5.

When operating with dynamic and partially unknown perceptual data, this replanning step
provides another important side effect. Rewriting (5.2.3) with this additional min term yields

minimize O[C] = λREG(C) (5.3.5)

+
∑
t

min
P̂ te∈N te

 ∑
x∈P̂ te∩Vt

C(F t
x) +

∑
x∈P̂ te∩V̄t

CV̄(x)


−
∑
t

min
P̂ t

 ∑
x∈P̂ t∩Vt

(C(F t
x)− Lte(x)) +

∑
x∈P̂ t∩V̄t

CV̄(x)


WhereN t

e is the set of paths near P t
e . However, as before it should be noted that the CV̄ terms will

have no affect on the functional gradient. Therefore, the definition ofN t
e does not need to consider

states in V̄ . This yields the following general definition of N t
e

N t
e = {P t | ∀x ∈ P t

⋂
V t ∃y ∈ P t

e

⋂
V t s.t. L(x, y) ≤ β}

the result is that N t
e only defines closeness over V t. Behavior outside of V t does not directly

affect the gradient, but does affect the objective value (the difference in cost between the current
(replanned) example and planned behavior). Therefore, by performing a replanning step (even with
β = 0), example behavior can be made consistent with CV̄ without compromising its effectiveness
as an example within V t. This notion of consistency proves to have meaningful value.

63

5.3. IMPERFECT DEMONSTRATION CHAPTER 5. TERRAIN PREFERENCES

Algorithm 4: The Dynamic Robust LEARCH algorithm
Inputs : Example Behaviors P 1

e , P
2
e , ..., P

n
e , Sensor HistoriesH1,H2, ...,Hn, Cost Map

CV̄ , Corridor width β
C0 = 1;
foreach P i

e do
for τ =firstTime(P i

e): ∆τ :lastTime(P i
e) do

P τ,i
e = extractPathSegment(P i

e , τ,lastTime(P
i
e));

[F τ,i,Vτ,i] = simulatePerception(Hi,firstTime(P i
e),τ);

for j = 1...K do
U += U− = ~0;
foreach P t,i

e do
Mt,i = buildCostmap(Ci−1,F t,i,V t,i,CV̄);
P t,i
∗ = planLossAugmentedPath(start(P t,i

e),goal(P t,i
e),Mt,i);

Mt,i
β,Vt,i = buildCorridorRestrictedCostmap(Mt,i,β,V t,i);

P t,i
e∗ = replanExample(start(P t,i

e),goal(P t,i
e),Mt,i

β,Vt,i ,);
foreach x ∈ P t,i

e∗
⋂
V t,i do

U−(F t,ix) = U−(F t,ix) + 1;
foreach x ∈ P t,i

∗
⋂
V t,i do

U+(F t,ix) = U+(F t,ix) + 1;

Tf = To = Tw = ∅;
U = U+ − U−;
N+ = N− = 0;
foreach F t,ix such that U(F t,ix) 6= 0 do

Tf = Tf
⋃
F t,ix ;

To = To
⋃

sgn(U(F t,ix));
Tw = Tw

⋃
|U(F t,ix)|;

if sgn(U(F t,ix)) > 0 then N+ = N+ + 1 else N− = N− + 1;
foreach (to, tw) ∈ (To, Tw) do

if to > 0 then tw = tw/N+ else tw = tw/N−;
Rj = trainWeightedRegressor(Tf , To, Tw);
Cj = Cj−1 ∗ eηjRj ;

return CK

5.3.3 Filtering for Inconsistent Examples

One fundamental issue with expert demonstration is consistency. A human demonstrator may
act approximately according to one metric during one example, and a slightly different metric
during another example. While each individual example may be near-optimal with respect to some
metric, the two examples together may be inconsistent; that is, there is no consistent cost function
that would define both demonstrations as optimal.

The possibility of an expert interpreting unknown terrain in a different manner is a potentially
large source of inconsistency. This is especially true when attempting to learn an online cost func-

64

CHAPTER 5. TERRAIN PREFERENCES 5.3. IMPERFECT DEMONSTRATION

Figure 5.5: Recorded example behavior from time t (left) and t + 1 (right), overlayed on a single
perceptual feature (obstacle height). Future behavior is inconsistent at time t, but makes sense at
time t+ 1 given additional perceptual data.

tion, as it is very likely that the demonstrator will have implicit prior knowledge of the environment
that is unavailable to the perception system. However, by always performing a replanning step as
previously discussed, example demonstration can be made consistent with the robot’s interpreta-
tion of the environment in unobserved regions.

With consistency in unobserved regions accounted for, there remain four primary sources of
inconsistent demonstration

• Inconsistency between multiple experts

• Expert error (poor demonstration)

• Inconsistency between an expert’s and the robot’s perception in observed regions

• A mismatch between an expert’s planned and actual behavior

This last issue was alluded to in Section 5.2: while an expert example should consist of an expert’s
plan at time t from the current state to the goal, what is recorded is the expert’s behavior from time
t to the goal. Figure 5.5 provides a simple example of this mismatch: at time t, the expert likely
planned to drive straight, but was forced to replan at time t+ 1 when the cul-de-sac was observed.
This breaks the assumption that the expert behavior from time t onward matches the expert plan;
the result is that the discretized example at time t is inconsistent with other example timesteps.

However, the very inconsistency of such timesteps provides a basis for their filtering and re-
moval. Specifically, it can be assumed that a human expert will plan in a fairly consistent manner
during a single example traverse7. If the behavior from a single timestep or small set of timesteps
is inconsistent with the demonstrated behavior at other timesteps, then it is safe to assume that this
small set of timesteps does not demonstrate correct behavior, and can be filtered out and removed
as training examples. This does not significantly affect the amount of training data required to train

7If this assumption does not hold, then the very idea of learning from said expert’s demonstration is flawed

65

5.4. APPLICATION TO MOBILE ROBOTIC SYSTEMS CHAPTER 5. TERRAIN PREFERENCES

a full system, as by definition an inconsistent timestep was unlikely to provide a useful example.
This approach is similar to that of [237, 238], which both investigate the identification and removal
of noisy or incorrect class labels when using boosting methods.

Inconsistency can be quantitatively defined by observing each timestep’s contribution to the ob-
jective functional (its slack penalty). In (5.1.5) this penalty is explicitly defined as a a measurement
of by how much a constraint remains violated. If the penalty at a single of an example behavior
timestep is a statistical outlier from the distribution of slack penalties at all other timesteps, it indi-
cates that single timestep implies constraints that remain violated far more so than others. That is,
the constraints at an outlier timestep are inconsistent with those implied the rest of a demonstration.

Therefore, the following filtering heuristic is proposed as a pre-processing step. First, attempt
to learn a cost function over all timesteps of a single example behavior and identify timesteps
whose penalties are statistical outliers. During this step, a more complex hypothesis space of
cost functions should be used than is intended for the final cost function (i.e use more complex
regressors). As these outlier timesteps are inconsistent within an overly complex hypothesis space,
there is evidence that the inconsistency is in the example itself, and not for lack of expressiveness
in the cost function. Therefore, these timesteps should be removed. This process can be repeated
for each example behavior, with only remaining timesteps used in the final training.

Aside from filtering out inconsistency due to plan/behavior mismatch, this approach will also
filter timesteps due to other sources of inconsistency. This is beneficial, as long as the timesteps
truly are inconsistent. However, the possibility always remains that the example itself was correct;
it may only appear inconsistent due to the fidelity of perception or planning. In this case, filtering
is still beneficial, as the examples would not have been learnable (with the current set of percep-
tual features and the current planning system); instead, the small subset of filtered examples can
be examined by a system expert, who may then identify a necessary additional component level
capability. Experimental results of this filtering approach are presented in Section 5.5.

5.4 Application to Mobile Robotic Systems

Before either R-LEARCH or DR-LEARCH can be applied to the task of learning a terrain cost
function for a mobile robotic system, there are still some practical considerations to address. It is
important to remember the specific task for which LEARCH and its variants are intended: they are
designed to select a cost function from a defined hypothesis space C , such that expert demonstra-
tion is recreated when the cost function is applied to the specific perception and planning systems
for which it was trained. There are several hidden challenges in that statement, such as defining C,
and ensuring LEARCH is producing a cost function for the correct planning system.

5.4.1 Selecting a Cost Function Hypothesis Space

The cost function hypothesis space C is implicitly defined by the regressor space R. In turn,
R is defined by design choices relating to the family and allowable complexity of regressors.
For example, if single layer neural networks with at most H hidden are chosen as the class of
regressors, than C consists of all cost functions that are a weighted sum of such networks. In this
way, cost functions of almost arbitrary complexity can be allowed.

66

CHAPTER 5. TERRAIN PREFERENCES 5.4. APPLICATION

Figure 5.6: Example of a new feature (right) learned automatically from panchromatic imagery
(left) using only expert demonstration (there are no explicit class labels).

However, as with most machine learning techniques, there is a design tradeoff between expres-
siveness and generalization. Complex regressors are capable of expressing complex costing rules,
but are more prone to overfitting. In contrast, simpler regressors may generalize better, but are
also limited in the costing rules they can express. This tradeoff must be effectively balanced to en-
sure both sufficient expressiveness and generalization. Fortunately, as regression is a core machine
learning task, there are well developed and understood approaches for achieving this balance. In
practice, validation with an independent holdout set of demonstrated examples can quantify this
tradeoff. This allows a range of regressor types and complexities to be automatically evaluated; the
one with the best holdout performance can be selected with minimal additional human interaction.

Another issue with respect to the definition of C is computational cost. In a scenario where per-
ceptual features are static, this concern is not as important, as cost evaluations are only performed
once. However, in an online and dynamic setting, cost evaluations are performed continuously;
the computational complexity may be a much larger issues. As the final learned cost function is
a weighted combination of K regressors, computational complexity of the final cost function is
linear in K. Again, this creates a design tradeoff; limiting K will limit the computation cost per
evaluation, but will also limit the accuracy of the cost function (as the final steps of a gradient
descent operation fine tune the solution).

One solution to this problem would be to relearn a cost function after LEARCH completes;
that is, learn a single regressor Rp to minimize (Rp(F) − CK(F))2 for a large sample of F ∈ F .
Unfortunately, this approach would create the need for additional validation of Rp as its complex-
ity may have to be continually modified to minimize training or test set error. Additionally, there

67

5.4. APPLICATION CHAPTER 5. TERRAIN PREFERENCES

would be no guarantee that Rp would reproduce similar behavior (as small changes in costs can
have large effects, and vice versa). Another solution would be to define R as the space of linear
functions. Since the weighted sum of linear functions is another linear function, using this defini-
tion of R would result in the final complexity of CK being constant with respect to K. However
using linear regressors with LEARCH results in almost the same solution as would be produced
by the linear MMP algorithm (but not identical due to exponentiated functional gradient descent).
As a fundamental advantage of the LEARCH approach was to allow non-linear cost functions, this
would seem to imply an undesirable but necessary tradeoff.

The addition of a feature learning phase [225, 229, 230] to LEARCH can potentially solve this
problem. During most learning iterations, linear regressors are used. However, when it is detected
that the objective error is no longer decreasing, a single, simple non-linear regression is performed.
This single, non-linear step would better discriminate between terrains that are difficult for a purely
linear regressor. However, rather than add this new regressor directly into the cost function, it is
instead treated as a new feature. In this way, future iterations can fine tune the weight on this
feature. If the non-linear step is performed with a rule based regressor (such as a regression tree),
then this approach begins to look similar to the way in which cost functions are often hand tuned:
simple linear functions handle the general cases, with simple sets of rules to handle difficult special
cases. LEARCH with a feature learning phase is presented in Algorithm 5 (For clarity, it is shown
only for the static case; extension to DR-LEARCH is straightforward). It should also be noted that
once a new feature is learned, it does not need to be computed for the entire feature space a priori;
this can be done opportunistically for efficiency.

An additional advantage of this approach is that new learned features can be used as a guide
in the development of new engineered feature extractors. Figure 5.6 provides a simple example.
In this context, LEARCH attempted to learn a linear cost function from only a single feature (the
greyscale value of each pixel). Such an approach is doomed to failure, as intensity is not linearly
related to cost. Therefore, a single new feature was learned using a regression tree with 8 leaf
nodes. This new feature strongly disambiguates roads and trails from surrounding terrain. Not
only does this improve the learned cost function, it can also be taken as an indication that an
explicit road or trail extractor would be useful, and worth devoting engineering resources to.

5.4.2 Planner Interpretation of Cost Maps
A common approach in mobile robotics is to treat the environment as a 2.5D space; this allows the
state space S for high level path planning to be R2. This results in terrain costs defined over a a
discretized 2D grid. However, different planning systems may interpret a 2D cost grid differently.
Since the goal is to learn a cost function to recreate behavior with a specific planning system, these
details must be taken into account to learn the cost function correctly.

Perhaps the simplest cost-aware planner one might use for a mobile robot would be 4-connected
A* (or other grid planner). Such a planning system would incur a cost of C(x) whenever a cell x
was traversed. Now consider the case of an 8-connected A*. Many 8-connected implementations
treat traversing a cell diagonally as higher cost than traversing the same cell axis-aligned; this
allows the planner to take into account the extra distance traversed through a grid. This usually
takes the form of incurring a cost of C(x) when traversing the cell axis-aligned, and a cost of√

2C(x) when traversing the cell diagonally.
Since cells traversed diagonally incur more cost, this must be taken into account by LEARCH

68

CHAPTER 5. TERRAIN PREFERENCES 5.4. APPLICATION

Algorithm 5: The linear LEARCH algorithm with a feature learning phase
Inputs : Example Paths P 1

e , P
2
e , ..., P

n
e , Feature Map F

C0 = 1;
for j = 1...K do
M = buildCostmap(Cj−1,F);
U+ = U− = ~0;
foreach P i

e do
P i
∗ = planLossAugmentedPath(start(Pe),goal(Pe),M);

foreach x ∈ P i
e do

U−(Fx) = U−(Fx) + 1;
foreach x ∈ P i

∗ do
U+(Fx) = U+(Fx) + 1;

Tf = To = Tw = ∅;
U = U+ − U−;
foreach Fx such that U(Fx) 6= 0 do

Tf = Tf
⋃
Fx;

To = To
⋃

sgn(U(Fx));
Tw = Tw

⋃
|U(Fx)|;

Rj = trainWeightedLinearRegressor(Tf , To, Tw);
Cj = Cj−1 ∗ eηjRj ;
if !hasPerformanceImproved(Cj, Cj−1, P

1
e , ..., P

n
e) then

Rb = trainWeightedNonlinearRegressor(Tf , To, Tw);
foreach Fx ∈ F do
Fx =concat(Fx, Rb(Fx));

return CK

when computing the projection of the functional gradient. With respect to the final cost of a path,
a cell traversed diagonally will have a

√
2 greater affect than one traversed axis-aligned; therefore

it is
√

2 times more important to get the sign right on the projection. The solution is to increment
the visitation count of a cell by 1 when traversing it axis-aligned, and by

√
2 when traversing

diagonally. In the general case, a planner may incur a cost of dC(x) when traversing a distance
d through cell x; the visitation count of state x should then be incremented by d. Examples of
planners that will plan continuously through R2, even when costs are discrete, include the Field
D* [239] algorithm used in [95, 101, 102] and the hybrid A* used in [37].

Another issue that must be considered is that of configuration space expansion. Motion plan-
ners for mobile robotic systems often apply a c-space expansion to an input cost map before gen-
erating a plan, in order to account for the physical dimensions of the robot. The result is that the
cost the planner assigns for traversing distance d through state x is no longer dC(x), but rather
something along the lines of

d
∑
y∈N

W (x, y)C(y) (5.4.1)

69

5.4. APPLICATION CHAPTER 5. TERRAIN PREFERENCES

whereN is a set of states sufficiently close to x, and W is a weighting function. Common choices
for W include a constant, or a linear falloff based on ||x − y||. As before, this weighting must be
captured by the visitation counts: if distance d is traversed through cell x, then all cells y ∈ N must
have there visitation counts incremented by dW (x, y). A further complication arises if W depends
not only on the locations of x and y, but also their (or other states) cost values. For instance, if a
c-space expansion defined the cost of traversing d through state x as

dmax
y∈N

C(y)

then only the state y with the maximum cost in N should have its visitation count incremented
by d; all other states would not affect the planner perceived cost of traversing x under the current
C. Unlike (5.4.1) this form results in non-convexity in the LEARCH algorithm (in addition to
non-convexity from replanning), as different initial cost functions C0 may produce significantly
different results.

5.4.3 Planners with Motion Constraints
Even though costs may only be defined over a 2D grid, many motion planning systems for mobile
robots still consider the kinematic and dynamic constraints of the vehicle. A common architecture
for mobile robot planning systems is to utilize a hierarchy of planners, ranging for long-range low
resolution planners to short-range high resolution planners. The simplest form of this architecture
utilizes a long-range, unconstrained ’global’ planner, and a short-range, kinematically or dynami-
cally constrained ’local’ planner [95, 101, 102]. Usually, a local planner does not plan all the way
to the goal; instead it produces a set of feasible short-range actions, and utilizes the global planner
to produce a path from the end of the action to the goal. Local planner generated plans are not
actually followed to completion, but instead are replanned at a high rate. In this way, the local
planner is not actually optimal, but instead performs something akin to a greedy search. More
detailed discussion of such receding horizon planning systems is delayed until Section 6.2.1.

If DR-LEARCH is to be used to learn costs for an onboard perception system, it is important
that they be learned with respect to the planning system that will be used onboard the robot. If a
hybrid architecture is used, DR-LEARCH must be implemented using the same configuration. It is
important that the decisions the planner is tasked with making during training are of the same form
that will be required during operation. For example, in the case of a greedy local planning system,
P t
∗ at each iteration should be the direct output of the planning system, not the concatenation of

multiple planning cycles (even though this is how the robot’s actual behavior is generated online).
This is necessary for blame and credit assignment; if at time t the expert swerved to avoid an
obstacle, then not only must the cost of the obstacle be sufficiently high, but the cost of the terrain
swerved over must be sufficiently low. Even if subsequent actions reduce the distance traveled
during the swerve, the planner must be willing to perform a larger turn at time t to begin that
maneuver.

Figure 5.7 provides a simplified scenario to demonstrate why this is so. In this example, a
local/global planning system is imagined that can only consider 3 possible local actions for avoid-
ing an obstacle: straight, hard left, or hard right. From the endpoint of each action, the global
planner plans straight to the goal. In contrast, a path around the obstacle from the unconstrained
global planner is also shown. If costs were trained with respect to the unconstrained planner, DR-

70

CHAPTER 5. TERRAIN PREFERENCES 5.4. APPLICATION

LEARCH would be satisfied with the cost on the obstacle when it is sufficiently high to make up
for the extra distance |Pg| − |Pc| necessary to go around the obstacle rather than over it. That is,
|Pg| < |Pc| + O, where O is the cost of the obstacle; O only needs to equal |Pg| − |Pc| + ε for
|Pg| < |Pc|+O. However, the constrained planner cannot consider Pg. It is therefore possible for
|Pl|, |Pr| > |Pc| + O > |Pg|; Pc remains the cheapest constrained option in this case. The result
would be that the constrained local planner would still choose to drive over the obstacle. By exten-
sion to more realistic planning systems, DR-LEARCH must utilize the lowest level (constrained)
planner when learning a cost function under such a hierarchy.

Unfortunately, there are also problems with training directly for constrained planners. As a
constrained planner only considers a discrete set of feasible actions, it is often the case that no
series of actions will ever exactly match the expert example. In this case, it is unclear when
DR-LEARCH has learned sufficiently to terminate. Terminating when the example path is lower
cost than the planned path will not suffice; in Figure 5.7 this could result in C(Pe) < C(Pc) <
C(Pl), C(Pr) (the colliding action would still be preferred). Running until the cost function itself
converges would therefore appear necessary. Unfortunately, this has its own side effects. Once
C(Pc) > C(Pl), C(Pr), DR-LEARCH will try to raise the cost along Pl or Pr. If the chosen
regressor is powerful enough to differentiate between the terrain under Pl or Pr and that under Pe,
it will raise those costs without proper cause. The end result is a potential addition of noise to
the final cost function, and poorer generalization. The degree of this noise depends on both the
resolution of the constrained planner and the expressiveness of the regressor.

What would be ideal is if for every instant in time along an example, it was known which
action from amongst a constrained planner’s action set the expert would choose, as well as the
unconstrained path that an expert would traverse from the end of the action. Collecting this infor-
mation during demonstration by an expert would be extremely tedious, requiring an expert action
selection and path generation at every planning cycle. However, a boostrapping approach can suf-
fice to provide the latter half of this requirement. Since LEARCH and its variants can be applied
directly to the unconstrained planner, and LEARCH seeks a cost function that reproduces expert
example behavior, a cost function learned for an unconstrained planner can be used to generate
examples for a constrained one. That is, the path an expert would take from the end of an action
can be predicted using the cost function learned under such unconstrained conditions [240], and
used to generate feasible examples for the unconstrained planner. Now, the problem is simply to
estimate which path in the constrained planners action set an expert would choose at each discrete
timestep. The boostrapped example path is then the concatenation of this action and the planned
path under the cost function learned for the unconstrained planner. For example, in Figure 5.7 the
example path would be transformed from Pe into Pl.

The easiest solution to this new problem is simply to record what action an expert executed at
each instant during demonstration, and somehow project this onto a constrained planner’s action
set (this approach is more concretely defined and applied in Chapter 6). However, this assumes that
the expert was paying attention to what actions were being executed as well as over what terrain
the robot was traversing. If this is not the case, then there is no reason to try and mimic the expert’s
actions, only where the expert traversed. While certainly not desirable, such conditions can occur
for difficult to control robotic systems (such as the Crusher vehicle used in these experiments).
Under such circumstances, the following heuristic is proposed. First, a cost function is learned
according to the unconstrained planner (as must be done anyway for boostrapping). As described
above, such a cost function will generally underestimate the cost necessary for the equivalent

71

5.5. EXPERIMENTAL RESULTS CHAPTER 5. TERRAIN PREFERENCES

eP

gP

Pl

Pr

Pc

example path

R
unconstrained plan

constrained plan

Figure 5.7: A simplified scenario where a kinematically constrained planner has only 3 possible
actions

constrained planner. Therefore, each potential constrained plan is scored by its average cost instead
of total cost. A plan with low average cost can not be said to be optimal, but it at least traverses
desirable (low cost) terrain. An additional penalty based on path length is then added to bias action
scores towards those that make progress towards the goal8. After scoring each action, that with
the lowest score is used as the new example action. This form of heuristic would be applicable
whenever an expert demonstration only provides information on what a robot should do, but not
specifically how to do it.

5.5 Experimental Results
Learning preference models by demonstration in the MMP framework was applied to the Crusher
autonomous system (Figure 5.8). The Crusher vehicle is capable of traversing rough, complex,
and unstructured terrain; as such understanding the relative benefits and tradeoffs of various terrain
type is of paramount importance to its autonomous operation. On Crusher, terrain data comes from
two primary sources. The first is prior, static, overhead data sources (satellite or aerial imagery,
aerial LiDAR, etc.). Overhead data is processed via an set of engineered feature extractors into
a set of feature maps, which are then mapped into a single, static costmap for an entire area of
operation. The second source of terrain data comes from the onboard perception system. The
onboard perception system processes local data from onboard camera images and LiDAR into a
dynamic stream of features. At a high data rate, these features are continuously mapped to costs
over a local area.

Costs from both sources are continuously fused into a single consistent costmap, which is then
passed to Crusher’s motion planning system. Fusing prior and onboard perceptual data at the cost
level allows for Crusher to continuously plan a path all the way from its current position to the goal.
Due to the dynamic nature of this cost data, the Field D* algorithm is utilized [239]. In order to
determine feasible local motion commands for Crusher, a variant of the RANGER system [59, 95]
is applied, utilizing the Field D* plan for global guidance (See Section 6.2.1 for more details). The

8the weight of this penalty can be automatically tuned by optimizing performance on a validation set, without any
hand tuning

72

CHAPTER 5. TERRAIN PREFERENCES 5.5. EXPERIMENTAL RESULTS

Figure 5.8: The Crusher autonomous mobile platform used in work to date. Crusher is capable of
cross-country traverse through rough, complex, and unstructured terrain

Figure 5.9: A high level block diagram of the Crusher Autonomy system

architecture of Crusher’s autonomy system is shown is Figure 5.9.
Early in Crusher’s development, the task of interpreting both static and dynamic perceptual

data into costs was accomplished via hand tuning, and was a source of frustration. This led to
the application of LEARCH to constructing costing models. This was first applied in the static
perceptual case (overhead data) utilizing the Field D* planner, and was next applied to the dynamic
case (onboard perceptual data) utilizing local/global hierarchical planning system. The remainder
of this section describes these experiments, along with offline results from each task.

Two metrics are used for evaluating offline performance. The first is the average loss along
a path. As the loss function is constructed to encode the similarity between two paths, the loss
between an example path and the corresponding planned path (over the interval [0,1]) is a measure
of how accurately expert behavior has been reproduced. A second measure is the cost ratio, defined
as the cost of an example path divided by the cost of the corresponding planned path. As this ratio

73

5.5. EXPERIMENTAL RESULTS CHAPTER 5. TERRAIN PREFERENCES

(a) Simulated Examples (b) Expert Drawn Examples

Figure 5.10: Learning simulated and expert drawn example paths. Test set performance is shown
as a function of number of input paths

approaches 1, it indicates the current cost function hypothesis is approaching consistency with the
expert demonstration. The cost ratio as opposed to cost difference is used to account for the effect
of scaling on the cost function (with the cost difference, simply scaling the costs closer to zero
would improve the metric, without improving the relative performance).

5.5.1 Learning to Interpret Overhead Data

In order to verify LEARCH and R-LEARCH under ideal conditions, tests were first run on simu-
lated examples. A known (arbitrary) cost function was used to generate a cost map over a single
environment from its overhead features; this cost map was used to produce paths between ran-
dom waypoints. Different numbers of these paths were then used as input for LEARCH, and the
performance measured on an a large independent validation set of paths (generated in the same
manner.)

Figure 5.10(a) shows the results using both the balanced and standard weighting schemes (Sec-
tion 5.3.1). As the number of training paths is increased, the test set performance continues to
improve. Each input path further constrains the space of possible cost functions, bringing the
learned function closer to the desired one. However, there are diminishing returns as additional
paths overlap to some degree in their constraints (see Section 7 for more on this effect). Finally,
the performance of the balanced and standard weighting schemes is similar. Since all paths for this
experiment were generated by a planner, they are by definition optimal under some metric, and
therefore both achievable and consistent with each other.

Next, experiments were performed with expert examples (both training and validation) drawn
on top of overhead data maps. Figure 5.10(b) shows the results of an experiment of the same
form as that performed with simulated examples. Again, the validation set cost ratio decreases
as the number of training examples increases. However, with real examples there is a significant
difference between the two weighting schemes; the balanced weighting scheme achieved signif-
icantly better performance. This demonstrates both how human demonstration is naturally noisy
and imperfect, and how R-LEARCH is robust to this fact through a balanced regression.

74

CHAPTER 5. TERRAIN PREFERENCES 5.5. EXPERIMENTAL RESULTS

0 5 10 15
0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Corridor Size (in cells)
V

al
id

at
io

n
Lo

ss

Figure 5.11: Validation loss as a function of the corridor size. Using corridor constraints improves
performance as long as the corridor is not too large

Another series of experiments were performed to determine the effect of performing replanning
with corridor constraints (Section 5.3.2). For these experiments, the performance of learning was
measured with validation loss, to indicate how well the planned paths matched the examples. When
measuring loss on the validation set, no replanning was performed. Therefore, in order to provide
a smoother metric, the specific loss function used was a radial basis function between states on the
current path P∗ and the closest state on the example Pe, with a scale parameter σ2

L(P∗, Pe) =
1

|P∗|
∑
x∈P∗

[1− exp (min
xi∈Pe

[‖x− xi‖2]/σ2)] (5.5.1)

Using a loss function of this form provides a more analog metric than a Hamming style loss as
previously described. Figure 5.11 shows the results on the validation set as a function of the
corridor size (in cells). Small corridors provide an improvement over no corridor, demonstrating
how small scale smoothing can improve generalization. However, as the corridor gets too large,
this improvement disappears; large corridors essentially over-smooth the examples and begin to
miss critical information.

Finally, experiments were performed in order to compare the offline performance of learned
costmaps with hand tuned ones. A cost map was trained off of satellite imagery for an approx-
imately 60 km2 size environment. A hand tuned costmap had been previously produced for this
same test site to support Crusher operations. This map was produced by performing a supervised
classification of the imagery, and then manually determining a cost for each class [105]. A subset
of both maps is shown in Figure 5.13. The two maps were compared using a validation set of
paths generated by a Crusher team member not directly involved in the development of overhead
costing. The average validation loss using the learned map was 23% less than the hand tuned map
(Figure 5.12), thus demonstrating superior generalization of the learned approach.

Online validation of the learned costmaps was also achieved during Crusher field testing. These
field tests consisted of Crusher autonomously navigating a series of courses, with each course
defined as a set of widely spaced waypoints. Courses ranged in length up to 20 km, with waypoint
spacing on the order of 200 to 1000 m. These tests took place at numerous locations across the
continental U.S., each with highly varying local terrain characteristics, and sizes ranging from tens

75

5.5. EXPERIMENTAL RESULTS CHAPTER 5. TERRAIN PREFERENCES

Engineered Learned
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

V
al

id
at

io
n

Lo
ss

Figure 5.12: Performance comparison between a learned and hand tuned prior costmap. The
learned map produced behavior that better matched an independent validation set of examples.

Experiment Total Net Avg. Total Cost Max Cost
Distance(km) Speed(m/s) Incurred Incurred

Experiment 1 6.63 2.59 11108 23.6
Learned
Experiment 1 6.49 2.38 14385 264.5
Hand Tuned
Experiment 2 6.01 2.32 17942 100.2
Learned
Experiment 2 5.81 2.23 21220 517.9
Hand Tuned
Experiment 2 6.19 1.65 26693 224.9
No Prior

Table 5.1: Results of experiments comparing learned to hand tuned prior maps. Indicated costs are
from the vehicle’s onboard perception system.

to hundreds of square kilometers.
During field testing in 2005 and 2006, prior maps were primarily generated as described in

[105]. An initial implementation of the LEARCH algorithm was also demonstrated during smaller
tests in 2006. During 2007 and 2008, R-LEARCH became the default approach for producing cost
maps from prior data. Overall, R-LEARCH maps were used during more than 600 km of sponsor
monitored autonomous traverse, plus hundreds of kilometers more of additional field testing. This
demonstrated that a learned cost function was sufficient for use online a complex robotic system.

In addition, two direct online comparisons were performed. These two tests were performed
several months apart, at different test sites. During each experiment, the same course was run twice
times, varying only the prior cost map given to the vehicle between runs. The purpose of these ex-
periments was to demonstrate that learning a cost function not only generalized better with respect

76

CHAPTER 5. TERRAIN PREFERENCES 5.5. EXPERIMENTAL RESULTS

Figure 5.13: A 10 km2 section of a Crusher test site. From top to bottom: Quickbird imagery,
Learned Cost, and Hand Tuned Cost

77

5.5. EXPERIMENTAL RESULTS CHAPTER 5. TERRAIN PREFERENCES

to initial route planning, but also with respect to dynamic replanning online. Each run was scored
according to the total cost incurred by the vehicle according to its onboard perception system.
At the time of these experiments, the perception system made use of a manually constructed and
tuned cost function. However, this function was shown through numerous experiments [101, 102]
to result in a high level of autonomous performance; therefore it is a valid metric for scoring the
safety of a single autonomous run.

The results of these experiments are shown in Table 5.1. In both experiments, the vehicle
traveled farther to complete the same course using learned prior data, and yet incurred less total
(online) cost. Over both experiments, with each waypoint to waypoint section considered an in-
dependent trial, the improvement in average cost and average speed9 is statistically significant at
the 5% and 10% levels, respectively. This indicates that the terrain the vehicle traversed was on
average safer when using the learned prior map, according to its own onboard perception system.
This normalization by distance traveled is necessary because the learned prior and hand tuned per-
ception cost functions do not necessarily agree in what they consider unit cost. Additionally, the
maximum cost incurred at any point along an experiment is also provided; for both terrains, the
maximum is significantly lower when using the learned prior data. The course for Experiment 2
was also run without any prior data; the results are presented for comparison to this scenario [105].

In addition to improving vehicle performance, using learned cost functions also reduced the
necessary amount of human interaction. When preparing for a Crusher test using hand tuned
costmaps, performing a supervised classification and tuning the cost function would take on the
order of 1-2 days. In contrast, when using learned costmaps drawing example paths would require
on the order of 1-2 hours10. In a timed head-to-head experiment on a small 2 km2 test site, pro-
ducing a supervised classification required 40 minutes of expert involvement, and tuning a cost
function required an additional 20 minutes. In contrast, producing example paths required only 12
minutes. On this same experiment, the learned costmap had a validation loss of 0.43, compared
to 0.56 for the hand tuned map. This demonstrates that the learned approach results in superior
performance, with less human interaction time (Figure 5.14).

An additional test was performed in which the same training set of example paths was used to
learn a cost function only from the results of the supervised classification; in this case the learned
map had a validation loss of 0.52. This demonstrates two important points. The first is that even
when the problem of learning a cost function was reduced to solely a low dimensional parameter
tuning problem (in this case 5 dimensions), the automated approach was able to perform better
than manual tuning, and with less human interaction. The second point is that reducing the task
to a lower dimensional problem (labeling for the supervised classification) required additional
interaction, and that this feature space compression resulted in a loss of useful information (as the
validation loss was better when learning from the full feature space as opposed to the compressed
one).

78

CHAPTER 5. TERRAIN PREFERENCES 5.5. EXPERIMENTAL RESULTS

Engineered
Learned (w/class)

Learned(wo/class)

0

10

20

30

40

50

60

70

0

0.1

0.2

0.3

0.4

0.5

0.6

Loss
Time

T
im

e
(m

in
ut

es
)

V
al

id
at

io
n

Lo
ss

Figure 5.14: Performance comparison between 3 approaches to generating prior costmaps.
LEARCH not only performs better and faster at the task of determining costs of different semantic
classes, it also does a better job at interpreting raw data (for the purpose of costing) than semantic
classification.

5.5.2 Learning to Interpret Online Perceptual Data
Next, DR-LEARCH was applied to the task of learning a cost function for Crusher’s onboard per-
ception system (Figure 5.15). Training data in the form of expert example behaviors was gathered
by having Crusher’s safety operator RC the vehicle through sets of specified waypoints. Different
training examples were collected over a period of months in varying locations and weather condi-
tions, and with 3 different operators at one time or another. During data collection, all raw sensor
data was logged along with the example path. Perceptual features were then produced offline by
feeding the raw sensor data through Crusher’s perception software. In this way, the base perception
system and its features could be modified and improved without having to recollect new training
data; the raw data is just reprocessed, and a cost function learned for the new features.

This set of examples was first used to perform a series of offline experiments to validate the
dynamic extension of LEARCH. Loss on a validation set was used as the metric, to measure
how well planned behavior recreated example behavior. These results are presented in Figure
5.16. The left graph again demonstrates the effectiveness of performing balanced as opposed
to unbalanced regression, as the balanced version has superior validation performance. The center
graph further demonstrates the utility of replanning with corridor constraints. With a small corridor
size, the algorithm is able to smooth out some of the noise in example human behavior, and improve
generalization. As the corridor size increases, the algorithm begins to over-smooth, resulting in
decreasing validation performance. This also demonstrated how validation data can be used to
automatically determine the optimal corridor size.

An experiment was also performed to assess the effectiveness of filtering out inconsistent
timesteps. A single expert behavior was used to learn a cost function, first with no filtering, and
then with approximately 10% of its timesteps automatically filtered. As would be expected, the

9The vehicle’s speed is controlled online based on the proximity of (perception reported) obstacles; therefore the
safer the terrain the faster the vehicle will attempt to drive

10Neither of these ranges include the necessary effort to process raw overhead data into feature maps, as this process
is a shared precursor to both approaches

79

5.5. EXPERIMENTAL RESULTS CHAPTER 5. TERRAIN PREFERENCES

(a) Left Camera Image (b) Right Camera Image

(c) Max Object Height (d) Density in Wheel Region (e) Density in Hull Region

(f) Density above Vehicle (g) Solid Classification (h) Learned Cost

Figure 5.15: An example of learned perception costs from a simple scene, depicted in (a),(b).
Processing of raw data results in perceptual features (a subset of which are shown in (c) - (g))
such as perceived object density at various heights from the ground, or classification into solid or
vegetative objects. These feature are then mapped into cost (h) by a learned function.

performance on the remaining 90% of the training set improved after filtering (Figure 5.17). How-
ever, performance on the validation set also improved slightly. This demonstrates that filtering out
inconsistent timesteps not only improves performance on examples for which these timesteps were

80

CHAPTER 5. TERRAIN PREFERENCES 5.5. EXPERIMENTAL RESULTS

0 20 40 60 80 100 120 140 160 180 200
0.55

0.6

0.65

0.7

0.75

0.8

iteration

va
lid

at
io

n
lo

ss

unbalanced
balanced

0 20 40 60 80 100 120 140 160 180
0.588

0.59

0.592

0.594

0.596

0.598

0.6

0.602

0.604

corridor size in cm

va
lid

at
io

n
lo

ss

0 1 2 3 4 5 6 7 8 9

0.57

0.575

0.58

0.585

0.59

0.595

0.6

0.605

0.61

Number of Regression Trees

va
lid

at
io

n
lo

ss

Figure 5.16: Results of offline experiments on logged perception data. Left: Validation Loss
during learning for the balanced and standard weighting Center: Validation Loss as a function of
the replanning corridor size Right: Validation Loss as a function of the number of regression trees.

Training Loss Validation Loss
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

With Filtering
No Filtering

Figure 5.17: Comparison of performance with and without filtering. Filtering out inconsistent
timesteps improves performance on both training example which were inconsistent with the filtered
examples, as well as on an independent validation set.

known to be inconsistent, it also improves generalization to unseen examples.
As cost evaluations in an onboard perception system must be performed in real time, the com-

putational cost of an evaluation is an important consideration. As described in (Section 5.4.1),
using only linear regressors is beneficial from a computational standpoint, and feature learning can
be used to improve the complexity of the cost function if necessary. Figure 5.16 (Right) shows
validation loss as a function of the number of added features learned using simple regression trees.
At first, additional features improves the validation performance; however, eventually too many
features can cause overfitting.

Next, the collected training set was used to learn a cost function to run onboard Crusher. Orig-
inally, Crusher used a hand tuned perception cost function. During more than 3 years of Crusher
development, this cost function was continually redesigned and retuned, culminating in a high
performance system [101, 102]. However, this performance came at a high cost in human effort.
Version control logs indicate that 145 changes were made to just the structure of the model map-
ping perceptual features to costs; additionally more than 300 parameter changes were checked in

81

5.5. EXPERIMENTAL RESULTS CHAPTER 5. TERRAIN PREFERENCES

(a) Max Object Height (b) Density in Hull Region

(c) Learned Cost (d) Hand Tuned Cost

Figure 5.18: A comparison of the learned vs hand tuned cost function for Crusher’s perception
system. In this scene, the area directly in front of Crusher contains no ground level obstacle, but
does contain overhanging tree canopy. The learned cost function produces a reasonable low cost,
while the hand tuned cost function produces a higher cost.

(untold more were tried at one point or another, requiring verification on logged data or through
actual vehicle performance). As each committed change requires significant time to design, imple-
ment, and validate, easily hundreds of hours were spent on manually constructing the cost function.
In contrast, the time to collect the final training set for learning by demonstration required only a
few hours of human time (spread over several months). This seemingly small amount of human
demonstration is sufficient due to the numerous constraints implied by each example behavior: the
approximately 3 kilometers of demonstration provides hundreds of thousands of examples of states
to traverse, and millions more examples of states that were avoided.

Crusher’s perception system actually consists of two modules: a local perception system that
produces high resolution cost data out to 20m, and a far range perception system that produces

82

CHAPTER 5. TERRAIN PREFERENCES 5.5. EXPERIMENTAL RESULTS

medium resolution cost data out to 60m. The far range system utilizes near-to-far learning as
described in [103, 104] for learning a far range cost function from near range cost data. Therefore,
when the system learns online from scratch, the near range cost function implicitly defines the far
range cost function. For this reason, learning by demonstration was only used to learn the near
range function; the far range function would automatically adapt to whatever near range function
was utilized.

A comparison of the learned and hand tuned cost functions is shown in Figure 5.18. In this
scene, Crusher is facing an open trail with vegetation to its left and a tree on its right. The tree
canopy hangs over the trail, but does not drop down to the vehicle height. The learned cost function
considers this overhang a low cost region; the associated behavior would be to continue down the
trail. However, the hand tuned cost function considers this area a medium cost, enough to force
Crusher temporarily off the trail. The cause of this increased cost is a hand coded rule that was
intended to force Crusher to give a wider berth to large areas of high density obstacles. However,
in this case the rule false positives, and incorrectly increases the cost of an easily traversable patch
of terrain. This exemplifies one of the core problems with hand tuning of preference models:
the inability of human experts to properly consider and validate against more than a handful of
examples can lead to overfitting.

The performance of different perception cost functions was quantitatively compared through
more than 150 km of comparison trials. The final results comparing 4 different cost functions
are presented in Table 5.2. In addition to the hand tuned cost function, 3 learned cost functions
were compared: one using the global planner, one using the local planner without boostrapping a
feasible example, and one using the local planner with such bootstrapping (Section 5.4.3). Since
the expert demonstrators were only concerned with generating training paths that drove over the
correct terrain11, the desired example action was estimated using the heuristic described in Section
5.4.3.

As the cost function itself is the variable being tested, cost can not be used as a metric for com-
paring the safety or performance of each system. Therefore, various proprioceptive statistics were
recorded to offer an approximate quantitative description of safety. The number of safety related
e-stops was also recorded. The statistics for each learned system were then compared on a way-
point by waypoint basis to the hand tuned system, to test for statistical significance. While it is not
possible to convert these numbers into a single quantitative metric for comparison12, it is possible
to make a broad relative comparison between systems by observing individual statistics. That is,
if the majority of the dimensions for comparison all provide evidence supporting the benefit of a
particular system, then the relative weighting amongst such dimensions is reduced in importance.

In comparison to the hand tuned system, the cost function learned for the global planner re-
sulted in overly aggressive behavior. As discussed in Section 5.4.3, learning in this manner does
not result in sufficiently high costs for Crusher to avoid obstacles online (Figure 5.7); the empirical
result is that Crusher drives faster, turns less, and backs up less, while suffering from increased
mobility risk (in the form of twice the rate of safety e-stops). In contrast, the cost function learned
for the local planner (without bootstrapping) resulted in performance very similar to that of the al-
ready high performance hand tuned system; The only significant difference was the learned system

11For example, the experts would often perform short point turns or back and forth ’wiggle’ maneuvers to squeeze
Crusher through tight spaces, knowing that only where they drove and not how they drove was being used for training

12doing so would require a manually tuned and essentially arbitrary weighting, the very problem this work seeks a
solution to

83

5.5. EXPERIMENTAL RESULTS CHAPTER 5. TERRAIN PREFERENCES

System Avg Dist Avg Cmd Avg Cmd Avg Lat Dir Switch Avg Motor
Made Good (m) Vel (m/s) Ang Vel.(◦/s) Vel (m/s) Per m Current (A)

Hand Tuned 130.7 3.24 6.56 0.181 0.107 7.53
Global 123.8* 3.34* 4.96* 0.170* 0.081* 7.11*
Local wo/bootstrap 127.3 3.28 5.93* 0.172* 0.100 7.35
Local w/bootstrap 124.3* 3.39* 5.08* 0.170* 0.082* 7.02*

System Avg Avg Avg Vert Avg Lat Susp Safety
Roll(◦) Pitch(◦) Accel (m/s2) Accel (m/s2) Max∆ (m) E-stops

Hand Tuned 4.06 2.21 0.696 0.997 0.239 0.027
Global 4.02 2.22 0.710* 0.966* 0.237 0.054*
Local wo/bootstrap 4.06 2.22 0.699 0.969* 0.237 0.034
Local w/boostrap 3.90* 2.18 0.706* 0.966* 0.234* 0.030

Table 5.2: Averages over 295 different waypoint to waypoint trials per perception system, totaling
over 150km of traverse. Statistically significant differences (from hand tuned) denoted by *

turned slightly less (as indicated by lower average angular velocity and lateral speed/acceleration).
Boostrapping a feasible example path by using the cost function learned for the global plan-

ner resulted in a system that also maintained a seemingly equal level of safety to the hand tuned
system; the difference in safety e-stops was not statistically significant, but there was a significant
decrease in the wear on Crusher in the form of lower motor current draw and less suspension travel.
However, this equal safety was achieved with seemingly more aggressiveness than the hand tuned
cost function. This is indicated by a statistically significant decrease not only in angular velocity
and lateral movement, but also in the amount of backing up, with a significant increase in average
speed. As discussed in Section 5.4.3, the effect of the boostrapping stage is to reduce noise in the
cost function; the reduction of this noise allows the vehicle to alter its behavior less in the face of
false positive high cost regions, while still avoiding true obstacles. The overall result is a slight
performance improvement, achieved with orders of magnitude less human effort.

84

Chapter 6

Learning Action Preferences from Expert
Demonstration

Chapter 5 focused on the problem of deciding where a robot should drive; that is, on determining
relative costs and preferences of various patches of terrain. However, this is not the only domain
where determining such preferences for a mobile robot can be tedious and time consuming. There
is also the problem of determining how to drive; that is, defining relative preferences over various
robot actions and maneuvers. Simply determining which actions to prefer at first may appear as
more an issue of style than safety or performance. In structured environments, this is true to a
degree. For example, if it is well known where a robot can and cannot traverse, than safety can be
further insured by limiting allowable actions to those that are inherently safe (e.g. no hard turns).

However, in semi or unstructured environments, this is no longer the case. While ideally a
robot would never put itself in a situation where there is no inherently safe action available, this can
happen due to uncertainty in both perception and control. For example, imagine a robot traveling
at high speed that detects a dangerous rock. Ideally, a soft swerve action would be available to
avoid the rock. But what if the rock is detected too late? Now the only options available are
a hard swerve (that may miss the rock but could roll the vehicle), to attempt a hard break (that
may involve a loss of control) or to hit the rock (that may result in vehicle damage). Making
such decisions requires weighing preferences and tradeoffs not just over terrain patches, but also
the various available actions. Therefore, ensuring safety requires not just proper modeling of the
consequences actions, but also proper preference modeling. This issue becomes more complex
when additional considerations aside from safety are added. For instance, there may be rules of
the road to obey with varying degrees of importance. There may be a desire to ensure a smooth
ride (e.g. if an automated vehicle has passengers, or to reduce wear on the vehicle). There may
also be issues of performance, that is weighing the tradeoffs involved in driving faster or slower
over certain terrain types. Figure 6.1 demonstrates how differing preferences for or against certain
actions can result in very different end robot behavior, even in a very simple scenario.

As with terrain costing, the issue of learning preferences over planner actions for mobile robots
has not received much focus. When it has, it has mostly been in the context of control and path
tracking [176, 217, 218, 209, 241, 242]. A notable exception is [243], which investigated the use
of learning through demonstration for deriving different driving styles for an Urban Challenge ve-
hicle; however, this work took place in simulation. Additional recent work [244, 245] has explored
the idea of learning behavior styles for a robot or autonomous agent that take into account social

85

6.1. EXTENDING LEARCH TO STATE-ACTION PAIRS CHAPTER 6. PLANNER PREFERENCES

Figure 6.1: Examples of different ways a robot could drive to a goal directly behind it, each one
implying a different preference for forward vs reverse, hard turns vs soft turns, etc.

considerations [129]; this work has also been confined to simulation to date. However, while the
planner specific problem has received at least some focus, the wider problem of building consistent
preference models over both terrains and actions has not been previously addressed. As in the case
of fusing multiple sensors, various preference models need to be constructed in parallel, in order
to ensure correct behavior over a range of scenarios.

6.1 Extending LEARCH to State-Action Pairs
The derivation of the MMP framework in Section 5.1 considered cost functions that were only
defined over states, and defined a plan as a sequence of states. However LEARCH can be extended
to costs over states and actions simply by treating each state-action pair as a planning state. Instead
of generating plans through S, plans are now generated through S × A for some space of actions
A. A path P is now a sequence of tuples (s, a), s ∈ S, a ∈ A. This new definition of a path also
requires a new definition of a loss function, which must now compare elements of S ×A.

Additionally two features spaces must now be considered : one defined over states FS , and one
defined over actions FA. Therefore, for every (s, a) ∈ P , consider the associated feature vectors
Fs ∈ FS and Fa ∈ FA, and define the cost as C(Fs, Fa) where C : FS ×FA → R+.

By simple substitution (5.1.10) becomes

minimize O[C] = λREG(C) +
∑

(s,a)∈Pe

C(Fs, Fa) − min
P̂

 ∑
(s,a)∈P̂

(C(Fs, Fa)− Le(s, a))


(6.1.1)

A new derivation of the various LEARCH algorithms could follow straightforwardly from this
objective functional. However, the dimensionality of the feature space would be an issue. Specif-
ically, it would be hard for a cost function to generalize well over FS × FA. For example, if an

86

CHAPTER 6. PLANNER PREFERENCES 6.1. STATE-ACTION PAIRS

expert behavior involves a particular (se, ae), instead of the hypothesis (s∗, a∗) it would be vary
hard for LEARCH to determine if this decision was made with respect to the states or the actions.
In order to make a well-informed decision, LEARCH would require additional demonstrations
over similar terrain with different action choices, and vice versa. While large degrees of expert
demonstration may provide numerous examples throughout this higher dimension space, the num-
ber of meaningful constraints would also have to be considerably higher. Therefore learning cost
functions defined over FS × FA, while feasible, would require a very large amount of carefully
chosen training data that could be very time consuming to collect.

Strictly enforcing linearity in cost functions would be one possible solution to this problem, as
it would remove the possibility of interdependencies between state and action features. However,
this would negate the non-linear advantage of LEARCH. Instead, one could consider enforcing that
there be no non-linear dependencies between state and action features. Therefore, a partitioning of
the feature space is proposed. Rather than consider general cost functions over the feature space
FS ×FA, only cost functions of the form C(Fs, Fa) = Cs(Fs) + Ca(Fa) will be considered. That
is, a separate cost function can be learned over states (terrains) and actions (maneuvers). This
partitioning will allow better generalization over state and action features independently, and in
turn will require less training data.

Along with concerns about training time and data collection, there is an even more practical
reason for enforcing such a partitioning: it adheres to the architecture that most mobile robotic
systems currently utilize. Features describing patches of terrain are usually generated by one or
more perception components, while features describing various actions are generated by one or
more planning components. Planning components then need cost information over both states and
actions. If cost was generated by one cost function with non-linear interdependencies, planning
components would need all raw perceptual feature data; given the complexity and dimensionality
of perceptual features that are often generated, this could easily result in two orders of magnitude
more information sharing between components 1. Compressing all relevant information into a
single cost value per state solves this problem.

However, there may at times be individual perceptual features that are useful for determining
preferences over actions. Features relevant to speed control are an obvious case; certain terrain
types (such as ditches) may be easily traversable at low speeds but quite dangerous at high speeds.
A single cost value cannot encode this distinction. However, there is no reason that certain per-
ceptual features could not be considered as part of both feature vectors2. Therefore, FS and FA
should not be considered as strictly independent feature spaces, but rather simply as the features
provided to each preference model.

With this partitioning of the feature space, the new objective is

minimize O[Cs, Ca] = λsREG(Cs) + λaREG(Ca) +
∑

(s,a)∈Pe

Cs(Fs) + Ca(Fa)

− min
P̂

 ∑
(s,a)∈P̂

(C(Fs) + Ca(Fa)− Le(s)− Le(a))

 (6.1.2)

1 Such information sharing was at one point desired for Crusher in order to allow certain forms of online learning;
however, the necessary data rate was calculated to almost completely saturate the available communication bandwidth

2Features derived from a physical simulation would be obvious candidates

87

6.1. STATE-ACTION PAIRS CHAPTER 6. PLANNER PREFERENCES

As the Cs and Ca terms are independent, this leads to independent functional gradients3

∇OF [Cs] =
∑

(s,a)∈Pe

δF (Fs) −
∑

(s,a)∈P∗

δF (Fs)

∇OF [Ca] =
∑

(s,a)∈Pe

δF (Fa) −
∑

(s,a)∈P∗

δF (Fa) (6.1.3)

P∗ = arg min
P

∑
(s,a)∈P

(Cs(Fs) + Ca(Fa)− Le(s)− Le(a))

Each independent functional gradient can be projected onto its own direction set as in (5.1.13),
leading to two new regressors Rs and Ra defined over FS and FA respectively. From this point
onward, straightforward application of the LEARCH algorithm with functional gradient descent
would yield cost functions of the form

C(Fs, Fa) =
∑
i

ηi[R
i
s(Fs) +Ra(Fa)]

=
∑
i

ηiR
i
s(Fs) +

∑
i

ηiR
i
a(Fa)

= Cs(Fs) + Ca(Fa)

However, if instead of performing straight gradient descent, exponentiated functional gradient
descent were considered, this would yield cost functions of the form

C(Fs, Fa) = exp(
∑
i

ηi[R
i
s(Fs) +Ra(Fa)])

= exp(
∑
i

ηiR
i
s(Fs) +

∑
i

ηiR
i
a(Fa))

= exp(
∑
i

ηiR
i
s(Fs)) exp(

∑
i

ηiR
i
a(Fa))

= Cs(Fs)Ca(Fa) (6.1.4)

Applying exponentiated functional gradient descent results in a final cost function that is the re-
sult of multiplying the state and action terms, instead of simply adding them. Multiplying cost
functions has certain advantages over adding them, as it preserves relative differences, instead of
absolute differences. Multiplying independent state and action cost functions would insure that the
cost ratio of action a1 to a2 is independent4 of the terrain features encountered, and vice versa. This
is important for generalization; that is if (all else being equal) a1 is preferable to a2, maintaining
the relative costs ensures this preference will also be reflected (when the actions traverse similar
terrain).

The above formulation offers the possibility of learning cost functions both over states and
actions via a single set of expert demonstrations. That is, expert demonstration could be used
to learn how to both interpret perceptual data, while at the same time demonstrating the proper

3as before regularization is ignored for clarity
4As before, specific terrain dependencies can be accounted for by augmenting the action feature vector

88

CHAPTER 6. PLANNER PREFERENCES 6.2. LEARNING PLANNER PREFERENCE MODELS

tradeoffs with respect to various actions. Such an approach would require little to no additional
expert demonstration beyond that which is already necessary for learning to interpret perceptual
data.

6.2 Learning Planner Preference Models

Without loss of generality, first consider the case where Cs is known a priori. Given a known Cs,
equation (6.1.3) reduces to

∇OF [Ca] =
∑
a∈Pe

δF (Fa) −
∑

(s,a)∈P∗

δF (Fa) (6.2.1)

P∗ = arg min
P

∑
(s,a)∈P

(Cs(Fs) + Ca(Fa)− Le(s)− Le(a))

As before, the functional gradient indicates that to minimize the objective, the cost of actions in the
example plan should be lowered, and the cost of actions in the current plan should be raised. In the
same manner as equation (5.1.13), Ra can be computed as a projection of the functional gradient,
and used as an update step for exponentiated functional gradient descent.

This formulation assumes that a plan consists of a sequence of state-action tuples in S × A
that lead all the way from a start state to a goal state. Previous formulation have general assumed
that S = Rn ; that is, that the state of the robot was simply its location. However, a motion
planner operating purely in this state space will not reliably generate feasible plans for a mobile
robot (assuming it has non-holonomic constraints). At the very least, motion planners for ground
vehicles will often operate in SO(2) to take into consideration the vehicle’s current heading. Aug-
menting state with the current linear and angular velocity is also common; augmentation with
accelerations is becoming more so. Efficient motion planning in such higher dimensional kino-
dynamic state spaces is more complex and expensive, and is an entire field of research unto itself
[36, 37, 155, 246].

6.2.1 Receding Horizon Motion Planners

The added cost of planning in high dimensions can cause problems when motion planning must
be performed in real time at a high rate. The most common solution is to only compute motion
plans out to a certain distance or time horizon. A heuristic value is used from the end of each
possible plan to estimate the remaining cost-to-go. This approach is similar to the idea of receding
horizon control, and is based on the same logic; namely, it is extremely unlikely that a complex
trajectory will ever be executed exactly as planned (due to control error and/or state estimation
error); therefore future sections of a trajectory will need to be replanned anyway. In addition, in
the mobile robot domain direct sensing range is generally limited to some horizon; therefore any
plan outside said horizon is using stale information. Such an approach has been used implicitly for
quite some time. For example, the behavior based approach of the ALV [42, 43] would execute
a single action aimed at minimizing a heuristic cost-to-go (in this case distance). Over time, this

89

6.2. PLANNER PREFERENCES CHAPTER 6. PLANNER PREFERENCES

(a) No Preference Model (following heuristic) (b) Demonstrated Desired Behavior

Figure 6.2: An example where just following the heuristic of a single arc motion planner leads to
undesirable behavior. Repeatedly choosing reverse arcs minimizes the cost-to-go at each timestep,
as the cost-to-go does not reflect the cost of driving in reverse. Especially for robots that only have
sensors in front, driving forward is heavily preferred.

approach has become more formalized. In addition, more complex heuristics have been used
including using the output of a lower dimensional planner [95].

Crusher’s planning system described in Section 5.4.3 follows exactly this setup. The local
motion planner evaluates a finite set of a actions, in this case constant curvature arcs, out to a
set horizon. Field D* is used as a heuristic to estimate the cost-to-go from the state at the end
of each action. As previously described such single arc motion planners, while simplistic, have
proven quite effective for mobile robots in complex terrain [95, 101, 102, 124, 120, 121, 122, 127].
However, the robust operation of such a planning system is often dependent on a well tuned model
specifying preference over possible planner actions. For example, it is common to prefer softer
turns to harder ones (all else being equal), or to prefer driving forward than in reverse (especially
if the robot does not have rear sensors).

Aside from issues of driving style (which generally affect robot performance at the margin),
planner preference models can also affect the most basic behavior of a robot. For example, imagine
the simple scenario show in Figure 6.2. In such a case, the lowest cost action according to the
heuristic is to drive in reverse; this action will be repeated all the way to the goal. Even if the
planner preference model heavily penalizes reverse actions in favor of forward ones, the reverse
actions could still have a cost advantage. The source of this issue is the cost-to-go from the end
of each arc. If the cost-to-go were accurate, than it would reflect either the cost of turning around
to drive forward to the goal, or of driving in reverse the entire way. However, the cost-to-go is
just a heuristic (under this architecture the Field D* cost), and does not take this additional turning
into account. Computing the exact cost-to-go would require solving the original high dimensional
planning problem, the difficulty of which was the reason for a receding horizon approach in the
first place. The end result is that simply choosing actions that minimize the cost-to-go will not
always achieve desirable behavior

An alternative solution to solving the highest dimensional planning problem is to use a planner
for the heuristic that operates in at least SO(2), but not necessarily the full state space. In practice,
there is nothing wrong with this approach as long as it is computationally feasible, and it has
been demonstrated on fielded systems [36, 247]. However, without solving the full dimensional

90

CHAPTER 6. PLANNER PREFERENCES 6.2. PLANNER PREFERENCES

Figure 6.3: An action set for a single arc motion planner, with 21 forward arcs and 9 reverse arcs.

planning task, there will always remain a possibility of undesirable behavior due to this mismatch.
Therefore, the rest of this chapter will use Crusher’s single arc motion planner with a Field D*
heuristic as a proof of concept for higher dimensional receding horizon planning architectures. The
high performance achieved with such local/global hybrid architectures on multiple robotic vehicles
validates this challenge as sufficient from which to infer meaningful results; that is, preference
model construction techniques that work on this planning architecture will generalize to more
complex ones.

6.2.2 Learning Preference Models for the Single Arc Motion Planner

The single arc motion planner can be formalized as follows. Each arc is parameterized by its
direction5 (forward or reverse) and its curvature, resulting in an action space of

A = {−1, 1} × [−MAXCURV,MAXCURV]

where MAXCURV is the maximum curvature of the vehicle. In practice, rather than a continuous
parameterization over curvature, a discrete set of arcs is chosen in this interval. Each action consists
of following the associated arc to a set horizon. Figure 6.3 shows an example action set.

Given a current state x and a goal state g, the local planner chooses the optimal action A∗ ∈ A
according to

A∗ = arg min
a∈A

Ca(Fa)[
∑

s∈Ta,x,g
Cs(Fs)] (6.2.2)

T a,x,g = {s ∈ ARC(a, x)}
⋃
{s ∈ DSTAR(ARCEND(a, x), g)}

T a,x,g is the set of states along the trajectory that the planner expects to follow should it choose
action a. It consists of the the set of states along arc a, along with the states along the optimal
D* path from the end of a to the goal. The sum state based cost is multiplied by the action of the
(single) action Ca(Fa) as in equation (6.1.4).

If a desired example action Ae is provided at x, and Cs is assumed to already be known, then

5For single arc motion planners, velocity control is often decoupled from arc selection

91

6.2. PLANNER PREFERENCES CHAPTER 6. PLANNER PREFERENCES

the standard MMP (hard) constraint can be written as(
(Ca(FA∗)− Le(A∗)) +

∑
s∈TA∗,x,g

Cs(Fs)

)
≥

(
Ca(FAe) +

∑
s∈TAe,x,g

Cs(Fs)

)
(6.2.3)

As in Section 5.1, adding a margin term and accounting for the possibility of not being able to
meet all constraints via slack penalties results in a constrained optimization similar to (5.1.5)

minimize O[Ca] = λREG(Ca) + ζ (6.2.4)
subject to the constraint(

(Ca(FA∗)− Le(A∗)) +
∑

s∈TA∗,x,g
Cs(Fs)

)
−

(
Ca(FAe) +

∑
s∈TAe,x,g

Cs(Fs)

)
+ ζ ≥ 0

moving the constraints into the optimization yields an objective functional mirroring (5.1.10) and
(6.1.1)

O[Ca] = λREG(Ca) +

(
Ca(FAe) +

∑
s∈TAe,x,g

Cs(Fs)

)
− (6.2.5)(

(Ca(FA∗)− Le(A∗)) +
∑

s∈TA∗,x,g
Cs(Fs)

)

Although state and action costs are multiplied in the planner’s internal optimization, they are added
in this objective functional; as in (6.1.2) - (6.1.4) this is consistent due to the use of exponentiated
functional gradient descent.

In this context, Le is defined over A. Given the more complex definition of A the construction
of Le is not quite as obvious as in the previous chapter, when Le was based on the L2 norm. Instead,
in this case Le is defined as

Le(A) = L(Ae, A) = |A− Ae|∞ (6.2.6)

That is, the loss value is the max of the error in direction and the error in curvature. Depending
on the value of MAXCURV (and the associated range of the curvature dimension), an additional
weighting could be used to normalize the two dimensions.

This objective function leads to a very straightforward gradient

∇OF [Ca] = δF (FAe) − δF (FA∗) (6.2.7)

Simply stated, to minimize the objective, the cost of the example action should be lowered, and the
cost of the current optimal action should be raised. This (sub)gradient descent should be repeated
until the constraint in (6.2.3) is satisfied.

These equations naturally give rise to a learning from demonstration algorithm for automatic
construction of planner preference models. This algorithm is very similar to D-LEARCH in Sec-
tion 5.2, and is similarly based off of discretizing an expert’s actual demonstration into a set of
static examples. Formally, this results in the return of the time index t to account for dynamics. As
opposed to a start state x, xt now represents the state at time t. The new objective and its functional

92

CHAPTER 6. PLANNER PREFERENCES 6.2. PLANNER PREFERENCES

Algorithm 6: D-LEARCH for planner preference models with known perception cost
Inputs : Example Behaviors P 1

e , P
2
e , ..., P

n
e , Sensor HistoriesH1,H2, ...,Hn, Perception

Cost Function Cs
Ca0 = 1;
foreach P i

e do
for τ =firstTime(P i

e): ∆τ :lastTime(P i
e) do

P τ,i
e = extractPathSegment(P i

e , τ,lastTime(P
i
e));

Aτ,ie = extractFirstAction(P i
e , τ);

[F τ,is ,Vτ,i] = simulatePerception(Hi,firstTime(P i
e),τ);

for j = 1...K do
Tf = To = ∅;
foreach P t,i

e do
Mt,i = buildCostmap(Cs,F t,is ,V t,i);
At,i∗ = chooseLossAugAction(start(P t,i

e),goal(P t,i
e),Mt,i, Caj−1

);
if At,i∗ 6= At,ie then
F t,i,ea = computeActionFeatures(At,ie ,Mt,i);
F t,i,∗a = computeActionFeatures(At,i∗ ,Mt,i);
Tf = Tf

⋃
F t,i,ea

⋃
F t,i,∗a ;

To = To
⋃
−1

⋃
1;

Rj = trainRegressor(Tf , To);
Caj = Caj−1

∗ eηjRj ;
return CaK

gradient are

O[Ca] = λREG(Ca) +
∑
t

Ca(F t
Ate

) +
∑

s∈TAte,xt,g,t

Cs(F
t
s)

 (6.2.8)

−
∑
t

(Ca(F
t
At∗

)− Lte(At∗)) +
∑

s∈TAt∗,xt,g,t

Cs(F
t
s)


∇OF [Ca] =

∑
t

(
δF (F t

Ate
) − δF (F t

At∗
)
)

As in Section 5.2 the gradient contributions of multiple timesteps (and multiple demonstrations)
are simply combined into a single gradient boosting step, and a single weighted regressor added to
the previous cost function. This procedure is shown in detail in Algorithm 6.

6.2.3 Correcting for the Receding Horizon: Slack Re-scaling
The optimization presented in (6.2.8) and its implementation in Algorithm 6 will result in a cost
function that considers a specified example action optimal, provided such a cost function exists.
However, just as with learning perception cost functions, problems can arise when multiple exam-

93

6.2. PLANNER PREFERENCES CHAPTER 6. PLANNER PREFERENCES

ple actions are provided. Since a single demonstrated trajectory is the concatenation of multiple
example actions over time, any real implementation of this approach will involve trying to match
a large set of example actions.

When multiple example actions are considered at once, the overall optimization will seek to
minimize the sum (or equivalently the average) of their associated cost differences (between the
example action and its corresponding planned action). In addition, the loss bound implied by this
optimization (Theorem 5.1.1) is also on the sum of loss over individual actions. Unfortunately,
this leaves open the possibility of poor performance for a subset of examples. Especially when
learning from noisy and imperfect expert demonstration, it is always possible that certain individual
examples will not be properly learned.

Unfortunately, certain errors can be more costly than others. In the case of perception, such
costly errors would be reflected in the resulting plan; for example, if a dangerous obstacle was
not receiving sufficient cost, than the current planned behavior would continue to pass through it,
implying that the cost still needed to be increased. However, this is not the case with the single arc
planner. Figure 6.4 shows examples of such scenarios. In Figure 6.4(a), the example action is a
slightly harder turn than the current planned action, resulting in nonzero but small loss. However,
by executing the wider turn, the robot will become stuck against the obstacle, and will be forced to
back up and turn to get around it. Figure 6.4(b) presents an even more extreme case. By backing
up from an obstacle, but turning the wrong way, the robot ends up executing a very different
trajectory; the path is similar, but it is executed in reverse. The reverse scenario can also occur.
Figure 6.4(c) shows a case where there is nonzero loss between the demonstrated and planned
action, but the resulting trajectories are nearly identical. However, even though this error is of
almost no consequence, the optimization will still expend effort to correct it, possibly impeding
the progress of other, more important examples. This issue is not just theoretical; it can result in
quite undesirable actual robot performance (see Figure 6.8).

The major contributor to this issue is the quite limited horizon of the single arc planner, which
prevents it from having useful information about the consequences of certain actions. For example,
in Figure 6.4(a) the obstacle is just outside the planner horizon (i.e. the arc length) and is therefore
not directly aware of the trouble it could get into. The heuristic also underestimates the severity
of the problem (since Field D* is not kinematically constrained, the cost is only slightly higher).
While the single arc planner represents the extreme of this problem, similar horizon effects can
occur with any receding horizon planner. Therefore, what is needed is a formalism to indicate
that certain examples are more important than others (in that getting them wrong will have more
significant consequences) and treat them as such in the optimization. Such a formalism could also
minimize the importance of examples where a wide range of actions result in near identical future
behavior, indicating that it is not necessary to get the example action exactly correct.

Tsochantaridis et al. present such a formalism in [248] in the context of support vector ma-
chines. One proposed solution is to scale the margin size in proportion to the loss incurred; how-
ever, this adaptation is already a part of the MMP framework (Equation 5.1.4) and is responsible
for the loss bound (Theorem 5.1.1). Another proposed solution is the idea of slack re-scaling, in
which the slack penalties are weighted in the optimization relative to loss or some other desired
penalty function. If this penalty function were chosen properly, it could offer a solution to these
negative horizon effects.

Let Pe(A) represent a generic error or penalty function between Ae and A under Ca. Aside
from strict positivity, the only other requirement on Pe(A) is that Pe(A) = 0⇐⇒ Le(A) = 0⇐⇒

94

CHAPTER 6. PLANNER PREFERENCES 6.2. PLANNER PREFERENCES

(a) Stuck against an obstacle

(b) Driving in reverse

(c) Driving straight

Figure 6.4: Examples of scenarios where error between actions (left) and final behavior (right) do
not correspond. Demonstrated behavior is in blue, and planner behavior is in red.

A = Ae.

Slack rescaling would modify (6.2.4) as such

minimize O[Ca] = λREG(Ca) + Pe(AP∗)ζ (6.2.9)
subject to the constraint(Ca(FAP∗)− Le(AP∗)) +

∑
s∈TAP∗ ,x,g

Cs(Fs)

 − (
Ca(FAe) +

∑
s∈TAe,x,g

Cs(Fs)

)
+ ζ ≥ 0

AP∗ = arg min
A
Pe(A)

(
(Ca(FA)− Le(A)) +

∑
s∈TA,x,g

Cs(Fs)

)

Aside from the additional weighting of the slack penalties, the other caveat is the replacement
of A∗ (the action that minimizes the current cost) with AP∗ (the action that minimizes the current
penalty weighted cost).

95

6.2. PLANNER PREFERENCES CHAPTER 6. PLANNER PREFERENCES

Alternatively, the slack can be scaled by the inverse penalty in the constraint

minimize O[Ca] = λREG(Ca) + ζ (6.2.10)
subject to the constraint(Ca(FAP∗)− Le(AP∗)) +

∑
s∈TAP∗ ,x,g

Cs(Fs)

 −
(
Ca(FAe) +

∑
s∈TAe,x,g

Cs(Fs)

)
+

ζ

Pe(AP∗)
≥ 0

From this second formulation, a relationship between Pe and Le can be derived.

Theorem 6.2.1. For Loss Le(AP∗) and Penalty Pe(AP∗) the bound

Le(A
P
∗)Pe(AP∗) ≤ ζ (6.2.11)

will always hold

Proof. Let Ce =
(
Ca(FAe) +

∑
s∈TAe,x,g Cs(Fs)

)
, C∗ =

(
Ca(FAP∗) +

∑
s∈TAP∗ ,x,g Cs(Fs)

)
Consider the following cases

Case 1 AP∗ = Ae

Then trivially ζ = Le(A
P
∗) = Pe(AP∗) = 0

Case 2 AP∗ 6= Ae

The constraint in (6.2.10) can be rewritten as

C∗ − Ce ≥ Le(A
P
∗)− ζ

Pe(AP∗)
(6.2.12)

By definition, Ce ≥ C∗, which implies

Ce ≥ C∗ =⇒ C∗ − Ce ≤ 0

=⇒ Le(A
P
∗) ≤ ζ

Pe(AP∗)

=⇒ Le(A
P
∗)Pe(AP∗) ≤ ζ

Equation (6.2.11) demonstrates how adding slack re-scaling bounds the additional penalty
function. Essentially, as opposed to simply bounding the loss (as in Theorem 5.1.1), two dif-
ferent error functions (the original loss and the new penalty) can be partially bounded (as long as
Pe = 0 ⇐⇒ Le = 0). The caveat is that there is a tradeoff between the two error functions; that
is, one error will be allowed to be high as long as the other error function is low.

96

CHAPTER 6. PLANNER PREFERENCES 6.2. PLANNER PREFERENCES

However, this new formulation is concerned with AP∗ , as oppossed to the original A∗. That is,
it requires a planner that can solve the new argmin by being aware of the penalty function Pe. This
is undesirable for two reasons. The first is that it does not achieve the stated goal of learning a cost
function for the planner that will actually run on a robot, which only minimizes cost and not the
penalty weighted version 6. The second reason is computational. A penalty aware planner must
compute the penalty for every possible action. If this operation is expensive (as it will prove to be
for the penalty function used in this work) then a penalty aware planner would prove prohibitively
slow.

Fortunately, the benefits of slack rescaling can still be achieved using the original planner. This
can be shown by looking at the optimizations that would actually be run using both planners. First,
consider the objective if the tight constraints from (6.2.9) are moved into the objective

OP [Ca] = λREG(Ca) + Pe(AP∗ , Ca)

(
Ca(FAe) +

∑
s∈TAe,x,g,t

Cs(Fs)

)
(6.2.13)

− Pe(AP∗ , Ca)

(Ca(FAP∗)− Le(AP∗)) +
∑

s∈TAP∗ ,x,g,t

Cs(Fs)


Next, consider the same basic objective function, but with A∗ instead.

O[Ca] = λREG(Ca) + Pe(A∗, Ca)

(
Ca(FAe) +

∑
s∈TAe,x,g,t

Cs(Fs)

)
(6.2.14)

− Pe(A∗, Ca)

(
(Ca(FA∗)− Le(A∗)) +

∑
s∈TA∗,x,g,t

Cs(Fs)

)

That is, the terms are still penalty weighted, but the original planner is used.

Theorem 6.2.2. The objective functions defined in (6.2.13) and (6.2.14) share a solution.

Proof. The minimum of O[Ca] occurs when A∗ = Ae and Ca is maximally regularized. Since
A∗ = Ae imples that Le(A∗) = Pe(A∗) = 0, any solution that minimizesO[Ca] will also minimize
OP [Ca]

Theorem 6.2.3. The gradients of the objective functions defined in (6.2.13) and (6.2.14) are always
correlated.

Proof. The gradient of (6.2.14) is

∇OF [Ca] = Pe(A∗)(δF (FAe) − δF (FA∗))

This gradient equals Pe(A∗) at F = FAe , −Pe(A∗) at F = FA∗ , and is zero elsewhere. The

6This same argument could also be raised against loss augmentation; however, loss augmentation is usually ac-
complished not by changing the planner, but rather by modifying the input cost function

97

6.2. PLANNER PREFERENCES CHAPTER 6. PLANNER PREFERENCES

gradient of (6.2.13) is

∇OPF [Ca] = Pe(AP∗)(δF (FAe) − δF (FAP∗))

This gradient equals Pe(AP∗) at F = FAe , −Pe(AP∗) at F = FAP∗ , and is zero elsewhere. Therefore
〈OF ,OPF 〉 equals Pe(A∗)Pe(AP∗) if A∗ 6= AP∗ and 2Pe(A∗)Pe(AP∗) otherwise. Since Pe is defined
to be greater than or equal to zero, the two gradients are always correlated (as long as they are
nonzero).

What is implied by theorems 6.2.2 and 6.2.3 is that the two objectives share a common purpose:
to make Ae as inexpensive as possible. While the two different optimizations may also be raising
the cost on different actions at the same time, they will never work directly at cross purposes, and
will not be satisfied until they reach the same cost function. Therefore, minimizing the objective in
(6.2.14) will seek the same solution7 as (6.2.13), which is bounded as specified in theorem 6.2.1.
Therefore, when it comes to an actual implementation, (6.2.14) can be used so that the planner in
question need not be modified.

In terms of actually defining Pe, The obvious first choice would simply be to set Pe = Le.
However, this would not account for errors that result in low loss but still produce undesirable
behavior. It would also unnecessarily further penalize errors that result in high loss, but actually
produce reasonable behavior. Instead, Pe should be chosen to complement Le. The common issue
with the examples presented in Figure 6.4 is that regardless of the lack or presence of immediate
errors, the future behavior of the robot does not match the demonstrated behavior. Fundamentally,
there is no way to guarantee such a match, as a single arc planner simply does not look far enough
into the future. However, if a small error in a single action eventually results in a trajectory very
different from that which was demonstrated, it implies that it might be more important to get that
example right. The converse is also true; if a large error in a single action does not result in a
drastically different trajectory, then it is not as important to get that example right.

Therefore, it is proposed to add a penalty function based on the simulation of future behavior.
Define T Ca,a,x,g as the actual trajectory that the robot will follow under cost function Ca from state
x to goal g, when the first action undertaken is a. T Ca,a,x,g is computed by repeatedly querying
the planner to choose an action, simulating the effect of that action over a single period of the
planning cycle, and then repeating the process. By setting a = A∗, the future behavior when
executing A∗ and then operating under the current cost function Ca can be approximated. The
penalty function Pe(A∗, Ca) can be defined as an error function between T Ca,a,x,g and the example
behavior Pe. In addition to A∗, Ca is now taken as input to the penalty function (to indicate the
explicit dependence on the current cost function). The specific form of Pe used in this work is
further discussed in Section 6.3.1.

Along with helping to ensure that important examples are properly learned, slack re-scaling has
another beneficial effect: it ensures that unimportant examples are not weighted too heavily. This
is especially important when learning from potentially noisy and imperfect expert demonstration.
That is, human drivers do not necessarily follow critically damped control laws, and demonstrated
behavior may contain transients or biases that would otherwise lower the quality of the learned

7When multiple examples or timesteps are present, there is no explicit guarantee of converging to the exact same
solution

98

CHAPTER 6. PLANNER PREFERENCES 6.2. PLANNER PREFERENCES

behavior8. In other cases, the expert demonstration may be correct, but the specific scenario may
be such that a wide range of actions will result in almost identical behavior; in such a case the
learner should still try and learn the example action, but not at the expense of other, more important
cases.

Using this new definition of Pe and reintroducing dynamics to (6.2.14) yields an objective
functional of

O[Ca] = λREG(Ca) +
∑
t

Pe(At∗, Ca)

Ca(F t
Ate

) +
∑

s∈TAte,xt,g,t

Cs(F
t
s)

 (6.2.15)

−
∑
t

Pe(At∗, Ca)

(Ca(F
t
At∗

)− Lte(At∗)) +
∑

s∈TAt∗,xt,g,t

Cs(F
t
s)


Application of the product rule and collecting terms yields a new functional gradient of

∇OF [Ca] =
∑
t

Pe(At∗, Ca)
(
δF (F t

Ate
) − δF (F t

At∗
)
)

(6.2.16)

+
∑
t

P ′e(At∗, Ca)
(
Ce − C∗ − Lte(At∗))

)
The first component of the gradient is essentially the same as it has been previously, simply

weighted by the value of the penalty function. However, the second term is more problematic,
as it involves the gradient of the penalty function with respect to the cost function. For a penalty
function based on the simulation of future behavior,this term implies that one way to lower the
penalty (and by extension penalty weighted objective), is to modify the cost function to affect
future behavior. For example, if the example action is a hard left, and the current planned action a
hard right, then this term suggests to modify the cost function such that the action at time t+ 1 is a
lateral movement left plus a perhaps slight rotation. More generally, this term would seek to lower
the cost of arcs that result in the future trajectory being closer to the demonstrated trajectory, and
vice versa.

The gradient of Pe can not be explicitly defined without first defining Pe itself. However, it can
be defined for generic Pe as

P ′e(At∗, Ca) =
∑

(xτ ,Aτi)∈B

δF (F τ
Aτi

) −
∑

(xτ ,Aτi)∈W

δF (F τ
Aτi

) τ ≥ t (6.2.17)

B = {(xτ , Aτi) | xτ ∈ T Ca,A
t
∗,x

t,g ∧ Pe(Aτi , Ca) < Pe(Aτ∗, Ca)}
W = {(xτ , Aτi) | xτ ∈ T Ca,A

t
∗,x

t,g ∧ Pe(Aτi , Ca) ≥ Pe(Aτ∗, Ca)}

For each state along the simulation of future behavior (xτ ∈ T Ca,At∗,xt,g), P ′e differentiates between
the actions that would result in lowering the penalty value (relative to the penalty under the current
cost function) and the actions that would result in raising the penalty value.

However, there are obvious problems with using this new term during learning. For instance,

8The same issue led to the development of R-LEARCH for terrain preferences

99

6.2. PLANNER PREFERENCES CHAPTER 6. PLANNER PREFERENCES

in the example above imagine that the example action was a hard left to avoid a large obstacle,
and the planned action a hard right to avoid the same obstacle. Once a direction has been chosen,
the robot needs to commit to that to avoid hitting the obstacle. However, following the gradient
term implied by P ′e would involve lowering the cost of all the left turn arcs, even those that result
in a collision with the obstacle. More fundamentally, the problem is that the expert demonstration
involves specific action choices for a specific time t and state xt. The P ′e term attempts to raise or
lower the cost of specific actions at time τ ≥ t and state xτ . However, there is no reason to believe
that any of the choices P ′e prefers are actually what the expert would have done if confronted with
xτ . More formally, none of the choices in either B or W were actually made by an expert; therefore
there is no reason to prefer or avoid them relative to Aτ∗

Fortunately, there is reason to ignore the P ′e term in the actual optimization.

Theorem 6.2.4. Define

∇OtF [Ca] =GL + GP
GL =Pe(At∗, Ca)

(
δF (F t

Ate
) − δF (F t

At∗
)
)

GP =P ′e(At∗, Ca)
(
Ce − C∗ − Lte(At∗))

)
Performing gradient descent by only following GL will produce a C that meets the MMP constraint
at time t while also minimizing REG(C)

Proof. By definition, GL(F t
Ate

) = Pe(At∗, Ca) and GL(F t
At∗

) = −Pe(At∗, Ca).
GL = 0 for any other value of F.

From (6.2.17) (xt, Ate) ∈ B and (xt, At∗) ∈W. Thus, GP can be split into two components, one
that accounts for these two feature values and another that accounts for all other feature values.
Define

GP =GcP + GfP (6.2.18)

GcP =
(
Ce − C∗ − Lte(At∗))

) (
δF (F t

Ate
) − δF (F t

At∗
)
)

GfP =
(
Ce − C∗ − Lte(At∗))

) ∑
(xτ ,Aτi)∈B/(xt,Ate)

δF (F τ
Aτi

) −
∑

(xτ ,Aτi)∈W/(xt,At∗)

δF (F τ
Aτi

)

 τ ≥ t

GcP is just a scaled version of GL, and seeks to lower the penalty by making the current example
action the preferred action. GfP represents the rest of P ′e(At∗, Ca) which seeks to lower the penalty
by making the future trajectory closer to the example one. Since GL is only nonzero at two specific
values of F, and GfP is explicitly zero at those two values, we can redefine the gradient as

∇OtF [Ca] =KGL + GfP (6.2.19)

〈GL,GfP 〉 = 0

As the gradient consists of two orthogonal components, a reasonable optimization strategy would
be to follow one component until it is zero, and then follow the other component until it is zero
(essentially a special case of conjugate gradient). However since GL is just a scaled version of
the normal LEARCH gradient, we know from (5.1.11) that GL = ~0 when the MMP constraint is

100

CHAPTER 6. PLANNER PREFERENCES 6.2. PLANNER PREFERENCES

satisfied

GL = ~0⇐⇒ At∗ = Ate ⇐⇒ Le = 0⇐⇒ Pe = 0 =⇒ GfP = ~0

However, the final implication is not two way. That is, future behavior could be made equivalent to
demonstrated behavior except for the original incorrect action at time t, resulting in GfP = ~0 while
Le, Pe > 0, requiring9 further optimization by following GL

Therefore, the most regularized way to meet the slack-rescaled constraints in (6.2.9) is to ignore
GP and follow GL.

More intuitively, GL tries to drive Le and Pe to zero by matching behavior at time t. GfP tries
to minimize Pe by minimizing future error. However, this alone will not necessarily drive Le and
Pe to zero. Since GL is provably sufficient (Theorem 5.1.1 and Equation (5.1.11)), complicating
the gradient will result in a solution that is farther from C0 (with potentially worse generalization).
This of course raises the question of what effect does slack rescaling actually have in this context.
The answer is that it affects the balancing of multiple constraints (terms in the optimization). The
optimization still seeks to achieve zero loss (and by consequence zero penalty) for each term.
However, when this cannot be achieved it will give more weight to certain terms than others (based
on the associated penalties). Therefore, in this work the GP terms of the functional gradient in
(6.2.16) are simply ignored. Section 6.4 provides empirical evidence that this optimization still
results in reductions of the penalty terms.

The resulting algorithm is known as Penalty Weighted Dynamic LEARCH (PD-LEARCH) and
is shown in Algorithm 7. PD-LEARCH is quite similar to Algorithm 6; the primary difference is
the simulation of future behavior, and then weighting by the associated penalty. The need to simu-
late future behavior at each timestep of each example can significantly increase the computational
burden. Fortunately, this extra step is only necessary when At,i∗ 6= At,ie ; in practice this results in
early iterations being more computationally expensive, with fewer simulations performed in later
iterations of the algorithm. Another caveat is that the overall optimization is now nonconvex (as
the inter-example weights can change between gradient steps). In practice, this simply requires a
little more care with the selection of the learning rate (such as a fast decay, and a bit of trial and
error for the initial value). In general, PD-LEARCH is applicable to any receding horizon system
where the planner does not actually plan all the way to its goal, and small errors can propagate
over time.

9It is possible that when projecting the gradient onto a direction set, following Gf
P will produce zero penalty and

loss (through generalization of the cost function); it is simply not ensured

101

6.2. PLANNER PREFERENCES CHAPTER 6. PLANNER PREFERENCES

Algorithm 7: PD-LEARCH for planner preference models with known perception cost
Inputs : Example Behaviors P 1

e , P
2
e , ..., P

n
e , Sensor HistoriesH1,H2, ...,Hn, Perception

Cost Function Cs
Ca0 = 1;
foreach P i

e do
for τ =firstTime(P i

e): ∆τ :lastTime(P i
e) do

P τ,i
e = extractPathSegment(P i

e , τ,lastTime(P
i
e));

Aτ,ie = extractFirstAction(P i
e , τ);

[F τ,is ,Vτ,i] = simulatePerception(Hi,firstTime(P i
e),τ);

for j = 1...K do
Tf = To = Tw = ∅;
foreach P t,i

e do
Mt,i = buildCostmap(Cs,F t,is ,V t,i);
At,i∗ = chooseLossAugAction(start(P t,i

e),goal(P t,i
e),Mt,i, Caj−1

);
if At,i∗ 6= At,ie then
F t,i,ea = computeActionFeatures(At,ie ,Mt,i);
F t,i,∗a = computeActionFeatures(At,i∗ ,Mt,i);
T t,i = simFutureBehavior(Caj−1

, At,i∗ ,start(P t,i
e),goal(P t,i

e));
P = trajectoryError(P t,i

e , T t,i);
Tf = Tf

⋃
F t,i,ea

⋃
F t,i,∗a ;

To = To
⋃
−1

⋃
1;

Tw = Tw
⋃
P

⋃
P;

Rj = trainWeightedRegressor(Tf , To, Tw);
Caj = Caj−1

∗ eηjRj ;
return CaK

6.2.4 Simultaneously Learning Planner and Terrain Preference Models

Combining the dual objective in (6.1.2) with the penalty weighted objective of (6.2.15) yields a
new combined objective of

O[Cs, Ca] = λsREG(Cs) + λaREG(Ca) (6.2.20)

+
∑
t

Pe(At∗, Ca)

Ca(F t
Ate

) +
∑

s∈TAte,xt,g,t

Cs(F
t
s)


−
∑
t

Pe(At∗, Ca)

(Ca(F
t
At∗

)− Lte(At∗)) +
∑

s∈TAt∗,xt,g,t

(Cs(F
t
s)− Lte(s))


The partial derivative of this objective with respect toCa is shown in (6.2.16), and results in the PD-
LEARCH algorithm. The previous section held Cs constant; however, if Cs is now also considered

102

CHAPTER 6. PLANNER PREFERENCES 6.3. APPLICATION TO MOBILE ROBOTIC SYSTEMS

unknown, the partial derivative can be defined as

∇OF [Cs] =
∑
t

Pe(At∗, Ca)
 ∑
s∈TAte,xt,g,t

δF (F t
s) −

∑
s∈TAt∗,xt,g,t

δF (F t
s)

+ GtP

 (6.2.21)

If as before the GP term is ignored, this gradient looks very similar to (5.2.4). The two key differ-
ences remaining are the additional weighting by the penalty term, and the summation over TAt∗,xt,g,t

or TAte,xt,g,t instead of P∗ or Pe respectively. This latter difference simply implies that the expert
demonstration should be modified to match a trajectory that the planning system is capable of;
this modification was already mentioned for perception cost functions with constrained planners
(Section 5.4.3) and is described further in the next section. Therefore, this gradient implies that
along with using PD-LEARCH to learn a planner cost function, PD-LEARCH can also be applied
to the task of learning perception cost functions.

Practically speaking, as opposed to using PD-LEARCH for learning perception cost functions,
DR-LEARCH should be used instead. The reason is simply the different definitions of the loss
function: as the perception loss function is defined over the states each trajectory traverse, it will
have a form very similar to the penalty function10; therefore this extra weighting is unnecessary in
the perception domain. In addition, the robust extensions developed for DR-LEARCH were shown
(Section 5.5) to significantly improve performance, and therefore should still be applied.

Therefore, PD-LEARCH can be used to learn Ca when Cs is considered constant, and DR-
LEARCH can be used to learn Cs when Ca is considered constant. Given that these two cost
functions are (by design) independent, and that they make use of the same input training data
(A set of example trajectories Pe), it is possible to learn both functions at the same time in a
single optimization procedure. At each iteration, an update can be computed for each cost function
(the computation of which will make use of the current value of the ’other’ cost function), and
this overall procedure repeated until convergence of both functions. This algorithm is shown in
Algorithm 8, which combines D-LEARCH (Algorithm 3) and PD-LEARCH (Algorithm 7). The
full DR-LEARCH implementation (Algorithm 4) is withheld solely for the sake of clarity.

6.3 Application To Mobile Robotic Systems
An important issue that was raised in Section 5.4.3 is that of the action/plan space available to both
the expert and the planning system. In the case of learning a cost function over constant curvature
arcs, an expert example exists in the uncountably infinite range [−MAXCURV,MAXCURV], while
the planner only has |A| choices available. This prevents the optimization from having a proper
termination condition, as it is unlikely that A∗ will ever exactly equal Ae except at a boundary. As
seen in Section 5.4.3 this can result in overlearning specific examples, and reduce generalization.
The simple solution to this issue is rather than using the exact Ae demonstrated by the expert,
choose the closest arc in A (with respect to curvature) as the new example.

In Chapter 5 this same solution was applied, with the caveat that the expert’s example action
was not known reliably (and could not be taken as the expert’s actual intended action); instead a
heuristic procedure was used to identify the most likely action. Such an approach is not necessary

10this is not the case for the planner loss function, and is why penalty weighting was applied in the first place

103

6.3. APPLICATION CHAPTER 6. PLANNER PREFERENCES

Algorithm 8: Learning perception and planner preference models
Inputs : Example Behaviors P 1

e , P
2
e , ..., P

n
e , Sensor HistoriesH1,H2, ...,Hn

Cs0 = 1;
Ca0 = 1;
foreach P ie do

for τ =firstTime(P ie): ∆τ :lastTime(P ie) do
P τ,ie = extractPathSegment(P ie , τ,lastTime(P

i
e));

Aτ,ie = extractFirstAction(P ie , τ);
[Fτ,is ,Vτ,i] = simulatePerception(Hi,firstTime(P ie),τ);

for j = 1...K do
U += U− = ~0;
T af = T ao = T aw = ∅;
foreach P t,ie do
Mt,i = buildCostmap(Csj−1 ,F

t,i
s ,Vt,i);

P t,i∗ = planLossAugPath(start(P t,ie),goal(P t,ie),Mt,i);
At,i∗ = chooseLossAugAction(start(P t,ie),goal(P t,ie),Mt,i, Caj−1);
foreach x ∈ P t,ie

⋂
Vt,i do

U−(F t,ix) = U−(F t,ix) + 1;

foreach x ∈ P t,i∗
⋂
Vt,i do

U+(F t,ix) = U+(F t,ix) + 1;

if At,i∗ 6= At,ie then
F t,i,ea = computeActionFeatures(At,ie ,Mt,i);
F t,i,∗a = computeActionFeatures(At,i∗ ,Mt,i);
T t,i = simFutureBehavior(Caj−1 , A

t,i
∗ ,start(P t,ie),goal(P t,ie));

P = trajectoryError(P t,ie , T t,i);
T af = T af

⋃
F t,i,ea

⋃
F t,i,∗a ;

T ao = T ao
⋃
−1

⋃
1;

T aw = T aw
⋃
P

⋃
P;

T sf = T so = T sw = ∅;
U = U+ − U−;
foreach F t,is such that U(F t,is) 6= 0 do

T sf = T sf
⋃
F t,is ;

T so = T so
⋃

sgn(U(F t,is));
T sw = T sw

⋃
|U(F t,is)|;

Rsj = trainWeightedRegressor(T sf , T
s
o , T

s
w);

Csj = Csj−1 ∗ e
ηsjR

s
j ;

Raj = trainWeightedRegressor(T af , T
a
o , T

a
w);

Caj = Caj−1 ∗ e
ηajR

a
j ;

return CsK , CaK

in this case with respect to Ae; however, it is still necessary to bootstrap the remainder of the
example trajectory. This is because Pe can be any path from the start to the goal, while the planned

104

CHAPTER 6. PLANNER PREFERENCES 6.3. APPLICATION

behavior under consideration at each iteration, TAt∗,xt,g,t, is much more restricted: for the first
couple of meters (the arc length) there are only |A| possible choices. The solution (as indicated
by Equations (6.2.8) and (6.2.21) is to use TAte,xt,g,t instead of Pe. When Cs is known a priori, the
definition of TAte,xt,g,t is concrete; however, whenCs itself is being modified, the question naturally
arises of what Cs is used to generate TAte,xt,g,t. The solution to this issue is the same as applied
in Section 5.4.3. First, a perception cost function Cg

s is learned using an unconstrained (global)
path planner. Then, TAte,xt,g,t is defined as the path resulting from following arc Ae, and then the
optimal path (under Cg

s) from the end of the arc to the goal.

6.3.1 Penalty Function Design

Pe was previously defined as an error function between the expert behavior Pe and T Ca,a,x,g, the
simulation of future behavior under the current cost function. However, this formulation can result
in a high penalty despite low loss between Ae and A∗, if the trajectories diverge not at time t, but at
time t+k. In such a case, choosing the correct action at time t is made to seem more important than
it actually is. The larger the value of k, the lower the likelihood that a high penalty has anything to
do with the decision made at time t

A solution to this problem is to only simulate future behavior out do a certain time horizon.
However, if the simulated and demonstrated behavior are significantly different (a situation which
would call for a high penalty) a time horizon may not allow the simulated behavior to sufficiently
diverge. An alternative is to use a distance horizon, cutting off the simulation once the trajectory
leaves a circle of radius rsim from the starting point. Therefore, instead of defining Pe as en error
function between T Ca,a,x,g and Pe, this work uses an error function over T Ca,a,x,g,rsim and P rsim

e ,
where both trajectories are truncated outside accordingly.

The issue now is to define the actual error function between T Ca,a,x,g,rsim and P rsim
e . Equation

(5.5.1) provides a starting point for such a function, based on the 2D locations of points of equal
arc length along two trajectories. In general, such a function provides an excellent template for
Pe. That is, if the simulated future behavior and actual example behavior are quite similar, the
penalty should be low, and high if the trajectories diverge (if the trajectories initially diverge but
then re-converge, the penalty is intermediate). However, there are certain explicitly bad cases that
this error function would not capture. A common example of such a case is if the planner follows a
trajectory that generally tracks the example, but with the vehicle oriented in the opposite direction.
Another such case is if the planner actually becomes stuck: that is, it continues to oscillate and
chooses actions that do not make progress towards its goal (such a case can only occur with a
small planning horizon). Examples of both of these cases can be seen in Figure 6.6. Fortunately,
these cases can generally be concretely defined and detected, and the penalty made high when they
are triggered. Therefore, a penalty function of the following form is used in this work, producing
output in the [0,1] range

105

6.3. APPLICATION CHAPTER 6. PLANNER PREFERENCES

Pe(A∗, Ca) = max(P̂e(A∗, Ca),He(A∗, Ca)) (6.3.1)

P̂e(A∗, Ca) =
1

|T Ca,A∗|
∑

xe,x∗∈P

[1− exp ‖xe − x∗‖2/σ2)]

P = FINDCORRESPONDINGPOINTPAIRS(Pe, T Ca,A∗)

He(A∗, Ca) = WRONGDIRECTON(Pe, T Ca,A∗)
∨

STUCK(T Ca,A∗)
∨

...

P̂e(A∗, Ca) computes an error similar to (5.5.1); the difference is that instead of finding cor-
responding points based on location, they are found based on the traversed path length up to that
point (This corrects for the case when the simulated trajectory eventually follows the example be-
havior, but performs some additional actions or oscillations first). He simply seeks to identify the
aforementioned bad scenarios (as well as any additional ones that may apply), and ensure a high
penalty in such cases.

There is of course some irony in the necessity to design a good penalty function in order to learn
a good cost function, as it can devolve into the same sort of parameter tuning that this approach
was supposed to mitigate. However this problem is far less complex than the original problem,
and has the advantage of a known basis for comparison. That is, it is much easier to define what
is clearly undesirable in comparison to known desirable behavior as opposed to trying to define
what is desirable in the first place, let alone a hierarchy of desirability. Since the penalty function
is in comparison to known desirable behavior, all that is really necessary is that it highly penalizes
the cases that result in such undesirable behavior (and aren’t already captured by the loss function.
Therefore, in practice the exact form of the penalty function (and the exact values it produces)
do not have as significant effect as one would expect, as long as in general the right errors are
penalized.

6.3.2 Planner Feature Design

Computing meaningful and useful features is a core part of any perception system, and is well
understood in that context. When features are computed for use in a preference model, there is
often a well understood relationship between the feature and cost (e.g. object density). Even when
this relationship is not as clear (e.g. color or other appearance information) it is well understood
what types of features are useful. The situation is not quite as clear when constructing features for a
planner preference model. One simple reason for this confusion is that explicit planner preference
models are less common than perception preference models; as a result features are not always
explictly computed. Even when they are, the relationship between the features and cost is rarely as
intuitive as with perception.

Nevertheless, there are some common feature classes that can be applied. When the action set
consists of constant curvature arcs, then the curvature of each arc is an obvious feature. When
applicable, the vehicle steering angle provides a slightly transformed version of the same basic
feature. The velocity of a particular action is also a very meaningful feature. When the motion
planner does not have direct control of velocity, then the sign of velocity (i.e. forward or reverse)
is still very important. Finally, in the case of the single arc motion planner, a notion of heading

106

CHAPTER 6. PLANNER PREFERENCES 6.4. EXPERIMENTAL RESULTS

error is of extreme importance. There are many different ways to compute such a feature; the
commonality is that they all capture the difference between the robot’s heading along or at the end
of an arc, and the heading that would be necessary to track the global path from the end of said arc.
In such a way, heading error features allow the planner to prefer actions that align the vehicle with
the global path in the forward direction (or the reverse direction if desired).

In addition to computing features from a specific action, features can also be computed that
depend on the current state (in one sense, heading errors already fit this description). If the state
vector is augmented to contain the robot’s current linear and angular velocity (that is, the velocities
at the time the next action is to be executed) then features can be computed from these values. For
example, along with features based on the curvature of the specified action, features can also be
computed based on the change in curvature between the robot’s last and current action. Whether
or not the robot is changing direction also proves to be a very important feature.

Once a feature set has been designed and implemented, additional features can be learned
during training. The same feature learning phase as described in Section 5.4.1 can be easily imple-
mented for planning as well as perception in Algorithm 8. As before, the primary advantage is to
allow the use of linear cost functions (for computationally reasons as well as generalization) along
with certain nonlinear feature combinations that prove useful. In the case of planner features, there
are often specific thresholds that can prove to be quite useful in feature design; these thresholds
can then be learned from demonstration rather than set and tuned by hand.

6.4 Experimental Results

6.4.1 Learning Planner Preference Models

A single arc motion planner was implemented adhering to (6.2.2) and using Field D* as the as-
sociated global planner. The planner’s action set consisted of 21 forward arcs and 9 reverse arcs
(Figure 6.3). Along with the planner, a simulator was implemented to allow the planning system’s
actual behavior to be observed. Obstacles of specified cost could also be added to the simula-
tion environment. The simulator therefore provided a scenario where the perception cost function
was known a priori, and only the planner cost function was unknown (as in Section 6.2). Train-
ing and validation examples were collected by having an expert drive the robot in the simulation
environment. Collection of these sets required less than 2 hours of expert time.

This planning system was designed and implemented to match Crusher’s local planner as
closely as possible. However, there was one key difference. Crusher’s local planner essentially
had a two tiered preference model. Individual arcs were penalized or rewarded based on features
of said arc. However, there was also a higher level state machine that monitored Crusher’s state and
progress over several planning cycles. The states in this machine each corresponded to different
penalties at the arc level, and resulted in different abstract behavior goals (e.g. normal operation,
explicit turning to align with the D* path, more deliberation motion in constrained areas, etc.). The
use of such a tiered approach greatly improved the effectiveness of Crusher’s planning system, al-
lowing it to make complex maneuvers such as 3 point turns that were not explicitly in its action set.
However, this performance came at the cost of additional complexity, and another time consuming
hand tuning problem.

In contrast, the arc planner used for these experiments did not have such a state machine; a

107

6.4. EXPERIMENTAL RESULTS CHAPTER 6. PLANNER PREFERENCES

Figure 6.5: The progression of learned preference models (from top left to bottom right) to match
the scenario in Figure 6.1. Over time, the planner learns to prefer forward to reverse more and
more, as well as align itself with the heuristic (D*) path.

single preference model was learned and used for all actions in the arc set. Despite this limitation,
the preference model was capable of generating similar complex behavior (see Figures 6.5, 6.6
and 6.7). This is because all the necessary information for these maneuvers is in the features.
Therefore, Crusher’s local planning system is another example of a case where added complexity
and or decreased potential was caused by the necessity of human parameter tuning11.

Figure 6.5 shows the evolution of the robot’s behavior in the simulator, as the cost function
evolves, with a goal mirroring that in Figure 6.1. The desired behavior in such a case (based on
various examples in the training set) was for the robot to drive forward all the way to the goal.
Initially, the robot simply chooses actions that get it to the goal as quickly as possible, resulting
in it driving in reverse all the way. However, very quickly a preference for being oriented forward
along the D* path to goal (based on heading features) emerges. This preference results in the
robot performing a V-turn style maneuver to orient itself, then driving forward to the goal. As the
preference model continues to evolve, a preference for driving forwards grows stronger, resulting
in shorter V-turns. Eventually, this preference grows strong enough that the V-turn is eliminated;
instead the robot makes a hard turn and drives forwards all the way to the goal.

Figure 6.6 shows a more complex test scenario, with the robot starting in a cul-de-sac. Initially,
the robot again simply chooses actions that minimize the heuristic cost, driving in reverse out of

11That is, Crusher’s state machine was implemented not because it made the system more capable, but because it
made the system easier to tune. In cases where such state machines do actually add to the core planning capability, the
conditions for state transitions (as well as behavior within a state) could be learned by PD-LEARCH.

108

CHAPTER 6. PLANNER PREFERENCES 6.4. EXPERIMENTAL RESULTS

Figure 6.6: The progression of learned preference models (from top left to bottom right) in a
validation scenario. Over time the planner learns to exit the cul-de-sac to align itself with the D*
path to the goal. In intermediate iterations, it does not turn far enough, and becomes stuck in
oscillatory behavior (never reaching the goal). In later iterations, this oscillation is reduced and
finally eliminated.

the cul-de-sac and all the way to the goal. Again, a preference for being oriented with the D* path
emerges. At first, this results in a straight, back up. However, this puts the robot in a bad state: it
reverses until it has a little room to turn forward, but not enough room. The result is an oscillatory
behavior, and the robot becomes permanently stuck. As the preference model continues to evolve,
the initial turn becomes tighter, and is followed for longer: eventually, it evolves to the point where
the robot is able to escape the oscillation, and drive forward to the goal. However, learning is
not finished: it continues until the amount of actual oscillation is first reduced, and eventually
eliminated. The ability to generalize preferences in such a way that complicated maneuvers evolve
out of short horizon planning, without an explicit state machine or mode switching, demonstrates
the overall effectiveness of this approach.

109

6.4. EXPERIMENTAL RESULTS CHAPTER 6. PLANNER PREFERENCES

−30

−20

−10

0

10

20

30

Time

S
te

er
in

g
A

ng
le

−30

−20

−10

0

10

20

30

Time

S
te

er
in

g
A

ng
le

−30

−20

−10

0

10

20

30

Time

S
te

er
in

g
A

ng
le

−30

−20

−10

0

10

20

30

Time

S
te

er
in

g
A

ng
le

Figure 6.7: The progression of learned preference models (from left to right) in a validation sce-
nario. The commanded curvature at each point in time is also shown for example example. Over
time the planner first learns to avoid unnecessary turning, and then to favor driving forward and
being aligned with the D* path.

Figure 6.7 shows a similar evolution of complex behavior, in this case backing up before driving
forward around a wall. Along with the trajectories at different stages of learning, the commanded
curvature over time is shown for each example. Initially, there is no preference to avoid constant
changes in curvature, resulting in significant oscillations in the chosen actions. Over time, these
oscillations are damped; the planner has learned to match the expert’s tradeoffs between avoiding
unnecessary turns while still turning to achieve a goal and avoid obstacles.

Generalization and the ability to perform such maneuvers is improved by the use of slack
re-scaling in PD-LEARCH as described in Section 6.2.3. Figure 6.8 demonstrates a concrete
example of this difference. In Figure 6.8(a), a preference model was learned without slack re-
scaling. When operating under this model, the robot does not turn hard enough towards its goal,
and actually drives further away; it only begins to turn hard when it has to in order to avoid an
obstacle (otherwise it would never achieve its goal). Such behavior is obviously quite undesirable,
and its non-intuitive as to why it is learned in the first place. The cause of this issue is the fact
that the learning optimization (without re-scaling) is trying to balance numerous examples with
equal weight. For a full example trajectory that turns hard towards a goal and maintains that turn,
there are only a few timesteps that correspond to increasing curvature and then maintaining the
turn at its hardest; there are far more that simply correspond to driving towards a goal. Because all
timesteps are weighted equally, the optimization considers it just as important to get each one of
those timesteps exactly right. Even if the optimization can get n − 1 timesteps of a full example
exactly correct, the single incorrect one may be the most important. Further, that single error may
result in a robot state with similar features, resulting in the error being repeated (as in Figure 6.8(a),
where the error of not turning hard enough is continually repeated).

In contrast, by implementing slack re-scaling and weighting examples by their associated sim-
ulation penalty, the optimization can give more credence to getting certain examples right; essen-
tially, the most important examples are identified and emphasized. In contrast, the optimization
may no longer get n − 1 examples exactly right, but it will emphasize the important examples to

110

CHAPTER 6. PLANNER PREFERENCES 6.4. EXPERIMENTAL RESULTS

(a) No Re-scaling (b) With Re-scaling

Figure 6.8: Example of robot behavior with and without slack re-scaling. Without it, the robot does
not turn hard enough to ever reach its goal, only correcting to avoid collision with an obstacle.

matching expert behavior. Figure 6.8(b) demonstrates the same scenario with a preference model
learned using slack re-scaling; the result is a hard turn towards the goal.

Figures 6.9 and 6.11 demonstrate quantitatively the difference when using slack re-scaling.
Figure 6.9 shows the results of experiments to learn planner preference models based on 12 planner
features. As would be expected, the average training penalty is significantly lower when using
slack re-scaling; timesteps where immediate errors propagate are weighted more heavily in the
optimization, and those where errors are of less future consequence are weighted less. However,
this improvement does not carry over to the validation performance; due to a very small feature
set, there is equally good generalization. Nevertheless, slack re-scaling is able to improve on the
specific errors it sees. This improvement comes at the expense of the loss (defined in (6.2.6) as 1 if
the action is the wrong direction, and the error in curvature otherwise). That is, although slack re-
scaling does a better job of matching overall behavior, it does a poorer job of matching individual
actions. This is both an expected and necessary tradeoff: weighting less important timesteps less
will result in higher immediate errors, but those errors will not propagate.

Figure 6.10 presents these same results, along with the performance obtained when using DR-
LEARCH instead of PD-LEARCH. When using DR-LEARCH for planner preference models,
there is no slack re-scaling (and therefore no explicit bounding of the penalty). Instead, as in
Section 5.3.2 the example action is replanned at each iteration; instead of using Ate, the lowest cost
action whose curvature is within a small bound to Ate (and is also in the same direction) is used.
This adds a degree of robustness to noisy demonstration; however it does not explicitly identify
and increase the constribution of important examples. The result is an improvement in the average
training penalty, but not as significant as with PD-LEARCH.

Figure 6.11 shows the results of the same set of experiments when using 48 planner features
(these features were mostly non-linear versions and conjunctions of the original 12 features, added
to improve performance with linear cost functions). The training penalty and loss follow the same
pattern: slack re-scaling lowers the average penalty, while increasing the average loss. However,
the validation performance follows a difference pattern. For both the average validation penalty

111

6.4. EXPERIMENTAL RESULTS CHAPTER 6. PLANNER PREFERENCES

0 100 200 300 400 500 600 700 800 900 1000
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Iterations

P
en

al
ty

 No Re−scaling
With Re−scaling

Expanded Region

(a) Training Penalty

0 100 200 300 400 500 600 700 800 900 1000
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Iterations

P
en

al
ty

 No Re−scaling
With Re−scaling

Expanded Region

(b) Validation Penalty

0 100 200 300 400 500 600 700 800 900 1000
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Iterations

P
en

al
ty

 No Re−scaling
With Re−scaling

Expanded Region

(c) Training and Validation Penalty

0 100 200 300 400 500 600 700 800 900 1000

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Iterations

Lo
ss

 No Re−scaling
With Re−scaling

Expanded Region

(d) Training Loss

0 100 200 300 400 500 600 700 800 900 1000

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Iterations

Lo
ss

 No Re−scaling
With Re−scaling

Expanded Region

(e) Validation Loss

0 100 200 300 400 500 600 700 800 900 1000

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Iterations

Lo
ss

 No Re−scaling
With Re−scaling

Expanded Region

(f) Training and Validation Loss

Figure 6.9: Learning planner preference models with 12 planner features

and loss, without slack re-scaling there is significant overfitting. This demonstrates the ability of
slack re-scaling to deal with noisy and imperfect expert demonstration. By weighting individual
examples by their consequences, slack re-scaling is able to essentially ignore instances where the

112

CHAPTER 6. PLANNER PREFERENCES 6.4. EXPERIMENTAL RESULTS

0 100 200 300 400 500 600 700 800 900 1000
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Iterations

P
en

al
ty

D−LEARCH (No Re−scaling)
PD−LEARCH (With Re−scaling)
DR−LEARCH (No Re−scaling)

(a) Training Penalty

0 100 200 300 400 500 600 700 800 900 1000
0.06

0.08

0.1

0.12

0.14

0.16

0.18

Iterations

P
en

al
ty

D−LEARCH (No Re−scaling)
PD−LEARCH (With Re−scaling)
DR−LEARCH (No Re−scaling)

(b) Validation Penalty

0 100 200 300 400 500 600 700 800 900 1000

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Iterations

Lo
ss

D−LEARCH (No Re−scaling)
PD−LEARCH (With Re−scaling)
DR−LEARCH (No Re−scaling)

(c) Training Loss

0 100 200 300 400 500 600 700 800 900 1000

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

Iterations

Lo
ss

D−LEARCH (No Re−scaling)
PD−LEARCH (With Re−scaling)
DR−LEARCH (No Re−scaling)

(d) Validation Loss

Figure 6.10: Performance of PD-LEARCH vs DR-LEARCH for learning planner preference mod-
els.

example action is not exactly optimal (e.g. turning very slightly when the goal is straight ahead, or
oversteering when making a hard turn), such as the case demonstrated in Figure 6.4(c). In contrast,
without this robustness the optimization will continue to try to fit these small errors. When the
feature space is small this may not affect generalization (as Figure 6.9 demonstrates). However, a
higher dimensional feature space allows for overfitting and less generalization. Therefore, when
operating off training data from human experts (even when said training data is collected under
ideal conditions, such as in simulation) slack re-scaling (PD-LEARCH) is necessary to ensure
robustness to noise.

In order to obtain a comparison of learned versus hand-tuned performance, an experiment was
performed by having an independent expert attempt to hand tune a preference model for the planner
while operating in the simulator. The expert was constrained to using a linear cost function (as with
the learned function), but was allowed to add new features as he saw fit. Every time the simulator
was started with a modified set of parameters, the current parameters were logged in order to

113

6.4. EXPERIMENTAL RESULTS CHAPTER 6. PLANNER PREFERENCES

0 100 200 300 400 500 600 700 800 900 1000

0.04

0.06

0.08

0.1

0.12

0.14

Iterations

P
en

al
ty

 No Re−scaling
With Re−scaling

Expanded Region

(a) Training Penalty

0 100 200 300 400 500 600 700 800 900 1000

0.04

0.06

0.08

0.1

0.12

0.14

Iterations

P
en

al
ty

 No Re−scaling
With Re−scaling

Expanded Region

(b) Validation Penalty

0 100 200 300 400 500 600 700 800 900 1000

0.04

0.06

0.08

0.1

0.12

0.14

Iterations

P
en

al
ty

 No Re−scaling
With Re−scaling

Expanded Region

(c) Training and Validation Penalty

0 100 200 300 400 500 600 700 800 900 1000
0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Iterations

Lo
ss

 No Re−scaling
With Re−scaling

Expanded Region

(d) Training Loss

0 100 200 300 400 500 600 700 800 900 1000
0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Iterations

Lo
ss

 No Re−scaling
With Re−scaling

Expanded Region

(e) Validation Loss

0 100 200 300 400 500 600 700 800 900 1000
0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Iterations

Lo
ss

 No Re−scaling
With Re−scaling

Expanded Region

(f) Training and Validation Loss

Figure 6.11: Learning planner preference models with 48 planner features

evaluate performance after each tuning. The overall tuning procedure went through 3 phases 12.
Initially, there were 34 features and associated weights, which were tuned by the expert. Next,

12These phases were not mandated, but rather were simply the result of the expert’s tuning procedure

114

CHAPTER 6. PLANNER PREFERENCES 6.4. EXPERIMENTAL RESULTS

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iterations

P
en

al
ty

34 Features
Adding Features
48 Features

(a) Validation Penalty

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Lo
ss

34 Features
Adding Features
48 Features

(b) Validation Loss

Figure 6.12: Hand-tuning planner preference models. Tuning began with 34 features, and then an
additional 14 were added during tuning by the expert.

Hand Tuned Learned

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Best
Final

P
en

al
ty

Hand Tuned Learned

0

0.02

0.04

0.06

0.08

0.1

0.12

Best
FinalLo

ss

Figure 6.13: A comparison of the best versus the final validation performance achieved by each
approach during tuning.

there was a period where additional features were slowly added and tuned, eventually resulting in
48 features (these 48 features were used in the experiment in Figure 6.11). Finally, there was a long
period of tuning the parameters for the final 48 features. Overall, this process took approximately
12 hours of expert time, spread over 2 days.

Figure 6.12 presents the results of this experiment, showing the average validation penalty and
loss at each parameter set. Unlike an automated tuning procedure (Figure 6.11), the hand tuning
is very unstable. Good validation performance is achieved very quickly; however subsequent
tunings decrease performance. When performance is decreased, it is not by some small percentage,
but by very large amounts (the worst validation performance is 3-4 times worse than the initial
performance). This demonstrates that although a human tuner may have intuition about the effect

115

6.4. EXPERIMENTAL RESULTS CHAPTER 6. PLANNER PREFERENCES

of tuning individual parameters, the appropriate scale is generally not know, and is only found by
trial and error. Over time, the hand tuning procedure begins to approach a steady state floor, but
there are still lots of spikes as large changes are made and then undone (if they do not improve
performance in the expert’s opinion).

Of note is the difference between the performance of the best parameter set during human
tuning, and the final parameter set. Figure 6.13 presents these results, along with the comparable
results for the learned tuning. The hand tuning achieves best case validation performance that
compares quite well with the learning approach. However, there is a significant difference in
the final performance. The hand tuning, after several spikes and restarts, settles on a parameter
set that is significantly lower performance than the best case. In contrast, the final validation
performance of the learned system is closer to its best case. This improved validation performance
was accompanied by a dramatic reduction in the required expert interaction.

An important point to re-emphasize when comparing hand and automated tuning is that a hu-
man expert can only consider (and test against) a small number of scenarios at once. Therefore,
hand tuning is prone to overfit whatever small set of scenarios the expert is currently focused on. In
contrast, an automated approach considers a much larger set of examples, and checks against each
one every time even the smallest change is made. This make it more likely that an automated sys-
tem will catch a parameter change with a negative effect, and less likely that significant overfitting
will occur. In addition, implementing an automated approach naturally provides the mechanism
for performing automated validation on independent examples, providing a mechanism for early
stopping (or reversion to earlier settings) when overfitting does occur. When parameter tuning is
performed by hand, such a mechanism is almost never implemented13.

6.4.2 Learning Perception and Planner Preference Models

The arc planner was ported to the E-Gator robotic platform (Figure 6.14) for field testing and
experimentation. Along with this planning system, a subset of Crusher’s perception system was
ported to the E-Gator as well. Thus, the E-Gator autonomy system is conceptually quite similar to
Crusher, and follows a similar data flow (Figure 5.9). Just as with Crusher, key to the performance
of the E-Gator system are two preference models: a perception cost function to map features of 2D
locations into terrain costs, and a planner cost function to indicate relative costs of specific actions.

This platform offered two key advantages for conducting experiments into the learning from
demonstration approaches described in this work. First, the E-Gator is retrofitted to be a drive by
wire vehicle; however it can also still be driven by a human driver. Therefore, expert demonstra-
tion can be provided by someone actual sitting in and driving the vehicle, as opposed to remote
control. This is especially important for issues of driving style, as a remote operator would not be
as concerned with (nor necessarily as capable of) demonstrating smooth, clean motion. The sec-
ond advantage is that the E-Gator system did not have previously existing hand tuned preference
models (as the planner and perception implementations were done in conjunction with this work).
Therefore, just as with the simulator hand tuning experiment, hand tuning of the full E-Gator sys-
tem (perception and planning) could be recorded in detail.

Although the E-Gator perception system was based on modules ported from the Crusher sys-

13That is, hand tuning could just as easily revert to an earlier, ’best’ parameter setting as a learned tuning, but imple-
menting the validation mechanism requires almost as much work as implementing full learning from demonsrtation.

116

CHAPTER 6. PLANNER PREFERENCES 6.4. EXPERIMENTAL RESULTS

Figure 6.14: The E-Gator Robotic Platform

tem, there are a few key differences. The most important of these is the available sensors: The
E-Gator has only a single nodding laser, with a 100◦ field of view. There is also a single camera;
however it was not utilized for these experiments. There are also differences in the features pro-
duced by the two systems. Crusher’s perception system produced a large set of geometric shape
features; however these were not fed directly to the cost function. Instead, they were used as input
to the terrain classifier, with classifications being fed to costing. On the E-Gator, no classifier was
utilized. Instead, a subset of the shape features was fed directly to costing. Another difference was
the addition of various smoothed features over varying windows. The purpose of such features was
to allow the cost of a particular location to be affected not only by the terrain at that location, but
by the terrain near it; as a result, a soft cspace expansion of cost maps was possible. Such a soft
cspace expansion is often used to prevent a robot from getting too close to high cost areas when
they can be avoided, while still allowing it to squeeze through tight areas when necessary.

The combined optimization for simultaneously learning perception and planning preference
models (Algorithm 8 was implemented for the E-Gator system. This implementation simply fused
the planner learning implementation from the simulator experiments with the implementation used
for Crusher’s perception system in Section 5.5 (including the robust extensions inherent in DR-
LEARCH). Training and validation sets were collected by demonstrating and recording desired
behavior on the E-Gator in the field. The demonstration was intended to imply both where the
robot should drive, and how it should drive. The terrain varied from semi-structured, man-made
environments (e.g. parking lots and around buildings) to more unstructured terrain (e.g. small
and large trees, rolling hills, tall grass and bushes, etc.). In addition to data collected live on
the E-Gator, the data sets used for planning were augmented by examples from the simulator. This
allowed the easy addition of specific examples deemed important during training. The final planner
preference model used 60 features (12 additional features to the 48 used in the last section) and 35
features for the perception preference model. Overall, collecting the training set required less than

117

6.4. EXPERIMENTAL RESULTS CHAPTER 6. PLANNER PREFERENCES

0 100 200 300 400 500 600
0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

Iterations

Lo
ss

(a) Perception Validation Loss

0 100 200 300 400 500 600
1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

1.14

1.15

Iterations

C
os

t R
at

io

(b) Perception Validation Cost Ratio

0 100 200 300 400 500 600
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Iterations

P
en

al
ty

(c) Planner Validation Penalty

0 100 200 300 400 500 600
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Iterations

Lo
ss

(d) Planner Validation Loss

Figure 6.15: Learning perception and planner preference models for the E-Gator Robot

4 hours of human interaction (factoring in that two people are necessary to operate the E-Gator for
safety reasons).

Figure 6.15 presents the validation results of the learning algorithm. In this context, evaluation
of performance is complicated by the dependence between the two cost functions. That is, the
performance of the planner preference model is dependent on having a good perception preference
model, and vice versa. To remove this dependence, the perception system was instead evaluated
based on performance of the global D* planner (which does not have a dependence on the planner
cost function). That is, the error metrics were computed by comparing the global D* plan (with
each cost function) to the expert demonstration. As described in Section 5.4.3 having the correct
cost function for the global planner is a necessary but not sufficient condition for having the correct
cost for the arc planner; however the difference in the final metrics is small enough to make it
worthwhile to remove this dependence. Therefore, Figure 6.15 shows the validation loss and cost
ratio for the perception cost function (with the global planner), and the validation penalty and

118

CHAPTER 6. PLANNER PREFERENCES 6.4. EXPERIMENTAL RESULTS

loss for the planner cost function. All four metrics show a steady improvement during successive
learning iterations, eventually converging to a steady state. Due to the non-convexity of the planner
optimization, a small learning rate is used (for the planner) during the first 100 iterations; this
accounts for the slow initial improvement. Overall, Figure 6.15 demonstrates the effectiveness of
Algorithm 8 for learning coupled perception and planner preference models from a single set of
expert demonstrations.

In order to compare learned versus hand tuned performance for the fielded E-Gator system,
an independent robotics expert was tasked with tuning by hand both perception and planner cost
functions. As in the similar experiment with the simulator, the state of both functions was recorded
whenever parameters were modified, in order to evaluate performance over time. The expert began
by tuning the planner in the simulator, and tuning perception by observing playback of a large set
of data logs. Next, the E-Gator was taken out for a period of field testing, during which the robot’s
behavior was observed, and both preference models were tuned accordingly. Next, another period
of offline tuning was performed. During this phase, many of the data logs used in tuning had
been specifically collected to be examples of cases where the robot was currently having difficulty.
Finally, the robot was taken out for another period of field testing, where final fine tuning was
performed, until the expert was satisfied that no further significant progress was possible, and the
experiment was declared over.

This back and forth between offline and online tuning of the system is very common for fielded
mobile systems, and is quite similar to how Crusher was tuned over several years. Most of the ac-
tual tuning is done offline, due the difficulty and expense of field testing, and the ease of repeatable
testing offline. However, since actual performance always diverges from simulated performance,
robot field testing is necessary to tease out these differences, and then re-tune the system accord-
ingly. Overall, the tuning of both preference models took 38 hours of tuning time, spread over 3
weeks. 18 of those 38 hours were spent tuning and testing the E-Gator in the field, which also
required the presence of a safety operator, therefore bringing the total effort to 56 engineer-hours.

The final hand tuned perception cost function is shown for two representative scenes in Figure
6.16, along with the corresponding learned cost function. The differences in the cost function are
quite similar to the differences between Crusher’s hand tuned and learned cost functions (Section
5.5). The learned cost function appears noiser, as LEARCH anticipates the planners internal cspace
expansion. Also of note is the soft expansion implemented in each cost function; it is a much
sharper expansion in the learned system, which allows more precision maneuvers in tight spaces
(when necessary). A final distinction is the differing cost on areas of tree canopy that the robot can
drive under; the learned function distinguishes theres areas from tree trunks and lower branches;
the hand tuned system makes no such distinction.

Figure 6.17 presents the quantitative results of this tuning experiment. As in Figure 6.15 the
validation loss and cost ratio of the perception system (evaluated through the global planner) along
with the validation penalty and loss of the planning system are presented. This tuning follows the
same pattern seen in Figure 6.12; good performance is achieved fairly quickly, however subsequent
tuning causes large spikes, as the expert attempts to fix specific observed problems. At times, the
expert chooses to revert to a previous parameter set after exploring several significant changes. As
the experiment progresses, performance begins to reach a steady state with fewer spikes; eventually
parameter changes are minimized, until the final parameter set is reached.

Again of note is the difference between the performance the hand tuning procedure achieves
in the best case, and the final performance when it has finished (Figure 6.18). For the perception

119

6.4. EXPERIMENTAL RESULTS CHAPTER 6. PLANNER PREFERENCES

(a) HDR Image

(b) Hand Tuned Cost

(c) Learned Cost

Figure 6.16: Comparison of hand tuned vs learned cost functions in a unstructured and semi-
structured scene.

system, the best validation performance achieved compares well with the best case performance
of the learned system. However, it is again the case that the final hand tuned system achieves
lower performance. While the increase in the loss is small, the significant increase in cost ratio
implies that when the robot’s planned path does not match the validation example, it is much farther

120

CHAPTER 6. PLANNER PREFERENCES 6.4. EXPERIMENTAL RESULTS

0 10 20 30 40 50 60
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Iterations

Lo
ss

Offline Tuning
Field Tuning

(a) Perception Validation Loss

0 10 20 30 40 50 60
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Iterations

C
os

t R
at

io

Offline Tuning
Field Tuning

(b) Perception Validation Cost Ratio

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iterations

P
en

al
ty

Offline Tuning
Field Tuning

(c) Planner Validation Penalty

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations

Lo
ss

Offline Tuning
Field Tuning

(d) Planner Validation Loss

Figure 6.17: Hand-tuning perception and planner preference models for the E-Gator Robot

from being correct. In contrast, the learned system’s final performance is again similar to its best
performance. The trend for the planning system is even more striking. Not only is the difference
between best and final performance far larger for the planning system than the perception system,
it is also more significant on the E-Gator as opposed to in the simulator (Figure 6.13). This speaks
even more to the difficulty of validation when actual robot performance must be observed, and to
the advantages of the automated validation that learning from demonstration provides.

Of course, the differences between simulated and actual robot performance that have just been
emphasized also imply that the online performance of the learned and hand tuned preference mod-
els must be compared. To this end, a series of comparison experiments was conducted in the
field with the E-Gator. These experiments were conducted in a similar manner to those involving
Crusher described in Section 5.5.2. The E-Gator was run through a set of comparison courses, with
each waypoint pair run twice: once with the learned preference models (perception and planning)
and once with the hand tuned models. Waypoint spacing averaged just over 50m. Over the full

121

6.4. EXPERIMENTAL RESULTS CHAPTER 6. PLANNER PREFERENCES

Hand Tuned Learned

0.19

0.19

0.2

0.2

0.21

0.21

0.22

0.22

Best
FinalLo

ss

Hand Tuned Learned

1

1.05

1.1

1.15

1.2

1.25

Best
Final

C
os

t R
at

io

(a) Perception

Hand Tuned Learned
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Best
Final

P
en

al
ty

Hand Tuned Learned

0

0.05

0.1

0.15

0.2

0.25

Best
FinalLo

ss

(b) Planner

Figure 6.18: A comparison of the best versus the final validation performance achieved by each
approach during E-Gator Tuning.

set of experiments, the E-Gator drove for more than 3 hours autonomously, traversing more than 4
km.

The results of these experiments are shown in Table 6.1, and present a very stark contrast in
the behavior of the two systems. The most important difference is the rate of safety interventions
necessitated by each pair of preference models: the hand tuned system had an intervention rate that
was seven times that of the learned system. In addition to this explicit difference in safety, there
were other significant differences in driving style. The learned system spent far less time in reverse
(important for a vehicle with no rear sensors), and was also less prone to getting stuck in oscillatory
back-and-forth behavior (as indicated by the higher variance in the number of direction switches
of the hand tuned system). The variance in the distance traveled was also significantly higher in
the hand tuned system, indicating that highly inefficient behavior was more likely. There was also

122

CHAPTER 6. PLANNER PREFERENCES 6.4. EXPERIMENTAL RESULTS

Avg Extra Avg Avg % Time in
Dist (m) Dist (m) Roll (◦) Pitch(◦) Reverse

Learned 69.27/785.5 12.02/148.5 3.71/2.61 4.45/2.29 0.075/0.012
(µ/σ2)
Hand-Tuned 73.09/1791.7 17.15/1293.24 4.24/3.90 4.39/2.15 0.19/0.079
(µ/σ2)
P-value 0.34/0.014 0.23/0.0 0.13/0.14 0.56/0.57 0.016/0.0

Dir Switch Avg Steer Avg ∆ % Time Avg ∆ Safety
Per m Angle (◦) Angle (◦) Angle 6= 0 Angle 6= 0 (◦) E-Stops

Learned 0.029/0.0014 9.43/15.46 1.69/0.20 0.33/0.0064 5.19/0.49 0.13/0.12
(µ/σ2)
Hand-Tuned 0.044/0.0079 11.74/14.43 2.08/0.76 0.19/0.0033 10.76/3.60 0.90/1.49
(µ/σ2)
P-value 0.18/0.0 0.011/0.57 0.016/0.0 0.0/0.038 0.0/0.0 0.0/0.0

Table 6.1: Results of E-Gator experiments comparing learned to hand-tuned performance.

a stark contrast in how the two systems steered. On average, the learned system turned less than
the hand tuned system, and also turned the wheel less on average. This second difference comes
despite the fact that the learned system kept the steering wheel steady a much smaller percentage of
the time than the hand tuned system. The learned system simply made more, smaller movements
of the steering wheel, while the hand tuned system made fewer, large movements of the steering
wheel. On average, when the wheel was turned, it was turned twice as much by the hand tuned
system as the learned system.

Despite this lowered reluctance to hard turns, most of the extra safety interventions came when
the hand tuned system bumped or collided with significant obstacles such as trees. Qualitatively
speaking, these collisions were usually the result of the planning system. That is, the percep-
tion cost always appeared sufficiently high to force the global planner around the obstacles, and
appeared sufficiently high to account for the kinematic constraints of the E-Gator as well. The
E-Gator would usually start to turn to avoid such obstacles, but then would sometimes begin to
turn around them too soon, either clipping them with the back of the vehicle, or hitting them head
on with a front wheel or bumper. It is interesting to note that this suboptimal behavior was some-
what expected, in that similar incidents were observed during hand tuning. In fact, a good deal of
the planner parameter tuning (and consequently the spikes seen in later tuning iterations in Figure
6.17) was done in a direct attempt to correct this particular issue. However, the expert was unable
to tune the planner to avoid such behavior while at the same time not introducing other significant
negative behaviors (specifically crippling oscillations), and eventually settled on the final param-
eter set as a compromise. Therefore, the final results of this set of experiments strongly support
the theory that manual parameter tuning, especially in high dimensions, is likely to be unable to
produce reasonable results in a reasonable length of time.

123

6.4. EXPERIMENTAL RESULTS CHAPTER 6. PLANNER PREFERENCES

124

Chapter 7

Stable, Consistent, and Efficient Learning
from Expert Demonstration

The previous chapters have presented techniques that can automate the process of generating pref-
erence models through the collection of specific forms of expert demonstration. These approaches
can eliminate the task of manual parameter tuning and model design; instead of an expert tuning
the system to produce desired behavior, the system can learn to produce desired behavior from
demonstration. However, it remains the responsibility of the expert to determine what behavior is
desirable, and what demonstration to provide.

Looking forward to the possibility of general application of such approaches, there are some
high level requirements one could imagine setting on the results

Stability The behavior of the robotic system after learning should not be too dependent on any
single, key demonstration. That is, there should never be a key concept that is only taught by
one example. Likewise, if a system has already been trained to have good performance, the
addition of new training data should never reduce performance in any significant manner.

Consistency Learning from demonstration offers the promise of train once, tune forever; if indi-
vidual perception, planning, or control systems are modified, preference models can simply
be relearned from previous demonstration. However more significant changes such as the
addition of sensors or the porting of existing software to a new robot will still require col-
lection of new training data. In such instances, retraining multiple times from scratch should
not result in systems with drastically different performance (taking into account whatever
modifications forced the retraining).

Efficiency The collection of training data should remain an easy process (relative to manual pa-
rameter tuning), and should not grow to require unreasonable amounts of expert interaction,
as this would negate a key advantage of this approach. In addition to minimizing the amount
of expert interaction, the burden placed on the expert should also be minimized; that is the
act of providing demonstration and feedback should be made as easy as possible.

Unfortunately, as is often the case these requirements are at odds. Stability is partially ensured
by the robustness to noisy and imperfect demo provided by DR-LEARCH and PD-LEARCH.
However, it also generally requires sufficient training data to ensure that all important concepts

125

7.1. DIFFERENT FORMS OF EXPERT DEMONSTRATION AND FEEDBACKCHAPTER 7. STABLE AND EFFICIENT LEARNING

are learned, and that no single, very poor example can counteract them. Consistency also requires
large datasets, to ensure not only that all important concepts are covered, but potentially multiple
times; small, disjoint training sets may imply slightly difference preferences due to human incon-
sistency. In contrast, by definition efficient use of expert interaction requires as little training data
as possible.

This chapter presents solutions aimed at decoupling these requirements. These solutions fall
into two classes. The first class seeks different methods for the collection and interpretation of
expert demonstration and feedback. By increasing the ease to an expert of providing demonstration
and feedback, larger training sets can be collected in less time. Additionally, by clarifying exactly
what it is that an expert means to teach (that is, ensuring that it is clear what concept the expert
is implying) the natural inconsistency in human demonstration can be lessened in its effect. The
second class of approaches make learning from demonstration more interactive, and seek to ensure
that additional demonstration provided by an expert is useful and not redundant. This not only
limits the amount of required training data, but can help insure stability and consistency by forcing
the inclusion of any key examples that might exist.

7.1 Different Forms of Expert Demonstration and Feedback

The MMP framework and subsequent algorithms interpret an expert demonstration Pe from start se
to goal ge as implying the optimal trajectory between endpoints. This is a very powerful assump-
tion. On one hand, it allows the inference of a vast number of constraints from each demonstration,
which in turn makes each example very meaningful. On the other hand, it also requires the assump-
tion that the expert demonstration is indeed optimal for some cost function. As shown in both of
the previous chapters, this is rarely the case, as human demonstration is almost always noisy or
suboptimal. Therefore, some of the constraints enforced by presumed optimality are incorrect.
Robust extensions compensate for this issue; however, it would be beneficial to simply avoid it
when possible. In addition, this presumption of optimality puts a burden on the expert, who must
now ensure that provided demonstration is not only desirable, but near optimal. At times, the
expert may not feel confident in making such a strong statement, but could still provide useful
demonstration or feedback.

7.1.1 Relative Examples

It need not be the case that an expert demonstration be treated as an optimal demonstration.. The
original MMP constraint (rewritten for general cost functions) is

minimize OF [C] = REG(C) (7.1.1)
subject to the constraints∑

x∈P̂

(C(Fx)) ≥
∑
x∈Pe

(C(Fx))

∀P̂ s.t. P̂ 6= Pe, ŝ = se, ĝ = ge

126

CHAPTER 7. STABLE AND EFFICIENT LEARNING 7.1. DIFFERENT EXPERT FEEDBACK

The optimality of Pe is implied in a pairwise relative manner; that is, Pe should be lower cost than
P̂ for any P̂ . It is ’for any P̂ ’ that can cause problems if Pe is a desirable but suboptimal path.

A way to lessen the impact of this problem is to reduce the scope of what is implied by Pe.
That is, instead of stating that Pe is better than any P̂ , it can be simply stated that Pe is better than
a specific alternate path Pa

minimize OF [C] = REG(C) (7.1.2)
subject to the constraint∑

x∈Pa

(C(Fx)) ≥
∑
x∈Pe

(C(Fx))

where the expert is confident that Pe is indeed better than Pa. Such a relative constraint would serve
two purposes. First, it is much easier to produce. For example, it is much easier to demonstrate a
path that prefers a road to a grass field and state ’taking the road is better than taking the field’ then it
is to state ’taking the road in exactly this manner is better than all other possibilities (including those
that also take the road)’. Second, all constraints produced in such a manner are explicitly intended
by the expert; the possibility of accidentally implying additional (and possibly inconsistent or
suboptimal) constraints is removed.

The problem of learning strict preferences in this manner has been well studied [249], and has
been shown to be NP-hard. However, if soft constraints are used, then the problem is tractable.
Adding a slack term as before yields

minimize OF [C] = REG(C) + ζ (7.1.3)
subject to the constraint∑

x∈Pa

(C(Fx)) −
∑
x∈Pe

(C(Fx)) + ζ ≥ 0

Moving the constraint into the optimization, and adding a margin yields an optimization problem
similar to (5.1.10)

minimize O[C] = λREG(C) +
∑
x∈Pe

C(Fx) −

[∑
x∈Pa

(C(Fx)− Le(x))

]
(7.1.4)

This formulation is near identical to the support vector ranking problem [250, 251], except it is
not constrained to linear cost functions. As with support vector ranking or an MMP formulation
with an optimal constraint, it can be solved through sub-gradient descent. The functional gradient,
defined as

∇OF [C] = λ∇REGF [C] +
∑
x∈Pe

δF (Fx) −
∑
x∈Pa

δF (Fx) (7.1.5)

is identical to (5.1.11) with P∗ replaced with Pa. Thus, the implementation of learning from explicit
relative examples is identical to the LEARCH implementations from the previous chapters, except
instead of accumulating visitation counts along P∗, they are accumulated along Pa. An extra
improvement to this formulation would be to use R-LEARCH techniques to allow for noise in
either path of the constraint, as well as allowing generalization to similar paths.

127

7.1. DIFFERENT EXPERT FEEDBACK CHAPTER 7. STABLE AND EFFICIENT LEARNING

Figure 7.1: 3 Possible paths between two waypoints are shown over overhead imagery. The green
path can be used as an example that is relatively better than the red path, and the blue path as one
relatively better than the red and green path. Even if the blue path is not the best or most desirable
path, the relative constraints that it implies can be useful for learning.

Therefore, one alternative approach to collecting expert demonstration is to request two tra-
jectories from an expert, Pe and Pa, such that one is clearly better than the other. Alternatively,
rather than the expert producing Pe and Pa, he could be provided with paths P1 and P2 between
two waypoints, and asked to identify which one is preferable. Such a procedure could reduce the
burden on an expert, as well as the possibility of error in demonstration. A similar approach was
widely used in the DARPA Learning Locomotion program in order to learn a cost function over
individual footstep placements for the Little Dog robot. The general approach was to present the
trainers with multiple terrain patches, and to record their preferred terrain patch with respect Little
Dog. This approach was adopted by several competing teams, demonstrating its ease in facilitating
cost function learning [252, 253, 254].

7.1.2 Acceptable Examples

In scenarios that are difficult for a human expert to understand or interpret, relative constraints
can be an effective way to provide feedback without the necessity of identifying the single most
desirable solution. However, in certain instances, it may be too difficult to make even these deter-
minations. Systems that operate in high dimensions are especially difficult. For example, an expert
may be able to demonstrate a successful trajectory for a high degree of freedom robotic arm, or
for a vehicle traveling at high speeds (where dynamics are in play). However, the expert may not
be able to say with confidence whether the demonstration was better than any other approach that
was also successful, let alone that it was the single most desirable trajectory.

In such difficult cases, there is still potential to use relative constraints to learn from expert
feedback. The key is the definition of successful. Imagine a high speed robotic vehicle traveling
between waypoints. If an expert demonstrates a trajectory that moves the vehicle from a specified
start to a goal, then such a trajectory is clearly acceptable. That is, it is something the expert would
be willing to allow the vehicle to do (otherwise, it would not have been demonstrated). In contrast,
a trajectory that does not succeed in getting the vehicle to the specified goal, or traverses terrain

128

CHAPTER 7. STABLE AND EFFICIENT LEARNING 7.1. DIFFERENT EXPERT FEEDBACK

that it should not, is almost by definition unacceptable.
Therefore, for any start and end condition two classes of examples can be defined. Acceptable,

cromulent or satisfactory examples are ones which an expert would allow the robot to perform.
Unacceptable or unsuitable examples are ones which the expert would never allow or want the
robot to perform. While this distinction provides no information about the relative desirability
of examples within a class, there is a clear distinction between classes: no unacceptable example
should ever be preferred to an acceptable one.

Formally, if PA
s,g is defined as the set of acceptable paths between s and g, and PU

s,g as the set
of unacceptable paths, then the resulting constrained optimization over C is

minimize OF [C] = REG(C) (7.1.6)
subject to the constraints∑

x∈PU

(C(Fx)) >
∑
x∈PA

(C(Fx))

∀PU ∈ PU
s,g, PA ∈ PA

s,g

Adding a margin and rearranging the constraint yields

minimize OF [C] = REG(C) (7.1.7)
subject to the constraints∑

x∈PU

(C(Fx))−
∑
x∈PA

(C(Fx)) >
∑
x∈PU

Le(x)

∀PU ∈ PU
s,g, PA ∈ PA

s,g

With the exception of the loss scaled margin, this optimization is identical to the standard support
vector machine formulation. This implies that the separation into acceptable and unacceptable
groups can indeed be viewed as a classification problem.

From an implementation standpoint, the functional gradient (and therefore the necessary visi-
tation counts to collect) are unchanged from relative constraints. The total number of constraints
is quadratic in the number of examples. However, it is not necessary to enforce all of these con-
straints. Instead, it need only be enforced for PU∗ (the lowest cost unacceptable path), resulting in
a linear number of constraints. Technically speaking, a single constraint would suffice, using only
the highest cost path in PA

s,g at any time; however given that every example path (in either class)
provides a noisily labeled set of individual examples, there is potentially benefit to generalization
in using more constraints.

7.1.3 Lethal Examples
A key distinction between inverse optimal control based approaches to learning preference models
and many other approaches is the notion that there is not necessarily a single correct cost value;
rather only correct behavior produced by a set of costs. However, there is one specific case where
often the correct cost can be identified. This is in the case of true obstacles: terrain features that
a robot should never attempt to traverse. Despite the prevalence of continuous terrain costs, many
planning systems still have a notion of an impassable or lethal cost, such that transitions through

129

7.1. DIFFERENT EXPERT FEEDBACK CHAPTER 7. STABLE AND EFFICIENT LEARNING

Figure 7.2: 3 unacceptable examples (left) shown along with 1 acceptable example (right). This set
of examples implies 3 relative constraints (between each unacceptable example and the acceptable
example); alternatively this can be viewed as a classification problem between unacceptable and
acceptable paths.

lethal states can not even be considered by a planner.
However, the power to consider a state (or action) as lethal comes with drawbacks. Specifi-

cally, any errors in lethal identification (whether a false positive or negative) can drastically affect
behavior. For example, the Crusher system originally made use of lethal perception costs to help
ensure safety. However, lethal false positives would often close off narrow but traversable paths,
forcing the robot to explore further (and sometimes take a more dangerous route). Also, depending
on lethals to ensure safety became something of a crutch, and lethal false negatives would often
lead to safety interventions. For these reasons, explicit lethal costs were removed from the Crusher
system in later iterations1.

However, lethals can still be useful, if they are accurately identified. Not only can they help
to ensure a robot’s safety, they can also help to account for a limited dynamic range in a cost
function. Cost functions learned from demonstration are especially prone to dynamic range issues
(Figure 7.3). The problem is that even if a particular obstacle should be avoided at all costs, any
(feasibly demonstrable) example path will only imply a lower bound. Driving 100m over a grass
to avoid a 1m square rock only implies a (relative) cost of one hundred; if the desired ratio is closer
to one thousand or one million, it is unlikely that any feasible example will actually exist in the
environment that would imply such a bound.

In order to solve the problem of lethal identification, one approach would be to explicitly
label such examples. That is, an expert would label patches of terrain as lethal or non-lethal,
and a simple binary classifier could then be used as an augmentation to the existing cost function.
However, unless such a classifier were completely accurate, it would still suffer problems with
the unintended consequences of errors. The idea of explicit labeling of lethals can still be useful
however; the key is in how such labels are used. If they are integrated in a way that also takes into
account existing expert demonstration, then the fusion of all training data is likely to reduce the
consequences of errors. That is, if a specific patch of terrain is labeled as lethal, and no training
examples ever traverse similar terrain, then the cost function could consider it lethal. If however,
a terrain patch labeled as lethal is indistinguishable (to the chosen family of cost functions) from
terrain that an expert traverses in a demonstration, then these inconsistent training inputs can be
balanced (that is, the cost raised as much as possible on that terrain, while still allowing the example
to be reproduced).

Assume that for a given planner, there is a maximum cost value Cmax, at or above which all

1Chapter 3 also described how lethals created problems in Urban Challenge vehicles

130

CHAPTER 7. STABLE AND EFFICIENT LEARNING 7.1. DIFFERENT EXPERT FEEDBACK

(a) Training Path (b) Learned Cost (c) Learned Cost with Lethals

Figure 7.3: An case where an example path does not imply significant dynamic range of dangerous
terrain. Although the learned cost function reproduces the demonstrated behavior, it does so in a
manner that does not generalize well (that is, cost on the water is too low and cost on the trees too
high). Labeling just a few pixels of water as lethal results in higher cost on water, and lower cost
on trees.

costs are treated as lethal. For many planners, including Field D*, this is how lethal costs are
actually implemented. For planners without explicit lethals, Cmax is then the closest a cost value
could ever come to a true lethal. If a labeled set of lethal examples L are provided by an expert,
than a reasonable way to seek a cost function would be to do a normal MMP optimization, while
also enforcing the lethality of all such labeled examples

minimize OF [C] = REG(C) + MMP(C) (7.1.8)
subject to the constraints
C(x) ≥ Cmax ∀x ∈ L

MMP represents the contribution to the objective of the standard MMP constraints (condensed for
the sake of clarity). However, there is a fallacy with this formulation. If a lethal example and a
standard MMP example are in conflict (that is, terrain patch is labeled as lethal, and yet a training
example drives through similar terrain), that terrain would be considered lethal (match the hard
lethality constraints). However, the fact that an expert chose to drive a vehicle through such terrain
would seem to indicate that that is not the case. To allow the conflicting examples to be balanced
in such cases, the constraints can be softened through a slack penalty

minimize OF [C] = REG(C) + MMP(C) +
∑
x∈L

ζx (7.1.9)

subject to the constraints
C(x) + ζx ≥ Cmax ∀x ∈ L

131

7.1. DIFFERENT EXPERT FEEDBACK CHAPTER 7. STABLE AND EFFICIENT LEARNING

Moving the lethality constraint into the objective yields

minimize OF [C] = REG(C) + MMP(C) +
∑
x∈L

(Cmax − C(x)) (7.1.10)

with functional gradient

∇OF [C] = λ∇REGF [C] +∇MMPF [C]−
∑
x∈L

δF (Fx) (7.1.11)

This gradient implies a very simple addition to the LEARCH algorithm that can allow lethal ex-
amples: states labeled as lethals simply have their (positive) visitation counts incremented at each
iteration, if they are not already sufficiently high cost. During the projection of the functional gra-
dient (that is, each regression step to learn a modification to the cost function) these extra visitation
counts will result in an increase of the cost at the labeled states, as long as there are not in conflict
with other examples. The result is a simple algorithm that can help to account for dynamic range
problems, and potentially further simplify training data collection.

7.1.4 Expert Feedback without Demonstration
The addition of relative, acceptable and lethal examples to standard (optimal) examples has the
potential to ease the burden on an expert demonstrator by lowering the threshold on the quality of
expert input for it to be useful. However, (except for lethal examples) an expert must still produce
the actual demonstration. In the case of relative or acceptable examples, this implies producing
not only the preferred or acceptable example, but the example to be avoided. When demonstration
requires operation of an actual robot, it may not be possible or desirable to actual generate such
examples.

However, the combination of these new forms of expert feedback offers an intriguing possi-
bility: that of providing expert feedback to improve the system without the expert ever actually
demonstrating any behavior to the robot. That is, both positive and negative example behaviors
could be produced automatically, and then simply rated by the expert. Such an approach would
be especially useful for robotic systems that are too complicated for an expert to operate, or when
such demonstration is simply too arduous.

In the case of a mobile robot, such a training approach could proceed as follows. The robot
(through some combination of normal optimal examples and lethal examples) is given a small
training set sufficient for it to operate autonomously in a safe manner with close expert observation.
Then, the robot is taken to the field for testing. During testing, any time the robot attempts a
behavior that the expert deems unacceptable, the robot is stopped and the robot’s plan recorded.
The robot then raises the cost specifically of the unacceptable plan; this could take the form of
simply raising the costs on the exact states (not their feature vectors) that the plan would have
traversed. This process repeats until an acceptable plan is reached. The result is a set of acceptable
behaviors, and one or more corresponding unacceptable ones (per acceptable example). Such a
procedure could also be used to produce multiple examples that are acceptable, but for which the
expert can express a preference between.

Such a set of procedures could prove useful even when explicit demonstration of the robot is
possible. At times, it may prove easier to simply correct the robot’s behavior than to fully demon-

132

CHAPTER 7. STABLE AND EFFICIENT LEARNING 7.2. ACTIVE LEARNING FOR EXAMPLE SELECTION

strate new behavior. Correcting errors has the advantage that the training data is by definition
useful, since it specifically addresses cases the robot does not yet properly understand. In addition,
it could be a far less time consuming way of gathering expert feedback. This is especially important
during robotic field testing that consumes a large amount of resources, human or otherwise.

This overall procedure is potentially quite similar to the approach of Reinforcement Planning
[255], in which trajectories and the reward they produce from a (known) reward function are used
to improve a cost function. In the case of a mobile robot, unit positive and negative reward can be
used to signify achieving a waypoint or the robot colliding with an obstacle respectively. However,
this of course requires the robot to actually make mistakes. In practice, an expert stopping a robot
before it made a mistake would almost certainly be used, and such an intervention could be tied to
a negative reward. However, as long as an expert needs to be in the loop (to ensure vehicle safety),
the expert might as well provide information indicating specifically what went wrong, and how to
correct it. This same argument applied to regular reinforcement learning (Section 4.3). Essentially,
a constraint based approach is likely to be more efficient than reinforcement planning, as blame
assignment can potentially be made explicit through the use of lethal examples (that is, an expert
can not only stop the robot, but specify exactly what terrain feature or driving maneuver caused
the intervention), as well as the desired corrections explicitly demonstrated.

7.2 Active Learning for Example Selection
Previous experiments have depended on the expert to provide not only the actual demonstrations
used to teach the system, but also to choose what to demonstrate. This puts additional burden on
the expert, and raises the bar for who can qualify to train the system; the expert must now have
sufficient knowledge of the actual system internals to know which examples are most useful. In
addition, the expert must understand the structure of the example to fully comprehend how useful
it is or not. For example, driving a robot around a rock in an open field is useful, but avoiding the
same rock in a field of tall grass is even more useful (as the chaining of constraints helps increase
dynamic range).

Having the expert choose what to demonstrate can also affect the quality of the final training
set. It has been observed empirically that a good deal of expert demonstration proves to be redun-
dant (see Figures 5.10, 5.16 and 7.5). That is, the same concepts and constraints are repeatedly
demonstrated. While this does help to potentially fine tune such concepts, it also is an inefficient
use of an expert’s time, especially when the possibility remains that there may still be useful and
important concepts that have not been properly demonstrated. If the amount of expert interaction
is held constant, such inefficient use of time will lower the overall quality of the training set. Addi-
tionally, forcing the expert to decide what examples to provide results in a distribution of training
data that may be significantly different than the distribution the robot will encounter during actual
operation. While it is important to capture an expert’s intuition as to which examples are impor-
tant, this can be taken to the extreme if an expert repeatedly demonstrates an important (but rare)
preference, potentially skewing behavior in more common cases.

These issues are not unique to learning from demonstration, but are common to all forms of
supervised learning. As a result, the field of Active Learning, where the learner is at least partially
responsible for choosing which training data to obtain, has received focus in order to aid in the
efficient selection of a good training set. Learning preference models from demonstration could

133

7.2. ACTIVE LEARNING CHAPTER 7. STABLE AND EFFICIENT LEARNING

potentially be aided by the incorporation of active learning techniques, that requested demonstra-
tion in specific scenarios (e.g. how to drive in a certain type of terrain, or how to perform a specific
driving maneuver). Such techniques could reduce the cognitive burden on an expert, as well as
increasing the pool of potential experts. In addition, active learning could help to ensure that each
additional example was maximally useful and not redundant.

Active learning has been previously investigated with respect to structured prediction problems.
Much of this work has focused on the context of sequence labeling or semantic parsing tasks
[256, 257]. One of the ideas to grow out of this work is to consider the cost associated with
obtaining a labeling [258, 259, 260]. For a structured prediction problem, obtaining labelings in
certain instances may be far more difficult than in others; if the goal is to ease the burden on the
expert, this cost should also be taken into account. Additionally, it is possible that the current
hypothesis may be partially correct, and that this may aid the expert in producing a labeling [258].
These ideas are all very relevant to active learning in the learning from demonstration domain.

Active learning with respect to certain forms of learning from demonstration has received some
previous attention. The approaches of [261, 262] each allow a robot to request instruction when-
ever it is not sufficiently confident in a learned action it is about to execute, based on its similarity
to previously observed actions2. These approaches represent a form of query filtering: the learner
encounters tasks one at a time, and must decide whether to request expert aid for each task. This
requires the expert demonstrator to be ’on call’ to provide demonstration. This mode of operation
could potentially be quite useful, especially once an initial training set has been produced. How-
ever, it would prove quite time consuming for the expert if used exclusively. Alternatively, pool
based approaches (that request expert instruction over a small subset of a large, unlabeled data set)
would minimize the initial expert interaction necessary to train a robust system. The techniques
presented in this chapter are primarily pool based approaches; however they could also be applied
for query filtering in an online setting when an expert is available.

7.2.1 Active Learning through Novelty Reduction

In an ideal setting, a set of training demonstration provided by an expert would come from the same
distribution of examples as that which the robot would encounter while operating autonomously.
This is quite unrealistic, especially since it is rarely the case that the training and operating envi-
ronments are identical. A more realistic desire would be that the two distributions at least cover
the same areas of the example space: that is, that for every possible scenario the robot could find
itself in, it has been trained on something sufficiently similar such that it can properly generalize.
Unfortunately, this is also difficult ensure, as the example space is hard to quantify. Instead of
the example space, the feature space over states and actions can be used as a proxy. Therefore, a
potential goal of active learning could be to ensure that for any type of terrain or driving scenario
the robot may encounter, it has at least seen something similar in the training set.

In order to understand what the robot has not been exposed to, it is necessary to model what the
robot has been exposed to. This problem can be phrased as a form of density estimation over the
feature space of states and/or actions. Then, examples can be chosen from regions with low density.
Such regions are often referred to as anomalous or novel, in that feature vectors that have not been
frequently seen during training represent something novel to the learner. Novelty detection in and

2In this regard these approaches are not considered generalizable learning from demonstration

134

CHAPTER 7. STABLE AND EFFICIENT LEARNING 7.2. ACTIVE LEARNING

of itself is a rich field of research [263, 264], and has seen many applications to mobile robotics
[265, 266, 267, 268, 269]. Dima et al. [270, 271] specifically propose density estimation in the
context of active learning for robotic perception systems. Specifically, a large dataset consisting
of a robot’s recorded perceptual history is analyzed to identify the most unlikely single percepts
(given the entire history). These percepts are then provided to human experts to be labeled for use
in training a terrain classification system. This process is then repeated to produce a full training
set that properly covers the entire space of percepts.

This same general approach could also be applied to learning from demonstration. In this
context, all terrain or action features observed during previous training would be analyzed. Then,
the entire (unlabeled) set of features would be analyzed to detect novel cases. Expert demonstration
could then be requested for novel structures. Such a novelty based active learning procedure would
proceed in 3 phases

1. Initial Training: Perform learning from demonstration on an existing training set, and build
a data set of every feature vector encountered during learning.

2. Density Estimation: From the data set, build a density model, such that for any test feature
vector, a measure of how similar it is to already seen data can be produced.

3. Example Selection: Once a density model has been computed, example problems are se-
lected such that the resulting demonstration is likely to provide useful information about
novel areas.

This process would then be iterated to continually add the most novel examples, and is shown in
more detail in Algorithm 9.

An additional step that could be inserted to this process is that of dimensionality reduction
before density estimation. Performing density estimation in a high dimensional space (such as a
perceptual feature space) is computationally expensive, as well as prone to potential overfitting.
Dimensionality reduction can alleviate both of these problems, and is quite common as a precursor
to density estimation. Dimensionality reduction is itself another vast area of research [272], with
Principal Components Analysis (PCA) being perhaps the single most common approach.

As for performing density estimation in the (reduced) feature space, there are two main classes
of approaches: parametric and non-parametric. While [270] uses non-parametric density estima-
tion, parametric approaches are generally much faster at test time, allowing for easier application
in an online setting (to allow for query filtering as well as a pool approach). Therefore, parametric
density estimation is used in this context. In the end there are many different specific algorithms
that could be applied for both dimensionality reduction and density estimation, each with their own
advantages and tradeoffs. In the end, any approach could be applied that results in the ability to
produce some sort of novelty measure for various test points.

Example selection is the most unique part of this procedure. In the context of learning terrain
preferences, this would consist of producing waypoints such that the resulting example path is
likely provide new information about novel terrain. In the context of learning driving styles or
action preferences, this would consist of waypoints such that the resulting example trajectory is
likely to involve a novel maneuver. The challenge is then to try and anticipate the demonstration
that is likely to result from a specific test problem. The key insight to solving this problem is that
there already exists a seed set of expert demonstration, and a cost function learned from the set that

135

7.2. ACTIVE LEARNING CHAPTER 7. STABLE AND EFFICIENT LEARNING

Algorithm 9: Novelty Based Active Learning
Inputs: Existing Set of Examples P , Entire Feature History FH , Prior Cost Function C0

[C,D] = LEARCH(P ,FH) ; // D is subset of FH encountered learning C
R = learnDimReductionFunction(D);
Dpdf = learnDensityEstimationFunction(R(D));
for i = 1...K do

Wi = generateRandomWaypoints();
Ni = evaluateNoveltyOfPath(Dpdf , R(FH),planPath(FH , C,Wi));
Ni = Ni+ evaluateNoveltyOfPath(Dpdf , R(FH),planPath(FH , C0,Wi));

W = chooseActiveLearningWaypoints(W1, N1,W2, N2, ...,WK , NK);
returnW

seeks to reproduce the example behavior. Since the cost function has been learned to try and imitate
the expert, it can also be used to try and predict their future behavior [240]. Therefore, between any
two test waypoints the planned trajectory under the current cost function is a reasonable prediction
for the experts future demonstration. Therefore, the aggregate novelty along the current planned
path can be used as a measure of the overall novelty of the example problem. Regardless of the
expert’s actual demonstration, something will be learned about this novel example: if the expert
does produce the predicted example, then an example of preferring previously novel terrain or
actions has been added to the training set, and if the expert produces a different behavior then an
example of not preferring novel terrain has been added.

Therefore, the following example selection heuristic is proposed. First, select a large set of
random waypoint pairs, and plan behaviors under the current cost hypothesis. Next, evaluate
the aggregate novelty along each plan. Finally, choose a random subset of the waypoint pairs to
present to the expert, with the likelihood of a pair’s selection related to its aggregate novelty. As
the resulting demonstrations are likely to provide information about previously novel regions of
the feature space, they will help to ensure at least minimum coverage of said space. An additional
option for this heuristic is to evaluate aggregate novelty under two possible plans: that under the
current cost hypothesis, and under the initial cost hypothesis (C0). High cost regions of the feature
space are often novel simply because an expert never demonstrates behavior that contains them;
also considering the initial cost hypothesis can produce waypoint pairs that continually force the
expert to demonstrate their aversion to such areas, thus lowering their novelty.

In addition to providing a useful metric for aiding in offline active learning, a novelty function
learned through the above procedure would also be useful in an online active learning. Such a nov-
elty function would allow for the identification of terrain features or maneuvers on which the robot
has not been sufficiently trained. As demonstrated in [267, 269], such novelty functions can be
useful in the autonomous operation of a mobile robot by preventing it from encountering scenarios
for which it is unprepared. Additionally, it could also be used in a query filtering approach if an
expert is available. That is, if the robot intended to drive through a low cost but novel section of
terrain, it could first request expert ’permission’ to do so before proceeding (and then learn from
the resulting answer).

136

CHAPTER 7. STABLE AND EFFICIENT LEARNING 7.2. ACTIVE LEARNING

Algorithm 10: Uncertainty Based Active Learning
Inputs: Existing Set of Examples P , Entire Feature History FH , Prior Cost Function C0

C = LEARCH(P ,FH);
for j = 1...N do
P̂j = chooseRandomSubsetWithReplacement(P);
Ĉj =LEARCH(P̂j,FH);

for i = 1...K do
Wi = generateRandomWaypoints();
Ui = evalUncertaintyOfPath(Ĉ1, ..., ĈN ,FH ,planPath(FH , C,Wi));
Ui = Ui+ evalUncertaintyOfPath(Ĉ1, ..., ĈN ,FH ,planPath(FH , C0,Wi));

W = chooseActiveLearningWaypoints(W1, U1,W2, U2, ...,WK , UK);
returnW

7.2.2 Active Learning through Uncertainty Reduction

As opposed to specifically seeking expert feedback on novel examples, another approach is to
request expert information on examples for which the learner already has information, but remains
uncertain. There is of course a relationship between novelty and uncertainty, in that a learner is
likely (but not guaranteed) to be uncertain about truly novel examples. However, novelty is not
the only source of uncertainty; it can also come from similar examples with conflicting labels or
demonstrated behavior.

When a learner explicitly models its own uncertainty, an active learning technique known as
Uncertainty Sampling [273] can be applied. However, explicit uncertainty sampling in the con-
text of learning preference models would limit the choice of regressor to Gaussian Processes or
Bayesian linear regression. Gaussian Processes are not a good choice for learning a cost function
when real time cost production is required, as they are quite expensive to apply when trained on
large datasets. Bayesian linear regression is parametric; however this in turn limits the hypothesis
space of cost functions. Therefore, in order to retain the agnosticism to the specific form of cost
function that LEARCH provides, explicit uncertainty sampling is not an option.

However, there is another approach that can work with general cost functions. The Query
by Bagging approach [271] combines the idea of Query by Committee [274, 275] with the idea
of Bagging [276] to measure the uncertainty still inherent in a training set for a particular class
of learner. The idea is to train multiple learners on different random subsets (with replacement)
of the available training set, and see where they disagree. In the context of learning preference
models, the analog would be to learn multiple preference models from different subsets of the
available demonstration. Then, the uncertainty of a particular example would be approximated as
the variance of the different cost functions over said example.

Therefore, an uncertainty based active learning approach could be implemented that is nearly
identical to the novelty based approach. First, an uncertainty model would be constructed based
on existing expert demonstration. This model would then be used to evaluate plans (under both the
current hypothesis and C0) between random waypoints. Waypoint pairs where the demonstration
is predicted to traverse high uncertainty areas would then be presented to the expert as a request
for explicity demonstration, and the process repeated. Such a procedure is shown in Algorithm
10. Also as before, a final uncertainty model could be used in an online setting for query filtering.

137

7.3. EXPERIMENTAL RESULTS CHAPTER 7. STABLE AND EFFICIENT LEARNING

(a) Satellite Imagery Summer 2004 (b) Satellite Imagery Fall 2007 (c) Shaded Relief Elevation Map

Figure 7.4: The 9 km2 test site used for these experiments

As explored in [277] there are yet more additional uses for knowledge of uncertainty in a cost
function.

Alternatively, another approach to example selection is possible. Unlike with novelty based
active learning, the uncertainty model provides a metric in the same units as cost. Therefore, the
uncertainty model can be used to estimate upper and lower bounds on the ’true’ cost for any test
point (the actual observed bounds could also be used). Rather than choosing waypoints that are
likely to involve demonstration through regions of high uncertainty, waypoints could be chosen
such that the predicted plan under the upper bound of the cost hypothesis is significantly different
than the predicted plan under the lower bound hypothesis. This difference can easily be expressed
as the cost ratio under the current (mean) cost hypothesis.

Practically speaking, this method of example selection would have two advantages. First, it
would be likely to choose examples such that the cost uncertainty actually affects the plan; oth-
erwise, waypoints that involve traveling through uniform regions of high uncertainty could be
favored. Second, instead of simply producing a pair of waypoints and then required explicit expert
demonstration, this approach produces two possible plans between a pair of waypoints; the expert
then need only provide a relative preference as in Section 7.1.1.

7.3 Experimental Results

All experiments in this chapter were performed on overhead data for a large (9 km2) test site.
Although this results in a static learning from demonstration task, all extensions to the dynamic
problems are straightforward. The test site consists of several distinct terrain features such as short
and tall grass, bushes, sand, water, different types of trees, and rolling hills. There are also man
made features such as roads, buildings and areas used for controlled burns. The overhead data
consists of two sets of satellite imagery and a digital elevation map (Figure 7.4). Candidate cost
functions are evaluated using the resulting cost ratio on a large validation set of 250 example paths.

138

CHAPTER 7. STABLE AND EFFICIENT LEARNING 7.3. EXPERIMENTAL RESULTS

0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

Number of Training Paths

V
al

id
at

io
n

C
os

t R
at

io

(a) Original Order

0 10 20 30 40 50 60
1

2

3

4

5

6

7

8

9

10

Number of Training Paths

V
al

id
at

io
n

C
os

t R
at

io

(b) Random Subsets

Figure 7.5: Validation performance for increasing numbers of example paths, in (a) their original
order and (b) random permutations (error bars indicate one standard deviation). Over time, there
are clear diminishing returns to adding additional (expert chosen) examples.

7.3.1 Different Forms of Expert Demonstration

In order to first quantify the redundancy and inconsistency in expert demonstration, the following
experiment was performed. First, 60 example training paths were demonstrated by an expert. For
different numbers of example paths (in their original order), a cost function was learned using R-
LEARCH and applied to the entire test site. Next, random subsets of 50 training paths were chosen,
and were used to train cost functions using different numbers of examples in a random (permuted)
order. Figure 7.5(a) shows the ordered version of this experiment. For the first half of the training
set, adding more examples significantly improves validation performance, demonstrating that new
and useful preferences are being demonstrated for the first time, or usefully reinforced. However,
the second half of the training set results in only minimal improvement, and over certain inter-
vals actually decreases performance. This is evidence that the second half of the training set was
redundant and/or inconsistent with the first half.

Figure 7.5(b) shows the same experiment with random ordering of training examples, along
with error bars of one standard deviation. The overall trend of diminishing returns is repeated,
indicating that the redundancy in the ordered experiment was not explicitly due to ordering itself.
Regardless of what order the training examples are provided in, after about 2/3 of the total training
set performance does not significantly improve. Also of note is the incredibly high variance with
small numbers of training examples. This is further proof that when examples are simply chosen
by an expert, the only way to ensure consistency and stability is to sacrifice efficiency (and provide
a large training set).

Next, an experiment was performed to determine the effect of mixing relative examples (Sec-
tion 7.1.1) with regular examples. For this experiment, the first half of the original training set
was left alone, and used to train a single cost function. This cost function was then used to plan
paths between every waypoint pair used in the second half of the training set. These pairs of paths
then became relative constraints. That is each expert drawn path, rather than being a regular (opti-

139

7.3. EXPERIMENTAL RESULTS CHAPTER 7. STABLE AND EFFICIENT LEARNING

0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

Number of Training Paths

V
al

id
at

io
n

C
os

t R
at

io

original examples
relative examples

(a) Original Order

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

20

Number of Training Paths

V
al

id
at

io
n

C
os

t R
at

io

original examples
half relative examples

(b) Random Subsets

20 30 40 50
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Number of Training Paths

V
al

id
at

io
n

C
os

t R
at

io

original examples
half relative examples
lowest possible validation error

(c) Random Subsets (Zoomed)

Figure 7.6: Validation performance when replacing the second half of the training set with relative
examples. When adding to the training set in its original order (a) performance is not significantly
altered, indicating relative constraints may be a more efficient way of achieving the same results.
When random orderings (b) are applied, performance of small training sets is significantly worse;
however, once the training set is of sufficient size the performances are first equivalent, and then
better when using relative constraints, shown in (c) to be much closer to the theoretical minimum
validation error.

mal) example, formed a relative example with the planned path under the cost hypothesis (with the
constraints implying the expert drawn paths must be considered lower cost). Therefore, this new
training set contained the exact same expert demonstration as before; however, the second half of
the training set was now interpreted differently. Figure 7.6(a) shows the results of this experiment,

140

CHAPTER 7. STABLE AND EFFICIENT LEARNING 7.3. EXPERIMENTAL RESULTS

0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

Number of Training Paths

V
al

id
at

io
n

C
os

t R
at

io

original examples
original examples + lethal examples

(a) Original Order

0 10 20 30 40 50 60
1

2

3

4

5

6

7

8

9

10

Number of Training Paths

V
al

id
at

io
n

C
os

t R
at

io

original examples
original examples + lethal examples

(b) Random Subsets

Figure 7.7: Validation performance with the addition of lethal training examples. The inclusion of
lethal examples both improves average performance while decreasing variability when using small
training sets.

with examples added in their original order. The performance is nearly identical to the original
experiment (using all paths as optimal examples). This indicates that the preferences implied from
the second half of the training set could just as easily be learned if the examples were relative as
opposed to optimal. Such a result could lead to increased efficiency when producing a training set.
That is, once a point of diminishing returns is reached, an expert does not need to provide the most
desirable path, simply a path that is more desirable than the current hypothesis.

Figure 7.6(b) shows the results of performing the same experiment with random permutations
of the training set. The examples that were converted to relative examples could appear at any point
in the permutation. The validation performance as a function of the size of the training set at first
performs as one might expect. That is, lessening the constraint implied by some of the examples
results in worse initial performance, as well as more variability in that performance (for every data
point except the last, the increased variance is statistically significant at the 1% level). This is
intuitive, as there is less information in the training set. As more examples are added (and more of
them are likely to be optimal examples) the performance catches up to the original experiment (with
the differences being statistically insignificant at 20,30 and 40 examples). However, something
interesting happens once the training set grows sufficiently large (Figure 7.6(c)). At 50 examples,
the performance using some relative examples is better on average than using all optimal examples.
This difference is significant in both meanings of the word: not only is it significant at the 1% level,
but the decrease in cost ratio (from 1.48 to 1.39) brings the final performance significantly closer
to the theoretically lowest possible error (the error when training directly on the validation set)
of 1.30. This difference implies that not only could relative constraints be a more efficient way
of adding new information to an sufficiently large existing training set, they may be a more stable
way. This stability comes from reduced inconsistency; by implying fewer (but clearer) preferences,
the chances of accidentally implying inconsistent preferences are lowered.

A similar set of experiments was also performed to observe the effect of adding lethal examples

141

7.3. EXPERIMENTAL RESULTS CHAPTER 7. STABLE AND EFFICIENT LEARNING

1 3 5 7 10 10 + Lethals
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Number of Acceptable Examples

V
al

id
at

io
n

C
os

t R
at

io

No Explicit Demonstration
Best Performance With Demonstration

Figure 7.8: By combining acceptable and lethal examples, learning from expert feedback is possi-
ble without explicit expert demonstration

(Section 7.1.3) to the training set. Figure 7.7 shows the results of running the original redundancy
experiment, both with and without lethal examples. When running with lethals, a very small set
of lethal examples was added (at each stage of the experiment). The number of states labeled
as lethal was approximately the same number of states as would be expected to be constrained
by a single long example path. Since it involved labeling actual locations, and only needed to
label obviously lethal sections of terrain, this labeling process was incredibly fast (approximately
1-2 minutes of expert interaction, again on par with adding a single example path). The effect of
adding lethal examples is to significantly increase validation performance for smaller training sets.
Once the training set becomes sufficiently large to ensure that the same preferences are implied
this improvement mostly disappears. However, improved performance over small training sets, as
well as a decrease in the variability of this performance (significant at the 1% for training sets with
5 or 10 paths) indicates that the addition of lethal examples can help to improve both stability and
consistency, without requiring the expert to resort to providing overly large training sets.

A final experiment was performed as a proof of concept demonstration for the approach de-
scribed in Section 7.1.4 of collecting expert feedback without any explicit demonstration of desired
behavior. Beginning with a blank costmap, the expert chose two waypoints, and rated a series of
example paths as unacceptable until an acceptable path was produced. Successive paths were
produced by slightly raising the cost along each previous unacceptable path. After each set of
acceptable and unacceptable paths was produced, a cost function was learned, and then the entire
process repeated. At the very end, lethal examples were also added. Figure 7.8 shows the results of
this experiment. The final performance achieved is approximately equivalent to the performance
with using half of the original training set in Figure 7.5. This demonstrates that the combination of
acceptable and lethal examples, while not the most efficient way of gathering expert feedback, is a
feasible approach when actual demonstration is too difficult or costly.

142

CHAPTER 7. STABLE AND EFFICIENT LEARNING 7.3. EXPERIMENTAL RESULTS

(a) Original 5 Examples (b) Original Costmap

(c) Novelty Map (d) Costmap after 5 new examples

Figure 7.9: An example of density based novelty detection and active learning on overhead data.

7.3.2 Active Learning

Novelty based active learning was implemented as described in Section 7.2.1. First, given an exist-
ing training set a cost function is learned, and every feature vector encountered during training is
recorded. The original feature space consisted of 30 dimensions, an unwieldy number for perform-
ing efficient density estimation. Therefore, PCA was used to reduce the data set to 3 dimensions.
Once in this space, the K-Means algorithm [278] is used to identify clusters of points and their as-

143

7.3. EXPERIMENTAL RESULTS CHAPTER 7. STABLE AND EFFICIENT LEARNING

Figure 7.10: Density estimation for novelty detection in Figure 7.9. The full feature space is first
reduced to 3 dimensions through PCA. Next, K-Means is used to determine cluster centers to
approximate the density of the original distribution. Active learning results in new examples that
reside in previously uncovered regions of the space.

sociated cluster centers. The number of cluster centers K-Means is tasked with finding is set very
high3 as the goal is not to actually identify distinct clusters, but simply regions of the feature space
with high point density. For a test point in the reduced space, the novelty is then defined as the
squared Euclidean distance to the nearest cluster center. While a very simplistic density estimation
and novelty detection approach, it proves more than sufficient for identifying regions of the feature
space that have received little to no coverage. More powerful techniques (such as using the cluster
centers to seed Gaussian Mixture Models) could be easily inserted if necessary.

Figures 7.9 and 7.10 show a single example iteration of this process. Figure 7.9(a) shows the
original 5 example paths. These paths only traverse or avoid roads, tan-colored grass, and trees.
As a result, the costmap learned from this training set (Figure 7.9(b)) must try to generalize to
other terrain features. However, it does a very poor job of generalizing to where there was a recent
controlled burn of the grass (the dark grey regions). These areas are given an extremely high cost,
when in fact they are very preferable terrain to traverse through (due to the almost complete lack
of vegetation).

After performing density estimation, the novelty map (the novelty function applied to the entire
test site) is shown in Figure 7.9(c). As would be expected given the initial training set roads, trees,
and grass are low novelty while the burned areas, the river, and buildings are high novelty. 5
new examples were then requested, by picking random waypoints and evaluating the novelty of
the current plan. This results in examples that traverse the burned areas, helping to demonstrate
their actual preferability. The cost function learned as a result of the new training set (5 original
examples and 5 new examples) is shown in Figure 7.9(d), with a more reasonable cost estimate
over novel regions.

Figure 7.10 shows the distribution of observed feature vectors (in the PCA reduced space), over
both the original and combined training set. The original training set is confined to one region of

3in this work 30-50

144

CHAPTER 7. STABLE AND EFFICIENT LEARNING 7.3. EXPERIMENTAL RESULTS

(a) Novelty Map (b) Original Costmap

(c) Uncertainty Map (d) Costmap after new examples

Figure 7.11: An example of uncertainty based active learning, and how it can complement novelty
based active learning.

the feature space (due both to the homogeneous nature of the original set, as well as the reduced
space being computed according to its distribution). The cluster centers identified via K-Means
are able to represent the distribution of this set with orders of magnitude fewer points. In contrast,
the examples selected during active learning result in features that occupy completely different
regions of the space. This demonstrates the ability of novelty based active learning to ensure
that all regions of the feature space (corresponding to the variety of observed terrain features) are

145

7.3. EXPERIMENTAL RESULTS CHAPTER 7. STABLE AND EFFICIENT LEARNING

0 10 20 30 40 50 60
1

1.5

2

2.5

3

3.5

4

Number of Training Paths

V
al

id
at

io
n

C
os

t R
at

io

Original Examples
Novelty Active Learning
Uncertainty Active Learning
lowest possible validation error

(a) Original Order

0 10 20 30 40 50 60
1

2

3

4

5

6

7

8

9

10

Number of Training Paths

V
al

id
at

io
n

C
os

t R
at

io

Original Examples
Novelty Active Learning
Uncertainty Active Learning
lowest possible validation error

(b) Random Subsets

0 5 10 15 20 25 30 35 40 45 50

1.4

1.6

1.8

2

2.2

2.4

Number of Training Paths

V
al

id
at

io
n

C
os

t R
at

io

Original Examples
Novelty Active Learning
Uncertainty Active Learning
lowest possible validation error

(c) Random Subsets (Zoomed)

Figure 7.12: Demonstration of how training sets chosen via active learning can perform superior
to training sets chosen by an expert

covered via example demonstration.

Uncertainty based active learning was also implemented using Query by Bagging to produce
an uncertainty estimate in the cost function. Figure 7.11 provides an example of this approach in
action. A training set of 20 example paths were used to train the cost function shown in Figure
7.11(b). This cost function underestimates the cost on several types of undesirable terrain, such
as slopes, trees, and water. However, since the original training set did include some examples
of these terrain features, they are not considered particularly novel (Figure 7.11(a)). However,

146

CHAPTER 7. STABLE AND EFFICIENT LEARNING 7.3. EXPERIMENTAL RESULTS

30 40 50

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

Number of Training Paths

V
al

id
at

io
n

C
os

t R
at

io

Original Examples
Novelty Active Learning
Uncertainty Active Learning
lowest possible validation error

Figure 7.13: Even when a reasonably sized training set already exists, active learning can identify
useful and important new examples.

Query by Bagging is able to identify these areas as regions of higher cost uncertainty ((Figure
7.11(c)). That is, when training on some subsets of the full training set, these regions are given a
high cost, and on others a lower cost. In contrast, regions that are always given a similar cost (such
as roads) are given a very low uncertainty. 10 additional examples chosen via uncertainty based
active learning provide additional demonstration of the true preferences over the high uncertainty
regions; the resulting cost function (Figure 7.11(d)) reflects this new information via increased
cost on trees, water, and slopes. This not only demonstrates the effectiveness of uncertainty based
active learning, but also the way in which it can complement novelty based active learning.

The novelty and uncertainty functions in Figures 7.9 and 7.11 also demonstrate that, aside
from just being useful for offline (pool-based) active learning, there is potential for online query
filtering and vehicle safeguarding. What is especially useful about these functions is that they
have been learned not with respect to the underlying perception system, but rather with respect
to the underlying cost function. That is, the perception system may be highly confident in its
classification and its identification of geometric properties of a patch of terrain, while the cost
function is still uncertain about the desirability of the combination of such features. This makes
such functions an ideal complement to novelty or uncertainty functions learned for a perception
system, and could prove quite useful in the application of such techniques [269].

In addition to proof of concept experiments, larger active learning experiments were also per-
formed to produce quantitative results. In order to compare active learning based example selection
to expert based example selection, 60 example paths were chosen using multiple iterations of nov-
elty based active learning (in order to seed the novelty function when the training set is empty, a
random subset of the entire training area is used). An additional 40 example paths were chosen
using multiple iterations of uncertainty based active learning, with the first 20 novelty chosen paths
as a seed (uncertainty based active learning requires an initial training set). The result is two (par-

147

7.3. EXPERIMENTAL RESULTS CHAPTER 7. STABLE AND EFFICIENT LEARNING

tially overlapping) sets of training examples that can be compared to the expert chosen set used in
the redundancy experiments.

Figure 7.12(a) shows the validation performance of these three training sets when applied in
their original order. The first fact of note is that for small training sets, novelty based active learning
significantly outperforms expert chosen examples, demonstrating the ability of active learning to
identify important novel examples. As more examples are added to each set, the final performance
of all 3 sets converges. However, the second fact of note is that both active learning approaches
suffer less of a decrease in performance in later stages (before convergence), indicating that exam-
ples chosen through active learning are still more likely to contain useful information as opposed
to redundant (and possibly inconsistent) information.

Figures 7.12(b) and 7.12(c) show the performance of all 3 training sets when learning with
multiple subsets in random order. Both active learning training sets consistently perform better
than the expert chosen set (significant at the 1% level). Also of note is that the uncertainty active
learning set performs better than the novelty based set in a consistent manner(significant at the
5% level up to 20 examples, and at the 1% level subsequently). Since these sets share one third
of their examples, this demonstrates how uncertainty based active learning complements novelty
based active learning. Also of note is the variance in performance of each training set. The two
active learning approaches achieve a (statistically significant) lower variance than the expert chosen
set at each subset size. However, the uncertainty based approach achieves a lower variance than
the novelty based approach; this difference is statistically significant (at the 1% level) for subsets
of size 30 and greater. This concretely demonstrates the advantage that uncertainty based active
learning has over novelty based active learning: it specifically chooses examples that are likely to
reduce this variance. Finally, it is informative to observe that the active learning based approaches
achieve better performance with fewer examples; The novelty based set has lower performance
with 30 or more examples than the expert chosen set with 50 examples, and the same is true with
the uncertainty based set for 20 or more examples. Overall, the take away result is that choosing a
training set via active learning can achieve better and more consistent performance, with equal or
fewer expert demonstrated examples.

In addition to choosing training sets from scratch, active learning can also improve the perfor-
mance of previously existing training sets. To demonstrate this effect, active learning was used to
add additional training data to an expert chosen set. Starting from each different subset of 30 paths
of the expert chosen demonstration, two iterations of active learning was performed, each adding
10 new examples. This process was repeated for both novelty and uncertainty based active learn-
ing.The results are shown in Figure 7.13, along with the effect of adding additional expert chosen
examples. As described before, for expert chosen examples there are diminishing returns; the dif-
ference in performance (in a paired manner) is not even statistically significant between 40 and
50 expert chosen examples. In contrast, both active learning approaches result in validation per-
formance that is significantly different (at the 1% level) then the corresponding expert chosen set.
This demonstrates that even when efficiency is not an issue, active learning can identify important
and useful examples, improving consistency and stability.

148

Chapter 8

Conclusion

This work has addressed the problem of preference model construction in autonomous mobile
robotic systems. Chapters 2 and 3 first described the ways in which preference models have be-
come increasingly important as mobile robots have grown in complexity, along with the environ-
ments and scenarios within which they are expected to operate. Prior to this work, the primary
approach to developing these models was manual design and tuning. However, such hand tuning
approaches require a large amount of complex expert interaction, typically produce suboptimal
performance, and must often be repeated from scratch.

Chapter 4 presented various solutions that had previously been applied to simplifying this prob-
lem. Although previous applications of machine learning and physical simulation proved useful in
making this task tractable, they did not directly address the issue of preference model construction,
and still resulted in a manual parameter tuning task, requiring a great deal of interaction from a
human expert. However, the framework of Inverse Optimal Control was shown to offer a solution
involving the explicit learning of preference models from expert demonstration of desired behavior.

Chapter 5 developed a solution to this problem in the domain of interpreting static perceptual
data. The MMP framework was presented along with the LEARCH algorithm, and its applicability
demonstrated in this context. The LEARCH algorithm was then extended to the domain of inter-
preting dynamic perceptual data, resulting in the D-LEARCH algorithm. The issue of imperfect
and noisy demonstration was also addressed, resulting in the R-LEARCH and DR-LEARCH al-
gorithms. Experimental results and comparisons to hand tuned preference models were presented
from the Crusher robot.

Chapter 6 addressed the problem of driving styles and preferences in a autonomous robot by
demonstrating how expert demonstration could be used to learn a cost function over actions as well
as terrains. The PD-LEARCH algorithm was developed to account for receding horizon effects as
well as noisy and imperfect demonstration. The use of DR-LEARCH and PD-LEARCH to learn
coupled preference models from a single set of expert demonstration was also derived, and backed
up by experimental results and comparisons to hand tuned models from the E-Gator robot.

Finally, Chapter 7 addressed issues of efficiency and repeatability in learning from demonstra-
tion. Alternate forms of interpreting expert demonstration were derived, as well as other constraint
based approaches for interpreting expert feedback. These approaches were linked to existing forms
of supervised learning, demonstrating a single coherent framework. In addition, two approaches
to active learning were developed to aid in the process of determining which demonstrations to
provide to a learner. Experiments demonstrated the effectiveness of these techniques in produc-

149

8.1. CONTRIBUTIONS CHAPTER 8. CONCLUSION

Application Performance Improvement Expert Time Savings
Interpreting Static Overhead Data Large ˜5x
Interpreting Dynamic Perceptual Data Small > 100x
Learning Preferences over Actions Small > 6x
Full Mobile Robot IOC Large > 14x
Active Learning Equivalent ˜2x
Active Learning Small Equivalent

Table 8.1: A summary of experiments involving components of fielded mobile robotic systems
(Sections 5.5 and 6.4) . In each case, there was at least small improvement in performance, as well
as a reduction in the required expert interaction by a factor of five. The tasks requiring more expert
hand tuning saw a larger time savings. In addition, active learning demonstrated the potential to
achieve equivalent performance with half as much expert demonstration, or improved performance
with equivalent amounts of demonstration.

ing more stable and consistent training sets, while further reducing the amount of required expert
interaction.

8.1 Contributions
The stated goal of this thesis (Section 3.3) was to develop “Principled, automated methods of de-
termining and validating preference model design and parameter settings...that involve at least an
order of magnitude less human interaction, while producing equivalent if not better system per-
formance.” Table 8.1 provides an overview of experimental results when applying the developed,
automated techniques to preference model design. In each experiment, there was at minimum a
small improvement in system performance. In addition, there was at minimum a reduction by a
factor of five in the required amount of expert interaction. The more complicated and time consum-
ing the original hand tuning task, the more time savings was achieved. In addition, active learning
experiments were shown to produce equivalent performance with even less expert interaction, or
superior performance with equivalent amounts. Therefore, this work has successfully addressed
its initial problem statement.

Chapter 1 specified a set of high level requirements for the design, development, and deploy-
ment of mobile robotic systems to continue to move forward. Chapter 3 identified the problem of
preference model construction as impeding each of these requirements in one form or another. The
solutions provided in this work can contribute to meeting each of these requirements:

Reliable : Easier offline validation can produce more reliable systems. Learning from demonstra-
tion allows for easy offline validation of the entire decision making subsystem. This allows
online testing to be more about full system validation, and less about shaking out bugs in
preference models. In addition it is easier to ensure high reliability under common condi-
tions by simply adding examples of those conditions to the training set. Finally, by using
formal methods of preference model construction, the issue of blame assignment is removed;
if a cost function simply cannot be learned to reproduce a certain training example, then the
problem is not with cost function tuning, but elsewhere in the system (e.g. perception or

150

CHAPTER 8. CONCLUSION 8.1. CONTRIBUTIONS

planning). Such methods also allow for automated solutions to this problem (e.g. a feature
learning phase).

Robust Learned cost functions are better regularized than hand tuned ones (through more efficient
optimization). As a consequence there is theoretical support for better generalization of
learned cost functions, backed up by each experiment performed in this work. There is also
less overfitting to specific scenarios at the consequence of others. Online identification of
novel scenarios (with regards to previous demonstration) can also improve robustness by
avoiding uncertain situations.

Rapid Development By dramatically reducing the amount of expert interaction required to couple
components into an operational robotic system, initial deployment is easier. When undesir-
able behavior is observed in early testing, it is much faster to augment the training set than to
manually retune the system. In addition, it is faster to retask a system for completely novel
environments, scenarios, or operating conditions. This time savings continues to accrue
throughout the life of a robotic system.

Reusable The time saved on preference model construction and tuning can now be better spent on
building improved, reusable component technologies. In addition, the effort expended during
example demonstration can be reused whenever the system architecture or components are
modified (with the exception of certain hardware changes). Depending on the systems in
question, it may even be possible to reuse demonstrations intended for one robot to train
another (sufficiently similar) robot.

In addition to addressing the core problem statement, this work claims the following additional
contributions

• First application of Inverse Optimal Control towards fully defining the desired behav-
ior of an autonomous mobile robot. The desired behavior of the E-Gator system was com-
pletely defined by the provided training demonstrations. As said demonstrations avoided
trees but drove over tall grass, and preferred driving forward to driving in reverse, the same
behavior was exhibited by the robot. Had the training demonstrations preferred driving in
reverse and avoided even tall grass, the robot would have done the same. No additional
changes to the E-Gator system or individual components would have been necessary. In
addition, this work has demonstrated solutions to many real world challenges inherent in
applying inverse optimal control

– Collecting and managing training and validation data demonstrated by multiple experts,
in separate and varying environments, over a period of months.

– Interpretation of expert intent from robot sensor logs, and projection of intent into a
planner’s action space

– Robustness to noisy, imperfect, and inconsistent expert demonstration.

• First principled approach for determining terrain costs within autonomous navigation
systems. This work has directly addressed an issue that was inherent to many navigation
systems of the last decade, and eloquently expressed in [95]: “Correct system behavior was

151

8.1. CONTRIBUTIONS CHAPTER 8. CONCLUSION

only obtained by squarely addressing the question of what amount of extra excursion is
justifiable to avoid a given level of risk. Nonetheless, we can report few principled methods
beyond understanding that the tradeoff exists and tuning the costs in order to get correct
behavior under various circumstances.”

• First use of inverse optimal control under dynamic and changing conditions in a robotic
system. The dynamic framework developed in the D-LEARCH, DR-LEARCH and PD-
LEARCH algorithms and first presented in [231] represents the first derivation and applica-
tion of inverse optimal control when the state of the work can evolve in response to anything
other than the expert’s input. As opposed to a single static plan, this requires the expert to
continually re-evaluate his own behavior, and a learning system to interpret expert demon-
stration in a similar manner.

• First framework that explicitly learns multiple preference models to produce the cor-
rect overall system behavior. High levels of component performance is a necessary but not
sufficient condition for good system performance. Likewise, in a system with multiple pref-
erence models it is necessary that they not only express the correct preferences in isolation,
but the preferences inherent to each model are properly balanced. This work has demon-
strated the ability to learn multiple models from a single training set, tuning both models to
produce the desired behavior both in isolation and when combined.

• Demonstration of the inherent ability of the single arc motion planner to perform com-
plex maneuvers, given the correct preference model. The single arc motion planner has
remained popular due to its inherent simplicity, effectiveness, and ease of implementation.
However, in the past a good deal of its power has come from additional layers of planning
hand tuned to perform specific maneuvers (e.g. N-point turns) in specific scenarios. This
work has demonstrated that these additional layers are unnecessary for a wide range of com-
plex maneuvers, if the action preference model is properly tuned.

• Demonstration of an approach and metrics for offline validation of mobile robot per-
formance. The necessary machinery for performing learning from demonstration provides a
natural solution to the problem of validating actual robot behavior offline. Such an approach
is useful even if learning from demonstration is not explicitly used, as are the metrics used
to evaluate such behavior and its similarity to desired behavior.

• Experimental demonstration of the performance improvement and time savings when
using the developed learning from demonstration algorithms. This work has demon-
strated not only the feasibility of learning preference models from expert demonstration, but
has produced quantitative results from multiple experiments demonstrating significant per-
formance improvements and time savings over previous hand tuning approaches (Table 8.1).
The initial time savings demonstrated by these experiments will only increase as each sys-
tem evolves (and no further expert tuning is required). As a consequence, this work claims
to have demonstrated the best solution to date for the construction of preference models in
mobile robotic systems.

• Demonstration of the relationship between constraint based interpretations of expert
demonstration and feedback. This work has not only developed several techniques for

152

CHAPTER 8. CONCLUSION 8.2. FUTURE WORK

learning preference models from demonstration, but has also shown how they can be com-
bined with other forms of expert supervision [159, 160, 74, 77, 79, 99, 80, 83, 84, 102] and
preference solicitation [252, 253, 254] into a single, consistent framework that considers all
expert input in the context of the behavior it suggests.

• Development of active learning techniques appropriate to generalizable learning from
demonstration. This work has presented two general approaches to applying active learning
to learning from demonstration, specifically in the setting when the learner can generalize
from well chosen, important examples. These approaches have both been demonstrated to
produce more stable and consistent training sets when used offline in a pool based manner;
equivalently they can also be used to minimize the required expert interaction. In addition,
both approaches provide the necessary mechanisms to allow for either additional online ve-
hicle safeguarding, or query filtering approaches for supervised autonomy.

8.2 Future Work

The development of fieldable mobile robotic systems often contains many problems whose solu-
tions rely on human intuition, guesswork, and trial-and-error or generate-and-test procedures. The
design and tuning of preference models was one such situation, an issue which this thesis has di-
rectly addressed. Another instance of this form of problem is often in the production of training
sets for a myriad of learning components: a large set of examples is produced, and then it is con-
tinually tweaked and added to as incorrect or undesirable results are observed. The application
of active learning techniques presented in this thesis is one approach for the reducing burden on
expert intuition in this process. Automatic reweighting of a training set to match the observed dis-
tribution of terrain features in a specific environment, proposed in [279] for terrain classification,
is another idea that merits future research, both as an offline and online approach.

One area that still requires a good deal of both expert intuition and trial-and-error is in feature
design. For instance, in the perceptual domain, there are enormous bodies of work investigating
useful and efficient feature extraction, both from a signal processing as well as a biologically
inspired perspective. The use of machine learning techniques allows for automated interpretation
of these features, and sparse learning can help to identify and remove useless or redundant features.
However, if the standard set of off-the-shelf feature extractors proves insufficient, the next step is
often specialized, manually engineered feature extractors.

Chapter 5 presented a feature learning phase as potential solution to this problem; however this
only works if a nonlinear combination of existing feature is sufficient. When this proves insuffi-
cient, what is required is to backpropagate the learning signal (based on expert desired behavior)
even further. [279, 280] have explored this idea when there is a learning (i.e. classification) layer
between perceptual features and a perceptual cost function. However, another idea is to backprop-
agate the learning signal all the way to the sensors themselves [281]. For example, if a perceptual
cost function was unable to distinguish between certain high cost and low cost terrain (i.e. a spe-
cific demonstrated example could not be learned) the states corresponding to both the example and
current planned paths could be projected into the raw perceptual space (e.g. camera images) and
new feature extractors learned at an earlier level. Such an approach would allow robotic systems
to continue to make use of principled, general, and previously implemented feature extraction and

153

8.2. FUTURE WORK CHAPTER 8. CONCLUSION

signal processing techniques, while removing the extra engineering effort necessary to design spe-
cialized extractors for specific environments and scenarios (which may not have further use outside
of their intended scenario).

Another avenue for future investigation is motion planners with longer planning horizons. The
single arc motion planner was used in this work due to its balance of simplicity and effectiveness.
Given that the result was a planning system which could produce complex maneuvers that it did
not explicitly plan (that is, the maneuver ’fell out’ of repeated decision making), the application to
kinodynamic motion planners that search multiple actions for longer horizons can be expected to,
at a minimum, similarly reproduce an expert’s preferences for certain driving styles and maneu-
vers. However, it is unclear which robust version of LEARCH, PD-LEARCH or DR-LEARCH
would be most effective in such a context at accounting for noisy and imperfect demonstration; a
combination of the two could potentially prove most effective. It is also possible that an entirely
different class of penalty functions would be useful or necessary. Such planning systems also allow
for the possibility of explicitly learning preferences with regards to velocity control.

Of course, with an issue such as velocity control it is not clear that matching an expert’s pref-
erences is the proper way to make such decisions. In this case, it can be argued that it is better to
determine through simulation and online learning [192, 193] how fast the robot can safely travel,
and then execute an expert desired plan at safe speed. However, it is possible that the expert’s
desires may depend on his notion of the safest possible speed; it is also possible that the robot
may have a better prediction of this speed than the expert. This demonstrates just one of the many
instances where the ideas of online learning, physical simulation, and learning from demonstration
can all be applied. In the future, one can imagine mobile robotic systems that learn from experience
to predict terramechanics and mobility properties of different terrains, use physical simulation to
understand the consequences of various actions over these terrains, and use expert demonstration
to learn preferences over the consequences of these actions. Such a fusion of these ideas offers the
promise of further improving autonomous reliability and robustness in both familiar and novel en-
vironments, while reducing both initial and continual development efforts, thus bringing us closer
to the fast, easy, and wide application of autonomous mobile robotic systems.

154

Acknowledgements

This work was sponsored by DARPA under contract “Unmanned Ground Combat Vehicle - Percep-
tOR Integration” (contract MDA972-01-9-0005), the U.S. Army Research Laboratory under con-
tract “Robotics Collaborative Technology Alliance” (contract DAAD19-01-2-0012), and TARDEC
under contract “Incremental Learning for Robot Sensing and Control” (contract W56HZV-10-C-
0176). The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the U.S.
Government.

This work required numerous field experiments on the Crusher and E-Gator robots, over a
period of several years. These experiments would not have been remotely feasible except for an
incalculable amount of support, both in system development and field logistics. I would like to
thank the entire UPI team of the CMU National Robotics Engineering Center and the rCommerce
team of the CMU Field Robotics Center for their efforts and patience in this work; it would not
have been possible without your help.

155

8.2. FUTURE WORK CHAPTER 8. CONCLUSION

156

Bibliography

[1] H. F. Durrant-Whyte, “An Autonomous Guided Vehicle for Cargo Handling Applications,”
The International Journal of Robotics Research, vol. 15, no. 5, pp. 407–440, 1996. 10

[2] E. Duff, J. Roberts, and P. Corke, “Automation of an underground mining vehicle using
reactive navigation and opportunistic localization,” in Proceedings IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 4, pp. 3775–3780, Oct. 2003. 10

[3] M. Dunbabin and P. Corke, “Autonomous excavation using a rope shovel,” Journal of Field
Robotics, vol. 23, pp. 379–394, 2006. 10

[4] H. Schempf, E. Mutschler, V. Goltsberg, G. Skoptsov, A. Gavaert, and G. Vradis, “Ex-
plorer: Untethered real-time gas main assessment robot system,” in Proc. of Int. Workshop
on Advances in Service Robotics, 2003. 10

[5] A. Morris, D. Ferguson, Z. Omohundro, D. Bradley, D. Silver, C. Baker, S. Thayer, W. Whit-
taker, and W. L. Whittaker, “Recent developments in subterranean robotics,” Journal of
Field Robotics, vol. 23, pp. 35–57, January 2006. 10

[6] J. Bares and D. Wettergreen, “Dante ii: Technical description, results, and lessons learned,”
International Journal of Robotics Research, vol. 18, pp. 621–649, July 1999. 10

[7] D. Wettergreen, C. Gaskett, and A. Zelinsky, “Autonomous guidance and control for an
underwater robotic vehicle,” in Field and Service Robotics, 1999. 10, 41

[8] T. Estlin, B. Bornstein, D. Gaines, D. R. Thompson, R. Castano, R. Anderson,
C. de Granville, M. Burl, M. Judd, and S. Chien, “Aegis automated targeting for the mer
opportunity rover,,” in International Symposium on Artificial Intelligence, Robotics and Au-
tomation in Space (, 2010. 10

[9] P. Singer, Wired for War. Penguin Press, 2009. 10

[10] N. Ratliff, D. Silver, and J. A. Bagnell, “Learning to search: Functional gradient techniques
for imitation learning,” Autonomous Robots, 2009. 16, 45, 46, 52, 53

[11] H. Moravec, Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover.
PhD thesis, Stanford, September 1980. 16

[12] H. Moravec, “The stanford cart and the cmu rover,” Proceedings of the IEEE, vol. 71,
pp. 872–884, July 1983. 16

157

BIBLIOGRAPHY BIBLIOGRAPHY

[13] Champeny-Bares, L. S. Coppersmith, and K. Dowling, “The terregator mobile robot,” Tech.
Rep. CMU-RI-TR-93-03, Robotics Institute, Pittsburgh, PA, May 1991. 16

[14] R. Wallace, A. Stentz, C. Thorpe, H. Moravec, W. L. Whittaker, and T. Kanade, “First results
in robot road-following,” in Proceedings of the International Joint Conference on Artificial
Intelligence, 1985. 17

[15] M. Hebert and T. Kanade, “Outdoor scene analysis using range data,” in Proc. 1986 IEEE
International Conference on Robotics and Automation, vol. 3, pp. 1426–1432, April 1986.
17

[16] T. Kanade, C. Thorpe, and W. L. Whittaker, “Autonomous land vehicle project at cmu,” in
CSC ’86: Proceedings of the 1986 ACM fourteenth annual conference on Computer science,
(New York, NY, USA), pp. 71–80, ACM, 1986. 17

[17] C. Thorpe, M. Hebert, T. Kanade, and S. Shafer, “Vision and navigation for the carnegie-
mellon navlab,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 10,
pp. 362 – 373, May 1988. 17

[18] C. Thorpe, M. Hebert, T. Kanade, and S. Shafer, “Toward autonomous driving: The cmu
navlab. part i: Perception,” IEEE Expert, vol. 6, pp. 31 – 42, August 1991. 17

[19] C. Thorpe, M. Hebert, T. Kanade, and S. Shafer, “Toward autonomous driving: The cmu
navlab. part ii: System and architecture,” IEEE Expert, vol. 6, pp. 44 – 52, August 1991. 17

[20] E. Dickmanns, R. Behringer, D. Dickmanns, T. Hildebrand, M. Maure, F. Thomanek,
and J. Schiehlen, “The seeing passenger car vamors-p,” in Intelligent Vehicles Symposium,
pp. 68–73, October 1994. 17

[21] R. Behringer and N. Muller, “Autonomous road vehicle guidance from autobahnen to narrow
curves,” IEEE Transactions on Robotics and Automation, vol. 14, pp. 810–815, October
1998. 17

[22] J. Bishop, M. Juberts, and D. Raviv, “Autonomous vision-based technology for avcs,” in
Vehicular Technology Conference, pp. 360–363, May 1993. 17

[23] D. Pomerleau and T. Jochem, “Rapidly adapting machine vision for automated vehicle steer-
ing,” IEEE Expert: Special Issue on Intelligent System and their Applications, vol. 11,
pp. 19–27, April 1996. 17

[24] T. Jochem and D. Pomerleau, “Life in the fast lane:the evolution of an adaptive vehicle
control system,” AI Magazine, vol. 17, no. 2, pp. 11–50, 1996. 17

[25] E. Dickmanns, “The development of machine vision for road vehicles in the last decade,” in
IEEE Intelligent Vehicle Symposium, vol. 1, pp. 268–281, June 2002. 17

[26] U. Franke, D. Gavrila, S. Gorzig, F. Lindner, F. Puetzold, and C. Wohler, “Autonomous
driving goes downtown,” IEEE Intelligent Systems and their Applications, vol. 13, no. 6,
pp. 40–48, 1998. 17

158

BIBLIOGRAPHY BIBLIOGRAPHY

[27] L. Zhao and C. Thorpe, “Stereo and neural network-based pedestrian detection,” IEEE
Transactions on Intelligent Transportation Systems, vol. 1, pp. 148–154, September 2000.
17

[28] C.-C. Wang, C. Thorpe, and A. Suppe, “Ladar-based detection and tracking of moving
objects from a ground vehicle at high speeds,” in IEEE Intelligent Vehicles Symposium,
June 2003. 17

[29] C. Thorpe, J. D. Carlson, D. Duggins, J. Gowdy, R. MacLachlan, C. Mertz, A. Suppe, and
C.-C. Wang, “Safe robot driving in cluttered environments,” in International Symposium of
Robotics Research, 2003. 17

[30] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale,
M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Stro-
hband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk,
E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and
P. Mahoney, “Stanley: The robot that won the darpa grand challenge,” Journal of Field
Robotics, vol. 23, no. 9, pp. 661–692, 2006. 18, 37, 39, 53

[31] C. Urmson, C. Ragusa, D. Ray, J. Anhalt, D. Bartz, T. Galatali, A. Gutierrez, J. Johnston,
S. Harbaugh, H. ldquo, Y. Kato, W. Messner, N. Miller, K. Peterson, B. Smith, J. Snider,
S. Spiker, J. Ziglar, W. L. Whittaker, M. Clark, P. Koon, A. Mosher, and J. Struble, “A
robust approach to high-speed navigation for unrehearsed desert terrain,” Journal of Field
Robotics, vol. 23, no. 8, pp. 467–508, 2006. 18, 56

[32] P. G. Trepagnier, J. Nagel, P. M. Kinney, C. Koutsougeras, and M. Dooner, “Kat-5: Robust
systems for autonomous vehicle navigation in challenging and unknown terrain,” Journal of
Field Robotics, vol. 23, no. 8, pp. 509–526, 2006. 18

[33] D. Braid, A. Broggi, and G. Schmiedel, “The terramax autonomous vehicle,” Journal of
Field Robotics, vol. 23, no. 9, pp. 693–708, 2006. 18

[34] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski, “Self-supervised monoc-
ular road detection in desert terrain,” in Proceedings of Robotics: Science and Systems,
(Philadelphia, USA), August 2006. 18, 39

[35] M. Buehler, “Summary of dgc 2005 results,” Journal of Field Robotics, vol. 23, pp. 465–
466, 2006. 18

[36] C. Urmson, J. Anhalt, J. A. Bagnell, C. Baker, R. Bittner, M. N. Clark, J. Dolan, D. Dug-
gins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T. M. Howard, S. Kolski,
A. Kelly, M. Likhachev, M. McNaughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar,
P. Rybski, B. Salesky, Y.-W. Seo, S. Singh, J. Snider, A. Stentz, W. L. Whittaker, Z. Wolkow-
icki, J. Ziglar, H. Bae, T. Brown, D. Demitrish, B. Litkouhi, J. Nickolaou, V. Sadekar,
W. Zhang, J. Struble, M. Taylor, M. Darms, and D. Ferguson, “Autonomous driving in ur-
ban environments: Boss and the urban challenge,” Journal of Field Robotics, vol. 25, no. 8,
pp. 425–466, 2008. 19, 27, 30, 89, 90

159

BIBLIOGRAPHY BIBLIOGRAPHY

[37] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, D. Haehnel,
T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp, D. Langer, A. Levandowski,
J. Levinson, J. Marcil, D. Orenstein, J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger,
G. Stanek, D. Stavens, A. Vogt, and S. Thrun, “Junior: The stanford entry in the urban
challenge,” Journal of Field Robotics, vol. 25, no. 9, pp. 569–597, 2208. 19, 30, 69, 89

[38] A. Bacha, C. Bauman, R. Faruque, M. Fleming, C. Terwelp, C. Reinholtz, D. Hong,
A. Wicks, T. Alberi, D. Anderson, S. Cacciola, P. Currier, A. Dalton, J. Farmer, J. Hurdus,
S. Kimmel, P. King, A. Taylor, D. V. Covern, and M. Webster, “Odin: Team victortango’s
entry in the darpa urban challenge,” Journal of Field Robotics, vol. 25, no. 8, pp. 467–492,
2008. 19, 30

[39] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore, L. Fletcher, E. Frazzoli,
A. Huang, S. Karaman, O. Koch, Y. Kuwata, D. Moore, E. Olson, S. Peters, J. Teo, R. Truax,
M. Walter, D. Barrett, A. Epstein, K. Maheloni, K. Moyer, T. Jones, R. Buckley, M. Antone,
R. Galejs, S. Krishnamurthy, and J. Williams, “A perception-driven autonomous urban ve-
hicle,” Journal of Field Robotics, vol. 25, no. 10, pp. 727–774, 2008. 19, 30

[40] J. Bohren, T. Foote, J. Keller, A. Kushleyev, D. Lee, A. Stewart, P. Vernaza, J. Derenick,
J. Spletzer, and B. Satterfield, “Little ben: The ben franklin racing team’s entry in the 2007
darpa urban challenge,” Journal of Field Robotics, vol. 25, no. 9, pp. 598–614, 2008. 19, 30

[41] I. Miller, M. Campbell, D. Huttenlocher, F.-R. Kline, A. Nathan, S. Lupashin, J. Catlin,
B. Schimpf, P. Moran, N. Zych, E. Garcia, M. Kurdziel, and H. Fujishima, “Team cor-
nell’s skynet: Robust perception and planning in an urban environment,” Journal of Field
Robotics, vol. 25, no. 8, pp. 493–527, 2008. 19, 30

[42] M. Daily, J. Harris, D. Keirsey, D. Olin, D. Payton, K. Reiser, J. Rosenblatt, D. Tseng, and
V. Wong, “Autonomous cross-country navigation with the alv,” in Proceedings of the IEEE
International Conference on Robotics and Automation, vol. 2, pp. 718–726, April 1988. 20,
35, 89

[43] K. Olin and D. Tseng, “Autonomous cross-country navigation: an integrated perception and
planning system,” IEEE Expert, vol. 6, pp. 16–30, Aug 1991. 20, 35, 89

[44] D. Payton, J. Rosenblatt, and D. Keirsey, “Plan guided reaction,” Systems, Man and Cyber-
netics, IEEE Transactions on, vol. 20, pp. 1370–1382, Nov/Dec 1990. 20

[45] J. Mitchell, D. Payton, and D. Keirsey, “Planning and reasoning for autonomous vehicle
control,” International Journce of Intelligent Systems, vol. 2, no. 2, pp. 129–198, 1987. 20,
23, 30

[46] J. Mitchell and C. Papadimitriou, “The weighted region problem,” in Proceedings of the
third annual symposium on Computational geometry, (New York, NY, USA), pp. 30–38,
ACM, 1987. 20

[47] J. Mitchell, “An algorithmic approach to some problems in terrain navigation,” Tech. Rep.
TR000779, Cornell University, Feb 1988. 20

160

BIBLIOGRAPHY BIBLIOGRAPHY

[48] E. Mettala, “Reconnaissance, surveillance and target acquisition research for the unmanned
ground vehicle program,” in Proceedings Image Understanding Workshop, (Washington
D.C.), 1993. 20

[49] L. Matthies, “Stereo vision for planetary rovers: Stochastic modeling to near real-time im-
plementation,” International Journal of Computer Vision, vol. 8, no. 1, pp. 71–91, 1992.
21

[50] P. Grandjean and L. Matthies, “Perception control for obstacle detection by a cross-country
rover,” in Proceedings IEEE International Conference on Robotics and Automation, vol. 2,
pp. 20–27, May 1993. 21

[51] L. Matthies and P. Grandjean, “Stochastic performance, modeling and evaluation of obstacle
detectability with imaging range sensors,” IEEE Transactions on Robotics and Automation,
vol. 10, pp. 783–792, Dec 1994. 21

[52] M. Hebert, C. Thorpe, and A. Stentz, Intelligent Unmanned Ground Vehicles: Autonomous
Navigation Research at Carnegie Mellon. KluwerAcademic Publishers, 1997. 21, 30

[53] D. Langer, J. Rosenblatt, and M. Hebert, “A behavior-based system for off-road navigation,”
Robotics and Automation, IEEE Transactions on, vol. 10, pp. 776–783, Dec 1994. 21, 30,
43

[54] D. Langer, J. Rosenblatt, and M. Hebert, “An integrated system for autonomous off-road
navigation,” in Robotics and Automation, 1994. Proceedings., 1994 IEEE International
Conference on, pp. 414–419 vol.1, May 1994. 21, 30, 43

[55] A. Kelly, A. Stentz, and M. Hebert, “Terrain map building for fast navigation on rugged
outdoor terrain,” in Proceedings of SPIE Symposium on Mobile Robots, 1992. 21

[56] J. Rosenblatt and C. Thorpe, “Combining multiple goals in a behavior-based architecture,”
in International Conference on Intelligent Robots and Systems, 1995. 21, 30

[57] A. Stentz and M. Hebert, “A complete navigation system for goal acquisition in unknown
environments,” Autonomous Robots, vol. 2, no. 2, 1995. 21, 30

[58] A. Stentz, “Optimal and efficient path planning for partially-known environments,” in Pro-
ceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3310
– 3317, May 1994. 21

[59] A. Kelly, An Intelligent Predictive Control Approach to the High-Speed Cross-Country Au-
tonomous Navigation Problem. PhD thesis, Robotics Institute, Carnegie Mellon University,
September 1995. 21, 35, 72

[60] A. Kelly and A. Stentz, “Rough terrain autonomous mobility - part 2: An active vision,
predictive control,” Autonomous Robots, pp. 163 – 198, May 1998. 21

161

BIBLIOGRAPHY BIBLIOGRAPHY

[61] J. R. Spofford, R. D. Rimey, and S. H. Munkeby, “Overview of the ugv / demo ii program,”
in Reconnaissance, Surveillance, and Target Acquisition for the Unmanned Ground Vehi-
cle: Providing Surveillance ”Eyes” for an Autonomous Vehicle (Firshein and Strat, eds.),
Morgan Kaufmann, 1997. 21

[62] C. Shoemaker and J. Bornstein, “The demo iii ugv program: a testbed for autonomous nav-
igation research,” in Intelligent Control (ISIC), 1998. Held jointly with IEEE International
Symposium on Computational Intelligence in Robotics and Automation (CIRA), Intelligent
Systems and Semiotics (ISAS), Proceedings, pp. 644–651, Sep 1998. 21

[63] A. Lacaze, Y. Moscovitz, N. Declaris, and K. Murphy, “Path planning for autonomous ve-
hicles driving over rough terrain,” in IEEE ISIC/CIRA/ISAS Joint Conference, pp. 50–55,
1998. 22, 30

[64] T. Hong, S. Legowik, and M. Nashman, “Obstacle detection and mapping,” tech. rep., Na-
tional Institute of Standards and Technology, 1998. 22

[65] T. Chang, T. Hong, S. Legowik, and M. Abrams, “Concealment and obstacle detection
for autonomous driving,” in Proceedings of the International Association of Science and
Technology for Development -Robotics & Applications Conference, 1999. 22

[66] K. Murphy, M. Abrams, D. Coombs, T. Hong, S. Legowik, T. Chang, and A. Lacaze, “In-
telligent control for unmanned vehicles,” in in Proceeding of the 2000 World Automation
Congress Conference, pp. 11–16, 2000. 22, 30

[67] D. Coombs, K. Murphy, A. Lacaze, and S. Legowik, “Driving autonomously off-road up
to 35 km/h,” in Intelligent Vehicles Symposium, 2000. IV 2000. Proceedings of the IEEE,
pp. 186–191, 2000. 22

[68] A. Lacaze, K. Murphy, and M. Delgiorno, “Autonomous mobility for the demo iii experi-
mental unmanned vehicles,” in in Assoc. for Unmanned Vehicle Systems Int. Conf. on Un-
manned Vehicles (AUVSI 02, 2002. 22, 29

[69] J. Albus, K. Murphy, A. Lacaze, S. Legowik, S. Balakirsky, T. Hong, M. Shneier, and
E. Messina, “4d/rcs sensory processing and world modeling on the demo iii experimen-
tal unmanned ground vehicles,” in Proceedings of the IEEE International Symposium on
Intelligent Control, pp. 885–890, 2002. 22

[70] S. Balakirsky and A. Lacaze, “Value-driven behavior generation for an autonomous mobile,”
in in Proceedings of the SPIE 16th Annual International Symposium on Aerospace/Defense
Sensing, Simulation and Controls, 2002. 22, 30

[71] S. Balakirsky and A. Lacaze, “World modeling and behavior generation for autonomous
ground vehicle,” in Proceedings IEEE International Conference on Robotics and Automa-
tion, vol. 2, pp. 1201–1206, 2000. 22, 28, 30

[72] L. Matthies, T. Litwin, K. Owens, A. Rankin, K. Murphy, D. Coombs, J. Gilsinn, T. Hong,
S. Legowik, M. Nashman, and Billibon, “Performance evaluation of ugv obstacle detection
with ccd/flir stereo vision and ladar,” in IEEE ISIC/CIRA/ISAS Joint Conference, 1998. 22

162

BIBLIOGRAPHY BIBLIOGRAPHY

[73] P. Bellutta, R. Manduchi, L. Matthies, K. Owens, and A. Rankin, “Terrain perception for
demo iii,” in Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 326–331, 2000.
22

[74] J. Macedo, R. Manduchi, and L. Matthies, “Ladar-based discrimination of grass from ob-
stacles for autonomous navigation,” in International Symposium on Experimental Robotics,
2000. 22, 37, 153

[75] A. Talukder, R. Manduchi, R. Castano, K. Owens, L. Matthies, A. Castano, and R. Hogg,
“Autonomous terrain characterisation and modelling for dynamic control of unmanned ve-
hicles,” in IEEE/RSJ International Conference on Intelligent Robots and System, vol. 1,
pp. 708–713, 2002. 22, 37

[76] A. Talukder, R. Manduchi, A. Rankin, and L. Matthies, “Fast and reliable obstacle detection
and segmentation for cross-country navigation,” in IEEE Intelligent Vehicles Symposium,
pp. 610–618, 2002. 22, 37

[77] R. Manduchi, A. Castano, A. Talukder, and L. Matthies, “Obstacle detection and terrain
classification for autonomous off-road navigation,” Autonomous Robots, vol. 18, pp. 81–
102, 2005. 22, 37, 153

[78] N. Vandapel, D. Huber, A. Kapuria, and M. Hebert, “Natural terrain classification using 3-d
ladar data,” in IEEE International Conference on Robotics and Automation, vol. 5, pp. 5117
– 5122, April 2004. 22, 37

[79] J.-F. Lalonde, N. Vandapel, D. Huber, and M. Hebert, “Natural terrain classification using
three-dimensional ladar data for ground robot mobility,” Journal of Field Robotics, vol. 23,
pp. 839–861, October 2006. 22, 23, 37, 153

[80] C. Dima, N. Vandapel, and M. Hebert, “Classifier fusion for outdoor obstacle detection,” in
International Conference on Robotics and Automation, vol. 1, pp. 665 – 671, IEEE, April
2004. 22, 37, 153

[81] D. Munoz, N. Vandapel, and M. Hebert, “Onboard contextual classification of 3-d point
clouds with learned high-order markov random fields,” in IEEE International Conference
on Robotics and Automation, May 2009. 23

[82] DARPA, “Program solicitation perception for off-road mobility,” in DARPA PS01-02,
(Washington D.C.), 2000. 23

[83] L. Matthies, C. Bergh, A. Castano, and J. Macedo, “Obstacle detection in foliage with ladar
and radar,” in In International Symposium on Robotic Research, pp. 291–300, 2003. 23, 37,
153

[84] D. Bradley, S. Thayer, A. Stentz, and P. Rander, “Vegetation detection for mobile robot
navigation,” Tech. Rep. CMU-RI-TR-04-12, Carnegie Mellon Robotics Institute, Pittsburgh,
PA, February 2004. 23, 37, 153

163

BIBLIOGRAPHY BIBLIOGRAPHY

[85] L. Matthies, P. Bellutta, and M. McHenry, “Detecting water hazards for autonomous off-
road navigation,” in Proceedings of SPIE Conference 5083: Unmanned Ground Vehicle
Technology V, pp. 263–352, 2003. 23

[86] A. Huertas, L. Matthies, and A. Rankin, “Stereo-based tree traversability analysis for au-
tonomous off-road navigation,” in Seventh IEEE Workshops on Application of Computer
Vision, vol. 1, pp. 210–217, Jan. 2005. 23, 30

[87] L. Matthies and A. Rankin, “Negative obstacle detection by thermal signature,” in Proceed-
ings IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 1, pp. 906–
913 vol, Oct. 2003. 23

[88] A. Stentz, A. Kelly, H. Herman, P. Rander, O. Amidi, and R. Mandelbaum, “Integrated
air/ground vehicle system for semi-autonomous off-road navigation,” in Proc. of AUVSI
Unmanned Systems Symposium, July 2002. 23

[89] A. Rieder, B. Southall, G. Salgian, R. Mandelbaum, H. Herman, P. Rander, and A. Stentz,
“Stereo perception on an off-road vehicle,” in IEEE Intelligent Vehicle Symposium, vol. 1,
pp. 221–226, June 2002. 23

[90] A. Ansar, A. Huertas, L. Matthies, and S. Goldberg, “Enhancement of stereo at range dis-
continuities,” in SPIE Unmanned Ground Vehicle Technology VI, 2004. 23

[91] A. Rankin, A. Huertas, and L. Matthies, “Evaluation of stereo vision obstacle detection algo-
rithms for off-road autonomous navigation,” in UVSI’s Unmanned Systems North America,
2005. 23

[92] K. C. Kluge and M. K. Morgenthaler, “Multi-horizon reactive and deliberative path planning
for autonomous cross-country navigation,” in SPIE Unmanned Ground Vehicle Technology
VI, 2004. 23, 29, 30

[93] A. Rankin, C. Bergh, S. Goldberg, P. Bellutta, A. Huertas, and L. Matthies, “Passive per-
ception system for day/night autonomous off-road navigation,” in SPIE Defense & Security
Symposium: Unmanned Ground Vehicle Technology VII, 2005. 23

[94] A. Stentz, A. Kelly, P. Rander, H. Herman, O. Amidi, R. Mandelbaum, G. Salgian, and
J. Pedersen, “Real-time, multi-perspective perception for unmanned ground vehicles,” in
Proc. of AUVSI Unmanned Systems Symposium, July 2003. 23

[95] A. Kelly, A. Stentz, O. Amidi, M. Bode, D. Bradley, A. Diaz-Calderon, M. Happold, H. Her-
man, R. Mandelbaum, T. Pilarski, P. Rander, S. Thayer, N. Vallidis, and R. Warner, “Toward
reliable off road autonomous vehicles operating in challenging environments,” International
Journal of Robotics Research, vol. 25, no. 5-6, pp. 449–483, 2006. 23, 27, 29, 30, 32, 37,
69, 70, 72, 90, 151

[96] E. Krotkov, S. Fish, L. Jackel, B. McBride, M. Perschbacher, and J. Pippine, “The darpa
perceptor evaluation experiments,” Autonomous Robots, vol. 22, no. 1, pp. 19–35, 2007. 23

164

BIBLIOGRAPHY BIBLIOGRAPHY

[97] N. Vandapel, R. R. Donamukkala, and M. Hebert, “Experimental results in using aerial
ladar data for mobile robot navigation,” in International Conference on Field and Service
Robotics, 2003. 23, 37

[98] N. Vandapel, R. R. Donamukkala, and M. Hebert, “Quality assessment of traversabil-
ity maps from aerial lidar data for an unmanned ground vehicle,” in Proceedings of the
IEEE/JRS International Conference on Intelligent Robots and Systems, October 2003. 23,
37

[99] N. Vandapel, R. R. Donamukkala, and M. Hebert, “Unmanned ground vehicle navigation
using aerial ladar data,” The International Journal of Robotics Research, vol. 25, pp. 31–51,
January 2006. 23, 37, 153

[100] J. Bares and D. Stager, “Expanded field testing results from spinner, a high mobility hybrid
ugcv,” in Proceedings of the AUVSI Unmanned Systems Conference, 2004. 23

[101] A. Stentz, J. Bares, T. Pilarski, and D. Stager, “The crusher system for autonomous naviga-
tion,” in AUVSIs Unmanned Systems, August 2007. 23, 29, 32, 37, 69, 70, 78, 81, 90

[102] J. A. Bagnell, D. Bradley, D. Silver, B. Sofman, and A. Stentz, “Learning for autonomous
navigation: Advances in machine learning for rough terrain mobility,” IEEE Robotics &
Automation Magazine, vol. 17, pp. 74–84, June 2010. 23, 29, 32, 37, 69, 70, 78, 81, 90, 153

[103] B. Sofman, E. Lin, J. A. Bagnell, N. Vandapel, and A. Stentz, “Improving robot navigation
through self-supervised online learning,” in Proceedings of Robotics: Science and Systems,
(Philadelphia, USA), August 2006. 23, 39, 83

[104] B. Sofman, E. L. Ratliff, J. A. Bagnell, J. Cole, N. Vandapel, and A. Stentz, “Improving
robot navigation through self-supervised online learning,” Journal of Field Robotics, vol. 23,
December 2006. 23, 39, 83

[105] D. Silver, B. Sofman, N. Vandapel, J. A. Bagnell, and A. Stentz, “Experimental analysis of
overhead data processing to support long range navigation,” in Proceedings of the IEEE/JRS
International Conference on Intelligent Robots and Systems, October 2006. 24, 37, 56, 75,
76, 78

[106] S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb, and R. Chatila, “Au-
tonomous rover navigation on unknown terrains: Functions and integration,” International
Journal of Robotics Research, vol. 21, pp. 917–942, October 2002. 24, 30

[107] P. Tompkins, A. Stentz, and D. Wettergreen, “Global path planning for mars rover explo-
ration,” in Proceedings of the 2004 IEEE Aerospace Conference, March 2004. 24, 28, 30

[108] P. Tompkins, A. Stentz, and D. Wettergreen, “Mission-level path planning and re-planning
for rover exploration,” Robotics and Autonomous Systems, vol. 54, pp. 174 – 183, February
2006. 24, 28, 30

165

BIBLIOGRAPHY BIBLIOGRAPHY

[109] R. Castano, M. Judd, R. Anderson, and T. Estlin, “Machine learning challenges in mars rover
traverse science,” in ICML Workshop on Machine Learning Technologies for Autonomous
Space, 2003. 24, 30

[110] T. Smith, S. Niekum, D. R. Thompson, and D. Wettergreen, “Concepts for science autonomy
during robotic traverse and survey,” in IEEE Aerospace Conference, March 2005. 24, 30

[111] R. Castano, T. Estlin, D. Gaines, C. Chouinard, B. Bomstein, R. Anderson, M. Burl,
D. R. Thompson, A. Castano, and M. Judd, “Onboard autonomous rover science,” in IEEE
Aerospace Conference, pp. 1–13, March 2007. 24, 30

[112] D. R. Thompson and D. Wettergreen, “Intelligent maps for autonomous kilometer-scale sci-
ence survey,” in International Symposium on Artificial Intelligence, Robotics and Automa-
tion in Space (iSAIRAS), February 2008. 24, 30

[113] M. Woods, A. Shaw, D. Barnes, D. Price, D. Long, and D. Pullan, “Autonomous science for
an exomars rover-like mission,” Journal of Field Robotics, vol. 26, pp. 358–390, 2009. 24,
30

[114] L. Matthies, E. Gat, R. Harrison, B. Wilcox, R. Volpe, and T. Litwin, “Mars microrover nav-
igation: Performance evaluation and enhancement,” Autonomous Robots, vol. 2, pp. 291–
311, 1995. 24

[115] A. Mishkin, J. Morrison, T. Nguyen, H. Stone, B. Cooper, and B. Wilcox, “Experiences
with operations and autonomy of the mars pathfinder microrover,” in IEEE Aerospace Con-
ference, 1998. 24

[116] M. Bajracharya, M. Maimone, and D. Helmick, “Autonomy for mars rovers; past, present,
and future,” IEEE Computer, vol. 41, pp. 44–50, December 2008. 24

[117] L. Matthies, M. Maimone, A. Johnson, Y. Cheng, R. Willson, C. Villalpando, S. Goldberg,
A. Huertas, A. Stein, and A. Angelova, “Computer vision on mars,” International Journal
of Computer Vision, vol. 75, no. 1, pp. 67–92, 2007. 24, 37

[118] M. Maimone, P. C. Leger, and J. Biesiadecki, “Overview of the mars exploration rovers’ au-
tonomous mobility and vision capabilities,” in Proceedings IEEE International Conference
on Robotics and Automation, 2007. 24

[119] J. Biesiadecki, P. C. Leger, and M. Maimone, “Tradeoffs between directed and autonomous
driving on the mars exploration rovers,” International Journal of Robotics Research, vol. 26,
pp. 91–104, 2007. 24

[120] J. Biesiadecki, M. Maimone, and J. Morrison, “The athena sdm rover: a testbed for mars
rover mobility,” in International Symposium on Artificial Intelligence, 2001. 24, 30, 35, 90

[121] S. Goldberg, M. Maimone, and L. Matthies, “Stereo vision and rover navigation software
for planetary exploration,” Aerospace Conference Proceedings, 2002. IEEE, vol. 5, pp. 5–
2025–5–2036 vol.5, 2002. 24, 29, 30, 35, 90

166

BIBLIOGRAPHY BIBLIOGRAPHY

[122] J. Biesiadecki and M. Maimone, “The mars exploration rover surface mobility flight soft-
ware driving ambition,” in IEEE Aerospace Conference, 2006. 24, 30, 35, 90

[123] R. Simmons, E. Krotkov, L. Chrisman, F. Cozman, R. Goodwin, M. Hebert, L. Katragadda,
S. Koenig, G. Krishnaswamy, Y. Shinoda, W. L. Whittaker, and P. Klarer, “Experience with
rover navigation for lunar-like terrains,” in Proceedings IEEE/RSJ International Conference
on Intelligent Robots and Systems, vol. 1, pp. 441–446, Aug 1995. 24, 30, 35

[124] S. Singh, R. Simmons, T. Smith, A. Stentz, V. Verma, A. Yahja, and K. Schwehr, “Re-
cent progress in local and global traversability for planetary rovers,” IEEE Conference on
Robotics and Automation, 2000. 24, 29, 30, 35, 90

[125] C. Urmson, M. B. Dias, and R. Simmons, “Stereo vision based navigation for sun-
synchronous exploration,” in Proceedings of the International Conference on Robotics and
Automation, 2002. 24, 29, 30, 31, 35

[126] J. Carsten, A. Rankin, D. Ferguson, and A. Stentz, “Global path planning on-board the mars
exploration rovers,” in IEEE Aerospace Conference, 2007. 24, 30

[127] J. Carsten, A. Rankin, D. Ferguson, and A. Stentz, “Global planning on the mars explo-
ration rovers: Software integration and surface testing,” Journal of Field Robotics, vol. 26,
pp. 337–357, 2009. 24, 30, 90

[128] E. Birgersson, A. Howard, and G. Sukhatme, “Towards stealthy behaviors,” in International
Conference on Intelligent Robots and Systems, pp. 1703 – 1708, October 2003. 28

[129] R. Kirby, R. Simmons, and J. Forlizzi, “Companion: A constraint-optimizing method for
personacceptable navigation,” in International Symposium on Robot and Human Interactive
Communication, September 2009. 28, 30, 86

[130] Y.-H. Chen, C.-H. Lu, K.-C. Hsu, L.-C. Fu, Y.-J. Yeh, and L.-C. Kuo, “Preference model
assisted activity recognition learning in a smart home environment,” in International Con-
ference on Intelligent Robots and Systems, pp. 4657 – 4662, October 2009. 28

[131] C. Ye and J. Borenstein, “A method for mobile robot navigation on rough terrain,” in Inter-
national Conference on Robotics and Automation, pp. 3863–3869, 2004. 30

[132] V. Molino, R. Madhavan, E. Messina, A. Downs, S. Balakirsky, and A. Jacoff, “Traversabil-
ity metrics for rough terrain applied to repeatable test methods,” in International Conference
on Intelligent Robots and Systems, 2007. 30, 35

[133] A. Chilian and H. Hirschmuller, “Stereo camera based navigation of mobile robots on rough
terrain,” in International Conference on Intelligent Robots and Systems, pp. 4571–4576,
2009. 30

[134] H. Seraji, “Traversability index: a new concept for planetary rovers,” in Proceedings IEEE
International Conference on Robotics and Automation, vol. 3, pp. 2006–2013 vol.3, 1999.
30, 35

167

BIBLIOGRAPHY BIBLIOGRAPHY

[135] H. Seraji, “Fuzzy traversability index: A new concept for terrain-based navigation,” Journal
of Robotic Systems, vol. 17, no. 2, pp. 79–91, 2000. 30, 35

[136] A. Howard and H. Seraji, “An intelligent terrain-based navigation system for planetary
rovers,” IEEE Robotics & Automation Magazine, vol. 8, pp. 9–17, Dec 2001. 30, 35

[137] A. Howard, E. Tunstel, D. Edwards, and A. Carlson, “Enhancing fuzzy robot navigation
systems by mimicking human visual perception of natural terrain traversability,” in Joint
IFSA World Congress and NAFIPS International Conference, vol. 1, pp. 7–12 vol.1, July
2001. 30, 35, 38

[138] H. Seraji and A. Howard, “Behavior-based robot navigation on challenging terrain: A fuzzy
logic approach,” IEEE Transactions on Robotics and Automation, vol. 18, pp. 308–321, Jun
2002. 30, 35, 38

[139] H. Seraji and B. Bon, “Multi-range traversability indices for terrain-based navigation,” in
IEEE International Conference on Robotics and Automation, vol. 3, pp. 2674–2681 vol.3,
2002. 30, 35

[140] E. Tunstel, A. Howard, and H. Seraji, “Rule based reasoning and neural network perception
for safe offroad robot mobility,” Expert Systems, vol. 19, pp. 191–200, 2002. 30, 35, 37

[141] A. Howard, H. Seraji, and B. Werger, “Global and regional path planners for integrated
planning and navigation,” Journal of Robotic Systems, vol. 22, pp. 767–778, 2005. 30, 35

[142] D. B. Gennery, “Traversability analysis and path planning for a planetary rover,” Auton.
Robots, vol. 6, no. 2, pp. 131–146, 1999. 30

[143] C. Thorpe, “Path relaxation: Path planning for a mobile robot,” Tech. Rep. CMU-RI-TR-
84-05, Robotics Institute, Pittsburgh, PA, April 1984. 30

[144] X. Ning, S. Shihuang, and F. Xizhou, “A fuzzy approach to the weighted region problem
for autonomous vehicles,” in Proceedings of the International Symposium on Intelligent
Control, 1993. 30

[145] R. Murphy, K. Hughes, and E. Noll, “An explicit path planner to facilitate reactive con-
trol and terrain preferences,” in Robotics and Automation, 1996. Proceedings., 1996 IEEE
International Conference on, vol. 3, pp. 2067–2072 vol.3, Apr 1996. 30

[146] J. Rosenblatt, “Utility fusion: Map-based planning in a behavior-based system,” in Field
and Service Robotics, 1997. 30

[147] A. Shirkhodaie, R. Amrani, N. Chawla, and T. Vicks, “Traversable terrain modeling and
performance measurement of mobile robots,” in PerMIS, 2004. 30

[148] K. Konolige, M. Agrawal, M. R. Blas, R. C. Bolles, B. Gerkey, J. Sola, and A. Sundare-
san, “Mapping, navigation, and learning for off-road traversal,” Journal of Field Robotics,
vol. 26, pp. 88–113, January 2009. 30, 39

168

BIBLIOGRAPHY BIBLIOGRAPHY

[149] A. Stentz, “CD*: a real-time resolution optimal re-planner for globally constrained prob-
lems,” in Proceedings of AAAI National Conference on Artificial Intelligence, July 2002.
30

[150] J. P. Gonzalez, B. Nagy, and A. Stentz, “The geometric path planner for navigating un-
manned vehicles in dynamic environments,” in Proceedings ANS 1st Joint Emergency Pre-
paredness and Response and Robotic and Remote Systems, February 2006. 30

[151] D. Rumelhart, G. Hinton, and R. Williams, “Learning internal representations by error prop-
agation.,” in Parallel Distributed Processing: Explorations in the Microstructure of Cogni-
tion (D. Rumelhart and J. McClelland, eds.), vol. 1, pp. 318–362., Cambridge, MA: MIT
Press, 1986. 31

[152] K. Iagnemma, F. Genot, and S. Dubowsky, “Rapid physics-based rough-terrain rover plan-
ning with sensor and control uncertainty,” in IEEE Internation Conference on Robotics and
Automation, 1999. 35

[153] M. Cherif, “Motion planning for all-terrain vehicles: a physical modeling approach for
coping with dynamic and contact interaction constraints,” IEEE Transactions on Robotics
and Automation, vol. 15, pp. 202–218, Apr 1999. 35

[154] A. Green and D. Rye, “Sensible planning for vehicles operating over difficult unstructured
terrains,” IEEE Aerospace Conf., March 2007. 35

[155] T. Howard and A. Kelly, “Optimal rough terrain trajectory generation for wheeled mobile
robots,” International Journal of Robotics Research, vol. 26, no. 2, pp. 141–166, 2007. 35,
89

[156] D. Helmick, A. Angelova, and L. Matthies, “Terrain adaptive navigation for planetary
rovers,” Journal of Field Robotics, vol. 26, pp. 391–410, 2009. 35, 40

[157] D. Pomerleau, “Alvinn: an autonomous land vehicle in a neural network,” Advances in
neural information processing systems 1, pp. 305 – 313, 1989. 36, 42

[158] Y. LeCun, U. Muller, J. Ben, E. Cosatto, and B. Flepp, “Off-road obstacle avoidance through
end-to-end learning,” in Advances in Neural Information Processing Systems 18, MIT Press,
2006. 36, 42

[159] M. Marra, R. Dunlay, and D. Mathis, “Terrain classification using texture for the alv,” in
Proceedings of SPIE, vol. 1007, pp. 64–70, 1988. 37, 153

[160] I. Davis, A. Kelly, A. Stentz, and L. Matthies, “Terrain typing for real robots,” in Proceed-
ings of IEEE Intelligent Vehicles Conference, pp. 400 – 405, September 1995. 37, 43, 153

[161] C. Rasmussen, “Combining laser range, color, and texture cues for autonomous road fol-
lowing,” in IEEE Conference on Robotics and Automation, 2002. 37

[162] P. Jansen, W. van der Mark, J. van den Heuvel, and F. Groen, “Colour based off-road en-
vironment and terrain type classification,” in Proceedings IEEE Intelligent Transportation
Systems, pp. 216–221, 2005. 37

169

BIBLIOGRAPHY BIBLIOGRAPHY

[163] A. Angelova, L. Matthies, D. Helmick, and P. Perona, “Learning and prediction of slip from
visual information,” Journal of Field Robotics, vol. 24, no. 3, pp. 205–231, 2007. 37, 40

[164] I. Halatci, C. Brooks, and K. Iagnemma, “Terrain classification and classifier fusion for
planetary exploration rovers,” in IEEE Aerospace Conference, March 2007. 37

[165] R. Karlsen and G. Witus, “Terrain understanding for robot navigation,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pp. 895–900, 2007. 37

[166] A. P. Charaniya, R. Manduchi, and S. K. Lodha, “Supervised parametric classification of
aerial lidar data,” in IEEE Conference on Computer Vision and Pattern Recognition Work-
shop, pp. 25–32, 2004. 37

[167] D. Sadhukhan, C. Moore, and E. Collins, “Terrain estimation using internal sensors,” in
IASTED Conference on Robotic Applications, 2004. 37

[168] C. Brooks, K. Iagnemma, and S. Dubowsky, “Vibration-based terrain analysis for mobile
robots,” in Proceedings of the 2005 IEEE International Conference on Robotics and Au-
tomation, pp. 3415–3420, April 2005. 37

[169] C. Brooks and K. Iagnemma, “Vibration-based terrain classification for planetary explo-
ration rovers,” IEEE Transactions on Robotics, vol. 21, pp. 1185–1191, Dec. 2005. 37

[170] L. Ojeda, J. Borenstein, G. Witus, and R. Karlsen, “Terrain characterization and classifica-
tion with a mobile robot,” Journal of Field Robotics, vol. 23, no. 2, pp. 103–122, 2006. 37,
40

[171] M. Happold, M. Ollis, and N. Johnson, “Enhancing supervised terrain classification with
predictive unsupervised learning,” in Proceedings of Robotics: Science and Systems,
(Philadelphia, USA), August 2006. 37, 39, 41

[172] M. Happold and M. Ollis, “Using learned features from 3d data for robot navigation,” Au-
tonomous Robots and Agents, vol. 76, pp. 61–69, 2007. 37

[173] W. H. Huang, M. Ollis, M. Happold, and B. A. Stancil, “Image-based path planning for
outdoor mobile robots,” Journal of Field Robotics, vol. 26, pp. 196–211, 2009. 37

[174] A. Howard, M. Turmon, L. Matthies, B. Tang, A. Angelova, and E. Mjolsness, “Towards
learned traversability for robot navigation: From underfoot to the far field,” Journal of Field
Robotics, vol. 23, pp. 1005–1017, 2007. 37, 39

[175] S. Thrun, M. Montemerlo, and A. Aron, “Probabilistic terrain analysis for high-speed desert
driving,” in Proceedings of Robotics: Science and Systems, (Philadelphia, USA), August
2006. 37

[176] J. Sun, T. Mehta, D. Wooden, M. Powers, J. Rehg, T. Balch, and M. Egerstedt, “Learning
from examples in unstructured, outdoor environments,” Journal of Field Robotics, vol. 23,
pp. 1019–1036, 2007. 37, 38, 43, 53, 85

170

BIBLIOGRAPHY BIBLIOGRAPHY

[177] M. Ollis, W. H. Huang, and M. Happold, “A bayesian approach to imitation learning for
robot navigation,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2007. 38

[178] L. Jackel, E. Krotkov, M. Perschbacher, J. Pippine, and C. Sullivan, “The darpa lagr pro-
gram: Goals, challenges, methodology, and phase i results,” Journal of Field Robotics,
vol. 23, pp. 945–973, 2007. 38

[179] D. Lieb, A. Lookingbill, and S. Thrun, “Adaptive road following using self-supervised learn-
ing and reverse optical flow,” in Proceedings of Robotics: Science and Systems, (Cambridge,
USA), June 2005. 39

[180] M. Shneier, T. Chang, T. Hong, W. Shackleford, R. Bostelman, and J. Albus, “Learn-
ing traversability models for autonomous mobile vehicles,” Autonomous Robots, vol. 24,
pp. 69–86, 2008. 39, 40

[181] J. Albus, R. Bostelman, T. Chang, T. Hong, W. Shackleford, and M. Shneier, “Learning in
a hierarchical control system: 4d/rcs in the darpa lagr program,” Journal of Field Robotics,
vol. 23, pp. 975–1003, 2007. 39, 40

[182] P. Vernaza, B. Taskar, and D. Lee, “Online, self-supervised terrain classification via discrim-
inatively trained submodular markov random fields,” in IEEE International Conference on
Robotics and Automation, pp. 2750–2757, May 2008. 39

[183] R. Hadsell, P. Sermanet, J. Ben, A. Erkan, M. Scoffier, K. Kavukcuoglu, U. Muller, and
Y. LeCun, “Learning long-range vision for autonomous off-road driving,” Journal of Field
Robotics, vol. 26, pp. 120–144, 2009. 39

[184] P. Moghadam and W. Wijesoma, “Online, self-supervised vision-based terrain classification
in unstructured environments,” in International Conference on Systems, Man and Cybernet-
ics, pp. 3100–3105, October 2009. 39

[185] M. Bajracharya, B. Tang, A. Howard, M. Turmon, and L. Matthies, “Learning long-range
terrain classification for autonomous navigation,” in IEEE International Conference on
Robotics and Automation, pp. 4018–4024, May 2008. 39

[186] G. Grudic and J. Mulligan, “Outdoor path labeling using polynomial mahalanobis distance,”
in Proceedings of Robotics: Science and Systems, (Philadelphia, USA), August 2006. 39

[187] M. Procopio, J. Mulligan, and G. Grudic, “Long-term learning using multiple models for
outdoor autonomous robot navigation,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 3158–3165, 2007. 39

[188] D. Kim, J. Sun, S. M. Oh, J. Rehg, and A. Bobick, “Traversability classification using
unsupervised on-line visual learning for outdoor robot navigation,” in Proceedings IEEE
International Conference on Robotics and Automation, pp. 518–525, May 2006. 40

171

BIBLIOGRAPHY BIBLIOGRAPHY

[189] D. Kim, S. M. Oh, and J. Rehg, “Traversability classification for ugv navigation: a com-
parison of patch and superpixel representations,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 3166–3173, 2007. 40

[190] D. Stavens and S. Thrun, “A self-supervised terrain roughness estimator for off-road au-
tonomous driving,” in In Proc. of Conf. on Uncertainty in AI, pp. 13–16, 2006. 40

[191] A. Angelova, L. Matthies, D. Helmick, G. Sibley, and P. Perona, “Learning to predict slip
for ground robots,” in Proceedings IEEE International Conference on Robotics and Automa-
tion, May 2006. 40

[192] S. Karumanchi, T. Allen, T. Bailey, and S. Scheding, “Non-parametric learning to aid path
planning over slopes,” in Robotics: Science and Systems, June 2009. 40, 154

[193] S. Karumanchi, T. Allen, T. Bailey, and S. Scheding, “Non-parametric learning to aid path
planning over slopes,” International Journal of Robotics Research, vol. 29, pp. 997–1018,
July 2010. 40, 154

[194] K. Iagnemma, S. Kang, H. Shibly, and S. Dubowsky, “Online terrain parameter estima-
tion for wheeled mobile robots with application to planetary rovers,” IEEE Transactions on
Robotics, vol. 20, pp. 921–927, Oct. 2004. 40

[195] C. Wellington and A. Stentz, “Learning predictions of the load-bearing surface for au-
tonomous rough-terrain navigation in vegetation,” in International Conference on Field and
Service Robotics, pp. 49–54, July 2003. 40

[196] C. Wellington and A. Stentz, “Online adaptive rough-terrain navigation vegetation,” in Pro-
ceedings of the IEEE International Conference on Robotics and Automation, 2004. 40

[197] C. Wellington, A. Courville, and A. Stentz, “A generative model of terrain for autonomous
navigation in vegetation,” The International Journal of Robotics Research, vol. 25, pp. 1287
– 1304, December 2006. 40

[198] R. Sutton, A. Barto, and R. Williams, “Reinforcement learning is direct adaptive optimal
control,” IEEE Control Systems Magazine, vol. 12, pp. 19–22, April 1992. 41

[199] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of reinforcement learning
to aerobatic helicopter flight,” in Neural Information Processing Systems, 2007. 41

[200] C. Gaskett, L. Fletcher, and A. Zelinsky, “Reinforcement learning for a vision based mobile
robot,” in IEEE/RSJ Conference on Intelligent Robots and Systems, 2000. 41

[201] K. Macek, I. Petrovic, and N. Peric, “A reinforcement learning approach to obstacle avoid-
ance of mobile robots,” in Advanced Motion Control, 2002. 41, 42

[202] W. D. Smart and L. Pack Kaelbling, “Effective reinforcement learning for mobile robots,”
in Proc. IEEE International Conference on Robotics and Automation ICRA ’02, vol. 4,
pp. 3404–3410, 11–15 May 2002. 41, 42

172

BIBLIOGRAPHY BIBLIOGRAPHY

[203] J. Michels, A. Saxena, and A. Y. Ng, “High speed obstacle avoidance using monocu-
lar vision and reinforcement learning,” in International Conference on Machine Learning,
vol. 119, pp. 593–600, 2005. 41

[204] S. Schaal and C. Atkeson, “Open loop stable control strategies for robot juggling,” in Pro-
ceedings of the 93 IEEE Int. Conf. on Robotics and Automation, 1993. 42

[205] S. Schaal and C. Atkeson, “Robot juggling: An implementation of memory-based learning,”
IEEE Control Systems Magazine, vol. 14, no. 1, 1994. 42

[206] B. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot learning from
demonstration,” Robotics and Autonomous Systems, 2008. 42

[207] C. Sammut, S. Hurst, D. Kedzier, and D. Michie, “Learning to fly,” in International Confer-
ence on Machine Learning, 1992. 42

[208] N. Esmaili, C. Sammut, and G. Shirazi, “Behavioural cloning in control of a dynamic sys-
tem,” in Systems, Man and Cybernetics, 1995. Intelligent Systems for the 21st Century.,
IEEE International Conference on, vol. 3, pp. 2904–2909 vol.3, Oct 1995. 42

[209] M. W. Kadous, C. Sammut, and R. Sheh, “Autonomous traversal of rough terrain using
behavioural cloning,” in International Conference on Autonomous Robots and Automation,
2006. 42, 85

[210] A. Howard, B. Werger, and H. Seraji, “A human-robot mentor-protege relationship to learn
off-road navigation behavior,” in IEEE International Conference on Systems, Man and Cy-
bernetics, vol. 1, pp. 430–435 Vol. 1, Oct. 2005. 42

[211] I. Davis and A. Stentz, “Sensor fusion for autonomous outdoor navigation using neural net-
works,” in Proceedings IEEE/RSJ International Conference On Intelligent Robotic Systems,
vol. 3, pp. 338 – 343, August 1995. 42

[212] J. Weng and S. Chen, “Autonomous navigation through case-based learning,” in Proceedings
International Symposium on Computer Vision, pp. 359–364, Nov 1995. 43

[213] M. Stolle, H. Tappeiner, J. Chestnutt, and C. Atkeson, “Transfer of policies based on tra-
jectory libraries,” in IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2981–2986, 2007. 43

[214] B. Argall, B. Browning, and M. Veloso, “Learning by demonstration with critique from a
human teacher,” in Proceedings of the ACM/IEEE international conference on Human-robot
interaction, (New York, NY, USA), pp. 57–64, ACM, 2007. 43

[215] P. Sermanet, M. Scoffier, C. Crudele, U. Muller, and Y. LeCun, “Learning maneuver dictio-
naries for ground robot planning,” in International Symposium on Robotics, 2008. 43

[216] R. Roberts, C. Pippin, and T. Balch, “Learning outdoor mobile robot behaviors by example,”
Journal of Field Robotics, vol. 26, no. 2, pp. 176 – 195, 2009. 43

173

BIBLIOGRAPHY BIBLIOGRAPHY

[217] B. Hamner, S. Scherer, and S. Singh, “Learning to drive among obstacles,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 2663 – 2669, October 2006.
43, 85

[218] B. Hamner, S. Singh, and S. Scherer, “Learning obstacle avoidance parameters from op-
erator behavior,” Journal of Field Robotics, vol. 23, pp. 1037–1058, December 2006. 43,
85

[219] R. Brooks, “Intelligence without representation,” Artificial Intelligence, vol. 47, pp. 139–
159, 1991. 43

[220] R. Kalman, “When is a linear control system optimal?,” Trans. ASME, J. Basic Engrg.,
vol. 86, pp. 51–60, 1964. 43

[221] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System
and Control Theory. Society for Industrial and Applied Mathematics (SIAM), 1994. 43

[222] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement learning,” in Proc. 17th
International Conf. on Machine Learning, 2000. 45

[223] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learning,” in
International Conference on Machine learning, 2004. 45, 50

[224] N. Ratliff, J. A. Bagnell, and M. Zinkevich, “Maximum margin planning,” in International
Conference on Machine Learning, July 2006. 45

[225] N. Ratliff, D. Bradley, J. A. Bagnell, and J. Chestnutt, “Boosting structured prediction for
imitation learning,” in Advances in Neural Information Processing Systems 19, (Cambridge,
MA), MIT Press, 2007. 45, 55, 68

[226] J. A. Bagnell, J. Langford, N. Ratliff, and D. Silver, “The exponentiated functional gradient
algorithm for structured prediction problems,” in The Learning Workshop, 2007. 45, 53

[227] N. Ratliff, S. Srinivasa, and J. A. Bagnell, “Imitation learning for locomotion and manipu-
lation,” in IEEE-RAS International Conference on Humanoid Robots, November 2007. 45

[228] N. Ratliff, J. A. Bagnell, and M. Zinkevich, “(Online) subgradient methods for structured
prediction,” in Artificial Intelligence and Statistics, (San Juan, Puerto Rico), 2007. 45, 47

[229] D. Silver, J. A. Bagnell, and A. Stentz, “High performance outdoor navigation from over-
head data using imitation learning,” in Proceedings of Robotics Science and Systems, June
2008. 45, 53, 56, 59, 68

[230] D. Silver, J. A. Bagnell, and A. Stentz, “Applied imitation learning for autonomous naviga-
tion in complex natural terrain,” in Field and Service Robotics, July 2009. 45, 68

[231] D. Silver, J. A. Bagnell, and A. Stentz, “Perceptual interpretation for autonomous navigation
through dynamic imitation learning,” in International Symposium on Robotics Research,
August 2009. 45, 59, 152

174

BIBLIOGRAPHY BIBLIOGRAPHY

[232] D. Silver, J. A. Bagnell, and A. Stentz, “Learning from demonstration for autonomous navi-
gation in complex unstructured terrain,” International Journal of Robotics Research, vol. 29,
pp. 1565–1592, October 2010. 45, 46, 53, 59

[233] B. Taskar, S. Lacoste-Julien, and M. Jordan, “Structured prediction via the extragradient
method,” in Advances in Neural Information Processing Systems 18, MIT Press, 2006. 47

[234] B. Taskar, C. Guestrin, and D. Koller, “Max-margin markov networks,” in Advances in
Neural Information Processing Systems, 2004. 47

[235] L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting algorithms as gradient descent,”
in Advances in Neural Information Processing Systems 12, (Cambridge, MA), MIT Press,
2000. 51

[236] B. Nabbe, S. Kumar, and M. Hebert, “Path planning with hallucinated worlds,” in Proceed-
ings: IEEE/RSJ International Conference on Intelligent Robots and Systems, October 2004.
56

[237] A. Karmaker and S. Kwek, “A boosting approach to remove class label noise,” in Interna-
tional Conference on Hybrid Intelligent Systems, 2005. 66

[238] A. Vezhnevets and O. Barinova, “Avoiding boosting overfitting by removing confusing sam-
ples,” in European Conference on Machine Learning, 2007. 66

[239] D. Ferguson and A. Stentz, “Using interpolation to improve path planning: The field D*
algorithm,” Journal of Field Robotics, vol. 23, pp. 79–101, February 2006. 69, 72

[240] B. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson, J. A. Bagnell, M. Hebert, A. Dey,
and S. Srinivasa, “Planning-based prediction for pedestrians,” in IROS, 2009. 71, 136

[241] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control from multiple demonstrations,”
in International Conference on Machine Learning, pp. 144–151, 2008. 85

[242] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter aerobatics through apprentice-
ship learning,” International Journal of Robotics Research (OnlineFirst), vol. 29, pp. 1608–
1639, November 2010. 85

[243] P. Abbeel, D. Dolgov, A. Y. Ng, and S. Thrun, “Apprenticeship learning for motion plan-
ning with application to parking lot navigation,” in International Conference on Intelligent
Robots and Systems, 2008. 85

[244] P. Henry, C. Vollmer, B. Ferris, and D. Fox, “Learning to navigate through crowded envi-
ronments,” in International Conference on Robotics and Automation, 2010. 85

[245] S. J. Lee and Z. Popovic, “Learning behavior styles with inverse reinforcement learning,” in
SIGGRAPH, vol. 29, July 2010. 85

[246] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained mobile robot motion
planning in state lattices,” Journal of Field Robotics, vol. 26, pp. 308–333, March 2009. 89

175

BIBLIOGRAPHY BIBLIOGRAPHY

[247] T. Howard, C. J. Green, and A. Kelly, “Receding horizon model-predictive control for mo-
bile robot navigation of intricate paths,” in Field and Service Robotics, 2009. 90

[248] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin methods for struc-
tured and interdependent output variables,” Journal of Machine Learning Research, vol. 6,
pp. 1453–1484, 2005. 94

[249] W. W. Cohen, R. E. Schapire, and Y. Singer, “Learning to order things,” Journal of Artificial
Intelligence Research, vol. 10, pp. 243–270, May 1999. 127

[250] R. Herbrich, T. Graepel, and K. Obermayer, “Support vector learning for ordinal regression,”
in International Conference on Artificial Neural Networks, 1999. 127

[251] T. Joachims, “Optimizing search engines using clickthrough data,” in ACM Conference on
Knowledge Discovery and Data Mining, 2002. 127

[252] M. Zucker, J. A. Bagnell, C. Atkeson, and J. Kuffner, “An optimization approach to rough
terrain locomotion,” in IEEE Conference on Robotics and Automation, May 2010. 128, 153

[253] M. Kalakrishnan, J. Buchli, P. Pastor, and S. Schaal, “Learning locomotion over rough ter-
rain using terrain templates,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 167–172, 2009. 128, 153

[254] J. Z. Kolter, P. Abbeel, and A. Y. Ng, “Hierarchical apprenticeship learning with application
to quadruped locomotion,” in Neural Information Processing Systems, 2008. 128, 153

[255] M. Zucker and J. A. Bagnell, “Reinforcement planning: Rl for optimal planners,” Tech.
Rep. CMU-RI-TR-10-14, Carnegie Mellon Robotics Institute, April 2010. 133

[256] D. Roth and K. Small, “Margin based active learning for structured output spaces,” in
ECML, 2006. 134

[257] B. Settles and M. Craven, “An analysis of active learning strategies for sequence labeling
tasks,” in Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing, 2008. 134

[258] A. Culotta and A. McCallum, “Reducing labeling effort for structured prediction tasks,” in
AAAI, 2005. 134

[259] B. Settles, M. Craven, and L. Friedland, “Active learning with real annotation costs,” in
NIPS Workshop on Cost Sensitive Learning, 2008. 134

[260] R. Haertel, K. D. Seppi, E. K. Ringger, and J. L. Carroll, “Return on investment for active
learning,” in NIPS Workshop on Cost Sensitive Learning, 2009. 134

[261] S. Chernova and M. Veloso, “Confidence-based policy learning from demonstration using
gaussian mixture models,” in Proceedings of the 6th international joint conference on Au-
tonomous agents and multiagent systems, 2007. 134

176

BIBLIOGRAPHY BIBLIOGRAPHY

[262] D. Grollman and O. Jenkins, “Dogged learning for robots,” in IEEE International Confer-
ence on Robotics and Automation, 2007. 134

[263] M. Markou and S. Singh, “Novelty detection: A review - part 1: Statistical approaches,”
Signal Processing, vol. 83, no. 12, pp. 2481–2497, 2003. 135

[264] M. Markou and S. Singh, “Novelty detection: A review - part 2: Neural network based
approaches,” Signal Processing, vol. 83, no. 12, pp. 2499–2521, 2003. 135

[265] H. Neto and U. Nehmzow, “Visual novelty detection with automatic scale selection,”
Robotics and Autonomous Systems, vol. 55, no. 9, pp. 693–701, 2007. 135

[266] S. Marsland, U. Nehmzow, and J. Shapiro, “On-line novelty detection for autonomous mo-
bile robots,” Robotics and Autonomous Systems, vol. 51, no. 2-3, pp. 191–206, 2005. 135

[267] C. Brooks and K. Iagnemma, “Visual detection of novel terrain via two-class classification,”
in ACM symposium of Applied Computing, pp. 1145–1150, 2009. 135, 136

[268] D. R. Thompson, “Domain-guided novelty detection for autonomous exploration,” in Inter-
national Joint Conference on Artificial Intelligence, 2009. 135

[269] B. Sofman, J. A. Bagnell, and A. Stentz, “Anytime online novelty detection for vehicle
safeguarding,” in IEEE International Conference on Robotics and Automation, May 2010.
135, 136, 147

[270] C. Dima, M. Hebert, and A. Stentz, “Enabling learning from large datasets: Applying ac-
tive learning to mobile robotics,” in International Conference on Robotics and Automation,
vol. 1, pp. 108 – 114, April 2004. 135

[271] C. Dima and M. Hebert, “Active learning for outdoor obstacle detection,” in Proceedings of
Robotics: Science and Systems, (Cambridge, USA), June 2005. 135, 137

[272] I. Fodor, “A survey of dimension reduction techniques,” Tech. Rep. UCRL-ID-148494,
Lawrence Livermore National Laboratory, May 2002. 135

[273] D. Lewis and W. Gale, “A sequential algorithm for training text classifiers,” in Proceedings
of the International ACM-SIGIR Conference on Research and Development in Information
Retrieval, 1994. 137

[274] H. Seung, M. Opper, and H. Sompolinsky, “Query by committee,” in Proceedings of the
Fifth Annual ACM Workshop on Computation Learning Theory, pp. 287–294, 1992. 137

[275] Y. Freund, H. Seung, E. Shamir, and N. Tishby, “Selective sampling using the query by
committee algorithm,” Machine Learning, vol. 28, pp. 133–168, 1997. 137

[276] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, pp. 123–140, 1996. 137

[277] L. Murphy and P. Newman, “Planning most-likely paths from overhead imagery,” in Inter-
national Conference on Robotics and Automation, 2010. 138

177

BIBLIOGRAPHY BIBLIOGRAPHY

[278] J. MacQueen, “Some methods for classification and analysis of multivariate observations,”
in Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297, 1967. 143

[279] D. Bradley, Learning in Modular Systems. PhD thesis, Carnegie Mellon University, Septem-
ber 2009. 153

[280] A. Grubb and J. A. Bagnell, “Boosted backpropagation learning for training deep modular
networks,” in International Conference on Machine Learning, 2010. 153

[281] R. Sheh, M. Kadous, C. Sammut, and B. Hengst, “Extracting terrain features from range
images for autonomous random stepfield traversal,” in IEEE International Workshop on
Safety, Security, and Rescue Robotics, 2007. 153

Author Index

Abbeel, P. [199, 223, 241–243,
254]

Abrams, M. [65, 66]
Agrawal, M. [148]
Albus, J. [69, 180, 181]
Allen, T. [192, 193]
Altun, Y. [248]
Amidi, O. [88, 94, 95]
Amrani, R. [147]
Anderson, R. [8, 109, 111]
Angelova, A. [117, 156, 163,

174, 191]
Anhalt, J. [36]
Ansar, A. [90]
Argall, B. [206, 214]
Aron, A. [175]
Atkeson, C. [204, 205, 213,

252]

Bacha, A. [38]
Bagnell, J. A. [10, 36,

102–105, 224–232, 240,
252, 255, 269, 280]

Bailey, T. [192, 193]
Bajracharya, M. [116, 185]
Baker, C. [5]
Balakirsky, S. [69–71, 132]
Balakrishnan, V. [221]
Balch, T. [176, 216]
Bares, J. [6, 100, 101]
Barinova, O. [238]

Barnes, D. [113]
Bartlett, P. [235]
Barto, A. [198]
Bauman, C. [38]
Bauzil, G. [106]
Baxter, J. [235]
Becker, J. [37]
Behringer, R. [20, 21]
Bellutta, P. [73, 85, 93]
Ben, J. [158, 183]
Bergh, C. [83, 93]
Bhat, S. [37]
Biesiadecki, J. [118–120, 122]
Birgersson, E. [128]
Bishop, J. [22]
Blas, M. R. [148]
Bobick, A. [188]
Bohren, J. [40]
Bolles, R. C. [148]
Bomstein, B. [111]
Bon, B. [139]
Bonnafous, D. [106]
Borenstein, J. [131, 170]
Bornstein, B. [8]
Bornstein, J. [62]
Bostelman, R. [180, 181]
Boyd, S. [221]
Bradley, D. [5, 84, 102, 225,

279]
Bradski, G. [34]

Braid, D. [33]
Breiman, L. [276]
Broggi, A. [33]
Brooks, C. [164, 168, 169,

267]
Brooks, R. [219]
Browning, B. [206, 214]
Buchli, J. [253]
Buehler, M. [35]
Burl, M. [8, 111]

Campbell, M. [41]
Carlson, A. [137]
Carlson, J. D. [29]
Carroll, J. L. [260]
Carsten, J. [126, 127]
Castano, A. [75, 77, 83, 111]
Castano, R. [8, 75, 109, 111]
Champeny-Bares [13]
Chang, T. [65, 66, 180, 181]
Charaniya, A. P. [166]
Chatila, R. [106]
Chawla, N. [147]
Chen, S. [212]
Chen, Y.-H. [130]
Cheng, Y. [117]
Cherif, M. [153]
Chernova, S. [206, 261]
Chestnutt, J. [213, 225]
Chien, S. [8]
Chilian, A. [133]

178

BIBLIOGRAPHY BIBLIOGRAPHY

Chouinard, C. [111]
Chrisman, L. [123]
Coates, A. [199, 241, 242]
Cohen, W. W. [249]
Cole, J. [104]
Collins, E. [167]
Coombs, D. [66, 67]
Cooper, B. [115]
Coppersmith, L. S. [13]
Corke, P. [2, 3]
Cosatto, E. [158]
Courville, A. [197]
Craven, M. [257, 259]
Crudele, C. [215]
Culotta, A. [258]

Dahlkamp, H. [30, 34]
Daily, M. [42]
DARPA [82]
Davis, I. [160, 211]
de Granville, C. [8]
Declaris, N. [63]
Delgiorno, M. [68]
Derenick, J. [40]
Dey, A. [240]
Dias, M. B. [125]
Dickmanns, D. [20]
Dickmanns, E. [20, 25]
Dima, C. [80, 270, 271]
Dolgov, D. [243]
Donamukkala, R. R. [97–99]
Dooner, M. [32]
Dowling, K. [13]
Downs, A. [132]
Dubowsky, S. [152, 168, 194]
Duff, E. [2]
Duggins, D. [29]
Dunbabin, M. [3]
Dunlay, R. [159]
Durrant-Whyte, H. F. [1]

Edwards, D. [137]
Egerstedt, M. [176]
Erkan, A. [183]
Esmaili, N. [208]

Estlin, T. [8, 109, 111]

Faruque, R. [38]
Ferguson, D. [5, 126, 127,

239]
Feron, E. [221]
Ferris, B. [244]
Fish, S. [96]
Flepp, B. [158]
Fletcher, L. [200]
Fleury, S. [106]
Fodor, I. [272]
Foote, T. [40]
Forlizzi, J. [129]
Fox, D. [244]
Franke, U. [26]
Frean, M. [235]
Freund, Y. [275]
Friedland, L. [259]
Fu, L.-C. [130]

Gaines, D. [8, 111]
Gale, W. [273]
Gallagher, G. [240]
Gaskett, C. [7, 200]
Gat, E. [114]
Gavaert, A. [4]
Gavrila, D. [26]
Gennery, D. B. [142]
Genot, F. [152]
Gerkey, B. [148]
Ghaoui, L. E. [221]
Goldberg, S. [90, 93, 117, 121]
Goltsberg, V. [4]
Gonzalez, J. P. [150]
Gorzig, S. [26]
Gowdy, J. [29]
Graepel, T. [250]
Grandjean, P. [50, 51]
Green, A. [154]
Green, C. J. [247]
Groen, F. [162]
Grollman, D. [262]
Grubb, A. [280]
Grudic, G. [186, 187]

Guestrin, C. [234]

Hadsell, R. [183]
Haertel, R. [260]
Halatci, I. [164]
Hamner, B. [217, 218]
Happold, M. [171–173, 177]
Harris, J. [42]
Harrison, R. [114]
Hebert, M. [15, 17–19, 52–55,

57, 78–81, 97–99, 236, 240,
270, 271]

Helmick, D. [116, 156, 163,
191]

Hengst, B. [281]
Henry, P. [244]
Herbrich, R. [250]
Herman, H. [88, 89, 94]
Herrb, M. [106]
Hildebrand, T. [20]
Hinton, G. [151]
Hirschmuller, H. [133]
Hofmann, T. [248]
Hogg, R. [75]
Hong, T. [64–66, 69, 180, 181]
How, J. [39]
Howard, A. [128, 136–138,

140, 141, 174, 185, 210]
Howard, T. [155, 247]
Hsu, K.-C. [130]
Huang, W. H. [173, 177]
Huber, D. [78, 79]
Huertas, A. [86, 90, 91, 93,

117]
Hughes, K. [145]
Hurst, S. [207]
Huttenlocher, D. [41]

Iagnemma, K. [152, 164, 168,
169, 194, 267]

Jackel, L. [96, 178]
Jacoff, A. [132]
Jansen, P. [162]
Jenkins, O. [262]
Joachims, T. [248, 251]

179

BIBLIOGRAPHY BIBLIOGRAPHY

Jochem, T. [23, 24]
Johnson, A. [117]
Johnson, N. [171]
Jordan, M. [233]
Juberts, M. [22]
Judd, M. [8, 109, 111]

Kadous, M. [281]
Kadous, M. W. [209]
Kaehler, A. [34]
Kalakrishnan, M. [253]
Kalman, R. [220]
Kanade, T. [14–19]
Kang, S. [194]
Kapuria, A. [78]
Karlsen, R. [165, 170]
Karmaker, A. [237]
Karumanchi, S. [192, 193]
Kavukcuoglu, K. [183]
Kedzier, D. [207]
Keirsey, D. [42, 44, 45]
Keller, J. [40]
Kelly, A. [55, 59, 60, 88, 94,

95, 155, 160, 246, 247]
Kim, D. [188, 189]
Kinney, P. M. [32]
Kirby, R. [129]
Kluge, K. C. [92]
Knepper, R. A. [246]
Koller, D. [234]
Kolter, J. Z. [254]
Konolige, K. [148]
Koutsougeras, C. [32]
Krotkov, E. [96, 123, 178]
Kuffner, J. [252]
Kumar, S. [236]
Kuo, L.-C. [130]
Kushleyev, A. [40]
Kwek, S. [237]

Lacaze, A. [63, 66–71]
Lacoste-Julien, S. [233]
Lacroix, S. [106]
Lalonde, J.-F. [79]
Langer, D. [53, 54]

Langford, J. [226]
LeCun, Y. [158, 183, 215]
Lee, D. [40, 182]
Lee, S. J. [245]
Leger, P. C. [118, 119]
Legowik, S. [64–67, 69]
Leonard, J. [39]
Lewis, D. [273]
Lieb, D. [179]
Lin, E. [103]
Lindner, F. [26]
Litwin, T. [72, 114]
Lodha, S. K. [166]
Long, D. [113]
Lookingbill, A. [179]
Lu, C.-H. [130]

Macedo, J. [74, 83]
Macek, K. [201]
MacLachlan, R. [29]
MacQueen, J. [278]
Madhavan, R. [132]
Maimone, M. [116–122]
Mallet, A. [106]
Mandelbaum, R. [88, 89, 94]
Manduchi, R. [73–77, 166]
Markou, M. [263, 264]
Marra, M. [159]
Marsland, S. [266]
Mason, L. [235]
Mathis, D. [159]
Matthies, L. [49–51, 72–77,

83, 85–87, 90, 91, 93, 114,
117, 121, 156, 160, 163,
174, 185, 191]

Maure, M. [20]
McBride, B. [96]
McCallum, A. [258]
McHenry, M. [85]
Mehta, T. [176]
Mertz, C. [29, 240]
Messina, E. [69, 132]
Mettala, E. [48]
Michels, J. [203]
Michie, D. [207]

Miller, I. [41]
Mishkin, A. [115]
Mitchell, J. [45–47]
Mjolsness, E. [174]
Moghadam, P. [184]
Molino, V. [132]
Montemerlo, M. [30, 37, 175]
Moore, C. [167]
Moravec, H. [11, 12, 14]
Morgenthaler, M. K. [92]
Morris, A. [5]
Morrison, J. [115, 120]
Moscovitz, Y. [63]
Muller, N. [21]
Muller, U. [158, 183, 215]
Mulligan, J. [186, 187]
Munkeby, S. H. [61]
Munoz, D. [81]
Murphy, K. [63, 66–69]
Murphy, L. [277]
Murphy, R. [145]
Mutschler, E. [4]

Nabbe, B. [236]
Nagel, J. [32]
Nagy, B. [150]
Nashman, M. [64]
Nehmzow, U. [265, 266]
Neto, H. [265]
Newman, P. [277]
Ng, A. Y. [199, 203, 222, 223,

241–243, 254]
Nguyen, T. [115]
Niekum, S. [110]
Ning, X. [144]
Noll, E. [145]

Obermayer, K. [250]
Oh, S. M. [188, 189]
Ojeda, L. [170]
Olin, D. [42]
Olin, K. [43]
Ollis, M. [171–173, 177]
Omohundro, Z. [5]
Opper, M. [274]

180

BIBLIOGRAPHY BIBLIOGRAPHY

Owens, K. [72, 73, 75]

Pack Kaelbling, L. [202]
Papadimitriou, C. [46]
Pastor, P. [253]
Payton, D. [42, 44, 45]
Pedersen, J. [94]
Peric, N. [201]
Perona, P. [163, 191]
Perschbacher, M. [96, 178]
Peterson, K. [240]
Petrovic, I. [201]
Pilarski, T. [101]
Pippin, C. [216]
Pippine, J. [96, 178]
Pivtoraiko, M. [246]
Pomerleau, D. [23, 24, 157]
Popovic, Z. [245]
Powers, M. [176]
Price, D. [113]
Procopio, M. [187]
Puetzold, F. [26]
Pullan, D. [113]

Quigley, M. [199]

Ragusa, C. [31]
Rander, P. [84, 88, 89, 94]
Rankin, A. [73, 76, 86, 87, 91,

93, 126, 127]
Rasmussen, C. [161]
Ratliff, E. L. [104]
Ratliff, N. [10, 224–228, 240]
Raviv, D. [22]
Ray, D. [31]
Rehg, J. [176, 188, 189]
Reiser, K. [42]
Rieder, A. [89]
Rimey, R. D. [61]
Ringger, E. K. [260]
Roberts, J. [2]
Roberts, R. [216]
Rosenblatt, J. [42, 44, 53, 54,

56, 146]
Roth, D. [256]
Rumelhart, D. [151]

Russell, S. [222]
Rye, D. [154]

Sadhukhan, D. [167]
Salgian, G. [89, 94]
Sammut, C. [207–209, 281]
Satterfield, B. [40]
Saxena, A. [203]
Schaal, S. [204, 205, 253]
Schapire, R. E. [249]
Scheding, S. [192, 193]
Schempf, H. [4]
Scherer, S. [217, 218]
Schiehlen, J. [20]
Schmiedel, G. [33]
Schwehr, K. [124]
Scoffier, M. [183, 215]
Seppi, K. D. [260]
Seraji, H. [134–136, 138–141,

210]
Sermanet, P. [183, 215]
Settles, B. [257, 259]
Seung, H. [274, 275]
Shackleford, W. [180, 181]
Shafer, S. [17–19]
Shamir, E. [275]
Shapiro, J. [266]
Shaw, A. [113]
Sheh, R. [209, 281]
Shibly, H. [194]
Shihuang, S. [144]
Shirazi, G. [208]
Shirkhodaie, A. [147]
Shneier, M. [69, 180, 181]
Shoemaker, C. [62]
Sibley, G. [191]
Silver, D. [5, 10, 102, 105,

226, 229–232]
Simmons, R. [123–125, 129]
Singer, P. [9]
Singer, Y. [249]
Singh, S. [124, 217, 218, 263,

264]
Skoptsov, G. [4]
Small, K. [256]

Smart, W. D. [202]
Smith, T. [110, 124]
Sofman, B. [102–105, 269]
Sola, J. [148]
Sompolinsky, H. [274]
Southall, B. [89]
Spletzer, J. [40]
Spofford, J. R. [61]
Srinivasa, S. [227, 240]
Stager, D. [100, 101]
Stancil, B. A. [173]
Stavens, D. [34, 190]
Stein, A. [117]
Stentz, A. [14, 52, 55, 57, 58,

60, 84, 88, 89, 94, 95,
101–105, 107, 108, 124,
126, 127, 149, 150, 160,
195–197, 211, 229–232,
239, 269, 270]

Stewart, A. [40]
Stolle, M. [213]
Stone, H. [115]
Sukhatme, G. [128]
Sullivan, C. [178]
Sun, J. [176, 188]
Sundaresan, A. [148]
Suppe, A. [28, 29]
Sutton, R. [198]

Talukder, A. [75–77]
Tang, B. [174, 185]
Tappeiner, H. [213]
Taskar, B. [182, 233, 234]
Teller, S. [39]
Thayer, S. [5, 84]
Thomanek, F. [20]
Thompson, D. R. [8, 110–112,

268]
Thorpe, C. [14, 16–19, 27–29,

52, 56, 143]
Thrun, S. [30, 34, 175, 179,

190, 243]
Tishby, N. [275]
Tompkins, P. [107, 108]
Trepagnier, P. G. [32]

181

BIBLIOGRAPHY BIBLIOGRAPHY

Tseng, D. [42, 43]
Tsochantaridis, I. [248]
Tunstel, E. [137, 140]
Turmon, M. [174, 185]

Urmson, C. [31, 36, 125]

van den Heuvel, J. [162]
van der Mark, W. [162]
Vandapel, N. [78–81, 97–99,

103–105]
Veloso, M. [206, 214, 261]
Verma, V. [124]
Vernaza, P. [40, 182]
Vezhnevets, A. [238]
Vicks, T. [147]
Villalpando, C. [117]

Vollmer, C. [244]
Volpe, R. [114]
Vradis, G. [4]

Wallace, R. [14]
Wang, C.-C. [28, 29]
Wellington, C. [195–197]
Weng, J. [212]
Werger, B. [141, 210]
Wettergreen, D. [6, 7, 107,

108, 110, 112]
Whittaker, W. [5]
Whittaker, W. L. [5, 14, 16]
Wijesoma, W. [184]
Wilcox, B. [114, 115]
Williams, R. [151, 198]
Willson, R. [117]

Witus, G. [165, 170]
Wohler, C. [26]
Wong, V. [42]
Wooden, D. [176]
Woods, M. [113]

Xizhou, F. [144]

Yahja, A. [124]
Ye, C. [131]
Yeh, Y.-J. [130]

Zelinsky, A. [7, 200]
Zhao, L. [27]
Ziebart, B. [240]
Zinkevich, M. [224, 228]
Zucker, M. [252, 255]

182

	Introduction
	Mobile Robotic Systems
	Real World Challenges of Robotic Systems
	Real World Requirements of Autonomous Systems

	Related Work in Autonomous Mobile Robotic Systems
	Mobile Systems in Semi-Structured Environments
	Mobile Systems in Unstructured Environments
	Recent Trends in Mobile Robotic Systems

	Behavioral Preference Models in Mobile Robotic Systems
	Continuous Preferences over Behaviors
	Manually Constructing Behavioral Preference Models
	Problem Statement

	Automating Construction of Preference Models
	Expert Supervised Learning and Classification
	Self-Supervised Learning from Experience
	Supervision through Explicit Reinforcement
	Supervision through Expert Demonstration

	Learning Terrain Preferences from Expert Demonstration
	Constrained Optimization from Expert Demonstration
	Extension to Dynamic and Unknown Environments
	Imperfect and Inconsistent Demonstration
	Application to Mobile Robotic Systems
	Experimental Results

	Learning Action Preferences from Expert Demonstration
	Extending LEARCH to State-Action Pairs
	Learning Planner Preference Models
	Application To Mobile Robotic Systems
	Experimental Results

	Stable, Consistent, and Efficient Learning from Expert Demonstration
	Different Forms of Expert Demonstration and Feedback
	Active Learning for Example Selection
	Experimental Results

	Conclusion
	Contributions
	Future Work

	Acknowledgements
	Bibliography

