
Interactive Learning for Sequential
Decisions and Predictions

Stéphane Ross

CMU-RI-TR-13-24

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy in Robotics.

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

June 2013

Thesis Committee
J. Andrew Bagnell, Chair

Geoffrey J. Gordon
Christopher G. Atkeson

John Langford, Microsoft Research

c© Stéphane Ross 2013
All rights reserved

i

Abstract

Sequential prediction problems arise commonly in many areas of robotics and
information processing: e.g., predicting a sequence of actions over time to achieve a
goal in a control task, interpreting an image through a sequence of local image patch
classifications, or translating speech to text through an iterative decoding procedure.

Learning predictors that can reliably perform such sequential tasks is challeng-
ing. Specifically, as predictions influence future inputs in the sequence, the data-
generation process and executed predictor are inextricably intertwined. This can
often lead to a significant mismatch between the distribution of examples observed
during training (induced by the predictor used to generate training instances) and
test executions (induced by the learned predictor). As a result, naively applying
standard supervised learning methods – that assume independently and identically
distributed training and test examples – often leads to poor test performance and
compounding errors: inaccurate predictions lead to untrained situations where more
errors are inevitable.

This thesis proposes general iterative learning procedures that leverage interac-
tions between the learner and teacher to provably learn good predictors for sequential
prediction tasks. Through repeated interactions, our approaches can efficiently learn
predictors that are robust to their own errors and predict accurately during test ex-
ecutions. Our main approach uses existing no-regret online learning methods to
provide strong generalization guarantees on test performance.

We demonstrate how to apply our main approach in various sequential prediction
settings: imitation learning, model-free reinforcement learning, system identification,
structured prediction and submodular list predictions. Its efficiency and wide appli-
cability are exhibited over a large variety of challenging learning tasks, ranging from
learning video game playing agents from human players and accurate dynamic mod-
els of a simulated helicopter for controller synthesis, to learning predictors for scene
understanding in computer vision, news recommendation and document summariza-
tion. We also demonstrate the applicability of our technique on a real robot, using
pilot demonstrations to train an autonomous quadrotor to avoid trees seen through
its onboard camera (monocular vision) when flying at low-altitude in natural forest
environments.

Our results throughout show that unlike typical supervised learning tasks where
examples of good behavior are sufficient to learn good predictors, interaction is a
fundamental part of learning in sequential tasks. We show formally that some level of
interaction is necessary, as without interaction, no learning algorithm can guarantee
good performance in general.

iii

For my wife, Sandra

v

Acknowledgements
Throughout my graduate studies, I had the privilege to work with extraordinary

people who have supported and helped me along this journey.
First and foremost, I am very thankful to my advisor, Drew Bagnell, who has

pointed me toward great research problems, provided countless insightful discussions
and thoughts, and has been very helpful throughout the development of this research.
He has been a great advisor, more than I could ever hope for, and for that, I am forever
grateful.

I would also like to thank the members of my thesis committee, Geoffrey J. Gor-
don, Christopher G. Atkeson, and John Langford, who have provided helpful discussion,
comments and insights on this research at various stage of its development. In addition,
many thanks to John Langford for giving me the opportunity to intern at Microsoft
Research, and collaborate closely with him on very important and interesting research
problems. Working with him has been a pleasure and a great privilege.

I am also grateful to my previous research advisors, Brahim Chaib-draa, my under-
graduate research advisor at Laval University, and Joelle Pineau, my Master’s thesis
advisor at McGill University. They have contributed greatly to my interest for research
in artificial intelligence and machine learning, and supported me toward pursuing a PhD.

I had the chance to collaborate with great colleagues and students who have provided
invaluable help on many of the applications of my research. First, I would like to thank
Daniel Munoz and Martial Hebert, for their collaboration on the application of this work
to computer vision applications (Chapter 6). Daniel contributed to some of the ideas,
provided me with easy to use datasets, code and helped run part of the experiments. I
also thank Yucheng Low for providing me with his code for the kart racing game exper-
iments (Section 5.1). I would also like to thank Jiaji Zhou, Yisong Yue and Debadeepta
Dey for collaborating with me for applications of this research on list optimization tasks
(Chapter 7): News Recommendation (Yisong Yue), Document Summarization (Jiaji
Zhou), Trajectory Optimization and Grasps Selection tasks (Debadeepta Dey). They
also provided help and insightful discussions throughout the development of the research
related to these applications. Additionally, I would like to thank all the people who
collaborated with me on the BIRD project (autonomous quadrotor, Section 5.3): Narek
Melik-Barkhudarov, Kumar Shaurya Shankar, Andreas Wendel, Debadeepta Dey and
Martial Hebert. Several of these members contributed extensively to the code and have
taken part in the countless field tests. This project was a great team effort and would not
have been a success without the significant contribution of each member. In addition,
Martial Hebert and Drew Bagnell provided great supervision and practical insights to
lead this project to a success.

My journey through graduate school would not have been as much of a pleasure with-
out all the great students and friends I interacted with throughout the years. My initial
roommates, David Silver and Michael Furlong, who have welcomed me in Pittsburgh, in-
troduced me to many of my friends and showed me the great things to do in Pittsburgh.
My officemates, Daniel Munoz, Edward Hsiao, Scott Satkin, Yuandong Tian and Carl
Doersh. All the members of the LairLab, throughout the years: Nathan Ratliff, Brian
Ziebart, David Bradley, Boris Sofman, Andrew Maas, Daniel Munoz, Alex Grubb, Kevin
Waugh, Kris Kitani, Paul Vernaza, Debadeepta Dey, Tommy Liu, Shervin Javdani, Ku-

vi

mar Shaurya Shankar, Jiaji Zhou, Arun Venkatraman and Nicholas Rhinehart, who
have provided feedback on my work, presentations and entertaining discussions during
our regular lab meetings. A very special thanks to all my friends who provided a contin-
uous source of entertainment throughout the years: Daniel Munoz, David Silver, Michael
Furlong, Nathan Wood, Edward Hsiao, Scott Satkin, Alex Grubb, Kevin Waugh, Felix
Duvallet, Krzysztof Skonieczny, Scott Moreland, Eric Whitman, Alex Styler, Nathan
Brooks, Matthew Swanson and Ryan Waliany.

Many thanks as well to my close friends back home, who have kept in touch with
me and supported me throughout the years: Alexandre Bérubé, Sylvain Filteau, Math-
ieu Audet, Isabelle Lechasseur, Chloé Poulin, Jonathan Moore, Julien Demers, Maude
Richer, Fannie Nadeau, Simon Johnson-Bégin.

To my parents, Sylvianne Drolet and Danny Ross, I am forever indebted to you and
very thankful for giving me all your support, the education and life experience that made
me who I am today.

Last but not least, a very special thank you to my wife-to-be, Sandra Champagne,
who made countless sacrifice and endured a long-distance relationship until she could
move with me to Pittsburgh, loved me unconditionally through the years, supported me
through the ups and downs, and has filled my life with joy and happiness.

Contents

1 Introduction 3
1.1 Motivation and Examples . 7
1.2 Categorization of Learning Tasks . 9
1.3 The Challenge of Learning Sequential Predictions 11
1.4 Leveraging Interaction for Efficient and Robust Learning 15
1.5 Related Approaches . 17
1.6 Learning and Interaction Complexity of Sequential Predictions 20
1.7 Applications . 21
1.8 Contributions . 23

2 Background 27
2.1 Data-Driven Learning Methods: Algorithms and Theory 27
2.2 Reductions between Learning Tasks . 34
2.3 Formal Models of Sequential and Decision Processes 38

3 Learning Behavior from Demonstrations 45
3.1 Preliminaries . 45
3.2 Problem Formulation and Notation . 49
3.3 Supervised Learning Approach . 51
3.4 Iterative Forward Training Approach . 56
3.5 Stochastic Mixing Training . 63
3.6 Dataset Aggregation: Iterative Interactive Learning Approach 67

4 Learning Behavior using Cost Information 81
4.1 Forward Training with Cost-to-Go . 82
4.2 DAGGER with Cost-to-Go . 88
4.3 Reinforcement Learning via DAGGER with Learner’s Cost-to-Go 93
4.4 Discussion . 96

5 Experimental Study of Learning from Demonstrations Techniques 97
5.1 Super Tux Kart : Learning Driving Behavior 97
5.2 Super Mario Bros. 99
5.3 Robotic Case Study: Learning Obstacle Avoidance for Autonomous Flight 103

6 Learning Inference for Structured Prediction 119
6.1 Preliminaries . 120
6.2 Inference Machines . 128

viii CONTENTS

6.3 Learning Inference Machines . 133
6.4 Case Studies in Computer Vision and Perception 140

7 Learning Submodular Sequence Predictions 151
7.1 Preliminaries . 153
7.2 Context-free List Optimization . 157
7.3 Contextual List Optimization with Stationary Policies 161
7.4 Case Studies . 165

8 Learning Dynamic Models for Good Control Performance 173
8.1 Preliminaries . 174
8.2 Problem Formulation and Notation . 178
8.3 Batch Off-policy Learning Approach . 179
8.4 Interactive Learning Approach . 183
8.5 Optimistic Exploration for Realizable Settings 191
8.6 Experiments . 196

9 Stability as a Sufficient Condition for Data Aggregation 207
9.1 Online Stability . 208
9.2 Online Stability is Sufficient for Batch Learners 209
9.3 Discussion . 210

10 The Complexity of Learning Sequential Predictions 211
10.1 Interaction Complexity . 212
10.2 Preliminaries: The Hard MDP . 214
10.3 Inevitability of Poor Guarantees for Non-Iterative Methods 215
10.4 Linear Dependency of the Interaction Complexity on the Task Horizon . . 217

11 Conclusion 223
11.1 Open Problems and Future Directions . 225

Appendices 231

A Analysis of Dagger for Imitation Learning 233
A.1 Dagger with Imitation Loss . 233
A.2 Dagger with Cost-to-Go . 240
A.3 DAGGER with Learner’s Cost-to-Go . 245

B Analysis of SCP for Submodular Optimization 249

C Analysis of Batch and DAGGER for System Identification 257
C.1 Relating Performance to Error in Model 257
C.2 Relating L1 distance to observable losses 259
C.3 Analysis of the Batch Algorithm . 262
C.4 Analysis of the DAGGER Algorithm . 266

Bibliography 279

List of Figures

1.1 Mismatch between the distribution of training and test inputs in a driving
scenario. 4

1.2 Mismatch between the distribution of training and test inputs in a helicopter
scenario. A human pilot flies the helicopter to follow a desired trajectory
to collect data. When planning with the learned dynamic model to follow
the desired trajectory, the helicopter slowly diverges off the trajectory and
encounters rarely trained situations where its dynamic model is bad, leading
to poor behavior from the planner. 8

1.3 Depiction of the inference or decoding process of structured prediction meth-
ods in the context of image labeling. Effectively, a sequence of predictions
are made at each pixel/image segments over the image, using local image
features, and previous computations/predictions at nearby pixels/image seg-
ments. This is often iterated many times over the images until predictions
“converge”. 9

1.4 Categorization of various learning tasks. 9

1.5 Example of learning with a low complexity hypothesis in a realizable setting.
Target function is a linear function. No matter where we sample data, fitting
a linear function leads to roughly the same hypothesis, and obtains a good
fit of the entire function. 13

1.6 Example of learning with a high complexity hypothesis in a realizable setting.
Target function is a 10 degree polynomial. Fitting a 10 degree curve to slightly
noisy data (white noise with 0.01 standard deviation) leads to a good fit only
in the sampled region. Similarly a non-parametric locally weighted linear
regression method only gets a good fit in the sampled region. 14

1.7 Example of learning with a low complexity hypothesis in a non-realizable
setting. Target function is a quadratic. Fitting a linear function leads to
significantly different hypothesis depending on the region where samples are
concentrated. Good local fit can be obtained, but sampling uniformly does
not lead to a good global fit. 15

1.8 Depiction of the DAGGER procedure in a driving scenario. 17

1.9 Imitation Learning Applications. (Left) Learning to drive in Super Tux Kart,
(Center) Learning to play Super Mario Bros, (Right) Learning Obstacle-
Avoidance for Flying through Natural Forest. 21

1.10 Structured Prediction Applications in Computer Vision. (Left) Parsing 3D
Point Cloud from LIDAR Sensors, (Right) Estimating 3D geometry of 2D
images. 22

x LIST OF FIGURES

3.1 Depiction of a typical supervised learning approach to imitation learning in a
driving scenario. Initially, the expert demonstrates the desired driving behav-
ior (top left). Input observations (camera image) and desired output actions
(steering) are recorded in a dataset (top right) during the demonstration. A
supervised learning algorithm is applied to fit a policy (bottom right), e.g.
linear regression of the camera image features to steering angle. The learned
policy is then used to drive the car autonomously (bottom left). 47

3.2 Generalization of the expert’s behavior by Inverse Optimal Control methods
(images from Ratliff et al. (2006)). The expert demonstrates to follow the road
between the start and goal location on an overhead satelite image (left). A
cost function is learned from local image features that explains this behavior.
The cost function is applied to a new test image (middle) (black = low cost,
white = high cost). Planning with the learned cost function predicts to follow
the road to the goal location on the test image (right). 48

3.3 Example MDP where the supervised learning approach can lead to poor per-
formance. There are 3 states (s0, s1, s2) and 2 actions (a1, a2), and arrows
represent the deterministic transitions. 54

3.4 Diagram of the DAGGER algorithm for imitation learning. 68

3.5 Depiction of the DAGGER procedure for imitation learning in a driving sce-
nario. 69

3.6 Diagram of the DAGGER algorithm with a general online learner for imita-
tion learning. 69

5.1 Image from Super Tux Kart’s Star Track. 98

5.2 Average falls/lap as a function of training data. 99

5.3 Captured image from Super Mario Bros. 100

5.4 Average distance/level as a function of data. 102

5.5 Application of DAGGER for autonomous MAV flight through dense forest
areas. The system uses purely visual input from a single camera and imitates
human reactive control. 104

5.6 The Parrot ARDrone, a cheap commercial quadrotor. 104

5.7 One frame from MAV camera stream. The white line indicates the current
left-right velocity commanded by the drone’s current policy πn−1 while the
red line indicates the pilot’s commanded left-right velocity. In this frame
DAGGER is wrongly heading for the tree in the middle while the expert is
providing the correct yaw command to go to the right instead. These expert
controls are recorded for training later iterations but not executed in the
current run. 107

5.8 Left: Indoor setup in motion capture arena with fake plastic trees and cam-
ouflage in background. Right: The 11 obstacle arrangements used to train
DAGGER for every iteration in the motion capture arena. The star indicates
the goal location. 108

LIST OF FIGURES xi

5.9 Left: Improvement of trajectory by DAGGER over the iterations. The right-
most green trajectory is the pilot demonstration. The short trajectories in red
& orange show the controller learnt in the 1st and 2nd iterations respectively
that failed. The 3rd iteration controller successfully avoided both obstacles
and its trajectory is similar to the demonstrated trajectory. Right: Percent-
age of scenarios the pilot had to intervene and the imitation loss (average
squared error in controls of controller to human expert on hold-out data) af-
ter each iteration of DAGGER. After 3 iterations, there was no need for the
pilot to intervene and the UAV could successfully avoid all obstacles 109

5.10 Common failures over iterations. While the controller has problems with
tree trunks during the 1st iteration (left), this improves considerably towards
the 3rd iteration, where mainly foliage causes problems (middle). Over all
iterations, the most common failures are due to the narrow FOV of the camera
where some trees barely appear to one side of the camera or are just hidden
outside the view (right). When the UAV turns to avoid a visible tree a bit
farther away it collides with the tree to the side. 110

5.11 Percentage of failures of each type for DAGGER over the iterations of training
in the high-density region. Blue: Large Trees, Orange: Thin Trees, Yellow:
Leaves and Branches, Green: Other obstacles (poles, signs, etc.), Red: Too
Narrow FOV. Clearly, a majority of the crashes happen due to a too narrow
FOV and obstacles which are hard to perceive, such as branches and leaves. . 111

5.12 Average distance flown autonomously by the drone before a failure. Left:
Low-Density Region, Right: High-Density Region. 112

5.13 Example flight in dense forest. Images ordered from top (t = 0s) to bottom (t = 6.6s);

with color-coded commands issued by DAGGER (in MAV’s view). After avoiding tree A

(frame 3), drone still rolls strongly to the left (frame 4), in part due to latency. Then tree

B is avoided on the left (frame 5-7), rather than on the more intuitive right. Drone prefers

this due to the drift feature, as inertia is already pushing it further to the left. 114

5.14 Breakdown of the contribution of the different features for different control
prediction strengths, averaged over 9389 datapoints. Laws and Radon are
more significant in cases where small controls are performed (e.g. empty
scenes), whereas the structure tensor and optical flow are responsible for
strong controls (e.g. in cases where the scene contains an imminent obstacle).
A slight bias to the left can be seen, which is consistent to observations in
the field. Best viewed in color. 115

5.15 Visualization of the contribution of the different features to the predicted
control. The overall control was a hard left command. The arrows show the
contribution of a given feature at every window. Structure tensor features
have the largest contribution in this example, while Radon has the least. . . . 116

6.1 Example structured prediction application of image labeling. Images from
CamSeq01 dataset (Fauqueur et al., 2007). 120

xii LIST OF FIGURES

6.2 Graphical Model approach to Structured Prediction in the context of image
labeling. Pairwise potentials model dependencies between objects at neigh-
boring pixels and unary potentials model the likehood of an object present at
a pixel given the local image features. Inference, such as loopy belief propa-
gation, is performed to find an approximate minimum energy solution which
is returned as output. 121

6.3 Example predictions obtained by independently classifying each 3D point
independently in a LIDAR point cloud with a SVM, using only local features
of the point cloud. Red: Building, Green: Tree, Blue: Shrubbery, Gray:
Ground. Significant noise is present in the classifications and many points
in the building are incorrectly classified as tree. Image from Anguelov et al.
(2005). 125

6.4 Sequence of predictions made by Auto-Context on a test image (images from
Tu and Bai. (2009)). Left: Input image. Middle-Left: Predictions of the
1st predictor using only image features. Middle-Right: Predictions of the
3rd predictor, using image features and predictions of the 2nd predictor as
input. Right: Predictions of the 5th (final) predictor, using image features and
predictions of the 4th predictor as input. Predictions are shown in grayscale,
where black indicates probability 0 of horse and white indicates probability
1 of horse. 126

6.5 Depiction of how LBP unrolls into a sequence of predictions for 3 passes on
the graph on the left with 3 variables (A,B,C) and 3 factors (1,2,3); for the
case where LBP starts at A, followed by B and C (and alternating between
forward/backward order). Sequence of predictions on the right, where e.g.,
A1 denotes the prediction (message) of A sent to factor 1, while the output
(final marginals) are in gray and denoted by the corresponding variable letter.
Input arrows indicate the previous outputs that are used in the computation
of each message. 130

6.6 Depiction of the computations that the predictor represents in LBP for (a)
a message to a neighboring factor and (b) the final marginal of a variable
outputed by LBP. 131

6.7 Depiction of the inference machine in the context of image labeling. 132

6.8 Depiction of the DAGGER algorithm for Structured Prediction in the context
of an image labeling task. 138

6.9 Character accuracy as a function of iteration. 141

6.10 3D point cloud classification application. Each point is assigned to one of 5
object classes: Building (red), Ground (orange), Poles/Tree-Trunks (blue),
Vegetation (green), and Wire (cyan). 142

6.11 Average test error as a function of pass for each message-passing method on
the 3D classification task. 145

6.12 Estimated 3D point cloud labels with M3N-F (top left), M3N-P (top right),
MFIM (bottom left), Ground truth (bottom right). 146

6.13 3D Geometry estimation application. Each superpixel is assigned to one of
7 classes: sky, ground, left-perspective, right-perspective, center-perspective,
solid or porous. 147

LIST OF FIGURES xiii

6.14 Estimated 3D geometric surface layouts on a city scene with M3N-F (top
left), Hoiem et al. (2007) (top right), BPIM-D (bottom left), Ground truth
(bottom right). 148

6.15 Estimated 3D geometric surface layouts on a street scene with M3N-F (top
left), Hoiem et al. (2007) (top right), BPIM-D (bottom left), Ground truth
(bottom right). 149

7.1 Example Recommendation Applications. Left: Ad placement, where we want
to display a small list of ads the user is likely going to click on. Center: News
Recommendation, where we want to display a small list of news article likely
to interest the user. Right: Grasp Selection, where we want to select a small
list of grasps likely to succeed at picking an object. 152

7.2 Depiction of an ordering selected in the Grasp Selection Task 166

7.3 Average depth of the list searched before finding a successful grasps. SCP
performs better at low data availability but eventually ConSeqOpt performs
better as it can order grasps better by using different distributions at each
position in the list. 168

7.4 Depiction of the Trajectory Optimization Application. A list of initial seed
trajectories is suggested to a local optimization procedure (CHOMP). CHOMP
tries to locally optimize the current seed trajectory, and if stuck at a local
minima in collision, restarts with the next seed trajectory in the list, until it
obtains a local minima that is collision-free. 168

7.5 Probability of failure of each method on the test environments. SCP per-
forms better at even low data availability while ConSeqOpt suffers from data
starvation issues. 169

7.6 Probability of no click on the test users on the news recommendation task.
With increase in slots SCP predicts news articles which have lower probability
of the user not clicking on any of them compared to ConSeqOpt 170

7.7 Rouge-1R scores on the test documents with respect to the size of training
data. 172

8.1 Depiction of the DAGGER algorithm for System Identification in the context
of helicopter control. 184

8.2 Depiction of the swing-up task. First 10 frames at 0.5s intervals of a near-
optimal controller. Top Left: Initial State at 0s. Following frames in top row
at 0.5s intervals from left to right, then continued from left to right in the
bottom row. Bottom Right: Frame at 4.5s illustrates the inverted position
that must be maintained until the end of the 10s trajectory. 197

8.3 Average total cost on test trajectories at the swing-up task as a function of
data collected so far. 199

8.4 Average total cost on test trajectories as a function of data collected so far,
averaged over 20 repetitions of the experiments, each starting with a different
random seed (all approaches use the same 20 seeds) From top to bottom:
hover with no delay, hover with delay of 1, nose-in funnel. Dt, De and Den

denotes DAGGER using exploration distribution νt, νe and νen respectively,
similarly Bt, Be and Ben for the Batch algorithm, A for Abbeel’s algorithm,
and L for the linearized model’s optimal controller. 204

xiv LIST OF FIGURES

8.5 Average total cost on test trajectories as a function of data collected so far,
averaged over 20 repetitions of the experiments, each starting with a differ-
ent random seed (all approaches use the same 20 seeds) From top to bottom:
hover with no delay, hover with delay of 1, nose-in funnel. AbN denotes
Abbeel’s algorithm where the first N iterations collect data with the expert
(exploration distribution νe); Dag and B denotes DAGGER and Batch us-
ing exploration distribution νe respectively, and L for the linearized model’s
optimal controller. 205

10.1 Depiction of the Tree MDP. State represents the entire action sequence so
far, transitions are deterministic as represented by the arrows, and simply
appends the action to the current state. The initial state is the root. The
tree has branching factor A and extends to infinite depth. 214

List of Tables

6.1 Comparisons of test performance on the 3D point cloud dataset. 144
6.2 Comparisons of test performance on the 3D Geometry Estimation dataset. . 147

7.1 ROUGE unigram score on the DUC 2004 test documents. 172

Chapter 1

Introduction

One of the main goal of robotics and artificial intelligence is the development of au-

tonomous systems and software agents that can aid humans in their everyday tasks.

Programming such systems however, has proven to be a remarkably challenging and

time consuming task. Despite the many advances in planning and control for developing

advanced automated decision-making software, these methods rely on key pieces of infor-

mation that are often very hard to specify by humans. In particular, accurate dynamic

models of the world, that can correctly predict the long-term consequences of various

courses of actions, and a suitable cost function, that properly trades-off the desirability

or utility of various outcomes to the designer of the system. While this information can

often be easily provided for simple board games (e.g. chess), or simple robots operating

in very controlled environments (e.g. robot arm in a factory), it is a much harder task

for complex robotic systems deployed in uncontrolled environments (e.g. robot walking

outdoors or autonomous driving in an urban environment). Properly specifying all these

parameters to obtain the desired behavior of the system is often a very daunting task

of informed “guess-and-check” that can require hundreds or thousands of man hours

depending on the complexity of the system, and that often only leads to subpar perfor-

mance due to inaccurate and suboptimal specification of these parameters (Ratliff, 2009,

Silver, 2010).

While specifying all these parameters is a complex task for human engineers, the

desired behavior of the system is often clear and can often be easily demonstrated by

humans. For instance, humans can easily drive in urban environments, or walk-around

on various terrains. This motivates the use of data-driven machine learning approaches

that can effectively leverage such demonstrations of good behavior to optimize these

parameters or learn directly a controller that replicates the desired behavior.

Machine learning, in particular supervised learning, where predictors are learned

from examples of good behaviors/predictions, has already had a large impact in various

fields and applications. In fact, this has become the de facto method of choice behind

4 CHAPTER 1. INTRODUCTION

Expert trajectory

Learned Policy

No data on

how to recover

Figure 1.1: Mismatch between the distribution of training and test inputs in a driving
scenario.

many state-of-the-art software system that we use everyday. Systems based on super-

vised learning already translate our documents, recommend what we should read (Yue

and Guestrin, 2011), watch (Toscher et al., 2009) or buy, read our handwriting (Daumé

III et al., 2009) and filter spam from our emails (Weinberger et al., 2009), just to name a

few. Many subfields of artificial intelligence, such as natural language processing (the un-

derstanding of natural language by computers) and computer vision (the understanding

of visual input by computers), now deeply integrate machine learning.

Despite this widespread proliferation and success of machine learning in various fields

and applications, machine learning has had a much more limited success when applied

in control applications, e.g. learning to drive from demonstrations by human drivers.

One of the main reason behind this limited success is that control problems exhibit

fundamentally different issues that are not typically addressed by standard supervised

learning techniques.

In particular, much of the theory and algorithms for supervised learning are based on

the fundamental assumption that inputs/observations perceived by the predictor to make

its predictions are independent and always coming from the same underlying distribution

during both training and testing (Hastie et al., 2001). This ensures that after seeing

enough training examples, we will be able to predict well on new examples (at least

in expectation). However, this assumption is clearly violated in control tasks as these

are inherently dynamic and sequential : one must perform a sequence of actions over

time that have consequences on future inputs or observations of the system, to achieve a

goal or successfully perform the task. As predicting actions to execute influence future

inputs, this can lead to a large mismatch between the inputs observed under training

demonstrations, and those observed during test executions of the learned behavior. This

is illustrated schematically in Figure 1.1.

This problem has been observed in previous work. Pomerleau (1989), who trained a

5

neural network to drive a car at speed in on-road environments by mimicking a human

driver, notes that, “when driving for itself, the network may occasionally stray from the

center of the road and so must be prepared to recover by steering the vehicle back to the

center of the road.” Unfortunately, demonstration of such “recovery behavior” is rare

for good human drivers and thus is poorly represented in training data. That is, under

good driving behavior, most training examples consist in situations where the car is in

the center of the lane and at a fair distance to other vehicles. However, when the car is

driving by itself, it does not always behave perfectly, and encounters various situations

that were never or rarely encountered by the human driver, e.g. situations where it is

heading toward the side of the road, or is about to collide with other vehicles. The lack

of training demonstrations of what to do in these critical situations will often lead to

unacceptable driving performance and catastrophic failure.

In practice, this mismatch implies that naively applying supervised learning methods

to control problems can often lead to predictors that have high accuracy in situations

encountered during training demonstrations, but that fail miserably at performing the

task during their execution. As illustrated in the driving example, this generally occurs

because the learned predictors are not robust to the particular errors they make: a single

or a few inaccurate predictions can quickly lead to new untrained situations, where the

predictor is likely to keep predicting incorrectly. Effectively, there is a compounding

error effect, where slight errors can gradually lead to larger and/or more frequent errors.

This example can be considered as an instance of a sequential prediction problem,

where predictions in the sequence influence future inputs or observations. Such sequential

prediction problems also arise in many other settings, outside of control applications.

We present many other examples of such sequential prediction problems that arise in

different fields of machine learning and artificial intelligence in the next section and in

the chapters of this thesis.

This thesis focuses on developing new theory and practical learning algorithms that

can efficiently learn good predictors for these sequential tasks. We posit and demonstrate

that, in order to learn accurate predictors that are robust to their own errors during

sequential predictions, learning must be conducted actively, through interaction with the

sequential process and “teacher”. This is necessary for the learner in order to be able

to experience the future consequences of its predictions and gather additional training

examples under those sequences.

This thesis presents general learning approaches that leverage such interaction in or-

der to learn good and robust predictors for sequential prediction tasks. Our approaches

also specify what data to collect through interaction and how to combine data obtained

from multiple interactions to train good predictors. In particular, by leveraging exist-

ing online learning algorithms with strong “no-regret” guarantees, to learn from these

6 CHAPTER 1. INTRODUCTION

interactions, our methods can guarantee learning good predictors for sequential tasks.

We demonstrate how to apply these methods in various sequential prediction settings,

from control problems to general structured prediction problems that arise commonly

in computer vision and natural language processing, as well as recommendation tasks

where sequences of relevant and diversified items must be predicted.

In each of these settings, we provide a complete theoretical analysis of our methods,

showing strong performance guarantees and data efficiency (low sample complexity). We

also validate our methods empirically, and demonstrate state-of-the-art performance in

various important and challenging learning tasks, ranging from learning video game play-

ing agents from human players and accurate dynamic models of a simulated helicopter

for controller synthesis, to learning predictors for scene understanding in computer vi-

sion, news recommendation and document summarization. We also demonstrate the

applicability of our main technique on a real robot, using pilot demonstrations to train

an autonomous quadrotor to avoid trees seen through its onboard camera (monocular

vision) when flying at low-altitude in natural forest environments.

On the more philosophical side, we also show that at a fundamental level, interaction

is necessary for learning in these sequential settings. Unlike supervised learning, learning

only from observing examples of good behavior is not sufficient. In particular, it is shown

that any non interactive learning algorithm cannot provide good guarantees in general

and may always learn predictors that are not robust to their own errors. We present a

tight theoretical lower bound on the minimum number of rounds of interactions required

that is achieved (within a constant factor) by one of the algorithm presented in Chapter

3. Our lower bound demonstrates that the number of rounds must inevitably scale

linearly with the length of the sequential prediction problems (task horizon).

Thesis Statement

We now make the main statement of this thesis:

Learning actively through interaction is necessary to obtain good

and robust predictors for sequential prediction tasks. No-regret

online learning methods provide a useful class of algorithms to learn

efficiently from these interactions, and provide good performance

both theoretically and empirically.

We validate this claim by 1) presenting detailed theoretical analysis of non-interactive

learning procedures and active interactive learning procedures, based on online learning

methods, in various sequential prediction settings and showing improved guarantees; 2)

proving formally that no learning algorithm can provide good guarantees without some

minimum number of interactions; and 3) empirically comparing performance in a large

1.1. MOTIVATION AND EXAMPLES 7

variety of applications, demonstrating the benefits of the interactive online learning based

approach.

1.1 Motivation and Examples

We now present a few more motivating examples of important learning tasks that in-

volve sequential predictions and exhibit the same fundamental issues of data mismatch

discussed previously.

The first example we discussed previously were control tasks where control behavior

is learned directly from expert demonstrations. This general problem is called imitation

learning, and has been applied successfully on a number of robots, from robots that

can juggle (Atkeson, 1994), to outdoor navigation for autonomous vehicles (Silver et al.,

2008) and rough terrain locomotion of quadruped robots (Ratliff et al., 2007a).

Another example of sequential prediction task in control is system identification –

attempting to learn dynamic models of the world for planners (Ljung, 1999). As most

modern robots rely on planning algorithms for decision-making, learning accurate models

for planning is often a crucial step to obtain systems that behave properly. Here the

sequential nature of the problem is two-fold. Not only does the task involve executing

a sequence of good actions, but planning at each step, also involves predicting future

sequences of states that can occur under various courses of actions, to choose the best

action to perform immediately. Again here, because the actions chosen and executed

by the planner influence the future states of the system, we can suffer from a similar

data mismatch issue. For instance, imagine learning a dynamic model of an helicopter

in flight by recording how it moves while being flown by a pilot, as depicted in Figure

1.2. While we may obtain an accurate model of the behavior of the helicopter under

various controls in typical flight conditions visited by the pilot, the model may fail to be

accurate in rarely observed conditions. During autonomous flight, if the planner chooses

a particular course of action where it encounters those rare conditions, as the model fails

to capture the proper behavior of the system, it will likely choose bad actions that fail

to perform the task.

Outside of control, many problems that arise in computer vision and natural language

processing are structured prediction problems that can exhibit this same fundamental

issue. Consider the problem of scene understanding in computer vision – extracting

a high-level understanding of the world around the robot from visual sensors such as

cameras or LIDAR – which is a critical component of many robotic systems. Current

state-of-the-art methods for such structured prediction tasks employ an inference or de-

coding process that performs a sequence of interdependent predictions to produce the

output (Daumé III et al., 2009, Munoz et al., 2009, 2010) (see Figure 1.3). In this scene

8 CHAPTER 1. INTRODUCTION

Exploration

distribution 
to collect data Distribution induced

by current policy 

Desired Trajectory

Figure 1.2: Mismatch between the distribution of training and test inputs in a helicopter
scenario. A human pilot flies the helicopter to follow a desired trajectory to collect data.
When planning with the learned dynamic model to follow the desired trajectory, the
helicopter slowly diverges off the trajectory and encounters rarely trained situations
where its dynamic model is bad, leading to poor behavior from the planner.

understanding task, it effectively performs local predictions of what is present at each

location in the image iteratively, based on local image features, and contextual informa-

tion of what has been predicted nearby. Because this contextual information depends

on previous predictions, learning a predictor to perform this decoding exhibit the same

issue. That is, predictions change future inputs to the predictor during this decoding

process, and can thus lead to a significant discrepancy between the training examples,

and inputs encountered during decoding of new test images with the learned predictor.

For instance, if we naively train a predictor with error-free contextual information during

training, then at test time, a single error during decoding could quickly propagate into

a series of errors, as the predictor may have learned to rely heavily on its contextual

information to be accurate.

Another example arises in the context of predicting a set or sequence of relevant and

diversified recommendations or items (Yue and Guestrin, 2011, Dey et al., 2012a). For

example, consider the problem of suggesting a small list of candidate grasps that is likely

to contain a successful one for grasping an observed object with a robotic manipulator.

In this context, we want to predict grasps that are relevant, i.e. likely to succeed, but that

are also diverse, so that we avoid trying similar grasps to previous ones that failed (as

they would also be likely to fail). To do so, it is natural to consider learning a predictor

that uses information from previously predicted grasps as input in order to suggest the

next best grasp while avoiding picking one that is similar previous failures. Again here,

this lead to a setting where previous predictions influence future inputs to the predictor

and can lead to significant mismatch between the training and test examples.

1.2. CATEGORIZATION OF LEARNING TASKS 9

Iterate many *mes over graph:

Neighbors’

predic*ons

Features

Predictor

Figure 1.3: Depiction of the inference or decoding process of structured prediction meth-
ods in the context of image labeling. Effectively, a sequence of predictions are made at
each pixel/image segments over the image, using local image features, and previous
computations/predictions at nearby pixels/image segments. This is often iterated many
times over the images until predictions “converge”.

Learning Task

Non‐Sequen2al Sequen2al

Sta2onary Non‐Sta2onary

Uncontrolled Controlled

Figure 1.4: Categorization of various learning tasks.

1.2 Categorization of Learning Tasks

Having shown multiple examples of sequential prediction tasks, we now provide a cate-

gorization of learning tasks, based on some important properties, to define properly the

particular problem class of interest in this thesis.

This categorization is shown in Figure 1.4. We first distinguish between learning

tasks that are non-sequential vs. sequential. By sequential, we simply mean that to

complete the task, multiple predictions must be performed. A non-sequential task can

be a typical supervised learning task, where e.g. we want to classify emails as spam or

non-spam; a single prediction is made given features of the email’s content to perform the

task, and moreover, that prediction is assumed to have no influence on future predictions

that will be performed.

Among sequential tasks involving multiple predictions, we distinguish between tasks

10 CHAPTER 1. INTRODUCTION

where the input distribution is stationary vs. non-stationary. Stationary implies that

at any point in the sequence of predictions, the distribution of inputs is the same. Ex-

amples of such task may include decoding a handwritten text, where each handwritten

character is decoded individually, only based on the character image, and in random

order. To decode the entire text, a sequence of predictions must be performed, but

for each prediction, we would expect to see the same distribution of input handwritten

characters. Despite these tasks being sequential, they are not of particular interest in

this thesis, as they can simply be considered as a regular supervised learning task of

predicting individual characters.

Non-stationary tasks on the other hand, are tasks where the input distribution can

vary along the sequence. We again distinguish between two cases: uncontrolled vs.

controlled. Here we use the term controlled in a loose sense, and simply to denote that

inputs depend or may be influenced by past predictions in the sequence. A good example

of an uncontrolled non-stationary sequential prediction task is weather forecast. Suppose

we want to predict tomorrow’s weather as we observe the weather each day over time,

using as input, features of the observed weather today and in previous days. We would

expect the distribution of inputs to vary over time, e.g. due to seasonal cycles, and

because there is a time-dependency in weather (good or bad weather tend to continue

over time). However, the predictions we make about tomorrow’s weather does not change

or influence future weather (or its distribution) and hence would not change future inputs

to the predictor. Hence the evolution of the sequence of inputs is uncontrolled. While the

non-stationarity of the sequence can lead to some train-test mismatch issues if training

improperly (e.g. training only on examples of summer weather, to then forecast winter

weather), this is again not the particular type of tasks we are interested in this thesis.

However, many of the ideas we present could be applied and often simplified to handle

these scenarios.

The focus of this thesis is on the latter type of sequential tasks, that are non-

stationary and controlled. All the examples we provided in the previous sections fit

into this category, as either part of the input features depend directly on previous pre-

dictions, or are a consequence of previous predictions (e.g. previous actions that lead to

observations in a particular location in the environment). The data mismatch issue we

discussed earlier is particularly prominent in this scenario. Non-sequential and station-

ary tasks do not have to deal with this issue, and even uncontrolled non-stationary tasks

can sometimes avoid this issue (e.g if we can train on repeated realizations of the non-

stationary sequence). On the other hand, when the sequence is controlled, we very often

encounter a data mismatch issue, as different predictions at test time than at training

time will lead to different input distributions.

1.3. THE CHALLENGE OF LEARNING SEQUENTIAL PREDICTIONS 11

1.3 The Challenge of Learning Sequential Predictions

We now explain in more detail the particular challenges of learning in these controlled

sequential tasks.

Data Mismatch : When is it Significant?

As mentioned earlier, one of the major difficulties that occur in sequential prediction

problems is that there can be a large discrepancy between the training and test distribu-

tion of examples, when the predictions made by the learned predictor differ from those

on the observed sequence during training. In large and real world applications, where

some degree of approximation is often inevitable, it is rarely the case that the learned

behavior is able to reproduce exactly an observed behavior during training. Thus such

discrepancy between training and test inputs/observations often occur. However there

are different cases where this effect is more important than others. We here explain

various cases and how they impact the data mismatch. These will be important cases to

keep in mind to understand when the data mismatch can become a significant issue.

Highly Stochastic vs. Near-Deterministic Sequences

In some tasks, stochasticity can play a large role on the evolution of the input of the

sequence, and limit to a large extent the effects of the predictions. An example of this

is the game of Backgammon, where the evolution of the game is highly randomized and

depends significantly on die rolls. While the players still choose which pieces to move,

and have an effect on the evolution of the game, they have limited control over the future

outcomes or situations encountered during the course of a game. To a large extent, the

distribution of board configurations encountered over many games may cover almost all

board configurations, and be only slightly more concentrated in some areas of the feature

space, depending on the strategy used. Thus if we would attempt to learn to play this

game, e.g. from observing other players, we would expect to observe inputs that covers

most of the feature space during training. Since there is no situations that are much

more likely under some strategy than observed during human player play, a fairly good

estimate on the performance of any game playing strategy could be obtained, even if

there is a slight mismatch on where the inputs are more or less concentrated. In this

case we may expect the data mismatch to be a non-issue, or only have a limited impact

on performance.

On the other hand, the opposite occur in situations where the evolution of the se-

quence is near-deterministic and largely determined by the past predictions. This is the

case encountered by most robotic systems where the movement of the robot is determin-

istic (or nearly so), and to a large extent determined by the previously predicted actions.

12 CHAPTER 1. INTRODUCTION

Often even small changes in the actions can lead to a large change in configuration after

some time (e.g. robot walking where a small perturbation can lead a stable walker to

lose balance). Thus in such setting, data mismatch can be very important and critical

to address to obtain good performance. These are the settings that are of most interest

in this thesis, given their frequent occurrence in robotic applications.

Relevance of Controlled Features

In some situations, only a fraction of the features (information used to make predictions)

depends on previous predictions. This is the case in some of the examples presented

earlier. For instance, in the scene understanding example where the local image features

used do not depend on past predictions in the sequence, and only features related to

neighboring predictions depend on past predictions. The data mismatch issue only affects

these features which depend on previous predictions and how to use them appropriately.

If there is a large fraction of features that do not depend on previous predictions, and the

contribution of each feature to the final prediction is limited (e.g. linear classifier with

regularization), then the data mismatch can be a non-issue, as improving how we use a

small fraction of the features will have a very limited effect on the predictions. In general,

if good predictions can be obtained by relying heavily on only the independent features

(e.g. the local image features), then the data mismatch may be irrelevant. However, if it

is critical to use significantly the features depending on previous predictions, compared

to the independent features, then it will be critical to properly deal with this issue to

obtain good performance. We will be particularly interested to these situations where

using these features is critical for good performance.

Realizability and Generalizability of Hypothesis Class

Even though we may be in a situation where there is a significant mismatch in the

distribution of training and testing examples, depending on how the data is generated

and what class of predictors we are considering, the data mismatch may be a non-issue.

To illustrate this, imagine a case where the generated data is a linear function of

the features, with some noise, and we attempt to learn a linear predictor. Then no

matter where data is sampled we may be able to recover the correct linear function, and

generalize well to any region of the input space that we didn’t observe during training.

Therefore even if we are tested mostly in a different region, we would still be able to

predict accurately. This is illustrated in Figure 1.5. This shows that in situations where

both 1) the class of predictors contains predictors that can fit very well the observed

data (realizable settings) and 2) that generalize well across the entire feature space (e.g.

with a low complexity class), then where data is collected often doesn’t matter. These

1.3. THE CHALLENGE OF LEARNING SEQUENTIAL PREDICTIONS 13

−10 −5 0 5 10
−6

−4

−2

0

2

4

6

8

x

y

Thruth
Dataset 1
Dataset 2
Linear Fit 1
Linear Fit 2

Figure 1.5: Example of learning with a low complexity hypothesis in a realizable setting.
Target function is a linear function. No matter where we sample data, fitting a linear
function leads to roughly the same hypothesis, and obtains a good fit of the entire
function.

are easy cases that are not of concern in this thesis. This has been the most common

paradigm for analyzing performance in control problems (Ljung, 1999).

On the other hand, when at least one of these two properties does not hold, then

where data is collected has a significant impact. For instance, even in a realizable setting

where we can obtain a very good fit to any observed training data, if we are learning a

high complexity predictor (which is usually necessary to be able to fit the training data

well everywhere), the predictor will typically not generalize too well to regions of the

feature space that were never or rarely observed. This is shown in Figure 1.6. This is

because high complexity class allows for a wide range of functions that fit the training

data well, but vary greatly outside the region where training data was collected. This

implies that correct predictions outside of the training region is highly undetermined

or uncertain. Thus, in such setting data mismatch can lead to very bad predictions at

test time. In particular, it is important that the training data covers well the regions

where the predictor is tested, in order to predict accurately at test time. While we may

attempt to sample uniformly the entire input space to ensure sufficient coverage of any

possible test regions, this does not scale well to high-dimensions (covering the volume of

the input space would require an exponential number of samples in the dimensionality

of the input).

Similarly, where data is collected has a significant impact in situations where the

14 CHAPTER 1. INTRODUCTION

−10 −5 0 5 10
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

y

Truth
Dataset
Poly. fit (10 deg.)
LWLR

Figure 1.6: Example of learning with a high complexity hypothesis in a realizable setting.
Target function is a 10 degree polynomial. Fitting a 10 degree curve to slightly noisy
data (white noise with 0.01 standard deviation) leads to a good fit only in the sampled
region. Similarly a non-parametric locally weighted linear regression method only gets
a good fit in the sampled region.

target function cannot be fitted well globally by any predictor in the class (agnostic/non-

realizable setting). In this case, we may be able to obtain a good fit to the data locally,

e.g. in some region where the training data is concentrated, but predictions will again

typically not generalize well outside the region where training data is concentrated, since

the class of predictor cannot capture accurately the target function. This is illustrated

in Figure 1.7, where we consider a case where we fit a linear function to data generated

from a quadratic function. To obtain accurate test predictions in such scenario, it would

be crucial that the test data be concentrated in some small enough region, and that

the training data be concentrated in that same region. Any mismatch in training data

would lead to a different linear fit that does not fit well the function in the test region.

Additionally, sampling uniformly the entire feature space will also generally not work

well, and only lead to a predictor that is accurate in some small regions that will likely

not match where the test data is concentrated.

This thesis is concerned with these last two scenarios, that are the most frequent

situations in real applications. That is, in real applications, the data generating process is

often very complex, and we must either make approximations to learn efficiently (i.e. non-

realizable setting), or use a high complexity class of model (or non-parametric method)

to obtain very accurate predictions (i.e. poor generalization outside training region). In

1.4. LEVERAGING INTERACTION FOR EFFICIENT AND ROBUST LEARNING15

−10 −5 0 5 10
−20

−15

−10

−5

0

5

10

15

20

25

x

y

Thruth
Dataset 1
Dataset 2
Dataset 3
Linear Fit 1
Linear Fit 2
Linear Fit 3

Figure 1.7: Example of learning with a low complexity hypothesis in a non-realizable
setting. Target function is a quadratic. Fitting a linear function leads to significantly
different hypothesis depending on the region where samples are concentrated. Good
local fit can be obtained, but sampling uniformly does not lead to a good global fit.

both situations, data mismatch can have a serious impact on performance. Our goal is

to develop novel learning techniques that address this issue and that are able to learn

good predictors in such situations.

1.4 Leveraging Interaction for Efficient and Robust

Learning

As demonstrated in the previous section, it is important to obtain training data in the

regions where the predictor will be tested. In the context of controlled sequence, this

corresponds to obtaining data under sequence that the learned predictor will be likely to

induce. Intuitively, this implies we need to execute the learned predictor during training

to obtain training data under sequences that it generates.

Unfortunately, this is a “chicken-and-egg” problem. Without the learned predictor

in advance, we do not know where to collect data, and without the data we cannot

know which predictor we will end up learning. A common strategy to deal with such

problems is to adopt an iterative approach. In our context, this suggests iterative learning

approaches, that iteratively collect additional training data along sequences induced by

the learner’s current predictor, in order to update the learned predictor for the next

iteration.

16 CHAPTER 1. INTRODUCTION

This iterative interaction with the learner during training will be the main idea behind

the learning approaches we present in this thesis. Using such interaction will allow the

learner to obtain training data under sequences where it errors, and observe the proper

behavior to recover from these errors. For example, in the previously discussed driving

scenario where we learn a driving controller, executing the learner’s current behavior

and observing the corresponding human “corrections”, would allow it to observe that it

must perform harder turns to get back near the center of the road if it is heading off the

road, or that it must brake more aggressively if it is about to rear-end another vehicle.

With these learner interactions, the learner will be able to learn these recovery behaviors

and obtain a predictor that is robust to errors it frequently makes during its sequence

of predictions.

We now give a brief high-level overview of the main approach that we present in

this thesis and use to learn good predictors in various sequential prediction settings.

The approach is called DAGGER, for Dataset Aggregation, as it proceeds iteratively

by aggregating training data to learn over many iterations. At each iteration, this

approach interacts with the learner by using its current predictor to simulate or generate

sequences of inputs that occur under this predictor. For instance in a control application,

this involves executing the learner’s controller. Under these generated sequences, the

“teacher” 1 provides the desired predictions. This new data is then aggregated with all

collected data at previous iteration, and then the learner trains on this aggregate dataset

to obtain its new predictor for the next iteration. This is iterated for some large enough

number of iterations. Initially, the initial sequences can be generated from some initial

guess of what a good predictor is, or if possible, from sequences induced by the teacher’s

predictions (e.g. human driving the car). This approach is depicted in the context of

the driving scenario in Figure 1.8

Intuitively, this approach builds a dataset of the inputs the learner is likely to en-

counter during its sequence of predictions from past experience (previous iterations) and

choose predictors that predict well under these frequent inputs. Additionally, as the

fraction of new data compared to the size of the aggregate dataset becomes smaller and

smaller, the chosen predictor will tend to change more and more slowly, and stabilize

around some behavior that produces good predictions under inputs that were collected

in a large part by similar predictors. In later sections we will show formally that this

technique as strong performance guarantees if a good predictor on the training data

exists.

This is our proposed method in its simplest form. Later in this thesis, we will

1We use teacher very loosely here to denote the process that provides the target predictions. In some
setting, this is not necessarily a human, but can simply correspond to labeled data in a file (e.g. labeled
images in scene understanding), or corresponds directly to observations generated by the environment
(e.g. if we want to learn a model that predicts the next state for planning).

1.5. RELATED APPROACHES 17

Execute current policy and Query Expert
New Data

Supervised Learning

All previous data

Aggregate

Dataset

Steering

from expert

New

Policy

Figure 1.8: Depiction of the DAGGER procedure in a driving scenario.

demonstrate how this approach is related to online learning methods, and how it can be

generalized to leverage any existing online learning procedure with certain “no-regret”

properties to provide good guarantees. Additionally, in some sequential settings, we

will present slight modifications that are necessary to obtain better guarantees. But to

a large extent, the core iterative and interactive procedure of executing the learner’s

predictor to generate training sequences remains the same.

1.5 Related Approaches

We now briefly discuss a few related methods from different fields of machine learning

that are related to our method.

Reinforcement Learning

Reinforcement Learning (RL) is a field of Machine Learning interested in learning good

control behavior by trial-and-error (Sutton and Barto, 1998). That is, from observing

feedback of how good their behavior was, rather than being told or shown what to do.

Learning from such feedback is analog to the way dogs or other animals are trained to

behave properly, by giving them “rewards” when they behave well, or punish them when

they do something bad.

18 CHAPTER 1. INTRODUCTION

To a large extent, most RL methods learn exclusively from interaction of the learner

with its environment, where the learner will explore various sequences of actions to find

out which is the best. In this sense, our approach is similar to RL methods in that it

also learns from interaction and executing the learner’s own actions. Especially similar

are “on-policy” RL methods Sutton and Barto (1998) which learns from execution of the

learner’s current policy/controller (often with additional exploration). However, in most

of the settings we consider, our approach will have access to a different feedback that

tells it directly what it should predict. This is different than RL, and leads to a simpler

learning problem, as the learner does not necessarily have to explore different course of

actions to find out which one is best, e.g. it is shown directly which one is the best.

Despite some difference to RL, several RL methods exhibit similarities to our pro-

posed approach. In particular Conservative Policy Iteration (CPI) (Kakade and Lang-

ford, 2002) and its variant, Search-Based Structured Prediction (SEARN) (Daumé III

et al., 2009) for structured prediction problems, operate in a similar iterative fashion,

where at each iteration the learner’s current controller is executed, with additional ex-

ploration, to obtain new feedback on how the current controller may be improved. Then

the controller is updated by making a “small change” towards the best controller for

the new data. The small change makes the distribution of data change slowly over

the iterations as the controller changes and allows the learner to adapt to the changing

distribution and converge to a good behavior. Other methods such as Policy-Search by

Dynamic Programming (PSDP) (Bagnell et al., 2003) use this same idea of making small

changes over many iterations of learning to learn a controller with good guarantees. We

will see that in many ways, our approach exploits this same strategy of making “small

changes” indirectly through the use of online learning algorithms with “no-regret” prop-

erties. These online algorithms are implicitly adapting towards the best predictor while

making small changes (this is made more formal in Chapter 9). To some extent, our re-

sults generalize these previous methods and demonstrate that a wide variety of learning

procedures, with such “no-regret” property, can be adopted.

Perhaps most closely related to our approach, are the iterative algorithms of Atkeson

and Schaal (1997) and Abbeel and Ng (2005). Both of these approaches also proceed by

using the learner’s current controller to collect more data at each iteration, and aggregate

data from all iterations to update the controller, just like our proposed approach in its

simplest form. Our approach is heavily inspired by these methods, and our work can

be seen as a generalization of these approaches, by showing that the procedure can also

be conducted with any online learning procedure rather than specifically with this data

aggregation method, and extending their application to various sequential prediction

settings. In addition, we develop significant new theory to justify this kind of approach.

1.5. RELATED APPROACHES 19

Active Learning

Active Learning is another field of Machine Learning, very similar to supervised learning

where predictors are learned from examples of good predictions. The distinction to

standard supervised learning is that the learner is not observing passively examples

demonstrated by the “teacher”, but instead learns actively, by querying the “teacher”

about the correct predictions for any inputs that the learner wants to know about (Cohn

et al., 1994, Freund et al., 1997) (usually among a set of unlabeled inputs). In some

sense, this is very similar to the learner interactions used in our approach, where the

learner can query the “teacher” about specific inputs it encounters. A major difference

in our sequential settings is that we are not provided with a set of unlabeled inputs

but instead, we must decide how to act to collect further data. Furthermore, some

restrictions usually limit how we can collect data or query the expert. For instance, it

is not possible to simply put a real robotic system in any particular state to observe

what’s going to happen next. Instead, to visit and learn about particular situations, the

learner must execute a sequence of predictions that actually encounters those situations.

With our method, we only assume this ability to query the “teacher” along sequences of

predictions produced by the learner, rather than at any input.

Additionally, most strategies employed in active learning to decide where to query the

“teacher” only applies in realizable settings, with a few recent exceptions (Balcan et al.,

2006, Dasgupta et al., 2007). In some cases, the query strategies are also dependent on

the class of predictor or problems considered, e.g. linear classifiers, or binary classification

problems. Instead, our approach is meant to be very general and applicable across

various class of problems or predictors, and in non-realizable settings. Therefore, our set

of assumptions is much weaker than what is typically assumed in active learning, and

thus many of these techniques would not be generally applicable in our settings.

Transfer Learning

Transfer learning is another field of machine learning, where training is conducted under

a different distribution of examples than testing and the goal is to adapt the predictor

to be good under the test distribution (Pan and Yang, 2010). Hence, these methods are

attempting to address exactly the same problem of data mismatch at the core of this

thesis. However, transfer learning approaches use much more knowledge of the testing

distribution to be able to adapt the predictor. In their settings, the testing distribution

is typically fixed, i.e. it does not change depending on the predictor we use as in our

sequential settings. Additionally, they often have access to some examples from this fixed

test distribution during training (either labeled or unlabeled). Using this information,

a common strategy is to weight the training examples in order to better reflect the test

distribution, and train on these weighted examples (Zadrozny, 2004, Huang et al., 2007).

20 CHAPTER 1. INTRODUCTION

Because these methods assume a fixed test distribution, independent of the learned

predictor, these methods are typically not directly applicable to our sequential settings.

However, they could potentially be used, in combination with our approaches, to itera-

tively adapt to the changing test distribution. This is briefly mentioned in more details

in Chapter 11.

Online Learning

Online learning is used extensively within our work to provide good guarantees. Online

learning typically studies problems where a single stream of data is observed, and we

must make predictions along the way as we observe more and more data, e.g. in problems

like weather forecast or stock market predictions. In these applications, the goal is to

purely make good predictions on this stream, as we continuously observe more training

data, and there is no explicit notion of generalization to a new test stream, where we

stop observing labeled training examples to keep adapting the predictor. In our work,

we use online learning for this particular purpose: to learn predictors that generalize to

the distribution of sequences they may observe during their test execution (where it will

not observe more labeled examples). This is similar to work in online-to-batch learning

that have analyzed the generalization ability of “no-regret” online learning methods

for learning good predictors for test data, by going through a batch of training data

in sequence (Cesa-Bianchi et al., 2004, Kakade and Tewari, 2009). The generalization

guarantees in this case assume i.i.d. properties of the batch of training and test data. Our

work can be seen as extending and generalizing further this line of work, in showing that

no-regret online learning can lead to good generalization performance even in non-i.i.d.

settings.

1.6 Learning and Interaction Complexity of Sequential

Predictions

Another focus of our theoretical analysis is on determining the learning efficiency of var-

ious learning methods. As with typical supervised learning methods, a common measure

of efficiency we will be interested in analyzing is the sample complexity – how many

data points is required to obtain a good predictor with high probability. We will ana-

lyze thoroughly each method we present and demonstrate that using interaction during

training can also reduce the total number of samples required compared to standard

non-interactive supervised methods.

Another measure of complexity that we introduce that is relevant for these iterative

and interactive learning procedures is what we call the interaction complexity – how many

rounds of interaction or training is required to obtain a good predictor. This is another

1.7. APPLICATIONS 21

Figure 1.9: Imitation Learning Applications. (Left) Learning to drive in Super Tux Kart,
(Center) Learning to play Super Mario Bros, (Right) Learning Obstacle-Avoidance for
Flying through Natural Forest.

notion of complexity that is of interest, as more rounds may typically require more work

from human teachers, and more computational work (for optimizing predictors). This

is introduced in Chapter 10. We use this notion to demonstrate that many rounds of

interaction is fundamentally required in general for sequential prediction tasks. That is,

there does not exist any learning algorithm that can guarantee learning a good predictor

without multiple rounds of interaction. Additionally, we provide a tight lower bound

on the minimum interaction complexity of any learning procedure that provide good

guarantees. The lower bound shows that the number of rounds required must scale

linearly with the length of the sequence (task horizon), and matches the number of

rounds (within a constant factor) required by an algorithm presented in Chapter 3.

These results complete the overall picture and theory of learning sequential predic-

tions. They demonstrate that fundamentally, learning actively through interaction is

both sufficient and necessary for learning good predictors. Despite that many of these

sequential tasks look like typical supervised learning tasks, unlike supervised learning,

learning passively by only observing examples of good predictions is not sufficient.

1.7 Applications

Throughout this thesis, we demonstrate the wide range of application of our approach

to address various sequential prediction tasks.

We first demonstrate application of our method for learning control behavior from

demonstrations of the task. This is applied in two video game problems to learn game

playing agents and to learn obstacle-avoidance for a real autonomous quadrotor. One

game is an open source 3D kart racing game, Super Tux Kart, similar to the popular

video game Mario Kart, where we attempt to learn a controller, from human player

demonstrations, that can steer the kart properly on the race track based on the observed

game image stream (see Figure 1.9). This experiment seeks to simulate learning vehicle

control for autonomous cars from human drivers. The other game is based on an open

22 CHAPTER 1. INTRODUCTION

Figure 1.10: Structured Prediction Applications in Computer Vision. (Left) Parsing 3D
Point Cloud from LIDAR Sensors, (Right) Estimating 3D geometry of 2D images.

source version of the popular video game Super Mario Bros, where we learn control for

Mario based on high-level features of the observed game image (see Figure 1.9). Here

the demonstrations are provided by a planner that can complete almost all randomly

generated stages of the game, through access to the internal game state. This shows

that another use of such method can be to learn controller that replaces computation-

ally expensive decision process. More importantly, one of the major application of our

approach is its application on a real robotic system, an autonomous quadrotor navigat-

ing in natural forest environments. Here, we use our method to learn a controller, from

human pilot demonstrations, that can avoid trees based on the observed onboard cam-

era image stream (monocular vision) (see Figure 1.9). This shows that our method is

applicable on real robotic systems, in addition to simulated (or software) environments.

Another application in control tasks involve learning dynamic models of a simulated

helicopter for synthesizing controllers that can perform aerobatic maneuvers. The dy-

namic models are learned from observed helicopter trajectories under various controllers,

and then used for synthesizing a controller that can best follow the desired aerobatic ma-

neuver trajectory. This experiment simulates the application of our method for learning

models that can be used for decision-making/planning in robotic systems.

Outside of control applications, we also demonstrate the various uses of our approach

to a number of important problems in robotics. We apply our method to structured pre-

diction tasks that arise commonly in natural language processing and computer vision

problems. The first one is a simple benchmark handwriting recognition task, where given

a dataset of human labeled handwritten words, we learn a predictor to decode handwrit-

ten words in sequence from the observed character images and contextual information of

the previously predicted characters in the word. The second task involves identifying the

objects present in outdoor scenes observed through a LIDAR sensor on a robotic vehicle.

Given a dataset of human labeled LIDAR 3D point cloud of outdoor scenes, we learn a

predictor that can predict the object present at each point (among vegetation, building,

1.8. CONTRIBUTIONS 23

road, poles and wires) in a LIDAR point cloud, from local shape features of the point

cloud, and contextual information of objects predicted nearby (see Figure 1.10). We also

apply our method for estimating the 3D geometry of an outdoor scene in a 2D camera

image. Given a dataset of human annotated outdoor images, we learn a predictor that

can estimate the 3D geometry of each image segment (between ground, sky, a vertical

structure facing left, front-facing or facing right, or a solid or porous object), from local

image features (texture, color histogram, etc.) and contextual information of the nearby

predicted 3D geometry (see Figure 1.10).

Finally, we also demonstrate applications of our method for recommendation tasks

where we must select a small list of relevant and diverse items. We apply our method to

two relevant problems in robotics. The first one consists in learning to suggest a small

list of grasps for a robotic manipulator to pick a nearby object that is likely to contain

a successful grasp, based on a dataset of training environments where we observe the

successful grasps. The second one consists in learning to suggest a small list of initial

trajectories to seed a local trajectory optimization procedure for a robotic manipulator

based on features of the environment that is likely to lead to a collision free trajectory,

again given a dataset of training environments. Outside of robotics, we also apply our

method for personalized news recommendation, recommending a small set of diverse

articles a user is likely to be interested in, and to extractive document summarization,

picking a few sentences out of a document that provides a good summary.

These experiments demonstrate the wide range and variety of settings where our

method can be applied and its potential impact in many fields. This is by no means

an exhaustive list. We believe our method can have many other applications, and be

applied in other settings we haven’t considered here. In fact, various work by other

authors building on our work have already showed a number of new applications of

our method to other structured prediction problems in computational biology (Vlachos,

2012) as well as for learning dynamic feature selection strategies (He et al., 2012). In

general, we believe that many tasks exhibiting a similar “chicken-and-egg” problem may

benefit from using our proposed method.

1.8 Contributions

This thesis makes a number of important algorithmic and theoretical contributions to

machine learning in sequential problems.

In chapter 3, we first provide a complete analysis of standard supervised learning

methods in imitation learning tasks to demonstrate their poor performance guarantees in

such sequential settings. We develop two novel learning strategies with good guarantees:

1) A forward training procedure that leverages interaction and the sequential structure

24 CHAPTER 1. INTRODUCTION

of the task, but that is not practical for long sequence of predictions; 2) a more practical

iterative training procedure described briefly in this chapter that leverages interaction

and the strong guarantees of no-regret online learning methods. The guarantees of these

methods are state-of-the-art and the best known for this setting.

In chapter 4, we extend these methods to imitation learning settings where cost

information is observed and can be used to provide improved guarantees. We show how

one of these techniques also lead to an approach that can handle general model-free

reinforcement learning problems, and provide good guarantees given a good exploration

distribution. Our guarantees in this case match the best known guarantees of other

agnostic model-free reinforcement learning methods.

In chapter 5, we perform extensive experimental comparison of these methods and

demonstrate that our methods achieve state-of-the-art performance for imitation learning

in video game domains and for training an autonomous UAV to fly in natural forest

environments.

In chapter 6, we demonstrate how the same methods can be applied in structured

prediction tasks, and have the same guarantees. Our experimental results demonstrate

that our approach can match and sometimes exceed slightly the performance of other

state-of-the-art structured prediction approaches, while being more computationally ef-

ficient.

In chapter 7, we show that these methods can be used in submodular list prediction

tasks such as relevant and diverse recommendations. We introduce a few small mod-

ifications to our approach, with improved analysis specific to this setting, that allows

it to provide even stronger guarantees on global optimality in this setting. Our guar-

antees match the best known guarantees for this setting. In addition our experimental

results are state-of-the-art on several recommendation tasks, and demonstrate improved

learning efficiency over previous state-of-the-art methods.

In chapter 8, we show how the same methods can be slightly modified for system

identification, i.e. to learn good dynamic models for planning or controller synthesis,

with near-optimality guarantees. Our results provide some of the first agnostic analysis

of system identification methods and are the best known guarantees for agnostic settings.

While in agnostic settings, our near-optimality guarantees are dependent on the quality

of a given fixed exploration distribution used during training, for realizable settings, we

propose an optimistic exploration strategy that must end up learning a model that can

synthesize an optimal controller for the task. In this case, our guarantees are state-of-the-

art and improve over guarantees of previous state-of-the-art model-based reinforcement

learning methods. All these results extend beyond learning of linear systems, to arbitrary

class of systems where no-regret online learning is possible, and shows that learning

models that recovers the optimal controller is possible for much more general class of

1.8. CONTRIBUTIONS 25

systems. Experimentally, we also demonstrate state-of-the-art performance at learning

models of a simulated helicopter for performing aerobatic maneuvers.

In chapter 9, we provide an alternate sufficient condition for providing good per-

formance guarantees with our data aggregation procedure based on notions of stability.

These conditions relates no-regret online learning to stability and minimization of loss

in hindsight. At a high level, these results indicate that we can expect a data aggrega-

tion strategy to work well in practice, as for common practical scenarios, most decent

supervised learners will typically exhibit these stability properties. They also give the in-

tuition that no-regret methods are implicitly learning by making “small changes” as well,

as in previous learning procedures for reinforcement learning and structured prediction

(Kakade and Langford, 2002, Bagnell et al., 2003, Daumé III et al., 2009).

In chapter 10, we introduce and formalize the notion of interaction complexity and

present a lower bound on the minimum number of rounds of interactions necessary

to learn good predictors. These results demonstrate that no learning algorithm can

guarantee learning good predictors in general without multiple interactions with the

learner. We show that the number of rounds must scale linearly with the length of the

sequence (task horizon). This bound is tight and match the number of rounds required

by the Forward Training algorithm introduced in Chapter 3. At a high-level, these

results demonstrate that learning actively through interaction is necessary to learn good

predictors for sequential tasks, and that one cannot simply learn passively by observing

examples of good predictions.

Chapter 2

Background

In this chapter, we briefly review common machine learning techniques, algorithms and

theory, that we will use throughout this thesis, as well as common models and algorithms

for sequential decision-making and optimally performing sequential tasks.

2.1 Data-Driven Learning Methods: Algorithms and

Theory

We start by introducing commonly used learning methods in the field of machine learning

that will be leveraged for learning predictors in our work. We first introduce statistical

learning techniques for classification, regression and density estimation. Then we intro-

duce online learning algorithms and the concept of regret. Finally we describe the idea

of a reduction between learning tasks.

Batch Statistical Learning

Statistical learning techniques allow to learn a function or predictor from a set of observed

data that can make predictions about unseen or future data. These techniques provide

guarantees on the performance of the learned predictor on the future unseen data based

on statistical assumption on the data-generating process. For instance, it is typically

assumed that the observed data for training and future unseen data where the learned

predictor is evaluated are both drawn i.i.d. from the same unknown distribution.

In general, a statistical learning problem can be defined formally as follows. Given a

hypothesis spaceH, an instance space Z and a subset of m instances S = {z1, z2, . . . , zm}
drawn i.i.d. from some unknown distribution D over Z, find a hypothesis h ∈ H which

minimizes some loss function ` : H×Z → R in expectation with respect to the distribu-

tion D. That is, we seek to find an hypothesis h∗ such that:

Ez∼D[`(h∗, z)] = min
h∈H

Ez∼D[`(h, z)]. (2.1)

28 CHAPTER 2. BACKGROUND

However, because the distribution D is unknown and only observed through the sampled

instances in S, this objective cannot be minimized exactly. Nevertheless, statistical

learning methods can often provide guarantees on the quality of their solution as a

function of the number of samples m, and achieve optimality in the limit. An approach

often used by many statistical learning methods is to minimize the empirical loss on the

sampled dataset of instances S. That is, they return an hypothesis ĥ such that:

m∑
i=1

f(ĥ, zi) = min
h∈H

m∑
i=1

`(h, zi). (2.2)

This is justified by the fact that for many classes of hypothesis H and loss functions `, we

can guarantee that
∑m

i=1 `(h, zi) converges to Ez∼D[f(h, z)] uniformly over the class H
as m→∞. This implies that the empirical minimizer ĥ must converge to a population

minimizer h∗ in the limit.

We briefly review a few examples of common statistical learning tasks that we will

need to solve in this thesis, and then introduce the common PAC learning framework,

used in this thesis to provide guarantees and analyze the number of samples required for

obtaining good hypothesis.

Classification

In classification tasks, the instance space Z = X × Y, where X is the space of observed

input features and Y is the space of output class, H is a set of classifiers h : X → Y and

the classification loss function `(h, (x, y)) = I(h(x) 6= y), for I the indicator function (i.e.

the loss is 0 if h predicts the target class y of input x and the loss is 1 otherwise). For

example for detecting spam in emails, X may correspond to features of the content of

the email, such as a binary vector indicating the presence of words or not in the email,

and the output Ŷ = {−1, 1} indicates whether the email is spam or not. This is an

example of a binary classification problem where the output is one of 2 class. In general,

multi class classification problems can be considered with more than 2 possible outputs.

This will occur commonly in this thesis, e.g. when we will learn predictors that predicts

an action among a discrete set of many potential actions.

Many algorithms have been developed for learning classifiers such as support vector

machines (SVM) (Cortes and Vapnik, 1995), decision trees (Breiman et al., 1984), neural

networks and nearest neighbor among others (Hastie et al., 2001). In this thesis we will

make use of SVMs as they are a class of classifiers that can be optimized efficiently and

exactly via convex optimization. In its simplest form in the binary classification setting

(Y = {−1, 1}), a SVM optimizes a linear classifier1 to maximize the classification margin.

1H = Rd for d the number of input features. For w ∈ Rd, hw(x) is 1 if w>x ≥ 0, −1 otherwise

2.1. DATA-DRIVEN LEARNING METHODS: ALGORITHMS AND THEORY 29

This is equivalent to minimizing the following regularized hinge loss:

arg min
w

[
1

m

m∑
i=1

max(0, 1− yiw>xi) +
λ

2
||w||22], (2.3)

where λ is a regularization constant. SVM can also be applied in the multiclass setting

(by training many weight vectors, one for each class), or train non-linear classifiers using

kernels (Cortes and Vapnik, 1995), and still be optimized exactly via convex optimization.

Regression

In regression, the target output is a continuous value (e.g. predicting the future price

of a stock) so that Y ⊆ R and the loss function is usually defined as the squared loss

f(h, (x, y)) = (h(x) − y)2. Linear regression is a well known example of a regression

problem where we seek to learn the best linear regressor2. In this thesis, we will often

make use of regression techniques, e.g. for predicting continuous actions (like a steering

angle in a driving task), or to predict the cost of different actions. In particular, we

will often make use of a regularized version of linear regression in this thesis where an

extra regularization is used or on weight vector w, called Ridge Regression. The ridge

regression objective solves:

arg min
w

1

m

m∑
i=1

(w>xi − yi)2 +
λ

2
||w||22, (2.4)

where λ is a regularization constant. This can be solved in closed form and the optimal

solution is w = (X>X + mλId)
−1X>Y , where X is a m × d matrix where the ith row

corresponds to input xi, Y is a m × 1 column vector where the ith element is output

yi and Id is the d × d identity matrix. Regression trees (Breiman et al., 1984), neural

networks, nearest neighbor and kernel methods can also be used for regression (Hastie

et al., 2001).

Density Estimation

In density estimation, we seek to learn a probability model that can measure the proba-

bility or density of some event (e.g. the probability density function (pdf) of the unknown

distribution D itself, or some conditional pdf of some output variable Y given the input

variables X). The latter is common when dealing with classification tasks where we not

only want to predict a class, but instead assign a probability that the input belongs

to each class, allowing to reason about uncertainty of the predictions. In this case, a

common choice for the loss is the negative log likelihood of the instance z (or conditional

2H = Rd for d the number of input features. For w ∈ Rd, hw(x) = w>x

30 CHAPTER 2. BACKGROUND

likelihood of y given x) under the density model h (i.e. f(h, z) = − log(h(z))). This leads

to maximizing the likelihood of the data, as in common maximum likelihood methods.

A commonly used method for conditional density estimation is logistic regression

(Hastie et al., 2001). Given the input x, logistic regression predicts a distribution over

outputs y using an exponential family model of the form:

P (y|x) ∝ exp(w>y x) (2.5)

where {wy}y∈Y are the weight parameters to optimize. Optimization of these parameters

to minimize the logistic loss (negative log likelihood) leads to a convex optimization

problem that can be solved efficiently, e.g. using gradient descent methods.

We will use such methods in the context of predicting a distribution over possible

objects present at a particular location in a scene, in computer vision/perception appli-

cations.

PAC Learning

Probably Approximately Correct (PAC) Learning (Valiant, 1984, Kearns et al., 1994) is

a learning framework that has been introduced to analyze learning algorithms and their

statistical efficiency – how many samples (data points) are needed to obtain, with high

probability, a near-optimal hypothesis h within the class H.

For any desired near-optimality threshold ε > 0 and small probability of failure

δ > 0, a PAC learning algorithm guarantees that for any distribution D, after a sufficient

number of samples m, it will find with high probability 1−δ an hypothesis ĥ that achieves

expected loss (under the unknown distribution D) within ε of optimal, i.e.:

E
z∼D

[`(ĥ, z)] ≤ min
h∈H

E
z∼D

[`(h, z)] + ε

The number of samples m required to guarantee this with high probability 1 − δ will

typically scale as a function of 1/δ, 1/ε, and the complexity of the class of hypothesis H
(e.g. the VC dimension if H is a class of binary classifiers). In general, m is typically

O(C(H)+log(1/δ)
ε2

), for C(H) a measure of the complexity of the class H. In certain ideal

cases, e.g. in realizable scenarios, faster convergence rate can be obtained and m may

only need to be O(C(H)+log(1/δ)
ε).

Under the common statistical assumption that both training and test examples are

drawn i.i.d. from the distribution D, then such PAC learning algorithms guarantee

that after a sufficient amount of data, with high probability, the performance of the

learned predictor on test examples must be near-optimal (in expectation). In particular,

if predictors with low error/loss could be found during training, then this must imply

the learned predictor has low loss/error on the new test instances (in expectation). Note

also that these guarantees are agnostic – i.e. they hold without assuming the data is

2.1. DATA-DRIVEN LEARNING METHODS: ALGORITHMS AND THEORY 31

generated according to any particular hypothesis in the class. Of course, low test error

is only achieved if a low training error hypothesis exists on the training data.

In this thesis, we will also seek to analyze our learning algorithms and provide guar-

antees that look similar to these PAC guarantees. In particular, we will provide similar

agnostic guarantees that hold with high probability, and relate test performance at the

sequential prediction task, to the performance of the best predictor/hypothesis in the

class on the training distribution of examples. If low loss/error predictors can be found

during training, this will imply good test performance of the learned predictor at the

sequential prediction task.

Online Learning with Streaming Data

Online learning algorithms are a key component of our main approach to learn good

predictors for sequential prediction tasks. In particular, they will be used for updating

the predictor we learn over many iterations of training, as more data is being collected.

We review here some important background material related to online learning, and

present a few common online learning algorithms used in this thesis.

Online learning has been developed to deal with learning tasks where we must make

predictions over time as we are learning from a stream of data (Vovk, 1992, Littlestone

and Warmuth, 1994, Cesa-Bianchi and Lugosi, 2006). An example of such task may be

weather forecast, where we must predict tomorrow’s weather each day, and then get to

observe the weather the next day as additional training data to update our predictor.

Another example is stock market prediction, where we may want to predict how the

price of a stock will change each day, and then get to observe the change in price at the

end of the day as additional data to update our predictor.

Formally, the online algorithm is presented with a sequence of training instances

z1, z2, . . . , zN , one at a time. At each round n, before observing the instance zn, the

learner chooses a predictor hn ∈ H, to make its next prediction, and incurs loss `(hn, zn)

on the instance zn. Then it observes zn and can choose a new predictor hn+1 for the

next round.

The goal in online learning is to minimize the regret with respect to the best fixed

hypothesis the learner could have chosen in hindsight (i.e. knowing all the training

instances in advance). Formally, the average regret RN after N rounds of the online

learning algorithm is defined as:

RN =
1

N

N∑
n=1

`(hn, zn)−min
h∈H

1

N

N∑
n=1

`(h, zn) (2.6)

Small average regret intuitively implies that, on average, before seeing the training

example at each round, the learner made as good predictions, as if it had known all the

32 CHAPTER 2. BACKGROUND

training instances in advance and had picked the best predictor to predict on all this

data.

A no-regret algorithm is an algorithm that guarantees that in the limit, as N →∞,

RN goes to 0 (or is negative), for any sequence of training instances. In other words, a

no-regret algorithm indicates that in the limit, the average loss incurred by the learner,

when making its predictions before seeing each training example, is no worse than the

average loss of the best predictor it could have picked, knowing all the training instances

in advance.

A concrete scenario where online learning has been applied is for managing investment

portfolios (Argawal et al., 2006). In this case, we might consider k possible financial in-

struments (cash, bonds, stocks, etc.) to invest in and defineH to be the set of all portfolio

allocations to these k instruments (i.e. the set of all distributions on the k instruments).

Each day, we consider allocating our money to different instruments according to some

portfolio allocation in H. We then observe the return of each instruments for the day

(the training instance zn), which we use to update our portfolio allocation for the next

day. Using a no-regret algorithm to update the portfolio allocation after each day would

guarantee that in the limit, the average return of the portfolio is no worse than the av-

erage return of the best constantly-rebalanced3 fixed portfolio allocation in H over that

time period. In other words, the average return of the learner will be as good as if we

had known how the stock market is going to evolve in the future, and had chosen the

best (constantly rebalanced) allocation for this future.

Unlike statistical learning techniques that assumes data is drawn i.i.d. from some

unknown distribution, online learning is a more game-theoretic4 learning framework

that makes no assumption about how the instances are chosen. In particular, as no-

regret algorithms work for any sequence of instances, the no-regret guarantees hold

even if the instances are chosen adversarially. The trade-off however, is that no-regret

is only a statement about relative performance, i.e. relative to the best hypothesis

in the class on this sequence of instances. Thus no-regret does not necessarily imply

good absolute performance, e.g. when no hypothesis performs well on the sequence of

instances. However, under the additional assumption that good hypothesis exists for

the sequence, then no-regret implies good performance, in absolute terms. These strong

3A fixed portfolio allocation in this scenario, for instance 50% in AAPL stock and 50% in MSFT
stock, implies that after each day, after the price of these assets change, we would buy/sell stocks of
each so that the overall value of the portfolio is rebalanced to 50% in AAPL stock and 50% in MSFT.
For instance if AAPL increases more in value than MSFT, at the end of the day our money may now
be allocated as 52% AAPL and 48% MSFT; to bring back to 50-50, we would sell AAPL stock and
buy more MSFT stock with that money. This is what is called a constantly rebalanced portfolio (Cover
and Thomas, 1991). Such constantly rebalanced portfolio are powerful investment strategies, as they
implicitly make you sell high and buy low.

4Online learning can be thought as a two-player repeated game played between a learner, choosing
hypothesis in some class H, and an adversary picking training instances.

2.1. DATA-DRIVEN LEARNING METHODS: ALGORITHMS AND THEORY 33

no-regret properties, that hold even for non-i.i.d. data, will be key to provide good

guarantees in our sequence prediction settings, where i.i.d assumptions do not hold.

Many no-regret algorithms have been developed in the literature for different scenar-

ios. We review the most common ones and their guarantees that will be leveraged in

this work.

Weighted Majority and Hedge

When the number of hypothesis is finite (i.e. H is finite) randomized no-regret algo-

rithms have been proposed such as Weighted Majority (Littlestone and Warmuth, 1994)

and Hedge (Freund and Schapire, 1997). These algorithms essentially assign to each

hypothesis a probability that decreases exponentially in their total loss so far and pick a

hypothesis randomly according to this distribution at each iteration. That is, at round

n, the probability distribution Pn over hypothesis to choose hn is defined as:

Pn(h) ∝ exp(−η
n−1∑
i=1

`(h, zi)),

for some learning rate parameter η. By choosing η to be Θ(1/
√
N), these methods are

no-regret at rate O(1√
N

) (Littlestone and Warmuth, 1994, Freund and Schapire, 1997).

They can also be no-regret at faster rates of O(log(N)/N) if some hypothesis in the set

H have small loss and the loss of the best hypothesis (after N rounds) is used to define η

appropriately. A doubling trick to adapt the parameter η can be used as well to achieve

the same optimal rate, up to a small constant factor, without knowing the loss of the

best hypothesis in advance (Cesa-Bianchi et al., 1997).

As these methods are randomized algorithms, they guarantee that the expected re-

gret, under the chosen distributions P1, P2, . . . , PN , goes to 0 as N → ∞. It can also

be shown that with high probability, the regret on the sampled hypothesis h1, h2, . . . hN

converges at the same rate with high probability. 5

Subgradient Descent and Follow-the-(Regularized)-Leader

When the set of hypothesis H is a convex set and the loss `(·, z) is convex in the hypoth-

esis for all z ∈ Z, then other online learning algorithms such as Projected Subgradient

Descent (Zinkevich, 2003) and Follow-the-(Regularized)-Leader are no-regret (Kakade

and Shalev-Shwartz, 2008). Projected Subgradient Descent simply updates the hypoth-

esis in the direction opposite to a subgradient of the loss at the current iteration:

hn+1 = hn − αn∇h`n(hn)

5Under the assumption that the adversary cannot choose zn based on knowing the result of sampling,
i.e. hn, but can potentially choose zn based on knowledge of Pn.

34 CHAPTER 2. BACKGROUND

Choosing the step-size αn as Θ(1√
n

) guarantees that it is no-regret at rate O(1√
N

) (Zinke-

vich, 2003). Additionally, when the loss is strongly convex, choosing the step-size αn as

O(1
n) guarantees that it is no-regret at rate O(log(N)

N) (Hazan et al., 2006).

Follow-the-Leader is another simple approach that simply picks hn to be the hypoth-

esis with smallest loss so far in the first n− 1 iterations:

hn = arg min
h∈H

n−1∑
i=1

`(h, zi)

It is no-regret at rate O(log(N)
N) when the loss is strongly convex. Follow-the-Regularized-

Leader is a slight variation which is also no-regret for convex functions. In this case, hn

is chosen to be the best hypothesis in the first n− 1 iterations subject to an additional

strongly convex regularizer r, i.e.:

hn = arg min
h∈H

n−1∑
i=1

`(h, zi) + λnr(h).

Choosing the regularization constant λn as Θ(1√
n

) makes this approach no-regret at rate

O(1√
N

) (Kakade and Shalev-Shwartz, 2008).

Other Online Learning Methods

Many other online learning algorithms exist. Another important class of methods are

proximal methods, that generalizes gradient descent, by updating the hypothesis to a

nearby hypothesis that minimizes the current loss (where the notion of “nearness” can

be chosen differently depending on the task or class of hypothesis) (Do et al., 2009, Xiao,

2009, Duchi et al., 2010b, McMahan, 2011). Also improved adaptive gradient techniques

provide better no-regret guarantees, that are dependent on the properties of the observed

sequence (Duchi et al., 2010a, McMahan and Streeter, 2010). Other randomized online

learning algorithms also exists, such as Follow-the-Perturbed-Leader (Kalai and Vem-

pala, 2005) that can be more computationally efficient when the set of hypothesis has

particular structures. Finally, bandit learning techniques extend online learning methods

to partial information settings, where only the loss of the chosen hypothesis is observed,

and the loss of other hypothesis is unknown (Auer et al., 2002a,b, Langford and Zang,

2007, Li et al., 2010, Beygelzimer et al., 2011, Dudik et al., 2011a).

2.2 Reductions between Learning Tasks

Another important part of our work in this thesis is the idea of reductions between

learning tasks.

Reductions have been introduced in computer science as a general technique for

problem solving. The idea is that, if you have a hard problem to solve A, and can

2.2. REDUCTIONS BETWEEN LEARNING TASKS 35

transform that problem into another easier problem B that you know how to solve, then

you can solve the hard problem A by solving the transformed problem B instead.

This idea has been used in machine learning to tackle harder learning tasks via

existing learning algorithms that can only tackle simple tasks (Beygelzimer et al., 2005,

Langford and Beygelzimer, 2005, Balcan et al., 2008, Beygelzimer et al., 2009, Daumé III

et al., 2009). For instance, a well known reduction is the all-pairs reduction of multiclass

classification to binary classification. This reduction constructs a multiclass classifier by

training a binary classifier for every pair of labels (Hastie and Tibshirani, 1998). The

approach proceeds by training each binary classifier on the subset of the training set

that are labeled as one of the two labels it is trying to distinguish. Then when given

a test input, all binary classifiers are evaluated and each output count as a vote for

the predicted label. The label with most votes is the predicted label for the multiclass

classifier constructed from these binary classifiers.

Reductions can also be used as a way to provide theoretical guarantees on the quality

of the solution found as a function of the quality of the solutions for the subproblems.

Therefore, if high-quality solutions can be found for the subproblems, we can guarantee

that we obtain a high-quality solution for the original problem. For instance, in the

previous reduction, if the binary classifiers have error rate ε, it can be shown that the

multiclass classifier has error rate of at most (k−1)ε at the multiclass classification task,

for k the number of labels.

In this thesis, the algorithms we present can be understood as reductions of sequential

prediction tasks, to simpler learning tasks that can be solved using standard supervised

learning algorithms, or online learning algorithms. By doing so, we will be able to

guarantee good performance at the original sequential prediction task, whenever good

performance can be achieved at the simpler supervised/online learning tasks.

We will also make use of a number of existing learning reductions to tackle gen-

eral cost-sensitive classification tasks that arise in our work. We present below a few

reductions that exist to tackle such tasks.

Reductions of Cost-Sensitive Classification

In cost-sensitive classification, instead of incurring a 0-1 loss, a different loss is associated

to predicting each class, at every input x. In this case, the instances z ∈ Z, can be

thought as tuples (x, c), where c is a cost-vector associating a cost to each output class

y ∈ Y. In this case, the goal is to find the predictor h∗ ∈ H with minimum expected

cost under the unknown distribution D:

h∗ = arg min
h∈H

E(x,c)∼D[c(h(x))].

Minimizing this cost-sensitive classification loss directly is often computationally in-

36 CHAPTER 2. BACKGROUND

tractable. Instead, to tackle such problems, different reductions have been developed,

that allows us to transform this task into standard regression or classification tasks, that

leads to convex optimization tasks that can be solved efficiently. We briefly mention two

from Beygelzimer et al. (2005) that we use in our work below:

Reduction to Regression A first approach is to transform the cost-sensitive classi-

fication problem into a regression problem of predicting the costs of each class y ∈ Y,

given the input features x. Afterwards, the cost-sensitive classifier chooses the class with

lowest predicted cost according to the learned regressor.

To train the regressor, each cost-sensitive example (x, c) is converted into |Y| regres-

sion examples. For example, if we use least-squares linear regression, the squared loss

for a particular example (x, c) and regressor w would be:

`(w) =
∑
y∈Y

(w>f(x, y)− c(y))2.

where f(x, y) are joint features of the input-output pair (x, y). This leads to a convex

optimization problem for linear predictors (or in general using any kernel).

As mentioned, for prediction, the classifier h simply predicts the minimum cost class.

For example, in this case where we trained a linear regressor, it would predict:

h(x) = arg min
y∈Y

w>f(x, y)

It has been shown, that by using this reduction, small regret at the regression task

implies that the resulting classifier h has small regret at the cost-sensitive classification

task. Here, the regret is defined in terms of the extra additional cost, or loss, incurred

by the learned predictor, compared to the cost/loss of the bayes-optimal predictor (the

optimal predictor among all possible functions). In particular, if we learn a regressor

with regression regret R, the cost-sensitive classification regret of the resulting classifier

h is bounded by
√

2|Y|R (Tu and Lin, 2010, Mineiro, 2010).

Reduction to Ranking Another useful reduction transforms the cost-sensitive classi-

fication problem into a ”ranking” problem that penalizes ranking a class y above another

class y′ with higher cost, where the penalty is proportional to the difference in cost of

the misranked pair. This is similar to the all-pairs reduction of multi class classification

to binary classification, where here, for every pair of class (y, y′) we learn to predict

the class with lowest cost given these two. Here these binary classification examples,

are weighted by the difference in cost of the 2 class (y, y′). This reduction is called the

weighted all pairs (WAP) reduction (Beygelzimer et al., 2005).

Effectively, each cost-sensitive example (x, c) is converted into |Y|(|Y|−1)/2 weighted

binary classification examples (one for every distinct pair of class (y, y′)). For example,

2.2. REDUCTIONS BETWEEN LEARNING TASKS 37

if we are learning a linear classifier w, the weighted 0-1 loss for a particular example

(x, c) and classifier w would be:

`(w) =
∑
y∈Y

∑
y′>y

|c(y)− c(y′)|I(sign(w>f(x, y, y′)) 6= sign(c(y′)− c(y)))

where f(x, y, y′) are features of the input x and pair of class y, y′. Here if w>f(x, y, y′) >

0, this indicates the classifier predicts the class y has lower cost than y′, and counts as

a vote for class y.

To minimize this weighted 0-1 loss efficiently, we can for instance train a SVM by min-

imizing a weighted hinge loss (that upper bounds this weighted 0-1 loss). For example,

if we train a linear SVM, we obtain a weighted hinge loss of the form:

|c(y)− c(y′)|max(0, 1− w>f(x, y, y′)sign(c(y′)− c(y))).

This reduction proves advantageous whenever it is easier to predict pairwise rankings

rather than the actual cost.

In Beygelzimer et al. (2005), they show that if we achieve small average weighted

binary classification error ε on this classification task, then this implies that the cost-

sensitive classification loss of the resulting cost-sensitive classifier (by predicting the class

with most votes) is at most 2ε.

Other Reductions: Some other reductions of cost-sensitive classification exists with

improved guarantees, e.g. Sensitive Error Correcting Output Codes (SECOC) (Langford

and Beygelzimer, 2005) and Error Correcting Tournaments (ECT) (Beygelzimer et al.,

2009). These reductions can bound the regret at the cost-sensitive classification task, as

a function of the regret at a (weighted) binary classification task.

Error Reduction vs. Regret Reduction

We may divide learning reductions into two types: 1) error reductions, that allows us to

bound error or loss at the original task, as a function of the error or loss at the simpler

learning task (e.g. as in the WAP reduction above), and 2) regret reductions, that allows

us to bound the regret at the original task, as a function of the regret on the simpler

learning task (e.g. as in the reduction to regression above). As regret corresponds to

the error/loss minus the minimum possible error, regret reductions are typically more

desirable, e.g. they provide interesting guarantees even when the minimum possible error

is non-zero, such as when there is noise in the training data. Regret reductions provide

a bound that directly tells us how far from optimal performance the learned predictor

is achieving, while with error reductions, we obtain a bound on the loss/error, but it is

unknown how far this is from optimal.

38 CHAPTER 2. BACKGROUND

In this thesis, we will obtain reductions of both types, depending on the sequential

prediction setting and the training loss being minimized.

Advantages of Learning Reductions

There are several advantages to develop learning approaches to tackle complex learning

tasks through reductions. We briefly mention a few, also mentioned in Beygelzimer et al.

(2005):

1. Reductions are modular. They allow to reuse existing algorithms to tackle more

complex problems and allow the user to plugin their favorite learning algorithms

to solve the simpler learning tasks, while still providing guarantees on overall per-

formance.

2. Reductions allow to transfer new advances. If someone invents a new learning

algorithm, e.g. that is more computationally or statistically efficient, or a new class

of models/predictors, for solving the simpler learning tasks, these new advances

can be used immediately to address the original complex learning task and provide

improved performance.

3. Reductions allow to make relative performance guarantees without any assumption.

Reductions provide relative performance guarantees of the form “if we have a good

predictor on some distribution D at the simpler task, this implies good performance

at the original task”. These statements hold, without any assumption about the

data generating process, such as i.i.d. assumptions made in PAC learning. In other

words, if someone gives you such a predictor for the simpler task, you would always

be able to construct a predictor for the harder task, where the relative performance

guarantee holds.

These benefits motivate our development of a reduction approach to learning in

sequential prediction problems.

2.3 Formal Models of Sequential and Decision Processes

In this section we introduce commonly used models of sequential decision problems/control

in robotics and artificial intelligence. These models can be used to model many of the

sequential prediction tasks we consider in this thesis. Given such model, one can com-

pute the optimal policy/predictor that minimizes long-term cost over the sequence of

decisions/predictions. However, in the context of our learning tasks, these model will

typically be unknown. In chapter 8, we will consider applying our learning techniques

2.3. FORMAL MODELS OF SEQUENTIAL AND DECISION PROCESSES 39

to learn such models in the context of control tasks, that will allow us to plan optimal

sequence of actions.

We first introduce models where perfect information about the world is known and

then models taking into account uncertainty related to partial observability of the world.

Markov Decision Processes

One of the simplest class of dynamic models of robotic systems is the Markov Decision

Process (MDP) (Puterman, 1994). A MDP is defined by a tuple (S,A, T, C) where:

• S is the set of all possible states of the system. A state is a sufficient statistic

of everything that occured in the past to predict future states (configurations),

i.e. knowing previous states and actions does not give us more information about

future states if the current state is known. In the context of robotics system, the

state would encode the configuration of the robot, its velocity, etc.

• A is the set of actions that can perform at any step.

• P is the transition function, where Psa(·) specifies the probability distribution over

the next state after executing action a in state s. This represents our uncertainty

about what the next state of the system is going to be. The transition function

uses the Markov assumption, i.e. that the current state is a sufficient statistic to

predict the next state.

• C is the cost function, where C(s, a) specifies the immediate cost of doing action a

in state s. The cost encodes how desirable is a particular action and/or state with

respect to the task we want to perform.

MDPs can represent a wide range of systems. For instance a simple model of a car in

a static environment might consider the state to be the car’s current position, orientation

and velocity; the action to be the steering and acceleration; and the transition function

could be specified via a simple physical model of a point particle. If the task consists in

reaching a particular goal location as fast as possible while avoiding hitting obstacles,

then the cost function might be designed to be such that every action in every state has

a small cost, except in the goal state where no cost is incurred, and actions that causes

collisions with obstacles have large cost.

The goal in a MDP is to find a policy π : S → ∆A, mapping state to action (or

distribution over actions), that minimizes the expected sum of costs over the task horizon.

In this thesis, we will usually consider cases where the task horizon is finite, except in

chapter 8 where we will consider infinite horizons with a discount factor γ ∈ [0, 1). The

discount factor discounts costs obtained t steps in the future by a factor γt.

40 CHAPTER 2. BACKGROUND

Given a policy π, the expected t-step cost of executing policy π for t-step starting in

state s, denoted V π
t (s), is given by the Bellman equation (Bellman, 1957):

V π
t (s) = Ea∼π(s)[Q

π
t (s, a)], (2.7)

where

Qπt (s, a) = C(s, a) + γEs′∼Psa [V π
t−1(s′)], (2.8)

π(s) denotes the distribution over actions chosen by π in state s, and γ = 1 for the finite

horizon case. V π
t is called the t-step value function of π, while Qπt is called the t-step

action-value function (or simply Q function) of π. Qπt represents the expected total cost

of starting with some action and then executing the policy π for t− 1 steps. For t = 0,

we define V π
t (s) = Qπt (s, a) = 0 for all s, a. In the infinite horizon, the expected total

cost (over the infinite horizon) of a policy π satisfies:

V π(s) = Ea∼π(s)[C(s, a) + γEs′∼Psa [V π(s′)]] (2.9)

Additionally, Bellman (1957) showed that the value function V ∗t of an optimal policy

π∗ satisfies:

V ∗t (s) = min
a∈A

[C(s, a) + γEs′∼Psa [V ∗t−1(s′)]] (2.10)

In the infinite horizon case, this implies there exists a stationary (i.e. does not depend

on the current time step) and deterministic optimal policy π∗ that can be defined as:

π∗(s) = arg min
a∈A

[Q∗(s, a)], (2.11)

for
Q∗(s, a) = C(s, a) + γEs′∼Psa [V ∗(s′)]

V ∗(s) = mina∈A[Q∗(s, a)]
(2.12)

In the finite horizon case, there also exists a deterministic optimal policy, however

it is generally non-stationary (i.e. it is a function of both state and time). The optimal

policy π∗t to execute when there are t steps to go can be defined as:

π∗t (s) = arg min
a∈A

[Q∗t (s, a)], (2.13)

for
Q∗t (s, a) = C(s, a) + γEs′∼Psa [V ∗t−1(s′)]

V ∗t (s) = mina∈A[Q∗t (s, a)]
(2.14)

When there are finitely many states and actions, MDPs can be solved efficiently

via dynamic programming, using the value iteration algorithm (see Algorithm 2.3.1)

(Bellman, 1957). This algorithm computes V ∗t for t = 1, 2, . . . , T , using the previously

computed V ∗t−1.

2.3. FORMAL MODELS OF SEQUENTIAL AND DECISION PROCESSES 41

Initialize V ∗0 (s)← 0, ∀s
for t = 1 to T do

Initialize V ∗t (s)←∞, ∀s
for s in S do

for a in A do
Q∗t (s, a)← C(s, a) + γEs′∼Tsa [V ∗t−1(s′)].
V ∗t (s)← min(V ∗t (s), Q∗t (s, a))

end for
end for

end for

Algorithm 2.3.1: Value Iteration algorithm for finite MDPs.

Initialize M1 ← Q, K1 ← 0.
for t = 2 to T do
Kt ← γ(R+ γB>Mt−1B)−1B>Mt−1A
Mt ← Q+ γA>Mt−1(A−BKt)

end for

Algorithm 2.3.2: Value Iteration algorithm for LQRs.

The computational complexity of this algorithm is O(T |S|2|A|). When the horizon

is infinite, an ε-optimal policy6 π̂, where π̂(s) = arg mina∈AQ
∗
T (s, a), can be obtained by

choosing T to be O(1
1−γ log(||C||∞ε(1−γ))) (Puterman, 1994).

Linear Quadratic Regulators

When S and A are infinite, an important special cases of MDP which can be solved

efficiently are Linear Quadratic Regulators (LQR) (Kalman, 1960a). In LQR, the tran-

sitions are linear and gaussian, i.e. for any state xt and action ut at time t, xt+1 =

Axt +But + ξt (where ξt ∼ N(0,Σ) is optional zero-mean gaussian noise). Additionally

the costs are quadratic C(x, u) = x>Qx + u>Ru, for Q a positive semi-definite matrix

and R a positive definite matrix. For LQR, for any time step to go t, the optimal value

function V ∗t is a quadratic function of the state x and the optimal policy π∗t is linear

function of x:
V ∗t (x) = x>Mtx+ ct,

π∗t (x) = −Ktx,
(2.15)

where the matrices Mt and Kt can be computed efficiently via a similar value iteration

algorithm (see Algorithm 2.3.2). ct = γ(tr(Mt−1Σ) + ct−1) is simply a constant which

depends on the noise Σ, and is 0 when dynamics are deterministic. Additionally the

optimal policy does not depend on Σ.

The computational complexity of this algorithm is O(T (|x|3+|u|3)), where |x| denotes

the dimensionality of the state space and |u| the dimensionality of the action space. For

6If the initial state distribution is µ, then a policy π is ε-optimal if Es∼µ[V π(s)− V ∗(s)] ≤ ε.

42 CHAPTER 2. BACKGROUND

finite horizon T , this algorithm can also be adapted to non-stationary linear dynamics

and cost function (i.e. xt+1 = Atxt + Btut + ξt and C(xt, ut, t) = x>t Qtxt + u>t Rtut) by

simply replacing A, B, Q and R by AT−t+1, BT−t+1, QT−t+1 and RT−t+1 in the inner

loop of the previous algorithm, and initializing M1 = QT . This can be used to solve

approximately non-linear systems with non-quadratic cost functions using iterative lin-

earization/“quadraticization” techniques such as iterated LQR (iLQR) (Li and Todorov,

2004) and Differential Dynamic Programming (DDP) (Jacobson and Mayne, 1970).

Partially Observable Markov Decision Processes

In practice, robots rarely know exactly what the current state s is. They only observe

the world through noisy sensors that give them partial information about the current

state s. MDPs can be extended to handle this partial observability, and obtain policies

that reason about state uncertainty to minimize long-term costs.

The Partially Observable Markov Decision Process (POMDP) provides such an ex-

tension (Sondik, 1971). It adds 2 additional components to the MDP model:

• Z is the set of all possible observations that can be made by the system.

• O is the observation function, where Oas′(·) specifies the probability distribution

over the observation we obtain after executing action a and arriving in state s′.

In a POMDP, the uncertainty about the current state is represented as a probability

distribution over states, called the belief state, that captures the likelihood that we are

in each state. This belief state can be updated using simple applications of bayes’ rule,

each time a new action a is performed and we obtain a new observation z ∈ Z (Sondik,

1971).

A policy in a POMDP maps belief states to actions, and the optimal policy can be

found by planning in a belief MDP (where the state is the belief state, and transitions

specify possible next belief after observing different observations), e.g. using similar

techniques presented above or simple receding horizon control approaches (Ross, 2008).

More sophisticated planning algorithms for POMDPs exist that leverage the particular

structure of the value function over this belief space (Sondik, 1971, Pineau et al., 2003,

Spaan and Vlassis, 2005, Smith and Simmons, 2005). However, in all cases solving

POMDPs is very computationally expensive, and often does not scale to real world

applications (unless they are significantly abstracted or simplified).

Linear Quadratic Gaussian

An important special case of POMDP that can be solved efficiently is in the context of

continuous control problems such as LQR presented above. In this case, the observations

2.3. FORMAL MODELS OF SEQUENTIAL AND DECISION PROCESSES 43

are assumed to be a linear function of the current state xt and action ut at time t

with additional white gaussian noise, i.e. yt = Cxt + Dut + N(0,Σ′). In this case the

distribution over states is Gaussian, and can be maintained via a Kalman Filter (Kalman,

1960b). The optimal policy simply consists in applying the same LQR controller, as

computed above, to the expected state of the Kalman Filter. This is often referred to as

Linear Quadratic Gaussian Control (LQG).

Access Models

We describe here different access model to the real system that are commonly used in dif-

ferent algorithms for computing or learning a (near-)optimal policy in a MDP/POMDP.

This formalizes our assumptions about how we can interact with the system and collect

data. In particular, in this thesis, we will typically assume access only to a reset model,

as described below.

Full Probabilistic Model: This is the strongest access model and requires full knowl-

edge of all transition and observation probabilities of the real system. This allows compu-

tation of the Bellman equation exactly by summing over all possible next states/observations

to evaluate expectations. Planning methods typically assumes this type of access.

Generative Model: This is a weaker access model that allows setting the real system

in any particular state and sampling transitions/observations by doing any action in

that state. This allows to evaluate the Bellman equation to any degree of accuracy (with

high probability) by sampling next states/observations several times from the generative

model. This is an access model which is often encountered in software applications or

for systems for which we have access to a simulation, but not the full probabilistic model

description. The software can be started in any particular state and then any particular

action can be taken to obtain a sample transition/observation. Such access models are

used by many techniques for efficiently obtaining approximate solutions to MDPs (such

as Fitted Value Iteration (Gordon, 1995, Szepesvári, 2005), Sparse Sampling (Kearns

et al., 2002)).

Reset Model: This is the next weakest access model where we can only sample

state/observation in the real system along trajectories starting in the initial state dis-

tribution, by executing different sequences of actions. In this model, we can perform a

“reset”, which initializes the real system to a new initial state. Actions can be performed

to simulate the system forward in time and obtain sample next state/observation along

the current trajectory. Reset models can be used to model the type of access we have

with robots performing repeated tasks in the real world starting from some distribution

44 CHAPTER 2. BACKGROUND

of initial configurations. We cannot put the robot in any particular state, as in the gen-

erative model, but we might be able to reset it to one of its possible initial configuration.

For instance, a robotic arm might have a controller that can put back the arm into some

default configuration, from which the arm always starts its interactions with surrounding

objects. A human might also supervise the robot during the learning phase and be able

to reset the robot to a particular initial configuration between trials. Reset models are

commonly assumed in many learning algorithms (e.g. in PSDP (Bagnell et al., 2003),

CPI (Kakade and Langford, 2002) and policy gradient methods (Williams, 1992, Bagnell

and Schneider, 2003, Peters and Schaal, 2008)). This is the type of access model we will

assume in this thesis.

Trace Model: This is the weakest access model and corresponds to the reset model

without the possibility of reset. This model only allows simulating the system forward

in time by performing further actions. This models life as we experience it in our daily

lives: we cannot go back to when we were a baby and change our decisions along the

way to experiment and see what would happen later on, we must always live with the

consequences of our previous actions. Some learning algorithms only assume this type of

access model (Strehl et al., 2009, Jaksch et al., 2010), but it typically leads to optimality

guarantees that are weaker in some sense.

Chapter 3

Learning Behavior from

Demonstrations

We begin our investigation of learning sequential predictions in the particular setting of

learning control behavior from demonstrations, often called imitation learning (Schaal,

1999, Argall et al., 2009). Imitation learning is perhaps one of the sequential prediction

problem that is the most closely related to well studied statistical learning problems

such as supervised classification, but exhibits the fundamental problems and difficulties

of learning to perform sequential tasks. Therefore, imitation learning presents itself as a

natural starting point for studying the nature of learning in sequential tasks and under-

standing its fundamental difficulties, as well as building algorithms and methodologies

for theoretical analysis that can be used as building blocks in more complex sequential

prediction problems studied later on.

3.1 Preliminaries

Imitation learning is concerned with the problem of learning to perform a control task

(e.g. navigate safely and efficiently across a terrain from point A to point B) from demon-

strations by an expert. These techniques allow programming autonomous behavior in

robotic systems easily via demonstrations of the desired behavior, e.g. by human ex-

perts. This avoids time-consuming engineering required by traditional control methods

that rely on accurate dynamic models of the system and well-engineered cost functions

to synthesize controllers that produce the desired behavior. As the tasks performed by

robotic systems continuously increase in complexity, it is becoming increasingly harder

to provide good models and cost functions. As a result, learning by demonstration tech-

niques are becoming more and more popular and have led to state-of-the-art performance

in a number of recent applications, including, e.g. outdoor mobile robot navigation (Sil-

ver et al., 2008), legged locomotion (Ratliff et al., 2006), advanced manipulation (Schaal,

46 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

1999), and electronic games (Ross and Bagnell, 2010).

In its simplest form, learning to perform a repeated task can sometimes be achieved

by simply replaying demonstrated trajectories (or sequence of actions). Unfortunately

such approach can be very brittle and fail as soon as initial conditions can vary slightly

or some small external disturbances can change the outcome of the action sequence.

Additionally, such approach are very task specific and cannot generalize the learned

behavior to perform other similar tasks (e.g. drive on a different road or in different

traffic conditions).

Thus we will be interested in imitation learning techniques that attempt to generalize

the observed behavior and could be applied to perform similar tasks in similar conditions

to the observed demonstrations. We briefly give an overview of the two common approach

to imitation learning, which we classify as Behavior Cloning and Inverse Optimal Control,

following Ratliff (2009).

Behavior Cloning

A first approach to generalize the observed behavior, is to learn a controller or policy that

maps input observations to output actions. In this view, imitation learning looks like a

typical supervised learning problem. The learner is provided with a set of trajectories

demonstrating the desired behavior, that consists in a sequence of input observations

encountered by the expert and associated output actions performed by the expert after

each of these observations. Behavior cloning methods reduce imitation learning prob-

lems to such supervised learning problem, e.g. by learning a classifier or regressor that

predicts the action given the input state or observation, from data collected during ex-

pert demonstrations (Bain and Sammut, 1995). An example of how this approach would

proceed in a driving scenario is depicted in Figure 3.1. Such methods have been used

since the early 80’s to attempt to learn controllers for robot manipulators in factories

(Dufay and Latombe, 1984) and Pomerleau (1989) demonstrated early success of such

approach for more complex task such as training a neural network to drive a car on

highways from camera input. Such methods are still commonly used to learn controllers

for various tasks (Schaal, 1999, Argall et al., 2009, Chernova and Veloso, 2009).

As mentioned in the introduction, one shortcoming of this learning strategy is that

the policy learned via supervised learning will generally induce a different distribution

of states than the expert when executed to perform the task (due to errors made by the

learned policy). This discrepancy between the training and test distributions can lead

to quite poor performance at executing the task, even though the learned policy has low

error on the training set. This is made more formal in the next section. The focus of

this entire thesis is on developing methods that address this major issue.

Another shortcoming of behavior cloning is that the expert is usually optimizing (at

3.1. PRELIMINARIES 47

Expert Trajectories Dataset

Supervised LearningTest Execution

policy

...

Figure 3.1: Depiction of a typical supervised learning approach to imitation learning
in a driving scenario. Initially, the expert demonstrates the desired driving behavior
(top left). Input observations (camera image) and desired output actions (steering) are
recorded in a dataset (top right) during the demonstration. A supervised learning algo-
rithm is applied to fit a policy (bottom right), e.g. linear regression of the camera image
features to steering angle. The learned policy is then used to drive the car autonomously
(bottom left).

least approximately) a long-term objective when demonstrating the task, which may

be poorly captured in the current state or observation features. Without this long-

term reasoning, it is often impossible to achieve high accuracy at mimicking the expert

behavior. Hence, behavior cloning can typically work well only for behaviors that are

fairly reactive. Learning more proactive behaviors necessitate tremendous engineering

effort for carefully designing features that capture the expert’s decision process.

Inverse Optimal Control

Inverse Optimal Control (IOC) methods seek to address this last issue by learning the

cost function the expert is optimizing from its demonstrations (Abbeel and Ng, 2004,

Ratliff et al., 2006, Ziebart et al., 2008, 2010). These methods typically model the expert

as trying to optimize some linear cost function in the features. From the observed expert

behavior, and knowledge of the dynamics of the system (or at least access to a planner),

these methods can learn the cost function that the expert is optimizing. Predicting

the expert behavior can then be achieved by planning with the learned cost function.

48 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

Figure 3.2: Generalization of the expert’s behavior by Inverse Optimal Control methods
(images from Ratliff et al. (2006)). The expert demonstrates to follow the road between
the start and goal location on an overhead satelite image (left). A cost function is learned
from local image features that explains this behavior. The cost function is applied to
a new test image (middle) (black = low cost, white = high cost). Planning with the
learned cost function predicts to follow the road to the goal location on the test image
(right).

Thus the planning procedure models the long-term reasoning of the expert, while the

observed features only need to be able to capture immediate cost. This often leads to

much better models of behavior than with behavior cloning. This also has the advantage

that it can generalize the expert behavior to new tasks. For instance if we observe the

expert navigating from point A to point B and we learn the cost function the expert

is optimizing, then we can predict the expert’s behavior for navigating from another

point C to D by again planning with the learned cost function (see Figure 3.2). Simply

learning a mapping from observation to action would most likely fail at this new task.

A limitation of these methods is that they require access to an accurate dynamic

model of the world in order to be able to simulate the outcome of various sequence of

actions for planning during test executions, and for learning a cost function that is only

optimized by the observed demonstrations during training. In some applications, this

can be difficult to obtain. Additionally, these methods can still fail to capture perfectly

the expert behavior (e.g. if the dynamic model is inaccurate or the cost function of the

expert cannot be captured perfectly by linear combinations of the observed features) and

thus induce a similar mismatch between the training and test distribution of examples.

This could again lead to poor execution of the task if the learned cost function does

not accurately captures the expert’s behavior in these different test situations not en-

countered during training. However, this problem is typically not as pronounced as with

behavior cloning methods, due to the improved generalization ability of IOC methods.

In this thesis, we will treat IOC methods as simply black-box predictors with good

generalization ability that can be trained from a demonstration dataset when a dynamic

model of the world is available. Whether the predictor is obtained from behavior cloning,

3.2. PROBLEM FORMULATION AND NOTATION 49

or IOC, we will present iterative interactive learning procedures that can be used to

address the train-test mismatch both of these methods can suffer from and improve

their performance. In the remainder of this chapter, we will focus entirely on behavior

cloning approaches, in part for simplicity, and in part because many of the applications

we consider cannot be tackled by IOC methods, due to the unavailability of a dynamic

model of the world that can predict future sequence of observations. Nevertheless, the

same iterative learning strategy could be applied with IOC methods.

3.2 Problem Formulation and Notation

We now define formally the imitation learning problem, our objective and notation used

for later analysis.

We consider a T -step control task where the learner must predict a sequence of T

actions. We denote by Π the class of policies the learner is considering (e.g. a set of

linear classifiers or regressors). As the distribution of states encountered by different

policies is of particular importance to our analysis, we denote:

• dtπ: The distribution of states at time t if the learner executed policy π from time

step 1 to t− 1.

• dπ = 1
T

∑T
t=1 d

t
π: The average distribution of states if we follow policy π for T

steps.

Given a state s, we denote C(s, a) the expected immediate cost of performing ac-

tion a in state s for the task we are considering and denote Cπ(s) = Ea∼π(s)[C(s, a)]

the expected immediate cost of π in s. We assume C is bounded in [0, Cmax]. The

total cost of executing policy π for T -steps (i.e., the cost-to-go) is denoted J(π) =∑T
t=1 Es∼dtπ [Cπ(s)] = T Es∼dπ [Cπ(s)].

In imitation learning, we may not necessarily know or observe true costs C(s, a) for

the particular task. Instead, we observe expert demonstrations and seek to bound J(π)

for any (bounded) cost function C based on how well π mimics the expert’s policy π∗.

In particular, we would like to show that the total cost of the learned policy is not much

worse than the total cost of the expert. Denote ` the observed surrogate loss function

we minimize instead of C. For instance, if the action a is continuous and we are training

a regressor π, then `(s, a, π) may be the squared loss, `(s, a, π) = (π(s)− a)2. If actions

are discrete, then ` may be the expected 0-1 loss `(s, a, π) = Ea′∼πs [I(a′ 6= a)] or if π is

a multiclass SVM, then ` may be the hinge loss, `(s, a, π) = maxa′∈A[π(s, a′) + I(a′ 6=
a)] − π(s, a), for π(s, a) the SVM score associated with predicting a in s, and I the

indicator function. Importantly, in many instances, C and ` may be the same function–

for instance, if we are interested in optimizing the learner’s ability to predict the actions

50 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

chosen by an expert. For this objective, we will also be interested in measuring the total

expected regret (in surrogate loss) of the learned policy π over T steps, compared to

other predictors in the class, under its own induced sequences, denoted R(π):

R(π) = TEs∼dπ ,a∼π∗(s)[`(s, a, π)]− min
π′∈Π

TEs∼dπ ,a∼π∗(s)[`(s, a, π
′)]

Our goal is to find a policy π̂ which minimizes the observed surrogate loss under its

induced distribution of states with respect to expert’s actions in those states, i.e.:

π̂ = arg min
π∈Π

E
s∼dπ ,a∼π∗(s)

[`(s, a, π)] (3.1)

As system dynamics are assumed both unknown and complex, we cannot compute dπ

and can only sample it by executing π in the system. Hence this is a non-i.i.d. supervised

learning problem due to the dependence of the input distribution on the policy π itself.

The interaction between policy and the resulting distribution makes optimization difficult

as it results in a non-convex objective even if the loss `(s, a, ·) is convex in π for all states

s and actions a.

Assumptions: We do not make any assumption about the dynamics of the system or

the way the states are generated (in particular we do make any markovian assumption).

Our only assumption is that the initial state of any trajectory during training and testing

is drawn i.i.d. from the same distribution, but the distribution of states at any time t

may depend on the entire history of previous states and actions. The “state” is only

assumed a sufficient statistic of the history for determining immediate cost (under C),

the expert’s action and the action of any policy in Π (but not necessarily the next

“state”). Even though we define the learned policy as a function of state, we do not

assume the state is observable. Only some features of the current state (or observation)

are observed and available to the policy for making its predictions (e.g. we can think

that the state contains these features and that the policy class is restricted to only using

these features, rather than the entire state). Thus our analysis throughout this section

applies also to partially observable systems and systems with delays (that are unknown

to the learner). In addition, we do not assume that the task is always exactly the same

for every trajectory during training and testing. There can be a distribution over tasks

(e.g. driving different routes), and in this case the current task would be encoded as part

of the state. Thus when there are many tasks, our i.i.d. assumption on the initial state

simply implies that we assume the distribution of tasks is i.i.d. at training and testing.

We also do not assume the class of policy Π contains the expert policy π∗. That

is, there may be no policy that can mimic perfectly the expert in every state. The test

performance guarantees we present will end up depending on how well policies in the

3.3. SUPERVISED LEARNING APPROACH 51

class Π can predict the actions of the expert π∗ in expectation during training. The

more accurate they can be, the closer their performance will be to the expert.

3.3 Supervised Learning Approach

We now formalize and analyze the traditional supervised learning approach to imitation

adopted in behavior cloning methods. This analysis will illustrate the poor guarantees

of these methods, in addition to serve as a baseline to improve upon.

As mentioned previously, these methods simply train a policy π that best mimics

the expert’s actions under the distribution of states encountered by the expert dπ∗ . This

can be achieved using any standard supervised learning algorithm. Formally, they try

to optimize the following objective:

min
π∈Π

E
s∼dπ∗ ,a∼π∗(s)

[`(s, a, π)] (3.2)

In practice, this optimization can only be achieved approximately, due to observation of

only a finite set of sampled state-action pairs along sampled trajectories (demonstrations)

of the expert. Hence, if {(si, a∗i)}mi=1 is a set of m observed state-action pairs observed

from expert demonstrations, supervised learning methods would return the policy π̂sup

that minimizes the empirical loss:

π̂sup = arg min
π∈Π

m∑
i=1

`(si, a
∗
i , π) (3.3)

Analysis

We now provide a theoretical analysis of this supervised learning method. Our analysis

seeks to answer the following question: if we can achieve low error at mimicking the

expert on the training data, what guarantee can we provide on the total cost of the

learned policy, when used to perform the task?

First suppose we obtain a policy π̂sup such that its expected loss under the training

distribution is ε, i.e. ε = Es∼dπ∗ ,a∼π∗(s)[`(s, a, π̂sup)]. Then if ` is the 0-1 loss (or an

upper bound on the 0-1 loss, such as the hinge or logistic loss), we have the following

performance guarantee with respect to any task cost function C bounded in [0, Cmax],

as shown in our previous work (Ross and Bagnell, 2010):

Theorem 3.3.1. (Ross and Bagnell, 2010) Let ε = Es∼dπ∗ ,a∼π∗(s)[`(s, a, π)]. If ` upper

bounds the 0-1 loss, and C is bounded in [0, Cmax], then:

J(π) ≤ J(π∗) + CmaxT
2ε.

52 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

Proof. Due to a slight inaccuracy in the proof in (Ross and Bagnell, 2010) and that some

steps in the proof assumed π∗ was deterministic, we present here an accurate proof for

the fully general case where π and π∗ may be stochastic. Despite this, it does not change

the result of (Ross and Bagnell, 2010).

Let d1, d2, . . . , dT the distribution of states at each time step while executing the

learned policy π. Now imagine that while π is executed, we look at the actions that

would be picked by the expert π∗ in each encountered state (or sample an action from

the expert if π∗ is stochastic). Consider the event where the policy π picked the same

action as the expert π∗ in all the first t states encountered so far. Let pt the probability

that this event holds. Then by conditioning on this event, each dt can be expressed as

dt = pt−1d
(c)
t + (1 − pt−1)d

(e)
t , where d

(c)
t is the distribution of states at time t if we

always executed π, conditioned on π having picked always the correct action, i.e. the

same action as π∗ in all previously encountered states, and d
(e)
t is the distribution of

states at time t if we always executed π, conditioned on π having made at least 1 error,

i.e. it chose a different action than the expert in at least one of the previously encountered

states. Similarly, if we look at the distribution of states d∗1, d
∗
2, . . . , d

∗
T , encountered by

the expert while executing π∗, and imagine that while π∗ is executed, we look at the

actions that would be picked by π in each encountered state (or sample an action from

π if it is stochastic). Again we can condition on the event where both π∗ and π picked

the same action in all states encountered so far. Thus each d∗t can be expressed as

d∗t = pt−1d
(c)
t + (1− pt−1)d

∗(e)
t , where d

∗(e)
t would the distribution of states encountered

by the expert at time t, conditioned on π picking an action different than π∗ in at least

one of the previous states encountered by the expert π∗. We can express d∗t this way

because conditioned on both π∗ and π having always picked the same actions up to time

t− 1, they must be in the same distribution of states d
(c)
t , and because this holds for all

t, the probability that this event holds at t is also pt−1 in both cases.

Now during training, the learner is trained under the distribution 1
T

∑T
t=1 d

∗
t . Let εt

the probability that π picks a different action than π∗ in the state distribution d∗t . By

definition of ε, we have 1
T

∑T
t=1 εt ≤ ε. Now let ε

(c)
t and ε

∗(e)
t be the probability that π

picks a different action than π∗ in the state distributions d
(c)
t and d

∗(e)
t respectively. Then

we have εt = pt−1ε
(c)
t + (1− pt−1)ε

∗(e)
t . Since ε

∗(e)
t ≥ 0, then εt ≥ pt−1ε

(c)
t . Additionally,

the probability that the learner made at least 1 error in the first t steps (1 − pt) =

(1 − pt−1) + pt−1ε
(c)
t . So (1 − pt) ≤ (1 − pt−1) + εt. Solving this recurrence we have

(1− pt) ≤
∑t

i=1 εt.

Using all these facts, now consider the expected total cost J(π) of executing the policy

π. Let Ct, C
(c)
t and C

(e)
t the expected immediate cost (under cost function C) of executing

π in state distribution dt, d
(c)
t and d

(e)
t respectively. We have J(π) =

∑T
t=1Ct and

Ct = pt−1C
(c)
t +(1−pt−1)C

(e)
t . Now since C ∈ [0, Cmax], then C

(e)
t ≤ Cmax. Additionally,

3.3. SUPERVISED LEARNING APPROACH 53

consider the immediate cost C∗t and C
∗(c)
t of executing π∗ in state distributions d∗t and

d
(c)
t . Then J(π∗) =

∑T
t=1C

∗
t and because costs are non-negative, we must have C∗t ≥

pt−1C
∗(c)
t . Now in state distribution d

(c)
t , whenever both π and π∗ picks the same action,

then π must incur the same cost as the expert, and when π picks a different action, π

must incur at most cost Cmax more than the expert. Since the probability π picks a

different action is ε
(c)
t , then this implies C

(c)
t ≤ C

∗(c)
t + ε

(c)
t Cmax. Combining with the

above, we obtain:

Ct = pt−1C
(c)
t + (1− pt−1)C

(e)
t

≤ pt−1C
∗(c)
t + pt−1ε

(c)
t Cmax + (1− pt−1)Cmax

= pt−1C
∗(c)
t + (1− pt)Cmax

≤ C∗t + (1− pt)Cmax

≤ C∗t + Cmax
∑t

i=1 εt

Hence summing over t, we obtain:

J(π) ≤ J(π∗) + Cmax
∑T

t=1

∑t
i=1 εt

= J(π∗) + Cmax
∑T

t=1(T + 1− t)εt
≤ J(π∗) + CmaxT

∑T
t=1 εt

≤ J(π∗) + CmaxT
2ε

Similar results (although not as tight), were also independently developed in later

work in Syed and Schapire (2010).

More importantly our bound is tight, i.e. there exist problems such that a policy

π with ε expected loss under the training distribution dπ∗ can incur extra cost that

grows quadratically in T . Kääriäinen (2006) previously demonstrated this in a sequence

prediction example1. We also provided an imitation learning example in Ross and Bagnell

(2010) where J(π̂sup) = (1− εT)J(π∗) + T 2ε. We include it here for completeness.

Theorem 3.3.2. (Ross and Bagnell, 2010) There exists MDPs and policies π with ε ∈
[0, 1/T] expected 0-1 loss under the expert’s training distribution, i.e. ε = Es∼dπ∗ ,a∼π∗(s)[I(π(s) 6=
a)], such that J(π) = (1− εT)J(π∗) + CmaxT

2ε.

Proof. Consider the following problem with 3 states (s0, s1, s2) and 2 actions (a1, a2).

The learner always starts in s0 and transitions are deterministic as specified in Figure

3.3. The expert’s policy π∗ is to perform a2 in s1, and a1 in s0 and s2, and consider

the cost function C(s, a) = CmaxI(π∗(s) 6= a) + cI(π∗(s) = a), where I is the indicator

function and for all states s, 0 ≤ c ≤ Cmax).

1In their example, an error rate of ε > 0 when trained to predict the next output in sequence with

the previous correct output as input can lead to an expected number of mistakes of T
2
− 1−(1−2ε)T+1

4ε
+ 1

2

over sequences of length T at test time. This is bounded by T 2ε and behaves as Θ(T 2ε) for small ε.

54 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

s0

s1

s2

a1

a2

a1 a1

a2

a2

Figure 3.3: Example MDP where the supervised learning approach can lead to poor
performance. There are 3 states (s0, s1, s2) and 2 actions (a1, a2), and arrows represent
the deterministic transitions.

In this example, under π∗, one would only observe s0 with frequency 1
T and s1 the

rest of the times, i.e. dπ∗ = (1
T ,

T−1
T , 0). Now consider the policy π̂ which executes a1

with probability (1− εT) in s0, and a2 in s1, s2, for some ε ≤ 1
T . This policy which could

be learned by the supervised learning approach achieves Es∼dπ∗ ,a∼π∗(s)(`(s, a, π̂)) = ε,

for ` the 0-1 loss. However when executing π̂, we observe that 1 of 2 things occur. With

probability εT , it picks the wrong action in s0, leading it to s2 where it keeps picking the

wrong action and stays in s2, yielding a total cost of TCmax. On the other hand, with

probability (1− εT), it picks the same action as the expert in s0, leading it to s1 where

it always acts as the expert and stays in s1, yielding a total cost which is the same as

the expert J(π∗). Thus we obtain J(π) = (1− εT)J(π∗) + CmaxT
2ε.

Additionally, if we look at the regret in surrogate loss of the learned policy R(π̂), we

can see that the supervised learning approach has poor guarantees: small regret during

training, can lead to arbitrarily bad regret on the test sequences:

Theorem 3.3.3. There exists MDPs and policy classes Π, where the supervised learning

approach obtains a policy π̂ with ε ≥ 0 regret under the expert’s training distribution, i.e.

ε = Es∼dπ∗ ,a∼π∗(s)[`(s, a, π̂)] − minπ∈Π Es∼dπ∗ ,a∼π∗(s)[`(s, a, π)], that has total expected

regret R(π̂) over T steps of O(T), for all ε ≥ 0.

Proof. Consider the same MDP as in Figure 3.3, with the same expert, and where ` is the

0-1 loss, and imagine that all predictors in the class Π make an error in the initial state

s0, but there exist predictors that mimic perfectly the expert in both s1 and s2. Suppose

the learner returns a predictor π̂ that errors with probability ε′ ≥ 0 in s1, and errors with

probability 1 in s0 and s2. Then under the expert’s state distribution [1/T, (T − 1)/T, 0]

(as described in the previous theorem), this predictor has regret ε = (T−1)
T ε′ (in 0-1 loss).

Then no matter ε′, when executed, the learned policy starts in s0, goes to s2, and then

3.3. SUPERVISED LEARNING APPROACH 55

stays in s2, making an error at every step. Its total 0-1 loss is T under test executions, yet

a predictor in the class which is correct in s2 has 0-1 loss of 1 under this same sequence

of states. Thus the total expected regret of the learned policy R(π̂) = T − 1.

These results also have some implications on the number of samples required to learn

good performance with such methods. That is, due to the factor T 2, one may need a

larger number of samples to obtain good performance with this method. We briefly

analyze the sample complexity below to demonstrate this.

Sample Complexity

As mentioned previously, in practice one cannot minimize directly the expected surrogate

loss Es∼dπ∗ ,a∼π∗(s)[`(s, a, π)]. Instead the surrogate loss is minimized on a finite set of

samples (si, a
∗
i)
m
i=1 collected during expert demonstrations, as described in Equation 3.3.

Nevertheless, as we collect more and more samples, we would be able to guarantee that

with high probability, we obtain a policy which is not much worse than the policy with

smallest expected loss under the training distribution.

In particular, let εclass = minπ∈Π Es∼dπ∗ ,a∼π∗(s)(`(s, a, π)) the expected surrogate loss

of the best policy in the class. Suppose we collect m i.i.d. samples from the expert

demonstrations, then using standard PAC learning bounds, the policy π̂ that minimizes

the empirical loss on these samples will typically guarantee that with probability at

least 1 − δ, its expected loss ε ≤ εclass + O(

√
C(Π)+log(1/δ)

m), for C(Π) a measure of the

complexity of the class of policy Π (for instance its VC dimension (Vapnik, 1995) if

it is a class of binary classifiers, or analogous multi class equivalent (Natarajan, 1989)).

Because the performance guarantees scale with CmaxT
2ε, then to ensure that CmaxT

2ε ≤
CmaxT

2εclass+α with high probability 1−δ for some desired α, we would need the number

of samples m to be order O(C2
maxT

4(C(Π) + log(1/δ))/α2).

Discussion

In the context of learning reductions, this approach can be interpreted as an error reduc-

tion of imitation learning to a supervised learning problem. It is an error reduction, as

task performance is related to the error, or loss, on the supervised learning task, rather

than the regret2. Importantly, it is not a very good reduction, as performance at the

imitation learning task does not degrade nicely as error at the supervised learning task

increases. We also demonstrated that in terms of regret, this reduction does not provide

any guarantee, as small or even 0 training regret on the supervised learning task can

lead to arbitrarily large regret during testing.

2Here the regret on the supervised learning task is the difference in error of the learned predictor
to the minimum error achievable; e.g. when the expert is noisy, the minimum error would be non-zero,
even for the bayes-optimal predictor.

56 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

These results and example demonstrate that the traditional supervised learning ap-

proach can learn policies with poor guarantees that are not robust to the errors they

make, leading to a compounding growth in cost. Unless one can find predictors with

arbitrary small error at mimicking the expert, one could always find a sufficiently large

horizon T , where the learned policy may achieve the worst possible total cost. Hence

even small training error can lead to performance arbitrarily close to the worst total

cost. In addition, even in cases where good policies exists, one may need a lot of data to

find them (that grows as O(T 4)). This also illustrates how guarantees are much worse

than in the i.i.d. classification settings, where if we learn a policy with expected ε 0-1

loss during training, its expected classification loss for classifying T new examples at test

time is Tε (and not T 2ε). This leads to the following question: can we develop alternate

learning procedures for sequential problems with guarantees that are similar to the i.i.d.

setting? In the following sections, we present several approaches that can achieve this.

3.4 Iterative Forward Training Approach

We now present a first iterative and interactive training approach that can provide better

performance than the traditional supervised learning approach. This approach exploits

the structure of the time dependency between predictions, and interaction with the

learner, to provide better performance guarantees.

Intuitively, the traditional supervised approach fails to give good performance bounds

due to the discrepancy between the testing and training distribution when π̂ 6= π∗ and

because the learner does not learn how to recover from mistakes it makes. The intuition

behind the next approach, called Forward Training algorithm, is that both of these

problems can be solved if we allow the training to occur over several iterations, where

at each iteration we train one policy for one particular time step. If we do this training

sequentially, starting from the first time step to the last, then at the tth iteration, we

can sample states from the actual testing distribution at time step t by executing the

learned policies for each previous step, and then asks the expert what to do at the tth

time step to train the next policy. Furthermore, if the learner makes mistakes, the expert

demonstrates how to recover at future steps, allowing the learner to learn the necessary

recovery behaviors. The algorithm terminates once it has learned a policy for all T

steps. This is similar to the Sequential Stacking algorithm (Cohen and Carvalho, 2005)

for sequence classification.

More formally, Forward Training proceeds as follows. At the first iteration, it trains

a policy π1 for the first time step to best mimic the actions chosen by the expert π∗ on

states visited at time 1 (initial states). Then at iteration t, it trains a policy πt for time

step t, by collecting data though interaction as follows: the learner executes its learned

3.4. ITERATIVE FORWARD TRAINING APPROACH 57

Initialize π1, π2, . . . , πT arbitrarily.
for t = 1 to T do

Sample multiple t-step trajectories by executing the policies π1, π2, . . . , πt−1, starting
from initial states drawn from the initial state distribution.
Query expert for states encountered at time step t.
Get dataset D = {(st, π∗(st))} of states, actions taken by expert at time step t.
Train classifier πt = arg minπ∈Π

∑
(s,a)∈D `(s, a, π).

end for
Return non-stationary policy π̂, such that at time t in state s, π̂(s, t) = πt(s)

Algorithm 3.4.1: Forward Training Algorithm.

policies π1, π2, . . . , πt−1 for time steps 1 to t− 1, and then asks the expert which action

he would perform in the state encountered at time t. The state encountered at time t

with the associated expert action are recorded, and data is collected through multiple

t-step trajectories generated this way. The policy that best mimics the expert on these

states encountered at time t, after execution of the learned policies π1 to πt−1, is chosen

for πt. This algorithm iterates for T iterations, to learn a policy for all time steps. It is

detailed in Algorithm 3.4.1.

By training sequentially in this way, each policy πt is trained under the distribution of

states it is going to encounter during test execution. Additionally, if some of the policies

errors, then the expert will demonstrate the necessary recovery behaviors at future steps,

and hence following policies will be able to learn these behaviors.

Analysis

We now provide a complete analysis of this approach below, and contrast it with the

previous guarantees of the supervised learning approach. This analysis again seeks to

answer a similar question as before: if we can achieve small loss (on average) during

training at mimicking the expert behavior over the iterations, how well will the learned

policy perform the task?

Let π̂ denote the non-stationary policy learned by the Forward Training algorithm

that executes π1, π2, . . . , πT in sequence over T steps. For each time step t, denote

εt = Est∼dtπ̂ ,a∼π∗(st)[`(st, a, πt)] the expected training surrogate loss of the learned policy

πt for time t. Denote ε = 1
T

∑T
t=1 εt, the average expected training surrogate loss over

the T iterations of training. For this Forward Training procedure, we also have that the

expected surrogate loss at test time, under trajectories generated by π̂, is exactly ε, i.e.

Es∼dπ̂ ,a∼π∗(s)[`(s, a, π̂)] = ε. Again, this is because each policy πt is trained under the

state distribution dtπ̂, the same it encounters at test time.

58 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

Imitation Loss Guarantee

These observations already imply a first interesting result for the case where the surrogate

loss is the same as the task cost function (or an upper bound on it), i.e. Ea∼π∗(s)[`(s, a, π)] ≥
Cπ(s) for all states s. For instance we may measure task performance directly in terms of

the ability of the learner to mimic the actions of the expert (in terms of the 0-1 imitation

loss), or for continuous action problems, in terms of a squared loss penalizing deviations

from the actions of the expert.

For such task cost function that are related directly to the surrogate imitation loss

we have the following guarantee:

Theorem 3.4.1. Let ε = Es∼dπ̂ ,a∼π∗(s)[`(s, a, π̂)], the average training loss of the learned

policy π̂ with Forward Training, and ` be the same as the cost function C (or an upper

bound on it), then J(π̂) ≤ Tε.

Proof. Follows directly from the fact that:

J(π̂) =
∑T

t=1 Es∼dtπ̂ [Cπt(s)]

≤
∑T

t=1 Es∼dtπ̂ ,a∼π∗(s)[`(s, a, πt)]
= Tε

This result has particularly useful applications when we just want to measure how

well the learner can mimic the expert. In particular, in continuous settings where we use

a squared loss to expert’s action, this result indicates that under test trajectories of the

learned policy, the expected total squared distance to expert’s actions will be the same

as during training. In comparison, we did not have any guarantee for the supervised

learning approach in such continuous settings3.

Additionally, we can also show an interesting guarantee for the regret (in surrogate

loss) of the learned policy with Forward. Let

rt = E
s∼dtπ̂ ,a∼π∗(s)

[`(s, a, πt)]−min
π∈Π

E
s∼dtπ̂ ,a∼π∗(s)

[`(s, a, π)],

denote the regret of the learned policy πt for time t under the training distribution

dtπ̂. Then let r = 1
T

∑T
t=1 rt, the average regret of the learned policy returned by the

supervised learning algorithm, then we have that the total expected regret R(π̂) of the

learned policy π̂, under its own sequences of T steps, is at most Tr:

3In continuous settings, the supervised learning approach may be shown to have a similar compound-
ing growth of the cost, as in the analyzed discrete setting, under Lipschitz continuity assumption of the
expert’s policy and system transition. Without such assumptions, its performance can be arbitrarily
bad.

3.4. ITERATIVE FORWARD TRAINING APPROACH 59

Theorem 3.4.2. Let r = 1
T

∑T
t=1 rt, the average regret of the learned policies π1, π2, . . . , πT

returned by the supervised learning algorithm over the iterations of Forward, then the

learned policy π̂ with Forward is such that R(π̂) ≤ Tr.

Proof.

R(π̂)

=
∑T

t=1 Es∼dtπ̂ ,a∼π∗(s)[`(s, a, πt)]−minπ′∈Π

∑T
t=1 Es∼dtπ̂ ,a∼π∗(s)[`(s, a, π

′)]

≤
∑T

t=1[Es∼dtπ̂ ,a∼π∗(s)[`(s, a, πt)]−minπ′t∈Π Es∼dtπ̂ ,a∼π∗(s)[`(s, a, π
′
t)]]

=
∑T

t=1 rt

= Tr

Thus, in contrast with the typical supervised learning approach to imitation, where

small regret during training can lead to arbitrarily bad regret during test executions

(as shown in previous Theorem 3.3.3), Forward Training guarantees that small average

regret during training, also implies small regret during test execution.

General Cost Function Guarantee

More generally, when the task cost function C is not related directly to the surrogate

loss `, we can still show that the extra task cost incurred by the learned policy, compared

to the expert, grows linearly in T when the expert’s behavior is robust in some sense.

This is formalized below.

Let Q∗t (s, π) denote the t-step cost of executing policy π in state s and then following

the expert policy π∗ and V ∗t (s) the t-step cost of executing the expert starting in s. We

quantify the robustness of the expert’s policy π∗ as follows:

Definition 3.4.1. Consider any policy π ∈ Π such that Es∼dπ ,a∼π∗(s)[`(s, a, π)] ≤ ε and

let εt = Es∼dtπ ,a∼π∗(s)[`(s, a, π)]. We say the expert’s policy π∗ is uT,ε-robust if under

the task cost function C, Es∼dtπ [Q∗T−t+1(s, π)−V ∗T+t+1(s)] ≤ uT,εεt for any such policy π

and any time t.

The subscript T and ε indicates that uT,ε is typically a function of T and ε and

increases as T and/or ε increases. To ease the notation in our results below, we will

simply say the expert is u-robust, where the subscript T and ε implicitly used should

be clear from context. This notion of robustness measures whether policies that are

similar to the expert, i.e. small ε, can lead to state distributions where acting differently

than the expert for one more step, can increase significantly the expected cost-to-go

of the expert. It intuitively measures the ability of the expert to recover from errors

made by such similar policies. For example, consider a task that involves driving near

60 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

a cliff. In this case, a policy can potentially lead to a situation where doing a single

erroneous action falls off the cliff, at which point the expert cannot recover, leading to

large cost, whereas if the expert would have been executed immediately, he could have

avoided falling off the cliff, leading to small cost. In such case where the expert cannot

recover from single errors, uT,ε can be large (it can be as large as TCmax for discrete

actions and cost functions C bounded in [0, Cmax]). However when looking at similar

policies to the expert (small ε), we could still expect uT,ε to be small in this example if

the expert policy is driving safely far enough from the cliff. This is because the further

off the cliff the expert is driving, the larger ε would need to be for the learned policy to

encounter situations where it can fall off the cliff and the expert cannot recover. Thus in

some sense, this notion of robustness can often capture a similar notion to the stability

margin of the expert in control (Ljung, 1999). If the expert can always recover, from

execution of similar policies within some threshold of error ε, then uT,ε will be small.

Importantly, in many situations, uT,ε can be bounded by a small constant indepen-

dent of T and ε. First, if C = ` is the 0-1 loss, then uT,ε = 1, as the 0-1 loss of the

expert in all future states would be 0 (assuming π∗ is deterministic), and for any time t

and policy π we have Es∼dtπ [Q∗T−t+1(s, π)− V ∗T+t+1(s)] = εt. Another example may be a

robot navigation task with an omnidirectional robot where one can always perform an

action to come back to the previous state we were (e.g. if we went left, we can then

go right to get back to where we were). In such task, if for instance the cost of any

action is Cmax, until one reaches the goal state where cost is 0, then uT,ε ≤ 2Cmax for

good experts. That is, in any state s, for any policy that would be executed first before

the expert, the expert can then always do an action to undo the policy’s action, and

then follow the same course of action as he would have starting is s. The difference

between these two course of actions would be ≤ 2Cmax, and the expert only needs to

do this when the policy acts differently then he would (i.e. with probability less than

εt at time t if ` is the 0-1 loss or upper bounds it). Thus for any policy π and time t,

Es∼dtπ [Q∗T−t+1(s, π)−V ∗T+t+1(s)] ≤ 2Cmaxεt. More generally, in MDPs where the Markov

Chain defined by the system dynamics and expert policy π∗ is mixing, then uT,ε can be

related to the mixing rate of the chain4: if π∗ is rapidly mixing, i.e. it always recovers

quickly from errors, then uT,ε is small.

We now show the importance of this robustness notion:

Theorem 3.4.3. Let ε = Es∼dπ̂ [`(s, a, π̂)], the average training loss of the learned policy

π̂ with Forward Training, and suppose the expert π∗ is u-robust under the task cost

function C (as in Definition 3.4.1). Then J(π̂) ≤ J(π∗) + uTε.

Proof. We here follow a similar proof to Ross and Bagnell (2010). Given our policy π̂,

4In particular, if it is α-mixing with exponential decay rate δ then u is O(Cmax
1

1−exp(−δ))

3.4. ITERATIVE FORWARD TRAINING APPROACH 61

consider the policy π̂1:t, which executes π̂ in the first t-steps and then executes the expert

π∗. Then

J(π̂)

= J(π∗) +
∑T−1

t=0 [J(π̂1:T−t)− J(π̂1:T−t−1)]

= J(π∗) +
∑T

t=1 Es∼dtπ̂ [Q∗T−t+1(s, π̂)− V ∗T−t+1(s)]

≤ J(π∗) + u
∑T

t=1 εt

= J(π∗) + uTε

The inequality follows from the definition of robustness.

For discrete actions and cost functions bounded in [0, Cmax], u ≤ TCmax, so this

guarantee is always better than the guarantee of the supervised learning approach. In

scenarios where u is much smaller, then forward training can provide significant im-

provement over the supervised learning approach. In some sense, this bound says that

Forward Training can learn good and robust behavior if the expert itself is robust. In this

case, low average training error, always imply good test task performance, unlike with

the supervised learning approach. As in many real applications we can expect the expert

behavior to be somewhat robust and tolerant to some error (e.g. human drivers typically

drive near the center of the lane, at a fair distance to other vehicles or obstacles), then

we can often expect this method to provide improved performance in practice.

The previous example in Figure 3.3 also provides a concrete scenario where Forward

Training leads to improved performance compared to the supervised learning approach.

In this example, it can be seen that u ≤ (Cmax− c), and if we learn policies with average

expected training 0-1 loss of ε, we would be guaranteed to obtain a non-stationary policy

π with performance J(π) ≤ J(π∗) + (Cmax − c)Tε. However in that same example the

supervised learning method could learn a policy π with expected training 0-1 loss of ε

with performance J(π) = J(π∗) + (Cmax− c)T 2ε 5. Thus the forward training procedure

is a factor T better in this example. The intuitive reason for this is that now, if the

learned policy errors in the first step, it can collect training examples in state s2 and

learn what to do in this state, whereas with the supervised learning approach, s2 was

never visited during training.

Sample Complexity

Another advantage of this approach is that it can sometimes learn good behavior in fewer

samples than the supervised learning approach when uT,ε is small, due to the improved

dependency on T . Suppose for example that we collect m i.i.d. datapoints at each iter-

ation of training, and εclass,t = minπ∈Π Es∼dtπ̂ ,a∼π∗(s)[`(s, a, π)] is the minimum expected

surrogate loss with policies from class Π at iteration t. Let εclass = 1
T

∑T
t=1 εclass,t, the

5Using the fact that since J(π∗) = cT , (1− εT)J(π∗) + CmaxT
2ε = J(π∗) + (Cmax − c)T 2ε

62 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

minimum average expected surrogate loss. Then using standard PAC learning bounds

and a union bound over all time steps t, the expected training surrogate loss of the

learned non-stationary policy ε ≤ εclass + O(

√
C(Π)+log(1/δ)+log(T)

m) with probability at

least 1 − δ. Again here C(Π) denotes a measure of complexity of the class Π. As per-

formance decreases with uTε, then to guarantee this is not worse than uTεclass + α

with high probability 1 − δ for some desired α > 0, we would require m to be order

O(u2T 2(C(Π) + log(1/δ) + log(T))/α2). As m is the number of samples per iteration,

we would require a total of O(u2T 3(C(Π) + log(1/δ) + log(T))/α2) samples to complete

all T iterations. This is a reduction by a factor T , compared to the supervised learning

approach, when u is constant or independent of T (e.g. O(Cmax)). However in the worst

case where u is O(T), then this method may need a factor T more samples then the

supervised learning approach, i.e. O(T 5), in order to guarantee the same performance.

Discussion

The Forward Training algorithm provides a first method to obtain better guarantees and

learn more efficiently than the supervised learning approach when the expert’s policy

has good robustness properties. Unlike the supervised learning approach, where small

training error can lead to arbitrarily bad task performance, the forward training method

guarantees that small training error will lead to good task performance. In addition,

small training regret also lead to small regret under the test distribution.

In the context of learning reductions, this approach can be interpreted as an error

reduction of imitation learning to a sequence of supervised learning problems. It is again

an error reduction, as task performance is related to the average error, or loss, on the

supervised learning tasks, rather than the average regret6. It can also be interpreted as a

regret reduction for the surrogate loss objective, where regret under the test trajectories

is related to the regret on the supervised learning problems. It is a much better reduction

than the previous supervised learning reduction, as here performance at the imitation

learning task degrades nicely (linearly in T) as error (or regret) at the supervised learning

task increases. This is the best we can hope for, as it matches the same guarantees we

would have in an i.i.d. classification setting for classifying T new i.i.d. examples.

A drawback of the Forward algorithm is that it is impractical when T is large (or un-

defined) as we must train T different policies sequentially and cannot stop the algorithm

before we complete all T iterations. Hence it can not be applied to many real-world ap-

plications. Additionally, in some sense, it is still inefficient at learning the demonstrated

behavior, as it does not generalize the behavior across time steps and may need to learn

6Here the average regret on the supervised learning tasks is the average difference in error of the
learned predictors to the minimum error achievable on each task; e.g. when the expert is noisy, the
minimum error would be non-zero, even for the bayes-optimal predictor.

3.5. STOCHASTIC MIXING TRAINING 63

the same (or similar behavior) repeatedly from scratch across many steps. This is not

very satisfactory and we should intuitively be able to do better than this by generalizing

the behavior across time. Despite this, it can be still a useful algorithm in other sequen-

tial prediction settings where small sequence of predictions are more common (e.g. the

recommendation tasks we consider in Chapter 7).

In the next two sections, we present approaches that address these limitations, while

still providing similar performance guarantees.

3.5 Stochastic Mixing Training

To avoid the limitations of having to train a separate policy for each step, which is

often impractical and inefficient as just discussed, we would like instead to train a fixed

stationary policy, that is executed for all time steps. Before we introduce the main

approach of this thesis that allows learning such stationary policy efficiently, we briefly

discuss some other related work that allows learning a stationary stochastic policy, with

guarantees similar to Forward.

One of the intuition behind the Forward training algorithm is that it can achieve

good performance by training the policy slowly, i.e. training one step at a time per

iteration, in a way that it allows the policy to adapt to the changing distribution of

states. The two approaches we review here, SEARN (Daumé III et al., 2009) and SMILE

(Ross and Bagnell, 2010), train a stationary stochastic policy using a similar strategy of

training the policy slowly. In particular, these methods also proceed iteratively, learning

from interactions with the learner, by changing the distribution of actions picked by the

stationary stochastic policy slowly over the iterations. The slow change in the policy is

related to the Forward approach in the following sense: from one iteration to the next,

with high probability the policy changes at most 1 action over the entire sequence of T

steps. Hence, in some sense, these methods can be interpreted as randomized versions of

the Forward training procedure. By making the changes small enough from one iteration

to the next, these methods can provide similar guarantees to Forward.

We begin by reviewing SEARN (Daumé III et al., 2009), an existing approach that

was proposed in the context of Structured Prediction, that we describe more extensively

when applying our methods to such problems in Chapter 6. SEARN can be adapted

for imitation learning problems and we describe here how it can be applied in such

settings. Then we discuss a variant of this approach, called SMILE, that we introduced

in our previous work (Ross and Bagnell, 2010), that is often more practical than SEARN

for imitation learning problems, while still providing improved guarantees over naive

supervised learning.

64 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

SEARN for Imitation Learning

In the context of imitation learning, SEARN can be applied to train iteratively a station-

ary stochastic policy as follows. Starting from a policy π0 = π∗, that queries the expert

π∗ and executes its action, SEARN first trains a policy π̂1 by collecting data from execu-

tion of π0. This new policy is then stochastically mixed with π0 to obtain the next policy

π1 = (1−α)π0 +απ̂1, for some small α > 0. This update is interpreted as follows: in each

step π1 executes π0 with probability (1−α) and with probability α, executes π̂1. SEARN

keeps iterating in a similar fashion: at each iteration n, it interacts with the learner to

collect new data from execution of the learner’s current policy πn−1. This new data is

used to train a new policy π̂n, that is stochastically mixed with πn−1, to obtain the next

policy πn = (1−α)πn−1+απ̂n. In other words, the stochastic policy trained in SEARN is

represented as a distribution over policies, such that πn = (1−α)nπ0+α
∑n

i=1(1−α)n−iπ̂i.

After n iterations, the probability that πn queries the expert to execute its action (i.e.

picks π0) at any step is (1 − α)n, i.e. it becomes exponentially small as this procedure

is iterated. After some large number of iterations N , SEARN terminates and returns a

final policy π̃N that does not query the expert, by renormalizing the distribution over

learned policies, i.e. π̃N = α
1−(1−α)N

∑N
i=1(1− α)N−iπ̂i.

At each iteration n, SEARN trains π̂n to pick actions that minimize future total

cost, if the current policy πn−1 would be executed from then on, under the distribution

of states visited by πn−1. This requires knowledge of the task cost function C. When C

is unknown, SEARN can be applied to minimize future surrogate loss ` of the current

policy. To do so, SEARN collects training examples, by executing the current policy

πn−1, and at some random time t, for the current state s, explores an action a and

then executes πn−1 until time T , to observe the total future loss Q action a induces in

state s when πn−1 is executed afterwards. Each trajectory generates a single example

(s, a,Q), that associates cost Q to executing action a in state s. In structured prediction,

SEARN typically proceeds by trying all predictions, from the current state, and rolling

out the current policy πn−1, to obtain cost estimates Q for all predictions/actions in

the current state. This is possible in imitation learning only if we can put back the

system exactly in the same state s to try all possible actions. While this may be possible

in simulated environments, on real robots this is often impossible or very hard. In

this case, SEARN can still be applied from the cost estimate of only a single explored

action in each visited state using techniques described later in Chapter 4. From the

dataset of examples (s, a,Q) collected at iteration n, SEARN then solves a cost-sensitive

classification problem to obtain the policy π̂n (the classifier that picks actions with

minimum cost on the training examples).

In Daumé III et al. (2009), they show that if the learning parameter α is chosen small

enough, i.e. order O(1/T 3), and SEARN is iterated for long enough, N order O(T 3),

3.5. STOCHASTIC MIXING TRAINING 65

then SEARN provides good guarantees, i.e. it will learn a stationary stochastic policy

π̃N that performs the task well, under its own trajectories (assuming policies in the class

Π can solve the cost-sensitive classification tasks well on average).

The guarantees are similar to Forward as above: i.e. J(π̃N) ≤ J(π∗) + T log(T)ε +

O(log T) (Daumé III et al., 2009), except here, ε corresponds to the average cost-sensitive

classification regret7 of the learned policies π̂n over the training iterations. When SEARN

is applied to minimize the surrogate loss `, a similar argument, involving the robustness

properties of the expert π∗, could be made to show that small surrogate loss ` implies

good task performance under the cost function C, i.e. J(π̃N) ≤ J(π∗) + uT log(T)ε +

O(u log T) if the expert π∗ is u-robust as in Definition 3.4.1.

In theory, SEARN needs a much larger number of iterations N than Forward, i.e.

O(T 3) instead of T . However in practice, SEARN can be applied with larger α, say

α = 0.1, and iterated for a small number of iterations (10-20 iterations) and obtain good

policies that perform the task well.

One of the drawback of SEARN is that it involves simulating an entire trajectory to

collect each datapoint. This can often be impractical as it requires a lot of effort from

human experts to collect any significant amount of data. A variant of SEARN can be

used to address this issue and is presented below.

SMILE: Stochastic Mixing Iterative Learning

In Ross and Bagnell (2010), we presented a technique called SMILE, that provides a

more practical variant of SEARN for learning from human experts in imitation learning

tasks. SMILE proceeds iteratively exactly like SEARN, and updating the policy through

stochastic mixing exactly as in SEARN, except that it chooses the policies π̂n differently.

The main idea is that instead of attempting to find a policy that minimizes future loss

of the current policy πn−1, we can simply try to find a policy that does not increase

its loss, and/or cost. In particular, this is achieved if we can find a policy π̂n that

behaves exactly like πn−1, i.e. as if π̂n = πn−1, then πn = πn−1. Since we know

πn−1 = (1 − α)n−1π∗ + α
∑n−1

i=1 (1 − α)n−1−iπ̂i, the only component of πn−1 that needs

to be learned is the expert π∗. Thus SMILE does the following, at iteration n, it learns

a policy π′n, that mimics well the expert under the distribution of states encountered by

πn−1, which is used to construct π̂n = (1− α)n−1π′n + α
∑n−1

i=1 (1− α)n−1−iπ̂i, and then

update πn = (1 − α)πn−1 + απ̂n. Effectively, this update leads to πn = (1 − α)nπ∗ +

α
∑n

i=1(1−α)i−1π′i. Thus we do not need to construct the intermediate policies π̂n, but

can simply maintain the distribution that associates probability α(1− α)n to executing

policy π′n to represent πn. After N iterations, SMILE also returns the renormalized

7By regret here we mean the difference in cost-sensitive classification loss of the learned classifier to
the bayes-optimal classifier that achieves minimum cost on the training data.

66 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

policy π̃N that does not query the expert π∗.

SMILE is more practical than SEARN, as at each iteration, it only needs to record the

actions the expert would perform in every visited states along trajectories from execution

of πn−1. This allows for recording as many as T data points per trajectory, instead of

only 1 for SEARN. Training the policy π′n, simply involves solving a classification or

regression task to minimize the surrogate loss ` on this training data.

When training the policies in this way, SMILE leads to a distinction compared to

SEARN: older policies trained earlier have more weights (higher probability) than newer

policies. This is the opposite of SEARN, where newer policies have higher probability.

In Ross and Bagnell (2010), we showed that by choosing α = O(1
T 2) and perform-

ing O(T 2 log T) iterations leads good guarantees for SMILE. Again in practice, one can

typically apply this algorithm with much larger α and iterate for a few iterations to

obtain a practical method that still improves over naive supervised learning. The guar-

antees of SMILE are similar to Forward and lead to an improvement over the standard

supervised training approach when the expert has good robustness properties. However

the guarantees are weaker than Forward, as it requires a stronger notion of robustness,

where during training the intermediate stochastic policies πn must themselves be robust.

In particular, if πn is un-robust, and at iteration n, π′n achieves εn 0-1 loss under the

distribution of πn−1 (or surrogate loss that upper bounds the 0-1 loss), then SMILE

guarantees that (Ross and Bagnell, 2010):

J(π̃N) ≤ J(π∗) +O

(
1 +

α

1− (1− α)N
T

N∑
n=1

(1− α)n−1un−1εn

)
.

This leads to good guarantees as long as the stochastic policies do not degrade too

fast, in terms of their robustness properties. For instance if un−1 is O(Cmax/(1−α)n−1),

as was shown in Ross and Bagnell (2010) for the example MDP in Figure 3.3, then this

leads SMILE to guarantee J(π̃N) ≤ J(π∗) +O(CmaxT log(T)ε), for ε the average 0-1 loss

of the learned classifiers π′n over the training iterations.

However, there are some class of problems where Forward still provides good guaran-

tees (i.e. performance degrading linear in T and ε) but where SMILE does not improve

much over supervised learning. This can occur in problems where πn encounters sit-

uations where the only way for πn to recover, is if the expert policy π∗ is sampled to

be executed multiple time steps in a row by πn. In this case the robustness term can

degrade quickly, i.e. un can increase faster than O(1/(1 − α)n) as n increases, making

un reach the maximum TCmax quickly, and be TCmax for most iterations. This leads to

performance that degrades as O(CmaxT
2ε), just like the supervised learning approach.

3.6. DATASET AGGREGATION: ITERATIVE INTERACTIVE LEARNING
APPROACH 67

Discussion

These stochastic mixing approaches present an alternative to Forward that can learn

a stationary policy, instead of a non-stationary policy, while still providing improved

guarantees. This has the advantage of allowing to generalize the behavior across time

steps, making learning more efficient, and in practice allows training the policy over

fewer iterations, e.g. much less than T .

On the other hand, these methods still have several limitations and drawbacks in

practice. SEARN can be impractical by requiring expensive rollouts of the current

policy to collect each data point. Its more practical variant, SMILE, does not enjoy as

strong guarantees as Forward or SEARN. Additionally, both methods ultimately learn

a stochastic policy. This can be undesirable in practical applications. For instance, we

will not obtain a fixed reproducible behavior, and failures may occur sometimes due to

some “unlucky” sampling of the policies during execution.

The method we present next addresses these issues, by allowing to learn a stationary

deterministic policy, while still obtaining similar guarantees as Forward and without

requiring stronger robustness properties like SMILE.

3.6 Dataset Aggregation: Iterative Interactive Learning

Approach

We now present the main approach of this thesis, that allows learning efficiently a sta-

tionary deterministic policy guaranteed to perform well under its induced distribution

of states (number of mistakes/costs that grows linearly in T and classification cost ε).

The approach is called DAGGER, for Dataset Aggregation, originally presented in our

prior work (Ross et al., 2011), and is closely related to no-regret online learning algo-

rithms (Cesa-Bianchi et al., 2004, Hazan et al., 2006, Kakade and Shalev-Shwartz, 2008)

(in particular Follow-The-Leader). This approach leverages the strong learning guaran-

tees of no-regret online learning algorithms, combined with learner interactions for data

collection, to ensure good generalization performance on sequential problems.

In its simplest form, DAGGER proceeds as follows. At the first iteration, it uses

the expert’s policy to gather a dataset of trajectories D and train a policy π̂2 that best

mimics the expert on those trajectories. Then at iteration n, it interacts with the learner

by letting the learner execute its current policy π̂n to observe states occurring under this

policy and query the expert in those states. This new data is added to the dataset D.

The next policy π̂n+1 is the policy that best mimics the expert on the whole dataset D.

In other words, DAGGER proceeds by collecting a dataset at each iteration under the

current policy and trains the next policy under the aggregate of all collected datasets.

A diagram depicting the DAGGER algorithm for imitation learning is shown in Figure

68 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

3.4.

Test

Execution

Collect

Data

Supervised

Learning

Expert

Learned

Policy

Aggregate

Dataset

Done?

yes
no

i̂
Best

Policy

i̂

Figure 3.4: Diagram of the DAGGER algorithm for imitation learning.

A concrete example on how this algorithm is applied in practice is demonstrated in

a car racing game in the experiments (Chapter 5), where we attempt to learn a policy

that can steer the car properly based on the input game image as the car drives at fixed

speed. In this task, a first dataset of game images, with associated human player steering,

commanded via a joystick, is collected during human play, to train a first policy. Then

at each following iteration, the computer controls the car during play, according to its

current policy, while the human player provide steering commands he would perform in

the current situation with the joystick, in real time as the car is driven by the computer.

The human commands are not executed, but simply recorded and associated to the

current game image. This new data collected at each iteration is aggregated with all

previously recorded data to train the next policy. This is depicted in Figure 3.5.

The intuition behind this algorithm is that over the iterations, we are building up

the set of inputs that the learned policy is likely to encounter during its execution, and

the corresponding necessary recovery behavior, based on previous experience (training

iterations). By training on all this data, we obtain policies that can mimic the expert

and the recovery behaviors for their likely failures. This algorithm can be interpreted as

a online learning Follow-The-Leader algorithm in that at iteration n we pick the best

policy π̂n+1 in hindsight, i.e. under all trajectories seen so far over the iterations. In

general, we show below that DAGGER can use in any no-regret online learning algorithm

to pick the sequence of policies π̂1:N over the iterations of the algorithm and that this is

sufficient to provide good guarantees (see Figure 3.6).

To better leverage the presence of the expert in our imitation learning setting, we

optionally allow the algorithm to use a modified policy πi = βiπ
∗+(1−βi)π̂i at iteration

i that executes the expert controls a fraction of the time (with probability βi at each

step) while collecting the next dataset. This is often desirable in practice as the first few

3.6. DATASET AGGREGATION: ITERATIVE INTERACTIVE LEARNING
APPROACH 69

Execute current policy and Query Expert
New Data

Supervised Learning

All previous data

Aggregate

Dataset

Steering

from expert

New

Policy

Figure 3.5: Depiction of the DAGGER procedure for imitation learning in a driving
scenario.

Test

Execu*on

Collect

Data

No‐Regret

Online Learner

Expert

Learned

Policy
Done?

yes no
i

π̂

Best

Policy

i
π̂

e.g. Gradient

Descent

Figure 3.6: Diagram of the DAGGER algorithm with a general online learner for imita-
tion learning.

policies, with relatively few data points, may make many more mistakes and visit states

that are irrelevant as the policy improves. We will typically use β1 = 1 so that we do

not have to specify an initial policy π̂1 before getting data from the expert’s behavior.

Then we could choose βi = pi−1 to have a probability of using the expert that decays

exponentially as in SMILE and SEARN. The only requirement is that {βi} be a sequence

such that βN = 1
N

∑N
i=1 βi → 0 as N → ∞. The simple, parameter-free version of the

70 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

Initialize D ← ∅.
Initialize π̂1 to any policy in Π.
for i = 1 to N do

Let πi = βiπ
∗ + (1− βi)π̂i.

Sample T -step trajectories using πi.
Get dataset Di = {(s, π∗(s))} of visited states by πi and actions given by expert.
Aggregate datasets: D ← D

⋃
Di.

Train classifier π̂i+1 on D (or use online learner to get π̂i+1 given new data Di).
end for
Return best π̂i on validation.

Algorithm 3.6.1: DAGGER Algorithm.

algorithm described above is the special case βi = I(i = 1) for I the indicator function,

which often performs best in practice (see Chapter 5). The general DAGGER algorithm

is detailed in Algorithm 3.6.1.

Analysis

We now provide a complete analysis of this DAGGER procedure, and show how the

strong no-regret property of online learning procedures can be leveraged, in this inter-

active learning procedure, to obtain good performance guarantees. Again here, we seek

to provide a similar analysis to previously analyzed methods that seeks to answer the

following question : if we can find good policies at mimicking the expert on the aggre-

gate dataset we collect during training, then how well the learned policy will perform

the task?

The theoretical analysis of DAGGER relies primarily on seeing how learning iter-

atively in this algorithm can be viewed as an online learning problem and using the

no-regret property of the underlying Follow-The-Leader algorithm on strongly convex

losses (Kakade and Tewari, 2009) which picks the sequence of policies π̂1:N . Hence, the

presented results also hold more generally if we use any other no-regret online learning

algorithm we would apply to our imitation learning setting. In particular, we can con-

sider the results here a reduction of imitation learning to no-regret online learning where

we treat mini-batches of trajectories under a single policy as a single online-learning

example. In addition, in Chapter 9, we also show that the data aggregation procedure

works generally whenever the supervised learner applied to the aggregate dataset has

sufficient stability properties. We refer the reader to Chapter 2 for a review of concepts

related to online learning and no regret that is used for this analysis. All the proofs of

the results presented here are in Appendix A.

3.6. DATASET AGGREGATION: ITERATIVE INTERACTIVE LEARNING
APPROACH 71

Relation to Online Learning

We first begin by showing how we can view DAGGER as trying to find a good predictor

in a particular online learning problem, as this is crucial to our analysis. Imagine an

online learning problem, where at each iteration i, the learner picks a policy π̂i ∈ Π that

incurs loss on the loss function `i chosen by the adversary. In particular, consider the ad-

versary to choose the loss `i such that for any π ∈ Π, `i(π) = Es∼dπi ,a∼π∗(s)[`(s, a, π)], for

πi = βiπ
∗+ (1−βi)π̂i. Then we can see that DAGGER, at iteration i, is exactly collect-

ing a dataset Di, that provides an empirical estimate of this loss `i. Additionally, when

DAGGER trains on the aggregate dataset D at iteration i to choose π̂i+1, it is choosing

the best policy in hindsight as in Follow-the-Leader, i.e. π̂i+1 = arg minπ∈Π

∑i
j=1 `j(π)

(or at least on the empirical estimates of each `j). Thus DAGGER as presented, corre-

sponds to running Follow-the-Leader in a particular online learning problem where the

adversary picks the sequence of loss {`i}Ni=1 as mentioned above. The importance of

this relation that is shown in our detailed analysis is the following: if an algorithm can

achieve no-regret on this particular online learning problem (i.e. against this particular

adversary), then it must find good policies at mimicking the expert under their own

induced distribution of states. More precisely, this will hold whenever there exists good

policies at mimicking the expert on the aggregate dataset. These results also imply that

one can use any no-regret online algorithm to choose the sequence of policies {π̂i}Ni=1

against this same adversary.

Implication of No-Regret on Task Performance

We now move on to show how no-regret algorithms must guarantee finding policies that

perform the task well, if policies with small loss exist on the aggregate training dataset.

This is achieved by relating the performance of the policy at the task, directly to the

performance of DAGGER on the online learning problem. That is, task performance is

related to 2 quantities: 1) the regret at online learning and 2) the surrogate loss of the

best policy in the class on the training aggregate dataset.

Let

εclass = minπ∈Π
∑N

i=1 `i(π)

= minπ∈Π
1
N

∑N
i=1 Es∼dπi ,a∼π∗(s)[`(s, a, π)]

denote the minimum expected surrogate loss achieved by policies in the class Π on all

the data over the N iterations of training (i.e. the minimum surrogate loss at mimicking

the expert in hindsight). Denote the online learning average regret of the sequence of

policies chosen by DAGGER,

εregret = 1
N [
∑N

i=1 `i(π̂i)−minπ∈Π
∑N

i=1 `i(π)]

= 1
N

∑N
i=1 Es∼dπi ,a∼π∗(s)[`(s, a, π̂i)]− εclass.

72 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

We will show good guarantees for the “uniform mixture” policy π, that at the be-

ginning of any trajectory samples a policy π uniformly randomly among the policies

{π̂i}Ni=1 and executes this policy π for the entire trajectory. The task performance of

this mixture policy corresponds to the average task performance of the policies chosen

by DAGGER, i.e. J(π) = 1
N

∑N
i=1 J(π̂i). We analyze this mixture policy for conve-

nience of theoretical analysis. However, good guarantees for this mixture policy im-

plies immediately good performance for 1) the best policy π̂ in the sequence π̂1:N , i.e.

J(π̂) = mini∈1:N J(π̂i) ≤ J(π), and 2) the last policy π̂N when the distribution of visited

states converge over the iterations. Thus by analyzing and bounding J(π), we will at

the same time provide guarantees for common choices of policies one would use at test

time after DAGGER terminates.

Assume the loss ` is non-negative and bounded by `max, and βi ≤ (1− α)i−1 for all

i for some constant α 8. Then the following holds in the infinite sample case (i.e. if

at each iteration of DAGGER we would collect an arbitrarily large amount of data by

running the current policy):

Theorem 3.6.1. If the surrogate loss ` is the same as the task cost function C (or upper

bounds it), then after N iterations of DAGGER:

J(π̂) ≤ J(π) ≤ T [εclass + εregret] +O

(
`maxT log T

αN

)
.

Thus if a no-regret online algorithm is used to pick the sequence of policies π̂1:N , then

as the number of iterations N →∞:

lim
N→∞

J(π) ≤ Tεclass

Proof. To illustrate the idea of the proof technique and how this result simply follows

from the no-regret property, we present here the proof for the simple case where βi = 0

for all i. The complete proof for the general case of non-zero βi can be found in Appendix

A.
J(π)

= 1
N

∑N
i=1 J(π̂i)

= 1
N

∑N
i=1 T Es∼dπ̂i ,a∼π∗(s)[`(s, a, π̂i)]

= 1
N

∑N
i=1 T Es∼dπi ,a∼π∗(s)[`(s, a, π̂i)]

= T [1
N

∑N
i=1 `i(πi)]

= T [εclass + εregret]

where the 3rd equality uses the fact that dπ̂i = dπi for all i since here we assumed βi = 0

for all i. In the general case where βi 6= 0, this step turns into an inequality where an

8e.g. the parameter-free version of DAGGER corresponds to α = 1, taking as a definition 00 = 1.

3.6. DATASET AGGREGATION: ITERATIVE INTERACTIVE LEARNING
APPROACH 73

additional term is introduced. This adds a term that is O
(
`maxT log T

αN

)
to the overall

bound (when βi = (1−α)i−1). See Appendix A. Finally, J(π̂) ≤ J(π) since the minimum

is always lower or equal to the average.

This last result also implies good regret guarantees (in surrogate loss) for the uniform

mixture policy π under its induced test trajectories:

Corollary 3.6.1. After N iterations of DAGGER:

R(π) ≤ Tεregret +O

(
`maxT log T

αN

)
.

Thus if a no-regret online algorithm is used to pick the sequence of policies π̂1:N , then

as the number of iterations N →∞:

lim
N→∞

R(π) ≤ 0

Proof. It suffice to note that when the task cost function is the surrogate loss (as in the

previous theorem), then R(π) = J(π) − Tεclass, and thus the last theorem proves this

corollary.

This indicates the total expected regret of the mixture policy is directly related to

the average online regret of the learner on the online learning problem, and goes to 0

whenever DAGGER uses a no-regret procedure.

More generally, when the cost function C is unknown and different from `, we can

still provide good performance bounds when the expert is robust, as discussed in the

analysis of the Forward Training algorithm:

Theorem 3.6.2. If the expert π∗ is u-robust with respect to cost function C (as in

Definition 3.4.1), then after N iterations of DAGGER:

J(π̂) ≤ J(π) ≤ J(π∗) + uT [εclass + εregret] +O

(
u`maxT log T

αN

)
.

Thus if a no-regret online algorithm is used to pick the sequence of policies π̂1:N , then

as the number of iterations N →∞:

lim
N→∞

J(π) ≤ J(π∗) + uTεclass

In addition, when the distribution of state-action pairs of the policies in the sequence

converge, the performance of πN must be close to the performance of π:

Theorem 3.6.3. If there exists a state-action distribution D∗, scalar ε∗conv ≥ 0 and a

sequence {εconv,i}∞i=1 that is o(1), such that ||Dπ̂i −D∗||1 ≤ ε∗conv + εconv,i for all i. Then

for any cost function bounded in [0, Cmax]:

lim
N→∞

J(πN) ≤ lim
N→∞

J(π) + CmaxTε
∗
conv

74 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

In theory, such convergence is not guaranteed to occur, although it often tend to

occur in practice as the online algorithm makes smaller and smaller changes to the policy

as N gets larger. In practice, this result reflects the typical observed behavior of the

algorithm: performance tends to improve in the first few iterations and then stabilizes,

and the last policy often achieves the best performance (or nearly so) among all policies

in the sequence. After all, the last policy is the one trained with most data, and should

intuitively tend to be better.

These results indicate how the task performance of the learned policy is related to

the online regret at online learning and the training loss of the best policy. In the limit

of iterations, the guarantees for DAGGER ends up very similar to the guarantees of

Forward Training, i.e. performance degrades linearly with T (or uT) and the training

loss εclass. However it is not necessary to perform an arbitrarily large number of iterations;

we only need N to be large enough to make the average online regret term negligible.

By leveraging existing online learning results, the following corollaries indicate that the

number of iterations required is often of order Õ(T) or O(T 2) for common loss ` and

no-regret algorithms:

Corollary 3.6.2. Suppose ` is strongly convex in π for all s, a and DAGGER uses

Follow-the-Leader to pick the sequence of policies, then: If ` upper bounds C, then for

any ε > 0 after Õ(T/ε) iterations of DAGGER:

J(π̂) ≤ J(π) ≤ Tεclass +O(ε).

For arbitrary cost C, if the expert π∗ is u-robust with respect to C (as in Definition

3.4.1), then for any ε > 0 after Õ(uT/ε) iterations of DAGGER:

J(π̂) ≤ J(π) ≤ J(π∗) + uTεclass +O(ε).

Corollary 3.6.3. Suppose ` is convex in π for all s, a and DAGGER uses Follow-the-

Regularized-Leader to pick the sequence of policies, then: If ` upper bounds the cost C,

then for any ε > 0 after O(T 2/ε2) iterations of DAGGER:

J(π̂) ≤ J(π) ≤ Tεclass +O(ε).

For arbitrary cost C, if the expert π∗ is u-robust with respect to C (as in Definition

3.4.1), then for any ε > 0 after O(u2T 2/ε2) iterations of DAGGER:

J(π̂) ≤ J(π) ≤ J(π∗) + uTεclass +O(ε).

While in theory, these results indicate that DAGGER needs more iterations than

the Forward training procedure to obtain good guarantees, in practice, it often only

takes very few iterations for DAGGER to find very good policies. For instance, in

3.6. DATASET AGGREGATION: ITERATIVE INTERACTIVE LEARNING
APPROACH 75

most experiments we obtain good performance after only 3 to 5 iterations, and then

performance improves more slowly (see Chapter 5). Thus in practice, DAGGER can be

run for much fewer iterations than T , and still often obtain a very good policy. This

makes DAGGER much more practical than Forward, as Forward can never be stopped

before iterating and training T policies.

Despite needing more iterations in theory, in the following finite sample analysis, we

show that DAGGER needs less total samples than Forward to obtain good guarantees.

Intuitively, this is because by learning a single policy for all time steps, DAGGER can

generalize the behavior across time step, and thus avoid having to learn from scratch the

behavior at each step separately.

Sample Complexity

The previous results hold if during the execution of DAGGER, we would collect an

infinite number of samples at each iteration, such that the online learning algorithm can

evaluate exactly the expected loss `i, i.e. the loss on the exact distribution of states

induced by the current policy πi
9. In practice however, we only collect a small sample

of trajectories (or states), such that the online learning algorithm only has access to an

empirical estimate of `i when updating the policy. We show below that this does not

change our main results, and that we can still guarantee to obtain a good policy with

high probability after a sufficient number of iterations and enough total samples have

been collected.

Suppose we sample m trajectories with πi at each iteration i (or simply m i.i.d.

states from dπi with their associated target expert action), and denote this dataset Di.

Let ε̂class = minπ∈Π
1
N

∑N
i=1 E(s,a)∼Di [`(s, a, π)] be the empirical training surrogate loss

of the best policy on the sampled data, then using Azuma-Hoeffding’s inequality leads

to the following generalization of the previous guarantees:

Theorem 3.6.4. If the surrogate loss ` is the same as the task cost function C (or upper

bounds it), then after N iterations of DAGGER collecting m i.i.d. samples per iteration,

with probability at least 1− δ:

J(π̂) ≤ J(π) ≤ T [ε̂class + ε̂regret] +O

(
`maxT log T

αN
+ `maxT

√
log(1/δ)

mN

)
.

Here ε̂regret simply denotes the average regret on the empirical loss over the iterations.

Similarly:

9However note that in the case of deterministic systems, with deterministic policies and experts,
then only 1 trajectory is needed to evaluate the expected loss. So this infinite sample analysis applies in
practice to deterministic settings as well.

76 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

Theorem 3.6.5. If the expert π∗ is u-robust with respect to cost function C (as in

Definition 3.4.1), then after N iterations of DAGGER collecting m i.i.d. samples per

iteration, with probability at least 1− δ:

J(π̂) ≤ J(π) ≤ J(π∗) + uT [ε̂class + ε̂regret] +O

(
u`maxT log T

αN
+ `maxuT

√
log(1/δ)

mN

)
.

Thus we can see that DAGGER, over all iterations, only needs a total of O(T 2)

samples to guarantee good performance:

Corollary 3.6.4. Suppose ` is convex in π for all s, a and DAGGER uses Follow-the-

Regularized-Leader to pick the sequence of policies, then: If ` upper bounds the cost C,

then for any ε > 0 after O(T 2 log(1/δ)/ε2) iterations of DAGGER collecting m = 1 i.i.d.

samples per iteration, with probability at least 1− δ:

J(π̂) ≤ J(π) ≤ T ε̂class +O(ε).

For any cost function C, if the expert π∗ is u-robust with respect to C (as in Definition

3.4.1), then for any ε > 0, after O(u2T 2 log(1/δ)/ε2) iterations of DAGGER collecting

m = 1 i.i.d. samples per iteration, with probability at least 1− δ:

J(π̂) ≤ J(π) ≤ J(π∗) + uT ε̂class +O(ε).

This result shows that DAGGER can be run by collecting a single sample at each

iteration (e.g. by querying the expert at only a single state, randomly chosen among

all time steps, along a single sampled trajectory of the current policy). After a total

of O(T 2) iterations, and a total of O(T 2) samples, DAGGER guarantees a good policy

with high probability. 10

These finite sample results indicate that for tasks where the expert is robust (e.g.

u is a small constant), DAGGER only needs order O(T 2) samples over all iterations

to obtain good guarantees. This is an improvement by a factor T compared to the

Forward training procedure with the same robust expert conditions, and by a factor T 2

compared to the supervised learning approach. Here DAGGER improves on the sample

complexity of Forward Training because it can generalize the learned behavior across

many time steps, by learning a single policy, rather than learning the behavior from

scratch at each time step.

10When the loss is strongly convex, a more refined analysis taking advantage of the strong convexity
of the loss function (Kakade and Tewari, 2009) may lead to tighter generalization bounds that require
N only of order Õ(T log(1/δ)), and thus only order Õ(T) samples in total.

3.6. DATASET AGGREGATION: ITERATIVE INTERACTIVE LEARNING
APPROACH 77

Discussion

DAGGER as a Reduction

DAGGER departs from the previous reductions, in that it effectively reduces the imi-

tation learning problem to an online learning problem, rather than a typical supervised

learning problem. This is not as strong as the general error or regret reductions consid-

ered in (Beygelzimer et al., 2005, Ross and Bagnell, 2010, Daumé III et al., 2009) which

require only classification: we require a no-regret method or a (strongly) convex surrogate

loss function, a stronger (albeit common) assumption. While the performance guarantee

is in part related to the online regret, DAGGER should still be interpreted as an error

reduction, as in the limit of iterations with a no-regret algorithm, task performance is

related to the error, or loss, of the best policy in the class in hindsight. However, for

the surrogate loss objective (or imitation loss), DAGGER can be interpreted as a regret

reduction, as the regret on test trajectories is directly related to the online regret of the

online learning task. In other sequential settings, or when cost information is available,

we will also see that DAGGER can lead to regret reductions for the task performance

with a similar learning strategy, where control performance is instead related directly to

only the online regret and/or the regret on the aggregate dataset of the best predictor

in the class to the bayes-optimal predictor (e.g. in Chapters 4, 7 and 8).

Remarks on Guarantees

It is important to note that our guarantees are reduction statements, i.e. they are relative

guarantees to how well we can do at finding policies that mimic well the expert on the

training data. Thus DAGGER may sometimes fail at finding good policies if no policies

can mimic well the expert during training. It should be noted that all presented methods

fail in this case, i.e. whenever there does not exist any policy that can mimic well the

expert on the training data, εclass is large, and no method has good performance. When

this occurs, it suggests we may need a better class of predictors and/or better features.

The distinction to the typical supervised learning approach is when good predictors exist

on the training data. In this case, with DAGGER (and Forward), we always obtain a

good policy. In contrast, the typical supervised learning approach may find policies with

low training error, but still fail at obtaining a good policy to accomplish the task, due

to the mismatch in training and testing distributions.

Using DAGGER with a randomized online algorithm

Our current presentation of DAGGER assumes that the online learner picks a policy

π̂i from the policy class Π at each iteration i. If instead we use a randomized online

78 CHAPTER 3. LEARNING BEHAVIOR FROM DEMONSTRATIONS

learning algorithm, such as Weighted Majority (or Hedge), the online algorithm would

instead pick a distribution over policies in Π. In this case, DAGGER can be applied with

such randomized online algorithms, where the policy π̂i is simply the stochastic policy

defined by this distribution over policies; i.e. at each time step in the trajectory, we

would randomly pick a policy from the distribution to execute in the current state. Note

that it is important to randomize at each time step in the trajectory, and not simply pick

a random policy at the beginning of the trajectory to execute for the entire trajectory.

The latter would violate the common assumption made by randomized online algorithms

that the particular examples they incur loss on are independent of the realization of the

sampling by the online algorithm, to guarantee no-regret. By resampling a policy at

every time step in the trajectory, the current state is always independent of the sampled

policy that incurs loss on that state, and ensures that the randomized online algorithm

will be no-regret on the generated trajectories during training. Resampling from the

distribution picked by the online learner at every time step in the trajectory is required

generally in all the sequential settings we present in latter chapters as well, whenever a

randomized online algorithm is used (see Chapter 7 for a more detailed example of this).

Why not just collect data everywhere?

The main reason why DAGGER (and Forward) provide improved guarantees is that

they can explore different course of actions where error occurs, and learn the proper

recovery behavior. One may wonder why not simply collect data everywhere (e.g. by

executing random actions or introducing noise in the actions, to collect data about the

expert behavior) to allow observing all recovery behaviors. There are two reasons why

this is a bad strategy. First it is very inefficient. Such learning strategy would require

an exponential number of trajectories to explore all possibilities. As we only need to

learn the proper behavior where the learned policy goes, this wastes a lot of effort on

acquiring data which may be irrelevant. Instead, DAGGER focus its efforts on only the

most relevant regions, and can get good performance with only a polynomial number of

trajectories. The second reason why sampling everywhere is bad is in agnostic settings,

where we may not be able to fit observed behavior well everywhere. In this case, the

learner must tradeoff accuracy in different regions (as shown previously in Figure 1.7).

Sampling everywhere could make the learner fit correctly regions that are irrelevant.

Hence DAGGER, by focusing on collecting only data in regions that are likely to be

encountered, forces the learner to be most accurate in these important regions.

Why not just use the last collected dataset as in Policy Iteration?

A typical policy iteration approach, applied to this imitation learning problem, would

look only at the distribution of states induced by the last policy πi, and minimize the

3.6. DATASET AGGREGATION: ITERATIVE INTERACTIVE LEARNING
APPROACH 79

surrogate loss on this dataset to choose the next policy πi+1. This is similar to many

policy iteration methods in reinforcement learning. In our context, such methods can

tend to be very unstable and keep oscillating between various policies, none of which

performing the task well. Our experiments in Chapter 5 demonstrate that this is the

common observed behavior of this approach.

Chapter 4

Learning Behavior using Cost

Information

In this chapter we continue our investigation of techniques for learning behavior in scenar-

ios where an expert may be present, but where additional cost information is available.

All learning approaches presented in the Chapter 3 considered the task cost function

C to be unknown. In scenarios where C is known, taking advantage of this extra cost

information should intuitively lead to better performance. In particular, when we are

simply minimizing a surrogate (classification or regression) loss `, instead of the task

cost function C, all errors at mimicking the expert are somewhat treated equally, and

we ignore that some errors can be much more costly than others. For instance, errors

that lead the learner to crash, or fall off a cliff, should be considered much more costly,

than other errors that only slightly increase the time it takes to successfully complete the

task. By taking into account the importance of accurately predicting the expert’s action

in different situations, the learner should be able to better tradeoff in which situations

it potentially errors, in order to avoid very costly errors at all costs. For instance, it

will prefer predictors that error slightly more often, but only in low cost situations, to

predictors that makes fewer but more costly errors.

The algorithms we presented, Forward Training and DAGGER, can be extended to

take this extra cost information into account in a straightforward fashion. In particular,

in discrete action settings, where currently a classification loss is minimized over the

iterations of training, we will instead minimize a cost-sensitive classification loss, where

the classification loss associated with each action is related to its long-term cost for

performing the task. Here, we will focus our exposition on discrete action settings;

although continuous action settings may additionally be handled.

We first present an extension of Forward with this cost information, and then move on

to show how this can be used within DAGGER. For DAGGER, we present two variants,

where the second one can be applied to handle general model-free reinforcement learning

82 CHAPTER 4. LEARNING BEHAVIOR USING COST INFORMATION

Initialize π1, π2, . . . , πT arbitrarily.
for t = 1 to T do

Collect m data points as follows:
for j = 1 to m do

Start new trajectory in some initial state drawn from initial state distribution
Execute the policies π1, π2, . . . , πt−1, at time 1 to t− 1 respectively
Execute some exploration action at in current state st at time t
Execute expert from time t+1 to T , and observe estimate of cost-to-go Q̂ starting
at time t

end for
Get dataset D = {(st, at, Q̂)} of states, actions at t, with expert’s cost-to-go.
Train cost-sensitive classifier πt on D

end for
Return non-stationary policy π̂, such that at time t in state s, π̂(s, t) = πt(s)

Algorithm 4.1.1: Forward Training Algorithm with Cost-to-Go.

setting and does not require the presence of an expert (although it requires access to a

good exploration distribution that can be provided by an expert).

4.1 Forward Training with Cost-to-Go

We now begin with our extension of Forward with cost information.

As in Section 3.4, we proceed by training a separate policy πt for each time step

t, in sequence from time 1 to T , over T iterations. Here, at each iteration t, instead

of only observing the expert’s actions in states reached at time t, after execution of

π1, π2, . . . , πt−1, to train πt, we will instead explore random actions to perform at time

t, followed by the execution of the expert’s policy until the end of the trajectory, and

observe the total cost of this sequence. This gives us data of the form (s, a, Q̂∗), where

Q̂∗ is an estimate of the (T − t + 1)-step cost (cost-to-go) of the expert’s policy, when

executed after action a starting in state s. The observed cost-to-go is often only an

estimate, because of the stochasticity of the system (or the expert’s policy itself), but

in situations where both are deterministic, then we would observe the exact cost-to-go.

Each trajectory performed at iteration t will give us one datapoint (s, a, Q̂∗), to train

πt, and multiple data would be collected through execution of many trajectories. After

obtaining enough data, πt is trained to minimize cost-to-go on the collected dataset,

e.g. by solving a cost-sensitive classification or regression task (this is explained in more

details below). This algorithm is detailed in Algorithm 4.1.1.

Observing the expert’s cost-to-go tells us roughly how much cost we might expect to

incur in the future, if we take this action now, and then can behave as well (or nearly

so) as the expert from then on. Under the assumption that the expert is a good policy,

and that the policy class Π contains similar good policies, then this gives us a rough

4.1. FORWARD TRAINING WITH COST-TO-GO 83

estimate of what good policies in Π will be able to achieve at future steps. Thus by

minimizing this cost-to-go at each step, we will choose policies that lead to situations

where incurring low future cost-to-go is possible. For instance, we will be able to observe

that if some actions put the expert in situations where it cannot avoid falling off a cliff

or crash, then these actions should be avoided at all cost, in favor of others where the

expert is still able to recover at later steps.

We now describe in more details how to perform exploration, and train the policy at

each iteration.

Full Information vs. Partial Information Setting

In standard cost-sensitive classification problems, a cost vector is given for each input

features x in the training data, that indicates the cost of predicting each class or label

for this input. This is a full information setting, where the cost of all predictions at

a given input is known. This is not the case in the setting presented here, where for

an observed input state s, we only have partial information of the cost vector, i.e. we

only know the cost of one sampled action, and the cost of other actions are unknown.

In some scenarios, especially those involving simulated environments, it is sometimes

possible to obtain data as in a full information setting. To do so, when entering a state

where we explore an action a, we would instead need to create multiple “copies” of

the current state, and simulate a trajectory with the expert after the execution of each

action a ∈ A in this state, to obtain an estimate of the cost-to-go for all actions in

that state. This is only possible when we can “copy” the state, or are able to put back

the system directly in that state repeatedly. As mentioned, this is typically possible

only in simulated environments. On real robots, it is typically not possible to put back

the system in exactly the same state and one is typically only able to try one action

in any visited state. However, even if we can only have partial information about the

cost of a single action, it is still possible to transform this into a standard cost-sensitive

classification problem, through importance weighting techniques, or use directly some

cost-sensitive classification reductions, such as regression, that do not necessarily require

cost information for all actions in every training input state. We describe this in detail

below.

Training the Policy to Minimize Cost-to-Go

In the full information setting, the data collected at each iteration corresponds to a

set of cost-sensitive classification examples. Training the policy at each iteration then

simply corresponds to solving a cost-sensitive classification problem. That is, if we

collect a dataset of m samples, {(si, Q̂i)}mi=1, where Q̂i is a cost vector of cost-to-go esti-

mates for each action in si, then we would solve the cost-sensitive classification problem:

84 CHAPTER 4. LEARNING BEHAVIOR USING COST INFORMATION

arg minπ∈Π

∑m
i=1 Q̂i(π(si)). However, this optimization problem often cannot be solved

efficiently for many common policy class Π, e.g. the set of all linear classifiers. Neverthe-

less, several reductions of cost-sensitive classification to other convex optimization prob-

lems can be used, to obtain problems that can be optimized efficiently, while still guaran-

teeing good performance at this cost-sensitive classification task, as described in Section

2.2. For instance, a simple approach is to transform this into a regression problem of

predicting the cost-to-go of each action in a given state, and then defining the policy as al-

ways picking the action with lowest predicted cost. That is, πt(s) = arg mina∈AQt(s, a),

for Qt the learned regressor at iteration t, that minimizes the squared loss at predicting

the cost-to-go estimates: Qt = arg minQ∈Q
∑

(si,ai,Q̂i)∈Dt(Q(si, ai) − Q̂i)2, where Dt is

the dataset of all collected cost-to-go estimates at iteration t, and Q the class of regres-

sors considered (e.g. linear regressors). Other reductions to ranking, as described in

Section 2.2, can be used and provides improved guarantees.

In the partial information setting, one can use directly the regression approach just

described, and learn a regressor that predicts cost-to-go, on the observed cost-to-go of

the state-action pairs explored during training. Additionally, another approach is to

use importance weighting techniques to transform the problem into a standard cost-

sensitive classification problem (Horvitz and Thompson, 1952, Dudik et al., 2011b). For

instance a simple approach, is to define the cost-vector for every state in the training

data as follows: make the cost of every unobserved action to be 0, and the cost of the

observed action to be Q/p, if we observed it has cost Q, and the probability of exploring

this action was p (Horvitz and Thompson, 1952). For example if we explore uniformly

randomly, then p = 1/|A|, for |A| the number of actions, so this would have the effect of

multiplying the cost by |A| when a cost is observed. By defining the cost-vector this way,

the expected cost of any action corresponds to its true cost (i.e. with probability p, it has

cost Q/p, with probability 1−p is has cost 0, so in expectation: p(Q/p) + (1−p)0 = Q).

However, such techniques can often perform poorly because this cost weighting technique

introduce high variance in the cost estimates (Dudik et al., 2011b). Other techniques

that often achieve lower variance and can yield better results are described in Dudik et al.

(2011b) and can be used to generate similar cost-sensitive classification examples, from

only partial information examples. The resulting cost-sensitive classification problem

can then be solved using any existing technique for cost-sensitive classification, e.g. any

of the existing reductions mentioned above and in Section 2.2.

Exploration in Partial Information Setting

An important aspect of the algorithm in the partial information setting is that we must

choose which action to explore to collect an estimate of the cost-to-go. A simple strategy

that is easy to use in practice is to simply explore actions uniformly randomly. This

4.1. FORWARD TRAINING WITH COST-TO-GO 85

ensures that we will explore all actions equally, and in the limit, obtain an equal amount

of data for all actions in all likely situations. This is however suboptimal. For instance,

based on the data collected so far in the current iteration, we may be undecided about

which policy is best among only a small subset of the policy class Π. In this case, it is

only useful to collect data about actions that would help us figure out which policy is

the best in this small subset. In particular, collecting data about any action not picked

by any of these policy would be irrelevant.

This problem of choosing which action is best to explore, in the current state s, can

be cast as a contextual bandit problem, and contextual bandit algorithms can be used to

figure out the distribution of actions to sample from when exploring (Auer et al., 2002b,

Beygelzimer et al., 2011). When applying these methods, the features of the visited state

where we decide which action to explore would define the current context. While these

algorithms will typically start by sampling actions uniformly randomly, as more data is

collected in the current iteration, these algorithms will adapt the exploration strategy to

explore actions that will provide most information, while also minimizing cost. Several

contextual bandit algorithms come with nice guarantees, and are more efficient than

uniform exploration (Langford and Zang, 2007).

However, in our setting, there is a distinction compared to standard bandit setting,

in that we do not care about the cost of the explored actions during training. We are

interested only in learning most efficiently (in as few data as possible) which policy is

best. To do so, it would be more appropriate to use some recent bandit learning tech-

niques where exploration and exploitation is decoupled (i.e. the learner can choose to

observe the cost of a different action than the one where it incurs cost) (Avner et al.,

2012). This can lead to some changes in the exploration strategy, and learn even more

efficiently in some scenarios. However these techniques have not been extended to con-

textual bandit settings with policies yet. This would be required to be applicable in our

setting here. Additionally, current contextual bandit algorithms cannot always be ap-

plied in our setting. The main reason is that current methods can only handle a limited

number of scenarios, e.g. learning with a finite set of policies Π (Auer et al., 2002b), or

learning linear regressors to predict the actions’ cost (Li et al., 2010) in realizable set-

tings. Developing efficient contextual bandit algorithms for fully general class of policies

is still a very active area of research and a major open problem in machine learning.

Future development in this area could be leveraged immediately here to provide efficient

exploration strategies. However currently, we may need to resort to uniform exploration

in practice, when no practical contextual bandit algorithm is known for the policy class

Π we consider.

86 CHAPTER 4. LEARNING BEHAVIOR USING COST INFORMATION

Analysis

We now provide an analysis of this Forward Training procedure with cost-to-go. Our

analysis seeks to answer the following question: if on average, we can solve well the cost-

sensitive classification problems over the iterations of training, then can we guarantee

that the learned policy is not much worse than the expert? Our analysis will show

that indeed this is the case, and that performance of the learned policy degrades with

the average cost-sensitive regret (with respect to the bayes-optimal policy) on the cost-

sensitive classification examples.

Let π̂ denote the non-stationary policy learned with the forward training algorithm.

Let εt = Es∼dtπ̂ [Q∗T−t+1(s, πt) − mina∈AQ
∗
T−t+1(s, a)] the cost-sensitive regret of the

learned policy πt under the training distribution at iteration t. Here this is the cost-

sensitive regret compared to the bayes-optimal policy under this training distribution,

as defined in Section 2.2. Let ε = 1
T

∑T
t=1 εt, the average cost-sensitive regret over the

training iterations. Then:

Theorem 4.1.1. J(π̂) ≤ J(π∗) + Tε.

Proof. This follows a similar proof to Theorem 3.4.3, except we use directly the fact that

we minimize cost-to-go. Given our policy π̂, consider the policy π̂1:t, which executes π̂

in the first t-steps and then execute the expert π∗. Then

J(π)

= J(π∗) +
∑T−1

t=0 [J(π̂1:T−t)− J(π̂1:T−t−1)]

= J(π∗) +
∑T

t=1 Es∼dtπ̂ [Q∗T−t+1(s, π̂)− V ∗T−t+1(s)]

≤ J(π∗) +
∑T

t=1 Es∼dtπ̂ [Q∗T−t+1(s, π̂)−mina∈AQ
∗
T−t+1(s, a)]

≤ J(π∗) +
∑T

t=1 εt

= J(π∗) + Tε

This theorem indicates that if on average we achieve small cost-sensitive classification

regret, over the iterations of training, then we must learn a policy that does not perform

the task much worse than the expert policy. Again, performance degrades linearly in the

task horizon T , and the average cost-sensitive regret ε.

Discussion

Regret Reduction: In terms of learning reductions, this forward training procedure

with cost-to-go can be interpreted as a regret reduction of imitation learning to a sequence

of cost-sensitive classification problems. It is a regret reduction, as performance is related

to the average cost-sensitive classification regret.

4.1. FORWARD TRAINING WITH COST-TO-GO 87

Relation to PSDP: The approach we present here as some similarities to PSDP

(Bagnell et al., 2003). Both train a non-stationary policy over many iterations, training

one policy for a particular time step at each iteration to minimize cost-to-go, except

that PSDP does so in reverse order. That is, in this imitation learning setting, PSDP

would start by training the policy for time T , then the one for T − 1, and so on, going

backward in time up to time 1, and at iteration t, the policy for time step T −t+1 would

be chosen to minimize the cost-to-go of the already trained policies at later time steps,

under the distribution of states of the expert at time T − t + 1. In some sense, PSDP

assumes that in earlier steps (from time 1 to T − t) the expert (or policies very similar

to it) are going to be executed, while Forward with cost-to-go, assumes that in future

time steps, the expert (or policies very similar to it) are going to be executed. Forward

may suffer from too optimistic cost-to-go estimates (e.g. if no policies in the policy class

are as good as the expert), while PSDP may suffer from a train-test mismatch (it may

choose policies that minimize cost-to-go for the wrong distribution of states).

Limitations: As just mentioned, in cases where the expert is much better than any

policy in Π, then the expert’s cost-to-go may be a very optimistic estimate of the future

cost that the learner will incur in future steps after taking a certain action. In this case,

this approach may fail to learn policies that performs the task well, even though some

good policies that can perform the task (but not as well as the expert) exists in the

policy class. For example, consider a driving scenario, where one can take 2 roads to

reach the goal, one of these roads is much shorter, but involves driving on a very narrow

road next to cliffs on each side, while the other road, is much longer and takes more

time to reach the goal, but is safer (wider and not next to any cliff). If in this example,

the expert takes the short narrow road to reach the goal faster and there is no policy in

the class Π that can drive without falling on this narrow road, but there exists policies

that can take the longer road and safely reach the goal, this algorithm would fail to find

these policies. The reason for this is that, as we minimize cost-to-go of the expert, we

would always favor policies that heads toward the shorter narrow road. But once we are

on that road, inevitably at some point we will encounter a scenario where no policies in

the class can predict the same low cost-to-go actions as the expert (i.e. making ε large

in the previous guarantee). The end result is that Forward will learn a policy that takes

the short narrow road and eventually falls off the cliff, in these pathological scenarios.

PSDP may lead to a better policy in this case, but this is unclear. While PSDP would

be able to see that the trained policies it learned at later time steps cannot drive well

on this narrow road and have high cost-to-go, the state distribution of examples, from

the expert policy, would be states starting on this narrow road. It is unclear that PSDP

would learn policies that can drive well on the other longer road, based on minimizing

cost-to-go on examples from the narrow road. If PSDP do happen to learn policies that

88 CHAPTER 4. LEARNING BEHAVIOR USING COST INFORMATION

can drive on the other longer road, then at the early time steps, PSDP will be able to

learn that it is better to take the longer road. But if it doesn’t learn to drive well on

the longer road, then PSDP would still fail. Note also that the theoretical guarantee of

PSDP in this example would be no better than Forward: inevitably at some time t (e.g.

near the end of the narrow road), future policies trained by PSDP reaches the goal, but

under the state distribution of the expert on the narrow road at time t, no policy can

avoid falling off the cliff and minimize cost-to-go of future trained policies as well as the

expert. This makes the ε term in the guarantee of PSDP large, and the guarantee of

PSDP would be similarly bad to Forward.

4.2 DAGGER with Cost-to-Go

As mentioned before, a drawback of Forward in practice is that it needs to learn a

separate policy for each time step, which can be impractical if T is large, and is also less

efficient, in terms of sample complexity, as it does not allow to generalize the behavior

across time steps. The DAGGER approach addresses these issues and can be applied

with similar cost-to-go as Forward to provide similar guarantees.

Just as with Forward, the only modification to DAGGER to take into account cost-

to-go, is to instead minimize the cost-to-go of the expert, rather than the classification

loss of mimicking its actions. That is, in its simplest form, DAGGER would on the

first iteration, collect data by simply observing the expert perform the task, and in each

trajectory, at a uniformly random time t, explore an action a in the current state s, and

observe the cost-to-go of the expert after performing this action, to generate cost example

(s, a,Q). It would then train a policy π̂2 to minimize the cost-to-go on this dataset. At

following iterations n, DAGGER would collect data through interaction with the learner

as follows: for each trajectory, start by using the current learner’s policy π̂n to perform

the task, and at some uniformly random time t, explore an action a in the current state

s, after which control is given to the expert and he gets executed up to time T , and we

observe the cost-to-go, starting from s. This generates new examples of the cost-to-go of

the expert (s, a,Q), under the distribution of states visited by the current policy π̂n. This

new data would be aggregated with all previous data to train the next policy π̂n+1, or in

general, used by a no-regret online learner to update the policy and obtain π̂n+1. This

is iterated for some number of iterations N and the best policy found is returned. Just

as before, we optionally allow the algorithm to keep executing the expert’s actions with

small probability βn, instead of always executing π̂n, up to the random time t where an

action is explored and control is shifted to the expert. The general DAGGER algorithm

with Cost-to-Go is detailed in Algorithm 4.2.1.

As discussed previously for the Forward approach with cost-to-go, in imitation learn-

4.2. DAGGER WITH COST-TO-GO 89

Initialize D ← ∅.
Initialize π̂1 to any policy in Π.
for i = 1 to N do

Let πi = βiπ
∗ + (1− βi)π̂i.

Collect m data points as follows:
for j = 1 to m do

Sample uniformly t ∈ {1, 2, . . . , T}.
Start new trajectory in some initial state drawn from initial state distribution
Execute current policy πi up to time t− 1.
Execute some exploration action at in current state st at time t
Execute expert from time t+1 to T , and observe estimate of cost-to-go Q̂ starting
at time t

end for
Get dataset Di = {(s, a, Q̂)} of states, actions, with expert’s cost-to-go.
Aggregate datasets: D ← D

⋃
Di.

Train cost-sensitive classifier π̂i+1 on D (or use online learner to get π̂i+1 given new
data Di)

end for
Return best π̂i on validation.

Algorithm 4.2.1: DAGGER Algorithm with Cost-to-Go.

ing we will in general not be able to simulate all actions from any given state, to obtain

the cost-to-go of each action and obtain directly cost-sensitive examples. That is, we

have to deal with the same partial information setting rather than a full information

setting. The same previously discussed techniques, such as the reduction to regression

or importance weighting techniques in (Dudik et al., 2011b), can be leverage to deal

with this, and the same exploration techniques could be used to decide which action to

explore.

In this case, within DAGGER, the problem of choosing the sequence of policies

π̂1, π̂2, . . . , π̂N over the iterations, is viewed as an online cost-sensitive classification prob-

lem. Our analysis below demonstrates that any no-regret algorithm on such problems

could be used to update the sequence of policies and provide good guarantees, similar

to those for Forward with cost-to-go. To achieve this, when the policy class Π is fi-

nite, randomized online learning algorithms like weighted majority could be used. In

general, when dealing with infinite policy classes (e.g. the set of all linear classifiers),

no-regret online cost-sensitive classification is not always possible, at least with a known

computationally tractable algorithm 1. Instead, we would like to use convex relaxations

that allow to learn online efficiently. This can be achieved using the reductions of cost-

1In principle, for any class with finite VC dimension (or Natarajan dimension), we could identify
a finite set of classifiers (polynomial in the amount of data), that covers all distinct labelings of the
collected data with classifiers from the class, and use Weighted Majority on this set of classifiers. This
would in most cases be computationally intractable.

90 CHAPTER 4. LEARNING BEHAVIOR USING COST INFORMATION

sensitive classification to regression or ranking problems, as mentioned previously and

in Section 2.2. This leads to convex online learning problems for common policy classes,

for which tractable no-regret online learning algorithms exist (e.g. gradient descent).

Analysis

We now provide the analysis of this DAGGER procedure with cost-to-go, and show how

the strong no-regret property of online learning procedures can be leveraged, in this

interactive learning procedure, to obtain good performance guarantees. Again here, we

seek to provide a similar analysis to previously analyzed methods that seeks to answer the

following question : if we can find good policies, that can incur cost-sensitive classification

loss not much worse than the expert on the aggregate dataset we collect during training,

then how well the learned policy will perform the task?

Again our analysis of DAGGER relies on seeing how learning iteratively in this

algorithm can be viewed as an online learning problem and using the no-regret property

of the underlying online learning algorithm picking the sequence of policies π̂1:N . Here,

the online learning problem is defined as follows: at each iteration i, the learner picks

a policy π̂i ∈ Π that incurs loss on the loss function `i chosen by the adversary, and

defined as `i(π) = Et∼U(1:T),s∼dtπi
[Q∗T−t+1(s, π)] for U(1 : T) the uniform distribution on

the set {1, 2, . . . , T} and πi = βiπ
∗+ (1− βi)π̂i. We can see that DAGGER, at iteration

i, is exactly collecting a dataset Di, that provides an empirical estimate of this loss `i.

Let εclass = minπ∈Π
1
N

∑N
i=1 Et∼U(1:T),s∼dtπi

[Q∗T−t+1(s, a)−minaQ
∗
T−t+1(s, a)] denote

the minimum expected cost-sensitive classification regret achieved by policies in the

class Π on all the data over the N iterations of training. Denote the online learning

average regret of the sequence of policies chosen by DAGGER, εregret = 1
N [
∑N

i=1 `i(π̂i)−
minπ∈Π

∑N
i=1 `i(π)].

We again show good guarantees for the “uniform mixture” policy π, that at the

beginning of any trajectory samples a policy π uniformly randomly among the policies

{π̂i}Ni=1 and executes this policy π for the entire trajectory. As before, this implies

immediately good performance for the best policy π̂ in the sequence π̂1:N , i.e. J(π̂) =

mini∈1:N J(π̂i) ≤ J(π), and the last policy π̂N when the distribution of visited states

converge over the iterations.

Assume the cost-to-go of the expert Q∗ is non-negative and bounded by Q∗max, and

βi ≤ (1 − α)i−1 for all i for some constant α 2. Then the following holds in the infinite

sample case (i.e. if at each iteration of DAGGER we would collect an arbitrarily large

amount of data by running the current policy):

2e.g. the parameter-free version of DAGGER corresponds to α = 1, using 00 = 1.

4.2. DAGGER WITH COST-TO-GO 91

Theorem 4.2.1. After N iterations of DAGGER with cost-to-go:

J(π̂) ≤ J(π) ≤ J(π∗) + T [εclass + εregret] +O

(
QmaxT log T

αN

)
.

Thus if a no-regret online algorithm is used to pick the sequence of policies π̂1:N , then

as the number of iterations N →∞:

lim
N→∞

J(π) ≤ J(π∗) + Tεclass

Proof. The proofs of this result is presented in Appendix A.

This theorem indicates that, after a sufficient number of iterations, DAGGER must

find policies that perform the task not much worse than the expert, if there are policies

in the class Π that have small cost-sensitive classification regret on the aggregate dataset

(i.e. policies with cost-sensitive classification loss not much larger than that of the bayes-

optimal classifier on this dataset).

This guarantee is similar to the guarantee of Forward with cost-to-go. In both cases,

performances degrades linearly with T and the cost-sensitive classification regret. When

reductions of cost-sensitive classification to other regression/ranking/classification prob-

lems are used, then our results can be combined with the existing cost-sensitive reduction

results, to relate directly the task performance of the learned policy to the performance

on the regression/ranking/classification problem.

Also note that the analysis we presented so far for both Forward and DAGGER with

cost-to-go, abstracted away the issue of exploration and learning from finite data. These

issues come into play in the sample complexity analysis. Such analysis here depends on

many factors, such as which reduction and exploration method is used. To illustrate

how such results can be derived, we provide a result for the special case where actions

are explored uniformly randomly and the reduction of cost-sensitive classification to

regression is used.

In particular, if ε̂regret denotes the empirical average online learning regret on the

training regression examples collected over the iterations, and R̂class denotes the empirical

regression regret of the best regressor in the class, on the aggregate dataset of regression

examples, compared to the bayes-optimal regressor on this data, we have that :

Theorem 4.2.2. After N iterations of DAGGER with cost-to-go, collecting m regression

examples (s, a, t, Q) per iteration, guarantees that with probability at least 1-δ:

J(π̂) ≤ J(π) ≤ J(π∗)+2
√
|A|T

√
R̂class + ε̂regret +O(

√
log(1/δ)/Nm)+O

(
QmaxT log T

αN

)
.

Thus if a no-regret online algorithm is used to pick the sequence of regressors Q̂1:N , then

as the number of iterations N →∞, with probability 1:

lim
N→∞

J(π) ≤ J(π∗) + 2
√
|A|T

√
R̂class

92 CHAPTER 4. LEARNING BEHAVIOR USING COST INFORMATION

Proof. The proofs of this result is presented in Appendix A.

This result demonstrates how the task performance of the learned policies with DAG-

GER, can be related all the way down to the regret on the regression loss at predicting

the observed cost-to-go during training. In particular, it relates task performance to the

square root of the online learning regret, on this regression loss, and the regression regret

of the best regressor in the class to the bayes-optimal regressor on this training data.

The appearance of the square root is particular to the use of this reduction to regression.

The implications of this square root is that learning may take significantly longer, i.e.

we may need the number of iterations N to be order O(T 4), with the number of samples

per iteration m = 1, to guarantee that the average online regret term and generalization

error terms are negligible, instead of O(T 2). However, other cost-sensitive classification

reductions, such as those presented in (Langford and Beygelzimer, 2005, Beygelzimer

et al., 2009) does not introduce this square root and would still allow efficient learning.

Discussion

DAGGER as a reduction: The DAGGER approach with cost-to-go can be inter-

preted as a regret reduction of imitation learning to no-regret online learning. It is a

regret reduction, as here, performance is related directly to the online regret, and the

cost-sensitive classification regret on the aggregate dataset. By minimizing cost-to-go,

we obtain a regret reduction, rather than an error reduction when simply minimizing

immediate classification loss as in Section 3.6.

Comparison to SEARN: DAGGER with cost-to-go presents many similarities to

SEARN. From our point of view, DAGGER provides a more general learning approach

by providing a reduction to online learning and allowing various schemes to update the

policy, at each iteration, rather than the particular stochastic mixing update of SEARN.

In fact, in many ways SEARN can be thought as a particular case of DAGGER, where

the policy class is the set of distributions over policies, and an online coordinate descent

algorithm is used in this space of distributions to update the distribution over policies at

each iteration. An advantage of the more general view from DAGGER, is that we can

use various update schemes by considering a variety of online learning algorithms, that

are potentially more convenient or efficient in practice.

Both methods collect data in a similar fashion at each iteration, by executing the cur-

rent policy up to a random time in the current trajectory and then collecting cost-to-go

estimates for explored actions in the current state. A distinction is that SEARN collects

cost-to-go of the current policy, after execution of the random action, instead of the cost-

to-go of the expert. While SEARN is often used in practice with the approximation of

4.3. REINFORCEMENT LEARNING VIA DAGGER WITH LEARNER’S
COST-TO-GO 93

collecting cost-to-go of the expert (Daumé III et al., 2009), rather than the current pol-

icy, using the cost-to-go of the expert can lead both approaches to suffer from the same

issues discussed previously for Forward with cost-to-go. That is, in cases where there are

no policies in Π that can perform the task as well as the expert, the cost-to-go estimates

of the expert will be optimistic, and this may lead the algorithm to learn policies that

encounter situations where no policy in the class can perform the proper behavior of the

expert, leading to bad performance. Again this would be reflected in the guarantee by

making εclass large. When collecting cost-to-go of the current policy, SEARN, just as

with PSDP, may be able to learn that some regions should be avoided when no policy in

the class can do well there. Additionally, by training under the distribution of states of

the current policy, SEARN avoids the data mismatch issue that can affect PSDP. This

suggests that DAGGER should be applied by collecting cost-to-go of the current policy

as well, rather than the expert. We present such a version of DAGGER below. However,

in this case, to provide good guarantees, we must collect cost-to-go of the current policy,

under the state distribution of the expert (and not the current policy as in SEARN).

This version of DAGGER is in some sense more similar to PSDP. This is discussed in

more details below.

4.3 Reinforcement Learning via DAGGER with Learner’s

Cost-to-Go

Here, we present an alternate version of DAGGER with cost-to-go, where instead of

executing the current policy, and then switching to the expert to observe a cost-to-go,

we instead execute the expert policy, and then switch to the current policy to collect

cost-to-go of the learner’s current policy. This alternate version has similar guarantees

to the previous version, but may work better in cases where no policy in the class is

as good as the expert. For instance, it can learn to avoid regions of where no policy in

the class performs well by observing these cost-to-go. In addition it can be generalized

to address a general model-free reinforcement learning setting, where we simply have

a state exploration distribution we can sample from, from which we collect examples

of the current policy’s cost-to-go. This is very similar to how PSDP (Bagnell et al.,

2003) proceeds, and in some sense, the algorithm we present here provides a DAGGER

equivalent to PSDP. However, by learning a stationary policy instead of a non-stationary

policy, DAGGER can generalize across time-steps and potentially lead to more efficient

learning than PSDP, and be practical in problems where T is large or infinite. We now

describe this alternate version of DAGGER with cost-to-go and present its analysis.

As in PSDP, we assume that we are given a state exploration distribution νt for all

time t in 1, 2, . . . , T . As will be justified by our theoretical analysis, ideally, these state

94 CHAPTER 4. LEARNING BEHAVIOR USING COST INFORMATION

Initialize D ← ∅.
Initialize π̂1 to any policy in Π.
for i = 1 to N do

Collect m data points as follows:
for j = 1 to m do

Sample uniformly t ∈ {1, 2, . . . , T}.
Sample state st from exploration distribution νt.
Execute some exploration action at in current state st at time t
Execute π̂i from time t+ 1 to T , and observe estimate of cost-to-go Q̂ starting at
time t

end for
Get dataset Di = {(s, a, t, Q̂)} of states, actions, time, with current policy’s cost-to-
go.
Aggregate datasets: D ← D

⋃
Di.

Train cost-sensitive classifier π̂i+1 on D (or use online learner to get π̂i+1 given new
data Di)

end for
Return best π̂i on validation.

Algorithm 4.3.1: DAGGER Algorithm with Learner’s Cost-to-Go.

exploration distributions should be (close to) that of a (near-)optimal policy in the class

Π. In the context where an expert is present, then this may simply be the distribution

of states induced by the expert policy, i.e. νt = dtπ∗ . In general, this may be the state

distributions induced by some base policy we want to improve upon, or be determined

from prior knowledge of the task.

Given the exploration distributions ν1:T , DAGGER proceeds as follows. At each

iteration n, it collects cost-to-go examples by sampling uniformly a time t ∈ {1, 2, . . . , T},
sampling a state st for time t from νt, and then executes an exploration action a in st

followed by execution of the current learner’s policy πn for time t+ 1 to T , to obtain a

cost-to-go estimate (s, a, t, Q) of executing a followed by πn in state s at time t. In the

particular case where the state distributions νt are that of a particular exploration policy

π, then to sample st, we would simply execute the exploration policy π from time 1 to t−1,

starting from the initial state distribution. Multiple cost-to-go estimates are collected

this way and added in dataset Dn. After enough data has been collected, we update

the learner’s policy, to obtain πn+1, using any no-regret online learning procedure, on

the loss defined by the cost-sensitive classification examples in the new data Dn. This

is iterated for some large number of iterations N . Initially, we may start with π1 to

be any guess of a good policy from the class Π, or use the expert’s cost-to-go at the

first iteration, to avoid having to specify an initial policy. This algorithm is detailed in

Algorithm 4.3.1.

4.3. REINFORCEMENT LEARNING VIA DAGGER WITH LEARNER’S
COST-TO-GO 95

Analysis

Consider the online learning loss function Ln given to the online learning algorithm

within DAGGER at iteration n. Assuming infinite data, it assigns the following loss to

each policy π ∈ Π:

Ln(π) = Et∼U(1:T),s∼νt [Q
π̂n
T−t+1(s, π)].

This loss represents the expected cost-to-go of executing π immediately for 1 step followed

by current policy πn, under the exploration distributions ν1:T .

This sequence of loss over the iterations of training corresponds to an online cost-

sensitive classification problem, as in the previous DAGGER with cost-to-go algorithm.

Let εregret be the average regret of the online learner on this online cost-sensitive classi-

fication problem after the N iterations of DAGGER:

εregret =
1

N

N∑
i=1

Li(πi)−min
π∈Π

1

N

N∑
i=1

Li(π).

For any policy π ∈ Π, denote the average L1 distance between νt and dtπ over time

steps t as:

D(ν, π) =
1

T

T∑
t=1

||νt − dtπ||1.

Note that if νt = dtπ for all t, then D(ν, π) = 0.

Now assume the cost-to-go of the learned policies π1, π2, . . . , πN are bounded byQmax,

for any state s and time t (in the worst case this is TCmax). Denote π̂ the best policy

found by DAGGER over the iterations, and π the uniform mixture policy over π1:N

defined as before. Then we have to following guarantee with this version of DAGGER

with learner’s cost-to-go:

Theorem 4.3.1. For any policy π′ ∈ Π:

J(π̂) ≤ J(π) ≤ J(π′) + Tεregret + TQmaxD(ν, π′)

Thus, if a no-regret online cost-sensitive classification algorithm is used, then:

lim
N→∞

J(π) ≤ J(π′) + TQmaxD(ν, π′)

This theorem indicates that DAGGER must find policies that are as good as any

other policy π′ ∈ Π, whose state distribution dtπ′ is close to νt (on average over time

t). Note however, that since TQmax is generally O(T 2), this only provides meaningful

guarantees when dtπ′ is very close to νt (on average over time t). Importantly, if ν1:T

corresponds to the state distribution of an optimal policy in class Π, then this theorem

guarantees that DAGGER will find an optimal policy (within the class Π) in the limit.

96 CHAPTER 4. LEARNING BEHAVIOR USING COST INFORMATION

This theorem provides a similar performance guarantee to the results for PSDP

presented in (Bagnell et al., 2003). However, DAGGER has the advantage of learning a

single stationary policy for test execution, instead of a non-stationary policy, allowing for

improved generalization and more efficient learning. Note that DAGGER has stronger

requirements: it needs a no-regret online cost-sensitive classification procedure, instead

of simply a cost-sensitive supervised learner for PSDP. For finite policy classes Π, or

using reductions of cost-sensitive classification as mentioned previously and in Section

2.2, we can still obtain convex online learning problems for which efficient no-regret

algorithms exists.

The result presented here can be interpreted as a reduction of model-free reinforce-

ment learning to no-regret online learning. It is a regret reduction, as performance is

related directly to the online regret at the online cost-sensitive classification task. How-

ever its performance are limited by the quality of the exploration distribution. One could

consider trying to adapt the exploration distributions ν1:T over the iterations of training.

It can be shown that if νi1:T are the exploration distributions at iteration i, and we have

a mechanism for making νi1:T converge to the state distributions of an optimal policy in

Π, as i→∞, then we would always be guaranteed to find an optimal policy in Π in the

limit (see appendix A). However, at this point we do not know of any method that could

be used to achieve this.

4.4 Discussion

Drawback of using Cost-to-Go: In practice, using DAGGER, Forward, or SEARN,

with cost-to-go can often be impractical. This is because, collecting each cost-to-go

estimate for a single state-action pair, involves executing an entire trajectory. In many

settings, minimizing directly an imitation loss with DAGGER, as in Section 3.6, is much

more practical as we can observe the action chosen by the expert in every visited state

along a trajectory, and thus collect T data points per trajectory instead of only one. This

makes a big difference in practice when T is large. A potential combination of the two

approaches could be considered, where first a policy is found by DAGGER through simple

imitation loss minimization, to get a good estimate of a reasonable policy, and then refine

this policy by using the cost-to-go version of DAGGER (e.g. through additional gradient

descent steps). By doing so, we may need fewer (expensive) iterations of DAGGER with

cost-to-go to obtain a good policy.

Chapter 5

Experimental Study of Learning

from Demonstrations Techniques

In the chapter, we demonstrate the efficacy and scalability of DAGGER experimentally

in imitation learning settings, by comparing its performance to several methods we pre-

viously discussed, such as the naive supervised learning approach, SMILe and SEARN.

We compare these methods extensively for learning game playing agents from game play

data in two video game applications. The first is a racing game, called Super Tux Kart,

where we attempt to learn to control the car from the observed game image, from data

collected by observing human players. In the second application, we attempt to learn an

agent that can play the popular video game Super Mario Bros. given only the objects

observed in the current game image, from game play data of a planner that has full

access to the entire level (upcoming unobserved terrain, enemies, objects, etc.) to make

its decisions. These results were originally presented in Ross et al. (2011).

We additionally demonstrate the applicability of DAGGER on real robots, by apply-

ing it to train an autonomous quadrotor to fly through forest environments while avoid

trees using its front facing camera (monocular vision). We also discuss several practical

considerations when applying DAGGER in practice.

5.1 Super Tux Kart : Learning Driving Behavior

Super Tux Kart is a 3D racing game similar to the popular Mario Kart. Our goal is to

train the computer to steer the kart moving at fixed speed on a particular race track,

based on the current game image features as input (see Figure 5.1). A human player is

used to provide demonstrations of the correct steering (analog joystick value in [-1,1])

for each of the observed game images in real time during play.

For this task, we attempt to learn a linear controller that updates the steering at

5Hz based on the current vector of image features. That is, if x is the vector of features

98
CHAPTER 5. EXPERIMENTAL STUDY OF LEARNING FROM

DEMONSTRATIONS TECHNIQUES

Figure 5.1: Image from Super Tux Kart’s Star Track.

of the image, the linear controller predicts and executes the steering ŷ = w>x + b,

where w and b are the parameters that we learn from training data. Given the current

800x600 RGB pixel game image, we use as features directly the LAB color values of

each pixel in a 25x19 resized image. Given a dataset of observed features and associated

steering {(xi, yi)}ni=1, we optimize (w, b) by minimizing the ridge regression objective

L(w, b) = 1
n

∑n
i=1(w>xi + b − yi)2 + λ

2w
>w, with regularizer λ = 10−3 chosen from a

preliminary validation dataset.

We compare performance on a race track called Star Track. As this track floats in

space, the kart can fall off the track at any point (the kart is repositioned at the center

of the track when this occurs). We measure performance in terms of the average number

of falls per lap. We compare two other approaches to DAGGER on this task: 1) the

traditional supervised learning approach, and 2) another approach, called SMILE, from

our previous work in (Ross and Bagnell, 2010), which is an imitation learning variant of

SEARN (described in more details in the next chapter) that also has similar guarantees

to Forward Training and DAGGER.

For SMILE and DAGGER, we used 1 lap of training per iteration (∼1000 data

points) and run both methods for 20 iterations. For SMILE we choose parameter α = 0.1

as in Ross and Bagnell (2010), and for DAGGER the parameter βi = I(i = 1) for I the

indicator function. Figure 5.2 shows 95% confidence intervals on the average falls per

lap of each method after 1, 5, 10, 15 and 20 iterations as a function of the total number

of training data collected.

We first observe that with the baseline supervised approach where training always

occurs under the human player’s trajectories that performance does not improve as more

data is collected. This is because most of the training laps are all very similar and do not

5.2. SUPER MARIO BROS. 99

0 0.5 1 1.5 2 2.5
x 10

4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of Training Data

A
ve

ra
g

e
F

al
ls

 P
er

 L
ap

DAgger (β
i
 = I(i=1))

SMILe (α = 0.1)
Supervised

Figure 5.2: Average falls/lap as a function of training data.

help the learner to learn how to recover from mistakes it makes. With SMILE we obtain

some improvements but the policy after 20 iterations still falls off the track about twice

per lap on average. This is in part due to the stochasticity of the policy learned with

this method which sometimes makes bad choices of actions. For DAGGER, we were

able to obtain a policy that never falls off the track after 15 iterations of training. Even

after 5 iterations, the policy we obtain almost never falls off the track and is significantly

outperforming both SMILE and the baseline supervised approach. Furthermore, the

policy obtained by DAGGER is smoother and looks qualitatively better than the policy

obtained with SMILE. A video available on YouTube (Ross, 2010a) shows a qualitative

comparison of the behavior obtained with each method.

5.2 Super Mario Bros.

Super Mario Bros. is a platform video game where the character, Mario, must move

across each level by avoiding being hit by enemies and falling into gaps, and before

running out of time. We used the simulator from a recent Super Mario Bros. AI com-

petition (Togelius and Karakovskiy, 2009) that randomly generates levels of varying

difficulty (more difficult gaps and types of enemies). Our goal is to train the computer

to play this game based on the current game image features as input (see Figure 5.3).

Our expert in this scenario is a near-optimal planning algorithm that has full access to

the game’s internal state and can simulate exactly the consequence of future actions. In

100
CHAPTER 5. EXPERIMENTAL STUDY OF LEARNING FROM

DEMONSTRATIONS TECHNIQUES

essence it is cheating, as it has knowledge of the future unobserved terrain, enemies and

objects, as well as exactly how enemies are moving or exactly when they may suddenly

appear (e.g. it knows exactly when bullets are going to be fired by cannons), which

is all information not typically available to a human player. By using all this “illegal”

information, we could however obtain a very good planning agent that could complete

most randomly generated level of any difficulty, and that is as good, if not better, than

the world’s best human players. By learning from this expert, we hope to obtain a good

agent that only uses “legal” information observed in the current game image.1

In Super Mario Bros., an action consists of 4 binary variables indicating which subset

of buttons we should press in {left,right,jump,speed}. We attempt to learn 4 independent

Figure 5.3: Captured image from Super Mario Bros.

linear SVMs (binary classifiers) that each predict whether one of the button should be

pressed, and updates the action at 5Hz based on the vector of image features. For

the input features x, each image is discretized in a grid of 22x22 cells centered around

Mario and we extract 14 binary features to describe each cell (types of ground, enemies,

blocks and other special items). A history of those features over the last 4 time steps

is used, in addition to other features describing the last 6 actions and the state of

1While it may seem a contrived application, such scenarios, where imitation learning is conducted
by learning from another computational agent, rather than a human, can be of practical interest. For
instance we may have a robot that can operate well autonomously with a very expensive sensor that
provides lots of information, and/or a very computationally expensive control algorithm, and we would
like to replace these expensive sensors by less informative cheaper ones, or replace the control algorithm
by one that needs less computational resources, e.g. for cheaper mass deployment and commercialization.
In such case, we could attempt to use imitation learning to learn good behavior when the robot only
has access to the cheaper sensors, from the current autonomous behavior of the robot with access to the
more expensive sensor and/or the computationally expensive control algorithm. Our Super Mario Bros
application provides an exact example of this, where we seek to replace a slow planner with access to
lots of information, by a fast decision rule with access to fewer information.

5.2. SUPER MARIO BROS. 101

Mario (small,big,fire,touches ground), for a total of 27152 binary features (very sparse).

Each binary action variable ŷk is predicted as ŷk = I(w>k x + bk > 0), where wk, bk are

the parameters of the kth linear SVM we learn. Given a data of observed features and

associated binary output {(xi, yi)}ni=1, these parameters are optimized by minimizing the

SVM objective (regularized hinge loss): L(w, b) = 1
n

∑n
i=1 max(0, 1− yiw>xi) + λ

2w
>w,

with regularizer λ = 10−4 using stochastic gradient descent (Ratliff et al., 2007b, Bottou,

2009).

We compare performance in terms of the average distance traveled by Mario per

level before dying, running out of time or completing the stage, on randomly generated

levels of difficulty 1 with a time limit of 60 seconds to complete the level. The total

distance of each level varies but is around 4200-4300 on average, so performance can

vary roughly in [0,4300]. Levels of difficulty 1 are fairly easy for an average human

player, but contains most types of enemies and gaps, except with fewer enemies and

gaps than levels of harder difficulties. We compare performance of DAGGER, SMILE

and SEARN2 to the supervised approach (Sup). With each approach, we collect 5000

data points per iteration (each stage is about 150 data points if run to completion) and

run each methods for 20 iterations. For SMILE we choose parameter α = 0.1 (Sm0.1)

as in Ross and Bagnell (2010). For DAGGER we obtain results with different choice of

the parameter βi: 1) βi = I(i = 1) for I the indicator function (D0); 2) βi = pi−1 for all

values of p ∈ {0.1, 0.2, . . . , 0.9}. We report the best results obtained with p = 0.5 (D0.5).

We also report the results with p = 0.9 (D0.9) which shows the slower convergence of

using the expert more frequently at later iterations. Similarly for SEARN, we obtain

results with all choice of α in {0.1, 0.2, . . . , 1}. We report the best results obtained with

α = 0.4 (Se0.4). We also report results with α = 1.0 (Se1) that corresponds to a typical

EM or pure policy iteration approach that would only use data from the last iteration to

optimize the policy for the next iteration. Figure 5.4 shows 95% confidence intervals on

the average distance travelled per stage at each iteration as a function of the total number

of training data collected. Again here we observe that with the supervised approach,

performance stagnates as we collect more data from the expert demonstrations, as this

does not help the particular errors the learned controller makes. In particular, a reason

the supervised approach gets such a low score is that under the learned controller, Mario

is often stuck at some location against an obstacle instead of jumping over it. Since the

expert always jumps over obstacles at a significant distance away, the controller did not

learn how to get unstuck in situations where it is right next to an obstacle. On the other

hand, all the other iterative methods perform much better as they eventually learn to

get unstuck in those situations by encountering them at the later iterations. Again in

this experiment, DAGGER outperforms SMILE, and also outperforms SEARN for all

2We use the same cost-to-go approximation in Daumé III et al. (2009); in this case SMILE and
SEARN differs only in how the weights in the mixture are updated at each iteration.

102
CHAPTER 5. EXPERIMENTAL STUDY OF LEARNING FROM

DEMONSTRATIONS TECHNIQUES

0 1 2 3 4 5 6 7 8 9 10
x 10

4

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

Number of Training Data

A
ve

ra
g

e
D

is
ta

n
ce

 T
ra

ve
lle

d
 P

er
 S

ta
g

e

D0 D0.5 D0.9 Se1 Se0.4 Sm0.1 Sup

Figure 5.4: Average distance/level as a function of data.

choice of α we considered. When using βi = 0.9i−1, convergence is significantly slower

and could have benefited from more iterations as performance was still improving at

the end of the 20 iterations. Choosing 0.5i−1 yields slightly better performance (3030)

then with the indicator function (2980). This is potentially due to the large number of

data generated where mario is stuck at the same location in the early iterations when

using the indicator; whereas using the expert a small fraction of the time still allows to

observe those locations but also unstucks mario and makes it collect a wider variety of

useful data. We also observe how unstable the policy iteration (Se1) approach is. The

learned behavior oscillates between various policies that all achieve lower performance

than DAGGER. Hence this demonstrates that using all previous data is better to make

the learning algorithm more stable, as well as obtain improved performance. A video

available on YouTube (Ross, 2010b) also shows a qualitative comparison of the behavior

obtained with each method.

In addition, we also tried adding random actions during the execution of the expert

demonstrations with the supervised learning approach to improve exploration of possible

failures. This led to some improvement, to a performance around 2000. Performance

could not be improved much further by trying to tweak the frequency of random actions

vs expert actions. This shows that DAGGER can lead to much better exploration than

random exploration, and focus learning only on the most relevant situations to improve

performance.

5.3. ROBOTIC CASE STUDY: LEARNING OBSTACLE AVOIDANCE FOR
AUTONOMOUS FLIGHT 103

5.3 Robotic Case Study: Learning Obstacle Avoidance

for Autonomous Flight

While the previous section demonstrates the applicability of DAGGER in simulated

environments, we also demonstrate that DAGGER can be successfully applied on real

robotic systems. In particular, we demonstrate an application of DAGGER for learning a

reactive controller for a small aircraft that can fly autonomously at low altitude in natural

forest environments, while avoiding trees, using only a cheap camera for perception. This

section covers an application of DAGGER that was presented in detail in Ross et al.

(2013a).

Motivation

In the past decade Unmanned Aerial Vehicles (UAVs) have enjoyed considerable success

in many applications such as search and rescue, monitoring, research, exploration, or

mapping. While there has been significant progress in making the operation of UAVs

increasingly autonomous, obstacle avoidance is still a crucial hurdle. For Micro Aerial

Vehicles (MAVs) with very limited payloads it is infeasible to carry state-of-the-art radars

(Bernier et al., 2005). Many impressive advances have recently been made using laser

range finders (lidar) (Bachrach et al., 2009, Bry et al., 2012, Scherer et al., 2007) or

Microsoft Kinect cameras (RGB-D sensors) (Bachrach et al., 2012). Both sensors are

heavy and active, which leads to increased power consumption and decreased flight time.

In contrast, passive vision is promising for producing a feasible solution for autonomous

MAV navigation (Roberts et al., 2012, Dey et al., 2011, Wendel et al., 2012).

This application is primarily concerned with navigating MAVs that have very low

payload capabilities, and operate close to the ground where they cannot avoid dense

obstacle fields. We present a system that allows the MAV to autonomously fly at speeds

of up to 1.5 m/s and altitudes of up to 4 meters above the ground through a cluttered

forest environment (Figure 5.5), using passive monocular vision as its only exteroceptive

sensor. We use DAGGER to train reactive “heading” policies based on flight trajecto-

ries through forest environments of a human pilot. Visual features extracted from the

corresponding camera image are mapped to the control input provided by the pilot.

System

We use a cheap (∼ $300), commercially available quadrotor helicopter, namely the Parrot

ARDrone, as our airborne platform (see Figure 5.6). The ARDrone weights only 420g

and has a size of 0.3 × 0.3m. It features a front-facing camera of 320 × 240 pixels

and a 93 degree field of view (FOV), an ultrasound altimeter, a low resolution down-

facing camera and an on-board Inertial Measurement Unit (IMU). The drone’s on-board

104
CHAPTER 5. EXPERIMENTAL STUDY OF LEARNING FROM

DEMONSTRATIONS TECHNIQUES

Figure 5.5: Application of DAGGER for autonomous MAV flight through dense forest
areas. The system uses purely visual input from a single camera and imitates human
reactive control.

controller stabilizes the drone and allows control of the UAV through high-level desired

velocity commands (forward-backward, left-right and up-down velocities, as well as yaw

rotation) and can reach a maximum velocity of about 5m/s. Communication is based on

WiFi, with camera images streamed at about 10 − 15Hz. This allows us to control the

drone on a separate computer that receives and processes the images from the drone,

and then sends commands to the drone at 10Hz.

Figure 5.6: The Parrot ARDrone, a cheap commercial quadrotor.

Controller

We aim to learn a simple linear controller of the drones left-right velocity that mimics the

pilots behavior to avoid trees as the drone moves forward at fixed velocity and altitude.

That is, given a vector of visual features x from the current image, we compute a left-

5.3. ROBOTIC CASE STUDY: LEARNING OBSTACLE AVOIDANCE FOR
AUTONOMOUS FLIGHT 105

right velocity ŷ = w>x that is sent to the drone, where w are the parameters of the

linear controller that we learn from the training examples. To optimize w, we solve a

ridge regression problem at each iteration of DAGGER. Given the matrix of observed

visual features X (each row is an observed feature vector), and the vector y of associated

left-right velocity commands by the pilot, over all iterations of training, we solve w =

(X>X+R)−1X>y, where R is a diagonal matrix of per-feature regularization terms. As

our feature vector (described below) is composed of various different types of features,

that occupy a different fraction of the feature vector, we use a different regularizer for each

feature type to make each type contribute more equally to the controls. In particular,

we regularize each feature of a certain type proportionally to the number of features of

that type. Features are also normalized to have mean zero and variance 1, based on all

the observed data, before computing w, and w is applied to normalized features when

controlling the drone.

Visual Features

Intuitively, to be able to avoid obstacles observed through the camera, the visual fea-

tures need to provide indirect information about the three-dimensional structure of the

environment. Accordingly, we focused on extracting features which have been shown to

correlate well with depth cues such as those in Michels et al. (2005), specifically Radon

transform statistics, structure tensor statistics, Laws’ masks and optical flow.

We compute features over square windows in the image, with a 50% overlap between

neighboring windows. The feature vectors of all windows are then concatenated into

a single feature vector x. The choice of the number of windows is driven primarily by

computational constraints. A 15 × 7 discretization (in width and height respectively)

performs well and can be computed in real-time. Below is a description of the features

we extract in each window:

Radon features (30 dim.) The Radon transform (Helgason, 1999) of an image is

computed by summing up the pixel values along a discretized set of lines in the image,

resulting in a 2D matrix where the axes are the two parameters of a line in 2D, θ and s.

We discretize this matrix in to 15× 15 bins, and for each angle θ the two highest values

are recorded. This encodes the orientations of strong edges in the image.

Structure tensor statistics (15 dim.) At every point in a window the structure

tensor (Harris and Stephens, 1988) (covariance matrix of the image gradient in x and y

within a small neighborhood) is computed and the angle between the two eigenvectors is

used to index in to a 15-bin histogram for the entire window. The corresponding eigen-

values are accumulated in the bins. In contrast to the Radon transform, the structure

106
CHAPTER 5. EXPERIMENTAL STUDY OF LEARNING FROM

DEMONSTRATIONS TECHNIQUES

tensor is a more local descriptor of texture. Together with Radon features the texture

gradients are captured, which are strong monocular depth cues (Wu et al., 2004).

Laws’ masks (8 dim.) Laws’ masks (Davies, 1997) encode texture intensities. We

use six masks obtained by pairwise combinations of one dimensional masks: (L)evel,

(E)dge and (S)pot. The image is converted to the YCrCb colorspace and the LL mask

is applied to all three channels. The remaining five masks are applied to the Y channel

only. The results are computed for each window and the mean absolute value of each

mask response is recorded.

Optical flow (5 dim.) Finally, we compute dense optical flow (Werlberger et al.,

2010) and extract the minimum and maximum of the flow magnitude, mean flow and

standard deviation in x and y. Since optical flow computations can be erroneous, we

record the entropy of the flow as a quality measure. Optical flow is also an important

cue for depth estimation as closer objects result in higher flow magnitude.

For this application, features must be computable fast enough so that there is as little

delay as possible between the time the image is observed and the time a control is issued.

This presented set of features can be computed at 15 Hz using the graphics processing

unit (GPU) for dense optical flow computation. Although optical flow is helpful, we

show in our experiments that removing this feature on platforms without a GPU does

not harm the approach significantly. Additionally, the features need to be sufficiently

invariant to changes between training and testing conditions so that the system does

not overfit to training conditions. We therefore refrained from adding color features, as

considerable variations under different illumination conditions and confusions between

trees and ground, as well as between leaves and grass, might occur. An experimen-

tal evaluation of the importance of every feature is given below, along with a detailed

evaluation.

In addition to visual features, we append 9 additional features: the low pass filtered

history of previous commands (with 7 different exponentially decaying time periods),

the sideways drift measured by the on-board IMU, and the deviation in yaw from the

initial direction. Previous commands encode past motion and help smooth the controller

output. The drift feature provides context to the pilot’s commands and accounts for

motion caused by inertia. The difference in yaw is meant to reduce drift from the initial

orientation to maintain the original heading.

Using DAGGER in Practice

In this application, DAGGER is applied as follows. Initially, the pilot flies the quadrotor,

via a joystick, through forest environments for several trajectories, to collect an initial

5.3. ROBOTIC CASE STUDY: LEARNING OBSTACLE AVOIDANCE FOR
AUTONOMOUS FLIGHT 107

Figure 5.7: One frame from MAV camera stream. The white line indicates the current
left-right velocity commanded by the drone’s current policy πn−1 while the red line
indicates the pilot’s commanded left-right velocity. In this frame DAGGER is wrongly
heading for the tree in the middle while the expert is providing the correct yaw command
to go to the right instead. These expert controls are recorded for training later iterations
but not executed in the current run.

dataset and train a first policy π1. At following iterations, the drone is placed in various

forest environments and flies autonomously using its current policy πn−1. The pilot

provides the correct controls he would perform in the situations encountered along the

autonomous trajectories flown by the drone, via the joystick. This allows the drone to

collect data in new situations visited by the current policy, and learn the proper recovery

behavior when these are encountered. The next policy πn+1 is obtained by training a

policy on all the training data collected over all iterations (from iteration 1 to n).

Figure 5.7 shows the DAGGER control interface used to provide correct actions to

the drone. As mentioned, at iteration n > 1, the drone’s current policy πn−1 is in

control and the pilot just provides the correct controls for the scenes that the MAV

visits. The pilot controls are recorded but not executed on the MAV. This results in

some human-computer-interaction challenges:

1) After the first iteration, the pilot must be able to provide the correct controls

without feedback of how the drone would react to the current command. While deciding

whether the drone should go left or right is easy for the pilot, it can be hard to input the

correct magnitude of the turn the drone should perform without feedback. In particular,

we observed that this often makes the pilot turn excessively when providing the training

examples after the first iteration. Performance can degrade quickly if the drone starts to

mimic these imperfect actions. To address this issue, we provided partial feedback to the

pilot by showing a vertical line in the camera image seen by the pilot that would slide

left or right based on the current joystick command performed. As the line indicated

roughly where the drone would move under the current joystick command, this interface

108
CHAPTER 5. EXPERIMENTAL STUDY OF LEARNING FROM

DEMONSTRATIONS TECHNIQUES

Figure 5.8: Left: Indoor setup in motion capture arena with fake plastic trees and
camouflage in background. Right: The 11 obstacle arrangements used to train DAGGER
for every iteration in the motion capture arena. The star indicates the goal location.

led to improved actions provided by the pilot (Figure 5.7).

2) In addition to the lack of feedback, providing the correct actions in real-time after

the first iteration when the drone is in control can be hard for the pilot as he must

react to what the drone is doing and not what he expects to happen: e.g., if the drone

suddenly starts turning towards a tree nearby, the pilot must quickly start turning the

other way to indicate the proper behavior. The pilot’s reaction time to the drone’s

behavior can lead to extra delay in the correct actions specified by the pilot. By trying

to react quickly, he may provide imperfect actions as well. This becomes more and more

of an issue the faster the drone is flying. To address this issue, we allow the pilot to

indicate the correct actions offline while the camera stream from the drone is replayed

at slower speed (proportional to the drone’s speed), using the interface seen in Figure

5.7. By replaying the stream slower the pilot can provide more accurate commands and

react more quickly to the drone’s behavior.

3) The third challenge is that DAGGER needs to collect data for all situations en-

countered by the current policy in later iterations. This would include situations where

the drone crashes into obstacles if the current policy is not good enough. For safety rea-

sons, we allow the pilot to take over or force an emergency landing to avoid crashes as

much as possible. This implies that the training data used is not exactly what DAGGER

would need, but instead a subset of training examples encountered by the current policy

when it is within a “safe” region. Despite this modification, the guarantees of DAGGER

still hold as long as a policy that can stay within this “safe” region can be learnt.

Indoor Experiments

We first tested our approach indoors in a motion capture arena. We used fake indoor trees

as obstacles and camouflage to hide background clutter (Figure 5.8). Although being a

5.3. ROBOTIC CASE STUDY: LEARNING OBSTACLE AVOIDANCE FOR
AUTONOMOUS FLIGHT 109

Figure 5.9: Left: Improvement of trajectory by DAGGER over the iterations. The
rightmost green trajectory is the pilot demonstration. The short trajectories in red &
orange show the controller learnt in the 1st and 2nd iterations respectively that failed.
The 3rd iteration controller successfully avoided both obstacles and its trajectory is
similar to the demonstrated trajectory. Right: Percentage of scenarios the pilot had to
intervene and the imitation loss (average squared error in controls of controller to human
expert on hold-out data) after each iteration of DAGGER. After 3 iterations, there was
no need for the pilot to intervene and the UAV could successfully avoid all obstacles

very controlled environment that lacked many of the complexities of real outdoor scenes,

it allowed us to obtain better quantitative results to determine the effectiveness of our

approach.

The motion capture system was only used to track the drone and to adjust its heading

so that it always headed straight towards a given goal location. The drone moved at a

fixed altitude and forward velocity of 0.35m/s and we learnt a controller that controlled

the left-right velocity using DAGGER over 3 training iterations. At each iteration, we

used 11 fixed scenarios to collect training data, including 1 scenario with no obstacles, 3

with one obstacle and 7 with two obstacles (Figure 5.8).

Figure 5.9 qualitatively compares the trajectories taken by the MAV in the mocap

arena after each iteration of training on one of the particular scenarios. In the first

iteration, the green trajectory to the farthest right is the demonstrated trajectory by the

human expert pilot. The short red and orange trajectories are the trajectories taken by

the MAV after the 1st and 2nd iterations were completed. Note that both failed to avoid

the obstacle. After the 3rd iteration, however, the controller learnt a trajectory which

avoided both obstacles. The percentage of scenarios where the pilot had to intervene

for the learnt controller after each iteration can be found in Figure 5.9. The number of

110
CHAPTER 5. EXPERIMENTAL STUDY OF LEARNING FROM

DEMONSTRATIONS TECHNIQUES

Figure 5.10: Common failures over iterations. While the controller has problems with
tree trunks during the 1st iteration (left), this improves considerably towards the 3rd

iteration, where mainly foliage causes problems (middle). Over all iterations, the most
common failures are due to the narrow FOV of the camera where some trees barely
appear to one side of the camera or are just hidden outside the view (right). When the
UAV turns to avoid a visible tree a bit farther away it collides with the tree to the side.

required interventions decreased between iterations and after 3 iterations there was no

need to intervene as the MAV successfully avoided all obstacles in all scenarios.

Outdoor Experiments

After validating our approach indoors in the motion capture arena, we conducted outdoor

experiments to test in real-world scenarios. As we could not use the motion capture

system outdoors to make the drone head towards a specific goal location, we made the

drone move forward at a fixed speed and aimed for learning a controller that would

swerve left or right to avoid any trees on the way, while maintaining the initial heading.

Training and testing were conducted in forest areas while restraining the aircraft using

a light-weight tether.

We performed two experiments with DAGGER to evaluate its performance in dif-

ferent regions, one in a park with relatively low tree density, and another in a dense

forest.

Low-density region

The first area is a park area with a low tree density of approximately 1 tree per 12×12m,

consisting mostly of large trees and a few thinner trees. In this area we flew at a fixed

velocity of around 1m/s, and learnt a heading (left-right) controller for avoiding trees

using DAGGER over 3 training iterations, representing training data acquired over a

total of 1km of flight. Then, we exhaustively tested the final controller over an additional

800m in the training area and a separate test area.

Qualitatively, we observed that the behavior of the drone improved over iterations.

After the first iteration of training, the drone sometimes failed to avoid large trees even

5.3. ROBOTIC CASE STUDY: LEARNING OBSTACLE AVOIDANCE FOR
AUTONOMOUS FLIGHT 111

0.17

0.5

0.33 Large
Trees

Thin Trees

Leaves &
Branches

Other
Obstacle

Narrow
FOV

(a) Pilot

0.33

0.08

0.08

0.5

Large
Trees

Thin Trees

Leaves &
Branches

Other
Obstacle

Narrow
FOV

(b) After iter. 1

0.35

0.24

0.18

0.24
Large
Trees

Thin Trees

Leaves &
Branches

Other
Obstacle

Narrow
FOV

(c) After iter. 2

0.27

0.09

0.27

0.36
Large
Trees

Thin Trees

Leaves &
Branches

Other
Obstacle

Narrow
FOV

(d) After iter. 3

Figure 5.11: Percentage of failures of each type for DAGGER over the iterations of
training in the high-density region. Blue: Large Trees, Orange: Thin Trees, Yellow:
Leaves and Branches, Green: Other obstacles (poles, signs, etc.), Red: Too Narrow
FOV. Clearly, a majority of the crashes happen due to a too narrow FOV and obstacles
which are hard to perceive, such as branches and leaves.

when they were in the middle of the image in plain view (Figure 5.10, left). At later

iterations however, this rarely occured. On the other hand, we observed that the MAV

had more difficulty detecting branches or bushes. The fact that few such obstacles were

seen in the training data, coupled with the inability of the human pilot to distinguish

them from the background, contributed to the difficulty of dealing with these obstacles.

We expect that better visual features or improved camera resolution might help, as small

branches often cannot be seen in 320× 240 pixel images.

As expected, we found that the narrow field-of-view (FOV) was the largest contribu-

tor to failures of the reactive approach (Figure 5.10, right). This occurs when the learnt

controller avoids a tree and, as it turns, a new tree comes into view. Such a situation

may cause the controller to turn in a way such that it collides sideways into the tree

it just avoided. This problem inevitably afflicts purely reactive controllers and can be

solved by adding a higher level of reasoning (Bellingham et al., 2002), or memory of

recent visual features.

The type of failures are broken down by the type of obstacle the drone failed to avoid,

or whether the obstacle was not in the FOV. Overall, 29.3% of the failures were due to

a too narrow FOV and 31.7% on hard to perceive obstacles like branches and leaves.

Quantitatively, we compare the evolution of the average distance flown autonomously

by the drone before a failure occured over the iterations of training. We compare these

results when accounting for different types of failures in Figure 5.12 (left). When ac-

counting for all failure types, the average distance flown per failure after all iterations of

training was around 50m. On the other hand, when only accounting for failures that are

not due to the narrow FOV, or branches/leaves, the average distance flown increases to

around 120m. For comparison, the pilot successfully flew over 220m during the initial

demonstrations, avoiding all trees in this sparse area.

To achieve these results the drone has to avoid a significant number of trees. Over

112
CHAPTER 5. EXPERIMENTAL STUDY OF LEARNING FROM

DEMONSTRATIONS TECHNIQUES

Figure 5.12: Average distance flown autonomously by the drone before a failure. Left:
Low-Density Region, Right: High-Density Region.

all the data, we counted the number of times the MAV avoided a tree3, and observed

that it passed 1 tree every 7.5m on average. We also checked whether the drone was

actively avoiding trees by performing significant commands4. 41% of the trees were

passed actively by our drone, compared to 54% for the human pilot.

Finally, we tested whether the learnt controller generalizes to new regions by testing it

in a separate test area. The test area was slightly denser, around 1 tree per 10×10m. The

controller performed very well and was successfully able to avoid trees and perform at a

similar level as in the training area. In particular, the drone was able to fly autonomously

without crashing over a 100m distance, reaching the limit of our communication range

for the tests.

High-density region

The second set of experiments was conducted in a thickly wooded region in a local

forest. The tree density was significantly higher, around 1 tree per 3× 3m, and the area

included a much more diverse range of trees, ranging from very small and thin to full-

grown trees. In this area we flew at a faster fixed velocity of around 1.5m/s, and again

learnt the heading (left-right) controller to avoid trees using DAGGER over 3 iterations

of training. This represented a total of 1.2km of flight training data. The final controller

was also tested over additional 400m of flight in this area. For this experiment however,

we used the new ARDrone 2.0 quad-rotor helicopter, which has an improved HD camera

that can stream 640 × 360 pixel images at 30Hz. The increased resolution probably

helped in detecting the thinner trees.

Qualitatively, in this experiment we observed that the performance of the learnt be-

havior slightly decreased in the second iteration, but then improved significantly after

3A tree is avoided when the drone can see the tree pass from within its FOV to the edge of the image.
4A tree is actively avoided when the controller issues a command larger than 25% of the full range,

passively in all other cases.

5.3. ROBOTIC CASE STUDY: LEARNING OBSTACLE AVOIDANCE FOR
AUTONOMOUS FLIGHT 113

the third iteration. This is consistent with the theory which predicts that the perfor-

mance of the learnt behavior averaged over time is guaranteed to increase, but that it

might decrease on individual iterations. For example, we observed more failures to avoid

both thin and large trees in the second iteration compared to the other iterations. This

is shown in Figure 5.11, which compares the percentage of the different failures for the

human pilot and after each iteration of DAGGER in this area.

We can also observe that the percentage of failures attributed to large or thin trees

is smallest after the third iteration, and that again a large fraction of the failures occur

when obstacles are not visible in the FOV of the MAV. Additionally, the percentages

of failures due to branches or leaves diminishes slightly over the iterations, which could

be attributed to the higher resolution camera that can better perceive these obstacles.

A visualization of a typical sequence is given in Figure 5.13. Further qualitative results

can be found in videos on YouTube (Ross et al., 2013b,c).

Quantitatively, we compare the evolution of the average distance flown autonomously

by the MAV before a failure occurred over the iterations of training. Again, we com-

pare these results when accounting for different types of failures in Figure 5.12. When

accounting for all failure types, the average distance flown per failure after all iterations

of training was around 40m. Surprisingly, despite the large increase in tree density and

faster forward velocity, this is only slightly worse than our previous results in the sparse

region. Furthermore, when only accounting for failures that are not due to the narrow

FOV or branches and leaves, the average distance flown increases to 120m per failure,

which is on par with our results in the sparser area. For comparison, when only account-

ing for failures due to tree trunks, the pilot flew around 500m in total during the initial

demonstrations and only failed to avoid one thin tree. However, the pilot also failed to

avoid thin branches and foliage more often (Figure 5.11). When accounting for all types

of obstacles, the pilots average distance until failure was around 80m.

The increase in tree density required our MAV to avoid a significantly larger number

of trees to achieve these results. Over all the data, we observed that it was avoiding on

an average 1 tree every 5m. In this dense region, both the pilot and the drone had to use

larger controls to avoid all the trees, leading to an increase in the proportions of trees

that were passed actively. 62% of the trees were passed actively by the drone, compared

to a similar ratio of 66% for the pilot.

Discussion of the Outdoor Results

We observed that much of the degradation in performance is due to the limited FOV. Two

approaches could be used to mitigate these limitations: First, integrating a small amount

of memory in the features used by DAGGER to overcome the simplest failure cases

without resorting to a complete and expensive mapping of the environment. Second,

114
CHAPTER 5. EXPERIMENTAL STUDY OF LEARNING FROM

DEMONSTRATIONS TECHNIQUES

MAV’s on-board view Observer’s view

Figure 5.13: Example flight in dense forest. Images ordered from top (t = 0s) to bottom (t = 6.6s);

with color-coded commands issued by DAGGER (in MAV’s view). After avoiding tree A (frame 3),

drone still rolls strongly to the left (frame 4), in part due to latency. Then tree B is avoided on the

left (frame 5-7), rather than on the more intuitive right. Drone prefers this due to the drift feature, as

inertia is already pushing it further to the left.

5.3. ROBOTIC CASE STUDY: LEARNING OBSTACLE AVOIDANCE FOR
AUTONOMOUS FLIGHT 115

Figure 5.14: Breakdown of the contribution of the different features for different con-
trol prediction strengths, averaged over 9389 datapoints. Laws and Radon are more
significant in cases where small controls are performed (e.g. empty scenes), whereas the
structure tensor and optical flow are responsible for strong controls (e.g. in cases where
the scene contains an imminent obstacle). A slight bias to the left can be seen, which is
consistent to observations in the field. Best viewed in color.

using the biologically-inspired solution to simply ensure a wider FOV for the camera

system. For example, pigeons, that rely mostly on monocular vision, and owls, that have

binocular vision, have about 3 times and 1.5 times the FOV of our drone respectively.

Feature Evaluation

After verifying the general functionality of our approach, we evaluate the benefit of all

four feature types. An ablative analysis on the data shows that the structure tensor

features are the most important, followed by Laws features. Figure 5.14 shows how the

contribution of different features varies for different control signal strengths. Optical flow,

for example, carries little information in scenes where small commands are predicted.

This is intuitive since in these cases there are typically no close obstacles and subsequently

no significant variation in optical flow. In fact, removing the optical flow feature only

results in a 6.5% increase in imitation loss. This is a significant result for platforms

incapable of computing expensive flow computations at required update rates.

Anecdotally, Figure 5.15 shows the contribution of each of the features at different

window centers in the image. While structure tensor features mainly fire due to texture

in the background (indicating free space), strong optical flow vectors correspond to very

close objects. In this example the predictor commands a hard left turn (numerical value:

0.47L on a scale of [0,1]), and all visual features contribute to this. Consistent with

116
CHAPTER 5. EXPERIMENTAL STUDY OF LEARNING FROM

DEMONSTRATIONS TECHNIQUES

(a) Radon (b) Structure Tensor

(c) Laws (d) Flow

(e) Combined Features

Figure 5.15: Visualization of the contribution of the different features to the predicted
control. The overall control was a hard left command. The arrows show the contri-
bution of a given feature at every window. Structure tensor features have the largest
contribution in this example, while Radon has the least.

5.3. ROBOTIC CASE STUDY: LEARNING OBSTACLE AVOIDANCE FOR
AUTONOMOUS FLIGHT 117

the above analysis, the contribution of the structure tensor was greatest (0.38L), Laws

masks and optical flow contribute the same (0.05L) while Radon features provide the

least contribution (0.01L). In this particular example, the non-visual features actually

predict a small right command (0.02R).

Chapter 6

Learning Inference for Structured

Prediction

After studying how iterative and interactive learning methods can learn good predictors

for imitation learning tasks, we here show how the same techniques can be generalized

and applied to general structured prediction tasks.

Structured prediction problems arise very frequently in many fields and have im-

portant applications in Natural Language Processing (e.g. Name-Entity Recognition,

Part-of-Speech tagging, Machine Translation) (Daumé III et al., 2009, Zhao and Xing,

2007), Computer Vision (e.g. Scene Understanding, Depth Estimation, Image Denoising)

(Munoz et al., 2009, Scharstein and Pal, 2007, Tappen et al., 2007) and Computational

Biology (e.g. Protein Folding, Genomic Analysis, Phylogenetic Tree Estimation) (Liu,

2006, Xing, 2004, Felsenstein, 1981), among others. Inspired by the approaches of Tu and

Bai. (2009), Daumé III et al. (2009), Munoz et al. (2010), we will tackle these problems

by effectively reducing structured prediction tasks to sequential prediction tasks, where

the same iterative and interactive learning strategies developed for imitation learning

can be directly applied to tackle this problem. In particular, our approach will train

directly an “inference” (or parsing/decoding) procedure, composed of a single or many

predictors, that produces the high-dimensional output prediction from the observed in-

put features by making a sequence of interdependent predictions. As will be made more

clear below, the main idea behind our approach will be to train a procedure that “mim-

ics” ideal inference. Again, by leveraging interaction with the learner, we will be able to

provide strong guarantees on performance, as in the imitation learning setting.

We begin by briefly reviewing background material and state-of-the-art methods for

structured prediction. We then present our sequence prediction approach, and how the

previous methods we introduced for imitation learning, such as Forward Training, and

DAGGER, can be applied directly in this setting. We then present a number of ap-

plications in Computer Vision and Perception, to demonstrate the effectiveness of our

120 CHAPTER 6. LEARNING INFERENCE FOR STRUCTURED PREDICTION

Input: Camera Image Output: Labeled Image

road

building
vegeta/on

car

sidewalk

bike person

sky

Figure 6.1: Example structured prediction application of image labeling. Images from
CamSeq01 dataset (Fauqueur et al., 2007).

approach and compare to state-of-the art methods. In particular, we apply our tech-

niques for handwriting recognition, 3D point cloud classification (predicting the object

present at every point in LIDAR 3D point clouds), and 3D geometry estimation of a

scene from a 2D image.

6.1 Preliminaries

Structured Prediction is interested in prediction problems where the output prediction

is high-dimensional, and has some structure (e.g. in the dependencies between output

variables). For instance, consider a scene understanding/image labeling task in computer

vision where given an input image of n×m pixels, we want to ouput a labeled image of

n×m labels that indicates the class of object present at each pixel (see Figure 6.1).

For many of these problems, spatial and temporal relationships between the output

variables can be exploited to devise tractable learning and prediction procedures. For

instance, in the example above, the label of a pixel is likely to be the same as its neighbors,

as objects typically span a large number of pixels, and a small number of objects are

present in the image (compared to the number of pixels). Pixels that are far away thus

contain much less information about the label of a pixel. Such spatial relationships can

be modeled (approximately) via independence relations between the output variables,

which allow learning good models of data efficiently as we will see below.

Graphical Models and Inference

The predominant approach to tackle structured prediction problems is via graphical

models. Graphical models are probabilistic models that encode explicitly the dependence

and independence relations that exist between the input and output variables. Formally,

a graphical model represents a joint (conditional) distribution over the output variables,

via a factor graph (a bipartite graph between output variables and factors) defined by a

6.1. PRELIMINARIES 121

set of variable nodes V , a set of factor nodes (potentials) F and a set of edges E between

them:

P (Y |X) ∝
∏
f∈F

φf (xf , yf),

where X,Y are the vectors of all observed features and output variables respectively, xf

the input features related to factor f and yf the vector of outputs for each node connected

to factor f . Such graphical model is known as a conditional random field (CRF) (Lafferty

et al., 2001). A typical graphical model will have node potentials (factors connected to

a single variable node) and pairwise potentials (factors connected between 2 nodes) (see

Figure 6.2). It is also possible to consider higher order potentials by having a factor

connecting many nodes (e.g., cluster/segment potentials as in Munoz et al. (2009)).

Observed

Pixel Features
Object

Potential

Pixel Label
Object Adjacency

Potential

Input Image Graphical Model

Labeled Image

road

building
vegetation

car

sidewalk

bike person

sky

Inference

Figure 6.2: Graphical Model approach to Structured Prediction in the context of image
labeling. Pairwise potentials model dependencies between objects at neighboring pixels
and unary potentials model the likehood of an object present at a pixel given the local
image features. Inference, such as loopy belief propagation, is performed to find an
approximate minimum energy solution which is returned as output.

Training a graphical model is achieved by optimizing the potentials φf on an objec-

tive function (e.g., margin, pseudo-likelihood, etc.) defined over training data where the

correct high dimensional output Y is provided (e.g. the labeling of an entire image pro-

vided by a human) (Taskar et al., 2003, Kumar and Hebert, 2006, Finley and Joachims,

2008). For instance, it is often assumed that the potentials are log-linear so that the

graphical model is in some exponential family of distribution. For a typical model with

122 CHAPTER 6. LEARNING INFERENCE FOR STRUCTURED PREDICTION

node potentials φn and pairwise potentials φe, this means we would learn two weight

vectors wn and we such that:

P (Y |X) ∝
∏
v∈V

exp(w>n ψ(xv, yv))
∏

(v,v′)∈E

exp(w>e ψ(xvv′ , yv, yv′)),

where ψ(xv, yv) represents the feature vector associated with prediction yv for output

variable v with input features xv, and ψ(xvv′ , yv, yv′) represents the feature vector asso-

ciated with predicting yv and yv′ to the pair of connected output variables (v, v′) with

input features xvv′ on this pair. Given training data (e.g. a set of images with object

labels at every pixel), these parameters can be trained to maximize the likelihood of

the data. However, finding the exact optima is often computationally infeasible as it

typically requires evaluating the normalization constant of this probability distribution

for the current parameters (i.e. the partition function). Thus, approximate training

procedures are often used (Wainwright et al., 2001, Kumar et al., 2005, Ratliff et al.,

2007b, Kulesza and Pereira, 2008).

Once the parameters of the graphical model have been trained, making a prediction

for a new input is achieved via an inference procedure.

Inference

Given the graphical model that we trained and the input features of a new instance,

the inference process consists in finding either: 1) the most likely output prediction,

or 2) assigning a marginal distribution over possible outputs at every output variable.

In general, finding this exactly is also intractable as it requires searching over an ex-

ponentially large number of possible outputs. However, many approximate inference

algorithms exists that can find good solutions efficiently. A common approach is to use

message-passing procedures which iteratively pass through each node and potential in

the graph several times to compute messages (that represents belief over the outputs)

to send to neighbors until convergence.

Loopy Belief Propagation (LBP) (Pearl, 1988) is perhaps the canonical message-

passing algorithm for performing (approximate) inference in graphical models. Let Nv

be the set of factors connected to variable v, N−fv the set of factors connected to v except

factor f , Nf the set of variables connected to factor f and N−vf the set of variables

connected to f except variable v. At a variable v ∈ V , LBP sends a message mvf to

each factor f in Nv:

mvf (yv) ∝
∏

f ′∈N−fv

mf ′v(yv),

where mvf (yv) denotes the value of the message for assignment yv to variable v. At a

6.1. PRELIMINARIES 123

factor f ∈ F , LBP sends a message mfv to each variable v in Nf :

mfv(yv) ∝
∑

y′f |y′v=yv

φf (y′f , xf)
∏

v′∈N−vf

mv′f (y′v′),

where y′f is an assignment to all variables v′ connected to f , y′v′ is the particular assign-

ment to v′ (in y′f), and φf is the potential function associated to factor f which depends

on y′f and potentially other observed features xf (e.g., in the CRF). Finally the marginal

of variable v is obtained as:

P (v = yv) ∝
∏
f∈Nv

mfv(yv).

The messages in LBP can be sent synchronously (i.e., all messages over the graph are

computed before they are sent to their neighbors) or asynchronously (i.e., by sending the

message to the neighbor immediately). When proceeding asynchronously, LBP usually

starts at a random variable node, with messages initialized uniformly, and then pro-

ceeds iteratively through the factor graph by visiting variables and factors in a breath-

first-search manner (forward and then in backward/reverse order) several times or until

convergence. The final marginals at each variable are computed using the last equa-

tion. Asynchronous message passing often allows faster convergence and methods such

as Residual Belief Propagation (Elidan et al., 2006) have been developed to achieve still

faster convergence by prioritizing the messages to compute.

Structured Margin Approaches

An alternate approach when training graphical models is to maximize a margin objective

similar to the objective when training a SVM. This is justified from the observation that

in a log-linear model, finding the most likely output prediction Y given the input features

X boils down to finding:

arg max
Y

∑
v∈V

w>n ψ(xv, yv) +
∑

(v,v′)∈E

w>e ψ(xvv′ , yv, yv′)

It can be noticed that this is very similar to the way a linear SVM predicts in multiclass

classification problems. Hence a natural idea is to train the weights wn and we to

maximize the margin between the ground truth outputs and other outputs. In this case,

the margin is structured so that the ground truth should have larger margin with respect

to outputs that differ significantly from it. For instance if we are predicting a label at

every pixel in an image, we might specify that the margin between the ground truth and

some arbitrary output Y should be at least the number of pixels in Y that are labeled

incorrectly. A number of approaches proceeds in this way, such as M3N (Taskar et al.,

2003) and the structured SVM (Tsochantaridis et al., 2005, Finley and Joachims, 2008).

124 CHAPTER 6. LEARNING INFERENCE FOR STRUCTURED PREDICTION

With these methods, performing approximate inference (finding the output Y with

highest score) can sometimes be achieved efficiently via iterative graph-cut procedures

(Boykov et al., 2001) when the potentials satisfy certain submodular properties (Kol-

mogorov and Zabih, 2004). Such efficient procedures can also be used during training to

obtain good estimates of the subgradient of the margin objective and perform gradient

descent on the weight parameters (Ratliff et al., 2007b, Munoz et al., 2009).

Structured Prediction as Sequence Prediction

A major drawback of graphical model approaches is that inference, even if approxi-

mate, is very computationally expensive, and in most case cannot be applied in real

time applications (e.g. image labeling in real time video observed by a robot). Also,

these approximations can lead to several issues and difficulties for training the graphical

model (Kulesza and Pereira, 2008, Finley and Joachims, 2008). The end result is that

using graphical models with approximate inference for training and testing is poorly

understood and has limited guarantees on test performance only in a few particular

cases(Kulesza and Pereira, 2008, Finley and Joachims, 2008).

Some recent alternate approaches (Daumé III et al., 2009, Tu and Bai., 2009, Munoz

et al., 2010, Xiong et al., 2011) eschew the probabilistic graphical model entirely with

notable successes. These methods proceed by training classifiers or regressors that can

construct the output prediction by making a sequence of interdependent local predictions.

This effectively transforms the structured prediction problem into a sequential prediction

problem. Unlike with graphical models, these methods can provide guarantees on test

performance via reduction arguments, i.e. in a way similar to our guarantees in the

imitation learning setting. In addition, a major practical advantage of these methods is

that they can be much faster to produce the output predictions, and be applicable in

real-time applications (Hu et al., 2013, Miksik et al., 2013). We will leverage these ideas

in this thesis to tackle structured prediction problems as sequential prediction tasks. We

now briefly review these techniques.

Naive Independent Predictions

A first naive approach to transform the structured prediction problem into a sequence

of predictions is to simply learn a classifier or regressor that independently predicts each

output variable given some input features. For instance, in the image labeling example,

we could learn a classifier which takes image features local to a pixel as input, such as

color and texture features in the neighborhood of the pixel, and then predicts the object

present at that pixel given those features. Applying this classifier in sequence to every

pixel in the image would create a sequence of predictions that construct the structured

ouput (i.e. the labeled image).

6.1. PRELIMINARIES 125

Figure 6.3: Example predictions obtained by independently classifying each 3D point
independently in a LIDAR point cloud with a SVM, using only local features of the
point cloud. Red: Building, Green: Tree, Blue: Shrubbery, Gray: Ground. Significant
noise is present in the classifications and many points in the building are incorrectly
classified as tree. Image from Anguelov et al. (2005).

While this approach would be computationally efficient at producing the output

prediction, it would typically make poor predictions as it ignores the dependencies that

exist between the output variables. This was shown experimentally in (Anguelov et al.,

2005) (see Figure 6.3). In the image labeling example, it is important to consider the

spatial relationship that exists between the object predicted at neighboring pixels. This

is because the object present at a given pixel is likely to be the same as the object

present at neighboring pixels. If we have a segmentation of the image, it is also likely

that the pixel is the same object as all other pixels in the same segment. Additionally,

certain object classes should satisfy certain spatial relationships, e.g. sky cannot be

below ground, tree-top cannot be below tree-trunk.

These observations lead to a natural extension of the naive approach we just de-

scribed. Instead of predicting each output variable independently, we could learn a clas-

sifier or regressor that predicts each output variable in sequence, given input features, as

well as features related to previous predictions made by this classifier at previous output

variables. For instance, for image labeling, we could consider additional features that

encode the predicted objects at neighboring pixels, and/or the predicted objects within

the same segment as the current pixel. These additional features would give contextual

information about what objects are present near the current pixel and lead to improved

predictions. This is the common strategy used in all approaches below to capture the

interdependency between output variables.

126 CHAPTER 6. LEARNING INFERENCE FOR STRUCTURED PREDICTION

Auto-Context and Hierarchical Labeling

Auto-Context (Tu and Bai., 2009) is an approach introduced in computer vision for

treating structured prediction as a sequence of predictions1. They focus on image labeling

tasks and train a sequence of classifiers applied iteratively to label the image. The

first classifier is trained to only use the image features local to a pixel and tries to

infer the object present at that pixel. Then the second classifier is trained to predict

the object present at each pixel using the local image features, and the predictions of

the first classifier at neighboring pixels. Training continues in this fashion for some

pre-determined number of iterations. Given a test image, the classifiers are applied in

sequence on the entire image and the final predictions of the last classifier are returned.

This training procedure is similar to the forward training algorithm we presented for

imitation learning in Section 3.4 (and in our prior work (Ross and Bagnell, 2010)). By

training on the output of the previous classifier, the classifiers learn to predict well

under the distribution of inputs they induce and can thus provide good guarantees.

In particular, this approach can guarantee that its average loss during test execution

is directly the average loss of the learned classifiers over the iterations of training, by

following a similar analysis to the one presented previously in Section 3.4.

Figure 6.4: Sequence of predictions made by Auto-Context on a test image (images from
Tu and Bai. (2009)). Left: Input image. Middle-Left: Predictions of the 1st predictor
using only image features. Middle-Right: Predictions of the 3rd predictor, using image
features and predictions of the 2nd predictor as input. Right: Predictions of the 5th (final)
predictor, using image features and predictions of the 4th predictor as input. Predictions
are shown in grayscale, where black indicates probability 0 of horse and white indicates
probability 1 of horse.

Another similar approach used in the context of image labeling is the hierarchical la-

beling approach of Munoz et al. (2010), Xiong et al. (2011). In this work, the images are

first segmented several times with varying parameters to obtain a hierarchical segmenta-

tion of the image, going from coarse segments to fine segments. A sequence of classifiers

is then trained to predict the distribution of labels present in each segment at each level

of the hierarchy. They proceed in a coarse to fine fashion. First, a classifier is trained

to predict the distribution of labels for the segments in the coarsest segmentation using

only the image features of the segments. Then, the next classifier is trained to predict

1A similar approach also appeared previously in Sofman et al. (2006).

6.1. PRELIMINARIES 127

the distribution of labels for the segments in the second coarsest segmentation, using the

predictions made by the previous classifier at the coarser level, and the image features of

the segment as input. The approach continues iteratively until a classifier is trained at

the finest level. Then for prediction on a test image, the hierarchical segmentation of the

image is first obtained with the same segmentation algorithm and the classifiers are ap-

plied in sequence on the entire image from coarse to fine, and the predictions at the finest

level are used as the final predictions. This approach again proceeds similarly the to the

forward training algorithm, and thus provide similar guarantees to the ones presented

in Section 3.4. This training procedure can also be iterated longer back-and-forth, by

going from coarse-to-fine, and fine-to-coarse, for several iterations, to allow propagating

contextual information further during parsing (Xiong et al., 2011). Additionally, it was

showed recently that this technique can lead to real-time scene analysis in streaming

video (Miksik et al., 2013) and streaming 3D point cloud data from LIDAR sensors (Hu

et al., 2013).

SEARN: Search-based Structured Prediction

SEARN is a technique that we mentioned previously in the imitation learning setting and

compared to experimentally by adapting it for imitation learning. However, it was orig-

inally developed for structured prediction tasks. We briefly mention how this approach

is applied in the context of Structured Prediction. Just like DAGGER and Forward

Training, SEARN is a technique that can be used to learn predictors for sequential tasks

that are trained to be good under their own sequence of predictions.

In Daumé III et al. (2009), structured prediction is treated as a problem of training

a search procedure that can construct the high-dimensional output from a sequence

of predictions. In the simplest case, a greedy-search procedure is trained, where the

structured output is constructed by predicting the value of one variable at a time, given

the previous predictions made so far. For instance in a handwriting recognition task,

the approach would predict each character in the handwritten word in sequence, using

previously predicted characters to help disambiguate among several candidates for the

next character. However, the approach is general enough to be applied with other search

procedures, such as beam-search that would maintain a set of sequences of previous

predictions.

The search procedure is trained by training a stochastic classifier over several iter-

ations to make the predictions. As described for imitation learning in section 3.5, at

each iteration n, it proceeds by collecting data of cost-to-go examples of the current

predictor hn−1 in states visited by this predictor, training a policy ĥn to minimize a

cost-sensitive classification loss on this data, and updating hn = (1 − α)hn−1 + αĥn

(where this is interpreted as a stochastic mixing, see Section 3.5). Initially, the approach

128 CHAPTER 6. LEARNING INFERENCE FOR STRUCTURED PREDICTION

starts with an “expert” classifier h0 which can make good predictions on the training

data (e.g. by directly looking up the target output in the training data itself). After

N iterations, it returns the renormalized classifier which do not use the “expert” classi-

fier for test execution: h̃N = 1
1−(1−α)N

[hN − (1 − α)Nh0]. In the context of structured

prediction, when collecting cost-to-go estimates, SEARN proceeds by trying all possible

predictions y at the current point in the sequence, and then rolling out the current policy

to estimate cost-to-go of all possible prediction in the current context x. This generates

cost-sensitive classification examples (i.e. full information setting as described in section

4.1). As mentioned in section 3.5, choosing α to be O(1
T 3) and N to be Õ(T 3), leads to

good performance guarantees.

In practice, because collecting the costs for each prediction y for the current input

x is time-consuming when executing the current predictor hn−1 until the end of the

sequence, an approximation often done is to execute the expert h0 until the end of the

sequence instead as this is often much faster (e.g. if it only involves looking up labels in

the training data to determine future predictions), and produces less noisy examples (as

h0 is deterministic, whereas hn−1 is stochastic). While Daumé III et al. (2009) presents

this approximation as purely practical, with no performance guarantees, it is interesting

to note that this corresponds exactly to the cost-to-go of the expert’s policy we are

collecting in our previous imitation learning approaches, for which we could provide

performance guarantees.

6.2 Inference Machines

We now present the particular sequential prediction procedure that we will seek to train

for tackling structured prediction task.

As reviewed in the previous section, current state-of-the-art methods for Structured

Prediction are divided between 1) methods that learn a graphical model and use an

inference procedure for predictions, and 2) methods that eschew the probability graphical

model entirely in favor of training a sequential prediction approach. However, we would

ideally like to have the best of both worlds: the proven success of error-correcting iterative

decoding methods used for inference in graphical models, along with a tight relationship

between learning and inference, as achieved in sequential prediction approach, that allows

providing guarantees on performance.

To enable this combination, we propose an alternate view of the approximate infer-

ence process as a long sequence of computational modules to optimize Bengio (2009)

such that the sequence results in correct predictions. We focus on message-passing infer-

ence procedures, such as Belief Propagation, that compute marginal distributions over

output variables by iteratively visiting all nodes in the graph and passing messages to

6.2. INFERENCE MACHINES 129

neighbors which consist of “cavity marginals”, i.e., a series of marginals with the effect

of each neighbor removed. Such message-passing inference can be viewed as a sequential

prediction procedure that iteratively applies a function to each variable, that takes as

input local observations/features and local computations on the graph (messages) and

provides as output the intermediate messages/marginals. In this view, we can attempt

to train such a sequential prediction procedures directly, by training a predictor that

predicts a current variable’s marginal2 given local features and a subset of neighbors’

cavity marginals. In other words, we will seek to learn predictors that produce the over-

all structured output through a sequence of predictions, where the sequential prediction

process follows the same proven error-correcting algorithmic structure of message-passing

inference procedures. We will seek to train this predictor to “mimic” an ideal inference

procedure, i.e. where at each intermediate inference steps, we train the predictor to

predict the ideal output in our training data (i.e., a marginal with probability 1 to the

correct class). By training such a predictor, there is no need to have a probabilistic

graphical model of the data, and there need not be any probabilistic model that cor-

responds to the computations performed by the predictor. The inference procedure is

instead thought of as a black box function that is trained to yield correct predictions.

This is analogous to many discriminative learning methods; it may be easier to simply

discriminate between classes than build a generative probabilistic model of them. We

will refer to a predictor that is sequentially applied in this way to construct the output

prediction as an inference machine, due to the similarities with inference procedures

for graphical models. This inference machine approach follows ideas from Munoz et al.

(2010), Xiong et al. (2011).

We now show in more details how graphical model approaches can be viewed as

training a sequential prediction procedure, that can be shown to be a special case of our

general inference machine approach.

Understanding Message-Passing Inference as Sequential Probabilistic

Classification

As mentioned in Section 6.1, LBP builds the output prediction by iteratively sending

messages mvf from variables v ∈ V to factors f ∈ F , and messages from factors to vari-

ables mvf , until convergence. By comparing the computations performed for computing

the marginals P (v = yv) and the message mvf , we observe that mvf can be interpreted

as the marginal of variable v when the factor f (and its influence) is removed from the

graph. This is often referred as the cavity method in statistical mechanics (Csato et al.,

2001) and mvf are known as cavity marginals. By expanding the definition of mvf , we

2For lack of a better term, we will use marginal throughout to mean a distribution over one variable’s
labels.

130 CHAPTER 6. LEARNING INFERENCE FOR STRUCTURED PREDICTION

A

B

C

1

2
3

A1

A2

B3 C2

C3

B1

A1

A2

A
B3

B

C

Figure 6.5: Depiction of how LBP unrolls into a sequence of predictions for 3 passes on
the graph on the left with 3 variables (A,B,C) and 3 factors (1,2,3); for the case where
LBP starts at A, followed by B and C (and alternating between forward/backward order).
Sequence of predictions on the right, where e.g., A1 denotes the prediction (message) of
A sent to factor 1, while the output (final marginals) are in gray and denoted by the
corresponding variable letter. Input arrows indicate the previous outputs that are used
in the computation of each message.

can see that it depends only on the messages mv′f ′ sent by all variables v′ connected to

v by a factor f ′ 6= f :

mvf (yv) ∝
∏

f ′∈N−fv

∑
y′
f ′ |y
′
v=yv

φf ′(y
′
f ′ , xf ′)

∏
v′∈N−v

f ′

mv′f ′(y
′
v′). (6.1)

Hence the messages mvf leaving a variable v toward a factor f in LBP can be thought as

a probabilistic classification of the current variable v (marginal distribution over classes)

using the cavity marginals mv′f ′ sent by variables v′ connected to v through a factor f ′ 6=
f . In this view, LBP is iteratively classifying the variables in the graph by performing a

sequence of probabilistic classifications (marginals) for each message leaving a variable.

The final marginals P (v = yv) are then obtained by “classifying” v using all messages

from all variables v′ connected to v through some factor.

An example of how LBP unrolls to a sequence of interdependent local classifications

is shown in Figure 6.5 for a simple graph. In this view, the job of the predictor is not

only to emulate the computation going on during LBP at variable nodes, but also em-

ulate the computations going on at all the factors connected to the variable which it is

not sending the message to, as shown in Figure 6.6. During inference, LBP effectively

employs a probabilistic predictor that has the form in Equation 6.1, where the inputs

are the messages m′v′f ′ and local observed features xf ′ . Training graphical models can

thus be understood as training a message-passing algorithm (i.e. an inference machine)

with a particular class of predictors defined by Equation 6.1, which have as parameters

the potential functions φf , and use as input features the local features and the mes-

sages (probabilistic classification) sent from neighbors. Under this general view, there is

no reason to restrict attention to only predictors of the form of Equation 6.1. We can

consider general inference machines that use different classes of predictors (e.g., Logistic

6.2. INFERENCE MACHINES 131

Input
Message

A

B

D

C

1 2

3
Classifier

Input
Message

Output
Message

(a)

Input
Message

A

B

D

C

1 2

3
Classifier

Input
Message

Input
Message

Output
Prediction

(b)

Figure 6.6: Depiction of the computations that the predictor represents in LBP for (a)
a message to a neighboring factor and (b) the final marginal of a variable outputed by
LBP.

Regression, Boosted Trees, Random Forests, etc.) whose inductive bias may more ef-

ficiently represent interactions between neighboring variables or in some cases be more

compact and faster to compute, which is important in real-time settings. Additionally,

other features computed from the neighboring predictions, such as various statistics of

the output predictions over regions or clusters, could be used and can be more easily

integrated within such framework than within graphical models.

Many other techniques for approximate inference have been framed in message-

passing form. Tree-Weighted Belief Propagation (Wainwright et al., 2001) and con-

vergent variants follow a similar pattern to LBP as described above but change the spe-

cific form of messages sent to provide stronger performance and convergence guarantees.

These can also be interpreted as performing a sequence of probabilistic classifications,

but using a different form of predictors. The classical “mean-field” (and more gener-

ally variational methods (Opper and Saad, 2000)) method is easily framed as a simpler

message passing strategy where, instead of cavity marginals, algorithms pass around

marginals or expected sufficient statistics which is more efficient but may obtain lower

performance then cavity message passing (Opper and Saad, 2000). We also consider

training such mean-field inference approach in the experiments.

Message-Passing Inference Machine

In general, our inference machine approach can be implemented by considering a graph

over the output variables that encodes dependency relations between them (just like the

graph structure in a graphical model). This graph is used to define the neighbors’ mes-

sages that should be used for predictions, and the ordering of the sequence of predictions

to ensure efficient propagation of the information from previous predictions between the

output variables. For instance, as in LBP, we can start from an arbitrary output vari-

able (e.g., chosen randomly), and predict each output variable in a breath-first-search

132 CHAPTER 6. LEARNING INFERENCE FOR STRUCTURED PREDICTION

Iterate many *mes over graph:

Neighbors’

predic*ons

Features

Predictor

Figure 6.7: Depiction of the inference machine in the context of image labeling.

order, using local input features to this variable (e.g. color and texture features in vi-

sion applications), as well as features of the predictions made previously at the output

variables connected to it, and iterate several times over all the output variables (alter-

nating between forward and reverse order), to improve predictions given the most recent

neighboring predictions, until convergence or for some maximum number of iterations

(see Figure 6.7). In addition, our approach needs access to a given feature function,

that is used to compute the features given the previous predictions in the sequence (e.g.

predictions of neighbors and/or average predictions over neighboring regions).

Training an inference machine that produces high-accuracy output prediction through

this sequence of predictions during test execution is however non-trivial. As part of the

input features depend on previous predictions in the sequence, the distribution of input

where the predictor is tested during inference depends in part on the predictor itself.

Thus, as in the imitation learning setting we previously analyzed, we can suffer from a

similar mismatch in train/test distribution that lead to poor performance, if we train

the inference machine naively. Due to this similarity with imitation learning problems,

we will be able to leverage the same interactive learning techniques that we developed

for imitation learning, to learn predictors which have strong performance guarantees on

their performance during test execution. This is shown in the following sections.

Advantages of Inference Machines

There are a number of advantages to doing message-passing inference as a sequence

of predictions. Considering different classes of predictors allows one to obtain entirely

different classes of inference procedures that perform different approximations. The level

of approximation and computational complexity of the inference can be controlled in part

by considering more or less complex classes of predictors. This allows one to naturally

trade-off accuracy versus speed of inference in real-time settings. It is also possible to

extract various features from previous predictions to use as input to the predictor rather

6.3. LEARNING INFERENCE MACHINES 133

than limiting only to using neighboring predictions. Better features of the previous

predictions may allow faster convergence or improved predictions. Additionally, while we

focus mainly on tasks where our objective is to simply maximize accuracy (or likelihood

of the ground truth predictions), in certain tasks other objectives can better represent the

quality of a solution, e.g. the BLEU score in machine translation (Papineni et al., 2002).

In this case, we can optimize the predictor to optimize directly these objectives, rather

than likelihood, something which is not possible with graphical model. Finally, most

approaches to learning graphical models with approximate inference have no theoretical

guarantees and are not well understood (Kulesza and Pereira, 2008, Finley and Joachims,

2008). In contrast, we are able to provide rigorous reduction-style guarantees on the

performance of the resulting inference procedure, as we demonstrate below.

6.3 Learning Inference Machines

We now present how to use the same techniques we presented for imitation learning,

namely Forward and DAGGER, for training an inference machine, and provide good

guarantees on test performance. To do so, the key idea is that we can view the inference

process as an imitation learning problem, where we seek to learn a predictor that can

mimic well an “expert” predictor, that at any point in the sequence on training instances,

predicts the “ideal” marginal – a marginal with probability 1 for the correct class. This

expert is essentially defined by the labeled training data. For instance in image labeling,

the labeled image in the training data would define the prediction of the expert to mimic

whenever we predict a marginal at a certain pixel. By learning to mimic this “expert”

predictor, we hope to learn inference machines that can generalize from the training

data, and that can then be applied to new test data (e.g. predict objects in a new image

observed by the robot that is not labeled by a human).

Learning Synchronous Inference with Forward Training

As was mentioned in Section 6.1, message-passing inference procedures such as LBP

can be applied in synchronous or asynchronous fashion. The predictor we train, within

our inference machine, can be applied to propagate predictions in a similar synchronous

or asynchronous fashion. We will begin here by considering learning a predictor for the

simpler synchronous case and show that the Forward Training strategy can be a practical

algorithm for this case.

When applied synchronously, the predictor predicts messages/marginals at each out-

put variable, over the entire graph first, before updating the neighboring messages used

as input features to make these predictions. This implies that predictions within the

same “pass” over the graph are independent, whereas the input features used at future

134 CHAPTER 6. LEARNING INFERENCE FOR STRUCTURED PREDICTION

for t = 1 to T do
Use h1:t−1 to perform synchronous message-passing on training graphs up to pass
n.
Get dataset Dt of inputs encountered at pass n, with the ideal marginals as target.

Train ht on Dt to minimize a loss (e.g., logistic).
end for
Return the sequence of predictors h1:T .

Algorithm 6.3.1: Forward Training Algorithm for Learning Synchronous Inference
Machine

passes are influenced by the current pass’ predictions. Concretely, in the context of im-

age labeling, such a procedure would proceed similarly to the Auto-Context approach

mentioned previously in Section 6.1, i.e. at each pass we would make a prediction at

each pixel over the entire image, using only predictions from the previous pass as input.

To learn an inference machine that is trained on the distribution of inputs it expects

to see during test execution, and does not suffer from a train-test mismatch, we can

consider a similar training strategy to the forward training algorithm introduced for

imitation learning. That is, instead of learning a single predictor, we would learn a

sequence of predictors h1, h2, . . . , hT , where hi is the predictor used on the ith prediction

pass, and we would need to learn a total of T predictors to learn an inference machine that

performs T passes. As in most applications, the number of pass is not too large, Forward

training can be a practical approach in this context. To train these T predictors, we

would proceed iteratively, by training them in sequence going forward in time, i.e. from

the first pass to the last pass. At the first iteration, we would start by training h1 to mimic

the expert predictor h∗. As for the first pass there is no features of neighboring/previous

predictions, this would come down to learn a predictor that attempts to predict the ideal

marginals (correct class) immediately, using only the local input features (e.g. the image

features). At iteration t, for each training structured prediction example (e.g. each

training image), we would generate a dataset Dt of training data through interaction

with the learner as follows: perform t − 1 inference pass using the previously trained

predictors h1, h2, . . . , ht−1 in sequence (i.e. hi for the ith pass), and then record in

dataset Dt the observed input features at the tth pass (e.g. the vector of features that

includes both image features and features related to neighboring predictions), associated

with their ideal marginal (or correct class) from the expert predictor h∗ for each of these

input. The predictor ht for the tth pass would then be trained on this data. This is

detailed in Algorithm 6.3.1.

The Auto-Context approach presented previously in Section 6.1 can be seen as the

particular case of this approach, where we learn a synchronous inference machine, that

uses mean-field style message-passing – i.e. the case where the neighboring marginals

6.3. LEARNING INFERENCE MACHINES 135

used as input features were predicted using all neighbors at the previous pass. However

this same Forward procedure could be used to train other type of synchronous inference

machines, e.g. using LBP style message-passing instead where the messages passed

to neighbors are cavity marginals (a marginal predicted with evidence/features from

the neighbor we are sending the message to removed), which can be beneficial3. To

illustrate the difference, in the image labeling example, if using a standard 2D lattice

graph structure, where each pixel is connected to the pixels above,below,left and right,

then with LBP style message-passing, at each pass, except the last one, the inference

machine would make 4 different predictions at each pixel (each obtained by removing

one of the neighbor’s message/marginal from the input features), and at the last pass,

a single prediction at each pixel would be made, using all 4 neighbor’s messages in the

input features. In other words, at each pass, except the last one, we would produce 4

different labelings of the image, a “left”, “right”, “above” and “below” labeling, where

e.g. the “left” labeling is the labeling produced with all the predictions made without

the left neighbor’s message from the previous pass in the input features. The neighbor’s

messages in the input features at any pass would be coming from these different labelings,

e.g. the message from the neighbor below is the marginal at the pixel below in the

“above” labeling produced at the previous pass (as the current pixel is the neighbor

above this neighbor, and we want the neighbor’s prediction without the current pixel’s

message). Training this synchronous LBP inference machine means that when generating

the training data at each pass, data would be generated for all these 4 different predictions

(i.e. 4 data points with the same target class, but 4 different input feature vectors would

be generated for each pixel).

Similarly, from our point of view, Munoz et al. (2010), Xiong et al. (2011) implement

a hierarchical mean-field inference machine by sending mean-field style messages across

the hierarchy to make contextual predictions. We demonstrate in our experiments the

benefits of enabling more general (LBP-style) message passing.

Theoretical Guarantee: As we have effectively transformed the structured prediction

problem into an imitation learning problem, the same guarantees for Forward, hold in

this structured prediction setting. In particular, suppose we are interested in minimizing

the logistic loss, and we use this loss as the surrogate loss `. The result in Theorem 3.4.1

would indicate that if ε̄ is the average logistic loss per prediction of the learned predictors

h1:T , then over the T pass of inference, the average logistic loss per prediction would be

3Basically, in mean-field style message-passing, we can suffer from “double-counting” of evidence.
If the neighbor’s prediction is wrong, we may predict something, based on this wrong prediction as
“evidence”, which then, at the next pass, is reused at the neighbor as further evidence that reinforces
its initial wrong prediction. This leads to a runaway effect where both can become very confident in a
wrong prediction, due to an initially wrong prediction. The use of cavity marginals in LBP resolves this
problem.

136 CHAPTER 6. LEARNING INFERENCE FOR STRUCTURED PREDICTION

ε̄. As we are interested only in the final predictions, this would naively tell us that, in

the worst case, the per prediction logistic loss at the last pass is bounded by T ε̄ (e.g., in

the worst case where all the loss occurs at the last pass) and would suggest that fewer

inference passes is better (making N small). However, for convex loss functions, such

as the logistic loss, simply averaging the marginals at each variable over the inference

pass, and using those average marginals as final output, guarantees4 achieving logistic

loss no worse than ε̄. Hence, using those average marginals as final output enables using

an arbitrary number of passes to ensure we can effectively find the best decoding. In

practice, however, we typically found that the marginals at the last pass incurred lower

loss than the average marginals, so we only used the last pass’ predictions.

Asynchronous Inference: Learning asynchronous inference machines is often of in-

terest, since as mentioned for LBP, it allows propagating information faster between

output variables, and potentially converge faster to good predictions within fewer pass,

or obtain better predictions when the number of pass is very limited. Forward can also be

applied for learning asynchronous inference machines. However this is often impractical.

This is because, when applied asynchronously, the predictor predicts messages/marginals

at each output variable, and these messages are used immediately at neighbors to com-

pute messages within the same pass. This means that predictions within the same pass

are now interdependent and influence the input features used immediately at the next

predictions within the same pass. To deal with such interdependencies, Forward would

need to train a separate predictor for each individual prediction in the sequence. This

is feasible for problems where there is a small number of output variables (e.g. in hand-

writing recognition, where within one word, we only have a few characters to predict).

However for most applications in computer vision, such as image labeling, the number of

predictions per pass is very large (in the order of number of pixels or image segments).

For example, in our 3D point cloud classification experiments below, each pass over the

point cloud consists in O(105) predictions. In such scenarios, Forward is impractical as

it would require learning a prohibitively large number of predictors (e.g. O(106) pre-

dictors to perform all the pass over the point cloud). To learn asynchronous inference

machines, DAGGER provides a much more practical algorithm, as it can learn within a

few iterations, a single predictor that can be applied to perform the entire sequence of

predictions.

Learning Asynchronous Inference with DAGGER

We now show how to apply the same Dataset Aggregation (DAGGER) approach, de-

veloped for imitation learning, for learning inference machines for structured prediction.

4 By Jensen’s inequality, if f is convex and p̄ = 1
N

∑N
i=1 pi, then f(p̄) ≤ 1

N

∑N
i=1 f(pi).

6.3. LEARNING INFERENCE MACHINES 137

Initialize D0 ← ∅, h0 to return the ideal marginal on any variable v in the training
graph.
for n = 1 to N do

Use hn−1 to perform inference on structured training examples (e.g. labeled images).

Get dataset D′n of inputs encountered during inference, with their ideal marginal as
target.
Aggregate dataset: Dn = Dn−1 ∪D′n.
Train hn to minimize loss on Dn (or use online learner to update hn from new data
D′n).

end for
Return best hn on structured training or validation examples.

Algorithm 6.3.2: DAGGER Algorithm for Structured Prediction.

DAGGER again leverages interaction with the learner, and the strong learning properties

of no-regret online learning algorithms, to provide strong guarantees on performance. In

particular, it learns over many iterations, a single deterministic predictor to produce all

predictions in the sequence (during inference) and still guarantees good performance on

its induced distribution of inputs over the sequence.

In this setting, whether we are training a synchronous or asynchronous inference

machine, DAGGER proceeds iteratively as follows. At the first iteration, a first dataset

is generated by doing inference on structured training examples (e.g. labeled images)

with the “expert” predictor (that predicts the ideal marginals). The dataset of all ob-

served inputs (the feature vectors containing both local features and features of previous

predictions) during these sequence of predictions, associated with their ideal marginals

(correct class) as target output, is used to learn a first predictor h1. This is analog to how

for imitation learning, at the first iteration, DAGGER collects a dataset under demon-

strations of the task by the expert. Effectively, the first predictor is trained to predict

each output variable when its neighbors are always correctly labeled (or unlabeled). At

iteration n, DAGGER collects additional data, through interaction with the learner, by

using the learner’s current predictor, hn−1, to perform inference on the training graphs.

A new dataset D′n of the inputs observed during inference, with the associated ideal

marginals as target is recorded. This new data is aggregated with previous data, and

a new predictor hn is trained on the aggregated dataset Dn = Dn−1 ∪ D′n (i.e., con-

taining all data collected so far over all iterations of the algorithm). A depiction of

the DAGGER algorithm for Structured Prediction in the context of an image labeling

task is shown in Figure 6.8. Just as in imitation learning, this can be interpreted as a

Follow-the-(Regularized)-Leader algorithm, and more generally, any other no-regret on-

line learning algorithm can be used to pick the sequence of predictors over the iterations

of the algorithm. DAGGER is described in Algorithm 6.3.2.

138 CHAPTER 6. LEARNING INFERENCE FOR STRUCTURED PREDICTION

road

building
vegeta/on

car

sidewalk

bike person

sky

Sequence Predic,ons

with current predictor

New Predictor

Supervised Learning

New Data

All previous data Aggregate

Dataset

Img. feat. Neighbors Target

sky

tree

sky

tree

...
...

Figure 6.8: Depiction of the DAGGER algorithm for Structured Prediction in the context
of an image labeling task.

Intuitively, what occurs is that after the first iteration, we collect training examples

where errors currently made by the learned predictor are present in the input features

related to neighboring predictions. By attempting to still predict the ideal marginal, with

those errors present at the neighbors, DAGGER can learn a predictor that is robust to

the errors it typically makes during the sequence of predictions. In addition, based on

all the training data collected, it can learn that it commonly confuses 2 or more classes

together, (e.g. it often confuses sky and water, or grass and leaves) and that whenever

one is predicted, than the others should also implicitly be considered likely. That is,

in this case, by training on data where these classes are confused in its neighbors, the

predictor will learn to predict classes that are likely to be neighbors of these confused

classes, whenever it receives predictions of one of those class from its neighbors.

Theoretical Guarantees: Again, as we have transformed the structured prediction

problem into an imitation learning problem, the same guarantees for DAGGER, hold

in this structured prediction setting. In particular, if we are minimizing the logistic

loss (maximizing likelihood), and we use this loss as the surrogate loss `, the result in

Theorem 3.6.1 indicates that if there is a predictor in the class of predictors that can

achieve ε average logistic loss per prediction on the collected dataset during training,

6.3. LEARNING INFERENCE MACHINES 139

then after a sufficient number of iterations, DAGGER must find good predictors that

also achieve ε average logistic loss per prediction, under their own sequence of predictions

during inference. As the logistic loss is convex in the marginal prediction, we can also use

a similar trick (mentioned previously for Forward) of averaging the predictions at each

output variable over the passes of inference, and return those average predictions as final

output, to guarantee that the final output average per prediction logistic loss is ε. In

practice, however, we typically found that the marginals at the last pass incurred lower

loss than the average marginals, so we only used the last pass’ predictions. Additionally,

in our experiments we will see that a small number of iterations (N ∈ [10, 20]) is often

sufficient to obtain good predictors under their induced distributions.

Discussion

Optimizing Other Cost Functions: When the loss we want to minimize is some-

thing different than logistic loss, for instance a task specific cost like the BLEU score

in Machine Translation, we could apply the Cost-to-Go version of Forward and DAG-

GER, presented in Chapter 4, to train the sequence of predictors, and similar guarantees

would still apply. This would be similar to SEARN, when using the approximation of

simulating the expert to collect cost-to-go, except that instead of training a station-

ary stochastic predictor, we would train a non-stationary predictor, with Forward, or a

stationary deterministic predictor with DAGGER.

Using Back-Propagation: In both synchronous and asynchronous approaches, our

training procedures provide rigorous performance bounds on the loss of the final pre-

dictions; however, they do not optimize it directly. In particular, we are often only

interested in minimizing the loss of the final predictions (at the last pass), and not

the loss at predicting the correct class at intermediate predictions during inference. If

the predictors learned are differentiable functions (as well as the features of previous

predictions) then one could use procedures like back-propagation (LeCun et al., 1998)

over the sequence of predictions to optimize the predictor the desired objective. Back-

propagation makes it possible to identify local optima of the objective (minimizing loss

of the final marginals). As this optimization problem is non-convex and there are po-

tentially many local minima, it can be crucial to initialize this descent procedure with a

good starting point. The forward training and DAGGER algorithms provide such an ini-

tialization. In our setting, Back-Propagation would effectively uses the current predictor

(or sequence of) to do inference on a training graph (forward propagation); then errors

are back-propagated through the network of classification by rewinding the inference,

successively computing derivatives of the output error with respect to parameters and

input messages. In the experiments below, we will compare to such a back-propagation

140 CHAPTER 6. LEARNING INFERENCE FOR STRUCTURED PREDICTION

approach, and show that without proper initialization, such as starting from the predic-

tor learned with DAGGER, it typically performs worse than the predictor learned with

DAGGER alone. However, applying Back-Propagation, from the learned predictor by

DAGGER can sometime increase performance further.

6.4 Case Studies in Computer Vision and Perception

We now demonstrate the efficacy of our approach. We compared our performance to

state-of-the-art algorithms on 3 separate structured prediction tasks: (1) a benchmark

handwriting recognition task, involving decoding handwritten words sequentially; (2) a

3D point cloud classification task of predicting the object present at every point in 3D

point clouds of outdoor scenes perceived from a LIDAR sensor; and (3) estimating the

3D geometry of an outdoor scenes from a 2D image.

Handwriting Recognition

We first begin by demonstrating the efficacy of our approach on a structured prediction

problem involving recognizing handwritten words given the sequence of images of each

character in the word.

We use the dataset of Taskar et al. (2003) which has been used extensively in the

literature to compare several structured prediction approaches. This dataset contains

roughly 6600 words (for a total of over 52000 characters) partitioned in 10 folds. We

consider the large dataset experiment which consists of training on 9 folds and testing

on 1 fold and repeating this over all folds. Performance is measured in terms of the

character accuracy on the test folds.

We consider predicting the word by predicting each character in sequence in a left

to right order, using the previously predicted character to help predict the next. A

single pass over the word is performed, and we learn a multi class linear SVM to pre-

dict each character based on the input features. This can be interpreted as learning a

greedy search procedure within the framework of SEARN, where we learn a predictor

that predicts greedily the current character based on previously predicted characters in

the word. Within the context of inference machines, this can also be thought as learning

an asynchronous inference machine that performs a single pass of inference, and where

the marginals/messages predicted by the SVM always assigns probability 1 for the class

predicted. As in this case, DAGGER is effectively training a greedy-search procedure

as in SEARN, we perform this experiment mainly to compare performance of DAG-

GER with SEARN when learning the same type of sequential prediction procedures, on

structured prediction tasks.

For each prediction while we parse/decode the word, the input features are defined as

6.4. CASE STUDIES IN COMPUTER VISION AND PERCEPTION 141

follows. Each handwritten character is an 8×16 binary pixel image (128 input features),

and an additional 27 binary features are used to encode the previously predicted letter

in the word (26 to indicate a letter, and an additional one to indicate when there is no

previous letter for the first character in the word).

With each approach, we train the multiclass SVM using the all-pairs reduction to bi-

nary classification (Beygelzimer et al., 2005). Here we compare our method to SMILe, as

well as SEARN (using the same approximations used in Daumé III et al. (2009)). We also

compare these approaches to two baseline: 1) independent predictions (no structured),

which simply predicts each character independently (i.e. without features of the previous

predicted character) and 2) a supervised training approach where training is conducted

with the previous character always correctly labeled5. For SEARN, we try all choice of

α ∈ {0.1, 0.2, . . . , 1}, and report results for α = 0.1, α = 1 (pure policy iteration) and the

best α = 0.8, and run all approaches for 20 iterations. Figure 6.9 shows the performance

of each approach on the test folds after each iteration as a function of training data. The

0 2 4 6 8 10 12 14 16 18 20
0.81

0.815

0.82

0.825

0.83

0.835

0.84

0.845

0.85

0.855

0.86

Training Iteration

T
es

t
F

o
ld

s
C

h
ar

ac
te

r
A

cc
u

ra
cy

DAgger (β
i
=I(i=1))

SEARN (α=1)
SEARN (α=0.8)
SEARN (α=0.1)
SMILe (α=0.1)
Supervised
No Structure

Figure 6.9: Character accuracy as a function of iteration.

baseline result without structure (independent predictions) achieves 82% character ac-

curacy by just using an SVM that predicts each character independently. When adding

the previous character feature, but training with always the previous character correctly

labeled (supervised approach), performance increases up to 83.6%. Using DAGGER

increases performance further to 85.5%. Surprisingly, we observe SEARN with α = 1,

5This is analog to the supervised learning approach to imitation learning, using the “expert” predictor
that predicts the correct class.

142 CHAPTER 6. LEARNING INFERENCE FOR STRUCTURED PREDICTION

Figure 6.10: 3D point cloud classification application. Each point is assigned to one of
5 object classes: Building (red), Ground (orange), Poles/Tree-Trunks (blue), Vegetation
(green), and Wire (cyan).

which is a pure policy iteration approach performs very well on this experiment, similarly

to the best α = 0.8 and DAGGER. Because there is only a small part of the input that

is influenced by the current policy (the previous predicted character feature) this makes

this approach not as unstable as in general reinforcement/imitation learning problems

(as we saw in the previous imitation learning experiments of Section 5.2). SEARN and

SMILe with small α = 0.1 performs similarly but significantly worse than DAGGER.

Note that we chose the simplest (greedy, one-pass) decoding to illustrate the benefits of

the DAGGER approach with respect to existing reductions. Similar techniques can be

applied to multi-pass or beam-search decoding leading to results that are competitive

with the state-of-the-art. Nevertheless this shows that DAGGER can be just as effective

as state-of-the-art methods like SEARN with the best parameter α, but DAGGER does

not need to tune any such parameter. In the next 2 experiments, we compare our infer-

ence machine framework, training with DAGGER, to state-of-the-art graphical model

approaches.

3D Point Cloud Classification

Next, we evaluate on a 3D point cloud classification task – predicting the object present

at every point in a point cloud, or laser scan, of an outdoor scene observed from a LIDAR

sensor. We evaluate on the 3D point cloud dataset used in Munoz et al. (2009). This

dataset consists of 17 full 3D laser scans (total of ∼1.6 million 3D points) of an outdoor

environment collected from a LIDAR sensor. It contains 5 object labels: Building,

Ground, Poles/Tree-Trunks, Vegetation, and Wires (see Figure 6.10). We use the same

neighbor structure as in Munoz et al. (2009) (to define the predictions/messages used

6.4. CASE STUDIES IN COMPUTER VISION AND PERCEPTION 143

as input) and use the same features. Essentially, each 3D point is connected to its 5

nearest neighbors (in 3D space) and clusters over regions, from 2 k-means clusterings,

are also used. The features describe the local geometry around a point or cluster (linear,

planar or scattered structure; and its orientation); as well as a 2.5-D elevation map. As

additional features of previous predictions, we concatenate the messages of the nearest

neighbors, and the average predicted marginal within the clusters the point belongs to.

In Munoz et al. (2009), performance is evaluated on one fold where one scene is used

for training, one for validation, and the remaining 15 are used for testing. In order

to allow each method to better generalize across different scenes, we instead split the

dataset into 2 folds with each fold containing 8 scans for testing and the remaining 9

scans are used for training and validation (we always keep the original training scan in

both folds’ training sets). We report overall performances on the 16 test scans.

We experiment with two of our methods: 1) a synchronous mean-field inference

machine (MFIM) using the forward training procedure, and 2) an asynchronous LBP

inference machine (BPIM). For the latter, inference starts at a random point and pro-

ceeds in breadth-first-search order and alternates between forward and backward order

at consecutive passes. Additionally, with BPIM, cavity marginals are predicted when

sending messages to neighbors (by removing the features related to the node/cluster

we are sending a message to from the concatenation/average). We compare 3 different

approaches for optimizing the BPIM:

1. BPIM-D: DAGGER, used for 30 iterations, and the predictor that has the lowest

error rate (from performing message-passing inference) on the training scenes is

returned as the best one.

2. BPIM-B: Back-Propagation starting from a 0 weight vector.

3. BPIM-DB: Back-Propagation starting from the predictor found with DAGGER

In each case, a simple logistic regressor is trained to predict the marginals (messages)

from the input features, by minimizing the logistic loss.

We compare these methods to two graphical model based approach: 1) a pairwise

Pott’s CRF trained using asynchronous LBP to estimate the gradient of the partition

function (e.g. as in Kumar et al. (2005)), and 2) a high-order associative M3N model

used on this dataset in Munoz et al. (2009). For the latter, we use directly their imple-

mentation6. We analyzed linear M3N models optimized with the parametric subgradient

method (M3N-P) and with functional subgradient boosting (M3N-F) as in Munoz et al.

(2009).

6http://www-2.cs.cmu.edu/˜ vmr/software/software.html

144 CHAPTER 6. LEARNING INFERENCE FOR STRUCTURED PREDICTION

We measure the performance of each method in terms of per point accuracy, the

Macro-F1 score (average of the per class F1 scores), and Micro-F1 score (weighted aver-

age, according to class frequency, of the per class F1 scores). Table 6.1 summarizes (left

column) presents the results on this task.

Accuracy Macro-F1 Micro-F1

BPIM-D 0.9795 0.8206 0.9799
BPIM-B 0.9728 0.6504 0.9706

BPIM-DB 0.9807 0.8305 0.9811
MFIM 0.9807 0.8355 0.9811

CRF 0.9750 0.8067 0.9751
M3N-F 0.9846 0.8467 0.9850
M3N-P 0.9803 0.8230 0.9806

Table 6.1: Comparisons of test performance on the 3D point cloud dataset.

We observe that the best approach overall is the functional gradient M3N approach

of Munoz et al. (2009). We believe that for this particular dataset, this is due to the

use of a functional gradient method, which is less affected by the scaling of features

and the large class imbalance in this dataset. We can observe that when using the

regular parametric subgradient M3N approach, the performance is slightly worse than

our inference machine approach, also optimized via parametric gradient descent. Hence

using a functional gradient approach when training the base predictor with our infer-

ence machine approaches could potentially lead to similar improved performance. Both

inference machines (MFIM, BPIM-D) outperform the baseline CRF message-passing

approach. Additionally, we observe that using backpropagation on the output of DAG-

GER slightly improved performance. Without this initialization, backpropagation does

not find a good solution. In this particular dataset we do not notice any advantage of

the cavity method (BPIM-D) over the mean-field approach (MFIM). However, we can

see in Figure 6.11 that the error converges slightly faster for the asynchronous approach,

converging roughly after 3-4 inference passes, while the synchronous approach (MFIM)

converges slightly slower and requires around 6 passes. Hence a potential speed-up could

be obtained with the asynchronous approach, without loss in accuracy, by stoping the

inference earlier after only 3 or 4 pass.

Figure 6.12 shows a visual comparison of the M3N-F, M3N-P and MFIM approaches

on a test point cloud. In this case, we can see that MFIM is slightly worse on the rarer

classes in the training data (poles and wires).

We also performed the experiment on the smaller split used in Munoz et al. (2009)

(i.e., training on a single scene) and our approach (BPIM-D) obtained slightly better

accuracy of 97.27% than the best approach in Munoz et al. (2009) (M3N-F: 97.2%).

However, in this case, backpropagation did not further improve the solution on the test

scenes as it overfits more to the single training scene.

6.4. CASE STUDIES IN COMPUTER VISION AND PERCEPTION 145

1 2 3 4 5 6 7 8
0.015

0.02

0.025

0.03

0.035

0.04

Inference Pass

T
e

s
t

E
r
r
o

r

CRF

BPIM−B

BPIM−D

BPIM−DB

MFIM

Figure 6.11: Average test error as a function of pass for each message-passing method
on the 3D classification task.

In terms of computation time for inference on test scenes, our approach can be an

order of magnitude more efficient than the graph-cut based inference of Munoz et al.

(2009). On our machines, the approach of Munoz et al. (2009) requires around 30s

to complete inference, using a highly optimized graph-cut library. The BPIM based

approaches, that use the more computationally expensive LBP style message-passing,

requires around 3-4s per inference pass, and to complete 8 pass of inference requires a

similar running time of 30s. However as we saw that the predictions converge within 3-4

inference passes on this problem, we could easily stop inference earlier, and complete the

inference in 10-15s, a factor 2-3 faster than the graph-cut approach. More importantly,

MFIM requires much fewer predictions (as the message/prediction is the same for all

neighbors), and thus runs much faster, around 0.5s per inference pass, and can thus

complete inference in 3-4s on these test scenes, an order of magnitude faster than the

graph-cut based approach. In recent work, Hu et al. (2013) further demonstrated that

a similar inference machine based approach could achieve near real-time inference on

streaming point cloud from a LIDAR sensor on a moving vehicle.

3D Geometry Estimation from 2D Images

We also evaluate our approach on the problem of estimating the 3D surface layout of

outdoor scenes from single images, using the Geometric Context Dataset from Hoiem

et al. (2007). In this dataset, the problem is to assign the 3D geometric surface labels

to pixels in the image (see Figure 6.13). This task can be viewed as a 3-class or 7-class

labeling problem. In the 3-class case, the labels are Ground/Supporting Surface, Sky,

and Vertical structures (objects standing on the ground), and in the 7-class case the

146 CHAPTER 6. LEARNING INFERENCE FOR STRUCTURED PREDICTION

Figure 6.12: Estimated 3D point cloud labels with M3N-F (top left), M3N-P (top right),
MFIM (bottom left), Ground truth (bottom right).

Vertical class is broken down into 5 subclasses: Left-perspective, Center-perspective,

Right-perspective, Porous, and Solid. We consider the 7-class problem. In Hoiem et al.

(2007), the authors use superpixels as the basic entities to label in conjunction with

15 image segmentations. Various features are computed over the regions which capture

location, shape, color, texture, and perspective. Boosted decision trees are trained per

segmentation and are combined to obtain the final labeling. In our approach, we define

a graph over the superpixels, creating edges between adjacent superpixels, and consider

the multiple segmentations as high-order cliques (clusters of super pixels). We use the

same respective features and 5-fold evaluation as detailed in Hoiem et al. (2007). In

addition to these features, we add the features related to previous predictions, which

are a simply the average of the marginals at neighboring superpixels, and the average of

each segments’ average marginals the superpixel belongs to.

We compare the same methods used previously for the 3D point cloud classification

6.4. CASE STUDIES IN COMPUTER VISION AND PERCEPTION 147

Figure 6.13: 3D Geometry estimation application. Each superpixel is assigned to one
of 7 classes: sky, ground, left-perspective, right-perspective, center-perspective, solid or
porous.

task. In addition, we also compare to the results of Hoiem et al. (2007). Here, we measure

the performance of each method in terms of per superpixel accuracy, the Macro-F1 score

(average of the per class F1 scores), and Micro-F1 score (weighted average, according to

class frequency, of the per class F1 scores). Table 6.2 summarizes (left column) presents

the results on this task.

Accuracy Macro-F1 Micro-F1

BPIM-D 0.6467 0.5971 0.6392
BPIM-B 0.6287 0.5705 0.6149
MFIM 0.6378 0.5947 0.6328

CRF 0.6126 0.5369 0.5931
M3N-F 0.6029 0.5541 0.6001

Hoiem et al. (2007) 0.6424 0.6057 0.6401

Table 6.2: Comparisons of test performance on the 3D Geometry Estimation dataset.

In this experiment our BPIM-D approach performs slightly better than all other

approaches in terms of accuracy, including the performance of the previous state-of-the-

art in Hoiem et al. (2007). In terms of F1 score, Hoiem et al. (2007) is slightly better.

Given that Hoiem et al. (2007) used a more expressive predictor (boosted trees) than

our logistic regressor, we believe we could also achieve better performance using more

complex predictors. We notice here a larger difference between the BPIM and MFIM

approaches, which confirms the cavity method can lead to better performance. Here the

M3N-F approach did not fare very well and all message-passing approaches outperformed

it. All inference machine approaches also outperformed the baseline CRF. Figures 6.14

and 6.15 show a visual comparison of the M3N-F, MFIM, BPIM-D and Hoiem et al.

(2007) approaches on two test images. The outputs of BPIM-D and Hoiem et al. (2007)

148 CHAPTER 6. LEARNING INFERENCE FOR STRUCTURED PREDICTION

Figure 6.14: Estimated 3D geometric surface layouts on a city scene with M3N-F (top
left), Hoiem et al. (2007) (top right), BPIM-D (bottom left), Ground truth (bottom
right).

are very similar, but we can observe more significant improvements over the M3N-F.

6.4. CASE STUDIES IN COMPUTER VISION AND PERCEPTION 149

Figure 6.15: Estimated 3D geometric surface layouts on a street scene with M3N-F (top
left), Hoiem et al. (2007) (top right), BPIM-D (bottom left), Ground truth (bottom
right).

Chapter 7

Learning Submodular Sequence

Predictions

We now move on to study another important class of sequential prediction tasks : rec-

ommendation tasks where we must learn to suggest lists of options or items.

Many problem domains, ranging from web applications (ad placement, content rec-

ommendation) to robotics (identifying small subset of grasps, or trajectories to try to

successfully perform the task) require predicting lists of items/options (see Figure 7.1).

Such applications are often budget-limited and the goal is to choose the best list of items,

from a large set of possible items, with maximal utility. In ad placement, we must pick

a small list of ads with high click-through rate. For robotic manipulation, we must pick

a small set of initial grasp trajectories to maximize the chance of finding a successful

trajectory via more extensive evaluation or simulation. In extractive document summa-

rization, we want to find a few sentences from the text that provide a good summary of

the entire document.

In all of these problems, the predicted list of items should be both relevant and

diverse. For example, recommending a diverse set of news articles increases the chance

that a user would like at least one article (Radlinski et al., 2008). As such, recommending

multiple redundant articles on the same topic would do little to increase this chance.

This notion of diminishing returns due to redundancy is often captured formally using

submodularity (Guestrin and Krause, 2008).

In this chapter, we study the general learning problem of training a policy to construct

lists (by predicting, in sequence, items to add to the list) that maximizes a submodular

reward function – a reward with this property of diminishing return. We consider prob-

lems where the submodular reward function is only directly measured on a finite training

set, and our goal is to learn to make good predictions on new test examples where the

reward function is not directly measurable. For example in document summarization, we

have access to a few training documents, where humans have provided summaries, and

152 CHAPTER 7. LEARNING SUBMODULAR SEQUENCE PREDICTIONS

Figure 7.1: Example Recommendation Applications. Left: Ad placement, where we
want to display a small list of ads the user is likely going to click on. Center: News
Recommendation, where we want to display a small list of news article likely to interest
the user. Right: Grasp Selection, where we want to select a small list of grasps likely to
succeed at picking an object.

we would like to learn to generate good summaries for new documents, where human

summaries are not available.

To learn such a policy, it is natural to consider policies that use, as part of their input,

features related to the items in the current list. As these features are related to previous

predictions made by the policy, a similar train-test mismatch, as in previous sequential

prediction settings, can occur if the policy is not trained carefully. We will show that the

previous learning strategies, such as DAGGER, can be adapted to this setting to deal

with this issue and learn policies that can recommend good lists of relevant and diverse

items.

While DAGGER as presented could be applied “as is” for such setting, e.g. by at-

tempting to minimize a 0-1 classification loss in order to mimic a greedy list construction

strategy, this would not leverage the particular properties of the reward function. Instead

we will present an adaptation of DAGGER, that leverages the particular submodular

properties of the reward, and provides improved near-optimality guarantees.

We begin by formalizing the notion of submodularity and reviewing prior work re-

lated to submodular optimization, and learning. We then present our adaptation of

DAGGER and its analysis, that provides strong near-optimality guarantees. We then

demonstrate the improved performance of this method compared to prior work on var-

ious recommendation tasks: 1) Grasp Selection, recommending a small list of grasps to

a robotic manipulator that is likely to contain a successful one for picking a nearby ob-

ject, 2) Trajectory Optimization, recommending a small list of initial “seed” trajectories,

to be used in a local trajectory optimization procedure, that is likely going to contain

7.1. PRELIMINARIES 153

one that leads to a collision-free trajectory; 3) News Recommendation, recommending

a small set of news article the user is likely going to be interested in reading, and 4)

Document Summarization: extracting a few sentences from documents that provide a

good summary. This adaptation of DAGGER and these results were originally presented

in Ross et al. (2013d).

7.1 Preliminaries

We now begin by formalizing the problem of maximizing submodular rewards and exist-

ing results and approaches.

Submodularity and the Concept of Diminishing Return

Formally, the problem we are trying to address can be defined as follows. We have a

large set S that represents the set of all possible items we can choose from (e.g. ads,

sentences, grasps). Our objective is to pick a list of items L ⊆ S to maximize a reward

function f , under a budget constraint that we can only pick a small list of k items, i.e.

|L| ≤ k.1 We consider reward functions f that obey the following properties:

1. Monotonicity: For any lists L1, L2, f(L1) ≤ f(L1⊕L2) and f(L2) ≤ f(L1⊕L2)

2. Submodularity: For any lists L1, L2 and item s ∈ S, f(L1 ⊕ s) − f(L1) ≥
f(L1 ⊕ L2 ⊕ s)− f(L1 ⊕ L2).

Here, ⊕ denotes the concatenation operator. Intuitively, monotonicity implies that

adding more elements never hurts, and submodularity captures the notion of dimin-

ishing returns (i.e. adding an item to a long list increases the objective less than when

adding it to a shorter sublist). We further assume for simplicity that f takes values in

[0, 1], and that f(∅) = 0 where ∅ denotes the empty list. We will also use the shorthand

b(s|L) = f(L⊕ s)− f(L) to denote the marginal benefit of adding the item s to list L.

The optimal solution to this problem is the list of length k, that we denote L∗k, that

maximizes this objective:

L∗k = arg max
L:|L|≤k

f(L) (7.1)

Finding this optimal list is in general intractable, it is a combinatorial optimization

problem that requires searching over an exponentially large set of possible lists (of size

|S|k). In fact, it is well known that this problem is NP-Hard (Nemhauser et al., 1978).

1“Lists” generalize the notion of “set” more commonly used in submodular optimization, and enables
reasoning about item order and repeated items (Streeter and Golovin, 2008). One may consider sets where
appropriate.

154 CHAPTER 7. LEARNING SUBMODULAR SEQUENCE PREDICTIONS

Greedy Algorithm

While finding the optimal list is NP-Hard, a simple greedy algorithm provides good

approximation with near-optimality guarantees. That is, the greedy algorithm that

starts from the empty list L̂0 = ∅, and then successively adds the item with largest

marginal benefit to the current list, i.e. L̂i+1 = L̂i ⊕ ŝi for ŝi = arg maxs∈S b(s|L̂i), until

a list of length k is obtained, guarantees that the list L̂k is within a factor (1 − 1/e) of

the optimal list L∗k, i.e. f(L̂k) ≥ (1 − 1/e)f(L∗k). Obtaining any better approximation

ratio than (1 − 1/e) is known to be NP-Hard (Nemhauser et al., 1978). Hence greedy

provides the best polynomial time approximation, unless P = NP .

It has also been observed in many applications that this greedy procedure typically

works very well (Guestrin and Krause, 2008). Thus, given access to the submodular

reward function f , one could simply employ greedy to construct good lists. However

in our learning setting, f is only measurable on training examples, making this greedy

algorithm inapplicable to new test examples. We formalize our learning setting below.

Learning with Submodular Rewards

In our learning task, we consider reward functions that may depend on some underlying

state x ∈ X (e.g. a user, environment of the robot, a document, etc.). We denote fx

the reward function for state x, and assume that fx is monotone submodular for all x.

We also use the state to encode randomness, if any, in the objective. For instance, if

a user clicks on an ad with some probability, the different random events are encoded

by different states. As such, we do not assume the state is fully observed. It may be

completely unknown, or only partially observed through some features (e.g. previous

queries or websites visited by the user).

A simple example submodular function fx that repeatedly arises in many domains is

one that takes value 0 until a suitable item is found, and then takes on value 1 thereafter.

Examples include the notion of “multiple choice” learning as in Dey et al. (2012a),

Guzman-Rivera et al. (2012) where a predicted set of options is considered successful if

any predicted item is deemed correct for the current example x, and abandonment in ad

placement (Radlinski et al., 2008) where success is measured by whether any predicted

advertisement is clicked on by the current user x.

Our task consists in learning to construct good lists of pre-specified length k under

some unknown distribution of states D (e.g. distribution of users or documents we have

to summarize). We consider two cases: context-free and contextual.

Context-Free: In the context-free case, we have no side-information about the

current state (i.e. we do not observe anything about x). For example, we may want to

learn the best list of news articles to display on a news website, when no information is

available about the user who is viewing the website. In this case, we would like to find a

7.1. PRELIMINARIES 155

fixed list L that has good performance on average. That is, we quantify the performance

of any list L by its expected value:

F (L) = Ex∼D[fx(L)]. (7.2)

Note that F (L) is also monotone submodular. Thus the clairvoyant greedy algorithm

with perfect knowledge of D can find a list L̂k such that F (L̂k) ≥ (1−1/e)F (L∗k), where

L∗k = arg maxL:|L|=k F (L). Although D is unknown, we assume that we observe samples

of the objective fx during training. Our goal is thus to develop a learning approach

that efficiently converges, both computationally and statistically, to the performance of

the clairvoyant greedy algorithm. In other words, we would like to achieve a similar

guarantee to the clairvoyant greedy algorithm in the limit as we observe more and more

training data.

Contextual: In the contextual case, we observe side-information in the form of

features regarding the state x. We would like to use this observed side-information to

suggest better lists for the particular context (e.g. a list of news articles personalized to

the preference of the user x). We “lift” this problem to a hypothesis space of policies

(i.e. multi-class predictors) that maps features to items.

We denote Π our policy class, and π(x) the prediction of policy π ∈ Π given side-

information describing state x. We consider a list of k policies Lπ,k = (π1, π2, . . . , πk),

where in state x, this list of policies predicts the list of items Lπ,k(x) = (π1(x), π2(x), . . . , πk(x)).

We quantify the performance of such list of policies by its expected value:

F (Lπ) = Ex∼D[fx(Lπ(x))].

It can be shown that F obeys both monotonicity and submodularity with respect to

appending policies to a list of policy (Dey et al., 2012a). Thus, a clairvoyant greedy algo-

rithm that sequentially picks the policy with highest expected marginal benefit will con-

struct a list L̂π,k such that F (L̂π,k) ≥ (1−1/e)F (L∗π,k), where L∗π,k = arg maxLπ :|Lπ |=k F (Lπ).

As before, our goal is to develop a learning approach (for learning a list of policies) that

efficiently competes with the performance of the clairvoyant greedy algorithm.

Related Work

The problem of learning to optimize submodular reward functions from data, both with

and without contextual features, has become increasingly important in machine learning

due to its diverse application areas. Broadly speaking, there are two main approaches for

this setting. The first aims to identify a model within a parametric family of submodular

functions and then use the resulting model for new predictions. The second attempts to

learn a strategy to directly predict a list of elements by decomposing the overall problem

into multiple simpler learning tasks.

156 CHAPTER 7. LEARNING SUBMODULAR SEQUENCE PREDICTIONS

The first approach (Yue and Joachims, 2008, Yue and Guestrin, 2011, Lin and Bilmes,

2012, Raman et al., 2012) involves identifying the parameterization that best matches

the submodular rewards of the training instances. For prediction, they then simply use

the greedy algorithm on the learned submodular reward function. These methods are

largely limited to learning non-negative linear combinations of features that are them-

selves submodular, which often restricts their expressiveness. Furthermore, while good

sample complexity results are known, these guarantees only hold under strong realiz-

ability assumptions where submodular rewards can be modeled exactly by such linear

combinations (Yue and Guestrin, 2011, Raman et al., 2012). Recent work on Deter-

minental Point Processes (DPPs) (Kulesza and Taskar, 2011) provides a probabilistic

model of sets, which can be useful for the tasks that we consider. These approaches,

while appealing, solve a potentially unnecessarily hard problem in first learning a holis-

tic list evaluation model, and thus may compound errors by first approximating the

submodular function and then approximately optimizing it.

The second, a learning reduction approach, by contrast, decomposes list prediction

into a sequence of simpler learning tasks that attempts to mimic the greedy strategy

(Streeter and Golovin, 2008, Radlinski et al., 2008, Streeter et al., 2009, Dey et al.,

2012a). In Streeter and Golovin (2008), they address the context-free case, and show

that by running a simple no-regret online learning algorithm2 at each position in the

list (where experts are items s ∈ S and losses are the negative benefits at that position)

suffices to learn a distribution over lists with expected value F̂ that matches the guarantee

of greedy in the limit as more and more training examples are observed. In Dey et al.

(2012a), an approach called ConSeqOpt extends this strategy to the contextual setting

by a reduction to cost-sensitive classification. Essentially, the predictor at each position

aims to best predict an item to add to the list, given features, so as to maximize the

expected marginal utility. This approach is flexible, in that it can be used with most

common hypothesis classes and arbitrary features. Because of this decomposition, the full

model class (all possible sequences of predictors) is often quite expressive, and allows for

agnostic learning guarantees.3 This generality comes at the expense of being significantly

less data-efficient than methods that make realizability assumptions such as Yue and

Guestrin (2011), Raman et al. (2012), as these existing approaches learn a different

predictor for each position in the list. In many ways, these methods adopt a similar

learning strategy to Forward, as presented in previous chapters, and suffer from the same

limitations : learning is less efficient as a separate predictor is learned for each position,

not allowing to generalize across positions. Another issue that afflict these methods in

2E.g. weighted majority (Cesa-Bianchi et al., 1997).
3This first strategy of learning the parameters of a submodular function can be seen as a special case

of this second approach, e.g. when the second approach uses the reduction of cost-sensitive classification
to regression (see Section 7.3).

7.2. CONTEXT-FREE LIST OPTIMIZATION 157

this particular setting, is that they can exhibit a data starvation phenomenon where

later positions in the list have fewer and fewer examples to train on. This occurs due

to the diminishing return property, e.g. if previous predictors in the list already found

a successful item, there is no benefit left for the remaining positions. This effectively as

the effect of discarding the current training example at these later positions in the list,

and thus predictors far in the list may only have very few examples to train on.

To address these limitations, we present below an adaptation of the DAGGER learn-

ing strategy presented in previous chapters. Compared with related work, this approach

enjoys the benefits of being both data-efficient while ensuring strong agnostic perfor-

mance guarantees. We do so by developing new analysis for online submodular opti-

mization which yields agnostic learning guarantees while learning a single data-efficient

policy. By learning a single policy that can be used to construct the entire list, we also

avoid the data starvation issue, as the policy is able to generalize to notions of relevance

and diversity across positions in the list, and pick good items to add far in the list.

7.2 Context-free List Optimization

We first consider the context-free setting. For this setting, as there are no features, the

stationary policy is represented as a fixed distribution over items, that is sampled from

to add elements to the list.4

Our algorithm, called Submodular Contextual Policy (SCP), adapts the DAGGER

learning strategy to this submodular sequence setting. Unlike in previous settings, here

there is no expert telling us which action, or item to select. Instead we learn directly

from feedback of the benefits of adding items to the list. SCP uses a similar strategy of

interacting with the learner, to observe the benefits of adding items to list constructed

by the current policy, and leverages the strong “no-regret” properties of online learning

algorithms to provide strong guarantees on performance.

SCP, for the context-free setting, is described in Algorithm 7.2.1. SCP requires an

online learning algorithm subroutine (denoted by Update) that is no-regret with respect

to a bounded positive loss function, maintains an internal distribution over items for

prediction, and can be queried for multiple predictions (i.e. multiple samples).5 In

contrast to prior work (Streeter and Golovin, 2008), SCP employs only a single online

learning algorithm in the inner loop, instead of one at each position.

4Note that while there is no observed features of the state, we could also potentially consider learning
a policy that uses features of the elements in the list. The algorithm we present in the next section for
the contextual case, that uses both features of the state and list, could be applied in this case but without
features of the state.

5Algorithms that meet these requirements include Randomized Weighted Majority (Littlestone and
Warmuth, 1994), Follow the Perturbed Leader (Kalai and Vempala, 2005), EXP3 (Auer et al., 2002b),
and many others.

158 CHAPTER 7. LEARNING SUBMODULAR SEQUENCE PREDICTIONS

Input: Set of items S, length m of list to construct, length k of best list to compete against,
online learner Predict and Update functions.
for t = 1 to T do

Call online learner Predict() m times to construct list Lt. (e.g. by sampling m times from
online learner’s internal distribution over items).
Evaluate list Lt on a sampled state xt ∼ D.
For all s ∈ S, define its discounted cumulative benefit: rt(s) =

∑m
i=1(1 −

1/k)m−ib(s|Lt,i−1, xt).
For all s ∈ S: define loss `t(s) = maxs′∈S rt(s

′)− rt(s)
Call online learner update with loss `t: Update(`t)

end for

Algorithm 7.2.1: Submodular Contextual Policy (SCP) Algorithm in context-free set-
ting.

SCP proceeds by training over a sequence of training states x1, x2, . . . , xT sampled

from the unknown distribution D. At each iteration, SCP queries the online learner to

generate a list of m items (via Predict, e.g. by sampling from its internal distribution

over items), evaluates a weighted cumulative benefit of each item on the sampled list

to define a loss related to each item, and then uses the online learner (via Update) to

update its internal distribution.

During training, we allow the algorithm to construct lists of length m, rather than

k. In its simplest form, one may simply choose m = k. However, it may be beneficial to

choose m differently than k, as is shown later in the theoretical analysis.

Perhaps the most unusual aspect is how loss is defined using the weighted cumulative

benefits of each item:

rt(s) =
m∑
i=1

(1− 1/k)m−ib(s|Lt,i−1, xt), (7.3)

where Lt,i−1 denotes the first i− 1 items in Lt, and

b(s|Lt,i−1, xt) = fxt(Lt,i−1 ⊕ s)− fxt(Lt,i−1). (7.4)

Intuitively, (7.3) represents the weighted sum of benefits of item s in state xt had we

added it at any intermediate stage in Lt. The benefits at different positions are weighed

differently, where position i is adjusted by a factor (1 − 1/k)m−i. These weights are

derived via our theoretical analysis, and indicate that benefits in early positions should

be more discounted than benefits in later positions. Intuitively, as the benefits can only

decrease as the position in the list increases, this weighting has the effect of rebalancing

the benefits so that each position contributes more equally to the overall loss.6

SCP requires the ability to directly measure fx in each training instance xt. Directly

measuring fxt enables us to obtain loss measurements `t(s) for any s ∈ S. For example,

6We also consider a similar algorithm in the min-sum cover setting, where the theory also requires
reweighting benefits, but instead weights earlier benefits more highly (by a factor m − i, rather than
(1− 1/k)m−i). We omit discussing this variant for brevity.

7.2. CONTEXT-FREE LIST OPTIMIZATION 159

in document summarization fx corresponds to the ROUGE score (Lin, 2004), which

can be evaluated for any generated summary given expert annotations which are only

available for training instances.

Partial Information Setting

In principle, SCP can also be applied in partial feedback settings, e.g. ad placement

where the value fxt is only observed for some items (e.g. only the displayed ads), by

using bandit learning algorithms instead (e.g. EXP3 (Auer et al., 2002b)).7 We briefly

mention how this algorithm can be applied in partial feedback settings. However, as this

is an orthogonal issue, most of our focus and analysis later is on the full information

case.

In a partial information setting, we consider that we can only observe the benefits of

the elements we added to the sampled list at each iteration. That is, our only observations

about fxt are the benefits of each item in the constructed list Lt, i.e. for each position

i, we only observe b(sti|xt, Lt,i−1) for sti the item in position i in the list Lt, and for any

other item s′ 6= sti we consider the benefit b(s′|xt, Lt,i−1) unknown. If we construct a

list of m items, we would only observe m benefits. For example, in ad placement, all

displayed ads would have observed benefits 0, except the first ad in the list that is clicked

on, would have an observed benefit of 1.

Based on this information, we can use an algorithm like EXP3 (Auer et al., 2002b),

to update the internal distribution over items. Effectively, we can treat each of these m

observed benefits as a separate learning example for EXP3, and perform m updates with

these m examples. In particular, EXP3 would use the same importance weighting trick,

mentioned in Section 4.1, to assign a reward of 0 to any unobserved benefit, and for the

item s with observed benefit b, it would assign a reward of b/p, if p was the probability

of picking that item when it was sampled. As our examples are weighted, by the factor

(1 − 1/k)m−i for the example at position i, we would also multiply the reward by this

weight. This reward vector, constructed for each observed benefit would then be used

to update the internal distribution over items, as described in Auer et al. (2002b).

Theoretical Guarantees

We now show that Algorithm 7.2.1 is no-regret with respect to the clairvoyant greedy al-

gorithm’s expected performance over the training instances. Our main theoretical result

provides a reduction to an online learning problem and directly relates the performance

of our algorithm on the submodular list optimization problem to the standard online

7Partial information settings arise, e.g., when f is derived using real-world trials that preclude the
ability to evaluate b(s|L, x) (7.4) for every possible s ∈ S.

160 CHAPTER 7. LEARNING SUBMODULAR SEQUENCE PREDICTIONS

learning regret incurred by the subroutine. The proofs of these results are presented in

appendix B.

Although Algorithm 7.2.1 uses only a single instance of an online learner subroutine,

it achieves the same performance guarantee as prior work (Streeter and Golovin, 2008,

Dey et al., 2012a) that employ k separate instances of an online learner. This leads to

a surprising fact: it is possible to sample from a stationary distribution over items to

construct a list that achieves the same guarantee as the clairvoyant greedy algorithm. 8

For a sequence of training states {xt}Tt=1, let the sequence of loss functions {`t}Tt=1

defined in Algorithm 7.2.1 correspond to the sequence of losses incurred in the reduction

to the online learning problem. The expected regret of the online learning algorithm is

E[R] =
T∑
t=1

Es′∼pt [`t(s
′)]−min

s∈S

T∑
t=1

`t(s), (7.5)

where pt is the internal distribution of the online learner used to construct list Lt. Note

that an online learner is called no-regret if R is sublinear in T .

Let F (p,m) = ELm∼p[Ex∼D[fx(Lm)]] denote the expected value of constructing

lists by sampling (with replacement) m elements from distribution p, and let p̂ =

arg maxt∈{1,2,...,T} F (pt,m) denote the best distribution found by the algorithm.

We define a mixture distribution p over lists that constructs a list as follows: sample

an index t uniformly in {1, 2, . . . , T}, then sample m elements (with replacement) from

pt. Note that F (p,m) = 1
T

∑T
t=1 F (pt,m) and F (p̂,m) ≥ F (p,m). Thus it suffices to

show that F (p,m) has good guarantees. We show that in expectation p (and thus p̂)

constructs lists with performance guarantees close to the clairvoyant greedy algorithm:9

Theorem 7.2.1. Let α = exp(−m/k) and k′ = min(m, k). For any δ ∈ (0, 1), with

probability ≥ 1− δ:

F (p,m) ≥ (1− α)F (L∗k)−
E[R]

T
− 3

√
2k′ ln(2/δ)

T

Corollary 7.2.1. If a no-regret algorithm is used on the sequence of loss `t, then as

T →∞, E[R]
T → 0, and with probability 1:

lim
T→∞

F (p,m) ≥ (1− α)F (L∗k)

Theorem 7.2.1 provides a general approximation ratio to the best list of size k when

constructing a list of a different size m. For m = k, we obtain the typical (1 − 1/e)

8This fact can also be seen as a special case of a more general result proven in prior related work
that analyzed randomized set selection strategies to optimize submodular functions (Feige et al., 2011).

9Additionally, if the distributions pt converge, then the last distribution pT+1 must have performance
arbitrarily close to p as T → ∞. In particular, we can expect this to occur when the examples are
randomly drawn from a fixed distribution that does not change over time.

7.3. CONTEXTUAL LIST OPTIMIZATION WITH STATIONARY POLICIES 161

approximation ratio (Guestrin and Krause, 2008). As m increases, this provides approx-

imation ratios that converge exponentially closer to 1.

In particular we can see how the choice of m and k affects the performance guarantee

of our algorithm, and that choosing m 6= k can sometimes lead to better guarantees.

For instance, imagine that our budget is m = 12, but we know that the optimal list of

size k = 4 has F (L∗k) close to 1. Then running our algorithm with such (m, k), would

guarantee that we can achieve at least 95% of the best list of size 4 in the limit, and

thus F (p̂,m) would be guaranteed to be close to 0.95. On the other hand, if we choose

m = k = 12, F (L∗k) would be at most 1, and running our algorithm with such (m, k),

would only guarantee that we can achieve at least 63% of the best list of size 12 in the

limit, and thus F (p̂,m) would only be guaranteed to be close to 0.63.

Naively, one might expect regret E[R]/T to scale linearly in k′ as it involves loss

in [0, k′]. However, we show that regret actually scales as O(
√
k′), e.g. using Weighted

Majority (Kalai and Vempala, 2005) with the optimal learning rate (or with the doubling

trick (Cesa-Bianchi et al., 1997)). Our result matches the best known results for this

setting (Streeter and Golovin, 2008) while using a single online learner, and is especially

beneficial in the contextual setting due to improved generalization (see Section 7.3).

Corollary 7.2.2. Using weighted majority with the optimal learning rate guarantees

with probability ≥ 1− δ:

F (p,m) ≥ (1− α)F (L∗k)−O

(√
k′ log(1/δ)

T
+

√
k′ log |S|

T

)
.

7.3 Contextual List Optimization with Stationary Policies

We now consider the contextual setting where features of each state xt are observed

before choosing the list. As mentioned, our goal here is to compete with the best list of

policies (π1, π2, . . . , πk) from a hypothesis class Π. Each of these policies are assumed to

choose an item solely based on features of the state xt.

We consider embedding Π within a larger class, Π ⊆ Π̃, where policies Π̃ are functions

of both state and a partially chosen list. Then for any π ∈ Π̃, π(x, L) corresponds to

the item that policy π selects to append to list L given state x. We will learn a policy,

or distribution of policies, from Π̃ that attempts to generalize list construction across

multiple positions.10

We now present SCP for the general contextual setting (Algorithm 7.3.1). At each

iteration, SCP interacts with the learner to collect additional data by constructing a list

10Competing against the best list of policies in Π̃ is difficult in general as it violates submodularity:
policies can perform better when added later in the list (due to list features). Nevertheless, we can still
learn from class Π̃ and compete against the best list of policies in Π.

162 CHAPTER 7. LEARNING SUBMODULAR SEQUENCE PREDICTIONS

Input: Set of items S, policy class Π̃, length m of list we construct, length k of best list we
compete against.
Pick initial policy π1 (or distribution over policies)
for t = 1 to T do

Observe features of a sampled state xt ∼ D (e.g. features of user/document)
Construct list Lt of m items using πt with features of xt (or by sampling a policy for each
position if πt is a distribution over policies).
Define m new cost-sensitive classification examples {(vti, cti, wti)}mi=1 where:

1. vti is the feature vector of state xt and list Lt,i−1

2. cti is the cost vector such that ∀s ∈ S: cti(s) = maxs′∈S b(s
′|Lt,i−1, xt)−b(s|Lt,i−1, xt)

3. wti = (1− 1/k)m−i is the weight of this example

πt+1 = Update(πt, {(vti, cti, wti)}mi=1)
end for
return πT+1

Algorithm 7.3.1: Submodular Contextual Policy (SCP) Algorithm.

Lt for the state xt, using the online learner’s current policy πt (or by sampling policies

from its distribution over policies, one for each position in the list).

Analogous to the context-free setting, we define a loss function for the online learner

subroutine (Update). We represent the loss using weighted cost-sensitive classification

examples {(vti, cti, wti)}mi=1, where vti denotes features of the state xt and list Lt,i−1,

wti = (1 − 1/k)m−i is the weight associated to this example, and cti is the cost vector

specifying the cost of each item s ∈ S

cti(s) = max
s′∈S

b(s′|Lt,i−1, xt)− b(s|Lt,i−1, xt). (7.6)

The loss incurred by any policy π is defined by its loss on this set of cost-sensitive

classification examples, i.e.

`t(π) =
m∑
i=1

wticti(π(vti)).

These new examples are then used to update the policy (or distribution over policies)

using a no-regret algorithm (Update). This reduction effectively transforms the task of

learning a policy for this submodular list optimization problem into a standard online

cost-sensitive classification problem.

This is similar to DAGGER with Cost-to-Go as presented in Chapter 4, where we also

reduced the imitation learning (or reinforcement learning) task to an online cost-sensitive

classification task. The difference here is that costs are directly related to immediate

benefits, and do not involve expensive execution of a policy until the end of the sequence

to obtain samples of each cost. The same techniques discussed in Chapter 4 can be used

to handle this online cost-sensitive classification tasks. For example, for finite policy

7.3. CONTEXTUAL LIST OPTIMIZATION WITH STATIONARY POLICIES 163

classes Π̃, one can again use any no-regret online algorithm such as Weighted Majority

(Kalai and Vempala, 2005) to maintain a distribution over policies in Π̃ based on the

loss `t(π) of each π, and achieve regret at a rate of

R =

√
k′ log |Π̃|/T ,

for k′ = min(m, k). In fact, the context-free setting can be seen as a special case of

this, where the policy class is a set of |S| constant functions over states and lists, i.e.

Π = Π̃ = {πs|s ∈ S} and πs(v) = s for any v. As also mentioned in Chapter 4,

for more general infinite policy class, e.g. the set of all linear classifiers, one can use

reductions of cost-sensitive classification to obtain a convex online learning problem, and

use any standard no-regret algorithm for convex losses (e.g. gradient descent, Follow-the-

(Regularized)-Leader). In our experiments, we make use of the reduction to regression,

and a reduction to ranking, as presented before in Section 2.2.

Analogous to the context-free setting, we can also extend to partial feedback settings

where f is only partially measurable by using contextual bandit algorithms such as EXP4

(Auer et al., 2002b) as the online learner (Update).11

Theoretical Guarantees

We now present contextual performance guarantees for SCP that relate performance on

the submodular list optimization task to the regret of the corresponding online cost-

sensitive classification task. The proofs of these results are presented in appendix B. Let

`t : Π̃→ R compute the loss of each policy π on the cost-sensitive classification examples

{vti, cti, wti}mi=1 collected in Algorithm 7.3.1 for state xt. We use {`t}Tt=1 as the sequence

of losses for the online learning problem.

For a deterministic online algorithm that picks the sequence of policies {πt}Tt=1, the

regret is

R =

T∑
t=1

`t(πt)−min
π∈Π̃

T∑
t=1

`t(π).

For a randomized online learner, let πt be the distribution over policies at iteration t,

with expected regret

E[R] =

T∑
t=1

Eπ′t∼πt [`t(π
′
t)]−min

π∈Π̃

T∑
t=1

`t(π).

Let F (π,m) = ELπ,m∼π[Ex∼D[fx(Lπ,m(x))]] denote the expected value of constructing

lists by sampling (with replacement) m policies from distribution π (if π is a determin-

istic policy, then this means we use the same policy at each position in the list). Let

11Analogous to the context-free setting, partial information arises when cti (7.6) is not measurable
for every s ∈ S.

164 CHAPTER 7. LEARNING SUBMODULAR SEQUENCE PREDICTIONS

π̂ = arg maxt∈{1,2,...,T} F (πt,m) denote the best distribution found by the algorithm in

hindsight.

We use a mixture distribution π over policies to construct a list as follows: sample

an index t uniformly in {1, 2, . . . , T}, then sample m policies from πt to construct the

list. As before, we note that F (π,m) = 1
T

∑T
t=1 F (πt,m), and F (π̂,m) ≥ F (π,m). As

such, we again focus on proving good guarantees for F (π,m), as shown by the following

theorem.

Theorem 7.3.1. Let α = exp(−m/k), k′ = min(m, k) and pick any δ ∈ (0, 1). After

T iterations, for deterministic online algorithms, we have that with probability at least

1− δ:

F (π,m) ≥ (1− α)F (L∗π,k)−
R

T
− 2

√
2 ln(1/δ)

T
.

Similarly, for randomized online algorithms, with probability at least 1− δ:

F (π,m) ≥ (1− α)F (L∗π,k)−
E[R]

T
− 3

√
2k′ ln(2/δ)

T
.

Thus, as in the previous section, a no-regret algorithm must achieve F (π,m) ≥
(1 − α)F (L∗π,k) with high probability as T → ∞. This matches similar guarantees

provided for ConSeqOpt (Dey et al., 2012a). Despite having similar guarantees, we

intuitively expect SCP to outperform ConSeqOpt in practice because SCP can use all

data to train a single predictor, instead of the data being split to train k separate ones.

We empirically verify this intuition in Section 7.4.

When using surrogate convex loss functions (such as regression or ranking loss), we

provide a general result that applies if the online learner uses any convex upper bound of

the cost-sensitive loss. An extra penalty term is introduced that relates the gap between

the convex upper bound and the original cost-sensitive loss:

Corollary 7.3.1. Let α = exp(−m/k) and k′ = min(m, k). If we run an online learning

algorithm on the sequence of convex loss Ct instead of `t, then after T iterations, for any

δ ∈ (0, 1), we have that with probability at least 1− δ:

F (π,m) ≥ (1− α)F (L∗π,k)−
R̃

T
− 2

√
2 ln(1/δ)

T
− G

where R̃ is the regret on the sequence of convex loss Ct, and G is defined as

1

T

[
T∑
t=1

(`t(πt)− Ct(πt)) + min
π∈Π̃

T∑
t=1

Ct(π)− min
π′∈Π̃

T∑
t=1

`t(π
′)

]

and denotes the “convex optimization gap” that measures how close the surrogate Ct is

to minimizing `t.

7.4. CASE STUDIES 165

This result implies that using a good surrogate convex loss for no-regret convex

optimization will lead to a policy that has a good performance relative to the optimal

list of policies. Note that the gap G often may be small or non-existent. For instance,

in the case of the reduction to regression or ranking, G = 0 in realizable settings where

there exists a “perfect” predictor in the class. Similarly, in cases where the problem is

near-realizable we would expect G to be small.12

Discussion

The SCP procedure provides a reduction of contextual submodular list optimization

to an online cost-sensitive classification problem. Here we obtain a regret reduction,

where no-regret on this online learning task directly implies that we will find policies for

constructing lists with near-optimal performance guarantees (in particular with the same

guarantee as a clairvoyant greedy algorithm). The result here is stronger than in the

prior imitation learning and structured prediction setting, as there is no dependency on

the regret to the bayes-optimal classifier, as was present when using cost-to-go. Although

this was in part due to the fact that in prior settings, performance was compared to the

expert, which is a policy potentially outside of the class of policies. Here by comparing

directly to the best sequence of policies from within the class Π, we obtain a guarantee

that does not involve this term. In addition here, the submodularity property allows us

to guarantee near-globally optimal performance, whereas in imitation learning, we could

only guarantee good relative performance compared to the expert.

7.4 Case Studies

We now demonstrate experimentally the improved efficiency of SCP over previous meth-

ods. We compare performance on 4 different tasks. A context-free Grasp Selection task,

and 3 contextual tasks: Trajectory Optimization, News Recommendation and Document

Summarization.

Grasp Selection

We first applied SCP to a context-free task of grasp selection for a robot manipulator

introduced in Dey et al. (2012b) (see Figure 7.2). The goal is to order the grasps in a

library of grasps in such a way that good grasps can be found quickly (by going through

the list in sequence) to pick up the object in front of the robot.

12We conjecture that this gap term G is not specific to our particular scenario, but rather is (im-
plicitly) always present whenever one attempts to optimize classification accuracy via surrogate convex
optimization. For instance, when training a SVM in standard batch supervised learning, we would only
expect that minimizing the hinge loss is a good surrogate for minimizing the 0-1 loss when the analogous
convex optimization gap is small.

166 CHAPTER 7. LEARNING SUBMODULAR SEQUENCE PREDICTIONS

Figure 7.2: Depiction of an ordering selected in the Grasp Selection Task

We use the dataset from Dey et al. (2012b). It consists of 10448 environments,

where the object is the same, but with varying random obstacle configurations around

the object. There are 30 grasps defined by human operators for this particular object and

are assumed to be stable grasps for picking up the object. Failure occurs when we are

not able to plan a trajectory to the selected grasps, due to obstacles in the environment

around the object. When going through the list, each grasps is evaluated (through

planning) until one is found where we can successfully execute a planned trajectory to

the selected grasp. As we would like to find successful grasps quickly, the goal is to

minimize the search depth in the list before we find a successful one. We can think of

this task as learning the best ordering for a particular object, and similar training could

be conducted with different datasets to learn separate orderings of valid grasps for the

different objects the robot has to interact with.

Minimizing search depth corresponds to a different objective than Equation 7.1. In

particular it corresponds to minimizing:

C(L) =

|S|∑
i=0

[1− f(Li)] (7.7)

where f is the submodular function that takes value 0 if no successful grasps are in the

list, 1 otherwise. This is referred as a min sum set cover problem, and greedy has similar

good approximation guarantees: it returns a list within a factor 4 of the minimum

depth list (Feige et al., 2004). While our analysis and algorithms were developed to

handle a different objective, they can be extended to this setting, e.g. following a similar

analysis presented in Streeter and Golovin (2007) for these min sum set cover problems.

The analysis in Streeter and Golovin (2007) for min sum set cover, suggests a different

weighting of the examples, i.e. weight examples at position i by (m− i), rather than the

weight (1− 1/k)m−i that we derived for the budgeted case. Hence, for this experiment,

7.4. CASE STUDIES 167

SCP is applied as presented, except with the weighting of (m− i) for examples generated

at position i.

We compare SCP to SeqOpt, the approach used in Dey et al. (2012b) on this dataset.

SeqOpt is the context-free version of ConSeqOpt (Dey et al., 2012a), and is the same

algorithm as Streeter and Golovin (2008) (i.e. run a separate online learning algorithm

at each position in the list). We also compare performance to two baseline: 1) Ran-

dom, which orders grasps randomly (this provides diversity but poor relevance), and 2)

Frequency, which orders grasps by their frequency of success on the training data (this

provides relevant grasps but ignores diversity).

Figure 7.3 presents the average depth searched through the list on the test environ-

ments with SeqOpt, Frequency and SCP, as a function of the number of training envi-

ronments. Also, Random achieves a baseline average depth of 6.81, which is inferior to

the other methods that tries to better order the grasps. In these results, we first observe

that both SCP and ConSeqOpt, by taking into account both diversity and relevance, can

achieve improved results over the Frequency baseline (which ignores diversity). We also

observe that with few training environments, SCP provides better performance, as it can

generalize more quickly by learning a single distribution over grasps, rather than one at

each position. However, as we increase the number of environments, the performance

of SCP is limited by the fact that it learns a single fixed distribution for all position in

the list. For instance, this does not allow it to order the grasps in a fixed deterministic

order, which SeqOpt can achieve by learning different distributions at each position.

Hence SeqOpt eventually performs better. However, it would be possible to add features

of the list in this scenario to allow SCP to change its distribution, or sequence of grasps

based on these list features, and this would potentially allow it to outperform SeqOpt.

We emphasize that SCP’s main practical advantage is really in the contextual setting,

to allow better generalization in the presence of a rich class of policy. This is shown in

the contextual experiments below.

Trajectory Optimization

We applied SCP to a manipulation planning task for a 7 degree-of-freedom robot ma-

nipulator. The goal is to predict a set of initial trajectories so as to maximize the chance

that one of them leads to a collision-free trajectory. We use local trajectory optimization

techniques such as CHOMP (Ratliff et al., 2009), which have proven effective in quickly

finding collision-free trajectories using local perturbations of an initial seed trajectory.

Note that selecting a diverse set of initial seed trajectories is important since local tech-

niques such as CHOMP often get stuck in local optima, i.e. similar or redundant initial

trajectories will lead to the same local optima. This application is depicted in Figure

7.4.

168 CHAPTER 7. LEARNING SUBMODULAR SEQUENCE PREDICTIONS

Figure 7.3: Average depth of the list searched before finding a successful grasps. SCP
performs better at low data availability but eventually ConSeqOpt performs better as it
can order grasps better by using different distributions at each position in the list.

Seed Trajectory

Local Op1miza1on

Collision‐free?

Pick New Seed Trajectory

Execute

yes no

Figure 7.4: Depiction of the Trajectory Optimization Application. A list of initial seed
trajectories is suggested to a local optimization procedure (CHOMP). CHOMP tries to
locally optimize the current seed trajectory, and if stuck at a local minima in collision,
restarts with the next seed trajectory in the list, until it obtains a local minima that is
collision-free.

7.4. CASE STUDIES 169

We use the dataset from Dey et al. (2012a). It consists of 310 training and 212 test

environments of random obstacle configurations around a target object, and 30 initial

seed trajectories. In each environment, each seed trajectory has 17 features describing

the spatial properties of the trajectory relative to obstacles. In addition to the these

base features, we add features of the current list w.r.t. each initial trajectory. We use

the per feature minimum absolute distance and average absolute value of the distance

to the features of initial trajectories in the list. We also use a bias feature always set to

1, and an indicator feature which is 1 when selecting the element in the first position,

0 otherwise. The latter enables a distinction between the case where the minimum and

average features are 0 because there are no seeds in the list yet, versus when they are 0

because we are actually considering a seed which is already in the list.

Following the experiments with ConSeqOpt in Dey et al. (2012a), we employ a re-

duction of cost-sensitive classification to regression as explained in Section 2.2. We

compare SCP to ConSeqOpt, and Regression: a baseline that uses the training data

to learn a linear regressor that predicts the success probability from the 17 base features,

and simply sorts trajectories based on the predicted success rate to construct the list.

Regression predicts based only on relevance, but ignores diversity.

0"

0.02"

0.04"

0.06"

0.08"

0.1"

0.12"

0.14"

0.16"

0.18"

1" 2" 4" 8" 16" 32" 64" 128"256"

P
ro
b
a
b
il
it
y
*o
f*
fa
il
u
re
*a
.
e
r*
*

li
st
*o
f*
le
n
g
th
*8
*

Number*of*environments*

SCP"

ConSeqOpt"

Regression"

Figure 7.5: Probability of failure of each method on the test environments. SCP performs
better at even low data availability while ConSeqOpt suffers from data starvation issues.

Figure 7.5 shows the failure probability over the test environments as the number of

training environments is increased for each approach. ConSeqOpt employs a reduction

to k classifiers. As a consequence, ConSeqOpt faces data starvation issues for small

training sizes, as there is little data available for training predictors lower in the list.13

13When a successful seed is found, benefits at later positions are 0. This effectively discards training
environments for training classifiers lower in the list in ConSeqOpt.

170 CHAPTER 7. LEARNING SUBMODULAR SEQUENCE PREDICTIONS

0"

0.2"

0.4"

0.6"

1" 2" 3" 4" 5"

P
ro
b
a
b
il
ty
*o
f*
n
o
*

cl
ic
k
*

Slots*

ConSeqOpt"

SCP"

Figure 7.6: Probability of no click on the test users on the news recommendation task.
With increase in slots SCP predicts news articles which have lower probability of the
user not clicking on any of them compared to ConSeqOpt

In contrast, SCP has no data starvation issue and learns a single good policy to construct

the list much more quickly. The worse performance of Regression also demonstrates

that SCP and ConSeqOpt (after sufficient data) can better capture the importance of

diversity when recommending list of options.

News Recommendation

In the news recommendation setting the task, the goal is to present a sequence of news

articles to a user so as to maximize the probability of the user clicking on at least 1

recommended article.

We built a stochastic user simulation based on 75 user preferences derived from a user

study in Yue and Guestrin (2011). Using this simulation as a training oracle, our goal is

to learn to recommend articles to any user (depending on their contextual features) to

minimize the failure case where the user does not like any of the recommendations.14

Articles are represented by features, and user preferences by linear weights. We

derived user contexts by soft-clustering users into groups, and using corrupted group

memberships as contexts.

We perform five-fold cross validation. In each fold, we train SCP and ConSeqOpt on

40 users’ preferences, use 20 users for validation, and then test on the held-out 15 users.

Training, validation and testing are all performed via simulation.

Figure 7.6 shows the results, where we see the recommendations made by SCP

achieves significantly lower failure rate as the number of recommendations is increased

from 1 to 5.

14Also known as abandonment (Radlinski et al., 2008).

7.4. CASE STUDIES 171

Document Summarization

In the extractive multi-document summarization task, the goal is to extract sentences

(with character budget B) to maximize coverage of human-annotated summaries. Fol-

lowing the experimental setup from Lin and Bilmes (2010) and Kulesza and Taskar

(2011), we use data from the Document Understanding Conference (DUC) 2003 and

2004 (Task 2) (Dang, 2005). Each training or test instance corresponds to a cluster of

documents, and contains approximately 10 documents belonging to the same topic and

four human reference summaries. We train on the 2003 data (30 clusters) and test on

the 2004 data (50 clusters). The budget is B = 665 bytes, including spaces.

We use the ROUGE (Lin, 2004) unigram statistics (ROUGE-1R, ROUGE-1P,ROUGE-

1F) for performance evaluation. Our method directly attempts to optimize the ROUGE-

1R objective with respect to the reference summaries, which can be easily shown to be

monotone submodular (Lin and Bilmes, 2011).

We aim to predict sentences that are both short and informative. Therefore we

maximize the normalized marginal benefit,

b′(s|Lt,i−1) = b(s|Lt,i−1)/l(s), (7.8)

where l(s) is the length of the sentence s.15 We use a reduction to ranking as described in

Section 2.2 using (7.8) to train a SVM that ranks the sentences. While not performance-

optimized, our approach takes less than 15 minutes to train.

Following Kulesza and Taskar (2011), we consider features fi for each sentence con-

sisting of quality features qi and similarity features φi (fi = [qTi , φ
T
i]T). The quality

features, attempt to capture the representativeness for a single sentence. Similarity

features qi for sentence si as we construct the list Lt measure a notion of distance of

a proposed sentence to sentences already included in the set. A variety of similarity

features were considered, with the simplest being average squared distance of TF-IDF

vectors. Performance was very stable across different features. The experiments pre-

sented use three types: 1) following the idea in Kulesza and Taskar (2011) of similarity

as a volume metric, we compute the squared volume of the parallelopiped spanned by

the TF-IDF vectors of sentences in the list Lt,k⊕ si; 2) the product between this volume

and the quality features; 3) the minimum absolute distance of quality features between

si and each element in Lt,k.

Table 7.1 shows the performance (Rouge unigram statistics) comparing SCP with ex-

isting algorithms. We observe that SCP outperforms existing state-of-the-art approaches,

15Because each sentence contains a different number of characters/bytes, this results in a knapsack
constrained optimization problem where items have different weights. Under such constraint, the greedy
algorithm picks items with highest normalized benefits. This is why we also normalized the benefits for
our algorithm. We expect our approach to perform well in this setting, but defer a formal analysis for
future work.

172 CHAPTER 7. LEARNING SUBMODULAR SEQUENCE PREDICTIONS

System ROUGE-1F ROUGE-1P ROUGE-1R

SubMod 37.39 36.86 37.99

DPP 38.27 37.87 38.71

ConSeqOpt 39.02± 0.07 39.08±0.07 39.00±0.12

SCP 39.15±0.15 39.16±0.15 39.17±0.15

Greedy (Oracle) 44.92 45.14 45.24

Table 7.1: ROUGE unigram score on the DUC 2004 test documents.

which we denote SubMod (Lin and Bilmes, 2010) and DPP (Kulesza and Taskar, 2011).

“Greedy (Oracle)” corresponds to the clairvoyant greedy algorithm that directly opti-

mizes the test Rouge score and thus serves as an upper bound on this class of techniques.

Figure 7.7 plots Rouge-1R performance as a function of the size of training data,

suggesting SCP’s superior data-efficiency compared to ConSeqOpt.

0.3$

0.32$

0.34$

0.36$

0.38$

0.4$

1$ 2$ 4$ 8$ 16$ 30$

R
O
U
G
E
&I
R
(

Number(of(clusters(

ConSeqOpt$

SCP$

Figure 7.7: Rouge-1R scores on the test documents with respect to the size of training
data.

Chapter 8

Learning Dynamic Models for

Good Control Performance

We now move on to investigate a final and important sequential prediction task : system

identification – learning a dynamic model of a system from observations that is useful for

planning and controller synthesis. As most robotic systems use some form of planning

algorithms for decision-making, having good predictive models of the future outcomes of

different courses of action is crucial in many control applications. We focus on learning

models that ultimately provide good control performance guarantees for the particular

task of interest (and not simply high accuracy at predicting future states under the

execution of a particular controller).

As mentioned in Chapter 1, in system identification, a similar train-test mismatch

can occur as the policy resulting from controller synthesis is often very different from the

“exploration” policy used to collect data and fit the dynamic model. While we might

expect the model to make good predictions at states frequented by the exploration policy,

the learned policy usually induces a different state distribution, where the model may

poorly capture system behavior (as in Figure 1.2 in Chapter 1), and lead to poor control

performance.

In this chapter, we present how the DAGGER learning strategy can be adapted in this

setting to obtain an iterative and interactive learning procedure that learns a good model

for controller synthesis. Unlike prior work in this setting, our method provides strong

control performance guarantees in fully agnostic settings where the real system may not

be modeled perfectly by any model in the class considered by the learning algorithm.

Good control performance is guaranteed under the weaker agnostic assumption that

some model in the class can achieve statistically good prediction on the training data.

We begin by briefly reviewing previous and related work, and defining formally our

objective and notation. We then provide an agnostic analysis of the common text-

book/batch system identification approach that consists in simply treating system iden-

174
CHAPTER 8. LEARNING DYNAMIC MODELS FOR GOOD CONTROL

PERFORMANCE

tification as a standard statistical learning problem, learning only from data collected by

some exploration policy (e.g. open loop controls, an expert performing the task, or some

other base controller we want to improve upon), and then planning with the resulting

learned model. Our analysis formalizes the train-test mismatch this approach can suf-

fer from and its resulting poor control guarantees. We then present our adaptation of

DAGGER to this setting, with its improved agnostic guarantees on control performance.

Finally we demonstrate the efficacy of our approach on a challenging domain from the

literature: learning to perform aerobatic maneuvers with a simulated helicopter (Abbeel

and Ng, 2005). This adaptation of DAGGER and part of the results presented here were

originally presented in Ross and Bagnell (2012a).

8.1 Preliminaries

We here review previous and related work in system identification. The literature on this

topic is vast and distributed across many fields of engineering and computer science. We

begin by giving a brief overview of the work in the control literature, and then in artificial

intelligence on model-based reinforcement learning. We then discuss more specifically

methods closely related to our work.

System Identification

In the system identification literature on the control side, much of the work has focused

on continuous systems, and particularly on learning linear dynamical systems. The prob-

lem of interest is to learn dynamic models that can predict future output observations,

by observing a stream of observations and input controls. Different methods have been

developed to learn such systems in the frequency domain, or the time domain. Tradi-

tional identification methods have exploited the linear properties of the model to learn

the model in the frequency domain (Ljung, 1999). Namely, they exploit the fact that the

frequency response of a linear system to any linear combination of basis control signals

is simply the linear combination of the frequency response to each basis signals. This

makes learning easy as these approaches can simply record the frequency response of

the system to a set of basis control signals, typically chosen to cover the range of fre-

quencies the controller will use. For state-space time domain linear models, two main

approaches were developed: 1) methods based on deterministic/stochastic realization,

which learns the system based on spectral learning methods, such as SVD, that can

recover the parameters of the linear systems through matrix factorization of a Hankel or

covariance matrix (Ho and Kalman, 1965, Akaike, 1975, Overschee and Moor, 1996), and

2) methods based on prediction error/maximum likelihood, that adopts a more statisti-

cal learning/regression approach, e.g. learning an ARX model that predicts the future

8.1. PRELIMINARIES 175

output observation from the past few controls and observations (Astrom, 1965, 1971,

Ljung, 1978, 1999). To our knowledge, the theoretical analysis of both types of methods

assume that the real system is linear, and guarantees identifying the true parameters (or

up to an equivalent transformation) of the system under some conditions on the controls

(e.g. white noise, persistent excitation, open loop controls), that prevents correlations

between control and state, and sufficiently explore all modes of the linear system.

Much work has also been done in non-linear system identification, where most of the

work are methods based on learning complex parametric models, such as neural networks,

for minimizing prediction error, or using a wide variety of non-parametric methods (see

Sjoberg et al. (1995) for a nice survey). Much of the theoretical results in this case are

concerned with convergence of the prediction error to the minimum under the training

distribution, e.g. assuming data is observed from a stationary markov process (Juditsky

et al., 1995). As these non-parametric methods can fit arbitrarily well any function,

again this is essentially assuming realizability. In addition, in this case, not much can

be said about control performance, if such non-linear model would be used for control

(e.g. due to the train-test mismatch, we may still obtain a poor controller).

Much of the earlier work up to the late eighties rarely considered the relation of

system identification performance to control performance. More recent developments, in

what’s called “identification for control”, have started analyzing the problem of system

identification for purposes of obtaining a good controller (Gevers and Ljung, 1986, Hjal-

marsson et al., 1996, Forssell and Ljung, 1999, 2000). Work in this area have showed

the benefits of using iterative identification procedures under closed-loop control, e.g. by

using the current controller, synthesized under the current model to collect more data

(Hjalmarsson et al., 1996). Theoretical analysis in this case again typically assumes

a realizable setting with linear models, and is typically concerned with analyzing the

bias/variance of the estimator of the linear model, and analyzing what would be the

optimal experiment design (i.e. controller to execute) to, e.g., minimize the variance

(Gevers and Ljung, 1986, Hjalmarsson et al., 1996, Forssell and Ljung, 1999, 2000).

Our work fits into this later category of identification for control, and suggests a

similar iterative system identification procedure with closed-loop controllers. However

our results extend beyond learning of linear models and provide analysis for a general

agnostic setting and general conditions under which we may expect to find good con-

trollers.

Model-Based Reinforcement Learning

In the model-based reinforcement learning (MBRL) literature, most methods have fo-

cused on discrete control problems where a finite MDP model of the system is learned.

In this case the next state distribution for each state-action pair is directly estimated

176
CHAPTER 8. LEARNING DYNAMIC MODELS FOR GOOD CONTROL

PERFORMANCE

from the observed empirical distribution of next states. More complex models were also

proposed that attempts to improve generalization across states/actions, such as hierar-

chical models (Dietterich, 2000, Jong and Stone, 2008), factorized models (Kearns and

Koller, 1999, Ross and Pineau, 2008, Hester and Stone, 2009) and relational models

(Walsh et al., 2009). Some work also consider continuous MDP, and often uses state ag-

gregation based models (tree-based/grid based discretization)(Uther and Veloso, 1998,

Bernstein and Shinkin, 2010), linear models (Strehl and Littman, 2007, Walsh et al.,

2009), and more recent techniques have used non-parametric bayesian Gaussian Process

models (Deisenroth and Rasmussen, 2011).

A significant part of the work in reinforcement learning has focused on the exploration-

exploitation issue: where should data be collected to improve performance and when

should we stop exploring and simply exploit current knowledge of the system to achieve

the task. State-of-the-art RL methods have addressed this issue by either 1) being op-

timistic about the value of state-action pairs that have not been visited often enough

and planning an optimal policy in a resulting optimistic model to compute the policy to

execute (Strehl et al., 2009, Jaksch et al., 2010) or 2) using a bayesian approach where

a prior on the transition model is used and solving a POMDP to compute an optimal

exploration-exploitation strategy under this prior (Poupart et al., 2006, Ross, 2008).

Similar bayesian approaches were also proposed in the adaptive control and dual control

literature (Fel’dbaum, 1965, Bar-Shalom, 1981, Astrom and Wittenmark, 1989). Other

techniques have proposed using apprenticeship learning techniques for exploration, where

expert demonstrations are initially used to collect data and fit a first model (Abbeel and

Ng, 2005). Then at subsequent iterations, the current optimal policy is used to collect

more data and improve the model until a policy is found that is at least as good as the

expert.

Theoretical analysis in model-based reinforcement learning also assumes realizable

settings, i.e. that the real system has the same structure as the class of model considered.

The optimistic exploration strategy of many model-based RL methods also assumes

realizability in order to provide good results (Strehl et al., 2009, Jaksch et al., 2010).

Spectral Learning of Dynamic Models

In addition to spectral learning methods developed in the system identification literature,

other spectral methods have been developed recently in the machine learning literature

for learning discrete hidden state dynamic models from a stream of observations. Hsu

et al. (2009) first introduced a spectral algorithm for learning hidden markov models1

(HMM) of a stream of observation, which was then generalized in Siddiqi et al. (2010)

to learn more rich and compact representations, called Reduced-Rank HMM. The latter

1A HMM is a POMDP without actions and costs

8.1. PRELIMINARIES 177

was also applied for learning hidden state models for control, called predictive state

representations2 (PSR) (Siddiqi et al., 2010, Boots et al., 2011, Boots and Gordon, 2011).

The analysis of these spectral learning methods also rely on realizability assumptions,

in that they guarantee that in the limit they will learn an equivalent model to the true

model, if the true model belongs to the model class. In addition, their analysis focuses

on statistical consistency, and does not relate the estimation error (from finite sampled

data) of the model to the resulting control performance.

Iterative Methods in Practice

In practice control engineers often proceed iteratively to build good models for controller

synthesis, as suggested in recent identification for control methods. For instance, they

may collect a first batch of data to fit a model and obtain a controller, which is then

tested in the real system. If performance is unsatisfactory, data collection is repeated

with different sampling distributions to improve the model where needed, until control

performance is satisfactory. By doing so, engineers can use feedback of the policies found

during training to decide how to collect data and improve performance. Such methods

are commonly used in practice and have demonstrated good performance in the work of

Atkeson and Schaal (1997), Abbeel and Ng (2005). In both works, the authors proceed

by fitting a first model from state transitions observed during expert demonstrations of

the task, and at following iterations, using the optimal policy under the current model

to collect more data and fit a new model with all data seen so far. Abbeel and Ng

(2005) show this approach has good guarantees in realizable settings (for finite MDPs or

LQRs), in that it must find a policy that performs as well as the expert providing the

initial demonstrations. Our method can be seen as making algorithmic this engineering

practice, extending and generalizing the previous methods of Atkeson and Schaal (1997),

Abbeel and Ng (2005) and other similar iterative identification methods, and suggesting

slight modifications that provide good guarantees even in agnostic settings.

Agnostic Exploration

Our approach leverages the way agnostic model-free RL algorithms perform exploration.

Methods such as Conservative Policy Iteration (CPI) (Kakade and Langford, 2002) and

Policy-Search by Dynamic Programming (PSDP) (Bagnell et al., 2003) learn a policy

directly by updating policy parameters iteratively. For exploration, they assume access

to a state exploration distribution ν that they can restart the system from and can

guarantee finding a policy performing nearly as well as any policies inducing a state

distribution (over a whole trajectory) close to ν (e.g. similar to the result for DAGGER

2A PSR is an alternate, more rich and compact representation of POMDPs.

178
CHAPTER 8. LEARNING DYNAMIC MODELS FOR GOOD CONTROL

PERFORMANCE

with learner’s cost-to-go presented in Section 4.3). Similarly, our approach below uses

a state-action exploration distribution to sample transitions and allows us to guarantee

good performance compared to any policy with a state-action distribution close to this

exploration distribution. If the exploration distribution is close to that of a near-optimal

policy, then our approach guarantees near-optimal performance, provided a good model

of data exists. This allows our model-based method to match the strongest agnostic

guarantees of existing model-free methods. Good exploration distributions can often be

obtained in practice; e.g., from human expert demonstrations, domain knowledge, or

from a desired trajectory we would like the system to follow. Additionally, if we have a

base policy we want to improve, it can be used to generate the exploration distribution

– with potentially additional random exploration in the actions.

8.2 Problem Formulation and Notation

We now formalize our system identification setting, objectives and notation.

We assume the real system behaves according to some unknown MDP, represented

by a set of states S and actions A (both potentially infinite and continuous), an unknown

transition function T , where Tsa denotes the next state distribution if we do action a

in state s, and the initial state distribution µ at time 1. We assume the cost function

C : S × A → R is known and seek to minimize the expected sum of discounted costs

over an infinite horizon with discount γ. We assume for simplicity of exposition that the

states are observed, but our algorithms and analysis also extend to partially observable

settings. This is discussed further in Section 8.4.

For any policy π, we denote:

• π(s) the action distribution performed by π in state s;

• Dt
ω,π the state-action distribution at time t if we started in state distribution ω at

time 1 and followed π;

• Dω,π = (1− γ)
∑∞

t=1 γ
t−1Dt

ω,π the “discounted” state-action distribution over the

infinite horizon if we follow π, starting in ω at time 1;

• Vπ(s) = Ea∼πs,s′∼Tsa [C(s, a) + γVπ(s′)] the value function of π (the expected sum

of discounted costs of following π starting in state s);

• Qπ(s, a) = C(s, a) + γEs′∼Tsa [Vπ(s′)] the action-value function of π (the expected

sum of discounted costs of following π after starting in s and performing action a);

• Jω(π) = Es∼ω[Vπ(s)] = 1
1−γE(s,a)∼Dω,π [C(s, a)] the expected sum of discounted

costs of following π starting in ω.

8.3. BATCH OFF-POLICY LEARNING APPROACH 179

Our goal is to obtain a policy π with small regret, i.e. for any policy π′, Jµ(π)−Jµ(π′)

is small (or negative). This is achieved indirectly by learning a model T̂ of the system

and solving for a (near-)optimal policy (under T̂ and the known cost function C); e.g.,

using dynamic programming (Puterman, 1994) or approximate methods (Gordon, 1995,

Williams, 1992, Li and Todorov, 2004, Jacobson and Mayne, 1970).

8.3 Batch Off-policy Learning Approach

We now describe a simple algorithm, referred to as Batch, that can be used to analyze

many common approaches from the literature, e.g., learning from a generative model3,

open loop excitation or by watching an expert (Ljung, 1999).

Let T denote the class of transition models considered, and ν a state-action explo-

ration distribution we can sample the system from. Batch first observes m sampled

transitions in the real system, occurring in m state-action pairs sampled i.i.d. from ν.

Then it finds the best model T̂ ∈ T of observed transitions, and solves (potentially ap-

proximately) the optimal control (OC) problem with T̂ and known cost function C to

return a policy π̂ for test execution.

Analysis

Our analysis seeks to answer the following question: if Batch learns a model T̂ with small

error on training data, and solves the OC problem well (e.g. finds a near-optimal policy

for T̂), what guarantees does it provide on control performance of π̂ in the real system?

Our results illustrate the drawbacks of a purely batch method due to the mismatch in

train-test distribution. The proofs of all results presented here can be found in appendix

C.

First, we measure the quality of the OC problem’s solution as follows. For any policy

π′, let

επ
′

oc = Es∼µ[V̂ π̂(s)− V̂ π′(s)]

denote how much better π′ is compared to π̂ on model T̂ (V̂ π̂ and V̂ π′ are the value

functions of π̂ and π′ under learned model T̂ respectively). If π̂ is an ε-optimal policy

on T̂ within some class of policies Π, then επ
′

oc ≤ ε for all π′ ∈ Π.

Next, to measure model error, a natural notion of error that arises from our analysis

is the L1 distance between the predicted and true next state’s distributions. That is, we

define:

εL1
prd = E(s,a)∼ν [||Tsa − T̂sa||1],

the predictive error of T̂ , measured in L1 distance, under the training distribution ν.

3With a generative model, we can set the system to any state, perform any action to obtain a sample
transition.

180
CHAPTER 8. LEARNING DYNAMIC MODELS FOR GOOD CONTROL

PERFORMANCE

A drawback of this L1 distance is that it cannot be evaluated or optimized from

sampled transitions observed during training (we observe next states sampled from Tsa

but not the distribution itself). Therefore we also provide our bounds in terms of other

notions of error/loss we can minimize from training samples. This allows to directly

relate control performance to the model’s training loss. A convenient loss is the KL

divergence between Tsa and T̂sa:

εKL
prd = E(s,a)∼ν,s′∼Tsa [log(Tsa(s

′))− log(T̂sa(s
′))].

Minimizing KL corresponds to maximizing the log likelihood of the sampled transitions.

This is convenient for common model classes, such as linear models (as in LQR), where

it amounts to solving a linear regression problem. For particular cases where T is a set

of deterministic models and the real system has finitely many states, the predictive error

can be related to a classification loss at predicting the next state:

εcls
prd = E(s,a)∼ν,s′∼Tsa [`(T̂ , s, a, s′)],

for ` the 0-1 loss of whether T̂ predicts s′ for (s, a), or any upper bound on the 0-1 loss,

e.g., the multi-class hinge loss if T is a set of SVMs. In this case, model fitting is a

supervised classification problem and the guarantee is directly related to the training

classification loss. These different notions of error are related as follows:

Lemma 8.3.1.

εL1prd ≤
√

2εKL
prd,

εL1prd ≤ 2εclsprd.

The latter holds with equality if ` is the 0-1 loss.

In general, we could also use any other loss that can be minimized from samples and

that upper bounds εL1
prd for models in the class.

Another important component of our analysis is the mismatch between the explo-

ration distribution ν and the distribution induced by executing another policy π starting

in µ. We measure this mismatch as follows:

cπν = sup
s,a

Dµ,π(s, a)

ν(s, a)
.

Intuitively, cπν captures whether there exists state-action pairs (s, a) that are encountered

often by the policy π, but that were rarely explored under the exploration distribution

ν. When that’s the case cπν is large (it can be arbitrarily large and potentially infinite

if some state-action pair (s, a) is likely under π, but have probability 0 to be explored

under ν). In the ideal case where there is no mismatch, i.e. ν = Dµ,π, then cπν = 1.

8.3. BATCH OFF-POLICY LEARNING APPROACH 181

We will also assume the costs are bounded in some range, i.e. C(s, a) ∈ [Cmin, Cmax]

∀(s, a). Let Crng = Cmax − Cmin and H =
γCrng

(1−γ)2
. H is a scaling factor that relates

model error to error in total cost predictions. Then the policy learned by Batch has the

following performance guarantee when performing the task in the real system:

Theorem 8.3.1. The policy π̂ is s.t. for any policy π′:

Jµ(π̂) ≤ Jµ(π′) + επ
′

oc +
cπ̂ν + cπ

′
ν

2
HεL1prd

This also holds as a function of εKL
prd or εclsprd using the relations in Lemma 8.3.1.

This bound indicates that if Batch solves the OC problem well and T̂ has small

enough error under the training distribution ν, then it must find a good policy. Impor-

tantly, this bound is tight: i.e. we can construct examples where it holds with equality

(see appendix C).

More interestingly is what happens as we collect more and more data. If we use

consistent learning procedures that converge to the best transition model T̂ ∗ in the class

T asymptotically, then we can relate this guarantee to the capacity of the model class to

achieve low predictive error under the training distribution ν. We denote the modeling

error, measured in L1 distance, as:

εL1
mdl = inf

T ′∈T
E(s,a)∼ν [||Tsa − T ′sa||1].

Similarly, we define the modeling error in terms of the KL divergence and the classifica-

tion loss as follows:

εKL
mdl = inf

T ′∈T
E(s,a)∼ν,s′∼Tsa [log(Tsa(s

′))− log(T ′sa(s
′))],

εcls
mdl = inf

T ′∈T
E(s,a)∼ν,s′∼Tsa [`(T ′, s, a, s′)].

These modeling errors are all 0 in realizable settings, but generally non-zero in agnos-

tic settings. After observing m sampled transitions, the generalization error εL1
gen(m, δ)

bounds with high probability 1 − δ the quantity εL1
prd − εL1

mdl. Similarly, εKL
gen(m, δ) and

εcls
gen(m, δ) denote the generalization error for the KL and classification loss respectively.

For instance, εcls
gen(m, δ) can be related to the VC dimension, or analogous multi-class

equivalent, in finite state MDPs (as in standard PAC Learning analysis for classification

problems).

This implies that when learning from a finite amount of data, the guarantee on

control performance with the learned policy by Batch has the following form:

Corollary 8.3.1. After observing m transitions, with probability at least 1− δ, for any

policy π′:

Jµ(π̂) ≤ Jµ(π′) + επ
′

oc +
cπ̂ν + cπ

′
ν

2
H[εL1mdl + εL1gen(m, δ)].

182
CHAPTER 8. LEARNING DYNAMIC MODELS FOR GOOD CONTROL

PERFORMANCE

This also holds as a function of εKL
mdl + εKL

gen(m, δ) (or εclsmdl + εclsgen(m, δ)) using Lem. 8.3.1.

In addition, if the fitting procedure is consistent in terms of L1 distance (or KL, classifi-

cation loss), then εL1gen(m, δ)→ 0 (or εKL
gen(m, δ)→ 0, εclsgen(m, δ)→ 0) as m→∞ for any

δ > 0.

As mentioned in Section 2.1, the generalization error typically scales with the com-

plexity of the class T and goes to 0 at a rate of O(1√
m

) (or Õ(1
m) in ideal conditions).

Given enough samples, the dominating factor limiting performance becomes the model-

ing error: i.e. the term cπ̂ν+cπ
′
ν

2 HεL1
mdl (or its equivalent in terms of the KL/classification

loss) quantifies how performance degrades for agnostic settings.

Drawback of Batch: The two factors cπ̂ν and cπ
′
ν are qualitatively different. cπ

′
ν mea-

sures how well ν explores state-actions visited by the policy π′ we compare to. This

factor is inevitable: we cannot hope to compete against policies that spend most of their

time in regions that we rarely explore. On the other hand, cπ̂ν measures the mismatch in

train-test distribution, i.e. the mismatch between the exploration and where our learned

policy goes during its execution. Its presence is the major drawback of Batch. As π̂ can-

not be known in advance, we can only bound cπ̂ν by considering all policies we could learn:

supπ∈Π c
π
ν . This worst case is likely to be realized in practice: if ν rarely explores some

state-action regions, the model could be bad for these and significantly underestimate

their cost. The learned policy is thus encouraged to visit these low-cost regions where

few data were collected. To minimize supπ∈Π c
π
ν , the best ν for Batch is often a uniform

distribution, when possible. This introduces a dependency on the number of states and

actions (or state-action space volume) (i.e. cπ̂ν + cπ
′
ν is O(|S||A|)) multiplying the mod-

eling error. Sampling from a uniform distribution often requires access to a generative

model. If we only have access to a reset model4 and a base policy π0 inducing ν when

executed in the system, then cπ̂ν could be arbitrarily large (e.g., if π̂ goes to 0 probability

states under π0), and π̂ arbitrarily worse than π0. This indicates that in general, with

Batch, even if some model in the class T achieves very small training error, performance

at the control task can still be arbitrarily bad. To prevent this, Batch must explore as

uniformly as possible, but then only provides good guarantees if the modeling error is

very small, i.e. O(1
H|S||A|). For small γ, or large systems with many states/actions, this

implies that Batch must achieve near-zero training error. Under uniform exploration,

near-zero training error is only possible if we are in a realizable setting (or nearly so).

Thus effectively, we can conclude that this Batch approach only works in realizable sce-

narios (or nearly-so), and can lead to arbitrarily bad performance in general agnostic

settings. In addition, learning by sampling uniformly is undesirable. This requires learn-

ing about every state-action, which is inefficient as it is often not necessary (we only

4See Section 2.3 for descriptions of generative and reset access models.

8.4. INTERACTIVE LEARNING APPROACH 183

need to learn about regions where good policies go and our learned policy goes). Hence

from a learning efficiency point of view, we see that Batch is not very efficient (we would

necessarily need a number of samples that scales with the dimensionality of the system).

In the next section, we show that by adapting DAGGER to this setting, we can

leverage interaction with the learner to obtain bounds that do not depend on cπ̂ν . This

leads to better guarantees when we have a good exploration distribution ν (e.g., that

of a near-optimal policy). It also leads to more efficient learning, as we will show that

the sample complexity can have no dependency on the dimensionality of the system if

we have access to a good exploration distribution (only on the complexity of the model

class T). In practice, this leads to more efficient learning and better performance, as

shown in the experiments.

8.4 Interactive Learning Approach

Our extension of DAGGER to the system identification setting proceeds as follows.

Starting from an initial model T̂ 1 ∈ T , solve (potentially approximately) the OC problem

with T̂ 1 to obtain policy π1. At each iteration n, collect data about the system by

sampling state-action pairs from distribution ρn = 1
2ν + 1

2Dµ,πn : i.e. w.p. 1
2 , sample a

transition occurring from an exploratory state-action pair drawn from ν and add it to

dataset D, otherwise, interact with the learner to sample a state transition occurring

from running the learner’s current policy πn starting in µ, stopping the trajectory w.p.

1 − γ at each step and adding the last transition to D. The dataset D contains all

transitions observed so far over all iterations. Once data is collected, find the best model

T̂n+1 ∈ T that minimizes an appropriate loss (e.g. regularized negative log likelihood)

on D, and solve (potentially approximately) the OC problem with T̂n+1 to obtain the

next policy πn+1. This is iterated for N iterations. This algorithm is depicted in Figure

8.1 in the context of an helicopter control task.

At test time, we could either find and use the policy with lowest expected total cost

in the sequence π1:N , or use the uniform “mixture” policy5 over π1:N . We guarantee good

performance for these two choices. Using the last policy πN often works equally well, as

it has been trained with most data. Our experimental results confirm this intuition. In

theory, the last policy has good guarantees when the distributions Dµ,πi converge to a

small region in the space of distributions as i → ∞, although we do not guarantee this

occurs in general.

5At start of any trajectory, the mixture policy picks uniformly randomly a policy in π1:N , and uses
it for the whole trajectory.

184
CHAPTER 8. LEARNING DYNAMIC MODELS FOR GOOD CONTROL

PERFORMANCE

Explora(on

Policy

Current Policy

New Policy

Fit Model

New Transi1ons

All previous transi(ons
Aggregate

Dataset

Collect Trajectories with

Current Policy & Explora1on Policy

Op1mal

Control Solver

State Ac(on Next State

...
...

Figure 8.1: Depiction of the DAGGER algorithm for System Identification in the context
of helicopter control.

Implementation with Off-the-Shelf Online Learner

As in previous sequential prediction settings, DAGGER as described can be interpreted

as using a Follow-The-(Regularized)-Leader (FTRL) online algorithm to pick the se-

quence of models: at each iteration n we pick the best (regularized) model T̂n in hind-

sight under all samples seen so far. In general, DAGGER can also be implemented using

any off-the-shelf no-regret online algorithm (see Algorithm 8.4.1) to provide good guar-

antees. To do so, we proceed as follows. When minimizing the negative log likelihood,

the loss function of the online learning problem at iteration i is:

LKL
i (T̂) = E(s,a)∼ρi,s′∼Tsa [− log(T̂sa(s

′))]. (8.1)

This loss can be estimated from the sampled state transitions at iteration i, and evaluated

for any model T̂ . The online algorithm is applied on the sequence of loss functions LKL
1:N

to obtain a sequence of models T̂ 1:N over the iterations. As before, each model T̂ i is

solved to obtain the next policy πi. By doing so, the online algorithm effectively runs

over mini-batches of data collected at each iteration to update the model, and each

mini-batch comes from a different sampling distribution that changes as we update the

policy. Similarly, in a finite MDP with a deterministic model class T , we can minimize

a classification loss instead (such as the 0-1 loss, or any upper bound such as the hinge

loss), where the loss at iteration i is:

Lcls
i (T̂) = E(s,a)∼ρi,s′∼Tsa [`(T̂ , s, a, s′)], (8.2)

8.4. INTERACTIVE LEARNING APPROACH 185

Input: exploration distribution ν, number of iterations N , number of samples per
iteration m, cost function C, online learning procedure OnlineLearner, optimal
control procedure OCSolver.

Get initial guess of model: T̂ 1 ← OnlineLearner().
π1 ← OCSolver(T̂ 1, C).
for n = 2 to N do

for k = 1 to m do
With prob. 1

2 sample (s, a) ∼ Dµ,πn−1 using πn−1, otherwise sample (s, a) ∼ ν.
Obtain s′ ∼ Tsa
Add (s, a, s′) to Dn−1.

end for
Update model: T̂n ← OnlineLearner(Dn−1).
πn ← OCSolver(T̂n, C).

end for
Return the sequence of policies π1:N .

Algorithm 8.4.1: DAGGER algorithm for Agnostic System Identification/MBRL.

for ` the particular classification loss we’re minimizing. This corresponds to an online

classification problem. For many model classes, the negative log likelihood and convex

upper bounds on the 0-1 loss (such as hinge loss) lead to convex online learning problems,

for which no-regret algorithms exist (e.g., gradient descent, FTRL). As shown below, if

the sequence of models is no-regret on these loss functions, then performance can be

related to the smallest expected KL divergence (or classification loss) achievable with

model class T under the overall training distribution ρ = 1
N

∑N
i=1 ρi (i.e. a quantity akin

to εKL
mdl or εcls

mdl for Batch).

Important Distinction to Previous Settings: We emphasize here an important

distinction of DAGGER in this setting. Unlike previous sequential prediction settings,

here DAGGER does not only collect data from running the current policy at each it-

eration, it also collects an equal amount of exploration data. This is suggested by our

theoretical analysis below. Intuitively, this is necessary to ensure that we do not con-

verge to a model T̂ that only models well the behavior of the system under the previous

policies π1:n, and does not model well the behavior of the system where good policies

go. In agnostic settings where we cannot model the data perfectly, the model fitting

procedure must tradeoff where it makes mistakes. If we would only collect more data

from the current policy at each iteration, the exploration data would occupy a vanish-

ingly small fraction of the dataset and potentially lead the learner to pick models that

have large error on this exploration data and low error where the learned policies go.

If we would end up with such model, we would likely get stuck in a local minima and

not be able to learn better policies. By keeping an even balance of exploration data and

data from execution of our learned policies, we ensure that the learned model must also

186
CHAPTER 8. LEARNING DYNAMIC MODELS FOR GOOD CONTROL

PERFORMANCE

predict well the behavior of the system for other policies (that visit frequently explored

state-actions), and thus that when solving the OC problem, we must be able to find

good policies compared to any policy that spends most of its time where we explore.

Note that DAGGER could also be implemented by only collecting more data from

the current policy at each iteration, if for instance, we collect all the exploration data

up front, and then at each iteration when defining the loss for the online learner, we

weight the training examples such that half the weight is assigned to the exploration

data, and half the weight to the newly collected data. That is if we have a dataset of

exploration data D0, and Dn is the dataset of state transitions collected at iteration n

by only running the current policy πn, we could define the loss for the online algorithm

LKL
n (T̂) = − 1

2|D0|
∑

(s,a,s′)∈D0
log(T̂sa(s

′))− 1
2|Dn|

∑
(s,a,s′)∈Dn log(T̂sa(s

′)).

Analysis

Similar to our analysis of Batch, we seek to answer the following: if there exists a low

error model of training data, and we solve each OC problem well, what guarantees does

DAgger provide on control performance? Our results show that by sampling data from

the learned policies, DAgger provides guarantees that have no train-test mismatch factor,

leading to improved performance. Again, the proofs are deferred to appendix C.

For any policy π′, define

επ
′

oc =
1

N

N∑
i=1

Es∼µ[V̂i(s)− V̂ π′
i (s)],

where V̂i and V̂ π′
i are respectively the value function of πi and π′ under model T̂ i. This

measures how well we solved each OC problem on average over the iterations. For

instance, if at each iteration i we found an εi-optimal policy within some class of policies

Π on learned model T̂ i, then επ
′
oc ≤ 1

N

∑N
i=1 εi for all π′ ∈ Π.

As in Batch, the average predictive error of the models T̂ 1:N can be measured in

terms of the L1 distance between the predicted and true next state distribution:

εL1
prd =

1

N

N∑
i=1

E(s,a)∼ρi [||T̂
i
sa − Tsa||1].

However, as was discussed, the L1 distance is not observed from samples which makes

it hard to minimize. Instead we can define other measures which upper bounds this L1

distance and can be minimized from samples, such as the KL divergence or classification

loss, i.e.:

εKL
prd =

1

N

N∑
i=1

E(s,a)∼ρi,s′∼Tsa [log(Tsa(s))− log(T̂ isa(s
′))]

8.4. INTERACTIVE LEARNING APPROACH 187

and

εcls
prd =

1

N

N∑
i=1

E(s,a)∼ρi,s′∼Tsa [`(T̂ i, s, a, s′)].

Now, given the sequence of policies π1:N , let π̂ = arg minπ∈π1:N Jµ(π) be the best policy

in the sequence and π the uniform mixture policy on π1:N .

Lemma 8.4.1. The policies π1:N are s.t. for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + cπ
′
ν Hε

L1
prd

This also holds as a function of εKL
prd or εclsprd using Lemma 8.3.1.

Using Equations 8.1 and 8.2, we note that

εKL
prd =

1

N

N∑
i=1

LKLi (T̂ i)− LKLi (T),

and

εcls
prd =

1

N

N∑
i=1

Lclsi (T̂ i).

Using a no-regret algorithm on the sequence of losses LKL1:N implies

1

N

N∑
i=1

LKLi (T̂ i) ≤ inf
T ′∈T

1

N

N∑
i=1

LKLi (T ′) + εKL
rgt ,

for εKL
rgt the average regret of the algorithm after N iterations, s.t. εKL

rgt → 0 as N →∞.

This relates εKL
prd to the modeling error of the class T :

εKL
mdl = inf

T ′∈T
E(s,a)∼ρ,s′∼Tsa [log(Tsa(s))− log(T ′sa(s

′))],

i.e. εKL
prd ≤ εKL

mdl + εKL
rgt , for εKL

rgt → 0. Similarly define

εcls
mdl = inf

T ′∈T
E(s,a)∼ρ,s′∼Tsa [`(T ′, s, a, s′)]

and by using a no-regret algorithm on Lcls1:N :

εcls
prd ≤ εcls

mdl + εcls
rgt

for εcls
rgt → 0. In some cases, even if the L1 distance cannot be estimated from samples,

statistical estimators can still be no-regret with high probability on the sequence of loss

LL1
i (T ′) = E(s,a)∼ρi [||Tsa−T ′sa||1]. This is the case in finite MDPs if we use the empirical

estimator of T based on data seen so far (see appendix C). If we define

εL1
mdl = inf

T ′∈T
E(s,a)∼ρ[||Tsa − T ′sa||1],

this implies that

εL1
prd ≤ εL1

mdl + εL1
rgt,

for εL1
rgt → 0. Our main result follows:

188
CHAPTER 8. LEARNING DYNAMIC MODELS FOR GOOD CONTROL

PERFORMANCE

Theorem 8.4.1. The policies π1:N are s.t. for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + cπ
′
ν H[εL1mdl + εL1rgt]

This also holds as a function of εKL
mdl + εKL

rgt (or εclsmdl + εclsrgt) using Lem. 8.3.1. If the fitting

procedure is no-regret w.r.t the sequence of losses LL1
1:N (or LKL1:N , Lcls1:N), then εL1rgt → 0

(or εKL
rgt → 0,εclsrgt → 0) as N →∞.

Additionally, the performance of πN can be related to π if the distributions Dµ,πi

converge to a small region:

Lemma 8.4.2. If there exists a distribution D∗ and some ε∗cnv ≥ 0 s.t. ∀i, ||Dµ,πi −
D∗||1 ≤ ε∗cnv + εicnv for some sequence {εicnv}∞i=1 that is o(1), then πN is s.t.:

Jµ(πN) ≤ Jµ(π) +
Crng

2(1− γ)
[2ε∗cnv + εNcnv +

1

N

N∑
i=1

εicnv]

Thus: lim supN→∞ Jµ(πN)− Jµ(π) ≤ Crng

1−γ ε
∗
cnv

Theorem 8.4.1 illustrates how we can reduce the original system identification (or

MBRL) problem to a no-regret online learning problem on a particular sequence of loss

functions. In general, no-regret algorithms have average regret of O(1√
N

) (Õ(1
N) in ideal

cases) such that the regret term goes to 0 at a similar rate to the generalization error term

for Batch in Corollary 8.3.1. Here, given enough iterations, the term cπ
′
ν Hε

L1
mdl determines

how performance degrades in the agnostic setting (or cπ
′
ν H

√
2εKL

mdl or 2cπ
′
ν Hε

cls
mdl if we use

a no-regret algorithm on the sequence of KL or classification loss respectively). Unlike

for Batch, there is no dependence on cπ̂ν , only on cπ
′
ν . Thus, if a low error model exists

under training distribution ρ, no-regret methods are guaranteed to learn policies that

performs well compared to any policy π′ for which cπ
′
ν is small. Hence, ν is ideally Dµ,π

of a near-optimal policy π (i.e. explore where good policies go).

Finite Sample Analysis: A remaining issue is that the current guarantees apply if

we can evaluate the expected loss (LL1
i , LKL

i or Lcls
i) exactly. This requires infinite

samples at each iteration. If we run the no-regret algorithm on estimates of these loss

functions, i.e. loss on m sampled transitions, we can still obtain good guarantees using

martingale inequalities as in online-to-batch (Cesa-Bianchi et al., 2004) techniques. The

extra generalization error term is typically O(

√
log(1/δ)
Nm) with high probability 1 − δ.

While our focus is not on providing such finite sample bounds, we illustrate how these

can be derived for two scenarios in appendix C. For instance, in finite MDPs with |S|
states and |A| actions, if T̂ i is the empirical estimator of T based on samples collected in

8.4. INTERACTIVE LEARNING APPROACH 189

the first i− 1 iterations, then choosing m = 1 and N in Õ(
C2

rng|S|2|A| log(1/δ)

ε2(1−γ)4
) guarantees

that w.p. 1− δ, for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc +O(cπ
′
ν ε)

Here, εmdl does not appear as it is 0 (realizable case). Given a good state-action distri-

bution ν, the sample complexity to get a near-optimal policy is Õ(
C2

rng|S|2|A| log(1/δ)

ε2(1−γ)4
). This

improves upon other state-of-the-art MBRL algorithm, such asRmax, Õ(
C3

rng|S|2|A| log(1/δ)

ε3(1−γ)6
)

(Strehl et al., 2009) and a recent variation ofRmax with sample complexity of Õ(
C2

rng|S||A| log(1/δ)

ε2(1−γ)6
)

(Szita and Szepesvári, 2010). Here, the dependency on |S|2|A| is due to the complexity

of the class (i.e. conditional probability table with |S|2|A| parameters). With simpler

classes, the sample complexity can have no dependency on the size of the MDP. For

instance, in the supplementary material, we consider a case where T is a set of deter-

ministic models represented by kernel SVMs with RKHS norm bounded by K. Choosing

m = 1 and N in O(
C2

rng(K2+log(1/δ))

ε2(1−γ)4
) guarantees that w.p. 1− δ, for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + 2cπ
′
ν Hε̂

cls
mdl +O(cπ

′
ν ε),

for ε̂cls
mdl the multi-class hinge loss on the training set after N iterations of the best SVM

in hindsight. Thus, if we have a good exploration distribution and there exists a good

model in T for predicting observed data, we obtain a near-optimal policy with sample

complexity that depends only on the complexity of T , not the size of the MDP.

Handling Partially Observable Domains

While we have assumed the state observable so far, DAGGER as presented can be

applied in the same way in partially observable settings and the same guarantees also

hold. To see this, we simply need to define the state to be the entire history of actions

and observations. Predicting the next “state” in this case comes down to predicting

the next observation to append to the history, given features of the current action and

history. For instance, we may attempt to learn an ARX model, via linear regression,

that predicts the next observation from the past k observations and actions, and our

results would relate directly control performance to the model error at predicting the

next distribution of observations (e.g. in L1 distance or KL). Additionally, the state-

action exploration distribution ν here would be a distribution over histories and actions.

As for the cost function, here it would be defined in terms of the history and the current

action, e.g. a cost that depends on the last observation and action.

While we could learn ARX type models, an interesting open question is whether our

DAGGER technique could be applied with realization/spectral learning methods that

could learn an underlying state space model, e.g. using subspace identification techniques

190
CHAPTER 8. LEARNING DYNAMIC MODELS FOR GOOD CONTROL

PERFORMANCE

in Overschee and Moor (1996), Boots and Gordon (2011). An important requirement

for this to be possible would be to show that such spectral methods are no-regret, e.g.

in the squared loss (or log likelihood) of their predictions, when applied to learn online.

Not much work has been done in this area, with the exception of a randomized online

PCA method that has been shown to be no-regret (Warmuth and Kuzmin, 2008).

Discussion

Remarks on Guarantees. We emphasize again that we provide reduction-style guar-

antees. DAGGER may sometimes fail to find good policies, e.g., when no model in the

class achieves low error on the training data. When no model achieves low error on the

training data, whether we are using Batch or DAGGER, both will fail to provide good

performance, and this suggests we need a better class of models. However, the distinc-

tion to Batch is in the case where good models exist on the training data. In this case,

DAGGER is guaranteed to find a good policy, in contrast, Batch can still fail at obtain-

ing a policy with good control performance, due to train/test mismatch. This occurs

even in scenarios where DAGGER finds good policies, as shown in the experiments.

DAGGER as a reduction. In this setting DAGGER can be interpreted as a reduc-

tion of system identification, or model-based reinforcement learning, to no-regret online

learning and optimal control. Depending on the loss minimized to fit the model, it can

be interpreted as an error or a regret reduction. In the case of the KL (negative log

likelihood), we obtain a reduction that relates performance to the regret in log likelihood

of the best model in the class to the true model (bayes-optimal model). Thus in this

case, this can be interpreted as a regret reduction. For the classification loss however,

performance is related directly to the classification loss/error, and this can be interpreted

as an error reduction.

Solving the OC problems. DAGGER needs to solve many OC problems. This

can be computationally expensive, e.g., with non-linear or high-dimensional models.

Many approximate methods can be used, e.g., policy gradient (Williams, 1992), fitted

value iteration (Gordon, 1995, Szepesvári, 2005), iLQR (Li and Todorov, 2004) or DDP

(Jacobson and Mayne, 1970). As the models often change only slightly from one iteration

to the next, we can often run only a few iterations of dynamic programming/policy

gradient from the last value function/policy to obtain a good policy for the current

model. As long as we get good solutions on average, επ
′

oc remains small and does not

hinder performance.

8.5. OPTIMISTIC EXPLORATION FOR REALIZABLE SETTINGS 191

Relation to previous iterative identification methods. DAGGER generalizes the

approach of Atkeson and Schaal (1997) and Abbeel and Ng (2005) so that we can use

any no-regret algorithm to update the model, as well as any exploration distribution.

A key difference is that DAGGER keeps an even balance between exploration data and

data from running the learned policies. This is crucial to avoid settling on suboptimal

performance in agnostic settings as the exploration data could be ignored if it occupies

only a small fraction of the dataset, in favor of models with lower error on the data from

the learned policies. With this modification, our main contribution is showing that such

methods have good guarantees even in agnostic settings.

Realizable Settings. Another important result that follows from this analysis is when

we are in a realizable setting. This result indicates that recovering the optimal policy

is always possible if we have access to a good exploration distribution, and no-regret

learning is possible for the given class of models T that contains the true model. As

no-regret can be achieved on a much broader class of models than linear systems (e.g.

kernel based models), these results show that learning models that synthesize the optimal

controller is possible for much more general class of non-linear systems. The requirement

of having access to a good exploration distribution can also be dropped in realizable

settings, by adopting instead an optimistic exploration strategy presented below.

8.5 Optimistic Exploration for Realizable Settings

Our current DAGGER approach to system identification assumes that it is given a good

state-action exploration distribution ν in order to guarantee that it can find a near-

optimal policy efficiently. In domains where prior knowledge of the task is limited, or

where we don’t have access to an expert, it might be hard to provide this information

to the algorithm. We present here an adaptive exploration strategy that can be used,

which guarantees finding the optimal policy in realizable settings.

The exploration strategy uses the principle of optimism in the face of uncertainty,

which is used in many other state-of-the-art RL algorithms such as Rmax (Strehl et al.,

2009) and UCRL/UCRL2 (Auer and Ortner, 2007, Jaksch et al., 2010). It essentially

involves being optimistic about the value of states and actions that have not been ex-

plored enough before. In particular, the exploration strategy is obtained by essentially

computing a lower bound (with high probability) on the total cost of the optimal policy

in the real system based on the observed data so far. The lower bound becomes tighter

as more data is collected and converges toward the optimal value function. Executing

the optimal policy of this optimistic value function ensures that we will explore all areas

that are potentially visited by an optimal policy.

192
CHAPTER 8. LEARNING DYNAMIC MODELS FOR GOOD CONTROL

PERFORMANCE

Input: Number of iterations N , Number of samples per iteration m, Failure proba-
bility δ, Cost function C.
Initialize T 1 ← T
Initialized dataset D ← ∅
(π1,T̂ 1)← OptimisticOptimalControl(C, T 1).
for i = 2 to N do

for k = 1 to m do
Sample a transition along a trajectory with πi−1 starting in µ and add it to D.

end for
Construct a 1− δ confidence set T i ⊂ T based on observed data D.
(πi,T̂

i)← OptimisticOptimalControl(C, T i).
end for
Return the sequence of policies π1:N .

Algorithm 8.5.1: DAGGER algorithm with Optimistic Exploration for System Iden-
tification.

To use this idea within our DAGGER approach, we will identify at each iteration i, a

confidence set of models Ti that contains the true model T with high probability, based

on the data seen so far. Then solve an optimal control problem where instead of only

optimizing the policy, we jointly optimize over both the policy and model within that set

Ti to minimize total expected cost, similarly to UCRL/UCRL2. The joint optimal policy

and model will give us a lower bound on the optimal value function (if the true model is

in Ti). Running that policy in the real system to collect more data will explore the areas

an optimal policy might visit. This leads to an algorithm that only needs to sample data

under the distribution of states induced by the current policy at each iteration. This

approach is detailed in Algorithm 8.5.1.

Analysis

To motivate this exploration strategy, we can show the following result: DAGGER

provides good guarantees as long as 1) the sequence of selected models is no-regret with

respect to observed data and is such that 2) on average, optimal performance in the

learned models is close to a lower bound on the total cost of the optimal policy in the

real model.

Formally, suppose over the course of the algorithm we pick a sequence of models T̂ 1:N

and policies π1:N and let

επ
′

oc-lb =
1

N

N∑
i=1

Es∼µ[V̂i(s)]− Jµ(π′),

denotes how much larger is the total cost of the policies π1:N on average in their corre-

sponding learned model T̂ 1:N compared to the total cost of π′ in the real system. For

instance, if T 1:N is a sequence of subsets of T which contains the real system with high

8.5. OPTIMISTIC EXPLORATION FOR REALIZABLE SETTINGS 193

probability, and at each iteration i, we found an εi-optimal policy and model pair (πi, T̂
i)

in Π× T i, then for any π′ ∈ Π, επ
′

oc-lb ≤
1
N

∑N
i=1 εi with high probability.

Additionally, define the average predictive error of the chosen models T̂ 1:N , measured

in L1 distance, under the corresponding state-action distribution induced by the chosen

policies as

εL1
prd =

1

N

N∑
i=1

E(s,a)∼Dµ,πi [||Tsa − T̂
i
sa||1].

Similarly, define

εKL
prd =

1

N

N∑
i=1

E(s,a)∼Dµ,πi ,s′∼Tsa [log(Tsa(s
′))− log(T̂ isa(s

′))].

and

εcls
prd =

1

N

N∑
i=1

E(s,a)∼Dµ,πi ,s′∼Tsa [`(T̂ i, s, a, s′)].

the predictive error, measured in KL and classification loss respectively. Note here the

difference is that these quantities are directly defined as an expectation under the distri-

bution of state-actions Dµ,πi , rather than a mixture with a fixed exploration distribution

ν.

The following holds:

Theorem 8.5.1. For all policies π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc-lb +
H

2
εL1prd

This also holds in terms of εKL
prd or εclsprd using the relations in Lemma 8.3.1.

The predictive error can be related to a modeling error, and the average regret as in

the previous section. However, for realizable settings, the modeling error is 0, implying

the predictive error is directly the average regret.

Thus in realizable settings, this theorem implies that if we can pick a sequence of

models {T̂ i}Ni=1, which satisfies the following: 1) with high probability, the sequence has

no-regret on the observed data with respect to the true model T ∈ T (i.e. εL1
prd → 0 as

N → ∞) ; 2) with high probability, the average total cost of the policy in the learned

model lower bounds the total cost of the optimal policy (i.e. επ
′

oc-lb ≤ 0 for all π′); then

we are guaranteed to find an optimal policy in the limit.

While the algorithm chooses subsets T i, and the optimistic optimal control algorithm

can potentially pick any model T̂ i ∈ T i at each iteration i, we can still guarantee that

the chosen sequence of models T̂ i is no-regret if we choose the subsets T i properly. For

instance, suppose T̃ 1:N would be the sequence of chosen models by a no-regret algorithm

on the observed data over the iterations of the algorithm, and the loss at each iteration

194
CHAPTER 8. LEARNING DYNAMIC MODELS FOR GOOD CONTROL

PERFORMANCE

is Lipschitz continuous under some norm || · || over the space of models T . Then if at

each iteration i, we define the subsets T i = {T ′|||T ′ − T̃ i|| ≤ εiconf} for some sequence

εiconf that is o(1), then any sequence of models T̂ 1:N is no-regret if for all i, T̂ i ∈ T i.
Typical generalization error bounds will yield confidence regions where εnconf is O(1√

n
).

In this case, the sequence of T̂ 1:N can be no-regret at rate O(1√
N

).

Realizable Case in Finite MDPs

We can illustrate what this algorithm would do and its guarantees in a finite MDP setting

with |S| states and |A| actions, where the set of models T contains all transition matrix

(the set of all conditional probability tables with |S|2|A| parameters).

First, at each iteration i, we would construct the empirical estimate T̃ i of the true

model as T̃ isa(s
′) =

n<i
sas′

n<isa
, where n<isas′ is the number of times we observed transition

(s, a, s′) in the first i− 1 iterations and n<isa =
∑

s′ n
<i
sas′ . Then from standard results in

Wasserman (2003), defining

T i = {T ′|∀(s, a) : ||T ′sa − T̃ isa||1 ≤
√

c

n<isa
},

for c = 2|S| ln(2) + 2 log(|S||A|N/δ) guarantees that with probability at least 1− δ, the

true model T ∈ T i for all iterations i ∈ {1, 2, . . . , N}. Additionally, if T ∈ Ti for all i,

we can show that any sequence of models T̂ 1:N such that T̂ i ∈ T i for all i, is such that

εL1
prd is O(

√
c|S||A|
Nm) (see finite sample analysis for finite MDPs in appendix C). Once we

defined the set T i, we would solve for a joint near-optimal policy πi and model T̂ i ∈ T i

that minimizes total expected cost, and move on to execute πi to collect more data at

the next iteration. If we can find such ε-optimal policy and model pair at each iteration,

then if we run the algorithm for Õ(
γ2C2

range|S|2|A|
(1−γ)4ε2

) iterations and collect O(1) sample at

each iteration, we will obtain an ε-optimal policy in the real system with high probability.

This compares favorably against state-of-the-art RL algorithm such as Rmax, which has

sample complexity of Õ(
γ3C3

rng|S|2|A|
(1−γ)6ε3

) (Strehl et al., 2009), and is also an improvement

over our previous approach as it does not depend on the factor cπ
∗
ν anymore.

Solving for Joint Optimal Policy and Model

The mentioned algorithm requires solving jointly over policy πi and model T̂i ∈ Ti.
In general this may be intractable. However in some cases this can be achieved with

computational complexity that is no greater than the complexity of solving a typical

optimal control problem via dynamic programming. We show this is the case for the

finite MDP scenario above where the set of models Ti has the form Ti = {T ′|∀(s, a) :

||T ′sa − T̃sa||1 ≤ csa} for some nominal model T̃ and confidence region csa on the L1

distance to the true model for each state-action pair.

8.5. OPTIMISTIC EXPLORATION FOR REALIZABLE SETTINGS 195

input: Nominal model T̃ , L1 confidence region csa for all (s, a), Cost function C.
∀s, a : Q(s, a)← C(s, a), ∀s : V (s)← mina[Q(s, a)]
for t = 2 to H do

Sort states in ascending order of value in V , breaking ties arbitrarily.
Let sj denote the jth state in sorted list.
for each s do

for each a do
∀s′ : T ′sa(s′)← T̃sa(s

′), l← 1, h← |S|, d← 0.
while l < h and d < csa do
δ ← min(1− T ′sa(sl), T ′sa(sh), (csa − d)/2).
T ′sa(sl)← T ′sa(sl) + δ, T ′sa(sh)← T ′sa(sh)− δ, d← d+ 2δ.
if T ′sa(sl) = 1 then l← l + 1.
if T ′sa(sh) = 0 then h← h− 1.

end while
Q′(s, a)← C(s, a) + γ

∑
s′ T
′
sa(s

′)V (s′)
end for

end for
∀s, a : Q(s, a)← Q′(s, a), ∀s : V (s)← mina[Q

′(s, a)]
end for
return Q

Algorithm 8.5.2: DP Algorithm for solving optimistic optimal control problem.

In this scenario we have to solve the following equation:

V̂ ∗(s) = min
a

[C(s, a) + γ min
T ′sa|||T ′sa−T̃sa||1≤csa

Es′∼T ′sa [V̂ ∗(s′)]]

In general this can be solved via dynamic programming and solving a linear program

with O(|S|) constraints for each state-action pair at each dynamic programming itera-

tion. Such an approach would however be intractable. There is a much more efficient

approach which simply involves sorting the states according to their value at each dy-

namic programming iteration in order to solve for the optimal T ′sa in O(|S|) work for

each state-action pair. This algorithm, detailed in Algorithm 8.5.2, was proposed in

Strehl and Littman (2004) and we present it here for completeness.

Intuitively, this algorithm proceeds by putting as much probability mass on states

which have lowest cost-to-go and as few probability mass on states which have highest

cost-to-go. This is done efficiently using the sorted list of states according to their cost-to-

go values, greedily moving probability mass from states with highest cost-to-go to states

with lowest cost-to-go, starting from the nominal solution T ′sa = T̃sa, while enforcing the

constraint that T ′sa must be a probability distribution with L1 distance within csa of T̃sa.

For each s, a and iteration t, finding the optimal T ′sa (i.e. the while loop) terminates

in less than |S| iterations and each iteration is O(1) work. So at each iteration t, finding

the optimal T ′ for all s, a requires O(|S|2|A|+ |S| log |S|) work which is O(|S|2|A|). Once

we found the optimal T ′, doing the value function update for all (s, a) is O(|S|2|A|) as

196
CHAPTER 8. LEARNING DYNAMIC MODELS FOR GOOD CONTROL

PERFORMANCE

well. So each iteration of dynamic programming is still O(|S|2|A|). Running the above

algorithm is thus O(H|S|2|A|) for H iterations. Since each iteration is a γ-contraction of

||V −V ∗||∞, choosing H in O(1
1−γ log(

Crng

(1−γ)ε)) guarantees that we will find an ε-optimal

solution. Finding an ε-optimal solution is thus O(|S|
2|A|

1−γ log(
Crng

(1−γ)ε)). This is the same

complexity as the value iteration algorithm when solving for an ε-optimal policy with

fixed model.

Discussion

This exploration strategy is well motivated and can be implemented efficiently in finite

MDPs when learning the full conditional probability table. For practical applications

with other class of models, we would need similar efficient dynamic programming algo-

rithms for jointly finding an optimal policy and model. We believe this may be possible

for the case of linear systems (LQR). In particular, in this case a similar approach to H∞

robust control where a dynamic game between the controller and a disturbance player

is solved (Basar and Bernhard, 1995) could potentially be leveraged, but where instead,

the disturbance player tries to minimize cost, subject to a constraint on the size of the

deviation. For instance, based on the results in Walsh et al. (2009), it is likely that a

similar result could be derived to show that the deviation in next state, from the state

predicted by the nominal model, is bounded within some L2 ball, leading to an optimal

strategy for the disturbance player that is also a linear function of the state and allowing

to compute the optimistic optimal value function in closed form as a quadratic function.

For more general class of models, the optimistic optimal control problem may poten-

tially be solved approximately, for instance using a gradient based method.

It would be interesting to see if this exploration strategy can be extended to agnostic

setting, or provide guarantees for this strategy in agnostic settings. For instance, it

might be possible to bound the quantity επ
′

oc-lb, e.g. as a function of how well we can

do at prediction during training within the class of model T , or by making some other

assumption about how well the class of model T can approximate the real system T .

8.6 Experiments

We now demonstrate the efficacy of DAGGER for System Identification on two control

tasks: a simple benchmark inverted pendulum swing-up task, and a more challenging

task of learning to perform aerobatic maneuvers with a simulated helicopter.

Inverted Pendulum Swing-Up

The control of an inverted pendulum has been commonly used in the control literature

and is often used as a simple benchmark problem. We consider learning to perform

8.6. EXPERIMENTS 197

Figure 8.2: Depiction of the swing-up task. First 10 frames at 0.5s intervals of a near-
optimal controller. Top Left: Initial State at 0s. Following frames in top row at 0.5s
intervals from left to right, then continued from left to right in the bottom row. Bottom
Right: Frame at 4.5s illustrates the inverted position that must be maintained until the
end of the 10s trajectory.

the swing-up task, which consists in, starting from a pendulum near its equilibrium

position at rest, swinging it to bring it in an inverted position, and then maintaining

it in equilibrium in this inverted position, in the presence of small random external

disturbances. We consider the case where the pendulum is torque controlled at the

rotary joint, and is under actuated6. This task is depicted in Figure 8.2.

The pendulum is described by a two-dimensional continuous state [θ, θ̇], where θ is

the angle in [−π, π] (off the inverted equilibrium position), and θ̇ its angular velocity,

and a one-dimensional continuous control (torque) τ . We simulate an ideal pendulum

(all its mass concentrated at the end of the pendulum) without friction, described by

the following differential equation:

θ̈ =
g

l
sin(θ)− τ

l2m

where θ̈ is the angular acceleration, l and m are the length (in meters) and mass (in kg)

of the pendulum respectively, g is the gravitational force. We consider the case where

m = l = 1, under Earth’s gravity (g = 9.81). To make the pendulum under actuated,

we limit τ ∈ [−4, 4]. We simulate external disturbances through random small additive

torques7 applied to the pendulum. We always start the pendulum in initial state (2.8, 0)

(i.e. top left frame in Figure 8.2).

We would like to synthesize a controller than can update the torque at 10hz and

perform this task during 10s. We define a cost function that penalizes deviations from

the inverted position, angular velocities and torques at each time step (of 0.1s):

C(θ, θ̇, τ) = 10θ2 + θ̇2 + 0.1τ2.
6By under actuated, we mean that we must build velocity by swinging the pendulum back and forth

to bring it from the start position to its inverted position, we cannot simply drive the pendulum directly
to its inverted position by constantly applying maximum torque in one direction.

7White gaussian noise with standard deviation 0.05

198
CHAPTER 8. LEARNING DYNAMIC MODELS FOR GOOD CONTROL

PERFORMANCE

For each method, we attempt to learn a dynamic model that predicts the change in

state of the pendulum, given the current state and torque, using locally weighted linear

regression8 (LWLR) (Atkeson et al., 1997), starting from the 0 model (i.e. that predicts

the state never changes), and solve the optimal control problem through dynamic pro-

gramming with a finely discretized grid over the state space (linearly interpolating the

value function and policy between grid points). We compare DAGGER, to Batch, and

the iterative approach of Abbeel and Ng (2005) and Atkeson and Schaal (1997). For the

exploration distribution ν, we observe the pendulum under the expert controller obtained

by solving the optimal control problem with the known model of the simulator. This

expert controller can swing-up the pendulum to its inverted position quickly and then

maintains it in this position for the remaining time (see Figure 8.2). We also compare

performance to this expert controller as the desired target level of performance.

We perform 10 iterations of training with each approach, where at each iteration, two

additional trajectories are collected. For DAGGER, this corresponds to one trajectory

from the expert controller and one trajectory from the learner’s current controller at

each iteration; for Batch, this corresponds to two additional trajectories from the expert

controller at each iteration; and for Abbeel’s approach, this is two trajectories from the

expert at the first iteration, then two trajectories from the learner’s current controller

at each iteration. This difference in how data is collected is the only difference between

all these methods.

Figure 8.3 compares the performance of these methods at the swing-up task over the

iterations of training as a function of training data collected so far.

We first observe that the batch method does not perform well. Looking at the

execution of its learned controllers, we observe that it never learns to properly swing-up

the pendulum to its inverted position. On the other hand, both DAGGER and Abbeel

eventually obtain a controller that is as good as the expert controller. Abbeel performs

slightly better than DAGGER, by obtaining such a controller after 6 iterations instead

of 7 for DAGGER. We believe that Abbeel performs well in this application as it is

essentially a realizable setting, and the LWLR model can fit perfectly the observed data

(up to noise), so it doesn’t have to tradeoff where it makes error as in agnostic settings.

In essence, in such realizable cases, the balance/weighting between data from exploration

and the learned policies in the dataset is not as important; sufficient coverage of both

is what’s important. In the next experiment, we will see that having a good balance is

important in non-realizable settings and that Abbeel’s method can get stuck in a bad

local minima when insufficient exploration data is present in the dataset.

8We use a gaussian kernel, where distance is computed between normalized features, and the band-
width parameter is optimized at each iteration using cross-validation, where the data collected at different
iteration are treated as different folds.

8.6. EXPERIMENTS 199

0 500 1000 1500 2000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Sampled Transitions

A
ve

ra
g

e
T

o
ta

l C
o

st

DAGGER
Abbeel
Batch
Expert

Figure 8.3: Average total cost on test trajectories at the swing-up task as a function of
data collected so far.

Simulated Helicopter Control

We use the helicopter simulator of Abbeel and Ng (2005), which has a continuous 21-

dimensional state and 4-dimensional control space. We consider learning to 1) hover and

2) perform a “nose-in funnel” maneuver. We compare DAGGER to Batch with several

choices for exploration distribution ν: 1) νt: adding small white Gaussian noise9 to each

state and action along the desired trajectory, 2) νe: run an expert controller, and 3) νen:

run the expert controller with additional white Gaussian noise10 in the controls of the

expert. The expert controller is obtained by linearizing the true model about the desired

trajectory and solving the LQR (iLQR for the nose-in funnel). We also compare against

Abbeel’s algorithm, where the expert is only used at the first iteration.

Hover

All approaches begin with an initial model ∆xt+1 = A∆xt+B∆ut, for ∆xt the difference

between the current and hover state at time t, ∆ut the delta controls at time t, A is

identity and B adds the delta controls to the actual controls in ∆xt. We seek to learn

offset matrices A′, B′ that minimizes squared loss on observed data. We also use a

9Covariance of 0.0025I for states and 0.0001I for actions.
10Covariance of 0.0001I.

200
CHAPTER 8. LEARNING DYNAMIC MODELS FOR GOOD CONTROL

PERFORMANCE

Frobenius norm regularizer on A′ and B′, such that we optimize the model as follows:

min
A′,B′

1

n

n∑
i=1

||∆x′i − [(A+A′)∆xi + (B +B′)∆ui]||2 +
λ√
n

(||A′||2F + ||B′||2F),

where n is the number of samples, (∆xi,∆ui,∆x
′
i) the ith transition in the dataset, and

we used λ = 10−3 (determined by preliminary validation experiments).

In addition, during training we stop a trajectory if it becomes too far from the hover

state (or desired trajectory below for the nose-in funnel), i.e. if ||[∆x; ∆u]||2 > 5, as this

represents an event that would have to be recovered from by a human pilot to prevent a

crash. Collecting data too far off the desired trajectory also hinders performance since

our linear models are only good locally, as discussed below.

During testing, we run the trajectory until completion (400 time steps of 0.05s, 20s

total). We attempt to learn to hover in the presence of noise11 and delay of 0 and 1.

A delay of 1 introduce high-order dynamics that cannot be modeled with the current

state. All methods sample 100 transitions per iteration and run for: 50 iterations when

delay is 0; 100 iterations when delay is 1. Figure 8.4 shows the test performance of each

method after each iteration. In both cases, for any choice of ν, DAGGER outperforms

Batch significantly and converges to a good policy faster. DAGGER is more robust to

the choice of ν, as it always obtains good performance given enough iterations, whereas

Batch obtains good performance with only one choice of ν in each case. Also, DAGGER

eventually learns a policy that outperforms the expert policy (L). As the expert policy

is inevitably visiting states far from the hover state due to the large noise and delay

(unknown to the expert), the linearized model is not as good at those states, leading

to slightly suboptimal performance. Thus DAGGER is learning a better linear model

for the states visited by the learned policy which leads to better performance. Abbeel’s

algorithm improves the initial policy but reaches a plateau. This is due to lack of

exploration (expert demonstrations) after the first iteration. While our objective is

to show that DAGGER outperforms other model-based approaches, we also compared

against a model-free policy gradient method similar to CPI12. However, 100 samples

per iteration were insufficient to get good gradient estimates and lead to only small

improvement. Even with 500 samples per iteration, it could only reach an average total

cost ∼15000 after 100 iterations. Hence, DAGGER is also more efficient in practice than

model-free policy gradient methods such as CPI.

11White Gaussian noise with covariance I on the forces and torques applied to the helicopter at each
step.

12Same as CPI, except gradient descent is done directly on deterministic linear controller. We solve
a linear system to estimate the gradient from sample cost over a trajectory with perturbed controller
parameters. Here, this was much more practical than learning a stochastic controller as in (Kakade and
Langford, 2002).

8.6. EXPERIMENTS 201

Nose-In Funnel

This maneuver consists in rotating at a fixed speed and distance around an axis normal

to the ground with the helicopter’s nose pointing towards the axis of rotation (it is the

desired trajectory depicted in Figure 1.2). We attempt to learn to perform 4 complete

rotations of radius 5 in the presence of noise13 but no delay. We start each approach

with a linearized model about the hover state and learn a time-varying linear model. For

each time step t, we learn offset matrices A′t, B
′
t such that ∆xt+1 = (A+A′t)∆xt + (B+

B′t)∆ut + x∗t+1 − x∗t , for x∗t the desired state at time t and A,B the given hover model.

All methods collect 500 samples per iteration over 100 iterations. Figure 8.4 (bottom)

shows the test performance after each iteration. With the initial model (0 data), the

controller fails to produce the maneuver and performance is quite poor. Again, with any

choice of ν, DAGGER outperforms Batch, and unlike Batch, it performs well with all

choices of ν. A video comparing qualitatively the learned maneuver with DAGGER and

Batch is available on YouTube (Ross, 2012). Abbeel’s method improves performance

slightly but again suffers from lack of expert demonstrations after the first iteration.

In-Depth Comparisons to Previous Iterative Methods

In the previous experiments, we observed that the previous iterative method of Abbeel

and Ng (2005) (and similarly Atkeson and Schaal (1997)) does not perform well and

seems to reach a plateau or get stuck in a local minima. We demonstrate here that

this is clearly due to insufficient exploration data in the collected dataset. By collecting

more exploration data initially, these methods can lead to similar good performance

to DAGGER, albeit, often requiring more iterations than DAGGER overall, to reach

near-optimal performance.

Figure 8.5, shows the performance of Abbeel’s method, as we vary the number

Nexp of initial iterations where data under execution of the expert controller is col-

lected (1, 6, 12, 25, 50). This effectively corresponds to collecting an initial batch of data

from the expert which is larger, before we start collecting data from running the current

learned policies.

There are a number of trends we can observe from these figures. First, increasing

Nexp, seems to lead to more stable and better asymptotic performance, at the price of

requiring more iterations to reach near-optimal performance. On the other hand, when

Nexp is smaller, performance improves more quickly initially, but asymptotic performance

degrades (either getting stuck in local minima, or being less stable). To achieve the best

performance, Nexp needs to be carefully chosen to balance these 2. In all of these figures,

Nexp = 12 seems to give the best tradeoff. DAGGER on the other hand, by collecting

13Zero-mean spherical Gaussian with standard deviation 0.1 on the forces and torques applied to the
helicopter at each step.

202
CHAPTER 8. LEARNING DYNAMIC MODELS FOR GOOD CONTROL

PERFORMANCE

an equal amount of exploration data and data from the current policy at each iteration,

achieves performance similar and often better to this best tradeoff automatically.

These results also give further empirical evidence that supports our theoretical re-

sults. In agnostic system identification settings, one cannot simply learn by only collect-

ing data from execution of the current policy, one needs to collect a significant fraction

of exploration data as well, to ensure we can predict well the system’s behavior under

execution of other policies during planning. Similarly, only collecting exploration data

may not lead to good performance, and collecting a fraction of data from execution of

the current policy can help tremendously.

Practical Considerations when using DAGGER for System

Identification

In the previous helicopter experiments with DAGGER, to ensure learning a good linear

model, we had to discard data points from the current policy’s trajectory that went too

far off the desired trajectory. When performing the experiments without discarding such

data, DAGGER, and the other iterative methods did not perform well. This is because

in this particular experiment, we were fitting a linear model that could only capture the

behavior of the system well in a small region. If we attempt to fit data over a too large

region, data far off the desired trajectory interfere, and does not lead to a good fit in the

region of importance (i.e. near the desired trajectory). This appears in the guarantee

of DAGGER by making εmdl large on the training data if we do not discard these data

points, and hence indicates that DAGGER would not work well in this case.

Because for these tasks, we knew that any good policy must operate near the desired

trajectory, we could safely discard data too far off the desired trajectory, as asymptot-

ically, if we find a good policy, this data would not be useful. In fact, when discarding

such data, a similar guarantee for DAGGER still holds (with an extra penalty term that

scales with the fraction of points discarded). As long as in the limit of iterations, the

fraction of discarded data goes to 0 (i.e. we find a policy that can stay within the region

where we keep all data), good performance would be guaranteed if we can find a good

model on the (non-discarded) training data.

There are a number of other potential solutions to deal with this issue:

• This issue may in part be caused by the sensitivity of least squares regression to

outliers. Using more robust versions of linear regression may help to deal with this

issue, if the fraction of points far off the region of importance remains small.

• To limit the number of points generated too far off the desired trajectory, it may

also be desired to use more robust control methods (that are robust to imper-

fect models) when optimizing the controller with the learned model. For instance,

8.6. EXPERIMENTS 203

efficient robust H∞ control methods where an adversary can introduce small dis-

turbance at each step (Basar and Bernhard, 1995) could be used.

• In general, using non-parametric model fitting methods, such as kernel regression or

locally weighted linear regression, resolves this issue. However using these methods

may require collecting much more data (as they are high complexity models),

and/or lead to a more difficult OC problem to solve.

204
CHAPTER 8. LEARNING DYNAMIC MODELS FOR GOOD CONTROL

PERFORMANCE

0 1000 2000 3000 4000 5000
10

1

10
2

10
3

10
4

10
5

10
6

Number of Sampled Transitions

A
ve

ra
ge

 T
ot

al
 C

os
t

D
t

D
e

D
en

B
t

B
e

B
en A L

0 2000 4000 6000 8000 10000
10

1

10
2

10
3

10
4

10
5

10
6

Number of Sampled Transitions

A
ve

ra
ge

 T
ot

al
 C

os
t

D
t

D
e

D
en

B
t

B
e

B
en A L

0 1 2 3 4 5

x 10
4

10
1

10
2

10
3

10
4

10
5

10
6

Number of Sampled Transitions

A
ve

ra
ge

 T
ot

al
 C

os
t

D
t

D
e

D
en

B
t

B
e

B
en A L

Figure 8.4: Average total cost on test trajectories as a function of data collected so far,
averaged over 20 repetitions of the experiments, each starting with a different random
seed (all approaches use the same 20 seeds) From top to bottom: hover with no delay,
hover with delay of 1, nose-in funnel. Dt, De and Den denotes DAGGER using explo-
ration distribution νt, νe and νen respectively, similarly Bt, Be and Ben for the Batch
algorithm, A for Abbeel’s algorithm, and L for the linearized model’s optimal controller.

8.6. EXPERIMENTS 205

0 1000 2000 3000 4000 5000
10

1

10
2

10
3

10
4

10
5

10
6

Number of Sampled Transitions

A
ve

ra
ge

 T
ot

al
 C

os
t

DAg Ab1 Ab6 Ab12 Ab25 Bat Exp

0 2000 4000 6000 8000 10000
10

1

10
2

10
3

10
4

10
5

Number of Sampled Transitions

A
ve

ra
ge

 T
ot

al
 C

os
t

A1 A6 A12 A25 A50 B D E

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

10
1

10
2

10
3

10
4

10
5

Number of Sampled Transitions

A
ve

ra
g

e
T

o
ta

l C
o

st

Ab1 Ab6 Ab12 Ab25 Ab50 DAg Exp

Figure 8.5: Average total cost on test trajectories as a function of data collected so far,
averaged over 20 repetitions of the experiments, each starting with a different random
seed (all approaches use the same 20 seeds) From top to bottom: hover with no delay,
hover with delay of 1, nose-in funnel. AbN denotes Abbeel’s algorithm where the first
N iterations collect data with the expert (exploration distribution νe); Dag and B de-
notes DAGGER and Batch using exploration distribution νe respectively, and L for the
linearized model’s optimal controller.

Chapter 9

Stability as a Sufficient Condition

for Data Aggregation

The guarantees of our DAGGER approach throughout rely on the strong no-regret prop-

erty of an underlying online learner, used to pick the sequence of predictors/models over

the iterations of training. In general, no-regret online learning is not always possible

(at least computationally efficiently) depending on the class of hypothesis and loss con-

sidered (e.g. there is no known efficient online learner for rich model class like decision

trees (Breiman et al., 1984), random forests (Breiman, 2001) or neural networks (Hastie

et al., 2001)). This may in principle, limit the applicability of our approach with certain

classes of hypothesis.

To address this potential limitation, we have recently introduced sufficient conditions

for online algorithms to be no-regret that do not rely on properties of the loss or hy-

pothesis class, but instead, rely on properties of the algorithm choosing the sequence of

hypotheses (Ross and Bagnell, 2012b). In particular, we have showed that if the algo-

rithm is: (1) “stable”, under a appropriate notion of stability, and (2) asymptotically

chooses hypotheses that minimize the loss in hindsight, then it must be no-regret.

These results have major implications for DAGGER. The aggregation approach (i.e.

Follow-the-(Regularized)-Leader), where at each iteration a batch supervised learning

problem is solved to return the best predictor on the aggregate dataset, must have

good guarantees whenever the supervised learner has sufficient stability properties on

the observed sequence of data. Thus in principle, DAGGER can still provide good

guarantees with rich hypothesis classes such as decision trees or neural networks, by

simply solving supervised learning problems at each iteration on the aggregate dataset,

if the returned hypothesis over the iterations are sufficiently stable for the observed

sequence of data.

A high-level interpretation of this result is the following: if you aggregate data and

you are following the (regularized) leader; most decent supervised learners will be rea-

208
CHAPTER 9. STABILITY AS A SUFFICIENT CONDITION FOR DATA

AGGREGATION

sonably stable (especially in common problems where the observed sequence of data is

not as if it was coming from a worst case adversary); therefore we’d expect them to be-

have like no-regret algorithms, and provide good guarantees. This approach motivates

the particular variant of DAGGER we typically use in practice that involves aggregation

of data together with batch learning.

We briefly summarize these results in this chapter, and refer the reader to (Ross and

Bagnell, 2012b) for a more in depth discussion and analysis.

9.1 Online Stability

We now introduce the notion of stability required to provide good guarantees for the

aggregation approach.

The stability condition is related to stability notions that were recently introduced

to study learnability in the batch setting (Shalev-Shwartz et al., 2010). These stability

notions measure how the output of the learning algorithm changes upon removal, or

replacement, of a single training instance in the training set. At a high-level, these

conditions specify that an algorithm is stable if the change in loss on the held out instance

is guaranteed to become arbitrarily small as the training set becomes arbitrarily large.

Some stability notions are stronger that others, e.g. depending on whether this holds for

all possible training set, or only in expectation under sampled sets.

For online learning, we introduced the notion of online stability (Ross and Bagnell,

2012b). It specifies that an algorithm is online stable if for any sequence of training

instances picked by an adversary, the loss `(hn, zn) of the current hypothesis hn on the

current instance zn, compared to the loss of the next hypothesis hn+1 on zn, becomes

arbitrarily small as the number of iterations n become arbitrarily large:

Definition 9.1.1. Given a sequence of training instances z1, z2, . . . , let Sn denote the

subset of the first n instances and hn = A(Sn−1) the hypothesis returned by learning

algorithm A after observing the first n− 1 instances. A learning algorithm A is online

stable with respect to loss ` if there exists a sequence {εon-stable(n)}∞n=1 that is o(1), such

that for any sequence of training instances, |`(A(Sn−1), zn)−`(A(Sn), zn)| ≤ εon-stable(n)

for all n.

Intuitively, this notion of stability captures how sensitive the hypothesis returned

by the learning algorithm is to the addition of a single training example. As the size

of the dataset increases, an online-stable algorithm becomes less and less sensitive to

the addition of a single example. Intuitively, we can expect this to hold for most com-

mon practical scenario with common supervised learning algorithms, especially if some

regularization is used.

9.2. ONLINE STABILITY IS SUFFICIENT FOR BATCH LEARNERS 209

9.2 Online Stability is Sufficient for Batch Learners

Now we will consider the particular class of learning algorithms, that return the best

hypothesis on the data so far (potentially subject to a regularization term), and show

that for such algorithms, online stability implies no-regret.

We formalize this class of algorithms using the following notion of a Regularized

Empirical Risk Minimizer (RERM):

Definition 9.2.1. A learning algorithm A is a Regularized Empirical Risk Mini-

mizer (RERM) if for all m and any dataset Sm = {z1, z2, . . . , zm} of m instances:

m∑
i=0

ri(A(Sm)) +
m∑
i=1

`(A(Sm), zi) = min
h∈H

[
m∑
i=0

ri(h) +
m∑
i=1

`(h, zi)] (9.1)

where {ri}mi=0 is a sequence of regularizer functionals (ri : H → R), which measure the

complexity of a hypothesis h, and that satisfy suph,h′∈H |ri(h)−ri(h′)| ≤ ρi for all i where

{ρi}∞i=0 is a sequence that is o(1).

Note that this definition considers general learning algorithms that may adapt the

regularizer as it observes data. For common approaches that keep a fixed regularizer,

but adapts only the regularization constant, then this implies ri(h) = λir(h), for some

sequence of regularization constants {λi} and regularizer r. The regularizer r may be the

squared norm of the parameters of the hypothesis h, as is commonly used. The terms

{ρi} represent a bound on the contribution of the regularization term to the loss. If the

regularizer is a squared norm, then this will imply that we assume the hypothesis class in

bounded within some set (e.g. we only consider hypothesis with squared norm ≤ C for

some C). This is a common assumption for online learning algorithms. Additionally, in

many cases, such bounds can be determined on the norm of the optimal solution based

on the loss `, such that the hypothesis space can be reduced to only consider hypothesis

within a certain norm. The assumption that {ρi}∞i=0 is a sequence that is o(1) indicates

that in the limit, the contribution of regularization vanishes, and the algorithm returns

the best hypothesis with respect to the loss `. Note also that this definition includes

algorithms that do not use regularization, by considering ri to be 0 functions (in this

case the ρi are 0).

In Ross and Bagnell (2012b), we have showed that any RERM algorithm which is

online stable, is no-regret. This result is formalized below:

Theorem 9.2.1. After m instances, an online stable RERM A has average online regret:

εregret(m) ≤ 1

m

m∑
i=1

εon-stable(i) +
2

m

m−1∑
i=0

ρi +
ρm
m

(9.2)

210
CHAPTER 9. STABILITY AS A SUFFICIENT CONDITION FOR DATA

AGGREGATION

Thus, as εon-stable(m) → 0 and ρm → 0 as m → ∞, an online stable RERM A is

no-regret:

lim
m→∞

εregret(m) ≤ 0 (9.3)

This result applies to any sequence of instances we might observe, including adver-

sarial sequences. A similar sequence specific statement can be made, that would indicate

that for any particular sequence of instances where the algorithm is online-stable, then

it would be no-regret on that sequence.

In Ross and Bagnell (2012b), we also showed how most common online learning

algorithms can be analyzed in terms of these online stability and RERM properties

(including gradient descent and randomized algorithms). In essence, most online learners

can be modeled as trying to track the best hypothesis in hindsight, while being stable.

9.3 Discussion

In the context of DAGGER in sequential prediction problems, as we may often expect

that the sequence of training data does not behave as if it was coming from a worst

case adversary, we can expect that common supervised learners, applied to the aggre-

gate dataset (and with appropriate regularization), often lead to a sufficiently stable

sequence of hypothesis. This implies that in common practical scenarios, we can ex-

pect the aggregation approach to often behave like a no-regret algorithm and provide

good guarantees (even if we can’t guarantee the learner is no-regret for all worst case

adversarial sequences).

This notion of stability generalizes, in some sense, previous learning approaches for

Reinforcement Learning and Structured Prediction that operated by iteratively making

small changes over several iterations of training (Kakade and Langford, 2002, Bagnell

et al., 2003, Daumé III et al., 2009). Hence our results can be understood as generalizing

this strategy, and showing that many update schemes can be used, such as any no-regret

online algorithm, or stable batch learning algorithms. This allows a greater flexibility

for choosing procedures that are more practical or appropriate for the given application

and class of predictors.

Chapter 10

The Complexity of Learning

Sequential Predictions

Throughout this thesis, we have seen how algorithms training over multiple iterations

can achieve good guarantees in various sequential prediction problems. At the same

time, we have shown that supervised learning methods that attempt to learn only from

examples of good behavior, without interaction with the learner, cannot provide good

guarantees, as the learned behavior is not robust to its own errors in predictions.

These observations indicate that multiple rounds of interactions with the learner may

be necessary in general, for any learning algorithm to provide good guarantees. In the

following sections, we investigate how many rounds any learning algorithm must interact

with the learner to achieve good performance.

For simplicity, we will focus on canonical sequential prediction problems from the

imitation learning setting. Among the various approaches we have presented, we have

seen that for problems with a task horizon of T predictions, T rounds of interaction is

sufficient, e.g. using the Forward training algorithm. The question we are interested in

answering is whether it may be possible that other learning algorithms can learn good

behaviors in fewer iterations, e.g. in a constant number of iterations, or with a smaller

dependency on T .

The number of rounds of interactions required by the learning algorithm captures

a notion of complexity for learning in these sequential prediction tasks. We will refer

to this notion of complexity as the interaction complexity. We formalize this notion in

the next section, and then provide lower bounds on the interaction complexity of any

learning algorithm to provide good guarantees.

212
CHAPTER 10. THE COMPLEXITY OF LEARNING SEQUENTIAL

PREDICTIONS

10.1 Interaction Complexity

Intuitively, by interaction complexity, we want to measure the number of predictors we

will need to train, in order to obtain one or construct one that has good performance. To

formalize this notion, we consider learning algorithms which have access to a “learning

oracle”, that for any input distribution of examples, returns a predictor with error rate

ε > 0, or regret ε > 0, for this input distribution:

Definition 10.1.1. An ε-error learning oracle O : ∆→ H is a learning procedure, such

that for any distribution of examples D ∈ ∆, returns a predictor h ∈ H with error rate

lower or equal to ε under D: i.e. E(x,y)∼D,ŷ∼h(x)[I(ŷ 6= y)] ≤ ε.

Definition 10.1.2. An ε-regret learning oracle O : ∆→ H is a learning procedure, such

that for any distribution of examples D ∈ ∆, returns a predictor h ∈ H with regret lower

or equal to ε under D: i.e. E(x,y)∼D,ŷ∼h(x)[I(ŷ 6= y)] − minh′∈H E(x,y)∼D,ŷ∼h′(x)[I(ŷ 6=
y)] ≤ ε.

For example, the learning oracle may be a typical supervised learning algorithm.

When considering an ε-error oracle, the error rate ε may be attributed to the fact that

the oracle is sampling from the input distribution D to learn, or that even if it collects an

arbitrarily large number of samples from D, the target predictions cannot be represented

perfectly within the class of hypothesis considered H, or simply because the optimization

procedure is approximated or stopped once it is within ε of optimal. Similarly, when

considering an ε-regret oracle, the regret ε may be attributed to the fact that the oracle

may be optimizing on a finite sample from D, or stopping optimization when it is within

ε of optimal.

With these notions of a learning oracle, we simply define the interaction complexity

as follows:

Definition 10.1.3. Given access to an ε-error (or ε-regret) learning oracle O, the in-

teraction complexity of a learning algorithm is the number of queries it performs to O to

construct/obtain the final learned policy for test execution.

For example, the Forward algorithm has interaction complexity of T , as it queries

a learning oracle T times, once for each time step. Given access to an ε-regret oracle,

Forward constructs a policy that has an expected total regret of Tε over T steps on

its test trajectories. On the other hand, the typical supervised learning approach has

interaction complexity of 1, but has O(T) expected total regret in general on the test

10.1. INTERACTION COMPLEXITY 213

trajectories when given access to an ε-regret oracle. Similarly, when given access to an

ε-error learning oracle, Forward guarantees a policy with Tε expected mistakes over T

steps, while the supervised learning approach only guarantees a predictor that has an

expected number of mistakes of O(T 2ε) over T steps.

In our analysis of interaction complexity, we will not limit the learning algorithm to

use precisely one of the predictor returned by the learning oracle. Instead, we consider

general learning algorithms that can potentially combine the predictors returned by the

learning oracle in some way to obtain the final predictor used for test execution. The

Forward training algorithm is an example of this, where the predictors returned by the

learning oracle are combined together, a different one used at each time step, to define

the final policy. In general, we will allow the learning algorithm to potentially use a

different distribution over policies returned by the learning oracle in every state and/or

time step.

Given these definitions, we are interested in analyzing the minimum interaction com-

plexity of any learning algorithm that can guarantee to construct a policy with expected

number of mistakes O(Tε), or expected total regret of O(Tε), over T steps.

Relation to Sample Complexity

For most learning algorithm, it is typical to analyze its sample complexity, i.e. the

number of samples required to achieve error (or regret) below some level of tolerance.

While sample complexity is also an interesting notion to analyze for sequential prediction

tasks, that indicates the total number of samples required to obtain a good policy, it

does not capture that we may need to adapt the distribution of samples, and that

simply sampling more from the same distribution may not help improve performance.

This is precisely what the notion of interaction complexity seeks to measure. Hence, the

interaction complexity complements the notion of sample complexity. In the context of

interaction complexity, the sample complexity is abstracted into the learning oracle, as

we potentially allow the learning oracle to collect an infinite number of samples from

the input distribution D. However, even with infinite samples (per query to the learning

oracle), the interaction complexity may indicate that we still need to adapt the sampling

distribution several times before we can obtain a good policy. The interaction complexity

may also be useful to determine the sample complexity of an algorithm. For instance if

we know that each query to the learning oracle will require a certain number of samples

to guarantee a predictor with error (or regret) ε, then multiplying this number by the

interaction complexity will provide a bound on the overall sample complexity of the

learning algorithm.

214
CHAPTER 10. THE COMPLEXITY OF LEARNING SEQUENTIAL

PREDICTIONS

{a1}

{}

{a2} {aA}

{a1,a1} {a1,a2} {a1,aA}

…

…

…

…
 …

…

…

a1
a2

aA

a1
a2

aA a1 aA a1 aA

a1 aA a1 aA
a1 aA

Figure 10.1: Depiction of the Tree MDP. State represents the entire action sequence so
far, transitions are deterministic as represented by the arrows, and simply appends the
action to the current state. The initial state is the root. The tree has branching factor
A and extends to infinite depth.

10.2 Preliminaries: The Hard MDP

For our analysis in the next sections, we will always consider a particularly hard MDP,

where the action that needs to be predicted next, may depend on the entire previous

sequence of actions. That is, we will always consider an arbitrarily large MDP where

the state is simply the sequence of actions so far, starting from the empty sequence for

the initial state, and transitions are deterministic: doing an action simply appends the

action to the current sequence to move to the next state. For T steps, this MDP has a

tree structure of depth T , with branching factor A, for A the number of actions. In this

tree, the learner always starts at the root, and then each action moves the learner to

one of the child of the current node, until it reaches a leaf after T − 1 actions, where it

chooses its last action. This MDP has an exponential number of states in T : i.e. AT−1
A−1

states. We can simply think of this tree extending to infinity, as we consider increasing

the number of time steps T to infinity. This tree MDP is depicted in Figure 10.1.

To make most of our arguments simpler, we will also consider the number of actions

to be large, i.e. of order O(1/ε), for ε > 0 the error rate (or regret) of the learning oracle.

In particular, we will assume there are at least 1/αε actions for some arbitrary constant

α ∈ (0, 1] that we can choose. We will use this fact to easily show that we can always

10.3. INEVITABILITY OF POOR GUARANTEES FOR NON-ITERATIVE
METHODS 215

find some action that was rarely explored in any state, that must lead to some subtree

of the MDP that was rarely explored. However, most of our arguments could also be

carried if the number of actions is smaller, by considering small sequences of actions, in

that from any state, one can always find sequences of O(log(1/ε)) actions that would

lead to a subtree that has rarely been explored.

In this exponentially large MDP, we will also consider policies that are represented

by a separate distribution over actions in every state, i.e. a policy represented by SA

parameters (probabilities), for S the number of states. While the complexity of this

policy class is exponential in T (as S is exponential in T), as we allow for potentially

infinite samples for each query to the oracle, we can always assume that the oracle can

still learn a good policy in this class.

Our interaction complexity results will make use of these exponentially large MDP

and policy class to prove that we must need a certain number of iterations. It remains an

open question whether similar results could be instead directly related to the complexity

of the MDP and/or policy class. Despite this, our results demonstrate that without

further assumptions on the size of the MDP or complexity of the policy class, one will

need several iterations to guarantee good performance.

10.3 Inevitability of Poor Guarantees for Non-Iterative

Methods

We begin our analysis by first showing that there cannot exist any learning algorithm that

can provide good guarantees in general with only a single query to the learning oracle.

In particular, we show that, given access to an ε-error learning oracle, any algorithm

with interaction complexity of 1, obtains a policy with expected number of mistakes of

Ω(min(T 2ε, T)) over sequences of T steps, for some arbitrarily large MDP and policy

class. Additionally, we also show that given access to an ε-regret learning oracle, any

algorithm with interaction complexity of 1, obtains a policy with expected total regret

of Ω(T), over sequences of T steps, for some arbitrarily large MDP and policy class.

These results generalize our analysis of the supervised learning method that trains

only from expert demonstrations, and shows that even if some form of exploration would

be used, to query the expert in states that are rarely or never visited under the expert

behavior, this does not improve performance in the worst case.

Theorem 10.3.1. Given access to an ε-error learning oracle, there exist MDPs and

policy classes where any learning algorithm with interaction complexity of 1 obtains a

policy with expected number of mistakes Ω(min(T 2ε, T)) over sequences of T steps.

Proof. This follows from a fairly straightforward observation due to the large number of

216
CHAPTER 10. THE COMPLEXITY OF LEARNING SEQUENTIAL

PREDICTIONS

actions and states in this hard MDP. First consider states along the expert’s trajectory

in this tree MDP. There are dT/2e states in the first dT/2e time steps, and under any

training distribution, there would exist at least one state among these with probability

≤ 2/T . Pick any such state and denote it s′. Now in s′, suppose the learned predictor

makes a mistake with probability min((1−α)Tε/2, 1), and all other states s at previous

steps along the expert trajectory have error 0. Additionally, since there are at least 1
αε

actions that one can take from state s′, under any training distribution over states, there

would always exists at least one action whose probability mass over its entire subtree

is lower or equal to αε. Pick such action and denote it a′. Therefore, one can assign

error 1 in every state in the subtree of action a′, and we can make the learned predictor

always pick a′ when it makes a mistake in s′. This leads to a learned predictor that has

error ≤ 2/T min((1 − α)Tε/2, 1) + αε ≤ ε under the training distribution, which could

therefore be returned by the learning oracle. Yet, when executing this predictor, we

would always reach state s′, and then if it makes a mistake, i.e. pick a′, it would incur

at least T/2 mistakes over the entire sequence. This implies that the expected number

of mistakes of this predictor is at least min((1− α)T 2ε/4, T/2).

Theorem 10.3.2. Given access to an ε-regret learning oracle, there exist MDPs and

policy classes where any learning algorithm with interaction complexity of 1 obtains a

policy π̂ with expected total regret R(π̂) of Ω(T) under its own sequences of T steps.

Proof. Follows from a similar argument as in the previous theorem. Again consider states

along the expert’s trajectory in this tree MDP, and denote s0 the initial state. Consider

a policy class where in all states, except s0, there exist predictors with 0 error, but in

s0, all predictors in the class make an error with probability at least 1
2 . Additionally,

since there are at least 1
αε actions that one can take from state s0, under any training

distribution over states, there would always exists at least one action whose probability

mass over its entire subtree is lower or equal to αε. Pick such action and denote it a′. So

now consider the learned predictor to be a predictor that never makes an error, except

in state s0 and in the subtree of a′, where in s0 it errors with probability 1
2 and picks a′,

and in the subtree of a′ it errors with probability 1 in all states in that subtree. Now

since we assumed there exists a predictor in the class that achieves 0 error everywhere,

except in s0 where it errors with probability 1
2 , then the regret of the learned predictor

under the training distribution is at most αε, and could thus be returned by the learning

oracle. On the other hand, during test execution, the learned predictor always starts in

s0, at which point with probability 1
2 , it picks action a′, and performs T mistakes over

the sequence. On the other hand, on this same sequence, there exist predictors that

error with probability 1
2 in s0, but then never errors until the end of the sequence. When

10.4. LINEAR DEPENDENCY OF THE INTERACTION COMPLEXITY ON THE
TASK HORIZON 217

the learned predictor doesn’t error in s0, then it never errors, and the same occurs for

the best predictor in the class. Thus the total expected regret of the learned predictor

is 1
2(T − 1).

10.4 Linear Dependency of the Interaction Complexity

on the Task Horizon

We now show that in general, the number of queries to the learning oracle must scale

linearly with the number of time steps T in order to obtain a policy with good guarantees.

In particular, given access to an ε-error learning oracle, our analysis will show that at

least Ω(Tε) queries are required, to obtain a policy with O(Tε) expected mistakes over T

steps. Additionally, we will show that, given access to an ε-regret learning oracle, Ω(T)

queries are required in general to obtain a policy with order O(Tε) expected total regret

over T steps.

Lemma 10.4.1. Given access to an ε-error learning oracle, there exist MDPs and policy

classes where any learning algorithm with interaction complexity of k obtains a policy

whose expected number of mistakes is at least:

k−1∑
i=1

i

(
T

i

)
εi(1− ε)T−i +

T∑
t=k

(
t− 1

k − 1

)
εk(1− ε)t−k(T − t+ k)

Proof. Consider the hard tree MDP presented previously. On the first query to the

learning oracle, we can make the learning oracle return the following predictor: for the

T states s1, s2, . . . , sT , along the expert trajectory, the learned predictor makes a mistake

with probability (1−α)ε in each si. Because in each of these states there are at least 1
αε

actions that can be taken, all leading to different regions of the state space, there must

exist a set of actions a1, a2, . . . , aT , where ai denotes an action taken in si, where the

sum of the probability mass over all the states in the subtrees of a1, a2, . . . , aT is at most

αε. Thus for all these subtrees, we can assign a probability 1 of mistake in every state.

Additionally, when the predictor makes a mistake in state si, we can make it always

choose action ai. We obtain that under any training distribution, for the first query to

the learning oracle, we can return such predictor that has error ≤ (1 − α)ε + αε ≤ ε

under the training distribution. Now for all remaining iterations, we can always return a

predictor that is exactly the same in states s1, s2, . . . , sT , but potentially changes in the

subtrees of a1, a2, . . . , aT . At the second iteration we can apply the same reasoning over

each of the subtrees of a1, a2, . . . , aT , and construct a predictor that has the same error

structure as the first learned predictor, but within each of the subtree. That is for the

second iteration, consider the error of the learned predictor to be (1−α)ε in every state

218
CHAPTER 10. THE COMPLEXITY OF LEARNING SEQUENTIAL

PREDICTIONS

along the expert trajectory after each of the erroneous actions a1, a2, . . . , aT . Since we

keep the learned predictor to be the same along the expert trajectory, then this second

learned predictor has error (1− α)ε in every states where the predictor has made 0 or 1

mistake so far. But again we can find a set of actions that represent the mistakes this

second predictor can makes in states reached after 1 mistake has been done, whose sum

of probability mass in all their subtrees would be at most αε, such that we can still assign

error 1 in every state in those subtrees. Note that because these subtrees are themselves

subtrees of a1, a2, . . . , aT , all these states must also had error 1 in the first iteration. This

implies that for any combination of the first 2 predictors, we can only obtain a predictor

which has probability of mistakes (1 − α)ε, as long as it has made 0 or 1 mistake so

far, but then after 2 mistakes, must make a mistake with probability 1 in every future

state. It is also clear that this second learned predictor satisfies the constraint that it

has error ≤ ε under any training distribution (there is probability mass ≤ 1 on states

with error ε(1−α) and probability mass ≤ αε on states with error 1). The end result is

that after 2 iterations, we can always obtain a predictor that errors with probability 1,

after 2 mistakes has been done, or errors with probability (1− α)ε otherwise. The same

reasoning can be applied recursively, to see that after k iterations, we can always obtain

a predictor that errors with probability 1 after k mistakes, or errors with probability

(1 − α)ε otherwise. Let ε′ = (1 − α)ε. Then if we have such a predictor, it can be seen

that its expected number of mistakes over T steps is:

k−1∑
i=1

i

(
T

i

)
ε′i(1− ε′)T−i +

T∑
t=k

(
t− 1

k − 1

)
ε′k(1− ε′)t−k(T − t+ k)

The first summation can be seen as summing over all the paths with i mistakes, for

i ≤ k− 1, while the second summation sums over all the paths with k or more mistakes,

conditioning on the time t where the kth mistake occur (there are
(
t−1
k−1

)
paths whose kth

mistake occur on the tth step). The lemma follows from the fact that we can always pick

a large enough number of actions so that ε′ = (1−α)ε is arbitrarily close to ε (although

it should be noted that this is not necessary, even α = 1/2, is sufficient to prove our

main result in the next theorem).

Theorem 10.4.1. Given access to an ε-error learning oracle, there exist MDPs and

policy classes where any learning algorithm must have interaction complexity of Ω(Tε)

to obtain a policy with an expected number of mistakes of O(Tε) over sequences of T

steps.

Proof. Consider the lower bound on the number of mistakes after k iterations obtained

in the previous lemma:

k−1∑
i=1

i

(
T

i

)
εi(1− ε)T−i +

T∑
t=k

(
t− 1

k − 1

)
εk(1− ε)t−k(T − t+ k)

10.4. LINEAR DEPENDENCY OF THE INTERACTION COMPLEXITY ON THE
TASK HORIZON 219

The first summation is ≤ Tε and tends to this quantity as k → T (it tends to the

expectation of a Binomial(T, ε)). Hence this lower bound on the number of mistakes is

O(Tε) if the second summation is O(Tε).

The second summation resembles the expectation of a quantity under a negative

binomial distribution. That is, let r = t− k, the number of times we picked the expert’s

action before making k mistakes, F (·; 1 − ε, k) the cumulative density function of a

negative binomial, with probability of success 1 − ε, and stopping after k failures, and

E[r] the expectation of this negative binomial distribution, then:

∑T
t=k

(
t−1
k−1

)
εk(1− ε)t−k(T − t+ k)

=
∑T−k

r=0

(
k+r−1
r

)
εk(1− ε)r(T − r)

= T
∑T−k

r=0

(
k+r−1
r

)
εk(1− ε)r −

∑T−k
r=0

(
k+r−1
r

)
εk(1− ε)rr

= TF (T − k; 1− ε, k)−
∑T−k

r=0

(
k+r−1
r

)
εk(1− ε)rr

≥ TF (T − k; 1− ε, k)−
∑∞

r=0

(
k+r−1
r

)
εk(1− ε)rr

= TF (T − k; 1− ε, k)− E[r]

Since E[r] = (1− ε)k/ε, we obtain

T∑
t=k

(
t− 1

k − 1

)
εk(1− ε)t−k(T − t+ k) ≥ TF (T − k; 1− ε, k)− (1− ε)k/ε

Now 1−F (T−k, 1−ε, k) is the probability that it takes more than T−k trials to get k

failures, when the probability of success is (1− ε). In other words, this is the probability

that out of T − k trials, we get less than k failures, i.e. P (X < k) if X ∼ Bin(T − k, ε)
is a binomial distributed random variable with probability of success ε. We will seek to

upper bound P (X < k) (i.e. 1− F (T − k, 1− ε, k)) in order to obtain a lower bound on

F (T − k, 1− ε, k). We know X is concentrated around its mean E[X] = (T − k)ε, so we

will consider k smaller than the mean, i.e. k < (T − k)ε, which implies k < Tε/(1 + ε),

to show that when it is small enough, F (T − k, 1− ε, k) becomes close to 1, making the

expected number of mistakes of the predictor Ω(T).

Using Chernoff’s bound, we know that P (X < (1 − δ)µ) ≤ exp(−δ2µ/2), for µ the

mean of X (i.e. µ = (T −k)ε here). Suppose k = βTε for some β ∈ [0, 1/(1+ε)], then we

have (T −k)ε = T (1−βε)ε and k = (1−δ)µ for δ = 1−β/(1−βε). Hence we obtain that

P (X < k) ≤ exp(−(1− βε− β)2Tε/(2(1− βε))). This implies that 1−F (T − k, 1− ε, k)

is exponentially small in T , and thus that F (T − k, 1 − ε, k) is arbitrarily close to 1 as

T → ∞, when k ≤ βTε. In particular this is the case when k = Tε/2. Yet we can see

that at k = Tε/2, TF (T − k; 1− ε, k)− (1− ε)k/ε would tend to T/2 + Tε/2 as T →∞,

i.e the expected number of mistakes of the predictor is Ω(T) after only Tε/2 iterations.

On the other hand, with the lower bound TF (T −k; 1−ε, k)−(1−ε)k/ε, we observe that

at k = Tε, this lower bound would be O(Tε). Thus it is possible that Tε iterations is

220
CHAPTER 10. THE COMPLEXITY OF LEARNING SEQUENTIAL

PREDICTIONS

sufficient. We conclude that we need k at least in Ω(Tε), to make the expected number

of mistakes order O(Tε).

Lemma 10.4.2. Given access to an ε-regret learning oracle, there exist MDPs and policy

classes where any learning algorithm with interaction complexity of k obtains a policy

whose expected total regret is at least:

max
ε′∈[0,1]

k−1∑
i=1

i

(
T

i

)
ε′i(1− ε′)T−i +

T∑
t=k

(
t− 1

k − 1

)
ε′k(1− ε′)t−k(T − t+ k)− Tε′

Proof. We use a similar argument to lemma 10.4.1. Consider the hard tree MDP pre-

sented previously. Additionally, consider a policy class where in all states that minimum

possible error is ε′ > 0, and there exist a predictor achieving ε′ error in all states. On

the first query to the learning oracle, we can make the learning oracle return the fol-

lowing predictor: for the T states s1, s2, . . . , sT , along the expert trajectory, the learned

predictor makes a mistake with probability ε′ in each si. Because in each of these states

there are at least 1
αε actions that can be taken, all leading to different regions of the

state space, there must exist a set of actions a1, a2, . . . , aT , where ai denotes an action

taken in si, where the sum of the probability mass over all the states in the subtrees of

a1, a2, . . . , aT is at most αε. Thus for all these subtrees, we can assign a probability 1

of mistake in every state. Additionally, when the predictor makes a mistake in state si,

we can make it always choose action ai. We obtain that under any training distribution,

for the first query to the learning oracle, we can return such predictor that has regret

≤ αε ≤ ε under the training distribution. Now for all remaining iterations, we can al-

ways return a predictor that is exactly the same in states s1, s2, . . . , sT , but potentially

changes in the subtrees of a1, a2, . . . , aT . At the second iteration we can apply the same

reasoning over each of the subtrees of a1, a2, . . . , aT , and construct a predictor that has

the same error structure as the first learned predictor, but within each of the subtree.

That is for the second iteration, consider the error of the learned predictor to be ε′ in

every state along the expert trajectory after each of the erroneous actions a1, a2, . . . , aT .

Since we keep the learned predictor to be the same along the expert trajectory, then this

second learned predictor has error ε′ in every states where the predictor has made 0 or

1 mistake so far. But again we can find a set of actions that represent the mistakes this

second predictor can makes in states reached after 1 mistake has been done, whose sum

of probability mass in all their subtrees would be at most αε, such that we can still assign

error 1 in every state in those subtrees. Note that because these subtrees are themselves

subtrees of a1, a2, . . . , aT , all these states must also had error 1 in the first iteration.

This implies that for any combination of the first 2 predictors, we can only obtain a

predictor which has probability of mistakes ε′, as long as it has made 0 or 1 mistake so

10.4. LINEAR DEPENDENCY OF THE INTERACTION COMPLEXITY ON THE
TASK HORIZON 221

far, but then after 2 mistakes, must make a mistake with probability 1 in every future

state. It is also clear that this second learned predictor satisfies the constraint that it

has regret ≤ ε under any training distribution (there is probability mass ≤ 1 on states

with regret 0 and probability mass ≤ αε on states with regret (1− ε′)). The end result

is that after 2 iterations, we can always obtain a predictor that errors with probability

1, after 2 mistakes has been done, or errors with probability ε′ otherwise. The same

reasoning can be applied recursively, to see that after k iterations, we can always obtain

a predictor that errors with probability 1 after k mistakes, or errors with probability ε′

otherwise. Then if we have such a predictor, it can be seen that its expected number of

mistakes over T steps is:

k−1∑
i=1

i

(
T

i

)
ε′i(1− ε′)T−i +

T∑
t=k

(
t− 1

k − 1

)
ε′k(1− ε′)t−k(T − t+ k)

The first summation can be seen as summing over all the paths with i mistakes, for

i ≤ k− 1, while the second summation sums over all the paths with k or more mistakes,

conditioning on the time t where the kth mistake occur (there are
(
t−1
k−1

)
paths whose kth

mistake occur on the tth step). Now under the test sequences of this learned predictor,

there exists a predictor in the class with only Tε′ expected mistakes, thus the regret of

the learned predictor is at least:

k−1∑
i=1

i

(
T

i

)
ε′i(1− ε′)T−i +

T∑
t=k

(
t− 1

k − 1

)
ε′k(1− ε′)t−k(T − t+ k)− Tε′

The lemma follows from the fact that we can pick any ε′ ∈ [0, 1] to make this quantity

as large as possible.

Theorem 10.4.2. Given access to an ε-regret learning oracle, there exist MDPs and

policy classes where any learning algorithm must have interaction complexity of Ω(T) to

obtain a policy with an expected total regret of O(Tε) over sequences of T steps.

Proof. Using the result in the previous lemma, and the same argument as in Theorem

10.4.1 to lower bound the term
∑T

t=k

(
t−1
k−1

)
ε′k(1− ε′)t−k(T − t+ k), we can see that the

expected total regret of the learned predictor after k queries is at least:

TF (T − k; 1− ε′, k)− E[r]− Tε′,

for F (T − k; 1 − ε′, k) the cumulative density function of a negative binomial, with

probability of success 1 − ε′, and stopping after k failures, and E[r] = (1 − ε′)k/ε′ the

expectation of this negative binomial distribution. Again, following a similar argument

as in Theorem 10.4.1, we can show that for k = Tε′/2, TF (T − k; 1− ε′, k)− (1− ε′)k/ε′

222
CHAPTER 10. THE COMPLEXITY OF LEARNING SEQUENTIAL

PREDICTIONS

would tend to T/2 + Tε′/2 as T → ∞. This implies that after k = Tε′/2, the expected

regret of the algorithm is at least T/2 − Tε′/2. As we can choose any ε′ ∈ [0, 1], we

can see that for ε′ = 1
2 , this indicates that there exist problems where after k = T/4

iterations, the expected total regret is still at least T/4. Thus we conclude that at least

Ω(T) iterations must be necessary, to make the expected total regret O(Tε).

This lower bound of Ω(T) queries match directly our upper bound of T (with the

Forward algorithm) on the required interaction complexity of any algorithm guaranteeing

a policy with O(Tε) regret over T steps. Hence this shows our lower bound is tight, that

any algorithm must need a number of iterations of the same order as the number of time

steps T , and that Forward achieves the lower bound within a constant factor.

On the other hand, when an ε-error learning oracle is available, we obtained a lower

bound of Ω(Tε) queries. In this case, this does not match directly our upper bound of T

(with the Forward algorithm) on the interaction complexity of any algorithm guarantee-

ing a policy with O(Tε) mistakes over T steps. Hence it potentially suggests that when

low error is possible (rather than just low regret), better algorithms than the Forward

Training procedure might exists that would require only a fraction ε of the number of

queries currently performed by the Forward algorithm. Despite this fact, it shows that

in general the number of iterations, or queries to the learning oracle, must inevitably

scale linearly with the number of time steps T .

Chapter 11

Conclusion

We now conclude by discussing the contributions of this thesis with regards to our original

thesis statement:

Learning actively through interaction is necessary to obtain good

and robust predictors for sequential prediction tasks. No-regret

online learning methods provide a useful class of algorithms to learn

efficiently from these interactions, and provide good performance

both theoretically and empirically.

Passive Supervised Learning and the Data Mismatch

Many of the sequential prediction settings we presented in this thesis look like typical

statistical supervised learning problems, where a dataset of labeled examples can be

obtained. However, we provided a detailed theoretical analysis of such naive supervised

learning techniques in various sequential prediction settings and demonstrated their poor

performance guarantees due to the mismatch between the training and test distribution

of examples that can occur. In addition, in the context of imitation learning and system

identification, we presented examples of simple MDPs where such methods fail and match

the poor guarantee.

The train-test mismatch is often induced by errors made by the learned predictors.

As these errors can lead to new untrained situations, a single error can propagate into

a large series of errors. As such, the learned predictors, obtained by naive supervised

learning, are non-robust to their own errors.

Leveraging Interaction to Learn Robust Predictors

We presented several learning techniques that interact with the sequential process and

learner to deal with this train-test mismatch: 1) Forward, which learns sequentially a

224 CHAPTER 11. CONCLUSION

different predictor for each step; 2) SMILE, which learns a stationary stochastic policy

iteratively through small changes; and 3) DAGGER and SCP, that can learn stationary

deterministic policies, via no-regret online learning methods. We analyzed thoroughly

these techniques and demonstrated their improved guarantees in various sequential pre-

diction settings: imitation learning, reinforcement learning, structured prediction, list

optimization and system identification.

Through interaction, these methods are able to collect new examples of correct pre-

dictions after the learned predictor makes errors, allowing the learner to learn more

robust behaviors that can “recover” from its typical errors.

Necessity of Interaction

In chapter 10, we showed that interaction is necessary to learn good and robust predictors

for sequential tasks. In particular, there exists no learning approach that can provide

good guarantees without interaction. We proved lower bounds on the minimum number

of rounds of interactions necessary to provide good guarantees, that scale linearly with

the length of the sequence. In addition, in the context of guaranteeing small regret

(excess error) on the test trajectories, the lower bound is tight and matches the number

of rounds used by the Forward algorithm presented in chapter 3.

Practicality and Efficiency of the Interactive Online Learning

Approach

Our main learning approach, DAGGER, offers many practical advantages over other

methods in practice:

1. Simple: It is very simple, easy to implement and apply to various tasks.

2. Modular: It can be used in combination with any of your favorite online learning

methods, and/or class of predictors, and can easily be wrapped around existing

off-the-shelf software packages.

3. Scalable: By relying on no-regret learning methods that scale well to large learning

problems, DAGGER scales naturally to large-scale problems, e.g. using computa-

tionally efficient gradient descent methods.

4. Statistically Efficient: The improved guarantees of DAGGER reduce the impact

of the generalization error on performance, allowing DAGGER to learn a good

predictor with fewer data. Additionally, by learning a single stationary policy,

it can generalize the behavior across time steps and learn more efficiently than

methods training a separate predictor for each step.

11.1. OPEN PROBLEMS AND FUTURE DIRECTIONS 225

Applications and Empirical Evidence

We demonstrated the scalability and efficiency of DAGGER in practice on a large variety

of applications in several sequential prediction settings:

1. Improved performance over naive supervised training and other sequential predic-

tion methods, such as SMILE and SEARN, in the context of learning video game

playing agents.

2. Matched the performance of state-of-the-art Structured Prediction methods on

three computer vision tasks: handwriting recognition, 3D Point Cloud classification

and 3D geometry estimation.

3. Improved performance and learning efficiency over state-of-the-art list optimiza-

tion methods on various recommendation tasks, such as grasp selection, trajectory

optimization, news recommendation and document summarization.

4. Improved performance and learning efficiency for system identification over stan-

dard system identification methods and common iterative identification approaches,

in the context of learning models of a simulated helicopter for performing aerobatic

maneuvers.

5. Additionally, we demonstrated that DAGGER can be applied successfully on real

robotic systems, training a quadrotor to fly autonomously through natural forest

environments while avoiding trees.

11.1 Open Problems and Future Directions

Throughout this work, we have come across a number of interesting open problems

and future directions for research. We briefly conclude with important areas of future

research.

More Practical Interactions with Human Experts

In the context of imitation learning, DAGGER, when learning from a human expert,

leads to challenging human-computer interaction issues. In particular, a major difficulty

for the human expert is to provide the correct actions when not in control of the system

(without feedback of the actions he is executing). This was discussed in detail in Section

5.3, where we also discussed some practical solutions. Ideally, however, a more natural

interactive procedure for collecting additional examples from the human expert would be

desired. For instance, a natural one may be to let the system execute its own controller,

and only when the expert deems unsatisfactory behavior is being performed, he takes

226 CHAPTER 11. CONCLUSION

over control of the system until the system is placed back on a correct course, after which

control is returned to the system. By only having to provide actions when the expert

is in control, this would allow the expert to provide more accurate actions. However

such interactions can lead to other issues. For instance, there would be a delay between

the time when a serious error was committed by the system, versus the time when the

expert takes over, therefore not allowing the system to observe the correct actions it

should have executed in the first place to prevent the expert from having to take over.

We additionally do not know how such interaction could be analyzed theoretically to

provide good guarantees.

Iterative Transfer Learning

An alternate solution to the above human-computer interaction issue is to avoid asking

new actions from the human expert entirely, after the first iteration (where the expert

is always fully in command). In other words, only collect labeled examples under the

state distribution of the expert dπ∗ , and at later iterations, DAGGER executes the

current learned policy, but only to collect new unlabeled examples, where the expert’s

action is unknown. To update the predictor, based on the unlabeled data, transfer

learning methods, such as Zadrozny (2004), Huang et al. (2007), could in principle be

used to reweigh the labeled examples in the expert dataset, so that we obtain a weighted

labeled dataset that matches more closely the distribution of examples DAGGER needs

to train on at iteration n, i.e. 1
n

∑n
i=1 dπi . However, for this to work, the expert dataset

would need to cover the input feature space very well, which is usually not the case,

when the expert is executing on its own (e.g. no examples of what to do when the

car is about to go off the road, or collide with other vehicles). Reweighting would

not help if coverage is poor in the regions where unlabeled data is collected. Coverage

of the initial demonstrations could be increased by introducing random noise in the

actions of the expert during its execution; however, this may still explore poorly, as the

important failure cases that will occur at later iterations of learning may be explored

with exponentially small probability. In preliminary experiments with the technique of

Zadrozny (2004) in the Super Mario Bros. domain of Section 5.2, we did not obtain

much improvement over the baseline supervised learning approach. This could be due

to several factors, such as the particular transfer learning technique used, and perhaps

in other applications, such technique could be used successfully.

Extensions to Other List Optimization Objectives

In Chapter 7, we studied SCP for the particular context of maximizing a submodular

objective under a cardinality constraint on the list. Many other important applications

have different but related objectives. For instance in the Grasp Selection experiment

11.1. OPEN PROBLEMS AND FUTURE DIRECTIONS 227

we were interested in minimizing search depth, which corresponds to a different “min

sum set cover” objective. In extractive document summarization, where the constraint

is on the length of the summary (in characters), this implies that items have different

weight (sentences have different length), and we are subject to a more general knapsack

constraint on the sum of the weights of the items in the list. These variations affect

the particular weighting of the examples that should be used to properly minimize the

desired objective. For instance, to minimize search depth, the analysis in Streeter and

Golovin (2007), suggests weighting examples from early positions in the list more highly.

A more careful analysis of SCP with these variations would be necessary to ensure proper

weighting of the training examples is used and understanding the resulting guarantees

of SCP in these variants. An analysis for the knapsack constraint variant appears in the

recent follow-up work of Zhou et al. (2013).

List Optimization for Structured Prediction

In structured prediction tasks, it can also be desired to obtain multiple possible struc-

tured outputs. For instance, given an input camera image, we may be interested in

obtaining a diverse and relevant set of possible labelings of this image. This may be

important for robots, so that they can carefully take into account possible alternate

interpretations of the world, and adopt a behavior that is robust to these various in-

terpretations. Some recent work has begun to look into this problem (Kulesza and

Taskar, 2010, Guzman-Rivera et al., 2012). It would be interesting to extend SCP to

this scenario.

Agnostic Exploration

In the context of model-free reinforcement learning (Section 4.3), and system identifica-

tion (Chapter 8), our DAGGER approach provides agnostic guarantees, but performance

is limited by the quality of the given fixed exploration distribution. For realizable sys-

tem identification settings, we showed that an optimistic exploration strategy could be

used to guarantee finding a near-optimal policy. However, this strategy relies on the

realizability assumption, and developing adaptive exploration strategies that would lead

to good guarantees in general agnostic settings is an important open problem. Work on

similar exploration issues in contextual bandit learning (Auer et al., 2002b, Beygelzimer

et al., 2011) and agnostic active learning (Dasgupta et al., 2007, Beygelzimer et al., 2010)

may provide ideas that could be extended to these reinforcement learning settings.

228 CHAPTER 11. CONCLUSION

Subspace Identification

For system identification in partially observable settings, our current DAGGER approach

can be applied as is to learn models that predict the future observation from past actions

and observations, and provide similar good agnostic guarantees. However, learning more

compact representations, that can learn an underlying hidden state space model, would

be desirable, especially in situations where observations are high dimensional. This

could allow learning more efficiently. Spectral learning methods have been developed to

learn such models, however their analysis often relies on strong realizability assumptions

(Overschee and Moor, 1996, Boots and Gordon, 2011). A no-regret analysis of such

methods in online settings would be necessary to ensure that they can be used within

DAGGER and provide similar good guarantees. For instance, developing approaches for

doing no-regret online reduced rank regression would provide techniques for achieving

this in the context of learning linear state space models.

Online Regret Reductions

In many settings, we reduced our sequential prediction task to a no-regret online cost-

sensitive classification tasks (e.g. in Chapters 4 and 7). Typical regret reductions for cost-

sensitive classification, bound the cost-sensitive classification regret to the bayes-optimal

predictor, as a function of the regret to the bayes-optimal predictor on a new classification

or regression task (Langford and Beygelzimer, 2005, Beygelzimer et al., 2009, Mineiro,

2010). This does not allow us to bound the online cost-sensitive classification regret

(with respect to only hypothesis in the class), in terms of the online classification or

regression regret (with respect to only hypothesis in the class), without introducing an

additional penalty term: a term that depends on the classification or regression regret of

the best hypothesis in the class to the bayes-optimal predictor. It would be of interest to

provide reductions, that transform online regret at the cost-sensitive classification task,

directly into online regret at the other task, without introducing this additional penalty

term. This would provide improved relative performance guarantees for DAGGER when

comparing to other predictors in the class.

This is perhaps a more general fundamental question worth further investigation,

e.g. can you reduce no-regret learning for various common learning tasks, to a no-regret

online binary classification task, where being no-regret on the binary classification loss

implies no-regret on the original online task. In other words, can you build no-regret

learners for various tasks, starting from a single common primitive, e.g. a no-regret

learner for binary classification.

11.1. OPEN PROBLEMS AND FUTURE DIRECTIONS 229

Efficient Contextual Bandit Learning with General Hypothesis Class

In Chapters 4 and 7, we also observed that we may sometimes only be able to obtain

partial cost-sensitive examples, where the cost of only one or a few predictions are known.

To deal with such partial feedback, contextual bandit algorithms are necessary, rather

than online learning methods. However, current contextual bandit learning methods have

been limited mostly to finite hypothesis class (Auer et al., 2002b), or for learning linear

predictors in realizable settings (Li et al., 2010). Some more involved techniques have

been developed for dealing with more general infinite class of predictors (Dudik et al.,

2011a), but the resulting algorithm remains impractical1 and currently only handles the

stochastic setting, whereas we require no-regret in adversarial settings. DAGGER could

benefit from improved contextual bandit algorithms for dealing with partial feedback

settings.

Are Weaker Notions than No-Regret Sufficient?

DAGGER relies on the availability of a no-regret online learner and our analysis demon-

strates that no-regret is a sufficient property of the learner to provide good guarantees.

In Chapter 9 (and (Ross and Bagnell, 2012b)), we also showed how certain strong stabil-

ity properties of the learner, in combination with asymptotic minimization of the loss in

hindsight, are also sufficient properties to achieve no-regret. As these strong no-regret (or

stability) property cannot always be achieved (at least computationally efficiently) with

all class of hypothesis, weakening these strong requirements is of practical importance

to increase the applicability of our methods to broader and richer class of predictors.

Perhaps weaker stability conditions, such as those in Shalev-Shwartz et al. (2010), with

certain assumptions on the sequential process, may be sufficient for DAGGER to provide

good guarantees in these sequential prediction settings.

1At each update, the algorithm involves running an ellipsoid algorithm, in a space that grows with
the number of data points seen so far, that repeatedly calls a cost-sensitive classification learner for the
separation oracle. The complexity of the update after seeing t data points is of order O(t7), and thus
quickly becomes intractable as we collect more data.

Appendices

Appendix A

Analysis of Dagger for Imitation

Learning

In this appendix, we provide the proofs and detailed analysis of Dagger in the imitation

learning setting. We begin with the analysis where surrogate classification/regression

loss is minimized, and then present results for Dagger with cost-to-go.

A.1 Dagger with Imitation Loss

We begin with a useful general lemma that is needed for bounding the expected loss

under different distributions. This will be used several times here and for the analysis of

Dagger in other settings. Here this will be useful for bounding the expected loss under

the state distribution of π̂ in terms of the expected loss under the state distribution of

πi:

Lemma A.1.1. Let P and Q be any distribution over elements x ∈ X , and f : X → R,

any bounded function such that f(x) ∈ [a, b] for all x ∈ X . Let the range r = b−a. Then

|Ex∼P [f(x)]− Ex∼Q[f(x)]| ≤ r
2 ||P −Q||1

Proof. We provide the proof for X discrete, a similar argument can be carried for X
continuous, using integrals instead of sums.

|Ex∼P [f(x)]− Ex∼Q[f(x)]|
= |

∑
x P (x)f(x)−Q(x)f(x)|

= |
∑

x f(x)(P (x)−Q(x))|

234 APPENDIX A. ANALYSIS OF DAGGER FOR IMITATION LEARNING

Additionally, since for any real c ∈ R,
∑

x P (x)c =
∑

xQ(x)c, then we have for any c:

|
∑

x f(x)(P (x)−Q(x))|
= |

∑
x(f(x)− c)(P (x)−Q(x))|

≤
∑

x |f(x)− c||P (x)−Q(x)|
≤ maxx |f(x)− c|

∑
x |P (x)−Q(x)|

= maxx |f(x)− c|||P −Q||1

This holds for all c ∈ R. This upper bound is minimized for c = a + r
2 , making

maxx |f(x)− c| ≤ r
2 . This proves the lemma.

The L1 distance between the distribution of states encountered by π̂i, the policy

chosen by Dagger, and πi, the policy used to collect data that continues to execute the

expert’s actions with probability βi is bounded as follows:

Lemma A.1.2. ||dπi − dπ̂i ||1 ≤ 2 min(1, Tβi).

Proof. Let d the distribution of states over T steps conditioned on πi picking the expert

π∗ at least once over T steps. Since πi always executes π̂i (never executes the expert

action) over T steps with probability (1−βi)T we have dπi = (1−βi)Tdπ̂i+(1−(1−βi)T)d.

Thus
||dπi − dπ̂i ||1
= (1− (1− βi)T)||d− dπ̂i ||1
≤ 2(1− (1− βi)T)

≤ 2Tβi

The last inequality follows from the fact that (1−β)T ≥ 1−βT for any β ∈ [0, 1]. Finally,

since for any 2 distributions p, q, we always have ||p − q||1 ≤ 2, then ||dπi − dπ̂i ||1 ≤
2 min(1, Tβi).

Assume βi is non-increasing and define nβ the largest n ≤ N such that βn > 1
T .

As mentioned in the Section 3.6, Dagger can be seen as using an online learning algo-

rithm on a sequence of loss functions {`i}Ni=1 chosen such that for any π ∈ Π, `i(π) =

Es∼dπi ,a∼π∗(s)[`(s, a, π)]. Let εclass = minπ∈Π
1
N

∑N
i=1 `i(π) the loss of the best policy

in hindsight after N iterations and assume ` is non-negative and bounded by `max, i.e.

0 ≤ `(s, a, π̂i) ≤ `max for all policies π̂i, action a and state s such that dπ̂i(s) > 0.

Additionally, let εregret = 1
N

∑N
i=1 `i(π̂i)− εclass, the average online learning regret of the

sequence of policies π̂1, π̂2, . . . , π̂N chosen by Dagger after N iterations.

Denote the expected loss of a policy π at mimicking the expert under its own distri-

bution of states L(π) = Es∼dπ ,a∼π∗(s)[`(s, a, π)]. Consider the “uniform mixture” policy

π, that at the beginning of any trajectory samples a policy π uniformly randomly among

the policies {π̂i}Ni=1 and executes this policy π for the entire trajectory. We have the

following guarantee for π and the best policy in the sequence:

A.1. DAGGER WITH IMITATION LOSS 235

Theorem A.1.1.

min
i∈1:N

L(π̂i) ≤ L(π) ≤ εclass + εregret +
`max

N
[nβ + T

N∑
i=nβ+1

βi].

Proof. Using the last two lemmas, we have that for every policy π̂i:

L(π̂i)

= Es∼dπ̂i ,a∼π∗(s)(`(s, a, π̂i))
≤ Es∼dπi ,a∼π∗(s)(`(s, a, π̂i)) + `max

2 ||dπi − dπ̂i ||1
≤ Es∼dπi ,a∼π∗(s)(`(s, a, π̂i)) + `max min(1, Tβi)

= `i(π̂i) + `max min(1, Tβi)

Thus:

mini∈1:N L(π̂i)

≤ L(π)

= 1
N

∑N
i=1 L(π̂i)

≤ 1
N

∑N
i=1 `i(π̂i) + `max

N

∑N
i=1 min(1, Tβi)

= εclass + εregret + `max
N [nβ + T

∑N
i=nβ+1 βi]

This last theorem indicates that the imitation loss of the best policy, and the uniform

mixture policy, under their own induced state distribution, must tend to the loss of the

best policy in hindsight on the aggregate dataset as N → ∞, when a no-regret online

learning procedure is used.

Denote π̂ the best policy in the sequence π̂1:N , i.e. J(π̂) = mini∈1:N J(π̂i). Then

the previous result proves directly the following theorems presented in Section 3.6, when

βi = (1− α)i−1:

Theorem 3.6.1. If the surrogate loss ` is the same as the task cost function C (or upper

bounds it), then after N iterations of DAgger:

J(π̂) ≤ J(π) ≤ T [εclass + εregret] +O

(
`maxT log T

αN

)
.

Thus if a no-regret online algorithm is used to pick the sequence of policies π̂1:N , then

as the number of iterations N →∞:

lim
N→∞

J(π) ≤ Tεclass

Proof. First, clearly J(π̂) ≤ J(π) as the minimum is always lower or equal to the average,

i.e. mini∈1:N J(π̂i) ≤ 1
N

∑N
i=1 J(π̂i). Now, under the assumption that ` ≥ C, then we

236 APPENDIX A. ANALYSIS OF DAGGER FOR IMITATION LEARNING

have for any policy π, J(π) ≤ TL(π). And since J(π) = 1
N

∑N
i=1 J(π̂i), we conclude by

using the last theorem that:

J(π) ≤ T [εclass + εregret] +
T`max

N
[nβ + T

N∑
i=nβ+1

βi]

For βi = (1 − α)i−1, then we have that for i ≥ 1 + log T
α , we have βi ≤ 1/T . So

nβ ≤ 1 + log T
α . Additionally

∑N
i=nβ+1 βi = (1−α)

nβ+1−(1−α)N+1

α ≤ 1
Tα . Hence we have

that 1
N [nβ + T

∑N
i=nβ+1 βi] ≤

1
Nα [log T + 2]. Thus we obtain:

J(π) ≤ T [εclass + εregret] +
T`max

αN
[log(T) + 2]

This proves the first part of the theorem. The second part follows immediately from the

fact that εregret → 0 as N →∞ for no-regret algorithms.

Theorem 3.6.2. If the expert π∗ is u-robust with respect to cost function C (as in

Definition 3.4.1), then after N iterations of DAgger:

J(π̂) ≤ J(π) ≤ J(π∗) + uT [εclass + εregret] +O

(
u`maxT log T

αN

)
.

Thus if a no-regret online algorithm is used to pick the sequence of policies π̂1:N , then

as the number of iterations N →∞:

lim
N→∞

J(π) ≤ J(π∗) + uTεclass

Proof. Theorem 3.4.3 indicates that J(π) ≤ J(π∗) + uTL(π). Hence combining with

theorem A.1.1, and a similar argument to bound the extra term as in theorem 3.6.1

proves the first part of the theorem. Similarly the second part follows from the fact that

εregret → 0 as N →∞ for no-regret algorithms.

The following corollaries in Section 3.6 also follows immediately from existing results

of no-regret algorithms:

Corollary 3.6.2. Suppose ` is strongly convex in π for all s, a and Dagger uses Follow-

the-Leader to pick the sequence of policies, then: If ` upper bounds C, then for any ε > 0

after Õ(T/ε) iterations of DAgger:

J(π̂) ≤ J(π) ≤ Tεclass +O(ε).

For arbitrary cost C, if the expert π∗ is u-robust with respect to C (as in Definition

3.4.1), then for any ε > 0 after Õ(uT/ε) iterations of DAgger:

J(π̂) ≤ J(π) ≤ J(π∗) + uTεclass +O(ε).

A.1. DAGGER WITH IMITATION LOSS 237

Proof. For Follow-the-Leader on strongly convex loss functions, after N iterations εregret

is O(log(N)/N). Thus by choosing N to be O(T log(T/ε)
ε), Tεregret is O(ε). The other

extra term O(T`max
αN [log(T) + 2]) is also O(ε) for such N . Similarly for the second part of

the theorem, uTεregret is O(ε) by choosing N to be O(uT log(uT/ε)
ε), and the extra term

as well.

Corollary 3.6.3. Suppose ` is convex in π for all s, a and Dagger uses Follow-the-

Regularized-Leader to pick the sequence of policies, then: If ` upper bounds the cost C,

then for any ε > 0 after O(T 2/ε2) iterations of DAgger:

J(π̂) ≤ J(π) ≤ Tεclass +O(ε).

For arbitrary cost C, if the expert π∗ is u-robust with respect to C (as in Definition

3.4.1), then for any ε > 0 after O(u2T 2/ε2) iterations of DAgger:

J(π̂) ≤ J(π) ≤ J(π∗) + uTεclass +O(ε).

Proof. For Follow-the-Regularized-Leader on convex loss functions, after N iterations

εregret is O(1/
√
N). Thus by choosing N to be O(T 2/ε2), Tεregret is O(ε). The other

extra term O(T`max
αN [log(T) + 2]) is also O(ε) for such N . Similarly for the second part

of the theorem, uTεregret is O(ε) by choosing N to be O(u2T 2/ε2), and the extra term

as well.

In addition, when the distribution of state-action pairs of the policies in the sequence

converge, the performance of πN must be close to the performance of π:

Theorem 3.6.3. If there exists a state-action distribution D∗, scalar ε∗conv ≥ 0 and a

sequence {εconv,i}∞i=1 that is o(1), such that ||Dπ̂i −D∗||1 ≤ ε∗conv + εconv,i for all i. Then

for any cost function bounded in [0, Cmax]:

lim sup
N→∞

J(πN)− J(π) ≤ CmaxTε
∗
conv

Proof. Using the first lemma, for all i we have that:

TE(s,a)∼D∗ [C(s, a)]−TCmax

2
(ε∗conv+εconv,i) ≤ J(π̂i) ≤ TE(s,a)∼D∗ [C(s, a)]+

TCmax

2
(ε∗conv+εconv,i)

Thus:

J(π̂N)− J(π)

= J(π̂N)− 1
N

∑N
i=1 J(π̂i)

≤ TCmax
2 (2ε∗conv + εconv,N + 1

N

∑N
i=1 εconv,i)

Taking the limit as N →∞ proves the result, since the sequence {εconv,i}∞i=1 is o(1).

238 APPENDIX A. ANALYSIS OF DAGGER FOR IMITATION LEARNING

Finite Sample Analysis

We now move on to prove the results presented when the online learning algorithm within

Dagger is applied with a finite set of m samples at each iteration, rather than on the true

expected loss `i, as assumed previously. The analysis we provide applies to two ways to

collect data:

• We samplem trajectories with the current policy πi, and obtain the expert’s actions

in all visited states. This gives us mT state-action pairs (sijt, a
∗
ijt), for sijt and

a∗ijt the state and action observed at time t during the jth trajectory collected

at iteration i. From these mT state-action pairs, we can construct m i.i.d. and

unbiased estimate of the expected loss `i(π̂i), i.e. the jth estimate is ˆ̀
ij(π̂i) =

1
T

∑T
t=1 `(sijt, a

∗
ijt, π̂i). Each of these is i.i.d. as each trajectory is independent,

and restarted from an i.i.d. initial state, from which the same policy is executed

every time. The expected loss `i is then estimated as the average of these m

estimates ˆ̀
i(π̂i) = 1

m

∑m
j=1

ˆ̀
ij(π̂i). Note that the estimate ˆ̀

i of the loss function

would still be represented by mT data points (sijt, a
∗
ijt) in the aggregate dataset,

or in the new mini-batch of data given to the online learning algorithm at iteration

i. This is purely a mathematical construct for analysis, that allows us to treat

mT state samples that are non-i.i.d. (due to the dependency between consecutive

states collected in the same trajectory) as equivalent to m i.i.d samples.

• We sample m i.i.d. input state from dπi , and these m states are the only ones

where the expert provides his action. This gives us a set of m state-action pairs

(sij , a
∗
ij) at each iteration i.To sample m i.i.d. states from dπi , we would still need

to sample m trajectories by executing πi, and then for each trajectory, sample one

state at a uniformly random time step t. Unlike the previous sampling approach,

this does not need to query the expert at all mT visited states, and would only need

to query at a subset of m visited states1. This again gives us m i.i.d. and unbiased

estimate of the expected loss `i(π̂i), i.e. the jth estimate is ˆ̀
ij(π̂i) = `(sij , a

∗
ij , π̂i).

Again, the expected loss `i is then estimated as the average of these m estimates
ˆ̀
i(π̂i) = 1

m

∑m
j=1

ˆ̀
ij(π̂i). The estimate ˆ̀

i of the loss function would simply be

represented by the m data points (sij , a
∗
ij) in the aggregate dataset, or in the new

mini-batch of data given to the online algorithm at iteration i.

When applied to these empirical loss estimate ˆ̀
i, a no-regret online learner guarantees

that the empirical average online regret, ε̂regret = 1
N

∑N
i=1

ˆ̀
i(π̂i)−minπ∈Π

1
N

∑N
i=1

ˆ̀
i(π),

goes to 0 as N → ∞. Denote the training loss of the best policy on the aggregate

1Assuming βi = 0. When βi > 0, we would also need to query the expert in states where his action
is chosen to be executed during execution of πi.

A.1. DAGGER WITH IMITATION LOSS 239

dataset ε̂class = minπ∈Π
1
N

∑N
i=1

ˆ̀
i(π). Following a similar analysis as in online-to-batch

techniques (Cesa-Bianchi et al., 2004), we obtain:

Theorem A.1.2. After N iterations and collecting m trajectories (or m i.i.d. samples)

per iteration, we have that for any δ > 0, with probability at least 1− δ:

min
i∈1:N

L(π̂i) ≤ L(π) ≤ ε̂class + ε̂regret +
`max

N
[nβ + T

N∑
i=nβ+1

βi] + `max

√
2 log(1/δ)

mN

Proof. Let Yi,j = `i(π̂i) − ˆ̀
ij(π̂i), i.e. the difference between the expected per step

loss of π̂i under state distribution dπi and the estimate of the loss ˆ̀
ij based on the

jth sample with πi at iteration i. The random variables Yi,j over all i ∈ {1, 2, . . . , N}
and j ∈ {1, 2, . . . ,m} are all zero mean, and bounded in [−`max, `max]. Consider the

random variables Xkm+l =
∑k

i=1

∑m
j=1 Yi,j +

∑l
j=1 Yk+1,j , for k ∈ {0, 1, . . . , N − 1} and

l ∈ {1, 2, . . . ,m}. The sequence X1, X2, . . . , XNm form a martingale, where |Xi−Xi+1| ≤
`max. By Azuma-Hoeffding’s inequality 1

mNXmN ≤ `max

√
2 log(1/δ)
mN with probability at

least 1− δ. Hence, we obtain that with probability at least 1− δ:

mini∈1:N L(π̂i)

≤ L(π)

= 1
N

∑N
i=1 L(π̂i)

≤ 1
N

∑N
i=1 `i(π̂i) + `max

N [nβ + T
∑N

i=nβ+1 βi]

= 1
N

∑N
i=1

ˆ̀
i(π̂i) + 1

mNXmN + `max
N [nβ + T

∑N
i=nβ+1 βi]

≤ 1
N

∑N
i=1

ˆ̀
i(π̂i) + `max

√
2 log(1/δ)
mN + `max

N [nβ + T
∑N

i=nβ+1 βi]

= ε̂class + ε̂regret + `max

√
2 log(1/δ)
mN + `max

N [nβ + T
∑N

i=nβ+1 βi]

where the second inequality follows from the same argument as in theorem A.1.1.

The use of Azuma-Hoeffding’s inequality in the previous theorem suggests we need a

total number of sample Nm in O(T 2 log(1/δ)) for the generalization error to be O(1/T)

and negligible over T steps. Leveraging the strong convexity of ` as in Kakade and

Tewari (2009) may lead to a tighter bound requiring only O(T log(T/δ)) trajectories.

This results provide a bound on the expected loss of π, and the best policy found in

the sequence, under their own induced distribution of states, as a function of the training

loss on the aggregate dataset of the best policy in Π and the empirical average online

regret of the learner. This is similar to the previous theorem A.1.1, where here an addi-

tional generalization error term `max

√
2 log(1/δ)
mN is present to account for learning from a

finite set of samples, rather than the exact expected loss. As before, we can directly use

this bound on the expected loss to bound the expected total cost (performance at the

task) of the learned policy.

The following finite sample results presented in Section 3.6 follows immediately from

this previous theorem:

240 APPENDIX A. ANALYSIS OF DAGGER FOR IMITATION LEARNING

Theorem 3.6.4. If the surrogate loss ` is the same as the task cost function C (or

upper bounds it), then after N iterations of DAgger collecting m trajectories (or m i.i.d.

samples) per iteration, with probability at least 1− δ:

J(π̂) ≤ J(π) ≤ T [ε̂class + ε̂regret] +O

(
`maxT log T

αN
+ `maxT

√
log(1/δ)

mN

)
.

Proof. Follows from the same argument as in the proof of theorem 3.6.1, except using

theorem A.1.2 instead of theorem A.1.1.

Theorem 3.6.5. If the expert π∗ is u-robust with respect to cost function C (as in

Definition 3.4.1), then after N iterations of DAgger collecting m trajectories (or m i.i.d.

samples) per iteration, with probability at least 1− δ:

J(π̂) ≤ J(π) ≤ J(π∗) + uT [ε̂class + ε̂regret] +O

(
u`maxT log T

αN
+ `maxuT

√
log(1/δ)

mN

)
.

Proof. Follows from the same argument as in the proof of theorem 3.6.2, except using

theorem A.1.2 instead of theorem A.1.1.

Corollary 3.6.4. Suppose ` is convex in π for all s, a and Dagger uses Follow-the-

Regularized-Leader to pick the sequence of policies, then: If ` upper bounds the cost

C, then for any ε > 0 after O(T 2 log(1/δ)/ε2) iterations of DAgger collecting m = 1

trajectory (or m = 1 i.i.d. sample) per iteration, with probability at least 1− δ:

J(π̂) ≤ J(π) ≤ T ε̂class +O(ε).

For any cost function C, if the expert π∗ is u-robust with respect to C (as in Definition

3.4.1), then for any ε > 0, after O(u2T 2 log(1/δ)/ε2) iterations of DAgger collecting

m = 1 trajectory (or m = 1 i.i.d. sample) per iteration, with probability at least 1− δ:

J(π̂) ≤ J(π) ≤ J(π∗) + uT ε̂class +O(ε).

Proof. Follows using the same argument as in the proof of corollary 3.6.3, except using

theorem A.1.2 instead of theorem A.1.1. In addition, for the first part of this corollary,

the generalization error term T`max

√
2 log(1/δ)
mN isO(ε), forNm inO(T 2 log(1/δ)/ε2). Sim-

ilarly for the second part of this corollary, the generalization error term uT`max

√
2 log(1/δ)
mN

is O(ε), for Nm in O(u2T 2 log(1/δ)/ε2).

A.2 Dagger with Cost-to-Go

We now present the analysis of Dagger with cost-to-go.

A.2. DAGGER WITH COST-TO-GO 241

We begin with a lemma that will be useful to bound the difference in performance to

the expert in terms of the difference cost-to-go. This is a general lemma that applies to

bound the difference in performance of any 2 policies. It has been proven before in prior

work (Bagnell et al., 2003, Kakade and Langford, 2002) and has been called the perfor-

mance difference lemma. We present this results and its proof here for completeness.

Lemma A.2.1. Let π and π′ be any two policy and denote V ′t and Q′t the t-step value

function and Q-value function of policy π′ respectively, then:

J(π)− J(π′) = T E
t∼U(1:T),s∼dtπ

[Q′T−t+1(s, π)− V ′T−t+1(s)]

for U(1 : T) the uniform distribution on the set {1, 2, . . . , T}.

Proof. Let πt denote the non-stationary policy that executes π in the first t time steps,

and then switches to execute π′ at time t + 1 to T . Then we have J(π) = J(πT) and

J(π′) = J(π0). Thus:

J(π)− J(π′)

=
∑T

t=1[J(πt)− J(πt−1)]

=
∑T

t=1[Es∼dtπ [Q′T−t+1(s, π)− V ′T−t+1(s)]]

= T Et∼U(1:T),s∼dtπ [Q′T−t+1(s, π)− V ′T−t+1(s)]

Now let εclass = minπ∈Π
1
N

∑N
i=1 Et∼U(1:T),s∼dtπi

[Q∗T−t+1(s, a)−minaQ
∗
T−t+1(s, a)] de-

note the minimum expected cost-sensitive classification regret achieved by policies in the

class Π on all the data over the N iterations of training. Denote the online learning av-

erage regret on the cost-to-go examples of the sequence of policies chosen by Dagger,

εregret = 1
N [
∑N

i=1 `i(π̂i)−minπ∈Π
∑N

i=1 `i(π)], where `i(π) = Et∼U(1:T),s∼dtπi
[Q∗T−t+1(s, π)].

Assume the cost-to-go of the expert Q∗ is non-negative and bounded by Q∗max, and that

βi are chosen such that βi ≤ (1− α)i−1 for some α. Then we have the following:

Theorem 4.2.1. After N iterations of DAgger with cost-to-go:

J(π̂) ≤ J(π) ≤ J(π∗) + T [εclass + εregret] +O

(
Q∗maxT log T

αN

)
.

Thus if a no-regret online algorithm is used to pick the sequence of policies π̂1:N , then

as the number of iterations N →∞:

lim
N→∞

J(π) ≤ J(π∗) + Tεclass

242 APPENDIX A. ANALYSIS OF DAGGER FOR IMITATION LEARNING

Proof. For every policy π̂i, we have:

J(π̂i)− J(π∗)

= T Et∼U(1:T),s∼dtπ̂i
[Q∗T−t+1(s, π̂i)− V ∗T−t+1(s)]

=
∑T

t=1 Es∼dtπ̂i
[Q∗T−t+1(s, π̂i)− V ∗T−t+1(s)]

≤
∑T

t=1 Es∼dtπi [Q
∗
T−t+1(s, π̂i)− V ∗T−t+1(s)] +Q∗max

∑T
t=1 ||dtπi − d

t
π̂i
||1

≤
∑T

t=1 Es∼dtπi [Q
∗
T−t+1(s, π̂i)− V ∗T−t+1(s)] + 2Q∗max

∑T
t=1 min(1, tβi)

≤
∑T

t=1 Es∼dtπi [Q
∗
T−t+1(s, π̂i)− V ∗T−t+1(s)] + 2TQ∗max min(1, Tβi)

= T Et∼U(1:T),s∼dtπi
[Q∗T−t+1(s, π̂i)− V ∗T−t+1(s)] + 2TQ∗max min(1, Tβi)

where we use lemma A.2.1 in the first equality, lemma A.1.1 in the first inequality, and

a similar argument to lemma A.1.2 for the second inequality.

Thus:

J(π)− J(π∗)

= 1
N

∑N
i=1[J(π̂i)− J(π∗)]

≤ 1
N

∑N
i=1[T Et∼U(1:T),s∼dtπi

[Q∗T−t+1(s, π̂i)− V ∗T−t+1(s)] + 2TQ∗max min(1, Tβi)]

= T [minπ∈Π
1
N

∑N
i=1 Et∼U(1:T),s∼dtπi

[Q∗T−t+1(s, π)− V ∗T−t+1(s)]] + Tεregret

+2TQ∗max
N [nβ + T

∑N
i=nβ+1 βi]

≤ T [minπ∈Π
1
N

∑N
i=1 Et∼U(1:T),s∼dtπi

[Q∗T−t+1(s, π)−minaQ
∗
T−t+1(s, a)] + Tεregret

+2TQ∗max
N [nβ + T

∑N
i=nβ+1 βi]

= Tεclass + Tεregret + 2TQ∗max
N [nβ + T

∑N
i=nβ+1 βi]

Again, J(π̂) ≤ J(π) since the minimum is always better than the average, i.e.

mini J(π̂i) ≤ 1
N

∑N
i=1 J(π̂i). Finally, using the same argument as in the proof of theorem

3.6.1, we have that when βi = (1 − α)i−1, [nβ + T
∑N

i=nβ+1 βi] ≤
log(T)+2

α . This proves

the first part of the theorem.

The second part follows immediately from the fact that εregret → 0 as N → ∞, and

similarly for the extra term O
(
Q∗maxT log T

αN

)
.

Finite Sample Result

We here consider the finite sample case where actions are explored uniformly randomly

and the reduction of cost-sensitive classification to reduction is used. We consider learn-

ing an estimate Q-value function Q̂ of the expert’s cost-to-go, and we consider a general

case where the cost-to-go predictions may depend on features f(s, a, t) of the state s,

action a and time t, e.g. Q̂ could be a linear regressor s.t. Q̂T−t+1(s, a) = w>f(s, a, t)

is the estimate of the cost-to-go Q∗T−t+1(s, a), and w are the parameters of the linear

regressor we learn. Given such estimate Q̂, we consider executing the policy π̂, such that

in state s at time t, π̂(s, t) = mina∈A Q̂T−t+1(s, a).

A.2. DAGGER WITH COST-TO-GO 243

Theorem 4.2.2. After N iterations of DAgger with cost-to-go, collecting m regression

examples (s, a, t, Q) per iteration, guarantees that with probability at least 1-δ:

J(π̂) ≤ J(π) ≤ J(π∗)+2
√
|A|T

√
R̂class + ε̂regret +O(

√
log(1/δ)/Nm)+O

(
QmaxT log T

αN

)
.

Thus if a no-regret online algorithm is used to pick the sequence of regressors Q̂1:N , then

as the number of iterations N →∞, with probability 1:

lim
N→∞

J(π) ≤ J(π∗) + 2
√
|A|T

√
R̂class

Proof. Consider π̃, the bayes-optimal non-stationary policy that minimizes loss on the

cost-to-go examples. That is, π̃(s, t) = mina∈AQ
∗
T−t+1(s, a), i.e. it picks the action

with minimum expected expert cost-to-go conditioned on being in state s and time t.

Additionally, given the observed noisy Q-values from each trajectory, the bayes-optimal

regressor is simply the Q-value function Q∗ of the expert that predicts the expected

cost-to-go.

At each iteration i, we execute a policy π̂i, such that π̂i(s, t) = arg mina∈A Q̂
i
T−t+1(s, a),

where Q̂i is the current regressor at iteration i from the base online learner. The cost-

sensitive regret of policy π̂i, compared to π̃, can be related to the regression regret of Q̂i

as follows:

Consider any state s and time t. Let âi = π̂i(s, t) and consider the action a′ of any

other policy. We have that:

Q∗T−t+1(s, âi)−Q∗T−t+1(s, a)

≤ Q̂iT−t+1(s, âi)− Q̂iT−t+1(s, a′) +Q∗T−t+1(s, âi)− Q̂iT−t+1(s, âi) + Q̂iT−t+1(s, a′)−Q∗T−t+1(s, a′)

≤ Q∗T−t+1(s, âi)− Q̂iT−t+1(s, âi) + Q̂iT−t+1(s, a′)−Q∗T−t+1(s, a′)

≤ 2 maxa∈A |Q∗T−t+1(s, a)− Q̂iT−t+1(s, a)|

Additionally, for any joint distribution D over (s, t), and U(A) the uniform distribu-

tion over actions, we have that:

(E(s,t)∼D[maxa∈A |Q∗T−t+1(s, a)− Q̂iT−t+1(s, a)|])2

≤ E(s,t)∼D[maxa∈A |Q∗T−t+1(s, a)− Q̂iT−t+1(s, a)|2]

≤ E(s,t)∼D[
∑

a∈A |Q∗T−t+1(s, a)− Q̂iT−t+1(s, a)|2]

= |A|E(s,t)∼D,a∼U(A)[|Q∗T−t+1(s, a)− Q̂iT−t+1(s, a)|2]

Thus we obtain that for every π̂i:

Et∼U(1:T),s∼dtπi
[Q∗T−t+1(s, π̂i)−Q∗T−t+1(s, π̃)]

≤ 2Et∼U(1:T),s∼dtπi
[maxa∈A |Q∗T−t+1(s, a)− Q̂iT−t+1(s, a)|]

≤ 2
√
|A|
√
Et∼U(1:T),s∼dtπi ,a∼U(A)[|Q∗T−t+1(s, a)− Q̂iT−t+1(s, a)|2]

244 APPENDIX A. ANALYSIS OF DAGGER FOR IMITATION LEARNING

Thus

J(π)− J(π∗)

= T
N

∑N
i=1 Et∼U(1:T),s∼dtπ̂i

[Q∗T−t+1(s, π̂i)−Q∗T−t+1(s, π∗)]

≤ T
N

∑N
i=1 Et∼U(1:T),s∼dtπi

[Q∗T−t+1(s, π̂i)−Q∗T−t+1(s, π∗)] + 2TQ∗max
N [nβ + T

∑N
i=nβ+1 βi]

≤ T
N

∑N
i=1 Et∼U(1:T),s∼dtπi

[Q∗T−t+1(s, π̂i)−Q∗T−t+1(s, π̃)] + 2TQ∗max
N [nβ + T

∑N
i=nβ+1 βi]

≤ 2
√
|A|T
N

∑N
i=1

√
Et∼U(1:T),s∼dtπi ,a∼U(A)[|Q∗T−t+1(s, a)− Q̂iT−t+1(s, a)|2]

+2TQ∗max
N [nβ + T

∑N
i=nβ+1 βi]

≤ 2
√
|A|T

√
1
N

∑N
i=1 Et∼U(1:T),s∼dtπi ,a∼U(A)[|Q∗T−t+1(s, a)− Q̂iT−t+1(s, a)|2]

+2TQ∗max
N [nβ + T

∑N
i=nβ+1 βi]

Now in state s at time t, when performing a and then following the expert, consider

the distribution ds,a,t over observed cost-to-go Q, such that EQ∼ds,a,t [Q] = Q∗T−t+1(s, a).

For any regressor Q̂, define the expected squared loss in predictions of the observed

cost-to-go at iteration i as `i(Q̂) = Et∼U(1:T),s∼dtπi ,a∼U(A),Q∼ds,t,a [|Q − Q̂T−t+1(s, a)|2].

Then since for any random variable X with mean µ, if we have an estimate µ̂ of the

mean, |µ̂− µ|2 = Ex[(x− µ̂)2 − (x− µ)2], we have that:

1

N

N∑
i=1

Et∼U(1:T),s∼dtπi ,a∼U(A)[|Q∗T−t+1(s, a)− Q̂iT−t+1(s, a)|2] =
1

N

N∑
i=1

`i(Q̂
i)− `i(Q∗)

Now, in the finite sample case, consider collecting m samples at each iteration i:

{(sij , aij , tij , Qij)}mj=1. The expected squared loss `i is estimated as ˆ̀
i(Q̂) = 1

m

∑m
j=1(Q̂T−tij+1(sij , aij)−

Qij)
2, and the no-regret algorithm is run on the estimated loss ˆ̀

i.

Define Yi,j = `i(Q̂
i) − (Q̂iT−tij+1(sij , aij) − Qij)

2 − `i(Q
∗) + (Q∗T−tij+1(sij , aij) −

Qij)
2, the difference between the expected squared loss and the empirical square loss

at each sample for both Q̂i and Q∗. Conditioned on previous trajectories, each Yi,j

has expectation 0. Then the sequence of random variables Xkm+l =
∑k

i=1

∑m
j=1 Yi,j +∑l

j=1 Y(k+1),j , for k ∈ {0, 1, 2, . . . , N − 1} and l ∈ {1, 2, . . . ,m}, forms a martingale, and

if the squared loss at any sample is bounded by `max, we obtain that |Xi − Xi+ 1| ≤
2`max. By Azuma-Hoeffding’s inequality, this implies that with probability at least 1−δ,

1
NmXNm ≤ 2`max

√
2 log(1/δ)
Nm .

Denote the empirical average online regret on the training squared loss ε̂regret =
1
N

∑N
i=1

ˆ̀
i(Q̂

i) − minQ̂∈Q
1
N

∑N
i=1

ˆ̀
i(Q̂). Let Q̃∗ be the bayes-optimal regressor on the

finite training data, and define the empirical regression regret of the best regressor in

the class as R̂class = minQ̂∈Q
1
N

∑N
i=1[ˆ̀i(Q̂)− ˆ̀

i(Q̃
∗)].

Then we obtain that with probability at least 1− δ:

A.3. DAGGER WITH LEARNER’S COST-TO-GO 245

1
N

∑N
i=1 `i(Q̂

i)− `i(Q∗)
= 1

N

∑N
i=1

ˆ̀
i(Q̂

i)− ˆ̀
i(Q
∗) + 1

NmXNm

≤ 1
N

∑N
i=1

ˆ̀
i(Q̂

i)− ˆ̀
i(Q
∗) + 2`max

√
2 log(1/δ)
Nm

≤ minQ̂∈Q
1
N

∑N
i=1[ˆ̀i(Q̂)− ˆ̀

i(Q
∗)] + ε̂regret + 2`max

√
2 log(1/δ)
Nm

≤ R̂class + ε̂regret + 2`max

√
2 log(1/δ)
Nm

where the last inequality follows from the fact that
∑N

i=1
ˆ̀
i(Q̃
∗) ≤

∑N
i=1

ˆ̀
i(Q
∗).

Combining with the above, we obtain that with probability at least 1− δ:

J(π)−J(π∗) ≤ 2
√
|A|T

√
R̂class + ε̂regret + 2`max

√
2 log(1/δ)

Nm
+

2TQ∗max

N
[nβ+T

N∑
i=nβ+1

βi]

A.3 DAGGER with Learner’s Cost-to-Go

We here provide the proof of the result for DAGGER using the learner’s cost-to-go,

sampled from state exploration distributions ν1:T .

To analyze this version, we begin with an alternate version of the performance dif-

ference lemma (lemma A.2.1) presented before:

Lemma A.3.1. Let π and π′ be any two policy and denote Vt and Qt the t-step value

function and Q-value function of policy π respectively, then:

J(π)− J(π′) = T E
t∼U(1:T),s∼dt

π′

[VT−t+1(s)−QT−t+1(s, π′)]

for U(1 : T) the uniform distribution on the set {1, 2, . . . , T}.

Proof. By applying lemma A.2.1 to J(π′)− J(π), we obtain:

J(π′)− J(π) = T E
t∼U(1:T),s∼dt

π′

[QT−t+1(s, π′)− VT−t+1(s)]

This proves the lemma.

Now denote the loss Ln used by the online learner at iteration n, s.t.:

Ln(π) = Et∼U(1:T),s∼νt [Q
π̂n
T−t+1(s, π)].

and εregret the average regret after the N iterations of DAGGER:

εregret =
1

N

N∑
i=1

Li(πi)−min
π∈Π

1

N

N∑
i=1

Li(π).

246 APPENDIX A. ANALYSIS OF DAGGER FOR IMITATION LEARNING

For any policy π ∈ Π, denote the average L1 distance between νt and dtπ over time

steps t as:

D(ν, π) =
1

T

T∑
t=1

||νt − dtπ||1.

Assume the cost-to-go of the learned policies π1, π2, . . . , πN are non-negative and

bounded by Qmax, for any state s, action a and time t (in the worst case this is TCmax).

Denote π̂ the best policy found by DAGGER over the iterations, and π the uniform

mixture policy over π1:N defined as before. Then we have to following guarantee with

this version of DAGGER with learner’s cost-to-go:

Theorem 4.3.1. For any π′ ∈ Π:

J(π̂) ≤ J(π) ≤ J(π′) + Tεregret + TQmaxD(ν, π′)

Thus, if a no-regret online cost-sensitive classification algorithm is used, then:

lim
N→∞

J(π) ≤ J(π′) + TQmaxD(ν, π′)

Proof. Let Qit denote the t-step Q-value function of policy π̂i. Then for every π̂i we have:

J(π̂i)− J(π′)

= T Et∼U(1:T),s∼dt
π′

[QiT−t+1(s, π̂i)−QiT−t+1(s, π′)]

=
∑T

t=1 Es∼dt
π′

[QiT−t+1(s, π̂i)−QiT−t+1(s, π′)]

≤
∑T

t=1 Es∼νt [QiT−t+1(s, π̂i)−QiT−t+1(s, π′)] +Qmax
∑T

t=1 ||νt − dtπ′ ||1
= T Et∼U(1:T),s∼νt [Q

i
T−t+1(s, π̂i)−QiT−t+1(s, π′)] + TQmaxD(ν, π′)

where we use lemma A.3.1 in the first equality, and lemma A.1.1 in the first inequality.

Thus:

J(π)− J(π′)

= 1
N

∑N
i=1[J(π̂i)− J(π′)]

≤ 1
N

∑N
i=1[T Et∼U(1:T),s∼νt [Q

i
T−t+1(s, π̂i)−QiT−t+1(s, π′)] + TQmaxD(ν, π′)]

≤ T 1
N

∑N
i=1 Et∼U(1:T),s∼νt [Q

i
T−t+1(s, π̂i)]− T minπ∈Π

1
N

∑N
i=1 Et∼U(1:T),s∼νt [Q

i
T−t+1(s, π)]

+TQmaxD(ν, π′)

= Tεregret + TQmaxD(ν, π′)

Again, J(π̂) ≤ J(π) since the minimum is always better than the average, i.e.

mini J(π̂i) ≤ 1
N

∑N
i=1 J(π̂i). This proves the first part of the theorem.

The second part follows immediately from the fact that εregret → 0 as N →∞.

A.3. DAGGER WITH LEARNER’S COST-TO-GO 247

Adapting the exploration distribution

We can also provide a more general result for DAGGER with learner’s cost-to-go, if the

exploration distributions ν1:T change over the iterations of DAGGER.

For this case, let νn1:T denote the exploration distributions used at iteration n. The

loss Ln used by the online learner at iteration n would now be defined in terms of an

expectation under νn, i.e.:

Ln(π) = Et∼U(1:T),s∼νnt [Qπ̂nT−t+1(s, π)].

and εregret the average regret after the N iterations of DAGGER, would use this definition

of the loss:

εregret =
1

N

N∑
i=1

Li(πi)−min
π∈Π

1

N

N∑
i=1

Li(π).

Theorem A.3.1. If we use exploration distributions {νi1:T }Ni=1 over the iterations of

training, then for any π′ ∈ Π:

J(π̂) ≤ J(π) ≤ J(π′) + Tεregret + TQmax
1

N

N∑
i=1

D(νi, π′)

Thus, if a no-regret online cost-sensitive classification algorithm is used, and νit → dtπ′

as i→∞, then:

lim
N→∞

J(π) ≤ J(π′)

Proof. Let Qit denote the t-step Q-value function of policy π̂i. Then for every π̂i we have:

J(π̂i)− J(π′)

= T Et∼U(1:T),s∼dt
π′

[QiT−t+1(s, π̂i)−QiT−t+1(s, π′)]

=
∑T

t=1 Es∼dt
π′

[QiT−t+1(s, π̂i)−QiT−t+1(s, π′)]

≤
∑T

t=1 Es∼νit [Q
i
T−t+1(s, π̂i)−QiT−t+1(s, π′)] +Qmax

∑T
t=1 ||νit − dtπ′ ||1

= T Et∼U(1:T),s∼νit [Q
i
T−t+1(s, π̂i)−QiT−t+1(s, π′)] + TQmaxD(νi, π′)

where we use lemma A.3.1 in the first equality, and lemma A.1.1 in the first inequality.

Thus:

J(π)− J(π′)

= 1
N

∑N
i=1[J(π̂i)− J(π′)]

≤ 1
N

∑N
i=1[T Et∼U(1:T),s∼νit [Q

i
T−t+1(s, π̂i)−QiT−t+1(s, π′)] + TQmaxD(νi, π′)]

≤ T 1
N

∑N
i=1 Et∼U(1:T),s∼νit [Q

i
T−t+1(s, π̂i)]− T minπ∈Π

1
N

∑N
i=1 Et∼U(1:T),s∼νit [Q

i
T−t+1(s, π)]

+TQmax
1
N

∑N
i=1D(νi, π′)

= Tεregret + TQmax
1
N

∑N
i=1D(νi, π′)

Again, J(π̂) ≤ J(π) since the minimum is always better than the average, i.e.

mini J(π̂i) ≤ 1
N

∑N
i=1 J(π̂i). This proves the first part of the theorem.

248 APPENDIX A. ANALYSIS OF DAGGER FOR IMITATION LEARNING

The second part follows immediately from the fact that εregret → 0 as N → ∞ and

D(νi, π′)→ 0 as i→∞.

This theorem suggests that if we would have a method that can adapt the exploration

distribution νit in a way that it converges to dtπ∗ of an optimal policy π∗ ∈ Π, for all time

t, as i → ∞, then using a no-regret procedure, we would always find an optimal policy

in Π in the limit. However, at this point we do not know of a method that could adapt

νi to guarantee this.

Appendix B

Analysis of SCP for Submodular

Optimization

This appendix contains the proofs of the various theoretical results for SCP presented

in chapter 7.

Preliminaries

We begin by proving a number of lemmas about monotone submodular functions, which

will be useful to prove our main results.

Lemma B.0.2. Let S be a set and f be a monotone submodular function defined on list

of items from S. For any lists A,B, we have that:

f(A⊕B)− f(A) ≤ |B|(Es∼U(B)[f(A⊕ s)]− f(A))

for U(B) the uniform distribution on items in B.

Proof. For any list A and B, let Bi denote the list of the first i items in B, and bi the

ith item in B. We have that:

f(A⊕B)− f(A)

=
∑|B|

i=1 f(A⊕Bi)− f(A⊕Bi−1)

≤
∑|B|

i=1 f(A⊕ bi)− f(A)

= |B|(Eb∼U(B)[f(A⊕ b)]− f(A))

where the inequality follows from the submodularity property of f .

Lemma B.0.3. Let S be a set, and f a monotone submodular function defined on lists of

items in S. Let A,B be any lists of items from S. Denote Aj the list of the first j items

in A, U(B) the uniform distribution on items in B and define εj = Es∼U(B)[f(Aj−1 ⊕
s)] − f(Aj), the additive error term in competing with the average marginal benefits of

250 APPENDIX B. ANALYSIS OF SCP FOR SUBMODULAR OPTIMIZATION

the items in B when picking the jth item in A (which could be positive or negative).

Then:

f(A) ≥ (1− (1− 1/|B|)|A|)f(B)−
|A|∑
i=1

(1− 1/|B|)|A|−iεi

In particular if |A| = |B| = k, then:

f(A) ≥ (1− 1/e)f(B)−
k∑
i=1

(1− 1/k)k−iεi

and for α = exp(−|A|/|B|) (i.e. |A| = |B| log(1/α)):

f(A) ≥ (1− α)f(B)−
|A|∑
i=1

(1− 1/|B|)|A|−iεi

Proof. Using the monotone property and previous lemma B.0.2, we must have that:

f(B)− f(A) ≤ f(A⊕B)− f(A) ≤ |B|(Eb∼U(B)[f(A⊕ b)]− f(A)).

Now let ∆j = f(B)− f(Aj). By the above we have that

∆j

≤ |B|[Es∼U(B)[f(Aj ⊕ s)]− f(Aj)]

= |B|[Es∼U(B)[f(Aj ⊕ s)]− f(Aj+1) + f(Aj+1)− f(B) + f(B)− f(Aj)]

= |B|[εj+1 + ∆j −∆j+1]

Rearranging terms, this implies that ∆j+1 ≤ (1 − 1/|B|)∆j + εj+1. Recursively

expanding this recurrence from ∆|A|, we obtain:

∆|A| ≤ (1− 1/|B|)|A|∆0 +

|A|∑
i=1

(1− 1/|B|)|A|−iεi

Using the definition of ∆|A| and rearranging terms, we obtain f(A) ≥ (1−(1−1/|B|)|A|)f(B)−∑|A|
i=1(1−1/|B|)|A|−iεi. This proves the first statement of the theorem. The following two

statements follow from the observations that (1− 1/|B|)|A| = exp(|A| log(1− 1/|B|)) ≤
exp(−|A|/|B|) = α. Hence (1 − (1 − 1/|B|)|A|)f(B) ≥ (1 − α)f(B). When |A| = |B|,
α = 1/e and this proves the special case where |A| = |B|.

For the greedy list construction strategy, the εj in the last lemma are always ≤ 0,

such that Lemma B.0.3 implies that if we construct a list of size k with greedy, it must

achieve at least 63% of the value of the optimal list of size k, but also that it must

achieve at least 95% of the value of the optimal list of size bk/3c, and at least 99.9%

of the value of the optimal list of size bk/7c.
A more surprising fact that follows from the last lemma is that constructing a list

stochastically, by sampling items from a particular fixed distribution, can provide the

same guarantee as greedy:

251

Lemma B.0.4. Let S be a set, and f a monotone submodular function defined on lists

of items in S. Let B be any list of items from S and U(B) the uniform distribution on

elements in B. Suppose we construct the list A by sampling k items randomly from U(B)

(with replacement). Denote Aj the list obtained after j samples, and Pj the distribution

over lists obtained after j samples. Then:

EA∼Pk [f(A)] ≥ (1− (1− 1/|B|)k)f(B)

In particular, for α = exp(−k/|B|):

EA∼Pk [f(A)] ≥ (1− α)f(B)

Proof. The proof follows a similar proof to the previous lemma. Recall that by the

monotone property and lemma B.0.2, we have that for any list A: f(B) − f(A) ≤
f(A ⊕ B) − f(A) ≤ |B|(Eb∼U(B)[f(A ⊕ b)] − f(A)). Because this holds for all lists,

we must also have that for any distribution P over lists A, f(B) − EA∼P [f(A)] ≤
|B|EA∼P [Eb∼U(B)[f(A ⊕ b)] − f(A)]. Also note that by the way we construct sets, we

have that EAj+1∼Pj+1 [f(Aj+1)] = EAj∼Pj [Es∼U(B)[f(Aj ⊕ s)]]
Now let ∆j = f(B)− EAj∼Pj [f(Aj)]. By the above we have that:

∆j

≤ |B|EAj∼Pj [Es∼U(B)[f(Aj ⊕ s)]− f(Aj)]

= |B|EAj∼Pj [Es∼U(B)[f(Aj ⊕ s)]− f(B) + f(B)− f(Aj)]

= |B|(EAj+1∼Pj+1 [f(Aj+1)]− f(B) + f(B)− EAj∼Pj [f(Aj)])

= |B|[∆j −∆j+1]

Rearranging terms, this implies that ∆j+1 ≤ (1− 1/|B|)∆j . Recursively expanding this

recurrence from ∆k, we obtain:

∆k ≤ (1− 1/|B|)k∆0

Using the definition of ∆k and rearranging terms we obtain EA∼Pk [f(A)] ≥ (1 − (1 −
1/|B|)k)f(B). The second statement follows again from the fact that (1−(1−1/|B|)k)f(B) ≥
(1− α)f(B)

Corollary B.0.1. There exists a distribution that when sampled k times to construct a

list, achieves an approximation ratio of (1 − 1/e) of the optimal list of size k in expec-

tation. In particular, if A∗ is an optimal list of size k, sampling k times from U(A∗)

achieves this approximation ratio. Additionally, for any α ∈ (0, 1], sampling dk log(1/α)e
times must construct a list that achieves an approximation ratio of (1−α) in expectation.

Proof. Follows from the last lemma using B = A∗.

This surprising result can also be seen as a special case of a more general result

proven in prior related work that analyzed randomized set selection strategies to optimize

submodular functions (lemma 2.2 in Feige et al. (2011)).

252 APPENDIX B. ANALYSIS OF SCP FOR SUBMODULAR OPTIMIZATION

Proofs of Main Results

We now provide the proofs of the main results in chapter 7. We provide the proofs for the

more general contextual case where we learn over a policy class Π̃. All the results for the

context-free case can be seen as special cases of these results when Π = Π̃ = {πs|s ∈ S}
and πs(x, L) = s for any state x and list L.

We refer the reader to the notation defined in Sections 7.1 and 7.3 for the definitions

of the various terms used.

Theorem 7.3.1. Let α = exp(−m/k) and k′ = min(m, k). After T iterations, for any

δ, δ′ ∈ (0, 1), we have that with probability at least 1− δ:

F (π,m) ≥ (1− α)F (L∗π,k)−
R

T
− 2

√
2 ln(1/δ)

T

and similarly, with probability at least 1− δ − δ′:

F (π,m) ≥ (1− α)F (L∗π,k)−
E[R]
T −

√
2k′ ln(1/δ′)

T − 2

√
2 ln(1/δ)

T

Proof.

F (π,m)

= 1
T

∑T
t=1 F (πt,m)

= 1
T

∑T
t=1 ELπ,m∼πt [Ex∼D[fx(Lπ,m(x))]]

= (1− α)Ex∼D[fx(L∗π,k(x))]− [(1− α)Ex∼D[fx(L∗π,k(x))]

− 1
T

∑T
t=1 ELπ,m∼πt [Ex∼D[fx(Lπ,m(x))]]]

Now consider the sampled states {xt}Tt=1 and the policies πt,i sampled i.i.d. from πt to

construct the lists {Lt}Tt=1 and denote the random variablesXt = (1−α)(Ex∼D[fx(L∗π,k(x))]−
fxt(L

∗
π,k(xt)))−ELπ,m∼πt [Ex∼D[fx(Lπ,m(x))]]− fxt(Lt)]. If πt is deterministic, then sim-

ply consider all πt,i = πt. Because the xt are i.i.d. from D, and the distribution of policies

used to construct Lt only depends on {xτ}t−1
τ=1 and {Lτ}t−1

τ=1, then the Xt conditioned on

{Xτ}t−1
τ=1 have expectation 0, and because fx ∈ [0, 1] for all state x ∈ X , Xt can vary

in a range r ⊆ [−2, 2]. Thus the sequence of random variables Yt =
∑t

i=1Xi, for t =1

to T , forms a martingale where |Yt − Yt+1| ≤ 2. By the Azuma-Hoeffding’s inequality,

we have that P (YT /T ≥ ε) ≤ exp(−ε2T/8). Hence for any δ ∈ (0, 1), we have that with

probability at least 1 − δ, YT /T ≤ 2

√
2 ln(1/δ)

T . Hence we have that with probability at

least 1− δ:

F (π,m)

= (1− α)Ex∼D[fx(L∗π,k(x))]− [(1− α)Ex∼D[fx(L∗π,k(x))]

− 1
T

∑T
t=1 ELπ,m∼πt [Ex∼D[fx(Lπ,m(x))]]]

= (1− α)Ex∼D[fx(L∗π,k(x))]− [(1− α) 1
T

∑T
t=1 fxt(L

∗
π,k(xt))−

1
T

∑T
t=1 fxt(Lt)]

−YT /T
= (1− α)Ex∼D[fx(L∗π,k(x))]− [(1− α) 1

T

∑T
t=1 fxt(L

∗
π,k(xt))−

1
T

∑T
t=1 fxt(Lt)]

−2

√
2 ln(1/δ)

T

253

Let wi = (1− 1/k)m−i. From Lemma B.0.3, we have:

(1− α) 1
T

∑T
t=1 fxt(L

∗
π,k(xt))−

1
T

∑T
t=1 fxt(Lt)

≤ 1
T

∑T
t=1

∑m
i=1wi(Eπ∼U(L∗π,k)[fxt(Lt,i−1 ⊕ π(xt))]− fxt(Lt,i))

= Eπ∼U(L∗π,k)[
1
T

∑T
t=1

∑m
i=1wi(fxt(Lt,i−1 ⊕ π(xt))− fxt(Lt,i))]

≤ maxπ∈Π[1
T

∑T
t=1

∑m
i=1wi(fxt(Lt,i−1 ⊕ π(xt))− fxt(Lt,i))]

≤ maxπ∈Π̃[1
T

∑T
t=1

∑m
i=1wi(f(Lt,i−1 ⊕ π(xt))− fxt(Lt,i))]

= R/T

Hence combining with the previous result proves the first part of the theorem.

Additionally, for the sampled environments {xt}Tt=1 and the policies πt,i, consider the

random variables Qm(t−1)+i = wiEπ∼πt [fxt(Lt,i−1⊕ π(xt, Lt,i−1))]−wifxt(Lt,i). Because

each draw of πt,i is i.i.d. from πt, we have that again the sequence of random variables

Zj =
∑j

i=1Qi, for j = 1 to Tm forms a martingale and because each Qi can take

values in a range [−wj , wj] for j = 1 + mod(i − 1,m), we have |Zi − Zi−1| ≤ wj .

Since
∑Tm

i=1 |Zi − Zi−1|2 ≤ T
∑m

i=1(1 − 1/k)2(m−i) ≤ T min(k,m) = Tk′, by Azuma-

Hoeffding’s inequality, we must have that P (ZTm ≥ ε) ≤ exp(−ε2/2Tk′). Thus for any

δ′ ∈ (0, 1), with probability at least 1−δ′, ZTm ≤
√

2Tk′ ln(1/δ). Hence combining with

the previous result, it must be the case that with probability at least 1 − δ − δ′, both

YT /T ≤ 2

√
2 ln(1/δ)

T and ZTm ≤
√

2Tk′ ln(1/δ′) holds.

Now note that:

maxπ∈Π̃[1
T

∑T
t=1

∑m
i=1wi(f(Lt,i−1 ⊕ π(xt))− fxt(Lt,i))]

= maxπ∈Π̃[1
T

∑T
t=1

∑m
i=1wi(fxt(Lt,i−1 ⊕ π(xt))− Eπ′∼πt [f(Lt,i−1 ⊕ π′(xt, Lt,i−1))])]

+ZTm/T

= E[R]/T + ZTm/T

Using this additional fact, and combining with previous results we must have that

with probability at least 1− δ − δ′:

F (π,m)

≥ (1− α)F (L∗π,k)− [(1− α) 1
T

∑T
t=1 fxt(L

∗
π,k(xt))−

1
T

∑T
t=1 fxt(Lt)]− 2

√
2 ln(1/δ)

T

≥ (1− α)F (L∗π,k)− E[R]/T − ZTm/T − 2

√
2 ln(1/δ)

T

≥ (1− α)F (L∗π,k)− E[R]/T −
√

2k′ ln(1/δ′)
T − 2

√
2 ln(1/δ)

T

We now show that the expected regret must grow with
√
k′ and not k′, hen using

Weighted Majority with the optimal learning rate (or with the doubling trick).

Corollary 7.2.2. Under the event where Theorem 7.3.1 holds (the event that occurs

w.p. 1− δ− δ′), if Π̃ is a finite set of policies, using Weighted Majority with the optimal

254 APPENDIX B. ANALYSIS OF SCP FOR SUBMODULAR OPTIMIZATION

learning rate guarantees that after T iterations:

E[R]/T ≤ 4k′ ln |Π̃|
T + 2

√
k′ ln |Π̃|
T + 29/4(k′/T)3/4(ln(1/δ′))1/4

√
ln |Π̃|

For large enough T in Ω(k′(ln |Π̃|+ ln(1/δ′))), we obtain that:

E[R]/T ≤ O(

√
k′ ln |Π̃|
T

)

Proof. We use a similar argument to Lemma 4 in Streeter and Golovin (2007) to bound

E[R] in the result of theorem 7.3.1. Consider the sum of the benefits accumulated

by the learning algorithm at position i in the list, for i ∈ 1, 2, . . . ,m, i.e. let yi =∑T
t=1 b(πt,i(xt, Lt,i−1)|xt, Lt,i−1), where πt,i corresponds to the particular sampled policy

by Weighted Majority for choosing the item at position i, when constructing the list Lt

for state xt. Note that
∑m

i=1(1−1/k)m−iyi ≤
∑m

i=1 yi ≤ T by the fact that the monotone

submodular function fx is bounded in [0, 1] for all state x. Now consider the sum of the

benefits you could have accumulated at position i, had you chosen the best fixed policy

in hindsight to construct all list, keeping the policy fixed as the policy is constructed,

i.e. let zi =
∑T

t=1 b(π
∗(xt, Lt,i−1)|xt, Lt,i−1), for

π∗ = arg max
π∈Π̃

m∑
i=1

(1− 1/k)m−i
T∑
t=1

b(π∗(xt, Lt,i−1)|xt, Lt,i−1),

and let ri = zi − yi. Now denote Z =
√∑m

i=1(1− 1/k)m−izi. We have Z2 =
∑m

i=1(1−
1/k)m−izi =

∑m
i=1(1−1/k)m−i(yi+ri) ≤ T+R, where R is the sample regret incurred by

the learning algorithm. Under the event where theorem 7.3.1 holds (i.e. the event that

occurs with probability at least 1− δ− δ′), we had already shown that R ≤ E[R] +ZTm,

for ZTm ≤
√

2Tk′ ln(1/δ′), in the second part of the proof of theorem 7.3.1. Thus

when theorem 7.3.1 holds, we have Z2 ≤ T +
√

2Tk′ ln(1/δ′) + E[R]. Now using the

generalized version of weighted majority with rewards (i.e. using directly the benefits

as rewards) Arora et al. (2012), since the rewards at each update are in [0, k′], we have

that with the best learning rate in hindsight 1: E[R] ≤ 2Z
√
k′ ln |Π̃|. Thus we obtain

Z2 ≤ T +
√

2Tk′ ln(1/δ′) + 2Z
√
k′ ln |Π̃|. This is a quadratic inequality of the form

Z2 − 2Z
√
k′ ln |Π̃| − T −

√
2Tk′ ln(1/δ′) ≤ 0, with the additional constraint Z ≥ 0.

This implies Z is less than or equal to the largest non-negative root of the polynomial

Z2 − 2Z
√
k′ ln |Π̃| − T −

√
2Tk′ ln(1/δ′). Solving for the roots, we obtain

Z ≤
√
k′ ln |Π̃|+

√
k′ ln |Π̃|+ T +

√
2Tk′ ln(1/δ′)

≤ 2
√
k′ ln |Π̃|+

√
T + (2Tk′ ln(1/δ′))1/4

1if not a doubling trick can be used to get the same regret bound within a small constant factor
Cesa-Bianchi et al. (1997)

255

Plugging back Z into the expression E[R] ≤ 2Z
√
k′ ln |Π̃|, we obtain:

E[R] ≤ 4k′ ln |Π̃|+ 2
√
Tk′ ln |Π̃|+ 2(2T ln(1/δ′))1/4(k′)3/4

√
ln |Π̃|

Thus the average regret:

E[R]
T ≤ 4k′ ln |Π̃|

T + 2

√
k′ ln |Π̃|
T + 29/4(k′/T)3/4(ln(1/δ′))1/4

√
ln |Π̃|

For T in Ω(k′(ln Π̃ + ln(1/δ′))), the dominant term is 2

√
k′ ln |Π̃|
T , and thus E[R]

T is

O(

√
k′ ln |Π̃|
T).

Corollary 7.3.1. Let α = exp(−m/k) and k′ = min(m, k). If we run an online learning

algorithm on the sequence of convex loss Ct instead of `t, then after T iterations, for any

δ ∈ (0, 1), we have that with probability at least 1− δ:

F (π,m) ≥ (1− α)F (L∗π,k)−
R̃

T
− 2

√
2 ln(1/δ)

T
− G

where R̃ is the regret on the sequence of convex loss Ct, and G = 1
T [
∑T

t=1(`t(πt) −
Ct(πt)) + minπ∈Π̃

∑T
t=1Ct(π) − minπ′∈Π̃

∑T
t=1 `t(π

′)] is the “convex optimization gap”

that measures how close the surrogate losses Ct is to minimizing the cost-sensitive losses

`t.

Proof. Follows immediately from Theorem 7.3.1 using the definition of R, R̃ and G, since

G = R−R̃
T

Appendix C

Analysis of Batch and DAGGER

for System Identification

This appendix contains the detailed proofs and analysis of the theoretical results pre-

sented in Chapter 8.

The proof of these results will make use of some additional notation not used in

this chapter. In particular, we define dtω,π the distribution of states at time t if we

executed π from time step 1 to t− 1, starting from distribution ω at time 1, and dω,π =

(1−γ)
∑∞

t=1 γ
t−1dtω,π the discounted distribution of states over the infinite horizon if we

follow π, starting in ω at time 1.

C.1 Relating Performance to Error in Model

This subsection presents a number of useful lemmas for relating the performance (in

terms of expected total cost) of a policy in the real system to the predictive error in the

learned model from which the policy was computed.

Lemma C.1.1. Suppose we learned an approximate model T̂ instead of the true model

T and let V̂ π represent the value function of π under T̂ . Then for any state distribution

ω:
Es∼ω[V π(s)− V̂ π(s)]

= γ
1−γE(s,a)∼Dω,π [Es′∼Tsa [V̂ π(s′)]− Es′∼T̂sa [V̂ π(s′)]]

Proof.

Es∼ω[V π(s)− V̂ π(s)]

= Es∼ω,a∼πs [C(s, a) + γEs′∼Tsa [V π(s′)]− C(s, a)− γEs′∼T̂sa [V̂ π(s′)]]

= γEs∼ω,a∼πs [Es′∼Tsa [V π(s′)]− Es′∼T̂sa [V̂ π(s′)]]

= γEs∼ω,a∼πs [Es′∼Tsa [V π(s′)]− Es′∼Tsa [V̂ π(s′)] + Es′∼Tsa [V̂ π(s′)]− Es′∼T̂sa [V̂ π(s′)]]

= γEs∼d2ω,π [V π(s)− V̂ π(s)] + γE(s,a)∼D1
ω,π

[Es′∼Tsa [V̂ π(s′)]− Es′∼T̂sa [V̂ π(s′)]]

258
APPENDIX C. ANALYSIS OF BATCH AND DAGGER FOR SYSTEM

IDENTIFICATION

This gives us a recurence. Solving this recurence proves the lemma.

Corollary C.1.1. Suppose for all s, a: C(s, a) ∈ [Cmin, Cmax], or for all s: V̂ π(s) ∈
[V̂min, V̂max], then:

Es∼ω[V π(s)− V̂ π(s)]

≤ γ(V̂max−V̂min)
2(1−γ) ||E(s,a)∼Dω,π [Tsa − T̂sa]||1

≤ γ(Cmax−Cmin)
2(1−γ)2

E(s,a)∼Dω,π [||Tsa − T̂sa||1]

Proof. Let ∆T = E(s,a)∼Dω,π [Tsa − T̂sa]. Note that
∑

s′ ∆T (s′) = 0, so that for any

constant c ∈ R,
∑

s′ c∆T (s′) = 0. Then by the previous lemma we have that for any

constant c ∈ R:
Es∼ω[V π(s)− V̂ π(s)]

= γ
1−γ

∑
s′ ∆T (s′)V̂π(s′)

= γ
1−γ

∑
s′ ∆T (s′)(V̂π(s′)− c)

≤ γ
1−γ ||∆T ||1 sups |V̂π(s)− c|

In particular, if V̂π(s) ∈ [V̂min, V̂max] for all s, we can choose c = V̂max−V̂min
2 to guarantee

that sups |V̂π(s) − c| ≤ V̂max−V̂min
2 . Thus Es∼ω[V π(s) − V̂ π(s)] ≤ γ(V̂max−V̂min)

2(1−γ) ||∆T ||1. If

C(s, a) ∈ [Cmin, Cmax] for all (s, a), then this implies V̂π(s) ∈ [V̂min, V̂max] for all s for

V̂min = Cmin
1−γ and V̂max = Cmax

1−γ . Plugin in those values for V̂min and V̂max, and the fact

that || · ||1 is convex with Jensen’s inequality, proves the second result. The proof also

applies in the continuous case by replacing the sum over s′ by an integral over the state

space in the first and second equality.

Lemma C.1.2. Suppose we learned an approximate model T̂ instead of the true model

T and let V̂ π represent the value function of π under T̂ . Then for any state distribution

ω and policies π, π′:

Jω(π)− Jω(π′)

= Es∼ω[V̂ π(s)− V̂ π′(s)] + γ
1−γE(s,a)∼Dω,π [Es′∼Tsa [V̂ π(s′)]− Es′∼T̂sa [V̂ π(s′)]]

+ γ
1−γE(s,a)∼Dω,π′ [Es′∼T̂sa [V̂ π′(s′)]− Es′∼Tsa [V̂ π′(s′)]]

Proof.

Jω(π)− Jω(π′)

= Es∼ω[V π(s)− V π′(s)]

= Es∼ω[(V̂ π(s)− V̂ π′(s)) + (V π(s)− V̂ π(s))− (V π′(s)− V̂ π′(s))]

Applying lemma C.1.1 to Es∼ω[V π(s) − V̂ π(s)] and −Es∼ω[V π′(s) − V̂ π′(s)] proves the

lemma.

Suppose that C(s, a) ∈ [Cmin, Cmax] for all s, a and let Crng = Cmax − Cmin and

H =
γCrng

(1−γ)2
.

C.2. RELATING L1 DISTANCE TO OBSERVABLE LOSSES 259

Corollary C.1.2. Suppose we learned an approximate model T̂ and solved it approxi-

mately to obtain π. For any policy π′, let επ
′

oc = Es∼ω[V̂ π(s)− V̂ π′(s)] denote how much

larger is the expected total cost of π in the learned model T̂ compared to π′ for start

distribution ω. Then for any policy π′:

Jω(π)− Jω(π′) ≤ επ′oc +HE(s,a)∼D[||Tsa − T̂sa||1]

for D = 1
2Dω,π + 1

2Dω,π′

Proof. Using lemma C.1.2, we first note that the term Es∼ω[V̂ π(s)− V̂ π′(s)] = επ
′

oc. The

other two terms can be bounded by 1
2HE(s,a)∼Dω,π [||Tsa−T̂sa||1] and 1

2HE(s,a)∼Dω,π′ [||Tsa−
T̂sa||1] respectively, following similar steps as in the proof of corollary C.1.1. Combining

those two terms proves the corollary.

This corollary forms the basis of much of our analysis of the Batch and DAgger

algorithms. In fact, this corollary already provides a performance bound for Batch, albeit

with a major caveat: it bounds test performance of the learned policy π as a function of

an error notion in the learned model T̂ that cannot be minimized or controlled by the

algorithm. That is, when collecting data under exploration distribution ν and fitting the

model T̂ based on this data, Batch could be making the quantity E(s,a)∼D[||Tsa− T̂sa||1]

arbitrarily close to its maxima (i.e. 2) in order to achieve low expected error under the

training distribution ν. Even if there exists a model T ′ ∈ T where E(s,a)∼D[||Tsa−T ′sa||1]

is small, Batch would not pick this model if it has larger error under ν compared to other

models in the class T . As is, this bound only says that: if by chance Batch ends up

picking a model that has low error under distribution D, then it must find a policy π not

much worse than π′. Instead we would like to be able to say something much stronger

of the form: if there exists a model with low error on training data, then we must find

a policy that performs well compared to other policies π′. To do so, we must bound the

term E(s,a)∼D[||Tsa− T̂sa||1] by a training error term that the algorithm is minimizing. A

first issue is bounding the L1 distance by a loss we can minimize from observed samples.

We present several possibilities for this in the next section. Then the remaining part will

simply involve performing a change of distribution to bound the error under distribution

D in terms of the error under the training distribution.

C.2 Relating L1 distance to observable losses

This subsection presents a number of useful lemmas for relating the predictive error in

L1 distance that we would ideally need to minimize to other losses that are easier to

minimize when learning a model from sampled transitions. These results prove Lemma

8.3.1 in Chapter 8.

260
APPENDIX C. ANALYSIS OF BATCH AND DAGGER FOR SYSTEM

IDENTIFICATION

Relation to Classification Loss

We first show how the L1 distance can be related to a classification loss when learning

deterministic transition models in MDPs with finitely many states. Namely, given a

model T̂ which predicts next state ŝ′sa when doing action a in state s, then we define the

0-1 classification loss of T̂ when observing transition (s, a, s′) as:

`0−1(T̂ , s, a, s′) = I(s′ 6= ŝ′sa),

for I the indicator function. We show below that the L1 distance is related to this

classification loss by the following:

E(s,a)∼D[||Tsa − T̂sa||1] = 2E(s,a)∼D,s′∼Tsa [`0−1(T̂ , s, a, s′)]

This is proven in the following lemma:

Lemma C.2.1. Suppose T̂ is a deterministic transition function (i.e. for any s, a, T̂sa

has probability 1 on a particular next state ŝ′sa), e.g. a multiclass classifier. Then for any

joint state-action distribution D, E(s,a)∼D[||Tsa−T̂sa||1] = 2E(s,a)∼D,s′∼Tsa [`0−1(T̂ , s, a, s′)].

Proof.

E(s,a)∼D[||Tsa − T̂sa||1]

= E(s,a)∼D[
∑

s′ |Tsa(s′)− T̂sa(s′)|]
= E(s,a)∼D[1− Tsa(ŝ′sa) +

∑
s′ 6=ŝ′sa Tsa(s

′)]

= 2E(s,a)∼D[Ps′∼Tsa(s′ 6= ŝ′sa)]

= 2E(s,a)∼D,s′∼Tsa [I(s′ 6= ŝ′sa)]]

Additionally, any surrogate loss ` that upper bounds the 0-1 loss that are often used

when learning classifiers (e.g. hinge loss when learning SVMs) could be used to upper

bound the L1 distance. In this case, we have E(s,a)∼D[||Tsa−T̂sa||1] ≤ 2E(s,a)∼D,s′∼Tsa [`(T̂ , s, a, s′)]

from the fact that `(T̂ , s, a, s′) ≥ `0−1(T̂ , s, a, s′). This proves the statement εL1
prd ≤ 2εcls

prd

in Lemma 8.3.1 of Chapter 8.

Relation to Negative Log Likelihood

We now show that for arbitrary MDPs and set of models, we can minimize the negative

log likelihood to minimize a bound on the L1 distance. Namely, for any model T̂ , define

the negative log likelihood loss on transition (s, a, s′) as:

`nlh(T̂ , s, a, s′) = − log(T̂sa(s
′)).

Then this loss can be related to the L1 distance as follows:

E(s,a)∼D[||Tsa − T̂sa||1]

≤
√

2E(s,a)∼D,s′∼Tsa [`nlh(T̂ , s, a, s′)− `nlh(T, s, a, s′)].

C.2. RELATING L1 DISTANCE TO OBSERVABLE LOSSES 261

This is shown in the lemma below:

Lemma C.2.2. For any joint state-action distribution D, E(s,a)∼D[||Tsa − T̂sa||1] ≤√
2E(s,a)∼D,s′∼Tsa [`nlh(T̂ , s, a, s′)− `nlh(T, s, a, s′)].

Proof. We know that ||Tsa − T̂sa||1 = 2||Tsa − T̂sa||tv for ||Tsa − T̂sa||tv the total vari-

ation distance between Tsa and T̂sa. Additionally, Pinsker’s inequality tells us that

||Tsa − T̂sa||tv ≤
√

KL(Tsa||T̂sa)
2 for KL(Tsa||T̂sa) = Es′∼Tsa [log(Tsa(s′)

T̂sa(s′)
)] the Kullback-

Leibler divergence. Thus we have ||Tsa − T̂sa||1 ≤
√

2KL(Tsa||T̂sa). Hence:

E(s,a)∼D[||Tsa − T̂sa||1]

≤ E(s,a)∼D[

√
2KL(Tsa||T̂sa)]

≤
√

2E(s,a)∼D[KL(Tsa||T̂sa)]

=
√

2E(s,a)∼D,s′∼Tsa [`nlh(T̂ , s, a, s′)− `nlh(T, s, a, s′)]

where the second inequality follows from the Jensen’s inequality since
√
· is concave.

This proves the statement εL1
prd ≤

√
2εKL

prd in Lemma 8.3.1 in Chapter 8.

Relation to Squared Loss in the Mean

Another interesting special case not discussed in Chapter 8 is for continuous MDPs

with additive gaussian noise and known covariance matrix where we seek to learn to

predict the mean next state. In this case, we can relate the L1 distance to a squared

loss in predicting the mean next state. Namely, suppose that for all s, a, Tsa and T̂sa are

gaussian distributions, both with covariance matrix Σ � 0. Let µsa and µ̂sa denote the

mean of Tsa and T̂sa respectively. We define the squared loss of T̂ on transition (s, a, s′)

as:

`sq(T̂ , s, a, s′) = ||µ̂sa − s′||22.

This loss can be related to the L1 distance between Tsa and T̂sa as follows:

E(s,a)∼D[||Tsa − T̂sa||1]

≤ c
√

E(s,a)∼D,s′∼Tsa [`sq(T̂ , s, a, s′)− `sq(T, s, a, s′)],

for c =
√

2
πσmin(Σ) and σmin(Σ) the minimum singular value of the noise covariance

matrix Σ. This is proven in the two lemmas below:

Lemma C.2.3. Suppose X1 and X2 are 2 independent gaussian random variables such

that X1 ∼ N(µ1,Σ) and X2 ∼ N(µ2,Σ) and denote G1 and G2 the pdf of X1 and X2.

Then ||G1 − G2||1 ≤
√

2
πσmin(Σ) ||µ1 − µ2||2, for σmin(A) the minimum singular value of

matrix A.

262
APPENDIX C. ANALYSIS OF BATCH AND DAGGER FOR SYSTEM

IDENTIFICATION

Proof. We have that ||G1 − G2||1 = 2[P (X1 ∈ A) − P (X2 ∈ A)] for A = {x|G1(x) ≥
G2(x)}. It can be seen thatG1(x) ≥ G2(x) when θ>(x−µ1) ≤ τ , for θ> = (µ2−µ1)>Σ−1

||Σ−1/2(µ2−µ1)||2
,

τ = ||Σ−1/2(µ2−µ1)||2
2 and Σ−1/2 denote the matrix square root of Σ−1 (which exists since

Σ−1 if symmetric positive definite). Thus A = {x|θ>(x − µ1) ≤ τ}. Define random

variables Z1 = θ>(X1 − µ1) and Z2 = θ>(X2 − µ1). Then we have that Z1 ∼ N(0, 1)

(i.e. a standard normal distribution) and Z2 ∼ N(2τ, 1). Thus:

||G1 −G2||1
= 2[P (X1 ∈ A)− P (X2 ∈ A)]

= 2[P (Z1 ≤ τ)− P (Z2 ≤ τ)]

= 4Φ(τ)− 2

For Φ the cumulative density function (cdf) of a standard normal variable. Because

τ ≥ 0 and Φ(x) is concave for x ≥ 0, then we can upperbound Φ(τ) with a first-order

taylor series expansion about 0. Let φ denote the probability density function (pdf) of

a standard normal distribution and σmax(A) the maximum singular value of a matrix A,

then we obtain:
4Φ(τ)− 2

≤ 4(Φ(0) + τφ(0))− 2

= 4τφ(0)

=
√

2
π ||Σ

−1/2(µ1 − µ2)||2
≤

√
2
πσmax(Σ−1/2)||µ1 − µ2||2

=
√

2
πσmin(Σ) ||µ1 − µ2||2

Lemma C.2.4. Suppose that for all s, a, Tsa and T̂sa are gaussian distributions, both

with covariance matrix Σ � 0. Then for any joint state-action distribution D, E(s,a)∼D[||Tsa−
T̂sa||1] ≤

√
2

πσmin(Σ)E(s,a)∼D,s′∼Tsa [`sq(T̂ , s, a, s′)− `sq(T, s, a, s′)], for σmin(Σ) the mini-

mum singular value of matrix Σ.

Proof. From Lemma C.2.3, we directly have that E(s,a)∼D[||Tsa−T̂sa||1] ≤
√

2
πσmin(Σ)E(s,a)∼D[||µsa−

µ̂sa||2]. Using the fact that ||µsa − µ̂sa||22 = Es′∼Tsa [||µ̂sa − s′||22 − ||µsa − s′||22] and that
√
· is concave with Jensen’s inequality proves the lemma.

C.3 Analysis of the Batch Algorithm

We now present the detailed analysis of the Batch Algorithm. As mentioned previously

after corollary C.1.2, this corollary already provides a performance bound for Batch, with

the caveat that its performance is related to an error notion in the model that is not

minimized by the algorithm, and could be made arbitrarily large when Batch attempts

C.3. ANALYSIS OF THE BATCH ALGORITHM 263

to minimize error under the training distribution ν. As is, it only states that Batch gets

good performance if by chance it picks a model with low error under the distribution

D = 1
2Dω,π̂ + 1

2Dω,π′ . To bound performance with respect to the model error Batch

is minimizing, the proof will simply involve using Corollary C.1.2, applying a change

of distribution, as well as bounding the L1 distance with an alternate loss Batch can

minimize from sample transitions using the results from the previous section.

Let’s define επ
′

oc = Es∼µ[V̂ π̂(s)−V̂ π′(s)], for V̂ π̂ and V̂ π′ the value functions of π̂ and π′

under learned model T̂ respectively. The term επ
′

oc measures how much better of a solution

π′ is compared to π̂ (in terms of expected total cost) on the optimal control problem

we solved (with the learned model T̂). For instance, if we found an ε-optimal policy π̂

within some class of policies Π for learned model T̂ , then επ
′

oc ≤ ε for all π′ ∈ Π. Define

the predictive error of T̂ on training distribution ν, measured in L1 distance, as εL1
prd =

E(s,a)∼ν [||Tsa − T̂sa||1]. Similarly, define εKL
prd = E(s,a)∼ν,s′∼Tsa [log(Tsa(s

′))− log(T̂sa(s
′))]

and εcls
prd = E(s,a)∼ν,s′∼Tsa [`(T̂ , s, a, s′)] the training predictive error of T̂ in terms of KL

and classification loss respectively (` is the 0-1 loss or any upper bound on the 0-1

loss such as hinge loss). Additionally, let cπν = sups,a[
Dµ,π(s,a)
ν(s,a)] represent the mismatch

between the exploration state-action distribution ν, and the state-action distribution

induced by policy π starting in µ.

Theorem 8.3.1. The policy π̂ is s.t. for any policy π′:

Jµ(π̂) ≤ Jµ(π′) + επ
′

oc +
cπ̂ν + cπ

′
ν

2
HεL1prd

Equivalently, using the relations in Section C.2:

Jµ(π̂) ≤ Jµ(π′) + επ
′

oc +
cπ̂ν + cπ

′
ν

2
H
√

2εKL
prd

Jµ(π̂) ≤ Jµ(π′) + επ
′

oc + (cπ̂ν + cπ
′
ν)Hεclsprd

Proof.

Jµ(π̂)− Jµ(π′)

≤ επ
′

oc + H
2 [E(s,a)∼Dµ,π̂ [||Tsa − T̂sa||1] + E(s,a)∼Dµ,π′ [||Tsa − T̂sa||1]]

≤ επ
′

oc + H
2 [cπ̂νE(s,a)∼ν [||Tsa − T̂sa||1] + cπ

′
ν E(s,a)∼ν [||Tsa − T̂sa||1]]

= επ
′

oc + cπ̂ν+cπ
′
ν

2 HE(s,a)∼ν [||Tsa − T̂sa||1]

where the first inequality follows from corollary C.1.2, and the second inequality follows

from the fact that for any non-negative function f and distributions p, q, Ex∼p[f(x)] ≤
supx[p(x)

q(x)]Ex∼q[f(x)]. We now have proven the first statement of the theorem. Applying

lemma C.2.2 proves that εL1
prd ≤

√
2εKL

prd, from which the second statement follows. Simi-

larly, lemma C.2.1 proves that εL1
prd ≤ 2εcls

prd, from which the third statement follows.

264
APPENDIX C. ANALYSIS OF BATCH AND DAGGER FOR SYSTEM

IDENTIFICATION

This theorem relates performance of the learned policy π̂ to the training error (under

the exploration distribution ν) the algorithm is minimizing in the model fitting proce-

dure. The factor cπ̂νH represents by how much the error in the model T̂ under training

distribution ν can scale to larger errors in predicting total cost of the learned policy π̂

in the real system T . Similarly cπ
′
ν H represents by how much the error in the model T̂

under training distribution ν can scale to larger errors in predicting total cost of another

policy π′ in the real system T . Together, with the error in solving the optimal control

problem under T̂ , this bounds how much worse π̂ can be compared to π′.

More interestingly, we can use this result to provide a strong guarantee of the

form: if there exists a model in the class which achieves small enough error under

the training distribution ν, Batch must find a policy with good test performance. We

can guarantee this if we use consistent fitting procedures that converge to the best

model in the class asymptotically, as we collect more and more data. This allows us

to relate the predictive error to the capacity of the model class to achieve low pre-

dictive error under the training distribution ν. We denote the modeling error, mea-

sured in L1 distance, as εL1
mdl = infT ′∈T E(s,a)∼ν [||Tsa − T ′sa||1]. Similarly, define εKL

mdl =

infT ′∈T E(s,a)∼ν,s′∼Tsa [log(Tsa(s
′))−log(T ′sa(s

′))] and εcls
mdl = infT ′∈T E(s,a)∼ν,s′∼Tsa [`(T ′, s, a, s′)].

These are all 0 in realizable settings, but generally non-zero in agnostic settings. After

observing m sampled transitions, the generalization error εL1
gen(m, δ) (or consistency rate)

bounds with high probability 1 − δ the quantity εL1
prd − εL1

mdl. Similarly, εKL
gen(m, δ) and

εcls
gen(m, δ) denote the generalization error for the KL and classification loss respectively.

By definition, all these quantities are such that after observing m samples, with

probability at least 1 − δ: εL1
prd ≤ εL1

mdl + εL1
gen(m, δ), εKL

prd ≤ εKL
mdl + εKL

gen(m, δ) and εcls
prd ≤

εcls
mdl +ε

cls
gen(m, δ). If the procedure is consistent in minimizing the L1 distance, this means

εL1
gen(m, δ)→ 0 as m→∞ for any δ > 0. Similarly, εKL

gen(m, δ)→ 0 and εcls
gen(m, δ)→ 0 as

m → ∞ for any δ > 0 if the procedure is consistent in minimizing the KL and classifi-

cation loss respectively. Combining with the previous result, this proves the following:

Corollary 8.3.1. After observing m transitions, with probability at least 1− δ, for any

policy π′:

Jµ(π̂) ≤ Jµ(π′) + επ
′

oc +
cπ̂ν + cπ

′
ν

2
H[εL1mdl + εL1gen(m, δ)].

Equivalently, using the relations in Section C.2:

Jµ(π̂) ≤ Jµ(π′) + επ
′

oc + cπ̂ν+cπ
′
ν

2 H
√

2[εKL
mdl + εKL

gen(m, δ)].

Jµ(π̂) ≤ Jµ(π′) + επ
′

oc + (cπ̂ν + cπ
′
ν)[εclsmdl + εclsgen(m, δ)].

Additionally, if it is consistent in the L1 distance, KL loss or classification loss then

εL1gen(m, δ)→ 0, εKL
gen(m, δ)→ 0, or εclsgen(m, δ)→ 0 respectively as m→∞ for any δ > 0.

C.3. ANALYSIS OF THE BATCH ALGORITHM 265

This corollary can be used to prove sample complexity results for Batch. For example,

with the classification loss, one could immediately leverage existing generalization error

results from the supervised learning literature to determine the quantity εcls
gen(m, δ) based

on the particular class of hypothesis T . These results would, e.g., express εcls
gen(m, δ) as a

function of the VC dimension (or multi-class equivalent) of T . In many cases, Hoeffding’s

inequality combined with covering number arguments and a union bound can be used

to compute these generalization error terms.

The Batch Algorithm’s Performance Bound is Tight

As mentioned in Chapter 8, the previous performance bound for Batch in Theorem 8.3.1

is tight, in that we can construct examples where the bound is achieved to an arbitrarily

small additive constant. We here present such an example.

Consider the real system to be a MDP with 3 states (s1, s2, s3) and 2 actions (a1, a2).

The initial state is always s1 (i.e. µ = [1; 0; 0]). Executing action a1 in s1 and s2 transits

to s1 with probability 1. Executing action a2 in s1 transits to s2 with probability 1 and

executing a2 in s2 transits to s2 with large probability 1 − ε, and transits to s3 with

small probability ε. Doing any action in s3 transits back to s3 with probability 1. There

is small cost δ > 0 for executing any action in s1 and large cost of C > δ(1 + 1−γ
γε) for

doing any action in s3. Doing action a2 in s2 has 0 cost, and action a1 is s2 has cost δ.

In this system, an optimal policy always executes a1 in s2 and can execute any action

in s1 and s3. So let’s consider an optimal policy π∗ that is uniform over (a1, a2) in s1

and s3. It achieves expected total cost of Jµ(π∗) = δ
1−γ .

Now consider that we learned a model T̂ which is the same as the real system, except

that the learned model predicts that when executing a2 in s2 it transits to s2 with

probability 1. The optimal policy under the learned model is to execute a2 in s1 and

s2, and to execute any action in s3. So let’s consider the policy π̂ which is uniform

over (a1, a2) in s3 and picks a2 in both s1 and s2. The distribution dµ,π̂ induced by this

policy can be computed as dµ,π̂ = (1− γ)(I − γT π̂)−1µ where I is |S| × |S| the identity

matrix, T π̂ is the transition matrix induced by π̂ (element (i,j) corresponds to probability

of transitioning from state j to state i when executing π̂ in state j), and µ the vector

containing the initial state distribution. It can be seen that the distribution dµ,π̂ =

[1− γ; γ(1−γ)
1−γ(1−ε) ; γ2ε

1−γ(1−ε)] and the performance of the learned policy π̂ in the real system

is Jµ(π̂) = δ + γ2εC
(1−γ)(1−γ(1−ε)) . So we have that Jµ(π̂)− Jµ(π∗) = γ2εC

(1−γ)(1−γ(1−ε)) −
γδ

1−γ .

Suppose the exploration distribution ν is induced by executing the policy π0, which

picks actions uniformly randomly in s1 and s3, and picks a2 with small probability

α > 0 in s2 (a1 with large probability 1 − α in s2). It can be seen that ν = dµ,π0 =
1

(1−γ)(1+γ/2−γα(1−ε))+γ2αε/2 [(1 − γ)(1 − γα(1 − ε)); γ(1 − γ)/2; γ2αε/2]. Because the L1

distance between the real system and learned model is 0 for all state-action pairs, except

266
APPENDIX C. ANALYSIS OF BATCH AND DAGGER FOR SYSTEM

IDENTIFICATION

2ε for state-action pair (s2, a2), we obtain that the predictive error during training is

E(s,a)∼ν [||Tsa − T̂sa||1] = γ(1−γ)αε
(1−γ)(1+γ/2−γα(1−ε))+γ2αε/2 , which becomes arbitrarily small as

α → 0. Thus the learned model could likely be picked by a model fitting procedure in

practice for small α. The learned model is also an optimal model among deterministic

models, so if T contains only deterministic models, T̂ would likely be picked.

Now we have that cπ̂ν = 2c
α for c = (1−γ)(1+γ/2−γα(1−ε))+γ2αε/2

1−γ(1−ε) . Similarly, we have

dµ,π∗ = 1
(1−γ)(1+γ/2) [1− γ; γ(1−γ)

2 ; 0] so that cπ
∗
ν = (1−γ)(1+γ/2−γα(1−ε))+γ2αε/2

(1−α)(1−γ)(1+γ/2) .

For this problem we have Cmax = C and Cmin = 0. Also since Es∼µ[V̂ π̂(s)] = δ and

Es∼µ[V̂ π∗(s)] = δ
1−γ we have επ

∗
oc = − γδ

1−γ . So using these quantities, we obtain that our

bound says that:

Jµ(π̂)− Jµ(π∗)

≤ επ
∗

oc + cπ̂ν+cπ
∗
ν

2 HεL1
prd

= γC
2(1−γ)2

(cπ̂ν + cπ
∗
ν) γ(1−γ)αε

(1−γ)(1+γ/2−γα(1−ε))+γ2αε/2 −
γδ

1−γ

= γ2αεC
2(1−γ) [2

α(1−γ(1−ε)) + 1
(1−α)(1−γ)(1+γ/2)]− γδ

1−γ

= γ2εC
(1−γ)(1−γ(1−ε)) [1 + α(1−γ(1−ε))

(1−α)(1−γ)(2+γ)]− γδ
1−γ

As mentioned previously, we know that Jµ(π̂) − Jµ(π∗) = γ2εC
(1−γ)(1−γ(1−ε)) −

γδ
1−γ . We

observe that we can pick α arbitrarily close to 0 in the example above so that in the

limit, as α becomes closer to 0, the bound becomes the exact value of Jµ(π̂) − Jµ(π∗).

This shows that there exists examples where our bound is tight to an arbitrarily small

additive constant.

C.4 Analysis of the DAGGER Algorithm

We now present the detailed analysis of the DAGGER Algorithm. Let’s define επ
′

oc =
1
N

∑N
i=1 Es∼µ[V̂i(s)−V̂ π′

i (s)], for V̂i and V̂ π′
i the value functions of πi and π′ under learned

model T̂ i respectively. The term επ
′

oc measures how much better of a solution π′ is on aver-

age compared to the policies π1:N (in terms of expected total cost) on the optimal control

problems we solved (with the learned models T̂ 1:N). For instance, if at each iteration i we

found an εi-optimal policy πi within some class of policies Π on learned model T̂ i, then

επ
′

oc ≤ 1
N

∑N
i=1 εi for all π′ ∈ Π. Additionally, define the average predictive error of T̂ 1:N

over the training iterations, measured in L1 distance, as εL1
prd = 1

N

∑N
i=1 E(s,a)∼ρi [||T̂ isa −

Tsa||1] for ρi = 1
2Dµ,πi + 1

2ν the state-action distribution used at iteration i to col-

lect data. Similarly define εKL
prd = 1

N

∑N
i=1 E(s,a)∼ρi,s′∼Tsa [log(Tsa(s

′))− log(T̂ isa(s
′))] and

εcls
prd = 1

N

∑N
i=1 E(s,a)∼ρi,s′∼Tsa [`(T̂ , s, a, s′)] the average training predictive error of T̂ 1:N

measured in KL and classification loss respectively (` is 0-1 loss or any upper bound on

the 0-1 loss such as hinge loss).

C.4. ANALYSIS OF THE DAGGER ALGORITHM 267

Lemma 8.4.1. The policies π1:N are s.t. for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + cπ
′
ν Hε

L1
prd

Equivalently, using the results from Section C.2:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + cπ
′
ν H

√
2εKL

prd

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + 2cπ
′
ν Hε

cls
prd

Proof.

minπ∈π1:N Jµ(π)− Jµ(π′)

≤ 1
N

∑N
i=1[Jµ(πi)− Jµ(π′)]

≤ επ
′

oc + H
2

1
N

∑N
i=1[E(s,a)∼Dµ,πi [||Tsa − T̂

i
sa||1] + E(s,a)∼Dµ,π′ [||Tsa − T̂

i
sa||1]]

≤ επ
′

oc + H
2

1
N

∑N
i=1[E(s,a)∼Dµ,πi [||Tsa − T̂

i
sa||1] + cπ

′
ν E(s,a)∼ν [||Tsa − T̂ isa||1]]

≤ επ
′

oc + cπ
′
ν H
2

1
N

∑N
i=1[E(s,a)∼Dµ,πi [||Tsa − T̂

i
sa||1] + E(s,a)∼ν [||Tsa − T̂ isa||1]]

= επ
′

oc + cπ
′
ν H

1
N

∑N
i=1[E(s,a)∼ρi [||Tsa − T̂ isa||1]

= επ
′

oc + cπ
′
ν Hε

L1
prd

where the second inequality follows from applying corollary C.1.2 to each term Jµ(πi)−
Jµ(π′).

The last lemma relates the performance of DAGGER to the training loss of the

sequence of models picked over the iterations of training. However it is only an inter-

mediate step, and as is, it is unclear why it is meaningful. In particular, it is unclear

why the term εL1
prd (or εKL

prd, εcls
prd) should be small as it corresponds to an average loss of

the models on out-of-training samples. That is, T̂ i is trained based on data seen so far

from the distributions ρ1, ρ2, . . . , ρi−1, but then its loss is evaluated under the distribu-

tion ρi in the term E(s,a)∼ρi [||Tsa − T̂ isa||1] (or E(s,a)∼ρi,s′∼Tsa [log(Tsa(s
′))− log(T̂ isa(s

′))],

E(s,a)∼ρi,s′∼Tsa [`(T̂ i, s, a, s′)]) contributing to εL1
prd (or εKL

prd, εcls
prd). So as is, it could be that

εL1
prd (or εKL

prd, εcls
prd) is large even if we achieve low error on the aggregate dataset at each

iteration when fitting each T̂ i. However we can observe that the quantity εL1
prd (or εKL

prd,

εcls
prd) can be interpreted as the average loss of an online learner on a particular online

learning problem. This is where the no-regret property is crucial and makes this result

interesting: no-regret guarantees that εL1
prd (or εKL

prd, εcls
prd) must be small relative to the

error of the best model in hindsight. So the combination of no-regret, and existence of a

model with low error on the aggregate dataset, implies that εL1
prd (or εKL

prd, εcls
prd) must be

small. This is emphasized in the following theorem that constitutes our main result for

DAGER.

We denote the modeling error under the overal training distribution ρ = 1
N

∑N
i=1 ρi,

measured in L1 distance as

εL1
mdl = inf

T ′∈T
E(s,a)∼ρ[||Tsa − T ′sa||].

268
APPENDIX C. ANALYSIS OF BATCH AND DAGGER FOR SYSTEM

IDENTIFICATION

Similarly, denote

εKL
mdl = inf

T ′∈T
E(s,a)∼ρ,s′∼Tsa [log(Tsa(s

′))− log(T ′sa(s
′))]

and

εcls
mdl = inf

T ′∈T
E(s,a)∼ρ,s′∼Tsa [`(T ′, s, a, s′)]

the modeling error measured in terms of KL and classification loss. The modeling error

represents the error of the best model in hindsight after the N iterations of training. To

relate the predictive error to this modeling error when using no-regret algorithms, we

first need to express the predictive error in terms of an online learning loss on a particular

online learning problem. For each iteration i ∈ 1 : N , define the following loss functions:

LL1
i (T̂) = E(s,a)∼ρi [||Tsa − T̂sa||1],

LKL
i (T̂) = E(s,a)∼ρi,s′∼Tsa [− log(T̂sa(s

′))],

and

Lcls
i (T̂) = E(s,a)∼ρi,s′∼Tsa [`(T̂ , s, a, s′)].

Now it can be seen that εL1
prd = 1

N

∑N
i=1 L

L1
i (T̂ i), εL1

mdl = infT ′∈T
1
N

∑N
i=1 L

L1
i (T ′), εKL

prd =
1
N

∑N
i=1 L

KL
i (T̂ i)−LKL

i (T), εKL
mdl = infT ′∈T

1
N

∑N
i=1 L

KL
i (T ′)−LKL

i (T), εcls
prd = 1

N

∑N
i=1 L

cls
i (T̂ i)

and εcls
mdl = infT ′∈T

1
N

∑N
i=1 L

cls
i (T ′). DAGGER uses a no-regret algorithm on one

of the sequence of loss function LL1
1:N , LKL

1:N or Lcls
1:N . If for instance we use the no-

regret algorithm on the sequence of loss LKL
1:N , then this implies that εKL

prd − εKL
mdl =

1
N

∑N
i=1 L

KL
i (T̂ i) − infT ′∈T

1
N

∑N
i=1 L

KL
i (T ′) → 0 as N → ∞. If we define εKL

rgt the

average regret of the online learning algorithm after N iterations when using the KL

loss, then we have εKL
prd ≤ εKL

mdl + εKL
rgt for εKL

rgt → 0 as N → ∞. Similarly, if we use

the classification loss, a no-regret algorithm on the sequence of loss Lcls
1:N implies that

εcls
prd − εcls

mdl = 1
N

∑N
i=1 L

cls
i (T̂ i) − infT ′∈T

1
N

∑N
i=1 L

cls
i (T ′) → 0 as N → ∞. If we define

εcls
rgt the average regret of the online learning algorithm after N iterations when using

the classification loss, then we have εcls
prd ≤ εcls

mdl + εcls
rgt for εcls

rgt → 0 as N → ∞. While

the L1 distance cannot be evaluated from samples, some statistical estimators can be

no-regret on the sequence of loss LL1
1:N with high probability without explicitly trying

to minimize this loss. This is the case in finite MDPs if we use the empirical estimator

of the transition matrix T based on all data seen so far over the iterations (see section

C.4). If we have a such sequence of models T̂1:N which is no-regret on the sequence of

loss LL1
1:N , then εL1

prd− εL1
mdl = 1

N

∑N
i=1 L

L1
i (T̂ i)− infT ′∈T

1
N

∑N
i=1 L

L1
i (T ′)→ 0 as N →∞.

If we define εL1
rgt the average regret of T̂1:N after N iterations on the L1 distance, then

we have εL1
prd ≤ εL1

mdl + εL1
rgt for εcls

L1 → 0 as N →∞. Combining with the previous lemma,

this proves our main result:

C.4. ANALYSIS OF THE DAGGER ALGORITHM 269

Theorem 8.4.1. The policies π1:N are s.t. for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + cπ
′
ν H[εL1mdl + εL1rgt]

Equivalently, using the results from Section C.2:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + cπ
′
ν H

√
2[εKL

mdl + εKL
rgt]

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + 2cπ
′
ν H[εclsmdl + εclsrgt]

Additionally, the fitting procedure is no-regret w.r.t LL1
1:N , LKL

1:N , or Lcls
1:N , then εL1rgt → 0,

εKL
rgt → 0, or εclsrgt → 0 respectively, as N → 0.

In cases where the distributions Dµ,πn converge to a small region in the space of

distributions as n → ∞ (which tend to occur in practice), we can also guarantee good

performance if we pick the last policy πN , for N large enough:

Lemma 8.4.2. Suppose there exists a distribution D∗ and some ε∗cnv ≥ 0 such that for

all i, ||Dµ,πi −D∗||1 ≤ ε∗cnv + εicnv for some sequence {εncnv}∞i=1 that is o(1). Then the last

policy πN produced by DAGGER is such that:

Jµ(πN) ≤ Jµ(π) +
Crng

2(1− γ)
[2ε∗cnv + εNcnv +

1

N

N∑
i=1

εicnv]

Thus:

lim sup
N→∞

Jµ(πN)− Jµ(π) ≤ Crng

1− γ
ε∗cnv

Proof. We have that Dµ,π = 1
N

∑N
i=1Dµ,πi . By our assumptions, ||Dµ,πN − Dµ,π||1 ≤

2ε∗cnv + εNcnv + 1
N

∑N
i=1 ε

i
cnv. Thus:

Jµ(πN)

= 1
1−γE(s,a)∼Dµ,πN [C(s, a)]

≤ 1
1−γE(s,a)∼Dµ,π [C(s, a)] +

Crng

2(1−γ) ||Dµ,πN −Dµ,π||1
≤ Jµ(π) +

Crng

2(1−γ) [2ε∗cnv + εNcnv + 1
N

∑N
i=1 ε

i
cnv]

where the first inequality follows from the fact that for any function f , constant c,

and distributions p, q, Ex∼p[f(x)] ≤ Ex∼q[f(x)] + supx |f(x) − c|||p − q||1. Here since

C(s, a) ∈ [Cmin, Cmax], choosing c =
Crng

2 minimizes the term sups,a |C(s, a)− c|.

Finite Sample Analysis for DAGGER in Particular Scenarios

This subsection presents sample complexity results to achieve near-optimal performance

with DAGGER in two particular scenarios.

270
APPENDIX C. ANALYSIS OF BATCH AND DAGGER FOR SYSTEM

IDENTIFICATION

Finite MDP with Empirical Estimator

Consider the real system to be an arbitrary finite MDP with |S| states and |A| actions,

and the model T̂ i used at iteration i to be the empirical estimator of T from the observed

transitions in the first i − 1 iterations. That is let nisas′ be the number of times we

observed transition (s, a, s′) at iteration i (i.e. when sampling s, a from distribution

ρi = 1
2Dµ,πi + 1

2ν). Let n<isas′ =
∑i−1

k=1 n
k
sas′ the total number of times we observed state

transition (s, a, s′) in the first i−1 iterations, and n<isa =
∑

s′ n
<i
sas′ the number of times we

picked sampled transitions from state action pair (s, a) in the first i− 1 iterations. Then

the empirical estimator at iteration i is such that T̂ isa(s
′) =

n<i
sas′

n<isa
. If n<isa = 0, then simply

define T̂ isa(s
′) = 1

|S| . We seek to bound εL1
prd after N iterations with high probability when

using this empirical estimator and sampling m transitions at each iteration.

Let (sij , aij , s
′
ij) denote the jth transition sampled at iteration i. For i ∈ {1, 2, . . . , N}

and j ∈ {1, 2, . . . ,m}, define the random variables Y(i−1)m+j = E(s,a)∼ρi [||Tsa − T̂ isa||1]−
||Tsijaij − T̂ isijaij ||1. Then E[Y(i−1)m+j |Y1, Y2, . . . , Y(i−1)m+j−1] = 0. Thus the random

variables Xk =
∑k

l=1 Yl for k ∈ {1, 2, . . . , Nm} form a martingale. Since Yl ∈ [−2, 2],

then by the Azuma-Hoeffding inequality we have XNm
Nm ≤ 2

√
2 log(1/δ)
Nm with probability

at least 1− δ. Hence we must have that with probability at least 1− δ:

1
N

∑N
i=1 E(s,a)∼ρi ||T̂ isa − Tsa||1

≤ 1
Nm

∑N
i=1

∑m
j=1 ||T̂ isijaij − Tsijaij ||1 + 2

√
2 log(1/δ)
Nm

= 1
Nm

∑N
i=1

∑
s,a n

i
sa||T̂ isa − Tsa||1 + 2

√
2 log(1/δ)
Nm

By applying a result from Wasserman (2003), we know that if we havem samples from

a distribution P over k events and P̂ denotes the empirical estimate of this distribution,

then with probability at least 1 − δ′, ||P̂ − P ||1 ≤
√

2 ln(2)k+2 log(1/δ′)
m . Using an union

bound, we conclude that with probability at least 1 − δ′, we must have that for all

state-action pair s, a and iteration i:

||T̂ isa − Tsa||1 ≤

√
2 log(2)|S|+ 2 log(|S||A|N/δ′)

n<isa

It is also clear that ||T̂ isa − Tsa||1 ≤ 2 always hold. Thus we must have that with

probability at least 1− δ − δ′:

1
N

∑N
i=1 E(s,a)∼ρi ||T̂ isa − Tsa||1

≤ 1
Nm

∑N
i=1

∑
s,a n

i
sa min(2,

√
2 log(2)|S|+2 log(|S||A|N/δ′)

n<isa
)

+2

√
2 log(1/δ)
Nm

The term min(2,
√

2 ln(2)|S|+2 log(|S||A|N/δ′)
n<isa

) = 2 when n<isa ≤ m0 form0 = 2 log(2)|S|+2 log(|S||A|N/δ′)
4 .

Let ksa ∈ {1, 2, . . . , N} be the largest iteration such that n<ksasa ≤ m0. Then we have

C.4. ANALYSIS OF THE DAGGER ALGORITHM 271

that for all s, a:

∑N
i=1 n

i
sa min(2,

√
2 ln(2)|S|+2 ln |S||A|N/δ′

n<isa
)

= 2
∑ksa

i=1 n
i
sa + 2

√
m0
∑N

i=ksa+1
nisa√
n<isa

≤ 2(m0 +m) + 2
√
m0
∑N

i=ksa+1
nisa√

m0+
∑i−1
j=ksa+1 n

j
sa

Thus we obtain that with probability at least 1− δ − δ′:

1
N

∑N
i=1 E(s,a)∼ρi [||T̂ isa − Tsa||1]

≤ 2m0|S||A|
Nm + 2|S||A|

N + 2

√
2 log(1/δ)
Nm

+
2
√
m0

Nm

∑
s,a

∑N
i=ksa+1

nisa√
m0+

∑i−1
j=ksa+1 n

j
sa

To upper bound this term, we will seek to upper bound
∑

s,a

∑N
i=ksa+1

nisa√
m0+

∑i−1
j=ksa+1 n

j
sa

with respect to any choice of {nisa} an adversary might pick under the constraint that∑
s,a n

j
sa = m for all j. We have that:

max{nisa}
∑

s,a

∑N
i=ksa+1

nisa√
m0+

∑i−1
j=ksa+1 n

j
sa

≤ max{nisa}
∑

s,a

∑N
i=1

nisa√
m0+

∑i−1
j=1 n

j
sa

= max{nisa}
∑

s,a

∑N
i=1

nisa√
m0+n<isa

The inequality holds because for any assignment of {nisa}, we can create a new

assignment {n′isa} such that
∑

s,a

∑N
i=1

n′isa√
m0+

∑i−1
j=1 n

′j
sa

≥
∑

s,a

∑N
i=ksa+1

nisa√
m0+

∑i−1
j=ksa+1 n

j
sa

(namely by setting n′isa = nksa+i
sa for i ∈ {1, 2, . . . , N − ksa} and n′isa arbitrarily for

i > N − ksa for all s, a).

Now, it can be seen that
∑

s,a

∑N
i=1

nisa√
m0+n<isa

is maximized by sequentially setting

the nisa equal to m to the pair (s, a) with smallest n<isa and nis′a′ = 0 for all other (s′, a′)

(and breaking ties arbitrarily). This implies that for iteration i such that k|S||A| ≤ i <
(k + 1)|S||A| for some non-negative integer k,

∑
s,a

nisa√
m0+n<isa

≤ m√
m0+km

. For any N ,

let us express N = k|S||A|+ l for some non-negative integers k and l < |S||A|, then we

have:

272
APPENDIX C. ANALYSIS OF BATCH AND DAGGER FOR SYSTEM

IDENTIFICATION

max{nisa}
∑

s,a

∑N
i=1

√
nisa

m0+n<isa

≤ |S||A|m
∑k−1

j=0
1√

m0+jm
+ lm 1√

m0+km

= (|S||A| − l)m
∑k−1

j=0
1√

m0+jm
+ lm

∑k
j=0

1√
m0+jm

= |S||A|m√
m0

+ (|S||A| − l)m
∑k−1

j=1
1√

m0+jm

+lm
∑k

j=1
1√

m0+jm

≤ |S||A|m√
m0

+ (|S||A| − l)m
∫ k−1

0
dx√

m0+xm

+lm
∫ k

0
dx√

m0+mx

= |S||A|m√
m0

+ 2(|S||A| − l)
√
m0 + xm|k−1

0

+2l
√
m0 +mx|k0

≤ |S||A|m√
m0

+ 2(|S||A| − l)
√

(k − 1)m+ 2l
√
km

≤ |S||A|m√
m0

+ 2|S||A|
√
km

≤ |S||A|m√
m0

+ 2
√
|S||A|Nm

Putting all together, we conclude that with probability at least 1− δ − δ′:

1
N

∑N
i=1 E(s,a)∼ρi [||T̂ isa − Tsa||1]

≤ 4|S||A|
N + log(2)|S|2|A|

Nm + |S||A| log(|S||A|N/δ′)
Nm

+2

√
2 log(2)|S|2|A|+2|S||A| log(|S||A|N/δ′)

Nm + 2

√
2 log(1/δ)
Nm

This is an interesting result in itself: it shows that using the empirical estimator of

T at each iteration based on observed samples so far is a no-regret algorithm under this

L1 distance penalty.

Combining with the result from Lemma 8.4.1, this implies that for any ε > 0, we can

choose m = 1, N = Õ(
C2

rng[|S|2|A|+|S||A| log(1/δ′)+log(1/δ)]

ε2(1−γ)4
) to ensure that with probability

at least 1− δ − δ′, for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc +O(cπ
′
ν ε)

Thus if we solve each optimal control problem with high enough accuracy, and we have

access to a good state-action exploration distribution, we can obtain an ε-optimal policy

with high probability with sample complexity that is O(
C2

rng|S|2|A|
ε2(1−γ)4

) (ignoring log factors).

This is an improvement over other model-based RL methods that have been analyzed

in this particular scenario, such as Rmax, which has sample complexity of O(
C3

rng|S|2|A|
ε3(1−γ)6

)

(Strehl et al., 2009), and a recent improved version of Rmax which has sample complexity

of O(
C2

rng|S||A|
ε2(1−γ)6

) (Szita and Szepesvári, 2010).

Finite MDP with Kernel SVM Model

Consider the true model to be an arbitrary finite MDP, and the set of models T be a

set of multiclass SVM in a Reproducing Kernel Hilbert Space (RKHS) induced by some

C.4. ANALYSIS OF THE DAGGER ALGORITHM 273

kernel k. For any state-action pair s, a, and hypothesis h in the RKHS, the associated

transition model T̂ hsa puts probability 1 on next state s′ = arg maxs′′ h(fs
′′
sa) for fs

′
sa the

feature vector associated with transition (s, a, s′) (e.g. in a grid world domain, this might

encode the relative location of s′ with respect to s, direction in which a is moving the

robot, and configuration of nearby obstacles or type of terrain we’re on). Without loss of

generality, we assume the kernel k inducing the RKHS has RKHS norm ||k(·, fs′sa)|| ≤ 1

for any transition (s, a, s′) (we can scale any bounded kernel over the feature space to

satisfy this), and we restrict T to only functions h with bounded RKHS norm ||h|| ≤ K.

In the case of a linear SVM, this corresponds to assuming that the features are scaled

so that ||fs′sa||2 ≤ 1 and we restrict ourselves to weight vector w, such that ||w||2 ≤ K.

To optimize the model, we consider proceeding by doing online learning on the fol-

lowing multiclass hinge loss functional L. Given any observed transition (s, a, s′) in our

dataset and SVM h, we define the loss as:

`(h, s, a, s′) = max[0, 1− h(fs
′
sa) + max

s′′ 6=s′
h(fs

′′
sa)]

We note that the loss `(h, s, a, s′) upper bounds the 0-1 classification loss `0−1(h, s, a, s′)

(as defined in lemma C.2.1)

We will now seek to bound εcls
prd with high probability as a function of the regret and

minimum loss in the class on the sampled training data. Let (sij , aij , s
′
ij) denote the jth

sample transition at iteration i (i.e. sampled from ρi = 1
2Dµ,πi+

1
2ν). For i ∈ {1, 2 . . . , N}

and j ∈ {1, 2, . . . ,m}, define the random variables

Y(i−1)m+j = E(s,a)∼ρi,s′∼Tsa [`0−1(hi, s, a, s′)]− `0−1(hi, sij , aij , s
′
ij).

Then E[Y(i−1)m+j |Y1, Y2, . . . , Y(i−1)m+j−1] = 0 and thus the random variables Xk =∑k
l=1 Yl for k ∈ {1, 2, . . . , Nm} form a martingale.

Since `0−1(h, s, a, s′) ∈ [0, 1] for all h, s, a, s′ then |Yl| ≤ 1 with probability 1. By

Azuma-Hoeffding’s inequality, we obtain that XNm
Nm ≤

√
2 log(1/δ)
Nm with probability at

least 1− δ. Thus, using lemma C.2.1, we have that with probability at least 1− δ:

εL1
prd

= 2 1
N

∑N
i=1 E(s,a)∼ρi,s′∼Tsa [`0−1(hi, s, a, s′)]

≤ 2[1
Nm

∑N
i=1

∑m
j=1 `0−1(hi, sij , aij , s

′
ij) +

√
2 log(1/δ)
Nm]

≤ 2[1
Nm

∑N
i=1

∑m
j=1 `(h

i, sij , aij , s
′
ij) +

√
2 log(1/δ)
Nm]

Now with these samples, the online algorithm is run on the sequence of loss functionals

Li(h) = 1
m

∑m
j=1 `(h, sij , aij , s

′
ij). Because the Li are all convex in h, for any (s, a, s′),

then an online algorithm such as gradient descent, or follow-the-regularized-leader is

no-regret. In particular, suppose we run the projected subgradient descent algorithm

from Zinkevich (2003). Because for any h, h′ in the RKHS, ||h − h′|| ≤ 2K and for

274
APPENDIX C. ANALYSIS OF BATCH AND DAGGER FOR SYSTEM

IDENTIFICATION

any h, s, a, s′, the norm of the subgradient ||∇L|| = ||k(·, fs′sa) − k(·, fs∗sa)|| ≤ 2 (for

s∗ = arg maxs′′ 6=s′ h(fs
′′
sa)), then using learning rate K√

n
at iteration n we can guarantee

that 1
N

∑N
i=1 Li(h

i) ≤ minh
1
N

∑N
i=1 Li(h) + 6K√

N
from the result in Zinkevich (2003). Let

ε̂cls
mdl = minh

1
Nm

∑N
i=1

∑m
j=1 `(h, sij , aij , s

′
ij) the predictive error of the best model in

hindsight on the training set. Then combining with the previous equation, we obtain

that with probability at least 1− δ:

εL1
prd ≤ 2[ε̂cls

mdl +
6K√
N

+

√
2 log(1/δ)

Nm
]

Combining with the result from Lemma 8.4.1, this implies that for any ε > 0, we can

choose m = 1, N = O(
C2

rng(K2+log(1/δ))

ε2(1−γ)4
) to ensure that with probability at least 1 − δ,

for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc + 2cπ
′
ν Hε̂

cls
mdl +O(cπ

′
ν ε)

Thus if we solve each optimal control problem with high enough accuracy, there exist

a SVM model in the RKHS that achieves low enough loss on the training set, and we

have access to a good state-action exploration distribution, we can obtain a ε-optimal

policy with high probability with sample complexity that is O(
C2

rngK
2

ε2(1−γ)4
) (ignoring log

factors). Note that this has no dependency on |S| and |A|, only on the complexity of

the class of models (i.e. K), which could be constant as |S|, |A| increases.

Optimistic Exploration

We now provide the analysis of DAGGER with optimistic exploration for realizable

settings.

We begin with an alternate lemma to lemma C.1.2, that allows relating the difference

in task performance of two policies to the model error and how good of a lower bound

the solution of the optimistic optimal control problem is.

Lemma C.4.1. Suppose we learned an approximate model T̂ instead of the true model

T and let V̂ π represent the value function of π under T̂ . Then for any state distribution

ω and policies π, π′:

Jω(π)− Jω(π′)

= Es∼ω[V̂ π(s)− V π′(s)] + γ
1−γE(s,a)∼Dω,π [Es′∼Tsa [V̂ π(s′)]− Es′∼T̂sa [V̂ π(s′)]]

Proof.

Jω(π)− Jω(π′)

= Es∼ω[V π(s)− V π′(s)]

= Es∼ω[(V̂ π(s)− V π′(s)) + (V π(s)− V̂ π(s))]

Applying lemma C.1.1 to Es∼ω[V π(s)− V̂ π(s)] proves the lemma.

C.4. ANALYSIS OF THE DAGGER ALGORITHM 275

This leads to the following corollary. Suppose that C(s, a) ∈ [Cmin, Cmax] for all s, a

and let Crng = Cmax − Cmin and H =
γCrng

(1−γ)2
.

Corollary C.4.1. Suppose we learned an approximate model T̂ and solved it approxi-

mately to obtain π. For any policy π′, let επ
′

oc-lb = Es∼ω[V̂ π(s)−V π′(s)] denote how much

larger is the expected total cost of π in the learned model T̂ compared to the total cost of

π′ in the real system for start distribution ω. Then for any policy π′:

Jω(π)− Jω(π′) ≤ επ′oc-lb + H
2 E(s,a)∼Dω,π [||Tsa − T̂sa||1]

Proof. Using lemma C.4.1, we first note that the term Es∼ω[V̂ π(s) − V π′(s)] = επ
′

oc-lb.

The other term can be bounded by H
2 E(s,a)∼Dω,π [||Tsa− T̂sa||1] following similar steps as

in the proof of corollary C.1.1. This proves the corollary.

For any policy π′, let

επ
′

oc-lb =
1

N

N∑
i=1

Es∼µ[V̂i(s)]− Jµ(π′),

denote how much larger is the total cost of the policies π1:N on average in their corre-

sponding learned model T̂ 1:N compared to the total cost of π′ in the real system. For

instance, if T 1:N is a sequence of subsets of T which contains the real system with high

probability, and at each iteration i, we found an εi-optimal policy and model pair (πi, T̂
i)

in Π× T i, then for any π′ ∈ Π, επ
′

oc-lb ≤
1
N

∑N
i=1 εi with high probability.

Additionally, define the average predictive error, measured in L1 distance, of the

chosen models T̂ 1:N under the corresponding state-action distribution induced by the

chosen policies π1:N as

εL1
prd =

1

N

N∑
i=1

E(s,a)∼Dµ,πi [||Tsa − T̂
i
sa||1].

Similarly define

εKL
prd =

1

N

N∑
i=1

E(s,a)∼Dµ,πi ,s′∼Tsa [log(Tsa(s
′))− log(T̂ isa(s

′))]

and

εcls
prd =

1

N

N∑
i=1

E(s,a)∼Dµ,πi ,s′∼Tsa [`(T̂ , s, a, s′)]

the average training predictive error of T̂ 1:N measured in KL and classification loss

respectively (` is 0-1 loss or any upper bound on the 0-1 loss such as hinge loss).

The following holds:

276
APPENDIX C. ANALYSIS OF BATCH AND DAGGER FOR SYSTEM

IDENTIFICATION

Theorem C.4.1. For all policies π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc-lb +
H

2
εL1
prd

Similarly, this holds as a function of εKL
prd, or εKL

prd, using the relation in lemma 8.3.1.

Proof. Let V̂ i denote the value function of πi in model T̂i. Then

Jµ(π)− Jµ(π′)

= 1
N

∑N
i=1[Jµ(πi)− Jµ(π′)]

≤ 1
N

∑N
i=1[Es∼µ[V̂ i(s)− V π′(s)] + H

2 E(s,a)∼Dµ,πi [||Tsa − T̂sa||1]]

= επ
′

oc-lb + H
2 ε

L1
prd

where the inequality follows from corollary C.4.1.

Now we denote the modeling error under the overall training distribution D =
1
N

∑N
i=1Dµ,πi , measured in L1 distance as

εL1
mdl = inf

T ′∈T
E(s,a)∼D[||Tsa − T ′sa||].

Similarly, denote

εKL
mdl = inf

T ′∈T
E(s,a)∼D,s′∼Tsa [log(Tsa(s

′))− log(T ′sa(s
′))]

and

εcls
mdl = inf

T ′∈T
E(s,a)∼D,s′∼Tsa [`(T ′, s, a, s′)]

the modeling error measured in terms of KL and classification loss. The modeling error

represents the error of the best model in hindsight after the N iterations of training.

Note that in realizable settings, this quantity is 0.

Similarly to the previous section, we can related the predictive error to the modeling

error and the regret of the online learning algorithm

For each iteration i ∈ 1 : N , define the following loss functions, as the loss incurred

by the online learner during the iterations of training:

LL1
i (T̂) = E(s,a)∼Dµ,πi [||Tsa − T̂sa||1],

LKL
i (T̂) = E(s,a)∼Dµ,πi ,s′∼Tsa [− log(T̂sa(s

′))],

and

Lcls
i (T̂) = E(s,a)∼Dµ,πi ,s′∼Tsa [`(T̂ , s, a, s′)].

Define εL1
rgt, ε

KL
rgt and εcls

rgt the average regret of the online learning algorithm after

N iterations when on the loss LL1
1:N , LKL

1:N and Lcls
1:N respectively. Then we have εKL

prd ≤
εKL
mdl + εKL

rgt for εKL
rgt → 0 as N → ∞ (and similarly for εKL

prd and εcls
prd). Also note that for

the realizable settings, where the modeling error is 0, then this indicates the predictive

error is directly bounded by the regret.

Then using these relations with the previous theorem directly implies:

C.4. ANALYSIS OF THE DAGGER ALGORITHM 277

Theorem C.4.2. The policies π1:N are s.t. for any policy π′:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc-lb +
H

2
[εL1mdl + εL1rgt]

Equivalently, using the results from Section C.2:

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc-lb +
H

2

√
2[εKL

mdl + εKL
rgt]

Jµ(π̂) ≤ Jµ(π) ≤ Jµ(π′) + επ
′

oc-lb +H[εclsmdl + εclsrgt]

Additionally, the fitting procedure is no-regret w.r.t LL1
1:N , LKL

1:N , or Lcls
1:N , then εL1rgt → 0,

εKL
rgt → 0, or εclsrgt → 0 respectively, as N → 0.

Thus this theorem implies that if we can pick a sequence of models {T̂ i}Ni=1, which

satisfies the following: 1) with high probability, the sequence has no-regret on the ob-

served data with respect to the true model T ∈ T (i.e. εL1
prd → 0 as N → ∞) ; 2) with

high probability, the average total cost of the policy in the learned model lower bounds

the total cost of the optimal policy (i.e. επ
′

oc-lb ≤ 0 for all π′); then we are guaranteed to

find a near-optimal policy in the limit.

While the algorithm can potentially pick any model T̂ i in the subset T i at each

iteration i, we can still guarantee that the chosen sequence of models T̂ i is no-regret if

we choose the subset T i properly. For instance, suppose T̃ 1:N would be the sequence

of chosen models by a no-regret algorithm on the observed data over the iterations of

the algorithm, and the loss at each iteration is Lipschitz continuous under some norm

|| · || over the space of models T . Then if at each iteration i, we define the subsets

T i = {T ′|||T ′ − T̃ i|| ≤ εiconf} for some sequence εiconf that is o(1), then any sequence of

models T̂ 1:N is no-regret if for all i, T̂ i ∈ T i. Typical generalization error bounds will

yield confidence regions where εnconf is O(1√
n

). In this case, the sequence of T̂ 1:N can be

no-regret at rate O(1√
N

).

Bibliography

P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In

Proceedings of the 21st International Conference on Machine Learning (ICML), 2004.

P. Abbeel and A. Y. Ng. Exploration and apprenticeship learning in reinforcement

learning. In Proceedings of the 22nd International Conference on Machine Learning

(ICML), 2005.

H. Akaike. Markovian representation of stochastic processes by canonical variables.

SIAM Journal on Control and Optimization, 1975.

D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz, and A. Y. Ng.

Discriminative learning of markov random fields for segmentation of 3d scan data.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2005.

B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning from

demonstration. Robotics and Autonomous Systems, 2009.

A. Argawal, E. Hazan, S. Kale, and R. E. Shapire. Algorithms for portfolio management

based on the newton method. In Proceedings of the 23rd International Conference on

Machine Learning (ICML), 2006.

S. Arora, E. Hazan, , and S. Kale. The multiplicative weights update method: A meta-

algorithm and applications. Theory of Computing, 2012.

K. J. Astrom. Numerical identification of linear dynamic systems from normal operating

records. In Proceedings of IFAC Symposium on Self-Adaptive Systems, 1965.

K. J. Astrom. System identification – a survey. Automatic, 1971.

K. J. Astrom and B. Wittenmark. Adaptive Control. Addison-Wesley, 1989.

C. G. Atkeson. Using local trajectory optimizers to speed up global optimization in dy-

namic programming. In Advances in Neural Information Processing Systems (NIPS),

1994.

280 BIBLIOGRAPHY

C. G. Atkeson and S. Schaal. Robot learning from demonstration. In Proceedings of the

14th International Conference on Machine Learning (ICML), 1997.

C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning for control.

Artificial Intelligence Review, 1997.

P. Auer and R. Ortner. Logarithmic online regret bounds for reinforcement learning. In

Advances in Neural Information Processing Systems (NIPS), 2007.

P. Auer, N. Cesa-Bianchi, and P. Fisher. Finite-Time Analysis of the Multi-Armed

Bandit Problem. Machine Learning, 2002a.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R.E. Schapire. The nonstochastic multiarmed

bandit problem. SIAM Journal on Computing, 2002b.

O. Avner, S. Mannor, and O. Shamir. Decoupling exploration and exploitation in multi-

armed bandits. In ICML, 2012.

A. Bachrach, R. He, and N. Roy. Autonomous flight in unknown indoor environments.

International Journal of Micro Air Vehicles, 2009.

A. Bachrach, S. Prentice, R. He, P. Henry, A. S. Huang, M. Krainin, D. Maturana,

D. Fox, and N. Roy. Estimation, planning, and mapping for autonomous flight using

an rgb-d camera in gps-denied environments. Int. J. Rob. Res., 31, 2012.

J. A. Bagnell and J. Schneider. Covariant policy search. In Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence (IJCAI), 2003.

J. A. Bagnell, A. Y. Ng, S. Kakade, and J. Schneider. Policy search by dynamic pro-

gramming. In Advances in Neural Information Processing Systems, 2003.

M. Bain and C. Sammut. A framework for behavioral cloning. Machine Intelligence

Agents, 1995.

M. Balcan, N. Bansal, A. Beygelzimer, D. Coppersmith, J. Langford, and G. Sorkin.

Robust reductions from ranking to classification. Machine Learning Journal, 2008.

Nina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning. In Pro-

ceedings of the International Conference on Machine Learning (ICML), 2006.

Y. Bar-Shalom. Stochastic dynamic programming: Caution and probing. IEEE Trans-

actions on Automatic Control, 1981.

T. Basar and P. Bernhard. H-infinity Optimal Control and Related Minimax Design

Problems. Birkhauser, 1995.

BIBLIOGRAPHY 281

J. Bellingham, A. Richards, and J. P. How. Receding horizon control of autonomous

aerial vehicles. In American Control Conference, 2002.

R. Bellman. Dynamic Programming. Princeton University Press, 1957.

Y. Bengio. Learning deep architectures for AI. Foundations and Trends in Machine

Learning, 2009.

R. Bernier, M. Bissonnette, and P. Poitevin. Dsa radar - development report. In UAVSI,

2005.

A. Bernstein and M. Shinkin. Adaptive-resolution reinforcement learning with polyno-

mial exploration in deterministic domains. Machine Learning, 2010.

A. Beygelzimer, V. Dani, T. Hayes, J. Langford, and B. Zadrozny. Error limiting reduc-

tions between classification tasks. In Proceedings of the 22nd International Conference

on Machine Learning (ICML), 2005.

A. Beygelzimer, J. Langford, and P. Ravikumar. Error-correcting tournaments. In ALT,

2009.

A. Beygelzimer, D. Hsu, J. Langford, and T. Zhang. Agnostic active learning without

constraints. In Advances in Neural Information Processing Systems, 2010.

A. Beygelzimer, J. Langford, L. Li, L. Reyzin, and R. E. Schapire. Contextual bandit

algorithms with supervised learning guarantees. In AISTATS, 2011.

B. Boots and G. J. Gordon. An online spectral learning algorithm for partially observ-

able nonlinear dynamical systems. In Proceedings of the 26th National Conference on

Artificial Intelligence (AAAI), 2011.

B. Boots, S. Siddiqi, and G. Gordon. Closing the learning-planning loop with predictive

state representations. International Journal of Robotics Research (IJRR), 2011.

L. Bottou. sgd code, 2009. URL http://www.leon.bottou.org/projects/sgd.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph

cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2001.

L. Breiman. Random forests. Machine Learning, 2001.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression

Trees. Wadsworth, 1984.

A. Bry, A. Bachrach, and N. Roy. State estimation for aggressive flight in gps-denied

environments using onboard sensing. In ICRA, 2012.

http://www.leon.bottou.org/projects/sgd

282 BIBLIOGRAPHY

N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University

Press, 2006.

N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire, and M. K.

Warmuth. How to use expert advice. Journal of the ACM, 1997.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line

learning algorithms. IEEE Transactions on Information Theory, 2004.

S. Chernova and M. Veloso. Interactive policy learning through confidence-based auton-

omy. Journal of Artificial Intelligence Research (JAIR), 2009.

W. W. Cohen and V. R. Carvalho. Stacked sequential learning. In IJCAI, 2005.

D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Ma-

chine Learning, 1994.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 1995.

T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 1991.

L. Csato, M. Opper, and O. Winther. Tap gibbs free energy, belief propagation and

sparsity. In NIPS, 2001.

H. T. Dang. Overview of duc 2005. In DUC, 2005.

S. Dasgupta, D. J. Hsu, and C. Monteleoni. A general agnostic active learning algorithm.

In Advances in Neural Information Processing Systems (NIPS), 2007.

H. Daumé III, J. Langford, and D. Marcu. Search-based structured prediction. Machine

Learning, 2009.

E. Davies. Machine vision: Theory, algorithms, practicalities. Morgan Kaufmann, 1997.

M. P. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach

to policy search. In Proceedings of the 28th International Conference on Machine

Learning (ICML), 2011.

D. Dey, C. Geyer, S. Singh, and M. Digioia. A cascaded method to detect aircraft in

video imagery. IJRR, 2011.

D. Dey, T. Y. Liu, M. Hebert, and J. A. Bagnell. Contextual sequence optimization with

application to control library optimization. In Proceedings of the Robotics: Science

and Systems conference (RSS), 2012a.

BIBLIOGRAPHY 283

D. Dey, T. Y. Liu, B. Sofman, and J. A. Bagnell. Efficient optimization of control

libraries. In Association for the Advancement of Artificial Intelligence (AAAI), 2012b.

T. G. Dietterich. Hierarchical reinforcement learning with the maxq value function

decomposition. Journal of Artificial Intelligence Reasearch, 2000.

C. B. Do, Q. V. Le, and C.-S. Foo. Proximal regularization for online and batch learning.

In ICML, 2009.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning

and stochastic optimization. In COLT, 2010a.

J. Duchi, S. Shalev-Shwartz, Y. Singer, and A. Tewari. Composite objective mirror

descent. In COLT, 2010b.

M. Dudik, D. Hsu, S. Kale, N. Karampatziakis, J. Langford, L. Reyzin, and T. Zang.

Efficient optimal learning for contextual bandits. In Proceedings of the International

Conference on Uncertainty in Artificial Intelligence (UAI), 2011a.

M. Dudik, J. Langford, and L. Li. Doubly robust policy evaluation and learning. In

ICML, 2011b.

B. Dufay and J. C. Latombe. An approach to automatic robot programming based on

inductive learning. International Journal of Robotics Research, 1984.

G. Elidan, I. McGraw, and D. Koller. Residual belief propagation: Informed scheduling

for asynchronous message passing. In Proceedings of the 22nd Conference on Uncer-

tainty in Artificial Intelligence (UAI), 2006.

Julien Fauqueur, Gabriel Brostow, and Roberto Cipolla. Assisted video object labeling

by joint tracking of regions and keypoints. In IEEE International Conference on

Computer Vision (ICCV) Interactive Computer Vision Workshop, 2007.

U. Feige, L. Lovasz, and P. Tetali. Approximating min sum set cover. Algorithmica,

2004.

U. Feige, V. S. Mirrokni, and J. Vondrak. Maximizing non-monotone submodular func-

tions. SIAM Journal on Computing, 2011.

A.A. Fel’dbaum. Optimal Control Systems. Academic Press, 1965.

J. Felsenstein. Evolutionary trees from dna sequences: A maximum likelihood approach.

Journal of Molecular Evolution, 1981.

284 BIBLIOGRAPHY

T. Finley and T. Joachims. Training structural svms when exact inference is intractable.

In Proceedings of the 25th International Conference on Machine Learning (ICML),

2008.

U. Forssell and L. Ljung. Closed-loop identification revisited. Automatica, 1999.

U. Forssell and L. Ljung. Some results on optimal experiment design. Automatica, 2000.

Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and

an application to boosting. Journal of Computer and System Sciences, 1997.

Y. Freund, H. S. Seung, E. Shamir, and N. Tishby. Selective sampling using the query

by committee algorithm. Machine Learning, 1997.

M. Gevers and L. Ljung. Optimal experiment designs with respect to the intended model

application. Automatica, 1986.

G. J. Gordon. Stable function approximation in dynamic programming. In Proceedings

of the 12th International Conference on Machine Learning (ICML), 1995.

C. Guestrin and A. Krause. Icml 2008 tutorial : Beyond convexity: Submodularity in

machine learning, 2008. URL www.submodularity.org/icml08.

A. Guzman-Rivera, D. Batra, and P. Kohli. Multiple choice learning: Learning to

produce multiple structured outputs. In NIPS, 2012.

C. Harris and M. Stephens. A combined corner and edge detector. In Alvey vision

conference, 1988.

T. Hastie and R. Tibshirani. Classification by pairwise coupling. In Advances in Neural

Information Processing Systems (NIPS), 1998.

T. Hastie, R. Tibshirani, and J. H. Friedman. The elements of statistical learning : Data

mining, inference, and prediction. Springer Verlag, 2001.

E. Hazan, A. Kalai, S. Kale, and A. Agarwal. Logarithmic regret algorithms for online

convex optimization. In Proceedings of the 19th annual conference on Computational

Learning Theory (COLT), 2006.

H. He, H. Daume III, and J. Eisner. Imitation learning by coaching. In NIPS, 2012.

S. Helgason. The Radon Transform. Birkhauser, 1999.

T. Hester and P. Stone. Generalized model learning for reinforcement learning in factored

domains. In Proceedings of the International Conference on Autonomous Agents and

Multiagent Systems (AAMAS), 2009.

www.submodularity.org/icml08

BIBLIOGRAPHY 285

H. Hjalmarsson, M. Gevers, and F. De Bruyne. For model-based control design, closed-

loop identification gives better performance. Automatica, 1996.

B. L. Ho and R. E. Kalman. Effective construction of linear state-variable models from

input-output functions. Regelungstechnik, 1965.

D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface layout from an image.

International Journal of Computer Vision (IJCV), 2007.

D. G. Horvitz and D. J. Thompson. A generalization of sampling without replacement

from a finite universe. Journal of American Statistics Association, 1952.

D. Hsu, S. Kakade, and T. Zhang. A spectral algorithm for learning hidden markov

models. In Proceedings of the 22nd annual conference on Computational Learning

Theory (COLT), 2009.

H. Hu, D. Munoz, J. A. Bagnell, and M. Hebert. Efficient 3-d scene analysis from

streaming data. In ICRA, 2013.

J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schoelkopf. Correcting sam-

ple selection bias by unlabeled data. In Advances in Neural Information Processing

Systems 19 (NIPS), 2007.

D. H. Jacobson and D. Q. Mayne. Differential Dynamic Programming. Elsevier, 1970.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learn-

ing. Journal of Machine Learning Research, 2010.

N. K. Jong and P. Stone. Hierarchical model-based reinforcement learning: Rmax

+ maxq. In Proceedings of the 25th Internation Conference on Machine Learning

(ICML), 2008.

A. Juditsky, H. Hjalmarsson, A. Benveniste, B. Delyon, L. Ljung, J. Sjoberg, and

Q. Zhang. Nonlinear black-box models in system identification: Mathematical foun-

dations. Automatic, 1995.

M. Kääriäinen. Lower bounds for reductions, 2006. Atomic Learning workshop.

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning.

In Proceedings of the 19th International Conference on Machine Learning (ICML),

2002.

S. Kakade and S. Shalev-Shwartz. Mind the duality gap: Logarithmic regret algo-

rithms for online optimization. In Advances in Neural Information Processing Systems

(NIPS), 2008.

286 BIBLIOGRAPHY

S. Kakade and A. Tewari. On the generalization ability of online strongly convex pro-

gramming algorithms. In Advances in Neural Information Processing Systems (NIPS),

2009.

A. Kalai and S. Vempala. Efficient algorithms for online decision problems. JCSS, 2005.

R. E. Kalman. Contributions to the theory of optimal control. Boletin de la Sociedad

Matematica Mexicana, 1960a.

R.E. Kalman. A new approach to linear filtering and prediction problems. Journal of

Basic Engineering, 1960b.

M. Kearns and D. Koller. Efficient reinforcement learning in factored mdps. In IJCAI,

1999.

M. Kearns, Y. Mansour, and A. Y. Ng. A sparse sampling algorithm for near-optimal

planning in large markov decision processes. Machine Learning, 2002.

M. J. Kearns, R. E. Schapire, and L. Sellie. Toward efficient agnostic learning. Machine

Learning, 1994.

V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2004.

A. Kulesza and F. Pereira. Structured learning with approximate inference. In Advances

in Neural Information Processing Systems (NIPS), 2008.

A. Kulesza and B. Taskar. Structured determinental point process. In NIPS, 2010.

A. Kulesza and B. Taskar. Learning determinantal point processes. In UAI, 2011.

S. Kumar and M. Hebert. Discriminative random fields. International Journal of Com-

puter Vision (IJCV), 2006.

S. Kumar, J. August, and M. Hebert. Exploiting inference for approximate parame-

ter learning in discriminative fields: An empirical study. In Proceedings of the 2nd

International Conference on Energy Minimization Methods in Computer Vision and

Pattern Recognition (EMMCVPR), 2005.

J. Lafferty, A. Mccallum, and F. Pereira. Conditional random fields: Probabilistic models

for segmenting and labeling sequence data. In Proceedings of the 18th International

Conference on Machine Learning (ICML), 2001.

J. Langford and A. Beygelzimer. Sensitive error correcting output codes. In COLT,

2005.

BIBLIOGRAPHY 287

J. Langford and T. Zang. The epoch-greedy algorithm for contextual multi-armed ban-

dits. In NIPS, 2007.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. IEEE, 1998.

L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to

personalized news article recommendation. In WWW, 2010.

W. Li and E. Todorov. Iterative linear quadratic regulator design for nonlinear bio-

logical movement systems. In Proceedings of the First International Conference on

Informatics in Control, Automation and Robotics (ICINCO), 2004.

C.-Y. Lin. Rouge: A package for automatic evaluation of summaries. In Text Summa-

rization Branches Out: ACL-04 Workshop, 2004.

H. Lin and J. Bilmes. Multi-document summarization via budgeted maximization of

submodular functions. In Annual Conference of the North American Chapter of the

Association for Computational Linguistics, 2010.

H. Lin and J. Bilmes. A class of submodular functions for document summarization. In

ACL-HLT, 2011.

H. Lin and J. Bilmes. Learning mixtures of submodular shells with application to doc-

ument summarization. In UAI, 2012.

N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and

Computation, 108:212–261, 1994.

Y. Liu. Conditional Graphical Models for Protein Structure Prediction. PhD thesis,

Carnegie Mellon University, 2006.

L. Ljung. Convergence analysis of parametric identification methods. IEEE Transactions

on Automatic Control, 1978.

L. Ljung. System Identification: Theory for the User. Prentice Hall, 1999.

H. B. McMahan. Follow-the-regularized-leader and mirror descent: Equivalence theo-

rems and l1 regularization. In AISTATS, 2011.

H. B. McMahan and M. Streeter. Adaptive bound optimization for online convex opti-

mization. In COLT, 2010.

J. Michels, A. Saxena, and A. Y. Ng. High speed obstacle avoidance using monocular

vision and reinforcement learning. In ICML, 2005.

288 BIBLIOGRAPHY

O. Miksik, D. Munoz, J. A. Bagnell, and M. Hebert. Efficient temporal consistency for

streaming video scene analysis. In ICRA, 2013.

P. Mineiro. Error and regret bounds for cost-sensitive multiclass classification re-

duction to regression, 2010. URL http://www.machinedlearnings.com/2010/08/

error-and-regret-bounds-for-cost.html.

D. Munoz, J. A. Bagnell, N. Vandapel, and M. Hebert. Contextual classification with

functional max-margin markov networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2009.

D. Munoz, J. A. Bagnell, and M. Hebert. Stacked hierarchical labeling. In ECCV, 2010.

B. K. Natarajan. On learning sets and functions. Machine Learning, 1989.

G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher. An analysis of approximations for

maximizing submodular set functions. Mathematical Programming, 1978.

M. Opper and D. Saad. Advanced Mean Field methods – Theory and Practice. MIT

Press, 2000.

P. Van Overschee and B. De Moor. Subspace Identification for Linear Systems: Theory,

Implementation, Applications. Kluwer, 1996.

S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Transactions on Knowledge

and Data Engineering, 2010.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic eval-

uation of machine translation. In Proceedings of the Association for Computational

Linguistics (ACL), 2002.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.

Morgan Kaufmann Publishers Inc., 1988.

J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients.

Neural Networks, 2008.

J. Pineau, G. J. Gordon, and S. Thrun. Point-based value iteration: an anytime algo-

rithm for pomdps. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), 2003.

D. Pomerleau. ALVINN: An Autonomous Land Vehicle in a Neural Network. In Advances

in Neural Information Processing Systems (NIPS), 1989.

http://www.machinedlearnings.com/2010/08/error-and-regret-bounds-for-cost.html
http://www.machinedlearnings.com/2010/08/error-and-regret-bounds-for-cost.html

BIBLIOGRAPHY 289

P. Poupart, N. Vlassis, J. Hoey, and K. Regan. An analytic solution to discrete bayesian

reinforcement learning. In Proceedings of the 23rd international conference on Machine

learning (ICML), 2006.

M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley, 1994.

F. Radlinski, R. Kleinberg, and T. Joachims. Learning diverse rankings with multi-armed

bandits. In ICML, 2008.

K. Raman, P. Shivaswamy, and T. Joachims. Online learning to diversify from implicit

feedback. In KDD, 2012.

N. Ratliff. Learning to Search: Structured Prediction Techniques for Imitation Learning.

PhD thesis, Carnegie Mellon University, 2009.

N. Ratliff, D. Bradley, J. A. Bagnell, and J. Chestnutt. Boosting structured prediction

for imitation learning. In Advances in Neural Information Processing Systems (NIPS),

2006.

N. Ratliff, J. A. Bagnell, and S. Srinivasa. Imitation learning for locomotion and manip-

ulation. In IEEE-RAS International Conference on Humanoid Robots, 2007a.

N. Ratliff, J. A. Bagnell, and M. Zinkevich. (Online) subgradient methods for structured

prediction. In Proceedings of the International Conference on Artificial Intelligence

and Statistics (AISTATS), 2007b.

N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa. Chomp: Gradient optimization

techniques for efficient motion planning. In ICRA, 2009.

R. Roberts, D. N. Ta, J. Straub, K. Ok, and F. Dellaert. Saliency detection and model-

based tracking: a two part vision system for small robot navigation in forested envi-

ronment. In Proceedings of SPIE, 2012.

S. Ross. Model-based bayesian reinforcement learning in complex domains. Master’s

thesis, McGill University, 2008.

S. Ross. Comparison of imitation learning approaches on Super Tux Kart, 2010a. URL

http://www.youtube.com/watch?v=V00npNnWzSU.

S. Ross. Comparison of imitation learning approaches on Super Mario Bros, 2010b. URL

http://www.youtube.com/watch?v=anOI0xZ3kGM.

S. Ross. Helicopter learning nose-in funnel., 2012. URL http://www.youtube.com/

user/icml12rl.

http://www.youtube.com/watch?v=V00npNnWzSU
http://www.youtube.com/watch?v=anOI0xZ3kGM
http://www.youtube.com/user/icml12rl
http://www.youtube.com/user/icml12rl

290 BIBLIOGRAPHY

S. Ross and J. A. Bagnell. Efficient reductions for imitation learning. In Proceedings of

the 13th International Conference on Artificial Intelligence and Statistics (AISTATS),

2010.

S. Ross and J. A. Bagnell. Agnostic system identification for model-based reinforcement

learning. In ICML, 2012a.

S. Ross and J. A. Bagnell. Stability conditions for online learnability. In Under Review.

15th International Conference on Artificial Intelligence and Statistics (AISTATS),

2012b.

S. Ross and J. Pineau. Model-based bayesian reinforcement learning in large structured

domains. In Proceedings of the Conference on Uncertainty in Artificial Intelligence

(UAI), 2008.

S. Ross, G. J. Gordon, and J. A. Bagnell. A reduction of imitation learning and struc-

tured prediction to no-regret online learning. In Proceedings of the 14th International

Conference on Artificial Intelligence and Statistics (AISTATS), 2011.

S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bagnell, and

M. Hebert. Learning monocular reactive uav control in cluttered natural environments.

In ICRA, 2013a.

S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bagnell, and

M. Hebert. Autonomous vision-based flight through a forest, 2013b. URL http:

//www.youtube.com/watch?v=oO_Ohp1pHBw.

S. Ross, N. Melik-Barkhudarov, K. S. Shankar, A. Wendel, D. Dey, J. A. Bagnell, and

M. Hebert. Learning monocular reactive uav control in cluttered natural environments,

2013c. URL http://www.youtube.com/watch?v=hNsP6-K3Hn4.

S. Ross, J. Zhou, Y. Yue, D. Dey, and J. A. Bagnell. Learning policies for contextual sub-

modular prediction. In Proceedings of the 30th International Conference on Machine

Learning (ICML), 2013d.

S. Schaal. Is imitation learning the route to humanoid robots? In Trends in Cognitive

Sciences, 1999.

D. Scharstein and C. Pal. Learning conditional random fields for stereo. In In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

S. Scherer, S. Singh, L. Chamberlain, and S. Saripalli. Flying fast and low among

obstacles. In ICRA, 2007.

http://www.youtube.com/watch?v=oO_Ohp1pHBw
http://www.youtube.com/watch?v=oO_Ohp1pHBw
http://www.youtube.com/watch?v=hNsP6-K3Hn4

BIBLIOGRAPHY 291

S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Learnability, stability and

uniform convergence. Journal of Machine Learning Research (JMLR), 2010.

S. Siddiqi, B. Boots, and G. J. Gordon. Reduced-rank hidden markov models. In Pro-

ceedings of the 13th International Conference on Artificial Intelligence and Statistics

(AISTATS), 2010.

D. Silver. Learning Preference Models for Autonomous Mobile Robots in Complex Do-

mains. PhD thesis, Carnegie Mellon University, 2010.

D. Silver, J. A. Bagnell, and A. Stentz. High performance outdoor navigation from

overhead data using imitation learning. In Proceedings of Robotics Science and Systems

(RSS), 2008.

J. Sjoberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon, P.-Y. Glorennec, H. Hjal-

marsson, and A. Juditsky. Nonlinear black-box modeling in system identification: a

unified overview. Automatic, 1995.

T. Smith and R. Simmons. Point-based pomdp algorithms: improved analysis and

implementation. In Proceedings of the 21st conference on Uncertainty in Artificial

Intelligence (UAI), 2005.

B. Sofman, J. A. Bagnell, A. Stentz, and N. Vandapel. Terrain classification from aerial

data to support ground vehicle navigation. Technical Report CMU-RI-TR-05-39,

Carnegie Mellon University, 2006.

E. J. Sondik. The optimal control of partially observable Markov Processes. PhD thesis,

Stanford University, 1971.

M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for

pomdps. Journal of Artificial Intelligence Research (JAIR), 2005.

M. Streeter and D. Golovin. An online algorithm for maximizing submodular functions.

Technical Report CMU-CS-07-171, Carnegie Mellon University, 2007.

M. Streeter and D. Golovin. An online algorithm for maximizing submodular functions.

In NIPS, 2008.

M. Streeter, D. Golovin, and A. Krause. Online learning of assignments. In NIPS, 2009.

A. Strehl and M. L. Littman. An empirical evaluation of interval estimation for markov

decision processes. In Proceedings of the IEEE International Conference on Tools with

Artificial Intelligence (ICTAI), 2004.

292 BIBLIOGRAPHY

A. Strehl and M. L. Littman. Online linear regression and its application to model-

based reinforcement learning. In Advances in Neural Information Processing Systems

(NIPS), 2007.

A. L. Strehl, L. Li, and M. L. Littman. Reinforcement learning in finite mdps: Pac

analysis. Journal of Machine Learning Research, 2009.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,

1998.

U. Syed and R. E. Schapire. A reduction from apprenticeship learning to classification.

In Advances in Neural Information Processing Systems 24 (NIPS), 2010.

C. Szepesvári. Finite time bounds for sampling based fitted value iteration. In Pro-

ceedings on the 22nd International Conference on Machine Learning (ICML), pages

881–886, 2005.

I. Szita and C. Szepesvári. Model-based reinforcement learning with nearly tight ex-

ploration complexity bounds. In Proceedings of the 27th International Conference on

Machine Learning (ICML), 2010.

M. F. Tappen, C. Liu, E. H. Adelson, and W. T. Freeman. Learning gaussian conditional

random fields for low-level vision. In In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2007.

B. Taskar, C. Guestrin, and D. Koller. Max margin markov networks. In Advances in

Neural Information Processing Systems (NIPS), 2003.

J. Togelius and S. Karakovskiy. Mario AI Competition, 2009. URL http://julian.

togelius.com/mariocompetition2009.

A. Toscher, M. Jahrer, and R. Bell. The bigchaos solution to the netflix

grand prize., 2009. URL http://www.commendo.at/UserFiles/commendo/File/

GrandPrize2009_BigChaos.pdf.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods

for structured and interdependent output variables. Journal of Machine Learning

Research (JMLR), 2005.

H.-H. Tu and H.-T. Lin. One-sided support vector regression for multiclass cost-sensitive

classification. In Proceedings of the 27th Internation Conference on Machine Learning

(ICML), 2010.

http://julian.togelius.com/mariocompetition2009
http://julian.togelius.com/mariocompetition2009
http://www.commendo.at/UserFiles/commendo/File/GrandPrize2009_BigChaos.pdf
http://www.commendo.at/UserFiles/commendo/File/GrandPrize2009_BigChaos.pdf

BIBLIOGRAPHY 293

Z. Tu and X. Bai. Auto-context and its application to high-level vision tasks and 3d brain

image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 2009.

W. Uther and M. Veloso. Tree-based discretization for continuous state space reinforce-

ment learning. In AAAI, 1998.

L. Valiant. A theory of the learnable. Communications of the ACM, 1984.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.

A. Vlachos. An investigation of imitation learning algorithms for structured prediction.

In Proceedings of the European Workshop on Reinforcement Learning (EWRL), 2012.

V. G. Vovk. Universal forecasting algorithms. Information and Computation, 1992.

M. J. Wainwright, T. Jaakkola, and A. S. Willsky. Tree-based reparameterization for ap-

proximate estimation on loopy graphs. In Advances in Neural Information Processing

Systems (NIPS), 2001.

T. J. Walsh, I. Szita, C. Diuk, and M. L. Littman. Exploring compact reinforcement

learning representations with linear regression. In Proceedings of the Conference on

Uncertainty in Artificial Intelligence (UAI), 2009.

M. K. Warmuth and D. Kuzmin. Randomized online pca algorithms with regret bounds

that are logarithmic in the dimension. Journal of Machine Learning Research (JMLR),

2008.

L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer,

2003.

K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing

for large scale multitask learning. In Proceedings of the 26th International Conference

on Machine Learning (ICML), 2009.

A. Wendel, M. Maurer, G. Graber, T. Pock, and H. Bischof. Dense reconstruction on-the-

fly. In IEEE International Conference on Computer Vision and Pattern Recognition

(CVPR), 2012.

M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-local total variation

regularization. In CVPR, 2010.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist rein-

forcement learning. Machine Learning, 1992.

294 BIBLIOGRAPHY

B. Wu, T. L. Ooi, and Z. J. He. Perceiving distance accurately by a directional process

of integrating ground information. Nature, 2004.

L. Xiao. Dual averaging method for regularized stochastic learning and online optimiza-

tion. In NIPS, 2009.

E. P. Xing. Probabilistic graphical models and algorithms for genomic analysis. PhD

thesis, University of California, Berkeley, 2004.

X. Xiong, D. Munoz, J. A. Bagnell, and M. Hebert. 3-d scene analysis via sequenced

predictions over points and regions. In ICRA, 2011.

Y. Yue and T. Joachims. Predicting diverse subsets using structural svms. In ICML,

2008.

Yisong Yue and Carlos Guestrin. Linear submodular bandits and their application to

diversified retrieval. In NIPS, 2011.

B. Zadrozny. Learning and evaluating classifiers under sample selection bias. In Pro-

ceedings of the International Conference on Machine Learning (ICML), 2004.

B. Zhao and E. P. Xing. Hm-bitam: Bilingual topic exploration, word alignment, and

translation. In Advances in Neural Information Processing Systems (NIPS), 2007.

J. Zhou, S. Ross, Y. Yue, D. Dey, and J. A. Bagnell. Knapsack constrained contextual

submodular list prediction with application to multi-document summarization. In In-

ferning Workshop at the 30th International Conference on Machine Learning (ICML),

2013.

B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse

reinforcement learning. In Proceedings of the 23rd National Conference on Artificial

Intelligence (AAAI), 2008.

B. D. Ziebart, J. A. Bagnell, and A. K. Dey. Modeling interaction via the principle

of maximum causal entropy. In Proceedings of the 27th International Conference on

Machine Learning, 2010.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.

In Proceedings of the 20th International Conference on Machine Learning (ICML),

2003.

	1 Introduction
	1.1 Motivation and Examples
	1.2 Categorization of Learning Tasks
	1.3 The Challenge of Learning Sequential Predictions
	1.4 Leveraging Interaction for Efficient and Robust Learning
	1.5 Related Approaches
	1.6 Learning and Interaction Complexity of Sequential Predictions
	1.7 Applications
	1.8 Contributions

	2 Background
	2.1 Data-Driven Learning Methods: Algorithms and Theory
	2.2 Reductions between Learning Tasks
	2.3 Formal Models of Sequential and Decision Processes

	3 Learning Behavior from Demonstrations
	3.1 Preliminaries
	3.2 Problem Formulation and Notation
	3.3 Supervised Learning Approach
	3.4 Iterative Forward Training Approach
	3.5 Stochastic Mixing Training
	3.6 Dataset Aggregation: Iterative Interactive Learning Approach

	4 Learning Behavior using Cost Information
	4.1 Forward Training with Cost-to-Go
	4.2 DAGGER with Cost-to-Go
	4.3 Reinforcement Learning via DAGGER with Learner's Cost-to-Go
	4.4 Discussion

	5 Experimental Study of Learning from Demonstrations Techniques
	5.1 Super Tux Kart : Learning Driving Behavior
	5.2 Super Mario Bros.
	5.3 Robotic Case Study: Learning Obstacle Avoidance for Autonomous Flight

	6 Learning Inference for Structured Prediction
	6.1 Preliminaries
	6.2 Inference Machines
	6.3 Learning Inference Machines
	6.4 Case Studies in Computer Vision and Perception

	7 Learning Submodular Sequence Predictions
	7.1 Preliminaries
	7.2 Context-free List Optimization
	7.3 Contextual List Optimization with Stationary Policies
	7.4 Case Studies

	8 Learning Dynamic Models for Good Control Performance
	8.1 Preliminaries
	8.2 Problem Formulation and Notation
	8.3 Batch Off-policy Learning Approach
	8.4 Interactive Learning Approach
	8.5 Optimistic Exploration for Realizable Settings
	8.6 Experiments

	9 Stability as a Sufficient Condition for Data Aggregation
	9.1 Online Stability
	9.2 Online Stability is Sufficient for Batch Learners
	9.3 Discussion

	10 The Complexity of Learning Sequential Predictions
	10.1 Interaction Complexity
	10.2 Preliminaries: The Hard MDP
	10.3 Inevitability of Poor Guarantees for Non-Iterative Methods
	10.4 Linear Dependency of the Interaction Complexity on the Task Horizon

	11 Conclusion
	11.1 Open Problems and Future Directions

	Appendices
	A Analysis of Dagger for Imitation Learning
	A.1 Dagger with Imitation Loss
	A.2 Dagger with Cost-to-Go
	A.3 DAGGER with Learner's Cost-to-Go

	B Analysis of SCP for Submodular Optimization
	C Analysis of Batch and DAGGER for System Identification
	C.1 Relating Performance to Error in Model
	C.2 Relating L1 distance to observable losses
	C.3 Analysis of the Batch Algorithm
	C.4 Analysis of the DAGGER Algorithm

	Bibliography

