
Interaction-aware Actual Causation:

A Building Block for Accountability in Security Protocols

Submitted in partial ful�llment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Divya Sharma

B.E., Electronics & Electrical Communications Engg., PEC University of Technology

M.S., Electrical & Computer Engineering, Carnegie Mellon University

Carnegie Mellon University

Pittsburgh, PA

September 2015

Copyright © 2015 Divya Sharma

ii

Thesis Committee

Professor Anupam Datta (Chair), Carnegie Mellon University

Professor Dilsun Kaynar, Carnegie Mellon University

Professor Lujo Bauer, Carnegie Mellon University

Professor Peter Spirtes, Carnegie Mellon University

Professor Joseph Halpern, Cornell University

iv

‘Causality is not an easy topic to speak about, but it is a fun topic to speak about. It
is not easy because like religion, sex, and intelligence, causality was meant to be prac-
ticed, not analyzed. It is fun because, like religion, sex, and intelligence, emotions run
high; examples are plenty; there are plenty of interesting people to talk to; and above
all, the experience of watching our private thoughts magni�ed under the microscope
of formal analysis is exhilarating.’ – Judea Pearl, Winner of 2012 A.M. Turing Award.

vi

Abstract

Protocols involving multiple agents and their interactions are ubiquitous. Pro-

tocols for tasks such as authentication, electronic voting, and secure multi-party

computation ensure desirable security properties if participating agents follow their

prescribed programs. However, if some agents choose to deviate from their pre-

scribed programs and a security property is violated, it is important to hold agents

accountable, i.e. assign blame for their choices and actions, and to �x de�ciencies in

the protocol design. Prior work in accountability has focused primarily on detect-

ing or punishing deviations. This dissertation proposes a novel interaction-aware

approach to actual causation (i.e., the identi�cation of particular agents’ choices

to deviate, and interactions which caused a speci�c violation). We propose this

approach as a useful building block for accountability in interacting multi-agent

systems, including but not limited to security protocols.

The de�nitions of actual cause in this dissertation are inspired by prior work on

actual causation in philosophy, law, and computer science. However, prior frame-

works do not account for the program dynamics that arise in protocol-based set-

tings and do not naturally capture agent interactions and agents’ choices to deviate.
Motivated by these applications and challenges, we make two main contributions.

First, we propose a theory of actual causation with choice and interaction as key

components. Speci�cally, we de�ne in an interacting program model, what it means

for a sequence of program expressions (modeling choices, actions and interactions)

to be an actual cause of a violation. We demonstrate that our theory signi�cantly

advances the state-of-the-art in the research area of actual causation by combin-

ing process-oriented and counterfactual-based viewpoints in prior work. A careful

treatment of interaction and choice enables us to cleanly deal with a known set of

issues that plague extant theories, including expressing concise interaction models

and over-permissive counterfactual-based de�nitions.

Second, we demonstrate the value of this theory in the domain of security and

privacy protocols, by proving that violations of a speci�c class of safety properties

always have an actual cause. We also present a sound technique for establishing

program actions as actual causes. Additionally, we provide a causal analysis of a

representative protocol, designed to address weaknesses in the current public key

certi�cation infrastructure. Our theory clearly distinguishes between deviances

and actual causes which is important from the standpoint of accountability.

viii

Acknowledgments

Throughout my PhD, I have had the privilege of meeting several individuals

who have shaped the way I think and shaped the way I have evolved as a researcher.

I would like to thank my advisor, Prof. Anupam Datta. I have bene�tted tremen-

dously from his focus on rigor, clarity of thought and the bigger picture. His feed-

back has helped me improve my writing skills signi�cantly. This thesis has evolved

to be one of the most challenging endeavors for me, and a topic worth thinking

about for many years to come. I am thankful to Anupam for letting me take own-

ership of this work and his constant encouragement, over the years. It has been a

great learning experience.

I am grateful to all my doctoral committee members for agreeing to serve on my

committee, and for the numerous discussions and constant feedback: Prof. Dilsun

Kaynar, who is also a close collaborator. I have really enjoyed dissecting our de�ni-

tions together and working with her has been an immensely rewarding experience.

Prof. Peter Spirtes, who introduced me to a number of philosophy related works

and has always helped with the inputs on causality-related aspects. Prof. Joseph

Halpern, whose work inspired the counterfactual �avor in our work and whose

sharp questions and comments, helped strengthen the arguments presented in the

dissertation. Prof. Lujo Bauer, whose feedback regarding applications and novelty

of this work helped improve the content of the thesis signi�cantly.

I would like to thank my collaborators, Prof. Deepak Garg and Arunesh Sinha –

they had a signi�cant in�uence on this research and were great mentors. Thanks to

Deepak, Anupam and Dilsun for feedback on multiple iterations of this dissertation.

Some of the most important ideas in this dissertation came up during brainstorming

sessions with them and I have learnt most of what I know about research from all of

them. I have also bene�tted immensely from my interactions with other members

of our research group, especially Omar Chowdhury and Michael Tschantz.

I had the privilege of collaborating with other excellent researchers. I worked

with Prof. Limin Jia and Prof. Lujo Bauer on a project at the beginning of my

PhD, which was a great introduction to research and a fun experience. Prof. Lorrie

Cranor has been a great positive in�uence during my years in Cylab. I really en-

joyed working on a project related to court records with Prof. Helen Nissenbaum.

I would also like to thank other researchers in Cylab with whom I had encouraging

interactions.

I had the opportunity to intern at two excellent research labs during my time

as a graduate student. It gave me the �rst taste of applying research to a product in

real life. The team at Symantec Research Labs, especially Sanjay Sawhney, Sharada

Sundaram and Darren Shou were a pleasure to work with. My second internship at

Microsoft Research Cambridge was a great experience as well. I sincerely want to

thank two people who introduced me to research during my years as an undergrad-

uate and had a strong in�uence on my decision to pursue a PhD: Prof. Bernhard

Plattner (ETH Zurich) and Prof. Abhay Karandikar (IIT Bombay).

I feel lucky to have great collaborators (and their better halves) who are also

good friends – Arunesh, Pushpa, Deepak, Vasundhara, Limin, Omar, Amit, Dilsun,

you’ll be missed!

Working at Cylab has been an absolute pleasure, especially because of the out-

standing Cylab sta� who supported our work. Thank you, Cylab and ECE admin-

istrative sta� – especially Megan, Karen, Samantha S., Tina, Toni, Kelley, Rachael,

Ivan, Samantha G. Outside my own research group, the biometrics lab adopted me

as one of their own. Utsav, Shreyas, Ramzi, Keshav, Sekhar and other folks in the

biometrics lab were my go-to people when I ran out of moral support or food at my

desk (Ramzi, I made it but I still don’t have the answers!). I really enjoyed inter-

acting with folks in CUPS lab (especially Michelle, Manya, Blase). The entire Cylab

community provided one of the best working environments.

Shreyas, Sarah, Arunesh, Pushpa – thank you for opening your hearts, your

kitchens and your couches so generously! In my �nal two years, it was great to

have Ashwati as a �atmate. Our informal ‘thesis writing group’ (or rather Pitts-

burgh dining society) with Utsav, Varun and Supreeth made the last two months

of thesis writing less stressful. Thanks to all the other people who made living in

Pittsburgh an amazing experience, especially, Vivek, Niranjini, Divya H., GC, SKB,

Sudhanshu, Lavanya; Arshi, Mudit, Krishna, Rishu, Sabah, Sulabh, Amar, Shruti;

and Arun, Uday, Aranya, Ashwin, Siddharth N., Ishani, Marco, Sneha, Veda, Prof.

Carla Larocca, Dr. Michele and the IGSA folks I met during my time as a performer/

dance coordinator/ board member.

I want to thank my friends and mentors from my undergraduate school, many

of them were involved in �nalizing the decision to pursue a PhD, especially SMB,

Aastha, Kushal, Madhur, and other friends in PEC.

Thanks to Deepika M. and Arvind for always being there. I want to thank my

family for their constant support despite always wondering why I chose this path,

especially my parents, Indra and Raj Kumar, and my sister, Yajnika. I want to thank

x

my parents for many reasons, particularly for instilling in me a strong work ethic,

teaching me how to be over-ambitious and most importantly, letting me do some-

thing di�erent. My brother, Mohit, has been a great support through the good and

and the bad, for all my endeavors. This thesis is dedicated to (there has to be a list!):
my parents, without whom none of this would have started,

Mohit and Arvind, without whom none of this would have reached an end,

the punjabi spirit, without which none of this would have sustained.

This research has been partly funded by CyLab at Carnegie Mellon University

under grants CNS 1423168 and CCF 0424422 from the National Science Foundation

(NSF), and Multidisciplinary Research Program of the University Research Initia-

tive (MURI) on Science of Cybersecurity by Air Force O�ce of Scienti�c Research

(AFOSR).

xi

xii

Contents

Abstract vii

Acknowledgments ix

1 Introduction 1

1.1 Motivation . 1

1.1.1 Motivation of problem . 1

1.1.2 Motivation of our approach . 2

1.2 Overview of our approach . 3

1.2.1 De�nition outline . 5

1.3 Prior work in actual causation . 8

1.3.1 Counterfactual-based actual causation theories 8

1.3.2 Process-based causation theories . 8

1.3.3 Challenges . 9

1.4 Thesis statement . 9

1.5 Summary of contributions . 10

1.6 Structure of the dissertation . 13

I Interaction-aware Theory of Actual Causation 15

2 Overview of the Formalism 17

2.1 Syntax . 17

2.1.1 Adding choice and asymmetric disjunction 20

2.2 Operational semantics for process calculus framework 24

2.3 Structural equation framework for actual causation 28

2.3.1 Semantics for structural equations . 29

xiii

Contents

2.4 Why process calculus? . 31

2.5 Examples . 34

3 De�ning Choices and Actions as Actual Causes 39

3.1 Actual cause de�nition . 43

3.2 Examples . 47

4 Relationship with Prior Work in Actual Causation 51

4.1 Process-based causation theories . 53

4.2 Counterfactual-based actual causation theories 54

4.2.1 Hitchcock 2001 (H2001) . 56

4.2.2 Hall 2007 (H-account) . 59

4.2.3 Halpern and Pearl (HP2001, HP2005) . 61

4.2.4 Halpern 2015 (H2015) . 63

4.2.5 Relationship with interventions and necessity clause in prior work . . . 64

4.3 De�nitional di�erences and consequences . 66

4.3.1 Modeling interaction and choice . 66

4.3.2 Finding causal sequences . 67

4.3.3 Program expressions vs variable assignments as causes 67

4.3.4 Testing counterfactual scenarios . 70

4.3.5 Distinguishing between joint and independent causes 74

4.4 Modeling di�erences and consequences . 76

4.4.1 Using process calculus . 76

4.4.2 Expressing concise general models of interaction 76

4.4.3 Handling preemption concisely . 76

II Application to Security Protocols 87

5 De�ning Program Actions as Actual Causes 89

5.1 Motivating example . 90

5.2 Program actions as actual causes . 93

5.2.1 Model . 93

5.2.2 Logs and their projections . 95

5.2.3 Properties of interest . 95

5.2.4 Formal de�nition: Program actions as actual causes 96

5.3 Relationship with De�nition in Part 1 . 100

xiv

Contents

5.4 Application: Causes of authentication failures 101

5.4.1 Protocol description . 101

5.4.2 Attack . 103

6 Using Causation as a Building Block for Accountability 111

6.1 Using causation for explanations (protocol debugging) 111

6.2 Using causation for blame attribution . 112

6.3 Related work . 114

6.3.1 Accountability . 115

6.3.2 Causation for blame assignment . 117

7 Conclusion and Future Work 119

7.1 Directions for future work . 119

7.1.1 Properties as actual causes . 119

7.1.2 Towards a theory of blame: intention, foreseeability 121

7.1.3 Actual causation in sequential setting 121

7.2 Concluding remarks . 122

Appendices 123

A Operational Semantics 125

B Proof for Case Study: Program Actions as Causes 129

B.A Protocol description . 129

B.B Preliminaries . 130

B.C Attack . 133

C De�ning Programs as Actual Causes 141

C.A Programs as actual causes . 141

C.A.1 Problematic example . 143

C.A.2 Formal de�nitions . 143

C.B Case study . 147

C.B.1 Protocol description . 148

C.B.2 Causal analysis of attack scenario . 151

Bibliography 163

xv

Contents

xvi

List of Figures

2.1 Example 1: Two di�erent logs l, l′ for the same set of programs 27

2.2 Correspondence between SEM for actual causation and process calculus frame-

work . 32

2.3 Example 1: A modi�ed example to explain general models of interaction. 33

2.4 Example 3: Forest �re – disjunctive scenario . 36

2.5 Example 4: Voting machine . 37

3.1 Example 1, Loader: causal analysis (two causal sequences) 40

3.2 Example 1, Loader: Causal analysis . 46

3.3 Example 3, Disjunctive scenario: causal analysis 48

3.4 Example 2, Conjunctive scenario: causal analysis 49

3.5 Example 4, Voting machine (Subsets of Z): causal analysis 50

4.1 Example 5: Trainee supervisor example (preemption) 59

4.2 Example 6: Shock . 69

4.3 Example 6: Variation of the model . 70

4.4 Example 7: Voting Scenario (stone soup essay) 74

4.5 Example 8: Trumping Preemption involving shooting (priority) 78

4.6 Example 9: Poisoning (Late Preemption/Early preemption). 80

4.7 Example 10: Late preemption without additional variables to distinguish out-

come. 82

4.8 Example 10: Over-determination with �ve programs, as described in the origi-

nal structural equations. This model captures the fact that if Suzy hits �rst, her

throw gets preference. 83

4.9 Example 10: Late preemption as encoded in the structural equations with BT.

~α′′ is found as a cause because a preemption-based example is modeled using a

symmetric operator. 85

xvii

List of Figures

5.1 Norms for all threads. Adversary’s norm is the trivial empty program. 107

5.2 Actuals for all threads. 108

5.3 Left to Right: (a): log(t)|i for i ∈ I . (b): Lamport cause l for Theorem 3. l|i = ∅
for i ∈ {User3} as output by De�nition 15. (c): Actual cause ad for Theorem 3.

ad|i = ∅ for i ∈ {Notary3,User2,User3}. ad is a projected sublog of Lamport

cause l. 109

A.1 Operational semantics. An operator marked with ˙ indicates the standard se-

mantic interpretation of the operator. 126

A.2 Operational semantics (contd.) . 127

B.1 Norms for Server1,User1, Server2,User4,User2,User3 and the notaries. Adversary’s

norm is the trivial empty program. 131

B.2 Actuals for Adversary, Notary1, Notary2, Notary3, Server1, User1, User2, User3 . 134

B.3 Actuals for Server2, User4, Notary4 . 135

B.4 log(t)|i and ad . 137

B.5 log(t)|i where i ∈ {User4, Server2,Notary4} . 138

C.1 Norms for Server1, User1, notaries. Adversary’s norm is the trivial empty program. 151

C.2 Norms for Server2, User2 . 152

C.3 Deviants for Adversary and Notary1, Notary2, Notary3 152

C.4 Synchronization projections . 153

C.5 Additional de�nitions and axioms (Garg et al [1]) 158

xviii

Chapter 1

Introduction

1.1 Motivation

1.1.1 Motivation of problem

Accountability mechanisms complement preventive security and privacy mechanisms by de-

tecting policy violations after they occur, identifying agents to blame for violations, and pun-

ishing the violators. Ensuring accountability for security protocols is essential in a wide range

of settings. For example, protocols for authentication and key exchange [2], electronic vot-

ing [3, 4], auctions [5], contract signing [4, 6] and secure multiparty computation [7] are widely

used multi-agent protocols that require strong accountability guarantees due to the involve-

ment of trusted third parties. These multi-agent protocols ensure desirable security properties if

participating agents follow their prescribed programs. However, if some of these agents choose

to deviate from their prescribed programs and a security property is violated, it is important to

analyze the violation. This is crucial for two reasons: �rst, to hold agents accountable (assign
blame) for their choices and actions, and second, to �x de�ciencies (protocol debugging) in the

protocol design which enabled the violation. The importance of accountability in multi-agent

systems has been recognized in prior work [4, 6, 8, 9, 10, 11, 12].

While the research community has recognized the problem of accountability and its com-

plexity, none of the existing works provide an approach which connects agents’ actions to the

violation they are held accountable for. Prior work in accountability has focused primarily on

detecting or punishing deviations, regardless of whether the deviations and resulting interac-

tions actually led to the violation.

1

Chapter 1. Introduction

1.1.2 Motivation of our approach

This dissertation proposes actual causation (i.e., the identi�cation of particular agents’ choices

to deviate and their interactions, which caused a speci�c violation) as a building block for ac-

countability in decentralized multi-agent systems, including but not limited to security proto-

cols and ceremonies.

We consider a simple protocol example in order to illustrate the key points of our approach.

In the movie Flight [13], a pilot drinks alcohol and snorts cocaine before �ying a commercial

plane, and the plane goes into a locked dive in mid-�ight. While the pilot’s behavior is found

to be deviant in this case—he does not follow the prescribed protocol (program) for pilots—it

is found to not be the actual cause of the plane’s dive. The actual cause was a deviant behav-

ior by the maintenance sta�—they did not replace a mechanical component that should have

been replaced. Ideally, the maintenance sta� should have inspected the plane prior to take-o�

according to their prescribed protocol.

This example is useful to illustrate several key ideas that in�uence the formal development

in this dissertation. First, it illustrates the importance of capturing the actual interactions among

agents in a decentralized multi-agent system with non-deterministic execution semantics. The

events in the movie could have unfolded in a di�erent order but it is clear that the actual cause

determination needs to be done based on the sequence of events that happened in reality. For

example, had the maintenance sta� replaced the faulty component before the take-o�, the plane

may not have gone into a dive.

Second, the example motivates us to hold accountable agents who exercised their choice
to execute a deviant program that actually caused a violation. The maintenance sta� had the

choice to replace the faulty component or not. Our model provides natural constructs to express

these choices which are crucial for the violation.

Third, the example demonstrates that the task of replacing the component could consist of

multiple steps, for instance, the program to be followed by the maintenance sta�. It is important

to identify which of those steps were crucial for the occurrence of the dive. Thus, we focus on

formalizing program actions executed in sequence as actual causes of violations rather than

individual, independent events as formalized in prior work.

Fourth, the example highlights the interaction-aware approach in constructing counter-

factual scenarios for program-based settings. We focus on counterfactual-based de�nitions of

actual causation where a causal judgment is made based on what could have happened in alter-

native worlds. Our de�nition considers alternative scenarios where parts of certain programs

would not have executed or certain choices could have been made di�erently. For the example,

we test whether the plane would have gone into a nose dive, if only some of the choices and

2

Chapter 1. Introduction

interactions of the sta� and the pilot were replayed, as in the actual setting.

Finally, the example highlights the di�erence between deviance and actual causation. This

di�erence is important from the standpoint of accountability. In particular, the punishment

for deviating from the prescribed protocol could be suspension or license revocation whereas

the punishment for actually causing a plane crash in which people died could be signi�cantly

higher (e.g., imprisonment for involuntary manslaughter). The �rst four ideas, re�ecting our

program-based treatment, are the most signi�cant points of di�erence from prior work on ac-

tual causation [14, 15, 16, 17, 18], while the last idea is a signi�cant point of di�erence from

prior work in accountability [4, 6, 19, 20]. The �rst four ideas re�ect our interaction-aware and

choice-aware approach to actual causation.

Prior work on accountability in computer security and cryptography has focused on deviant

detection and punishment and has not studied actual causation as a building block for blame-

assignment [4, 6, 10, 12, 19, 21]. This gap can result in inappropriate or unjusti�ed blame assign-

ment as well as the inability to distinguish between joint and independent causes [4, 12, 22, 23]

— weaknesses that our formalization addresses
1
.

The problem of causation is ubiquitous. The central contribution of this dissertation is a

formal de�nition of actual causationwhich is interaction-aware and choice-aware and

�nds actual causes at the �ne-grained level of program actions. This dissertation makes

a signi�cant contribution to the �elds of security, formal methods and analytical philosophy –

ours is the �rst work which proposes an interaction-aware approach to actual causation in order

to connect actions to occurrence of violation in interacting systems. The approach proposed

in this dissertation has signi�cance not only for the problems of accountability in the above

mentioned areas, but also in other �elds where determining actual causes in (non-deterministic)

interacting systems is important.

1.2 Overview of our approach

In this section, we provide an outline of our actual cause de�nition.

Terminology. Throughout this dissertation, we use the terms counterfactual and non-determinism.

We �rst explain how we interpret these commonly used terms.

• Processes are used to model di�erent types of systems. For instance, in certain cases

processes model interactive programs, while in other cases processes can be used to model

naturally occurring behavior (as in most of the physical sciences) [24]. In certain cases,

1
See Chapters 4, 6 for a detailed comparison with related work.

3

Chapter 1. Introduction

individual steps which constitute a process can be speci�ed, this is especially true when

processes model programs. In this dissertation, we focus on such processes and their

interactions.

• A process might be deterministic, probabilistic or non-deterministic. Deterministic pro-

cesses produce the same outputs (results) when re-run with the same inputs. For example,

the physical process underlying determination of force from mass and acceleration is a

deterministic process. Probabilistic processes may produce di�erent results when re-run

with the same inputs because of uncertainty about their execution. For instance, the

computational process underlying a modern cryptographic algorithm for encryption is a

probabilistic process — when the same message is input to such an algorithm it produces

di�erent results in accordance with a probabilistic transition function. Non-determinism

is an abstraction introduced by computer scientists to model probabilistic systems whose

exact transition function probabilities are not known. They are de�ned using a possibilis-

tic transition function that de�nes for each system state the possible next states, while

ignoring the probabilities of the transitions. For instance, this abstraction is often used in

interacting systems (e.g., distributed algorithms, security protocols) where the exact order

of interactions are not known. Instead the scheduler is modeled using non-determinism

to capture all possible execution orders.

• The word counterfactual refers to settings which are counter to the given fact, i.e. alter-

native possibilities. Counterfactual settings can be obtained by allowing arbitrary mod-

i�cations to the outcome of the involved processes (for instance, in settings where the

processes being modeled are �xed), or by allowing modi�cations to parts of the process

and its inputs (for instance, in case of programs). In this dissertation, we adopt the latter

strategy for constructing counterfactual scenarios.

Process-oriented view. In this dissertation, we focus on the processes rather than individual

events, i.e. variable assignments for process outcome (as is traditionally done in the actual cause

literature). We believe that this process-oriented view is better suited to security settings where

agents exercise their choice to follow prescribed programs or deviate from them, rather than

unrelated individual steps. If we were to solely focus on the outcome of the program, then this

level of detail cannot be captured.

We model a process as a sequence of program expressions. These program expressions

capture choices, other actions and interactions amongst processes at a �ne-grained level, which

is signi�cant for our goal of accountability. This design choice is important to understand the

e�ect of modifying the constituent steps of a process in the model (for instance, in case of

4

Chapter 1. Introduction

interactive programs), as well as in �elds where analyzing the modi�cation made to the model

is also signi�cant (for instance, models for processes in the natural sciences).

Some (or all) of the expressions in a process, may execute and result in a sequence of ex-

ecuted program expressions. Each executed expression may return a value, however for the

purpose of accountability we focus on the general sequence of program expressions and not

the outcome values. We call this sequence of uninstantiated expressions a log. The log may or

may not satisfy certain properties of interest. We propose a de�nition of cause that can be used

to identify a subsequence of the log, as a cause of a property being true (or occurrence of an

event). We call such a subsequence as causal sequence.
Our goal is to identify the relevant parts of all interacting processes (corresponding to the

relevant sequence of executed program expressions) rather than the entire program, which led

to occurrence of a certain property. The level of abstraction of program expressions is useful

for accountability for two reasons. First, for a speci�c violation V (which is a property), even

though a program P might be deviant, and some expressions of program P might have exe-

cuted, but those expressions may not be a part of the causal sequence that leads to the violation.

Formalizing program expressions rather than entire programs, allows us to provide a basis for

exonerating such programs from blame for violation V . Second, di�erentiating between choices

and other actions provides us a way to easily identify the relevant choices and blame the agents

who made those choices
2
.

1.2.1 De�nition outline

We envision our de�nition to be applicable in settings where agents execute their programs

concurrently with other programs in an interacting system and a reliable log of their actions is

available. Let l be a log of agents’ executed program expressions (modeling the interactions and

the internal choices). All agents are supposed to collectively satisfy a property if they follow

the given programs. Let V be a set of traces, representing a violation of the intended property.

For our de�nition, we assume that a system of interacting agents is completely speci�ed and if

a system goal is not met, then we have access to the log l. The de�nition presented here further

assumes this log of events to be complete.

The basic idea of our de�nition is to identify a sequence of program expressions executed

in ~α to be an actual cause of the violation V , while implicitly establishing the irrelevance of

other agents’ choices and actions to the violation.

2
This might also be relevant in a setting where the programs are �xed and internal choices are the only

parameters that can vary across executions.

5

Chapter 1. Introduction

Constructing counterfactual scenarios. We consider a set of counterfactual scenarios where

the agents made the same choices as the choices selected in ~α, executed the same actions as in

~α and the interactions amongst all the agents are preserved as in ~α. We test the irrelevance of

the other actions and choices (i.e., expressions not in ~α) by eliminating these expressions. In

order to construct these counterfactual scenarios, we modify the processes to remove the ex-

pressions not included in the putative causal sequence, in an interaction-aware manner. Next,

we generate feasible executions of the model and test for the e�ect on all executions resembling

the log. The output values generated by processes may vary due to the non-determinism in the

execution semantics as described above
3
.

Informally speaking, we say that ~α is an actual cause of V on a log l if the following prop-

erties hold:

• Occurrence: The violation has occurred on the log l. That is, the corresponding execution

trace
4

is in V .

• Su�ciency: Eliminate all expressions not in ~α from interacting processes and consider all

executions similar to the log. Then, ~α su�ces to obtain the same violation on all resulting

executions, even if the eliminated expressions were to return arbitrary values, i.e. we test

for all possible values which could be returned by the eliminated expressions.

• Minimality: No proper subsequence of ~α satis�es both the conditions above.

Revisiting the Flight example. In the Flight example introduced at the beginning of the

chapter, the log records the pilot’s choice and action to �y the plane, as well as the sta�’s choice

to deviate and the malfunctioning of the plane. There are two potential causal sequences, �rst,

the choice made by the pilot to drink and consequently �y the plane, and second, the choice

made by the maintenance sta� to not replace the component and allowing the plane to �y.

For both these sequences, Occurrence condition is satis�ed since the plane malfunctioned. Let

us consider the sequence involving only the pilot’s actions. For the Su�ciency condition, we

will preserve the pilot’s choices and actions as on the log. For all other actions and choices

not on the log (i.e. the sta�’s program), we will test all possible scenarios that could have

resulted. We can show that in at least one of the cases, had the sta� replaced the component,

3
In contrast with prior theories of actual causation, our counterfactual scenarios test for all possible returned

values for the removed expressions as opposed to existential quanti�cation over values for expressions excluded

from the causal sequence.

4
we explain the di�erence between a log and a trace, formally, in Chapter 2. Informally speaking, a log is the

sequence of un-instantiated program expressions where the execution trace contains the instantiated values for

all the executed expressions. For instance, if a trace contains the expression send x, it will also specify the value

of x. In contrast, the log of this trace will only contain the un-instantiated expression: send x.

6

Chapter 1. Introduction

then the malfunction would not have happened
5
. Similarly, when we test the second sequence

consisting of only the sta�’s actions, we will test all possible scenarios that could have resulted

from the pilot’s actions. In this case, we �nd that as long as the maintenance sta� chose to not

replace the component and allow the plane to �y – the plane will malfunction in all the cases,

irrespective of whether the pilot is sober or not. Therefore, this second sequence satis�es the

su�ciency condition. We can also show that this sequence is minimal since we need both the

sta�’s choice and interactions (for instance, with the crew to allow the take-o�) to demonstrate

the su�ciency clause. This example illustrates that the causal analysis can be used as a building
block for evidence to show that the sta�, and not the pilot, should be held accountable for the

plane’s malfunction, even though both could be punished for the deviation.

Process calculus formalism. The settings where we are interested in answering the ques-

tions formulated above, primarily involve protocols where multiple agents make choices and

interact. In such settings, di�erent executions may arise even if the programs executed by

agents are �xed. The non-determinism in the execution semantics could arise due to several

factors, including, choosing di�erent inputs, a di�erent interleaving of actions or di�erent syn-

chronizations across communicating programs.

The desire to model interaction, capture program dynamics and non-deterministic execu-

tion semantics, motivates us to use a process calculus to formalize our actual cause de�nition.

Process calculi [25] have been widely used for modeling interacting or communicating systems.

Process calculus contains natural constructs to model both choice and interaction
6
. We high-

light several advantages of using a process calculus framework for the questions we focus on.

These include capturing sequential and interaction-based dependencies
7
.

A note on the term ‘actual causation’. Consider a simple example: John smoked and was

diagnosed with cancer. Finding an answer to the question, ‘did John’s smoking cause John’s

cancer?’ will fall under the purview of �nding the actual cause (or token cause) of John’s cancer.

In contrast, �nding an answer for the question ‘does smoking cause cancer?’ falls under the

category of type causation (or general causation). It is common to distinguish actual causation,

which is the relation between variable values, from type causation, which is the relation be-

tween random variables. Type causation [26, 27] is concerned with relations between random

variables and is considered by several philosophers to be the pre-requisite for actual causation.

5
As per the movie [13], the pilot’s intoxication level was not enough to lead to any malfunction by itself.

6
Another advantage of using process calculi for our causal analysis is that traditionally process calculi have

been used for demonstrating correctness of protocols and have been of importance in proving other properties

about concurrent execution of programs.

7
See Chapter 2 for a detailed description.

7

Chapter 1. Introduction

There is, however, no consensus on how type causation and actual causation are related [28, 29].

In this dissertation, we focus on actual causes of violations, i.e. given a speci�c violation, we �nd

its causes
8
.

1.3 Prior work in actual causation

1.3.1 Counterfactual-based actual causation theories

Causation has been of interest to philosophers and ideas from philosophical literature have been

introduced into computer science by the seminal works of Halpern and Pearl [14, 27, 30] as well

as Spirtes, Glymour and Schienes [26]. In particular, counterfactual reasoning is appealing as

a basis for study of actual causation. Indeed, actual causation is a building block for causal

explanations [31], which can be used to provide an account of why a violation happened. It is

also a building block for blame assignment in in�uential theories of moral and legal blame [32,

33, 34, 35, 36, 37].

Much of the de�nitional activity in philosophy, law, and computer science has centered

around the question of what it means for an event to be an actual cause of another event.

Notably, Hume [38] identi�ed actual causation with counterfactual dependence—the idea that c

is an actual cause of e if had c not occurred then ewould not have occurred. The counterfactual

interpretation of actual causation has been developed further and formalized in a number of

in�uential works (see, for example, [14, 16, 17, 27, 39, 40, 41, 42]). This concept has generated

signi�cant interest in philosophy and law in part because of its connection with issues of moral

and legal responsibility (see [32, 33]). Indeed, that is also why we view actual causation as a

useful building block for accountability in security settings
9
.

1.3.2 Process-based causation theories

Another prominent line of work commonly referred to as ‘causal process theories’ is based

on the notion that causation should be understood in terms of continuous causal processes

and interactions between them, rather than causal relations between discrete events [44]. This

line of work, attributed primarily to Salmon, originated in his work on explaining physical

processes. According to Salmon, a process is anything with constancy over time. His theory

8
Speci�cally, in this work we focus on the theories which have been proposed for actual causation, using the

structural equation framework, and employ counterfactual based reasoning. See Chapter 4 for details.

9
A di�erent characterization of causal relation has been proposed in terms of ‘production’, i.e. c is a cause

of e if c generates event e or c helps to bring about e [43]. In this dissertation, we focus on counterfactual-based

theories of actual causation.

8

Chapter 1. Introduction

makes a fundamental distinction between a causal process and a pseudo process where a causal

process is de�ned as one that is capable of transmitting a local modi�cation of a characteristic.

Prior work in this �eld has primarily focused on di�erentiating causal processes from pseudo

processes [44, 45, 46].

1.3.3 Challenges

Formalizing actual cause as a building block for accountability in multi-agent interacting sys-

tems raises new conceptual and technical challenges beyond those addressed in the literature

on events as actual causes as well as process-based theories of actual causation. Prior work in

counterfactual-based actual causation �nds individual events (i.e. variable assignments for pro-

cesses) as causes of a violation. On the other hand, prior work in process causation-based theo-

ries does not focus on �nding causes for certain properties being true. In particular, event-based

causation frameworks do not account for the program dynamics that arise in such settings and

lack constructs that naturally capture agent interactions. Additionally, in prior counterfactual-

based actual causation literature, the processes are deterministic and cannot naturally capture

the program dependencies in a decentralized multi-agent system such as the ones we are in-

terested in. To the best of our knowledge, prior work in actual causation has not encoded

non-deterministic systems or does not provide a mathematical formulation for such a theory,

which makes the direct application of these frameworks to security protocols challenging
10

.

1.4 Thesis statement

Our thesis statement is the following:

An interaction-aware and choice-aware approach is essential to de�ne actual causation
in interacting systems. Additionally, this approach provides a useful building block for
accountability (i.e., to assign blame for and explain violations) in such systems.

This dissertation focuses on formalizing program actions as actual causes and developing anal-

ysis techniques for inferring causes of security violations.

10
We discuss the di�erences with counterfactual-based theories in detail in Chapter 4. To the best of our knowl-

edge, process based-theories do not have a mathematical formulation at a similar level of detail as counterfactual-

based theories described using structural equations, making it di�cult to perform a deeper comparison. We discuss

these theories brie�y in Chapter 4.

9

Chapter 1. Introduction

1.5 Summary of contributions

This dissertation makes the following contributions in the �elds of actual causation and ac-

countability in security and privacy protocols:

1. Contributions to theory of actual causation:

Here are the central contributions and each of these addresses weaknesses in prior liter-

ature in actual causation:

De�nitional:

(a) Modeling interaction and choice. We propose a theory of actual causation in

interacting systems with choice and interaction as the key components. In contrast

with prior work on counterfactual-based actual causation, our theory treats these

constructs di�erently from other constructs in the formal language.

(b) Combining process-oriented view and counterfactual-based view. A cen-

tral aspect of our theory of causation lies in blending ideas from process-based

and counterfactual-based traditions of actual causation. We adopt a process-based

view and focus on interactions and �nding processes (i.e. program expressions) as

causes. On the other hand, our de�nition uses counterfactuals to �nd actual causes.

With the help of examples from actual causation literature, we demonstrate that

our process-oriented and interaction-aware approach to actual causation has sev-

eral useful features:

i. Finding causal sequences (What is a cause?). We capture a causal sequence as

opposed to individual events (i.e. variable assignments for process outcomes),

since during our causal analysis we preserve dependencies (choices and inter-

actions) within the programs and the dependencies that are introduced due to

interactions.

ii. Program expressions vs variable assignments as causes (What constitutes
a causal sequence? : process-oriented view). We focus on identifying relevant

program expressions in a process as opposed to pinpointing an entire process or

its outcome. Our �ne-grained causal determination is useful for accountability.

iii. Testing counterfactual scenarios (How to identify a causal sequence?). In

our process-oriented theory, counterfactuals are programs
11

instead of variable-

value pairs as in prior work. These programs are constructed in a speci�c man-

11
i.e. absence or presence of program subexpressions

10

Chapter 1. Introduction

ner from the programs that actually executed. They are useful to identify the

causal sequence for a violation, i.e. to identify parts of the programs that ac-

tually caused the violation and eliminate other parts that were irrelevant for

the violation. This approach to constructing counterfactual scenarios allows us

to retain the interaction structure of the log and not remove individual events,

which could lead to spurious causal inferences. In prior work, counterfactual

scenarios are constructed by modifying the value of any variable in the model

and propagating the e�ect to its dependent variables. In our case, modifying

the value of a dependent variable in a causal sequence, imposes constraints on

all the variables in the causal sequence. This distinction allows us to provide a

more �ne-grained causal sequence as opposed to specifying the relevant out-

come value.

Modeling:

(a) Using process-calculus. Our motivation stems from providing accountability for

security protocols where modeling interaction and capturing non-deterministic set-

tings is a key component. We focus on causal sequences and processes where cap-

turing ordered sequences of events is relevant. Process calculus frameworks provide

natural interaction primitives which have been used to model and reason about pro-

tocol settings extensively and allow us to focus speci�cally on processes and interac-

tions. Hence process calculus frameworks make a natural choice for our formaliza-

tion. Existing formalisms in actual causation literature lack operators to naturally

capture such constructs.

Consequences:

(a) De�nitional: Distinguishing between joint and independent causes. A joint

cause refers to all the individual program expressions (possibly from di�erent pro-

cesses) which are part of a causal sequence. Independent causes of a violation

occur when, intuitively, two distinct sequences of program expressions have an

equal claim to be regarded as the cause of an e�ect
12

. Our de�nition cleanly han-

dles this separation which is a recognized challenge for prior actual cause de�ni-

tions [14, 17, 27, 30, 48].

(b) Modeling: Expressing non-deterministic interacting systems concisely. Our

process calculus-based framework can express general models for non-deterministic

interacting systems more concisely than the formalism used in prior work in counterfactual-

12
This is related to the idea of symmetric overdetermination from prior work [47].

11

Chapter 1. Introduction

based actual causation
13

(c) Modeling: Handling preemption examples concisely. In contrast with inde-

pendent causes, preemption occurs when one cause has a preference and the other

cause ‘merely waits in reserve’ [49], i.e., both causes are not considered symmetric

or equivalent. Our de�nition can handle preemption with concise representation by

using existing constructs in our formalism, as compared to prior frameworks
14

.

2. Contributions to accountability, security and privacy:

This dissertation makes a fundamental contribution by identifying and formalizing actual

causation as the basis via which one can link relevant deviations to violations for assign-

ing blame. We demonstrate the value of our formalism for the domain of security and

privacy protocols in two ways. First, we prove that violations of a precisely de�ned class

(subset) of safety properties always have an actual cause. Thus, our de�nition applies

to relevant security properties. Second, we provide a cause analysis of a representative

protocol designed to address weaknesses in the current public key certi�cation infrastruc-

tures [50]. Our theory clearly distinguishes between deviances and actual causes which

is important from the standpoint of accountability.

In addition, we discuss how our framework can serve as a building block for causal expla-

nations (protocol debugging) and exoneration (i.e., soundly identifying agents who should not

be blamed for a violation).

Scope of work. In this dissertation, we focus on actual causation, which, in our setting, cor-

responds to �nding causes of violations on a single log of events
15

. In particular, we consider

counterfactual based theories of actual causation in prior work. We motivate our framework

in the larger context of providing a building block for accountability, i.e. blame assignment

and explanations. We recognize that blame-assignment goes beyond deviance and actual cause

determinations — identifying how to combine deviance and actual cause determinations for

accurate blame-assignment remains an open question.

Causal analysis is an intuitive building block for answering some very natural questions

that have direct relevance to accountability such as (i) why a particular violation occurred, (ii)

what component in the protocol is blameworthy for the violation and (iii) how the protocol

could have been designed di�erently to preempt violations of this sort. Answering these ques-

tions requires an in-depth study of, respectively, explanations, blame-assignment, and protocol

13
i.e. structural-equation based frameworks used in actual causation [14, 17, 18, 30].

14
i.e. structural-equation based frameworks used in actual causation [14, 17, 18, 30].

15
This is in contrast with inferring more general relations.

12

Chapter 1. Introduction

design, which are interesting problems in their own right, but are not the explicit focus of this

dissertation. Instead, we focus on a formal de�nition of causation that we believe formal stud-

ies of these problems will need. Roughly speaking, explanations can be used to provide an

account of the violation, blame assignment can be used to hold agents accountable for the viola-

tion, and protocol design informed by these would lead to protocols with better accountability

guarantees.

General applicability of these ideas. The applicability of ideas proposed in this thesis goes

beyond security protocols and philosophy – the analysis techniques proposed in this disserta-

tion are relevant for reasoning about causation in any non-deterministic interacting system.

Our framework naturally captures choice and interaction between communicating processes,

and �nds a sequence of actions implementing these constructs, as an actual cause of an e�ect.

Our analysis is applicable to �elds where the processes (modeled via programs) generat-

ing an outcome are not �xed, and their execution might be non-deterministic. For instance,

our analysis is applicable in �elds such as engineering and arti�cial sciences [51], or in any

non-deterministic system which involves (human) choice and interaction where agents have a

choice to execute di�erent programs. Hence we focus on �nding a causal sequence containing

program expressions, as opposed to instantiated variable values for process outcome. This is

in contrast with the natural sciences, where the processes generating outcomes are stable and

the focus is on understanding how the outcomes of speci�c processes contribute to a global

e�ect. Ideas in actual causation are of relevance for blame exoneration or assigning responsi-

bility [52], legal reasoning for tort and criminal cases [42], fault diagnosis [53], as well as for

di�erent applications in AI such as �nding explanations, troubleshooting and prediction [27].

1.6 Structure of the dissertation

The rest of the dissertation is split into two parts.

Part 1 develops an interaction-aware theory of actual causation.

• Chapter 2 provides a detailed overview of our process calculus framework. We describe

how we can encode structural equations using our process calculus framework, with some

examples.

• In Chapter 3, we provide an interaction-aware de�nition of actual causation. We demon-

strate how to construct counterfactual scenarios in an interaction-aware manner, for our

protocol-based settings and justify other design choices.

• In Chapter 4, we relate our de�nition to process causation theories and four prominent

13

Chapter 1. Introduction

de�nitions for counterfactual-based actual causation in AI and Philosophy. We high-

light distinctive features of our formalism. Additionally, we consider examples which

have been problematic for prior theories, including preemption examples, distinguishing

between joint and independent causes as well as over-permissive counterfactual-based

analyses. We encode these examples in our process calculus framework and highlight

the di�erences in the approaches.

Part 2 presents an instance of the interaction-aware theory of actual causation and applies

it to the setting of security protocols. This part �nds program actions as actual causes using

an interaction-aware theory. The de�nition proposed in Chapter 3 is a generalization of the

de�nition presented in this part.

• In Chapter 5, we formally introduce our model and provide a de�nition which �nds pro-

gram actions as actual causes of violations. Section 5.1 describes a representative example

which we use throughout the chapter to explain important concepts. We formalize pro-

gram actions as causes with an interaction-aware approach, developed in Part 1.

• In Chapter 6, we discuss how our de�nition can be used as a building block for explana-

tions and blame assignment, and hence, accountability. We provide examples showing

that not all deviants are actual causes and vice versa.

• Chapter 7 summarizes the dissertation and concludes with interesting directions for fu-

ture research.

Remark. Chronologically, the theory presented in the second part of this dissertation was

developed before the general theory presented in Part 1. Part 2 was developed speci�cally

for the domain of security protocols and provides relevant analysis methods and a case study.

In Chapter 5, we discuss how the de�nition developed in Part 2 is related to the de�nition

presented in Part 1.

Some parts of this dissertation appear in a conference paper in the proceedings of the IEEE

28th Computer Security Foundations Symposium (Verona, Italy, July 2015) as ‘Program Actions
as Actual Causes: A Building Block for Accountability’ [54] and in the full version of that pa-

per [55].

14

Part I

Interaction-aware Theory of Actual

Causation

15

Chapter 2

Overview of the Formalism

Chapter goal. In this chapter, we introduce the process calculus formalism. We introduce the

syntax and operational semantics (step-wise execution). Next, we brie�y describe the syntax

and semantics for the structural equation framework used in actual causation literature [14, 16,

17, 18, 29, 56]. We demonstrate the correspondence and describe why process calculus is better

suited for modeling interactions and processes. We demonstrate how examples modeled using

structural equations can be encoded in our framework.

2.1 Syntax

In the next part we introduce the syntax for our process calculus.

Describing examples from prior work. In this chapter, we use examples from prior work

in actual causation. For each example, we provide the following details:

• The high-level description of the example.

• The encoding of the example in our process calculus framework: The processes are

marked with a subscript P i.e. the process corresponding to an entity A is given by AP

in our process calculus encoding. Note that an entity can execute multiple programs and

these can be distinguished in our formalism since each program will have a unique iden-

ti�er
1
. For this part of the dissertation, unless speci�ed, AP refers to the unique program

executed by entity A.

1
Our causal analysis only focuses on the programs and not the entities executing the programs, hence a single

entity can execute multiple programs.

17

Chapter 2. Overview of the Formalism

Encoding examples using process calculus framework. As mentioned in the introduc-

tion, we are interested in understanding which choice values and which expressions in the

processes are a cause of the outcome. Speci�cally, we are interested in pinpointing the relevant

parts of the process as opposed to the entire process. For this purpose, we need to reason about

various components of a process. Therefore, instead of focusing on variable assignments for

process outcomes, we focus on modeling the processes and their interactions.

Let us consider an example from prior work in actual causation, suggested by Hopkins [48].

Example 1 (Loader). Two shooters A and B both shoot at a target H simultaneously. Another
agent E loads the gun for A before A shoots. We are interested in �nding the cause of the target
being hit.

For this example, we assume that there is a process for each of E, A, B and H which is

given by EP , AP , BP and HP respectively. We de�ne a function Σ which records the substitu-

tions for all the free/ input variables in each of these processes. Each process has an identi�er

in the set I (for instance A,B,H in the above example) and P is a �nite set of programs exe-

cuted by E,A,B,H (for instance EP , AP , BP , HP in the above example). Therefore an initial
con�guration of a system can be described by the triple 〈I,P ,Σ〉.

In order to write these programs, we introduce a simple syntax for communication with

send and recv (receive) primitives. For instance, for a program EP interacting with another

program AP , we write send(AP ,m) to indicate that the message m was intended for AP .

Similarly, in AP ’s program we write recv(EP) to indicate that the message m was received

fromEP . Our communication primitives are untargeted which is important for modeling secu-

rity protocols, as well as expressing general models concisely. We also introduce a simple term

language for variables and for performing boolean operations over variables such as conjunc-

tion or disjunction. We introduce an assignment operator, similar to the one used in structural

equations, in order to assign the outcome of boolean operations to speci�c variables. For in-

stance, the value received by EP can be assigned to a variable m′ using the following program

expression: m′ = recv(AP).

For our running example, the processEP sends a value (say e) toAP where the value denotes

whether or not E loads the gun for A. AP receives a value e from E’s program and then sends

a value (say s) toHP where the value denotes whether or notA shoots. Note that s depends on

both the value received from EP and whether or not A decides to shoot. Similarly, BP sends a

value (say b) to HP (the value denotes whether or not B shoots). HP receives both values and

uses these values to decide whether or not the target is hit (say h = 1 or h = 0).

18

Chapter 2. Overview of the Formalism

Preserving temporal ordering and dependencies. In order to express multiple expres-

sions in a single program which execute in a speci�c order, we introduce a sequencing opera-

tion. Unlike the process for B, A is not at liberty to shoot since the gun must have been loaded

by E before A can shoot. We can capture such dependencies using a conditional operator (? :)

in our term language
2
.

c ? d : g denotes that if c then d else g. Therefore if a indicates whether or not A decides

to shoot and e indicates whether or not E loaded the gun, then we can say that whether or not

A actually shoots (denoted by s) depends on:

s = (e == 1)? a : 0

This ternary operator is evaluated in the following manner: if the value of e is 1, then s = a

else s = 0, i.e. if E loads the gun, then A can choose to shoot or not shoot, however if E did

not load the gun, then A cannot shoot.

Here is how the programs described above will look:

EP AP BP HP

send(AP , e); e = recv(EP);

s = (e == 1)? a : 0;

send(HP , s); s = recv(AP);

send(HP , b); b = recv(BP);

h = s ∨ b;

In this case, we have aligned the communication actions across di�erent programs, so that

the readers can see how the send and recv actions are paired across di�erent programs, as

well as �xed the scheduling. AP receives a value from EP , HP receives from AP �rst, and

then from BP in this scenario – in Section 2.4, we describe how a more general model can be

expressed.

Similarly, we can denote other boolean operations on the terms. For instance, in order for

the target to be hit, if both A and B had to shoot, then we can model the scenario by replacing

h = s ∨ b with h = s ∧ b in Example 1. Let us look at another example which involves

conjunction.

Example 2 (Forest �re – conjunctive scenario). A forest �re F is caused when both lightning
strikes (L) and a match is lit (M) by an arsonist. If both the lightning strike and the arsonist drops
a lit match, and the forest burns– what is the cause?

Here is how the programs will look:

2
This is a common operator used in the C language.

19

Chapter 2. Overview of the Formalism

MP LP FP

send(FP , uM); m = recv(FP);

send(FP , uL); l = recv(LP);

f = m ∧ l;

In this setting, MP sends a value m (�xed as part of its background) to FP . Similarly, LP

sends a value l to FP . FP receives both values and computes the conjunction.

2.1.1 Adding choice and asymmetric disjunction

Since, we are interested in assigning blame, we would like to distinguish between inputs which

are �xed as part of the background, and variables over which agents have a choice. Addition-

ally, if symmetric operators such as disjunction are used to evaluate output values, then the

disjunction could be resolved due to any of the variables being true. For instance if h = a ∨ b
and a = b = 1, then h could be 1 due to either value being 1. In cases where additional infor-

mation is available, we would like to distinguish between which of the disjuncts was evaluated

in the actual context.

We introduce a choice operator, ⊕, in order to model an internal choice made within the

programs. For the second case mentioned above, we introduce an asymmetric disjunction op-

erator [], which is used to indicate that the disjunct via which the evaluation resulted in 1 is

relevant and evidence capturing the evaluation is available. This is especially relevant for a

class of preemption based examples (Section 4.4.3). We explain both the constructs in detail

below.

Internal choice. In our example, writing a = 0 ⊕ 1 indicates that the agent executing pro-

gram AP can either choose a to be 0 or 1, i.e. A can choose to shoot or not.

Here is how the programs will look for Example 1 if we explicitly model the choice over the

initial variable values. Note that since we assume boolean variables for this example, therefore

s = (e == 1)? a : 0; can be encoded as s = e ∧ a3
.

3
The conditional operator is especially useful if the variables are not boolean.

20

Chapter 2. Overview of the Formalism

EP AP BP HP

e = 0⊕ 1; a = 0⊕ 1; b = 0⊕ 1;

send(AP , e); e = recv(EP);

s = e ∧ a;

send(HP , s); s = recv(AP);

send(HP , b); b = recv(BP);

h = s ∨ b;

Notice that here we express both choices in the model. This is because we want our model

of programs to be as general as possible in terms of expressing the values that di�erent variables

can take.

Asymmetric disjunction operator. [] is used to model an asymmetric disjunction operator,

which also records the speci�c disjunct which led to the value being 1. A symmetric disjunction

operator ∨ does not model how the disjunction is satis�ed when multiple disjuncts are true.

However in certain cases, causal inference requires recording the path via which a violation

happened. This is especially useful in cases such as preemption (Section 4.4.3) where a violation

could potentially occur due to multiple causes on the log, however only one of the processes is

responsible.

In order to understand the usage of [], consider an alternative description of the running

example (Example 1) with a slight modi�cation: only one of the shooters can hit the target.

Temporal asymmetry or other factors might be involved in determining which of the bullets

is relevant– we can express this asymmetry via the asymmetric disjunction operator
4
. In this

case, here is how the programs look for Example 1. For notational convenience, we add line

numbers for all program expressions:

EP AP BP HP

1 : e = 0⊕ 1; 1 : a = 0⊕ 1; 1 : b = 0⊕ 1;

2 : send(AP , e); 2 : e = recv(EP);

3 : s = e ∧ a;

4 : send(HP , s); 1 : s = recv(AP);

2 : send(HP , b); 2 : b = recv(BP);

3 : h = s [] b;

4
In cases where such information is not relevant or not available, the symmetric disjunction can be used.

21

Chapter 2. Overview of the Formalism

The asymmetric disjunction evaluates the outcome in the same manner as a symmetric

disjunction, except that it additionally records which of the disjuncts was evaluated when both

disjuncts were true.

Implications for themodeler. A disjunction can be modeled as h = a ∨ b or h = a [] b. One

of the considerations while choosing how to model an example, is to consider whether it only

matters what the �nal value of h is or whether it also matters how the value of h was obtained.

This distinction is of signi�cance when we consider cases like symmetric overdetermination as

opposed to preemption [57]. If the focus is only on the �nal value of the equation, then there

could possibly be independent causes in our framework. However, if the speci�c manner in

which h was evaluated is critical, in that case our framework will only �nd one of the disjuncts

as relevant – in particular since we give a de�nition of actual causation so we will �nd the

disjunct evaluated on the log as relevant. If both a and b are 1 in the equation h = a [] b, then the

actual sequence of events will note how the value was obtained. This design choice depends

on the amount of information available regarding the actual context, which can be used to give

a more �ne grained causal analysis. Otherwise, using the symmetric disjunction will �nd both

the relevant sequences which lead to a = 1 and b = 1 as independent causes.

The semantic interpretation for the symmetric and asymmetric disjunction operators is dif-

ferent, since they give rise to di�erent execution sequences. In the next section, we describe

how each of these operators can be evaluated.

Syntax. Before describing the semantics, we give the �nal syntax. We model programs in

a simple language that can represent concurrent processes
5
. The language contains sequen-

tial expressions, e, that execute concurrently in programs and communicate with each other

through send and recv commands as discussed in this section.

Our syntax is given using the A-normal form [58] where every term contains only one

connective and all operands contain only variables. The syntax consists of values v for variables

x, actions α and expressions e. Values v include boolean values, numerical values and all other

return values (such as keys or cipher text). Variables, x, denote messages that may be passed

through expressions or across programs.

An expression is a sequence of actions, α. An action may do one of the following: execute a

primitive function on values v1, v2, . . ., or send or receive a message to another program; (writ-

5
For the purpose of this part of the dissertation, we limit attention to this simple expression language, with-

out recursion or branching. Our de�nition of actual cause is general and applies to any formalism of (non-

deterministic) interacting agents, but the auxiliary de�nitions of log projection and the function dummify in-

troduced later must be modi�ed.

22

Chapter 2. Overview of the Formalism

ten send(v) and recv(), respectively). For our examples in the �rst part of the dissertation,

we only use the binary operators shown below for α, however in a more general case, it can be

used for other side e�ect free actions
6
. Note that depending on the kind of variables, we could

introduce additional operations other than the boolean connectives (See Example 4).

Values v ::= x | true | false | 1 | 2 . . .
Actions α ::= v | send(v) | recv() | v1 ∧ v2 | v1 ∨ v2 |

¬v | v1? v2 : v3 | v1 ⊕ v2 | v1[] v2 | . . .
Expressions e ::= v | (b : x = α); e1 | assert(v); e1

Each expression e is labeled with a unique line number, written b. Line numbers help de�ne

traces later. Every action and expression in the language evaluates to a term and potentially

has side-e�ects. The term returned by action α is bound to x in evaluating e2 in the expression

(b : x = α); e2.

In our model, send and recv are untargeted in the operational semantics: A message sent

by a programAP can be received by any other program. The �rst argument tosend andrecv
speci�es the intended target. Action send(v) always returns 0 to its continuation. When the

communication pair is clear from context, we directly mention the receiver for the send action

and the sender for therecv action. In security settings, we consider more general settings with

di�erent synchronizations. For the examples in this part, we restrict the synchronizations in

order to model the examples given in structural equation framework.

We abbreviate (b : x = α);x to b : α and (b : x = α); e to (b : α); e when x is not free

in e. As an example, the following expression receives two messages, computes a new value

(through a boolean operator ∨) and sends the resulting message to M3.

1 : m1 = recv(M1); //receive message, bind to m1

2 : m2 = recv(M2); //receive message, bind to m2

3 : n = m1 ∨m2; //generate term, bind to n

4 : send(M3, n); //send n to M3

Next we turn our attention to expressing a particular execution of the model that we would

like to analyze for causes. In Example 1, even though the model is general and allows us to

express di�erent executions, we need to express an unambiguous execution of the model for

causal analysis. Once we consider interacting processes, this step requires �xing various syn-
chronizations across processes as well as the internal choices. In the next part, we discuss how

to formalize an execution of the system we modeled in our process calculus framework.

6
Refer to Chapter 5

23

Chapter 2. Overview of the Formalism

2.2 Operational semantics for process calculus framework

In this section, we describe the execution model and rules for operational semantics (or step-

wise execution) for our syntax. Details of the complete syntax and semantics for our process

calculus framework can be found in the Appendix A.

Non-determinism in the execution semantics. In the previous section, we brie�y alluded

to the non-determinism in the execution semantics of our process calculus. There can be several

sources of non-determinism in process execution:

• the order of execution across di�erent programs could lead to a di�erent sequence of

events. Processes can execute their internal or communication actions in any order (as

long as each process respects its internal sequential order), leading to multiple possible

interleaving of actions across programs.

• the initial state might be one of the several possible alternatives, this could be due to ex-

ternally provided inputs or internal choices in programs leading to a di�erent execution.

• The evaluation of asymmetric disjunction operator (if any) could lead to a di�erent exe-

cution of the system
7
.

The rules for step-wise evaluation of the expressions in our language are called operational
semantics, which we describe next. The operational semantics de�ne how a collection of pro-

grams execute simultaneously. For instance, if a program sends a message (i.e. executes asend
action), the operational semantics provide rules for how the action gets evaluated and how it

changes the relevant variable values. The operational semantics provide us with a formal and

rigorous process for discussing di�erent states of the system as expressions are evaluated. We

then turn our attention to formally de�ning con�gurations, logs and labels.

Con�gurations. A con�guration C = 〈I,P ,Σ〉 records which program is currently execut-

ing which action and how the variable values gets updated. In the sequel, we identify the triple

〈I,P ,Σ〉 with the con�guration de�ned by it. We also use a con�guration’s identi�ers to refer

to its programs. When the system is in a certain con�guration, and an action is executed, we

say that the current con�guration C reduced to a new con�guration C ′. The reduction relation

is denoted by C −→ C ′. The rules for evaluating speci�c expressions in our language can be

found in the appendix.

7
If symmetric operators such as disjunction are used to evaluate output values, then the disjunction could be

resolved due to any of the variables being true.

24

Chapter 2. Overview of the Formalism

For our running example, the initial con�guration would be 〈I,P ,Σ〉where I = {A,B,E,H},
P is given in Figure 2.1. If we do not provide an internal choice over variables a, b, e, then Σ

will contain the ground values for these variables. We can think of Σ as part of the background

context which is �xed, and not decided via program’s internal choices.

We denote the execution of a speci�c line number b within a program i by a tuple 〈i, b〉
called its label. Annotating the reduction arrow with a label r makes the locus of a reduction

explicit. This is written as C r−→ C ′. We de�ne the labels in more detail below.

Labels. In Example 1, if we model the programs without the choice operators, here is how

the programs will look:

EP AP BP HP

1 : send(AP , e); 1 : e = recv(EP);

2 : s = e ∧ a;

3 : send(HP , s); 1 : s = recv(AP);

1 : send(HP , b); 2 : b = recv(BP);

3 : h = s ∨ b;

Since each program expression has a line number, we can use the tuple 〈 Program identi�er,
Line number 〉 to identify the expressions being evaluated. For instance, if we want to discuss

the evaluation ofHP computing the value of h at line 3, we can write it as 〈HP , 3〉. We call such

a tuple as a label. Note that the label only indicates which program and which expression were

evaluated; it does not indicate the instantiation or �nal value of h. If we write the programs

with internal choice, we will need to additionally specify the choice resolution in the labels i.e.

〈EP , 1,r〉, 〈AP , 1,r〉 and 〈BP , 1,r〉 in order to represent a speci�c execution.

EP AP BP HP

1 : e = 0⊕ 1 1 : a = 0⊕ 1 1 : b = 0⊕ 1

2 : send(AP , e); 2 : e = recv(EP);

3 : s = e ∧ a;

4 : send(HP , s); 1 : s = recv(AP);

2 : send(HP , b); 2 : b = recv(BP);

3 : h = s ∨ b;

More formally, we denote the execution of a speci�c line number b within a program i as a

tuple 〈i, b〉. We call this as a label of a reduction. A label can be one of the following:

25

Chapter 2. Overview of the Formalism

• an internal label which indicates the program i and the line number b that executed,

i.e. 〈i, b〉. If the expression contains the internal choice operator ⊕ or the asymmetric

disjunction ([]), then additionally the label indicates which way the choice was resolved

l (left) or r (right) or which of the disjuncts was evaluated (if both are true)
8
.

• a synchronization label which indicates how a send action in one program synchronized

with the corresponding recv action along the speci�ed channel. For instance, if AP

sends a message to HP and b, b′ are the respective line numbers in the programs for AP

and HP , then the label will be denoted by 〈〈AP , b〉, 〈HP , b
′〉〉.

Traces and logs. We call a �nite sequence of reductions as a trace. Traces are denoted with

the letter t and contain information about the labels as well as the substitutions. Note that the

trace contains instantiated values for all variables and actions.

We are interested in �nding choices and uninstantiated program expressions in the syntax

as a cause. Since a trace contains additional information which is not required for our causal

analysis, we �nd it convenient to introduce the notion of a log.

De�nition 1 (Log). Given a trace t, the log of the trace, log(t), is the sequence of labels on the
trace, i.e. r1, . . . , rm where ri can be an internal label or a synchronization label.

In other words a log denotes the sequence of uninstantiated expressions in an execution.

The letter l denotes logs
9
.

For instance, one log for the given set of interacting programs (without choice operator) is

〈EP , 1〉, 〈〈EP , 2〉, 〈AP , 1〉〉, 〈AP , 2〉, 〈〈AP , 3〉, 〈HP , 1〉〉, 〈〈BP , 1〉, 〈HP , 2〉〉, 〈HP , 3〉. Here, the tem-

poral ordering indicates that the expression labeled 1 in EP ’s program is executed. Next, an

interaction occurs between EP and AP . Similarly, the expressions for BP and HP are also

indicated. Note that we represent the sequence of labels above such that the corresponding

send and receive labels are paired to indicate synchronization between the respective program

expressions. Therefore, instead of writing 〈EP , 1〉 and 〈AP , 1〉 separately, we represent the

synchronization of the send and receive actions by writing these labels jointly as:

〈〈EP , 1〉, 〈AP , 1〉〉.
Given a = 1, b = 1, e = 1, we can compute the value of h by considering the log. Here, the

value of h = 1.

Given a set of interacting programs, there can be several traces which di�er in their order of
actions and initial values. Consider the values of a and b chosen in the programs in Figure 2.1:

8
Note that we can handle more general cases as well via nesting the recorded choices. See Example 7, Sec-

tion 4.4.3.1.

9
Here we assume access to all programs and logs.

26

Chapter 2. Overview of the Formalism

the value of h will vary accordingly. For instance, if the value of a and b are both chosen as 0,

then keeping the same interaction structure will still yield a di�erent value for the variable as

shown in Figure 2.1. Here, we denote the log assuming that E loads the gun, and both A and

B choose to shoot, i.e. the internal choice is resolved as a = b = e = 1.

Note that in Figure 2.1, the log �xes the interleaving of actions across programs forEP , AP , BP

and HP . Consider an alternative log in which the order in which E,B,A make their internal

choices is di�erent. We would like our causal determination to be independent of the relative

interleaving of internal events. Therefore, we de�ne projection of a log below.

EP AP BP HP LOG l

1: e = 0⊕ 1; 〈EP , 1,r〉
1: a = 0⊕ 1; 〈AP , 1,r〉

1: b = 0⊕ 1; 〈BP , 1,r〉
2: send(AP , e); 2: e = recv(EP); 〈〈EP , 2〉, 〈AP , 2〉〉

3: s = e ∧ a; 〈AP , 3〉
4: send(HP , s); 1: s = recv(AP); 〈〈AP , 4〉, 〈HP , 1〉〉

2: send(HP , b); 2: b = recv(BP); 〈〈BP , 2〉, 〈HP , 2〉〉
3: h = s ∨ b; 〈HP , 3〉

EP AP BP HP LOG l′

1: a = 0⊕ 1; 〈AP , 1,r〉
1: b = 0⊕ 1; 〈BP , 1,r〉

1: e = 0⊕ 1; 〈EP , 1,r〉
2: send(AP , e); 2: e = recv(EP); 〈〈EP , 2〉, 〈AP , 2〉〉

3: s = e ∧ a; 〈AP , 3〉
4: send(HP , s); 1: s = recv(AP); 〈〈AP , 4〉, 〈HP , 1〉〉

2: send(HP , b); 2: b = recv(BP); 〈〈BP , 2〉, 〈HP , 2〉〉
3: h = s ∨ b; 〈HP , 3〉

Figure 2.1: Example 1: Two di�erent logs l, l′ for the same set of programs

Projections of a log. Given a log l and a program i, the projection of l to i, written l|i is the

subsequence of all labels in l that mention i i.e. l|i contains all actions executed by program i

on log l. We call a log l′ a projected sublog of the log l, if for every program i dropping some

labels from l|i results in l′|i. More formally, for every i, the sequence l′|i is a subsequence of the

sequence l|i.
The de�nition of projected sublog allows the relative order of events in two di�erent non-

communicating programs to di�er in logs l and l′ but Lamport’s happens-before order of ac-

tions [59] in l′ must be preserved in l. This is important, for instance when the internal actions

for the shooter A and B are evaluated in a speci�c order on the log, however, their relative

27

Chapter 2. Overview of the Formalism

order w.r.t. each other is not crucial.

Note that for logs l and l′ in Figure 2.1, even though the logs di�er, the projections for both

the logs coincide. The de�nition of a projected sublog allows us to collectively analyze the

causes of a set of logs, rather than a single one. The projections for both logs are given below.

Here t represents the concrete trace from which we obtain the log.

log(t)|E
〈EP , 1,r〉
〈〈EP , 2〉, 〈AP , 2〉〉

log(t)|A
〈AP , 1,r〉
〈〈EP , 2〉, 〈AP , 2〉〉
〈AP , 3〉
〈〈AP , 4〉, 〈HP , 1〉〉

log(t)|B
〈BP , 1,r〉
〈BP , 2〉
〈〈BP , 3〉, 〈HP , 2〉〉

log(t)|H
〈〈AP , 2〉, 〈HP , 1〉〉
〈〈BP , 2〉, 〈HP , 2〉〉
〈HP , 3〉

2.3 Structural equation framework for actual causation

Structural Equation Modeling (SEM) based techniques have been extensively used in several

�elds such as economics, statistics etc [26, 27, 29]
10

. In recent years, this framework has been

used to model causal networks. Here we describe the framework as used by actual causation

literature.

Causal models. Prior work has a long tradition of de�ning actual cause using causal models,

which are used to encode counterfactual relationships amongst variables [27, 29, 56]. A struc-

tural model signature S = {U ,V ,R} where U is called the set of exogenous or background

variables. This represents the set of background variables or the context that is considered

10
Originally path analysis by using SEMs was intended to focus on interpreting data rather than solving cau-

sation. Each equation in the framework represents a causal relationship between a set of variables and the form

of the equation demonstrates the assumptions made by the modeler. In particular, some of the assumptions in-

clude that the variables are measured without any error. Using the data, these models derive quantitative causal

conclusions and statistical measures to assert whether the assumptions are reasonable.

28

Chapter 2. Overview of the Formalism

external to the causal process. V is the set of endogenous variables that corresponds to the

conditions that are potential causes. These variables can be a�ected by the background vari-

ables and other endogenous variables. R represents the range of permissible values for both

of these sets, respectively. A causal model M is an ordered pair 〈S,F〉 where S represents a

structural model signature and F gives a set of modi�able structural equations which specify

the relationships amongst these variables.

Notation. Throughout this dissertation, when we talk about endogenous variables as used

in prior work, we indicate them with subscript of R, for instance, an event A being 0 or 1 will

be represented as AR to indicate that we are referring to the random variable for structural

equations. The exogenous variables are denoted with subscripts of u (for instance uA, uB) to

indicate that they are a part of the context. In our process calculus framework, when we talk

about a process for an identi�erA, we denote it byAP . When we talk of variables in our process

calculus framework, we simply write those as lowercase letters a, b,

Structural equations are used to model the e�ect of causal in�uence of some background

variables and endogenous variables on other endogenous variables. The structural equations

are similar in spirit to assignment statements in programming languages. The left hand side

denotes an endogenous variable whose value is given by an expression which contains other

endogenous variables and exogenous variables. These equations are asymmetric in nature.

For instance if AR,MR are variables in V ∈ S (we denote the random variables in structural

equation framework with the subscript R) and uL is a background variable in U then AR ←
MR ∨ LR is a structural equation which describes the e�ect of MR and LR on AR. However

a change in the value of a variable on the left hand side (AR) does not a�ect the values of the

variables on the right hand side (MR, LR). These structural equations can encode counterfactual

relations since the equation predicts the value of AR above when MR and LR are instantiated

to di�erent values.

2.3.1 Semantics for structural equations

The semantics for structural equations, as used in actual causation has been discussed in prior

work [14, 17]. Here we give the relevant details. Given a signature S , a primitive event in a

structural equation framework is de�ned as speci�c assignment for a random variable X ∈ V ,

for instance X = x where x ∈ R(X). Then, a causal formula is of the form [Y1 ← y1, Y2 ←
y2, . . .]ϕwhereϕ is a combination of primitive events and Yi’s are distinct endogenous variables

in V . Additionally yi ∈ R(Yi) [14]. An evaluation of a causal formula is obtained by setting a

particular context i.e. a speci�c assignment for the exogenous variables in U . Once we assume

29

Chapter 2. Overview of the Formalism

an assignment for variables in U , then we can always �nd a unique solution for the structural

equations
11

.

The equations in F can also be represented as directed acyclic graphs, where the variables

form the nodes and the edges are formed in the following manner: a variable is the parent of

another if it appears on the right hand side in its structural equation (each variable appears on

the left hand side in only one equation). For a more detailed overview of structural equations,

see structural equations framework [14, 16, 17, 29, 48].

The structural equations, as used in the above-described manner are deterministic in na-

ture. Therefore, evaluating any one variable, given its parents, would always lead to the same

instantiation. Moreover, the order in which the variables are evaluated, does not a�ect the �nal

instantiation since the corresponding graph is acyclic. Therefore an evaluation of the system

is completely speci�ed by the assignment to the exogenous variables as well as the structural

equations.

Let us consider the running example again.

Example 1, Loader
Two shootersA andB both shoot at a targetH simultaneously. Another agentE loads the gun

for A before A shoots. We are interested in �nding the cause of the target being hit.

In this case assume that an exogenous variable ER models whether or not E loads the

gun for A. Similarly AR models whether or not A shoots and the random variable BR mod-

els whether or not B shoots. Then we would express the model by the following structural

equations:

AR = uA

BR = uB

ER = uE

HR = (AR ∧ ER) ∨BR

Here {uA, uB, uE} are exogenous variables in U . {AR, BR, ER, HR} represent the endoge-

nous variables in V . The structural equations above denote the in�uence of exogenous and

endogenous variables.

Let us look at another example which involves conjunction.

Example 2, Forest �re – conjunctive scenario
A forest �re F is caused when both lightning strikes (L) and a match is lit (M) by an arsonist.

If both the lightning strike and the arsonist drops a lit match, and the forest burns– what is the

cause?

11
provided the system of equations is recursive

30

Chapter 2. Overview of the Formalism

Here FR is a random variable that models whether or not a �re occurs. MR is a random

variable that captures if the match is lit and LR captures whether lightning strikes or not.

{uM , uL} are exogenous variables U in the context.

In this case, the structural equations will be:

LR = uL

MR = uM

FR = MR ∧ LR
In our model, we can encode the processes which instantiate these three random variables as

processes MP , LP , FP . Variables m, l, f denote whether or not the match is lit, the lightning

strikes and the �re occurs, based on the outcome of these three processes, respectively.

Encoding structural equation framework using process calculus. We can encode a set

of structural equations by considering each endogenous variable to be instantiated via a pro-

cess. We consider an equation for an exogenous variable AR to represent a process for evalu-

ating the outcome value for the corresponding process AP . The di�erent variables on the right

hand side for equation for AR will indicate the interaction between the variables on the left

hand side and the right hand side of the structural equation. Therefore the boolean operations

over the random variables in the structural equations can be represented as boolean operations

over the corresponding program variables in the process calculus framework. We denote the

correspondence in Figure 2.2.

2.4 Why process calculus?

Prior work assumes a given context and the structural equations are �xed. Typically for struc-

tural equation framework, the equations encode one unique setting with input values (exoge-

nous variables) and explicitly changing the context value involves changing the set of structural

equations [14, 16]. For instance, in the structural equation encoding for Example 1, prior work

assumes that the value of uA, uE and uB is given to us, i.e. it assumes that whether or not E

loads the gun, A shoots or B shoots is �xed. Further, the interaction and scheduling primitives

also need to be de�ned in terms of random variables and structural equations and are �xed.

However, we are interested in identifying the choices made within the programs, the pro-

gram expressions and the interactions which are relevant for the violation. Let us consider a

more practical version of Example 1. Assume that B is a user trying to log into her account

andA is an adversary who has stolen the password forB’s account from an external repository

E. In this case, whoever’s request reaches the Server �rst, gains access to the account. If an

31

Chapter 2. Overview of the Formalism

Structural equation frame-

work for actual causation

Process calculus

Endogenous variables (V) Outputs for processes corresponding to the struc-

tural equation for every variable

Exogenous variables (U) We have exogenous variables and Σ �xes their val-

ues

Structural equations Programs in P .

The interactions between programs are imple-

mented according to structural equations: processes

corresponding to endogenous/ exogenous variables

on RHS of the structural equation, send messages to

the process for the endogenous variable on the LHS

of the structural equation.

∧,∨, . . . (Boolean operators) Implemented via boolean operations over variable

values received by processes, or constants in Σ
No direct encoding (test for all

exogenous values)

Internal choice operator

No direct encoding (record the

manner in which disjunction is

satis�ed)

Asymmetric disjunction operator

Figure 2.2: Correspondence between SEM for actual causation and process calculus framework

adversary gains access to the account, it is a violation of the security property that only the

legitimate user should get access to her account
12

.

Typically in process calculus, the send and recv actions are untargeted, i.e. a general

model can express the fact that either A’s message or B’s message could have reached �rst. In

Figure 2.3, we denote a simpli�ed version of this example (ideally the requests will be checked

in more detail and access will only be granted to whoever sends the correct password �rst).

Here the Match primitive checks the password against the previously stored password in the

Server’s memory for the associated account and Allow primitive denote allowing access to

process P1 or P2. EP denotes E’s program where the password is sent to the Adversary AP .

We log the choice of the adversary in order to access an account (represented by a). Similarly,

we log B’s choice to access the account. Modeling choices explicitly is useful for assigning

blame. We then model the send actions by both A and B. In Figure 2.3, both the logs use the

same model of programs and di�er in the scheduling. Further, we can also model a case where

only one of the synchronizations occur– in this case if the Adversary A synchronizes with the

Server �rst, then B’s message will be ignored. The same model can also be used to express

12
In Part 2 of the dissertation, we provide a detailed causal analysis of an authentication example.

32

Chapter 2. Overview of the Formalism

di�erent logs resulting from di�erent choices for a and b.

EP AP BP HP

1: a = 0⊕ 1;
1: b = 0⊕ 1;

1: send(AP , pwd); 2: pwd = recv(EP);
3: s = (a, pwd);

2: t = (b, pwd);
4: send(HP , s); 3: send(HP , b); 1: pwd1 = recv(P1);

2: pwd2 = recv(P2);
3: access =
Match(pwd1)? Allow(P1) :
(Match(pwd2)?Allow(P2));

LOG l LOG l′

〈AP , 1,r〉 〈AP , 1,r〉
〈BP , 1,r〉 〈BP , 1,r〉
〈〈EP , 1〉, 〈AP , 2〉〉 〈〈EP , 1〉, 〈AP , 2〉〉
〈BP , 2〉 〈AP , 3〉
〈AP , 3〉 〈BP , 2〉
〈〈AP , 4〉, 〈HP , 1〉〉 〈〈BP , 3〉, 〈HP , 1〉〉
〈〈BP , 3〉, 〈HP , 2〉〉 〈〈AP , 4〉, 〈HP , 2〉〉
〈HP , 3〉 〈HP , 3〉

Figure 2.3: Example 1: A modi�ed example to explain general models of interaction.

Due to the presence of di�erent primitives for interaction, choice and scheduling, process

calculus naturally encodes interacting systems concisely, as shown above.

The structural equation encoding for this example will need several variables to describe

the general interaction model, including:

• Exogenous variable (for pwd)

• Variables for choices a, b – prior frameworks primarily express only one instantiation

for the exogenous variables so either the choices will need to be encoded as endogenous

variables, or a di�erent set of structural equations need to be included for all possible

choices.

• Scheduling variables (order of internal actions and interactions) for programsEP , AP , BP , HP .

• Variables denoting interactions for all possible pairs. For instance, in order to denote

that A and H synchronized in one step of the log, we will need to set the corresponding

variable as 1 and all other variables denoting possible synronizations as 0.

• Variables denoting execution of expressions: Depending on the complexity of the pro-

gram being modeled, whether or not a certain expression is executed would need to be

33

Chapter 2. Overview of the Formalism

indicated via a variable. in case of our log, omitting the corresponding label indicates that

the expression did not execute.

Further, for constructing counterfactual scenarios in our causal analysis, we treat interaction

and scheduling primitives di�erently. Structural equations, as used in prior actual causation

literature, model all primitives as random variables of the same type
13

.

These observations demonstrate why process calculus is a more natural choice for encod-

ing interacting systems. In real life protocols such as authentication protocols, the number of

interacting programs and the possible synchronizations and scheduling possibilities, are sig-

ni�cantly larger than the example described above. Using the structural encoding as described

would be signi�cantly less concise for expressing a general model of interaction.

2.5 Examples

We consider two examples. We indicate the structural equations and a corresponding model

using process calculus framework.

Consider an instance of disjunctive causes [14, 60] where a forest �re can occur due to either

a match being lit by an arsonist or a lightning strike. We describe Example 3 in Figure 2.4 and

model it in two di�erent ways: one where both the lightning and the arsonist can strike at the

same time (Figure 2.4a) and a model where only one of these could occur �rst (Figure 2.4b). In

this case, we consider factors like oxygen in the air, dryness of wood as constants given to the

model [14].

Similarly, a case of conjunctive cases can be modeled by changing the boolean operator

from ∨ to ∧ in Figure 2.4a.

Let us consider another example [14, 48]. In this example, a vote passes (X) if either of the

two voters, V 1 or V 2 vote in favor. A machine M tabulates the votes and x is 1 if M ≥ 1. The

structural equations and the corresponding encoding in process calculus is given in Figure 2.5.

The program for V 1 indicates that �rst a value of v1 is chosen internally. Then this value is

sent to M . Similarly, V 2 chooses a value for v2 and sends to M . M receives both values and

sends the sum to X , which decides whether or not the vote passes. In this case, we can model

all the contexts where V 1 votes or not and when V 2 votes or not. The dependence of x on m

can be captured via the conditional operator. Column (b) denotes the projections of the log for

individual processes for V1, V2,M,X . On the given log, M receives V 1’s choice �rst and then

V 2’s choice
14

.

13
The claims in this dissertation focus on structural equations as used in prior work in actual causation.

14
As discussed in the previous section, we can denote a more general model for scheduling.

34

Chapter 2. Overview of the Formalism

Modeling-based features of the formalism. We would like to highlight three points in the

formalism when compared with the modeling in the structural equations.

1. Expressing general models of interaction more concisely: By modeling internal choice, we

allow for the same model to be used for several di�erent ‘contexts.’ That is, if V 1 decided

to not vote or V 2 decided to not vote or if both of them decided to not vote- all of these

scenarios can be depicted with the same model as we have given above- the log would

specify a di�erent internal choice resolution.

2. Capturing sequential and interaction-based dependencies: Using our sequencing operator

as well as the interaction primitives, we can capture dependencies within a program as

well as across programs. The log, additionally, records the temporal ordering of evalua-

tion of programs.

3. Modeling non-determinism in the execution semantics: Process calculi frameworks can

model non-determinism in how the programs evaluate to di�erent traces. We can rep-

resent all traces which arise due to the non-deterministic execution of programs. This

feature of our formalism is crucial for the su�ciency clause in our de�nition, as described

in the next section.

Remarks.

• The syntax in our framework only allows choices over data variables and does not specify

choices over synchronizations. For instance, if B decides to not shoot, this choice can be

modeled in two ways: �rst, BP chooses a value 0 and sends a message to HP , which is

interpreted as not shooting. Alternatively, BP could not send any message at all. In the

latter case, we need to de�ne an explicit timeout action which bounds the time that a

process will wait for a message. Instead in our formalization, we allow choices over data

variables and keep the synchronization structure �xed as on the log. This is an important

consideration when the examples are being modeled.

• The log records the sequence of events which occurred in the actual context. The dis-

tinction between using asymmetric and symmetric disjunction stems from the amount of

evidence available (as part of the log) in order to make a causal inference.

In the next section, we describe our de�nition and demonstrate how we can apply our def-

inition to examples.

35

Chapter 2. Overview of the Formalism

Example 3 (Disjunctive causes). [14] A forest �re could be caused by either lightning or a match
stuck by an arsonist. Structural equations:

MLR ← uML

LR ← uL
FR ← LR ∨MLR

(a)

Program for L

1 : l = 0⊕ 1;
2 : send(FP , l);

Program for ML

1 : ml = 0⊕ 1;
2 : send(FP ,ml);

Program for F

1 : l = recv(LP); //input from L

2 : ml = recv(MLP); //input from ML

3 : f = l ∨ml;

(b)

log(t)|L
〈LP , 1,r〉
〈〈LP , 2〉, 〈FP , 1〉〉

log(t)|ML

〈MLP , 1,r〉
〈〈MLP , 2〉, 〈FP , 2〉〉

log(t)|F
〈〈LP , 2〉, 〈FP , 1〉〉
〈〈MLP , 2〉, 〈FP , 2〉〉
〈FP , 3〉

Violation: All traces where f = 1.

Observation: This model allows independent causes of the violation.

(a) Example: Forest �re – disjunctive scenario. Here a symmetric operator is used to evaluate f .

(a)

Program for L

1 : l = 0⊕ 1;
2 : send(FP , l);

Program for ML

1 : ml = 0⊕ 1;
2 : send(FP ,ml);

Program for F

1 : l = recv(LP); //input from L

2 : ml = recv(MLP); //input from ML

3 : f = l []ml

(b)

log(t)|L
〈LP , 1,r〉
〈〈LP , 2〉, 〈FP , 1〉〉

log(t)|ML

〈MLP , 1,r〉
〈〈MLP , 2〉, 〈FP , 1〉〉

log(t)|F
〈〈LP , 1〉, 〈FP , 1〉〉
〈〈MLP , 2〉, 〈FP , 2〉〉
〈FP , 3,r〉

Violation: All traces where f = 1.

Observation: This model does not allow independent causes of the violation. In this case, the label for

〈FP , 3,r〉 clearly indicates which disjunct was used in order to evaluate the value of h.

(b) Example: Forest �re – disjunctive scenario. Here an asymmetric operator is used to evaluate f . In

this case the matchstick being lit has more in�uence in the actual log.

Figure 2.4: Example 3: Forest �re – disjunctive scenario

36

Chapter 2. Overview of the Formalism

Example 4 (Voting Machine). Consider a case where two voters V 1 and V 2 cast votes. A measure
is passed if either of the votes is 1. LetX denote whether or not the vote passes. Additionally there
is a voting machine which tabulates the votes, let M represent the total number of votes. Now
M = V 1 + V 2 and X = 1 i�M ≥ 1.

Structural equations:
XR = 1 i�MR = 1
MR ← V 1R + V 2R

(a)

Program for V 1

1 : v1 = 0⊕ 1;
2 : send(M,v1);

Program for V 2

1 : v2 = 0⊕ 1;
2 : send(M,v2);

Program for M

1 : v1 = recv(V 1);
2 : v2 = recv(V 2);
3 : m = v1 + v2;
4 : send(X,m);

Program for X

1 : m = recv(M);
2 : x = (m ≥ 1)? 1 : 0;

(b)

log(t)|V 1

〈V 1, 1,r〉
〈〈V 1, 2〉, 〈M, 1〉〉

log(t)|V 2

〈V 2, 1,r〉
〈〈V 2, 2〉, 〈M, 2〉〉

log(t)|M
〈〈V 1, 2〉, 〈M, 1〉〉
〈〈V 2, 2〉, 〈M, 2〉〉
〈〈M, 3〉
〈〈M, 4〉, 〈X, 1〉〉

log(t)|X
〈〈M, 4〉, 〈X, 1〉〉
〈X, 2〉

Violation: All traces where x = 1.

Observation: We can model both choices for V 1 and V 2.

Figure 2.5: Example 4: Voting machine

37

Chapter 2. Overview of the Formalism

38

“Karma refers to the spiritual principle of cause and e�ect where in-
tent and actions of an individual (cause) in�uence the future of that
individual (e�ect).”

— Gita, Encyclopedia Britannica, Wikipedia

Chapter 3

Defining Choices and Actions as

Actual Causes

Chapter goal. In this section, we provide our de�nition of actual cause. We �rst de�ne the

terms property and causal sequence in more detail. Next, we use Example 1 to motivate our

clauses.

De�ning property and causal sequence. We formulate a property as a set of traces. In

the sequel, let V denote the property of interest
1
. Consider a trace t starting from the initial

con�guration C0 = 〈I,P ,Σ〉. If t ∈ V , then t violates the property ¬V 2
.

The programs for our running example (Example 1) are given in Figure 3.1 (part a) and the

log is given in part (b). From the log, we can infer that the choices for the variables are: e = 1,

a = 1 and b = 1. For our running example, we want to identify which of the internal choice

values for e, a or b and the actions shown in part (b) of the �gure, are a cause of h = 13
Therefore,

we are interested in �nding the program expressions (modeling the choices and interactions)

on the log which are a cause of h = 1. We denote this sequence of program expressions by

~α and we call it a causal sequence. The sequence ~α is a subsequence of the log and includes

expressions where internal choices are made, other actions within a program and interactions

1V stands for ‘violations’, a convention from the security domain.

2
For readers more familiar with counterfactual tradition in causation in philosophy, the occurrence condition

will be of the form trace t ∈ V , i.e. trace t contains a violation.

3
Note that our current model does not include a global state, therefore when we de�ne a violation, we will

need to specify the interaction or predicate which is a�ected by the local variable assuming a certain value. This

can easily be captured in the above model by introducing a program XP , and adding an interaction between HP

and XP such that, HP sends the value h to XP . Now the violation will specify the value sent by H . For the

examples in this part, we omit the addition of an extra program, for ease of description and focus on referring to

a violation as ‘all traces where h = 1.’

39

Chapter 3. Defining Choices and Actions as Actual Causes

across programs.

Example 1, Loader
Two shooters A and B both shoot at a target H simultaneously. Another agent E loads the

gun for A before A shoots. We are interested in �nding the cause of the target being hit.

Structural equations:

AR = uA

BR = uB

ER = uE

HR = (AR ∧ ER) ∨BR

(a)

Program for E

1 : e = 0⊕ 1

2 : send(AP , e);

Program for A

1 : a = 0⊕ 1

2 : e = recv(EP);
3 : s = e ∧ a;
4 : send(HP , s);

Program for B

1 : b = 0⊕ 1

2 : send(HP , b);

Program for H

1 : s = recv(AP);
2 : b = recv(BP);
3 : h = b ∨ s;

(b)

log(t)|E
〈EP , 1,r〉
〈〈EP , 2〉, 〈AP , 2〉〉

log(t)|A
〈AP , 1,r〉
〈〈EP , 2〉, 〈AP , 2〉〉
〈AP , 3〉
〈〈AP , 4〉, 〈HP , 1〉〉

log(t)|B
〈BP , 1,r〉
〈〈BP , 2〉, 〈HP , 2〉〉

log(t)|H
〈〈AP , 4〉, 〈HP , 1〉〉
〈〈BP , 2〉, 〈HP , 2〉〉
〈HP , 3〉

(c)

~α|E

~α|A

~α|B
〈BP , 1,r〉
〈〈BP , 2〉, 〈HP , 2〉〉

~α|H

〈〈BP , 2〉, 〈HP , 2〉〉
〈HP , 3〉

(d)

~α′|E
〈EP , 1,r〉
〈〈EP , 2〉, 〈AP , 2〉〉

~α′|A
〈AP , 1,r〉
〈〈EP , 2〉, 〈AP , 2〉〉
〈AP , 3〉
〈〈AP , 4〉, 〈HP , 1〉〉

~α′|B

~α′|H
〈〈AP , 4〉, 〈HP , 1〉〉

〈HP , 3〉

Violation: All traces where h = 1.

Causal analysis: Parts (c) and (d) show two causal sequences. B’s shooting forms one causal sequence.

Independently, E loading the gun and A shooting forms the second causal sequence.

Figure 3.1: Example 1, Loader: causal analysis (two causal sequences)

40

Chapter 3. Defining Choices and Actions as Actual Causes

Causal sequence as evidence from the log. We want our causal determination to be based

on evidence. Therefore, to establish the choices and interactions in ~α to be a cause of violation

V on l, we must �rst provide evidence of the violation on the log l. For example, in Figure 3.1,

let ~α contain the choices made by E, A and B whether or not to shoot and the interactions

amongst these. Since e = a = b = 1 on the log, we can infer that h = 1.

Constructing counterfactual scenarios bymodifying programexpressions and choices.

In this part, we explain how to modify the programs, so that we can test whether the execution

of program expressions corresponding to ~α is su�cient for the violation.

A key component of constructing counterfactual scenarios in prior work, has been identi-

fying components of the model to hold �xed. Over-permissiveness in generating counterfac-

tual scenarios by allowing unrestricted modi�cation to the model can lead to counter-intuitive

causal determinations in several cases [29, 61] (also discussed in Section 4.3).

Our formalism provides natural constructs to express sequencing, interaction, choice and
time. As a consequence, we can construct counterfactual worlds in an interaction-aware man-

ner such that we preserve dependencies across related variables in the same program and pre-

serve the temporal ordering as on the log. In our process calculus framework, removing actions

arbitrarily can lead to a halting of a program execution. For instance in Figure 3.1, removing the

expression on line number 1 for program EP would cause the program execution for E to halt,

since the next expression requires the value of e before proceeding. Similarly, only removing

the send action in line 2 would cause the concurrent execution of the programs to halt, since

AP would need to receive a value before proceeding. Therefore, our interventions need to be

aware of interaction and dependency structure of the program.

If an interaction is omitted from ~α, then we intervene such that the progress of the program

sending a value is not hindered. For the variable in the receiving program, we test all cases

where the variable could have taken any value. For instance in case of our running example as

shown in Figure 3.2, if we consider a case where there is no interaction between E and A, then

we will construct contingencies, for all possible values of e which was getting instantiated due

to the interaction
4
.

We call this process of replacing actions with ‘dummy alternatives’ as a dummifying trans-
formation. The dummifying transform is a function that takes as input the programs which

executed on the log and a sublog ~α, and modi�es the programs in the initial con�guration in

the following manner:

• Identify a subsequence ~α of the log l.

4
Traces can �lter out unreasonable contingencies as well.

41

Chapter 3. Defining Choices and Actions as Actual Causes

• Modify the programs in the initial con�guration such that it removes all expressions not

included in ~α.

• Generate all traces that could result from this modi�ed set of programs and pick those

which contain the same choices and interaction structure as ~α.

Note in both ~α and ~α′ in Figure 3.1, we �x certain internal choices and interactions. On ~α,

had B chosen to not shoot (i.e. b = 0), then h = 0 and the target would not have been hit.

Similarly, had B not sent its choice to H , h = 0. The basic idea is to test all internal choices

and interactions to ensure that they are not merely progress enablers and their execution as on

the log is critical to reproduce the same outcome as on the log. In order to do so, we need to

test all executions that emerge from an initial con�guration where B made a di�erent choice

(in the given allowed range of values) and where B did not send the message to H .

Intervening as we described above, can lead to several traces, some of which may not share

any resemblance with the log. Next, we discuss how we restrict the counterfactual scenarios

we consider for testing su�ciency of a causal sequence.

Constraining choices and interaction structure as on the log. In non-deterministic mod-

els such as ours, if there is no speci�c assumption about scheduling, it is typical to consider the

trace set arising from concurrent executions of all programs, this includes all possible inter-

leaving of actions. In the Su�ciency condition of our actual cause de�nition, we would like to

focus on the hypothetical scenarios which resemble the conditions under which the log was

generated and a property was violated.

It is important to note that there is a spectrum of consistency conditions that need to be

investigated depending on how strong a coupling we �nd appropriate between the log and the

traces to consider in Su�ciency. We describe two of the alternatives before providing our design

choice.

1. Execute same programs as the log: One way to connect the log and and trace set in

Su�ciency condition could be to constrain the programs in the initial con�guration for

the Su�ciency condition to be the same as that as on the log, i.e., only consider traces

in which the same program pre�xes execute as on the log. Considering our example

(Figure 3.1), this approach would constrain all traces in Su�ciency condition to consider

the execution of programs forA,B,E,H until the same label as on the log. This approach

is problematic because traces are pre�x closed, i.e. pre�x of a trace is also a valid trace.

We will end up considering a trace in Su�ciency where neither A nor B sends a message

toH , orE has not yet sent a message toA. This will count as a valid counterfactual trace.

Consequently our cause de�nition would not �nd either B’s action or A and E’s actions

42

Chapter 3. Defining Choices and Actions as Actual Causes

as causes of the target being hit, which is counter-intuitive.

2. Execute same choices as on the log: This option would help to �x the choices, how-

ever it does not constrain the interaction structure, for instance in case of asymmetric

disjunction. Similarly, only preserving the interaction structure as on the log would not

su�ce since the internal choices could vary the data transmitted along the interaction

structure.

These alternatives reveal that de�ning consistency is a challenge as maintaining too strong

a coupling with the log could lead to ignoring relevant traces. On the other hand, if we do

not constrain the traces in the Su�ciency condition to be similar to the log, we could end up

considering traces on which no violation occurs, due to a spurious action. Therefore, in our

de�nition, when considering hypothetical scenarios, we choose to constrain both the relevant

choices and interactions on the log. For those choices and other program expressions, which

are not a part of the sequence ~α, we remove the expression by carefully considering how it

interacts with the actions in the causal sequence, and test for all possible alternatives.

Minimality. Since we consider a sequence of actions on the log, therefore our de�nition also

contains a minimality clause in order to prevent redundant actions and choices from being a

part of the cause.

3.1 Actual cause de�nition

Our de�nition of actual cause identi�es a subsequence of program expressions on the log as

the cause of a violation t ∈ V . For our running example, if the violation is formulated as all

traces where the value of h = 1 (i.e. the target is hit), then our goal is to �nd the choices and

actions in Figure 3.1 which were a cause of h = 1. In this part, we formally discuss ~α and how

to construct counterfactual scenarios.

More formally, in the de�nition below, we identify a sublog ~α of log(t), such that the pro-

gram choices and actions in ~α are actual causes and the actions in log(t)\~α are progress enabling

actions which only contribute towards the progress of actions in ~α, that cause the violation. In

other words, the actions not considered in ~α contain all labels whose actual returned values are

irrelevant.

Brie�y, here’s how the de�nition works. We �rst pick a candidate projected sublog ~α of

log(t). This includes expressions where internal choices are made as well as other actions

within a program. For our example, let us �rst consider the interactions between BP and HP

on log(t) as ~α (shown in �gure 3.1). We consider counterfactual traces obtained from initial

43

Chapter 3. Defining Choices and Actions as Actual Causes

con�gurations in which program actions omitted from ~α (i.e. actions forAP andEP as well their

interactions with HP) are replaced by actions that do not have any e�ect other than enabling

the program to progress (referred to as no-op or non-operational expressions). If a violation

appears in all such counterfactual traces, then this sublog ~α is a good candidate. Of all such

good candidates, we choose those that are minimal. Let us consider the log ~α as shown in part

c in Figure 3.1. In this case, we can evaluate that h = 1 since b = 1. Therefore, had B made the

same choice as on the log and HP only interacted with BP , a violation would have resulted.

Similarly, consider another subsequence of choices and actions on the log: ~α′ as shown in

part (d) in Figure 3.1. In this case, we can evaluate that h = 1 since a = 1 and e = 1. Therefore,

had A and E made the same choices as on the log and HP only interacted with AP , a violation

would have resulted.

Dummi�cation. The key technical di�culty in writing this de�nition is removing program

expressions omitted from ~α. We cannot simply erase any such action because the action is

expected to return a term which is bound to a variable used in the action’s continuation. Fur-

thermore, the potential values which could be returned for an action representing an internal

choice are restricted. Hence, our approach is to substitute the variables binding the returns

of actions which have been removed with arbitrary terms t. In case of internal choices, we

substitute the variables binding the returns of ‘removed’ choice-expressions with all possible

allowed choices (we denote it by function f ′). In the �gures, we denote this by a ‘no-op’ since

the process essentially removes an action and makes it non-operational.
Formally, we assume a function f : I × LineNumbers → Terms that in program i, for line

number b, suggests a suitable term f(i, b) that must be returned if the action from line b in

program i is replaced with a no-op.

For choice expressions, our interventions replace the expression excluded from ~α with a

restricted set of values. We de�ne a subset of values Choices ⊆ Terms, which includes the

allowed choices speci�ed in a choice expression. We assume a function f ′ : I×LineNumbers→
Choices that for line number b in program i picks one of the allowed choices. For instance,

if a can be instantiated to any value between {1, 9}, then replacing a with the output of f

corresponds to replacing a with any value between {1, 9}. However, if a = 0 ⊕ 1 and this

expression is not included in ~α, then replacing a with the output of f ′ corresponds to replacing

a with only 0 or 1.

In our cause de�nition we universally quantify over f and f ′, thus obtaining the e�ect of a

no-op. For technical convenience, we de�ne a syntactic transform called dummify() that takes

an initial con�guration, the chosen sublog ~α and the functions f, f ′, and produces a new initial

44

Chapter 3. Defining Choices and Actions as Actual Causes

con�guration obtained by erasing actions not in ~α by terms obtained through f and replacing

the internal choices with f ′.

De�nition 2 (Dummifying transformation). Let 〈I,P ,Σ〉 be a con�guration and let ~α be a log.
Let f : I×LineNumbers→ Terms and f ′ : I×LineNumbers→ Choices where Choices ⊆ Terms.

The dummifying transform dummify(I,P ,Σ, ~α, f, f ′) is the initial con�guration 〈I,D,Σ〉,
where for all i ∈ I , D(i) is P(i) modi�ed as follows:

• If a choice expression does not appear in ~α, then replace the output of the choice with function
f ′ where f ′ picks one of the allowed values.

• If a choice expression appears in ~α, then replace the output of the choice with the value chosen
on the log.

• If a send action does not appear in ~α, then replace the action in the corresponding program
with 0.

• If an action contains an asymmetric disjunction operator, then replace the output with the
disjunct chosen on the log.

• If an action is not a send or a choice expression and does not appear in ~α, then replace the
action (b : x = α); e with the value e[f(i, b)/x] in the corresponding program.

The dummifying function above explains how each of the constructs in our syntax are in-

tervened on. If an expression is in ~α, then the corresponding program expression is executed

as on the log. If an expression involving internal choice is dummi�ed, we replace it by possible

choices and test the obtained traces. If a disjunct with asymmetric disjunction is dummi�ed

then we choose the same disjunct as chosen on the log. If an interaction is dummi�ed, then

the send action returns 0 to the continuation and the variable instantiated by corresponding

recv action is treated as a free variable. For every other construct, if the corresponding ex-

pression is not included in ~α, then we treat the corresponding variable in the problem as a free

variable.

Note that we also require ~α to be a sublog of log(t), hence we can’t arbitrarily change the

dependency graph.

We demonstrate how the above de�ned dummifying function works on our running exam-

ple. In Figure 3.2, we consider ~α from Figure 3.1 and describe how the dummifying transform

works. Note that in our cause de�nition, we universally quantify over dummi�ed values which

allows us to test the dependence of the violation on the removed expression.

45

Chapter 3. Defining Choices and Actions as Actual Causes

Example 1, Loader
(a)

Original programs:

Program for E

1 : e = 0⊕ 1

2 : send(AP , e);

Program for A

1 : a = 0⊕ 1

2 : e = recv(EP);
3 : s = e ∧ a;
4 : send(HP , s);

Program for B

1 : b = 0⊕ 1

2 : send(HP , b);

Program for H

1 : s = recv(AP);
2 : b = recv(BP);
3 : h = b ∨ s;

(b)

Log:

log(t)|E
〈EP , 1,r〉
〈〈EP , 2〉, 〈AP , 2〉〉

log(t)|A
〈AP , 1,r〉
〈〈EP , 2〉, 〈AP , 2〉〉
〈AP , 3〉
〈〈AP , 4〉, 〈HP , 1〉〉

log(t)|B
〈BP , 1,r〉
〈〈BP , 2〉, 〈HP , 2〉〉

log(t)|H
〈〈AP , 4〉, 〈HP , 1〉〉
〈〈BP , 2〉, 〈HP , 2〉〉
〈HP , 3〉

(c)

Causal sequence:

~α|E

~α|A

~α|B
〈BP , 1,r〉
〈〈BP , 2〉, 〈HP , 2〉〉

~α|H

〈〈BP , 2〉, 〈HP , 2〉〉
〈HP , 3〉

(d)

Dummi�ed programs:

Program for E

1 : e = 0 OR 1

2 : no− op

Program for A

1 : a = 0 OR 1 ;

2 : e = 0 OR 1 ;

3 : s = 0 OR 1 ;

4 : no− op

Program for B

1 : b = 1

2 : send(HP , b);

Program for H

1 : s = 0 OR 1 ;

2 : b = recv(BP);
3 : h = b ∨ s;

Violation: All traces where h = 1.

Causal analysis: The causal sequence ~α:

〈BP , 1,r〉, 〈BP , 3〉, 〈〈BP , 3〉, 〈HP , 2〉〉, 〈HP , 3〉, i.e. our de�nition will �nd B’s choices and actions as

a cause. Independently, our de�nition will also �nd E and A’s choices and actions as a cause.

Figure 3.2: Example 1, Loader: Causal analysis

As seen in Figure 3.2, the send actions not in ~α are replaced by (e�ective) no-ops, the

choice expressions not in ~α are replaced by 0 or 1 (output of f ′) whereas the rest of the actions

not in ~α are instantiated by function f . Note that in this case, since the variables are boolean,

we see the same options for instantiations for recv and choice expressions, i.e. for f and f ′.

The resulting traces from these programs will consider all the values given in part d. Notice

that irrespective of value of e or a, the value of h will always be 1 given that b = 1 and the

interaction structure in ~α is followed. Hence, these choices and interactions are su�cient to

cause the violation. We test for such contingencies via the Su�ciency clause. We also note that

we could dummify fewer actions and also include the send action from AP and include it in the

46

Chapter 3. Defining Choices and Actions as Actual Causes

cause set. However, our goal is to �nd a minimal cause set, hence we add a Minimality clause.

We now present our main de�nition of actual cause.

De�nition 3 (Actual Cause of Violation). Let t be a trace from the initial con�guration 〈I,P ,Σ〉,
and t contains a violation V . Let ~α be a projected sublog of log(t). We say that ~α is the actual
cause of violation V on t if the following hold:

1. (Su�ciency’) Let C ′0 = dummify(I,P ,Σ, ~α, f, f ′) and let T be the set of traces starting
from C ′0 whose logs contain ~α as a projected sublog. Then, for all values of f and f ′, T is
non-empty and every trace in T has the violation V , i.e, T ⊆ V .

2. (Minimality’) No proper sublog of ~α satis�es condition 1.

By ensuring that ~α is a sublog of log(t), we ensure that synchronizations di�erent from the

log are not considered in our analysis.

Remarks. At the end of the actual cause de�nition, we obtain one or more sequences of

actions ~α. These sequences are deemed the independent actual causes of the violation on t. In

our running example, both ~α and ~α′ are independent causes of the violation.

Our de�nition identi�es a sequence of choices and program actions as causes of a violation.

However, in some applications it may be necessary to ascribe programs as causes. This can be

straightforwardly handled by lifting the above de�nition: A program i (or P(i)) is a cause if

one of its expressions appears in ~α.

In our running example, the choices and interactions for {~α|B, ~α|H} and for {~α|E, ~α|A, ~α|H}
are causes of the violation. In other words,B’s shooting action is a cause of the target being hit.

E’s loading the gun and A’s shooting action are another independent cause of the violation.

3.2 Examples

Format for encoding of examples. For every example in the rest of the dissertation, we �rst

provide the description in text. Next, we provide the structural equations where the variables

are marked with subscript R. The process calculus encoding of the example contains four

columns.

• Part (a) provides the model of programs corresponding to the example description.

• Part (b) speci�es the log.

• Part (c) provides the causal sequence. The causal sequence is a subsequence of the log.

• Part (d) provides the dummi�ed programs. These programs are obtained from the orig-

inal programs given in part (a), by dummifying the expressions omitted from the causal

47

Chapter 3. Defining Choices and Actions as Actual Causes

sequence.

In Chapter 2, we omitted the last two columns as the focus was on describing the formalism.

Disjunctive causes (Example 3). In Figure 3.3, we show how our de�nition applies to the

example based on disjunctive causes from the previous chapter. In this case, a forest can be

burned due to either a matchstick being lit (MLP), or a lightning strike (LP). ~α consists of the

choice made by LP and the interaction between LP and FP . While observing the dummi�ed

programs, we can see that the value of f will be 1, irrespective of the value of ml. Similarly, if

we had chosen another subsequence of the log, ~α′ which contained the choice made by MLP

and its interaction with FP , then we would get another independent cause of the violation,

f = 1.

Example 3, Disjunctive causes
(a)

Original programs:

Program for L

1 : l = 0⊕ 1;

2 : send(FP , l);

Program for ML

1 : ml = 0⊕ 1;

2 : send(FP ,ml);

Program for F

1 : l = recv(LP);
2 : ml = recv(MLP);

3 : f = l ∨ml;

(b)

Log:

log(t)|L
〈LP , 1,r〉
〈〈LP , 2〉, 〈FP , 1〉〉

log(t)|ML

〈MLP , 1,r〉
〈〈MLP , 2〉, 〈FP , 2〉〉

log(t)|F
〈〈LP , 2〉, 〈FP , 1〉〉
〈〈MLP , 2〉, 〈FP , 2〉〉
〈FP , 3〉

(c)

Causal sequence:

~α|L
〈LP , 1,r〉
〈〈LP , 2〉, 〈FP , 1〉〉

~α|ML

~α|F
〈〈LP , 2〉, 〈FP , 1〉〉

〈FP , 3〉

(d)

Dummi�ed programs:

Program for L

1 : l = 1;

2 : send(FP , l);

Program for ML

1 : ml = 0 OR 1 ;

2 : no− op

Program for F

1 : l = recv(LP);
2 : ml = 0 OR 1 ;

3 : f = l ∨ml;

Violation: All traces where f = 1.

Causal analysis: The causal sequence ~α: 〈LP , 1,r〉, 〈〈LP , 2〉, 〈FP , 1〉〉, 〈FP , 3〉, i.e. our de�nition

�nds both L’s choices and actions as well as ML’s choices and actions as independent causes.

Figure 3.3: Example 3, Disjunctive scenario: causal analysis

However, note that if we had conjunction instead of disjunction, i.e. both l and ml need

to be 1 for f to take a value of 1, then ~α will contain both the choices and interactions for LP

and MLP as shown in Figure 3.4. Note that unlike the disjunctive case, both LP and MLP ’s

choices and interactions are crucial in order to set f to 1. If either of l or ml is 0, then f = 0.

48

Chapter 3. Defining Choices and Actions as Actual Causes

We can show that both the choices and interactions as shown in ~α are needed.

Example 2, Forest �re – conjunctive scenario
(a)

Original programs:

Program for L

1 : l = 0⊕ 1;

2 : send(FP , l);

Program for ML

1 : ml = 0⊕ 1;

2 : send(FP ,ml);

Program for F

1 : l = recv(LP);
2 : ml = recv(MLP);

3 : f = l ∧ml;

(b)

Log:

log(t)|L
〈LP , 1,r〉
〈〈LP , 2〉, 〈FP , 1〉〉

log(t)|ML

〈MLP , 1,r〉
〈〈MLP , 2〉, 〈FP , 2〉〉

log(t)|F
〈〈LP , 2〉, 〈FP , 1〉〉
〈〈MLP , 2〉, 〈FP , 2〉〉
〈FP , 3〉

(c)

Causal sequence:

~α|L
〈LP , 1,r〉
〈〈LP , 2〉, 〈FP , 1〉〉

~α|ML

〈MLP , 1,r〉
〈〈MLP , 2〉, 〈FP , 2〉〉

~α|F
〈〈LP , 2〉, 〈FP , 1〉〉
〈〈MLP , 2〉, 〈FP , 2〉〉
〈FP , 3〉

(d)

Dummi�ed programs:

Program for L

1 : l = 1;

2 : send(FP , l);

Program for ML

1 : ml = 1;

2 : send(FP ,ml);

Program for F

1 : l = recv(LP);
2 : ml = recv(MLP);

3 : f = l ∧ml;

Violation: All traces where f = 1.

Causal analysis: The causal sequence ~α:

〈LP , 1,r〉, 〈MLP , 1,r〉, 〈〈LP , 2〉, 〈FP , 1〉〉, 〈〈MLP , 2〉, 〈FP , 2〉〉, 〈FP , 3〉, i.e. our de�nition �nds both

L’s choices and actions as well as ML’s choices and actions as a joint cause.

Figure 3.4: Example 2, Conjunctive scenario: causal analysis

Voting machine example (Example 4). In Figure 3.5, we analyze the voting machine ex-

ample which was proposed as a counterexample to HP2001 de�nition and Hall’s de�nition. Our

de�nition �nds ~α as shown in the �gure as a cause. The causal sequences are:

• 〈V 1P , 1,r〉, 〈〈V 1P , 2〉, 〈MP , 1〉〉, 〈〈MP , 3〉, 〈XP , 1〉〉, 〈XP , 1〉.
• 〈V 2P , 1,r〉, 〈〈V 2P , 2〉, 〈MP , 2〉〉, 〈〈MP , 3〉, 〈XP , 1〉〉, 〈XP , 1〉.

That is, our de�nition �nds both V 1,M ’s choices and actions as well as V 2,M ’s choices and

actions as independent causes. Our de�nition �nd the sequence of expressions involving V1’s

choice and its interaction with M and X as a cause. Similarly, our de�nition also �nds the

subsequence of actions involving V2’s choice and its interaction with M and X as a cause.

49

Chapter 3. Defining Choices and Actions as Actual Causes

Example 4, Voting Machine
(a)

Original Programs:

Program for V 1

1 : v1 = 0⊕ 1;

2 : send(M,v1);

Program for V 2

1 : v2 = 0⊕ 1;

2 : send(M,v2);

Program for M

1 : v1 = recv(V 1);

2 : v2 = recv(V 2);

3 : send(X, v1 + v2));

Program for X

1 : m = recv(M);

2 : x = (m ≥ 1)? 1 : 0;

(b)

Log:

log(t)|V 1

〈V 1, 1,r〉
〈〈V 1, 2〉, 〈M, 1〉〉

log(t)|V 2

〈V 2, 1,r〉
〈〈V 2, 2〉, 〈M, 2〉〉

log(t)|M
〈〈V 1, 2〉, 〈M, 1〉〉
〈〈V 2, 2〉, 〈M, 2〉〉
〈〈M, 3〉, 〈X, 1〉〉

log(t)|X
〈〈M, 3〉, 〈X, 1〉〉
〈X, 2〉

(c)

Causal sequence:

~α|V 1

〈V 1, 1,r〉
〈〈V 1, 2〉, 〈M, 1〉〉

~α|V 2

~α|M
〈〈V 1, 2〉, 〈M, 1〉〉

〈〈M, 3〉, 〈X, 1〉〉

~α|X
〈〈M, 3〉, 〈X, 1〉〉
〈X, 2〉

(d)

Dummi�ed Programs:

Program for V 1

1 : v1 = 1;

2 : send(M,v1);

Program for V 2

1 : v2 = 0 OR 1;

2 : no− op

Program for M

1 : v1 = recv(V 1);

2 : v2 = 0 OR 1;

3 : send(P, v1 + v2));

Program for X

1 : m = recv(M);

2 : x = (m ≥ 1)? 1 : 0;

Violation: All traces where x = 1.

Causal analysis: The causal sequence shown here:

〈V 1P , 1,r〉, 〈〈V 1P , 2〉, 〈MP , 1〉〉, 〈〈MP , 3〉, 〈XP , 1〉〉, 〈XP , 1〉. That is, our de�nition �nds V 1,M ’s

choices and actions as a cause.

Figure 3.5: Example 4, Voting machine (Subsets of Z): causal analysis

Remarks.

• In all of these examples, we see that the dummi�cation operation ends up having a similar

e�ect on both the expressions containing internal choice operator, as well as other actions.

This is because the allowed values for each of these variables is 0 or 1. In more general

settings where variables can take multiple values, the dummi�cation operator would treat

the internal choice as well as other actions di�erently.

• Our de�nition does not output a complete process as part of a causal sequence; it outputs

a subset of the process which is relevant for the violation.

50

Chapter 4

Relationship with Prior Work in

Actual Causation

Chapter goal. Causation has been studied by philosophers, statisticians, social scientists, AI

researchers and in numerous other �elds since the 1700s [38]. In this chapter, we place our

work in the larger context of research in actual causation. We describe earlier theories of actual

causation, both in philosophy and AI-based approaches. We �rst give a brief overview of prior

work in process based actual causation. We then discuss four de�nitions from counterfactual-

based actual causation literature, that we �nd most closely related to our work, and describe the

connection with our work. We look at examples used to justify prior theories, describe these

in our formalism and highlight the di�erences in the approaches.

Background. Causal analysis is useful for several applications including fault analysis, un-

derstanding causes of outbreaks and troubleshooting, legal reasoning in tort and criminal cases

as well as �nding explanations [27]. Causation has also been a subject of signi�cant interest in

Arti�cial Intelligence (AI) due to its applicability to �nding strategy, prediction and manipula-

tions. In particular, researchers have been interested in questions about how causal information

can be acquired in an automated manner and how this information should be processed [27]. On

the other hand, philosophers have focused on understanding what empirical evidence warrants

a cause-e�ect relationship and what inferences can be drawn from these relationships [62].

These are a few considerations that have motivated di�erent kinds of research questions for

causation over the years.

Broadly, research on causation has focused on three di�erent types of causal inference prob-

51

Chapter 4. Relationship with Prior Work in Actual Causation

lems [27, 29]: Finding causes of e�ects, or �nding e�ects of causes
1 or structure learning/ search

problems
2
. There has been signi�cant work in the �eld of inferring causal relations from ob-

servational data and representing the relations [See [26, 27, 28] for an overview]
3
. Speci�-

cally, the research directions have focused on two di�erent yet related aspects, i.e., learning

the causal structure using probabilistic correlations and causal assumptions [26] and interpret-

ing the causal structure in order to identify the e�ects of speci�c manipulations within the

framework [27, 63]. Actual causation is an instance of causes-of-e�ects problem.

Scope of this section. In this dissertation, we focus on prior work in understanding the

causal structure, after the structure has been inferred using causal modeling techniques [26,

27]. There are two relevant lines of work, process causation theories and counterfactual-based

theories. We discuss process causation theories brie�y. Due to the absence of a mathematical

formulation, it is di�cult to perform a deeper comparison with the work in this area. We

relate the main concepts with our work. Next, we discuss the counterfactual-based theories.

In this work we focus on the theories which have been proposed for actual causation, using

the structural equation framework. Structural equation models are of signi�cance in several

�elds as discussed earlier, here we only describe the formalism which has been used in actual

causation literature
4
.

For problems based on causes-of-e�ects, it is common to distinguish actual causation (or

token causation) from type causation (relation between variables). Type causation is concerned

with relations between random variables and is considered by several philosophers to be the

pre-requisite for actual causation. There is, however, no consensus on how type and actual cau-

sation are related [28, 29]. The underlying causal relationships can be deterministic or proba-

bilistic. Traditionally, probabilistic approaches have been proposed for type causation whereas

actual causation has seen a tradition of counterfactual based approaches
5
.

1
See [63] for details of intervention theory

2
See [26] for an overview

3 ‘The name ‘causal modeling’ is often used to describe the new interdisciplinary �eld devoted to the study of meth-
ods of causal inference. This �eld includes contributions from statistics, arti�cial intelligence, philosophy, econometrics,
epidemiology, psychology, and other disciplines.’[28]

4
For a complete overview, see [26, 27]

5
Eells developed a probabilistic theory of token causation [64]. In general, probabilistic causation based theo-

ries, roughly, causes raise the probabilities of their e�ect. There are identi�ed issues with probabilistic approaches

to actual causation, for instance, probability lowering causes, common cause [28].

52

Chapter 4. Relationship with Prior Work in Actual Causation

4.1 Process-based causation theories

There has been signi�cant work in process causation theories for de�ning actual causation. In

contrast with event-based notion of actual causation, causal process theories interpret causation

in terms of continuous processes and interactions between them. This line of work is attributed

primarily to Salmon. Salmon aimed for scienti�c explanations that would be in keeping with

actualist requirements of empiricism, therefore, his theory does not use counterfactuals [45].

According to Salmon, a process is anything with constancy over time. His theory makes a

fundamental distinction between a causal process and a pseudo process where a causal process

is de�ned as one that is capable of transmitting a local modi�cation of a characteristic. For

example, a ball moving in he air is a causal process: if we make a cut on the ball modifying

its surface, this modi�cation is transmitted by the ball as it moves in the air. This can be con-

trasted with the example of a spot of light moving across a wall, which is classi�ed as a pseudo

process. We can modify the shape of the light spot by distorting the surface of the wall but this

modi�cation is not transmitted across the wall as the spot moves. A causal interaction involves

the mutual modi�cation of two intersecting processes. For example, the collision of two mov-

ing balls, which are two causal processes, is a causal interaction. Both of the balls undergo a

modi�cation in momentum as a result of the collision. As the balls move, this modi�cation is

transmitted over time.

Even though the intended application domains di�er, there appears to be a conceptual anal-

ogy between causal process theories and our theory of actual causation. Our programs are

generic descriptions of how computation should evolve over time locally, in the absence of in-

teraction, much like physical causal processes of Salmon. Since our intended domain of infor-

mation processing systems is discrete in nature, processes described by our programs execute

in discrete steps, and do not have continuous dynamics. However, they still capture the essence

of a causal process that explains how one state of the system leads to another as the system pro-

gresses over time. Our programs also allow description of how computation continues from the

point of synchronization of two processes, capturing the notion of interaction of in Salmon’s

theory.

Had our theory and causal process theories been developed for similar domains, a more

direct analogy would have been possible. For example, we could envision an extension of our

process calculus framework that applies to cyber-physical systems, where capturing the contin-

uous evolution of system state over time is as essential as capturing discrete steps that change

system state instantaneously [65, 66, 67]. We believe that such a framework would enable the

formal de�nition of the notion of a causal process and interaction from the philosophy litera-

53

Chapter 4. Relationship with Prior Work in Actual Causation

ture.

It is acknowledged that a causal process is necessary for relating two events as cause and

e�ect but identifying a causal process between two events does not tell us which features of

the process are causally relevant to the outcome that we want to explain. Suppose that ball A

sinks after being hit by a moving ball B where the moving ball B’s surface had been modi�ed

with a chalk stain before being thrown. We know that ball B is a causal process because it is

capable of transmitting the chalk mark. However, our intuition tells us that the chalk mark

on B is not causally relevant to A’s sinking. To the best of our knowledge, interpreting causal

process theories such that they yield intuitive causal relevance determinations (for instance,

the marking of B with the chalk is deemed causally irrelevant to A’s sinking) is still a subject of

debate. [44, 46]. Our theory may o�er some insights into this debate since identifying causal

(ir)relevance is a key focus of ours.

4.2 Counterfactual-based actual causation theories

In 1748, Hume [38] identi�ed actual causation with counterfactual dependence—the idea that c

is an actual cause of e if had c not occurred then e would not have occurred. While this simple

idea does not work if there are independent causes, the counterfactual interpretation of actual

causation has been developed further and formalized in a number of in�uential works (see, for

example, [14, 16, 17, 27, 39, 40, 41, 42]).

Actual causation has also inspired interest in legal settings. In particular, Hart and Hon-

oré [33] originally proposed the NESS test (Necessary Elements of a Su�cient Set test) for

causation in the legal literature and this approach was worked out in more detail in subsequent

work by Wright [42]. The test states that A is a cause of B if it is a necessary element of a

set which is su�cient to cause B. This work does not give a clear de�nition of a su�cient set

and is also restricted to deeming single conjuncts (of events) as causes as per the formalization

given by Halpern [68]
6
. The NESS test shares similarities with prior work by Mackie [41] on

INUS test which states that event A is a cause of event B if A is ‘an insu�cient but necessary

part of a condition which is itself unnecessary but su�cient’ for B. Further investigations into

these de�nitions and attempts to formalize them in di�erent settings have given rise to several

de�nitions of actual cause in the literature that have subtle di�erences [27, 40]. One example

is Halpern’s formalization of the NESS test [68].

We build our de�nition on similar ideas of counterfactual dependence, as discussed in Chap-

6
This is problematic in our security setting as we wish to detect collusion and blame multiple agents jointly

in such cases.

54

Chapter 4. Relationship with Prior Work in Actual Causation

ter 3.

In this section we discuss four de�nitions as proposed by Hitchcock (H2001) [17], Hall (H-

account) [16], and variants of Halpern-Pearl’s de�nitions (HP2001, HP2005) [14, 30] along with

a recent modi�cation to HP de�nition by Halpern (H2015) [18]. We only discuss the relevant

details and interpretations here [18, 29, 56, 61]. For more details we refer the readers to the orig-

inal papers. Hall and Hitchcock’s de�nition were given using causal paths whereas Halpern and

Pearl’s de�nitions directly encode the clauses as constraints on variable values, in the structural

equation framework.

Review of causal models. Every theory of actual causation that we discuss in this section

was given using causal models, which were discussed in Chapter 2. As a brief recap, a causal

model M is an ordered pair 〈S,F〉 where S represents a set of variables and F gives a set of

structural equations which specify the relationships amongst these variables. S contains both

endogenous variables (V) and exogenous variables (U), as well as the ranges of values for these

variables.

Common template. For the causal analysis, the set of endogenous variables V is split into

two disjoint sets
~Z, ~W where the putative cause corresponds to values for a set of variables

~X ⊆ ~Z . Here
~X = ~x denotes values for a set of variables.

~Z corresponds to the variables on

the path from
~X to the violation ϕ (which is

~Y = ~y and Y ∈ V) and
~W corresponds to variables

which are not on the path between
~X and

~Y . A context u in the model M instantiates all the

exogenous variables. Using these values, and the structural equations, we can then derive the

values for all the endogenous variables in V . We follow the notation from prior work where

writing M,u |= (X = x) denotes that in a model M and context u, the variable X takes the

value x. Similarly, writing M,u |= [W = w](X = x) denotes that in a model M and context

u, when variable W is �xed at the value w, the variable X takes the value x. Prior work allows

interventions on the outcome of any structural equation in the model, i.e., variable values can

be set arbitrarily. As a consequence, given a model M , a context u and set of interventions, the

variables could take on non-actual values, i.e. values not in the original context u.

Intervening on arbitrary variables can lead to multiple counterfactual scenarios which may

or may not be relevant. Each of the de�nitions either restrict contingencies or prevent contin-

gencies. Following the convention used by Westlake and Livengood [29, 56], we discuss the

template for the de�nitions and then instantiate parts of the template by enumerating di�erent

restrictions for di�erent de�nitions. Most of the de�nitions have one or more of these three

conditions.

55

Chapter 4. Relationship with Prior Work in Actual Causation

An event
~X = ~x is a cause of another event

~Y = ~y if the following conditions hold:

1. Occurrence: Given the model M and context u, this condition states that the violation

~Y = ~y actually happened on the log and the putative cause
~X = ~x also holds, i.e.

M,u |= (~X = ~x) ∧ (~Y = ~y).

2. Necessity and Su�ciency:

(a) Necessity: When
~X is changed to

~x′ and certain o�-path variables
~W are restricted

to values
~w′ (possibly non-actual), then

~Y 6= ~y, i.e. modifying
~X a�ects

~Y .

(b) Su�ciency: When
~X is restored to its actual value ~x and the o�-path variables

~W are

restricted to values
~w′, and the variables

~Z on the path from
~X to

~Y are restricted to

their actual values
~z′, then

~Y = ~y in all cases. In other words, restoring the putative

cause
~X to their actual values on the log, and restoring a subset of other variables

to their values on the log, is su�cient to restore
~Y to its value on the log.

3. Minimality:
~X is minimal.

Each of the following de�nitions tests for occurrence and minimality conditions above. The

main di�erence arises from the restrictions in Necessity and Su�ciency conditions. For instance,

mapping back to the NESS de�nition discussed earlier, clause 2b above corresponds to su�-

ciency and clause 3 corresponds to necessity. Since our goal is to �nd the choices (which are

a subset of the exogenous values) and the sequence of program expressions which led to a

violation, our de�nition has additional considerations in these clauses.

Remarks. Note that our de�nition does not contain an explicit clause for necessity. This

holds because we do not consider absence of expressions as a cause. For instance, if an ex-

pression was not evaluated on the log, our de�nition will not consider it as a part of ~α since

our causal analysis starts with the log. However, the absence of an action can be modeled via

choices over data variables, as discussed at the end of the previous chapter (Chapter 2). This

restriction does not a�ect our analysis when we consider security protocols since we capture a

large class of safety properties (which require presence of an action), however this is a point of

di�erence from prior work. We discuss this point in detail in Section 4.2.5.2.

Next, we describe the prior de�nitions in actual causation given using causal models and

discuss the relationship with our work.

4.2.1 Hitchcock 2001 (H2001)

In his framework, Hitchcock uses structural equations to represent counterfactual dependence.

Roughly, a variable Y counterfactually depends on another variableX in a system of structural

56

Chapter 4. Relationship with Prior Work in Actual Causation

equations, i�, in the given context: X = x and Y = y, and there exist values x′ 6= x and

y′ 6= y such that changing the value ofX from x to x′, changes the value of Y from y to y′. This

corresponds to the necessity condition in the template de�ned above. Hitchcock’s de�nition

has two variants. We describe one of the variants below. The second variant is closer in spirit

to Hall’s de�nition and is discussed in the next subsection.

Hitchcock’s causal theory (referred to as H2001 in the sequel) is based on path analysis

where he de�nes X = x to be a cause of Y = y if there exists a path from X to Y such that, if

we �x the values for all o�-path variables W to w′ (possibly non-actual values), then Y coun-

terfactually depends on X . H2001 distinguishes between a chain of counterfactual dependence

and an active route between two events, which is crucial for his de�nition of causation. In order

to �nd an active route fromX to Y , we change the value ofX and keep its successors �xed and

evaluate if Y changes. Hitchcock’s analysis focuses on �nding a single path of counterfactual

dependence between X and Y – this path is called a causal path.

In terms of the template for actual cause de�nition given above, we �x the values for those

variables which are on a path between X and Y other than the direct path being tested
7
. The

necessity and su�ciency condition can then be formalized as shown below [17, 18]:

There exists a value x′ and ~w represents the actual values for variables in
~W i.e.

(M,~u)| = [~W = ~w] such that

• (M,~u)| = [~X = ~x′, ~W = ~w] ~Y 6= ~y

Hitchcock also de�nes a notion of a weakly active route where variables inW are allowed to

take non-actual values. In this case, Hitchcock gives a de�nition which allows variables in
~W

to take on non-actual values, however none of these variations a�ect the values of remaining

variables in
~Z . This de�nition is similar to Hall’s de�nition (H-account).

Relationship with our theory. H2001 �xes the values of o�-path variables in order to mask

their in�uence on the e�ect and only test the direct route. Since we focus on uninstantiated

program expressions, we do not �x the return values of any of the expressions. Rather, we

remove the irrelevant program expressions and test whether the violation occurs along a similar

path as on the log. Our de�nition also captures the idea of testing the same ‘path’ as on the log,

however H2001 implements it by �xing the values of variables (i.e. outcome for processes) on

the other paths between the cause and the e�ect. In contrast, we retain the interaction structure

as on the log, but not the actual values.

We demonstrate how our formalism and de�nition can be used for an example (Example 5,

7
Doing so �xes the value of variables on other routes from X to Y. H2001 de�nes these as ENF counterfactu-

als [17] and discusses these in detail.

57

Chapter 4. Relationship with Prior Work in Actual Causation

Backup), given in Figure 4.1, used by Hitchcock [17].

Review: Notation and encoding examples using process calculi. For every example, we

�rst provide the description in text. Next, we provide the structural equations. Endogenous

variables are marked with a subscript R. For instance, an event A being 0 or 1 will be repre-

sented as AR to indicate that we are referring to the random variable for structural equations.

The exogenous variables are denoted as subscripts of u (for instance uA, uB). In our process

calculus framework, a process for an identi�er A is denoted by AP . Variables in our process

calculus framework are denoted by lowercase alphabets a, b, The process calculus encoding

of the example contains four parts.

• Part (a) provides the model of programs corresponding to the example description.

• Part (b) speci�es the log.

• Part (c) provides the causal sequence. The causal sequence is a subsequence of the log.

• Part (d) provides the dummi�ed programs. These programs are obtained from the orig-

inal programs given in part (a), by dummifying the expressions omitted from the causal

sequence in (c).

The sequence given in (c) is a cause if all executions originating from the (dummi�ed) pro-

grams in (d), which contain (c) as a subsequence, contain a violation.

Example description. We encode this example using our process calculus framework in

Figure 4.1. The four programs in column (a) in Figure 4.1 are written using the process calcu-

lus syntax.Here T denotes the process for the trainee’s process, S denotes the process for the

supervisor and V denotes the target’s process. Since this is a case where the model allows pre-

emption, therefore we model the example using the asymmetric disjunctive operator. T chooses

to shoot and then sends the value to the supervisor and the program for the target. In response,

the supervisor sends a value to the target process as well. The �nal result is evaluated via an

asymmetric disjunction. As the log in column (b) shows, the trainee shoots and the supervisor

does not (looking at the choice resolution in the log).

Example 5 is an instance of preemption (which we discuss in detail in Section 4.4.3) since

the trainee’s action preempts the supervisor’s action. However in this case, the trainee’s action

could have triggered the supervisor’s action as well. H2001 tests whether the target is hit when

the trainee �res, keeping the supervisor’s action �xed since it is dependent on trainee’s action.

Note that we will �nd the trainee’s choice and actions as a cause of the violation. However, given

the log in part (b), we will not �nd the supervisor’s actions as a cause. This happens since we

use an asymmetric disjunction operator and dummifying 〈VP , 3,r〉, modi�es v = s [] t to v = t

58

Chapter 4. Relationship with Prior Work in Actual Causation

as on the log.

Example 5 (Backup). [17] A trainee (TR) is required to shoot at a target. His supervisor (SR) is
also present- in case the trainee loses his nerve and does not shoot, then the supervisor will shoot.
In the actual scenario, the trainee shoots and hits the target (VR = 1).

TR, SR, VR are the random variables which correspond to the trainee’s shooting, supervisor

shooting and the target being hit respectively. The structural equations are given as:

VR = TR ∨ SR
SR = ¬TR
TR = 1

(a)

Original programs:

Program for T

1 : t = 0⊕ 1;

2 : send(SP , t);
3 : send(VP , t);

Program for S

1 : t = recv(TP);
2 : s = ¬t;
3 : send(VP , s);

Program for V

1 : t = recv(TP);
2 : s = recv(SP);
3 : v = s [] t;

(b)

Log:

log(t)|T
〈TP , 1,r〉
〈〈TP , 2〉, 〈SP , 1〉〉
〈〈TP , 3〉, 〈VP , 1〉〉

log(t)|S
〈〈TP , 2〉, 〈SP , 1〉〉
〈SP , 2〉
〈〈SP , 3〉, 〈VP , 2〉〉

log(t)|V
〈〈TP , 3〉, 〈VP , 1〉〉
〈〈SP , 3〉, 〈VP , 2〉〉
〈VP , 3,r〉

(c)

Causal sequence:

~α|T
〈TP , 1,r〉,

〈〈TP , 3〉, 〈VP , 1〉〉

~α|S

~α|V
〈〈TP , 3〉, 〈VP , 1〉〉

〈VP , 3,r〉

(d)

Dummi�ed programs:

Program for T

1 : t = 1;

2 : no− op
3 : send(VP , t);

Program for S

1 : t = 0 OR 1 ;

2 : s = 0 OR 1 ;

3 : no− op

Program for V

1 : t = recv(TP);
2 : s = 0 OR 1 ;

3 : v = t;

Violation: All traces where v = 1.

Causal analysis: The causal sequence ~α: 〈TP , 1,r〉, 〈〈TP , 3〉, 〈VP , 1〉〉, 〈VP , 3,r〉, i.e. the choice made

by T , the interaction between T and V and then evaluation by V .

Figure 4.1: Example 5: Trainee supervisor example (preemption)

4.2.2 Hall 2007 (H-account)

Hall’s theory (called the H-account in the sequel) is also based on path analysis where he de-

�nes X = x to be a cause of Y = y if there exists a path from X to Y such that, �xing the

59

Chapter 4. Relationship with Prior Work in Actual Causation

values for o�-path variables W to w′ (possibly non-actual) does not a�ect the values for vari-

ables in
~Z . That is, no variables in

~W can change the value of any of the variables in
~Z while

holding
~X �xed at its actual value ~x. Here is how the necessity and su�ciency condition can

be formalized [16, 18]:

Let ~z represent the actual values for variables in
~Z i.e. (M,~u)| = [~Z = ~z]. There exist

values
~x′, ~w′ and such that

• (M,~u)| = [~X = ~x′, ~W = ~w′] ~Y 6= ~y

• (M,~u)| = [~W = ~w′]~Z = ~z

Relationship with our theory. Similar to H2001, H-account also �nds a relevant path for

making a causal determination. However, H-account sets the values of all o�-path variables

such that they do not a�ect any of the variable values between the cause and the violation. Since

we focus on the existence of choices and actions and not just the outcomes of the processes, in

our su�ciency condition we test whether the same sequence of actions is executed on the log.

Note that this may lead to di�erent values for the variables on the ‘path’ between the putative

cause and the violation, but that does not a�ect our analysis.

We demonstrate how our formalism and de�nition can be used for another example used

by Hall [16]. This example is based on late-preemption (Example 9, Late preemption) which

we discuss in more detail in Section 4.4.3.

Reduction of the model, default and deviants. Hall also discusses the idea that the coun-

terfactual dependence tests should be carried out in a reduction of the original world, i.e. where

certain deviant events are replaced by their defaults. Hall also suggests that the alternate contin-

gencies considered in the second condition above should be restricted to those where variables

take their default values. Hall de�nes default values for variables as those which are taken when

nothing acts on the system. We actualize a similar idea in our formalism. When we consider

alternate contingencies for expressions not in the causal sequence, we remove the expressions

from the program syntax and test for all possible returned values– this e�ectively corresponds

to the removed expressions returning arbitrary values
8
. We can further constrain alternate con-

tingencies in our system by allowing restricted choices for function f ′ which chooses alternate

values for choice expressions, to only test for default values
9
.

8
Since removing expressions alone will halt the execution of the program.

9
This is a subject for future research.

60

Chapter 4. Relationship with Prior Work in Actual Causation

Generality of model. Hall brie�y discusses the importance of designing a model which can

exhibit a range of actual scenarios as opposed to being speci�c to only one context. Due to our

syntactic constructs, we are able to express general models of interaction more concisely.

As demonstrated in prior work [18], Hall’s de�nition does not work well with the Voting

machine example given by Halpern and Pearl (Example 4, Voting Machine) in Figure 2.5. In this

case, the de�nition above runs into issues because requiring that no o�-path variables should

a�ect any of the variables on the path from cause to the e�ect, can be too strong [14]
10

. For

instance, in Example 4, changing the value of either v1 or v2 will a�ect the value of m which is

on the path to p.

When we encode Example 4 in our formalism, we �nd that both V1 and V2’s choices and

interactions can be found as independent causes of the violation p = 1 (See Figure 3.5). This

di�erence stems from the fact we do not require the return values for program expressions to

be the same as the log, rather we constrain the same expressions to execute, as in the causal

sequence.

4.2.3 Halpern and Pearl (HP2001, HP2005)

Halpern-Pearl 2001 (HP2001). The de�nitions of Halpern and Pearl also incorporate ele-

ments of prior proposals to formally de�ne actual cause in a computational setting. The de�-

nitions [14, 30] aimed to improve upon earlier formulations of causality to handle several ex-

amples that had proved problematic for earlier de�nitions and gave precise de�nitions for ne-

cessity and su�ciency. Since then, the structural model approach to causality has been used in

various settings, including explaining counter examples generated in model checking [69] and

in understanding the completeness of a system speci�cation (in model checking) in terms of

covering all system states [70].

The necessity and su�ciency conditions in Halpern and Pearl’s initial de�nition [30] state

that:

There exist
~x′, ~w′ s.t.:

• Necessity: When the putative cause
~X is changed to

~x′, o�-path variables
~W are also

changed to
~w′, ~Y 6= ~y, i.e. (M,~u)| = [~X = ~x′, ~W = ~w′] ~Y 6= ~y

• Su�ciency: When
~X is restored to its original value ~x and a subset of o�-path variables

~W

are restricted to values
~w′, and the variables

~Z along the path from
~X to

~Y are restricted

at actual values
~z′, then

~Y = ~y in all resulting cases, i.e. (M,~u)| = [~X = ~x, ~W = ~w′, ~Z ′ =

~z′] ~Y = ~y for all subsets
~Z ′ of

~Z .

10
This was given as the reason for justifying subsets of Z requirement in HP2005 [14]

61

Chapter 4. Relationship with Prior Work in Actual Causation

Relationship with our theory. HP2001 was found to be too permissive in the contingencies

it allowed [14, 48]. For instance, for our running example (Figure 3.1) in Chapter 2, if E loaded

the gun and A did not shoot, HP2001 de�nition will still �nd E’s action as a cause. This occurs

because HP2001 allows changes along all paths. If there exists some variable (in this case E’s

loading) that is not an actual cause but could turn into one if other variables took non-actual

values (if A shot the bullet)- then this non-cause will be converted into a cause [56]. In our

case, when we test for alternate contingencies and intervene on any action, then we will test all
possible values which the variable being instantiated by that action would have taken. Therefore,

if E had loaded the gun in the actual scenario, and we were testing whether A’s action is

relevant, then we will test both possibilities of what happens when A shoots and when it does

not.

Halpern-Pearl 2005 (HP2005). Accordingly, the above de�nition was updated by Halpern

and Pearl in 2005 in order to test for all subsets of
~W in the su�ciency condition as well. This

addition was made to constrain the alternative values which can be considered for o�-path

variables. The updated necessity and su�ciency conditions now state: There exists
~x′, ~w′ s.t.:

• Necessity: (M,~u)| = [~X = ~x′, ~W = ~w′] ~Y 6= ~y

• Su�ciency: When
~X is restored to its original value ~x, certain o�-path variables W are

restricted to values
~w′, and the variables

~Z along the path from
~X to

~Y are restricted at

actual values
~z′, then

~Y = ~y in all resulting cases, i.e. (M,~u)| = [~X = ~x, ~W ′ = ~w′, ~Z ′ =

~z′] ~Y = ~y for all subsets
~Z ′ and

~W ′
of
~Z and

~W , respectively.

Relationship with our theory. Similar to the prior three de�nitions which we have dis-

cussed, HP2005 also constrains the values of outcomes variables for processes. Due to this,

HP2005 will �nd any variable along the causal sequence as a cause (as a single conjunct). Fur-

ther, allowing a dependent variable value to be modi�ed arbitrarily and testing with an exis-

tential quanti�er, is problematic since it can �nd non-causes as causes. This issue is discussed

in detail in Section 4.3. Our goal, in contrast, is to �nd the entire causal sequence.

HP2005 and the prior de�nitions we have discussed, cannot distinguish between conjunctive

and disjunctive causal sequences. When two or more sequences conjunctively cause a violation,

prior de�nitions can select outcome variables for processes on either of the sequences as causes.

Accordingly, the intervention method for prior work involves setting any o�-path variable (or

set of o�-path variables) to a single value, and testing the resulting instantiations. The choice

of o�-path variable values (i.e. values for
~W) are not restricted, any value can be chosen and

tested in su�ciency. HP2005 counters this over-permissiveness by testing for all subsets of
~W .

62

Chapter 4. Relationship with Prior Work in Actual Causation

However, there are still counterexamples since the de�nition is too permissive in generating

counterfactual scenarios [29]. This can be seen in the Voting example (Example 7, Voting
scenario (Stone soup essay)) described in the next section.

All the de�nition we have discussed so far propose a test for either subsets of
~W and

~Z in

the su�ciency condition. In 2015, Halpern proposed a modi�cation which removes the need to

test for the subsets of these values.

4.2.4 Halpern 2015 (H2015)

Halpern’s modi�ed de�nition of causality does not allow values for any variable other than the

putative cause to be modi�ed, i.e. the de�nition freezes values for
~W at their actual values. This

removes the need for testing subsets since
~W takes a value as in the original context.

~X = ~x is

a cause of
~Y = ~y in context ~u of causal model M if conditions 1 (Occurrence) and 3 (Minimality)

hold as in the previous de�nitions. The second condition is modi�ed as follows:

• There exists a set
~W of variables disjoint from

~X such that (M,~u)| = [~X = ~x, ~W =

~w] ~Y 6= ~y, where ~w are the actual values of the variables in
~W ; i.e., (M,~u)| = ~W = ~w.

Note that this de�nition di�ers from H2001 since H2015 freezes the values of all variables in
~W

at their actual value, while H2001 considers a single causal path [18].

Relationship with our theory. This de�nition simpli�es the checks required in earlier it-

erations of Halpern-Pearl’s de�nitions and also handles several examples in a more intuitive

manner than the previous iterations [18].

However, the causal determinations in case of disjunctive and conjunctive causes seem

counterintuitive for our applications. For instance, consider Example 3, Disjunctive causes (in

Chapter 2) which models a forest �re where either of the �res could have caused the violation.

In this case, H2015 will �nd both the forest �res as a joint cause. On the other hand, in case both

the �res were needed for the violation (Example 2, Forest �re – conjunctive scenario), then the

de�nition will �nd these as disjoint independent causes. This di�ers from our analysis where

we �nd as a joint cause, all the choices and expressions which are part of a single causal se-

quence. We are interested in �nding distinct sequences of program expressions as independent

causes.

63

Chapter 4. Relationship with Prior Work in Actual Causation

4.2.5 Relationshipwith interventions andnecessity clause in priorwork

4.2.5.1 Intervening on dependent variables

Another point of di�erence from all the de�nitions we have discussed so far, is that our in-

terventions on on intermediate ‘variables’ in the causal sequence, constrain all the constituent

expressions in a causal sequence. Modifying any intermediate step in a causal sequence not

only propagates the e�ect to subsequent expressions, but also constrains the values for prior

expressions. For instance consider our running example in the previous section (Example 1,
Loader) where we found A,E’s choices and actions as well as B’s choices and actions as in-

dependent causes of the target being hit (Figure 3.1). In contrast, HP de�nitions will �nd all

the outcome variables for each of our actions, as causes. For instance, H2015 will �nd as joint

causes, all sets of variables which su�ce to set h = 1 i.e. H2015 will �nd {AR, BR}, {ER, BR}
as causes. Programs or actions for derived variables alone will not show up as causes for our

de�nition. This holds since we don’t �x the values as found on the log, rather we are interested

in restoring the action as found on the log. We discuss more examples in Section 4.3.

4.2.5.2 Relationship with necessity clause in prior work

We use Example 1 to understand the necessity clause in prior work. To capture the counter-

factual essence of necessity notion, we need to establish the condition that ‘had expressions

(modeling choices and actions) in ~α been di�erent from what were observed on the log, then

the violation would not have occurred.’ This implies that in our example above we need to

consider alternative hypothetical scenarios in which E,B,A make di�erent choices and exe-

cute possibly di�erent actions such that h = 0 (the violation involves all traces where h = 1).

If all of these hypothetical scenarios lead to an evaluation h = 0 then we can conclude that

the execution of actions in ~α was necessary for the violation to occur in the �rst place
11

. The

question of which alternative programs to execute for E,A,B in the hypothetical scenarios is

a challenging one.

Since considering arbitrary hypothetical scenarios can lead to counterintuitive cause deter-

minations, we would like to restrict our attention to scenarios that are more “normal” [68, 71].

The concept of “normal”, which has proved to be challenging to de�ne in prior work, takes on a

clear de�nition in a security setting. In the context of security protocols, “normal” could mean

a setting which is conducive for the protocol speci�cation to be met or ‘benign’ behavior of

11
Note that this condition is trivially satis�ed by the correctness proof in security protocols. In addition, unlike

prior work, in security we have a well de�ned notion of norms- the programs which the agents should execute

when prescribed by the protocol.

64

Chapter 4. Relationship with Prior Work in Actual Causation

programs which causes no violation
12

. This distinction between default and deviant behavior

has also been acknowledged in prior work on causation in philosophy [16, 17].

However, for the examples we consider here, it is not immediately clear what the default

or norm value would be. Further, apart from choices, we are also interested in �nding which

of the other program expressions should be in the causal sequence. Information about default

program expressions may not always be available. Therefore, we make a design choice of re-

moving program expressions which are not a part of the causal sequence ~α, i.e. the hypothetical

scenarios proceed as if the expression was not evaluated at al
13

. Note that this design choice

implies that absence of an action can be found as a cause only if it is modeled as a choice over

data variables, as discussed at the end of Chapter 2.

Distinctive features of our framework. In the next section, we discuss several such general

features of our framework and relate these features to prior work. We illustrate these features

with the help of examples. In particular, we demonstrate the following de�nitional features and

modeling features.

1. Modeling interaction and choice

2. Combining process-oriented view and counterfactual-based view:

(a) Finding causal sequences

(b) Program expressions vs variable assignments as causes: Example 6.

(c) Testing counterfactual scenarios: Example 7.

3. Consequence: Distinguishing between joint and independent causes: Examples 2, 3.

4. Using process calculus

5. Consequence: Expressing non-deterministic interacting systems concisely: Examples 1, 5.

6. Consequence: Handling preemption concisely: Examples 8, 9, 10.

The �rst three features are de�nitional while the last two features are due to the modeling

choices.

12
A natural notion of “normal” programs in the security setting are ones that are prescribed by the protocol

for the regular participants and doing nothing for the adversary.

13
If we are analyzing the violation of a safety property, as discussed in Chapter 5, the necessity condition is

trivially satis�ed since if no expression is evaluated, there will be no violation.

65

Chapter 4. Relationship with Prior Work in Actual Causation

4.3 De�nitional di�erences and consequences

The goal of our work di�ers signi�cantly from prior work, hence there are di�erences in the

approach and de�nitions. We focus on preserving program and interaction-based dependencies

in our analysis, which di�ers from prior work. We do not assume that the processes generating

outcomes are �xed or immutable, therefore our interventions require modifying the programs,

in conjunction with the inputs. This also di�ers from prior work where the focus is on evaluat-

ing an outcome, given a set of structural equations. The interventions on structural equations

�x the outcome, however these interventions do not test the relevance of the structural equa-

tions themselves – which is a focus of our work. The analogous notion given below further

illustrates the point.

Analogous notion of a causal process using structural equations. A causal process for

an event ϕ will contain all the relevant variables and the relevant structural equations. Infor-

mally, we choose a set of variables and their structural equations as part of the putative causal

process α′. For the variables not included in α, we remove the structural equation and test for

all possible values of the variable. For the variables included in α, the structural equations are

not modi�ed. In our de�nition, we further test whether parts of the structural equation are

irrelevant for the causal analysis. Note that in our analysis we do not test variable assignments

alone, which is a signi�cant point of di�erence from prior work.

Combining process-oriented and counterfactual-based view. Sections 4.3.2, 4.3.3, 4.3.4

and 4.3.5 demonstrate how our approach blends the process and counterfactual-based approaches

to actual causation and further illustrates the di�erences discussed above. We �nd a sequence

as a cause, which contains relevant parts of the interacting processes. Additionally, the causal

sequence consists of uninstantiated program expressions as opposed to the return values ob-

tained from the evaluated expressions. Finally, we explain how we construct counterfactual

scenarios in order to �nd a causal sequence. As a consequence, we can distinguish between

joint and independent causes.

Next we discuss these di�erences in detail.

4.3.1 Modeling interaction and choice

Our framework treats interaction and choice primitives di�erently from the other constructs

in the syntax. The process of constructing counterfactual scenarios is interaction-aware and

66

Chapter 4. Relationship with Prior Work in Actual Causation

choice-aware as well. This allows us to focus on interactions and choices and use the causal

analysis for blame assignment.

4.3.2 Finding causal sequences

Our focus is on �nding all distinct causal sequences, which led to a violation. In contrast,

prior work has focused on �nding individual variable values (i.e. process outcomes) which

are su�cient to sustain the e�ect, even in the presence of speci�c structural modi�cations. For

instance, earlier de�nitions of Halpern and Pearl have been shown to �nd only single conjuncts

as causes [72, 73]. In certain cases, it is useful to output the entire causal sequence, since we

can provide a more detailed explanation for which choices or which parts of the programs were

involved in a violation. This is especially signi�cant in understanding which actions or choices

should be held accountable. For instance, in our running example (Example 1, Figure 3.1),

EP loading the gun and AP shooting, as a sequence is a cause. In contrast, prior work will

individually output the events representing the outcome of these processes as causes, i.e. values

for ER, AR, BR.

Outputting the entire causal sequence of actions also helps to segregate which factors were

relevant for which path. Such �ne-grained information is relevant for debugging and proto-

col design. For instance, consider a modi�cation of Example 1, E loaded A’s gun and another

agent F loaded B’s gun. Prior work will �nd all events representing the outcomes of the rel-

evant processes as independent causes. In particular, prior de�nitions will �nd the four events
corresponding toE’s loading, F ’s loading,A’s shooting andB’s shooting as causes. In contrast,

we designate the two causal sequences: {E loading, A shooting} and {F loading, B shooting} as

independent causes. This distinction allows our causal determinations to not be a�ected when

more independent causes are added to the model, and to accurately pinpoint the speci�c factors

which enabled the distinct causal sequences.

4.3.3 Program expressions vs variable assignments as causes

(Granularity of cause) Example 6, Shock [49, 56] demonstrates how �nding a causal sequence

including relevant parts of a program and not the entire program or the process outcomes,

can aid accurate causal determination. In this example, two switches A and B are wired to

an electrode, and their original values are the same. If the switch for A is �ipped, then the

switch forB is always �ipped in response, else both the switches stay in their original position.

Figure 4.2 shows the structural equations corresponding to the model. Prior de�nitions �nd

AR as a cause of the violation CR = 1. This holds because in the counterfactual world where

67

Chapter 4. Relationship with Prior Work in Actual Causation

BR is �xed at its actual value, CR will be 0 when AR is 0. Researchers have been divided about

whether or not such switches count as actual causes [27, 56, 74].

In our encoding (Figure 4.2), the process for A makes an internal choice and interacts with

B and C to communicate the choice. The process for B sets the same value as a and sends it

to C . A show is delivered if both the values received by CP are 1. The log shown in column

(b) indicates that a = 1 and hence b = 1. As shown in our causal sequence in part (c), we

�nd that the choice made by AP is not a part of the causal sequence, however other program

expressions in AP are still a part of the causal sequence. As long as AP interacts with BP and

b = a, the interactions shown in ~α will be considered as the minimal sequence of events which

is a cause of c = 1 on all resulting traces. Our analysis points out that the value generated by

A’s process is not relevant, however the interaction with BP is crucial for the violation. This

example highlights the importance of �nding causes at a �ne grained level in order to pinpoint

parts of the program which are relevant for the violation
14

.

14
Note that if how the shock is delivered is signi�cant, then we can specify

c = (a ∧ b) [] (¬a ∧ ¬b) instead of c = (a == b) in CP . With this formalization, our de�nition will �nd both

A’s choices and actions and B’s actions as a joint cause.

68

Chapter 4. Relationship with Prior Work in Actual Causation

Example 6 (Shock). (Mcdermott 1995, [47, 49, 56]) This example is fromWestlake [56]:‘Two two-
state switches are wired to an electrode. The switches are controlled by A and B respectively, and
the electrode is attached to C. A has the �rst option to �ip her switch (A = 1). B has the second
option to �ip her switch (B = 1). The electrode is activated and shocks C (C = 1) i� both switches
are in the same position. B wants to shock C, and so �ips her switch i� A does.’ What is the cause
of C = 1?

CR ← (AR == BR)

BR ← AR

AR ← 1

(a)

Original programs:

Program for A

1 : a = 0⊕ 1;

2 : send(BP , a);
3 : send(CP , a);

Program for B

1 : a = recv(AP);
2 : b = a;

3 : send(CP , b);

Program for C

1 : a = recv(AP);
2 : b = recv(BP);
3 : c = (a == b);

(b)

Log:

log(t)|A
〈AP , 1,r〉
〈〈AP , 2〉, 〈BP , 1〉〉
〈〈AP , 3〉, 〈CP , 1〉〉

log(t)|B
〈〈AP , 2〉, 〈BP , 1〉〉
〈BP , 2〉
〈〈BP , 3〉, 〈CP , 2〉〉

log(t)|C
〈〈AP , 3〉, 〈CP , 1〉〉
〈〈BP , 3〉, 〈CP , 2〉〉
〈CP , 3〉

(c)

Causal sequence:

~α|A

〈〈AP , 2〉, 〈BP , 1〉〉
〈〈AP , 3〉, 〈CP , 1〉〉

~α|B
〈〈AP , 2〉, 〈BP , 1〉〉
〈BP , 2〉
〈〈BP , 3〉, 〈CP , 2〉〉

~α|C
〈〈AP , 3〉, 〈CP , 1〉〉
〈〈BP , 3〉, 〈CP , 2〉〉
〈CP , 3〉

(d)

Dummi�ed programs:

Program for A

1 : a = 0 OR 1;

2 : send(BP , a);
3 : send(CP , a);

Program for B

1 : a = recv(AP);
2 : b = a;

3 : send(CP , b);

Program for C

1 : a = recv(AP);
2 : b = recv(BP);
3 : c = (a == b);

Violation: All traces where c = 1.

Causal analysis: If symmetric disjunction is used in C’s program as shown above, our de�nition �nds

A’s choice to be irrelevant for the violation. The causal sequence consists of AP ’s interaction with

BP and the expression which denotes that BP sets its value to the same as that chosen by A. The in-

teractions withCP , which are needed to compute the value of c, are also included in the causal sequence.

Figure 4.2: Example 6: Shock

The causal sequence for this example indicates that the evaluation of the expression 〈BP , 2〉
is crucial for the violation. Let us consider an alternative interpretation where B also has a

choice over whether to choose the same value asA or not. We model this variation in Figure 4.3.

69

Chapter 4. Relationship with Prior Work in Actual Causation

In this case, bothA andB’s choices are considered relevant for the violation, since dummifying

either of the choice expressions will lead to c = 0. Outputting the entire causal sequence with

the uninstantiated program expressions and relevant choices provides an accurate explanation

for the violation in both these variants.

Example 6, Shock
(a)

Original programs:

Program for A

1 : a = 0⊕ 1;

2 : send(BP , a);
3 : send(CP , a);

Program for B

1 : a = recv(AP);
2 : b = 0⊕ 1;

3 : b′ = b ∧ a;
4 : send(CP , s);

Program for C

1 : a = recv(AP);
2 : b′ = recv(BP);
3 : c = (a == b′);

(b)

Log:

log(t)|A
〈AP , 1,r〉
〈〈AP , 2〉, 〈BP , 1〉〉
〈〈AP , 3〉, 〈CP , 1〉〉

log(t)|B
〈〈AP , 2〉, 〈BP , 1〉〉
〈BP , 2,r〉
〈BP , 3〉,
〈〈BP , 4〉, 〈CP , 2〉〉

log(t)|C
〈〈AP , 3〉, 〈CP , 1〉〉
〈〈BP , 4〉, 〈CP , 2〉〉
〈CP , 3〉

(c)

Causal sequence:

~α|A
〈AP , 1,r〉
〈〈AP , 2〉, 〈BP , 1〉〉
〈〈AP , 3〉, 〈CP , 1〉〉

~α|B
〈〈AP , 2〉, 〈BP , 1〉〉
〈BP , 2,r〉
〈BP , 3〉
〈〈BP , 4〉, 〈CP , 2〉〉

~α|C
〈〈AP , 3〉, 〈CP , 1〉〉
〈〈BP , 4〉, 〈CP , 2〉〉
〈CP , 3〉

(d)

Dummi�ed programs:

Program for A

1 : a = 1;

2 : send(BP , a);
3 : send(CP , a);

Program for B

1 : a = recv(AP);
2 : b = 1;

3 : b′ = b ∧ a;
4 : send(CP , s);

Program for C

1 : a = recv(AP);
2 : b′ = recv(BP);
3 : c = (a == b′);

Violation: All traces where c = 1.

Causal analysis: In this variation we �nd both A and B’s choices to be relevant for the violation.

Figure 4.3: Example 6: Variation of the model

4.3.4 Testing counterfactual scenarios

In prior actual causation theories, counterfactual scenarios are constructed by modifying the

output of the structural equations. The structural equations can be intervened on, in order to

set the variable value, however the existence of structural equations is not questioned in prior

work. For instance, for our running example in Figure 3.1, any of the structural equations can

be intervened on, such that the value of the variables on the left hand side is instantiated to a

di�erent value, irrespective of the values of the variables on the right hand side of the equation.

Since the goal of prior work is to �nd all variable assignments which could have lead to the

70

Chapter 4. Relationship with Prior Work in Actual Causation

violation, therefore the modi�cations for structural equations can substitute a variable with

any allowed value.

On the other hand, since we focus on identifying the entire causal sequence, our approach

di�ers. In our work, we are also interested in �nding which of the program expressions are

relevant for the violation. Considering traces that are constructed from modi�ed programs,

rather than directly modifying the variable assignments for process outcomes on the log, allows

us to prevent arbitrary contingencies. This two step process allows us to retain the interaction

structure of the log and not remove individual events which could lead to spurious occurrence

or removal of the violation
15

.

Interventions on variable assignments vs programexpressions. In prior work, the coun-

terfactuals consider what value the variables could take, and then restore them to the actual

value or constrain them at the �xed value chosen for necessity condition. There are signi�cant

di�erences between our approach to constructing counterfactual scenarios as opposed to prior

work:

First, we de�ne interventions such that they are aware of the interactions and do not break

the dependence established by the program structure. For instance, when we consider alternate

executions of the model as shown in ~α′, we test for the case when E loads the gun but A does

not shoot; however we do not generate inconsistent contingencies for expressions included in

the causal sequence. For instance, a case where both E and A’s programs are in the causal

sequence yet when E does not load the gun, the value sent out by A cannot be 1. Second, we

treat the choice construct di�erently from actions which allows us to intervene in a di�erent

manner. For an action, we construct a counterfactual scenario based on: whether the action
will execute or not. For an expression involving choice, we construct a counterfactual scenario

based on: could any other value be chosen. Third, when we intervene on an action, we test the

counterfactual condition for all possible values that the variable could have been instantiated to.

This design choice allows us to test whether the violation depends on the value transmitted by

the action or not. This also eliminates spurious causal determinations as testing only speci�c

values could result in the violation (for instance, the violation could be due to other enabled

conditions or dependence on a speci�c data value).

These di�erences in constructing counterfactual scenarios arise, since we test whether a

speci�c action in the cause set should be executed (as on the log) or not executed at all. Not

executing an action is captured by testing for all possible instantiations of the value it would

have returned. We focus on a sequence of program actions and choices which are essential for

15
We gave a formal de�nition of our dummifying transform in De�nition 2.

71

Chapter 4. Relationship with Prior Work in Actual Causation

the violation whereas prior work focuses on �nding a set of events on the log which su�ce

to replicate the violation. This di�erence in the end goals motivates di�erent approaches to

constructing counterfactual scenarios.

Existential vs universal quanti�cation. Prior work existentially quanti�es over the values

for o�-path variables considered in necessity and the subsequent tests for su�ciency. In certain

cases, this can lead to counter-intuitive causal determinations due to over-permissiveness in

generating counterfactual scenarios [29, 61]. In contrast, when we intervene on an action, our

de�nition tests for all possible values which the action could have returned. We discuss this

di�erence with the help of an example based on a voting system.

Example 7. Example 7 (Figure 4.4) models a voting example [61]. A and B are two voters

who can either vote for C (represented as 1), or vote for D (represented as 2) or abstain from

voting (represented as 0). T represents the tabulator which outputs 1 if C wins, 2 if D wins

and 0 in case no-one wins. A candidate can win if one of the two outcomes occur: A votes

for the candidate or if A abstains and B votes for the candidate. On the log, both A and B

vote for C . Note that in our encoding of this example (Figure 4.4), we show how to model

a choice over multiple terms by nesting the choice operators. The label 〈AP , 1, (l,r)〉 over

a = ((0⊕1)⊕2) denotes choosing the left branch between (0⊕1) and 2 and then choosing

the right branch between 0 and 1. Therefore a = 1 in this case.

The example description demonstrates the preference given for A’s vote, however prior

de�nitions (H2001, HP2001, HP2005) �nd both AR = 1 and BR = 1 as independent causes of

C’s victory (CR = 1) [61]. This is because the counterfactual scenarios considered in su�ciency

condition are not restricted. H2015 �nds AR = 1 alone as a cause since it only considers

contingencies where BR = 1. Note that the following expression in T ’s program:

3 : t = (a == 1)? 1 : ((a == 2)? 2 : ((b == 1)? 1 : ((b == 2)? 2 : 0)));

combines the following expressions in A-normal form:

3 : v1 = (b == 2)? 2 : 0;

4 : v2 = (b == 1)? 1 : v1;

5 : v3 = (a == 2)? 2 : v2;

6 : t = (a == 1)? 1 : v3;

We use the conditional operator to model the priority given to A’s vote
16

. When we inter-

vene on any action, we ensure that it does not stop the progress of the rest of the sequence.

If we are interested in �nding whether A’s choice and action alone are a cause, we dummify
16

Note that if we only want to consider alternate scenarios with default settings, we can reduce choices for a, b.
This will a�ect the causal outcome.

72

Chapter 4. Relationship with Prior Work in Actual Causation

B’s choice and remove its interaction with T . What this means is that we test for all possible

choices whichB is allowed to pick, and we test for all possible values for the input that T could

receive from B17
.

Now for Example 7,B’s actions and choices alone are not a cause since the value of t depends

on A. When we dummify the choices and actions for AP , then the value a received by the

program for T could be either 0 or 1 or 2. Since t 6= 1 for all such logs, B’s actions alone are

not a cause.

17
Note that the instantiation of these variables is done independently once we dummify the interaction, i.e.

the value sent by B and the value received by T can be instantiated independently if the interaction has been

dummi�ed. We will quantify over all such instantiations.

73

Chapter 4. Relationship with Prior Work in Actual Causation

Example 7 (Voting scenario (Stone soup essay)). A and B have three mutually exclusive choices,
to vote for C, or for D, or not to vote. An option wins if A votes for it, or if B votes for it and A does
not vote. A and B both vote for C.

The structural equations (CR and DR represent whether candidate C or D wins):

CR ← (AR == 1) ∨ ((AR == 0) ∧ (BR == 1))

DR ← (AR == 2) ∨ ((AR == 0) ∧ (BR == 2))

In the programs given below, a, b can be 0 (abstain), 1 (vote for C), 2 (vote for D). t gives the

outcome.

(a)

Original programs:

Program for A

1 : a = ((0⊕ 1)⊕ 2);

2 : send(T, a);

Program for B

1 : b = ((0⊕ 1)⊕ 2);

2 : send(T, b);

Program for T

1 : a = recv(A);
2 : b = recv(B);

3 : t = (a == 1)? 1 :

((a == 2)? 2 :

((b == 1)? 1 :

((b == 2)? 2 : 0)));

(b)

Log:

log(t)|A
〈A, 1, (l,r)〉
〈〈A, 2〉, 〈T, 1〉〉

log(t)|B
〈B, 1, (l,r)〉
〈〈B, 2〉, 〈T, 2〉〉

log(t)|T
〈〈A, 2〉, 〈T, 1〉〉
〈〈B, 2〉, 〈T, 2〉〉
〈T, 3〉

(c)

Causal sequence:

~α|A
〈A, 1, (l,r)〉
〈〈A, 2〉, 〈T, 1〉〉

~α|B

~α|T
〈〈A, 2〉, 〈T, 1〉〉

〈T, 3〉

(d)

Dummi�ed programs:

Program for A

1 : a = 1;

2 : send(T, a);

Program for B

1 : b = 0 OR 1 OR 2;

2 : no− op;

Program for T

1 : a = recv(A);
2 : b = 0 OR 1 OR 2;

3 : t = (a == 1)? 1 :

((a == 2)? 2 :

((b == 1)? 1 :

((b == 2)? 2 : 0)));

Violation: All traces where t = 1.

Causal analysis: Our de�nition �nds AP ’s choice and interactions with TP as a cause of the violation.

As long as a = 1, t will be 1. However, when b = 1 and we dummify A’s choice and actions, t will not

be 1 on all traces.

Figure 4.4: Example 7: Voting Scenario (stone soup essay)

4.3.5 Distinguishing between joint and independent causes

While developing our de�nition, a criterion that we want our de�nition to satisfy is its ability

to distinguish between independent and joint causes. Our ultimate goal is to use the notion of

actual cause as a building block for accountability – the independent vs. joint cause distinction

74

Chapter 4. Relationship with Prior Work in Actual Causation

is signi�cant when making �ner deliberations as to what agent is accountable in what propor-

tion and punishing the violators. Joint causation is also signi�cant in a legal perspective [75].

For instance, it is useful for holding liable a group of agents working together when none of

them satisfy the cause criteria individually but together their actions are be found to be a cause.

Our de�nition can distinguish between joint from independent causes, due to the follow-

ing features: (i) Focus on sequences of program expressions as opposed to individual variable

assignments, (ii) an interaction-aware approach to constructing counterfactual scenarios, and

considering all possible counterfactual scenarios (universal quanti�cation) for expressions not

in the putative causal sequences, and (iii) testing for minimality.

Prior de�nitions do not distinguish between joint and independent causes since the focus is

on variable assignments and most of the de�nitions existentially choose an assignment to the

variables not in the putative cause set (i.e. in
~W)

18
.

For instance, in Chapter 3, we model conjunctive scenarios (Example 2, Figure 3.4) and

disjunctive scenarios (Example 3, Figure 3.3) for the same example based on a forest �re. If

the forest �re depends on both the lightning and match being lit, then we refer to it as the

conjunctive scenario. If the forest �re depends on either of the events happening, then we refer

to it as a disjunctive scenario.

In case of conjunctive scenarios (Figure 3.4), our de�nition �nds the choices and actions in

the programs for both L and ML as a joint cause
19

, i.e. our de�nition will �nd the sequence ~α

as a cause, where ~α is :

〈LP , 1,r〉, 〈MLP , 1,r〉, 〈〈LP , 2〉, 〈FP , 1〉〉, 〈〈MLP , 2〉, 〈FP , 2〉〉, 〈FP , 3〉.
In contrast, in the disjunctive scenarios (Figure 3.3), our de�nition will �nd two di�erent

causal sequences, i.e. LP ’s choice and interaction with FP will form one causal sequence and

MLP ’s choice and interaction with FP will be another distinct causal sequence. The two causal

sequences are:

• 〈LP , 1,r〉, 〈〈LP , 2〉, 〈FP , 1〉〉, 〈FP , 3〉,
• 〈MLP , 1,r〉, 〈〈MLP , 2〉, 〈FP , 1〉〉, 〈FP , 3〉,
We contrast this analysis with prior work. For the conjunctive scenario HP2001, HP2005

will �nd both MLR = 1 and LR = 1 as distinct causes. When the same de�nitions are applied

to the disjunctive case, again the output will be MLR and LR as distinct causes. H2015 will

output {LR,MLR} jointly, in case of disjunctive scenario (Figure 2.4) and will output LR and

MLR as distinct causes in case of conjunctive scenario (Figure 3.4). For all these de�nitions, our

18
The de�nition of strongly su�cient causation [14] considers universal quanti�cation over variables in

~W ,

however it does not capture the joint causal sequences since the other conditions are not satis�ed.

19
Note that the internal choices can be made in any order. This does not a�ect our causal inference.

75

Chapter 4. Relationship with Prior Work in Actual Causation

causal sequence output di�ers signi�cantly and is better suited for our purpose.

4.4 Modeling di�erences and consequences

4.4.1 Using process calculus

We discussed the advantages of using process calculus-based framework for modeling interact-

ing systems in Chapter 2. Next, we discuss two speci�c consequences of using this framework.

4.4.2 Expressing concise general models of interaction

We focus on �nding uninstantiated program expressions as part of a causal sequence. Therefore

we require a general model which can express the e�ect of several interventions, that include

changing the internal choices, and considering the absence of certain actions on the log.

As discussed in Section 2.4, process calculus naturally encodes general models of inter-

action. As a result, our model of programs is general and the log resolves the choices and

records the synchronization structure. This is in contrast with prior work, where the structural

equations have been used to model the speci�cs (‘model causal network according to context of
interest’ [16]). For instance in our running example, Example 1, Loader (Figure 3.1), structural

equations state that A will always �re if E loads. In our formalism, one can naturally express

the fact if E loads, A can or cannot �re, but the conditions are set such that it can. All of these

scenarios can be depicted with the same model.

4.4.3 Handling preemption concisely

Preemption occurs when two processes execute on a log such that each of these could indepen-

dently be a cause of a violation, however one of the processes preempts the other and causes the

e�ect while the other ‘waits in reserve’
20

. Prior work [57] has distinguished between symmetric

overdetermination (or independent causes) and preemption [47, 49]. In case of former, the two

causes are indeed symmetric in every respect and both have an equal claim to be regarded as

the cause of an e�ect. In contrast, preemption involves asymmetry in the two processes which

could have caused the violation. Several types of preemption have been discussed in the phi-

losophy literature. We consider some prominent examples and model these in our framework

for the following types of preemption:

20
Preemption refers to a class of examples which were suggested against Lewis’s counterfactual theory [27, 47,

49]

76

Chapter 4. Relationship with Prior Work in Actual Causation

• Trumping preemption

• Temporal preemption: Early preemption/ late preemption

Trumping preemption occurs when one cause trumps the other due to a pre-de�ned priority.

Early preemption occurs if two di�erent programs execute on the log, however the path from the

preempted cause is cut o� before it could cause the violation. On the other hand, late preemption
occurs if two di�erent actions execute on the log, but the path from the preempted cause is not

cut o�- the preempted cause would have caused the violation had the actual cause not done so

(the e�ect would have shown). We can express both cases of early and late preemption using

the same model. Further, we can deal with examples of trumping preemption by encoding the

priority via the conditional operator, and using the asymmetric disjunctive operator.

Trumping preemption. Consider Example 8. Here, both a major and a sergeant can give an

order to charge and a corporal obeys the order and shoots. Prior work [57, 76] claims that the

major’s order trumps the sergeant’s order since the major is a higher ranking o�cial. Therefore,

if both the major and the sergeant were to give the command to charge, the major, and not the

sergeant, would be the cause. We encode the priority for major’s order; c = 1 if either the

major’s shouts charge (m = 1) or if the major does not say anything (m = 0) and sergeant

shouts charge (s = 1). If the major shouts ‘not charge’ then the sergeant’s order is irrelevant.

Our model accurately captures this preference as shown in Figure 4.5.

Prior de�nitions (H2001, H-account, HP2001, HP2005) will �nd both major and sergeant’s

orders as causes unless an additional variable is used to distinguish the outcomes. Our de�-

nition will only �nd the major’s order as a cause if both of them shouted ‘charge’ on the log.

By encoding the priority and using the asymmetric disjunctive operator, we can accurately

distinguish between the two paths.

77

Chapter 4. Relationship with Prior Work in Actual Causation

Example 8 (Trumping preemption). A major and sergeant both stand before a corporal and
shout ‘Charge!’ ‘Imagine that . . . the major and the sergeant stand before the corporal, both shout
“Charge!” at the same time, and the corporal decides to charge.’ [HP2005, Bas van Fraassen, Schaf-
fer [57]]

C ← M ∨ S
(a)

Original programs:

Program for M

1 : m = (0⊕ 1);

2 : send(C,m);

Program for S

1 : s = (0⊕ 1);

2 : send(C, s);

Program for C

1 : m = recv(M)

2 : s = recv(S);
3 : c = m [] s;

(b)

Log:

log(t)|M
〈M, 1,r〉
〈〈M, 2〉, 〈C, 1〉〉

log(t)|S
〈S, 1,r〉
〈〈S, 2〉, 〈C, 2〉〉

log(t)|C
〈〈M, 1〉, 〈C, 1〉〉
〈〈S, 2〉, 〈C, 2〉〉
〈C, 3,l〉

(c)

Causal sequence:

~α|M
〈M, 1,r〉
〈〈M, 2〉, 〈C, 1〉〉

~α|S

~α|C
〈〈M, 1〉, 〈C, 1〉〉

〈C, 3,l〉

(d)

Dummi�ed programs:

Program for M

1 : m = 1;

2 : send(C,m);

Program for S

1 : s = 0 OR 1;

2 : no− op

Program for C

1 : m = recv(M)

2 : s = 0 OR 1;

3 : c = m;

Violation: All traces where c = 1.

Causal analysis: Our de�nition �nds only M ’s choice and actions (including interaction with C) as a

cause for the given log.

Figure 4.5: Example 8: Trumping Preemption involving shooting (priority)

Early and late preemption. Prior de�nitions deal with preemption by using a variable to

take on di�erent values depending on the chosen path. We can deal with di�erent types of

preemption by incorporating priority rules (conditional statement in evaluating the expres-

sion) and by using asymmetric disjunction operator. We can incorporate choice in modeling

the context (for instance, the programs can either choose a 0 or 1 for corresponding exogenous

variables) and in modeling the preference given to one causal path over another. We demon-

strate this with the help of an example of early and late preemption in Example 9 in Figure 4.6.

Note: In Figure 4.6, we depart from our convention of showing four columns with the

original programs, the log, the causal sequence and the dummi�ed programs. In this case we

show the original programs and two logs: one denoting early preemption and late preemption.

78

Chapter 4. Relationship with Prior Work in Actual Causation

We show the causal sequence and the dummi�ed programs as part of the next example on

temporal preemption (Example 10, Figure 4.7).

The structural equations and the encoding for Example 9 can be found in Figure 4.6. Part

(a) gives the structural equations, part (b) gives the corresponding programs. Part (c) shows

a log which will correspond to early preemption and part (d) shows a log for the same model

which corresponds to late preemption. In prior work, a separate variable captures the e�ect of

the actual cause and is used to model which of the two paths (i.e. path from the preempted

cause and path from the the actual cause, to the violating event) was taken [14]. However

if we model preemption based examples using an asymmetric disjunction operator, then only

those counterfactuals will be considered on which the same path is chosen as on the log. For

instance, in Example 9, in case of early preemption (Figure 4.6, part (c)), a victim drinks a

poisoned cup and is shot later. We explicitly model the time t elapsed between the poisoning

and the shooting of the canteen. Since this value will be �xed, therefore, it will be a part of the

initial con�guration. If the time t is less than the time taken for the poison to take e�ect (δ),

then we will �nd shooting as a cause, else we will �nd poisoning as a cause. Note that in both

cases, we do not need to add an extra variable which takes di�erent value based on the e�ect,

rather we choose to model time as an explicit factor. As a result we will also �nd the time factor

in the causal sequence.

79

Chapter 4. Relationship with Prior Work in Actual Causation

Example 9 (Late preemption). Paula poisons a cup of tea which Victoria drinks. However before
the poison can take e�ect, Sharon shoots her and Victoria dies. What is the cause of Victoria’s
death? [15, 42].

D ← P ∨ S
(a)

General model

Program for P

1 : p = 0⊕ 1;

2 : send(V, p);

Program for S

1 : s = 0⊕ 1;

2 : send(V, s);

Program for T

1 : send(V, t);

Program for V

1 : p = recv(P);
2 : s = recv(S);
3 : t = recv(T);
4 : x1 = p ∧ (t ≥ δ);
5 : x2 = s ∧ (t < δ);

6 : v = x1 [] x2;

(b)

Log for early preemption

t ≥ δ (initial con�g)

log(t)|P
〈P, 1,r〉
〈〈P, 2〉, 〈V, 1〉〉

log(t)|S
〈S, 1,r〉
〈〈S, 2〉, 〈V, 2〉〉

log(t)|T
〈〈T, 1〉, 〈V, 3〉〉

log(t)|V
〈〈P, 2〉, 〈V, 1〉〉
〈〈S, 2〉, 〈V, 2〉〉
〈〈T, 1〉, 〈V, 3〉〉
〈V, 4〉
〈V, 5〉
〈V, 6,l〉

(c)

Log for late preemption

t < δ (initial con�g)

log(t)|P
〈P, 1,r〉
〈〈P, 2〉, 〈V, 1〉〉

log(t)|S
〈S, 1,r〉
〈〈S, 2〉, 〈V, 2〉〉

log(t)|T
〈〈T, 1〉, 〈V, 3〉〉

log(t)|V
〈〈P, 2〉, 〈V, 1〉〉
〈〈S, 2〉, 〈V, 2〉〉
〈〈T, 1〉, 〈V, 3〉〉
〈V, 4〉
〈V, 5〉
〈V, 6,r〉

Violation: All traces where v = 1.

Modeling: Programs modeling time t elapsed between poisoning and shooting. δ captures the time it

takes for poisoning to take e�ect. We can encode both early and late preemption as instances of same

model.

Figure 4.6: Example 9: Poisoning (Late Preemption/Early preemption).

Next, we consider another example of overdetermination/preemption: Example 10, Rock
throwing example in Figures 4.7 and 4.8. Billy and Suzy throw rocks at bottle and the bottle

shatters. Similar to Example 3, Disjunctive causes, there are two ways in which we can model

this scenario: either we allow for the possibility that both the throws can be independent causes

80

Chapter 4. Relationship with Prior Work in Actual Causation

or we specify that only one of the rocks can hit. We demonstrate how an example encoding the

structural equations for late preemption will be analyzed using our de�nitions.

If we model the initial set of structural equations, i.e. BSR = STR ∨ BTR, then the model

will be isomorphic to the disjunctive scenario in Example 3. In Figure 4.7, we show that we

can encode the model without the need to introduce extra variables variables or by modeling a

preference for Suzy’s throw or Billy’s throw. In this case, if additional evidence is not accessible,

then the modeler can specify bs = st ∨ bt else, then we can capture preemption by modeling

bs = st [] bt. In contrast, prior work has dealt with distinguishing the two preempting factors

by adding extra variables to distinguish the relevant cause from the preempted cause, which

we discuss next.

4.4.3.1 Modeling preemption with a symmetric disjunction

Consider a di�erent model for Example 10. Prior work has dealt with distinguishing the two

preempting factors by adding extra variables for Suzy’s hit (SHR) and Billy’s hit (BHR). Ac-

cordingly, the structural equations are modi�ed, which we model in Figure 4.8 and Figure 4.9.

Note that this encoding builds in the preference for Suzy’s throw as we encode the modi�ed

structural equations. For ~α shown in Figure 4.8, as long as st = 1 and the interaction structure

between ST, SH and BS is preserved, bs = 1.

81

Chapter 4. Relationship with Prior Work in Actual Causation

Example 10 (Rock throwing example). (Hall [43]) Suzy and Billy both are expert rock throwers,
i.e. if they throw a rock, they are always on target. Both of them throw a rock at a bottle. Suzy
throws �rst however Billy’s rock would have shattered the bottle had Suzy’s throw not occurred.
What is the cause of the bottle being shattered?

BSR ← STR ∨BTR

(a)

Program for STP

1 : st = 0⊕ 1;

2 : send(BS, st);

Program for BTP

1 : bt = 0⊕ 1;

2 : send(BS, bt);

Program for BSP

1 : st = recv(ST);
2 : bt = recv(BT);
3 : bs = st [] bt;

(b)

log(t)|ST
〈ST, 1,r〉
〈〈ST, 2〉, 〈BS, 1〉〉

log(t)|BT
〈BT, 1,r〉
〈〈BT, 2〉, 〈BS, 2〉〉

log(t)|BS
〈〈ST, 1〉, 〈BS, 1〉〉
〈〈BT, 2〉, 〈BS, 2〉〉
〈BS, 3,l〉

(c)

~α|ST
〈ST, 1,r〉
〈〈ST, 2〉, 〈BS, 1〉〉

~α|BT

~α|BS
〈〈ST, 2〉, 〈BS, 1〉〉

〈BS, 3,l〉

(d)

Program for STP

1 : st = 1;

2 : send(BS, st);

Program for BTP

1 : bt = 0 OR 1 ;

2 : no− op

Program for BSP

1 : st = recv(ST);
2 : bt = 0 OR 1 ;

3 : bs = st;

Figure 4.7: Example 10: Late preemption without additional variables to distinguish outcome.

82

Chapter 4. Relationship with Prior Work in Actual Causation

Example 10, Rock throwing example: Suzy and Billy both are expert rock throwers, i.e. if they throw a

rock, they are always on target. Both of them throw a rock at a bottle. Suzy throws �rst however

Billy’s rock would have shattered the bottle had Suzy’s throw not occurred. What is the cause of the

bottle being shattered?

BSR ← SHR ∨BHR

BHR ← BTR ∧ ¬SHR

SHR ← STR

(a)

Original programs:

Program for STP

1 : st = 0⊕ 1;

2 : send(SH, st);

Program for BTP

1 : bt = 0⊕ 1;

2 : send(BH, bt);

Program for SHP

1 : sh = recv(ST);
2 : send(BS, sh);
3 : send(BH, sh);

Program for BHP

1 : bt = recv(BT);
2 : sh = recv(SH);

3 : bh = bt ∧ ¬sh;
4 : send(BS, bh);

Program for BSP

1 : sh = recv(SH);

2 : bh = recv(BH);

3 : bs = sh ∨ bh;

(b)

Log:

log(t)|ST
〈ST, 1,r〉
〈〈ST, 2〉, 〈SH, 1〉〉

log(t)|BT
〈BT, 1,r〉
〈〈BT, 2〉, 〈BH, 1〉〉

log(t)|SH
〈〈ST, 2〉, 〈SH, 1〉〉
〈〈SH, 2〉, 〈BS, 1〉〉
〈〈SH, 3〉, 〈BH, 2〉〉

log(t)|BH
〈〈BT, 2〉, 〈BH, 1〉〉
〈〈SH, 3〉, 〈BH, 2〉〉
〈BH, 3〉
〈〈BH, 4〉, 〈BS, 2〉〉

log(t)|BS
〈〈SH, 2〉, 〈BS, 1〉〉
〈〈BH, 4〉, 〈BS, 2〉〉
〈BS, 3〉〉

(c)

Causal sequence:

~α|ST
〈ST, 1,r〉
〈〈ST, 2〉, 〈SH, 1〉〉

~α|BT

~α|SH
〈〈ST, 2〉, 〈SH, 1〉〉
〈〈SH, 2〉, 〈BS, 1〉〉

~α|BH

~α|BS
〈〈SH, 2〉, 〈BS, 1〉〉

〈BS, 3〉〉

(d)

Dummi�ed programs:

Program for STP

1 : st = 1;

2 : send(SH, st);

Program for BTP

1 : bt = 0 OR 1 ;

2 : no− op;

Program for SHP

1 : sh = recv(ST);
2 : send(BS, sh);
3 : no− op

Program for BHP

1 : bt = 0 OR 1 ;

2 : sh = 0 OR 1 ;

3 : bh = 0 OR 1 ;

4 : no− op

Program for BSP

1 : sh = recv(SH);

2 : bh = 0 OR 1 ;

3 : bs = sh ∨ bh;

Figure 4.8: Example 10: Over-determination with �ve programs, as described in the original

structural equations. This model captures the fact that if Suzy hits �rst, her throw gets prefer-

ence.

If we consider another putative cause, ~α′ in the same model (Figure 4.8), which contains the

choice made by BT and the interactions between BT,BH and BS, then we will �nd ~α′ as a

83

Chapter 4. Relationship with Prior Work in Actual Causation

cause too. In this case, we �nd that the actual value sent by STP or received by SHP does not

matter. However, as long as the interaction structure is retained as on the log, we will obtain a

violation. This structure is similar to Example 6 and occurs because our de�nitions will �nd all

distinct causal sequences at the �ne-grained level of program expressions.

Note that when the above example is modeled structural equations, even HP2005’s necessity

and su�ciency conditions will be satis�ed by the values for the set {BTR, SHR}. However the

reason this set is not a valid cause is because prior work allows values for intermediate variables

along a causal sequence to be a cause and hence SHR = 1 is a cause ofBSR = 1 independently.

As a consequence, due to minimality, prior work does not �nd BTR = 1 alone as a cause. For

our process calculus framework, we cannot �nd the expression instantiating the value of sh

in SHP as a cause without �nding STP as a cause since there is a dependency between the

two expressions. In this case, modeling preemption with an asymmetric disjunction operator

as shown in Figure 4.7 solves the issue.

Example 10 can also be used to highlight other points made in this section:

• Finding causal sequences: In the modi�ed description, where extra variables are added

(Figure 4.8), our de�nition will �nd the expressions in STP , SHP and BSP as a causal

sequence, i.e. a sequence of actions and choices.

• Program expressions vs variable assignments as causes (Granularity of cause): In Fig-

ure 4.8, our de�nition points out parts ofBSP which are relevant for the causal sequence

described in the previous point. Our de�nition pinpoints relevant expressions within a

program as opposed to only testing the entire program or focusing on its outcome.

• Testing for counterfactual scenarios: In Figures 4.7 and 4.8, when we remove Billy’s choice

and actions from the causal sequence, we test for all allowed choices for bt in the program

BTP , and for all possible instantiations of bh, as received by the program BSP . Testing

for all instantiations in this manner allows us to test whether the causal sequence depends

on the removed expressions merely for progress or if any of the removed expressions are

relevant for the violation.

• Distinguishing between joint and independent causes: In Figure 4.8, if the symmetric

disjunction is used, then our de�nition will �nd Suzy’s throw and Billy’s throw as inde-

pendent causes. These can be distinguished from individual causal sequences.

• Expressing general models for interacting systems more concisely: As shown in Fig-

ure 4.7, can model the example such that we do not need to build in the preference for

one throw over another. We can model multiple contexts and capture preemption with-

out adding additional variables. Instead, we utilize the asymmetric disjunction operator

84

Chapter 4. Relationship with Prior Work in Actual Causation

and the log.

Considering a di�erent ~α′′, Example 10, Rock throwing example
(a)

Original programs:

Program for STP

1 : st = 0⊕ 1;

2 : send(SH, st);

Program for BTP

1 : bt = 0⊕ 1;

2 : send(BH, bt);

Program for SHP

1 : sh = recv(ST);
2 : send(BS, sh);
3 : send(BH, sh);

Program for BHP

1 : bt = recv(BT);
2 : sh = recv(SH);

3 : bh = bt ∧ ¬sh;
4 : send(BS, bh);

Program for BSP

1 : sh = recv(SH);

2 : bh = recv(BH);

3 : bs = sh ∨ bh;

(b)

Log:

log(t)|ST
〈ST, 1,r〉
〈〈ST, 2〉, 〈SH, 1〉〉

log(t)|BT
〈BT, 1,r〉
〈〈BT, 2〉, 〈BH, 1〉〉

log(t)|SH
〈〈ST, 1〉, 〈SH, 1〉〉
〈〈SH, 2〉, 〈BS, 1〉〉
〈〈SH, 3〉, 〈BH, 2〉〉

log(t)|BH
〈〈BT, 2〉, 〈BH, 1〉〉
〈〈SH, 3〉, 〈BH, 2〉〉
〈BH, 3〉
〈〈BH, 4〉, 〈BS, 2〉〉

log(t)|BS
〈〈SH, 2〉, 〈BS, 1〉〉
〈〈BH, 4〉, 〈BS, 2〉〉
〈BS, 3〉〉

(c)

Causal sequence:

~α′′|ST

~α′′|BT
〈BT, 1,r〉
〈〈BT, 2〉, 〈BH, 1〉〉

~α′′|SH

〈〈SH, 2〉, 〈BS, 1〉〉
〈〈SH, 3〉, 〈BH, 2〉〉

~α′′|BH
〈〈BT, 2〉, 〈BH, 1〉〉
〈〈SH, 3〉, 〈BH, 2〉〉
〈BH, 3〉
〈〈BH, 4〉, 〈BS, 2〉〉

~α′′|BS
〈〈SH, 2〉, 〈BS, 1〉〉
〈〈BH, 4〉, 〈BS, 2〉〉
〈BS, 3〉〉

(d)

Dummi�ed programs:

Program for STP

1 : st = 0 OR 1 ;

2 : no− op

Program for BTP

1 : bt = 1;

2 : send(BH, bt);

Program for SHP

1 : sh = 0 OR 1 ;

2 : send(BS, sh);
3 : send(BH, sh);

Program for BHP

1 : bt = recv(BT);
2 : sh = recv(SH);

3 : bh = bt ∧ ¬sh;
4 : send(BS, bh)

Program for BSP

1 : sh = recv(SH);

2 : bh = recv(BH);

3 : bs = sh ∨ bh;

Violation: All traces where bs = 1.

Figure 4.9: Example 10: Late preemption as encoded in the structural equations with BT. ~α′′ is

found as a cause because a preemption-based example is modeled using a symmetric operator.

85

Chapter 4. Relationship with Prior Work in Actual Causation

86

Part II

Application to Security Protocols

87

Chapter 5

Defining Program Actions as Actual

Causes

Chapter goal. In this chapter we adapt the interaction-aware theory developed in Part 1 to

security protocols. The chapter is organized as follows. Section 5.1 describes a representative

example which we use throughout this chapter to explain important concepts. We motivate the

clauses in the de�nition with the help of security-based example. We brie�y revisit our model

in Section 5.2.1, de�ne auxiliary notions (like log consistency) in Section 5.2.2, and present

the formal de�nition of programs as actual causes for security violations in Section 5.2.4. In

Section 5.3, we discuss the relationship of the de�nition presented in this part with the de�nition

proposed in Chapter 3. We apply the causal analysis to the running example in Section 5.4. The

full proofs can be found in Appendix B.

Note: Since we do not discuss the structural equations for the case study, therefore, in this

chapter we indicate the processes directly by their identi�ers, and drop the subscript P .

Application to security protocols. We use a restricted syntax, and omit the internal choice

operator and the asymmetric disjunction operator. We formalize the ideas in the previous part of

the thesis, using a logic suitable for modeling security protocols. The central contribution of this

chapter is a formal de�nition of program actions as actual causes. Speci�cally, we de�ne what it

means for a set of program actions to be an actual cause of a violation. The de�nition considers

a set of interacting programs whose concurrent execution, as recorded in a log, violates a trace

property. It identi�es a subset of actions (program steps) of these programs as an actual cause

of the violation. The de�nition applies in two phases. The �rst phase identi�es what we call

Lamport causes. A Lamport cause is a minimal pre�x of the log of a violating trace that can

89

Chapter 5. Defining Program Actions as Actual Causes

account for the violation. In the second phase, we re�ne the actions on this log by removing

the actions which are merely progress enablers and obtain actual action causes. The former

contribute only indirectly to the cause by enabling the actual action causes to make progress;

the exact values returned by progress enabling actions are irrelevant.

We demonstrate the value of this formalism in two ways. First, we prove that violations of

a precisely de�ned class of safety properties always have an actual cause. Thus, our de�nition

applies to relevant security properties. Second, we provide a cause analysis of a representative

protocol designed to address weaknesses in the current public key certi�cation infrastructure.

Moreover, our example illustrates that our de�nition cleanly handles the separation between

joint and independent causes –a recognized challenge for actual cause de�nitions [14, 27, 30].

5.1 Motivating example

In this section we describe an example protocol designed to increase accountability in the cur-

rent public key infrastructure. We use the protocol later to illustrate key concepts in de�ning

causality.

Security protocol. Consider an authentication protocol in which a user (User1) authenticates

to a server (Server1) using a pre-shared password over an adversarial network. User1 sends its

user-id to Server1 and obtains a public key signed by Server1. However,User1 would need inputs

from additional sources when Server1 sends its public key for the �rst time in a protocol session

to verify that the key is indeed bound to Server1’s identity. In particular, User1 can verify the

key by contacting multiple notaries in the spirit of Perspectives [77]. For simplicity, we assume

User1 veri�es Server1’s public key with three authorized notaries—Notary1, Notary2, Notary3—

and accepts the key if and only if the majority of the notaries say that the key is legitimate. To

illustrate some of our ideas, we also consider a parallel protocol where two parties (User2 and

User3) communicate with each other.

We assume that the prescribed programs for Server1, User1, Notary1, Notary2, Notary3,

User2 and User3 impose the following requirements on their behavior: (i) Server1 stores User1’s

password in a hashed form in a secure private memory location. (ii) User1 requests access to

the account by sending an encryption of the password (along with its identity and a timestamp)

to Server1 after verifying Server1’s public key with a majority of the notaries. (iii) The notaries

retrieve the key from their databases and attest the key correctly. (iv) Server1 decrypts and

computes the hashed value of the password. (v) Server1 matches the computed hash value with

the previously stored value in the memory location when the account was �rst created; if the

90

Chapter 5. Defining Program Actions as Actual Causes

two hash values match, then Server1 grants access to the account to User1. (vi) In parallel, User2

generates and sends a nonce to User3. (vii) User3 generates a nonce and responds to User2.

Security property. The prescribed programs in our example aim to achieve the property that

only the user who created the account and password (in this case, User1) gains access to the

account.

Compromised Notaries Attack. We describe an attack scenario and use it to illustrate nu-

ances in formalizing program actions as actual causes. User1 executes its prescribed program.

User1 sends an access request to Server1. An Adversary intercepts the message and sends a pub-

lic key to User1 pretending to be Server1. User1 checks with Notary1, Notary2 and Notary3 who

falsely verify Adversary’s public key to be Server1’s key. Consequently, User1 sends the pass-

word to Adversary. Adversary then initiates a protocol with Server1 and gains access to User1’s

account. In parallel, User2 sends a request to Server1 and receives a response from Server1.

Following this interaction, User2 forwards the message to User3. We assume that the actions

of the parties are recorded on a log, say l. Note that this log contains a violation of the security

property described above since Adversary gains access to an account owned by User1.

First, our de�nition �nds program actions as causes of violations. At a high-level, as men-

tioned in the introduction, our de�nition applies in two phases. The �rst phase (Section 5.2,

De�nition 15) identi�es a minimal pre�x (Phase 1, minimality) of the log that can account for

the violation i.e. we consider all scenarios where the sequence of actions execute in the same

order as on the log, and test whether it su�ces to recreate the violation in the absence of all

other actions (Phase 1, su�ciency). In our example, this �rst phase will output a minimal pre�x

of log l above. In this case, the minimal pre�x will not contain interactions between User2 and

User3 after Server1 has granted access to the Adversary (the remaining pre�x will still contain

a violation).

Second, a nuance in de�ning the notion of su�ciency (Phase 1, De�nition 15) is to constrain

the interactions which are a part of the actual cause set in a manner that is consistent with the

interaction recorded on the log. This constraint on interactions is quite subtle to de�ne and

depends on how strong a coupling we �nd appropriate between the log and possible counter-

factual traces in su�ciency: if the constraint is too weak then the violation does not reappear in

all sequences, thus missing certain causes; if it is too strong it leads to counter-intuitive cause

determinations. For example, a weak notion of consistency is to require that each program lo-

cally execute the same pre�x in su�ciency as it does on the log i.e. consistency w.r.t. program

actions for individual programs. This notion does not work because for some violations to occur

91

Chapter 5. Defining Program Actions as Actual Causes

the order of interactions on the log among programs is important. A notion that is too strong

is to require matching of the total order of execution of all actions across all programs. We

present a formal notion of consistency by comparing log projections (Section 5.2.2) that balance

these competing concerns.

Third, note that while Phase 1 captures a minimal pre�x of the log su�cient for the violation,

it might be possible to remove actions from this pre�x which are merely required for a program

execution to progress. For instance note that while all three notaries’ actions are required for

User1 to progress (otherwise it would be stuck waiting to receive a message) and the violation

to occur, the actual message sent by one of the notaries is irrelevant since it does not a�ect

the majority decision in this example. Thus, separating out actions which are progress enablers
from those which provide information that causes the violation is useful for �ne-grained causal

determination. This observation motivates the �nal piece (Phase 2) of our formal de�nition

(De�nition 17).

Finally, notice that in this example Adversary, Notary1, Notary2, Notary3, Server1 and User2

deviate from the protocol described above. However, the deviant programs are not su�cient

for the violation to occur without the involvement of User1, which is also a part of the causal

set. We thus seek a notion of su�ciency in de�ning a set of programs as a joint actual cause for

the violation. Joint causation is also signi�cant in legal contexts [75]. For instance, it is useful

for holding liable a group of agents working together when none of them satisfy the cause cri-

teria individually but together their actions are found to be a cause. The ability to distinguish

between joint and independent (i.e., di�erent sets of programs that independently caused the

violation) causes is an important criterion that we want our de�nition to satisfy. In particu-

lar, Phase 2 of our de�nition helps identify independent causes. For instance, in our example,

we get three di�erent independent causes depending on which notary’s action is treated as a

progress enabler. Our ultimate goal is to use the notion of actual cause as a building block for

accountability — the independent vs. joint cause distinction is signi�cant when making delib-

erations about accountability and punishment for liable parties. We can use the result of our

causal determinations to further remove deviants whose actions are required for the violation

to occur but might not be blameworthy (Chapter 6).

Initial approach: De�ning programs as actual causes. Considering programs instead of

events as actual causes is appropriate in security settings because individual agents can exercise

their choice to either execute the prescribed program or deviate from it. In Appendix C, we

sketch an initial approach which �nds programs, rather than program actions (the latter is

more �ne grained) as causes of violations. We then explain with the help of an example, why

92

Chapter 5. Defining Program Actions as Actual Causes

we need a more �ne grained analysis.

Next we turn our attention to de�ning program actions as actual causes.

5.2 Program actions as actual causes

We present our language model in Section 5.2.1, auxiliary notions in Section 5.2.2, properties of

interest to our analysis in Section 5.2.3, and the formal de�nition of program actions as actual

causes in Section 5.2.4.

5.2.1 Model

Note: The syntax presented here is an instantiation of the syntax presented in Chapter 2 with

the following di�erences: we omit the choice operator and add an assert construct. We

further model thread-local computations using ζ .

We model programs in a simple concurrent language, which we call L. The language con-

tains sequential expressions, e, that execute concurrently in programs and communicate with

each other through send and recv commands as discussed in this section. We also include

very primitive condition checking in the form of assert(v).

Our syntax is given using the A-normal form [58] where every term contains only one

connective and all operands contain only variables. The syntax consists of values v for variables

x, actions α and expressions e. Values v include boolean values, numerical values and all other

return values (such as keys or cipher text). Variables, x, denote messages that may be passed

through expressions or across programs.

An expression is a sequence of actions, α. An action may do one of the following: execute

a primitive function ζ on values v1, v2, . . ., or send or receive a message to another program;

(written send(v) and recv(), respectively).

Values v ::= x | true | false | 1 | 2 . . .
Actions α ::= v | send(v) | recv() | ζ(v) . . .

Expressions e ::= v | (b : x = α); e1 | assert(v); e1

Following standard models of protocols, send and recv are untargeted in the operational

semantics: A message sent by a thread may be received by any thread. Targeted communication

may be layered on this basic semantics using cryptography. For readability in examples, we

provide an additional �rst argument to send and recv that speci�es the intended target (the

operational semantics ignore this intended target). Action send(v) always returns 0 to its

93

Chapter 5. Defining Program Actions as Actual Causes

continuation.

Primitive functions ζ model thread-local computation like arithmetic and cryptographic

operations. Primitive functions can also read and update a thread-local state, which may model

local databases, permission matrices, session information, etc. If the term v in assert(v)

evaluates to a non-true value, then its containing thread gets stuck forever, else assert(v)

has no e�ect.

Operational Semantics. The language L’s operational semantics de�ne how a collection of

threads execute concurrently. Each thread T contains a unique thread identi�er i (drawn from

a universal set of such identi�ers), the executing expression e, and a local store. A con�guration
C = T1, . . . , Tn models the threads T1, . . . , Tn executing concurrently. Our reduction relation is

written C → C ′ and de�ned in the standard way by interleaving small steps of individual threads

(the reduction relation is parametrized by a semantics of primitive functions ζ). Importantly,

each reduction can either be internal to a single thread or a synchronization of a send in one

thread with a recv in another thread.

We make the locus of a reduction explicit by annotating the reduction arrow with a label r.
This is written C r−→ C ′. A label is either the identi�er of a thread i paired with a line number b,

written 〈i, b〉 and representing an internal reduction of some ζ(t) in thread i at line number b, or

a tuple 〈〈is, bs〉, 〈ir, br〉〉, representing a synchronization between a send at line number bs in

thread is with a recv at line number br in thread ir, or ε indicating an unobservable reduction

(of t or assert(t)) in some thread. Labels 〈i, b〉 are called local labels, labels 〈〈is, bs〉, 〈ir, br〉〉
are called synchronization labels and labels ε are called silent labels.

An initial con�guration can be described by a triple 〈I,A,Σ〉, where I is a �nite set of thread

identi�ers, A : I → Expressions and Σ : I → Stores. This de�nes an initial con�guration of

|I| threads with identi�ers in I , where thread i contains the expressionA(i) and the store Σ(i).

In the sequel, we identify the triple 〈I,A,Σ〉 with the con�guration de�ned by it. We also use

a con�guration’s identi�ers to refer to its threads.

De�nition 4 (Run). Given an initial con�guration C0 = 〈I,A,Σ〉, a run is a �nite sequence of
labeled reductions C0

r1−→ C1 . . .
rn−→ Cn.

A pre-trace is obtained by projecting only the stores from each con�guration in a run.

De�nition 5 (Pre-trace). Let C0
r1−→ C1 . . .

rn−→ Cn be a run and let Σi be the store in con�guration
Ci. Then, the pre-trace of the run is the sequence (_,Σ0), (r1,Σ1), . . . , (rn,Σn).

If ri = ε, then the ith step is an unobservable reduction in some thread and, additionally,

Σi−1 = Σi. A trace is a pre-trace from which such ε steps have been dropped.

De�nition 6 (Trace). The trace of the pre-trace (_,Σ0), (r1,Σ1), . . . , (rn,Σn) is the subsequence

94

Chapter 5. Defining Program Actions as Actual Causes

obtained by dropping all tuples of the form (ε,Σi). Traces are denoted with the letter t.

5.2.2 Logs and their projections

To de�ne actual causation, we �nd it convenient to introduce the notion of a log and the log

of a trace, which is just the sequence of non-silent labels on the trace. A log is a sequence of

labels other than ε. The letter l denotes logs.

De�nition 7 (Log). Given a trace t = (_,Σ0), (r1,Σ1), . . . , (rn,Σn), the log of the trace, log(t),
is the sequence of r1, . . . , rm. (The trace t does not contain a label ri that equals ε, so neither does
log(t).)

We need a few more straightforward de�nitions on logs in order to de�ne actual causation.

De�nition 8 (Projection of a log). Given a log l and a thread identi�er i, the projection of l to i,
written l|i is the subsequence of all labels in l that mention i. Formally,

•|i = •
(〈i, b〉 :: l)|i = 〈i, b〉 :: (l|i)
(〈j, b〉 :: l)|i = l|i if i 6= j

(〈〈is, bs〉, 〈ir, br〉〉 :: l)|i = 〈〈is, bs〉, 〈ir, br〉〉 :: (l|i)
if is = i or ir = i

(〈〈is, bs〉, 〈ir, br〉〉 :: l)|i = l|i
if is 6= i and ir 6= i

De�nition 9 (Projected pre�x). We call a log l′ a projected pre�x of the log l, written l′ ≤p l, if
for every thread identi�er i, the sequence l′|i is a pre�x of the sequence l|i.

The de�nition of projected pre�x allows the relative order of events in two di�erent non-

communicating threads to di�er in l and l′ but Lamport’s happens-before order of actions [59]

in l′ must be preserved in l. Similar to projected pre�x, we de�ne projected sublog.

De�nition 10 (Projected sublog). We call a log l′ a projected sublog of the log l, written l′ vp l,
if for every thread identi�er i, the sequence l′|i is a subsequence of the sequence l|i (i.e., dropping
some labels from l|i results in l′|i).

5.2.3 Properties of interest

A property is a set of (good) traces and violations are traces in the complement of the set.

Our goal is to de�ne the cause of a violation of a property. We are speci�cally interested in

ascribing causes to violations of safety properties [78] because safety properties encompass

95

Chapter 5. Defining Program Actions as Actual Causes

many relevant security requirements. We recapitulate the de�nition of a safety property below.

Brie�y, a property is safety if it is fully characterized by a set of �nite violating pre�xes of traces.

Let U denote the universe of all possible traces.

De�nition 11 (Safety property [79]). A property P (a set of traces) is a safety property, written
Safety(P), if ∀t 6∈ P. ∃t′ ∈ U. (t′ is a pre�x of t) ∧ (∀t′′ ∈ U. (t′ · t′′ 6∈ P)).

As we explain soon, our causal analysis ascribes thread actions (or threads) as causes. One

important requirement for such analysis is that the property be closed under reordering of

actions in di�erent threads if those actions are not related by Lamport’s happens-before rela-

tion [59]. For properties that are not closed in this sense, the global order between actions in a

race condition may be a cause of a violation. Whereas causal analysis of race conditions may

be practically relevant in some situation, we limit attention only to properties that are closed

in the sense described here. We call such properties reordering-closed or RC.

De�nition 12 (Reordering-equivalence). Two traces t1, t2 starting from the same initial con�g-
uration are called reordering-equivalent, written t1 ∼ t2 if for each thread identi�er i, log(t1)|i =

log(t2)|i. Note that ∼ is an equivalence relation on traces from a given initial con�guration. Let
[t]∼ denote the equivalence class of t.

De�nition 13 (Reordering-closed property). A property P is called reordering-closed, written
RC(P), if t ∈ P implies [t]∼ ⊆ P . Note that RC(P) i� RC(¬P).

5.2.4 Formal de�nition: Program actions as actual causes

In the sequel, let ϕV denote the complement of a reordering-closed safety property of interest.

(The subscript V stands for “violations”.) Consider a trace t starting from the initial con�gura-

tion C0 = 〈I,A,Σ〉. If t ∈ ϕV , then t violates the property ¬ϕV .

De�nition 14 (Violation). A violation of the property ¬ϕV is a trace t ∈ ϕV .
Our de�nition of actual causation identi�es a subset of actions in {A(i) | i ∈ I} as the cause

of a violation t ∈ ϕV . The de�nition applies in two phases. The �rst phase identi�es what we

call Lamport causes. A Lamport cause is a minimal projected pre�x of the log of a violating trace

that can account for the violation. In the second phase, we re�ne the log by removing actions

that are merely progress enablers; the remaining actions on the log are the actual action causes.
The former contribute only indirectly to the cause by enabling the actual action causes to make

progress; the exact values returned by progress enabling actions are irrelevant.

The following de�nition, called Phase 1, determines Lamport causes. It works as follows.

We �rst identify a projected pre�x l of the log of a violating trace t as a potential candidate for

a Lamport cause. We then check two conditions on l. The su�ciency condition tests that the

96

Chapter 5. Defining Program Actions as Actual Causes

threads of the con�guration, when executed at least up to the identi�ed pre�x, preserving all

synchronizations in the pre�x, su�ce to recreate the violation. The minimality condition tests

that the identi�ed Lamport cause contains no redundant actions.

De�nition 15 (Phase 1: Lamport Cause of Violation). Let t ∈ ϕV be a trace starting from
C0 = 〈I,A,Σ〉 and l be a projected pre�x of log(t), i.e., l ≤p log(t). We say that l is the Lamport
cause of the violation t of ϕV if the following hold:

1. (Su�ciency) Let T be the set of traces starting from C0 whose logs contain l as a projected
pre�x, i.e., T = {t′ | t′ is a trace starting from C0 and l ≤p log(t′)}. Then, every trace in T
has the violation ϕV , i.e., T ⊆ ϕV . (Because t ∈ T , T is non-empty.)

2. (Minimality) No proper pre�x of l satis�es condition 1.

At the end of Phase 1, we obtain one or more minimal pre�xes l which contain program ac-

tions that are su�cient for the violation. These pre�xes represent independent Lamport causes

of the violation. In the Phase 2 de�nition below, we further identify a sublog ad of each l, such

that the program actions in ad are actual causes and the actions in l\ad are progress enabling

actions which only contribute towards the progress of actions in ad that cause the violation. In

other words, the actions not considered in ad contain all labels whose actual returned values

are irrelevant.

Brie�y, here’s how our Phase 2 de�nition works. We �rst pick a candidate projected sublog

ad of l, where log l is a Lamport cause identi�ed in Phase 1. We consider counterfactual traces

obtained from initial con�gurations in which program actions omitted from ad are replaced by

actions that do not have any e�ect other than enabling the program to progress (referred to as

no-op). If a violation appears in all such counterfactual traces, then this sublog ad is a good

candidate. Of all such good candidates, we choose those that are minimal.

The key technical di�culty in writing this de�nition is replacing program actions omitted

from ad with no-ops. We cannot simply erase any such action because the action is expected

to return a term which is bound to a variable used in the action’s continuation. Hence, our

approach is to substitute the variables binding the returns of no-op’ed actions with arbitrary

(side-e�ect free) terms t. Formally, we assume a function f : I × LineNumbers → Terms that

for line number b in thread i suggests a suitable term f(i, b) that must be returned if the action

from line b in thread i is replaced with a no-op. In our cause de�nition we universally quantify

over f , thus obtaining the e�ect of a no-op. For technical convenience, we de�ne a syntactic

transform called dummify() that takes an initial con�guration, the chosen sublog ad and the

function f , and produces a new initial con�guration obtained by erasing actions not in ad by

terms obtained through f .

De�nition 16 (Dummifying transformation). Let 〈I,A,Σ〉 be a con�guration and let ad be a

97

Chapter 5. Defining Program Actions as Actual Causes

log. Let f : I × LineNumbers → Terms. The dummifying transform dummify(I,A,Σ, ad, f) is
the initial con�guration 〈I,D,Σ〉, where for all i ∈ I , D(i) is A(i) modi�ed as follows:

• If (b : x = send(t)); e appears in A(i) but 〈i, b〉 does not appear in ad, then replace
(b : x = send(t)); e with e[0/x] in A(i).

• If (b : x = α); e appears in A(i) but 〈i, b〉 does not appear in ad and α 6= send(_), then
replace (b : x = α); e with e[f(i, b)/x] in A(i).

We now present our main de�nition of actual causes.

De�nition 17 (Phase 2: Actual Cause of Violation). Let t ∈ ϕV be a trace from the initial
con�guration 〈I,A,Σ〉 and let the log l ≤p log(t) be a Lamport cause of the violation determined
by De�nition 15. Let ad be a projected sublog of l, i.e., let ad vp l. We say that ad is the actual
cause of violation t of ϕV if the following hold:

1. (Su�ciency’) Pick any f . Let C ′0 = dummify(I,A,Σ, ad, f) and let T be the set of traces
starting from C ′0 whose logs contain ad as a projected sublog, i.e., T = {t′ | t′ is a trace
starting from C ′0 and ad vp log(t′)}. Then, for all f , T is non-empty and every trace in T
has the violation ϕV , i.e, T ⊆ ϕV .

2. (Minimality’) No proper sublog of ad satis�es condition 1.

At the end of Phase 2, we obtain one or more sets of actions ad. These sets are deemed the

independent actual causes of the violation t.

The following theorem states that for all safety properties that are re-ordering closed, the

Phase 1 and Phase 2 de�nitions always identify at least one Lamport and at least one actual

cause.

Theorem1. SupposeϕV is reordering-closed and the complement of a safety property, i.e.,RC(ϕV)

and safety(¬ϕV). Then, for every t ∈ ϕV : (1) Our Phase 1 de�nition (De�nition 15) �nds a Lam-
port cause l, and (2) For every such Lamport cause l, the Phase 2 de�nition (De�nition 17) �nds an
actual cause ad.

Proof. (1) Pick any t ∈ ϕV . We follow the Phase 1 de�nition. It su�ces to prove that there is a

log l ≤p log(t) that satis�es the su�ciency condition. Since safety(¬ϕV), there is a pre�x t0 of t

s.t. for all t1 ∈ U , t0 · t1 ∈ ϕV . Choose l = log(t0). Since t0 is a pre�x of t, l = log(t0) ≤p log(t).

To prove su�ciency, pick any trace t′ s.t. l ≤p log(t′). It su�ces to prove t′ ∈ ϕV . Since

l ≤p log(t′), for each i, log(t′)|i = l|i · l′i for some l′i. Let t′′ be the (unique) subsequence of t′

containing all labels from the logs {l′i}. Consider the trace s = t0 · t′′. First, s extends t0, so

s ∈ ϕV . Second, s ∼ t′ because log(s)|i = l|i · l′i = log(t0)|i · log(t′′)|i = log(t0 · t′′)|i = log(t′)|i.
Since RC(ϕV), t′ ∈ ϕV .

(2) Pick any t ∈ ϕV and let l be a Lamport cause of t as determined by the Phase 1 de�nition.

98

Chapter 5. Defining Program Actions as Actual Causes

Following the Phase 2 de�nition, we only need to prove that there is at least one ad vp l

that satis�es the su�ciency’ condition. We choose ad = l. To show su�ciency’, pick any

f . Because ad = l, ad speci�es an initial pre�x of every A(i) and the transform dummify()

has no e�ect on this pre�x. First, we need to show that at least one trace t′ starting from

dummify(I,A,Σ, ad, f) satis�es ad vp log(t′). For this, we can pick t′ = t. Second, we need to

prove that any trace t′ starting from dummify(I,A,Σ, ad, f) s.t. ad vp log(t′) satis�es t′ ∈ ϕV .

Pick such a t′. Let t0 be the pre�x of t corresponding to l. Then, log(t0)|i = l|i for each i. It

follows immediately that for each i, t′|i = t0|i·t′′i for some t′′i . Let t′′ be the unique subsequence of

t′ containing all labels from traces {t′′i }. Let s = t0 · t′′. First, because for each i, l|i = log(t0)|i,
l ≤p log(t0) trivially. Because l is a Lamport cause, it satis�es the su�ciency condition of

Phase 1, so t0 ∈ ϕV . Since safety(¬ϕV), and s extends t0, s ∈ ϕV . Second, s ∼ t′ because

log(s)|i = log(t0)|i · log(t′′)|i = log(t′)|i and both s and t′ are traces starting from the initial

con�guration dummify(I,A,Σ, ad, f). Hence, by RC(ϕV), t′ ∈ ϕV . �

Our Phase 2 de�nition identi�es a set of program actions as causes of a violation. However,

in some applications it may be necessary to ascribe thread identi�ers (or programs) as causes.

This can be straightforwardly handled by lifting the Phase 2 de�nition: A thread i (or A(i)) is

a cause if one of its actions appears in ad.

De�nition 18 (Program Cause of Violation). Let ad be an actual cause of violation ϕV on trace t
starting from 〈I,A,Σ〉. We say that the set X ⊆ I of thread identi�ers is a cause of the violation
if X = {i | i appears in ad}.

Remarks. We make a few technical observations about our de�nitions of cause. First, be-

cause Lamport causes (De�nition 15) are projected pre�xes, they contain all actions that occur

before any action that actually contributes to the violation. Many of the actions in the Lamport

cause may not contribute to the violation intuitively. Our actual cause de�nition �lters out

such “spurious” actions. As an example, suppose that a safety property requires that the value

1 never be sent on the network. The (only) trace of the program x = 1; y = 2; z = 3;send(x)

violates this property. The Lamport cause of this violation contains all four actions of the pro-

gram, but it is intuitively clear that the two actions y = 2 and z = 3 do not contribute to the

violation. Indeed, the actual cause of the violation determined by De�nition 17 does not contain

these two actions; it contains only x = 1 and send(x), both of which obviously contribute to

the violation.

Second, our de�nition of dummi�cation is based on a program transformation that needs

line numbers. One possibly unwanted consequence is that our traces have line numbers and,

hence, we could, in principle, specify safety properties that are sensitive to line numbers. How-

99

Chapter 5. Defining Program Actions as Actual Causes

ever, our de�nitions of cause are closed under bijective renaming of line numbers, so if a safety

property is insensitive to line numbers, the actual causes can be quotiented under bijective

renamings of line numbers.

Third, our de�nition of actual cause (De�nition 17) separates actions whose return values

are relevant to the violation from those whose return values are irrelevant for the violation.

This is closely related to noninterference-like security de�nitions for information �ow control,

in particular, those that separate input presence from input content [80]. Lamport causes (Def-

inition 15) have a trivial connection to information �ow: If an action does not occur in any

Lamport cause of a violation, then there cannot be an information �ow from that action to the

occurrence of the violation.

Fourth, the de�nition of actual cause (De�nition 17) given in this chapter is closely related

to the de�nition presented in Chapter 3 (De�nition 3), which we discuss next.

5.3 Relationship with De�nition in Part 1

The de�nitions given in Part 1 and Part 2 of the dissertation are closely related. As stated in the

introduction, chronologically the de�nition in Part 2 of the dissertation preceded the de�nition

in Part 1 of the dissertation and the latter is a generalization for the former. If we omit the

choice operator and asymmetric disjunction from the syntax in Part 1 of the dissertation, then

the dummifying transform in both parts of the dissertation (De�nitions 16 and 2) coincide.

Additionally, Phase 2 of the de�nition in Part 2 of the dissertation (De�nition 17) coincides

with the actual cause de�nition in Part 1 of the dissertation (De�nition 3). We can show that

Lamport cause (De�nition 15) is not required for de�nitional purposes by proving the following

theorem.

Theorem 2. Given log l where the corresponding trace t ∈ ϕV , if applying De�nitions 15 and 17
outputs ad as a cause of violation t of ϕV , then De�nition 3 also �nds ad as a cause of violation t
of ϕV .

Speci�cally, we show that any minimal cause ad output by the de�nition of lamport cause

along with De�nition 17, will also be output by De�nition 17 (Phase 2) alone since the latter

coincides with the de�nition in Part 1 of the dissertation.

Let ad be a su�cient cause of violation t of ϕV according to Phase 1 and Phase 2 (De�ni-

tions 15 and 17). Then it will also be a su�cient cause according to De�nition 3, since the two

su�ciency clauses coincide. Let ad also be a minimal cause according to De�nitions 15 and 17,

but not according to De�nition 3. This implies that De�nition 3 must have found a subsequence

of ad as a cause of violation t of ϕV since De�nition 3 outputs the minimal sublog of l that is

100

Chapter 5. Defining Program Actions as Actual Causes

su�cient. However, this violates the minimality condition for De�nition 17, since ad must be

the minimal of all sublogs, of a minimal pre�x of log l (which is also a sublog of l), that sat-

isfy the su�ciency clause in Phase 2. Therefore De�nition 3 will also output ad as a cause of

violation t of ϕV .

However, the converse does not hold, i.e. if De�nition 3 outputs ad as a cause given log

l, it is not always the case that Phase 1 and 2 (De�nitions 15 and 17) will also �nd the same

cause. This holds since Phase 1 de�nition (lamport cause) will �nd a minimal pre�x su�cient

for a violation and De�nition 17 outputs a corresponding minimal su�cient sublog. Therefore

if there exist independent causes of violation t of ϕV , De�nition 17 will only �nd those causal

sequences for which there exists a minimal su�cient projected pre�x l′ of the log l. In contrast,

De�nition 3 will �nd all independent causes for a violation.

5.4 Application: Causes of authentication failures

In this section, we model an instance of our running example based on passwords (Section 5.1)

in order to demonstrate our actual cause de�nition. As explained in Section 5.1, we consider

a protocol session where Server1, User1, User2, User3 and multiple notaries interact over an

adversarial network to establish access over a password-protected account. We describe a for-

mal model of the protocol in our language, examine the attack scenario from Section 5.1 and

provide a cause analysis using the de�nitions from Section 5.2.

5.4.1 Protocol description

We consider our example protocol with eight threads named {Server1,User1,Adversary,Notary1,

Notary2, Notary3, User2, User3}. In this section, we brie�y describe the protocol and the pro-

grams speci�ed by the protocol for each of these threads. For this purpose, we assume that we

are provided a functionN : I → Expressions such thatN (i) is the program that ideally should
have been executing in the thread i. For each i, we call N (i) the norm for thread i. The vio-

lation is caused because some of the executing programs are di�erent from the norms. These

actual programs, calledA as in Section 5.2, are shown later. The norms are shown here to help

the reader understand what the ideal protocol is and also to facilitate some of the development

in Chapter 6. The appendix describes an expansion of this example with more than the eight

threads considered here to illustrate our de�nitions better. The proof included in the appendix

deals with timestamps and signatures.

The norms in Figure 5.1 and the actuals in Figure 5.2 assume thatUser1’s account (called acct

in Server1’s program) has already been created and that User1’s password, pwd is associated

101

Chapter 5. Defining Program Actions as Actual Causes

with User1’s user id, uid. This association (in hashed form) is stored in Server1’s local state at

pointer mem. The norm for Server1 is to wait for a request from an entity, respond with its

(Server1’s) public key, wait for a username-password pair encrypted with that public key and

grant access to the requester if the password matches the previously stored value in Server1’s

memory at mem. To grant access, Server1 adds an entry into a private access matrix, called P .

(A separate server thread, not shown here, allows User1 to access its account if this entry exists

in P .)

The norm for User1 is to send an access request to Server1, wait for the server’s public key,

verify that key with three notaries and then send its password pwd to Server1, encrypted under

Server1’s public key. On receiving Server1’s public key, User1 initiates a protocol with the three

notaries and accepts or rejects the key based on the response of a majority of the notaries. For

simplicity, we omit a detailed description of this protocol between User1 and the notaries that

authenticates the notaries and ensures freshness of their responses. These details are included

in our appendix. In parallel, the norm for User2 is to generate and send a nonce to User3. The

norm for User3 is to receive a message from User2, generate a nonce and send it to User2.

Each notary has a private database of (public_key, principal) tuples. The notaries’ norms

assume that this database has already been created correctly. When User1 sends a request

with a public key, the notary responds with the principal’s identi�er after retrieving the tuple

corresponding to the key from its database.

Notation. The programs in this example use several primitive functions ζ . Enc(k,m) and

Dec(k′,m) denote encryption and decryption of message m with key k and k′ respectively.

Hash(m) generates the hash of term m. Sig(k,m) denotes message m signed with the key

k, paired with m in the clear. pub_key_i and pvt_key_i denote the public and private keys of

thread i, respectively. For readability, we include the intended recipient i and expected sender

j of a message as the �rst argument of send(i,m) and recv(j) expressions. As explained

earlier, i and j are ignored during execution and a network adversary, if present, may capture

or inject any messages.

Security property. The security property of interest to us is that if at time u, a thread k is

given access to account a, then k owns a. Speci�cally, in this example, we are interested in case

a = acct and k = User1. This can be formalized by the following logical formula, ¬ϕV :

∀u, k. (acct, k) ∈ P (u) ⊃ (k = User1) (5.1)

Here, P (u) is the state of the access control matrix P for Server1 at time u.

102

Chapter 5. Defining Program Actions as Actual Causes

5.4.2 Attack

As an illustration, we model the “Compromised Notaries” violation of Section 5.1. The programs

executed by all threads are given in Figure 5.2. User1 sends an access request to Server1 which

is intercepted by Adversary who sends its own key to User1 (pretending to be Server1). User1

checks with the three notaries who falsely verify Adversary’s public key to be Server1’s key.

Consequently, User1 sends the password to Adversary. Adversary then initiates a protocol with

Server1 and gains access to the User1’s account. Note that the actual programs of the three

notaries attest that the public key given to them belongs to Server1. In parallel, User2 sends

a request to Server1 and receives a response from Server1. Following this interaction, User2

interacts with User3, as in their norms.

Figure 5.3 shows the expressions executed by each thread on the property-violating trace.

For instance, the label 〈〈User1, 1〉, 〈Adversary, 1〉〉 indicates that both User1 and Adversary ex-

ecuted the expressions with the line number 1 in their actual programs, which resulted in a

synchronous communication between them, while the label 〈Adversary, 4〉 indicates the local

execution of the expression at line 4 of Adversary’s program. The initial con�guration has the

programs: {A(User1),A(Server1),A(Adversary),A(Notary1),

A(Notary2),A(Notary3),A(User2),A(User3)}. For this attack scenario, the concrete trace t

we consider is such that log(t) is any arbitrary interleaving of the actions for

X = {Adversary,User1,User2,User3, Server1,Notary1,
Notary2,Notary3} shown in Figure 5.3(a). Any such interleaved log is denoted log(t) in the

sequel. At the end of this log, (acct,Adversary) occurs in the access control matrix P , but

Adversary does not own acct. Hence, this log corresponds to a violation of our security prop-

erty.

Note that if any two of the three notaries had attested the Adversary’s key to belong to

Server1, the violation would still have happened. Consequently, we may expect three indepen-

dent program causes in this example: {Adversary, User1, Server1, Notary1, Notary2} with the

action causes ad as shown in Figure 5.3(c), {Adversary, User1, Server1, Notary1, Notary3} with

the actions a′d, and {Adversary, User1, Server1, Notary2, Notary3} with the actions a′′d where a′d
and a′′d can be obtained from ad (Figure 5.3) by considering actions for {Notary1, Notary3} and

{Notary2, Notary3} respectively, instead of actions for {Notary1, Notary2}. Our treatment of in-

dependent causes follows the tradition in the causality literature. The following theorem states

that our de�nitions determine exactly these three independent causes – one notary is dropped

from each of these sets, but no notary is discharged from all the sets. This determination re�ects

the intuition that only two dishonest notaries are su�cient to cause the violation. Additionally,

while it is true that all parties who follow the protocol should not be blamed for a violation, an

103

Chapter 5. Defining Program Actions as Actual Causes

honest party may be an actual cause of the violation (in both the common and the philosophical

sense of the word), as demonstrated in this case study. This two-tiered view of accountability

of an action by separately asserting cause and blame can also be found in prior work in law and

philosophy [8, 36]. Determining actual cause is nontrivial and is the focus of this work.

Theorem 3. Let I = {User1, Server1,Adversary,Notary1,
Notary2,Notary3,User2,User3} andΣ andA be as described above. Let t be a trace from 〈I,A,Σ〉
such that log(t)|i for each i ∈ I matches the corresponding log projection from Figure 5.3(a).
Then, De�nition 18 determines three possible values for the program cause X of violation t ∈ ϕV :
{Adversary, User1, Server1, Notary1, Notary2}, {Adversary, User1, Server1, Notary1, Notary3}, and
{Adversary, User1, Server1, Notary2, Notary3} where the corresponding actual causes are ad, a′d
and a′′d, respectively.

It is instructive to understand the proof of this theorem, as it illustrates our de�nitions of

causation. We verify that our Phase 1, Phase 2 de�nitions (De�nitions 15, 17, 18) yield exactly

the three values for X mentioned in the theorem.

Lamport cause (Phase 1). We show that any l whose projections match those shown in

Figure 5.3(b) satis�es su�ciency and minimality. From Figure 5.3(b), such an l has no actions

for User3 and only those actions of User2 that are involved in synchronization with Server1.

For all other threads, the log contains every action from t. The intuitive explanation for this l is

straightforward: Since lmust be a (projected) pre�x of the trace, and the violation only happens

because of insert in the last statement of Server1’s program, every action of every program

before that statement in Lamport’s happens-before relation must be in l. This is exactly the l

described in Figure 5.3(b).

Formally, following the statement of su�ciency, let T be the set of traces starting from

C0 = 〈I,A,Σ〉 (Figure 5.2) whose logs contain l as a projected pre�x. Pick any t′ ∈ T . We

need to show t′ ∈ ϕV . However, note that any t′ containing all actions in l must also add

(acct,Adversary) to P , but Adversary 6= User1. Hence, t′ ∈ ϕV . Further, l is minimal as de-

scribed in the previous paragraph.

Actual cause (Phase 2). Phase 2 (De�nitions 17, 18) determines three independent pro-

gram causes for X : {Adversary, User1, Server1, Notary1, Notary2}, {Adversary, User1, Server1,

Notary1, Notary3}, and {Adversary, User1, Server1, Notary2, Notary3} with the actual action

causes given by ad, a
′
d and a′′d, respectively in Figure 5.3. These are symmetric, so we only

explain why ad satis�es De�nition 17. (For this ad, De�nition 18 immediately forces X =

{Adversary,User1, Server1,Notary1,Notary2}.) We show that (a) ad satis�es su�ciency’, and

104

Chapter 5. Defining Program Actions as Actual Causes

(b) No proper sublog of ad satis�es su�ciency’ (minimality’). Note that ad is obtained from l

by dropping Notary3, User2 and User3, and all their interactions with other threads.

We start with (a). Let ad be such that ad|i matches Figure 5.3(c) for every i. Fix any dum-

mifying function f . We must show that any trace originating from dummify(I,A,Σ, ad, f),

whose log contains ad as a projected sublog, is in ϕV . Additionally we must show that there

is such a trace. There are two potential issues in mimicking the execution in ad starting from

dummify(I,A,Σ, ad, f) — �rst, with the interaction between User1 and Notary3 and, second,

with the interaction between Server1 and User2. For the �rst interaction, on line 5, A(User1)

(Figure 5.2) synchronizes with Notary3 according to l, but the synchronization label does not

exist in ad. However, in dummify(I,A,Σ, ad, f), the recv() on line 8 in A(User1) is replaced

with a dummy value, so the execution from dummify(I,A,Σ, ad, f) progresses. Subsequently,

the majority check (assertion [B]) succeeds as in l, because two of the three notaries (Notary1

and Notary2) still attest the Adversary’s key. A similar observation can be made about the in-

teraction between Server1 and User2.

Next we prove that every trace starting from dummify(I,A,Σ, ad, f), whose log contains

ad (Figure 5.3) as a projected sublog, is in ϕV . Fix a trace t′ with log l′. Assume l′ contains ad.

We show t′ ∈ ϕV as follows:

1. Since the synchronization labels in l′ are a superset of those in ad, Server1 must execute

line 8 of its programA(Server1) in t′. After this line, the access control matrix P contains

(acct, J) for some J .

2. When A(Server1) writes (x, J) to P at line 8, then J is the third component of a tuple

obtained by decrypting a message received on line 5.

3. Since the synchronization projections on l′ are a superset of ad, and on ad 〈Server1, 5〉
synchronizes with 〈Adversary, 8〉, J must be the third component of an encrypted mes-

sage sent on line 8 of A(Adversary).

4. The third component of the message sent on line 8 by Adversary is exactly the term

“Adversary”. (This is easy to see, as the term “Adversary” is hardcoded on line 7.) Hence,

J = Adversary.

5. This immediately implies that t′ ∈ ϕV since (acct,Adversary) ∈ P , but Adversary 6=
User1.

Last, we prove (b) — that no proper subsequence of ad satis�es su�ciency’. Note that ad

(Figure 5.3(c)) contains exactly those actions from l (Figure 5.3) on whose returned values the

last statement of Server1’s program (Figure 5.2) is data or control dependent. Consequently, all

of ad as shown is necessary to obtain the violation.

105

Chapter 5. Defining Program Actions as Actual Causes

(The astute reader may note that in Figure 5.2, there is no dependency between line 1 of

Server1’s program and the insert statement in Server1. Hence, line 1 should not be in ad.

While this is accurate, the program in Figure 5.2 is a slight simpli�cation of the real protocol,

which is shown in the appendix. In the real protocol, line 1 returns a received nonce, whose

value does in�uence whether or not execution proceeds to the insert statement.)

106

Chapter 5. Defining Program Actions as Actual Causes

Norm N (Server1):

1 : _ = recv(j); //access req from thread j
2 : send(j, pub_key_Server1); //send public key to j
3 : s = recv(j); //encrypted uid, pwd, thread id J
4 : (uid, pwd, J) = Dec(pvt_key_Server1, s);
5 : t = hash(uid, pwd);
assert(mem = t) //compare hash with stored value

6 : insert(P, (acct, J));
Norm N (User1):

1 : send(Server1); //access request

2 : pub_key = recv(Server1); //key from Server1
3 : send(Notary1, pub_key);
4 : send(Notary2, pub_key);
5 : send(Notary3, pub_key);
6 : Sig(pub_key, l1) = recv(Notary1); //notary1 responds

7 : Sig(pub_key, l2) = recv(Notary2); //notary2 responds

8 : Sig(pub_key, l3) = recv(Notary3); //notary3 responds

assert(At least two of {l1,l2,l3} equal Server1)
9 : t = Enc(pub_key, (uid, pwd,User1));
10 : send(Server1, t); //send t to Server1

Norms N (Notary1),N (Notary2),N (Notary3):

// o denotes Notary1, Notary2 or Notary3

1 : pub_key = recv(j);
2 : pr = KeyOwner(pub_key); //lookup key owner

3 : send(j, Sig(pvt_key_o, (pub_key, pr));

Norm N (User2):

1 : send(User3);
2 : _ = recv(User3);

Norm N (User3):

1 : _ = recv(User2);
2 : send(User3);

Figure 5.1: Norms for all threads. Adversary’s norm is the trivial empty program.

107

Chapter 5. Defining Program Actions as Actual Causes

Actual A(Server1):
1 : _ = recv(j); //access req from thread j
2 : send(j, pub_key_Server1); //send public key to j
3 : _ = recv(j); //receive nonce from thread User2
4 : send(j); //send signed nonce

5 : s = recv(j); //encrypted uid, pwd, thread id from j
6 : (uid, pwd, J) = Dec(pvt_key_Server1, s);
7 : t = hash(uid, pwd);
assert(mem = t)[A] //compare hash with stored value

8 : insert(P, (acct, J));
Actual A(User1):
1 : send(Server1); //access request

2 : pub_key = recv(Server1); //key from Server1
3 : send(Notary1, pub_key);
4 : send(Notary2, pub_key);
5 : send(Notary3, pub_key);
6 : Sig(pub_key, l1) = recv(Notary1); //notary1 responds

7 : Sig(pub_key, l2) = recv(Notary2); //notary2 responds

8 : Sig(pub_key, l3) = recv(Notary3); //notary3 responds

assert(At least two of {l1,l2,l3} equal Server1)[B]
9 : t = Enc(pub_key, (uid, pwd,User1));
10 : send(Server1, t); //send t to Server1

Actual A(Adversary)
1 : recv(User1); //intercept access req from User1
2 : send(User1, pub_key_A); //send key to User

3 : s = recv(User1); //pwd from User1
4 : (uid, pwd,User1) = Dec(pvt_key_A, s); //decrypt pwd

5 : send(Server1, uid); //access request to Server1
6 : pub_key = recv(Server1); //Receive Server1’s public key

7 : t = Enc(pub_key, (uid, pwd,Adversary)); //encrypt pwd

8 : send(Server1, t); //pwd to Server1

Actuals A(Notary1),A(Notary2),N (Notary3):

// o denotes Notary1, Notary2 or Notary3

1 : pub_key = recv(j);
2 : send(j, Sig(pvt_key_o, (pub_key, Server1)));

Actual A(User2):
1 : send(Server1); //send nonce to Server1
2 : _ = recv(Server1);
3 : send(User3); //forward nonce to User3
4 : _ = recv(User3);

Actual A(User3):
1 : _ = recv(User2);
2 : send(User2); //send nonce to User2

Figure 5.2: Actuals for all threads.

108

Chapter 5. Defining Program Actions as Actual Causes

(a)

log(t)|Adversary
〈〈User1, 1〉, 〈Adversary, 1〉〉,
〈〈Adversary, 2〉, 〈User1, 2〉〉
〈〈User1, 10〉, 〈Adversary, 3〉〉,
〈Adversary, 4〉,
〈〈Adversary, 5〉, 〈Server1, 1〉〉,
〈〈Server1, 2〉, 〈Adversary, 6〉〉,
〈Adversary, 7〉,
〈〈Adversary, 8〉, 〈Server1, 5〉〉,

log(t)|Server1
〈〈Adversary, 5〉, 〈Server1, 1〉〉,
〈〈Server1, 2〉, 〈Adversary, 6〉〉,
〈〈User2, 1〉, 〈Server1, 3〉〉,
〈〈Server1, 4〉, 〈User2, 2〉〉,
〈〈Adversary, 8〉, 〈Server1, 5〉〉,
〈Server1, 6〉
〈Server1, 7〉
〈Server1, 8〉

log(t)|User1
〈〈User1, 1〉, 〈Adversary, 1〉〉,
〈〈Adversary, 2〉, 〈User1, 2〉〉
〈〈User1, 3〉, 〈Notary1, 1〉〉,
〈〈User1, 4〉, 〈Notary2, 1〉〉,
〈〈User1, 5〉, 〈Notary3, 1〉〉,
〈〈Notary1, 2〉, 〈User1, 6〉〉,
〈〈Notary2, 2〉, 〈User1, 7〉〉,
〈〈Notary3, 2〉, 〈User1, 8〉〉,
〈User1, 9〉
〈〈User1, 10〉, 〈Adversary, 3〉〉,

log(t)|Notary1
〈〈User1, 3〉, 〈Notary1, 1〉〉,
〈〈Notary1, 2〉, 〈User1, 6〉〉,

log(t)|Notary2
〈〈User1, 4〉, 〈Notary2, 1〉〉,
〈〈Notary2, 2〉, 〈User1, 7〉〉,

log(t)|Notary3
〈〈User1, 5〉, 〈Notary3, 1〉〉,
〈〈Notary3, 2〉, 〈User1, 8〉〉,

log(t)|User2
〈〈User2, 1〉, 〈Server1, 3〉〉,
〈〈Server1, 4〉, 〈User2, 2〉〉,
〈〈User2, 3〉, 〈User3, 1〉〉,
〈〈User2, 4〉, 〈User3, 2〉〉,

log(t)|User3
〈〈User2, 3〉, 〈User3, 1〉〉,
〈〈User2, 4〉, 〈User3, 2〉〉,

(b)

l|Adversary
〈〈User1, 1〉, 〈Adversary, 1〉〉,
〈〈Adversary, 2〉, 〈User1, 2〉〉
〈〈User1, 10〉, 〈Adversary, 3〉〉,
〈Adversary, 4〉,
〈〈Adversary, 5〉, 〈Server1, 1〉〉,
〈〈Server1, 2〉, 〈Adversary, 6〉〉,
〈Adversary, 7〉,
〈〈Adversary, 8〉, 〈Server1, 5〉〉,

l|Server1
〈〈Adversary, 5〉, 〈Server1, 1〉〉,
〈〈Server1, 2〉, 〈Adversary, 6〉〉,
〈〈User2, 1〉, 〈Server1, 3〉〉,
〈〈Server1, 4〉, 〈User2, 2〉〉,
〈〈Adversary, 8〉, 〈Server1, 5〉〉,
〈Server1, 6〉
〈Server1, 7〉
〈Server1, 8〉

l|User1
〈〈User1, 1〉, 〈Adversary, 1〉〉,
〈〈Adversary, 2〉, 〈User1, 2〉〉
〈〈User1, 3〉, 〈Notary1, 1〉〉,
〈〈User1, 4〉, 〈Notary2, 1〉〉,
〈〈User1, 5〉, 〈Notary3, 1〉〉,
〈〈Notary1, 2〉, 〈User1, 6〉〉,
〈〈Notary2, 2〉, 〈User1, 7〉〉,
〈〈Notary3, 2〉, 〈User1, 8〉〉,
〈User1, 9〉
〈〈User1, 10〉, 〈Adversary, 3〉〉,

l|Notary1
〈〈User1, 3〉, 〈Notary1, 1〉〉,
〈〈Notary1, 2〉, 〈User1, 6〉〉,

l|Notary2
〈〈User1, 4〉, 〈Notary2, 1〉〉,
〈〈Notary2, 2〉, 〈User1, 7〉〉,

l|Notary3
〈〈User1, 5〉, 〈Notary3, 1〉〉,
〈〈Notary3, 2〉, 〈User1, 8〉〉,

l|User2
〈〈User2, 1〉, 〈Server1, 3〉〉,
〈〈Server1, 4〉, 〈User2, 2〉〉,

(c)

ad|Adversary
〈〈User1, 1〉, 〈Adversary, 1〉〉,
〈〈Adversary, 2〉, 〈User1, 2〉〉
〈〈User1, 10〉, 〈Adversary, 3〉〉,
〈Adversary, 4〉,
〈〈Adversary, 5〉, 〈Server1, 1〉〉,
〈〈Server1, 2〉, 〈Adversary, 6〉〉,
〈Adversary, 7〉,
〈〈Adversary, 8〉, 〈Server1, 5〉〉,

ad|Server1
〈〈Adversary, 5〉, 〈Server1, 1〉〉,
〈〈Server1, 2〉, 〈Adversary, 6〉〉,

〈〈Adversary, 8〉, 〈Server1, 5〉〉,
〈Server1, 6〉
〈Server1, 7〉
〈Server1, 8〉

ad|User1
〈〈User1, 1〉, 〈Adversary, 1〉〉,
〈〈Adversary, 2〉, 〈User1, 2〉〉
〈〈User1, 3〉, 〈Notary1, 1〉〉,
〈〈User1, 4〉, 〈Notary2, 1〉〉,

〈〈Notary1, 2〉, 〈User1, 6〉〉,
〈〈Notary2, 2〉, 〈User1, 7〉〉,

〈User1, 9〉
〈〈User1, 10〉, 〈Adversary, 3〉〉,

ad|Notary1
〈〈User1, 3〉, 〈Notary1, 1〉〉,
〈〈Notary1, 2〉, 〈User1, 6〉〉,

ad|Notary2
〈〈User1, 4〉, 〈Notary2, 1〉〉,
〈〈Notary2, 2〉, 〈User1, 7〉〉,

Figure 5.3: Left to Right: (a): log(t)|i for i ∈ I . (b): Lamport cause l for Theorem 3. l|i = ∅
for i ∈ {User3} as output by De�nition 15. (c): Actual cause ad for Theorem 3. ad|i = ∅ for

i ∈ {Notary3,User2,User3}. ad is a projected sublog of Lamport cause l.

109

Chapter 5. Defining Program Actions as Actual Causes

110

Chapter 6

Using Causation as a Building Block

for Accountability

Chapter goal. In this chapter, we discuss how our theory of actual causation can be used

for explanations (protocol debugging) and for assigning blame and blame exoneration. We

conclude with a comparison with related work in accountability for security protocols and

blame assignment.

6.1 Using causation for explanations (protocol debugging)

Generating explanations involves enhancing the epistemic state of an agent by providing in-

formation about the cause of an outcome [31]. Automating this process is useful for several

tasks such as planning in AI-related applications and has also been of interest in the philoso-

phy community [31, 63]. Causation has also been applied for explaining counter examples and

providing explanations for errors in model checking [69, 70, 81, 82] where the abstract nature

of the explanation provides insight about the model.

In prior work, Halpern and Pearl have de�ned explanation in terms of causality [31]. A fact,

sayE, constitutes an explanation for a previously established fact F in a given context, if hadE

been true then it would have been a su�cient cause of the established fact F . Moreover, having

this information advances the prior epistemic state of the agent seeking the explanation, i.e.

there exists a world (or a setting of the variables in Halpern and Pearl’s model using structural

equations) where F is not true but E is.

Our de�nition of cause (Chapter 3) could be used to explain violations arising from execu-

tion of programs in a given initial con�guration. Given a log l, an initial con�guration C0, and a

111

Chapter 6. Using Causation as a Building Block for Accountability

violation ϕV , our de�nition would pinpoint a sequence of program expressions, α, as an actual

cause of the violation on the log. α would also be an explanation for the violation on l if having

this causal information advances the epistemic knowledge of the agent. Note that there could

be traces arising from the initial con�guration where the behavior is inconsistent with the log.

Knowing that α is consistent with the behavior on the log and that it is a cause of the violation

would advance the agent’s knowledge and provide an explanation for the violation.

Interventions in protocol design. Another aspect where our causal analysis might be use-

ful is in designing better protocols. Prior work in social psychology and law [83] discusses that

causal attributions can serve two main purposes: �rstly, backward-looking functionality which

enables one to assign blame or punishment for legal purposes that we discussed in the section

above and, secondly, forward-looking functionality for causal judgments that aims at avoiding

violating outcomes in the future. The second aspect can be exploited for protocol design.

For instance, if for an increasing number of violations, multiple norms are output as part

of the causal sequence, this could suggest redesigning the protocol in order to minimize the

norms which could be aiding the occurrence of the violation.

6.2 Using causation for blame attribution

Actual causation is an integral part of the prominent theories of blame in social psychology and

legal settings [34, 35, 36, 37]. Most of these theories provide a comprehensive framework for

blame which integrates causality, intentionality and foreseeability [34, 35, 83]. These theories

recognize blame and cause as interrelated yet distinct concepts. Prior to attributing blame to

an actor, a causal relation must be established between the actor’s actions and the outcome.

However, not all actions which are determined as a cause are blameworthy and an agent can

be blamed for an outcome even if their actions were not a direct cause (for instance if an agent

was responsible for another agent’s actions). In our work we focus on the �rst aspect where

we develop a theory for actual causation and provide a building block to �nd blameworthy

programs from this set.

For instance, we can use the causal set output by the de�nitions in Section 5.2 and further

narrow down the set to �nd blameworthy programs. Note that in order to use our de�nition

as a building block for blame assignment, we require information about a) which of the exe-

cuted programs deviate from the protocol, and b) which of these deviations are harmless. Some

harmless deviants might be output as part of the causal set because their interaction is critical

for the violation to occur. De�nition 20 below provides one approach to removing such non-

112

Chapter 6. Using Causation as a Building Block for Accountability

blameworthy programs from the causal set. In addition we can �lter the norms from the causal

set.

For this purpose, we use the notion of protocol speci�ed normsN introduced in Section 5.4.

We impose an additional constraint on the norms, i.e., in the extreme counterfactual world

where we execute norms only, there should be no possibility of violation. We call this condition

necessity. Conceptually, necessity says that the reference standard (norms) we employ to assign

blame is reasonable.

De�nition 19 (Necessity condition for norms). Given 〈I,Σ,N , ϕV 〉, we say thatN satis�es the
necessity condition w.r.t. ϕV if for any trace t′ starting from the initial con�guration 〈I,N ,Σ〉, it
is the case that t′ 6∈ ϕV .

We can use the norms N and the program cause X with its corresponding actual cause

ad from Phase 2 (De�nitions 17, 18), in order to determine whether a program is a harmless

deviant as follows. De�nition 20 presents a sound (but not complete) approach for identifying

harmless deviants.

De�nition 20 (Harmless deviant). Let X be a program cause of violation V and ad be the cor-
responding actual cause as determined by De�nitions 17 and 18. We say that the program corre-
sponding to index i ∈ X is a harmless deviant w.r.t. trace t and violation ϕV ifA(i) is deviant (i.e.
A(i) 6= N (i)) and ad|i is a pre�x of N (i).

For instance in our case study (Section 5.4), Theorem 3 outputs X and ad (Figure 5.3) as a

cause. X includes Server1. Considering Server1’s norm (Figure 5.1), A{Server} will be consid-

ered a deviant, but according to De�nition 20, Server1 will be classi�ed as a harmless deviant
because ad|Server1 is a pre�x of N (Server1). Note that in order to capture blame attribution ac-

curately, we will need a richer model which incorporates intentionality, epistemic knowledge

and foreseeability, beyond causality.

Applications: comparing accountability solutions for PKI. The causal analysis tech-

niques, proposed in this dissertation, can be used to perform a comparative analysis of promi-

nent protocols which address weaknesses in the public key certi�cate infrastructure [50]. Our

theory can be used to both provide blame assignment for well-known attacks and to provide a

systematic basis for comparing di�erent proposals. Speci�cally, we can analyze representative

protocols based on mechanisms for key pinning [84, 85, 86] and multi-path probing [77, 87, 88]

instead of relying on a single CA for veri�cation (as we deal with in our example).

Our analysis in Section 5.4 demonstrates the feasibility of using such techniques to accu-

rately pinpoint causes of security violations and for designing protocols. We can also use the

cause de�nition to reason about which of the suggestions for enhancing accountability of pro-

113

Chapter 6. Using Causation as a Building Block for Accountability

tocols is more e�ective. In the absence of a general de�nition of accountability, one approach

could be to look at the attack scenarios and determine whether an accountability solution en-

sures that if a violation is detected, the agents responsible for the violation can be pinpointed

accurately. Such arguments could be used to inform the comparison between multiple ap-

proaches to enhance accountability.

6.3 Related work

Currently, there are multiple proposals for providing accountability in decentralized multi-

agent systems [4, 6, 10, 12, 19, 20, 22, 23, 89]. The term accountability is used with varied

interpretations. Accountability as a property provided by security protocols, in general, refers

to the accuracy of pinpointing agents that are responsible for violating a protocol speci�ca-

tion [4]. Here, the meaning of responsibility is not technically de�ned and is assumed to be

clear in an intuitive sense. It is acknowledged that holding agents accountable for a violation in

a protocol requires a justi�able basis. Many proposals in the literature regard deviation from

protocol as a su�cient basis for holding an agent accountable while some others observe that

deviation alone is not su�cient because some forms of deviance may be “irrelevant” to the vio-

lation [4, 19]. Feigenbaum et al. [19, 20] suggest the use of causation in context of accountability

but use it to connect events to mediate punishment and do not focus on blame assignment.

Although the intrinsic relationship between causation and accountability is often acknowl-

edged, the foundational studies of accountability do not explicitly incorporate the notion of

cause in their formal de�nition or treat it as a blackbox concept without explicitly de�ning

it. Our thesis is that accountability is not a trace property since evidence from the log alone

does not provide a justi�able basis to blame agents. Inferring whether an agent’s deviation on

a log is blameworthy requires analyzing alternative settings where the agent might have be-

haved di�erently. We can use the absence or presence of violations in those settings to make a

judgment about blame. Counterfactuals de�ned in analytical philosophy [27] provide a natural

way to reason about alternative scenarios. As discussed in Chapter 4, prior work on actual

causation in analytical philosophy and AI has considered counterfactual based causation in

detail [14, 27, 30, 40, 41, 42]. These ideas have been applied for fault diagnosis where system

components are analyzed, however these frameworks do not adequately capture all the ele-

ments crucial to model a security setting. Executions in security settings involve interactions

among concurrently running programs in the presence of adversaries, and little can be assumed

about the scheduling of events. We argue that ideas from actual causation can provide a justi�-

able basis for blame assignment in security settings if we use programs (or properties) as units

114

Chapter 6. Using Causation as a Building Block for Accountability

of blame rather than individual events.

We �rst discuss current approaches in de�ning accountability. We then discuss prior ap-

proaches that have used causality for blame assignment but not for security settings.

6.3.1 Accountability

Küsters et al [4] de�ne a protocol P with associated accountability constraints that are rules

of the form: if a particular property holds over runs of the protocol instances then particular

agents may be blamed. Further, they de�ne a judge J who gives a verdict over a run r of an

instance π of a protocol P , where the verdict blames agents. In their work, Küsters et al assume

that the accountability constraints for each protocol are given and complete. They state that the

judge J should be designed so that J ’s verdict is fair and complete w.r.t. these accountability

constraints. They design a judge separately for every protocol with a speci�c accountability

property.

Küsters et al. [4] de�ne accountability with respect to a set of constraints for each protocol

and a judging procedure. The set of constraints can be thought of as augmenting the speci�-

cation of the protocol to specify a priori what parties are to be blamed for a given violation.

The judging procedure, which is also de�ned as a part of the protocol speci�cation, provides a

means to observe runs of the protocol and assign blame based on the speci�ed accountability

constraints. If a run of a protocol contains a violation, then the protocol is said to provide ac-

countability if the judge’s verdict is fair and complete: fairness states that no agent following

the protocol (honest agent) is held accountable and completeness states that the judge blames at

least one of the deviant (dishonest) agents mentioned in the accountability constraints. Küsters

et al. [4] point to the signi�cance of developing protocols that provide individual accountability

(e.g. a judge can conclude exactly that parties A and B are blameworthy) rather than coarser-

grained accountability (e.g. a judge can only conclude that at least one of the parties A and B

is blameworthy but nothing more precise).

Küsters et al.’s de�nition of accountability has been successfully applied to substantial pro-

tocols such as voting, auctions, and contract signing. The authors have exposed previously

undiscovered weaknesses in the protocols with respect to holding individual agents account-

able when a violation is detected. Our work complements this line of work in that we aim to

provide a semantic basis for arriving at such accountability constraints, thereby providing a

justi�cation for the blame assignment suggested by those constraints. Our actual cause de�ni-

tion can be viewed as a generic judging procedure that is de�ned independent of the violation

and the protocol. We believe that using our cause de�nition as the basis for accountability

constraints would also ensure the minimality of verdicts given by the judges.

115

Chapter 6. Using Causation as a Building Block for Accountability

Backes et al [6] de�ne accountability as the ability to show evidence when an agent deviates.

The authors analyze a contract signing protocol using protocol composition logic. In particular,

the authors consider the case when the trusted third-party acts dishonestly and prove that the

party can be held accountable by looking at a violating trace. This work can be viewed as a

special case of the subsequent work of Küsters et al. [4] where the property associated with the

violating trace is an example of an accountability constraint. In this line of work as well, the

challenge lies in providing a method for designing constraints for a general class of protocols.

Feigenbaum et al [19, 20] also propose a de�nition of accountability that focuses on linking

a violation to punishment. They focus on punishing agents who are accountable for a violation

and provide two de�nitions of punishment. Their work uses Halpern and Pearl’s de�nition [14,

30] of causality in order to de�ne mediated punishment, where punishment is justi�ed by the

existence of a causal chain of events in addition to satisfaction of some utility conditions. We

think that the use of causality in that setting is an apt choice. Causality is not used in case of

automated punishment. However in case of mediated punishment, this work uses causality in

order to remove events from a trace. Roughly, the trace containing a violation, is extended to

a ‘punishment’ event. One of the clauses which tests whether punishment has been mediated,

checks if the punishment event causally depends on the violating event. Feigenbaum et al

provide their de�nitions using a trace-based framework similar to ours. The di�erence is that

we focus on the interacting processes which executed on the trace. Instead of removing events

from the trace, we remove the corresponding program expressions and then consider the entire

trace set hence obtained. Feigenbaum et al directly manipulate traces by adding and removing

events. In contrast, we modify the original programs (which generated the events) and then

consider the traces.

The focus of their work di�ers from ours. The underlying ideas of our cause de�nition

could be adapted to their framework to instantiate the causality notion that is currently used

as a black box in their de�nition of mediated punishment. One key di�erence is that we focus

on �nding program actions that lead to the violation, which could explain why the violation

happened while they focus on establishing a causal chain between violation and punishment

events. While the event-based view is suitable for their work, we discuss in Chapter 4 why that

view is not suitable for our purposes.

Jagadeesan et al [12] provide a de�nition of accountability in the context of authorization

in distributed systems. Their analysis models an auditor as an honest agent of the protocol and

uses game-based logics in order to study the tradeo�s between the requirements for honest

agents and the audit protocols. The auditor considers the actions of agents in the protocol

and can assign blame to the agents deviating from the protocol. In contrast, in our work, we

116

Chapter 6. Using Causation as a Building Block for Accountability

consider a trace-based model where a violation is detected on a �nite trace and reason about the

causal relationship between behaviors of interacting agents and the violation, not restricting

our attention to deviant behavior only.

Haeberlen et al [10] provide a de�nition of accountability in distributed systems. Their

system, PeerReview, maintains a record of all nodes’ actions and provides non-repudiable ev-

idence when a node deviates from its local protocol. The ‘violation’ occurs when a node does

not respond to a message as expected by the protocol or sends a message not prescribed by

the protocol. The motivation of this work di�ers from ours as we try to �nd causes of a global

violation of a protocol speci�cation. We di�erentiate between deviance, which occurs when an

agent does not follow its locally speci�ed program and a global violation, which occurs when

a protocol property is not satis�ed.

6.3.2 Causation for blame assignment

The work by Barth et al [89] provides a de�nition of accountability that uses the much coarser

notion of Lamport causality, which is related to Phase 1 de�nition (De�nition 15) in Part 2 of

the dissertation. However, we use minimality checks and �lter out progress enablers in Phase 2

(De�nition 17) to obtain a �ner determination of actual cause.

Gössler et al’s work [22, 90] considers blame assignment for safety property violations

where the violation of the global safety property implies that some components have violated

their local speci�cations. They use a counterfactual notion of causality similar in spirit to ours

to identify a subset of these faulty components as causes of the violation. The most recent work

in this line applies the framework to real-time systems speci�ed using timed automata [53].

A key technical di�erence between this line of work and ours is the way in which the contin-

gencies to be considered in counterfactual reasoning are constructed. We have a program-based

approach to leverage reasoning methods based on invariants and program logics. Gössler et al

assume that a dependency relation that captures information �ow between component actions

are given and construct their contingencies using the traces of faulty components observed on

the log as a basis. A set of faulty components is the necessary cause of the violation if the vi-

olation would disappear once the traces of these faulty components are modi�ed to match the

components’ local speci�cations. They determine the longest pre�xes of faulty components

that satisfy the speci�cation and replace the faulty su�xes with a correct one. Doing such a

replacement without taking into account its impact on the behavior of other components that

interact with the faulty components would not be satisfactory. Indeed, Wang et al [23] describe

a counterexample to Gössler et al’s work [22] where all causes are not found because of not be-

ing able to completely capture the e�ect of one component’s behavior on another’s. The most

117

Chapter 6. Using Causation as a Building Block for Accountability

recent de�nitions of Gössler et al [53, 90] address this issue by over approximating the parts of

the log a�ected by the faulty components and replacing them with behavior that would have

arisen had the faulty ones behaved correctly.

In constructing the contingencies to consider in counterfactual reasoning, we do not work

with individual traces as Gössler et al. Instead, we work at the level of programs where “cor-

recting” behavior is done by replacing program actions with those that do not have any e�ect

on the violation other than enabling the programs to progress. The relevant contingencies fol-

low directly from the execution of programs where such replacements have been done, without

any need to develop additional machinery for reconstructing traces. Note also that we have a

su�ciently �ne-grained de�nition to pinpoint the minimal set of actions that make the com-

ponent a part of the cause, where these actions may a part be of faulty or non-faulty programs.

Moreover, we purposely separate cause determination and blame assignment because we be-

lieve that in the security setting, blame assignment is a problem that requires additional criteria

to be considered such as the ability to make a choice, and intention. The work presented in this

dissertation focuses on identifying cause as a building block for blame assignment.

118

“A thesis is not �nished, it is abandoned.”

—

Chapter 7

Conclusion and Future Work

7.1 Directions for future work

The directions for future work are divided into three main categories: The �rst direction in-

volves developing de�nitions and analysis techniques for pinpointing properties of programs

as actual causes. The second direction involves building a theory of intention and foreseeabil-

ity and using these theories in combination with our theory of actual causation to provide a

�ne-grained de�nition of blame. The third direction involves an application of the proposed

de�nitions to debugging programs in a sequential setting.

7.1.1 Properties as actual causes

This dissertation formalizes program expressions which model actions and choices, as actual

causes and develops analysis techniques under the assumption that the complete event log is

known. The de�nitions of actual cause presented in Chapters 3 and 5, assume that the entire

log and the programs executed by every agent on the log are known, which may be hard to

implement in practice. A challenge in security settings is that deviant programs executed by

malicious agents may not be available for analysis; rather there will be evidence about cer-

tain actions committed by such agents. A generalized treatment accounting for such partial

observability would be technically interesting and useful for other practical applications.

One interesting direction is to remove this assumption by formalizing properties of programs
as actual causes. These de�nitions can then be used to analyze and compare the e�ectiveness

of accountability solutions proposed to address weaknesses in web-based public key infrastruc-

ture, for web based pinning of certi�cates and multi-path probing techniques.

119

Chapter 7. Conclusion and Future Work

De�ning actual cause in terms of properties of executed programs would require reason-

ing about properties of programs executed by agents, as opposed to reasoning about the exact

program that was executed. This would allow us to designate properties as units of blame.

One of the main challenges in extending the clauses to properties of programs lies in de�ning

minimality of ‘properties’ (or invariants) of the purported cause X .

We present a brief de�nition outline. Here we directly focus on properties of programs,

rather than speci�c actions within the program. Therefore, we lift the cause de�nition to pro-

gram identi�ers. Let l be a log of agents’ actions and choices, where the log may not be complete.

Let X be the set of identi�ers for the programs which are a part of the purported cause set and

Y denote the remaining programs. The evidence E(X) denotes a set of properties about the

programs in X and E(Y) about the programs in Y . The basic idea of our de�nition is to use

evidence from the log to partition the properties of concurrently executing programs into two

sets X and Y such that we can establish properties of programs in X to be an actual cause of

the violation ϕV . X is an actual cause of ϕV on a log l if:

• Occurrence: The violation has occurred on the log l. That is, the combination of evidence

E(X) and E(Y) implies ϕV .

• Necessity: When all agents (apart from adversary) execute their prescribed programs X ′

and Y ′, then no resulting trace satis�es ϕV . We intend to prove that any set of invari-

ants of the norms, X ′ and Y ′ implies the speci�cation in order to be able to re-use the

correctness proofs.

• Su�ciency: The combination of evidence E(X) from the log and the properties of pro-

grams in Y ′, E(Y ′), implies ϕV .

• Non-redundancy: No proper subset of X satis�es all three conditions above.

• Minimality: There does not exist a weaker property E ′(X) which implies E(X).

Actual cause �ngerprint. Another interesting direction would be to focus on a class of pro-

tocols for which the set of violating traces can be characterized as a �nite number of disjunctive

sets. The aim of this analysis would be to derive causal relations such that given a violating

trace, there exists a unique set of agents which can be blamed.

Blaming properties of programs as opposed to programs could also be useful for developing

this unique ‘causal �ngerprint’ which indicates the exact set of agents to be blamed when a

particular type of violation of the protocol speci�cation is detected. The aim is to develop

accountability constraints [4] for a special class of protocols, where the set of violations of the

protocol speci�cation can be classi�ed as a �nite number of disjunctive sets of attack traces.

120

Chapter 7. Conclusion and Future Work

Küsters et al [4] have discussed accountability constraints however they do not provide any

semantic basis for such constraints. It would be interesting to develop constraints using causal

analysis of each class of violating traces for a speci�c protocol. Developing an actual cause

�ngerprint in this manner can aid automation of blame assignment.

Other security applications. We have de�ned what it means for a sequence of program

actions to be an actual cause of a violation of a security property. This question is motivated

by security applications where agents can exercise their choice to either execute a prescribed

program or deviate from it. While we demonstrate the value of this de�nition by analyzing a

set of authentication failures as well as demonstrating its applicability to examples from AI/

philosophy, it would be interesting to explore applications to other protocols in which account-

ability concerns are central, in particular, protocols for electronic voting and secure multiparty

computation in the semi-honest model.

7.1.2 Towards a theory of blame: intention, foreseeability

A problem with simply blaming all of the deviants whose expressions are a part of the causal

sequence for the violation, is that agents that deviate may have actually been forced into the

deviation by other agents. In that case, it appears that blaming the agent that forced the devia-

tion is more appropriate than blaming the agent who had no choice but to deviate. Additionally,

there have been recent studies which indicate that causation might depend on how people ’s

moral judgment and how they perceive blame, i.e. people might �nd as cause an agent who they

would intuitively blame [91]. An interesting extension of this dissertation will be to understand

these connections by de�ning intention, foreseeability and the connection with blame formally.

This direction will also involve de�ning accountability to be sensitive to forced deviations.

7.1.3 Actual causation in sequential setting

When adapted for the sequential setting where execution di�erences of a single program are

analyzed, our approach could open up the possibility of an automated causal analysis. One

scenario where such automation is particularly useful is software debugging. Often, in soft-

ware debugging, a lot of manual e�ort goes into identifying the cause of software bugs. Prior

work [82] on developing causal analysis techniques for detecting errors via counterexamples

output all lines in the coding base which di�er from intended execution order. Using the causal

techniques can help pinpoint the source of the software bug or narrow down the search space

signi�cantly.

121

Chapter 7. Conclusion and Future Work

7.2 Concluding remarks

In this dissertation, we have proposed a de�nition of cause that can be used to identify a se-

quence of program expressions and choices which are an actual cause of a violation in a sys-

tem of interacting processes. Our de�nition is inspired by prior work on counterfactual-based

and process-based actual causation [14, 16, 17, 44, 45, 46, 68]. Our design considerations are

motivated by the security domain where researchers are interested in �nding who to hold ac-

countable for security violations as well as to �x faulty protocol design. To the best of our

knowledge, this is the �rst instance of an interaction-aware approach to actual causation being

proposed for blame assignment in such protocol based settings, i.e. to connect actions to occur-

rence of violation in interacting systems. Our approach blends ideas from both process-based

and counterfactual-based approaches to actual causation in AI and analytical philosophy.

This work demonstrates the importance of interaction and choice in order to formulate

actual causation as a building block for accountability in interacting systems. Our de�nition

formalizes program expressions as causes, which is a suitable abstraction level and is a useful

building block for several such applications, in particular for providing explanations, assign-

ing blame and providing accountability guarantees for security protocols. The applicability of

ideas in this dissertation extends beyond protocol settings and these concepts can be applied in

di�erent (non-deterministic) settings where causal inferences and interactions are signi�cant.

122

Appendices

123

AppendixA

Operational Semantics

Syntax. The syntax given here includes the internal choice operator, the asymmetric disjunc-

tion as well as the assert statement introduced in Chapter 5. Our syntax is given using the

A-normal form [58] where every term contains only one connective and all operands contain

only variables. The syntax consists of values v for variables x, actions α and expressions e.

Values v include boolean values, numerical values and all other return values (such as keys or

cipher text). ζ denotes primitive functions for thread local computations, discussed in Chap-

ter 5.

Values v ::= x | true | false | 1 | 2 . . .
Actions α ::= v | send(v) | recv() | ζ(v) | v1 ∧ v2 | v1 ∨ v2 |

¬v | v1? v2 : v3 | v1 ⊕ v2 | v1[] v2 | . . .
Expressions e ::= v | (b : x = α); e1 | assert(v); e1

Operational Semantics. Selected rules of the operational semantics of the programming

language described above are shown in Figures A.1 and A.2. The symmetric disjunction eval-

uates to true as long as one of the terms evaluates to true. For the asymmetric disjunction,

if the left disjunct evaluates to true, the label record l. If the right disjunct evaluates to true,

the label record r. If both the disjuncts are true, then either one of the rules can �re non-

deterministically. If both the disjuncts are false, the label records n. Note that we can represent

an internal choice over more terms by nesting the choice operator as shown in Chapter 4.4.3.1.

In the rules give below, an operator marked with ˙ indicates the standard semantic interpreta-

tion of the operator. Note that σ does not change in these rules but is included because some

applications may require actions that a�ect state.

125

Appendix A. Operational Semantics

T ↪→ T ′

I , (b : x = v; e) , σ
〈I,b〉
↪→ I , e{v/x} , σ

red-var

I , ((b : x = ζ(v)); e) , σ
〈I,b〉
↪→ I , e{ζ̇(v)/x} , σ

red-act

I , (b : x = v1 ∨ v2); e , σ
〈I,b〉
↪→ I , e{v1 ∨̇ v2/x} , σ

red-symmetric-disj

I , (b : x = v1 ⊕ v2); e , σ
〈I,b,l〉
↪→ I , e{v1/x} , σ

red-int-choice1

I , (b : x = v1 ⊕ v2); e , σ
〈I,b,r〉
↪→ I , e{v2/x} , σ

red-int-choice2

I , (b : x = true [] v2); e , σ
〈I,b,l〉
↪→ I , e{true/x} , σ

red-asymmetric-disj1

I , (b : x = v1 [] true); e , σ
〈I,b,r〉
↪→ I , e{true/x} , σ

red-asymmetric-disj2

I , (b : x = false [] false); e , σ
〈I,b,n〉
↪→ I , e{false/x} , σ

red-asymmetric-disj3

I , (b : x = v1 ∧ v2); e , σ
〈I,b〉
↪→ I , e{v1 ∧̇ v2/x} , σ

red-conj

I , (b : x = ¬v1); e , σ
〈I,b〉
↪→ I , e{¬̇v1/x} , σ

red-neg

I , (b : x = true ? v2 : v3); e , σ
〈I,b〉
↪→ I , v2; e , σ

red-cond1

I , (b : x = false ? v2 : v3); e , σ
〈I,b〉
↪→ I , v3; e , σ

red-cond2

I , (assert(true); e) , σ
ε
↪→ I , e , σ

red-assert

Figure A.1: Operational semantics. An operator marked with ˙ indicates the standard semantic

interpretation of the operator.

126

Appendix A. Operational Semantics

C −→ C ′

Internal reduction
Ti

r
↪→ T ′i

. . . , Ti, . . .
r−→ . . . , T ′i , . . .

red-con�g

Communication actions

. . . , 〈Is , (bs : x = send(v); es) , σs〉, 〈Ir , ((br : y = recv(); er , σr〉, . . .
〈〈Is,bs〉,〈Ir,br〉〉−→ . . . , 〈Is , es[0/x] , σs〉, 〈Ir , er[v/y] , σr〉, . . .

red-comm

Figure A.2: Operational semantics (contd.)

127

Appendix A. Operational Semantics

128

AppendixB

Proof for Case Study: Program

Actions as Causes

We model an instance of our running example based on passwords in order to demonstrate

our actual cause de�nition. As explained in Section 5.1, we consider a protocol session where

Server1, User1, User2, User3 and multiple notaries interact over an adversarial network to es-

tablish access over a password-protected account. In parallel for this scenario, we assume the

log also contains interactions of a second server (Server2), one notary (Notary4, not contacted

by User1, User2 or User3) and another user (User4) who follow their norms for account ac-

cess. These threads do not interact with threads {User1, Server1, Notary1, Notary2, Notary3,

Adversary, User2, User3}. The protocol has been described in detail below.

B.A Protocol description

We consider our example protocol with eleven threads named {Server1, User1, User2, User3,

Adversary, Notary1, Notary2, Notary3, Notary4, Server2, User4}. The norms for all these threads,

except Adversary are shown in Figure B.1. The actual violation is caused because some of the

executing programs are di�erent from the norms. These actual programs, called A as in Sec-

tion 5.2, are shown later. The norms are shown here to help the reader understand what the

ideal protocol is.

In this case study, we have two servers (Server1, Server2) running the protocol with two

di�erent users (User1, User4) and each server allocates account access separately. The norms

in Figure B.1 assume that User1’s and User4’s accounts (called acct1 and acct2 in Server1’s and

Server2’s norm respectively) have been created already. User1’s password, pwd1 is associated

129

Appendix B. Proof for Case Study: Program Actions as Causes

with User1’s user id uid1. Similarly User4’s password pwd2 is associated with its user id uid2.

This association (in hashed form) is stored in Server1’s local state at pointer mem1 (and at

mem2 for Server2). The norm for Server1 is to wait for a request from an entity, respond with

its public key, then wait for a password encrypted with that public key and grant access to the

requester if the password matches the previously stored value in Server1’s memory at mem1.

To grant access, Server1 adds an entry into a private access matrix, called P1. (A separate server

thread, not shown here, allows User1 to access its resource if this entry exists in P1.)

The norm for User1 is to send an access request to Server1, wait for the server’s public key,

verify that key with three notaries and then send its password pwd1 to Server1, encrypted under

Server1’s public key. On receiving Server1’s public key, User1 initiates a protocol with the three

notaries and accepts or rejects the key based on the response of a majority of the notaries.

The norm for User4 is the same as that for User1 except that it interacts with Server2. Note

that User4 only veri�es the public key with one notary, Notary4. The norm for Server2 is the

same as that for Server1 except that it interacts with User4.

In parallel, the norm for User2 is to generate and send a nonce to User3. The norm for User3

is to receive a message from User2, generate a nonce and send it to User2.

Each notary has a private database of (public_key, principal) tuples. The norms here assume

that this database has already been created correctly. When User1 or User4 send a request

with a public key, the notary responds with the principal’s identi�er after retrieving the tuple

corresponding to the key in its database. (Note that, in this simple example, we identify threads

with principals, so the notaries just store an association between public keys and their threads.)

B.B Preliminaries

Notation. The programs in this example use several primitive functions. Enc(k,m) and

Dec(k′,m) denote encryption and decryption of message m with key k and k′ respectively.

Hash(m) generates the hash of term m. Sig(k,m) denotes message m signed with the key

k, paired with m in the clear. pub_key_i and pvt_key_i denote the public and private keys of

thread i, respectively. For readability, we include the intended recipient i and expected sender

j of a message as the �rst argument of send(i,m) and recv(j) expressions. As explained

earlier, i and j are ignored during execution and a network adversary, if present, may capture

or inject any messages. Send(i, j,m) @ u holds if thread i sends message m to thread j at time

u and Recv(i, j,m) @ u hold if thread i receives message m from thread j at time u. P1(u)

and P2(u) denotes the tuples in the permission matrices at time u. Initially P1 and P2 do not

contain any access permissions.

130

Appendix B. Proof for Case Study: Program Actions as Causes

NormN (Server1):

1 : (uid1, n1) = recv(j); //access req from thread j
2 : n2 = new;
3 : send(j, (pub_key_Server1, n2, n1)); //sign and send public key

4 : s1 = recv(j); //encrypted uid1, pwd1 from j, alongwith its thread id J
5 : (n3, uid1, pwd1, J) = Dec(pvt_key_Server1, s1);
6 : t = Hash(uid1, pwd1);
assert(mem1 = t) //compare hash with stored hash value for same uid

7 : insert(P1, (acct1, J));

NormN (User1):

1 : n1 = new;
2 : send(Server1, (uid1, n1)); //access request

3 : (pub_key1, n2, n1) = recv(j); //key from j
4 : n3, n4, n5 = new;
5 : send(Notary1, pub_key1, n3);
6 : send(Notary2, pub_key1, n4);
7 : send(Notary3, pub_key1, n5);
8 : Sig(pvt_key_Notary1, (pub_key1, l1, n3)) = recv(Notary1); //notary1 responds

9 : Sig(pvt_key_Notary2, (pub_key1, l2, n4)) = recv(Notary2); //notary2 responds

10 : Sig(pvt_key_Notary3, (pub_key1, l3, n5)) = recv(Notary3); //notary3 responds

assert(At least two of {l1,l2,l3} equal Server1)
11 : t = Enc(pub_key1, n2, (uid1, pwd1,User1));
12 : send(Server1, t); //send t to Server1;

NormsN (Notary1),N (Notary2),N (Notary3),N (Notary4):

// o denotes Notary1, Notary2, Notary3 or Notary4

1 : (pub_key, n1) = recv(j);
2 : pr = KeyOwner(pub_key); //lookup key owner

3 : send(j, Sig(pvt_key_o, (pub_key, pr, n1))); //signed certi�cate;

NormN (Server2):

1 : (uid2, n1) = recv(j); //access req from thread j
2 : n2 = new;
3 : send(j, (pub_key_Server2, n2, n1));
4 : s1 = recv(j); //encrypted uid2, pwd2 from j, alongwith its thread id J
5 : (n2, uid2, pwd2, J) = Dec(pvt_key_Server2, s1);
6 : t = Hash(uid2, pwd2);
assert(mem2 = t) //compare hash with stored hash value for same uid

7 : insert(P2, (acct2, J));

NormN (User4):

1 : n1 = new;
2 : send(Server2, (uid2, n1)); //access request

3 : pub_key, n2, n1 = recv(j); //key from j
4 : n3 = new;
5 : send(Notary4, pub_key, n3);
6 : Sig(pvt_key_Notary4, (pub_key, l1, n3)) = recv(Notary4); //notary4 responds

assert({l1} equals Server2)
7 : t = Enc(pub_key, n2, (uid2, pwd2,User4));
8 : send(Server2, t); //send t to Server2;

NormN (User2):

1 : n1 = new;
2 : send(User3, (n1));
3 : Sig(pvt_key_j, (n2, n1)) = recv(User3); 4 :

NormN (User3):

1 : n1 = recv(User2);
2 : n2 = new;
3 : send(User3, Sig(pvt_key_User3, (n2, n1)));

Figure B.1: Norms for Server1, User1, Server2, User4, User2, User3 and the notaries. Adversary’s

norm is the trivial empty program.

131

Appendix B. Proof for Case Study: Program Actions as Causes

Assumptions. (A1)

HonestThread(Server1,A(Server1))

We are interested in security guarantees about users who create accounts by interacting with

the server and who do not share the generated password or user-id with any other principal

except for sending it according to the roles speci�ed in the program given below.

(A2)

HonestThread(User1,A(User1))

(A3)

HonestThread(Adversary,A(Adversary))

(A4)

HonestThread(Notary1,A(Notary1))

(A5)

HonestThread(Notary2,A(Notary2))

(A6)

HonestThread(Notary3,A(Notary3))

(A7)

HonestThread(Notary4,A(Notary4))

(A8)

HonestThread(Server2,A(Server2))

(A9)

HonestThread(User4,A(User4))

(A10)

HonestThread(User2,A(User2))

(A11)

HonestThread(User3,A(User3))

A principal following the protocol never shares its keys with any other entity. We also

assume that the encryption scheme in semantically secure and non-malleable. Since we identify

threads with principals therefore each of the threads are owned by principals with the same

identi�er, for instance Server1 owns the thread that executes the program A(Server1).

132

Appendix B. Proof for Case Study: Program Actions as Causes

(Start1)

Start(i) @ −∞

where i refers to all the threads in the set described above.

Security property. The security property of interest to us is that if at time u, a thread k is

given access to account a, then k owns a. Speci�cally, in this example, we are interested in the

a = acct1 and k = User1. This can be formalized by the following logical formula, ¬ϕV :

∀u, k. (acct1, k) ∈ P1(u) ⊃ (k = User1) (B.1)

Here, P1(u) is the state of the access control matrix P1 for Server1 at time u.

The actuals for all threads are shown in Figure B.2 and B.3.

B.C Attack

As an illustration, we model the “Compromised Notaries” violation of Section 5.1. The programs

executed by all threads are given in Figures B.2 and B.3. User1 sends an access request to Server1

which is intercepted by Adversary who sends its own key to User1 (pretending to be Server1).

User1 checks with the three notaries who falsely verify Adversary’s public key to be Server1’s

key. Consequently, User1 sends the password to Adversary. Adversary then initiates a protocol

with Server1 and gains access to the User1’s account. Note that the actual programs of the

three notaries attest that the public key given to them belongs to Server1. In parallel, User2

sends a request to Server1 and receives a response from Server1. Following this interaction,

User2 interacts with User3, as in their norms. User4, Server2 and Notary4 execute their actuals

in order to access the account acct2 as well.

Figure B.4 shows the expressions executed by each thread on the property-violating trace.

For instance, the label 〈〈User1, 1〉, 〈Adversary, 1〉〉 indicates that both User1 and Adversary ex-

ecuted the expressions with the line number 1 in their actual programs, which resulted in a

synchronous communication between them, while the label 〈Adversary, 4〉 indicates the local

execution of the expression at line 4 of Adversary’s program. The initial con�guration has the

programs:

{A(User1),A(Server1),A(Adversary),A(Notary1),A(Notary2),A(Notary3),A(User2),

A(User3),A(User4),A(Server2),

A(Notary4)}. For this attack scenario, the concrete trace t we consider is such that log(t) is

any arbitrary interleaving of the actions for X1 =

133

Appendix B. Proof for Case Study: Program Actions as Causes

ActualA(Adversary)
1 : (uid1, n1) = recv(j); //intercept req from User1
2 : n2 = new;
3 : send(User1, (pub_key_Adversary1, n2, n1)); //send key to User1
4 : s = recv(User1); //pwd from User

5 : n2, uid1, pwd1,User1 = Dec(pvt_key_Adversary, s); //decrypt pwd;
6 : n3 = new;
7 : send(Server1, (uid1, n3)); //access request to Server
8 : pub_key, n4, n3 = recv(Server1);
9 : t = Enc(pub_key, (n4, uid1, pwd1,Adversary)); //encrypt pwd

10 : send(Server1, t); //pwd to Server1

ActualsA(Notary1),A(Notary2),A(Notary3):
// o denotes Notary1, Notary2 or Notary3

1 : (pub_key_Adversary, n1) = recv(j);
2 : send(j, Sig(pvt_key_o, (pub_key_Adversary, Server1, n1)); //signed certi�cate to j;

ActualA(Server1):
1 : (uid1, n1) = recv(j); //access req from thread j
2 : n2 = new;
3 : send(j, (pub_key_Server1, n2, n1));
4 : n4 = recv(j); //receive nonce from thread User2
5 : n5 = new;
6 : send(j, Sig(pvt_key_Server1, (n5, n4)));
7 : s1 = recv(j); //encrypted uid1, pwd1 from j, alongwith its thread id J
8 : (n3, uid1, pwd1, J) = Dec(pvt_key_Server1, s1);
9 : t = Hash(uid1, pwd1);
assert(mem1 = t)[A] //compare hash with stored hash value for same uid

10 : insert(P1, (acct1, J));

ActualA(User1):
1 : n1 = new;
2 : send(Server1, (uid1, n1)); //access request

3 : (pub_key, n2, n1) = recv(j); //key from j
4 : n3, n4, n5 = new;
5 : send(Notary1, pub_key, n3);
6 : send(Notary2, pub_key, n4);
7 : send(Notary3, pub_key, n5);
8 : Sig(pvt_key_Notary1, (pub_key, l1, n3)) = recv(Notary1); //notary1 responds

9 : Sig(pvt_key_Notary2, (pub_key, l2, n4)) = recv(Notary2); //notary2 responds

10 : Sig(pvt_key_Notary3, (pub_key, l3, n5)) = recv(Notary3); //notary3 responds

assert(At least two of{l1, l2, l3}equal Server1); [B] //
11 : t = Enc(pub_key, n2, (uid1, pwd1,User1));
12 : send(Server1, t); //send t to Server1;

ActualA(User2):
1 : n1 = new;
2 : send(Server1, (n1));
3 : Sig(pvt_key, (n2, n1)) = recv(Server1);
4 : send(User3, (n2));
5 : Sig(pub_key, n3, n2) = recv(User3);

ActualA(User3):
1 : n1 = recv(User2);
2 : n2 = new;
3 : send(User3, Sig(pvt_key_User3, n2, n1));

Figure B.2: Actuals for Adversary, Notary1, Notary2, Notary3, Server1, User1, User2, User3

134

Appendix B. Proof for Case Study: Program Actions as Causes

Actual A(Server2):
1 : (uid2, n1) = recv(j); //access req from thread j
2 : n2 = new;
3 : send(j, (pub_key_Server2, n2, n1));
4 : s1 = recv(j); //encrypted uid2, pwd2 from j, alongwith its thread id J
5 : (n2, uid2, pwd2, J) = Dec(pvt_key_Server2, s1);
6 : t = Hash(uid2, pwd2);
assert(mem2 = t) //(C)compare hash with stored hash value for same uid

7 : insert(P2, (acct2, J));

Actual A(User4):
1 : n1 = new;
2 : send(Server2, (uid2, n1)); //access request

3 : Sig(pub_key, n2, n1) = recv(j); //key from j
4 : n3 = new;
5 : send(Notary4, pub_key, n3);
6 : Sig(pvt_key_Notary4, (pub_key, l1, n3)) = recv(Notary4); //notary4 responds

assert({l1} equals Server2)(D)
7 : t = Enc(pub_key, n2, (uid2, pwd2,User4));
8 : send(Server2, t); //send t to Server2;

Actual A(Notary4):
// o denotes Notary1, Notary2, Notary3 or Notary4

1 : (pub_key, n1) = recv(j);
2 : pr = KeyOwner(pub_key); //lookup key owner

3 : send(j, Sig(pvt_key_o, (pub_key, pr, n1))); //signed certi�cate;

Figure B.3: Actuals for Server2, User4, Notary4

135

Appendix B. Proof for Case Study: Program Actions as Causes

{Adversary,User1, Server1,Notary1,Notary2,Notary3,User2,User3} and

X2 = {Server2,User4,Notary4} shown in Figure B.4(a) and Figure B.5. Any such interleaved

log is denoted log(t) in the sequel. At the end of this log, (acct1,Adversary) occurs in the access

control matrix P1, but Adversary does not own acct1. Hence, this log corresponds to a violation

of our security property.

Note that, if any two of the three notaries had attested the Adversary’s key to belong to

Server1, the violation would have still happened. Consequently, we may expect three indepen-

dent program causes in this example: {Adversary, User1, Server1, Notary1, Notary2} with the

action causes ad as shown in Figure B.4(c), {Adversary, User1, Server1, Notary1, Notary3} with

the actions a′d, and {Adversary, User1, Server1, Notary2, Notary3} with the actions a′′d where a′d
and a′′d can be obtained from ad (Figure B.4(c)) by considering actions for {Notary1, Notary3}

and {Notary2, Notary3} respectively, instead of actions for {Notary1, Notary2}. The following

theorem states that our de�nitions determine exactly these three independent causes.

Theorem 4. Let I = {User1, Server1,Adversary,Notary1,Notary2,Notary3,Notary4,
Server2,User4,User2,User3}, and Σ andA be as described above. Let t be a trace from 〈I,A,Σ〉
such that log(t)|i for each i ∈ I matches the corresponding log projection from Figures B.4(a)
and B.5. Then, De�nition 18 determines three possible values for the program cause X of viola-
tion t ∈ ϕV : {Adversary, User1, Server1, Notary1, Notary2}, {Adversary, User1, Server1, Notary1,
Notary3}, and {Adversary,User1, Server1,Notary2,Notary3} where the corresponding actual causes
are ad, a′d and a

′′
d respectively.

It is instructive to understand the proof of this theorem, as it illustrates our de�nitions of

causation. We verify that our Phase 1 and Phase 2 de�nitions (De�nitions 15, 17, 18) yield

exactly the three values for X mentioned in the theorem.

Lamport cause (Phase 1). We show that any l whose projections match those shown in Fig-

ure B.4(b) satis�es su�ciency and minimality. From Figure B.4(b), such an l has no actions for

User3, User4, Notary4, Server2 and only those actions of User2 that are involved in synchro-

nization with Server1. For all other threads, the log contains every action from t. The intuitive

explanation for this l is straightforward: Since lmust be a (projected) pre�x of the trace, and the

violation only happens because of insert in the last statement of Server1’s program, every

action of every program before that statement in Lamport’s happens-before relation must be in

l. This is exactly the l described in Figure B.4(b).

Formally, following the statement of su�ciency, let T be the set of traces starting from

C0 = 〈I,A,Σ〉 (Figure B.2) whose logs contain l as a projected pre�x. Pick any t′ ∈ T . We

need to show t′ ∈ ϕV . However, note that any t′ containing all actions in l must also add

136

Appendix B. Proof for Case Study: Program Actions as Causes

(a)

log(t)|Adversary
〈〈User1, 2〉, 〈Adversary, 1〉〉,
〈Adversary, 2〉,
〈〈Adversary, 3〉, 〈User1, 3〉〉,
〈〈User1, 12〉, 〈Adversary, 4〉〉,
〈Adversary, 5〉,
〈Adversary, 6〉,
〈〈Adversary, 7〉, 〈Server1, 1〉〉,
〈〈Server1, 3〉, 〈Adversary, 8〉〉,
〈Adversary, 9〉,
〈〈Adversary, 10〉, 〈Server1, 7〉〉,

log(t)|User1
〈User1, 1〉,
〈〈User1, 2〉, 〈Adversary, 1〉〉,
〈〈Adversary, 3〉, 〈User1, 3〉〉,
〈User1, 4〉,
〈〈User1, 5〉, 〈Notary1, 1〉〉,
〈〈User1, 6〉, 〈Notary2, 1〉〉,
〈〈User1, 7〉, 〈Notary3, 1〉〉,
〈〈Notary1, 2〉, 〈User1, 8〉〉,
〈〈Notary2, 2〉, 〈User1, 9〉〉,
〈〈Notary3, 2〉, 〈User1, 10〉〉,
〈User1, 11〉,
〈〈User1, 12〉, 〈Adversary, 4〉〉,

log(t)|Server1:
〈〈Adversary, 7〉, 〈Server1, 1〉〉,
〈Server1, 2〉,
〈〈Server1, 3〉, 〈Adversary, 8〉〉,
〈〈User2, 2〉, 〈Server1, 4〉〉,
〈Server1, 5〉,
〈〈Server1, 6〉, 〈User2, 3〉〉,
〈〈Adversary, 10〉, 〈Server1, 7〉〉,
〈Server1, 8〉,
〈Server1, 9〉,
〈Server1, 10〉,

log(t)|Notary1:
〈〈User1, 5〉, 〈Notary1, 1〉〉,
〈〈Notary1, 2〉, 〈User1, 8〉〉,

log(t)|Notary2:
〈〈User1, 6〉, 〈Notary2, 1〉〉,
〈〈Notary2, 2〉, 〈User1, 9〉〉,

log(t)|Notary3:
〈〈User1, 7〉, 〈Notary3, 1〉〉,
〈〈Notary3, 2〉, 〈User1, 10〉〉,

log(t)|User2:
〈User2, 1〉,
〈〈User2, 2〉, 〈Server1, 4〉〉,
〈〈Server1, 6〉, 〈User2, 3〉〉,
〈〈User2, 4〉, 〈User3, 1〉〉,
〈〈User3, 3〉, 〈User2, 5〉〉,

log(t)|User3:
〈〈User2, 4〉, 〈User3, 1〉〉,
〈User3, 2〉,
〈〈User3, 3〉, 〈User2, 5〉〉,

(b)

l|Adversary
〈〈User1, 2〉, 〈Adversary, 1〉〉,
〈Adversary, 2〉,
〈〈Adversary, 3〉, 〈User1, 3〉〉,
〈〈User1, 12〉, 〈Adversary, 4〉〉,
〈Adversary, 5〉,
〈Adversary, 6〉,
〈〈Adversary, 7〉, 〈Server1, 1〉〉,
〈〈Server1, 3〉, 〈Adversary, 8〉〉,
〈Adversary, 9〉,
〈〈Adversary, 10〉, 〈Server1, 7〉〉,

l|User1
〈User1, 1〉
〈〈User1, 2〉, 〈Adversary, 1〉〉,
〈〈Adversary, 3〉, 〈User1, 3〉〉,
〈User1, 4〉,
〈〈User1, 5〉, 〈Notary1, 1〉〉,
〈〈User1, 6〉, 〈Notary2, 1〉〉,
〈〈User1, 7〉, 〈Notary3, 1〉〉,
〈〈Notary1, 2〉, 〈User1, 8〉〉,
〈〈Notary2, 2〉, 〈User1, 9〉〉,
〈〈Notary3, 2〉, 〈User1, 10〉〉,
〈User1, 11〉,
〈〈User1, 12〉, 〈Adversary, 4〉〉,

l|Server1:
〈〈Adversary, 7〉, 〈Server1, 1〉〉,
〈Server1, 2〉,
〈〈Server1, 3〉, 〈Adversary, 8〉〉,
〈〈User2, 2〉, 〈Server1, 4〉〉,
〈Server1, 5〉,
〈〈Server1, 6〉, 〈User2, 3〉〉,
〈〈Adversary, 10〉, 〈Server1, 7〉〉,
〈Server1, 8〉,
〈Server1, 9〉,
〈Server1, 10〉,

l|Notary1:
〈〈User1, 5〉, 〈Notary1, 1〉〉,
〈〈Notary1, 2〉, 〈User1, 8〉〉,

l|Notary2:
〈〈User1, 6〉, 〈Notary2, 1〉〉,
〈〈Notary2, 2〉, 〈User1, 9〉〉,

l|Notary3:
〈〈User1, 7〉, 〈Notary3, 1〉〉,
〈〈Notary3, 2〉, 〈User1, 10〉〉,

l|User2:
〈User2, 1〉,
〈〈User2, 2〉, 〈Server1, 4〉〉,
〈〈Server1, 6〉, 〈User2, 3〉〉,

(c)

ad|Adversary
〈〈User1, 2〉, 〈Adversary, 1〉〉,
〈Adversary, 2〉,
〈〈Adversary, 3〉, 〈User1, 3〉〉,
〈〈User1, 12〉, 〈Adversary, 4〉〉,
〈Adversary, 5〉,
〈Adversary, 6〉,
〈〈Adversary, 7〉, 〈Server1, 1〉〉,
〈〈Server1, 3〉, 〈Adversary, 8〉〉,
〈Adversary, 9〉,
〈〈Adversary, 10〉, 〈Server1, 7〉〉,

ad|User1
〈User1, 1〉
〈〈User1, 2〉, 〈Adversary, 1〉〉,
〈〈Adversary, 3〉, 〈User1, 3〉〉
〈User1, 4〉,
〈〈User1, 5〉, 〈Notary1, 1〉〉,
〈〈User1, 6〉, 〈Notary2, 1〉〉,

〈〈Notary1, 2〉, 〈User1, 8〉〉,
〈〈Notary2, 2〉, 〈User1, 9〉〉,

〈User1, 11〉,
〈〈User1, 12〉, 〈Adversary, 4〉〉,

ad|Server1:
〈〈Adversary, 7〉, 〈Server1, 1〉〉,
〈Server1, 2〉
〈〈Server1, 3〉, 〈Adversary, 8〉〉,

〈〈Adversary, 10〉, 〈Server1, 7〉〉,
〈Server1, 8〉,
〈Server1, 9〉,
〈Server1, 10〉,

ad|Notary1:

〈〈User1, 5〉, 〈Notary1, 1〉〉,
〈〈Notary1, 2〉, 〈User1, 8〉〉,

ad|Notary2:

〈〈User1, 6〉, 〈Notary2, 1〉〉,
〈〈Notary2, 2〉, 〈User1, 9〉〉,

Left to Right: (a): log(t)|i for i ∈ {Adversary,User1, Server1,Notary1,Notary2,Notary3,User2,User3}. (b): Lamport cause l for The-

orem 4. l|i = ∅ for i ∈ {Notary4,Server2,User4,User3} as output by De�nition 15. (c): Actual cause ad for Theorem 4. ad|i = ∅ for

i ∈ {Notary3,Notary4, Server2,User4,User2,User3}. ad is a projected sublog of Lamport cause l.

Figure B.4: log(t)|i and ad
137

Appendix B. Proof for Case Study: Program Actions as Causes

log(t)|Server2:
〈〈User4, 2〉, 〈Server2, 1〉〉,
〈Server2, 2〉,
〈〈Server2, 3〉, 〈User4, 3〉〉,
〈〈User4, 8〉, 〈Server2, 4〉〉,
〈Server2, 5〉,
〈Server2, 6〉,
〈Server2, 7〉,

log(t)|User1
〈User4, 1〉,
〈〈User4, 2〉, 〈Server2, 1〉〉,
〈〈Server2, 3〉, 〈User4, 3〉〉,
〈User4, 4〉,
〈〈User4, 5〉, 〈Notary4, 1〉〉,
〈〈Notary4, 3〉, 〈User4, 6〉〉,
〈User4, 7〉,
〈〈User4, 8〉, 〈Server2, 4〉〉,

log(t)|Notary4:

〈〈User4, 5〉, 〈Notary4, 1〉〉,
〈Notary4, 2〉,
〈〈Notary4, 3〉, 〈User4, 6〉〉,

Figure B.5: log(t)|i where i ∈ {User4, Server2,Notary4}

138

Appendix B. Proof for Case Study: Program Actions as Causes

(acct1,Adversary) to P1, but Adversary 6= User1. Hence, t′ ∈ ϕV . Further, l is minimal as

described in the previous paragraph.

Actual cause (Phase 2). Phase 2 (De�nitions 17, 18) determines three independent pro-

gram causes for X : {Adversary, User1, Server1, Notary1, Notary2}, {Adversary, User1, Server1,

Notary1, Notary3}, and {Adversary, User1, Server1, Notary2, Notary3} with the actual action

causes given by ad, a
′
d and a′′d, respectively in Figure B.4(c). These are symmetric, so we only

explain why ad satis�es De�nition 17. (For this ad, De�nition 18 immediately forces X =

{Adversary,User1, Server1,Notary1,Notary2}.) We show that (a) ad satis�es su�ciency’, and

(b) No proper sublog of ad satis�es su�ciency’ (minimality’). Note that ad is obtained from l by

dropping Notary3, User2 and User3, and all their interactions with other threads.

We start with (a). Let ad be such that ad|i matches Figure B.4(c) for every i. Fix any dum-

mifying function f . We must show that any trace originating from dummify(I,A,Σ, ad, f),

whose log contains ad as a projected sublog, is in ϕV . Additionally we must show that there

is such a trace. There are two potential issues in mimicking the execution in ad starting from

dummify(I,A,Σ, ad, f) — �rst, with the interaction between User1 and Notary3 and, second,

with the interaction between Server1 and User2. For the �rst interaction, on line 7, A(User1)

(Figure B.2) synchronizes with Notary3 according to l, but the synchronization label does not

exist in ad. However, in dummify(I,A,Σ, ad, f), the recv() on line 10 inA(User1) is replaced

with a dummy value, so the execution from dummify(I,A,Σ, ad, f) progresses. Subsequently,

the majority check (assertion [B]) succeeds as in l, because two of the three notaries (Notary1

and Notary2) still attest the Adversary’s key.

A similar observation can be made about the interaction between Server1 and User2. Line 4,

A(Server1) (from Figure B.4(b)) synchronizes with User2 according to l, but this synchroniza-

tion label does not exist in ad. However, in dummify(I,A,Σ, ad, f), the recv() on line 4 in

A(Server1) is replaced with a dummy value, so the execution from dummify(I,A,Σ, ad, f) pro-

gresses. Subsequently, Server1 still adds permission for the Adversary.

Next we prove that every trace starting from dummify(I,A,Σ, ad, f), whose log contains

ad (Figure B.4(c)) as a projected sublog, is in ϕV . Fix a trace t′ with log l′. Assume l′ coincides

with ad. We show t′ ∈ ϕV as follows:

1. Since the synchronization labels in l′ are a superset of those in ad, Server1 must exe-

cute line 10 of its program A(Server1) in t′. After this line, the access control matrix P1

contains (acct1, J) for some J .

2. When A(Server1) writes (x, J) to P1 at line 10, then J is the third component of a tuple

obtained by decrypting a message received on line 7.

139

Appendix B. Proof for Case Study: Program Actions as Causes

3. Since the synchronization projections on l′ are a superset of ad, and on ad 〈Server1, 7〉
synchronizes with 〈Adversary, 10〉, J must be the third component of an encrypted mes-

sage sent on line 10 of A(Adversary).

4. The third component of the message sent on line 10 by Adversary is exactly the term

“Adversary”. (This is easy to see, as the term “Adversary” is hardcoded on line 9.) Hence,

J = Adversary.

5. This immediately implies that t′ ∈ ϕV since (acct1,Adversary) ∈ P1, but Adversary 6=
User1.

Last, we prove (b) — that no proper subsequence of ad satis�es su�ciency’. Note that ad

(Figure B.4(c)) contains exactly those actions from l (Figure B.4) on whose returned values the

last statement of Server1’s program (Figure B.2) is data or control dependent. Consequently, all

of ad as shown is necessary to obtain the violation.

In particular, observe that if labels for Server1 (ad|Server1) are not a part of a′d, then Server1’s

labels are not in dummify(I,A,Σ, ad, f) and, hence, on any counterfactual trace Server1 can-

not write to P1, thus precluding a violation. Therefore, the sequence of labels in ad|Server1 are

required in the actual cause.

By su�ciency’, for any f , the log of trace t′ of dummify(I,A,Σ, ad, f) must contain ad as

a projected sublog. This means that in t′, the assertion [A] of A(Server1) must succeed and,

hence, on line 7, the correct password pwd1 must be received by Server1, independent of f .

This immediately implies that Adversary’s action of sending that password must be in ad, else

some dummi�ed executions will have the wrong password sent to Server1 and the assertion

[A] will fail.

Extending this logic further, we now observe that because Adversary forwards a password

received from User1 (line 4 of A(Adversary)) to Server1, the send action of User1 will be in

ad (otherwise, some dummi�cations of line 4 of A(Adversary) will result in the wrong pass-

word being sent to Server1, a contradiction). Since User1’s action is in ad and l′ must contain

ad as a sublog, the majority check of A(User1) must also succeed. This means that at least

two of {Notary1,Notary2,Notary3} must send the con�rmation to User1, else the dummi�ca-

tion of lines 8 – 10 of N (User1) will cause the assertion [B] to fail for some f . Since we are

looking for a minimal sublog therefore we only consider the send actions from two threads

i.e. {Notary1,Notary2}. At this point we have established that each of the labels as shown in

Figure B.4(c) are required in ad. Hence, a′d = ad.

140

AppendixC

Defining Programs as Actual Causes

Note: This is a preliminary interaction-aware theory of actual causation which �nds programs

as causes of violations. This theory explores ideas such as occurrence, necessity, su�ciency

and minimality similar to prior work. In Chapter 5, we explain why we require a more �ne

grained approach of program actions for our purpose of blame assignment. Nevertheless, the

ideas used in the formalization of program actions as actual causes in Chapter 5 are inspired

from this approach and an interested reader can trace the connections as well as the recurrent

theme of interaction-aware approach to actual causation.

The central contributions of this section are the following: We initiate a formal study of

programs as actual causes. Speci�cally, we de�ne what it means for a set of programs to be an

actual cause of a violation when they run concurrently with a set of other programs. We also

present a sound technique for establishing programs as actual causes building on prior work

on proving security properties of protocols [92, 93]. We demonstrate the value of this approach

by providing a cause analysis of a representative protocol designed to address weaknesses in

the current public key certi�cation infrastructure.

C.A Programs as actual causes

The formalization of programs as actual causes proceeds in three stages. The �rst stage captures

two conditions. The Occurrence condition ensures that a safety property was violated on the

log. The log records what programs actually executed and how they interacted. This model

of a log is appropriate in settings where executed programs are available for analysis during

forensics. The Necessity condition ensures that in a counterfactual scenario where all actually

executed programs are replaced by the corresponding norms (i.e., the protocol speci�ed ideal

141

Appendix C. Defining Programs as Actual Causes

programs), the violation goes away on all resulting traces.

The second stage identi�es a setX of the actual programs as the suspected cause by requir-

ing three conditions. The Closure condition ensures that every program that interacted with

programs in X on the log is also in X . The Su�ciency condition requires that all traces result-

ing from the execution of X in conjunction with the norms for the other programs restores the

violation so long as the programs in X interact in a way consistent with the log. Finally, the

Minimality condition requires that no subset of X satis�es Closure and Su�ciency.

The third stage further separates the set X into Xd (the actual causes) and Xp (the progress

enablers). Informally, the actual values sent by the programs inXp are irrelevant to the violation—

they merely serve to enable the progress of other programs that is essential for the violation.

Roughly, this idea is formalized by replacing messages received by Xd from Xp by dummy

values. An additional Su�ciency’ condition requires that the violation is restored under this

transformation so long as the programs in Xd interact in a way consistent with the log. A

Minimality’ condition requires that no subset of Xd satis�es Su�ciency’.
Our nearest neighbor is a treatment of actual causation by Halpern and Pearl [14, 15]. There

are analogies between their conditions of Occurrence, Necessity, Su�ciency, and Minimality and

our corresponding conditions in the �rst two stages. However, there are some important points

of di�erence. First, in our non-deterministic, interactive program setting, it is critical to ensure

that all interacting agents are identi�ed in the Closure condition and the actual interactions of

the suspected causes are held �xed as we move from Occurrence to the Su�ciency condition.

There is no analogous concept in the work of Halpern and Pearl. Second, we exploit special

characteristics of our security settings to simplify the de�nition. Speci�cally, in the Necessity
condition when considering counterfactuals (alternative hypothetical scenarios in which the

violation does not occur), it is essential to restrict the set of hypothetical scenarios to avoid

counter-intuitive cause determinations. Halpern [15] recognizes this problem and considers

only “more normal worlds" in his de�nition. While it may be challenging to �gure out how

to rank worlds according to normality in certain application domains, our insight is that the

protocol-speci�ed prescribed programs provide a natural basis for constructing such a ranking

function. Finally, our third stage enables us to separate out the programs inXd whose informa-

tion �ows are causally related to the violation from the programs in Xp who are just progress

enablers but do not contribute relevant information �ows. This distinction is important in se-

curity settings but is not considered by Halpern and Pearl.

142

Appendix C. Defining Programs as Actual Causes

C.A.1 Problematic example

The above de�nition sketch may deem norms as part of the causal setX . For instance, consider

the “Compromising Notaries” example presents in Section 5.1. Server is part of the causal set

in both the attacks even though it follows its norm and we do not wish to hold it accountable

for the violation. In order to do so, a natural approach would be to �lter the set X by removing

all of the parties that follow their norms and hold all of the remaining parties accountable.

One problem with this approach is that it might not provide adequate basis for blame as-

signment in the presence of independent causes. Consider an attack where Server does not

store passwords securely and gets hacked by Adversary2. In this case Server is clearly deviant.

In parallel, consider the occurrence of Compromising Notaries. The above discussed cause def-

inition will output two independent causes, {Server, Adversary2} and {User, Adversary1, Server,

Notary1, Notary2}. In this case since Server is deviant, it would not be removed from the second

set, even though it did not act in a deviant manner when interacting with User and Adversary1.

Developing a de�nition based on actions of programs eliminates this problem since in the �rst

set, the ‘deviant actions’ of Server’s program will be a part of the causal set and in the second

set, the norm of the Server would be part of the causal set. Similarly for the example of Server

sending a harmless ‘hello’ message to User might deem the Server as deviant and prevent a

causal �ltering operation based on norms to exonerate Server. However analyzing program

actions will also allow us to remove harmless deviants from the causal set.

Another issue with the above formalization concerns the Closure condition. If there exist

two independent causes on the log and both of these causes interact with the �nal program, for

instance two adversaries might interact independently with a server and cause an attack. The

restriction of �nding closed set over programs would make it problematic to �nd these adver-

saries as independent causes since both will be connected with Server’s program via the same

interaction structure. Working with program actions instead, helps segregate di�erent parts of

programs which are a�ected by each of the causes. As discussed in Section 5.3, De�nition 3

provides the most general form of our cause de�nition, and adequately deals with these issues.

Next, we describe the formalization.

C.A.2 Formal de�nitions

C.A.2.1 Auxiliary de�nitions

To de�ne actual causation, we �nd it convenient to introduce the notion of the log of a trace,

which is just the sequence of labels on the trace.

143

Appendix C. Defining Programs as Actual Causes

De�nition 21 (Log). Given a trace t = C0
r0−→ C1 . . .

rm−1−−−→ Cm, the log of the trace t, log(t), is
the sequence r0, . . . , rm−1.

The letter l denotes logs. We need a few more straightforward de�nitions on logs in order

to de�ne actual causation. In the sequel, X, Y, Z denote sets of thread identi�ers. A sublog of

l = r0, . . . , rm is a subsequence of r0, . . . , rm.

De�nition 22 (Closed set of thread identi�ers). A set of thread identi�ersX is said to be closed
on log l if for every synchronization label 〈〈is, bs〉, 〈ir, br〉〉 ∈ l, is ∈ X if and only if ir ∈ X .

Intuitively,X is closed on l if threads inX synchronize only amongst themselves according

to l.

De�nition 23 (Local projection of a log). The local projection of a log l with respect to a thread
identi�er i, written l ↓i, is the sublog of l containing all local labels whose thread identi�er is i.
Formally,

• ↓i = •
(〈i, b〉 :: l) ↓i = 〈i, b〉 :: (l ↓i)
(〈j, b〉 :: l) ↓i = l ↓i if i 6= j

(〈〈is, bs〉, 〈ir, br〉〉 :: l) ↓i = l ↓i

De�nition 24 (Synchronization projection of a log). The synchronization projection of a log l
with respect to a set of thread identi�ersX , written l|X , is the sublog of l containing synchronization
labels from l both of whose thread identi�ers are in X . Formally,

•|X = •
(〈j, b〉 :: l)|X = l|X
(〈〈is, bs〉, 〈ir, br〉〉 :: l)|X = 〈〈is, bs〉, 〈ir, br〉〉 :: (l|X) if is, ir ∈ X
(〈〈is, bs〉, 〈ir, br〉〉 :: l)|X = l|X if is 6∈ X ∨ ir 6∈ X

A log l′ is called consistent with a log l relative to a set of thread identi�ers X if X is closed

on l′ and the local and synchronization labels of threads in X are identical (and identically

ordered) in l and l′. This is formalized below.

De�nition 25 (Log consistency). A log l′ is said to be consistent with a log l relative to a set of
thread identi�ers X if the following hold:

1. X is closed on l′

2. ∀i ∈ X. l′ ↓i= l ↓i
3. l′|X = l|X

144

Appendix C. Defining Programs as Actual Causes

C.A.2.2 Actual cause de�nition

Our goal is to de�ne actual causes of the violation of an expected security property. By property,

we mean any safety property of labelled traces that is closed under permutation of reductions

that are unrelated to each other in Lamport’s “happens-before” relation [59]. We use ϕV to

denote the complement of such a property (i.e., ϕV is the set of property-violating traces).

Consider a trace t starting from the initial con�guration C0 = 〈I,A,Σ〉. Suppose t ∈ ϕV ,

so this trace violates the safety property ¬ϕV . Our de�nition of actual causation identi�es a

subset of the threads I as the cause of the violation. To do this, we employ a set of hypothetical

counterfactual scenarios, in which subsets of the programs A(i), i ∈ I are replaced by norms
or the correct, prescribed programs. Consequently, we assume that we are provided a second

function N : I → Expressions such that N (i) is the program that ideally should have been
executing in the thread i. Note that for some i,A(i) andN (i) may be equal, butA(i) may still

have contributed to the violation in collaboration with other threads j for whichA(j) 6= N (j).

For each i, we call N (i) the norm for thread i and A(i) the “actual” for thread i.

We formalize a violation and the corresponding norms in a violation structure, to which our

de�nition of actual causation applies. We impose two conditions on a violation structure. First,

there must actually be a violation, else looking for causes is meaningless. We call this condition

occurrence. Second, in the extreme counterfactual world where we execute norms only, there

should be no possibility of violation. We call this condition necessity. Conceptually, necessity

says that the reference standard (norms) we employ to de�ne causes is reasonable.

De�nition 26 (Violation structure). A violation structure is a tuple V = 〈I,A,Σ,N , ϕV , t〉
such that t is a trace starting from 〈I,A,Σ〉 and the following two conditions hold:

1. (Occurrence) t ∈ ϕV .
2. (Necessity) For any trace t′ starting from the initial con�guration 〈I,N ,Σ〉, it is the case

that t′ 6∈ ϕV .
When considering counterfactuals, we often replace the actuals in a subset Y of the threads

I with their norms. The following de�nition captures the resulting initial con�guration.

De�nition 27 (Normi�cation). Given a violation structure V = 〈I,A,Σ,N , ϕV , t〉 and a parti-
tion (X, Y) of I , we de�ne the normi�ed initial con�guration norm(V,X, Y) = 〈I, E ,Σ〉, where

E(i) =

{
N (i) if i ∈ Y
A(i) if i ∈ X

Armed with these de�nitions, we are now in a position to formally de�ne programs as ac-

tual causes. Our de�nition applies in two phases. The �rst phase identi�es suspected causes.

145

Appendix C. Defining Programs as Actual Causes

Technically, a suspected cause is a minimal, closed set of threads that can account for the vio-

lation, even if all other threads are replaced by norms. In the second phase, we re�ne this set

into actual causes and progress enablers. The latter contribute only indirectly to the cause by

enabling the actual causes to make progress; the exact values transmitted by progress enablers

are irrelevant.

Our Phase 1 de�nition below determines suspected causes. It contains two conditions. The

su�ciency condition tests that the suspected causes, when combined with norms for the re-

maining threads, su�ce to recreate the violation. Technically, we consider all traces from a

normi�ed counterfactual, in which the candidate suspected causes (called X in the de�nition)

follow the same sequence of reductions as in the original trace. A key criteria is thatX be closed

on the violating trace’s log. This is important, because any thread that communicates with a

suspected cause may have at the least enabled progress of the latter and, hence, contributed to

the violation. The minimality condition tests that the identi�ed suspected causes contain no

redundant threads.

De�nition 28 (Suspected Cause of Violation: Phase 1). Let V = 〈I,A,Σ,N , ϕV , t〉 be a vio-
lation structure and l = log(t). We say that X ⊆ I is a suspected cause of the violation V if the
following hold:

1. (Closure) X is closed on l.

2. (Su�ciency) Let Y = I\X and C ′0 = norm(V,X, Y). Let T be the set of traces starting
from C ′0 that are log-consistent with l relative to X . Then, T is non-empty and T ⊆ ϕV .

3. (Minimality) No proper subset X ′ of X satis�es conditions 1 and 2.

The Phase 1 de�nition above identi�es a minimal set X of threads, which is su�cient to

cause the violation and does not interact with other threads (called Y). In the Phase 2 de�nition

below, we further partition X into Xd (actual cause) and Xp (progress enablers) such that the

threads in Xp contribute only towards the progress of other threads that cause the violation. In

other words, the set Xp contains all threads whose actual transmitted values are irrelevant.

Brie�y, here’s how our Phase 2 de�nition works. We �rst pick a candidate set Xd ⊆ X

(where X is the suspected cause set identi�ed in Phase 1) and de�ne Xp = X\Xd. We con-

sider counterfactual traces obtained from initial con�gurations in which threads from Xp (the

hypothesized progress enablers) are completely dropped and, instead, any inputs that threads

ofXd received fromXp are replaced by arbitrary dummy values and, additionally, the synchro-

nizations within Xd are the same as in the original violating trace. If a violation appears in all

such counterfactual traces, then the partition of X into Xd and Xp is a good candidate. Of all

such good candidates, we choose those with minimal Xd (or, equivalently, maximal Xp).

The key technical di�culty in writing this de�nition is replacing values communicated from

146

Appendix C. Defining Programs as Actual Causes

Xp to Xd with arbitrary dummy values. While there are many ways to do this, we choose

a simple method: We syntactically transform initial expressions of threads in Xd, replacing

every recv(), which synchronized with an expression in Xp, with a dummy value. Since our

communication model is synchronous, we must also erase all send() expressions from threads

in Xd, if the recipient was in Xp. The following de�nition formalizes this idea. It de�nes a new

initial con�guration obtained by replacement with dummy values in Xd, removal of Xp and

normi�cation of threads outside Xd and Xp. The function f supplies dummy values for use in

replacement. In the Phase 2 de�nition, we quantify universally over this function.

De�nition 29 (Dummifying transformation). Let V = 〈I,A,Σ,N , ϕV , t〉 be a violation struc-
ture, Xd, Xp, Y be disjoint subsets of I , l = log(t) and f : I × LineNumbers → Terms. The
dummifying transform dummify(V,Xd, Xp, f) is the initial con�guration 〈I\Xp, E ,Σ〉, where E
is de�ned as follows:

• For i ∈ (I\Xp)\Xd, E(i) = N (i).
• For i ∈ Xd, E(i) is A(i) modi�ed as follows:

If 〈〈j, bs〉, 〈i, br〉〉 ∈ l and j ∈ Xp, then replace br : recv() inA(i) with br : f(i, br).

If 〈〈i, bs〉, 〈j, br〉〉 ∈ l and j ∈ Xp, then replace bs : send(t) in A(i) with bs : 0.

De�nition 30 (Actual Cause of Violation: Phase 2). Let V = 〈I,A,Σ,N , ϕV , t〉 be a violation
structure and l = log(t). LetX be a suspected cause of the violation V determined by De�nition 28.
We say that Xd ⊆ X is an actual cause of the violation V if the following hold:

1. (Su�ciency’) Let Xp = X\Xd. For every f , if C ′0 = dummify(V,Xd, Xp, f) and T is the
set of traces starting from C ′0 that are log-consistent with l relative toXd, then T is non-empty
and T ⊆ ϕV .

2. (Minimality’) No proper subset X ′d of Xd satis�es condition 1.

More than one minimal setXd may satisfy the above Phase 2 de�nition for a given violation

V . Every such Xd is deemed an independent actual cause of the violation.

C.B Case study

We model an instance of our running example based on passwords in order to demonstrate

our actual cause de�nition. As explained in Section 5.1, we consider a protocol session where

User1, Server1 and multiple notaries interact over an adversarial network to establish access

over a password-protected account. In parallel for this scenario, we assume the log also contains

interactions of a second server (Server2), one notary (Notary4, not contacted by User1) and a

second user (User2) who follow their norms for account creation. These threads do not interact

147

Appendix C. Defining Programs as Actual Causes

with threads {User1, Server1, Notary1, Notary2, Notary3, Adversary}. The protocol has been

described in detail below.

C.B.1 Protocol description

We consider our example protocol with nine threads named {Server1, User1, Adversary, Notary1,

Notary2, Notary3, Notary4, Server2, User2}. The norms for all these threads, except Adversary

are shown in Figure C.1 and C.2. The Adversary’s norm is empty, because in an ideal world,

the Adversary should not participate. In this case study, we have two servers (Server1, Server2)

running the protocol with two di�erent users (User1, User2) and each server allocates account

access separately.

The norms in Figures C.1, C.2 assume that User1’s and User2’s accounts (called acct1 and

acct2 in Server1’s and Server2’s norm respectively) have been created already. User1’s password,

pwd1 is associated withUser1’s user id uid1. SimilarlyUser2’s password pwd2 is associated with

its user id uid2. User1 generated pwd1 associated with acct1 and User2 created pwd2 associated

with acct2. This association (in hashed form) is stored in Server1’s local state at pointer mem1

(and atmem2 for Server2). The norm for Server1 is to wait for a request from an entity, respond

with its public key, then wait for a password encrypted with that public key and grant access

to the requester if the password matches the previously stored value in Server1’s memory at

mem1. To grant access, Server1 adds an entry into a private access matrix, calledP1. (A separate

server thread, not shown here, allows User1 to access its resource if this entry exists in P1.)

The norm for User1 is to send the password pwd1 to Server1, encrypted under Server1’s

public key and not share the password with any other agent. On receiving Server1’s public key,

User1 initiates a protocol with the three notaries and accepts or rejects the key based on the

response of a majority of the notaries.

The norm for User2 is the same as that for User1 except that it interacts with Server2. Note

that User2 only veri�es the public key with one notary, Notary4.

The norm for Server2 is the same as that for Server1 except that it interacts with User2.

Each notary has a private database of (public_key, principal) tuples. The norms here assume

that this database has already been created correctly. When User1 or User2 send a request

with a public key, the notary responds with the principal’s identi�er after retrieving the tuple

corresponding to the key in its database. (Note that, in this simple example, we identify threads

with principals, so the notaries just store an association between public keys and their threads.)

148

Appendix C. Defining Programs as Actual Causes

C.B.1.1 Preliminaries

Notation. The norms in Figures C.1, C.2 use several primitive functions. pub_key_i and

pvt_key_i denote the public and private keys of thread i, respectively. For a given (public or

private) key k, Inv(k) denotes the corresponding private or public key for k. For readability,

we include the intended recipient i and expected sender j of a message as the �rst argument

of send(i,m) and recv(j) expressions. As explained earlier, i and j are ignored during exe-

cution and the adversary, if present, may capture or inject messages. P1(u) and P2(u) denotes

the tuples in the permission matrices at time u. Initially P1 and P2 do not contain any access

permissions.

Action Predicates and terms.

• Send(i, j,m) @ u holds if thread i sends message m to thread j at time u.

• Recv(i, j,m) @ u hold if thread i receives message m from thread j at time u.

• Enc(k,m) and Dec(k′,m) denote encryption and decryption of message m with key k

and k′ respectively.

• The action new generates a new value, the predicate New(i, n) @ u holds when thread i

generates nonce n at time u.

• The actionsig(l, v) signs vwith key l and returns Sig(l, v) whileverify(l′, v) veri�es

v of the form Sig(l, v′) and returns true if the signature is valid.

• The action hash(m,m1) generates the hash of terms (m,m1) and returns Hash(m,m1).

• The action read(r) reads a location r and the corresponding predicate Read(i, r) @ u

holds if thread i reads resource r at time u. The action write(r, d) @ uwrites value d to

a resource r and the corresponding predicate Write(i, r, d) @ u holds if thread i writes

value d at location r at time u. For instance in our example, Server1 writes to mem1.

• Mem1(t) @ u holds if mem1 contains t at time u. Mem2(t) @ u holds if mem2 contains t at

time u.

Assumptions. (A1)

HonestThread(Server1,N (Server1))

We are interested in security guarantees about honest users who create accounts by interacting

with the server and who do not share the generated password or user-id with any other principal

except for sending it according to the roles speci�ed in the norms.

149

Appendix C. Defining Programs as Actual Causes

(A2)

HonestThread(User1,N (User1))

(A3)

HonestThread(Adversary,A(Adversary))

(A4)

HonestThread(Notary1,A(Notary1))

(A5)

HonestThread(Notary2,A(Notary2))

(A6)

HonestThread(Notary3,A(Notary3))

(A7)

HonestThread(Notary4,N (Notary4))

(A8)

HonestThread(Server2,N (Server2))

(A9)

HonestThread(User2,N (User2))

A principal following the protocol never shares its keys with any other entity. We also

assume that the encryption scheme in semantically secure and non-malleable. Since we identify

threads with principals therefore each of the threads are owned by principals with the same

identi�er, for instance Server1 owns the thread that executes the program N(Server1).

(Start1)

Start(i) @ −∞

where i refers to all the threads in the set described above.

Security property. The security property of interest to us is that if at time u, a thread k is

given access to account a, then k owns a. Speci�cally, in this example, we are interested in the

a = acct1 and k = User1. This can be formalized by the following logical formula, ¬ϕV :

∀u, k. (acct1, k) ∈ P1(u) ⊃ (k = User1) (C.1)

Here, P1(u) is the state of the access control matrix P1 for Server1 at time u. (We use this logical

formalization of the property in establishing the actual causes using our de�nition. Speci�cally,

150

Appendix C. Defining Programs as Actual Causes

Norm N (Server1):

1 : (uid1, n1) = recv(j); //access req from thread j
2 : n2 = new;
3 : send(j, Sig(pvt_key_Server1, (pub_key_Server1, n2, n1)));
4 : s1 = recv(j); //encrypted uid1, pwd1 from j, alongwith its thread id J
5 : (n3, uid1, pwd1, J) = Dec(pvt_key_Server1, s1);
6 : t = Hash(uid1, pwd1);
7 : assert(mem1 = t) //compare hash with stored hash value for same uid

8 : insert(P1, (acct1, J));

Norm N (User1):

1 : n1 = new;
2 : send(Server1, (uid1, n1)); //access request

3 : Sig(pub_key1, n2, n1) = recv(j); //key from j
4 : n3, n4, n5 = new;
5 : send(Notary1, pub_key, n3);
6 : send(Notary2, pub_key, n4);
7 : send(Notary3, pub_key, n5);
8 : Sig(pvt_key_Notary1, (pub_key, l1, n3)) = recv(Notary1); //notary1 responds

9 : Sig(pvt_key_Notary2, (pub_key, l2, n4)) = recv(Notary2); //notary2 responds

10 : Sig(pvt_key_Notary3, (pub_key, l3, n5)) = recv(Notary3); //notary3 responds

11 : assert(At least two of {l1,l2,l3} equal Server1)
12 : t = Enc(pub_key, n2, (uid1, pwd1,User1));
13 : send(Server1, t); //send t to Server1;

Norms N (Notary1),N (Notary2),N (Notary3),N (Notary4):

// o denotes Notary1, Notary2, Notary3 or Notary4

1 : (pub_key, n1) = recv(j);
2 : pr = KeyOwner(pub_key); //lookup key owner

3 : send(j, Sig(pvt_key_o, (pub_key, pr, n1))); //signed certi�cate;

Figure C.1: Norms for Server1, User1, notaries. Adversary’s norm is the trivial empty program.

we use a program logic to establish the su�ciency’ and necessity conditions.)

C.B.2 Causal analysis of attack scenario

As an illustration, we model the violation in the “Compromising Notaries” attack of Section 5.1.

In this attack scenario, User1 and Server1 execute norms. User1 sends an access request to

Server1 which is intercepted by Adversary who sends its own key to User1 (pretending to be

Server1). User1 checks with the three notaries who falsely verify Adversary’s public key to be

Server1’s key. Consequently, User1 sends the password to Adversary. Adversary then initiates a

protocol with Server1 and gains access to the User1’s account. Note that the actual programs of

the three notaries attest that the public key given to them belongs to Adversary. User2, Server2

151

Appendix C. Defining Programs as Actual Causes

Norm N (Server2):

1 : (uid2, n1) = recv(j); //access req from thread j
2 : n2 = new;
3 : send(j, Sig(pvt_key_Server2, (pub_key_Server2, n2, n1)));
4 : s1 = recv(j); //encrypted uid2, pwd2 from j, alongwith its thread id J
5 : (n2, uid2, pwd2, J) = Dec(pvt_key_Server2, s1);
6 : t = Hash(uid2, pwd2);
7 : assert(mem2 = t) //compare hash with stored hash value for same uid

8 : insert(P2, (acct2, J));

Norm N (User2):

1 : n1 = new;
2 : send(Server2, (uid2, n1)); //access request

3 : Sig(pub_key, n2, n1) = recv(j); //key from j
4 : n3 = new;
5 : send(Notary4, pub_key, n3);
6 : Sig(pvt_key_Notary4, (pub_key, l1, n3)) = recv(Notary4); //notary4 responds

7 : assert({l1} equals Server1)
8 : t = Enc(pub_key, n2, (uid2, pwd2,User2));
9 : send(Server2, t); //send t to Server2;

Figure C.2: Norms for Server2, User2

Actual program A(Adversary)
1 : (uid1, n1) = recv(j); //intercept req from User1
2 : n2 = new;
3 : send(User1, pub_key_Adversary); //send key to User1
4 : s = recv(User1); //pwd from User

5 : n2, uid1, pwd1,User1 = Dec(pvt_key_Adversary, s); //decrypt pwd;
6 : n3 = new;
7 : send(Server1, (uid1, n3)); //access request to Server
8 : pub_key, n4, n3 = recv(Server1);
9 : t = Enc(pub_key, (n4, uid1, pwd1,Adversary)); //encrypt pwd

10 : send(Server1, t); //pwd to Server1

Actual programs A(Notary1),A(Notary2),N (Notary3):

// o denotes Notary1, Notary2 or Notary3

1 : (pub_key_Adversary, n1) = recv(j);
2 : send(j, Sig(pvt_key_o, (pub_key_Adversary,Server1, n1)); //signed certi�cate to j;

Figure C.3: Deviants for Adversary and Notary1, Notary2, Notary3

152

Appendix C. Defining Programs as Actual Causes

Synchronization projection l|{Adversary,User1,Server1,Notary1,Notary2,Notary3}
〈〈User1, 2〉, 〈Adversary, 1〉〉,
〈〈Adversary, 3〉, 〈User1, 3〉〉
〈〈User1, 5〉, 〈Notary1, 1〉〉,
〈〈User1, 6〉, 〈Notary2, 1〉〉,
〈〈User1, 7〉, 〈Notary3, 1〉〉,
〈〈Notary1, 3〉, 〈User1, 8〉〉,
〈〈Notary2, 3〉, 〈User1, 9〉〉,
〈〈Notary3, 3〉, 〈User1, 10〉〉,
〈〈User1, 13〉, 〈Adversary, 4〉〉,
〈〈Adversary, 7〉, 〈Server1, 1〉〉,
〈〈Server1, 3〉, 〈Adversary, 8〉〉,
〈〈Adversary, 10〉, 〈Server1, 4〉〉

Synchronization projection l|{Server2,User2,Notary4}
〈〈User2, 1〉, 〈Server2, 1〉〉,
〈〈Server2, 3〉, 〈User2, 3〉〉,
〈〈User2, 5〉, 〈Notary4, 1〉〉,
〈〈Notary4, 3〉, 〈User2, 6〉〉,
〈〈User2, 9〉, 〈Server2, 4〉〉,

Figure C.4: Synchronization projections

and Notary4 execute their norms in order to access the account acct2 as well.

In the property-violating trace, User1, Server1, User2, Server2 and Notary4 execute their

norms and the expressions executed by Adversary and the three deviant notaries are shown in

Figure C.3. Thus, the initial con�guration has the programs:

{N (User1),N (Server1),A(Adversary),A(Notary1),A(Notary2),A(Notary3),

N (User2),N (Server2),N (Notary4)}.
For this attack scenario, the concrete trace we consider is any arbitrary interleaving of the

logs for X = {Adversary,User1, Server1,Notary1,Notary2,Notary3} and,

Y = {Server2,User2,Notary4} shown in Figure C.4. Any such interleaved log is denoted l in

the sequel.

At the end of l, (acct1,Adversary) occurs in the access control matrix P1, but Adversary does

not own acct1. Hence, this log corresponds to a violation of our security property. Importantly,

even though only Adversary and three notaries deviate from their norms, this violation cannot

happen without participation fromUser1 and Server1. Moreover, if any two of the three notaries

had deviated from their norm, the violation would have still happened. Consequently, we may

expect three independent causes in this example: {Adversary, User1, Server1, Notary1, Notary2},

{Adversary, User1, Server1, Notary1, Notary3}, and {Adversary, User1, Server1, Notary2, Notary3}.

The following theorem states that our de�nitions determine exactly these three independent

153

Appendix C. Defining Programs as Actual Causes

causes.

Theorem 5. Let I = {User1, Server1,Adversary,Notary1,Notary2,Notary3,Notary4,
Server2,User2}, l be a log de�ned above, t be a trace with log(t) = l and A, N and Σ be
as described above. Let V = 〈I,A,Σ,N , ϕV , t〉. Then, De�nition 30 determines three possi-
ble values for the actual cause Xd of violation: {Adversary,User1, Server1,Notary1,Notary2},
{Adversary,User1, Server1,Notary1,Notary3}, and {Adversary,User1, Server1,Notary2,Notary3}.

It is instructive to understand the proof of this theorem, as it illustrates our de�nitions of

causation. We verify that V is a violation structure and that our Phase 1 and Phase 2 de�ni-

tions yield exactly the three values for Xd mentioned in the theorem. To check that V is a

violation structure, we must verify the occurrence and necessity conditions from De�nition 26.

For occurrence, we must show that t ∈ ϕV . This is clear because at the end of the trace,

(acct1,Adversary) ∈ P1, but Adversary 6= User1. For necessity, we show that any trace starting

from 〈I,N ,Σ〉 cannot be in ϕV , i.e., any such trace has the invariant (C.1) [Security property].

To prove this, we can use any sound program logic. In particular, we use the logic of Garg et
al. [93]. Our proof, in fact, shows the stronger property that (C.1) is an invariant even when

the nine norms execute concurrently with any number of standard Dolev-Yao adversaries (we

assume that encryption is non-malleable). This is just a standard proof of protocol correctness

with a program logic.

Phase 1. The closure condition of Phase 1 (De�nition 28) can be satis�ed by the following

four values of X : X1 = I , X2 = {}, X3 = {Notary4, Server2,User2} and

X4 = {Adversary,User1, Server1,Notary1,Notary2,Notary3}. When X = X2 or X = X3,

norm(V,X, Y) contains only norms for all nine threads. We have already established in ne-

cessity that starting from all nine norms, we cannot obtain a violation, so su�ciency cannot

be satis�ed for these two values of X . That leaves only X = X1 and X = X4. We now

show that X = X4 satis�es su�ciency. (Since X4 ⊆ X1, minimality then implies that the

X determined by De�nition 28 must be X4.) Following the statement of su�ciency, let T

be the set of traces starting from norm(V,X4, I\X4) that are log-consistent with l relative to

X4. Note that norm(V,X4, I\X4) is exactly the same as the original initial con�guration since

threads in I\X4 = {Notary4, Server2,User2} were already executing norms. This implies that

t ∈ T , so T is non-empty. If we pick any other t′ ∈ T , then because the log of t′ is con-

sistent with l relative to X4, that log must be exactly l|{Adversary,User1,Server1,Notary1,Notary2,Notary3}
from Figure C.4. This trivially implies that t′ ∈ ϕV . Hence, Phase 1 determines X = X4 =

{Adversary,User1, Server1,Notary1,Notary2,Notary3}.

154

Appendix C. Defining Programs as Actual Causes

Phase 2. Phase 2 (De�nition 30) determines three independent actual causes forXd: {Adversary,

User1, Server1, Notary1, Notary2}, {Adversary, User1, Server1, Notary1, Notary3}, and {Adversary,

User1, Server1, Notary2, Notary3}. These are symmetric, so we only explain why

Xd = {Adversary,User1, Server1,Notary1,Notary2} satis�es De�nition 30. We show that (a)

This set Xd satis�es su�ciency’, and (b) No proper subset of Xd satis�es su�ciency’ (minimal-

ity’).

We start with (a). By de�nition, Xp = X\Xd = {Notary3}. Fix any dummifying function

f . We must show two things. First, there is a trace from dummify(V,Xd, Xp, f), whose log is

consistent with l relative to Xd. Second, any such trace is in ϕV . The �rst statement is easily

established by mimicking the execution in l starting from dummify(V,Xd, Xp, f). The only po-

tential issue is that on line 7, A(User1) (which equalsN (User1) from Figure C.1) synchronizes

with Notary3 according to l, but Notary3 does not exist in dummify(V,Xd, Xp, f). However, in

dummify(V,Xd, Xp, f), the recv() on line 10 in A(User1) is replaced with a dummy value,

so the execution from dummify(V,Xd, Xp, f) progresses. Subsequently, the majority check on

line 11 succeeds as in l, because two of three notaries (Notary1 and Notary2) still attest the

Adversary’s key.

The second statement — that every trace starting from dummify(V,Xd, Xp, f), whose log

is consistent with l relative to Xd, is in ϕV — is the most non-obvious part of our proof. This

statement quanti�es over a select set of traces, but not all, so we cannot directly use the program

logic. Instead, we use the program logic to establish certain invariants and combine those

invariants with our knowledge of l. Fix a trace t′ with log l′. Assume l′ consistent with l

relative to Xd. We show t′ ∈ ϕV as follows:

1. Since l′ is consistent with l relative to Xd, Server1 must execute line 8 of its program

N (Server1) in t′. After this line, the access control matrix P1 contains (acct1, J) for

some J .

2. When N (Server1) writes (x, J) to P1 at line 8, then J is the third component of a tuple

obtained by decrypting a message received on line 4.

3. Since l′ is consistent with l relative to Xd, and on l 〈Server1, 4〉 synchronizes with

〈Adversary, 10〉, J must be the third component of an encrypted message sent on line 10

of A(Adversary).

4. The third component of the message sent on line 10 by Adversary is exactly the term

“Adversary”. (This is easy to see, as the term “Adversary” is hardcoded on line 9.) Hence,

J = Adversary.

5. This immediately implies that t′ ∈ ϕV since (acct1,Adversary) ∈ P1, but Adversary 6=

155

Appendix C. Defining Programs as Actual Causes

User1.

Last, we prove (b) — that no proper subsetX ′d ofXd satis�es su�ciency’. Pick anyX ′d ⊆ Xd

such that X ′d satis�es su�ciency’. We show that X ′d = Xd. Let X ′p = X\X ′d. Observe that if

Server1 6∈ X ′d, then Server1 is not in dummify(V,X ′d, X
′
p, f) and, hence, on any counterfactual

trace cannot write to P , thus precluding a violation. Therefore, Server1 ∈ X ′d. By su�ciency’,

for any f , the log l′ of at least one trace t′ of dummify(V,X ′d, X
′
p, f) must be consistent with l

relative to X ′d. This means that in t′, the assertion on line 7 of N (Server1) must succeed and,

hence, on line 5, the correct password pwd1 must be received by Server1, independent of f .

This immediately implies that Adversary (which sends that password on l) must be in X ′d, else

some dummi�ed executions of Server1 will have the wrong password and the assertion on line

7 will fail.

Extending this logic further, we now observe that because Adversary forwards a password

received from User1 (line 4 of A(Adversary)) to Server1, User1 ∈ X ′d (otherwise, some dummi-

�cations of line 4 of A(Adversary) will result in the wrong password being sent to Server1, a

contradiction). Since User1 ∈ X ′d and l′ must be consistent with l relative to X ′d, the majority

check on line 11 of N (User1) must also succeed. This means that at least two of

{Notary1,Notary2,Notary3}must be in X ′d, else the dummi�cation of lines 8 – 10 ofN (User1)

will cause the assertion check to fail for some f . Since X ′d ⊆ Xd, these two threads must be

{Notary1,Notary2}. At this point we have established that each of {Adversary, User1, Server1,

Notary1, Notary2} is in X ′d. Hence, X ′d = Xd.

Violation Structure (Necessity). If all programs execute norms, there will be no violation

on any resulting trace due to the correctness of the protocol
1

as described next:

1. We prove that if access permission (acct1, k) is added in P1 for principal k, then k =

User1. Initially only User1 and Server1 know the password pwd1 stored in Server1’s mem-

ory mem1.

2. Consider the traces where (acct1, k) ∈ P1 @ u for some k. It is an (easy to prove)

invariant that Server1 only adds access permission for acct1 if a principal sends an access

request with the correct password pwd1 stored in mem1. Therefore, Server1 must have

received the correct password for pwd1 from some thread j.

3. We prove an invariant of N (User1) that if it sends out a password encrypted under a

public key, then the public key was veri�ed by the notaries to be Server1’s public key.

Similarly, we prove an invariant of the norms of the notaries that they only certify correct

keys. Consequently, User1 only sends the password encrypted under Server1’s public key.

1
The proof technique for Necessity follows the proof of secrecy for Kerberos protocol by Garg et al [93].

156

Appendix C. Defining Programs as Actual Causes

4. It is an invariant of N (Server1) that it never sends any password.

5. Therefore, only User1 and Server1 ever see the password pwd1.

6. Hence, the password received by Server1 in step (2) must have been sent by j = User1.

7. It is an invariant ofN (User1) that if it sends a request to add an access permission (line 8),

it does so for itself. Combining with (2), we deduce that k = User1.

Expanding the steps. We adapt the de�nitions from the proof of secrecy for Kerberos by

Garg et al [1] for a framework based on asymmetric encryption. Some of these de�nitions are

given in Figure C.5. For more details, we refer the reader to [1]. Here K denotes a set of keys.

OwnedIn(i,S) means that thread i in in set S , OrigRes(s,S) means that the thread which cre-

ated the term s lies in set S , KeyRes(K, S) means that the inverse key corresponding to each

key in set K is known only to threads in S . KORes(s,K, u) combines the previous two predi-

cates, SendsSafeMsg(i, s,K) means that if thread i sends s in a message, then all occurrences

of s in that message are protected by keys in Inv(K) i.e. the private keys corresponding to the

public keys in K. SafeNet(s,K, u) means that prior to time u, every thread protects s in all

messages it sends using keys in Inv(K).

Figure C.5 also lists two axioms (POS) and (NET) from prior work. We introduce an addi-

tional axiom called (NM). This axiom (assuming non-malleability) states that if only principals

in set P had access to the corresponding private keys for set K and have knowledge of terms

in s, then if a message m containing secret s is encrypted under a key k ∈ K and sent at time

u, then at a prior time u′ some principal in P must have sent the message on the network.

We prove that if access permission (acct1, k) is added in P1 for principal k, then k = User1.

1. Consider the traces where (acct1, k) ∈ P1 @ u for some k. We will �rst prove that

Server1 only adds access permission for acct1 if a principal sends an access request with

the correct password pwd1 stored in mem1. Therefore, Server1 must have received the

correct password for acct1 from some thread j at time u1 < u.

Invariant of Server1:

{N (Server1)}〈ub, ue, i〉∀u, k.((ub < u ≤ ue) ∧ Insert(i, (acct1, k)) @ u)) ⊃
(∃j, k, n1, pwd1, u1.

(u1 < u) ∧ Mem1(Hash(uid1, pwd1)) @ u ∧
(Recv(Server1, j, (Enc(pub_key_Server1, (n1, uid1, pwd1, k)))) @ u1)

157

Appendix C. Defining Programs as Actual Causes

De�nitions

OwnedIn(i,S) = i ∈ S
OrigRes(s,S) = ∀i, u. New(i, s) @ u ⊃ OwnedIn(i,S)
KeyRes(K,S) = ∀i, k. (Has(i, Inv(k)) ∧ k ∈ K)

⊃ OwnedIn(i,S)
KORes(s,K,S) = OrigRes(s,S) ∧

∀u. KeyRes(K,S) @ u
SendsSafeMsg(i, s,K) = Send(i, v) ⊃ SafeMsg(v, s,K)
SafeNet(s,K, u) = ∀i, u′. (u′ ≤ u)

⊃ SendsSafeMsg(i, s,K) @ u′

HasOnly(S, s) = ∀i. Has(i, s) ⊃ OwnedIn(i,S)

Additional Axioms

(NET) (KORes(s,K,S) ∧ SafeNet(s,K, u1) ∧
¬SafeNet(s,K, u2) ∧ (u1 < u2)) ⊃
∃i, u3. (u1 < u3 ≤ u2) ∧ OwnedIn(i,S) ∧

¬SendsSafeMsg(i, s,K) @ u3 ∧
∀u4 ∈ (u1, u3). SafeNet(s,K, u4)

(POS) (SafeNet(s,K, u) ∧ Has(i, s) @ u) ⊃
(∃u′. (u′ < u) ∧ New(i, s) @ u′) ∨
(∃k. (k ∈ K) ∧ Has(i, Inv(k)) @ u)

(NM) (HasOnly(Inv(K),P) @ u ∧
HasOnly(s,P) @ u ∧ ∃i, i1. Send(i, i1,m′) @ u ∧
m′ = Enc(k,m) ∧ (k ∈ K) ∧ Contains(m, s)) ⊃

(∃u′, j, j1. (u′ < u) ∧ j ∈ P ∧ (Send(j, j1,m) @ u′))

Figure C.5: Additional de�nitions and axioms (Garg et al [1])

158

Appendix C. Defining Programs as Actual Causes

which we abbreviate as:

{N (Server1)}〈ub, ue, i〉∀u, k.((ub < u ≤ ue) ∧ Insert(i, (acct1, k)) @ u)) ⊃ ϕ

Using (HONTH) in conjunction with 1, assuming (Start1), we get:

∀u′. (u′ > −∞) ⊃
∀u, k.((ub < u ≤ ue) ∧ Insert(Server1, (acct1, k)) @ u)) ⊃ ϕ

Choosing ue =∞, we get

∀u, k.Insert(Server1, (acct1, k)) @ u) ⊃ ϕ

We have previously assumed that Server1 inserts permission for principal k, therefore

the consequent of the above implication holds. This implies that at some time u1 < u,

Server1 received the correct password pwd1 for acct1 from some thread j. In the sequel

we use pwd1 to denote the password stored in mem1.

2. Initially only User1 and Server1 know the password pwd1 stored in Server1’s memory

mem1:

HasOnly({Server1,User1}, pwd1) @ −∞

We also assume that ∀u. HasOnly(Server1, pvt_key_Server1) @ u.

3. Next we prove that only User1 and Server1 ever see the password pwd1. First, we prove

that SendsSafeMsg(User1, pwd1, pub_key_Server1) @ u for every u. We prove an in-

variant of N (User1) that if it sends out a password encrypted under a public key, then

the public key was veri�ed by the notaries to be Server1’s public key. Note that User1

only sends out the password in line 13 of the code N (User1).

Invariant of User1:

{N (User1)}〈ub, ue, i〉 ∀u, j1, n1.((ub < u ≤ ue) ∧
Send(User1, j1, (Enc(pub_key_j1, (n1, uid1, pwd1,User1)))) @ u ⊃
(∃n2, u1.(u1 < u) ∧
Recv(User1,Notary1, Sig(pvt_key_Notary1, (pub_key_j1, Server1, n2))) @ u1)

We abbreviate the consequent of the above implication as ϕ2.

159

Appendix C. Defining Programs as Actual Causes

Using (HONTH) in conjunction with 3 above, assuming (Start1), we get:

∀u′. (u′ > −∞) ⊃ ∀u, j1, n1, pwd1.

((ub < u ≤ ue) ∧ Send(User1, j1, (Enc(pub_key_j1, (n1, uid1, pwd1,User1)))) @ u

⊃ ϕ2

Choosing ue =∞, we get

∀u, j1, n1, pwd1. Send(User1, j1, (Enc(pub_key_j1, (n1, uid1, pwd1,User1))))

@ u ⊃ ϕ2

4. Similarly, we prove an invariant of the norms of the notaries that they only certify correct

keys. We assume that the notary repository is correct. By analyzing the notaries’ threads

N (Notary1),N (Notary2),N (Notary3),N (Notary4), we prove that if the notaries sign

a key stating that it belongs to Server1 (or Server2), the key must belong to Server1 (or

Server2 respectively). We show the invariant for one of the notaries, Notary1 which we

abbreviate as:

{N (Notary1)}〈ub, ue, i〉∀u, j1, k, pwd1.

(ub < u ≤ ue) ∧ Send(Notary1, j1, (Sig(pub_key_Notary1, (pub_key_k, Server1, n1))))

@ u ⊃ pub_key_k = pub_key_Server1

Consequently, User1 only sends the password encrypted under Server1’s public key. This

implies thatUser1 only sends safe messages containing pwd1 and encrypted under Server1’s

public key.

5. Next, it is trivial to prove that SendsSafeMsg(Server1, pwd1, pub_key_Server1) @ u for

every u. This is because Server1 never sends out the password in any message.

6. Next we apply rely-guarantee reasoning similar to the secrecy proof for Kerberos by Garg

et al [1] in order to show ∀u.ϕ(u) where

ϕ(u) = ∀u. SafeNet(pwd1, pub_key_Server1, u)

We instantiate the framework of rely-guarantee by choosing:

ι(i) = (i = Server1) ∧ (i = User1)

ψ(u, i) = SendsSafeMsg(i, pwd1, pub_key_Server1)

160

Appendix C. Defining Programs as Actual Causes

ϕ(u) = SafeNet(pwd1, pub_key_Server1, u)

In order to apply the method of rely-guarantee, we must show that the following hold for

ϕ, ι, and ψ as de�ned above:

(1) ϕ(−∞)

(2) ∀i, u. (ι(i) ∧ ∀u′ < u. ϕ(u′)) ⊃ ψ(u, i)

(3)

(ϕ(u1) ∧ ¬ϕ(u2) ∧ (u1 < u2)) ⊃
∃i, u3. (u1 < u3 ≤ u2) ∧ ι(i) ∧ ¬ψ(u3, i) ∧

∀u4 ∈ (u1, u3). ϕ(u4)

(2) follows from steps 4 and 5 above.

To prove (3), we instantiate the axiom (NET) by choosing s = pwd1,K = {pub_key_Server1},
and S0 = {Server1,User1} to obtain:

(KORes(pwd1, pub_key_Server1,S0) ∧ SafeNet(pwd1, pub_key_Server1, u1) ∧
¬SafeNet(pwd1, pub_key_Server1, u2) ∧ (u1 < u2)) ⊃
∃i, u3. (u1 < u3 ≤ u2) ∧ OwnedIn(i,S0) ∧

¬SendsSafeMsg(i,S0, pub_key_Server1) @ u3 ∧
∀u4 ∈ (u1, u3). SafeNet(pwd1, pub_key_Server1, u4)

We show that KORes(pwd1, pub_key_Server1, {User1, Server1}). Expanding the de�ni-

tion of KORes, we need to show that pwd1 was generated by either User1 or Server1

(which is true by assumption since User1 generated pwd1) and that pvt_key_Server1 is

known only to {User1, Server1} (assumption). Therefore, KORes(pwd1, pub_key_Server1,S0)
holds and we eliminate that condition from the above formula to obtain:

(SafeNet(pwd1, pub_key_Server1, u1) ∧ ¬SafeNet(pwd1, pub_key_Server1, u2) ∧
(u1 < u2)) ⊃
∃i, u3. (u1 < u3 ≤ u2) ∧ OwnedIn(i,S0) ∧ ¬SendsSafeMsg(i,S0, pub_key_Server1) @ u3 ∧

∀u4 ∈ (u1, u3). SafeNet(pwd1, pub_key_Server1, u4)

This proves the statement of (3) above. Hence, we deduce that ∀u. ϕ(u), i.e,

∀u. SafeNet(pwd1, pub_key_Server1, u) (C.2)

Next, we �x any time parameter u′0, and try to show that HasOnly(S0, pwd1) @ u′0.

Following the de�nition of HasOnly assume that for some i, Has(i, pwd1) @ u′0. It su�ces

161

Appendix C. Defining Programs as Actual Causes

to show that OwnedIn(i,S0). From (C.2) above, the assumption Has(i, pwd1) @ u′0, and

axiom (POS), we obtain:

(∃u′. (u′ < u′0) ∧ New(i, pwd1) @ u′) ∨
(∃k. (k ∈ {pub_key_Server1}) ∧ Has(i, Inv(k)) @ u′0)

We case analyze these two disjuncts. If ∃u′. (u′ < u′0) ∧ New(i, pwd1) @ u′, then we

obtain i = User1. Since S0 = {User1, Server1}, OwnedIn(i,S0) follows from de�nition of

OwnedIn.

If ∃k. (k ∈ {pub_key_Server1}) ∧ Has(i, Inv(k)) @ u′0, then from the assumptions that

User1 generated pwd1 and Server1’s public key is only known to Server1, i.e,

KORes(pwd1, pub_key_Server1,S0), we immediately obtain OwnedIn(i,S0).

Since, in both case analyses we obtain OwnedIn(i,S0), it follows that HasOnly(S0, pwd1) @

u′0 for any u′0. Since u′0 is a parameter, this implies ∀u′. HasOnly(S0, pwd1) @ u′, which

is the property we wanted to prove, i.e.

∀u. HasOnly({Server1,User1}, pwd1) @ u

7. From 6. above, pwd1 is only known to S0. By assumption,

∀u. HasOnly({Server1}, pvt_key_Server1) @ u

Also initially we showed that a message was sent to Server1 which contained the pass-

word encrypted under Server1’s public key. Instantiating the antecedent in (NM) with

P = S0, s = pwd1, K = pub_key_Server1, we can infer that either User1 or Server1 sent

the initial message containing the password encrypted under Server1’s key.

8. It is an invariant of N (Server1) that it never sends any password.

9. It is an invariant ofN (User1) that if it sends a request to add an access permission (line 8),

it does so for itself. Invariant of User1:

{N (User1)}〈ub, ue, i〉∀u, j1, n1.((ub < u ≤ ue) ∧
Send(User1, j1, (Enc(pub_key_j1, (n1, uid1, pwd1, k)))) @ u ⊃
(k = User1)

Combining with (2), we deduce that k = User1. Therefore, we have prove that if access

permission (acct1, k) is added in P1 for principal k, then k = User1.

162

Bibliography

[1] D. Garg, J. Franklin, D. Kaynar, and A. Datta, “Compositional system security with

interface-con�ned adversaries (technical report),” Carnegie Mellon University, Tech. Rep.

CMU-CyLab-10-004, Feb. 2010. [Online]. Available: http://www.mpi-sws.org/~dg/papers/

cmu-cylab-10-004.pdf (document), C.B.2, C.5, 6

[2] C. Kaufman, R. Perlman, and M. Speciner, Network security: private communication in a
public world. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1995. 1.1.1

[3] R. L. Rivest and W. D. Smith, “Three voting protocols: Threeballot, vav, and twin,” in

Proceedings of the USENIXWorkshop on Accurate Electronic Voting Technology, ser. EVT’07.

Berkeley, CA, USA: USENIX Association, 2007, pp. 16–16. 1.1.1

[4] R. Küsters, T. Truderung, and A. Vogt, “Accountabiliy: De�nition and Relationship to

Veri�ability,” in Proceedings of the 17th ACM Conference on Computer and Communications
Security (CCS 2010). ACM Press, 2010, pp. 526–535. 1.1.1, 1.1.2, 6.3, 6.3.1, 7.1.1

[5] D. C. Parkes, M. O. Rabin, S. M. Shieber, and C. Thorpe, “Practical secrecy-preserving,

veri�ably correct and trustworthy auctions,” Electron. Commer. Rec. Appl., vol. 7, no. 3, pp.

294–312, Nov. 2008. 1.1.1

[6] M. Backes, A. Datta, A. Derek, J. C. Mitchell, and M. Turuani, “Compositional analysis of

contract-signing protocols,” Theor. Comput. Sci., vol. 367, no. 1-2, pp. 33–56, 2006. 1.1.1,

1.1.2, 6.3, 6.3.1

[7] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game,” in Proceedings
of the nineteenth annual ACM symposium on Theory of computing, ser. STOC ’87. New

York, NY, USA: ACM, 1987, pp. 218–229. 1.1.1

[8] H. Nissenbaum, “Accountability in a computerized society,” Science and Engineering Ethics,
vol. 2, no. 1, pp. 25–42, 1996. 1.1.1, 5.4.2

[9] B. Lampson, “Computer security in the real world,” Computer, vol. 37, no. 6, pp. 37 – 46,

June 2004. 1.1.1

163

http://www.mpi-sws.org/~dg/papers/cmu-cylab-10-004.pdf
http://www.mpi-sws.org/~dg/papers/cmu-cylab-10-004.pdf

Appendix . Bibliography

[10] A. Haeberlen, P. Kouznetsov, and P. Druschel, “Peerreview: practical accountability for

distributed systems,” in SOSP, 2007, pp. 175–188. 1.1.1, 1.1.2, 6.3, 6.3.1

[11] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J. Hendler, and G. J. Sussman,

“Information accountability,” Commun. ACM, vol. 51, no. 6, pp. 82–87, Jun. 2008. 1.1.1

[12] R. Jagadeesan, A. Je�rey, C. Pitcher, and J. Riely, “Towards a theory of accountability and

audit,” in ESORICS, 2009, pp. 152–167. 1.1.1, 1.1.2, 6.3, 6.3.1

[13] J. Gatins, “Flight,” 2012. [Online]. Available: http://www.imdb.com/title/tt1907668/ 1.1.2,

5

[14] J. Y. Halpern and J. Pearl, “Causes and explanations: A structural-model approach. part i:

Causes,” British Journal for the Philosophy of Science, vol. 56, no. 4, pp. 843–887, 2005. 1.1.2,

1.3.1, 1a, 13, 14, 2, 2.3.1, 2.4, 2.5, 2.5, 3, 4.2, 4.2.2, 4.2.3, 10, 18, 4.4.3, 5, 6.3, 6.3.1, 7.2, C.A

[15] J. Y. Halpern, “Defaults and Normality in Causal Structures,” Arti�cial Intelligence, vol. 30,

pp. 198–208, 2008. [Online]. Available: http://arxiv.org/abs/0806.2140 1.1.2, 9, C.A

[16] N. Hall, “Structural equations and causation,” Philosophical Studies, vol. 132, no. 1, pp. 109–

136, 2007. 1.1.2, 1.3.1, 2, 2.3.1, 2.4, 4.2, 4.2.2, 4.2.5.2, 4.4.2, 7.2

[17] C. Hitchcock, “The intransitivity of causation revealed in equations and graphs,” Journal
of Philosophy, vol. 98, no. 6, pp. 273–299, 2001. 1.1.2, 1.3.1, 1a, 13, 14, 2, 2.3.1, 4.2, 4.2.1, 7,

5, 4.2.5.2, 7.2

[18] J. Y. Halpern, “A modi�cation of the halpern-pearl de�nition of causality,” CoRR, vol.

abs/1505.00162, 2015. [Online]. Available: http://arxiv.org/abs/1505.00162 1.1.2, 13, 14, 2,

4.2, 4.2.1, 4.2.2, 4.2.4

[19] J. Feigenbaum, A. D. Jaggard, and R. N. Wright, “Towards a formal model of accountability,”

in Proceedings of the 2011 workshop on New security paradigms workshop, ser. NSPW ’11.

New York, NY, USA: ACM, 2011, pp. 45–56. 1.1.2, 6.3, 6.3.1

[20] J. Feigenbaum, J. A. Hendler, A. D. Jaggard, D. J. Weitzner, and R. N. Wright, “Account-

ability and deterrence in online life,” in Proceedings of the 3rd International Web Science
Conference, ser. WebSci ’11. NY, USA: ACM, 2011, pp. 7:1–7:7. 1.1.2, 6.3, 6.3.1

[21] M. Bellare, D. Micciancio, and B. Warinschi, “Foundations of group signatures: Formal

de�nitions, simpli�ed requirements, and a construction based on general assumptions,” in

EUROCRYPT, 2003, pp. 614–629. 1.1.2

[22] G. Gössler, D. Le Métayer, and J.-B. Raclet, “Causality analysis in contract violation,” in

Proceedings of the First International Conference on Runtime Veri�cation, ser. RV’10. Berlin,

Heidelberg: Springer-Verlag, 2010, pp. 270–284. 1.1.2, 6.3, 6.3.2

164

http://www.imdb.com/title/tt1907668/
http://arxiv.org/abs/0806.2140
http://arxiv.org/abs/1505.00162

Appendix . Bibliography

[23] S. Wang, A. Ayoub, R. Ivanov, O. Sokolsky, and I. Lee, “Contract-based blame assignment

by trace analysis,” in Proceedings of the 2nd ACM International Conference on High Con�-
dence Networked Systems. NY, USA: ACM, 2013. 1.1.2, 6.3, 6.3.2

[24] R. Milner, “What is a process?” [Online]. Available: http://www.cs.rice.edu/~vardi/

papers/milner09.pdf 1.2

[25] ——, A Calculus of Communicating Systems. Secaucus, NJ, USA: Springer-Verlag New

York, Inc., 1982. 1.2.1

[26] P. Spirtes, C. N. Glymour, and R. Scheines, Causation, prediction, and search. MIT press,

2000, vol. 81. 1.2.1, 1.3.1, 2.3, 4, 2, 4

[27] J. Pearl, Causality: models, reasoning, and inference. New York, NY, USA: Cambridge

University Press, 2000. 1.2.1, 1.3.1, 1a, 1.5, 2.3, 4, 4, 4.2, 4.3.3, 20, 5, 6.3

[28] C. Hitchcock, “Probabilistic causation,” in The Stanford Encyclopedia of Philosophy, E. N.

Zalta, Ed., 2012. 1.2.1, 4, 3, 5

[29] J. Livengood, “On causal inferences in the humanities and social sciences,” Ph.D. disserta-

tion, University of Pittsburgh, 2011. 1.2.1, 2, 2.3, 2.3.1, 3, 4, 4.2, 4.2.3, 4.3.4

[30] J. Y. Halpern and J. Pearl, “Causes and explanations: a structural-model approach: part i:

causes,” in Proceedings of the Seventeenth conference on Uncertainty in arti�cial intelligence,
ser. UAI’01. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001, pp. 194–

202. 1.3.1, 1a, 13, 14, 4.2, 4.2.3, 5, 6.3, 6.3.1

[31] ——, “Causes and explanations: A structural-model approach. part ii: Explanations,” The
British Journal for the Philosophy of Science, vol. 56, no. 4, pp. 889–911, 2005. 1.3.1, 6.1

[32] M. S. Moore, Causation and Responsibility: An Essay in Law, Morals and Metaphysics. Ox-

ford University Press, 2009. 1.3.1

[33] H. L. A. Hart and T. Honoré, Causation in the Law (Second Edition). Oxford, UK: Oxford

University Press, 1985. 1.3.1, 4.2

[34] K. Shaver, The attribution of blame: Causality, responsibility, and blameworthiness.
Springer Science & Business Media, 2012. 1.3.1, 6.2

[35] M. D. Alicke, “Culpable control and the psychology of blame.” Psychological bulletin, vol.

126, no. 4, p. 556, 2000. 1.3.1, 6.2

[36] J. Feinberg, “Ethical issues in the use of computers,” D. G. Johnson and J. W. Snapper, Eds.

Belmont, CA, USA: Wadsworth Publ. Co., 1985, ch. Sua Culpa, pp. 102–120. [Online].

Available: http://dl.acm.org/citation.cfm?id=2569.2675 1.3.1, 5.4.2, 6.2

165

http://www.cs.rice.edu/~vardi/papers/milner09.pdf
http://www.cs.rice.edu/~vardi/papers/milner09.pdf
http://dl.acm.org/citation.cfm?id=2569.2675

Appendix . Bibliography

[37] L. Kenner, “On blaming,” Mind, pp. 238–249, 1967. 1.3.1, 6.2

[38] D. Hume, “An Enquiry Concerning Human Understanding,” Reprinted Open Court Press,
LaSalle, IL, 1958, 1748. 1.3.1, 4, 4.2

[39] D. Lewis, “Causation,” Journal of Philosophy, vol. 70, no. 17, pp. 556–567, 1973. 1.3.1, 4.2

[40] J. Collins, N. Hall, and L. A. Paul, Causation and Counterfactuals. MIT Press, 2004. 1.3.1,

4.2, 6.3

[41] J. L. Mackie, “Causes and Conditions,” American Philosophical Quarterly, vol. 2, no. 4, pp.

245–264, 1965. 1.3.1, 4.2, 6.3

[42] R. Wright, “Causation in tort law,” California Law Review 73, pp. 1735–1828, 1985. 1.3.1,

1.5, 4.2, 9, 6.3

[43] N. Hall, “Two concepts of causation,” in Causation and Counterfactuals, J. Collins, N. Hall,

and L. Paul, Eds. The Mit Press, 2004, pp. 225–276. 9, 10

[44] P. Dowe, “Causal Process Theories,” in The Oxford Handbook of Causation, Helen Beebee,

Christopher Hitchcock, and Peter Menzies, Eds. OUP Oxford, 2009. 1.3.2, 4.1, 7.2

[45] W. C. Salmon, “Causality without counterfactuals,” Philosophy of Science, vol. 61, no. 2,

pp. pp. 297–312, 1994. [Online]. Available: http://www.jstor.org/stable/188214 1.3.2, 4.1,

7.2

[46] C. Hitchcock, “Causal processes and interactions: What are they and what are they good

for?” Philosophy of Science, vol. 71, no. 5, pp. 932–941, 2004. 1.3.2, 4.1, 7.2

[47] D. Lewis, “Events,” in Philosophical Papers Vol. II. OUP, 1986, vol. 2, pp. 241–269. 12, 6,

4.4.3, 20

[48] M. Hopkins, “Strategies for determining causes of events,” in AAAI/IAAI, 2002, pp. 546–

552. 1a, 2.1, 2.3.1, 2.5, 4.2.3

[49] M. McDermott, “Redundant causation,” British Journal for the Philosophy of Science, vol. 46,

no. 4, pp. 523–544, 1995. 1c, 4.3.3, 6, 4.4.3, 20

[50] J. Clark and P. C. van Oorschot, “Sok: Ssl and https: Revisiting past challenges

and evaluating certi�cate trust model enhancements,” in Proceedings of the 2013 IEEE
Symposium on Security and Privacy, ser. SP ’13. Washington, DC, USA: IEEE Computer

Society, 2013, pp. 511–525. [Online]. Available: http://dx.doi.org/10.1109/SP.2013.41 2, 6.2

[51] H. A. Simon, The Sciences of the Arti�cial, 1st ed. Cambridge, Massachusetts: MIT Press,

1969. 1.5

[52] H. Chockler and J. Y. Halpern, “Responsibility and blame: A structural-model approach,”

166

http://www.jstor.org/stable/188214
http://dx.doi.org/10.1109/SP.2013.41

Appendix . Bibliography

Journal of Arti�cial Intelligence Research, pp. 93–115, 2004. 1.5

[53] G. Gössler and L. Aştefănoaei, “Blaming in component-based real-time systems,” in

Proceedings of the 14th International Conference on Embedded Software, ser. EMSOFT ’14.

ACM, 2014, pp. 7:1–7:10. [Online]. Available: http://doi.acm.org/10.1145/2656045.2656048

1.5, 6.3.2

[54] A. Datta, D. Garg, D. Kaynar, D. Sharma, and A. Sinha, “Program actions as actual causes:

A building block for accountability,” in Proceedings of the 2015 IEEE 28th Computer Security
Foundations Symposium, ser. CSF ’15, 2015. 1.6

[55] A. Datta, D. Garg, D. K. Kaynar, D. Sharma, and A. Sinha, “Program actions as actual

causes: A building block for accountability,” CoRR, vol. abs/1505.01131, 2015. [Online].

Available: http://arxiv.org/abs/1505.01131 1.6

[56] B. Weslake, “A partial theory of actual causation,” British Journal for the Philosophy of
Science, p. To appear, 2015. 2, 2.3, 4.2, 4.2.3, 4.3.3, 6

[57] J. Scha�er, “Overdetermining causes,” Philosophical Studies, vol. 114, no. 1-2, pp. 23–45,

2003. 2.1.1, 4.4.3, 8

[58] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen, “The essence of compiling with

continuations,” in Proceedings of the ACM SIGPLAN 1993 Conference on Programming
Language Design and Implementation, ser. PLDI ’93. New York, NY, USA: ACM, 1993,

pp. 237–247. [Online]. Available: http://doi.acm.org/10.1145/155090.155113 2.1.1, 5.2.1, A

[59] L. Lamport, “Ti clocks, and the ordering of events in a distributed system,” Commun. ACM,

vol. 21, pp. 558–565, July 1978. 2.2, 5.2.2, 5.2.3, C.A.2.2

[60] R. W. Wright, “Causation, responsibility, risk, probability, naked statistics, and proof:

Pruning the bramble bush by clarifying the concepts,” Iowa L. Rev., vol. 73, p. 1001, 1987.

2.5

[61] C. Glymour, D. Danks, B. Glymour, F. Eberhardt, J. Ramsey, R. Scheines, P. Spirtes,

C. Teng, and J. Zhang, “Actual causation: a stone soup essay,” Synthese, vol. 175, no. 2,

pp. 169–192, 2010. [Online]. Available: http://dx.doi.org/10.1007/s11229-009-9497-9 3, 4.2,

4.3.4

[62] M. Tooley, Causation: Fundamental Issues. (Manuscript in progress). 4

[63] J. Woodward, Making things happen: A theory of causal explanation. Oxford University

Press, 2003. 4, 1, 6.1

[64] E. Eells, Probabilistic Causality. CUP, 1991, no. 3. 5

167

http://doi.acm.org/10.1145/2656045.2656048
http://arxiv.org/abs/1505.01131
http://doi.acm.org/10.1145/155090.155113
http://dx.doi.org/10.1007/s11229-009-9497-9

Appendix . Bibliography

[65] N. Lynch, R. Segala, and F. Vaandrager, “Hybrid i/o automata,” Information and
Computation, vol. 185, no. 1, pp. 105 – 157, 2003. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0890540103000671 4.1

[66] T. Henzinger, “The theory of hybrid automata,” in Logic in Computer Science, 1996. LICS
’96. Proceedings., Eleventh Annual IEEE Symposium on, Jul 1996, pp. 278–292. 4.1

[67] E. Brinksma, T. Krilavicius, and Y. S. Usenko, “A process-algebraic approach to hybrid

systems,” 2005. 4.1

[68] J. Y. Halpern, “Defaults and Normality in Causal Structures,” Arti�cial Intelligence, vol. 30,

pp. 198–208, 2008. [Online]. Available: http://arxiv.org/abs/0806.2140 4.2, 4.2.5.2, 7.2

[69] I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Tre�er, “Explaining counterexamples

using causality,” in Proceedings of the 21st International Conference on Computer Aided
Veri�cation, ser. CAV ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 94–108. [Online].

Available: http://dx.doi.org/10.1007/978-3-642-02658-4_11 4.2.3, 6.1

[70] H. Chockler, J. Y. Halpern, and O. Kupferman, “What causes a system to satisfy a

speci�cation?” ACM Trans. Comput. Logic, vol. 9, pp. 20:1–20:26, June 2008. [Online].

Available: http://doi.acm.org/10.1145/1352582.1352588 4.2.3, 6.1

[71] D. Kahneman and D. T. Miller, “Norm theory: Comparing reality to its alternatives,” Psy-
chological Review, vol. 93, no. 2, pp. 136–153, 1986. 4.2.5.2

[72] T. Eiter and T. Lukasiewicz, “Complexity results for structure-based causality,”

Artif. Intell., vol. 142, no. 1, pp. 53–89, Nov. 2002. [Online]. Available: http:

//dx.doi.org/10.1016/S0004-3702(02)00271-0 4.3.2

[73] M. Hopkins, “The actual cause: From intuition to automation,” Ph.D. dissertation, Univer-

sity of California, Los Angeles, 2005. 4.3.2

[74] N. Hall, “Causation and the price of transitivity,” Journal of Philosophy, vol. 97, no. 4, pp.

198–222, 2000. 4.3.3

[75] E. G. on Tort Law, Principles of European Tort Law: Text and Commentary. Springer,

2005. [Online]. Available: http://books.google.com/books?id=3Najct7xGuAC 4.3.5, 5.1

[76] J. Scha�er, “Trumping preemption,” Journal of Philosophy, vol. 97, no. 4, pp. 165–181, 2000.

4.4.3

[77] D. Wendlandt, D. G. Andersen, and A. Perrig, “Perspectives: improving ssh-style host

authentication with multi-path probing,” in USENIX 2008 Annual Technical Conference on
Annual Technical Conference. CA, USA: USENIX Association, 2008. 5.1, 6.2

168

http://www.sciencedirect.com/science/article/pii/S0890540103000671
http://www.sciencedirect.com/science/article/pii/S0890540103000671
http://arxiv.org/abs/0806.2140
http://dx.doi.org/10.1007/978-3-642-02658-4_11
http://doi.acm.org/10.1145/1352582.1352588
http://dx.doi.org/10.1016/S0004-3702(02)00271-0
http://dx.doi.org/10.1016/S0004-3702(02)00271-0
http://books.google.com/books?id=3Najct7xGuAC

Appendix . Bibliography

[78] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE Transactions on Soft-
ware Engineering, vol. 3, no. 2, pp. 125–143, 1977. 5.2.3

[79] B. Alpern and F. B. Schneider, “De�ning liveness,” Information Processing Letters, vol. 21,

pp. 181–185, 1985. 11

[80] W. Rafnsson, D. Hedin, and A. Sabelfeld, “Securing interactive programs,” in Proceedings
of the 2012 IEEE 25th Computer Security Foundations Symposium, ser. CSF ’12.

Washington, DC, USA: IEEE Computer Society, 2012, pp. 293–307. [Online]. Available:

http://dx.doi.org/10.1109/CSF.2012.15 5.2.4

[81] A. Groce, S. Chaki, D. Kroening, and O. Strichman, “Error explanation with distance met-

rics,” International Journal on Software Tools for Technology Transfer, vol. 8, no. 3, pp. 229–

247, 2006. 6.1

[82] T. Ball, M. Naik, and S. K. Rajamani, “From symptom to cause: Localizing errors in

counterexample traces,” in Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, ser. POPL ’03. New York, NY, USA: ACM, 2003,

pp. 97–105. [Online]. Available: http://doi.acm.org/10.1145/604131.604140 6.1, 7.1.3

[83] D. A. Lagnado and S. Channon, “Judgments of cause and blame: The e�ects of intention-

ality and foreseeability,” Cognition, vol. 108, no. 3, pp. 754–770, 2008. 6.1, 6.2

[84] “ Internet-Draft: Public Key Pinning Extension for HTTP,” 2012. [Online]. Available:

http://tools.ietf.org/html/draft-ietf-websec-key-pinning-01 6.2

[85] “ Internet-Draft: Trust assertions for certi�cate keys (TACK),” 2012. [Online]. Available:

https://tools.ietf.org/html/draft-perrin-tls-tack-02 6.2

[86] C. Soghoian and S. Stamm, “Certi�ed lies: Detecting and defeating government

interception attacks against ssl (short paper),” in Proceedings of the 15th International
Conference on Financial Cryptography and Data Security, ser. FC’11. Berlin, Heidelberg:

Springer-Verlag, 2012, pp. 250–259. [Online]. Available: http://dx.doi.org/10.1007/

978-3-642-27576-0_20 6.2

[87] M. Alicherry and A. D. Keromytis, “Doublecheck: Multi-path veri�cation against man-in-

the-middle attacks,” in Computers and Communications, 2009. ISCC 2009. IEEE Symposium
on. IEEE, 2009, pp. 557–563. 6.2

[88] M. Marlinspike, “SSL and the future of authenticity,” Black Hat USA, 2011. 6.2

[89] A. Barth, J. C. Mitchell, A. Datta, and S. Sundaram, “Privacy and utility in business pro-

cesses,” in CSF, 2007, pp. 279–294. 6.3, 6.3.2

[90] G. Gössler and D. L. Métayer, “A general trace-based framework of logical causality,” in

169

http://dx.doi.org/10.1109/CSF.2012.15
http://doi.acm.org/10.1145/604131.604140
http://tools.ietf.org/html/draft-ietf-websec-key-pinning-01
https://tools.ietf.org/html/draft-perrin-tls-tack-02
http://dx.doi.org/10.1007/978-3-642-27576-0_20
http://dx.doi.org/10.1007/978-3-642-27576-0_20

Appendix . Bibliography

Formal Aspects of Component Software - 10th International Symposium, FACS 2013, 2013,

pp. 157–173. [Online]. Available: http://dx.doi.org/10.1007/978-3-319-07602-7_11 6.3.2

[91] C. Hitchcock and J. Knobe, “Cause and norm,” pp. 587–612, 2009. [Online]. Available:

http://philsci-archive.pitt.edu/8352/ 7.1.2

[92] A. Datta, A. Derek, J. C. Mitchell, and D. Pavlovic, “A derivation system and compositional

logic for security protocols,” Journal of Computer Security, vol. 13, no. 3, pp. 423–482, 2005.

C

[93] D. Garg, J. Franklin, D. Kaynar, and A. Datta, “Compositional system security with

interface-con�ned adversaries,” Electron. Notes Theor. Comput. Sci., vol. 265, pp. 49–71,

Sep. 2010. C, C.B.2, 1

170

http://dx.doi.org/10.1007/978-3-319-07602-7_11
http://philsci-archive.pitt.edu/8352/

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Motivation of problem
	Motivation of our approach

	Overview of our approach
	Definition outline

	Prior work in actual causation
	Counterfactual-based actual causation theories
	Process-based causation theories
	Challenges

	Thesis statement
	Summary of contributions
	Structure of the dissertation

	I Interaction-aware Theory of Actual Causation
	Overview of the Formalism
	Syntax
	Adding choice and asymmetric disjunction

	Operational semantics for process calculus framework
	Structural equation framework for actual causation
	Semantics for structural equations

	Why process calculus?
	Examples

	Defining Choices and Actions as Actual Causes
	Actual cause definition
	Examples

	Relationship with Prior Work in Actual Causation
	Process-based causation theories
	Counterfactual-based actual causation theories
	Hitchcock 2001 (H2001)
	Hall 2007 (H-account)
	Halpern and Pearl (HP2001, HP2005)
	Halpern 2015 (H2015)
	Relationship with interventions and necessity clause in prior work

	Definitional differences and consequences
	Modeling interaction and choice
	Finding causal sequences
	Program expressions vs variable assignments as causes
	Testing counterfactual scenarios
	Distinguishing between joint and independent causes

	Modeling differences and consequences
	Using process calculus
	Expressing concise general models of interaction
	Handling preemption concisely

	II Application to Security Protocols
	Defining Program Actions as Actual Causes
	Motivating example
	Program actions as actual causes
	Model
	Logs and their projections
	Properties of interest
	Formal definition: Program actions as actual causes

	Relationship with Definition in Part 1
	Application: Causes of authentication failures
	Protocol description
	Attack

	Using Causation as a Building Block for Accountability
	Using causation for explanations (protocol debugging)
	Using causation for blame attribution
	Related work
	Accountability
	Causation for blame assignment

	Conclusion and Future Work
	Directions for future work
	Properties as actual causes
	Towards a theory of blame: intention, foreseeability
	Actual causation in sequential setting

	Concluding remarks

	Appendices
	Operational Semantics
	Proof for Case Study: Program Actions as Causes
	Protocol description
	Preliminaries
	Attack

	Defining Programs as Actual Causes
	Programs as actual causes
	Problematic example
	Formal definitions

	Case study
	Protocol description
	Causal analysis of attack scenario

	Bibliography

