
Improved Trajectory Planning for On-Road Self-Driving Vehicles Via

Combined Graph Search, Optimization & Topology Analysis

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Department of Electrical & Computer Engineering

Tianyu Gu

Doctoral

Carnegie Mellon University
Pittsburgh, PA

May 2017

c© 2017 Tianyu Gu.
All rights reserved.

iii

Acknowledgements

I must first thank my family, who have been very patient with me and supportive of

my academic pursuit.

I would like to thank my advisor, Professor John Dolan, who helped me throughout

my Ph.D study. It is in those lengthy discussions that I honed my logical thinking

ability and pruned away those obviously dead-end approaches to try for. I sincerely

thank my committee members, Professor Howie Choset, Professor Gary Overett and

Dr. Jin-Woo Lee for their valuable inputs.

I would like to thank all former colleagues in the GM-CMU ADCRL: Professor

Raj Rajkumar, Jarrod Snider, Junqing Wei, Gaurav Bhatia, Junsung Kim, Jongho Lee,

Hyunggi Cho, Wenda Xu, Chiyu Dong, Adam Werries and Hyunsung Kim. Their

support was critical.

I would like to thank all former colleagues that I worked with at different compa-

nies: Bakhtiar Litkouhi/Jin-Woo Lee/Priyantha Mudalige at General Motors, Raj Ra-

jkumar/Jarrod Snider at Ottomatika (now Delphi), Nathan Fairfield/Ioan Alexandru

Sucan at Google X (now Waymo), and Tony Stentz/David Bradley/Mike Phillips/Zico

Kolter at Uber ATG. My work experiences brought me new perspectives on autonomous

driving.

I would also like to thank all those friends that I was fortunate enough to meet and

get to know during my Ph.D study in Pittsburgh.

iv

Abstract

Trajectory planning is an important component of autonomous driving. It takes the

result of route-level navigation plan and generates the motion-level commands that

steer an autonomous passenger vehicle (APV). Prior work on solving this problem

uses either a sampling-based or optimization-based trajectory planner, accompanied

by some high-level rule generation components. However, these schemes are limited

in the following respects:

1. Sampling-based planners yield global resolution-complete optimal trajectories,

but suffer from the curse of dimensionality and sampling sub-optimality (i.e.,

almost never reach a local optimum). Optimization-based planners can find a

local optimal trajectory, but suffer from the unawareness of global optimum.

2. Both types of trajectory planner lack explicit tactical or behavior-level reasoning

capability. They rely on the high-level behavioral decision-making component to

make motion-level decisions that do not necessarily comply with the maneuver-

ability of the planner and the APV.

In this thesis, we adapt existing algorithms and propose new methods in the fields

of optimal control (Chapter 3 & 6), graph search (Chapter 4) and topological analysis

(Chapter 5) to design an improved trajectory planning system. The core contributions

of our work are summarized below:

• A hybrid trajectory planner for on-road autonomous driving that maintains the

key advantages of both the sampling-based and the optimization-based planners

while reducing their limitations.

• A novel type of edge-augmented graph that allows sampling-based planners to

numerically approximate certain trajectory optimization methods.

v

• A novel backward induction method based on topological analysis to perform

configuration-space segmentation over a direct acyclic graph (DAG) as an effi-

cient way to explore the topological structure of a global configuration space.

• A novel maneuver pattern distinction method based on trajectory sampling and

topological analysis to distinguish region-based, topology-based and overtaking

sequence-based patterns for motion-level tactical reasoning.

• Adaptation of the linear quadratic regulator (LQR) controller for model-feasible

trajectory smoothing, and of the iterative-LQR (1st-order differential dynamic

programming) for focused execution-feasible trajectory optimization.

• Identification of useful principles and functions for constructing cost terms for

trajectory evaluation.

Contents

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Thesis Statement & Contribution . 4

2 Related Work 6

2.1 Planning Architecture for Autonomous Driving 6

2.2 Cost-based Trajectory Planning . 9

2.3 Motion Planning with Topology Awareness 20

2.4 Summary . 22

3 Vehicle Model, Representation & Control 24

3.1 Vehicle Model . 24

3.2 Representation of APV and Objects . 28

3.3 Trajectory Tracking Control . 29

3.4 Controller-based Smoothing . 33

4 Edge-augmented Search-based Path Planning 37

vi

CONTENTS vii

4.1 Continuous Path Smoothing & Nudging 38

4.2 Edge-Augmented Graph Search . 40

4.3 Constraint-satisfying Nominal Reference Generation 42

5 Maneuver Pattern Analysis 47

5.1 Theoretical Background . 47

5.2 Graph Segmentation-based Maneuver Pattern Identification 55

5.3 Sampling-based Maneuver Pattern Identification 58

5.4 Choosing Maneuver Pattern . 66

6 Focused Trajectory Optimization with Constraints 68

6.1 Relationship between Planning & Control 69

6.2 Trajectory Optimization Background . 70

6.3 Cost Function Design . 76

6.4 Maneuver Pattern Constrained iLQR Algorithm 90

7 Application to On-Road Self-Driving 94

7.1 Trajectory Planning Framework . 94

7.2 Experiment Configuration . 96

7.3 Experimental Results . 103

7.4 Comparison to State of the Art . 114

8 Conclusion 119

8.1 Contributions . 119

8.2 Future Work . 121

Bibliography 123

List of Tables

2.1 Names of the planning modules used by DARPA Urban Challenge Entries. . 8

6.1 Examples of non-decreasing convex modulation functions. 83

7.1 Comparison to the state-of-the-art in the highlighted features. 116

viii

List of Figures

1.1 Demonstration of topological unawareness with cost function alone. 3

1.2 Demonstration of topological unawareness leading to problems for both the

sampling-based and optimization-based planning techniques. 4

1.3 The algorithmic flow overview of the proposed planning components. 4

2.1 The hierarchical overview of CMU’s DARPA Ubran Challenge entry "Boss". 7

2.2 The flow of three-level planning and the tactical reasoning responsibilities

at the behavior-level. 8

2.3 Examples of local sampling patterns. 11

2.4 State lattices in open-space and on-road environments. 14

2.5 Planning sub-optimality caused by fixed lattice sampling resolution. 14

3.1 Kinematic bicycle model. 24

3.2 Dynamic bicycle model. 26

3.3 Representation of rectangular-shaped objects with circular disks. 28

3.4 Nominal trajectory sequence and the representation of longitudinal/lateral

errors with respect to the corresponding nominal trajectory point. 30

3.5 Path & trajectory smoothing with LQR-based trajectory tracker. 34

3.6 LQR smoothing examples for smooth and aggressive nominal trajectories. . 35

4.1 The definition of lateral offset and smoothness terms with discrete point

samples. 38

ix

List of Figures x

4.2 The definition of attractive, repulsive and contractive forces with discrete

point samples. 39

4.3 The spatial graph for numerical path smoothing/nudging. 40

4.4 The construction of edge-augmented graph from spatial graph. 41

4.5 Generate speed profile with dynamic constraints. 43

5.1 Illustration of two homological but non-homotopic trajectories. 48

5.2 Energized wire and its generated magnetic field in the 3-D Euclidean space. 50

5.3 The construction of 3-D spatiotemporal planning space. 52

5.4 Create looped augmented temporal object for topological differentiation. . . 52

5.5 Create virtual magnetic field by applying virtual current in the augmented

temporal object. 53

5.6 Construct DAG to perform graph segmentation-based topological analysis. 55

5.7 The homology-signature vector incrementals ∆H along a given graph path. . 56

5.8 Comparison of backward propagation routines in dynamic programming

(optimal cost-to-go) and topology induction (homology-signature vector). . 57

5.9 Graph segmentation-based topological analysis for a three-object scenario. . 59

5.10 Construct spatiotemporal trajectory sampling pool. 60

5.11 Region-based and topology-based distinctions for on-road driving. 61

5.12 Identify gaps between moving vehicles through the combinations of object-

associated regions. 61

5.13 Construct helper trajectory to detect pseudo-homological trajectories. 62

5.14 Detect pseudo-homology for trajectories that terminate in the same on-road

corridor region. 63

5.15 Two pseudo-homological trajectories demonstrate distinct maneuver pat-

terns with different overtaking sequencing. 64

5.16 Example of constructing maneuver distinction tree of four objects. 65

6.1 Distance functions for polyline and polygon. 81

6.2 The calculation of penetrated distances with respect to disk and polyline. . . 85

List of Figures xi

6.3 Feature & cost for object repulsion. 86

6.4 Feature & cost for lane keeping. 86

6.5 Optimization demonstration of the adapted iterative-LQR trajectory opti-

mizer on a poorly condition seeding trajectory violating both obstacle and

lane boundary constraints. 92

7.1 The planning algorithmic flow with localization/perception inputs. 95

7.2 The planning/control diagram of the autonomous Cadillac SRX. 96

7.3 The outcomes of each proposed planning module in the algorithmic flow. . . 97

7.4 Graph specification for spatial region segmentation and reference smooth-

ing/nudging. 97

7.5 Cost specification for reference smoothing & nudging. 98

7.6 Graph specification for maneuver pattern analysis. 100

7.7 Scenario I . 105

7.8 Segmented spatial region plot for scenario I. 105

7.9 Reference smoothing & nudging snapshot for scenario I. 105

7.10 Spatiotemporal maneuver pattern analysis snapshot for scenario I. 105

7.11 Trajectory optimization snapshot for scenario I. 106

7.12 The full scenario handling overlay plot in 7.12(a) and the steer-speed history

plot in 7.12(b). 107

7.13 Scenario II . 107

7.14 Spatial region segmentation snapshot for scenario II. 108

7.15 Reference smoothing & nudging snapshot for scenario II. 108

7.16 Spatiotemporal maneuver pattern analysis snapshot for Scenario II. 108

7.17 Trajectory optimization snapshot for scenario II. 109

7.18 Full scenario handling overlay for scenario II. 110

7.19 Scenario III . 110

7.20 Segmented spatial region plot for scenario III. 110

7.21 Reference smoothing & nudging snapshot for scenario III. 111

List of Figures xii

7.22 Spatiotemporal maneuver pattern analysis snapshot for Scenario III. 111

7.23 Trajectory optimization snapshot for scenario III. 111

7.24 Full scenario handling overlay for scenario III. 112

7.25 Scenario IV . 112

7.26 Spatial region segmentation snapshot for scenario IV. 113

7.27 Reference smoothing & nudging snapshot for scenario IV. 113

7.28 Spatiotemporal maneuver pattern analysis snapshot for Scenario IV. 114

7.29 Trajectory optimization snapshot for scenario IV. 114

7.30 Full scenario handling overlay for scenario IV. 115

List of Figures xiii

Terminology

Abbreviation

APV: Autonomous Passenger Vehicle

PRM: Probabilistic Road Map

RRT: Rapidly-exploring Random Tree

DP: Dynamic Programming

DoF: Degree of Freedom

UG: Undirected Graph

DCG: Directed Cyclic Graph

DAG: Directed Acyclic Graph

SOMWF: Single-Objective-Multiple-Weighted-Feature

SSSP: Single Source Shortest Path

N-D: N-dimensional

APV Point: 2-D spatial position in (x, y)

APV Pose: 3-D spatial position and orientation in (x, y, θ)

APV State: High-D vector that describes the exact state of an APV, often includes APV

Pose and other information like speed, accelerations, etc.

iff: if and only if.

Nomenclature

Path planning: Planning for a geometric curve.

Trajectory planning: Planning for a time-index control sequence or path (spatial state

sequence).

Motion planning: A general name for combined path planning and trajectory plan-

ning.

Complete: The trajectory planning is guaranteed to terminate in finite time, returning

either failure or a valid solution if one exists.

List of Figures xiv

Resolution-complete: The trajectory planning is guaranteed to terminate in finite time,

returning either failure or a valid solution if one exists and the resolution parameter is

set fine enough.

Probabilistic-complete: The probability of trajectory planning failure approaches zero

as the number of samples approaches infinity if a valid solution exists, for sampling-

based approach specifically.

Holonomic vs. Nonholonomic: A holonomic robot has the same number of control-

lable DoF as the total number of the DoF; nonholonomic robot has fewer controllable

DoF than the total number of DoF.

Admissible heuristics: In heuristic-based search algorithms, like A* and its variants,

admissible heuristics always return an underestimate of the optimal cost-to-go value.

Reference vs. Trajectory: Both reference and trajectory are used to represent a spa-

tiotemporal trace. Reference is a state sequence indexed by the arc-length of a trace.

One may use the speed in the state to implicitly infer time in this sequence (implicit

representation). Trajectory is a state sequence directly indexed by time (explicit repre-

sentation).

Chapter 1

Introduction

1.1 Overview

According to the National Highway Traffic Safety Administration [National Highway

Traffic Safety Administration, 2013], approximately two million people were injured

and more than thirty thousand people were killed in the United States in 2012 alone.

Human error was the major cause of car accidents [Wilson and Stimpson, 2010].

Autonomous passenger vehicles (APV), a.k.a. driverless cars, have brought societal

attention to the active research field of vehicle autonomy. Efforts like the 2007 DARPA

Urban Challenge [Urmson et al., 2008, Montemerlo et al., 2008] and the Google/Uber

self-driving car projects have demonstrated the technological possibility of achieving

full autonomy in complex urban environments, and herald a bright future of trans-

portation safety, efficiency and accessibility.

An APV operates in two distinct contexts [Urmson et al., 2008]: the unstructured

and the structured. The former represents a large free area (e.g. a parking lot) within

which the host vehicle can operate without strong structural constraints, while the

latter refers specifically to on-road driving on the highway or in urban environments,

where the maneuverability of the host vehicle is confined by lane markings and physi-

cal barriers. The latter is more challenging. While the spatial search space is confined,

1

CHAPTER 1. INTRODUCTION 2

it has a large temporal space to search for in order to safety navigate around obsta-

cles of full speed-range. It is also more meaningful since most driving is done in the

structured environment.

In this thesis, we are primarily concerned with the problems of on-road trajectory

planning and control. A hybrid trajectory planning framework and individual plan-

ning algorithms are developed and organized to achieve better trajectory quality and

more informative high-level decision-making capability.

1.2 Motivation

Broadly speaking, there are two fundamental classes of trajectory planning methods:

the optimization-based and the sampling-based. In this section, we give an overview

of the advantages and disadvantages/limitations of these approaches, which lead to

the core motivation of our approach.

1.2.1 Limitations in Sampling-based Methods

Sampling-based methods can find (or report failure to find) a plan being aware of the

entire search space, unlike optimization-based methods. If the search space is a pool

of sampled trajectories, a sampling-based planner returns the best trajectory from this

pool. If the search space is a graph, a sampling-based planner typically returns the

best route traversing this graph. Therefore, if the search space is generated such that

it is comprehensive with respect to the continuous space of interest, the solution from

such a planner yields a plan that is probably closer to a global optimum.

However, the need to discretize the search space means that one can almost never

find a true local minimum. In the meantime, there is a constant trade-off between

high search space resolution, performance, and computation on the one hand and low

resolution, performance, and computation on the other hand. If the search dimension

is large (e.g., for spatiotemporal planning), the so-called curse of dimensionality is also

likely to make it difficult in to find a good trade-off.

CHAPTER 1. INTRODUCTION 3

1.2.2 Limitations in Optimization-based Methods

Optimization-based methods are good at finding a locally optimal plan, and a good op-

timizer is typically designed to return after a few hundred iterations (compared to the

thousands or even more trajectory evaluations needed for sampling-based planners),

which often implies a small computational overhead. The two main disadvantages of

optimization-based planners are that: 1) their run-time is often non-deterministic, and

2) they lack the global awareness of sampling-based planners. Indeed, the solution

of most optimization-based trajectory planners depend heavily on a good initializa-

tion (seeding) trajectory, and often only returns a local optimum that is close to the

initialized trajectory, without having explored a significant portion of the state space.

1.2.3 Topological Unawareness

Figure 1.1: Demonstration of topological unawareness with cost function alone.

The existence of obstacles in the environment creates topological structure in the

configuration space. Having topological awareness is an important factor in perform-

ing high-level tactical reasoning by identifying and reasoning about distinct maneuver

patterns. Figure 1.1 illustrates a simple homotopic path planning example, where the

vehicle has two topologically distinct maneuvers, swerving to the left or right, and

their costs can be close (even equal) to each other.

The lack of topological awareness could lead to further difficulties in both sampling-

based and optimization-based methods. For a sampling-based planners, such un-

awareness could further cause cycle-to-cycle indecisiveness among locally optimal tra-

jectories that belong to drastically different maneuver patterns, as shown in Figure

1.2(a). For an optimization-based planner, such unawareness causes the problem of

CHAPTER 1. INTRODUCTION 4

(a) Sampling-based (b) Optimization-based

Figure 1.2: Demonstration of topological unawareness leading to problems for both
the sampling-based and optimization-based planning techniques.

getting stuck at the wrong local minimum, in an extreme case, can cause planning

failure. As shown in Figure 1.2(b), the planner fails to find a plan given the initial

collision-inevitable trajectory that belongs to "swerve-left" pattern, even there may ex-

ist a feasible solution from the topological alternative "swerve-right" pattern.

1.3 Thesis Statement & Contribution

Figure 1.3: The algorithmic flow overview of the proposed planning components.

CHAPTER 1. INTRODUCTION 5

By taking advantage of a combined sampling-and-search, optimization and topol-

ogy analysis approach, we can avoid pitfalls of traditional search/optimization-based

method and to equip self-driving cars with improved high-level reasoning capabil-

ities for on-road trajectory planning. As shown in Figure 1.3, we adapt existing

algorithms and propose new methods in the fields of optimal control (LQR-based

Path/Trajectory Smoothing and Constrained Trajectory Optimization in Chapter 3 and

6), graph search (Edge-augmented Graph Search in Chapter 4), and topological anal-

ysis (Graph Segmentation/Sampling-based Maneuver Pattern Analysis in Chapter 5).

The core contributions of our work are summarized below:

• A hybrid trajectory planner for on-road autonomous driving that maintains the

key advantages of both the sampling-based and the optimization-based planners

while reducing their limitations.

• A novel type of edge-augmented graph that allows sampling-based planners to

numerically approximate certain trajectory optimization methods.

• A novel backward induction method based on topological analysis to perform

configuration-space segmentation over a direct acyclic graph (DAG) as an effi-

cient way to explore the topological structure of a global configuration space.

• A novel maneuver pattern distinction method based on trajectory sampling and

topological analysis to distinguish region-based, topology-based and overtaking

sequence-based patterns for motion-level tactical reasoning.

• Adaptation of the linear quadratic regulator (LQR) controller for model-feasible

trajectory smoothing, and of the iterative-LQR (1st-order differential dynamic

programming) for focused execution-feasible trajectory optimization.

• Identification of useful principles and functions for constructing cost terms for

trajectory evaluation.

Chapter 2

Related Work

This chapter reviews prior work on the planning systems for an APV, and common

path/trajectory planning methods for mobile robots. Section 2.1 reviews the hierar-

chical planning structure that is widely used, and the relationship between levels of

planning modules. Section 2.2 reviews three categories of classic trajectory planning

approaches that depend on an objective cost function. Section 2.3 reviews homotopy

analysis techniques used in trajectory planning. Finally, Section 2.4 summarizes the

desired properties of a trajectory planner for autonomous driving vehicles, exposes

the shortcomings of prior approaches, and then provides an overview of how the pro-

posed approach addresses them.

2.1 Planning Architecture for Autonomous Driving

From a functional perspective, an APV typically has the following subsystems:

• Localization (self-location on a global/local map)

• Sensing (sensing and constructing a model of the environment)

• Planning/Control (generating and actuating motion safely)

The most common way to organize these different capabilities is through the use

of a hierarchical framework. As an example, the framework of "Boss" [Urmson et al.,

6

CHAPTER 2. RELATED WORK 7

Figure 2.1: The hierarchical overview of CMU’s DARPA Ubran Challenge entry "Boss".

2008], winning entry in the 2007 DARPA Urban Challenge race, is shown in Figure 2.1.

The focus is in the planning subsystem, which takes on a wide range of navigation

and decision making responsibilities. This hierarchy organized these capabilities into

three planning levels:

• Mission-level: generates a high-level plan composed of a sequence of global

checkpoints to be reached to accomplish a navigation task.

• Behavior-level: makes mid-level tactical maneuver decisions such as triggering

lane-change or staying in-lane, overtaking or distance-keeping, intersection han-

dling or triggering special U-turn/parking-lot maneuvers.

• Trajectory-level: generates the low-level trajectory plans, guarantees trajectory

feasibility and admissibility by taking into account all constraints from vehicle

kinematics/dynamics and surrounding obstacles.

Similar three-level structural planning framework was very popular among all the

entries in the 2007 DARPA Urban Challenge that finished the contest course, despite

different naming conventions (Table 2.1). The behavior- and trajectory-level planning

serve respectively as the key decision maker and motion generator.

CHAPTER 2. RELATED WORK 8

Entry Mission-level Behavior-level Motion-level

Boss [Urmson et al., 2008] Mission
Planner

Behavior
Planner

Local
Planner

Junior [Montemerlo et al., 2008] Global Path
Planner

Behavior
Planner

Road
Navigator

Odin [Hurdus et al., 2008] Route Planner Driving
Behavior

Motion
Planner

Talos [Leonard et al., 2007] Mission
Planner

Situational
Interpreter

Situational
Planner

Little Ben [Bohren et al., 2008] Mission
Planner Local Planner Path

Planner

Skynet [Miller et al., 2008] Graph Planner Behavior
Planner

Tactical
Planner

Table 2.1: Names of the planning modules used by DARPA Urban Challenge Entries.

Figure 2.2: The flow of three-level planning and the tactical reasoning responsibilities
at the behavior-level.

While the trajectory-level planners generate the executable trajectory to follow, the

behavior-level planners are responsible for triggering context-specific motion deci-

sions. A closer look at the behavior-level planner allows one to further distinguish

between three tactical layers of planning for on-road driving (Figure 2.2):

• Rule-based tactics: stopping & go (precedence handling) at intersection, etc.

• Route-based tactics: real-time lane selection to meet global routing/efficiency

requirements, etc.

• Motion-based tactics: triggering lane-change, to-go at intersection, etc.

Rule-based and route-based tactical planning fall naturally into the behavior-level

tasks, and can be efficiently modeled and solved with a Finite State Machine (FSM)

as in Urmson [Urmson et al., 2008], a Concurrent Hierarchical State Machine as in

CHAPTER 2. RELATED WORK 9

Kammel [Kammel et al., 2008] or more involved Action Selection Mechanisms (ASM)

as in Hurdus [Hurdus et al., 2008] and Pirjanian [Pirjanian, 1999].

However, having motion-based tactical reasoning in a behavior-level planner such

that it is separated from the actual trajectory planning poses consistency issues: the

behavior-level planner may make maneuver decisions that are infeasible from the per-

spective of the trajectory-level planner, since the actual trajectory has not been gen-

erated when reasoning, which as a result does not guarantee motion feasibility. In

other words, the motion-based tactical reasoning is dependent on the capability of the

trajectory-level planner.

A practical solution to reduce such inconsistency is to design conservative decision-

making laws and use expert heuristics to decrease the likelihood of triggering infeasi-

ble decisions. However, using conservative rules typically comes at the price of limiting

the vehicle’s maneuverability, and still provides no consistency guarantee. In addition,

it is hard to design behavioral rules for unseen scenarios, e.g., the environment is

complicated by multiple moving objects.

2.2 Cost-based Trajectory Planning

An optimal motion planner aims to find a path or trajectory that optimizes a defined

objective cost function. We review three classes of methodologies —- reactive (Section

2.2.1), sampling-based (2.2.2) and optimization-based (2.2.3).

2.2.1 Reactive Planning

Reactive planning methods generate an instantaneous control that is responsive to the

right-at-the-moment environment.

The potential field (PF) path planning approach by Khatib [Khatib, 1986] Krogh

[Krogh and Thorpe, 1986] and Hwang [Hwang and Ahuja, 1992] calculates force fields

generated by goal targets and surrounding obstacles: a goal attraction force field and

obstacle repulsive force fields. The overlaid effect of these forces determines an im-

CHAPTER 2. RELATED WORK 10

mediate control input to the robot. Huang [Huang et al., 2006] and Hamner [Hamner

et al., 2006] further extended the original PF method for non-holonomic car-like robots.

They incorporated relative headings to the goal and object into the calculation of poten-

tial fields, which equivalently generates an angular control law for the robot heading

to track a path to the goal. While being physically inspired and easy-to-calculate, the

PF approach suffers from possible local trapping due to the existence of local minima

in the overall PF function, as discussed by Koren [Koren and Borenstein, 1991].

The navigation function described in [Koren and Borenstein, 1991, Connolly et al.,

1990] generates a single minimum globally at the location of the goal configuration

with iterative Gauss-Seidel method on discretized cell grid. Lengyel [Lengyel et al.,

1990] generates an optimal cost-to-go value for each free configuration sample using

a dynamic programming (DP)-based wavefront algorithm. After pre-processing, the

cell grid is guaranteed to have a single global minimum at the goal configuration.

However, the reason that a navigation function can avoid local optimality is because

that the pre-processing step essentially pre-map action for each state.

Overall, it is hard for reactive planning methods to account for the future evolve-

ment (prediction) of the environment in order to yield a deliberative plan that has

certain optimality sense overall a long spatial or temporal planning horizon.

2.2.2 Sampling-based Planning

Sampling-based planning discretizes the continuous configuration space to convert

planning into a generate-and-evaluate problem or a graph search problem.

A classical generate-and-evaluate planner is the dynamic window method (DWA),

which directly takes into account the constraints imposed by the robot dynamics. In

Fox [Fox and Burgard, 1997], the dynamic window is defined by constant translational

and rotational velocity commands, resulting in circular trajectories. The optimal tra-

jectory is then selected from the sampled candidates with the minimum cost over the

sampled trajectories considering target heading (w.r.t. the goal), clearance to surround-

CHAPTER 2. RELATED WORK 11

ing objects, and velocity of the robot.

More involved DMA variants first design certain motion/control primitives that

the robot is guaranteed to execute. More precisely, a primitive is a kinematically

(dynamically) feasible control sequence/trajectory that connects a pair of start/goal

configurations. Piazzi [Piazzi and Bianco, 2000] used quintic polynomials to represent

path primitives that connect arbitrary poses in Cartesian space with second-order ter-

minal continuity. Kanayama [Kanayama and Hartman, 1990] proposed to use clothoid

curves and cubic spirals, while Nagy [Nagy and Kelly, 2001] developed an efficient

routine to generate cubic spirals using shooting-method and gradient descent. Kelly

[Kelly and Nagy, 2003] further generalized the problem to generate a spiral curve of

arbitrary order in curvature as a model-based boundary satisfaction problem.

(a) Stanley [Thrun et al., 2006]

(b) Boss [Urmson et al., 2008] in 2.3(b)

Figure 2.3: Examples of local sampling patterns.

These motion primitives have been applied to APVs. For example, the winning en-

tries in the DARPA Grand and Urban Challenges, Stanley [Thrun et al., 2006] and Boss

[Urmson et al., 2008] made use of the clothoid [Kanayama and Hartman, 1990] and spi-

ral path primitives [Kelly and Nagy, 2003] respectively to generate short-horizon tra-

jectory candidates. The former spawns candidates in a fan-like pattern (Figure 2.3(a)),

CHAPTER 2. RELATED WORK 12

whereas the latter samples by laterally shifting the terminal states from the lane cen-

terline (Figure 2.3(b)). Then the optimal trajectory is selected for execution based on a

weighted impact of time-optimality, center-closeness and distance to obstacles.

Overall, the generate-and-evaluate methods are computationally cheap. However, they

are not able to incorporate long-horizon prediction of the environment into the plan-

ning process. In fact, these methods can also be viewed as generating a set of candidate

trajectories modelled as a single-layer graph. However, no graph search algorithm is

necessary, since a simple comparison will find the optimal trajectory.

Graph-based planning methods construct a graph by connecting sampled vertexes

(sampled configuration states) with feasible edges (could be a simple linear connection

or a more complex primitive, as described above). Planning then becomes searching

for an optimal visiting sequence on the graph as the trajectory plan. Depending on

how the graph is constructed, the methods can be classified as probabilistic or pre-

defined. Probabilistic methods build the search graph by placing nodes according to

a certain statistical distribution (e.g., unbiased randomness means an uniform distri-

bution), whereas the predefined methods perform sampling in a determined pattern.

Once a graph is constructed, an appropriate search algorithm to explore and return a

solution on this graph is executed.

The probabilistic road-map (PRM) method by Kavraki [Kavraki et al., 1996] has

been proposed for path planning problems. A learning phase creates a graph, i.e., the

road-map, to explore the free configuration by repeatedly growing a tree of randomly

sampled configuration points. After connecting the start/goal configurations to the

sampled road-map, a query phase then attempts to traverse the road-map by finding a

feasible route. Since building the graph consumes the most computational power with

query being cheap, PRM routines are suitable for applications that perform multi-

query over the same road-map, e.g., in static environments. Work by Le [Le and

Plaku, 2014] used PRM to capture the connectivity of the free configuration space,

then guided model-based trajectory sampling for efficient maneuver space exploration

and search for non-holonomic mobile robots.

CHAPTER 2. RELATED WORK 13

The Rapidly-exploring Random Tree (RRT) proposed by LaValle [Lavalle, 1998]

can be viewed as a single-query version of PRM. It expands the search tree by itera-

tively moving toward randomly-sampled configurations. Similar to Le [Le and Plaku,

2014], RRT inherently feeds control to an arbitrarily complex robot model to forward-

simulate the vehicle motion as it builds the graph incrementally. However, the original

PRM and RRT algorithms are probabilistically complete, but not asymptotically op-

timal. Theoretically better sampling schemes for both PRM and RRT proposed by

Karaman [Karaman and Frazzoli, 2011] result in PRM* and RRT* algorithms to guar-

antee asymptotic optimality, i.e., the global minimum-cost path can always be retrieved

given enough sampling.

Variations on RRT implementations are used for APV specifically, commonly bi-

asing the configuration sampling towards the actual goal configurations for better

exploration efficiency. Urmson [Urmson and Simmons, 2003] suggested to use path

cost as a heuristic to guide the growth of the RRT. Kuwata [Kuwata et al., 2009] spec-

ified a goal set according to the high-level navigation destination and road structure

to direct RRT growth for MIT’s DARPA Urban Challenge team [Leonard et al., 2007].

Jeon [hwan Jeon et al., 2013] designed a RRT*-based motion planner for on-road au-

tonomous driving. The RRT modification in Du [Du et al., 2014] handles narrow pas-

sages and cluttered environments by explicitly identifying passable narrow passages

in the configuration and performing an obstacle-guided RRT sampling.

Deterministic graph construction methods with predefined-pattern sampling are

good alternatives to the probabilistic sampling schemes. Theoretical results from

Lavalle [LaValle et al., 2004] even demonstrate the advantages of using deterministic

grid graph construction over probabilistic sampling techniques in terms of configura-

tion coverage (dispersion) and practical performance.

Motion primitives, e.g., a spiral [Kelly and Nagy, 2003], have been used in search

space construction for a nonholonomic car-like mobile robot. Pivtoraiko [Pivtoraiko

et al., 2009] proposed the concept of a state lattice, which embeds a discrete graph

composed of kinematically-feasible motion primitives that connect sampled configu-

CHAPTER 2. RELATED WORK 14

(a) Open-space lattice (b) On-road lattice

Figure 2.4: State lattices in open-space and on-road environments.

ration states in the continuum (Figure 2.4(a)). Likhachev [Likhachev and Ferguson,

2009] successfully applied this idea to plan long kinematically feasible paths for APV

in unstructured environments (e.g., a parking lot) for CMU’s DARPA Urban Challenge

Entry "Boss" [Urmson et al., 2008].

State lattices in structured environments (Figure 2.4(b)) have been adapted for on-

road trajectory planning. Ziegler [Ziegler and Stiller, 2009] created candidate polyno-

mial paths by connecting the robot’s pose to a set of sampled poses along the road.

Then for each path, a spatiotemporal manifold of linear speed profiles was further

sampled to construct a space-time search space. McNaughton [McNaughton, 2011]

used a similar sampling pattern with quintic spirals conforming to the geometry of

the road. The author also enriched the spatiotemporal search space by denser spatial

sampling, allowing internal edge connections and acceleration profile sampling. How-

ever, the trajectory candidate pool grows fast due to refined sampling resolution and

an extended longitudinal horizon. The computation overhead for trajectory evalua-

tion was compensated with graph pruning techniques based on state bucketing and

parallel computation hardware, i.e., GPUs.

Figure 2.5: Planning sub-optimality caused by fixed lattice sampling resolution.

A lattice created for on-road driving with a long sampling look-ahead horizon is

CHAPTER 2. RELATED WORK 15

typically needed for the planner to explicitly reason about the predicted motion of ob-

stacles. A reduction in sampling resolution due to computation resource limitation is

needed, which inevitably introduces sampling sub-optimality. In Figure 2.5, a typical

spatial lattice is created for on-road driving by laterally sampling poses (black circles)

along the road, with the headings chosen to align with the road centerline (for reduced

sampling resolution & dimension). Paths (gray curves) are generated to connect sam-

pled poses on neighboring layers. The resulting “optimal" plan (red curve) may cause

unnecessary steering along the planned path.

In terms of solving the planning problem, RRT-type algorithms combine graph con-

struction and a graph searching process. But for others, graph search algorithms are

applied after the graph is constructed. Algorithms like Depth-first/Breadth-first/Best-

first search are easy to use for graph traversal. Iterative deepening [Korf, 1985] extends

the Breadth-first search with locally depth-limited depth-first search so that it runs

repeatedly with increasing depth limits until the goal is found.

Dijkstra’s algorithm [Dijkstra, 1959] generalizes the Breadth-first search to allow

the graph edges to be of non-uniform cost. It finds the minimum-cost path between a

source node and every other node (Single-Source, Shortest Path - SSSP). While primar-

ily associated with the greedy process used in Prim’s algorithm, Dijkstra’s algorithm is

also closely related to the dynamic programming process, since it successively approxi-

mates the optimal cost-to-goal values of all nodes by the reaching method [Sniedovich,

2006]. Thorup [Thorup, 1999, 2003] further accelerated the internal sorting procedure

within Dijkstra’s algorithm to achieve linear time complexity, but at the cost of only

handling integer cost.

Generalizing Dijkstra’s algorithm, heuristics-based search algorithms, such as A*

[Hart et al., 1968], Lifelong A* [Koenig et al., 2004] and D* [Koenig and Likhachev,

2002], have been developed still to find the optimal plan but exploring graph less.

A* and its derivatives require an admissible heuristic to guarantee optimality. In

other situations, admissibility has to be relaxed for practical considerations. Likhachev

[Likhachev et al., 2003] developed a multi-resolution any-time version of A* by relaxing

CHAPTER 2. RELATED WORK 16

the admissibility for real-time planning purposes, sacrificing optimality for returning

a feasible and error-bounded suboptimal plan in an any-time fashion.

Overall, the sampling-based planning methods, whether probabilistic or prede-

fined, provide a systematic approach for converting the continuous workspace into

a discrete workspace modelled by a graph. Established graph traversal/search algo-

rithms can be used to find a probabilistically complete or resolution-optimal planning

solution. The lattice-based approaches adapted for both unstructured and structured

environments can easily integrate a nonholonomic vehicle’s kinematic constraints. On

the other hand, the downsides are equally obvious: the curse of dimensionality, the

sub-optimality introduced due to discretization, and the potentially intractable com-

putational overhead.

2.2.3 Optimization-based Planning

Optimization-based planning methods iteratively refine a solution until the termina-

tion/convergence conditions are met. Optimization is a deep subject, and it is not the

main focus of this thesis to exhaustively review optimization techniques. We limit our

scope to the optimization techniques used for mobile robots and autonomous driving

vehicles. A brief overview of the popular optimization methods used in these domains

is provided.

Downhill simplex (Nelder-Mead) method is a geometry-heuristic derivative-free opti-

mization method that can be applied to both linear and nonlinear problems, and is

typically used in a high-dimensional problem, where convergence to a local minimum

is not required. The gradient descent method is a first-order iterative optimization algo-

rithm that finds a local minimum by taking steps proportional to the negative of the

gradient (or of the approximate gradient) of the function at the current point. New-

ton’s method (a.k.a. the Newton-Raphson method) is a second-order algorithm that further

makes use of the hessian information to update both the step size and search direc-

tion the accuracy criterion is met. The Gauss-Newton algorithm is a modification to

CHAPTER 2. RELATED WORK 17

Newton’s method that can only be applied to minimize a sum of squares function; it

has the advantage of not requiring knowledge of second derivatives. The Levenberg-

Marquardt method interpolates between the Gauss-Newton algorithm and gradient de-

scent to combine the benefits of both.

Now use the example of solving the linear equation AX = b for X to further intro-

duce several methods, where A is symmetric and positive definite. It is nontrivial to

find the inverse of A or use Cholesky decomposition to solve for X directly, especially

when A is large and sparse. Quadratic Programming (QP) is a special type of convex

optimization, whose goal is to optimize a quadratic function 1
2 XTQX + cTX. It is not

uncommon to reformulate the linear equation solving problem as an unconstrained QP

problem arg min F(X) = 1
2 XT AX− bTX, and iteratively find the X∗ that minimizes this

function, whose gradient must be zero (the original problem by construction),

∇F(X∗) = AX∗ − b = 0 (2.1)

Conceptually, the gradient method or Newton’s method (in just one iteration) can solve

the unconstrained QP problem, but finding the inverse of the function’s Jacobian is as

non-trivial as finding the inverse of A directly or using Cholesky decomposition. The

conjugate gradient descent method can be used to iteratively solve for this QP problem.

It attempts to find several conjugate (A-orthogonal1) search directions, which tends to

create better search directions for each iteration so that the convergence rate is fast.

It becomes more involved if a QP problem has constraints. The equality-constrained

QP can be solved by algorithms like Lagrange Multipliers or the null-space (QR factor-

ization) method. QP with linear inequality constraints AX ≤ b can also be solved with

algorithms like Lagrange Multipliers or Active Set.

Oftentimes in practice, we will encounter non-linear or non-convex optimization

problems. Physics-inspired methods like simulated annealing [Hwang, 1988] and bio-

logical evolution-inspired methods like genetic algorithms [Davis, 1991] are common.

They tend to do well in finding global solutions that into account uncertainty (stochas-

1Two vectors V and W orthogonal iff VTW = 0; they are conjugate, A-orthogonal, if VT AW=0.

CHAPTER 2. RELATED WORK 18

tic shattering/mutation), but are often very slow. One practical and efficient local

method is sequential quadratic programming (SQP). The cost function is locally ap-

proximated by a quadratic function through its gradient and hessian, and the dynam-

ics are locally approximated linearly. SQP solves a sequence of QP subproblems, each

of which optimizes a quadratic model of the objective subject to a linearization of the

constraints.

Optimization techniques used for robot trajectory planning must take into account

the robot’s dynamic model, which is often given by a differential/finite-difference

equation ẋ = f (x, u) / xi+i = f (xi, ui), where x is the state vector of the robots, and

u is the control vector. Depending on whether the optimization routine is applied

to states or control, there are two classes of trajectory optimization methods – direct

and indirect [Von Stryk and Bulirsch, 1992, Betts, 1998]. Direct methods directly alter

the state-control-state sequence along the trajectory while enforcing model feasibility

between states numerically. Indirect (shooting) methods take the initial state, and only

manipulate the controls, and the states along the trajectory must be obtained through

forward shooting (a.k.a, integration, evaluation, pass) using the dynamics model.

Many direct methods have been proposed and used for autonomous driving vehi-

cles. Dimitrakakis [Dimitrakakis, 2007] and Thrun [Thrun et al., 2006] used a gradient

descent optimizer to minimize the cumulative path jerk by laterally nudging each

sampled point within certain lateral or circular bounds. Ziegler [Ziegler et al., 2014]

proposed to use SQP to solve a constraint-based non-convex trajectory optimization

problem by locally optimizing the state sequence of the trajectory with internal (kine-

matics) and external (obstacle) constraints. Dolgov [Dolgov et al., 2008] proposed a

hybrid trajectory planning approach by first generating a coarse initial path via A*-

type search on a graph constructed by primitives obtained with a Reeds-Shepp car

model, then locally optimizing with a conjugate gradient descent optimizer.

The elastic-band approaches [Quinlan and Khatib, 1993, Brock and Khatib, 2000,

Brandt et al., 2007] are also direct methods. They generate a plan by gradually de-

forming a coarse path in the configuration space according to artificial forces until

CHAPTER 2. RELATED WORK 19

an equilibrium is achieved. Fraichard [Kurniawati and Fraichard, 2007, Fraichard and

Delsart, 2009] developed a trajectory deformer (Teddy) to further take the temporal

aspect of robot motion into account. The equilibrium can be found with the gradient-

descent method or any physics-engine. A recent effort by Roesmann [Roesmann et al.,

2012] proposed the so-called Timed Elastic Band (TEB). It further takes the dynamics

constraints of the robot into account, as well as the temporal aspects of the motion

explicitly by augmenting a time interval between two consecutive configurations.

For indirect(shooting) methods, an extensive survey can be found in [Betts, 1998].

We look at a second-order shooting method —- Differential Dynamic Programming

(DDP) [Jacobson, 1968, Jacobson and Mayne, 1970]. DDP iteratively improves a sin-

gle trajectory by manipulating the control sequence locally. It uses the dynamic pro-

gramming formulation to optimize within a "tube" around the current trajectory. The

dynamics constraints are guaranteed in each shooting process, so the trajectories (state-

control sequence) are always feasible. A classical discrete problem setup is: the con-

tinuous system dynamics model f is discretized into a system of dynamics f d with

the finite difference dynamics, N is the total time, and the goal is to minimize the cost

function in the form of:

J =
1
2

N−1

∑
i=0

(xT
i Qxi + uT

i Rui) +
1
2

xT
NQ f xN (2.2)

A simplified version of DDP is the iterative-Linear-Quadratic Regulator (iLQR)

[Li and Todorov, 2004b], which uses iterative linearization of the nonlinear dynam-

ics (robot model) around the current trajectory, uses a linear-quadratic methodology

to derive Riccati-like equation, and then improves the trajectory. iLQR is more efficient

than DDP by dropping the second-order approximation of the model dynamics, yet

it still retains good performance for complex dynamics. It can also use line-search to

handle nonlinearity. Further improvements were made by Berg [van den Berg, 2016],

who exploited the general similarity between optimal estimation and optimal control,

and adapted the idea of using an extended Kalman Filter bidirectionally for smooth-

ing [Yu et al., 2004] into iterative-LQR to create the so-called extended-LQR algorithm,

CHAPTER 2. RELATED WORK 20

which tends to converge faster.

When there are no control and search-space constraints, the shooting methods

(both for DDP and iLQR) are pure unconstrained optimization problems. However,

the robot’s control input constraints are typically enforced. Tassa [Tassa et al., 2014]

proposed a control-limited DDP that is applied to a humanoid robot. Its main differ-

ence from traditional DDP is the injection of a local QP procedure in each iteration of

local control updating. They further compared the efficiency of this method with naive

control clamping and the squashing function, and demonstrated its superiority.

Trajectory optimization methods are local methods, or trajectory smoothing meth-

ods, since typically at least one of the optimizer’s terms is smoothness-related. These

methods are good at refining a coarse trajectory in a local but continuous space. If

optimizing on the state space (direct methods), we get a locally optimal state sequence.

However, during the optimization process, it suffers from "over-parametrization". Some-

times enforce control limits and model feasibility by directing nudging the states is

optimizer-unfriendly, especially when the dynamics model is complicated. On the

other hand, if optimizing on the control space (indirect methods), both control limits

and model feasibility can be guaranteed through an add-on local optimization proce-

dure inside the main loop of the iterative shooting method.

2.3 Motion Planning with Topology Awareness

The inability to directly reason about environment topology can cause significant prob-

lems in a pure SOMWF planning formulation, as discussed in Figure 1.1. Topological

analysis is a technique used to extract the topological structure of an environment.

It observes that topologically distinct trajectory classes arise in the presence of obsta-

cles. By being aware of topological information, the planner can incorporate a certain

degree of high-level environment understanding, and thereby reduce the exploration

space, or make more knowledgeable and decisive decisions.

Topological information can be extracted by configuration space segmentation meth-

CHAPTER 2. RELATED WORK 21

ods like triangulation [Demyen and Buro, 2006], cell-decomposition [Lingelbach, 2004]

and visibility-graph [Lozano-Pérez and Wesley, 1979], and probabilistic road-map [Kavraki

et al., 1996]. The segmented space can be represented by a graph. Then topology-

sensitive graph traversal and listing algorithms to explore all homotopic classes have

been used to obtain a topology of the graph, such as the one proposed by Schmitzberger

[Schmitzberger et al., 2002]. Recent efforts such as those of Kuderer [Kuderer et al.,

2014] and Park [Park et al., 2015, Park et al., 2016] proposed to perform topological

analysis for mobile robots with Voronoi diagrams and cell decomposition, respectively.

However, these methods are limited to 2-D paths. Moreover, the need to generate the

complete topology graph causes exponential growth in its size along with the number

of obstacles. Finally, it is unclear how to apply these methods to explicitly reason about

the predicted motion of moving obstacles in the spatiotemporal domain.

Other methods directly create a topology graph based on objects that exist in the

configuration space. Jenkins [Jenkins, 1991] proposed a method that directly turns the

2D workspace into a topological graph by constructing the reference frame emanating

from each individual object. The beam-graph method by Narayanan [Narayanan et al.,

2013] encodes the topological information by virtual sensor beams emanating from the

obstacles.

These methods are also limited to solving low-dimensional path planning prob-

lems, do not explicitly consider the temporal evolvement, and do not reason about the

spatiotemporal domain needed for trajectory planning in order to take into account

the moving objects encountered in autonomous driving.

Bhattacharya [Bhattacharya et al., 2010, Bhattacharya, 2012] proposed to use the "L-

value" inspired by complex analysis [Rudin, 1987] and "homology-signature" inspired

by electromagnetic theory [Stratton et al., 2007], and combine them with traditional

heuristic search to efficiently determine the homotopic class for 2-D and 3-D path

planning. However, this method is not directly applicable to motion planning prob-

lems with a moving planning horizon (e.g., on-road motion planning), and does not

directly account for non-holonomic vehicle dynamics constraints. Recently, Rosmann

CHAPTER 2. RELATED WORK 22

[Rösmann et al., 2015] applied the "L-value" with elastic band to perform homotopy-

aware path planning for small mobile cars. But not much has been seen on using the

"H-signature" to perform topology-aware planning in the spatiotemporal configuration

space.

Other traditional methods have been combined with topology analysis tools. For

example, Hernandez [Hernandez et al., 2015] systematically proposed a set of topology-

aware transitional algorithms, such as H-A*, H-RRT and H-Bug, where "H" stands for

homotopy. Kim [Kim et al., 2012] formulated an optimization-based trajectory genera-

tion problem by solving quadratic programming for each iteration to obtain the locally

optimal trajectory in the specified homotopy class.

2.4 Summary

To motivate new planning structure and algorithms for on-road autonomous driving,

we started with an architectural overview of the planning system for an APV, and

exposed the typical problem with a hierarchical planning system caused by segregation

between behavioral and motion planning modules. This leads to the first goal of this

thesis:

• Goal 1: release some responsibility from the behavior planner to allow the mo-

tion planner to assume environment understanding and higher-level reasoning

capability, which makes the reasoning process explicitly take into account the

feasibility and admissibility of the trajectory plan.

We then reviewed traditional cost-based motion planning techniques and the typ-

ical ways to devise feature cost functions. There are three distinct classes of solvers:

reactive, sampling-based and optimization-based. Reactive methods are computation-

ally efficient, but too short-sighted to achieve global/local optimality. Sampling-based

methods provide a systematic way to explore the search space, and can alleviate lo-

cal optimality issues by finding a resolution-complete global optimum. However, the

CHAPTER 2. RELATED WORK 23

curse of dimensionality can make them very computationally expensive and cause

them to suffer from resolution suboptimality. Optimization-based methods, if prop-

erly designed and initialized, can return a local optimal plan through a few iterations,

therefore computationally desirable. But the lack of global awareness may cause the

planner to converge to the wrong local minimum. These facts lead to the second goal

of this thesis:

• Goal 2: use a combination of different planning methods to preserve the best of

each type for autonomous driving motion planning: control-based for initializa-

tion, search-based for avoiding local optimality, and optimization-based for local

refinement and smoothing.

Finally, we looked at a different category of motion planning approach: the topology-

aware planning approach. Topology information is sometimes very useful to allow

the robotic system to better understand the environment and make smarter decisions.

However, the traditional planning approaches are dependent on feature cost functions,

in which it is very difficult to encode topological information. This leads to the third

and final goal of this thesis:

• Goal 3: create an efficient topological awareness technique and combine it with

traditional sampling-based and optimization-based methods. Use topological

information as one of the main indicators to distinguish distinct maneuver pat-

terns, and support higher-level reasoning.

Chapter 3

Vehicle Model, Representation &

Control

In this chapter, we first review two important vehicle dynamics models and methods to

represent the shape of polygonal objects. Then we review the popular linear quadratic

regulator (LQR) controller and an efficient formulation to perform trajectory tracking

control for smoothing purposes.

3.1 Vehicle Model

3.1.1 Kinematic Bicycle Model

Figure 3.1: Kinematic bicycle model.

24

CHAPTER 3. VEHICLE MODEL, REPRESENTATION & CONTROL 25

Under normal operation, it is typically a valid assumption that the vehicle moves

without skidding. So it is common to use the kinematic bicycle model (a.k.a the half-

car model) to describe the motion of an APV (Figure 3.1). Restricting motion to the

plane, the constraints of no lateral motion of both front and rear wheels can be repre-

sented by:

ẋ f sin(θ + δ)− ẏ f cos(θ + δ) = 0

ẋsin(θ)− ẏcos(θ) = 0

x + Lcos(θ) = x f

y + Lsin(θ) = y f

(3.1)

Eliminating (x f , y f), we get

ẋsin(θ + δ)− ẏcos(θ + δ)− θ̇Lcos(δ) = 0 (3.2)

Replacing ẋ, ẏ with (v · cos(θ), v · sin(θ)), we get

θ̇ =
tan(δ)

L
· v (3.3)

Overall, the kinematics can be written as:

ẋ

ẏ

θ̇

δ̇

v̇


=



0 0 0 0 cos(θ)

0 0 0 0 sin(θ)

0 0 0 0 tan(δ)
L

0 0 0 0 0

0 0 0 0 0





x

y

θ

δ

v


+



0 0

0 0

0 0

1 0

0 1



γ

a

 (3.4)

where

• (x, y, θ): APV pose at rear differential (state).

• δ: steering angle of the road wheel (state).

• v: longitudinal speed (state).

• γ: rate of the steering angle (control).

CHAPTER 3. VEHICLE MODEL, REPRESENTATION & CONTROL 26

• a: longitudinal acceleration (control).

• L: the length of the wheelbase (parameter).

3.1.2 Dynamic Bicycle Model

Figure 3.2: Dynamic bicycle model.

The kinematic bicycle model models no lateral dynamics, since it assumes no slip-

ping is possible. While this assumption is valid for low-speed navigation on a dry

asphalt road, it is not valid at high speed or on slippery roads. So a more complex

model [Bevly et al., 2006] with lateral dynamics was proposed for refined motion dy-

namics (Figure 3.2):

ẋ

ẏ

θ̇

δ̇

v̇x

v̇y

ṙ



=



0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0
Cα f
m 0

−Cα f−Cαr
mvx

−vx +
Cαr l2−Cα f l1

mvx

0 0 0
Cα f l1

Iz
0

Cα f l2−Cα f l1
Ixvx

−Cα f l2
1−Cαr l2

2
Izux



·



x

y

θ

δ

vx

vy

r



+



0 0

0 0

0 0

1 0

0 1

0 0

0 0



·

γ

a



(3.5)

where

• (x, y, θ): APV pose at rear differential (state).

CHAPTER 3. VEHICLE MODEL, REPRESENTATION & CONTROL 27

• vx, vy: longitudinal/lateral velocity at center of gravity (state).

• r: yaw rate (state).

• γ: rate of the steering angle (control).

• a: longitudinal acceleration along the APV heading (control).

• Cα f , Cαr: front and rear tire cornering stiffness (parameter).

• l1, l2: distance from the center of gravity to front/rear axles (parameter).

• m: vehicle mass (parameter).

• Iz: yaw moment of inertia of the APV (parameter).

More involved vehicle models and commercial packages are also available, but for

planning purposes, the two models given in this section are sufficient in most cases.

Both models can be used for subsequent tracking control and path smoothing or in the

shooting process for trajectory optimization in Chapter 6.

3.1.3 Numerical Integration of Model Dynamics

Sometimes it is important to get a discrete version of the vehicle dynamics by integrat-

ing the equation over a short period of time. To get more accurate forward prediction

over a short period of time, we can also obtain the discrete-time model by performing

numerical integration with various methods, e.g., the Runge–Kutta 4-th order method:

xi+1 = fd(xi, ui) = xi +
δt
6
(k1 + 2k2 + 2k3 + k4) (3.6)

where
k1 = f (xi, ui)

k2 = f (xi +
δt
2

k1, ui)

k3 = f (xi +
δt
2

k2, ui)

k4 = f (xi + δtk3, ui)

CHAPTER 3. VEHICLE MODEL, REPRESENTATION & CONTROL 28

3.2 Representation of APV and Objects

Vehicles and other objects are commonly modeled as 3-DOF planar objects that can

translate and rotate in a 2-D environment. The representation matters a lot in terms of

efficiently retrieving obstacle-related distance information, which is commonly used

in the calculation of a feature cost (See Chapter 6).

Depending on their nature, stationary objects are stored in an occupancy grid (OG),

since they oftentimes do not have a concrete and separable shape. Operations like

the distance transform can be used to find the nearest distance from a point to any

occupied cell. Applying shape convolution before using the distance transform can

be used to pre-process the OG to efficiently find the nearest distance from the shape

in question to any occupied cell. The downside is that the representation accuracy is

subject to the resolution.

(a) Three-disk representation (b) Five-disk representation

Figure 3.3: Representation of rectangular-shaped objects with circular disks.

In practice, a lot of real world objects can be reasonably approximated by simple

geometric shapes like circles and rectangles. The distance computation between two

circles is trivial, and therefore ideal for efficiency concerns. When suitable, replacing

rectangular objects with multiple circles is also very useful in terms of improving

CHAPTER 3. VEHICLE MODEL, REPRESENTATION & CONTROL 29

computational efficiency. For example, Figure 3.3 demonstrates two such possibilities.

Figure 3.3(a) demonstrates replacing a rectangle with three circular disks, in which the

radius R is given by:

R =

√
(

w
2
)2 + (

l
6
)2 (3.7)

And Figure 3.3(b) demonstrates replacing a rectangle with five circular disks, in which

the large disk radius R is calculated as above, and the small disk radius r is given by:

r =

√
(

w
4
)2 + (

l
6
)2 (3.8)

3.3 Trajectory Tracking Control

Suppose we are given a coarse trajectory plan that is not guaranteed to be dynamically

feasible, or even non-smooth, and the objective is to find a sequence of control/states

that attempts to follow this course plan. Obviously, it is numerically difficult to di-

rectly convert a coarse plan into a control sequence due to non-smoothness and lack

of model-based evaluation.

A tempting solution is to use spline interpolation to try to smooth out the coarse

trajectory, then use the locally parametric representation of the spline and some model

simplification to analytically convert into a control sequence. However, parametric

splines, if chosen naively, may introduce undesirable jerkiness due to over-fitting, and

model simplification may be unrealistic, which causes dynamically infeasible control

sequences.

Therefore, we make use of a closed-loop control scheme to initialize the control

sequence by attempting to track the non-smooth coarse trajectory plan. Trajectory

tracking is typically decoupled into lateral (path tracking) control and longitudinal

(speed tracking) control. Either can be tracked with different kinds of controllers, such

as geometric pure pursuit, PID-tracker or linear quadratic regulator (LQR). LQR is

preferred for its optimality and tunability.

CHAPTER 3. VEHICLE MODEL, REPRESENTATION & CONTROL 30

The system dynamics are represented by the following differential equation:

ẋ = f (x, u) (3.9)

We first perform the first-order Taylor expansion around a point (x∗, u∗),

ẋ ≈ f (x∗, u∗) +
∂ f
∂x

(x− x∗) +
∂ f
∂u

(u− u∗) (3.10)

Moving terms around, we get the locally linearized system:

˙̄x = Ax̄ + Bū (3.11)

where
x̄ = x− x∗

A =
∂ f
∂x

(x∗, u∗)

B =
∂ f
∂u

(x∗, u∗)

Supposing the general (possibly non-quadratic) cost function of a given state/control

pair is given by g(x, u), we can quadratize around a point (x∗, u∗):

g(x, u) ≈ g(x∗, u∗) +
∂g
∂x

x̄ +
∂g
∂u

ū +
1
2

x̄T ∂2g
∂x2 x̄ +

1
2

x̄T ∂2g
∂x∂u

ū +
1
2

ūT ∂2g
∂u2 ū (3.12)

Figure 3.4: Nominal trajectory sequence and the representation of longitudinal/lateral
errors with respect to the corresponding nominal trajectory point.

The successful application of the LQR controller depends on two factors. First,

the system controlled must demonstrate or can be closely approximated by a linear

CHAPTER 3. VEHICLE MODEL, REPRESENTATION & CONTROL 31

system. Then, there must be a way to define the quality of the control task or to

approximate it by a quadratic cost function. The crux then becomes to formulate the

trajectory tracking task in a way that can be linearized and quadratically measured.

In the application of trajectory tracking control, system linearization is achieved

by converting the APV’s motion dynamics into error dynamics after performing a

coordinate transformation into a nominal coordinate system1 similar to that described

in [Snider, 2009], but extended to spatiotemporal points2 (Figure 3.4). We assume the

vehicle model is a kinematic model that takes in steering angle rate and longitudinal

acceleration. At any given time, the nominal point p∗ is given by [x∗, y∗, θ∗, v∗], the

lateral offset d, and the longitudinal offset l with respect to p∗.

The overall control task is further decoupled into lateral tracking and longitudinal

tracking. For lateral control, assume the state vector is

x =


x1

x2

x3

 =


d

θ∗ − θ

δ

 (3.13)

The lateral offset d is:

d = sinθ∗ · x− cosθ∗ · y + (x∗ + cosθ∗) · x∗ − (y∗ + sinθ∗) · x∗

= sinθ∗(x− x∗)− cosθ∗(y− y∗)
(3.14)

Taking the derivative of each dimension of X, and using the kinematic model of

the vehicle described in section 3.1 by replacing ẋ and ẏ with v · cosθ and v · sinθ,

ẋ1 = ḋ = v · sinθ∗ · cosθ − v · cosθ∗ · sinθ

= v · sin(θ∗ − θ) = v · sin(x2)

ẋ2 = −θ̇ = −v · tanδ

L
= − v

L
· tan(x3)

ẋ3 = δ̇

(3.15)

1Calculates the longitudinal and lateral distances with respect to waypoints on a nominal trajectory
2A 3-D time-sequenced set of spatial waypoints on the coarse trajectory is not necessarily feasible or

even continuous

CHAPTER 3. VEHICLE MODEL, REPRESENTATION & CONTROL 32

Under the assumption that the heading error x2 = θ∗ − θ is small, sin(x2) can be

approximated by x2. Also assuming small steering angle x3 = δ, tan(x3) can also be

approximated by x3. Overall, the equations above can be generalized and approxi-

mated with the following linear equation:

ẋ = Ax + Bu
ẋ1

ẋ2

ẋ3

 =


0 v 0

0 0 − v
L

0 0 0




x1

x2

x3

+


0

0

1

 δ̇
(3.16)

For longitudinal control, assume the state space is

x =

x1

x2

 =

 l

v∗ − v

 (3.17)

The longitudinal offset l is:

l = −cosθ∗ · x− sinθ∗ · y + (x∗ + sinθ∗) · y∗ − (y∗ − cosθ∗) · x∗

= −cosθ∗(x− x∗)− sinθ∗(y− y∗)
(3.18)

Taking the derivative of X, and using the kinematic model of the vehicle described

in section 3.1 above,

ẋ1 = l̇ = −v · cosθ∗ · cosθ − v · sinθ∗ · sinθ

= v∗ − v · cos(θ∗ − θ)− v∗

ẋ2 = −v̇ = −a

(3.19)

Note that under the assumption that the heading error θ∗ − θ is small, cos(θ∗ − θ)

can be approximated with 1. Overall, the equations above can be generalized and

approximated with the following linear equation while ignoring the constant term:

ẋ = Ax + Buẋ1

ẋ2

 =

0 1

0 0


x1

x2

+

 0

−1

 a
(3.20)

CHAPTER 3. VEHICLE MODEL, REPRESENTATION & CONTROL 33

The lateral and longitudinal linear system ẋ = Ax + Bu in the nominal coordi-

nate system has been formalized by Equations 3.16 and 3.20. While the original for-

mulations are not strictly linear, they can be linearly approximated nicely given the

reasonable small angle assumption, and dropping certain nonlinear terms.

Another requirement for the successful application of LQR is a quadratic cost func-

tion. Looking at the state vectors, they include the longitudinal and lateral tracking

error terms l and d in their states. We can naturally use a quadratic of X to measure the

performance of the tracker, and a quadratic of U to trade off with the control efforts:

J =
∫ ∞

0
(xTQx + uT Ru) · dt (3.21)

Then the classical LQR control law states that an optimal control at each time-stamp

can be achieved (assuming infinite control horizon) with the following control:

u = −K · x (3.22)

where K = R−1BT P and P is found by solving the Riccati equation

AT P + PA− PBR−1BT P + Q = 0 (3.23)

The initial trajectory is given as a time sequence of simple states in the form of

[x∗, y∗, θ∗, v∗]. The trajectory tracker developed above converts an initially infeasi-

ble trajectory into a dynamically feasible control/state sequence without particular

requirements on the initial trajectory. For example, the initial trajectory may be piece-

wise linear, or even a single stationary point. Another advantage of the spatiotemporal

nominal trajectory tracking formulation is its computational efficiency. This approach

does not involve the most computationally expensive operation of most spatial path

tracking algorithms, i.e., find-nearest-point on the spatial nominal path (whose com-

plexity is of O(N), where N is the number of points in the nominal path).

3.4 Controller-based Smoothing

Given a coarse nominal path or trajectory and a selected vehicle model, we let the LQR

controller attempt to track from a starting APV state (Figure 3.5). Upon finishing, the

CHAPTER 3. VEHICLE MODEL, REPRESENTATION & CONTROL 34

Figure 3.5: Path & trajectory smoothing with LQR-based trajectory tracker.

controller generates a control/state sequence that is guaranteed to be model-feasible3,

which achieves the purpose of smoothing. Depending on the actual model used in

forward shooting, the final trajectory can be regarded as kinematically or dynamically

feasible. In the meantime, there are typically two types of smoothing tasks: path

smoothing and trajectory smoothing.

• Path smoothing: convert piecewise linear spatial trace into a smooth path in

order to retrieve smooth curvature information (Chapters 4 & 5).

• Trajectory smoothing: convert piecewise-linear spatiotemporal trace into a smooth

trajectory to generate a feasible candidate sampling pool, and a good seeding ini-

tialization for optimization (Chapter 5 & 6).

We apply the same LQR tracker for both path/trajectory smoothing. Note that for

path smoothing, we convert path to a trajectory by appending a constant slow speed

(e.g., 1 m/s) to the spatial trace. Regardless of which model is actually used, the final

behavior of the car will exhibit the kinematic vehicle model behavior, and the final

result will be kinematically feasible. Both the nominal and smoothed trajectories will

be represented spaced at every 0.1 second in the following discussion, and visualized

in Figure 3.6.

While the (coarse) nominal trajectory is often collision-free, the smoothed trajectory

may void this guarantee in exchange for smoothness and model feasibility. However,

3Model feasibility is different from executation feasbility, see Chapter 6 for more details

CHAPTER 3. VEHICLE MODEL, REPRESENTATION & CONTROL 35

it will not pose a serious problem in the way we use this tracking smoother, since it is

used to generate the smoothed seeding trajectory to the final trajectory optimization

procedure in Chapter 6, which further refines this smoothed trajectory with collision-

free guarantees.

(a) Smooth nominal trajectory

(b) Aggressive nominal trajectory I (c) Aggressive nominal trajectory II

Figure 3.6: LQR smoothing examples for smooth and aggressive nominal trajectories.

Depending on the quality of the nominal trajectory, the smoothed trajectory may

or may not have a large maximum tracking error, which is the maximum point-wise

Euclidean distance between the nominal and smoothed trajectories. The definition for

"large", however, is very empirical. In the following discussion, we will use 1 meter as

an arbitrary threshold. If the maximum tracking error between the correspondingly

timed points on the nominal and the smoothed trajectory is less than 1.0, the nominal

trajectory will be regarded as "mild", otherwise, it will be regarded as "aggressive".

Figure 3.6(a) demonstrates a mild situation where the piecewise-linear nominal

trajectory (black dots) captures the intended behavior: the APV nudges left to avoid a

parked bus (black rectangle), slows down for a crossing pedestrian (purple rectangle),

and then speed up to resume normal cruising. The smoothed trajectory (red dots) are

CHAPTER 3. VEHICLE MODEL, REPRESENTATION & CONTROL 36

close to the nominal trajectory with a maximum tracking error 0.89 meter (distance

between the solid black and red dots).

While the intention is to always smooth a mild nominal trajectory, we also want

to test how robust the smoothing procedure is with aggressive nominal trajectories.

Remember that we made three important assumptions in deriving the LQR controllers:

the kinematic model simplification, small angle approximations and constant term

ignorance to perform linearization. It is important to justify, at least empirically, these

assumptions are valid even in situations not ideal.

Figure 3.6(b) demonstrates an aggressive situation, where the APV is cruising

through a narrow corridor created by two parked buses (black rectangles). We impose

an abrupt stop on the nominal trajectory (black dots), such that the nominal speed at

each point is 5 m/s except for the last point (rightmost solid black dot), to make it

difficult for the tracking smoother. It can be seen that the smoothed trajectory (red

dots) brought the APV to a full stop with an over-shooting (maximum tracking error)

of 2.67 meters (distance between the solid black and red dots). While this tracking

error is above the 1 meter threshold, this is still satisfactory given the aggressiveness

in speed of the nominal trajectory.

Another extremely difficult tracking (smoothing) task is shown in Figure 3.6(c),

where the nominal trajectory (black dots) deviates greatly (8 meters) from where the

APV’s initial position (red solid dot) and orientation (by 90 degree). In this extreme

condition, the tracking controller starts with a huge tracking error, many other tracking

algorithm (e.g., pure pursuit, PID controller) may fail to converge. On the other hand,

the LQR controller still demonstrates stable behavior by generating a smoothed trajec-

tory (red dots) that brings the APV back to the nominal trajectory. This empirically

demonstrates the robustness of using the LQR tracker for trajectory smoothing.

Chapter 4

Edge-augmented Search-based Path

Planning

Graphs are commonly used in sampling-based planning methods (Section 2.2.2). Some-

times, graphs are constructed with motion primitives as in the state lattice approaches,

e.g., Pivtoraiko et al. [2009], McNaughton [2011], and the result of these planners can

be directly used for execution or further smoothed. In this chapter, we construct a

special type of edge-augmented graph and search for an optimal plan in a pure path

planning setting. There are a few features of this approach:

• For on-road planning, we exploit the fact that the car only drives forward in a

corridor-like environment.

• A generic formulation is used to account for road geometry and model simple

nudging maneuvers by mimicking the continuous path optimization methods.

• We search over the full sampled configuration space to alleviate the problem of

local optimality in optimization methods.

The outcome is an efficient graph search algorithm that numerically approximates

continuous optimization-based path smoothing and nudging with resolution-complete

global optimality achieved.

37

CHAPTER 4. EDGE-AUGMENTED SEARCH-BASED PATH PLANNING 38

4.1 Continuous Path Smoothing & Nudging

A corridor-like environment can be modeled by a densely sampled waypoint sequence

representing the center of the corridor, and lateral boundary associated with each

point. Intuitively, path planning is achieved by moving the centerline points laterally,

subject to the boundary constraints of the corridor.

Figure 4.1: The definition of lateral offset and smoothness terms with discrete point
samples.

For path smoothing, we typically want to nudge the waypoints so that the overall

smoothness of the path is improved (Figure 4.1). Two aspects interactively shape the

final path: the closeness to the centerline and a metric for overall smoothness. For

each waypoint x∗i along the centerline, we want to find a new position represented by

xi such that the following cost is minimized:

argmin
{xi}

∑
i

ωcl · ‖xi − x∗i ‖2 + ωsm ·
(xi − xi−1)(xi − xi+1)

‖xi − xi−1‖‖xi − xi+1‖
(4.1)

where the first term is the quadratic distance between the new waypoint and its pro-

jection onto the centerline, and the second term is a smoothness measurement that

captures the angular change ∆θi at each waypoint xi because:

∆θi = cos−1[
(xi − xi−1)(xi − xi+1)

‖xi − xi−1‖‖xi − xi+1‖
] (4.2)

For path nudging, we choose an elastic band-inspired approach, which gives a

physically interpretable way to tune the planning result. The original waypoints x∗i

CHAPTER 4. EDGE-AUGMENTED SEARCH-BASED PATH PLANNING 39

Figure 4.2: The definition of attractive, repulsive and contractive forces with discrete
point samples.

are nudged laterally to xi. The position of waypoints is determined by three artificial

forces: attraction to the nominal path, contraction of the band, and repulsion from the

obstacles (Figure 4.2). If a waypoint is nudged laterally such that it touches the corridor

boundary, an adaptive repulsive force will be applied to balance the remaining force

laterally, such that the boundary constraints are never violated:

f a(xi) = ωa · (xi − x∗i)

f c(xi) = ωc · (
xi−1 − xi
‖xi−1 − xi‖

+
xi+1 − xi
‖xi+1 − xi‖

)

f r(xi) = ωr ·
δ[ρ(xi) < ρt]

[ρt − ρ(xi)]2
· u[∂ρ

∂x
(xi)]

(4.3)

where ∂ρ(x) represents a certain potential function with respect to the state x (e.g.,

distance to obstacle), δ is the test function that returns 1 if the condition is true, and u

is a function that takes the unit direction of a vector. A solution is reached when the

sequence of xi is found such that:

argmin
{xi}

∑
i
‖ f a(xi) + f c(xi) + f r(xi)‖ (4.4)

The path smoothing and nudging tasks are similar. They use the same waypoint

representation with only one degree of freedom along the lateral direction with respect

to the original waypoint x∗i . Another common feature is that some of the cost terms

(smoothness term in Equation 4.2 and contraction force in Equation 4.4) depend on not

CHAPTER 4. EDGE-AUGMENTED SEARCH-BASED PATH PLANNING 40

only a single state, but also its neighboring (left/right) states, which introduces strong

non-convexity.

While general nonlinear programming methods [Luenberger, 1973] can be applied

to solve the optimization problem by directly changing xi, the non-convexity of some

cost terms, empirically, makes the solver suffer from robustness issues in terms of suc-

cess rate and run-time. To avoid such numerical issues, our goal is thus to propose

a graph-search-based method in the next section to numerically approximate the con-

tinuous optimization result with bounded runtime and a resolution-complete global

optimality property.

4.2 Edge-Augmented Graph Search

Figure 4.3: The spatial graph for numerical path smoothing/nudging.

It is intuitive to create a discrete graph in the corridor environment, where the

waypoints are further laterally sampled to create a spatial graph (Figure 4.3). Then the

idea is to find a sequence of nodes in this graph that best approximate the continuous

counterpart. The difficulty, however, is that for both path smoothing and path nudging,

the existence of certain cost terms (smoothness term in Equation 4.2 and contractive

force in Equation 4.4) makes it hard to directly express cost on the spatial graph,

because each cost term is linked not just to a particular node, or two neighboring

nodes (an edge), but three nodes (as shown in Figure 4.1 and 4.2). We therefore want

to create a novel graph, the edge-augmented graph, that captures such information for

planning.

An edge-augmented graph is constructed in two steps. First, a traditional spatial

graph is created by laterally sampling the waypoints along the nominal path (e.g., the

CHAPTER 4. EDGE-AUGMENTED SEARCH-BASED PATH PLANNING 41

(a) Construct edge-augmented graph

(b) Zoomed in view of two augmented nodes from a spatial node

Figure 4.4: The construction of edge-augmented graph from spatial graph.

centerline), as shown in Figure 4.4. Spatial edges are evaluated for collision when

constructing the elastic nodes, which removes infeasible edges through construction.

Then, augmented nodes and augmented edges (Figure 4.4(a)) are composed by aug-

menting the spatial node with an IN edge and an OUT edge that connect the neigh-

boring spatial nodes, and two elastic nodes are connected by an elastic edge. Suppose

there are M incoming edges and N outgoing edges for a spatial node, then a total

of M · N augmented nodes will be created for this spatial node and connected to its

neighboring augmented nodes through augmented edges. Each augmented node has

a corresponding spatial node as the center, and from the incoming/outgoing edges

we can also infer the nodes connected to it (Figure 4.4(b)). Therefore, we are able to

CHAPTER 4. EDGE-AUGMENTED SEARCH-BASED PATH PLANNING 42

conveniently calculate the smoothness term (path smoothing) and the contractive force

(path nudging). Note that the spatial graph is constructed with predefined resolution,

so the size of the edge-augmented graph is also predefined. Planning over this graph

will return in deterministic runtime.

Planning on the graph is modeled as a single-source shortest-path (SSSP) problem.

Similar to the spatial graph, the edges of the augmented graph also point monoton-

ically ahead, and therefore formulate a directed acyclic graph (DAG). The Bellman-

Ford algorithm (dynamic programming) can be used with Otime(|V| · |E|). Topological

sort can be used to search with a time complexity of Otime(|V|+ |E|). In practice, the

most time-consuming step is the evaluation of spatial graph’s edges, in which collision

checking/distance calculation is performed.

4.3 Constraint-satisfying Nominal Reference Generation

With the algorithm above, one can obtain a sequence of augmented nodes, which can

be converted into a trace of linear spatial path (edges on the graph). However, there

are two problems with this path.

The first problem is that the path is piecewise-linear (non-smooth), so that it is kine-

matically infeasible and does not contain useful curvature information, which is useful

for speed profile generation in this section. Luckily, the LQR-based trajectory smoother

explained in Section 3.3 provides an efficient method to obtain a kinematically feasible

smooth path P .

Another problem is that no speed information is attached to P to formulate a

reference1 R. This speed information does not necessarily account for moving objects,

but there are several dynamic constraints that it must conform to (e.g., lateral and

longitudinal accelerations) when adding a speed profile to a spatial trace. The focus

of this section is to use an efficient algorithm to append speed information subject to

certain speed constraints.

1See nomenclature for difference between reference and trajectory.

CHAPTER 4. EDGE-AUGMENTED SEARCH-BASED PATH PLANNING 43

Figure 4.5: Generate speed profile with dynamic constraints.

The reference path P consists of a sequence of spatial states, such as position,

heading, curvature and arc-length. For the purpose of speed profile generation, the

curvature and arc-length sequence K and S are relevant. Several dynamic constraints

will be imposed on the speed profile V , which is a sequence of scalar speed values.

Each constraint will be represented both in continuous and finite-difference forms to

generate the speed profile, as illustrated in Figure 4.5.

For each iteration, the lateral acceleration alat
max constraint is applied first to bound

the maximum speed at each point along the path:

continuous: v ≤ min{

√
alat

max
κ

, vmax}

finite difference: vi ≤ min{

√
alat

max
κi

, vmax}

(4.5)

Notice that
√

alat
κ approaches/reaches singularity on low-curvature/straight segments

as κ → 0, which is the reason having vmax in the min function.

Though the lateral acceleration is capped, the speed profile is still unachievable

since the longitudinal acceleration is not yet constrained (thin black dashed line in Fig-

ure 4.5). Preferred longitudinal acceleration alon
max and deceleration dlon

max are therefore

CHAPTER 4. EDGE-AUGMENTED SEARCH-BASED PATH PLANNING 44

applied:

continuous: − dlon
max ≤ v̇ ≤ alon

max

finite difference: − dlon
max ≤

v2
i − v2

i−1
2|si − si−1|

≤ alon
max

(4.6)

Excessive longitudinal jerk may be observed (see, for example, the blue dashed line

in Figure 4.5). A maximum longitudinal jerk jlon
max constraint can be further enforced.

Its finite-difference representation must be deduced. Assume we can interpolate a

speed function based on a quadratic polynomial of arc-length:

v = α · s2 + β · s + γ

a = 2α · sv + β · v

j = 2α · (v2 + sa) + β · a

(4.7)

where s is the arc-length, v is the speed, by taking the first and second derivative w.r.t.

time, we can further obtain the analytical form of the acceleration a and jerk j.

As shown in the function above, we have a constant jerk interpolation over the

polynomial as long as all the coefficients α, β and γ can be calculated. Now, assuming

that we have three (the previous, current and next) speed points vi−1, vi, vi+1 with their

corresponding arc-length points si−1, si, si+1, they satisfy:
s2

i−1 si−1 1

s2
i si 1

s2
i+1 si+1 1

 ·


αi

βi

γi

 =


vi−1

vi

vi+1

 (4.8)

Coefficients αi, βi and γi can all be analytically calculated by solving the linear equation

above. Plug in the solved coefficients into Equation 4.7, we can solve uniquely for the

numerical approximation of jerk ji of the current point.

The goal then is to adjust the current speed point vi such that the corresponding

interpolated jerk ji is bounded by jlon
max:

continuous: |v̈| ≤ jlon
max

finite difference: |ji| ≤ jlon
max

(4.9)

CHAPTER 4. EDGE-AUGMENTED SEARCH-BASED PATH PLANNING 45

Algorithm 1 iteratively modifies the speed profile taking all constraints into account

at every cycle until the speed profile no longer changes. To enforce each constraint,

the speed of the current point vi is adjusted to meet the constraint values.

CHAPTER 4. EDGE-AUGMENTED SEARCH-BASED PATH PLANNING 46

Algorithm 1 Generate constrained speed profile
Require: Velocity profile V with maximum speed.
Ensure: Constrained velocity profile V∗.

function LimitLateralAcceleration(V , K, alat
max , vmax)

N ← V .length()
for i ∈ [0→ N) do

(vi , κi) ∈ zip(V , K)

vi ← MIN(

√
alat

max
κi

, vmax)

end for
return V

end function
function LimitLongitudinalAcceleration(V , S, alon

max , dlon
max)

N ← V .length()
for i ∈ [0→ N − 1) do

(vi−1, si−1) ∈ zip(V , S)
(vi , si) ∈ zip(V , S)
ds← si − si−1

vi ← min(vi ,
√

v2
i−1 + 2 · alon

max · ds)
end for
for i ∈ [N − 1→ 0) do

(vi+1, si+1) ∈ zip(V , S)
(vi , si) ∈ zip(V , S)
ds← si+1 − si

vi ← min(vi ,
√

v2
i+1 + 2 · dlon

max · ds)
end for
return V

end function
function LimitLongitudinalJerk(V ,jmax)

N ← V .length()
for i ∈ [2→ N − 2] do

(vi−1, si−1) ∈ zip(V , S)
(vi , si) ∈ zip(V , S)
(vi+1, si+1) ∈ zip(V , S)
ji =

2vi+1
si−1si−si−1si+1−sisi+1+s2

i+1
− 2vi−1

si−1si+si−1si+1−sisi+1−s2
i−1
− 2vi

si−1si−si−1si+1+sisi+1−s2
i

if ji > jmax then

vi ← −(jmax − 2vi+1
si−1si−si−1si+1−sisi+1+s2

i+1
+

2vi−1
si−1si+si−1si+1−sisi+1−s2

i−1
)(

si−1si
2 − si−1si+1

2 +
sisi+1

2 − s2
i
2)

end if
if ji < −jmax then

vi ← (jmax +
2vi+1

si−1si−si−1si+1−sisi+1+s2
i+1
− 2vi−1

si−1si+si−1si+1−sisi+1−s2
i−1

)(
si−1si

2 − si−1si+1
2 +

sisi+1
2 − s2

i
2)

end if
end for
return V

end function
do
V0 ← V
V ← LimitLateralAcceleration(V , K, alat

max , vmax)
V ← LimitLongitudinalAcceleration(V , alon

max , dlon
max)

V ← LimitLongitudinal Jerk(V , jmax)
V f ← V

while ‖V f − V0‖ > ε
V∗ ← V f

Chapter 5

Maneuver Pattern Analysis

Topology information is important for motion planning. The existence of obstacles

creates topological structures in the environment, which typically reflect distinctive

maneuver patterns. The application of such knowledge helps focus the traditional

trajectory planning (search / optimization) effort and if properly used, can also help

enable higher-level behavioral reasoning capability.

In this chapter, we are primarily concerned with topological analysis (TA) for tra-

jectory in a 3-D spatiotemporal space (2-D spatial space augmented with a time di-

mension), and using TA tools for maneuver pattern analysis.

5.1 Theoretical Background

Important concepts related to topology analysis is first be summarized in Section 5.1.1,

followed by the physics-inspired analysis tools in Section 5.1.2 and its extension to the

spatiotemporal space in Section 5.1.3. Many definitions and key results are borrowed

from [Griffiths and College, 1999, Hatcher, 2002, Bhattacharya, 2012], leaving out a few

rigorous definitions in algebraic topology such as chain complex, homology groups, de

Rham cohomology group, etc. But this simplification will not hamper the description

of the technical tools relevant for our purposes.

47

CHAPTER 5. MANEUVER PATTERN ANALYSIS 48

5.1.1 Concepts in Algebraic Topology

Topology Space: a topology on a set X is a collection, T, of subsets of X, containing

both X and ∅, and closed under the operation of intersection and union. The tuple

(X, T) is called a topological space S, and the elements of T are called open sets of the

topological space.

Homology: homology is a mathematical concept for defining and counting the num-

ber of hole structures in a topological space.

Homotopy: a homotopy between two continuous functions f and g from a topo-

logical space X to a topological space Y is defined by a continuous function H :

X × [0, 1] → Y from the product of the space X with the unit interval [0, 1] to Y

such that, if x ∈ X then H(x, 0) = f (x) and H(x, 1) = g(x). H is the continuous

deformation of function f into g.

Homological Path: Two homological paths are co-terminal1, and the boundary formed

by connecting them tail-to-head does not contain any obstacle.

Homotopic Path: Two homotopic paths are co-terminal, and deformable from one to

the other without intersecting any obstacle.

Figure 5.1: Illustration of two homological but non-homotopic trajectories.

1The terminology of co-terminal paths is borrowed from Jenkins [Jenkins, 1991] to describe two paths
with the same starting point and destination point.

CHAPTER 5. MANEUVER PATTERN ANALYSIS 49

In Figure 5.1, trajectories T ′ (red) and T ′′ (blue) are homological, since the loop

formed by these two trajectories does not contain any one of the obstacle rings (imagine

taking one obstacle ring away, after which the trajectory loop can be removed from the

other ring without intersection by simply grasping it at one of the terminal points and

pulling it through the center of the ring). However, they are not homotopic, since they

cannot be deformed from one to the other when two obstacle rings exist at the same

time. In general, the following lemma holds:

Lemma 5.1.1 if two trajectories are homotopic, they are homological; the converse does not

necessarily hold true.

Homotopy Equivalence: two topological spaces X and Y are called homotopy-equivalent

if there exist continuous functions f : X → Y and g : Y → X such that g ◦ f and f ◦ g

are both homotopic to the identity map. f and g are called the homotopy equation,

and X and Y can be homotoped to each other.

Deformation Retract: a subspace A is called a deformation retract of a topology

space S if there exists a continuous function f : S× [0, 1]→ S such that:

• f (x, 0) = x, ∀x ∈ X

• f (x, 1) ∈ A, ∀x ∈ X

• f (a, t) = a, ∀a ∈ A, t ∈ [0, 1]

and f is a deformation retraction from S to A. A more intuitive test is whether the

space S can be continuously shrunk and deformed to A without causing any cut or

tear. If A is a deformation retract of S, then they are homotopy-equivalent.

Contractible space: a topological space S is called contractible if the identity map

on it is homotopic to a constant map, in other words, taking every point in S to a

fixed point in S. A more intuitive interpretation is that the space can be contracted

continuously towards a point inside it.

CHAPTER 5. MANEUVER PATTERN ANALYSIS 50

5.1.2 Physics-Inspired Homology Identification

Figure 5.2: Energized wire and its generated magnetic field in the 3-D Euclidean space.

Biot-Savart Law: a steady current flowing through a wire W generates a magnetic

field B, the vector value of which defined at r ∈ R3 is:

B(r) =
µ0 · I
4π

∫
W

dl × (l − r)
‖l − r‖3 (5.1)

where I is the current inW , l is a point onW , and µ0 is the magnetic constant, whose

value is not significant for the purpose of homotopy analysis.

Ampere’s Law: given a magnetic field B and a closed path T◦, the line integral along

T◦ is proportional to the total current I passing through a surface S enclosed by T◦∮
T◦

B · dl = µ0 · I (5.2)

The laws of Biot-Savart and Ampere are dual theorems relating the energized

looped wire W and the magnetic field generated. In Figure 5.2, regardless of the

shape of the closed path T◦, the integration of magnetic field B gives an Ampere

invariant which is only relevant to the amount of current going through the closed

surface S formed by T◦. This property can be exploited to define the H-signature for

co-terminal trajectories like T1, T2, T3 in Figure 5.2.

Imagine planning with one ring-like obstacle, which is energized by current I and

generates a magnetic field B. The homology-signature [Kim et al., 2012] is defined as

the integration of the magnetic field along trajectory T :

H(T) =
∫
T

B · dl (5.3)

CHAPTER 5. MANEUVER PATTERN ANALYSIS 51

It can be shown that the homology-signature gives a numerical invariant to homolog-

ical trajectories. In other words, trajectories T ′ and T ′′ are homological if and only

if their homology-signatures are equal. Note that while the trajectories are in the 3-

D Euclidean space R3, this value can be used to detect trajectories in any 3-D space,

including the spatiotemporal space W that will be explained in Section 5.1.3.

One important question to ask is: why the homology-signature inspired by elec-

tromagnetism theory can detect homology? As explained in [Bhattacharya, 2012], the

differential 1-form (infinitesimal length/cost) captures the metric information about

the underlying space. The homology-signature is a kind of differential 1-form that

encodes topological information about the space. From a pure algebraic topology per-

spective [Bott and Tu, 2013], the differential 1-form (homology-signature) belongs to

the De Rham cohomology group H1
dR(R

D −O) for Euclidean space RD punctured by

the obstacle O, and therefore it detects homology.

5.1.3 Topological Planning in 3-D Spatiotemporal Configuration Space

The APV operates in highway and urban environments, which are three-dimensional.

The tilt and pitch of the APV on hilly roads changes the vehicle dynamics and shifts

the center of gravity. While such factors must be compensated for control purposes,

it is common practice to simply assume the workspace to be a 2-D plane and to leave

out the details of the terrain for efficiency in planning.

The planning space of the APV henceforth becomes a 3-D spatiotemporal space

W = [R2 × T] obtained by augmenting a 2-D planar space R2 with a time dimen-

sion T. A bounded workspace W is considered in practice due to the fixed planning

horizon (T) at every cycle.

Properly responding to the surrounding objects is the primary goal of motion plan-

ning for urban autonomous driving. Taking a snapshot at any given time, an object

can be represented by a 2-D polygon. Adding the temporal planning horizon (up to

T) to a 2-D object creates a 3-D temporal object. Figure 5.3(a) shows an on-road driv-

CHAPTER 5. MANEUVER PATTERN ANALYSIS 52

(a) Scenario with a single bicyclist on a single-lane road

(b) Construct spatiotemporal planning space with prediction motion

Figure 5.3: The construction of 3-D spatiotemporal planning space.

ing scenario with a single bicyclist on a single-lane road. Figure 5.3(b) demonstrates

that the bicyclist O is augmented spatiotemporally along its predicted trajectory, with

S(OW) being the skeleton of the temporal object OW within W.

(a) Loop through arbitrary shape (b) Loop through infinity

Figure 5.4: Create looped augmented temporal object for topological differentiation.

The temporal object OW is genus2-0, and not able to incur different homologi-

2The genus of an object, an important concept in algebraic topology, is the number of the handles,
or holes in its shape. An intuitive interpretation of genus is the maximum number of "cuts" that can be

CHAPTER 5. MANEUVER PATTERN ANALYSIS 53

cal/homotopic trajectories (nor is its skeleton S(OW)). In order to introduce such

an ability, a temporal object OW is augmented to become a looped structure in the

unbounded spatiotemporal space to create genus-1 object OW in the space {x|x ∈

W, x /∈ W}. This can be achieved by appending either a finite-augmentation, giving

OW
◦ (Figure 5.4(a)), or through an infinity-augmentation, giving OW

∞ (Figure 5.4(b)).

Figure 5.5: Create virtual magnetic field by applying virtual current in the augmented
temporal object.

The augmented temporal object looped through infinity S(OW
∞) makes it easier

to mathematically obtain the magnetic field (Figure 5.5) in a fashion that extends both

ends of the skeleton to infinity in parallel to the time dimension. Within the loop, it be-

comes convenient to apply a virtual current flowing through, and inducing a magnetic

field. If the skeleton of the augmented temporal object is made up of N straight line

segments {W1, ...,Wi, ...,WN}, where each line segmentWi is defined from point li to

point li+1, we can transform the original Biot-Savart Law to analytically calculate the

vector field at r according to [Griffiths and College, 1999] without integration (which

is very computationally efficient):

B(r) =
µ0 · I
4π

N

∑
i=1

∫
Wi

dl × (l − r)
‖l − r‖3 (5.4)

performed on an object such that the cut object is still a connected object with full volume, e.g., in 3-D, a
ball is genus-0, a loop is genus-1, etc.

CHAPTER 5. MANEUVER PATTERN ANALYSIS 54

where ∫
Wi

dl × (l − r)
‖l − r‖3 =

1

‖
−→
di ‖2

(

−→
di ×−→qi

‖−→qi ‖
−
−→
di ×−→pi

‖−→pi ‖
) (5.5)

when
−→pi = li − r

−→qi = li+1 − r

−→
di =

(li+1 − li)× (−→pi ×−→qi)

‖li+1 − li‖2

(5.6)

Note that for the last (WN) segment, these equations are changed since lN+1 goes

to infinity: ∫
WN

dl × (l − r)
‖l − r‖3 =

1

‖
−→
dN‖2

(
−→
dN ×−→nN −

−→
dN ×−→pN

‖−→pN‖
) (5.7)

with −→nN being the unit vector in the direction of line segmentWN−1, and

−→pN = lN−1 − r

−→
dN = −→nN × (−→pN × (−→pN +−→nN))

(5.8)

By symmetry, we can obtain the integration result for the first line segment (W1) as

well. Once the magnetic field is obtained, the H-signature can be calculated by Equa-

tion 5.3 given trajectory T .

As explained in Section 5.1, homotopic trajectory is also homological, but the con-

verse does not necessarily hold true. An important question to ask is: why do we

detect trajectory homology (weaker) rather than homotopy (stronger)? First, detect-

ing homology is numerically straightforward with the homology-signature, and its

invariance property will be further exploited in Section 5.2. Another reason is that

the topological information we care about in the context of on-road driving has to

do exclusively with swerving left or right around objects, and can be performed in a

per-object fashion, in which homology and homotopy are equivalent.

However, it is also important to realize that such topological information is only

part of the story for our ultimate goal, which is to distinguish between distinct maneu-

ver patterns. In a stationary environment, topological information may be sufficient

to distinguish among maneuver patterns, as shown in Section 5.2. On the other hand,

CHAPTER 5. MANEUVER PATTERN ANALYSIS 55

if multiple moving objects are involved, while homology/homotopy helps distinguish

swerving left vs. right, it does not directly identify staying behind a particular ob-

ject, nor does it handle complications like the sequence according to which to swerve

around different obstacles, which will be addressed in Section 5.3.

5.2 Graph Segmentation-based Maneuver Pattern Identification

(a)

(b) (c)

Figure 5.6: Construct DAG to perform graph segmentation-based topological analysis.

In this section, we consider the graph-based path planning problem in a simplified

environment, where only static obstacles are included for consideration. The DAG will

be constructed in a fashion that suits a corridor-like maneuver environment, similar to

that shown in Figure 4.3. We start by removing infeasible edges from the DAG, i.e.,

we obtain Figure 5.6(b) from Figure 5.6(a). Rather than finding a minimum-cost route

on this graph, the goal is to segment this graph into multiple topologically distinct

sub-graphs to facilitate later planning within each sub-graph as in Figure 5.6(c). There

are a few symbols used below:

• ∆H: the homology-signature incremental w.r.t. a single object.

• ∆H: the homology-signature incremental vector w.r.t. all objects in consideration.

• H: the homology-signature of a node w.r.t. a single object.

CHAPTER 5. MANEUVER PATTERN ANALYSIS 56

• H: the homology-signature vector of a node w.r.t. all objects in consideration.

• SH: the homological-signature set that keeps track of the homology-signature

combinations (uniqueH) of topologically different trajectories for each node.

The first step is to understand the number of topologically distinct routes to reach

the goal node for each node in this graph. Supposing we have M active obstacles

for topology analysis, a homology-signature incremental ∆H can be calculated for

each obstacle. Then for each edge in the graph, we can assemble a M-dimensional

homology-signature incremental vector ∆H along this edge (trajectory piece):

∆H = [∆H1 · · ·∆HM]T (5.9)

Figure 5.7: The homology-signature vector incrementals ∆H along a given graph path.

For any given path on DAG composed by l edges (Figure 5.7), the homology-

signature vectorH can be calculated:

H =
l

∑
i=1

∆Hi = [H1 · · · HM]T (5.10)

Each unique H-signature vector corresponds to a topologically distinct trajectory from

the first point. We use the homological-signature set SH = {H} to keep track of the

number of topologically different trajectories for each node.

The naive approach to generate the set SH is to expand all the path routes on the

graph from the start node, and calculate H along each and every route to investigate

how many topological patterns exist starting from the current node. However, this will

be an exponential algorithm, which is inefficient for any reasonable-sized problem.

Instead, we draw inspiration from backward-induction-based dynamic programming

[Dreyfus and Law, 1977] to perform graph analysis. Dynamic programming (Figure

5.8(a)) calculates optimal cost-to-go from current node to goal node with backward

CHAPTER 5. MANEUVER PATTERN ANALYSIS 57

(a) Dynamic programming (b) Topology induction

Figure 5.8: Comparison of backward propagation routines in dynamic programming
(optimal cost-to-go) and topology induction (homology-signature vector).

induction. A similar induction method is used to propagate topological information

over the graph, but replacing the optimal cost-to-go with the homology-set-to-go SH

(Figure 5.8(b)). This set keeps track of the unique H (an H being unique if at least

one dimension is different from all other vectors in the set), which implies distinct

homological routes achievable from a node to reach the goal node.

Let the current node be nc. It has l outgoing edges {e1, · · · , el}, each with a H-

signature vector incremental {∆H1 , · · · , ∆Hl }, that connects to l nodes {no
1, · · · , no

l },

whose correspondingH sets are {SH(no
1), · · · , SH(no

l)}. The set SH(nc) can be deter-

mined by a double union operator:

SH(nc) =
l⋃

i=1

⋃
Ĥ∈SH(no

i)

(∆Hi + Ĥ) (5.11)

Note that in Equation 5.11, the set of the current node can be uniquely determined

by its outgoing nodes, which leads to a backward induction procedure. This is possible

since each H-signature is only relevant to the topology of the trajectory. The size of

the set-to-go is curtailed by the topologically distinct patterns achievable in the search

space (graph). For example, in Figure 5.8(b), there is only one object, so the H vector

has only one element. The edges of the two bottom routes from start to goal nodes

each have different H-signature increments, but since these two routes belong to the

same homological class, it is guaranteed that ∆H3 + ∆H4 ≡ ∆H5 + ∆H6 . The backward

induction proceeds from the goal node ngoal until the start node nstart. At the end of

CHAPTER 5. MANEUVER PATTERN ANALYSIS 58

the process, each node has the set SH. Now, the second objective is to identify the

regions that are subject to particular topological classes.

Each H in the set SH(nstart) indicates a unique homological path from start node

nstart to the goal node. We pick a particular H from the start, corresponding to a

particular class tag, then perform a forward propagation to tag to all the nodes that

are reachable subject to this homological constraint. Suppose a node has a tag, and its

corresponding homology-signature vector of a node is H′. We iterate through all the

outgoing edges e′ and its connecting node n′, and propagate this class tag if:

H′ − ∆H(e′) ∈ SH(n′) (5.12)

This procedure is continued until the goal node is encountered. Then all the nodes

visitable subject to this class are generated. This process is further performed for other

vector in SH(nstart) to identify regions for all classes.

The final result is a segmented graph for each of these labels. Marking them with

distinct colors will generate plots like Figure 5.6(c). A more involved situation is

demonstrated in Figure 5.9. This provides a convenient way for the planner to obtain

high-level understanding of the maneuver space, and can be used as a pre-processing

step to focus the graph search effort. The method described in this section can be

used to serve as an additional step before applying the edge-augmented graph search

approach described in Section 4.4 to limit the plan within a certain topological class.

5.3 Sampling-based Maneuver Pattern Identification

Maneuver pattern analysis in Section 5.2 is limited to a 2-D corridor-like spatial space.

In this section, analysis is performed in the spatiotemporal space, where the predicted

motions of moving objects are taken into account.

A similar DAG graph can be constructed in the spatiotemporal space (Figure 5.10(a)).

However, it is difficult to depend solely on the homology-signature backward induc-

tion routine discussed in Section 5.2 for the full analysis, because:

CHAPTER 5. MANEUVER PATTERN ANALYSIS 59

(a) Spatial DAG and three objects

(b) Topologically distinct regions

Figure 5.9: Graph segmentation-based topological analysis for a three-object scenario.

• In the planning on a 2-D spatial DAG graph (Figure 4.3), we can always put a

virtual goal node in the corridor, because the planning horizon of a path can

always be hallucinated with a fixed node. But for a 3-D spatiotemporal DAG

graph (Figure 5.10(a)), while it can be predetermined to plan up to a fixed time

horizon T seconds, the exact goal point should not be hallucinated, but should

be determined by the planning itself. Without a fixed goal node, the homology-

signature is undefined.

• For spatiotemporal analysis, knowledge other than topological information must

be used to characterize the maneuver pattern, such as the region information and

the sequence information. This information is independent from and does not fit

into homology-signature backward induction process.

CHAPTER 5. MANEUVER PATTERN ANALYSIS 60

(a) Linear DAG in spatiotemporal space (b) Sampled trajectory pool by combinato-
rial iteration and LQR-based smoothing

Figure 5.10: Construct spatiotemporal trajectory sampling pool.

To this end, after constructing a coarse (linear-edge) 3-D DAG (Figure 5.10(a)),

rather than performing the topology induction, we sample a pool of full T-second

trajectory candidates by enumerating possible route sequences, and then perform spa-

tiotemporal pattern analysis to generate sample trajectories (Figure 5.10(b)). In the

on-road planning setting, infeasible trajectories that cause collision with any objects,

or deviate too much from the spatial corridor, will be removed. The number of tra-

jectories is exponential w.r.t. the number of sampling layers, but their generation and

analysis are straightforwardly parallelizable.

The central task of maneuver pattern analysis on a trajectory sample pool is to

differentiate trajectories that belong to distinct maneuvers. In the context of on-road

driving, we define three main sources of distinction:

• Region-based Distinction: distinguish the trajectories that terminate in different

regions at the end of the T-second planning horizon.

• Topology-based Distinction: for maneuvers that involve swerving around an

object, homology information helps determine on which side the maneuver is

performed.

• Sequence-based Distinction: if overtaking multiple objects is involved, the order

of overtaking further give us certain cues.

CHAPTER 5. MANEUVER PATTERN ANALYSIS 61

(a) Two regions for single lane (b) Four regions for double lane

Figure 5.11: Region-based and topology-based distinctions for on-road driving.

Region-based Distinction In the context of on-road driving, where the effective spa-

tial planning domain is just a corridoor, it is useful to define the concept of an overtak-

ing maneuver by defining an overtaking region. Intuitively, an overtaking maneuver

describes the behavior of an APV moving from a following position to a leading posi-

tion w.r.t. an object within a limited time horizon (T seconds) within an active planning

corridor (the union of two polygonal regions ROα and ROβ in Figure 5.11(a)). In this

corridor, given an object’s predicted motion trajectory, two regions ROα and ROβ can be

separated by the last known state on the predicted trajectory (the black object polygon

in Figure 5.11(a)). If a planned trajectory terminates in ROα , we say it is an overtaking

trajectory; if in ROβ , it is a following trajectory.

Similarly, the concept of overtaking can be extended to a two-corridor environment

(e.g., considering the possibility of overtaking through lane-change.) In Figure 5.11(b),

four regions can be distinguished: current-lane overtaking ROα1, current-lane following

ROβ1, target-lane overtaking ROα2 and target-lane following ROβ2.

Figure 5.12: Identify gaps between moving vehicles through the combinations of
object-associated regions.

CHAPTER 5. MANEUVER PATTERN ANALYSIS 62

When multiple objects are considered, the combination of terminal-regions with

respect to each object naturally enriches the maneuver’s descriptive capability. For

example, in the highway scenario, this combination naturally identifies gaps between

cars in the neighboring lane (middle lane in Figure 5.12).

Figure 5.13: Construct helper trajectory to detect pseudo-homological trajectories.

Topology-based Distinction Trajectories with the same terminal-regions are not dif-

ferentiated by the region-based distinction, but they do not necessarily coincide at the

same terminal point. Therefore, the original definition for homology-signature (Equa-

tion 5.3) must be adapted. We relax the co-terminal requirements by defining pseudo-

homology for trajectories that terminate in the same 2-D spatial region represented by

a polygon (Curves of the same color in Figure 5.13).

In Figure 5.13, a point is the retract of a 2-D spatial region R, also referred to as the

representative point X ∗R of R. Note that R does not have to be a convex shape, and

the exact location of X ∗R is insignificant as long as it is contained by R. Then we can

define pesudo-homology.

Pseudo-Homology: two trajectories T ′ and T ′′ are pseudo-homological if they both

start from the same state and end in the same path-connected region R ∈ R2, that

can be extended from where they terminate on R to the representative point X ∗R with

helper trajectories T ′h and T ′′h , and

H(T ′ + T ′h) = H(T ′′ + T ′′h) (5.13)

The helper trajectories stay within R, and can be of arbitrary shape (Figure 5.13).

Revisiting Figure 5.11, trajectories may reach certain regions by taking topologically

different routes. All the topologically distinctive trajectories are depicted in the same

CHAPTER 5. MANEUVER PATTERN ANALYSIS 63

Figure 5.14: Detect pseudo-homology for trajectories that terminate in the same on-
road corridor region.

color. In addition, efficient ways to determine the representative point and construct

helper trajectories for each identified region are required by the algorithm. Taking

advantage of the fact that the region R (Figure 5.14) is constructed from corridor-like

on-road lanes, we place X ∗R on the centerline, close to the region boundary near the

object itself. The helper trajectories are then constructed by connecting from the loca-

tion where the trajectory terminates in the region, to the projected point perpendicular

to the centerline, and further moving along the centerline to reach X ∗R. The procedure

to determine the pseudo-homology is summarized in Algorithm 2:

Algorithm 2 Determine pseudo-homology

Require: Two trajectories T ′ and T ′′
Ensure: Correct judgment of trajectories’ pseudo-homology

IDENTIFY a spatial region R ∈ R2 within W at time T.
CHECK if the end states X T ′ and X T ′′ are in R.

IF no, RETURN false
RETRACT region R to a representative point X ∗R
CONSTRUCT helper trajectories T ′h and T ′′h that connect X T ′R and X T ′′R to X ∗R
CALCULATE the H function of T ′ + T ′h and T ′′ + T ′′h

IF H(T ′ + T ′h) 6= H(T ′′ + T ′′h) RETURN false
ELSE RETURN true

Sequence-based Distinction It is common in planning to generate trajectories that

overtake multiple objects. In this situation, only knowing the topological information

w.r.t each object is not sufficient to distinguish some important maneuver patterns. For

example, in Figure 5.15(a), the two trajectories reflect two distinct maneuver patterns:

the upper one is more conservative by a delayed bicyclist overtaking after passing a

parked car, while the lower one is more aggressive by overtaking the bicyclist through

CHAPTER 5. MANEUVER PATTERN ANALYSIS 64

(a) (b)

Figure 5.15: Two pseudo-homological trajectories demonstrate distinct maneuver pat-
terns with different overtaking sequencing.

the closing gap between the bicyclist and the parked car. However, from a pure topo-

logical perspective, they are equivalent by being pseudo-homological/homotopic in

the 3-D spatiotemporal space (Figure 5.15(b)).

To be aware of the different overtaking sequences, in the trajectory evaluation pro-

cess, we need to forward-simulate simultaneously the APV and objects, keep track

of the time-stamp when an overtaking maneuver is accomplished w.r.t. to each ob-

ject, and then sort against the time-stamp, which will give a sequence description. If

two overtaking maneuvers are accomplished at the same time (strictly speaking, this

never happens in the real world, but it is possible in the planning world due to finite

sampling of a trajectory). For tie breaking, we assume there is a secondary sorting

criterion, which can simply be an arbitrary index number of the object itself.

For a given trajectory, a pattern distinction tree can be constructed. In Figure 5.16,

four objects are actively considered for pattern distinctions. Objects O1, O2 and O4

have two regions as in Figure 5.11(a), while object O3 has four regions as in Figure

5.11(b). For any α (overtaking) region, there are two pseudo-homological alternatives:

swerve left Hl and swerve right Hr. For any β (following) region, there is only one

pseudo-homological trajectory.

With this tree, we apply the region-based and topology-based distinction routine

for each object to "paint" the routes that a particular trajectory T belongs to. For

example, T will overtake object O1 on the left, follow object O2, overtake object O3

from the left to the target lane (in a lane change), while overtaking O4 on the right.

CHAPTER 5. MANEUVER PATTERN ANALYSIS 65

Figure 5.16: Example of constructing maneuver distinction tree of four objects.

After painting the distinction tree, we put all the objects on which an overtaking

maneuver was performed in an “Overtaking List”, and sort them based on the times-

tamp (using the object index as a secondary criterion for tie breaking) reflecting when

the overtaking maneuver is accomplished. Objects that involve only a following ma-

neuver are put in a “Following List” and get sorted based on its index. To concisely

represent the result of sampling-based maneuver pattern analysis, we represent the

final pattern by stacking the overtaking list on top of the following list:

L =



L3

L1

L4

L2


=



O3 → RO3
α2 → H

RO3
α2

l

O1 → RO1
α → HR

O1
α

l

O4 → RO4
α → HR

O4
α

r

O2 → RO2
β → H

RO2
β


(5.14)

Supposing each route has a unique identifier, the full pattern will have a unique

identifier by concatenating the identifiers of each route sequentially. Then trajectories

can be grouped together, which concludes the tactical maneuver pattern discovery pro-

cess. Note that while the number of possible patterns generally grows exponentially as

the number of objects increases, the runtime of our planner is linear w.r.t. the number

of trajectories. So if we have a reasonably sized sample pool (e.g., less than 10,000), the

computation is manageable.

CHAPTER 5. MANEUVER PATTERN ANALYSIS 66

5.4 Choosing Maneuver Pattern

In Section 5.2 and 5.3, maneuver patterns are identified in the form of graph segmen-

tation regions and groups of trajectory samples, respectively. They both provide a

high-level segmentation of the planning space. In this section, we make a few points

regarding how the segmentation should be evaluated and selected.

In graph-segmentation-based pattern analysis, the graph regions are some portion

of the path planning corridor on the DAG. If all static objects are simply treated as

blockages, the optimal graph segmentation can be selected primarily according to the

maximum narrowest passage width, which is a good indicator of traversability. For

example, in Figure 5.9, region (c) is chosen for this reason. Other metrics linked to

specific objects can also be designed.

In the sampling-based pattern analysis, trajectory samples are grouped by their

pattern. While the cost function to score trajectories will be developed in Chapter 6,

it is often impractical3 to evaluate all the sampled trajectories (often numbering in the

thousands) in this phase. Therefore, some high-level metrics that can be calculated

quickly help, e.g., the internal metrics like the average/minimum/maximum acceler-

ations.

Sometimes, the metrics of the current trajectory discussed above are not the only

important factor to determine the choice of pattern. Another important factor is pat-

tern consistency, which is achieved by persisting with a particular pattern unless there

are drastic environmental changes. For that, we also need a measure of the degree

of difference between the pattern selected for the last cycle and a given pattern in the

sampled trajectory from the current cycle. Since an object may disappear or show up

for the first time, the first step is to remove those object that exist in only one cycle.

Then for each common object, we can compare and count the difference in region, in

homotopy and in sequence between cycles (For graph segmentation-based analysis,

only the homotopy difference may exist).

3Trajectory evaluation can be computationally expensive, especially when multiple terms are evaluated
with distance calculations.

CHAPTER 5. MANEUVER PATTERN ANALYSIS 67

There are two additional notes. First, in this section, we have made an implicit

assumption, which is that a given object, once detected, will have a unique index, and

won’t change. Second, the main contribution is two novel ways to segment the plan-

ning space, which emplaces high-level segmentation in the traditional search space.

With sufficient manual driving logs, it is even possible to develop more features, even

directly use the image space features (from the raw perception), to train a classifier to

select the right maneuver pattern in real-time. But this is out of the scope of this thesis.

The overall planning flow can be summarized as:

1. Create search space (Construct spatial DAG or spatiotemporal sampling).

2. Trim search space (Remove infeasible edges in spatial DAG or remove infeasible

trajectories from sample).

3. Perform search space segmentation (Topology back-induction or grouping based

on region-based, topology-based and sequence-based distinctions.)

4. Choose the segmentation based on some criterion.

Chapter 6

Focused Trajectory Optimization with

Constraints

In Chapter 4 and 5, we proposed novel techniques that combine topological analy-

sis and graph search to perform pattern identification and path/trajectory planning.

Taking advantage of the smoothing procedure in Chapter 3, we can further obtain a

model-feasible smooth trajectory that roughly encodes how the robot should behave

subject to the selected maneuver pattern. However, there are a few limitations to the

trajectory plan generated so far:

• The trajectory so far can be regarded as globally resolution-complete optimal,

but subject to sampling suboptimality, in other words, not locally optimal.

• The trajectory so far is a result of evaluating the LQR-smoothing routine in Chap-

ter 3, after which the collision-free guarantee promised by the graph-search plan-

ning result (e.g, piece-wise linear edge plans) may have been voided.

• There is a lack of cost terms linked to internal state/control, which plays a vital

part in shaping the ultimate trajectory, in the cost function designed for both

maneuver pattern selection and graph-search planning.

68

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 69

• The trajectory so far is model-feasible. However, it is important to recognize

that model-feasibility is a necessary but not sufficient condition for execution-

feasibility. Many state/control constraints were not enforced in the model differ-

ential equations.

The goal of this chapter is to review and adapt the well-studied iterative linear

quadratic regulator (iLQR, a.k.a. sequential-LQR, first-order Differential Dynamic

Programming) [Todorov and Li, 2005, Tassa et al., 2014, Jacobson and Mayne, 1970,

van den Berg, 2016, Li and Todorov, 2004a, Jacobson, 1968] in the APV on-road driv-

ing application. The trajectory generated so far will be used as a good setting-off

point to determine "which local minimum to choose", and to use an adapted tra-

jectory optimization method to address the following challenging problem: deter-

mine an execution-feasible and locally optimal trajectory that is subject to a variety

of state/control and maneuver pattern constraints.

6.1 Relationship between Planning & Control

The boundary between planning and control can be vague. In our context, two

planning-control hierarchical paradigms are discussed: the tracker-dependent approach

and the open-loop approach. The planners in both approaches are capable of gener-

ating the trajectory. The subtleties lie in the form of the trajectory information that is

being used.

In the tracker-dependent approach, the planner generates a smooth trajectory (only

state sequence information is needed) in the configuration space, and relies on a sepa-

rate trajectory tracker1 to generate the instantaneous setpoint for an actuator to follow

the trajectory while some other controller takes care of servoing the actuator. In prac-

tice, this architecture works well in many applications [Kuwata et al., 2008, Campbell

et al., 2007, Wei et al., 2013], but the tracking control almost certainly undermines some

1An example of a trajectory tracker is the LQR-Controller used for smoothing discussed in Chapter 3.
[Snider, 2009] gives a comprehensive review of popular trajectory trackers in the context of autonomous
passenger vehicles.

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 70

intended behavior of the planner. For example, the pure pursuit tracker is commonly

used for APV applications. But it exhibits corner-cutting behaviors for trajectories with

high curvature [Snider, 2009], and rarely does the planner explicitly model the tracking

controller2.

The open-loop approach is different from the tracker-dependent approach: the tra-

jectory (the control sequence and state sequence can be further obtained by evaluating

the control over a selected vehicle model) generated by the planner will be directly

used as the desired setpoint for the low-level actuator servo loop to follow. Obviously,

this puts a more stringent requirement on the quality of the trajectory plan. The ben-

efit is that the overall planning/control architecture is more straightforward with less

delay, and requires the planner to be knowledgeable about the environment and the

vehicle itself.

In reality, the trajectory tracker is imperfect, and it is difficult and cumbersome to

characterize the tracking error within the planner. On the other hand, it is relatively

easy to develop sufficiently complex models for on-road autonomous driving to de-

scribe the motion with good accuracy, such as the vehicle models explained in Section

3.1.1 and 3.1.2. As a result, we will take the open-loop approach for trajectory plan-

ning, and the choice of the subsequent trajectory optimizer must also be compatible

with the form of trajectory needed for an open-loop planning approach, i.e., it must

have an explicit control sequence. This is one of the primary reasons to choose the

iLQR algorithm.

6.2 Trajectory Optimization Background

Section 2.2.3 reviewed both direct and indirect trajectory optimization methods. In

this section, we summarize in detail one specific indirect (shooting-based) trajectory

optimizer — the iterative linear quadratic regulator (iLQR). This optimizer will be used

as the engine for local trajectory optimization.

2Since the initial objective of emplacing a tracking controller is to free the planner from worrying about
the low-level dynamics in order to plan/control at a higher level.

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 71

The iterative-LQR (iLQR) is different from the LQR in that: in LQR, the optimal

policy of a given state is calculated once assuming the future dynamics are precisely

governed by the locally linearized system, while the iLQR recognizes that this assump-

tion is not valid for a nonlinear system, and therefore iteratively performs LQR on the

new state generated from the last optimization cycle, until a true local minimum is

achieved.

The LQR controller was used in the trajectory tracking control for smoothing ex-

plained in Section 3.4. In this section, the goal of using the iLQR algorithm is no

longer to minimize a state-related (tracking) quadratic error, but to minimize a more

general (not necessarily quadratic, so it needs quadratization) cost function over an

entire trajectory, in order to consider a broader range of factors that affect driving.

Now we can introduce the concept of trajectory: a state sequence (N + 1 states)

and a control sequence (N controls) over a fixed planning horizon T sampled at δt

(N · δt = T):

X(k) .
= {x0, x1, . . . , xi, . . . , xN−1, xN}

U(k) .
= {u0, u1, . . . , ui, . . . , uN−1}

(6.1)

where X(k) and U(k) represent the state and control sequence of the kth-iteration, and

xi and ui are the state and control at the ith time-stamp. A trajectory can be fully spec-

ified with an initial state x0, a control sequence U(k) and the selected vehicle discrete

dynamics model fd, such that:

xi+1 = fd(xi, ui)

The optimization problem can be formulated as finding an optimal control se-

quence U∗ that minimizes a total cost J(X, U) of the sum of intermediate costs g

and the final cost gN over the entire trajectory:

U∗ = argmin
U

J(X, U) (6.2)

where

J(X, U) = gN(xN) +
N−1

∑
i=0

g(xi, ui)

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 72

To represent the dynamic programming mechanism, given a control sequence, the

value function (optimal cost-to-go) V of the ith state is defined as the minimum sum

of the intermediate cost g of the ith state-control pair and the value function of the

(i + 1)th state,

V(xi) = min
ui

[g(xi, ui) + V(xi+1)] (6.3)

Performing dynamic programming on a DAG (Section 4.2) or a undirected graph

(a.k.a, Dijkstra’s algorithm [Hart et al., 1968]) is straightforward, since the states and

transitions are discretized and finite. To perform dynamic programming on a system

without discretized state/transition is tricky: a slight change δu (due to optimization)

in a control ui at the ith time-stamp not only introduces change in the intermediate

g, but also changes the (i + 1)th state xi+1, whose value function is unknown and

must be approximated. The core of the iLQR algorithm is a pair of forward and back-

ward propagation routines that efficiently update the value functions while iteratively

nudging the control sequence by a new δu.

Let the function inside the min operator in Equation 6.3 be P:

P(xi, ui) = g(xi, ui) + V(xi+1)

= g(xi, ui) + V(fd(xi, ui))
(6.4)

Suppose now that small variations in state and control (δx, δu) at (xi, ui) are both

incurred independently at the ith time-stamp. δx is incurred by the state and control

changes made to the optimization of the (i− 1)th time-stamp, whereas δu is incurred

by some control update (optimization) algorithm of the current ith time-stamp. Define

the change in P to be Q(δx, δu), i.e., the sum of the change in g and the change in value

function Vi+1 due to the change in the (i + 1)th states,

Q(δx, δu) = P(xi + δx, ui + δu)− P(xi, ui)

= g(xi + δx, ui + δu)− g(xi, ui)

+ V(fd(xi + δx, ui + δu))−V(fd(xi, ui))

(6.5)

Quadratizing Q around (0, 0) as in Equation 3.12 with δx → 0 and δu → 0, and

noting that Q is a function of (δx, δu) instead of (xi, ui),

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 73

Q(δx, δu) ≈ Q̃(δx, δu) = Q(0, 0)

+
∂Q(δx, δu)

∂[δx]

∣∣∣
0,0
[δx] +

∂Q(δx, δu)
∂[δu]

∣∣∣
0,0
[δu] +

1
2
[δx]T

∂2Q(δx, δu)
∂[δx]2

∣∣∣
0,0
[δx]

+ [δu]T
∂2Q(δx, δu)
∂[δu]∂[δx]

∣∣∣
0,0
[δx] +

1
2
[δu]T

∂2Q(δx, δu)
∂[δu]2

∣∣∣
0,0
[δu]

= 0 + Qx[δx] + Qu[δu] +
1
2
[δx]TQxx[δx] + [δu]TQux[δx] +

1
2
[δu]TQuu[δu]

=
1
2


1

δx

δu


T 

0 QT
x QT

u

Qx Qxx Qxu

Qu Qux Quu




1

δx

δu


(6.6)

where

Qx =
∂[Q(δx, δu)]

∂[δx]

∣∣∣
0,0

=
∂g(xi + δx, ui + δu)

∂[δx]

∣∣∣
0,0

+
∂V(fd(xi + δx, ui + δu))

∂[δx]

∣∣∣
0,0

=
∂g
∂x

∣∣∣
xi ,ui

+
∂ fd
∂x

∣∣∣T
xi ,ui
· ∂V

∂x

∣∣∣
xi+1,ui+1

= gx + f T
x V′x

Qu =
∂[Q(δx, δu)]

∂[δu]

∣∣∣
0,0

=
∂g(xi + δx, ui + δu)

∂[δu]

∣∣∣
0,0

+
∂V(fd(xi + δx, ui + δu))

∂[δu]

∣∣∣
0,0

=
∂g
∂u

∣∣∣
xi ,ui

+
∂ fd
∂u

∣∣∣T
xi ,ui
· ∂V

∂x

∣∣∣
xi+1,ui+1

= gu + f T
u V′x

Qxx =
∂2[Q(δx, δu)]

∂[δx]2

∣∣∣
0,0

=
∂2g(xi + δx, ui + δu)

∂[δx]2

∣∣∣
0,0

+
∂2V(fd(xi + δx, ui + δu))

∂[δx]2

∣∣∣
0,0

=
∂2g
∂x2

∣∣∣
xi ,ui

+
∂ fd
∂x

∣∣∣T
xi ,ui
· ∂2V

∂x2

∣∣∣
xi+1,ui+1

· ∂ fd
∂x

∣∣∣
xi ,ui

+
∂V
∂x

∣∣∣
xi+1,ui+1

· ∂2 fd
∂x2

∣∣∣
xi ,ui

= gxx + f T
x ·V′xx · fx + V′x · fxx

Qux =
∂2[Q(δx, δu)]

∂[δu]∂[δx]

∣∣∣
0,0

=
∂2g(xi + δx, ui + δu)

∂[δu]∂[δx]

∣∣∣
0,0

+
∂2V(fd(xi + δx, ui + δu))

∂[δx]∂[δu]

∣∣∣
0,0

=
∂2g

∂u∂x

∣∣∣
xi ,ui

+
∂ fd
∂u

∣∣∣T
xi ,ui
· ∂2V

∂x2

∣∣∣
xi+1,ui+1

· ∂ fd
∂x

∣∣∣
xi ,ui

+
∂V
∂x

∣∣∣
xi+1,ui+1

· ∂2 fd
∂u∂x

∣∣∣
xi ,ui

= gux + f T
u ·V′xx · fx + V′x · fux

Quu =
∂2[Q(δx, δu)]

∂[δu]2

∣∣∣
0,0

=
∂2g(xi + δx, ui + δu)

∂[δu]2

∣∣∣
0,0

+
∂2V(fd(xi + δx, ui + δu))

∂[δu]2

∣∣∣
0,0

=
∂2g
∂u2

∣∣∣
xi ,ui

+
∂ fd
∂u

∣∣∣T
xi ,ui
· ∂2V

∂x2

∣∣∣
xi+1,ui+1

· ∂ fd
∂u

∣∣∣
xi ,ui

+
∂V
∂x

∣∣∣
xi+1,ui+1

· ∂2 fd
∂u2

∣∣∣
xi ,ui

= guu + f T
u ·V′xx · fu + V′x · fuu

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 74

Notice that each of the second-order terms Qxx, Qux and Quu above has the second-

order dynamics differentials fxx, fux and fuu. This is a generic differential dynamic

programming formulation. For iLQR, it is a common practice to assume these second-

order dynamics differentials to be zero.

We find the optimal control variation δu∗ by minimizing the quadratized Q̃:

δu∗ = argmin
δu

Q̃(δx, δu) (6.7)

A solution can be found analytically by solving,

∂Q̃(δx, δu)
∂[δu]

= Qu + Qux · δx + Quu · δu = 0 (6.8)

We can get

δu∗ = −Q−1
uu (Qu + Qux · δx)

= k + K · δx
(6.9)

where
k = −Q−1

uu Qu

K = −Q−1
uu Qux

(6.10)

It is worth mentioning again that the changes in state δx and control δu are not cor-

related. Before the calculation of the optimal update δu for the ith control, the change

in the ith state δx is already calculated. In the calculation of the optimal control vari-

ation, we need to calculate Qu, Quu, Qux, which are related to the value functions ∂V
∂x

and ∂2V
∂x2 of the next timestamp. Therefore, it is important to get an explicit representa-

tion of them by plugging the result of Equation 6.9 into the quadratized Equation 6.6,

and taking the first- and second-order derivatives w.r.t. δx, we can further get:

∂V
∂x

= Qx −QuQ−1
uu Qux

∂2V
∂x2 = Qxx −QxuQ−1

uu Qux

(6.11)

iLQR Algorithm: The standard iLQR algorithm can be summarized as follows:

1. Perform a forward shooting procedure from the initial state x0 with the initial

control sequence U(0) to get the initial state sequence X(0).

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 75

2. In a loop indexed by k, starting from k = 0, calculate the control update gains ki

and Ki for each state/control pair (xi, ui) in a reverse fashion with Equations 6.6

through 6.11.

3. Perform the optimization with the gains above in a forward shooting procedure,

starting from i = 0 to obtain the new state/control sequence X(k+1)/U(k+1).

• Generate δxi = x(k+1)
i − x(k)i .

• Generate δui = ki + Ki · δxi.

• Update the control with u(k+1)
i = u(k)

i + δui

• Obtain the new state with x(k+1)
i+1 = fd(x(k+1)

i , u(k+1)
i)

4. Evaluate the trajectory cost before and update the optimization process,J(k) =

J(X(k), U(k)), J(k+1) = J(X(k+1), U(k+1)).

5. The algorithm is terminated upon convergence based on the change in the cost

function:

| J
(k+1) − J(k)

J(k)
| < εJ (6.12)

where εJ is the convergence threshold.

Note that the crux in the control update process is the update of k and K, in which

the inverse of Qxx must be computed. Given a state/value pair, if the cost function

nearby cannot be quadratized nicely, Qxx might become numerically degenerate. In

such a situation, the use of singular value decomposition for inverse calculation, the

regulation of the inverse to make it positive definite, and the use of the Levenberg-

Marquardt heuristic can help with a robust solver [Li and Todorov, 2004a]. The key

goal now is to develop a reasonably shaped cost function and to start with a reasonable

initial trajectory (using techniques from Chapter 3, 4 & 5).

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 76

6.3 Cost Function Design

We have shown that the standard iLQR solver is efficient with a simple analytical

solution in the control variation, which presents the overall optimization process as an

unconstrained optimization problem. The challenges now are two-fold:

1. Different (feature) cost terms must be crafted to be optimizer-friendly and to

shape the APV’s behavior as desired.

2. Different constraints must also be imposed, e.g., states must be restricted, the

control has upper limits, etc.

In this section, we first review and draw intuition from the designed cost functions

(terms) in prior work and summarize the key requirements in the design process for

trajectory planning. In preparation of the cost function design, we describe the related

theory in convex optimization and the selection of modulation. Finally, we explain

our design of the behavioral/constraint feature functions to construct cost terms for

the on-road driving application, and explore the convexity of these terms and their

implications.

6.3.1 Cost function design overview

The iLQR algorithm and the planning methods reviewed in Section 2.2, whether dis-

crete (control / sampling / search-based) or continuous (optimization-based), all de-

pend on a predetermined optimality criterion to proceed, which ultimately shapes the

planning outcome. Without loss of generality, we use the cost function (as opposed to

a reward function) in the context of this thesis.

The classic path planning problem finds the minimum-length collision-free path,

where the cost function consists solely of a non-negative cost term related to the length

of the planned path. In APV self-driving, however, many aspects other than path

length must be taken into account, and the most convenient formulation is a single-

objective-multiple-feature (SOMWF) cost function. For a state/control pair (xi, ui)

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 77

along the trajectory, we define g/gN as the intermediate/final cost functions which

are calculated as the sum of M features:

g(xi, ui) =
M

∑
k=1

ωk · ck(xi, ui)

gN(xN) =
M

∑
k=1

ωk · ck(xN , 0)

where ωk are the weights of the corresponding cost terms ck, and the final state xN

is the goal, so no control is applied to the final state. The total cost is obtained by

accumulating the N costs associated with each state/control pair along the trajectory:

J(X, U) = gN(xN) +
N−1

∑
i=1

g(xi, ui) (6.13)

Note that this cost representation is quite generic. It can represent not only the cost

over the typical discretized trajectory sequence, but also can be adapted to represent

the cost of a graph plan. Typically, on a graph, one needs to evaluate (and assign costs

to) edges (state transitions) rather than nodes (states). The trick is to regard the cost

associated with the edge as the cost incurred by one state and a control, which causes

the state transition.

Cost terms associated with trajectory curvature, deviation from the speed limit,

lateral accelerations and the distance to various environmental elements, such as sur-

rounding obstacles, lane boundaries, centerlines, etc., are commonly designed for au-

tonomous driving robots [Urmson et al., 2008, McNaughton, 2011, Ziegler et al., 2014].

We draw inspiration from this prior work using different planning techniques, and

propose the following general guidelines in the cost function design process:

• the need for undesirable features: a feature represents a certain undesirable aspect

of a trajectory, which will incur a cost term. By choosing to design cost terms

(as opposed to the reward terms), we can always rephrase the desirable features,

such as ensuring that the car moves down the road, as undesirable features, e.g.,

to not move down the road.

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 78

• the need for cost shaping / modulation functions: depending on how severely

one wants to penalize a (undesirable) feature, one can choose a different shap-

ing/modulation function to generate the cost term.

• the preferability of cost convexity / differentiability: for any graph-based planner,

this is not a strong requirement since graph search is global and depends only on

the immediate cost, rather than its gradients. However, for an optimization-based

planner, if the cost function is non-convex, it will create different local minima

in the search space. If non-convexity is unavoidable, it is crucial to design fewer

non-convex terms and use global methods (e.g., the methods of Chapter 4 and 5)

to compensate. In the meantime, the analytical gradient information is important

for the efficiency of the optimization process.

6.3.2 Fundamental Result in Convex Optimization

Several fundamental results in convex analysis theory will be reviewed to provide

guidelines for cost term design.

Convexity: a real-valued function f (x) : Rn → R is convex if

f (θx + (1− θ)y) ≤ θ f (x) + (1− θ) f (y), ∀x, y ∈ dom(f), θ ∈ [0, 1]

First-order Condition: a real-valued first-order differentiable function f (x) : Rn → R

is convex if and only if

f (y) ≥ f (x) +∇ f (x)T(y− x), ∀x, y ∈ dom(f)

Second-order Condition: a real-valued second-order differentiable function f (x) :

Rn → R is convex if and only if

∇2 f (x) � 0, ∀x ∈ dom(f)

In many situations, we need to apply some function to a feature/constraint to yield

the cost term, which leads to function composition. The following lemma holds:

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 79

Lemma 6.3.1 Let h(y) be a second-order differentiable monotonically non-decreasing convex

function R→ R, and g(x) be a second-order differentiable convex function Rn → R. Then the

composition (h ◦ g)(x) is still convex. Note that monotonicity is only defined for dom(h) ∈ R.

Proof:

f = (h ◦ g)(x) = h(g(x))

Taking the Hessian of f , because h is non-decreasing convex, we have hg(g) ≥

0, hgg(g) ≥ 0, and because g is convex, we have gxx(x) � 0:

H f = fxx = hgg(g) · gx(x) · gT
x (x) + hg(g) · gxx(x) � 0

The composition function f is therefore convex, �.

Oftentimes, we need to define the overall cost function by combining multiple cost

terms, e.g., the sum of multiple weighted cost terms. For this purpose, we have the

following lemma:

Lemma 6.3.2 If two real-valued second-order differentiable functions g(x) and h(y) are con-

vex, then a conical combination function f is still convex. x and y may or may not be the same

variable/set.

Proof: If x = y, we have:

f (x) = α · g(x) + β · h(x)

If we take the second-order derivatives on both sides w.r.t. x to get the Hessian, and

since we know g and h are convex, Hg � 0, Hh � 0, then a linear combination of two

positive semi-definite matrices is also semi-definite:

H f (x) = α · Hg(x) + β · Hh(x) � 0

where H f , Hg, Hh are the Hessians of functions f , g, h.

If x 6= y, we have

f (x, y) = α · g(x) + β · h(y), ∀α, β ≥ 0

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 80

Taking the Hessian of f , we have:

H f =

 fxx fxy

fyx fyy

 =

α · gxx 0

0 β · hyy

 =

α · Hg 0

0 β · Hh

 � 0

Regardless of the domains of g and h, their conical combination f is convex, �.

6.3.3 Distance Functions

Features are the quantities that measure certain properties of the state and control.

Sometimes, the state/control themselves are useful features (e.g, speed, swirl, accel-

eration, etc.). Some states, like absolute position, are neutral quantities, but relative

position (distances) can be extracted as useful features.

The calculation of distances is an important step in feature definition. On a discrete

canvas (e.g., a grid map), the distance transform [Breu et al., 1995, Felzenszwalb and

Huttenlocher, 2004], Voronoi diagram [Aurenhammer, 1991, Dolgov et al., 2008], and

shape-convolution algorithms [Kavraki, 1995] have been developed to extract the dis-

tance information. Straightforward distance computation between polygonal shapes

can be achieved with polygon-distance algorithms like [Gilbert et al., 1988, den Bergen,

1999], which are comparatively expensive. If the shape of the obstacles can be approx-

imated by circular disks [Melissen and Schuur, 2000, Ziegler and Stiller, 2010], we

can straightforwardly use the Euclidean norm for distance computation. If distances

to a polyline are needed, the naive approach is to calculate the distance to each line

segment and take the minimum. A more efficient and 2nd-order continuous method

makes use of the so-called "signed lp-distance" to calculate a smooth distance function

analytically [Belyaev et al., 2013]. Following the cost function requirements stated in

Section 6.3.1, only second-order continuous and convex distance functions, Euclidean

norm and signed lp-distance, are used.

Given a query point x and a target point x0, the Euclidean norm (2-norm) gives a

natural distance measurement:

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 81

Euclidean Norm Distance:

dnorm(x|x0) = ‖x− x0‖2

Lemma 6.3.3 The norm function is convex.

Proof: By the triangle inequality,

dnorm(λ · x + (1− λ) · y) ≤ dnorm(λ · x) + dnorm((1− λ) · y)

By homogeneity,

dnorm(λ · x + (1− λ) · y) ≤ λdnorm(x) + (1− λ)dnorm(y),�.

Often times, it is necessary to calculate the distance of a given point to a polyline or

a polygon. Traditional methods are often inefficient and yields noncontinuous solution

with an algorithmic approach. The signed lp-distance [Belyaev et al., 2013] (Figure 6.1)

provides a physics-inspired smooth analytical approach:

(a) Distance to polyline (b) Distance to polygon

Figure 6.1: Distance functions for polyline and polygon.

Signed Lp Distance: given a polyline defined by L = {l0, l1, . . . , lN−1}, the signed

Lp-distance is given by:

dlp(x|L) = [
1

ϕp(x)
]

1
p (6.14)

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 82

where ϕp(x) is the so-called double-layer potential function on a smooth oriented

hyper-surface S ∈ R2 (we are concerned only with the 2-D case):

ϕp(x) =
∫

Ω

dΩy

|x− y|p (6.15)

where y ∈ S, dΩy is some solid angle at which the surface element dSy is seen from x.

With a choice of an odd p, ϕp(x) has an analytical form, e.g.,

ϕ3(x) =
N−1

∑
i=0

ti
3
[

1
a3

i
+

1
b3

i
] +

ti + t3
i

6
[

1
ai

+
1
bi
]3

while for each line segment, the start and end points of li are represented by ai and bi,

ti = tan(γi/2), and γi is the angle between xai and xbi.

Lemma 6.3.4 Signed lp distance function is convex.

Proof: In Equation 6.15, |x− y|p is convex, so 1
|x−y|p is concave, so the integral is also

concave. Taking the inverse again in Equation 6.14 makes the final function convex, �.

6.3.4 One-sided Modulation Functions

To facilitate the calculation of cost terms, a few scalar modulation functions f : R→ R

are listed in Table 6.1. Note that the form of each function is taken as a one-sided

version: use the corresponding form when x ≥ a, use 0 when x < a. It can be

shown [Bauschke et al., 2014] that all these functions are monotonically non-decreasing

and convex. Note that the negentropy function is a preferred alternative to the affine

function with similar shape, but second-order differentiability.

The combined use of these modulation functions can demonstrate great versatility

in shaping the entire cost manifold of a single feature/constraint x. In other words,

given a particular argument x, we can easily break it into two parts x ≥ xr and x < xl ,

and define the following combined convex function:

f (x) = f1(x|a = xr) + f2(−x|a = xl)

where f1|a = xr and f2|a = xl are any convex function listed in Table 6.1.

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 83

Name Function Shape

Negentropy fnentropy(x|a) =
{

y · log(y), if x ≥ a
0, otherwise

y = x + 1− a

Quadratic fquad(x|a) =
{
(x− a)2, if x ≥ a
0, otherwise

Exponential fexp(x|a) =
{

ex−a − 1, if x ≥ a
0, otherwise

Table 6.1: Examples of non-decreasing convex modulation functions.

Proof: If f2(x|a = xl) is convex, then by Lemma 6.3.1, f2(−x|a = xl) is also convex.

Then f1(x) + f2(−x) is also convex by Lemma 6.3.2, �.

6.3.5 Behavioral/Constraint Cost

A behavioral cost fine-tunes the trajectory to enhance its comfort, while a constraint

cost heavily penalizes the constraint violation to bring the APV back to an execution-

feasible state. For each state/control pair (xi, ui) along a trajectory, the intermediate

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 84

cost g(xi, ui) is calculated as the sum of multiple behavioral/constraint cost terms

cB(xi, ui) / cC(xi, ui), while the final cost gN(xN) is calculated as the sum of multiple

final behavioral cost terms and constraint cost terms cB(xN , 0) / cC(xN , 0).

All cost terms are defined as the composite of a modulation function (preferably

fquad since it is quadratic and has an easily calculated Jacobian and Hessian) and a

feature function χ. Since the modulation functions are one-sided non-decreasing, the

feature function design philosophy is simple:

1. The feature function should yield a scalar value that quantifies a certain trajectory

undesirability.

2. If the feature function is convex, the corresponding cost term will also be convex,

according to Lemma 6.3.1. Therefore choose as many convex feature functions as

possible to make the overall planning problem more convex.

If all the cost terms are convex, by Lemma 6.3.2, g(xi, ui), its value-function V

(optimal cost-to-go in Equation 6.3), the entire cost of the trajectory and the Q function

in Equation 6.5 are all convex. In practice, however, not all useful cost terms are convex,

such as the obstacle feature calculated below.

It is worth mentioning that constraint cost terms are important in guaranteeing the

execution feasibility of the final trajectory. The initial trajectory fed to the trajectory

optimizer is the outcome after applying techniques in Chapter 3, and is guaranteed to

be model-feasible. However, model feasibility is not equivalent to execution feasibility.

The vehicle dynamics models presented in Chapter 3 are just differential equations,

which do not have any constraints. In fact, we cannot constrain dynamics by clamping

the state, which will cause model discontinuities that make the calculation of partial

derivatives (fx and fu in Equation 6.6) problematic. There also exist constraints that

cannot be directly clamped independently.

In the following, behavioral feature/cost functions will be represented as χB and

cB; constraint feature/cost functions will be represented as ξC and cC.

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 85

Obstacle Costs associated with obstacles are important for avoidance/distance keep-

ing maneuvers. The APV and objects are approximated by one or more circular disks

using techniques described in Section 3.2. Non-separable objects, like the curb of the

road, are represented by polylines.

Figure 6.2: The calculation of penetrated distances with respect to disk and polyline.

Given a single query disk (xq, rq) and test against an obstacle in disk (xo, ro) form

or a polyline L form, the distance between the two can be easily calculated with the

Euclidean distance functions, but the feature we are interested in is the penetrated

distance to the obstacle-affected zone incurred around the obstacle (Figure 6.2):

χB
obstacle = max(rzone + rq − dnorm(xq|xo), 0)

χB
obstacle = max(rzone + rq − dlp(xq|L)|, 0)

(6.16)

where rzone is the radius of the affected zone.

The feature for constraints is "the penetrated distance inside the obstacle itself":

χC
obstacle = max(rq + ro − dnorm(xq|xo), 0)

χC
obstacle = max(rq − dlp(xq|L), 0), 0)

(6.17)

The single-sided quadratic function to penalize penetration is further applied to

calculate its cost term:

cB
obstacle = ωobstacle · fquad(χ

B
obstacle)

cC
obstacle = Ω · fquad(χ

C
obstacle)

(6.18)

where ωobstacle is the weight of the behavioral cost, and Ω is a large weight for all

constraint cost terms.

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 86

(a) Behavioral feature (b) Cost

Figure 6.3: Feature & cost for object repulsion.

As shown in Figure 6.3, both feature/cost functions are non-convex, which makes

the overall cost function non-convex. In fact, the obstacles create topological structure

in the environment that leads to local minima. The optimizer will only converge to a

local minimum from the initial trajectory based on the locally quadratized cost. This

suggests the importance of starting off with an appropriate trajectory initialization

through the techniques covered in Chapter 5.

(a) Behavioral feature (b) Cost

Figure 6.4: Feature & cost for lane keeping.

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 87

Reference Tracking Cost associated with the distance from the polyline of a reference

path helps encourage the APV to follow the previously planned reference path (or

simply following the lane center polyline). Given a query point xq and a polyline L

that represents the centerline, the lane-related behavioral feature is its distance to the

polyline, while its constraint feature is its outer distance to the specified boundaries

(typically the lane boundary):

χB
lane = dlp(xq|L)

χC
lane = max(dlp(xq|L)− dboundary, 0)

(6.19)

where dboundary is the boundary distance to the centerline polyline, e.g., half of the lane

width.

Overall, both behavioral and constraint cost terms penalize greater deviation from

the centerline:
cB

lane = ωobstacle · fquad(χ
B
lane)

cC
lane = Ω · fquad(χ

C
lane)

(6.20)

where ωobstacle is the behavioral cost weight, and Ω is the constraint cost weight. Note

that since both feature functions above are convex, the overall cost terms are also

convex.

Speed In order to ensure the APV makes forward progress, a cost must be designed

penalizing slow speed. Given the fixed planning horizon of the trajectory optimizer,

there are two alternatives for this feature. One possibility is the spatial length of the

trajectory. However, this is not a feature per state/control pair, but a single value over

the entire trajectory. The more convenient behavioral feature is the difference between

the current speed and the speed limit that is calculated per state, and a constraint

feature is the speed difference that exceeds the allowed speed range:

χB
speed = max(vmax − v, 0)

χC
speed = max(max(v− vmax, 0), max(vmin − v, 0))

(6.21)

where v is the tangential speed of the vehicle, vmax is a non-negative speed limit, and

vmin is the minimum speed, which is typically zero for on-road driving.

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 88

To penalize slow motion and heavily penalize states that are beyond the speed limit

or below 0, we apply a quadratic function to this feature to get the cost term:

cB
speed = ωspeed · fquad(χ

B
speed)

cC
speed = Ω · fquad(χ

C
speed)

(6.22)

where ωspeed is the behavioral cost weight, and Ω is the constraint cost weight. Note

that the features are all convex, so both cost terms are also convex.

Lateral Acceleration High longitudinal speed on a curvy road is likely to introduce

lateral acceleration. A behavioral feature will be the absolute value of the lateral ac-

celeration itself, while the constraint feature will be the amount by which the allowed

lateral acceleration is exceeded:

χB
latacc = |κ · v

2|

χC
latacc = max(|κ · v2| − alatacc

max , 0)
(6.23)

where κ is the instantaneous curvature, v is the tangential speed, and alatacc
max is the

maximum lateral acceleration.

Excessive lateral acceleration is not only a potential source of discomfort, but also

the source of undesirable slipping, which may cause safety concerns. To penalize

excessive lateral acceleration, we develop the following cost terms:

cB
latacc = ωlatacc · fquad(χ

B
latacc)

cC
latacc = Ω · fquad(χ

B
latacc)

(6.24)

where ωlatacc is the weight of the behavioral cost, and Ω is the constraint cost weight.

Note that the features are all convex, so both cost terms are also convex.

Regardless of which vehicle model explained in Chapter 3 is used in the iLQR

routine, the controls will have both swirl and longitudinal acceleration. The next two

paragraphs design costs for both.

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 89

Swirl Control Swirl is the rate of steering. Similar behavioral and constraint features

are designed:

χB
swirl = |γ|

χC
swirl = max(|γ| − γmax, 0)

(6.25)

where γ is the swirl command, and γmax is the maximum absolute value of the swirl

command.

High swirl causes aggressive steering change and motor weariness. Therefore, the

following cost terms are used:

cB
swirl = ωswirl · fquad(χ

B
swirl)

cC
swirl = Ω · fquad(χ

C
swirl)

(6.26)

where ωswirl is the behavioral weight for the swirl, and Ω is the constraining cost

weight. Note that the features are all convex, so both cost terms are also convex.

Longitudinal Acceleration Control For longitudinal control, the behavioral feature

is the signed value of the acceleration control itself, while the constraint feature is the

acceleration difference that exceeds the allowed range:

χB
lonacc = a

χC
lonacc = max(max(a− amax, 0), max(amin − a))

(6.27)

where a is the longitudinal acceleration control, amax is the maximum longitudinal

acceleration, and amin is the minimum longitudinal acceleration.

Excessive longitudinal (tangential) acceleration control should be penalized. De-

pending on whether the control is positive or negative, costs may be weighted differ-

ently to reflect the different tolerance levels of human passengers (people can tolerate

much higher deceleration than acceleration).

cB
lonacc = ωacc · fquad(χ

B
lonacc) + ωdec · fquad(−χB

lonacc)

cC
lonacc = Ω · fquad(χ

C
lonacc)

(6.28)

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 90

where ωacc and ωdec are respectively the weights for acceleration and deceleration, and

Ω is the constraint cost weight. Note that by Lemma 6.3.2, the behavioral cost is still

convex, so both cost terms are still convex.

6.4 Maneuver Pattern Constrained iLQR Algorithm

As discussed in the prior section, the existence of non-convex cost terms creates local

minima in the solution space. An immediate implication is that the standard iLQR

algorithm will only converge to a local minimum. Which local minimum it will con-

verge to and the algorithm efficiency are highly dependent on the initialized trajectory.

In Chapter 4 and 5, we have proposed a search-based global method accompanied by

topological analysis tools to decide on the choice of maneuver pattern, which is a

group of candidate trajectories. We want to choose an optimal trajectory from a partic-

ular group as the initial trajectory for the iLQR algorithm. This can be easily achieved

by evaluating the candidate trajectories with the cost function designed in the prior

section and picking the one with the minimum cost. However, adaptations to the

standard iLQR algorithm are needed to improve optimization efficiency as well as to

enforce a specific maneuver pattern constraint.

In the last paragraph of Section 6.2, we mentioned that in updating the control

sequence, the computation of Q−1
uu is required to calculate the control update gains k

and K. This is sometimes nontrivial for a poorly conditioned matrix. Regulation is

needed by performing singular value decomposition (SVD) and adjusting its singular

value matrix Σ:

Quu = PΣQT (6.29)

where the singular value matrix Σ is a non-negative real diagonal square matrix. In

benign cases, the inverse of Quu can be calculated as:

Q−1
uu = QΣ−1PT (6.30)

Notice that the matrix Σ−1 is obtained by taking the reciprocal of the diagonal ele-

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 91

ments (singular values) of Σ. In cases where some elements are zero (Σ is degenerate),

the standard process [Li and Todorov, 2004b] is to add a small positive number λ to

each of the singular values in Σ. λ serves as a regularization term to make sure the

reciprocal of a singular value is never greater than 1
λ . Notice that the greater λ is, the

smaller k, K are, according to Equation 6.10.

An important question is how λ should be determined, and how to enforce ma-

neuver pattern constraints in the standard iLQR routine. The answer is that λ should

be adjusted based on the result of the current optimization cycle. In each iLQR cycle,

we define three possible outcome categories: poor, mediocre, and good. The nam-

ing of these categories is insignificant. What matters is the entry condition for each

category, and how we should decide the result of the current optimization cycle and

update λ for each. Once the new trajectory (state/control sequence) is updated with

δu = k + K · δx,

1. Re-examine if the new state sequence violates the determined maneuver pattern

decided in Chapter 5. If a violation is detected, this will be called a "poor" cycle.

2. If the cost of the new trajectory is reduced, call it a "good" cycle; otherwise, δu

does not have a good search direction or step size to reduce cost.

3. While it is nontrivial to figure out a better direction, it is relatively easy to adjust

the step size by varying α in δu = α · k + K · δx as a practical method (the line-

search method [Bertsekas, 1999]) to attempt to reduce cost. If line-search can

improve the overall cost (if pattern constraint is violated, cost is infinity), call it a

"mediocre" cycle.

4. At this point, neither the standard update nor the line-search can reduce the cost,

call this a "poor" cycle.

The three outcome categories indicate, with the current choice of λ, how good

the iLQR-generated control update direction δu is w.r.t. reducing the overall trajectory

cost. They are highly relevant to the quality of linearly approximated system dynamics

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 92

and quadratically approximated value function. Depending on the category, given a

regulation scale factor βλ > 1, we have three corresponding actions:

1. Good: we have reason to trust the iLQR direction in the next cycle to reduce the

cost, so reduce λ = λ/βλ, causing the optimizer to lean towards the second-order

Newton method.

2. Mediocre: we are not sure if the iLQR search direction in the next cycle will

reduce the cost, so maintain the trust level λ.

3. Poor: the current optimization either broke the maneuver pattern constraint or

failed to reduce the cost even with line-search, which indicates that maybe the

iLQR search direction is not trustworthy, so increase λ = λ · βλ, causing the

optimizer to lean towards the first-order gradient descent method.

(a) World plot (b) Cost plot

Figure 6.5: Optimization demonstration of the adapted iterative-LQR trajectory opti-
mizer on a poorly condition seeding trajectory violating both obstacle and lane bound-
ary constraints.

Figure 6.5 demonstrates a challenging optimization scenario. The seeding trajectory

is not well initialized since it violates multiple constraints (lane boundary and obstacle

collision). However, it serves as a good example to demonstrate the robustness of

the adapted iLQR algorithm. Empirically speaking, when constraints are violated,

CHAPTER 6. FOCUSED TRAJECTORY OPTIMIZATION WITH CONSTRAINTS 93

the locally approximated LQR problem tends to be ill-conditioned, and the algorithm

depends more on the line-search method to make steady progress in optimization.

When the trajectory reaches a state in which the hard constraints are mostly solved (at

iteration 10), leaning towards the standard iLQR control update (2nd Newton Method)

can reduce cost dramatically in a small number of iterations (iteration 11 & 12). This

gives further insight on the importance of a good seeding trajectory in terms of starting

with fewer constraint violations.

Chapter 7

Application to On-Road Self-Driving

In this chapter, we combine individual planning algorithms explained in Chapter 3,

4, 5, 6 systematically into a trajectory planning framework for on-road autonomous

driving. Section 7.1 first explains the hierarchical structure of the planning framework

and the responsibilities of each planning module. Section 7.2 specifies the parameter

settings for each planning module. Section 7.3 demonstrates the planning results in

several challenging test scenarios. Section 7.4 summarizes this chapter by comparing

the proposed planner with the state of the art.

7.1 Trajectory Planning Framework

The design of the planning framework is inspired by two key ideas:

1. Human drivers have both a strategic understanding of the environment by know-

ing "roughly" how to maneuver in the form of a high-level maneuver decision

and the muscle-level driving control for smooth maneuvering.

2. The driving task can be decomposed into two planning sub-problems to reduce

the search space and enhance tunability. Humans tend to first identify environ-

ment topological structure and avoid stationary obstacles before reasoning about

more complex maneuvers regarding the moving obstacles.

94

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 95

Figure 7.1: The planning algorithmic flow with localization/perception inputs.

With these ideas in mind, we propose a novel four-module trajectory planning

framework (Figure 7.1):

1. M1—Spatial Region Segmentation: identify regions with different (topology-based)

patterns considering the stationary obstacles.

2. M2—Reference Smoothing & Nudging: perform reference path smoothing and

nudging avoidance with respect to the stationary obstacles subject to the selected

spatial region segment constraints.

3. M3—Spatiotemporal Maneuver Pattern Analysis & Seeding Trajectory Generation: gen-

erate a pool of sample trajectories for two purposes. First, identify groups of tra-

jectories with different (region-based, topology-based, sequence-based) patterns

which further consider the moving obstacles; second, use the optimal trajectory

in the selected group to seed the subsequent trajectory optimization process.

4. M4—Trajectory optimization: start with the seeding trajectory, and perform trajec-

tory optimization subject to various constraints (including the maneuver pattern

constraint).

The proposed planning framework echoes the first key inspiration idea in that both

M1 and M3 provide maneuver pattern understanding at a tactical level, while M2 and

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 96

M4 perform the actual generation of the reference/trajectory. Regarding the second

idea, the planning architecture generates a reference path plan first considering the

stationary obstacles with modules M1 and M2. Then it generates the trajectory plan

taking the moving obstacles into account.

7.2 Experiment Configuration

7.2.1 Robot vs. Simulation

Figure 7.2: The planning/control diagram of the autonomous Cadillac SRX.

All planning components are evaluated in a lightweight simulation environment

based on socket communication with Google’s Protocol Buffer serialization. Partial

evaluation was performed on the Cadillac SRX autonomous driving platform [Wei

et al., 2013]. The planning algorithm runs on a Linux machine and communicates

using the legacy software from the Tartan Racing Urban Challenge Operation System

[Urmson et al., 2008]. It further sends the reference plan down to a drive-by-wire

control system (illustrated in Figure 7.2) for path tracking control and handles moving

obstacles with the simplified assumption of their being adaptive cruise control (ACC)

targets. This is the classical tracker-dependent architecture discussed in Section 6.1.

The data interfaces between the planning modules and the robot/simulation envi-

ronment are shown at a high level in Figure 7.3. The planning result of the reference

smoothing and nudging can be interfaced directly with the Cadillac SRX for on-vehicle

evaluation, while the overall trajectory result is evaluated in a simulation environment.

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 97

Figure 7.3: The outcomes of each proposed planning module in the algorithmic flow.

For both robot and simulation experiments, our algorithm is intended to run on any

reasonably modern PC rather than exploiting the power of GPU processors, as in [Mc-

Naughton, 2011]. For example, the Cadillac SRX was equipped with four standalone

PCs with Intel Core 2 Extreme Processor QX9300s, and the simulation environment

has a CPU of similar computational power.

7.2.2 Spatial Region Segmentation

Figure 7.4: Graph specification for spatial region segmentation and reference smooth-
ing/nudging.

The theory behind this module is explained in Section 5.2. To perform spatial re-

gion segmentation, the spatial nodes are first sampled conforming to the road structure

in uniformly spaced longitudinal layers. Then directed edges are constructed only in

the longitudinally positive direction between the neighboring layers, as shown in Fig-

ure 7.4. The segmentation result is represented as a sub-graph of this whole spatial

graph. The five configuration parameters that determine the construction specification

shown in Figure 7.4 are listed below:

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 98

• Longitudinal look-ahead S: 100 meters

• Longitudinal resolution ∆S: 4 meters

• Lateral range L: lane width.

• Lateral resolution ∆L: 0.4 meter

• Node out-degree n: the number of edges needed to fully connect to the nodes in

the neighboring subsequent longitudinal layer.

The choice of these specific values is in general rule of thumb based on the our

understanding of this application as well as trial and error process. But a few general

principles apply. First, it is unwise to choose an overly long S, e.g., beyond the sensing

horizon, since it increases the search space without actually providing the planner

useful information to process. As for the ∆S and ∆L, they determine the sample

granularity, which affects the ability of the constructed spatial graph to capture the

topological structure of the continuous configuration space. Overall, the more densely

the spatial graph is sampled, the more refined segmentation/planning capability this

graph has, but at a cost of a greater computational overhead. Note The configuration

of the spatial graph also affects the subsequent reference smoothing/nudging module.

7.2.3 Reference Smoothing & Nudging

Figure 7.5: Cost specification for reference smoothing & nudging.

With the theory explained in Section 4.2, the edge-augmented graph is constructed

based on the identified segmented spatial sub-graph from the prior module. Instead

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 99

of performing separate reference smoothing and nudging, we use a formulation that

serves both purposes based on the same underlying edge-augmented graph construc-

tion technique. As shown in Figure 7.5, the cost function is defined very similar to

Equation 4.1 with an additional obstacle-repulsive cost term cobs:

ccl = ωcl · ‖xi − x∗i ‖2

csm = ωsm ·
(xi − xi−1)(xi − xi+1)

‖xi − xi−1‖‖xi − xi+1‖

cobs = ωobs · d

where d is the penetrated distance inside the affected zone of an obstacle as explained

Section 6.3.5. The weights of each cost term are the configurable parameters:

• Centerline deviation weight ωcl : 1.0

• Smoothness weight ωsm: 15.0

• Obstacle repulsion weight ωobs: 2.0

Choosing these weighting parameters is also a rule of thumb practice. We take an

empirical two-step process. Starting with a fixed non-negative ωcl , e.g, 1.0, we tune

ωsm in order to achieve the desired behavior on high-curvature roads. Then, we tune

for ωobs in order to achieve the desired obstacle avoidance behavior. The final outcome

of the edge-augmented graph is a sequence of linear spatial edges that track the road

centerline with improved smoothness while avoiding the stationary obstacles. The

piecewise-linear path is further smoothed through a LQR controller as explained in

Section 3.4, and appended with a speed profile as explained in Section 4.3.

For smoothing, two sets of Q/R parameter matrices for the lateral and longitudinal

trackers in Equation 3.21 to trade off tracking and control efforts must be specified.

For simplicity, identity matrices are used.

For speed profile generation, the constraint parameters in Equation 4.5, 4.6 and 4.9

must be specified. Applying these constraints updates the speed limit based on the

generated reference path. The constraint values are thus chosen to reflect the absolute

maneuverability limits the of the APV:

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 100

• Speed limit vmax: depending on the speed limit of the road, in m/s.

• Maximum longitudinal acceleration alon
max: 4.0 m/s2.

• Maximum longitudinal deceleration dlon
max: 8.0 m/s2.

• Maximum longitudinal jerk jlon
max: 10.0 m/s3

7.2.4 Spatiotemporal Maneuver Pattern Analysis

Figure 7.6: Graph specification for maneuver pattern analysis.

The theory behind this module is explained in Section 5.3. The candidate model-

feasible trajectories are sampled in a two-step fashion. In the first step, the nodes

are sampled per time-layer, which is, similar to Figure 7.4, a uniformly sampled grid

along the determined reference. Then a graph of linear edges is constructed in the 3-D

spatiotemporal domain, as in Figure 7.6.

This graph has the following features:

1. We do not sample covering the entire lane, but only sample around the reference

obtained above.

2. Edges between spatial nodes from the same time-layer are not allowed, since no

motion can happen without time elapsing.

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 101

3. Directed edges are constructed only when they move between neighboring time-

layers in both temporally and longitudinally positive directions, since the APV is

restricted to move forward in on-road driving.

4. If an edge has no longitudinal movement, it cannot have lateral movement, since

the vehicle is non-holonomic.

In choosing the parameters, the parameter T determine the trajectory duration,

which is wasteful computationally if chosen too long. On the other hand, if chosen

to short, it is difficult for the planner to reason deliberatively. Once T is fixed, the

parameter ∆T determines the number of time-layers. Since the out-degree of a node

can be large, ∆T cannot be too small, which would introduce a large number of time-

layers and would cause search space explosion. The parameters L and ∆L determine

the number of lateral variations the planner will consider in spawning the possible

trajectory candidates. But too refined granularity will greatly increase the out-degree

number, and has negative impact on the overall computation overhead.

• Trajectory time horizon T: 6 seconds

• Time resolution between time-layers ∆T: 2 seconds

• Lateral range L: 1.0 meter

• Lateral resolution ∆L: 0.5 meter

• Node out-degree n: connect to all the longitudinally forward nodes such that the

edge constructed has spatial length of s, and the average speed over this edge s
∆T

is no greater than the allowed maximum speed.

7.2.5 Trajectory Optimization

The theory behind this module is explained in Section 6.3. The temporal horizon T of a

trajectory has been determined by the previous module, and we represent a trajectory

as a T-second state/control discrete sequence sampled every δt seconds:

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 102

• Trajectory time horizon T: same as the last module.

• Trajectory time resolution δt: 0.1 second

Then according to Equation 6.1, there is a control sequence of length 60 that yields a

state trajectory of length 61. The cost function g that shapes the eventual trajectory

outcome have both behavioral and constraint-based cost terms as explained in Section

6.3.5 is given as:

g = cB
obstacle(ωobstacle) + cB

re f (ωre f) + cB
speed(ωspeed) + cB

lat−acc(ωlat−acc) + cB
swirl(ωswirl) + cB

lon−acc(ωacc, ωdec)

+ cC
obstacle(Ω) + cC

lane(Ω) + cC
speed(Ω) + cC

lat−acc(Ω) + cC
swirl(Ω) + cC

lon−acc(Ω)

(7.1)

and the configurable weights of the corresponding cost terms are listed below:

• Weight for obstacle avoidance cost ωobstacle: 2.0

• Weight for reference tracking cost ωre f : 3.0

• Weight for slow moving cost ωspeed: 1.0

• Weight for lateral acceleration cost ωlatacc: 1.0

• Weight for swirl control cost ωswirl : 10.0

• Weight for longitudinal acceleration cost ωacc: 1.0

• Weight for longitudinal deceleration cost ωdec: 1.0

• Weight for constraint cost Ω: 30000

The continuous nature of these cost terms (w.r.t. the APV states) and the use of

trajectory optimizer makes it significantly easier to observe the gradual changing of

the trajectory after tuning a single weight compared to the sampling-based method

[McNaughton, 2011]. However, the choice of the configurable weights is a still far

from a trivial task, since the cost function conceptually should encode all the prefer-

ences in determining how the APV should behave in all situations and scenarios. In

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 103

practice, huge efforts on cost function tuning might be an inevitable engineering prac-

tice. Otherwise, one may resort to automated parameter tuning methods such as the

maximum margin method [Ratliff et al., 2006] or the LEARCH algorithm [Silver et al.,

2010]. The parameters listed above are specifically chosen based on the scenarios to be

experimented in the following section.

7.3 Experimental Results

In this section, experiments are conducted to evaluate the proposed trajectory planning

system. To better understand the results, the following three concepts are defined:

1. Scenario: a particular setup of the environment elements including lanes, obsta-

cles and the APV.

2. Snapshot: plots of the environment elements’ states and the planning outcomes

of each planning module at a given time-stamp.

3. Overlay: a plot of the overlaid states of the environment elements’ states over a

time period to demonstrate the maneuver sequence.

For maybe 99% of the miles traveled, on-road driving is a boring task: one can

simply follow the lane centerline while treating any possible interfering obstacles (re-

sulting in head collision) as an adaptive cruise control (ACC) object. In order to high-

light the features of the proposed algorithm, we designed some challenging on-road

driving scenarios. Section 7.3.1 presents scenario I to demonstrate the navigation ca-

pability along an extremely curvy road segment. Section 7.3.2 presents scenario II

to demonstrate topologically reasoning and swerving ability with respect to the sta-

tionary obstacles. Section 7.3.3 presents scenario III to demonstrate maneuver pattern

reasoning and swerving ability with respect to the moving obstacles. Section 7.3.4

presents scenario IV to demonstrate obstacle avoidance ability while performing vehi-

cle following.

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 104

In the following result presentation section, the snapshot plot is used to highlight

the outcome and functionality of each of the planning modules of any fixed time-

stamp. The overlay plot presents the full scenario handling result over a period of

time. Five components are presented for each scenario:

1. Spatial Region Segmentation: snapshot plots showing the sampled global spa-

tial on-road lattice graph and its identified sub-graphs representing topologically

different patterns.

2. Reference Smoothing & Nudging: a snapshot plot of the reference plan gener-

ated by searching over the edge-augmented graph constructed from the selected

lattice sub-graph. The reference is then used to guide the sampling of the seeding

trajectories, and "attracts" the final optimized trajectory.

3. Spatiotemporal Maneuver Pattern Analysis: snapshot plots showing locally

sampled and evaluated model-feasible trajectory candidates to explore distinct

maneuver patterns and the selected seeding trajectory for the subsequent opti-

mization process.

4. Trajectory Optimization: a snapshot plot of the execution-feasible optimized

trajectory generated by further improving the seeding trajectory via a focused

trajectory optimization module taking various constraints into account.

5. Full Scenario Handling: an overlay plot showing the APV’s behavior for the

next few seconds to demonstrate the full scenario handling sequence, and a plot

of steering and speed history.

7.3.1 Scenario I: Curvy Road

In the scenario shown in Figure 7.7, we demonstrate the in-lane cruising capability on

a curvy road. The goal is to traverse this high-curvature lane segment with reduced

steering effort.

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 105

Figure 7.7: Scenario I

Figure 7.8: Segmented spatial region plot for scenario I.

Spatial Region Segmentation Since no stationary obstacles exist to create topologi-

cal structure in the workspace, there is only one region/sub-graph (the entire spatial

lattice) in this scenario, as shown by Figure 7.8.

Figure 7.9: Reference smoothing & nudging snapshot for scenario I.

Reference Smoothing & Nudging Figure 7.9 illustrates the generated blue reference

plan. Compared to the black dashed centerline, the blue reference is smoother by

"cutting" corners like a human driver. This helps reduce the overall steering effort, and

allows a higher speed in traversing this curvy road segment.

Figure 7.10: Spatiotemporal maneuver pattern analysis snapshot for scenario I.

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 106

Spatiotemporal Maneuver Pattern Analysis A pool of fixed time-horizon trajectories

are sampled around the generated reference. These trajectories are spatially more near-

term compared to the reference. Without any obstacles, all valid trajectories belong to

the one and only maneuver pattern, as shown in Figure 7.10. The red trajectory is

the best-scored one from this group of sampled trajectories, and will be used as the

seeding trajectory, based on the cost function defined for the subsequent trajectory

optimization module.

Figure 7.11: Trajectory optimization snapshot for scenario I.

Trajectory Optimization Starting from the red seeding trajectory generated above,

the green locally optimized trajectory simply traces the blue reference plan, as shown

in Figure 7.11.

Full Scenario Handling The full scenario maneuver sequence is demonstrated in

Figure 7.12(a) with the steering and speed plots shown in Figure 7.12(b). It can be seen

that the full handling takes care of the high-curvature regions by "cutting" corners like

a human and we can traverse the full lane segment efficiently.

7.3.2 Scenario II: Curve with Obstacle Pair

Figure 7.13 demonstrates the second scenario, in which two stationary obstacles are

placed on a slightly curved road segment. The goal is to navigate through this segment

while smoothly swerving around these obstacles.

Spatial Region Segmentation Due to the existence of the obstacles, four segmented

graphs reflecting the topologically different patterns are illustrated in Figure 7.14.

http://www.tianyugu.net/thesis-videos.html

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 107

(a)

(b)

Figure 7.12: The full scenario handling overlay plot in 7.12(a) and the steer-speed
history plot in 7.12(b).

Figure 7.13: Scenario II

They correspond to swerving right-left (a), right-right (b), left-left (c) and left-right (d),

where the first direction represents the side on which the trajectory swerves around

the first obstacle in Figure 7.13, and the second direction represents the same for the

second obstacle. By inspecting the patterns in Figure 7.14, we can see that the easiest-

to-traverse segmentation is (d), in which most of the full lattice is preserved.

Reference Smoothing & Nudging Planning on the sub-graph of region (d), the result

of reference nudging can be obtained and demonstrated in Figure 7.15. The reference

path is nudged slightly to the side of the stationary obstacles while otherwise tracking

the centerline.

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 108

Figure 7.14: Spatial region segmentation snapshot for scenario II.

Figure 7.15: Reference smoothing & nudging snapshot for scenario II.

(a)

(b)

Figure 7.16: Spatiotemporal maneuver pattern analysis snapshot for Scenario II.

Spatiotemporal Maneuver Pattern Analysis As described in Section 7.2.4, linear spa-

tiotemporal edges are generated by placing time-layers of nodes along the reference

with small lateral offset, and connecting them across time-layers. But since the edges

may have a large spatial gap, even if the nodes are sampled laterally close to the ref-

erence, due to the road curve, it is possible to re-generate a trajectory that violates the

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 109

spatial topological pattern already determined above (group d in 7.16(a), which in this

case violates the pattern by swerving to the left of the second obstacle).

After removing topology-inconsistent group d, we can see that the group c makes

the most progress longitudinally within the fixed temporal horizon of the trajectory.

Therefore, we choose the best-scored red trajectory within this group as the seeding

trajectory for subsequent trajectory optimization, as shown in 7.16(b).

Figure 7.17: Trajectory optimization snapshot for scenario II.

Trajectory Optimization Since the blue reference is only kinematically feasible, the

optimization process starts from the red seeding trajectory, and converges to the green

optimized trajectory, which deviates slightly from the reference to comply with con-

straints, as shown in Figure 7.17.

Full Scenario Handling Figure 7.18 shows the full handling sequence. The overall

command sequence looks smooth and feasible while still preserving the gist of the

reference plan shown in Figure 7.15.

7.3.3 Scenario III: Bicyclist + Pedestrian

In this scenario, we demonstrate the in-lane cruising capability with multiple moving

obstacles’ interference. In Figure 7.19, the red circular object represents a pedestrian

moving vertically upward, while the thin red rectangle represents a bicyclist moving

from left to right, i.e., along the road. The goal is to show a bicyclist overtaking

behavior while avoiding the crossing pedestrian.

Spatial Region Segmentation Since no stationary obstacles exist and the spatial

region segmentation module does not consider moving obstacles, there is only one

region/sub-graph (the entire spatial lattice) in this scenario, as shown by Figure 7.20.

http://www.tianyugu.net/thesis-videos.html

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 110

(a)

(b)

Figure 7.18: Full scenario handling overlay for scenario II.

Figure 7.19: Scenario III

Figure 7.20: Segmented spatial region plot for scenario III.

Reference Smoothing & Nudging Figure 7.21 illustrates the generated blue reference

plan. Since the centerline is straight, the reference is simply a straight segment up to

the spatial look-ahead horizon.

Spatiotemporal Maneuver Pattern Analysis Since all the sampled trajectories have

the same temporal look-ahead horizon, their speeds determine their spatiotemporal

trace, which will further lead to both region-based and topology-based distinctions,

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 111

Figure 7.21: Reference smoothing & nudging snapshot for scenario III.

(a)

(b)

Figure 7.22: Spatiotemporal maneuver pattern analysis snapshot for Scenario III.

as described in Section 5.3. In Figure 7.22(a), group a represents the subset of the

sampled trajectories that passes neither pedestrian nor bicyclist given the temporal

horizon; group b represents the subset that passes to the right of the pedestrian right

while following the leading bicyclist; group c represents the subset that passes to the

left of the pedestrian while following the leading bicyclist; group d represents the

subset that passes between the objects (i.e., to the left of the pedestrian and to the right

of the bicyclist).

From these identified four groups, we prefer the one that makes the most progress

spatially and achieves passing maneuvers for both. Therefore, group d is chosen and

the best-scored trajectory within it is selected as the seeding trajectory for the subse-

quent optimization, as shown in 7.22(b).

Figure 7.23: Trajectory optimization snapshot for scenario III.

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 112

Trajectory Optimization The optimization process starts from the red seeding tra-

jectory, and converges to the green optimized trajectory, which performs the same

high-level behavior but with improved (reduced) control efforts, as shown in Figure

7.23.

(a)

(b)

Figure 7.24: Full scenario handling overlay for scenario III.

Full Scenario Handling Figure 7.24 shows the full handling sequence. The APV

accelerates to overtake the pedestrian before it gets into the center of the lane, and

further overtakes the bicyclist in front.

7.3.4 Scenario IV: Vehicle Follow with Obstacle Pair

Figure 7.25: Scenario IV

http://www.tianyugu.net/thesis-videos.html

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 113

In this scenario, we demonstrate vehicle following with occasional static obstacles.

In Figure 7.25, the red rectangle represents a leading moving vehicle with two station-

ary obstacles represented by red circular disks. The goal is to safely follow the leading

vehicle while performing stationary obstacle avoidance.

Figure 7.26: Spatial region segmentation snapshot for scenario IV.

Spatial Region Segmentation Disregarding the moving obstacle, this scenario is very

similar to that of Scenario II explained in Section 7.3.2. Four sub-graphs are segmented

to reflect the topologically different patterns in Figure 7.26. They correspond to swerv-

ing right-left (a), right-right (b), left-left (c) and left-right (d), where the first direction

represents the side on which the trajectory swerves around the first obstacle, and the

second direction represents the same for the second obstacle. Obviously, the easiest-

to-traverse segmentation is sub-graph d, in which most of the full lattice is preserved,

corresponding to a reference that swerves in between the two stationary obstacles.

Figure 7.27: Reference smoothing & nudging snapshot for scenario IV.

Reference Smoothing & Nudging Planning on the sub-graph d yields the blue ref-

erence plan shown in Figure 7.27. The reference path is nudged slightly to the side of

the stationary obstacles while tracking the centerline for the most part.

Spatiotemporal Maneuver Pattern Analysis The trajectory pool is sampled spatially

close to the reference as shown in Figure 7.28(a). The valid trajectories in black avoid

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 114

(a)

(b)

Figure 7.28: Spatiotemporal maneuver pattern analysis snapshot for Scenario IV.

interference with the red leaving vehicle which has moved down the road far enough.

The large moving vehicle in the lead removes all vehicle overtake possibilities. There-

fore, only two trajectory groups were identified based on where the fixed-horizon

trajectory terminates. We prefer the spatially most progressive group b, and choose

the best-scored red trajectory within this group as the seeding trajectory for the opti-

mization next as shown in Figure 7.28(b).

Figure 7.29: Trajectory optimization snapshot for scenario IV.

Trajectory Optimization The optimization process starts from the red seeding trajec-

tory, and converges to the green optimized trajectory as shown in Figure 7.29.

Full Scenario Handling Figure 7.30 shows the full handling sequence. The APV

smoothly avoids the stationary obstacles at lower speed, and resumes the following

behavior after the avoidance maneuver.

7.4 Comparison to State of the Art

Due to the lack of available implementations of other planners, it is not easy to di-

rectly compare head-to-head against other works. Therefore, we will highlight the

features that are vital to robust on-road driving and compare our work against the

http://www.tianyugu.net/thesis-videos.html

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 115

(a)

(b)

Figure 7.30: Full scenario handling overlay for scenario IV.

prior planners based on their claimed benefits in Table 7.1 before providing an in-

depth explanation of the features. The important features are listed below:

• Nonholonomic: Applicability to nonholonomic car-like robot.

• On-road: Applicability to on-road path/trajectory planning.

• Deliberative: Deliberative planning quality.

• Spatiotemporal: Explicit spatiotemporal trajectory planning.

• Tactical: Motion-level tactical reasoning capability with topological awareness.

• Hybrid: Global awareness while converging to a local minimum.

The first two features Nonholonomic and On-road are self-explanatory. We there-

fore focus our discussion over the other four features.

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 116

No # Methods N
on

ho
lo

no
m

ic
O

n-
ro

ad
D

el
ib

er
at

iv
e

Sp
at

io
te

m
po

ra
l

Ta
ct

ic
al

H
yb

ri
d

M1 Boss’s Local Planner [Ferguson et al.,
2008] X X × Xr × ×

M2 Junior’s RNDF Follower [Montemerlo
et al., 2008] X X X Xr × ×

M3 Nonholonomic Potential field [Huang
et al., 2006] X × × × × ×

M4 Biased RRT [Kuwata et al., 2008] X X X X × ×

M5 Spatiotemporal lattice [Ziegler and
Stiller, 2009, McNaughton, 2011] X X X X × ×

M6 Timed Elastic Band [Roesmann et al.,
2012] X × X X × ×

M7
Hybrid-A* + Conjugate Gradient
Descent Smoothing [Dolgov et al.,
2008]

X × X × × X

M8 iLQR/DDP [Li and Todorov, 2004b,
van den Berg, 2016, Tassa et al., 2014] X × X X × ×

M9 Cell decomposition + Mixed-Integer
Programming [Park et al., 2016] X Xr X × Xr X

M10 Homotopy marker function + Timed
Elastic Band [Rösmann et al., 2015] X × X X Xr ×

P Proposed X X X X X X

Table 7.1: Comparison to the state-of-the-art in the highlighted features.

Deliberative: The deliberative planning quality is important for an APV. To better

understand what "deliberative" means in this context, it is useful to remember the

classical reactive control approaches reviewed in Section 2.2.1, which directly generate

a control signal without reasoning about the predicted evolution of the world.

In contrast, a deliberative approach explicitly takes into account a realistic predic-

tion of the world evolution, and yields a trajectory plan that is not an instantaneous

control signal, but a sequence of states/control with a certain spatial and temporal

horizon. Oftentimes, a deliberative approach can be viewed as "reactive" if such an

horizon is too short. In other words, the duration of the temporal planning horizon

is a practical indicator of the level of deliberativeness. On the other hand, planning

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 117

over too long an horizon should also be avoided, since it is not only computationally

inefficient, but also unnecessary.

In table 7.1, M1 sampled too short-sighted trajectories, and M3 used a control-

based avoidance approach. The other planners listed all possess a certain amount of

deliberativeness. The next feature makes a distinction between spatial deliberativeness

and a more comprehensive spatiotemporal deliberativeness.

Spatiotemporal: Spatiotemporal (trajectory) planning capability stands in contrast

to the spatial-alone (path) planning or temporal-alone (speed) planning, whose search

spaces are significantly more restricted. This property is important for on-road driving,

since the APV typically operates in a dynamic environment, where both the path and

speed should be adjusted simultaneously to respond properly to such environment

disturbances.

In Table 7.1, M1 and M2 are semi-checked because they do not have rich speed

variations in their local trajectory samples. M3 is not checked since it is a control-based

method. M7 does not have this property since it used pure path planning/smoothing.

M9 performs cell-decomposition and optimization in a given snapshot, rather than the

full prediction over a time horizon, which is equivalent to pure path planning.

Tactical: Motion-level tactical reasoning with topological awareness This property

allows the trajectory planner to propose certain discrete decisions related to the motion

itself, e.g., whether to pass an object or not and from which side. The benefit is that the

planner becomes more knowledgeable about the environment, and these proposals are

tightly coupled to the planning dynamics to provide better feasibility guarantees. From

a pure planning solver’s perspective, this property allows reduction of the search space

for sampling/search-based methods or provision of correct seeding for optimization-

based methods.

In Table 7.1, most planners M1 to M8 do not have this property, since the goal of

their solvers is purely to reduce cost. M9 and M10 are semi-checked, because they

CHAPTER 7. APPLICATION TO ON-ROAD SELF-DRIVING 118

are only capable of drawing distinctions caused by environment topology in a spa-

tial domain, rather than drawing further region-based and overtaking-sequence-based

distinctions in the spatiotemporal domain.

Hybrid: Global awareness while converging to a local minima This property rep-

resents the gist of the hybrid sampling-/optimization-based planner. It augments

sampling-based planners with the ability to converge to local minima, while it aug-

ments the optimization-based planner with global awareness to avoid getting stuck at

the wrong local minimum.

In Table 7.1, most planners do not possess this property, with the exception of M7

and M9, both of which used a hybrid planning system.

The proposed approach In summary, our proposed method is the most complete in

addressing each of these important features. We obviously has features Nonholonomic

and On-road. It also has feature Deliberative. The deliberative planning quality is

provided by having a long horizon (greater than 100 meters spatially or 5 seconds

temporally) in all four planning modules in Figure 7.3.

Regarding Spatiotemporal, the maneuver pattern analysis and focused trajectory

optimization modules in our proposed planning system both operate directly in the

spatiotemporal domain: the former yields a spatiotemproal segmentation (over the

sampled trajectory, as a maneuver pattern), while the latter directly modifies the spa-

tiotemporal trajectory to yield the final trajectory plan.

For feature Tactical and Hybrid, the proposed method uses search-based and

sampling-based methods to explore the high-level decision making alternatives, and

make a decision based on a set of high-level features before locally refining with tra-

jectory optimization techniques. This two-step planning methodology endows the

planner with the ability to not only be globally aware of the search space of interest,

but also explicitly reason about the motion-level maneuver pattern.

Chapter 8

Conclusion

A capable trajectory planner plays a crucial role undergirding the capabilities of an

autonomous passenger vehicle (APV). Current trajectory planning methods that rely

only on a sampling-based or optimization-based approach have various shortcomings

that we reviewed in depth in Chapters 1 and 2. In this thesis, we propose a novel tra-

jectory planning architecture as well as several novel/adapted planning algorithms to

achieve a deliberative, tactical, globally-aware and locally optimal trajectory planning

system. The contributions and future work are summarized below.

8.1 Contributions

8.1.1 A Hybrid Trajectory Planning Framework

Sampling-based and optimization-based planning methods have both strengths and

limitations. We presented a hybrid type of trajectory planning framework composed

of four modules that combine the sampling-based and optimization-based trajectory

planner approaches in order to maintain the key advantages of both while reducing

their limitations. More specifically, we retain the global awareness of the sampling-

based planner as well as the ability to converge to a local optimum of the optimization-

based method.

119

CHAPTER 8. CONCLUSION 120

8.1.2 Search over Edge-augmented Graph for Reference Path Planning

In a typical directed acyclic graph (DAG), it is easy to calculate cost terms for either

the node or the edge; however, it is non-trivial to represent a cost term that requires

a pair of neighboring edges (or a tuple of three consecutive nodes). We therefore

presented a novel type of augmented graph by constructing augmented nodes with

incoming and outgoing edges for an original node over a standard directed acyclic

graph (DAG). With the help of this augmented graph, we can easily calculate these cost

terms and assign them to the corresponding augmented-node/edge. The augmented

graph of a DAG is still a DAG. Therefore, an efficient dynamic programming-based

search algorithm can be used to efficiently solve such a graph search problem.

8.1.3 Topological Backward Propagation Algorithm for Region

(Sub-Graph) Segmentation

In reference planning, we create a lattice-like DAG that represents the discretized spa-

tial configuration space over which to search. It is useful to segment this configu-

ration space into several sub-regions (or sub-graphs) that encode topologically dis-

tinct maneuver patterns. We therefore presented a topological information backward-

propagation algorithm for the purpose of region segmentation over a DAG. It takes

advantage of some useful homology invariant properties to fit the propagation pro-

cedure into a dynamic-programming-like recursive process, and can therefore be effi-

ciently implemented. This technique is applicable to any DAG, e.g., a DAG that spans

the spatiotemporal domain. But for spatiotemporal planning, we rely on the following

contribution.

8.1.4 Trajectory Sampling-based Maneuver Pattern Analysis for On-Road

Driving

In spatiotemporal on-road trajectory planning, different maneuver patterns exist such

that pure topological awareness is insufficient to distinguish them all. Therefore, we

CHAPTER 8. CONCLUSION 121

proposed a trajectory sampling-based maneuver pattern analysis procedure that can

distinguish region-based, topology-based and overtaking-sequence-based differences,

thereby providing extra semantics to distinguish between different trajectory subsets

within the full trajectory sample pool.

8.1.5 Adapted Linear Quadratic Regulator (LQR) and Iterative-LQR for

Trajectory Smoothing/Optimization

In the proposed planning framework, we often generate a coarse path/trajectory first

by performing sampling-based planning before generating the ultimate executable

ones. In these situations, we adapted an elegant LQR-based trajectory tracker for

smoothing to yield model-feasible trajectories, and further adapted a constrained iterative-

LQR trajectory optimizer (first-order differential dynamic programming) to generate

an execution-feasible trajectory.

8.1.6 Identification of Useful Cost Function Generation Principles

In many prior sampling-based or optimization-based planners, one of the most impor-

tant engineering design aspects is to develop the cost terms that shape the behavior

of the robot. In the cost design section for the iterative-LQR trajectory optimizer, we

provided some useful cost function design principles based on convex optimization

theories, and suggested the common sources of non-convexity (oftentimes unavoid-

able in the motion planning field) and their implications.

8.2 Future Work

In this thesis, we provide a comprehensive framework to combine sampling-based

and optimization-based methods. We believe this is a very promising future research

direction to retain the benefits of both approaches. In particular, we believe the consid-

eration of topological information in traditional trajectory planning will significantly

improve planning outcome by giving the planner certain level of environment under-

CHAPTER 8. CONCLUSION 122

standing, which will aid more informative decision making as well as helping focus

the search space exploration.

For more specific future efforts, many sub-components in the proposed trajectory

planning system can be improved, such as: using more complex vehicle models, mod-

eling the APV/objects with better geometric representations, and speeding up colli-

sion checking, as well as many trajectory integration calculations through caching and

interpolation techniques.

In addition, more involved cost terms reflecting more realistic behavioral and con-

straint features for on-road driving may be developed following the proposed cost

design principles. And it is straightforward practice to apply supervised machine

learning to regress the proper weights for the many cost terms designed in multiple

planning modules, which will serve as a principled and automated way of performing

parameter tuning.

Finally, the proposed framework is still a structured planning system in that the

algorithm flow as well as the cost terms are all artificially designed. It would be par-

ticularly interesting to develop trajectory planners that do not have such structure by

design, but are acquired via more general learning methods (e.g., deep reinforcement

learning).

Bibliography

F. Aurenhammer. Voronoi diagrams: a survey of a fundamental geometric data struc-

ture. ACM Comput. Surv., 23(3):345–405, Sept. 1991. 80

H. H. Bauschke, Y. Lucet, and H. M. Phan. On the convexity of piecewise-defined

functions. arXiv, 16 Aug. 2014. 82

A. Belyaev, P.-A. Fayolle, and A. Pasko. Signed lp-distance fields. Comput. Aided Des.

Appl., 45(2):523–528, 2013. 80, 81

D. P. Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999. 91

J. T. Betts. Survey of numerical methods for trajectory optimization. J. Guid. Control

Dyn., 21(2):193–207, 1998. 18, 19

D. M. Bevly, J. Ryu, and J. C. Gerdes. Integrating INS sensors with GPS measurements

for continuous estimation of vehicle sideslip, roll, and tire cornering stiffness. IEEE

Trans. Intell. Transp. Syst., 7(4):483–493, Dec. 2006. 26

S. Bhattacharya. Topological and geometric techniques in graph search-based robot planning.

PhD thesis, University of Pennsylvania, 2012. 21, 47, 51

S. Bhattacharya, V. Kumar, and M. Likhachev. Search-Based path planning with homo-

topy class constraints. In Third Annual Symposium on Combinatorial Search. aaai.org,

25 Aug. 2010. 21

123

BIBLIOGRAPHY 124

J. Bohren, T. Foote, J. Keller, A. Kushleyev, D. Lee, A. Stewart, P. Vernaza, J. Derenick,

J. Spletzer, and B. Satterfield. Little ben: The ben franklin racing team’s entry in the

2007 DARPA urban challenge. J. Field Robotics, 25(9):598–614, 1 Sept. 2008. 8

R. Bott and L. W. Tu. Differential Forms in Algebraic Topology. Graduate Texts in Mathe-

matics. Springer New York, 2013. 51

T. Brandt, T. Sattel, and J. Wallaschek. Towards vehicle trajectory planning for collision

avoidance based on elastic bands. Int. J. Veh. Auton. Syst., 5(1-2):28–46, 2007. 18

H. Breu, J. Gil, D. Kirkpatrick, and M. Werman. Linear time euclidean distance trans-

form algorithms. IEEE Trans. Pattern Anal. Mach. Intell., 17(5):529–533, May 1995.

80

O. Brock and O. Khatib. Elastic strips: A framework for integrated planning and

execution. In Experimental Robotics VI, Lecture Notes in Control and Information

Sciences, pages 329–338. Springer London, 2000. 18

M. Campbell, E. Garcia, D. Huttenlocher, I. Miller, P. Moran, A. Nathan, B. Schimpf,

N. Zych, J. Catlin, F. Chelarescu, and Others. Team cornell: technical review of the

DARPA urban challenge vehicle. DARPA Urban Chall. Tech. Pap, 2007. 69

C. I. Connolly, J. B. Burns, and R. Weiss. Path planning using laplace’s equation.

In Robotics and Automation, 1990. Proceedings., 1990 IEEE International Conference on,

pages 2102–2106 vol.3. ieeexplore.ieee.org, May 1990. 10

L. Davis. Handbook of genetic algorithms. Handbook of genetic algorithms, 1991. 17

D. J. Demyen and M. Buro. Efficient triangulation-based pathfinding. Aaai, 2006. 21

G. V. den Bergen. A fast and robust GJK implementation for collision detection of

convex objects. Journal of Graphics Tools, 4(2):7–25, 1999. 80

E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1(1):

269–271, 1 Dec. 1959. 15

BIBLIOGRAPHY 125

C. Dimitrakakis. Online statistical estimation for vehicle control: A tutorial. Idiap-RR-

13-2006, 2007. 18

D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Practical search techniques in path

planning for autonomous driving. Ann Arbor, 1001:48105, 2008. 18, 80, 116

S. E. Dreyfus and A. M. Law. Art and Theory of Dynamic Programming. Academic Press,

Inc., Orlando, FL, USA, 1977. 56

M. Du, J. Chen, P. Zhao, H. Liang, Y. Xin, and T. Mei. An improved RRT-based motion

planner for autonomous vehicle in cluttered environments. In 2014 IEEE International

Conference on Robotics and Automation (ICRA), pages 4674–4679. ieeexplore.ieee.org,

May 2014. 13

P. Felzenszwalb and D. Huttenlocher. Distance transforms of sampled functions. Tech-

nical report, Cornell University, 2004. 80

D. Ferguson, T. M. Howard, and M. Likhachev. Motion planning in urban environ-

ments. J. Field Robotics, 25(11-12):939–960, 1 Nov. 2008. 116

D. Fox and W. Burgard. The dynamic window approach to collision avoidance. IEEE

Trans. Rob., 1997. 10

T. Fraichard and V. Delsart. Navigating dynamic environments with trajectory defor-

mation. CIT. Journal of Computing and Information, 2009. 19

E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast procedure for computing the dis-

tance between complex objects in three-dimensional space. IEEE Journal on Robotics

and Automation, 4(2):193–203, Apr. 1988. 80

D. J. Griffiths and R. College. Introduction to electrodynamics, volume 3. Prentice Hall

Upper Saddle River, NJ, 1999. 47, 53

B. Hamner, S. Singh, and S. Scherer. Learning obstacle avoidance parameters from

operator behavior. Journal of Field Robotics, 2006. 10

BIBLIOGRAPHY 126

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination

of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):

100–107, July 1968. 15, 72

A. Hatcher. Algebraic Topology. Cambridge University Press, 2002. 47

E. Hernandez, M. Carreras, and P. Ridao. A comparison of homotopic path planning

algorithms for robotic applications. Rob. Auton. Syst., 64:44–58, 2015. 22

W. H. Huang, B. R. Fajen, J. R. Fink, and W. H. Warren. Visual navigation and obsta-

cle avoidance using a steering potential function. Rob. Auton. Syst., 54(4):288–299,

28 Apr. 2006. 10, 116

J. Hurdus, A. Bacha, C. Bauman, S. Cacciola, R. Faruque, P. King, C. Terwelp, P. Currier,

D. Hong, A. Wicks, and C. Reinholtz. VictorTango architecture for autonomous

navigation in the DARPA urban challenge. J. Aerosp. Comput. Inf. Commun., 5(12):

506–529, 2008. 8, 9

J. hwan Jeon, R. V. Cowlagi, S. C. Peters, S. Karaman, E. Frazzoli, P. Tsiotras, and

K. Iagnemma. Optimal motion planning with the half-car dynamical model for

autonomous high-speed driving. In 2013 American Control Conference, pages 188–

193. ieeexplore.ieee.org, June 2013. 13

C.-R. Hwang. Simulated annealing: Theory and applications. Acta Appl. Math., 12(1):

108–111, 1 May 1988. 17

Y. K. Hwang and N. Ahuja. Gross motion planning—a survey. ACM Computing Surveys

(CSUR), 1992. 9

D. Jacobson and D. Mayne. Differential Dynamic Programming. Elsevier Sci. Publ., 1970.

19, 69

D. H. Jacobson. New second-order and first-order algorithms for determining optimal

control: A differential dynamic programming approach. J. Optim. Theory Appl., 2(6):

411–440, 1 Nov. 1968. 19, 69

BIBLIOGRAPHY 127

K. D. Jenkins. The shortest path problem in the plane with obstacles: A graph modeling

approach to producing finite search lists of homotopy classes. IEEE Trans. Rob., 1991.

21, 48

S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent, J. Schröder, M. Thuy,

M. Goebl, F. v. Hundelshausen, O. Pink, C. Frese, and C. Stiller. Team AnnieWAY’s

autonomous system for the 2007 DARPA urban challenge. J. Field Robotics, 25(9):

615–639, 1 Sept. 2008. 9

Y. Kanayama and B. I. Hartman. Smooth local path planning for autonomous vehi-

cles. In I. J. Cox and G. T. Wilfong, editors, Autonomous Robot Vehicles, pages 62–67.

Springer New York, 1990. 11

S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning.

Int. J. Rob. Res., 30(7):846–894, 1 June 2011. 13

L. E. Kavraki. Computation of configuration-space obstacles using the fast fourier

transform. IEEE Trans. Rob. Autom., 11(3):408–413, June 1995. 80

L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars. Probabilistic roadmaps

for path planning in high-dimensional configuration spaces. IEEE Trans. Rob. Autom.,

12(4):566–580, Aug. 1996. 12, 21

A. Kelly and B. Nagy. Reactive nonholonomic trajectory generation via parametric

optimal control. Int. J. Rob. Res., 22(7-8):583–601, 1 July 2003. 11, 13

O. Khatib. Real-Time obstacle avoidance for manipulators and mobile robots. Int. J.

Rob. Res., 5(1):90–98, 1 Mar. 1986. 9

S. Kim, K. Sreenath, S. Bhattacharya, and V. Kumar. Trajectory planning for systems

with homotopy class constraints. In J. Lenarcic and M. Husty, editors, Latest Advances

in Robot Kinematics, pages 83–90. Springer Netherlands, 2012. 22, 50

S. Koenig and M. Likhachev. D* lite. AAAI/IAAI, 2002. 15

BIBLIOGRAPHY 128

S. Koenig, M. Likhachev, and D. Furcy. Lifelong planning a*. Artif. Intell., 155(1):

93–146, 1 May 2004. 15

Y. Koren and J. Borenstein. Potential field methods and their inherent limitations for

mobile robot navigation. In Robotics and Automation, 1991. Proceedings., 1991 IEEE

International Conference on, pages 1398–1404 vol.2. ieeexplore.ieee.org, Apr. 1991. 10

R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artif.

Intell., 1985. 15

B. Krogh and C. Thorpe. Integrated path planning and dynamic steering control for

autonomous vehicles. In Robotics and Automation. Proceedings. 1986 IEEE International

Conference on, volume 3, pages 1664–1669. ieeexplore.ieee.org, Apr. 1986. 9

M. Kuderer, C. Sprunk, H. Kretzschmar, and W. Burgard. Online generation of homo-

topically distinct navigation paths. In 2014 IEEE International Conference on Robotics

and Automation (ICRA), pages 6462–6467. ieeexplore.ieee.org, May 2014. 21

H. Kurniawati and T. Fraichard. From path to trajectory deformation. In 2007

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 159–164. iee-

explore.ieee.org, Oct. 2007. 19

Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, and J. How. Motion planning in

complex environments using closed-loop prediction. In AIAA Guidance, Navigation

and Control Conference and Exhibit. arc.aiaa.org, 2008. 69, 116

Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How. Real-Time motion

planning with applications to autonomous urban driving. IEEE Trans. Control Syst.

Technol., 17(5):1105–1118, 2009. 13

S. M. Lavalle. Rapidly-Exploring random trees: A new tool for path planning. Citeseer,

1998. 13

BIBLIOGRAPHY 129

S. M. LaValle, M. S. Branicky, and S. R. Lindemann. On the relationship between

classical grid search and probabilistic roadmaps. Int. J. Rob. Res., 23(7-8):673–692,

1 Aug. 2004. 13

D. Le and E. Plaku. Guiding sampling-based tree search for motion planning with

dynamics via probabilistic roadmap abstractions. In 2014 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, pages 212–217. ieeexplore.ieee.org, 2014. 12,

13

J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg. Real-time robot motion

planning using rasterizing computer graphics hardware. In Proceedings of the 17th

Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’90,

pages 327–335, New York, NY, USA, 1990. ACM. 10

J. Leonard, D. Barrett, J. How, S. Teller, M. Antone, and others. Team MIT urban

challenge technical report. dspace.mit.edu, 2007. 8, 13

W. Li and E. Todorov. Iterative linear quadratic regulator design for nonlinear biologi-

cal movement systems. In ICINCO (1), pages 222–229, 2004a. 69, 75

W. Li and E. Todorov. Iterative linear quadratic regulator design for nonlinear biologi-

cal movement systems. In ICINCO (1), pages 222–229. newmaeweb.ucsd.edu, 2004b.

19, 91, 116

M. Likhachev and D. Ferguson. Planning long dynamically feasible maneuvers for

autonomous vehicles. Int. J. Rob. Res., 28(8):933–945, 1 Aug. 2009. 14

M. Likhachev, G. J. Gordon, and others. ARA*: Anytime a* with provable bounds on

sub-optimality. Adv. Neural Inf. Process. Syst., 2003. 15

F. Lingelbach. Path planning using probabilistic cell decomposition. In Robotics and Au-

tomation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on, volume 1,

pages 467–472 Vol.1. ieeexplore.ieee.org, Apr. 2004. 21

BIBLIOGRAPHY 130

T. Lozano-Pérez and M. A. Wesley. An algorithm for planning collision-free paths

among polyhedral obstacles. Commun. ACM, 22(10):560–570, Oct. 1979. 21

D. G. Luenberger. Introduction to linear and nonlinear programming, volume 28. Addison-

Wesley Reading, MA, 1973. 40

M. McNaughton. Parallel Algorithms for Real-time Motion Planning. PhD thesis, Carnegie

Mellon University, 2011. 14, 37, 77, 97, 102, 116

J. B. M. Melissen and P. C. Schuur. Covering a rectangle with six and seven circles.

Discrete Appl. Math., 99(1–3):149–156, 1 Feb. 2000. 80

I. Miller, M. Campbell, D. Huttenlocher, F.-R. Kline, A. Nathan, S. Lupashin, J. Catlin,

B. Schimpf, P. Moran, N. Zych, E. Garcia, M. Kurdziel, and H. Fujishima. Team

cornell’s skynet: Robust perception and planning in an urban environment. J. Field

Robotics, 25(8):493–527, 1 Aug. 2008. 8

M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, D. Haehnel,

T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp, D. Langer,

A. Levandowski, J. Levinson, J. Marcil, D. Orenstein, J. Paefgen, I. Penny, A. Petro-

vskaya, M. Pflueger, G. Stanek, D. Stavens, A. Vogt, and S. Thrun. Junior: The

stanford entry in the urban challenge. J. Field Robotics, 25(9):569–597, 1 Sept. 2008. 1,

8, 116

B. Nagy and A. Kelly. Trajectory generation for car-like robots using cubic curvature

polynomials. Field and Service Robots, 2001. 11

V. Narayanan, P. Vernaza, M. Likhachev, and S. M. LaValle. Planning under topolog-

ical constraints using beam-graphs. In Robotics and Automation (ICRA), 2013 IEEE

International Conference on, pages 431–437. ieeexplore.ieee.org, May 2013. 21

National Highway Traffic Safety Administration. Traffic safety facts 2011 data–

pedestrians. Ann. Emerg. Med., 62(6):612, Dec. 2013. 1

BIBLIOGRAPHY 131

Park, Junghee, and Ph. D. Massachusetts Institute of Technology. A homotopy-based

hierarchical framework for semi-autonomous/autonomous vehicle navigation. PhD thesis,

Massachusetts Institute of Technology, 2016. 21, 116

J. Park, S. Karumanchi, and K. Iagnemma. Homotopy-Based Divide-and-Conquer

strategy for optimal trajectory planning via Mixed-Integer programming. IEEE

Trans. Rob., 31(5):1101–1115, Oct. 2015. 21

A. Piazzi and C. Bianco. Quintic G 2-splines for trajectory planning of autonomous

vehicles. , 2000. IV 2000. Proceedings of the IEEE, 2000. 11

P. Pirjanian. Behavior coordination mechanisms-state-of-the-art. Citeseer, 1999. 9

M. Pivtoraiko, R. A. Knepper, and A. Kelly. Differentially constrained mobile robot

motion planning in state lattices. J. Field Robotics, 26(3):308–333, 1 Mar. 2009. 13, 37

S. Quinlan and O. Khatib. Elastic bands: connecting path planning and control. In

Robotics and Automation, 1993. Proceedings., 1993 IEEE International Conference on,

pages 802–807 vol.2. ieeexplore.ieee.org, May 1993. 18

N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich. Maximum margin planning. In

Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, pages

729–736, New York, NY, USA, 2006. ACM. 103

C. Roesmann, W. Feiten, T. Woesch, F. Hoffmann, and T. Bertram. Trajectory modifica-

tion considering dynamic constraints of autonomous robots. In ROBOTIK 2012; 7th

German Conference on Robotics, pages 1–6. ieeexplore.ieee.org, May 2012. 19, 116

C. Rösmann, F. Hoffmann, and T. Bertram. Planning of multiple robot trajectories in

distinctive topologies. In Mobile Robots (ECMR), 2015 European Conference on, pages

1–6, 2015. 22, 116

W. Rudin. Real and complex analysis. Real and complex analysis, 1987. 21

BIBLIOGRAPHY 132

E. Schmitzberger, J. L. Bouchet, M. Dufaut, D. Wolf, and R. Husson. Capture of

homotopy classes with probabilistic road map. In Intelligent Robots and Systems,

2002. IEEE/RSJ International Conference on, volume 3, pages 2317–2322 vol.3. ieeex-

plore.ieee.org, 2002. 21

D. Silver, J. Andrew Bagnell, and A. Stentz. Applied imitation learning for autonomous

navigation in complex natural terrain. In A. Howard, K. Iagnemma, and A. Kelly,

editors, Field and Service Robotics, Springer Tracts in Advanced Robotics, pages 249–

259. Springer Berlin Heidelberg, 2010. 103

J. M. Snider. Automatic steering methods for autonomous automobile path tracking.

Robotics Institute, Pittsburgh, PA, Tech. Rep. CMU-RITR-09-08, 2009. 31, 69, 70

M. Sniedovich. Dijkstra’s algorithm revisited: the dynamic programming connexion.

Control Cybernet., 2006. 15

J. A. Stratton, I. Antennas, and P. Society. Electromagnetic Theory. An IEEE Press classic

reissue. Wiley, 2007. 21

Y. Tassa, N. Mansard, and E. Todorov. Control-limited differential dynamic program-

ming. In 2014 IEEE International Conference on Robotics and Automation (ICRA), pages

1168–1175. ieeexplore.ieee.org, May 2014. 20, 69, 116

M. Thorup. Undirected single-source shortest paths with positive integer weights in

linear time. J. ACM, 46(3):362–394, May 1999. 15

M. Thorup. Integer priority queues with decrease key in constant time and the single

source shortest paths problem. In Proceedings of the Thirty-fifth Annual ACM Sympo-

sium on Theory of Computing, STOC ’03, pages 149–158, New York, NY, USA, 2003.

ACM. 15

S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale,

M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Stro-

hband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niek-

BIBLIOGRAPHY 133

erk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Ne-

fian, and P. Mahoney. Stanley: The robot that won the DARPA grand challenge. J.

Field Robotics, 23(9):661–692, 1 Sept. 2006. 11, 18

E. Todorov and W. Li. A generalized iterative LQG method for locally-optimal feed-

back control of constrained nonlinear stochastic systems. In Proceedings of the 2005,

American Control Conference, 2005., pages 300–306 vol. 1. ieeexplore.ieee.org, June

2005. 69

C. Urmson and R. G. Simmons. Approaches for heuristically biasing RRT growth.

IROS, 2003. 13

C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark, J. Dolan, D. Dug-

gins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T. M. Howard,

S. Kolski, A. Kelly, M. Likhachev, M. McNaughton, N. Miller, K. Peterson, B. Pilnick,

R. Rajkumar, P. Rybski, B. Salesky, Y.-W. Seo, S. Singh, J. Snider, A. Stentz, W. r.

Whittaker, Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown, D. Demitrish, B. Litkouhi,

J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms, and D. Fergu-

son. Autonomous driving in urban environments: Boss and the urban challenge. J.

Field Robotics, 25(8):425–466, 1 Aug. 2008. 1, 6, 8, 11, 14, 77, 96

J. van den Berg. Extended LQR: Locally-Optimal feedback control for systems with

Non-Linear dynamics and Non-Quadratic cost. In M. Inaba and P. Corke, editors,

Robotics Research, Springer Tracts in Advanced Robotics, pages 39–56. Springer Inter-

national Publishing, 2016. 19, 69, 116

O. Von Stryk and R. Bulirsch. Direct and indirect methods for trajectory optimization.

Ann. Oper. Res., 37(1):357–373, 1992. 18

J. Wei, J. M. Snider, J. Kim, J. M. Dolan, R. Rajkumar, and B. Litkouhi. Towards a viable

autonomous driving research platform. In 2013 IEEE Intelligent Vehicles Symposium

(IV), pages 763–770, June 2013. 69, 96

BIBLIOGRAPHY 134

F. A. Wilson and J. P. Stimpson. Trends in fatalities from distracted driving in the

united states, 1999 to 2008. American journal of public health, 100(11):2213–2219, 2010.

1

B. M. Yu, K. V. Shenoy, and M. Sahani. Derivation of kalman filtering and smooth-

ing equations. Saatavissa: http://wwwnpl. stanford. edu/\byronyu/papers/derive_ks. pdf.

Hakupäivä, 7:2010, 2004. 19

J. Ziegler and C. Stiller. Spatiotemporal state lattices for fast trajectory planning in

dynamic on-road driving scenarios. In 2009 IEEE/RSJ International Conference on In-

telligent Robots and Systems, pages 1879–1884. ieeexplore.ieee.org, Oct. 2009. 14, 116

J. Ziegler and C. Stiller. Fast collision checking for intelligent vehicle motion planning.

In 2010 IEEE Intelligent Vehicles Symposium, pages 518–522. ieeexplore.ieee.org, June

2010. 80

J. Ziegler, P. Bender, T. Dang, and others. Trajectory planning for bertha—a local,

continuous method. 2014 IEEE Intelligent, 2014. 18, 77

	Contents
	List of Tables
	List of Figures
	Introduction
	Overview
	Motivation
	Thesis Statement & Contribution

	Related Work
	Planning Architecture for Autonomous Driving
	Cost-based Trajectory Planning
	Motion Planning with Topology Awareness
	Summary

	Vehicle Model, Representation & Control
	Vehicle Model
	Representation of APV and Objects
	Trajectory Tracking Control
	Controller-based Smoothing

	Edge-augmented Search-based Path Planning
	Continuous Path Smoothing & Nudging
	Edge-Augmented Graph Search
	Constraint-satisfying Nominal Reference Generation

	Maneuver Pattern Analysis
	Theoretical Background
	Graph Segmentation-based Maneuver Pattern Identification
	Sampling-based Maneuver Pattern Identification
	Choosing Maneuver Pattern

	Focused Trajectory Optimization with Constraints
	Relationship between Planning & Control
	Trajectory Optimization Background
	Cost Function Design
	Maneuver Pattern Constrained iLQR Algorithm

	Application to On-Road Self-Driving
	Trajectory Planning Framework
	Experiment Configuration
	Experimental Results
	Comparison to State of the Art

	Conclusion
	Contributions
	Future Work

	Bibliography

