
Graph-based Trajectory Planning
through Programming by

Demonstration

Nik A. Melchior
melchior@cmu.edu

CMU-RI-TR-11-40

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy in Robotics.

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

July 2011

Thesis Committee:
Reid Simmons (chair)
Manuela Veloso
Jeff Schneider
O.C. Jenkins (Brown University)

Copyright ©2011 by Nik A. Melchior
Creative Commons 3.0 Attribution License

http://creativecommons.org/licenses/by/3.0/us/

http://creativecommons.org/licenses/by/3.0/us/

Abstract

Autonomous robots are becoming increasingly commonplace in in-
dustry, space exploration, and even domestic applications. These diverse
fields share the need for robots to perform increasingly complex motion
behaviors for interacting with the world. As the robots’ tasks become
more varied and sophisticated, though, the challenge of programming
them becomes more difficult and domain-specific. Robotics experts with-
out domain knowledge may not be well-suited for communicating task-
specific goals and constraints to the robot, but domain experts may not
possess the skills for programming robots through conventional means.
Ideally, any person capable of demonstrating the necessary skill should
be able to instruct the robot to do so. In this thesis, we examine the use
of demonstration to program or, more aptly, to teach a robot to perform
precise motion tasks.

Programming by Demonstration (PbD) offers an expressive means for
teaching while being accessible to domain experts who may be novices
in robotics. This learning paradigm relies on human demonstrations
to build a model of a motion task. This thesis develops an algorithm for
learning from examples that is capable of producing trajectories that are
collision-free and that preserve non-geometric constraints such as end-
effector orientation, without requiring special training for the teacher or
a model of the environment. This approach is capable of learning precise
motions, even when the precision required is on the same order of magni-
tude as the noise in the demonstrations. Finally, this approach is robust
to the occasional errors in strategy and jitter in movement inherent in
imperfect human demonstrations.

The approach contributed in this thesis begins with the construc-
tion of a neighbor graph, which determines the correspondences between
multiple imperfect demonstrations. This graph permits the robot to plan
novel trajectories that safely and smoothly generalize the teacher’s be-
havior. Finally, like any good learner, a robot should assess its knowl-
edge and ask questions about any detected deficiencies. The learner
presented here detects regions of the task in which the demonstrations
appear to be ambiguous or insufficient, and requests additional infor-
mation from the teacher. This algorithm is demonstrated in example
domains with a 7 degree-of-freedom manipulator, and user trials are
presented.

Acknowledgements

I would like to thank my advisor, Reid Simmons, for his support
and assistance in this work and throughout my graduate career. I am
grateful for for his guidance and shared knowledge in the many areas
of robotics that I have been privileged to explore with him. I am also
grateful to my master’s advisor, Bill Smart, whose enthusiasm and en-
couragement ignited my interest in robotics. I hope to find opportunities
to work with each of them in the future.

I would not have been able to complete this work without the help-
ful discussions and information provided by my committee members,
Manuela Veloso, Jeff Schneider, and Chad Jenkins. Chad’s thesis work
inspired my own, and I am grateful for the code he shared with me. I also
received indispensable assistance from the people at Intel Labs Pitts-
burgh, who graciously allowed me to use their robot for my experiments.
I am particularly grateful to Mike Vande Weghe, Dmitry Berenson, and
Mehmet Doğar for the time they spent introducing me to HERB.

The Syndicate/Trestle/IDSR/Ace/Boogaloo team has been an invalu-
able source of joy, wisdom, and growing experiences for me. I have en-
joyed working with and getting to know Brad Hamner, Brennan Sell-
ner, Fred Heger, Laura Hiatt Magill, Seth Koterba, and Breelyn Kane
through the years that these projects have evolved. I am also indebted
to the staff at CMU who have enabled my work and kept both people
and machines running smoothly: Greg Armstrong, Karen Widmaier,
and Marliese Bonk.

My family has provided endless love and support during my many
years as a student. My parents, Al and Linda Melchior, have made sac-
rifices to encourage my exploration in everything that held my interest
and to help me achieve my goals – even when my goals have taken me
far from them. My sister, Kim Welton, has graciously endured growing
up with a nerd, and has helped me to grow in more ways than she can
know.

I am thankful for the friends who have become family while I pursued
my education. My pastor Steve Wilson has been a mentor to me, and
I am grateful for all he has taught me. My friends at City Reformed
Church, and especially the SQCG, have sustained me with their prayers,
kind words, and good food. My friends in Clan Zwerdog have impressed
and encouraged me through their insights and accomplishments without
forsaking the immaturity of our college years.

Finally, I thank my Lord and Savior Jesus Christ for calling me and
providing me with a purpose in life. Soli Deo gloria.

Contents

Abstract . 3

Acknowledgements 4

List of Figures . 9

List of Tables . 11

List of Algorithms . 13

Chapter 1. Introduction 15

1.1 Thesis Statement 20
1.2 Neighbor Graph 20
1.3 Planning . 22
1.4 Active Learning 22
1.5 Document Outline 23
1.6 Summary . 24

Chapter 2. Related Work 27

2.1 Motion Planning 28
2.2 Supervised Learning 29
2.3 Programming by Demonstration with Feedback 31
2.4 Symbolic Programming by Demonstration 33
2.5 Dimensionality Reduction 35
2.6 Summary . 37

5

Chapter 3. Background: Dimensionality Reduction . . . 39

3.1 General Technique 39
3.2 Trajectory Embedding 42
3.3 Planning and Executing 48
3.4 Inherent Difficulties 50
3.5 Summary . 53

Chapter 4. Approach 55

4.1 Overview . 55
4.2 Neighbor Graph 56
4.3 Planning . 59
4.4 Active Learning 61
4.5 Summary . 63

Chapter 5. Neighbor Graph 65

5.1 Coordinate Spaces 67
5.2 Trajectory Neighbor Heuristics 69
5.3 Safety . 74
5.4 Experimental Results 78
5.5 Summary . 84

Chapter 6. Planning 85

6.1 Action Selection 88
6.2 Neighbor Extension. 89
6.3 Plan Refinement 90
6.4 Bifurcations . 93
6.5 Experimental Results 94
6.6 Summary . 103

Chapter 7. Active Learning 105

7.1 Detecting Diverging Demonstrations 106
7.2 Requesting Advice 115
7.3 Experimental Results 120
7.4 Summary . 126

6 CONTENTS

Chapter 8. Conclusions 127

8.1 Future Work . 129
8.2 Summary . 132

References . 133

CONTENTS 7

8 CONTENTS

List of Figures

1.1 Trestle construction domain 17
1.2 IDSR underwater construction domain 18

3.1 Isomap Swiss roll . 40
3.2 Swiss roll dimensionality reduction with trajectories . . 44
3.3 Dimensionality reduction: slalom 45
3.4 Simple dimensionality-reduction task 46
3.5 Trajectory dimensionality reduction with SVD 47
3.6 Trajectory dimensionality reduction with Isomap and ST-

Isomap . 48
3.7 Delaunay triangulation of reduced-dimensionality trajec-

tories . 49
3.8 Swiss roll dimensionality reduction with a spurious neigh-

bor link . 50
3.9 Barrett WAM 7-DOF arm with wire maze 52
3.10 Wire maze lifted plan . 52

5.1 Neighbor graph heuristics: nearest neighbor 72
5.2 Neighbor graph heuristics: loops 73
5.3 Neighbor graph heuristics: one-to-one 75
5.4 Path homotopy . 76
5.5 Trajectory interpolation near obstacles 77
5.6 Barrett WAM 7-DOF arm with wire maze 79
5.7 Neighbor graph algorithm comparison 80
5.8 Neighbor graph and Isomap embedding 81
5.9 Dimensionality reduction residual variance 82
5.10 Neighbor graph for an inexperienced robot user 83
5.11 Neighbor graph for an experienced robot user 83

6.1 Planning algorithm illustrated 87

9

6.2 Wire maze plans and curvature 95
6.3 Wire maze: effect of additional examples 96
6.4 HERB WAM arm in artist domain 97
6.5 Planning with small perturbations 98
6.6 Perturbation example curvature 99
6.7 Artist domain looping plans 100
6.8 Artist domain looping plans curvature 101
6.9 Artist domain multiple bifurcations 102
6.10 Artist domain bifurcating plans 102

7.1 Obvious bifurcation . 107
7.2 Bifurcation due to widespread examples 108
7.3 Bifurcation with average plan 117
7.4 Multiple bifurcations . 118
7.5 Double split artist example 118
7.6 Artist domain user trials. 120
7.7 User trials: atypical demonstrations 121
7.8 User trials: typical demonstrations 121
7.9 User trials: Ease of Programming scale. 123
7.10 User trials: Quality of Plans scale. 124
7.11 User trials: Training Questions scale. 124
7.12 User trials: Effectiveness of Learning scale. 125

10 LIST OF FIGURES

List of Tables

6.1 Curvature statistics for increasing numbers of example tra-
jectories. 96

6.2 Trajectory curvature statistics 100
6.3 Trajectory length statistics 103

7.1 Questions from the user trial. 122

11

12 LIST OF TABLES

List of Algorithms

3.1 Isomap . 41
5.1 The Neighbor Graph algorithm 70
5.2 The Neighbor Graph run finding algorithm 71
5.3 The Neighbor Graph backtracking checks 74
5.4 The Neighbor Graph many-to-one check 75
6.1 The trajectory planning algorithm 86
6.2 The plan refinement algorithm 91
7.1 The Normalized Cut algorithm 111
7.2 The learning procedure 114
7.3 The learning procedure helper function 115

13

14 LIST OF ALGORITHMS

Chapter 1

Introduction

Make experiements. Seek the recipe of life. . . Show us what

we must do. The Robots can accomplish everything that the

human beings showed them.

— Radius, R.U.R. (Rossum’s Universal Robots), 1920

Robots are becoming a more common sight in many domains. They

are used as tools for manufacturing, instruments for surgery, and toys

for consumers. As their areas of application expand, so does the diversity

of their operators. Though these users may be novice robot program-

mers, they often posses specialized knowledge about their application

domain; knowledge that must be transfered to the robot if it is to per-

form its task. Programming by demonstration (PbD) is an approach that

facilitates knowledge transfer from a domain expert to an autonomous

system. It provides an intuitive approach for someone skilled in perform-

ing a task to teach a robot to perform that task without having to learn

to program the robot. Additionally, a robotics expert is not required to

become skilled in the task.

One of the primary difficulties in PbD approaches to robotic manip-

ulation is representing and understanding the constraints imposed by

the physical world. Physical obstacles, or geometric constraints, are the

most obvious issues. A robot tasked with reaching out to grasp a tar-

get object or placing an object in a specified location must not bump into

other objects while it is working. But precisely detecting the locations of

objects, even in a static environment, can be difficult for current sensor

technologies. Computer vision and LIDAR sensors can have difficulty

detecting the precise shapes and positions of irregularly-shaped objects,

15

particularly those with spindly projections or hollows. Additionally, sen-

sors must be located to view all relevant features of the objects without

suffering from occlusion due to the objects or the robot itself. Alternately,

the robot may be provided with an a priori model of the objects of interest,

but constructing this model may again require the skills of a specialist.

Even if a model is constructed to provide the robot with knowledge

of obstacles, it must also consider non-geometric task constraints. These

are prohibitions or prescriptions of movements that are not directly con-

cerned with avoiding contact between the robot and physical obstacles.

For example, a robot carrying a cup of liquid must maintain its end-

effector orientation to avoid spilling. A robot routing cable around com-

plex objects may need to follow a particular path to avoid snagging the

cable. While a detailed physical simulation may be able to detect se-

quences of motions that allow the cable to become entangled with ob-

jects in the environment, it would be challenging for a novice robot user

to communicate this constraint to a planner. However, if a user is able

to demonstrate successful strategies for completing the task, he does not

need to articulate the criteria that he is optimizing in a manner compre-

hensible to the robot.

Thus, PbD offers the means for a domain expert to teach a robot

about geometric and non-geometric task constraints without explicitly

formalizing these constraints. The robot may then create novel plans

respecting these constraints, usually through generalization of the ac-

tions performed by the teacher. Since the amount of available demon-

stration is typically limited with respect to a robot learner’s (typically

high-dimensional and continuous) state space, the primary challenge of

PbD systems is to determine behavior in undemonstrated situations. In

fact, if imperfect demonstrations are admitted, as in this thesis, then

example behaviors are not to be precisely reproduced when planning.

Another advantage of the PbD approach is that it offers the learner

an opportunity to request additional information and clarification in

parts of the task where the initial demonstrations are unclear. In this

work, we develop a strategy for resolving bifurcations in demonstrated

strategies: areas in which the teacher has provided conflicting advice.

For example, demonstrations may take different routes around obsta-

16 introduction

(a) (b)

Figure 1.1: The Trestle construction task. (a) A grid of beams con-
structed by mobile robots. (b) The beam connections have tight mechan-
ical tolerances.

cles, or a redundant manipulator may follow the same path with dif-

ferent configurations. Whether the teacher purposefully demonstrated

diverging strategies, or did so accidentally, a learner that recognizes the

presence of multiple strategies can ask the teacher which strategy it

should follow in the plans that it creates. This leads to robot plans that

are more predictable, repeatable, and possibly closer to the teacher’s

intentions, even if he was not able to perfectly demonstrate these inten-

tions.

This work is motivated by robot manipulation tasks that require pre-

cise movements, such as construction and assembly tasks. For example,

the Trestle construction scenario [60] shown in Figure 1.1(a) involves

a team of heterogeneous robots constructing a grid of blue beams, con-

nected by silver nodes on stanchions. In this task, the crane (top) braces

the nodes and enables gross movements of the partially-completed struc-

ture, and the silver robot (bottom left) carries a stereo camera pair for

viewing and localizing construction components. Assembly operations

introduction 17

(a) (b)

Figure 1.2: The IDSR construction task executed underwater. (a) The
robot manipulates a beam to connect it with the stationary node on the
left. (b) A simulation of the same scenario. The gray boxes with multi-
colored coordinate axes are motion waypoints.

are primarily accomplished by the 7 degree-of-freedom (DOF) arm on a

mobile base (bottom right). This arm grasps a beam and moves it so that

the spring-loaded hook on the end connects to a receptacle on a node.

The closeup view of the connection mechanism in Figure 1.1(b) reveals

that the assembly operation requires a precise approach strategy. The

beam must be positioned between the top and bottom plates of the node

and precisely oriented so that the notches on the beam end align with a

pin on the node. The visual fiducials, which appear to be 2-dimensional

barcodes, are attached to beams and nodes to provide identification and

localization of the construction components relative to one another.

Figure 1.2(a) illustrates a similarly constrained construction opera-

tion. In this scenario, a robot assembles a portion of the EASE struc-

ture [61], a large underwater truss used in neutral-buoyancy astronaut

training. Again, the structure of the node and beam components ne-

cessitates a precise assembly strategy. The simulation in Figure 1.2(b)

shows the node as a green and red wireframe object on the left side of

the image, and a beam (pink) grasped by the robot (blue) on the right.

The gray boxes represent hand-tuned motion waypoints defined relative

to the connection point on the node, which provide a motion plan for per-

forming the assembly operation. The end of the beam is guided through

18 introduction

the waypoints in order to form a connection.

In each of these tasks, precise motion strategies are required, and

are executed in domains in which dynamics do not play a significant

role. These strategies are intuitive to a person familiar with the hard-

ware, but can still be challenging to articulate in a format amenable to

execution by a robot manipulator. The motion waypoints illustrated in

Figure 1.2(b) are positioned relative to a goal point on the node, and

each has its own coordinate frame. Three translational and three rota-

tional tolerances are specified in the local frame of each waypoint. Such

plans are challenging for a roboticist to produce, despite familiarity with

kinematics and transforming coordinate frames. In fact, for the tasks

pictured here, the waypoints and tolerances were refined through trial

and error over the course of dozens of connection attempts by users who

were familiar with the robots, their control software, and the construc-

tion hardware in use.

If robots are to enjoy widespread use as tools for these sort of con-

struction and assembly operations, though, they should be more eas-

ily programmed by someone familiar with only the task hardware. We

would like robots to be more easily employed as tools for similar assem-

bly tasks in fields such as automobile manufacturing and circuit board

assembly. In the cases described above, achieving a final end-effector

configuration was the goal, but motion was constrained to a particular

strategy by the shapes of the components. In other tasks, such as weld-

ing seams and routing cables, the goal is defined by the entire motion.

This thesis considers similar motion tasks in which the motions are

constrained relative to some target object. We do not require a model of

the target or the larger environment in which the robot operates. The

robot only needs to be able to localize itself relative to the target so that

it can create a local coordinate frame for relating multiple examples of

the task. When operating in a static environment, a model of the robot

is used to ensure the safety of generated plans. Our goal is to learn to

repeat the execution of a task like the ones described above, in which the

desired motion relative to the target is repeated with variations in the

starting configuration, such as one might see on an assembly line.

introduction 19

1.1 Thesis Statement

Thesis: A Programming by Demonstration approach to planning is able

to construct safe, efficient, natural motion plans for robotic manipulators

by using imperfect demonstrations and requesting advice when demon-

strations conflict.

This document details the algorithms created for learning the struc-

ture of tasks from demonstration trajectories, detecting inconsistencies

and errors in demonstrations, and planning new trajectories to accom-

plish the same task. We show that the new plans safely avoid static ob-

stacles without requiring a model of the environment. Plans are further

evaluated in terms of efficiency and naturalness by showing that they

exhibit shorter path length and lower curvature than example trajecto-

ries without deviating from the task structure demonstrated. Finally,

user trials show that this method provides a safe, intuitive method for

novices to transfer knowledge to a robot.

The following subsections introduce the three main contributions of

this thesis. First, we describe our neighbor graph, the structure for

relating imprecise demonstrations of a robotic motion tasks, and the

procedure for constructing it. Next, our approach to planning exploits

this neighbor graph to produce novel plans for the robot to execute the

demonstrated task. Finally, we introduce our active learning strategies,

in which the robot learner solicits additional guidance from the teacher

to refine its knowledge of the task and its ability to plan.

1.2 Neighbor Graph

Demonstration presents a powerful modality for programming a robot

without sacrificing accessibility to novice users. Kinesthetic demonstra-

tions in particular require no specific knowledge of the robot’s kinemat-

ics, nor a computer model of the robot’s environment. The trade-off,

though, is that the robot possesses no objective function for comparing

the relative value of multiple examples of the same task. Indeed, before

solving this unsupervised learning problem, correspondences must be

found between portions of the examples.

20 introduction

The neighbor graph is our means for representing the structure of

the demonstrated task and the relationships between multiple exam-

ple trajectories. The example trajectories are more than simply collec-

tions of points in the robot’s workspace or configuration space. As time-

series data, they implicitly encode a task space, representing a motion

demonstrated through execution of the task. However, multiple exam-

ples, even of the same overall strategy, will not be identical to one an-

other. Some variations arise due to lack of constraints in the task itself.

When precision is not required, demonstrations tend to diverge from one

another. Other variations, though, arise due to imperfections and er-

rors in demonstrations: motions that should not be reproduced in new

plans. The challenge in building a neighbor graph is to detect and distin-

guish these variations and build a structure representing the task being

demonstrated.

Our algorithm for building this structure was inspired by ST-Isomap

[34], an algorithm for relating time-series (Spatio-Temporal) informa-

tion, and embedding it in a lower-dimensional space. To improve the

ability of ST-Isomap to correlate examples, we augment this approach

with heuristics designed to detect several issues typical to motion tra-

jectories. The resulting structure organizes multiple demonstrations of

the same task and insulates imperfections and other undesired bits of

demonstrations to reduce their influence on new plans.

Although the best evaluation of a neighbor graph of this kind is the

plans that can be built from it, we examine specific problematic cases to

ensure that common errors do not produce degenerate neighbor graphs.

For example, graphs created in non-Markovian spaces should not in-

clude links between portions of the examples that overlap in space but

occur at different points in the task. Backtracking motions and other

minor deviations unique to a single example should not be connected to

other demonstrations. Instead, a proper neighbor graph should include

a strong web of connections only between similar portions of the demon-

stration trajectories.

introduction 21

1.3 Planning

The goal of Programming by Demonstration is not merely to understand

the task being demonstrated, but to be able to perform the task au-

tonomously. Additionally, since we expect the teacher’s demonstrations

to be imperfect, the robot learner must avoid the jitter, unintended devia-

tions, and other errors apparent in provided examples. Much of the work

of detecting these errors is accomplished while constructing the neighbor

graph, which the planner follows from start to goal of the task. The plan-

ner creates a new trajectory that remains near clusters of demonstration

trajectories in order to produce a plan that accomplishes the task using

the same general strategy as the demonstrations. This requirement dis-

tinguishes PbD from most traditional motion planning techniques since

the quality of the plan does not depend on a metric or objective func-

tion over the space or actions over which the learner operates. Instead,

our planner interpolates between portions of demonstration trajectories

linked in the neighbor graph. Since this graph connects similar portions

of the demonstration trajectories and elides links in areas of deviations,

planned paths should represent the strategy intended by the teacher.

Our experimental evaluation of plans produced by this algorithm

show that they safely, smoothly, and efficiently follow the demonstrations

provided. Since our approach does not require a model of the environ-

ment, safety, in our case, means avoiding static obstacles. We show that

new plans do not cause the robot to occupy any space that was not oc-

cupied during the production of example demonstrations. We also show

that planned paths exhibit noticeably less curvature while retaining the

overall shape of the examples. This leads to a small reduction in path

length (on the order of 7%) for planned trajectories.

1.4 Active Learning

Localized errors and imperfections in demonstration trajectories are largely

avoided in planned trajectories by heuristics used in the construction of

the neighbor graph and the techniques used by the planner. However,

collections of imperfect demonstrations sometimes exhibit inconsisten-

22 introduction

cies that cannot be interpreted as accidental errors. Whether by accident

or design, sets of demonstration trajectories may contain systematic dif-

ferences: distinctions that split the examples into two or more internally

consistent subsets. For instance, the teacher may demonstrate multiple

distinct strategies. Since planning relies on the ability to interpolate

between similar demonstration trajectories, it is important that distinct

strategies be identified and considered separately.

In this thesis, our learning algorithm identifies bifurcations, loca-

tions where demonstrations split into multiple strategies. Trajectories

are planned in each branch of the bifurcation and presented to the teacher

as a means of soliciting additional information. The teacher is asked to

specify which branch the learner should use when planning new paths.

This approach is evaluated through user trials conducted with both

robot experts and novices. Participants were asked to teach a robot to

perform a simple motion task, possibly demonstrating multiple strate-

gies. The robot identified diverging strategies, when present, and demon-

strated the distinction to the teacher. Finally, the teacher indicated

which strategy the robot should choose, and a final path was generated

and executed by the robot. The results showed that users with a wide

range of robotics experience were able to teach a robot to successfully

perform the demonstrated task, mimicking their own strategy.

1.5 Document Outline

• Chapter 2 describes related work in the areas of Programming by

Demonstration, motion planning, and machine learning.

• Chapter 3 discusses an approach to PdD that relies on dimension-

ality reduction. Similar approaches have shown some promise and

our early work pursuing this strategy provided valuable insights

into the PbD problem. However, this chapter also evaluates why di-

mensionality reduction is unable to create smooth, natural plans,

especially when provided with imperfect demonstrations.

• Chapter 4 provides an overview of our PbD approach and intro-

duces the components of our work.

introduction 23

• Chapter 5 describes the neighbor graph that is constructed from

demonstration trajectories provided to the robot learner. This graph

provides a framework for relating the demonstrations to one an-

other and the means for planning and active learning. The appli-

cation of dimensionality reduction provides a means for intuitive

evaluation of the graphs created.

• Chapter 6 details our approach for creating novel task plans using

the neighbor graph described in Chapter 5. Experimental trials

demonstrate that the plans created are safe, smooth, and efficient,

while following the strategy demonstrated by the teacher.

• Chapter 7 describes the learner’s active approach to detecting and

resolving conflicting information in demonstration trajectories. Specif-

ically, the learner detects situations in which demonstrations di-

verge from one another and requests advice as to how it should

plan when these areas are encountered. User trials show that this

method is effective for users with various levels of experience in

operating robots.

• Chapter 8 presents conclusions and future work, as well as a sum-

mary of the thesis.

1.6 Summary

This thesis presents a complete set of algorithms for understanding the

structure of a motion task through demonstration trajectories and plan-

ning novel trajectories for accomplishing that task. This strategy per-

mits knowledge transfer from a domain expert to a robot without requir-

ing traditional robot programming skills. Additionally, our approach

does not require perfect demonstrations of the task to be learned. In-

stead, minor errors and deviations in demonstrations are detected and

ignored by the learner, while significant conflicts between demonstra-

tions are resolved by asking for clarification advice from the teacher.

The robot is the capable of creating new plans that respect the strategies

demonstrated by the teacher. Experiments and user trials show that the

planned trajectories are safe and efficient, and are able to elide errors

24 introduction

in demonstrations without deviating significantly from the structure of

the demonstrations. Moreover, the training procedure is intuitive and

accessible for teachers with little, or no, experience operating robots.

introduction 25

26 introduction

Chapter 2

Related Work

For the most part I write myself. That is, I have the in-

nate ability to learn from experience. But this ability was

originally coded into me by my creator.

— The Librarian, Snow Crash, 1992

Programming by Demonstration has strong roots in several fields

of robotics, so we examine related techniques in each of them. Since

we are interested in learning trajectories, or plans for motion, based on

examples, this work lies between the traditional approaches in Motion

Planning and Machine Learning. Without an explicit model of the en-

vironment, most motion planning techniques cannot be directly applied

to this problem. On the other hand, some machine learning techniques

risk over-generalizing behaviors without the spatial knowledge required

to precisely determine areas of applicability, or the ability to obtain ad-

ditional information in uncertain or undemonstrated areas. PbD can be

viewed as a form of Supervised Learning, in which the learner is pre-

sented with a set of labelled training data from which it must produce a

policy. Many recent techniques also rely on teacher feedback during plan

execution or asking questions of the teacher. These Active Learners are

able improve their policy in uncertain and undemonstrated states. PbD

is not limited to learning motion trajectories. These techniques are also

useful for learning high-level, symbolic behaviors and their relationship.

These behaviors can then be assembled to perform tasks, often involv-

ing complex motions. We will pay special attention to a family of PbD

techniques that makes use of dimensionality reduction, since these tech-

niques formed the basis of our original approach to PbD.

27

Throughout the literature, a variety of terms have been used to re-

fer to Programming by Demonstration and related techniques. These

include Learning from Demonstration, Learning by Showing, Imitation

Learning, Apprenticeship Learning, and Behavioral Cloning. Extensive

overviews of the field [12] and literature reviews [4] explore these topics

more fully.

2.1 Motion Planning

Motion planning is a broad and deep field at the very heart of mobile

robotics. Although the task of learning trajectories from demonstration

could be considered a branch of motion planning, the traditional defi-

nition of this term differs significantly from what we hope to achieve.

Specifically, motion planning does not deal with learning from exam-

ples, but rather generating a plan based on knowledge of the environ-

ment. This knowledge may be known in detail at the outset, or it may

be sensed as the robot moves about. Typical examples include grid-

based planners such as A∗ and D∗ [68], as well as randomized planners

such as Rapidly-exploring Random Trees (RRT) [41] and Probabilistic

Roadmaps (PRM) [37]. Since this type of approach might be possible for

our task, we examine its applicability.

We have already argued against manual measurement and modelling

of the task workspace, but it might also be possible to demonstrate the

bounds of the workspace by teleoperating the robot itself near the limits

of safe motion. Alternatively, stereo vision or laser range-finders might

be used to model simple environments, but these sensors may fail in clut-

tered or unstructured environments, especially in the presence of small

obstacles or obstacles that occlude the view of the sensor. Even when

a model can be obtained, though, this approach offers no means to con-

vey non-geometric constraints, and it is difficult to perform safely and

completely. However, some of the seminal work in learning from exam-

ples, done by Haruhiko Asada [5, 6], uses constrained movement along

obstacle surfaces to find the important components of demonstrated con-

trol. More recent work [14] builds on this approach to learn a set of

control primitives that move between obstacle surfaces in configuration

28 related work

space. Trajectory generation then consists of combining these primitives

to form an efficient plan. This approach requires a compliant manipula-

tor, or very precise sensing and actuation. Other early work is described

by Kuniyoshi, Inaba, and Inoue [40], and tackles the entire problem from

visual recognition of human activity to symbolic dependency analysis for

ordering the subtasks.

However, we argue that a non-programmer would have difficulty de-

termining the extent of the robot’s knowledge during training and recog-

nizing when the demonstration is complete. A non-programmer would

have further difficulty expressing the task itself in this framework. Mo-

tion planners generally allow specification of only the goal position. This

should be simple to convey, but no additional constraints may be easily

specified, though a skilled programmer may be able to construct them.

The waypoint-based techniques described in Chapter 1 fall into this cate-

gory. The waypoints provide pose constraints that the robot must achieve

in the specified order, but do not specify actions between them. In prac-

tice, programmers often rely on implicit constraints provided by their

knowledge of the robot’s motion planner, and specify waypoints close

enough to one another to ensure predictable behavior between them.

Again, this technique is difficult for inexperienced users to master.

2.2 Supervised Learning

Inspiration for our approach is also drawn from the field of machine

learning. Given a set of example trajectories, there are many strategies

for generalizing the examples for a robot to perform the task, typically re-

lying on some form of interpolating or weighted blending of example tra-

jectories. The simplest algorithm is nearest neighbor: the robot simply

reenacts one of the human-provided example trajectories. We argue that

this technique is undesirable because it does not consider safety when

moving from the initial pose onto the demonstration trajectory, and it

forces the robot to reproduce all of the jitter and inaccuracy found in

the demonstrated trajectories. An extension to this technique, k-nearest

neighbor (k-NN) [7], blends the actions of k examples into a new trajec-

tory for the robot to follow. While this can smooth out some of the jitter

related work 29

or mistaken movements in individual examples, it carries the danger of

blending incompatible examples if the algorithm is not guided in some

way. Nevertheless, these simple techniques are useful as components of

more complex algorithms.

Atkeson provides an excellent survey [7] of techniques for learning

from examples. An application of these concepts is presented by Ben-

tivegna [10], using domain-specific primitives to describe training ex-

amples. Ratliff [54] attempts to learn cost functions based on features

of the provided examples. Pook and Ballard [52] use k-NN to learn

behavioral primitives that are combined using Hidden Markov Models

(HMMs). Stolle [69] uses a variety of traditional motion planning tech-

niques to quickly generate example trajectories, then uses nearest neigh-

bor to find an example applicable to a given state. The planner is invoked

again when failure is detected during execution. Similarly, Reinforce-

ment Learning techniques [65, 78] can rely on automatically computed

actions that, unlike our approach, require a model for generation.

Work by Ijspeert, Nakanishi, and Schall [32] has focused on recon-

structing a single example by blending a set of primitive basis functions.

There are some mathematical advantages to this approach, especially

if the manipulator may be perturbed during execution. Drumwright,

Jenkins, and Matarić [23] describe a method for learning similar types

of primitives. These primitives can be used for activity recognition and

classification, as well. Kaiser and Dillmann [35] exploit task knowledge

to smooth irrelevant motions from even a single example trajectory.

A significant amount of work has also been devoted to fitting multi-

ple training trajectories using various types of splines. Ude, Atkeson,

and Riley [76] used B-splines to learn joint trajectories. Lee [42] used

splines in phase space in order to fit both position and velocity. Aleotti,

Caselli, and Maccherozzi [1] used NURBS curves to learn trajectories,

relying on previous findings [70] that NURBS are optimal under certain

conditions. A multi-layered approach in this category is described by

Campbell and colleagues [13]. In this work, simple blending is used to

smooth example trajectories in identical instances of a simple reaching

task. However, a more complex procedure is used to interpolate between

different instances of the task in which the goal position is moved about

30 related work

the workspace. As in k-NN-based approaches, though, blending between

splines introduces the danger of planning through unmodelled obstacles

and reproducing undesired features of the examples. This approach also

requires careful consideration of the scale of features to be retained in

learned trajectories. Sparse spline control points may be allowable in

most parts of a task, but precise manipulation may require denser con-

trol points to produce small movements or sharp turns at other times.

These spline-based approaches, like the primitives-based approaches de-

scribed above, impose a structure that is then used to build new plans.

Although this structure may be flexible, and is sometimes generated as

part of the learning approach, it imposes representational constraints

on the trajectories that are not required by our neighbor-graph strategy.

Other approaches attempt to learn the dynamical models of the sys-

tem using Gaussian Mixture Models (GMMs) [29], Hidden Markov Mod-

els (HMMs) [16], Neural Networks [8, 51], or other statistical feedback

techniques [44]. Such models may have trouble planning in non-Markovian

spaces unless the state space is made more complex (e.g. by increasing

its dimensionality). Finding a feasible state representation can be chal-

lenging, but our neighbor graph avoids this by providing a means to en-

sure a plan is “connected” to the appropriate portions of demonstrations,

even in non-Markovian spaces.

2.3 Programming by Demonstration with Feed-

back

Robot learners do not always produce the precise behavior intended by

their teachers. Even when they are provided with high-quality examples

from which to learn, they may combine them in unexpected ways such

as interpolating two motions that travel on opposite sides of an obstacle.

Moreover, human teachers are unlikely to provide perfect examples to

the learner. Jitter and other unintended movements may appear in the

training examples, and thus be reproduced by the learner.

One solution to this problem is to ask the user to inspect the gener-

ated plan to ensure that it is safe and lacks unintended features. Ale-

otti [1] introduces such a solution: the planned path is displayed in a

related work 31

virtual environment and the user is able to edit it by clicking and drag-

ging with the mouse. Of course, this solution requires a complete model

of the environment, which is undesirable or impossible in many situa-

tions.

Dillman and colleagues have investigated similar solutions [26] that

initiate a dialog with the user to inspect and correct generated trajecto-

ries in a simulated environment. Their system also queries the user as to

symbolic constraints such as ordering between subtasks. More recently,

they have worked on subtask activity recognition [83]. Similar work by

Kang [36] used grasp recognition to segment portions of the trajectory.

Other work has used the jitter and human variability to determine

the range of obstacle-free workspace. A series of papers by Delson and

West [19–21] provides a useful insight when operating within the plane.

This approach relies on the teacher, when providing examples, to ensure

that all examples are homotopic (i.e. the path followed goes on the same

side of each obstacle in each case). Thus, only the path of the end-effector

is guaranteed collision-free, and only when the user provides the correct

set of examples. This collision-free space is used to find the shortest pos-

sible path from start to goal. A potential extension to three dimensions

is also presented [20]. Our work extends some of these concepts into

arbitrary-dimensional spaces.

If prevention of collisions is not an issue, or is handled by some other

mechanism, there may still be other reasons to allow a human teacher

to review and reject or critique robot-generated trajectories. Argall [3]

presents a method to improve upon a simple nearest-neighbor algorithm

using feedback from a human. Portions of a trajectory already executed

by the learner can be marked as bad or inefficient. The distance met-

ric used to determine neighbor trajectories is then altered to suppress

the reuse of the poor example trajectory used in that instance. When a

learner can detect its own lack of knowledge in certain areas, feedback

can be requested in the form of additional motion examples. Some of

these feedback techniques could be applied to our approach, as well, as

discussed in future work. Where Stolle [69] relied on a motion planner to

generate the new examples, Chernova [15] presents a similar technique

relying on a human, instead. In this work, Gaussian Mixture Models

32 related work

(GMMs) are used to estimate the confidence of the learned policy over the

state space. Work by Grollman and Jenkins [27], using the framework

of Mixed Initiative planning, allows the robot to indicate to the teacher

areas of uncertainty where additional examples could improve its policy.

In these cases, the uncertain (potentially non-Markovian) areas are re-

solved by asking the teacher for additional information, or allowing the

robot learner to choose among the demonstrated actions. Similarly, our

neighbor graph and bifurcation detection allow us to find areas in which

conflicting information has been provided by the teacher and to request

clarification.

Mayer [45] investigated modelling trajectory learning using fluid dy-

namics. The idea is that examples ’stir’ the fluid, inducing a vector field

of trajectories that guide the robot’s motions in a smooth way. This for-

mulation also permits subtle corrections when additional examples are

provided. The researchers also present a useful approach to pruning

unnecessary portions of the example trajectories (due to jitter or other

human inefficiency) and for decomposing examples into meaningful seg-

ments.

The learner’s performance may be further improved by incorporat-

ing feedback from the user during execution of learner-generated trajec-

tories. In this case, the problem more closely resembles reinforcement

learning, since the teacher is providing (positive and negative) rewards

at particular states during execution. The problem may be formulated

as Bayesian inference [17] or a Markov Decision Process [78], or more

frequently as a Q-learner [79], such as by Argall [3] and Bentivegna [9].

In applying reinforcement learning techniques to an implemented

system, it should be advantageous to keep in mind the social aspects of

the interaction between the teacher and the learner [43]. In addition,

Thomaz [72] offers guidance on methods that human teachers naturally

apply to guiding a learner.

2.4 Symbolic Programming by Demonstration

In addition to the low-level task of generating trajectories from examples,

other researchers have investigated higher-level forms of planning that

related work 33

reuse trajectories, or portions of trajectories, and combine them in new

ways. The primitives, or individual learned elements, can be trained in-

dividually, or extracted (manually or automatically) from more complex

examples.

For example, Atkeson and Bentivegna present [10] an air-hockey-

playing robot that learns to combine primitives such as “left hit”, “right

hit”, and “block”. These primitives are specified by the programmer and

recognized by the robot during learning. Because the robot can evaluate

the performance of each primitive toward reaching the overall goal, the

robot is capable of improving its performance of each primitive beyond

any training example provided to it. Thus, the robot is able to improve

performance beyond that of the teacher.

Lent [77] observes that manually dividing the demonstrations into

stages may be necessary for learning complex behaviors. Depending on

the stage of the task, humans may react differently to the same sensor

input. Since the stage of the task may not be directly observable from

sensor data, the teacher must specify semantic divisions in the task.

This formulation hints at the applicability of a Hidden Markov Model

for learning appropriate actions. The current stage, or primitive, is the

hidden state, while any available sensor readings may be observed. This

approach is explored by Hovland [30] in the framework of a hybrid dy-

namic system.

While these works have assumed that the primitives are specified by

the human and marked for each example, there has also been work in

which the robot learns the primitives itself. This leads to a wider field

of learning from observation in which perspective taking [73] becomes

important. This is a principle by which the robot interprets examples

from the perspective of the teacher. This strategy can help resolve am-

biguities in human demonstrations. Cynthia Breazeal and her students

have investigated methods for estimating the teacher’s belief state dur-

ing learning to facilitate perspective-taking [46]. Work in the develop-

ment of a model of working memory for robots [64] also helps establish a

framework for communication between the robot and the human teacher.

Other works separate the idea of what to do from how to do it. Iba

and colleagues present [49] a method for learning both the task and the

34 related work

low-level behavior necessary to perform it. Iba’s dissertation [31] de-

scribes the human-robot interaction necessary for an unskilled user to

both teach behaviors and combine them into new task skills.

However, additional example trajectories do not simply increase the

knowledge at their initial location. The new trajectories will traverse ad-

ditional portions of the configuration space, providing the learner with

examples of desired behavior in these areas, some of which may be previ-

ously unvisited. In many domains, it is advantageous to choose examples

which will maximize the unknown areas visited by each example so as

to gain as much new information as possible from each teacher demon-

stration. The active optimization problem of maximizing the value of

each new example while limiting the total number of examples has been

studied in some depth [47,53]. In our domain, decision-tree-based meth-

ods [15,58] have had some success in guiding learners.

2.5 Dimensionality Reduction

A particular strategy for programming by demonstration that has re-

ceived some recent interest is dimensionality reduction [25]. This tech-

nique involves computing a mapping from some high-dimensional input

space to a lower-dimensional space in which learning is simplified. This

is important even when the input space is simply the joint positions of

the robot arm itself: a seemingly minimal representation. However, re-

dundancy and unused degrees of freedom can complicate the learning

procedure, and there is typically structure in the motions of a task that

can be captured by a low-dimensional embedding.

The advantages of this approach are most obvious in situations in

which the dimensionality of the input space is large. In fact, this is an

important step in most works that use human motion capture to train

robotic manipulators. Motion capture may use dozens of visual mark-

ers on the human body, inertial sensors, or even low resolution images

directly from the vision system. These systems may be used to train a

robot with six or fewer degrees of freedom. If only the end effector posi-

tion is to be learned, there must be a mapping from the motion capture

examples to a lower number of dimensions used for control while pre-

related work 35

serving necessary information. The search for this mapping is known as

the correspondence problem [18], and is important even in understand-

ing how humans and animals recognize and learn from biological mo-

tion [55]. Schaal, Ijspeert, and Billard present [59] an excellent survey

of techniques and formal frameworks for establishing a correspondence

between a learner’s available actions and the teacher’s demonstration.

Dimensionality reduction may be equally useful, though, even when

the input space is equivalent to the command space for the robot. That

is, even if the training data consists of teleoperation commands (or po-

sitions) for the robot itself, learning may be improved by discovering an

intrinsic mapping of robot position to a space with lower dimensionality.

When successful, this technique eliminates much of the noise or jitter

that distinguishes the examples because the lower-dimensional space

lacks the degrees of freedom to represent all of the uncorrelated jitter

across trajectories. However, small movements of the same order of mag-

nitude as the noise, but which are necessary for the task, are preserved

through the mapping because they will appear in all examples. In con-

trast, alternate smoothing procedures that examine a single trajectory

at a time cannot determine which small-scale features are shared across

examples.

One promising technique for establishing this low-dimensional map-

ping is ST-Isomap [34,50], an extension of the original Isomap algorithm

[71] for handling spatio-temporal (time-series) data. This approach has

also been extended to include both position and other sensor data as

input on the Robonaut platform. The result is used to distinguish be-

tween successful and unsuccessful teleoperations of a given task [50].

When used with pre-segmented examples, the technique can help build

a library of motion primitives [23,33] for use in constructing higher-level

skills. The insights of Isomap and ST-Isomap helped guide the work of

this thesis, and are explored more fully in Chapter 3.

Another technique used on Robonaut was briefly mentioned earlier

in [13]. A technique originally developed in the graphics community,

known as Verbs and Adverbs [56], is used to represent actions, or verbs,

in a low dimensional space. Adverbs are used to parameterize specific

features of the action, such as the final position of the end effector. The

36 related work

adverbs affect the mapping of learned behaviors back to control space.

Like the symbolic approaches described in Section 2.4 or the primitive-

based approaches in Section 2.2, this technique involves an intermediate

representation that constrains portions of the demonstrations and plans,

and organizes them into categories. This use of categories is a trade-

off. If the categories are not well-chosen, certain trajectories cannot be

faithfully represented in this system. However, by grouping portions of

trajectories into qualitatively similar categories, planning by interpola-

tion within a single category may be simplified due to constraints on the

demonstrations that belong to a single category. This could have bene-

fits when trying to detect an objective function being optimized by the

demonstrations, as described in our future work.

2.6 Summary

Programming by Demonstration is an effective approach for conveying

skills to a robot learner, and much work has been devoted to the use of

these techniques for teaching motion skills. Various techniques based on

Supervised Learning are used to relate multiple task demonstrations to

one another and to imitate the behavior of the teacher. Dimensionality

reduction provides an intriguing method for representing the correspon-

dences between examples such that unwanted noise is reduced. This the-

sis extends previous work in this area to produce smooth plans consistent

with provided demonstrations. Other critical issues addressed by PbD

techniques include the generalization of learned behaviors to undemon-

strated and uncertain areas and incorporation of additional feedback

from the teacher beyond an initial set of demonstrations.

Behaviors are typically generalized through blending similar demon-

strations. This entails the (usually implicit) assumption that all the

blended demonstrations are compatible, that is, that they represent the

same strategy. This assumption is made explicit in one work [20], which

requires the user to assert that all example trajectories are homotopic.

This helps ensure that the plans generated by the learner safely avoid

obstacles in the environment. In this thesis, we introduce algorithms to

automatically distinguish examples that may be safely interpolated.

related work 37

Additional feedback from the teacher can provide correction to the

learner’s behaviors or additional confidence in uncertain areas. This

feedback may take the form of scores or corrective suggestions to plans

or portions of plans generated by the learner. Feedback may be initiated

by the teacher or solicited by the learner if it is able to determine parts

of the state space in which it has insufficient or inconsistent examples.

Similarly, the learner presented in this work detects areas of diverging

strategies in the demonstration trajectories, and requests clarifying ad-

vice from the teacher.

38 related work

Chapter 3

Background: Dimensionality Reduction

You have been scanned, assessed, understood, Doctor.

Your limits and capacities have been extrapolated.

— Supreme Dalek and Cyber Leader,

“The Pandorica Opens”, Doctor Who, 2010

Dimensionality reduction is a useful technique in many learning set-

tings, including programming by demonstration. Although data may be

naturally presented to a learning algorithm in a high-dimensional space,

features relevant to the problem at hand may occupy only a few (often

linearly separable) dimensions. Removing irrelevant information and

creating a simpler representation of data can help us understand how

best to make use of the information presented.

In this chapter, we provide some background on the dimensional-

ity reduction problem and its potential application to time-series data.

Next, we discuss our PbD system for learning and planning in reduced-

dimensionality spaces. Finally, we identify some problems inherent to

this approach and consider alternate strategies.

3.1 General Technique

Dimensionality reduction is a general class of techniques for finding

a new representation of data, generally in a lower-dimensional space,

while retaining its essential characteristics. This mapping to the new

space is known as an embedding, though the term can also refer to the

new representation of the data itself. The new space is known as a latent

space, because it is inherent to the data.

39

Figure 3.1: The Swiss roll dataset in three dimensions, and the two-
dimensional embedding discovered by Isomap. Blue lines represent
neighbor links used to determine geodesic distances.

Despite its name, dimensionality reduction does not always require

that the embedding reduces the number of dimensions; in some cases,

the data is simply transformed in order to produce a representation that

emphasizes certain qualities. For example, linear embeddings such as

Singular Value Decomposition (SVD) [39] create a new set of orthonor-

mal basis vectors. SVD orders these vectors so that decreasing propor-

tions of the variance in the data is contained in each subsequent dimen-

sion. Thus, simply ignoring the highest dimensions of the transformed

data does not lose much information, but allows a simpler representa-

tion.

Global linear transformations create a new representation of the orig-

inal space, but other techniques can discover latent spaces tuned more

specifically to particular dataset within these spaces. For example, Isomap [71]

seeks to discover lower-dimensional manifolds within higher-dimensional

data. This algorithm assumes that the relationships between nearby

(neighboring) points are significant, and attempts to preserve distances

between them. Points that are distant in the original space are related

not by the linear distance separating them, but by the distance through

sets of neighboring points. Isomap thus builds a neighbor graph re-

lating the data and calculates geodesic distances between all pairs of

points. The geodesic distance between two points is the shortest dis-

40 background: dimensionality reduction

Algorithm 3.1 Isomap
1: function Isomap(pts, ε)
2: ⊲ Construct neighbor graph
3: Graph GN

4: for all i ∈ pts do

5: for all j ∈ pts do

6: if Distance(i, j) < ε then

7: GN (i, j)← Distance(i, j)
8: else

9: GN (i, j)←∞

10: ⊲ Compute all-pairs shortest paths
11: Graph GD

12: for all i ∈ pts do

13: GD[i]← Dijkstra(GN , i)

14: ⊲ Create embedding
15: Points y
16: λ, v ← Eigs(GD) ⊲ Sorted in decreasing order
17: for all i ∈ pts do

18: for all p ∈ 1..pts.dimension do

19: y[i][p]←
√

λ[p]v[p][i]

20: return y

tance through the graph, where distances along neighbor links are cal-

culated using a conventional distance metric (e.g. Euclidean). The em-

bedding preserves these pairwise distances as best as possible in a lower-

dimensional space.

Isomap is frequently illustrated using the Swiss roll dataset in Figure 3.1.

The data consists of a plane “rolled up” in three dimensions. We say

that the data is intrinsically two-dimensional, but is embedded in three

dimensions. The Isomap algorithm is able to recover the intrinsic rep-

resentation through the procedure detailed in Algorithm 3.1. First, the

neighbor graph GN is constructed with links between nearby points. The

Isomap variant listed here, called ε-Isomap, uses the parameter ε as

a distance threshold for considering two points to be neighbors. Alter-

background: dimensionality reduction 41

nately, K-Isomap uses an integer parameter k, such that the k points

closest to each point are linked in the neighbor graph. In either variant,

distances between non-neighboring points are set to ∞ in GN . Next, a

complete graph GD of geodesic distances is computed from the neigh-

bor graph. In the listing above, the algorithm computes one row of the

distance graph at a time by using Dijkstra’s single-source shortest path

algorithm [22]. Finally, it calculates the eigenvectors v of the distance

graph, and new coordinate vectors y, which correspond to the original

points pts in a new Euclidean space. The first d dimensions of this space

provide the d-dimensional embedding that best preserves the distances

in GD.

Returning to the Swiss roll example, we see that the “unrolling” of the

intrinsically two-dimensional data depends on the creation of a proper

neighbor graph. This graph should provide geodesic distances (in the

original high-dimensional space) that closely approximate the Euclidean

distances between points in the low-dimensional latent space. Thus, the

value of the parameter ε or k is critical. If this value is too large, neighbor

links will be formed between layers of the swiss roll. The effect of this

problem is explored later in Section 3.4.

3.2 Trajectory Embedding

Dimensionality reduction is typically used in Programming by Demon-

stration to deal with the correspondence problem [18] between high-

dimensional training data (such as human motion capture) and low-

dimensional controls (such as dexterous arm joint angles). When kines-

thetic demonstrations are used, the training data is collected in the robot’s

control space. However, finding an intrinsic low-dimensional represen-

tation of the data is still attractive, as it accentuates commonality among

multiple training examples, and eliminates much of the noise (due to im-

perfect sensors) and jitter (due to imperfect human motion) that need-

lessly distinguishes them. Smoothing is achieved because the lower di-

mensionality space lacks the degrees of freedom to precisely represent

every aspect of the example trajectories. Thus, the high frequency noise

is eliminated while the features common to all examples are emphasized.

42 background: dimensionality reduction

This strategy is to be favored over other techniques that smooth single

trajectories at a time by removing high-frequency or low magnitude vari-

ations. Although neither approach requires domain knowledge for its ap-

plication, dimensionality reduction is able to preserve features common

to many trajectories, even at the same magnitude as the noise, because

it operates on all the trajectories at once, recognizing and preserving

common features.

In addition, we expect that most motion tasks are inherently low-

dimensional. A single trajectory is a linear sequence of points. The po-

sitions of these points may be recorded in a configuration space of arbi-

trary dimensionality, but a single dimension, time, is sufficient to specify

a particular element in the trajectory. Additional demonstrations of the

same motion introduce some variation. If these demonstrations are con-

strained (or scaled) to the same period of time, then we can examine the

variation between examples at any given point in the time dimension.

Conceptually, this representation of the collection of demonstrations is

an embedding in two dimensions: time and variation between demon-

strations. Experiments conducted during our own early work, as well as

by other dimensionality-reduction researchers [74], indicated that two

dimensions were usually sufficient to represent manipulation tasks oc-

curring in six to eight dimensions.

Spatio-Temporal Isomap (ST-Isomap) [34], is an extension of the orig-

inal Isomap algorithm that exploits the structure of time-series data.

Instead of simply treating the input data as a collection of points, ST-

Isomap attempts to account for relationships between subsequent points

in a single trajectory (temporal neighbors), and similar points in differ-

ent trajectories that correspond to one another (spatio-temporal neigh-

bors) by decreasing the perceived distance between these types of neigh-

bor points. Figure 3.2 illustrates some embeddings of trajectories that

traverse the Swiss roll dataset. The knowledge that the points are con-

tained within trajectories provides some prior information to help build

neighborhoods for each point. Points are connected to their predecessors

and successors, but not to more distant (in terms of time) points within

their own trajectory, even if they are nearby in three-dimensional space.

This use of trajectory information often permits dimensionality re-

background: dimensionality reduction 43

(a) (b)

Figure 3.2: Embeddings of trajectories traversing the Swiss roll mani-
fold. (a) Trajectories with a small amount of jitter constrained to the 2D
manifold. (b) Trajectories with 3D noise added and the neighbor links
(blue) used for dimensionality reduction.

duction to reorganize data in a structure more conducive to planning.

The slalom dataset shown in Figure 3.3(a) could present a challenge

for many PbD techniques in its original representation. The ST-Isomap

embedding does not change the dimensionality of the data, but reorga-

nizes it to make planning much easier. Finally, a good dimensionality

reduction technique is capable of smoothing jitter and noise in trajecto-

ries without removing significant common features of the same order of

magnitude. This is especially important for areas of application such as

tight-tolerance assembly work.

Planning in a low-dimensional latent space is attractive because the

arrangement of trajectory points in this space should have semantic

meaning. Since the dimensionality reduction algorithm attempts to pre-

serve distances between neighboring points (precisely those points that

we declare to be semantically similar) the latent space provides a repre-

sentation of the trajectories inherent to the task itself. For example, the

trajectories of Figure 3.3(a) cross over themselves in workspace, but are

“unrolled” in the latent space (Figure 3.3(c)). The start and goal points,

previously close to one another, are now at opposite ends of the horizontal

axis. Thus, this dimension represents progress through the task, while

44 background: dimensionality reduction

(a)

Figure 3.3: The slalom dataset, shown to the left,
exemplifies the strength of the ST-Isomap algorithm.
The trajectories begin and end at the bottom of the im-
age, and cross left and right as they move to the top of
the image and back to the bottom. The Isomap em-
bedding in (b) suffers from an inability to distinguish
different parts of the trajectories when they cross one
another. The ST-Isomap embedding in (c), however,
presents an intuitive representation in which the hor-
izontal axis approximates time, and most of the vari-
ation between examples is in the vertical axis. The
abrupt vertical jumps within trajectories are likely ar-
tifacts due to the discrete nature of the neighbor rela-
tionship between trajectories.

(b) (c)

the vertical dimension separates distinctions between demonstrations.

Trajectories cross one another in the latent space as they move closer

and farther from one another in the original space. Planning through

this space would seem to be intuitive since movement in each direction

has a semantic explanation. However, noise in the neighbor links does

produce some artifacts in the embedding. When neighbor links between

pairs of trajectories appear and disappear over time, discontinuities in

the vertical dimension of the latent space appear. As discussed in the

next section, this causes similar discontinuities in plans produced in this

space.

To illustrate the various dimensionality reduction techniques intro-

duced so far, we introduce a simple example task for creating high-dimensional

trajectories. The Barrett WAM 7-DOF dexterous arm shown in Fig-

background: dimensionality reduction 45

(a) (b)

Figure 3.4: The robot (a) was used to reach out and contact each of the
targets placed on the car bumper (b). The resulting trajectories will be
used to illustrate dimensionality reduction techniques.

ure Figure 3.4(a) was used to demonstrate a reaching task depicted in

Figure 3.4(b). When the arm is operated in gravity-compensation mode,

it can be easily moved by hand. We recorded the position of all seven

joints during a contrived task, in which the teacher was asked to stretch

out the arm to touch 3 nearby points, with the end-effector in a differ-

ent orientation each time. Figure 3.5 shows the two-dimensional singu-

lar value decomposition (SVD) projection of several example trajectories

demonstrated by a human operator. The blue traces in the plot show

the first two dimensions of the example trajectories after SVD transfor-

mation. We operate in joint space because the arm is redundant, and

we should be able to distinguish between different configurations that

result in the same end-effector pose.

Examining the SVD projection in Figure 3.5, we see that the trajecto-

ries are grouped together well, but different portions of the trajectories

overlap. Since touch points 1 and 3 are close in the workspace, they also

appear close in joint space, even though the points are always visited

at different times during the execution of the task. This can complicate

planning since the joint angles alone do not provide enough informa-

tion to determine the desired motion to execute. Thus, the task in non-

Markovian with respect to configuration space. The two-dimensional

embedding created by conventional Isomap (Figure 3.6(a)) stretches most

46 background: dimensionality reduction

Figure 3.5: The 2D SVD projection of sample trajectories represented by
thick blue lines. The thin red lines represent neighbor links determined
by ST-Isomap. A planned path is shown by the larger, green squares.

of the examples so that they do not overlap, but still does not provide a

suitable space for planning, because the final position of one of the tra-

jectories is far removed from the others and the touch points are not

well-distinguished.

The neighbor assignment mechanisms used by ST-Isomap (repre-

sented by the red lines in Figure 3.5) help to overcome the problems of the

previous two techniques. The ST-Isomap embedding in Figure 3.6(b) is

able to distinguish between points in different parts of the task, and the

initial and final positions of all examples are reasonably well grouped.

The non-linear embedding has transformed a non-Markovian joint space

into a Markovian latent space. This provides a more useful representa-

tion for planning since all trajectories follow similar courses through the

embedding space and the separation between them is a representation

of the inherent variations between examples.

background: dimensionality reduction 47

(a) (b)

Figure 3.6: The two-dimensional embeddings created by (a) Isomap and
(b) ST-Isomap.

3.3 Planning and Executing

Having constructed a low-dimensional latent space, we can now con-

sider using it to create plans. Of course, trajectories created in this

two-dimensional space must be transformed to the seven-dimensional

configuration space before they can be executed on the robot. However,

there is no unique mapping between points in these spaces. Instead,

individual points in the planned path must be lifted to the original high-

dimensional space. This can be accomplished using the Delaunay trian-

gulation [11] (see Figure 3.7 of the points in two-dimensions). For any

query point in the plane, the enclosing triangle is found. Although the

vertices of this triangle may not be joined by neighbor links, their prox-

imity in the embedding corresponds to their geodesic distances. Thus,

we expect the points to be quite close in the neighbor graph. The barycen-

tric coordinates of the query point within the triangle are used as weights

to interpolate between the points corresponding to the triangle vertices

in the original space. It should be noted that the mapping from the

planning space to the original space is naturally a one-to-many map-

ping. However, since the correspondence between points in the planning

space and the original points in the higher dimensional space is known,

interpolation ensures that the range of the query point is in the correct

region of the configuration space. However, this method is reliable only

48 background: dimensionality reduction

Figure 3.7: The Delaunay triangulation of approximately 1300 points in
6 example trajectories from a 7 dimensional configuration space. The
ST-Isomap embedding is shown in Figure 3.6(b).

for query points that lie within the triangulation of the points of the ex-

ample trajectories. Fortunately, this is precisely the area in which we

can be confident executing novel plans. Points outside the triangulation

must be outside the planned regions, and thus represent extrapolations

outside the demonstrated area of the configuration space.

A similar method may be used to map points in the other direction,

from the configuration space to the planning space. This mapping is

required to query the plan for an action to perform at a given configura-

tion. Again, the query point should lie within the collision-free area of

the space. Using the correspondences already known between points in

both spaces, we again interpolate between neighbors found in the con-

figuration space. These neighbors may be found through conventional

nearest-neighbor approaches, though knowledge of the task structure

may help resolve ambiguities. For example, if the task always begins in

the same region of space, the neighbors for an initial query may be fixed

as the set of initial points from demonstration trajectories.

background: dimensionality reduction 49

(a) (b)

Figure 3.8: A single spurious neighbor link can have a substantial effect
on the quality of the embedding. (a) The 3D Swiss roll with significant
noise added. A naïve neighbor-finding technique creates a spurious link
across layers of the roll. (b) The resulting embedding.

Dimensionality reduction also offers a convenient metric for the qual-

ity of the embedding produced. For tasks that are inherently two-dimensional,

we expect a low residual variance, the portion of the variance within the

dataset that is lost by the embedding. This measure is typically used

to compare embedding algorithms because, given identical data points

and neighbor graph as input, the algorithm that produces a lower resid-

ual has the better embedding. However, if we apply the same algorithm

to a dataset with multiple neighbor graphs, the residual represents the

quality of the graph. The neighbor graph that best captures the inherent

two-dimensional structure of the data will produce the lowest residual.

Section 5.4 presents residuals for some task embeddings.

3.4 Inherent Difficulties

Unfortunately, these and similar approaches to dimensionality reduc-

tion are particularly susceptible to errors caused by spurious neighbor

links. While these algorithms are robust to even a large number of false

negatives (that is, neighbor links missing where they should be present)

even a single false positive link can have disastrous effects on the em-

50 background: dimensionality reduction

bedding [74]. Spurious neighbor links create “short circuit” connections

between unrelated portions of trajectories, thus lowering the geodesic

distances between points in these semantically distant regions. Conse-

quently, the embedding algorithms try hard to retain the proximity of

these regions in the low-dimensional latent space, a space in which dis-

tance should have semantic relevance.

Additionally, lifting a novel trajectory from the latent space is likely

to produce second-order discontinuities. Unfortunately, a non-linear em-

bedding algorithm such as Isomap does not guarantee smoothness of

lifted trajectories, even when points are densely sampled from a smooth

latent-space trajectory. This is because the neighbors used to interpo-

late a lifted point are a small subset of the nearest points from the ex-

ample dataset. Two points may be arbitrarily close in the latent space

while still having different nearest neighbors. Although we expect these

neighbors to be linked in the neighbor graph, they are not necessarily

close in the original space, so discontinuities result. Moreover, because

the dimensionality reduction is not injective, there can be ambiguities

in lifting a point from the planning space back to the original space.

That is, multiple regions of the configuration space can map to the same

regions of the lower-dimensional planning space. These problems are

actually exacerbated as additional example trajectories are provided to

the learner. More examples produce a more cluttered latent space with

more interconnections between neighbor points. This creates additional

opportunities for discontinuities in lifted trajectories. Clearly, decreas-

ing performance with an increasing amount of information is not a de-

sired attribute of a planner.

Chapter 5 describes our neighbor-finding technique, which improves

upon ST-Isomap in representing the semantic structure of trajectory

data. Although this approach mostly avoids the problem of spurious

neighbor links through successful use of heuristics, it is still susceptible

to the discontinuities and ambiguities of lifting from a low-dimensional

space. The discontinuity problem is clearly illustrated in one of our ex-

perimental domains: the wire maze. The experimental setup is pictured

in Figure 3.9. Participants were asked to guide a 7-degree of freedom

Barrett WAM arm through a wire maze. Kinesthetic demonstrations

background: dimensionality reduction 51

Figure 3.9: The WAM manipulator traversing a wire maze. The 2-D
barcode in the lower-left is a visual fiducial used to detect the location of
the rig relative to the robot.

Figure 3.10: Traces of the end-effector position while traversing the wire
maze, shown in the workspace (left) and in the reduced dimensionality
space (right). The light blue trace is a naïve plan created in the reduced
dimensionality space, then lifted to the original workspace.

were performed by placing the arm in a passive gravity-compensation

mode, a state in which the arm responds to physical manipulation, but

otherwise holds its position. Figure 3.10 displays workspace traces of

six demonstration trajectories (in purple) from one of the participants,

beginning at the green points near the bottom of the image and end-

ing at the red points. The latent space embedding created by our algo-

rithm is shown on the right. As expected, this embedding essentially

“unrolls” the trajectories, stretching them out so that task time, or pro-

52 background: dimensionality reduction

gression through the maze, occurs from left to right on the horizontal

axis. The vertical axis provides a dimension for variation between ex-

amples. Again, vertical discontinuities appear in the embedded demon-

strations due to noise in the neighbor graph. A few missing links be-

tween nearby demonstration trajectories will cause increased geodesic

distances between points in these trajectories, and force them away from

one another in the embedding. The blue line in this image represents

a candidate plan, created as a series of line segments stretching from

the start to the goal in the latent space. When this plan is lifted back to

the original workspace in the left image, discontinuities result. These

discontinuities are especially evident in some of the areas of horizontal

motion near the center of the maze: vertical zig-zagging motions appear

in the plan where none are present in the demonstrations. Although a

post-processing step could be applied to smooth the planned trajectory,

this approach should be avoided. Although the zig-zagging discontin-

uous plan is undesirable, it is not clear that a smoothed version will

follow the nuances of the demonstration trajectories. Instead, we must

consider a new approach to planning that directly produces useful plans

in the target space. In Chapter 6, we present a planning algorithm that

operates directly over the neighbor graph, thus avoiding the difficulties

of the latent space.

3.5 Summary

Dimensionality reduction is a powerful technique for discovering the in-

herent structure of high-dimensional data and representing it in a more

intuitive manner. In addition, the structure provided by the prior knowl-

edge that a collection of points actually represent a series of trajecto-

ries can greatly assist general-purpose dimensionality reduction algo-

rithms, allowing them to create embeddings apparently well-suited to

planning. Unfortunately, small errors such as a single spurious neigh-

bor link can upset this embedding, and trajectories created in the latent

space require post-processing after transferring to the original space.

For these reasons, dimensionality reduction appears to be ill-suited for

Programming by Demonstration. However, the structure constructed by

background: dimensionality reduction 53

the trajectory neighbor-finding still provides useful semantic informa-

tion about the demonstration trajectories and the space they occupy. In

future chapters, we will develop an approach to Programming by Demon-

stration that makes use of these neighbor relationships to develop an

understanding of demonstrations provided by a human teacher and to

plan novel trajectories.

54 background: dimensionality reduction

Chapter 4

Approach

Just what do you think you’re doing, Dave? Dave, I really

think I’m entitled to an answer to that question.

— HAL 9000, 2001: A Space Odyssey, 1968

4.1 Overview

This thesis proposes an algorithm allowing a robot, such as a manipu-

lator arm, to learn to perform kinematic movement tasks through un-

modelled space. The robot learner will observe example trajectories per-

formed by the teacher and ask clarifying questions as necessary, then

generalize those examples to plan novel trajectories that are safe and

respect the constraints contained within the examples.

Our approach to programming by demonstration begins with a collec-

tion of example trajectories. In this work, we create example trajectories

using kinesthetic demonstrations. That is, the teacher directly manipu-

lates the robot to move it through the task. Other PbD approaches may

operate on trajectories created by another agent, such as motion capture

of humans performing the task. However, these approaches must con-

tend with errors introduced by sensing. Additionally, there is the prob-

lem of finding correspondences between the different kinematic models

of the teacher and the learner. Kinesthetic demonstrations avoid these

possible sources of error.

Our neighbor-finding algorithm provides structure to the example

trajectories by constructing a neighbor graph connecting discretely sam-

pled points between examples. Because human demonstrations are im-

55

perfect, the learner will need to resolve inconsistencies, imperfections,

and noise in the example trajectories. A collection of heuristics is able

to resolve these problems by analyzing relationships between sample

points.

When learning is complete, the robot is capable of planning new paths

that safely execute the task demonstrated by the teacher. We do not

learn a policy because the space in which the learner operates (config-

uration or workspace) tends to be non-Markovian. That is, the same

areas of the planning space may be visited more than once during the

execution of the task, and different actions must be executed each time.

Instead, new plans are created by following the neighbor graph and in-

terpolating between nearby points. Interpolation allows new plans to

smoothly follow the strategy demonstrated by the teacher, but to avoid

jitter and other inconsistent movements that would be duplicated if the

agent simply followed an example trajectory.

Finally, some areas of conflicting information, namely bifurcations,

in the neighbor graph, require additional advice from the teacher. In

these cases, the learner requests clarification by asking the teacher which

branch is preferred. In our approach, the learner generates and per-

forms trajectories following each branch of the bifurcation and asks for

the teacher’s preference.

4.2 Neighbor Graph

The neighbor graph is created to provide a structure, revealing relation-

ships between configurations visited by the robot during the training

process. This structure provides a means for the learner to understand

the task at hand by connecting similar portions of the task demonstrated

in multiple trajectories. It also provides a framework in which to plan

novel trajectories by interpolating between neighboring example points.

More formally, a trajectory is represented as a sequence of points tra-

versed by the robot. A demonstration trajectory consists of points sam-

pled from the path the robot traversed while under the control of the hu-

man teacher. We sample points at a regular distance interval along the

path, as this allows us to control the size of features represented in tra-

56 approach

jectories at the cost of computational speed and storage space. A teacher

provides multiple demonstrations of the motion task to be learned, and

these demonstrations are combined to form the neighbor graph.

In terms of notation, individual trajectories will be represented by

lowercase variables, and ordered collections of trajectories will use up-

percase. In both cases, zero-based array indexing is used to refer to

points: t[i] refers to the ith point in trajectory t, and T [i] refers to the

ith point in a concatenation of all the points in the trajectories in T . The

typical double-bar norm denotes the number of points in a trajectory or

collection, while the single-bar norm denotes the number of trajectories

in a collection. Subscripting is used to refer to a trajectory within a col-

lection. So, the equation:

‖T‖ =

|T |−1
∑

i=0

‖Ti‖

states that the number of points in the trajectory collection, T , is equal

to the sum of numbers of points in each of the trajectories it contains.

The neighbor graph is a weighted, directed graph formed by connect-

ing nearby points within and between trajectories. The vertices of this

graph consist of all the points in all of the demonstration trajectories.

The edges, or neighbor links, connect these points and fall into two cat-

egories: intra-trajectory links La, and inter-trajectory links Le. In both

cases, the edge weights are defined by an appropriate distance metric

between the two points; in the 3-dimensional workspace illustrated in

this work, we use Cartesian distance.

The set of intra-trajectory edges is formed by linking subsequent

points within each individual trajectory. Since a weighted graph edge

can be defined as an ordered triplet of source vertex, destination vertex,

and weight, the intra-trajectory edges may be defined by:

La =

|T |−1
⋃

i=0

‖Ti‖−1
⋃

j=1

{(Ti[j − 1], Ti[j], dist (Ti[j − 1], Ti[j]))} (4.1)

The second set of edges, those linking similar points between tra-

approach 57

jectories, are more complex, and are the focus of Chapter 5. Although

inter-trajectory links are symmetric, we use directed edges for consis-

tency with intra-trajectory links, which are ordered by time. We simply

add one edge in each direction for entries in Le. Using standard graph

notation, the neighbor graph, G, is then defined by the combination of

the trajectory collection T and the adjacency list, or list of edges L, which

is the union of La and Le.

G = {T, L}

= {T, La ∪ Le}

The inter-trajectory links, Le, are based on each point’s nearest neigh-

bors in configuration space, but several heuristics are applied to en-

sure that these links connect points representing similar locations in

task space. That is, the points should occur during semantically similar

times during the execution of the task. The heuristics used are primar-

ily based on the types of imperfections expected to be present in human

demonstrations. For instance, even when a human attempts to produce

a smooth arc, jitter in the person’s movement (or noise in the robot’s sen-

sors) will produce undesired deviations from the nominal curve. Larger

imperfections such as false starts, retracing previous actions, and unin-

tentional divergences create imperfections in the examples that the robot

should not follow. Rather than asking the teacher to mark or edit these

undesired sections of demonstration data or, worse, throwing out the

entire demonstration, our neighbor-finding heuristics allow the learner

to detect and cope with these problems. The nearest-neighbor graph

provides an estimate of which sections of other example trajectories cor-

respond to these problem areas because such sections will have few (if

any) neighbor links joining them to other demonstrations. When new

plans are created, the undesired deviations are ignored, and the learner

follows the nominal behavior.

Although many of the imperfections that the learner is attempting

to avoid may appear as noise or unnecessarily long routes between two

points, path smoothing and other forms of optimization are not viable

approaches for cleaning up demonstration trajectories. There is no sin-

58 approach

gle objective function applicable to all tasks. A small deviation from a

straight-line path may appear to be caused by jitter, but if this deviation

occurs in all demonstrations, the learner should consider it a necessary

behavior in newly planned paths. Likewise, the learner should not at-

tempt to plan shorter paths, even when it is certain that no obstacles are

present. Non-geometric constraints, or other concerns, may have influ-

enced the teacher’s choice of paths. Following the example trajectories

is the only way to optimize for the unknown objective that the teacher is

demonstrating. However, we are able to improve upon individual exam-

ples by understanding the correspondences between multiple examples.

Deviations that appear in only one example end up being uncorrelated

to others in the neighbor graph, and so are likely to be mistakes. Es-

sentially, the neighbor graph allows us to interpolate between the best

portions of all the example trajectories.

4.3 Planning

Planning is performed by following the neighbor graph through time, in-

terpolating the behavior of the teacher by interpolating between nearby

trajectories. The neighbor graph described in the previous section tries

to ensure that neighboring portions of trajectories actually represent the

same portion of the task, and are not merely close to one another in a

non-Markovian state space. Furthermore, imperfections in demonstra-

tion trajectories are avoided since they are not strongly connected in the

neighbor graph.

A plan, like a demonstration, is a sequence of points that can be tra-

versed by the robot. However, a plan is created by the robot learner, not

demonstrated by the teacher. A plan begins in the start region, which

is an area of space inside the convex hull defined by the initial points

of demonstrations. Since the planning algorithm relies heavily on inter-

polation to safely execute the task, it should be unsurprising that plans

must start at a location that can be found by interpolating the starting

points of demonstrations. Similarly, the goal, or endpoint, of a plan is

defined by proximity to the final points in demonstrations. However, all

demonstrations may not end near one another, for reasons described in

approach 59

the next section, so a single goal region cannot be easily defined. Instead,

the termination criterion for planning will be described in Chapter 6.

Given a query point and its neighbors in the demonstration set, the

(possibly weighted) average of the actions performed during demonstra-

tion is used to project the query point forward. Next, gradient ascent is

used to adjust the location of planned point. This ensures that the plan

follows dense clusters of demonstrations. Finally, new neighbors are cho-

sen by advancing the previous neighbors along the neighbor graph, se-

lecting those neighbors that are close to the newly planned point.

Since plans are always created by interpolating between example

points, some assurance of obstacle avoidance is provided by this algo-

rithm. However, undetected bifurcations in the example trajectories, or

other issues, may compromise the safety of this method. However, the

absence of geometric obstacles is determined given a model of the robot

and the demonstration trajectories. For each configuration visited by the

robot during demonstration, the swath of workspace that it occupies is

determined by forward kinematics. By accumulating all these swaths

in a discretized occupancy grid, the safe areas of the workspace can be

determined. The planner consults this occupancy grid to ensure that

planned paths do not move the robot into unknown regions. If a planned

point is placed in an unsafe region, the point is shifted into the nearest

safe region.

Although safety is a hard constraint, additional trajectory objectives,

or soft constraints, may be considered to influence the generation of new

trajectories. For example, if smooth trajectories are desired, changes

in path curvature should be limited. To improve robot efficiency, path

length may be minimized. As noted earlier, though, these objectives

are not necessarily universal to all tasks, and should only be applied

when the task warrants. Another possible objective that is not achiev-

able with our approach is jitter or random motion that is uncorrelated

between demonstration trajectories, but required for a particular task.

For example, the path followed by a downhill skier weaves back and forth,

transverse to the primary direction of motion. The weaving motions may

be uncorrelated between demonstrations, but should not be averaged.

Similar situations may arise in robotic manufacturing applications, for

60 approach

example, when small parts must be jostled to ensure they do not stick

together. Correctly handling intentional randomization is reserved for

future work.

4.4 Active Learning

While the learner’s goal is to produce trajectories that mimic the be-

havior of the human teacher, we must recognize that the example tra-

jectories are not perfect. We have already discussed how the neighbor

graph can be constructed despite noisy examples and inefficiencies in

the example paths. In some cases, though, the teacher may provide the

learner with conflicting information. That is, example trajectories may

perform qualitatively different actions in the same, or similar, states.

These different actions divide the demonstration trajectories into two

or more strategies: collections of demonstrations that perform the mo-

tion task by following qualitatively similar paths. Although this situa-

tion often indicates hidden variables distinguishing apparently identi-

cal states, the robot may not be capable of sensing (or algorithmically

processing) that information. Alternately, the teacher, being imperfect,

may have inadvertently provided the learner with conflicting examples.

Whatever the cause, the learner should resolve its own uncertainty by

asking the teacher what to do when it reaches the conflicting situation.

The importance of proactively resolving these ambiguous states is

demonstrated by considering the behavior of a planner lacking any addi-

tional information. For instance, in a task in which an obstacle appears

in the middle of the workspace, a teacher may provide some demonstra-

tions that travel to the left of the obstacle and some to the right. These

trajectories may be densely linked in the neighbor graph prior to the ob-

stacle, but will split into two clusters to avoid it. At this point, the plan-

ner is faced with the choice of which branch to follow. A naïve approach

may simply rely on safety constraints to force the robot into one branch or

another. The behavior produced by this strategy is typically disconcert-

ing, though, as the robot may attempt to split the difference between the

clusters until they spread far enough apart that the intervening space

can no longer be guaranteed safe. The planner then abruptly forces the

approach 61

robot to one branch or the other in order to continue.

Instead, we seek to detect and resolve bifurcations in the neighbor

graph before training has ended. A bifurcation is a region of the neigh-

bor graph where trajectories split, and the nature of the inter-trajectory

links changes so that the trajectories are divided into separate groups

or partitions. Each partition represents a strategies demonstrated by

the trajectories. Specifically, after the bifurcation region (with respect

to the time-ordered intra-trajectory links), a collection of trajectories will

have inter-trajectory links that are much denser within the groups than

between them. This partitioning is not present (or is less pronounced)

prior to the bifurcation. This criterion will be developed more fully in

Chapter 7.

We detect bifurcations by examining the demonstrations through time,

searching for locations where neighboring trajectories cease to be neigh-

bors. However, the noisy example trajectories provided by the teacher

produce a noisy neighbor graph, and many false positives will appear.

Noisy trajectories may separate from the neighbor graph for short pe-

riods of time during imperfections in demonstrations. It would not be

useful to the learner to label each of these small deviations as areas

where it must choose between multiple strategies.

Furthermore, the teacher’s time is valuable, and the learner should

not present questions regarding all possible bifurcations in the graph.

In fact, the learner’s questions should be ranked so that the most impor-

tant bifurcations are considered first. We consider the most important

bifurcations to be those that involve a large proportion of example tra-

jectories, produce a clean split between the branches, and occur early in

the task. This allows the learner to ask the most important questions

first, and the answer to a question about an early branch may obviate a

question about a later branch.

Bifurcations are presented to the teacher in the form of two partial

trajectory plans. The robot executes a plan from the start point to a lo-

cation just before the split is encountered. The planner considers each

branch separately and produces a partial plan that travels a short dis-

tance past the split. Each plan is demonstrated for the teacher, and a

preference is requested. Since the first partial plan must be executed in

62 approach

reverse (to return to the start point for the second branch), this approach

is only feasible in domains without differential constraints, and where

execution is reversible and non-destructive. If the teacher prefers one

branch over the other, the planner should avoid the less-preferred branch

when producing new plans in the future. If the teacher indicates no pref-

erence, the planner receives no additional information, and it may plan

in either branch randomly (or in proportion to the number of examples in

each branch). As a final option, though, the teacher may wish to indicate

that there is no difference between the options presented. Although the

learner believes that the two clusters of example trajectories are follow-

ing different paths or strategies, the teacher believes they are the same.

This may occur when too few demonstrations have been provided to suffi-

ciently cover the planning space, resulting in an accidental gap between

demonstrations. To resolve this situation, the learner requests an addi-

tional demonstration near the bifurcation and between the two clusters.

This is done by creating a plan that averages the actions of plans fol-

lowing the two suspected branches. The plan stops executing when the

robot reaches the unknown (and potentially unsafe) region just beyond

the bifurcation, and the teacher is asked to continue the plan. The goal

of this additional demonstration is to instruct the learner how to inter-

polate between the two clusters, and to illustrate the lack of (geometric

or non-geometric) obstacles in the intervening space.

4.5 Summary

Learning motion tasks by demonstration requires the reconciling of im-

perfect, divergent examples. This work presents a collection of heuris-

tics for determining correspondences between high-dimensional time-

series trajectories despite these inherent imperfections. These corre-

spondences form a neighbor graph that is used to safely interpolate be-

tween the essential elements of example trajectories and produce novel

motions that complete the task. The neighbor graph also provides a

high-level structure to the demonstrations that allows the learner to de-

tect places where conflicting strategies are present and to request clari-

fications from the human teachers regarding these conflicts. This allows

approach 63

the learner to produce safe, consistent trajectories that exceed any single

demonstration by the teacher.

64 approach

Chapter 5

Neighbor Graph

I have often wished to be human. I study people carefully,

in order to more closely approximate human behavior.

— Data, “Hero Worship”,

Star Trek: The Next Generation, 1992

The first step in learning trajectories is to understand the structure

of the examples presented by the teacher. Ideally, we would like to dis-

cover the semantic equivalence between portions of these examples, that

is, which portions of different trajectories represent the same part of the

task. If two examples follow different strategies, we would like to iden-

tify the areas where they begin to diverge. Later, we will also seek to

discover whether one of these strategies is superior to the other. Even-

tually, the learner should be able to produce new trajectories that mimic

the examples, performing the same task as the teacher, following one of

the strategies presented.

Discovering the semantic similarity between trajectories requires us

to find portions of trajectories that are close to one another in space and

(task) time, and follow similar paths. Given a collection of examples

that meet these requirements, a new trajectory formed by interpolat-

ing between the examples can reasonably be said to perform the same

task by the same strategy, but without any of the imperfections of the

examples. Other collections that differ in one or more aspects may still

represent the same task, but they use a different strategy, so interpolat-

ing between them may be unsafe or otherwise undesirable. For example,

two trajectories that avoid an obstacle in different ways (e.g. one goes to

the left and the other goes to the right) may produce paths with similar

65

curvature and time to reach the goal. However, they occupy substan-

tially different parts of the workspace. Thus, knowledge of the locations

of physical obstacles may help us separate trajectories into groups for

which interpolation is safe.

Recalling our original goal of discovering semantic similarity between

trajectories, we note that obstacle avoidance is not the only constraint in

finding correspondences between demonstration trajectories. Even tra-

jectories that follow the same strategy may significantly deviate from

one another. Imperfect demonstrations may contain segments of back-

tracking or detours from the nominal path. Even if no obstacles exist

in the midst of these demonstrations, these deviations must be identi-

fied in order to determine which portions of similar trajectories repre-

sent the same portion of the task. We will then make these semantic

correspondences explicit by constructing a neighbor graph, which con-

tains links within and between trajectories. These links connect discrete

points sampled from the trajectories that are near each other in both

space and (task) time.

However, unintentional jitter in otherwise smooth paths can confuse

the correspondences between trajectories. Larger deviations such as

backtracking motions or detours from the nominal course must be ex-

cised from the correspondence relationship. Although humans can typ-

ically discern global structure even in noisy collections of points, it is

a challenging task for a robot learner. This problem, known as graph

or manifold denoising, has been studied extensively for application to

Isomap [75] and other graph-based learning algorithms [28,81,82]. Time-

series data presents specific challenges to this effort, but it also has

the advantage that part of the structure of the data is known. As ST-

Isomap [34] demonstrates, better graphs may be constructed by retain-

ing the temporal links between adjacent sample points on each individ-

ual trajectory. These points are nearby in time and space, and they are

logically similar to one another since they arise through the movement

of the robot.

Forming neighbor links between example trajectories is more chal-

lenging, though. The rest of this chapter examines the selection of neigh-

bors between trajectories. Spatial proximity of points is not a sufficient

66 neighbor graph

similarity metric, especially if the space is non-Markovian. A robot may

visit the same configuration multiple times during the execution of a

task. Even in Markovian spaces, though, spatially-proximal portions of

trajectories that occur at different times in the task may produce spu-

rious neighbor links. This challenge is illustrated by the example task

discussed in Section 5.4.

Temporal proximity between example trajectories may provide some

useful information if the timing of the demonstrations is carefully con-

trolled, or if normalization techniques such as dynamic time warping [57]

are used, but only in simple cases. For example, different examples may

also use different strategies (and therefore different paths) to complete

the task. Jitter and other imperfections (such as those discussed in Sec-

tion 5.2) can create enough divergence between examples to render dy-

namic time warping insufficient.

The remainder of this chapter discusses the algorithm we have de-

veloped for choosing the neighbor graph links between example trajec-

tories. The next section provides a preliminary discussion of the coordi-

nate spaces and distance metrics used for comparing trajectories. Sec-

tion 5.2 describes the heuristics developed to detect and deal with imper-

fections and other undesired motions in example trajectories. Section 5.3

discusses our approach for ensuring safety for plans created from this

neighbor graph, given that we have no explicit model of obstacles in the

environment. Finally, Section 5.4 presents the results of experiments

building neighbor graphs from trajectories collected using a 7-DOF ma-

nipulator.

5.1 Coordinate Spaces

The neighbor graph itself is simply a set of relationships between points

sampled from trajectories. In order to build this graph or use it for plan-

ning, though, these points must be embedded in some metric space. A

distance metric is required to determine the similarity between points,

and thus to build the links of the neighbor graph. Similarly, a distance

metric is used to interpolate between points when planning novel trajec-

tories.

neighbor graph 67

For robot trajectories, the obvious candidates for coordinate spaces

are configuration space or workspace (specifically, the workspace coordi-

nates of the end-effector, or some other salient point on the robot). In

either of these spaces, the Euclidean distance metric usually provides

reasonable and intuitive determinations of which points are relatively

close to one another, and which points are far apart. This provides a

sensible basis for learning and planning.

Each of these coordinate spaces presents challenges of their own,

though, particularly when end-effector orientation is to be considered.

For the workspace, the problem is that there is no canonical distance

metric for SO(3), 3-dimensional position with 3-dimensional orientation.

However, when a redundant manipulator is used, orientation can pro-

vide a crucial distinction between the infinite number of manipulator

poses with the same end-effector position. Finding a weighting factor to

combine the differences between positions and orientations into a single

distance measure can unfortunately become an empirical process with a

result that does not generalize to multiple tasks. Fortunately, position

alone typically provides a sufficient similarity metric for tasks performed

with consistency.

Working in configuration space avoids this problem, at least for robots

with a single type of joint. In our experiments, we used a manipulator

with seven revolute joints, so each dimension of configuration space mea-

sured the same (angular) units. In this space, the Euclidean distance

metric captures difference in position and orientation simultaneously,

but the results are not necessarily intuitive. Movement in the different

dimensions of this space do not contribute equally to the movement of

the robot’s end effector. As before, weights for each dimension may be

derived to produce a more intuitive distance metric. An example of such

a weighting scheme is the Joint Dominance Coefficients [38], which pro-

vides a statistical measure of the influence each joint exerts over the

workspace movement of a set of points on the robot.

For pedagogical clarity, this work will calculate neighbors using the

three-dimensional workspace position, unless otherwise noted. Although

this space fails to distinguish multiple configurations that place the end

effector in the same location, the neighbor graphs are far easier to illus-

68 neighbor graph

trate and interpret than those produced using seven-dimensional con-

figuration space. When producing plans for a redundant manipulator,

though, distances should be calculated in configuration space.

One final coordinate space of note is the low-dimensional embedding

discussed in Chapter 3. After constructing the neighbor graph, pair-

wise geodesic distances can be calculated, and Isomap (or some other

dimensionality reduction technique) may be used to construct an em-

bedding that preserves these distances as well as possible. Although this

space does not present a representation of the graph useful for planning,

examination of example trajectories and their neighbor graphs embed-

ded in such a space can provide valuable qualitative information on the

soundness of the neighbor links that can aid in algorithm design and de-

bugging. A successful embedding creates a sort of task space, in which

the distance between points approximates their separation in the perfor-

mance of the task. For example, the crossing points in Figure 3.3 where

the robot visits the same configurations twice during the execution of

the task produce two distinct regions in the task space. Their separa-

tion is proportional to the amount of the task executed between visits

to that configuration, rather than the similarity of the configurations.

Visually examining features such as these in an embedding has aided

in the development of the neighbor finding algorithms described in this

chapter.

5.2 Trajectory Neighbor Heuristics

When searching for a point’s neighbors, individual points are not con-

sidered in isolation. Instead, we consider each pair of trajectories sep-

arately, and search for subsequences of those trajectories that contain

points that match in a roughly pairwise manner. That is, as the indices

in both subsequences increase, the points of each trajectory maintain

similar juxtapositions. Since all trajectories are initially subsampled at

a uniform distance du between adjacent points, this means that, infor-

mally, matching subsequences travel in the same direction. The algo-

rithm described here relies on heuristics to replicate human intuition

in recognizing the correspondences between multiple noisy, imperfect

neighbor graph 69

demonstrations of a motion task.

Algorithm 5.1 The Neighbor Graph algorithm
1: function NeighborGraph(T)
2: ⊲ Initialize adjacency list with intra-trajectory links
3: L← La

4: for all ordered pairs (traja, trajb) ∈ T do

5: ⊲ Look for runs of roughly pairwise neighbors
6: runs← NeighborRuns(traja, trajb)

7: ⊲ Remove runs that backtrack along the
8: ⊲ neighboring trajectory
9: runs← BacktrackCheck(runs)

10: ⊲ Remove many-to-one neighbors
11: nearest←ManyToOneCheck(traja, trajb, runs)

12: ⊲ Add remaining neighbors to adjacency list
13: for i = 0→ ‖nearest‖ − 1 do

14: vb ← trajb[i]
15: va ← traja[nearest[i]]
16: d← dist(vb, va)
17: L← L ∪ {(vb, va, d), (va, vb, d)}

18: return L

The construction of the neighbor graph algorithm is presented in

Algorithm 5.1. The adjacency list L is initialized with the set of intra-

trajectory links, as defined in Equation 4.1. To add the inter-trajectory

links, each pair (traja, trajb) of demonstration trajectories is considered

twice: first finding the nearest neighbors in traja from the points in trajb,

then in the other direction. This is necessary because nearest near-

est neighbor is not symmetric. The links found here are added twice

since the direction is not important, as it is for the time-ordered intra-

trajectory links, but we define all links to be directed for consistency.

The first subroutine, NeighborRuns (Algorithm 5.2), searches for runs,

or subsequences of the trajectories in which the nearest neighbors roughly

correspond. Because the demonstrations contain jitter and noise, we do

70 neighbor graph

Algorithm 5.2 The Neighbor Graph run finding algorithm
1: function NeighborRuns(traja, trajb)
2: ⊲ Find nearest neighbors in b for each point in a
3: for i = 0→ ‖traja‖ − 1 do

4: neigh[i]← NearestNeighbor(traja[i], trajb)

5: ⊲ Search for runs of neighboring points
6: runs← {}
7: run← {}
8: for i = 0→ ‖traja‖ − 1 do

9: safe← SafetyCheck(traja[i], trajb[neigh[i]])
10: if run 6= ∅ then

11: diff ← i− neigh[i]
12: initial_diff ← run[0]a − run[0]b
13: cond1 ← abs(diff − initial_diff) < MAX_DIFF
14: cond2 ← i− run[−1]a < MAX_DIFF
15: cond3 ← neigh[i] ≥ run[−1]b
16: cond4 ← safe
17: if ∃i s.t. condi ≡ false then

18: if ‖run‖ ≥MIN_RUN then

19: runs← runs ∪ run
20: run← {}

21: if safe then

22: run← run ∪ {(i, neigh[i])}

23: ⊲ Add the final run to the list
24: if ‖run‖ ≥MIN_RUN then

25: runs← runs ∪ run

26: return runs

not enforce a strict alignment between points of the trajectories, but use

a series of heuristic conditions to ensure approximate alignment. The

conditions, as listed in lines 13–16 of Algorithm 5.2 are:

1 : We record the difference in point indices at the start of a run, and

for each candidate pair in the run. This condition specifies that this

difference varies by no more than MAX_DIFF , thus ensuring that

the alignment between trajectories does not change significantly

neighbor graph 71

Figure 5.1: The solid (blue) trajectory drifts closer to distant sections
of the dashed (red) trajectory. Pointwise nearest-neighbor alone is not
sufficient to correct this problem.

within a run. Throughout our experiments, we used a value of 3

for this parameter.

2 : Similarly, we ensure that there is no consecutive sequence of

MAX_DIFF points missing within a single run. Note that the

array subscript −1 follows the syntax of the python language, indi-

cating the last item in any array.

3 : This algorithm examines the points from traja in order. This

test ensures that corresponding neighbors in trajb do not appear

in reverse order.

4 : A workspace safety check is executed in line 9 of the algorithm

to ensure that the robot can move between the candidate neighbor

points without impacting any physical obstacles. This safety check

is discussed in detail in Section 5.3.

These conditions result in a list of runs of neighbors that ignores

minor deviations separating the pair of trajectories. However, undesir-

able neighbor links may be formed due to larger-scale inconsistencies.

For example, Figure 5.1 illustrates a case in which an interally consis-

tent run of neighbors is clearly incorrect in the context of other runs.

This situation occurs when portions of trajectories that are distant in

72 neighbor graph

Figure 5.2: Regularly spaced neighbor links from the solid (blue) tra-
jectory to the dashed (red) trajectory result in some undesirable links
(black).

task space are near to each other in workspace. In fact, if the space is

non-Markovian, distinct portions of the task may overlap in workspace.

Similarly, Figure 5.2 illustrates the overlapping runs that may occur due

a loop or other artifact in demonstration trajectories.

The backtracking checks of Algorithm 5.3 search for these errors

and remove the offending neighbor links. The general strategy in this

function is to search for subsequent indicies of trajb that decrease while

the indices of their corresponding neighbors in traja increase. The first

check, in lines 5–18 of the algorithm, searches for entire runs that skip

backwards along trajb. Note that the run containing the regression is not

always the run that is invalidated. Consider the trajectories of Figure 5.1.

If traja is the solid line, trajb is the dashed line, and the trajectories be-

gin in the bottom right corner of the image, it is true that the incorrect

neighbor links (dark lines) connect traja to an earlier section of trajb

than the previous run. However, if the trajectories move in the other di-

rection, starting in the center of the spiral, the dark neighbor links skip

far ahead along trajb, and it is the following run that appears to regress.

In both cases, a regression signals the presence of an invalid run, but

we must check the alignment of nearby runs to determine which run

is in error. The second check in lines 19–22 addresses the problem of

Figure 5.2. In this case, subsequent runs monotonically advance along

traja, but regress and overlap along trajb. This check simply removes

overlapping neighbors.

Finally, one-to-many neighbor links are not allowed. Only the one-

neighbor graph 73

Algorithm 5.3 The Neighbor Graph backtracking checks
1: function BacktrackCheck(runs)
2: ⊲ Remove entire runs that are out of alignment
3: prev_diff ← runs[0][0]a − runs[0][0]b
4: for all i ∈ 1.. ‖runs‖ do

5: diff ← runs[i][0]a − runs[i][0]b
6: ⊲ Compare alignment of this run to nearby runs
7: if runs[i][0]b < runs[i− 1][0]b then

8: if i− 1 ≥ 0 then

9: other_diff ← runs[i− 2][0]a − runs[i− 2][0]b
10: else if i + 1 < ‖runs‖ then

11: other_diff ← runs[i + 1][0]a − runs[i + 1][0]b
12: else

13: other_diff ← 0

14: ⊲ Remove run farthest from alignment
15: if abs(prev_diff − other_diff) < abs(diff − prev_diff) then

16: runs← runs− runs[i]
17: else

18: runs← runs− runs[i− 1]

19: ⊲ Remove points from runs that overlap with other runs
20: for all i ∈ 1.. ‖runs‖ do

21: while runs[i− 1][−1]b > runs[i][0]b do

22: runs[i− 1]← runs[i− 1]− runs[i− 1][−1]

23: return runs

to-one link with the shortest distance is permitted in the final neigh-

bor graph. This restriction ensures that the geodesic distances increase

quickly when trajectories deviate from one another, as in Figure 5.3.

Algorithm 5.4 resolves the conflict in favor of the shortest link.

5.3 Safety

Our strategy for creating new plans from the neighbor graph will re-

quire interpolation of demonstration trajectories. The heuristics of the

previous section attempt to discover the alignment of sections of these

74 neighbor graph

Figure 5.3: Many-to-one neighbor links result in a graph with too many
links, and thus geodesic distances that are too small. Deviations such
as that shown in the solid (blue) trajectory should appear distant in the
neighbor graph.

Algorithm 5.4 The Neighbor Graph many-to-one check
1: function ManyToOneCheck(traja, trajb runs)
2: nearest← [∅]‖trajb‖

3: for all run ∈ runs do

4: for all (idxa, idxb) ∈ run do

5: d← dist(traja[idxa], trajb[idxb])
6: if adj_list[idxb] ≡ ∅ then

7: prev_dist← inf
8: else

9: prev_dist← dist(trajb[idxb],traja[adj_list[idxb]])

10: if d < prev_dist then

11: adj_list[idxb]← idxa

12: return nearest

trajectories while ignoring minor deviations and errors. However, the

similarity of these linked sections does not ensure that an interpolation

between them is a valid trajectory. An intervening workspace obstacle

may exist, blocking the interpolated path. To help prevent our planner

from creating such paths, our neighbor-finding algorithm does not create

links that pass through (potential) obstacles. More than this, though, we

want to prevent such neighbor links because two trajectories that pass

on opposite sides of an obstacle are apparently following different motion

strategies. We do not want to create plans that blend these two distinct

neighbor graph 75

Figure 5.4: In two dimensions, interpolating between homotopic paths
is always safe. In three dimensions, an interpolation may not be safe,
but another deformation may be possible.

strategies. Chapter 7 describes our strategy for resolving situations in

which demonstrations split into multiple strategies, but we pause here

to why these splits are so hard to detect (especially in SE(3) or SO(3)),

and to examine the impact on the neighbor graph we are constructing.

When operating in the plane, determining which trajectories may

be safely interpolated is relatively straightforward [21]. This situation

is exemplified by a planar manipulator, or non-redundant manipulator

with end-effector workspace confined to a plane. Figure 5.4 illustrates

the workspace paths of such a manipulator. If a safe (collision-free) con-

tinuous deformation is possible between two paths with fixed start and

goal points, these paths are said to be homotopic [48].

In higher dimensions, though, homotopy is not sufficient to separate

paths into distinct strategies. For example, if the robot in Figure 5.4

is permitted to leave the plane, and the obstacle in the center of the

image in known to have finite height, then all of the illustrated paths

are homotopic. There is a smooth deformation (if not a simple inter-

polation) between these sets of paths around any simply-connected, fi-

nite obstacle. This means that a set of example trajectories in three-

dimensional space cannot be easily divided into classes representing dis-

tinct strategies such as “left of” or “right of” an obstacle. Returning to

our goal of programming by demonstration, it is not even possible to ask

76 neighbor graph

Figure 5.5: Three cross-sections from sets of homotopic example trajecto-
ries near an obstacle. Each star is a single point from a different example
trajectory. In each case, the examples lie within a half-plane on one side
of the obstacle, so interpolation is safe. However, if the trajectories were
combined, interpolation would no longer be possible.

a teacher to restrict examples to a single such strategy. That is, we can-

not rely on a human teacher to provide a set of trajectories near obstacles

such that smooth interpolations between any pair of trajectories is safe.

Figure 5.5 illustrates three strategies for avoiding a protruding obsta-

cle. Each image represents a snapshot in time from a set of trajectories

moving through the plane of the image. In each case, interpolation be-

tween the points is safe because each set exists in a half-plane on one

side of the obstacle. This half-plane would be difficult for a person to

visualize while producing demonstration trajectories, though. Since we

cannot rely on the teacher to provide trajectories that may be safely in-

terpolated, we must assume that demonstrations may follow multiple

distinct strategies.

Our approach to safety requires a model of the robot, but not the envi-

ronment. This requirement should be easy to fulfill since robots change

far less often than the environments in which they operate, and many

identical robots are generally produced with the same hardware config-

uration. Given the example trajectories, it is straightforward (though

computationally expensive) to determine all areas of the workspace that

have been occupied by the robot. For each pose in the demonstration

trajectories, we mark all the voxels of an occupancy grid that are oc-

cupied by the robot. Each trajectory sweeps out swaths of space that

cannot contain obstacles. The teacher may also elect to provide a con-

servative buffer around the robot’s position that is also considered safe

neighbor graph 77

to occupy. This procedure is performed offline as a post-processing step

on the demonstration trajectories. As a computational optimization dur-

ing both post-processing and plan generation, we may consider only the

end effector or final link of the robot, if these are the only parts of the

robot likely to be in collision with the environment. We took advantage

of this optimization in our experiments, where the only physical obstacle

was near the end effector.

The occupancy grid constructed by this method provides a conserva-

tive estimate of the safe workspace in the robot’s environment. Marked

voxels are known to be free of static obstacles, but unmarked voxels are

unknown. Additional robot poses may be tested against this voxel grid to

determine whether they are safe. The SafetyCheck called in Algorithm 5.1

performs this check along a candidate neighbor link to determine whether

the robot may safely move between the two endpoints without occupying

any unknown space.

5.4 Experimental Results

Experiments were conducted with a 7-DOF WAM manipulator using the

maze task shown in Figure 5.6. When the arm is operated in gravity-

compensation mode, it can be easily moved by hand. Participants were

asked to perform kinesthetic demonstrations navigating the pictured

maze, without touching the edges. When the robot’s copper end effector

contacts the walls of the maze, a buzzer provides auditory feedback. The

wire maze is effectively two-dimensional, though some of the rotational

axes are relatively unconstrained, allowing additional variation in the

demonstrated trajectories. This rotational variation is not strictly nec-

essary for navigating the maze and is unlikely to be correlated between

example trajectories. The linear portion of the end effector is used to

navigate the maze, and the proximal and distal loops keep the end ef-

fector within the plane of the maze. Six demonstrations were performed

by each of fifteen adult participants, recruited via word-of-mouth from

Carnegie Mellon University and the surrounding community. Seven of

these participants had previous experience operating robots.

This task is inherently two dimensional. Although the walls of the

78 neighbor graph

(a) (b)

Figure 5.6: The WAM manipulator traversing the wire maze, and a
closeup of the end effector. The 2-D barcode in the lower-left is a visual
fiducial used to detect the location of the rig relative to the robot.

maze twist through the workspace, there is only one path from start

(at the bottom center in images) to goal. The maze corridors are usually

about 5 mm wide, so the task requires precise motion. The portion of the

maze just to the left of the first corridor is parallel to the first section, and

thus offers an opportunity to demonstrate the backtracking heuristics of

Algorithm 5.3.

Figure 5.7 shows the neighbor links chosen by various methods and

the resulting embeddings. In an ideal task space, we expect demon-

stration trajectories to be embedded such that one dimension represents

time and another represents variation between examples. We expect

a dimensionality reduction technique should be able to discover such

an embedding. Using Isomap, which relies on geodesic distances be-

tween all pairs of points, should help evaluate the quality of the neigh-

bor graph used as input. A correct neighbor graph (with dense connec-

tions between trajectories at the same point in the maze, and no con-

nections crossing maze walls) should produce an embedding with di-

mensions as described above. Figures (a) and (b) were produced us-

neighbor graph 79

(a) (b)

(c) (d)

Figure 5.7: Neighbors selected by (a) k-Isomap and (c) ST-Isomap, and
their embeddings (b) and (d). Spurious short-circuit neighbor links pro-
duce embeddings unusable for planning.

ing the k-nearest neighbor strategy of the original Isomap algorithm,

with k = 10 chosen to ensure the number of neighbors per point is

roughly equivalent to that of the other algorithms. The workspace plot

of Figure 5.7(a) appears sparser than the corresponding images for ST-

Isomap (Figure 5.7(c) below) and our algorithm (Figure 5.8(a)) because

k-NN produces more neighbors between points in the same trajectory.

The ST-Isomap result illustrates some of the most difficult situations for

neighbor selection. In many cases, such as the spurious neighbor links

near the bottom of Figure 5.7(c), links are formed between trajectories

that are relatively near to one another, and even travelling in parallel di-

rections. Without considering global information about the trajectories,

80 neighbor graph

(a) (b)

Figure 5.8: A two-dimensional projection of the workspace trajectories
for the wire maze task (left) and the two-dimensional embedding of its 7-
DOF configuration space (right). Purple lines represent neighbor links.

these incorrect links are difficult to detect.

The neighbor links and corresponding embedding produced by our

approach can be seen in Figure 5.8. Spurious links crossing maze walls

have been eliminated, and dense neighbor connections are found within

the maze pathways. As expected, the two-dimensional embedding con-

tains paths that primarily move from left to right, with vertical devia-

tions indicting transient similarity between examples. These deviations

appear large and abrupt because the relative scale of dimensions in the

embedding is arbitrary.

Finally, dimensionality reduction provides a quantitative measure

in terms of the residual variance of each of these approaches. Residual

variance is an indication of the amount of information lost by reduc-

ing the dimensionality of data. For the Isomap variants, it measures

the error introduced in the original dataset by comparing the geodesic

distances between all pairs of points in the original space with the Eu-

clidean distances in the reduced dimensionality space. As a baseline

measure, we also consider Singular Value Decomposition (SVD), which

incorporates no task-specific knowledge. SVD simply reprojects the new

points into the original space and compares Euclidean pairwise distances

with the original points. Errors are normalized, and the results are pre-

sented as a fraction of the original distances.

neighbor graph 81

Figure 5.9: The residual variance for four different dimensionality re-
duction techniques. Our performs best in both cases, followed by ST-
Isomap, but the examples provided by the inexperienced users retain
more variance.

Figure 5.9 quantifies the error in SVD, Isomap, ST-Isomap, and our

method for the task on the WAM arm. The data is further separated

based on the level of experience that the user had in operating this de-

vice. We may draw a few conclusions about the use of ST-Isomap for

this application from this plot. There is a distinct elbow in the traces for

ST-Isomap for both experienced and inexperienced users at two dimen-

sions. This suggests that two dimensions may be sufficient to represent

at least the seven-dimensional trajectories from this scenario. In fact,

in the experienced case, the residual has nearly reached its minimum

at two dimensions, so additional dimensions would offer little improve-

ment. The inexperienced case, though, retains far more variance ini-

tially, and seems to asymptote higher.

Qualitatively, this seems unsurprising since the collection of inexpe-

rienced trajectories (e.g. Figure 5.10) appears less consistent than those

of the experienced users (e.g. Figure 5.11). The inexperienced user’s tra-

jectories tend to be more spread out, and they lack neighbor links in the

most extreme cases. This causes the trajectories to separate and con-

tract in the embedding. The experienced user’s trajectories appear more

82 neighbor graph

(a) (b)

Figure 5.10: A two-dimensional projection of the wire maze trajectories
created by an inexperienced robot user (left) and their embedding (right).

(a) (b)

Figure 5.11: A two-dimensional projection of the wire maze trajectories
created by an experienced robot user (left) and their embedding (right).
The significant deviations of the red and blue trajectories visible in the
embedding are marked in the workspace.

consistent in the workspace, which permits a more consistent neigh-

bor graph and embedding. Two significant areas of deviation are high-

lighted in the workspace, and appear as vertical spikes in the embed-

ding. The blue trajectory separates significantly from the other trajec-

tories at one point, and the red trajectory backtracks briefly. In these

cases, neighbor links are not created, so the offending portions of the

neighbor graph 83

trajectories appear to be much farther away from the other trajectories

in terms of geodesic distance. This forces them farther away in the em-

bedding, as well, producing the spikes in the image.

The visible disparities between the neighbor graphs and embeddings

of experienced and inexperienced trajectories may actually be useful in

that it may allow the system to automatically distinguish the skill level

of the person demonstrating the task. For example, if a human (rather

than the robot) is being trained to perform a task, this may allow a quan-

titative analysis to determine when the person has mastered the skill.

5.5 Summary

In this chapter, we have discussed the use of neighbor graphs for under-

standing the structure of demonstration trajectories in high-dimensional

space. We have discussed the inadequacy of path homotopy in deter-

mining which paths follow similar strategies to complete a task. In-

stead, we apply a series of heuristics to discover the semantic similari-

ties between portions of trajectories, despite imperfections in the demon-

strations. Our approach also eliminates the selection of the domain-

dependent k or ε parameter for defining the size of a neighborhood whose

optimal value can vary within a single domain. Our approach requires

only the specification of du, the uniform step size required to represent

trajectory features. Since this parameter has a straightforward physical

meaning, it can be selected more intuitively by the user. Dimensionality

reduction is used to illustrate and verify this approach.

84 neighbor graph

Chapter 6

Planning

You have to do what someone asks you, don’t you? . . . Don’t

you? If you love them?

— Sonny, I, Robot, 2004

Planning, in the context of PbD, is the generalization of demonstra-

tions to create new trajectories. Demonstrations provide only examples

of the behavior that the robot should perform, and are unlikely to fill the

robot’s state space so densely as to provide an action for every possible

state. Moreover, we acknowledge that the examples provided by humans

are imperfect, and conflicting actions may be provided for the same (or

similar) states in different example trajectories. Although many learn-

ing algorithms can cope with noisy demonstration data, our neighbor

graph provides a basis for determining which demonstrations are likely

to represent the teacher’s true intentions. Rather than precisely dupli-

cating the teacher’s motions, our planner interpolates between the mul-

tiple provided trajectories, eliding the inconsistencies and errors that

the neighbor-finding algorithm addresses.

Our planning algorithm operates directly over the neighbor graph,

the set of connections between discrete points sampled at a uniform in-

terval from demonstration trajectories. For each iteration in the con-

struction of a new plan, the planner maintains a set of neighbor points

from the demonstration set. These neighbors are not merely the closest

points in terms of a metric over the planning space; they should rep-

resent the portions of the training examples at semantically equivalent

states during execution of the task. As before, distinct portions of exam-

ple trajectories may appear in close proximity in non-Markovian regions,

85

Algorithm 6.1 The trajectory planning algorithm
1: function CreatePlan(T , p, neighbors, sdf)
2: plan← []
3: while True do

4: ⊲ Find the next plan point according to Equation 6.4
5: p+ ←WeightedPointExtension(T , p, neighbors)

6: ⊲ Find neighbors for the new point
7: neighbors← NeighborExtension(T , p, p+, neighbors)
8: ⊲ Terminate when neighbors cannot be extended due
9: ⊲ to end of demonstration trajectories

10: if AtGoal(p) then

11: break

12: ⊲ Refine the planned point using its new neighbors
13: p+ ← Refine(T , p+, neighbors)

14: ⊲ Use the Signed Distance Field to ensure safety
15: last_safe← sdf .CheckLine(p, p+)
16: if last_safe 6= p+ then

17: p+ ← sdf .Correct(last_safe)

18: ⊲ Record the new point and prepare for the next iteration
19: plan.Append(p+)
20: p← p+

21: return plan

but an internally-consistent set of neighbors will be closely related in the

neighbor graph. Initializing the set of neighbors at the beginning of the

task is thus straightforward: nearby points from the beginning of exam-

ple trajectories are chosen.

The planning procedure, illustrated in Figure 6.1 and presented in

pseudocode in Algorithm 6.1, proceeds inductively by advancing the planned

position based on the actions of neighboring points, determining the next

set of neighbors, then refining the position of the next step in the plan.

The details of each of these operations are provided in the following sec-

86 planning

(a) Initial Neighbors (b) Locally-Weighted Average Action

(c) Neighbor Extension (d) Plan Refinement

Figure 6.1: (a) The graph-based planning algorithm begins with a par-
tial plan (red points) and a set of neighbors (solid outline points) selected
from among demonstration trajectories (light blue). (b) The initial esti-
mate for the next plan point is computed using the locally-weighted av-
erage of neighbor actions. (c) Neighbors are selected for the new plan
point. (d) The pose of the new plan point is refined using the new set of
neighbors.

tions. Section 6.4 then deals with an exceptional case: planning when

the neighbor graph bifurcates, providing conflicting information about

the teacher’s desired strategy. Finally, Section 6.5 presents and evalu-

ates some plans created using this algorithm in two experimental do-

planning 87

mains.

As noted in Section 5.1, configuration space should typically be used

for redundant platforms, but the workspace end-effector position may be

used in many cases. Unlike the latent task space developed in Chapter 3,

configuration and workspace are likely to be non-Markovian, so our plan-

ner cannot calculate a global policy. That is, the robot may visit the same

regions of configuration or workspace multiple times during the execu-

tion of a task, such as the three areas in Figure 3.3 where the demon-

stration trajectories cross themselves.

6.1 Action Selection

The initial action is computed as a locally weighted average of the actions

of its neighbors (Figure 6.1(b)). The demonstration trajectories have pre-

viously been discretely sampled at a uniform interval du, so actions are

computed as the vector from the current neighbor point to its subsequent

point in the same trajectory. The learning algorithm is not sensitive to

the value of du, but this discretization distance should not be so large

as to elide small-scale elements of the demonstrations that should be

reproduced by the learner.

As a matter of notation, for an example trajectory point ti, we repre-

sent its successor as t+
i . Thus, given N neighbors of a plan point p, their

(normalized) weights wn and the subsequent plan point are calculated

as:

wn =
1

du + ‖tn − p‖
(6.1)

W =
N

∑

n=0

wn (6.2)

ap =
N

∑

n=0

wn

W

(

t+
n − tn

)

(6.3)

p+ = p +
du

‖ap‖
ap (6.4)

These equations provide the functionality of the WeightedPointEx-

88 planning

tension function used by Algorithm 6.1. The weight computation in

Equation 6.1 includes du in the denominator to avoid division by zero

when a neighbor happens to be coincident (or nearly coincident) with

the plan point. Without this term, nearby neighbors are able to over-

whelm any influence by more distant neighbors. The weighted average

action ap is taken as the direction of the desired action, but is rescaled

by du to ensure a reasonably consistent action distance at each step in

the plan. The boundary condition, when some or all of the t+
n points do

not exist, occurs when the plan reaches the end of the demonstration

trajectories. At this point, the plan has reached the demonstrated goal,

and planning stops.

6.2 Neighbor Extension

Next, we advance the set of neighbors (Figure 6.1(c)). The new neigh-

bors will be used both to refine the current planned action and to provide

neighbors for the next planning step. Rather than simply advancing to

the set of points subsequent to the original neighbors, the NeighborEx-

tension function used in Algorithm 6.1 searches near p+. We remove

neighbors that are too far away and add new neighbors that are nearby

in both metric and graph distance. In our experiments, we search for

points within du of p+ and no more than three graph links from the orig-

inal set of neighbors. Since the graph is directed, these links may move

forward in time along a trajectory, or between trajectories, but not back-

ward in time. The allowance of three links permits extension to tra-

jectories that are not directly linked to current points, but which are

neighbors of neighbors, while still permitting a step forward in time.

We also manage the size of the neighbor set so that it does not grow

too large or too small. If the neighbor extension results in fewer than

three new neighbors, the planner risks following a single demonstration

with no interpolation. With too many neighbors, the planner is less fo-

cused on a specific area of the graph, and may interpolate too broadly,

so we limit the number of neighbors to |T |, the number of demonstration

trajectories. This limit is easily implemented by simply choosing the

closest demonstration points. When additional neighbors are required,

planning 89

we expand the search radius du to find the nearest demonstration points,

regardless of their graph distance.

Again, the effect of this strategy is that the set of neighbors marches

forward through the task, even if it does not advance uniformly along

the demonstration trajectories. In practice, even well-clustered sets of

example trajectories meander toward and away from one another. Thus,

a plan’s collection of example trajectories will gain and lose members

over time, as shown in Figure 6.1(c). One of the initially neighboring

trajectories veers upward and away from the others. Another trajectory

appears from the bottom of the image and aligns closely with the central

cluster.

6.3 Plan Refinement

Finally, the locations of the new neighbor points are used to refine the

position of p+. The initial action estimate computed by the weighted av-

erage has interpolated the actions demonstrated by the teacher at this

point in the task, but undesired effects due to noise and jitter are in-

cluded in the average as well. Since the neighbor graph was constructed

to detect and avoid undesired actions, we attempt to follow it by adjust-

ing p+ toward a position that is nearby (i.e. representative of the average

action performed by the teacher) and close to the clusters of points that

follow the original neighbors in the neighbor graph. This is necessary

since the new neighbors are not, in general, the successors of the previ-

ous neighbors. If this were the case, the weighted average of their actions

would produce a reasonable action for the plan. However, neighboring

trajectories have been lost and gained, and portions of demonstration

trajectories may have been skipped to avoid non-optimal movements.

For example, the loop in one example of Figure 6.1 is never used as a

neighbor for planning. Thus, we must take care to adjust the position of

the newly planned point to keep it close to its new neighbors.

To refine the planned point toward clusters of nearby neighbors, the

refinement algorithm (Algorithm 6.2) creates a reward function consist-

ing of the sum of Gaussians placed over each new neighbor with standard

deviation du. Figure 6.1(d) illustrates level sets of this reward function

90 planning

Algorithm 6.2 The plan refinement algorithm

1: function Refine(T , p+, neighbors)
2: ⊲ Place a reward function at each neighbor
3: rewards← []
4: for all n ∈ neighbors do

5: rewards.Append(N
(

n, d2
u

)

)

6: ⊲ Find a local maximum in the reward function near
7: ⊲ the planned point
8: p∗ ← GradientAscent(p+, rewards)

9: ⊲ Blend the refinement with the planned point
10: return blend ∗ p+ + (1.0− blend) ∗ p∗

around the new neighbors. We use standard gradient ascent with a step

size of du/10 to find a local maximum, p∗, in this reward. Rather than

replacing our planned point p+ with this local maximum, we interpolate

between the two points, moving some fraction of the distance up the gra-

dient toward p∗. In our experiments, we found that smooth plans were

created by using the mean of these two points, so a blend of 50% was

used throughout the work in this thesis. Increasing the blend in favor

of p∗ results in plans that oscillate between demonstration trajectories,

resulting in higher average curvature. This is likely due to the fact that

the local maximum in the reward function will be coincident with one

of the neighbor points when the neighbors are widely separated. Alter-

nately, decreasing the blend to reduce the influence of p∗ can can result

in planning failure as the plan deviates too far from the neighbor graph

as they follow the noisy motions too closely.

This approach to planning ensures that interpolation occurs only be-

tween demonstrated points that are similar in pose and graph distance:

precisely where interpolation is expected to safely respect geometric and

non-geometric constraints. However, a physical model of the robot per-

mits a more explicit safety mechanism for avoiding obstacles when op-

erating in a static environment. Using the occupancy grid calculated in

Section 5.3, plans may be checked for safety during the refinement stage

of planning. The current refined plan point is used to model the robot

planning 91

in the occupancy grid, and we ensure that all occupied voxels have been

marked as free. This check is performed at the planned point, and at sev-

eral points along the path from the previous planned point to the new

one. Since the step size du is small, only a few points along a straight

line between the planned points need to be checked. Alternately, the

robot kinematics may be used to calculate the precise path followed by

the robot, and all of the voxels that it will occupy during this motion.

If any voxels are not free, the planned point is adjusted to move the

robot out of collision. Since the previous plan point was collision-free,

we know that a safe configuration exists within the length of the action

step. Rather than performing an exhaustive search near the planned

point, though, we use a signed distance field (SDF) [62] to efficiently

precompute corrections to poses in collision. This data structure is an

occupancy grid that, in addition to a bit indicating the safety of a given

grid cell or voxel, provides a vector pointing to the nearest safe cell, com-

puted using a 1-dimensional distance transform along each dimension of

the workspace. This approach is useful when the collision check is per-

formed only on the final (rigid) link of the robot, as in our experiments,

since the stored vector will be used to adjust that link’s position. If the

entire robot must be collision-checked, the problem is more difficult. The

workspace vector stored in the SDF may not be sufficient if a different

link is in collision, since the corrective motion may result in another col-

lision. The SDF may be constructed in configuration space rather than

workspace, but this introduces much larger memory and computation

requirements. The distance transform computed for each dimension is

the same size as the configuration space, so this SDF requires seven

seven-dimensional arrays at the desired resolution.

Additional information about example trajectories may be considered

at this point, and incorporated into the refinement as an extension to our

algorithm. For example, the wire maze domain introduced in the previ-

ous chapter uses a copper wand to traverse a copper maze. When the

wand contacts the walls of the maze, a circuit is closed and a buzzer

sounds as feedback for the teacher. This information is also recorded

as part of the demonstration. Since we would like the robot to learn to

traverse the maze without contacting the walls, these portions of the

92 planning

demonstrations may be penalized and weighted lower in the refinement

stage. This may be desirable for tasks in which demonstrations can con-

tain costly or potentially catastrophic motions. In this task, we prefer

not to contact the walls of the maze, but the task may still be completed

if we do. Penalization was not necessary in this case because interpola-

tion proved sufficient for the planner to avoid contacting the walls of the

maze. In practice, since teachers did not contact the walls at the same

points in each demonstration, the plans remained closer to the center of

the corridors.

Other cost functions may be considered at this point, as well. For

example, the examples may have costs or rewards associated with them

if the teacher has provided qualitative feedback regarding his own per-

formance. The robot’s workspace or configuration space may also have

costs associated with different regions, and plans may be adjusted to

minimize these. Refining adjustments must, however, remain small rel-

ative to the step size du; otherwise the set of neighbor points may not

remain relevant to the planned point. The safety check must be the last

refinement performed, though, since any additional adjustments to the

planned point may force the robot into a potentially unsafe pose.

6.4 Bifurcations

A final concern to consider when planning is bifurcations in the neigh-

bor graph: areas where demonstration trajectories diverge into two (or

more) qualitatively different strategies. Details of the bifurcation de-

tection algorithm are presented in the next chapter, but the robot must

have a strategy for planning through bifurcations once they are known.

Otherwise, plans may be created that average the behavior of the two

strategies, resulting in undesired behavior. The SDF safety check will

prevent planning in unknown areas, but smoother trajectories can be

created by recognizing bifurcations and intentionally creating plans that

choose and follow a single branch.

We accomplish this by choosing neighbors for action selection in only

one branch of the bifurcation. The bifurcation detection algorithm records

the demonstration points in the neighborhood of each bifurcation, so

planning 93

we are able to detect when the neighbor extension step of the planner

reaches a bifurcation. Neighbors belonging to demonstrations that fol-

low the undesired branch are removed and replaced with the closest

points from trajectories in the intended branch.

6.5 Experimental Results

The goal of our planning algorithm is to produce safe, smooth, and ef-

ficient trajectories that perform the task demonstrated by the human

teacher. Safety in static environments is guaranteed by our conservative

estimation of geometric obstacles in the workspace. Evaluating whether

the robot performs the same task as the teacher is largely domain-dependent.

In the example domains illustrated in this section, we rely largely upon

intuition to verify that the trajectories created by the learner follow the

same strategy as the examples in moving through space. Our planner

does not search for a path that optimizes an easily quantifiable objective

function, such as the shortest obstacle-free path to the goal region, as

in most traditional motion planners. Trajectory smoothness is easier to

verify quantitatively. The following examples verify path smoothness by

examining the curvature of example and planned trajectories. Finally,

efficiency is evaluated in terms of path length. Again, our planner does

not exploit obstacle-free “shortcuts” through the workspace, so planned

trajectories will not be dramatically shorter than the examples, but the

elimination of noise and mistakes from demonstrations produces slightly

shorter plans.

Figure 6.2 illustrates a plan in the previously described maze do-

main. This plan compares favorably to the jagged plan of Figure 3.10,

produced by the dimensionality reduction technique detailed in Chapter 3.

The plot on the right is a cumulative curvature histogram. Like a cu-

mulative distribution function, this graph illustrates the percentage of

points with curvature less than or equal to the value on the horizontal

axis. The vertical axis indicates the proportion of sample points (from

0% to 100%) in each trajectory with a curvature value less than or equal

to the corresponding value on the horizontal axis. Thus, curves shifted

to the left side of the graph correspond to trajectories with lower overall

94 planning

Figure 6.2: The example trajectories (purple) from Figure 3.10 with a
new plan in blue. The graph on the right shows a cumulative curva-
ture histogram plot, illustrating discontinuities of the lifted plan (in red),
while the new plan (in cyan) exhibits less curvature than the examples.

curvature. The red trace on this plot, representing the earlier plan lifted

from the latent space (shown in Figure 3.10) is shifted to the right of the

example trajectories, indicating that more points in this trajectory have

higher curvature values. This is expected since the lifted plan consists

of piecewise linear segments with second-order discontinuities between

them. The cyan line, representing the new plan, is just to the left of the

example trajectories. This indicates that the shape of the new plan is

consistent with the examples provided, but with noticeably less curva-

ture. Also, note that the planned path tends to traverse areas of densely

clustered example trajectories. The refinement step of the planning al-

gorithm seeks to follow these clusters.

Figure 6.3 shows the results achieved with increasing numbers of

example trajectories from an inexperienced robot user in this maze sce-

nario, and Table 6.1 summarizes the statistics in the plot. Plans were

created from the first two demonstrations provided, and with each sub-

sequent demonstration, from all of the demonstrations collected so far.

Since our planner is, in a sense, averaging the demonstrations from

which it produces plans, it is unsurprising that increasing the num-

ber of demonstrations creates smoother plans. With a small number

of demonstrations, though, the planner produces plans with higher cur-

vature than any single demonstration. This is likely because the plan

planning 95

0 2 4 6 8 10 12
Curvature

0

50

100

Pe
rc
e
n
t
o
f
p
o
in
ts
 i
n
 t
ra
je
ct
o
ry

Cumulative curvature histogram

Demonstration
Learned (2)
Learned (3)
Learned (4)
Learned (5)
Learned (6)

Figure 6.3: The curvature decreases as more example trajectories are
added in the wire maze domain.

Curvature Cumulative Curvature
Label Mean 25% 50% 75% 90%
All Demonstrations 3.86 3.03 3.77 4.63 5.54
Demonstrations 3.46 2.80 3.43 4.11 4.74

3.72 2.96 3.68 4.41 5.32
3.81 2.97 3.66 4.60 5.57
4.00 3.11 3.86 4.83 5.75
4.10 3.22 4.03 5.00 5.87
3.87 3.08 3.83 4.67 5.27

Learned (2) 3.86 2.94 3.80 4.71 5.66
Learned (3) 3.76 2.98 3.67 4.44 5.45
Learned (4) 3.52 2.78 3.41 4.17 4.97
Learned (5) 3.33 2.62 3.28 4.00 4.74
Learned (6) 3.20 2.55 3.16 3.83 4.41

Table 6.1: Curvature statistics for increasing numbers of example tra-
jectories.

96 planning

Figure 6.4: The artist domain, in which the robot was to sweep a paint
brush across a board while avoiding obstacles.

oscillates between following the demonstrations in a very sparsely-filled

workspace. Once more demonstrations are available, the planner is able

to produce smoother plans.

In another set of experiments, the robot operated over a flat hori-

zontal board with vertical obstacles protruding. In this artist domain

(Figure 6.4), the robot holds a paint brush and draws a path across

the board, avoiding the obstacles as demonstrated by the teacher. This

provides an opportunity to investigate the detection of bifurcations in

examples and the strategy for planning through them. First, though,

we consider some example trajectories with a bifurcation created by a

perturbation too small to represent a geometric obstacle in the robot’s

workspace. Figure 6.5 shows some demonstration and planned trajec-

tories that illustrate such a perturbation. The neighbor graph, shown

on the right, illustrates the separation between the two demonstrated

strategies. Although the distance between the strategies is small, the

deviation is sufficient to prevent neighbor links between the two sets of

examples. The planner, therefore, does not interpolate between them.

planning 97

(a) (b)

Figure 6.5: A simple linear trajectory in which some of the examples de-
viate slightly in the middle of the path. The SDF safety check is disabled
for this example to show that the bifurcation is detected even without
concern for obstacle avoidance. On the left, example plans are shown
(thick lines) in each branch of the bifurcation, using the bifurcation de-
tection described in Chapter 7. The image on the right shows the neigh-
bor graph for the area of interest.

As above, the cumulative curvature histogram (Figure 6.6) shows that

planned trajectories are smoother than the demonstrations.

Next, the obstacles are used to create distict strategies for moving

across the board. The artist domain permits multiple strategies for

traversing the board while avoiding the dowel rod obstacles. For exam-

ple, Figure 6.7 illustrates a simple set of demonstrations traversing past

a single obstacle. The figure on the left illustrates a set of examples that

all follow the same strategy: they loop around the obstacle, then overlap

themselves before continuing to the goal. This makes the workspace non-

Markovian, because the correct action in the overlapping states depends

on the current progress through the task. This could cause difficulties

for planners that create policies that directly map states to actions. Our

neighbor graph, though, captures this information, so our planner is able

to correctly plan a loop around the obstacle. A planned path is shown in

green.

In the right-hand figure, Figure 6.7(b), three demonstrations in red

that simply pass by the obstacle are added to the three purple trajecto-

98 planning

0 1 2 3 4 5 6 7 8 9
Curvature

0

50

100
Pe
rc
e
n
t
o
f
p
o
in
ts
 i
n
 t
ra
je
ct
o
ry

Cumulative curvature histogram

Demonstration
Learned

Figure 6.6: The cumulative curvature histogram for the perturbation
example of Figure 6.5.

ries that looped around it. The thicker blue and green paths represent

plans created by the learner following one of these two strategies. In this

case, a bifurcation is detected (by the method detailed in the next chap-

ter), and two planning strategies are possible. In essence, while passing

through a bifurcation in the neighbor graph, points from trajectories in

one of the strategies will be removed from the list of neighbors used for

planning, thus causing the plan to follow the demonstrations from the

other strategy. Once more, the cumulative curvature histogram is pro-

vided, in Figure 6.8.

As a final example, we examine a set of examples with multiple bifur-

cations. Figure 6.9(a) shows some demonstrations in the artist domain

in which multiple strategies are used to traverse between, and even over,

the dowel rod obstacles. Figure 6.9(b) shows a close-up view of a typi-

cal bifurcation, in which the demonstrations are evenly divided in their

strategy for avoiding an obstacle. We have three demonstrations of each

of the four strategies, and we created twelve plans distributed similarly.

The plans are shown in various colors in Figure 6.10(a), and the corre-

planning 99

(a) (b)

Figure 6.7: Planning in non-Markovian space. The example trajectories
(thin purple lines) traverse a loop around an obstacle, which the plan
(thick green line) follows. When additional examples that bypass the
obstacle are provided (in red), a bifurcation is detected. The blue plan
follows the new branch.

Scenario N Demonstrations Learned
mean median mean median

maze (Figure 6.2) 6 3.8261 3.7490 3.1980 3.1611
perturbation (Figure 6.5) 6

upper path 3 3.1900 3.0265 2.3327 2.3508
lower path 3 3.0587 2.9330 2.0510 2.0373

loop (Figure 6.7) 6
looping path 3 2.5379 2.4386 2.1028 2.1056

non-looping path 3 2.5411 2.4132 1.3797 1.4670
splits (Figure 6.9) 12

outer paths 6 3.2020 3.0766 2.3422 2.3351
inner paths 6 3.3520 3.2021 2.3792 2.3437

artist (Section 7.3) 18 3.6442 2.8269 1.8244 1.4268

Table 6.2: Trajectory curvature statistics

sponding curvature histogram is shown in Figure 6.10(b).

Table 6.2 summarizes the numeric results of the curvature plots pre-

sented in this chapter. The final line presents results from user trials

to be presented in Chapter 7, in which teachers of varying inexperience

operated the robot in the artist domain. The number of demonstration

100 planning

0 2 4 6 8 10
Curvature

0

50

100
Pe

rc
e
n
t

o
f

p
o
in

ts
 i
n
 t

ra
je

ct
o
ry

Cumulative curvature histogram

Demonstration
Demonstration
Learned
Learned

Figure 6.8: The cumulative curvature histogram for looping domain.
Colors correspond to trajectory colors in Figure 6.7. The learned path
following the loop is marked with green squares, and the other learned
path is marked with blue circles.

trajectories in each scenario is listed, and an equal number of plans was

created in each case. One planned path was started from the start point

of each demonstration path. This table presents the mean curvature for

demonstration and learned trajectories, as well as the median curvature,

which is the value of the corresponding plots at 50% on the vertical axis.

In all cases, the reduction in curvature is substantial. On average, there

is a 33.9% reduction in the mean curvature, with the most pronounced

improvement of 50% in the artist domain, where the task and workspace

were far less constrained.

Finally, we briefly examine the efficiency of the plans created. Ta-

ble 6.3 lists statistics for the lengths of demonstration and planned tra-

jectories for the domains discussed above. As in the previous table, the

number of demonstration trajectories and learned trajectories is listed.

One planned path was started from the start point of each demonstra-

tion path. The small variations in starting position results in variations

planning 101

(a) (b)

Figure 6.9: An example in the artist domain with multiple bifurcations.
The example trajectories are shown on the left, and the right image
shows a close-up view of plans following both branches of the first bi-
furcation.

(a)

0 2 4 6 8 10
Curvature

0

50

100

Pe
rc

e
n
t

o
f

p
o
in

ts
 i
n
 t

ra
je

ct
o
ry

Cumulative curvature histogram

Demonstration
Learned

(b)

Figure 6.10: The thick lines in this image represent plans initialized at
the starting location of each of the examples, and following the branches
of the corresponding example. The cumulative curvature histogram
clearly demonstrates the smoothness of the planned paths.

in the trajectories of each plan. The learned trajectories are, on average,

shorter in every case than the demonstration trajectories, with an aver-

age reduction of 10.5% in path length. This result makes sense in light

of the trajectory examples and curvature results presented in this sec-

tion. Planned paths closely reproduce the shape of example paths, but

102 planning

Scenario N Demonstrations Learned
(mean, std. dev.) (mean, std. dev.)

maze (Figure 6.2) 6 (1.5206, 0.0529) (1.5000, 0.0596)
perturbation (Figure 6.5) 6

upper path 3 (0.6624, 0.0512) (0.5963, 0.0047)
lower path 3 (0.5807, 0.0048) (0.5689, 0.0149)

loop (Figure 6.7) 6
looping path 3 (1.1327, 0.0086) (1.1274, 0.0083)

non-looping path 3 (0.5950, 0.0199) (0.5902, 0.0102)
splits (Figure 6.9) 12

outer paths 6 (0.7397, 0.0320) (0.6883, 0.0231)
inner paths 6 (1.0062, 0.0494) (0.7152, 0.0902)

artist (Section 7.3) 18 (0.7015, 0.2112) (0.6080, 0.1540)

Table 6.3: Trajectory length statistics

with less curvature. Thus, the planned paths are also slightly shorter.

6.6 Summary

The PbD motion planning algorithm described here is able to success-

fully create safe, smooth, novel manipulator plans using only demonstra-

tions provided by a domain expert. The planned robot state is related to

the demonstrations, and the demonstrated actions are used to compute

a new plan action. However, the demonstration trajectories are imper-

fect and their relationships to one another change over time. Moreover,

the examples can demonstrate multiple strategies for completing the

task. Planned paths must follow only one branch of bifurcating strate-

gies. Thus, planning requires more than simply averaging demonstrated

behavior over time, or even learning a single behavior corresponding to

each possible state.

Instead, the planning algorithm advances through the neighbor graph,

which encodes information about the relationships between portions of

the demonstration trajectories. While these demonstrations do not nec-

essarily behave similarly as they progress through time, the neighbor

graph relationships allow the planner to exploit their similarities as they

progress through the task. The new plan follows these common features

planning 103

that are essential to successfully executing the motion task.

This approach offers advantages even when a model of the environ-

ment is available. In addition to merely avoiding obstacles (as a conven-

tional motion planner would do), non-geometric constraints are observed

as well. Rather than searching for a collision-free path that optimizes an

objective function articulated by a programmer, this planner follows the

routes of example trajectories provided by anyone able to demonstrate

the task. It respects the constraints demonstrated while eliding mo-

tions that are significantly dissimilar from other demonstrations, and

thus disconnected in the neighbor graph. In our experiments, this re-

sulted in planned paths with a 33.9% reduction in mean curvature and

a 10.5% reduction in path length.

104 planning

Chapter 7

Active Learning

Can the maker repair what he makes?

— Roy Batty, Blade Runner, 1982

The planning approach described so far is capable of creating high-

quality trajectories from imperfect demonstrations. Jitter and other un-

desirable artifacts in the demonstrations can be avoided by the planner

largely because small-scale incorrect movements in the examples are

unique, and therefore poorly connected in the neighbor graph. Thus,

they exert less influence on the planner.

In many situations, though, deviations in strategy are not so unique.

Differing strategies are each reinforced with sets of neighboring demon-

strations performing similar actions. In practical terms, the teacher has

provided demonstrations that perform qualitatively different actions at

the same point in the task. Whether these differences are intentional

or not, the learner must decide which of the conflicting strategies to fol-

low when planning through these states. This choice may be random,

weighted by the number of examples of each strategy, or based on some

statistic relating the examples in each group. However, none of these

approaches is likely to provide desired behavior in all applications.

Instead, strategy decisions must be made on a case-by-case basis.

The ease-of-use of PbD methods is premised on the idea that human

teachers can demonstrate and recognize correct performances even if

they cannot formulate the basis for their judgement in mathematic or

programmatic terms. Just as the human teacher provides demonstra-

tions that provide the basis for executing individual tasks, the advice of

the teacher should be sought to resolve choices in creating new plans.

105

In our approach, the learner creates and demonstrates candidate plans

that follow each possible strategy. The teacher is asked to specify which

strategy is to be preferred for creating future plans.

This chapter first presents our algorithm for detecting bifurcations,

states in which demonstration trajectories diverge into qualitatively dis-

tinct planning strategies. Next, we describe our strategy for interacting

with the teacher and requesting advice for resolving the apparently con-

flicting demonstrations. Finally, Section 7.3 presents results from user

trials in the artist domain. Naïve and experienced robot users taught the

robot to sweep a paint brush across a poster board while avoiding obsta-

cles. When bifurcations were detected, users were asked to resolve the

learner’s confusion so that new trajectories could be planned. Results

show that this approach easily and effectively allowed users to train the

robot to imitate their demonstrations.

7.1 Detecting Diverging Demonstrations

The planning algorithm described in the previous chapter relies heavily

on finding and exploiting commonality between multiple demonstration

trajectories. The points of demonstration trajectories are organized by a

neighbor graph that ensures connected portions of trajectories are close

to one another, moving in the same direction, and may safely be interpo-

lated without concern for physical obstacles. The planner, in turn, cre-

ates trajectories that remain close to clusters of demonstrations. These

algorithms have been designed to ensure that novel plans duplicate the

characteristics common to the majority of demonstrations and avoid fea-

tures unique to a single trajectory. These unique features are considered

to be errors in the examples.

Section 5.2 discussed some typical errors that separate individual

example trajectories from their neighbors, including backtracking and

transient deviations. More obvious bifurcations, such as that illustrated

in Figure 7.1, also result in a lack of neighbor links between demonstra-

tions in different branches of the bifurcation. When these gaps appear

in the neighbor graph, the planner is not able to follow both branches

at once. Specifically, the plan refinement stage of the planner will cause

106 active learning

Figure 7.1: This bifurcation in demonstrations is intuitively obvious
from the paths of the trajectories, and is represented by the neighbor
graph. Plans created in each branch of the bifurcation are shown in
Figure 6.9(b).

new trajectory points to gravitate toward one cluster of demonstration

points, and subsequent neighbor extensions will select neighbors nearby

and following this cluster in the graph. Since the refinement seeks only a

local optimum in terms of nearby clusters, small changes in the previous

plan state can cause the planner to choose a different branch of the bi-

furcation. This seemingly chaotic behavior provides another motivation

for purposefully detecting and resolving bifurcations.

Obvious bifurcations, such as the one shown above, are typically caused

by constraints that restrict paths into a limited number of discrete op-

tions. Although there is variation within the options (as there is between

all demonstrations), it is noticeably less than the variation between op-

tions. These sorts of bifurcations may occur due to physical obstacles in

the workspace or other geometric or non-geometric constraints. For ex-

ample, constraints on end-effector orientation coupled with manipulator

redundancy may provide two or more options for following a particular

active learning 107

Figure 7.2: Some bifurcations appear due to unintentional clustering of
demonstrations in tasks without true constraints. In this example, a
bifurcation has been detected between the red and the purple paths.

workspace path. In this case, no physical obstacle may be present be-

tween the two clusters of trajectories, but their directions of movement

are so widely separated that they must represent different strategies.

In other cases, such as the demonstrations shown in Figure 7.2, ex-

ample trajectories may be widely separated despite a lack of obstacles

forcing them apart. In this case, the freedom to vary the path taken

from left to right in the image has resulted in an artificial distinction

between the similar red and purple paths. These demonstrations are so

widely separated that a physical obstacle may exist between them. The

bifurcation detection algorithm described below thus detects two differ-

ent strategies in the demonstration trajectories, and the teacher will be

asked to resolve the apparent conflict. This example raises an interest-

ing complication to the task of resolving bifurcations: it is not sufficient

to allow the teacher to simply choose between the two strategies detected

by the learner. In this case, the bifurcation appears only due to lack of

information, a deficiency in the demonstrations provided to the learner.

108 active learning

The solution to this dilemma is to provide additional information. The

mechanism for doing so will be discussed in Section 7.2.

Finally, we note that the presence of an obstacle is not as reliable an

indication of bifurcation as it may seem. As discussed in Section 5.3,

the concept of homotopy makes planar trajectories in the presence of ob-

stacles easy to distinguish. In higher dimensions, though, obstacles are

more easily circumvented. For example, even if an obstacle truly exists

between the differently colored trajectories of Figure 7.2, a bifurcation

does not necessarily exist between the sets of trajectories. As illustrated

in Figure 5.4, if the obstacle were confined to the page, or the half-space

below the page, a safe and valid path may exist just above the page. This

new trajectory would be similar (in fact, homotopic) to one of the red tra-

jectories, and one of the purple trajectories. A simple interpolation be-

tween red and purple paths would be confined to the plane of the page,

and thus doomed to pass through the hypothetical obstacle. A smooth in-

terpolation through the new trajectory would avoid the obstacle, though,

and show that all the trajectories are, in fact, homotopic.

Using the SDF of Section 6.3 to detect bifurcations is a tempting, but

incomplete, approach. We might produce trial robot poses by interpo-

lating between two trajectories, then test whether those poses are safe.

However, this will detect only bifurcations caused by physical obstacles.

For a more general approach, we rely upon the neighbor graph. A bifur-

cation in demonstration strategies should appear as a localized partition

in the graph. Example trajectories that are linked in the graph at some

point in time will no longer be linked after the bifurcation.

Thus, the presence of a physical obstacle in the robot’s workspace,

even when it appears between demonstration trajectories, is neither nec-

essary nor sufficient to require a bifurcation between these trajectories.

An obstacle is only one indication that a bifurcation may exist. Groups of

example trajectories may diverge for other reasons, so we should search

for the presence of divergences between clusters of trajectories. Typical

approaches to clustering such as k-means [24] or hierarchical cluster-

ing [66] are difficult to apply since they do not account for time-series

data such as trajectories. If the split between strategies is not sufficiently

abrupt, these approaches cannot precisely localize the bifurcation – if it

active learning 109

is detected at all.

Our strategy for detecting bifurcations depends on the neighbor graph

constructed in Chapter 5. This graph contains links between similar

portions of nearby trajectories, but no links are formed when the trajec-

tories diverge from one another. The neighbor graph captures the sepa-

ration between demonstration trajectories caused by physical obstacles

as well as other causes. As shown in Figure 7.1, the neighbor graph also

captures separations caused by trajectories moving in divergent direc-

tions, as well as the errors and imperfections described in Section 5.2.

Of course, not all of these situation correspond to diverging strategies.

In particular, the learner should not ask for clarification regarding every

imperfection and missing neighbor link between nearby trajectories.

Instead, the learner must determine which missing neighbor links

represent bifurcations worthy of investigation. Such bifurcations are

characterized by an abrupt loss of neighbors between sets of trajectories.

Prior to the bifurcation, the presence of links between the trajectories in-

dicates that the same strategy is being followed in all cases. Following

the bifurcation, links should cease between trajectories following differ-

ent strategies, but should still exist within a single strategy.

This description suggests the use of a graph partitioning algorithm

to detect bifurcations. Such algorithms are frequently used for image

segmentation and other applications in which divisions must be found

between collections of interconnected nodes. We use Shi and Malik’s

normalized cuts [63] graph partitioning algorithm to detect these loca-

tions. This algorithm compares the number of links within a partition,

or cluster, to the number of links between clusters. The links between

clusters are cut to form partitions. A good partition should cut rela-

tively few links, but a large number of links should exist within clus-

ters. NormalizedCut computes a score based on the number of cut links

and the number remaining within clusters. The procedure, presented

in Algorithm 7.1, takes an variant of an adjacency matrix as input, com-

putes a score for every possible partitioning, and returns the highest-

scoring partition.

The adjacency matrix used does not describe links between all the

points in the trajectory collection, T , because we are not searching for

110 active learning

Algorithm 7.1 The Normalized Cut algorithm
1: function NormalizedCut(adj)
2: n← size(adj)
3: best_score← −∞
4: for all permutations p ∈ {0, 1}n do

5: ⊲ Determine degree of each vertex for normalization
6: degree[0] =

∑

i∈{p[i]=0} adj[i][i]
7: degree[1] =

∑

i∈{p[i]=1} adj[i][i]
8: assoc_links← cut_links← {0, 0}

9: ⊲ For each pair of vertices. . .
10: for all i ∈ 0..n do

11: for all j ∈ i..n do

12: if p[i] == p[j] then

13: ⊲ . . . accumulate a score in assoc_links if
14: ⊲ in the same partition
15: assoc_links[p[i]]+ = 2 ∗ adj[i][j]

degree[p[i]]

16: else

17: ⊲ . . . or cut_links otherwise.
18: cut_links[p[i]]+ = adj[i][j]

degree[p[i]]

19: cut_links[p[j]]+ = adj[j][i]
degree[p[j]]

20: ⊲ Keep track of the best score
21: score ← assoc_links[0] + assoc_links[1] − cut_links[0] −

cut_links[1]
22: if score > best_score then

23: best_score← score
24: best_cut← p

25: return best_cut

active learning 111

an arbitrary division between these points. We are only interested in a

subset of the neighbor graph. In addition, all the points of a single tra-

jectory must be assigned to one partition or the other. To simplify the

information provided to the NormalizedCut algorithm, we build a meta-

graph in which each vertex is a trajectory. The adjacency matrix passed

to Algorithm 7.1 contains the number of iter-trajectory links between

each pair of trajectories in each off-diagonal element, and the degree (to-

tal number of links) of within each vertex on the diagonal (for use in

nomalization).

Typically, normalized cuts are computed on large graphs, so an initial

partition must be estimated by some means, and simulated annealing is

used to find a locally optimal score. In our case, though, the size of the

partitioning problem is significantly reduced. Although the neighbor

graph of demonstration trajectory points may contain tens of thousands

of points, we are only searching for partitions between trajectories. As

in most approaches to PbD, our approach seeks to operate with a small

number of examples, thus limiting the amount of time the teacher needs

to spend during training. Our experiments contained a dozen or fewer

example trajectories, so we can easily enumerate and test all possible

partitions to find the globally optimal cut.

As described so far, the NormalizedCut algorithm could be used to

separate entire demonstration trajectories from one another. However,

we expect the demonstrations to be similar (and thus well-connected)

during some parts of the task, and to diverge in other parts. Our goal

is to find the areas of divergence. Thus, we want to compute cuts within

a sliding window of trajectory points. This presents some considerable

challenges, though. The foremost is determining which points from which

trajectories are included in the sliding window. Since trajectories are dif-

ferent lengths and unaligned in time, we cannot simply choose the same

time indices from all examples. Furthermore, even the neighbor graph

does not appear (at first) to be useful since we are searching for areas

in which trajectories are not linked. However, the trajectories must be

linked prior to the bifurcation. We hope to detect situations in which

trajectories that were well-connected at some point in time become dis-

connected later. Our sliding-window strategy, therefore, is to compare

112 active learning

the connections between trajectories at each given point to the connec-

tions in the future. We then look for clusters of points that lose these

connections to neighboring trajectories. These clusters, which we call

cut neighborhoods, indicate regions of the example trajectories just prior

to bifurcations.

The procedure is detailed in Algorithm 7.2. The first loop in this pseu-

docode searches for likely bifurcation points: places where the number of

neighboring demonstration trajectories decreases. Because the neighbor

graph is noisy, we search for a local minimum in a small range of points

following a local maximum. We only record values for points with more

neighboring trajectories than all of the next δ1 points. This approach

allows us to ignore transient or intermittent connections between tra-

jectories. In our experiments, δ1 = 3 worked well for all tested scenarios.

The missing array keeps track of the differences between these local ex-

trema.

In the next loop, the potential cut neighborhoods are collected in the

neighborhoods set. These neighborhoods keep track of the demonstration

trajectory points within them and a score, which is the sum of differ-

ences calculated in the previous loop. The FindOrCreate create function

called from this loop (and listed in Algorithm 7.3) is responsible for co-

alescing suspected bifurcation points into neighborhoods. Specifically, a

point is added to an existing neighborhood if it is less than δ1 links away

(in the original neighbor graph represented by adj) from any point in

that neighborhood. Otherwise, a new neighborhood is created. Collect-

ing points into neighborhoods serves two purposes: it prevents multiple

detections of the same bifurcation, and ensures that the meta-graph con-

tains information from all trajectories involved in the bifurcation. Each

neighborhood computes and stores its adjacency matrix, representing

the meta-graph of connections between demonstration trajectories up to

δ2 points in the future. A larger δ value (δ2 = 10 in our experiments) pro-

duces a denser meta-graph for NormalizedCut to examine, and leads to

more accurate results. We create a symmetric adjacency matrix with the

degree of each vertex in the diagonal elements.

In the final loop, the NormalizedCut algorithm (listed in Algorithm 7.1)

is used to compute the partitioning of demonstration trajectories as de-

active learning 113

Algorithm 7.2 The learning procedure
1: function DetectBifurcations(T , adj)
2: ⊲ Compute path lengths through adjacency graph
3: adj.AllPairsShortestPaths()

4: ⊲ Find local maxima followed by local minima in number of
5: ⊲ neighboring demonstrations
6: for all pt ∈ T do

7: nn[0..δ1]← NumNeighbors(pt..pt + δ1)
8: if nn[0] > nn[1..δ1] and nn[0] ≥ NumNeighbors(pt− 1) then

9: missing[pt]← nn[0]− min(nn[1..δ1])
10: else

11: missing[pt]← 0

12: ⊲ Coalesce neighborhoods of points with missing neighbors
13: for i ∈ T where missing[i] 6= 0 do

14: pts← {T [i]} ∪ adj[T [i]]
15: neighborhood← FindOrCreate(T , neighborhoods, adj, T [i])
16: neighborhood.pts← neighborhood.pts ∪ pts
17: neighborhood.score← neighborhood.score + missing[i]
18: ⊲ Build a meta-graph for the neighborhood
19: for all pt ∈ pts do

20: n← T.demonstration_number(pt)
21: for all p ∈ pt..pt + δ2 do

22: for all neighbor ∈ adj[p] do

23: m← T.demonstration_number(neighbor)
24: neighborhood.adj_matrix[n][n] + +
25: neighborhood.adj_matrix[n][m] + +
26: neighborhood.adj_matrix[m][n] + +

27: ⊲ Use Normalized Cuts to determine bifurcations
28: bifurcations← {}
29: for all neighborhood ∈ neighborhoods do

30: labels← NormalizedCut(neighborhood.adj_matrix)
31: if labels[0] 6= ∅ and labels[1] 6= ∅ then

32: bifurcations← bifurcations ∪ {neighborhood.pts, labels}

33: return bifurcations

114 active learning

scribed above. Recall that the labels array returned by NormalizedCut

provides the meta-graph vertices (that is, trajectories of T) that belong

to the two partitions. Note that the final test ensures that at least one

demonstration has been assigned to each of the two branches of the bi-

furcation. This is necessary because some neighborhoods may be found

with large values in the missing array even though the highest-scoring

normalized cut keeps all demonstrations in the same group. This is

likely to occur in situations in which the neighbor graph is especially

noisy. If many neighboring demonstration trajectories are becoming dis-

connected in the neighbor graph in a random fashion, high values will

appear in the missing array. However, a good normalized cut will still

have strong interconnections with branches with fewer connections be-

tween them.

Algorithm 7.3 The learning procedure helper function
1: function FindOrCreate(T , neighborhoods, adj, pt)
2: for all neighborhood ∈ neighborhoods do

3: for all n ∈ neighborhood do

4: if adj.ShortestPath(pt, n) < δ1 then

5: return neighborhood

6: empty_neighborhood← new Neighborhood
7: empty_neighborhood.pts← {}
8: empty_neighborhood.score← 0
9: empty_neighborhood.adj_matrix← Ø|T |×|T |

10: neighborhoods← neighborhoods ∪ empty_neighborhood
11: return empty_neighborhood

7.2 Requesting Advice

Having located areas of diverging demonstrations, the robot learner must

consider which strategy to use when planning. However, it is unlikely

to be able to make a choice that is reasonable in all scenarios without

additional input from the teacher. Without any additional information,

the learner may choose randomly among available strategies. Any strat-

egy will allow the learner to reach its goal and complete its task, even

if suboptimally. Indeed, our planner has no notion of optimality beyond

active learning 115

similarity to demonstrations. Since all candidate strategies are defined

by demonstrations, this formulation of optimality does not help choose

between them. Additionally, we would prefer to create predictable robot

behaviors rather than random ones.

Furthermore, unlike a traditional motion planner, our learner has

no objective function to optimize, nor do we wish to impose one to solve

the current dilemma. Having the teacher specify a cost function over

workspace or configuration space may provide a solution, but would be

a daunting task for non-programmers who have turned to PbD methods

for teaching tasks to robots. A simple global objective such as path length

may provide the desired outcome for some tasks, but not all.

Alternately, we may consider computing some statistic of the diverg-

ing sets of demonstrations. As a simple (apparent) improvement to the

random choice strategy just described, we might bias the random choice

based on the number of demonstrations in each set. Or, the learner may

choose the more consistent set of examples by determining which demon-

strations are more tightly clustered. Again, though, there is no reason

to believe that such simple heuristics provide preferable behavior in all

situations. The teacher may demonstrate a greater number of more con-

sistent examples in some cases by chance, or even due to the convenience

of demonstrating certain strategies. No single statistic can predict the

preferable behavior in all areas of diverging strategy.

Thus, we rely on an active learner, which requests additional infor-

mation when required. When suspected bifurcations are detected, the

robot learner asks the human teacher which branch of the bifurcation is

to be preferred. Rather than present ambiguous graphical representa-

tions of the trajectories on a computer screen, the robot learner executes

partial trajectory plans to demonstrate the branches of the bifurcation.

This way, the teacher is given a clear conception of what the robot plans

to do in the uncertain situation. The teacher may indicate that one plan

or the other is to be preferred, and future plans will follow that branch of

the bifurcation. That is, when a future plan encounters points from the

cut neighborhood, points from the preferred branch are used as neigh-

bors, but points from the other branch are not. The teacher may also

indicate no preference, in which case the planner can do no better than

116 active learning

to choose a random branch, weighted by the number of demonstrations

provided in each branch.

(a) (b)

Figure 7.3: If the teacher asserts no difference between the branches of
a bifurcation, an averaged plan is executed until it is no longer safe.

A final possibility is that the teacher discerns no distinction between

the two branches. This may occur in situations such as that illustrated

by Figure 7.2, where the provided trajectories are widely separated, caus-

ing the robot to infer a constraint where none exists. In this case, the

planner would benefit from receiving additional information, so the robot

requests a new example demonstrating the possibility of planning in the

unknown region. The learner solicits this additional demonstration by

creating a partial plan that approaches the bifurcation and proceeds

through it, averaging the two demonstrations just performed, until it

reaches a point no longer known to be safe. At this point, the teacher

is asked to continue the demonstration, essentially proving the equiva-

lence of the two strategies by providing a trajectory that bridges the gap

between the previous examples. If the learner continues to detect a bi-

furcation, additional examples may be required. Figure 7.3 includes two

cases in which an orange plan is produced as the average of the two plans

in the detected bifurcation. The plan is cut short because the average of

the two branches leads into an area of the workspace not explored by

demonstration trajectories. Since obstacles may be present, the learner

must stop and ask the teacher to continue the demonstration. The new

active learning 117

Figure 7.4: Demonstrated strategies may bifurcate multiple times.

Figure 7.5: Example trajectories that split into the same groups twice.

demonstration will be added to the set of training examples.

When multiple bifurcations appear in a scenario, such as the one in

Figure 7.4, questions are presented to the teacher in topological order.

The first encountered bifurcation is examined first because the resolu-

tion to the learner’s uncertainty here may obviate the need for additional

questions. For example, the teacher may express a preference to avoid a

branch of a bifurcation with additional bifurcations. If the resolution to

an early question requires an additional example, later bifurcations may

be formed or resolved by the new example. If later bifurcations appear

in both branches of a bifurcation in which the teacher has indicated no

preference, the order of the questions is not critical.

118 active learning

There is a minor optimization in question-asking policy that may ap-

pear advantageous in scenarios such as that shown in Figure 7.5. The

examples split into two groups to avoid an obstacle, then rejoin on the

other side. Upon approaching another obstacle, the examples again split

into the same groups to avoid it. In this illustration, it appears that the

desired behavior at the second bifurcation is precisely correlated to the

behavior at the first. However, we avoid making this determination dur-

ing our learning procedure. If the planner is able to find a safe path

transitioning from one strategy to the other, the learner is allowed to

consider such an option. This allows the learner to combine portions of

examples that follow distinct strategies into combinations never demon-

strated by the teacher. This may be advantageous, for example, if the

teacher remained on one side of the obstacles due to visibility concerns

during training.

The procedure for requesting advice from the teacher requires the

creation and execution of two plans, or partial plans, in the vicinity of the

bifurcation. Since the bifurcation specifies the neighborhood of points

that is the area of interest, we can begin the planner at the start (as

usual), plan through one branch, and stop some short distance after the

bifurcation. Because we operate in domains that do not have dynamic

constraints, we can then execute the plan in reverse until a short dis-

tance prior to the bifurcation, then create and execute a partial plan in

the other branch. To extend this approach for handling dynamic con-

straints, we could execute full plans, though some other means would

be necessary to draw the teacher’s attention to the area in which the

bifurcation is traversed. In the experiment described below, we demon-

strated plans that extended 10 cm before and after the bifurcation, but

this distance can easily be tuned to match the physical characteristics of

a given task.

To plan through a single branch, we need only modify the neigh-

bor extension procedure from Section 6.2 to remove neighbors that are

neighborhood points in the other partition. Note that this does not ig-

nore all points from the trajectories assigned to the other branch, only

those in the vicinity of the bifurcation.

active learning 119

Figure 7.6: User trials were conducted in the artist domain.

7.3 Experimental Results

User trials were conducted in the artist domain described in the previous

chapter. Experiment participants were asked to perform the same task

described earlier: to teach the robot to traverse the poster board with a

paint brush while avoiding obstacles. Kinesthetic demonstrations were

performed using one of the 7-DOF WAM arms of the HERB robot [67]

built by Intel and pictured in Figure 7.6. Participants were asked to

move the paint brush from a fixed start to a fixed goal, each about 5 mm

in diameter, to provide at least three examples of each strategy (if they

chose to demonstrate multiple strategies), and to provide at least six ex-

amples overall. The demonstration trajectories were processed by the

learner, and detected bifurcations were presented to the participants,

who were asked to indicate which strategy the robot should prefer. Fi-

nally, the robot created and performed a new plan. Participants were

then asked to fill out a brief questionnaire about their experience.

120 active learning

Figure 7.7: A set of demonstrations from a single teacher. Distinct strate-
gies are shown in different colors. Our system detected two bifurcations,
but did not detect the singleton strategy shown in yellow.

Figure 7.8: Some typical teacher demonstrations. The teacher on the
left had specific robot manipulator experience. The teacher on the right
reported no previous experience with robots.

Eighteen participants were recruited via word-of-mouth from Carnegie

Mellon University and the surrounding community. They received no

compensation for their participation. Participants were asked about

their previous experience with robots, and were categorized based on

active learning 121

Ease of Programming Chronbach’s alpha = 0.7021
Training the robot was easy.
I felt in control of the robot during training.
I feel comfortable working with the robot.

Quality of Plans Chronbach’s alpha = 0.7586
The robot’s final plans were predictable.
The robot’s final plans were safe.
The robot’s final plans were aggressive.∗

The robot’s final plans were surprising.∗

Training Questions Chronbach’s alpha = 0.7280
The questions asked by the robot were predictable.
The questions asked by the robot were important to its training.
The questions asked by the robot were surprising.∗

Effectiveness of Learning Chronbach’s alpha = 0.9216
The robot’s final plans were natural.
The robot’s final plans were similar to mine.
The robot’s learned from my demonstrations.

Table 7.1: Questions from the user trial. All questions were asked on a
5 point scale ranging from “Strongly Agree” to “Strongly Disagree”. For
analysis, the scales for questions marked with a ∗ were reversed.

their response into groups with general robotics experience (four par-

ticipants), specific experience with robot manipulators (three partici-

pants), or none (eleven participants). Almost all participants provided

three demonstrations of each of two strategies, so a single bifurcation

was detected and presented to the teacher. One participant (in the spe-

cific experience category) demonstrated a single strategy, and one par-

ticipant (with general experience) provided nine examples in four dif-

ferent strategies. This set of trajectories is pictured in Figure 7.7. As

requested, two of the strategies contain three examples each, but the

remaining three trajectories demonstrate two strategies. Our system

detected two bifurcations in this cases, but was unable to distinguish

the singleton strategy. Figure 7.8 illustrates some more typical teacher

demonstrations.

Survey questions are listed in Figure 7.3 and grouped into categories

that measure similar qualities of the teacher’s experience and percep-

122 active learning

Figure 7.9: Results for the Ease of Programming scale. The overall
mean response is 1.222.

tions. The “Chronback’s alpha” listed for each scale is a measure of the

internal consistency of responses within a category. A measure of 0.70

or higher is generally taken to indicate that the questions measure the

same variable. For each scale, we compute the mean of responses in

each experience category, and perform an analysis of variance (ANOVA)

to determine the significance of the differences.

The “Ease of Programming” scale (Figure 7.9) exhibits the most sig-

nificant difference between experience levels (F = 3.24, p = 0.068). Al-

though the overall average of 1.222 indicates that users generally agreed

with the questions in this category, there was some variance in responses

from experienced users. Inexperienced users were nearly unanimous in

their strong agreement with all of these questions.

The next category of questions asks for the teacher’s evaluation of

the “Quality of Plans” (Figure 7.10) in terms of safety and predictabil-

ity. The difference between experience levels on this scale falls short of

statistical significance (F = 2.577, p = 0.110), but the means are more

widely distributed. The users with specific experience were nearly am-

bivalent, while the other groups expressed more confidence in the plans

created.

active learning 123

Figure 7.10: Results for the Quality of Plans scale. The overall mean
response is 1.861.

Figure 7.11: Results for the Training Questions scale. The overall
mean response is 2.289.

124 active learning

Figure 7.12: Results for the Effectiveness of Learning scale. The over-
all mean response is 1.611.

Results in the other categories were not statistically significant (p >

0.1). The “Training Questions” scale (Figure 7.11) refers to the robot’s

demonstration of the teacher’s bifurcating strategies and the request

(spoken by the experimenter) for a choice of strategy to be used in the

robot’s own plan. The responses are slightly more positive than neu-

tral, but display large variance. This presents a potential problem for

active learning. Although it is not strictly necessary for the teachers to

understand the significance of this feedback cycle, the questions asked

by the robot are essential for resolving the ambiguity presented by di-

verging demonstrations. Since the learner is capable of planning when

it asks its questions (indeed, the questions involve the execution of par-

tial plans), a teacher who thinks the questions are unimportant may

skip this phase of training. The final scale, “Effectiveness of Learning”

(Figure 7.12) also shows no statistically significant difference between

the groups, but the overall mean of 1.611 is further from neutral. This

indicates a general agreement that the robot’s final plan followed the

strategy that the teacher chose to convey.

active learning 125

7.4 Summary

The active learning approach described in this chapter allows a robot

learner to detect and resolve ambiguous or conflicting advice that it re-

ceives during initial training. The detection algorithm, based on a graph

cut procedure, searches for areas of disagreement among demonstra-

tion trajectories that were previously following similar strategies. When

their strategies diverge, the lack of neighbor links between the strategies

may indicate the presence of a physical obstacle or other constraints, or

it may simply result from inconsistent and widely varying examples.

Since the robot learner does not possess enough information to de-

termine either the cause or the solution to the inconsistent strategies in

demonstration trajectories, it requests additional help from the teacher.

As argued earlier, there is no single path statistic or objective criteria for

automatically choosing one branch over another in all tasks and scenar-

ios. Instead, by demonstrating the options that the learner has distilled

from example trajectories, the teacher is given an opportunity to evalu-

ate its knowledge. Additional examples may be provided to improve the

learner’s model of the task. The demonstration of plan options provides

an intuitive means to solicit additional information from the teacher.

Teachers are able to see the execution of proposed planning strategies in

situ, which facilitates their decision regarding which strategy the robot

learner should adopt for future plans. Teacher feedback then allows the

robot to create safe, natural plans that exhibit the desired strategy.

User trials showed that people with all levels of experience with robots

were able to easily and effectively teach a robot manipulator to perform a

motion task through kinesthetic demonstrations. Although experienced

robot programmers were generally less enthusiastic about the ease of

Programming by Demonstration and the quality of the plans generated,

all users considered the robot’s final plans to be representative of the

strategies they had demonstrated.

126 active learning

Chapter 8

Conclusions

Don’t you see, when the imitator is perfect, so must be the

imitation, and the semblance becomes the truth, the pre-

tense a reality!

— Klapaucius, The Cyberiad, 1965

The thesis of this work is that a Programming by Demonstration ap-

proach to planning is able to construct safe, efficient, natural motion

plans for robotic manipulators from imperfect demonstrations and ad-

vice requested when demonstrations are found to conflict. To support

this claim, we have developed algorithms for organizing demonstration

trajectories in a neighbor graph, planning new trajectories using this

graph, and detecting and resolving conflicting information in demonstra-

tion trajectories through interaction with the teacher. This PbD system

was implemented and tested in two experimental domains through user

trials with novice and expert robot users.

Our approach to Programming by Demonstration begins with the

construction of a neighbor graph that properly relates common portions

of a collection of demonstration trajectories. Our algorithm builds upon

the approach of ST-Isomap’s neighbor finding to more reliably avoid er-

roneous neighbor links such as short-circuits between distinct portions

of the task. We have formulated a series of heuristics to elide neighbor

links in inconsistent areas of the trajectories that are likely to represent

errors in the demonstrations. These heuristics were derived from obser-

vation of common errors in previous approaches to neighbor graphs for

time-series data. Although this neighbor graph was originally intended

for planning in a reduced-dimensionality space, we have demonstrated

127

inherent obstacles that confound this approach. Instead, the sensitiv-

ity to spurious neighbor links and the non-linearity of the embeddings

led us to develop the alternate approach of planning directly over the

neighbor graph.

The planner contributed in this thesis creates new trajectories us-

ing the neighbor graph in the original high-dimensional space. The cor-

respondences between common portions of example trajectories – and

the lack of correspondences in areas of deviation – are used to safely

and smoothly interpolate between examples to create new trajectories.

We have demonstrated this planner in various domains through experi-

ments and user trials, and shown that inconsistencies and deviations in

the demonstrations are avoided in the resulting plans, which are known

to be safe in static environments. Trajectories generated by the system

were shown to be 10.5% shorter and 33.9% smoother (in terms of curva-

ture) than demonstration trajectories in experimental domains.

Finally, we have developed an algorithm for detecting conflicting in-

formation in demonstrations and formulated a user interaction strat-

egy for resolving the conflicts. Our learner locates bifurcations in the

neighbor graph using a normalized graph cuts algorithm and queries

the teacher for the strategy it should follow when creating new plans by

demonstrating the distinction between the branches of the bifurcation.

When the teacher indicates a preference for one strategy over another,

the learner respects this choice for future plans. If the teacher indicates

no preference, the learner is free to plan using either strategy. Finally,

the teacher may assert that there should be no distinction between the

branches. In this case, the learner will begin executing a plan that ap-

proaches the bifurcation, then ask the teacher to continue, thus filling in

the gap in the learner’s knowledge. We conducted user trials with expert

and novice robot users demonstrating the efficacy of this approach. Even

participants with no prior experience working with robots were able to

train a robot to perform a motion task and resolve the learner’s question

regarding a bifurcation in their strategies. Users of all skill levels found

the system easy to use, and recognized the effectiveness of the system in

conveying their motion strategies to the robot.

128 conclusions

8.1 Future Work

Although the approach developed in this thesis has been successfully

demonstrated in multiple domains, additional areas of research remain

unexplored. Our work to date suggests possibilities for improvement in

the computational complexity of our algorithms, and additional mecha-

nisms for incorporating feedback from the teacher to learn better plans.

We also envision additional applications for this work beyond teaching

a skill to a single robot, and extensions to support lifting some of our

assumptions and limitations on the applicability of this approach.

The most computationally demanding portion of the system described

in this thesis is the assurance of safety for generated plans. This re-

quires the construction of a high-resolution occupancy grid in the robot’s

workspace and calculation of the Signed Distance Field (SDF). Simpli-

fying assumptions such as the assertion that only the final link of the

robot’s kinematic chain needs to be checked for collisions certainly help

reduce the size of the problem, but the construction of the occupancy grid

for a set of nominally similar demonstration trajectories entails many re-

dundant operations. A more efficient algorithm, such as approaches that

analytically compute the swept volume of a robot’s geometric primitives

through a trajectory [80], would speed the process.

The planning approach presented in this work creates a plan for exe-

cution in a static environment. In fact, the lack of ability to deal with dy-

namic obstacles is often a perception problem, as well. In cluttered, un-

structured environments such as automobile assembly lines, it is usually

difficult to sense the entire workspace of the robot and detect dynamic

obstacles. If this perception problem were solved, though, our planner

could be improved to dynamically replan trajectories when obstacles are

detected. In particular, bifurcating strategies could be useful: when ob-

stacles are detected in one branch, the planner could use the other strat-

egy.

Our planning approach is also purely kinematic. It ignores the speed

of demonstrated trajectories, and does not consider dynamic constraints.

In some cases, simply interpolating demonstrated velocities during the

action selection step of planning may produce plans that respect the

conclusions 129

same dynamic constraints demonstrated by the teacher. However, to

guarantee that these constraints are respected, an explicit check would

be required after the refinement step, similar to the current SDF safety

check.

Additionally, we could relax the constraint imposed by our definition

of the start region, namely, that plans may safely start from any interpo-

lation of initial demonstration points. Start regions could be explicitly

delineated by the teacher, determined by the SDF, or, more simply, we

could detect multiple disjoint clusters of initial demonstration points.

For example, a redundant manipulator may start a task in distinct con-

figurations that produce the same workspace pose. If these clusters of

initial points were detected before building the neighbor graph, multiple

start regions could be defined, and new plans could be started from the

most appropriate region.

Interpolation is usually, but not always, a safe and desirable method

for generalizing trajectories with non-geometric constraints. For exam-

ple, random motions may be necessary for some kinds of manipulation

tasks, resulting in small, uncorrelated motions in demonstrations. Our

algorithm will discard these uncorrelated motions as noise, in favor of

planning a smooth trajectory for that task. To correctly plan in these

situations, it may be necessary to explicitly detect areas of uncorrelated

noise and preserve it.

Similarly, there may be other objective functions employed by teach-

ers in manipulation tasks that our planner should detect. Our current

approach produces shorter, smoother plans as an effect of its interpo-

lation strategy. Although we have not formulated the precise objective

function being optimized by our planner, it would be useful to do so, and

to provide a means to alter this objective function if we can determine the

criteria that a human teacher is seeking to optimize in demonstrations.

Other work in Programming by Demonstration has explored alter-

nate methods of active learning for soliciting and incorporating teacher

feedback. For example, Binary Critiquing and Advice Operators [2] are

two mechanisms for providing quality estimates and corrections to tra-

jectories – both teacher demonstrations and plans generated by the learner.

Binary Critiquing allows a teacher to identify areas of poor performance

130 conclusions

in motion trajectories. Advice Operators provide additional information

by indicating how trajectories (or portions of trajectories) could be im-

proved. These concepts could be incorporated in our framework, possi-

bly by providing scores or weights to elements of the neighbor graph.

The refinement stage of the planner could use these scores to adjust the

generation of new trajectories.

We also expect the improved neighbor-finding approach presented

here to be useful for other applications in which motion trajectories are

compared. In addition to Programming by Demonstration, this tech-

nique may prove useful for activity recognition, robot fault detection, and

other applications in which time-series trajectories are compared. Activ-

ity recognition compares a given motion trajectory to collections of exam-

ples representing distinct activities. Our neighbor-finding technique is

likely to construct a much denser neighbor graph between a query tra-

jectory and additional demonstrations that represent the same activity.

Similarly, a robot that frequently repeats a similar task or set of tasks is

likely could compare a new trajectory to a database of prior executions.

If the new trajectory is sufficiently dissimilar to normal executions, the

robot might request operator assistance.

Finally, we may be able to distinguish between novice and expert

demonstrations, so we can determine when a human teacher has learned

a particular skill. In Chapter 5, we found that the demonstrations pro-

vided by inexperienced robot operators were typically more widely sep-

arated and contained variance not easily accounted for through dimen-

sionality reduction. If this observation holds true even when a robot

is not involved, such as using motion capture of human movements, we

may be able to detect the decreased variance between examples when a

person becomes proficient at a particular activity. This could be useful,

for instance, when astronauts train to perform an Extra-Vehicular Activ-

ity (EVA). Due to the danger and difficulty of working in spacesuit out-

side of a spacecraft, astronauts practice these activities extensively in

neutral-buoyancy underwater simulations. A quantitative assessment

of the astronaut’s proficiency in performing an EVA could be a useful

tool for determining when the necessary skills have been mastered.

conclusions 131

8.2 Summary

We have presented a Programming by Demonstration algorithm for teach-

ing robots to perform repeatable motion tasks safely, efficiently, and

smoothly. We have developed heuristics for relating imperfect demon-

strations in a neighbor graph, and an algorithm to create new plans

using this graph. We have also developed an algorithm for detecting bi-

furcations in the teacher’s plans, demonstrating the distinction between

the strategies, and eliciting advice for creating future plans. User trials

have demonstrated the capabilities of this system for novice and expert

robot users. While additional avenues of research remain, the contribu-

tions of this thesis provide an effectual means for programming a robot

by demonstration.

132 conclusions

References

Can’t we just talk to the humans? A little understanding

could make things better. Can’t we talk to the humans and

work together now?

— “The Humans are Dead”, The Distant Future,

Flight of the Conchords, 2007

[1] J. Aleotti, S. Caselli, and G. Maccherozzi. Trajectory reconstruc-

tion with nurbs curves for robot programming by demonstration.

In Computational Intelligence in Robotics and Automation, 2005.

CIRA 2005. Proceedings. 2005 IEEE International Symposium on,

pages 73–78, 2005. 2.2, 2.3

[2] Brenna Argall. Learning Mobile Robot Motion Control from Demon-

stration and Corrective Feedback. PhD thesis, Robotics Institute,

Carnegie Mellon University, Pittsburgh, PA, March 2009. 8.1

[3] Brenna Argall, Brett Browning, and Manuela Veloso. Learning by

demonstration with critique from a human teacher. In ACM/IEEE

international conference on Human-robot interaction, pages 57–64,

Arlington, Virginia, USA, 2007. ACM Press. 2.3

[4] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett

Browning. A survey of robot learning from demonstration. Robot.

Auton. Syst., 57:469–483, May 2009. 2

[5] H. Asada. Teaching and learning of compliance using neural nets:

representation and generation of nonlinear compliance. In Robotics

and Automation, 1990. Proceedings., 1990 IEEE International Con-

ference on, pages 1237–1244 vol.2, 1990. 2.1

133

[6] H. Asada and H. Izumi. Automatic program generation from teach-

ing data for the hybrid control of robots. Robotics and Automation,

IEEE Transactions on, 5:166–173, 1989. 2.1

[7] Atkeson, Moore, and Schaal. Locally weighted learning. Artificial

Intelligence Review, 11:11–73, February 1997. 2.2

[8] James (Drew) Bagnell and Jeff Schneider. Autonomous helicopter

control using reinforcement learning policy search methods. In

Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE In-

ternational Conference on. IEEE, May 2001. 2.2

[9] D. C. Bentivegna. Learning from Observation Using Primitives.

PhD thesis, Georgia Institute of Technology, Atlanta, GA, 2004. 2.3

[10] D.C. Bentivegna and C.G. Atkeson. Learning from observation us-

ing primitives. In Robotics and Automation, 2001. Proceedings 2001

ICRA. IEEE International Conference on, volume 2, pages 1988–

1993 vol.2, 2001. 2.2, 2.4

[11] Marshall Bern and David Eppstein. Mesh generation and optimal

triangulation. Computing in Euclidean Geometry, 1:23–90, 1992.

3.3

[12] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot program-

ming by demonstration. In B. Siciliano and O. Khatib, editors,

Handbook of Robotics, pages 1371–1394. Springer, Secaucus, NJ,

USA, 2008. 2

[13] Christina Louise Campbell, Richard Alan Peters, Robert E. Broden-

heimer, William J. Bluethmann, Eric Huber, and Robert O. Am-

brose. Superpositioning of behaviors learned through teleopera-

tion. IEEE Transactions on Robotics, 22(1):79–91, February 2006.

2.2, 2.5

[14] J. Chen and A. Zelinsky. Programing by demonstration: Coping

with suboptimal teaching actions. Int. Journal of Robotics Re-

search, 22(5):299–319, 2003. 2.1

134 REFERENCES

[15] Sonia Chernova and Manuela Veloso. Tree-based policy learning

in continuous domains through teaching by demonstration. In Gal

Kaminka, David Pynadath, and Christopher Geib, editors, Mod-

eling Others from Observations: Papers from the AAAI Workshop,

pages 24–31. American Association for Artificial Intelligence, 2006.

2.3, 2.4

[16] Adam Coates, Pieter Abbeel, and Andrew Y. Ng. Apprenticeship

learning for helicopter control. Communications of the ACM, page

2009. 2.2

[17] D. A Cohn, Z. Ghahramani, and M. I Jordan. Active learning

with statistical models. Journal of Artificial Intelligence Research,

4:129–145, feb 1996. 2.3

[18] Kerstin Dautenhahn and Chrystopher L. Nehaniv. Imitation in An-

imals and Artifacts. MIT Press, 2002. 2.5, 3.2

[19] N. Delson and H. West. Robot programming by human demon-

stration: the use of human inconsistency in improving 3d robot

trajectories. In Intelligent Robots and Systems ’94. ’Advanced

Robotic Systems and the Real World’, IROS ’94. Proceedings of the

IEEE/RSJ/GI International Conference on, volume 2, pages 1248–

1255 vol.2, 1994. 2.3

[20] N. Delson and H. West. Robot programming by human demonstra-

tion: the use of human variation in identifying obstacle free trajec-

tories. In Robotics and Automation, 1994. Proceedings., 1994 IEEE

International Conference on, pages 564–571 vol.1, 1994. 2.3, 2.6

[21] N. Delson and H. West. Robot programming by human demon-

stration: adaptation and inconsistency in constrained motion. In

Robotics and Automation, 1996. Proceedings., 1996 IEEE Interna-

tional Conference on, volume 1, pages 30–36 vol.1, 1996. 2.3, 5.3

[22] E. W. Dijkstra. A note on two problems in connexion with graphs.

Numerische Mathematik, 1:269–271, 1959. 3.1

REFERENCES 135

[23] E. Drumwright, O.C. Jenkins, and M.J. Matarić. Exemplar-based

primitives for humanoid movement classification and control. In

Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE

International Conference on, volume 1, pages 140–145 Vol.1, 2004.

2.2, 2.5

[24] R. O. Duda and P. E. Hart. Pattern Classification and Scene Anal-

ysis. John Wiley & Sons, 1973. 7.1

[25] Imola Fodor. A survey of dimension reduction techniques. Technical

report, U.S. Department of Energy, 2002. 2.5

[26] H. Friedrich, J. Holle, and R. Dillmann. Interactive generation of

flexible robot programs. In Robotics and Automation, 1998. Pro-

ceedings. 1998 IEEE International Conference on, volume 1, pages

538–543 vol.1, 1998. 2.3

[27] Daniel H Grollman and Odest Chadwicke Jenkins. Dogged learning

for robots. In 2007 IEEE International Conference on Robotics and

Automation (ICRA), 2007. 2.3

[28] M Hein and M Maier. Manifold denoising as preprocessing for find-

ing natural representations of data. In Proceedings of the Twenty-

Second AAAI Conference on Artificial Intelligence (AAAI-07), pages

1646–1649, Menlo Park, CA, July 2007. AAAI Press. 5

[29] M. Hersch, F. Guenter, S. Calinon, and A. Billard. Dynamical sys-

tem modulation for robot learning via kinesthetic demonstrations.

IEEE Transactions on Robotics, 2008. 2.2

[30] G. Hovland, P. Sikka, and B. McCarragher. Skill acquisition from

human demonstration using a hidden markov model. In IEEE Inter-

national Conference on Robotics and Automation, pages 2706–2711,

Minneapolis, MN, 1996. 2.4

[31] Soshi Iba. Interactive Multi-Modal Robot Programming. PhD the-

sis, Robotics Institute, Carnegie Mellon University, May 2004. 2.4

[32] A.J. Ijspeert, J. Nakanishi, and S. Schaal. Trajectory formation

for imitation with nonlinear dynamical systems. In Intelligent

136 REFERENCES

Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ Interna-

tional Conference on, volume 2, pages 752–757 vol.2, 2001. 2.2

[33] Odest Chadwicke Jenkins and Maja J. Matarić. Performance-

derived behavior vocabularies: Data-driven acqusition of skills

from motion. International Journal of Humanoid Robotics, 1:237–

288, June 2004. 2.5

[34] Odest Chadwicke Jenkins and Maja J. Matarić. A spatio-temporal

extension to isomap nonlinear dimension reduction. In The Twenty-

first International Conference on Machine Learning, page 56, Banff,

Alberta, Canada, 2004. ACM Press. 1.2, 2.5, 3.2, 5

[35] M. Kaiser and R. Dillmann. Building elementary robot skills from

human demonstration. In Proceedings of 1996 IEEE International

Conference on Robotics and Automation, volume 3, pages 2700 –

2705, apr 1996. 2.2

[36] Sing Bing Kang. Robot Instruction by Human Demonstration. PhD

thesis, Robotics Institute, Carnegie Mellon University, December

1994. 2.3

[37] L.E. Kavraki and J.-C. Latombe. Randomized preprocessing of con-

figuration space for fast path planning. In Proceedings of the Inter-

national Conference on Robotics and Automation, pages 2138–2145,

San Diego, CA, 1994. 2.1

[38] Klaas Klasing, Dirk Wollherr, and Martin Buss. Joint dominance

coefficients: A sensitivity-based measure for ranking robotic de-

grees of freedom. In Torsten KrÃűger and Friedrich M. Wahl, ed-

itors, Advances in Robotics Research, pages 1–10. Springer Berlin

Heidelberg, 2009. 5.1

[39] V. Klema and A. Laub. The singular value decomposition: Its com-

putation and some applications. Automatic Control, IEEE Trans-

actions on, 25(2):164 – 176, apr 1980. 3.1

[40] Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by watching: Ex-

tracting reusable task knowledge from visual observation of human

REFERENCES 137

performance. Transactions on Robots and Automation, 10:799–822,

1994. 2.1

[41] S. M. Lavalle and J. J. Kuffner. Randomized kinodynamic plan-

ning. International Journal of Robotics Research, 20(5):378–400,

May 2001. 2.1

[42] C.H. Lee. A phase space spline smoother for fitting trajectories. Sys-

tems, Man and Cybernetics, Part B, IEEE Transactions on, 34:346–

356, 2004. 2.2

[43] A. Lockerd and C. Breazeal. Tutelage and socially guided robot

learning. In Intelligent Robots and Systems, 2004. (IROS 2004).

Proceedings. 2004 IEEE/RSJ International Conference on, vol-

ume 4, pages 3475–3480 vol.4, 2004. 2.3

[44] Pattie Maes and Rodney A. Brooks. Learning to coordinate behav-

iors. In National Conference on Artificial Intelligence, pages 796–

802, 1990. 2.2

[45] H Mayer, I Nagy, A Knoll, E.U. Braun, R Lange, and R Bauern-

schmitt. Adaptive control for human-robot skilltransfer: Trajectory

planning based on fluid dynamics. In ICRA, Rome, Italy, 2007. 2.3

[46] M.Berlin, J. Gray, A. L. Thomaz, and C. Breazeal. Perspective tak-

ing: An organizing principle for learning in human-robot interac-

tion. In Proceedings of the 21st National Conference on Artificial

Intelligence, 2006. 2.4

[47] Andrew Moore, Jeff Schneider, Justin Boyan, and M.S. Lee. Q2:

memory-based active learning for optimizing noisy continuous

functions. In Robotics and Automation, 2000. Proceedings. ICRA

’00. IEEE International Conference on, volume 4, pages 4095 –

4102, April 2000. 2.4

[48] J. R. Munkres. Topology. Prentice Hall, Upper Saddle River, NJ,

2000. 5.3

[49] Koichi Ogawara, Jun Takamatsu, Soshi Iba, Tomikazu Tanuki, Hi-

roshi Kimura, and Katsushi Ikeuchi. Acquiring hand-action models

138 REFERENCES

in task and behavior levels by a learning robot through observing

human demonstrations. In The IEEE-RAS International Confer-

ence on Humanoid Robots, September 2000. 2.4

[50] R.A. Peters and O.C. Jenkins. Uncovering manifold structures in

robonaut’s sensory-data state space. In Humanoid Robots, 2005 5th

IEEE-RAS International Conference on, pages 369–374, 2005. 2.5

[51] Dean A. Pomerleau. Efficient trairing of artificial neural networks

for autonomous navigation. Neural Computation, 3:88–97, 1991.

2.2

[52] Polly K. Pook and Dana H. Ballard. Recognizing teleoperated ma-

nipulations. In Proceedings of the IEEE International Conference

on Robotics and Automation, pages 578–585, 1993. 2.2

[53] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical

Recipes in C. Cambridge University Press, 1992. 2.4

[54] Nathan Ratliff, David Bradley, James Bagnell, and Joel Chest-

nutt. Boosting structured prediction for imitation learning. In Ad-

vances in Neural Information Processing Systems 19, Cambridge,

MA, 2007. MIT Press. 2.2

[55] Jens Rittscher, Andrew Blake, Anthony Hoogs, and Gees Stein.

Mathematical modelling of animate and intentional motion. Philo-

sophical Transactions: Biological Sciences, 358:475–490, March

2003. 2.5

[56] Charles Rose, Michael F. Cohen, and Bobby Bodenheimer. Verbs

and adverbs: Multidimensional motion interpolation. IEEE Com-

put. Graph. Appl, 18:32–40, 1998. 2.5

[57] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm

optimization for spoken word recognition. IEEE Transactions on

Acoustics, Speech, and Signal Processing, 26:43–49, 1978. 5

[58] Marcos Salganicoff, Lyle H. Ungar, and Ruzena Bajcsy. Active

learning for vision-based robot grasping. Mach. Learn., 23(2-

3):251–278, 1996. 2.4

REFERENCES 139

[59] Stefan Schaal, A.J. Ijspeert, and Aude Billard. Computational ap-

proaches to motor learning by imitation. Philosophical Transac-

tions of the Royal Society, 358:537–547, March 2003. 2.5

[60] B. Sellner, F. Heger, L. M. Hiatt, R. Simmons, and S. Singh. Co-

ordinated multi-agent teams and sliding autonomy for large-scale

assembly. Proceedings of the IEEE, 94(7), July 2006. 1

[61] Brennan Sellner, Frederik W. Heger, Laura M. Hiatt, Nik A. Mel-

chior, Stephen Roderick, Dave Akin, Reid Simmons, and Sanjiv

Singh. Overcoming sensor noise for low-tolerance autonomous as-

sembly. In Proceedings of the IEEE/RSJ 2008 International Con-

ference on Intelligent Robots and Systems, Nice, France, September

22-26 2008. 1

[62] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cam-

bridge University Press, 1999. 6.3

[63] Jianbo Shi and Jitendra Malik. Normalized cuts and image seg-

mentation. In Proceedings of the 1997 Conference on Computer Vi-

sion and Pattern Recognition (CVPR ’97), Washington, DC, USA,

1997. IEEE Computer Society. 7.1

[64] Marjorie Skubic, David Noelle, Mitch Wilkes, Kazuhiko Kawa-

mura, and James M. Keller. A biologically inspired adaptive work-

ing memory for robots. In AAAI Fall Symp., Workshop on the Inter-

section of Cognitive Science and Robotics: From Interfaces to Intel-

ligence, October 2004. 2.4

[65] William D. Smart and L. Kaelbling. Practical reinforcement learn-

ing in continuous spaces. In Proceeding of the International Con-

ference on Machine Learning, 2000. 2.2

[66] P. H. A. Sneath and R. R. Sokal. Numerical Taxonomy. Freeman,

London, UK, 1973. 7.1

[67] S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson, A. Collet, R. Di-

ankov, G. Gallagher, G. Hollinger, J. Kuffner, and M. VandeWeghe.

Herb: A home exploring robotic butler. 2009. doi:10.1007/s10514-

009-9160-9. 7.3

140 REFERENCES

[68] Anthony Stentz. Optimal and efficient path planning for partially-

known environments. In Proceedings of IEEE International Con-

ference on Robotics and Automation, volume 4, pages 3310 – 3317,

May 1994. 2.1

[69] M. Stolle and C.G. Atkeson. Policies based on trajectory libraries.

In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006

IEEE International Conference on, pages 3344–3349, 2006. 2.2, 2.3

[70] N. Tatematsu and K. Ohnishi. Tracking motion of mobile robot for

moving target using nurbs curve. In Industrial Technology, 2003

IEEE International Conference on, volume 1, pages 245–249 Vol.1,

2003. 2.2

[71] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global

geometric framework for nonlinear dimensionality reduction. Sci-

ence, 290:2319–2323, December 2000. 2.5, 3.1

[72] A.L. Thomaz, G. Hoffman, and C. Breazeal. Reinforcement learn-

ing with human teachers: Understanding how people want to teach

robots. Robot and Human Interactive Communication, 2006. RO-

MAN 2006. The 15th IEEE International Symposium on, pages

352–357, Sept. 2006. 2.3

[73] J.G. Trafton, N.L. Cassimatis, M.D. Bugajska, D.P. Brock, F.E.

Mintz, and A.C. Schultz. Enabling effective human-robot interac-

tion using perspective-taking in robots. Systems, Man and Cyber-

netics, Part A, IEEE Transactions on, 35:460– 470, 2005. 2.4

[74] A. Tsoli and O. C. Jenkins. Neighborhood denoising for learning

high-dimensional grasping manifolds. In International Conference

on Intelligent Robots and Systems (IROS 2008), pages 3680–3685,

Nice, France, Sep 2008. 3.2, 3.4

[75] Aggeliki Tsoli and Odest Chadwicke Jenkins. 2d subspaces for user-

driven robot grasping. In Robotics, Science and Systems Conference:

Workshop on Robot Manipulation, 2007. 5

REFERENCES 141

[76] A. Ude, C.G. Atkeson, and M. Riley. Planning of joint trajectories for

humanoid robots using b-spline wavelets. In Robotics and Automa-

tion, 2000. Proceedings. ICRA ’00. IEEE International Conference

on, volume 3, pages 2223–2228 vol.3, 2000. 2.2

[77] Michael van Lent and John E. Laird. Learning procedural knowl-

edge through observation. In The 1st international conference on

Knowledge capture, pages 179–186, Victoria, British Columbia,

Canada, 2001. ACM Press. 2.4

[78] Y. Wang, M. Huber, V.N. Papudesi, and D.J. Cook. User-guided re-

inforcement learning of robot assistive tasks for an intelligent envi-

ronment. In Proceedings of IEEE/RSJ International Conference on

Intelligent Robots and Systems, volume 1, pages 424–429, October

2003. 2.2, 2.3

[79] C. Watkins. Learning from Delayed Rewards. PhD thesis, Univer-

sity of Cambridge,England, 1989. 2.3

[80] John D. Weld and Ming C. Leu. Geometric representation of swept

volumes with application to polyhedral objects. The International

Journal of Robotics Research, 9(5):105–117, 1990. 8.1

[81] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Under-

standing belief propagation and its generalizations. In Exploring

artificial intelligence in the new millennium, pages 239–269. Mor-

gan Kaufmann Publishers Inc., 2003. 5

[82] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason We-

ston, Bernhard SchÃűlkopf, and Bernhard Sch Olkopf. Learning

with local and global consistency. ADVANCES IN NEURAL IN-

FORMATION PROCESSING SYSTEMS 16, 16:321—328, 2003. 5

[83] R. Zollner, O. Rogalla, R. Dillmann, and M. Zollner. Understanding

users intention: programming fine manipulation tasks by demon-

stration. In Intelligent Robots and System, 2002. IEEE/RSJ In-

ternational Conference on, volume 2, pages 1114–1119 vol.2, 2002.

2.3

142 REFERENCES

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Thesis Statement
	1.2 Neighbor Graph
	1.3 Planning
	1.4 Active Learning
	1.5 Document Outline
	1.6 Summary

	2 Related Work
	2.1 Motion Planning
	2.2 Supervised Learning
	2.3 Programming by Demonstration with Feedback
	2.4 Symbolic Programming by Demonstration
	2.5 Dimensionality Reduction
	2.6 Summary

	3 Background: Dimensionality Reduction
	3.1 General Technique
	3.2 Trajectory Embedding
	3.3 Planning and Executing
	3.4 Inherent Difficulties
	3.5 Summary

	4 Approach
	4.1 Overview
	4.2 Neighbor Graph
	4.3 Planning
	4.4 Active Learning
	4.5 Summary

	5 Neighbor Graph
	5.1 Coordinate Spaces
	5.2 Trajectory Neighbor Heuristics
	5.3 Safety
	5.4 Experimental Results
	5.5 Summary

	6 Planning
	6.1 Action Selection
	6.2 Neighbor Extension
	6.3 Plan Refinement
	6.4 Bifurcations
	6.5 Experimental Results
	6.6 Summary

	7 Active Learning
	7.1 Detecting Diverging Demonstrations
	7.2 Requesting Advice
	7.3 Experimental Results
	7.4 Summary

	8 Conclusions
	8.1 Future Work
	8.2 Summary

	References

