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Abstract

We consider a clustering problem where we observe feature vectors Xi ∈ Rp, i =

1, 2, . . . , n, from several possible classes. The class labels are unknown and the main
interest is to estimate these labels.

We propose a three-step clustering procedure where we first evaluate the significance
of each feature by the Kolmogorov-Smirnov statistic, then we select the small fraction of
features for which the Kolmogorov-Smirnov scores exceed a preselected threshold t > 0,
and then use only the selected features for clustering by one version of the Principal
Component Analysis (PCA).

In this procedure, one of the main challenges is how to set the threshold t. We
propose a new approach to set the threshold, where the core is the so-called Signal-to-
Noise Ratio (SNR) in post-selection PCA. SNR is reminiscent of the recent innovation
of Higher Criticism; for this reason, we call the proposed threshold the Higher Criticism
Threshold (HCT), despite that it is significantly different from the HCT proposed earlier
by [Donoho 2008] in the context of classification.

Motivated by many examples in Big Data, we study the spectral clustering with
HCT for a model where the signals are both rare and weak for two-classes clustering
case. Through delicate PCA, we forge a close link between the HCT and the ideal
threshold choice, and show that the HCT yields optimal results in the spectral clustering
approach. The approach is successfully applied to three gene microarray data sets,
where it compares favorably with existing clustering methods.

Our analysis is subtle and requires new development in the Random Matrix Theory
(RMT). One challenge we face is that most results in the RMT can not be applied
directly to our case: existing results are usually for matrices with i.i.d. entries, but the
object of interest in the current case is the post-selection data matrix, where (due to fea-
ture selection) the columns are non-independent and have hard-to-track distributions.
We develop intricate new RMT to overcome this problem.

We also find the theoretical approximation for the tail distribution of Kolmogorov-
Smirnov Statistic under null hypothesis and alternative hypothesis. With the theoretical
approximation, we can claim the effectiveness of KS statistic.

Besides, we also find the fundamental limits for clustering problem, signal recovery
problem, and detection problem under the Asymptotic Rare and Weak model. We find
the boundary such that when the model parameters are beyond the boundary, then the
inference is unavailable, otherwise there are some methods (usually exhausted search)
to achieve the inference.
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1.1 Background

Nowadays, we talk more and more about “Big Data”, where the data matrix X consists
of millions of observations and variables. In other words, both the number of columns
and the number of rows are very large for X, hence X is a high dimensional matrix.
With the development of technology, this kind of data set appears in many fields, such
as genomics, astronomy, network, and so on. Unfortunately, for these large data sets,
the classical statistical methods become either computational challenging or ineffective
because of the curse of dimensionality ([Donoho 2000]). Hence, new statistical methods
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need to be developed to exploit the underlying associations and patterns between vari-
ables, and the corresponding inference for Big Data. There are many studies on this
topic, see ([Tibshirani 1996, Zhou 2010, Johnstone 2009]).

Although the data matrixX is huge, the real problem usually indicates some sparsity
assumptions. For example, for gene analysis where millions of genes are measured for
thousands of samples, it is natural to assume that there are only a few genes that take
effect on specific inference. Hence, the useful genes are sparse. Based on the sparsity,
we assume that the data matrix is a low rank information matrix covered by a noise
matrix. The information matrix contains the inference we need, and we hope to recover
this information matrix. This setting happens to fit many high dimensional problems.

1.1.1 Two-class Clustering Problem

Consider a high dimensional two-class clustering problem, where we observe Xi, i =

1, 2, . . . , n, from two possible classes, and Xi ∈ Rp are feature vectors. The class labels
{`i}1≤i≤n take values from {−1, 1}. However, the labels are unknown to us and it is of
major interest to estimate them.

One example is the cancer clustering with gene microarray data. Take the Lung
Cancer Data for example [Gordon 2002]. The data set consists of 181 tissue samples
from two classes MPM and ADCA (31 from MPM and 150 from ADCA), where for
each sample, expression levels are measured on the same set of 12533 genes. A problem
of interest is how to use the measured features to predict the class labels.

Despite that the class labels were originally given in [Gordon 2002], we assume
that they are unknown, and focus our discussion on how to predict them. On the
other hand, the true labels are used as ground truth for comparing the performance of
different methods.

For this problem, we rewrite the model in matrix form. Fixing δ ∈ (0, 1), we assume
δ fraction of the labels are 1, and model the feature vectors as

Xi = µ0 + yiµ+ Zi, i = 1, 2, . . . , n, (1.1.1)

where µ0, µ, Zi are vectors in Rp, representing the overall means, contrast means
between two classes, and measurement noise correspondingly, and yi are adjusted labels

yi =

{
(1− δ), `i = 1,

−δ, `i = −1.
(1.1.2)

In matrix form, we can rewrite by

X = 1µ′0 + yµ′ + Z, (1.1.3)

where X = Xn,p = [X1, X2, . . . , Xn]′, Z = Zn,p = [Z1, Z2, . . . , Zn]′, y = (y1, y2, . . . , yn)′

and 1 is the n× 1 vector of 1’s.
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In this model, 1µ′0 +yµ′ is the information matrix with rank two, and Z is the noise
matrix. The inference of interest is the label vector `, or sgn(y), which is contained in
the information matrix. The data matrix has 181 rows and 12533 columns for Lung
Cancer data example, which is a high dimensional two-class clustering problem.

In this problem, not only the data matrix is high dimensional, but also the number
of variables (genes) is much larger than the number of observations (tissue samples).
In this regime, the classical methods of K-means [Lloyd 1982] or hierarchical methods
[Hastie 2009] can be either computationally challenging or ineffective. In this paper, we
propose a new method which is a careful refinement of the classical spectral method,
specifically designed for the case of p� n.

1.1.2 Signal Recovery Problem

With Model (1.1.3), there is also another unknown vector–the signal vector µ. In some
applications, the recovery of µ is very important, and we call it as Signal Recovery
Problem.

Take the electrocardiogram data (ECG data) as an example. Iain Johnstone and
Arthur Lu ([Johnstone 2009]) has worked on the ECG data provided by Jeffery Froning
and Victor Froelicher. In this data, beat sequences are record from patients, and then
decomposed to about 60 cycles according to the peak of the beat. For each cycle, they
use 512 interpolations to denote the recordings. The target is to find the cycle-to-cycle
variation of the beat sequences, which is µ.

For this example, we model the baseline pattern for each cycle as µ0, the variation
between cycles as µ, and denote the random effect for i-th cycle as yi. So, the feature
vectors can be modeled as

Xi = µ0 + yiµ+ Zi, i = 1, 2, . . . , n. (1.1.4)

Rewrite it in the matrix form, and we have that

X = 1µ′0 + yµ′ + Z, (1.1.5)

where Zij
i.i.d∼ N(0, σ2) with unknown parameterσ.

This is an application of high dimensional signal recovery problem. The data matrix
has about 60 observations (cycles) and 512 features (interpolations). And the informa-
tion, signal vector µ, is contained in the low rank matrix 1µ′0 + yµ′, which should be
weak as the variation is small. We can see that the model for this problem has a similar
form as clustering problem in previous section, with different interests.

1.1.3 Detection Problem

For some applications, we want to test whether there is information or not. Recall
that we assume the data matrix is the summation of an information matrix and a noise
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matrix, so it means that we want to test whether the information matrix is zero or not.
We call this problem as Detection Problem.

An application of this problem is that high dimensional testing problem, where
we assume the data comes from multivariate normal distribution with mean 0 and
covariance matrix Σ. The problem is to detect whether Σ is identity matrix or a
“spiky” matrix, which means that there are some nonzero off-diagonal entries. Some
related works has been done by Emmanuel Candes and Yaniv Plan ([Candès 2009]),
and other researchers.

1.1.4 Summary

With the introduction of three problems, we can find that there are some common facts
about them. First, for all these problems, the number of variables is much larger than
the number of observations, and both are large compared to classical problems. Hence
the classical methods become inefficient. Second, the model can be decomposed as a low
rank information matrix and a noise matrix, and the target is hidden in the information
matrix. Especially, the information matrix has rank 2 for clustering problem and signal
recovery problem. The low rank property makes things easier for us. These common
facts indicate the possibility that the mathematical analysis for one problem can also
be applied to another, and similar results can be achieved.

In my thesis, I will study all these three problems, with the focus on clustering
problem. In Section 1.2, I will briefly introduce the clustering method I proposed for
the clustering problem. In the following section, I will talk about the results about
fundamental limits about the three problems.

1.2 Methodology

How to solve the clustering problem? Given that the information matrix is a low
rank matrix, we recall the principal component analysis idea from Karl Pearson
([Pearson 1901]), with which we recall the classical spectral clustering method to apply.
However, as we are dealing with high dimensional data, so we have to refine the spectral
clustering method to add a feature selection step. To make sure that the feature selec-
tion procedure could achieve best results with spectral clustering, we learn experiences
from accumulated wisdoms for this step. In this section, I will introduce the spectral
clustering with feature selection approach.

1.2.1 Classical Spectral Clustering

It is worthwhile to take a look at the classical spectral method first. To bring out the
idea, assume the overall mean vector µ0 can be efficiently estimated by sample averages,
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so we can consider a simplified version of (1.1.3) where µ0 is removed from the model:

X = yµ′ + Z.

Consider the n × n empirical dual covariance matrix XX ′ (in contrast to the p × p

covariance matrix X ′X [Lee 2010]). It is seen that

XX ′ = I + II, I = ‖µ‖2yy′, II = yµ′Z ′ + Zµy′ + ZZ ′. (1.2.6)

In the classical setting where p� n, we frequently find that the spectral norm of II is
much smaller than that of I, and so approximately,

XX ′ ∝ yy′.

In this case, the leading eigenvector of XX ′ is (approximately) proportional to y, and
the label vector ` can be estimated by `i = sgn(yi), so the clustering problem is settled.

Unfortunately, in the modern regime of p� n, we frequently find that the spectral
norm of II is non-negligible compared to that of I. In such a case, a brute-forth
implementation of the classical spectral method yields unsatisfactory results; see Table
1.3 for more discussion.

To overcome this challenge, a standard response is the feature selection, that is,
using only a small fraction of carefully selected features for spectral clustering.

1.2.2 Feature Selection with Accumulated Wisdoms

In the past century, the statistics community has accumulated several noteworthy wis-
dom on feature selection. Putting them together is the following three step algorithm.

• Measure the significance of each gene by Kolmogorov-Smirnov statistic
[Shorack 2009].

• Correct the theoretic null by the empirical null as suggested by Efron [Efron 2004].

• Feature selection by wavelet thresholding [Donoho 2006].

We now describe each step with more details.
Write the data matrix as X = (xij)1≤i≤n,1≤j≤p. Fixing 1 ≤ j ≤ p, the n data points

associated with the j-th gene is

xij = µ0(j) + yiµ(j) + zij , i = 1, 2, . . . , n.

We assume zij has the same distribution that does not depend on i (but may depend
on j); the distribution is unknown to us but the mean is 0. Note that the adjusted
labels yi are unknown and the gene is differentially expressed if and only if µ(j) 6= 0. In
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such a situation, a well-known summarizing statistic is the Kolmogorov-Smirnov (KS)
statistic, which is a well-known goodness-of-fit measure.

In detail, let

x̄j =
1

n

n∑
i=1

xij and s2
j =

1

n− 1

n∑
i=1

(xij − x̄j)2

be the sample mean and sample variance corresponding to the j-th feature. We measure
the significance of the j-th feature by the Kolmogorov-Smirnov score

KSj = sup
−∞<t<∞

|Fn,j(t)− Φ(x̄j + tsj)|, (1.2.7)

where Fn,j(t) = 1
n

∑n
i=1 1{xij ≤ t} is the empirical CDF of the j-th feature, and Φ

is the CDF of N(0, 1). Compared to likelihood ratio test, KS is much more robust.
Compared to moment-based tests (e.g. tests based on cumulants or kurtosis), KS is
much more efficient.

In Figure 1.1, we display the KS scores for all genes. The figure suggests a major
discrepancy between the scores and the theoretic null distribution: the asymptotic
distribution of KS statistics as n → ∞ under the assumption that µ(j) = 0 and that
zij are i.i.d. zero mean normals (here, i ranges and j is fixed).

Efron [Efron 2004] explained the causes of the discrepancy in detail, and suggests
that in many applications the empirical null fits well with the summarizing scores. The
empirical null is the distribution constructed by shifting and translating the theoretic
null, where the two parameters (shift and translation) are chosen so that mean and
variance of the empirical null fits with that of the data.

In light of this, Efron [Efron 2004] suggests the following simple approach to stan-
dardize the KS scores, which turns out to be effective. In detail, we standardize all p
KS scores as follows, where SD stands for Standard Deviation:

KSj =
KSj −mean of all p KS-scores

SD of all p KS-scores
;

for notational simplicity, we still denote the resultant scores by KSj , 1 ≤ j ≤ p. The
standardized scores are displayed in Figure 1.1, which suggests a good fit between the
empirical null and the data.

Roughly say, the larger the KS score KSj , the more significantly the gene is dif-
ferentially expressed. A reasonable approach to feature selection is then to keep those
with larger KS-scores. Fix a threshold t > 0, we retain (remove) a feature j if and only
if

KSj ≥ t (KSj < t).

In the literature, this is called wavelet hard-thresholding.
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Figure 1.1: Left figure: The histogram is KS statistic from lung cancer data set. The two
lines denote the distribution of KS statistic under theoretical null (blue) and empirical
null (red). Right figure: The two lines denot the tail distribution of KS statistic from
lung cancer data (blue) and simulated data (red).

1.2.3 Post-Selection Spectral Clustering with Applications

Denote the set of all the retained features by

Ŝ(t) = {1 ≤ j ≤ p : KSj ≥ t},

and denote the post-selection data matrix and post-selection dual covariance matrix by
X(t) and H(t), respectively. Note that

H(t) = X(t)(X(t))′,

and the sizes of X(t) and H(t) are n× |Ŝ(t)| and n× n, respectively. Similar to (1.2.6),
we have the following decomposition,

H(t) = I + II, I = ‖µ(t)‖2yy′, II = yµ(t)′Z(t)′ + Z(t)µ(t)y′ + Z(t)Z(t)′,

where µ(t) is an |Ŝ(t)| × 1 vector that µ is restricted on St. If the feature selection
is successful, µ(t) retains most of the significant features, but the dimension is much
smaller than p. We therefore hope that spectral norm of II is negligible, compared to
that of I, and so the leading eigenvector of H(t) is approximately proportional to y.

This motivates the post-selection spectral method, where we let ξ(t) be the leading
eigenvector of H(t), the method clusters by estimating the labels with

ˆ̀
i = sgn(ξ

(t)
i ), 1 ≤ i ≤ n.
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Threshold No. of selected features Errors
0.3876 12529 57
0.4976 10493 51
0.6076 5758 36
0.7176 2523 16
0.8276 1057 7
0.9376 484 3
1.0476 261 2
1.1576 129 10
1.2676 63 63
1.3776 21 55
1.4876 2 45

Table 1.1: The no. of selected features and clustering errors for lung cancer data
with different thresholds. The first column shows the threshold we choose for feature
selection, ranging from 0.3876 to 1.4876. The second column shows the number of
selected features with the corresponding threshold, and the third row is the number of
errors.

How does the method perform? With threshold t properly set, the above approach
turns out to be quite successful. In Table 1.1. we tabulate the clustering errors of the
above approach with t from 0.0486 to 0.1506 for lung cancer dataset. It is seen that
with t properly set, this method outperforms the K-means and hierarchical clustering
method, by a much smaller clustering errors. Therefore, with threshold set properly,
the post-selection PCA can be truly successful.

With that being said, a problem emerges: how to set the threshold t. Setting the
threshold too high may result in too few retained features, and setting it too low may
result in too many retained features. Seemingly, this is the crucial problem.

1.2.4 Threshold Choice by Higher Criticism

We approach this by the recent innovation of Higher Criticism. Higher Criticism was
first introduced Donoho and Jin ([Donoho 2004]) as a tool for multiple testing. Later, it
was found to be also useful for feature selection in cancer classification ([Donoho 2008,
Jin 2009]). Here, we define a statistic similarly as Higher Criticism statistic to choose
the threshold t for spectral clustering problem, which we call HC.

To apply the Higher Criticism, we need the following three simple steps.

• For each 1 ≤ j ≤ p, calculate a p-value πj = 1 − F0(KSj), where F0 is the CDF
of KSj defined in (1.2.7) in the case where xij

i.i.d.∼ N(u, σ2), and the parameters
(u, σ) are unknown.
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• Sort all p-values in the ascending order π(1) < π(2) < . . . < π(p).

• Define the Higher Criticism functional by

HC(p, j) =

√
p(j/p− π(j))√

max{
√
n(j/p− π(j)), 0}+ j/p}

,

and let ĵ be the index that HCp,j reaches the maximum.

We then keep all the ĵ-features whose Kolmogorov-Smirnov scores KSj are among the
largest (e.g. if ĵ = 50, then we keep the 50 features with the largest scores). We call
this method the Spectral-HCT. In figure 1.2, the red line shows the threshold we find
at last.

1.2.5 Comparison with Other Methods

How does Spectral-HCT preform? Surprisingly well. In Figure 1.2.5, we compared the
behavior of leading eigenvector of empirical covariance matrix without thresholding and
with HCT. We can see that the one with HCT can be clearly divided into two groups
which coincide with the truth, while the one without thresholding is messy.

In Table 1.3, we report the clustering error of Spectral-HCT. The clustering error
is comparably to ideal thresholding, and is much smaller than that of K-means or
hierarchical clustering methods. Here we use 3 microarray data sets. We have talked
about lung cancer data before. The leukemia data set consists of 72 tissue samples
from two classes ALL and AML (47 from ALL, 25 from AML), where each sample is
measured on 7129 different genes. In colon data, there are 62 colon tissue samples from
two classes tumor and normal (40 from tumor, 22 from normal), where 2000 different
genes are measured for each sample. Although we know the truth, we pretend we do
not know and try to do clustering.

We applied K-means, hierarchical clustering, spectral analysis without thresholding
and with HCT for the data set. As the threshold to differentiate 2 clusters can be cut
off not exactly at 0, so we also tried different thresholds for spectral analysis, and the
result is in bracket.

It is seen that HCT outperforms all other methods by a much small error rate. Even
more surprisingly, the clustering error of HCT is found to be sometimes smaller then
the classification errors by the FAIR classifier proposed by Fan and Fan (2008) [J. 2008].
In [J. 2008], both data sets are investigated for the classification error of FAIR, where
labels in the training sets (the training set contains 32 samples in the lung cancer data,
and 38 samples in ALL) are assumed as known, and the reported classification errors
for the test data are 7 for lung cancer data, and 1 for leukemia data.
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Figure 1.2: In the top figure, we have the ordered KS score. According to the KS score,
we have the ordered p-value as the middle figure. With KS function, we have the HC
objective function in the bottom figure, and we choose the one with largest HC score,
which is the red line shows.

Data K-means Hier Spectral HCT
Leukemia 20/72 26/72 19(13)/72 4(3)/72
Lung 22/181 32/181 57(21)/181 3(1)/181
Colon 23/62 24/62 30(21)/62 24(19)/62

Table 1.2: The error rate for 3 datasets with different method. In each cell, the de-
nominator is the number of samples, and the numerator is the number of errors by the
correponding method. For Sepctral clustering without thresholding and with HCT, the
number in bracket is the number of errors using optimal cut off.
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Figure 1.3: Left figure: The leading eigenvector of empirical dual covariance matrix
without thresholding. Right figure: The leading eigenvector of empirical dual covariance
matrix with thresholding. Crosses denote ADCA group, and circles denote MPM group.
The dot line shows the estimated clustering result.

1.2.6 Key Idea of the Approach

We explain why HCT is a right way to set the threshold. Fix a threshold t. Suppose we
apply the post-selection PCA proposed in Section 1.4 to the data matrix, and suppose
we measure the performance of the procedure by the Hamming error for clustering:

Hammp(t) = expected number of misclassified samples over all samples, (1.2.8)

then ideally, one would choose t as the Ideal Threshold—the threshold that minimizes
the Hamming error. Unfortunately, Hammp(t) depends on the underlying distribution
of data matrix in a complicated way, so it is hard to characterize the Ideal Threshold.

Our idea is to sought a functional that offers a nice approximation to the Hamming
error functional, and that is easier to analyze. Recall that ξ̂(t) denotes the leading
eigenvector of the post-selection empirical dual covariance matrix. It turns out that for
t in the range of interest,

ξ̂(t) ∝ HC(t) · y + z + rem, (1.2.9)

where z ∼ N(0, In), rem is a vector each coordinate of which is much smaller than
O(1), and HC(t) is a non-stochastic term which can be viewed as the signal-to-noise
ratio.



12 Chapter 1. Introduction

Combining (1.2.8)-(1.2.9), it is not surprising that there is an intimate relationship
between Hammp(t) and HC(t). In fact, we show that when signals are rare and weak,

Hammp(t) ≈ exp
(
−[HC(t)]2/2

)
. (1.2.10)

In comparison, HC(t) has a much simpler formula, and so the term on the right hand
side provides a more tractable approximation of the term on the left hand side.

Somewhat surprisingly, it turns out that the explicit form of HC(t) is reminiscent of
the Higher Criticism—a notion that is developed in seemingly unrelated settings (e.g.,
signal detection [Donoho 2004]), and classification [Donoho 2008, Jin 2009]). Therefore,
for literature reasons, we call HC(t) the Higher Criticism functional, despite that the
actual form of HC(t) is significantly different from those of the previous versions of
Higher Criticism.

We call the threshold that maximizes HC(t) the Ideal HC Threshold. On one hand,
(1.2.10) suggests that the Ideal HC Threshold approximates the Ideal Threshold. On
the other hand, HCT is a data-driven threshold that is carefully designed so that it
maximizes the empirical counterpart of the HC functional, and so HCT can be viewed
as the stochastic counterpart of the Ideal HC Threshold. In other words,

HCT ≈ Ideal HC Threshold ≈ Ideal Threshold,

which explains why HCT is a good threshold choice.

1.2.7 Extension

We also try to extend the method to multi-class case. For multi-class clustering, we take
K − 1 eigenvectors with the K − 1 eigenvalues with largest magnitude. Say that these
eigenvectors form an n × (K − 1) matrix U . Apply K-means method for U under the
condition that the number of classes is smaller than K. The labels found by K-means
is the label we need.

We use this method for some data sets with number of classes K > 2, and the result
is very good. Take the Brain data ([Pomeroy 2002]) as an example. In this data, there
are 42 samples, and the expression level of 5597 genes are recorded for each sample.
There are 5 classes for different tumor types, and we want to differentiate them. For
Lymphoma data ([Alizadeh 2000]), there are 62 samples, and the expression levels of
4026 genes are measured for this data set. There are 3 classes in this data set depending
on different subtypes of lymphoma. The data set SRBCT ([Khan 2001]) includes 63
samples, and the expression levels of 2308 genes are measured for each sample. There
are 4 classes in this data set, divided by different tumor types. For these three data
set, we apply K-means, hierarchical clustering, SpectralGem and our method. The
comparison of different methods can be found in the following table.
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Data K-means Hier SpectralGem Spectral-HCT
Brain 15/42 23/42 14/42 10/42

Lymphoma 20/62 29/62 14/62 3/62
SRBCT 38/63 34/63 34/63 33/63

Table 1.3: The error rate for 3 datasets with different method. In each cell, the de-
nominator is the number of samples, and the numerator is the number of errors by the
corresponding method.

From this table, we can see that our method does improve the clustering performance
in some way. For some data sets such as Lymphoma data, our method performs a great
improvement, while for SRBCT, it is not so obvious. The improvement depends on the
data itself. However, feature selection does help.

1.3 Fundamental Limits

In fact, under proper model, the phase diagram of Spectral-HCT approach can be
recovered. It arises our interest in the fundamental limit of two-class clustering problem.
What is fundamental limit? It is to study that if there is an area, such that when
the model parameters drop in this area, then any method will fail to get inference.
Otherwise, the inference can be achieved.

To find the boundary of the region of impossibility and region of possibility for
the desired inference, we need a lower bound of the boundary and an upper bound of
the boundary. To get the desired inference, the difference of distribution between null
hypothesis and alternative hypothesis must be large. In other words, if we could show
that the difference between two distributions goes to 0 when p goes to infinity, then the
inference is unable to be recovered. It gives us a lower bound. For the upper bound,
we have to examine the existed methods to get. If the upper bound meets the lower
bound, then the corresponding boundary can be found.

As the model for clustering problem, signal recovery problem, and detection problem
is the same, the research of lower bound and upper bound of clustering problem can be
generalized to the other problems. Similarly, we get the fundamental limits for all the
three problems. The details will be shown in Chapter 6.

1.4 Related Motivated Topics

In our analysis, some related topics are also motivated to develop new theories. In my
thesis, I also include these topics.
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1.4.1 The Random Matrix Theory

The post-selection spectral clustering requires new development in the Random Matrix
Theory (RMT). While most work in RMT addresses data matrxix with i.i.d entries,
the data matrix we face in post-selection spectral clustering is much more complicated:
the columns of the post-selection data matrix X(t) not only depend on each other in
a complicated way, but also have a distribution that is very different from that of
pre-selection columns. To overcome this difficulty, we have to develop new RMT.

In Chapter 2, we introduce the results about random matrices with i.i.d entries,
and then show the results about the leading eigenvalue and leading eigenvector for the
post-selection random matrix under our model. The result will be applied to prove the
main result for spectral-HCT approach.

1.4.2 Tail Distribution of Kolmogorov-Smirnov Statistic

In our approach, we use Kolmogorov-Smirnov (KS) statistic to test the significance of
genes. To find the corresponding p-value, the current method is to simulate a series of
KS statistics with the same n under null hypothesis, and then compare the KS statistic
from data with them to calculate an approximate p-value. This method works for real
data analysis. However, when n becomes large, it will be time consuming to simulate
the KS statistics. What’s more, we are also interested in the theoretical distribution of
KS statistic.

In my thesis, I will also introduce the boundary-cross approach ([Loader 1992]),
from which we find the approximation of empirical KS statistic. I will also show the
simulation result about the difference between theoretical distribution and empirical
distribution.

1.5 Content

In Chapter 2, I will discuss the research on RMT as the preliminary knowledge for my
thesis. In Chapter 3, I will talk about the method in detail. I will briefly show the
idea why our method works, and talk about the chosen of threshold. In Chapter 4, I
will find the precise proof and boundary for our method, under specific model (ARW
model). Some simulations and extensions are also discussed in this chapter. Then, in
Chapter 5, I introduce our study on KS statistic, which is very important in the feature
selection step. We will talk about the theoretical tail distribution for it. At last, in
Chapter 6, the fundamental limits for matrix recovery problems are introduced, as an
extension of the clustering problem.
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2.1 Background

For spectral clustering, an important step is to calculate the leading eigenvector of em-
pirical dual covariance matrix, and use this eigenvector to estimate the labels. However,
to examine the efficiency of this approach, we need the theoretical results about the
leading eigenvector of empirical dual covariance matrix, and hence the results about the
leading eigenvector of the random matrix XX ′. That’s why we are interested in RMT.

Besides, the results about RMT is also important in information theory, signal
processing, and small-world networks. The various applications of RMT motivates the
study on it. Nowadays, there are many results about the asymptotic and non-asymptotic
results about the leading eigenvalue and leading eigenvector of a random matrix with
i.i.d sub-Gaussian entries. The study and results are summarized in [Tulino 2004,
Vershynin 2010].

Even though there are many results, I can not use them directly in my case. In post-
selection random matrix, the distribution of entries are complicated, with dependence
on other columns. The complicated distribution requires new development of RMT.
That’s what I will introduce in this chapter. In Section 2.2, I will briefly review the
past results needed in my thesis, and then I will show the main results in Section 2.3.
In Section 2.4, the proof of the main theorem will be shown.
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2.2 Review of Past Research

Let Z be a standard real Gaussian n × p matrix with i.i.d real zero-mean Gaussian
entries with variance σ = 1, where p ≥ n. We call the n × n matrix ZZ ′ as Wishart
matrix, and denote it by H0. What we care about is the largest eigenvalue of H0,
denoted by λmax(H0), and the smallest eigenvalue of H0, denoted by λmin(H0). As
H is very near to an identical matrix times p, both λmax(H0) and λmin(H0) would be
around p.

With these definitions, some results about λmax(Z) and λmin(Z) can be found as
following ([Vershynin 2010, Page 22]), and hence results about λmax(H0) and λmin(H0)

follow.

Corollary 2.2.1 Let Z be an n × p matrix whose entries are independent standard
normal random variables. Then for every t ≥ 0, with probability at least 1−2 exp(−t2/2)

one has √
p−
√
n− t ≤ λmin(Z) ≤ λmax(Z) ≤ √p+

√
n+ t.

This corollary indicates that the eigenvalues are around √p, and the eigenvalues of H0

are around p.
The result can also be extended to sub-Gaussian random variables. To begin with,

we need the following definitions.

Definition 2.2.1 A real-valued random variable X is said to be sub-Gaussian with
parameter σ > 0, if for any t ∈ R there is

E[etX ] ≤ eσ2t2/2.

It can be easily derived that when X is sub-Gaussian distributed with parameter σ,
there is that E[X] = 0 and V ar(X) ≤ σ2.

Definition 2.2.2 A real-valued random variable X is said to be sub-exponential dis-
tributed, if there exists a constant K, such that (E|X|p)1/p ≤ Kp, for all p ≥ 1. When
X is sub-exponential distributed, define the sub-exponential norm of X to be

‖X‖ψ1 = sup
p≥2

p−1(E|X|p)1/p.

These two definitions define the distribution for entries in the random matrix. However
we also need the relationship between different entries, as the following definition.

Definition 2.2.3 (Isotropic random vectors). A random vector X in Rn is called
isotropic if Σ(X) = I. Equivalently, X is isotropic if

E〈X,x〉 = ‖x‖22 for all x ∈ Rn.
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With these definitions, there is the following theorem ([Vershynin 2010, Page 26])
for a random matrix with independent sub-Gaussian rows.

Theorem 2.2.1 (Sub-gaussian rows). Let Z be an p × n matrix whose rows Ai are
independent sub-Gaussian isotropic random vectors in Rn. Then for every t ≥ 0, with
probability at least 1− 2exp(−ct2) one has

√
p− C

√
n− t ≤ λmin(Z) ≤ λmax(A) ≤ √p+ C

√
n+ t.

Here C = CK , c = cK > 0 depend only on the sub-Gaussian norm K = maxi‖Ai‖ψ1 of
the rows.

The proof of theorem paves the way for my research.
These results are important, however not enough for my thesis. I will introduce the

subtle development I did on RMT.

2.3 Main Result

For the random matrix in spectral-HCT approach, there are two main differences from
what we talk above. First, the feature selection step would cause correlation between
rows. Recall that we use KS statistic to do thresholding, which is calculated from the
feature of n observations, or a column of the data matrix. If we choose this feature, then
the KS statistic should be large, hence there is correlation in the post-selection data
matrix for each column (however the columns are dependent with each other). Second,
the distribution for different columns are different. As we have signals and noise, the
corresponding selected columns for them are different. For the column associated with
signals, it will be easier to be selected; and the ones associated with noise is harder.
However, the number of signals is comparatively small.

Based on the approach, I introduce the random matrix as following. For the random
matrix Z, which is an n× p random matrix with independent column vectors. Assume
that there is p ≥ k ≥ 1, such that the column vectors can be decomposed into two sets
with k columns and p− k columns. The distribution of the column vectors is the same
for one set and can be bounded for another set. The bound will be introduced more in
the theorem.

2.3.1 Main Result

Based on the idea of the model, we have the following result.

Theorem 2.3.1 Fix p > n > 1 and p > k > 1, with p > 4n log(9). Let Z = Zn,m =

[z1, z2, · · · , zm] be an n×p random matrix with independent column vectors zi, 1 ≤ i ≤
m. Suppose that for any non-random unit-norm vector a ∈ Rn, Q satisfies that
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(a) For all 1 ≤ i ≤ p, [a′zi]
2 is sub-exponential distributed, and ‖(a′zi)2‖ψ1 ≤ K,

where K is a constant;

(b) If there is a partition {1, 2, · · · , p} = S0 ∪ S1 and a constant c0, such that |S0| =
p − k and |S1| = k, with that E[(a′zi)

2] = 1 + c0

√
log(p)
n for all i ∈ S0, and that∣∣E[(a′qi)

2]− 1
∣∣ ≤ c0

√
log(m)
n for all i ∈ S1.

Then with probability at least 1− 9−n, all singular values of Q fall between√
p(1 + c0

√
log(p)/n)± [8eK0

√
log(9)

√
n+ 2c0k

√
log(p)/np],

where K0 = K + 1 + c0

√
log(m)/n.

2.4 Proof

2.4.1 Proof of Theorem 2.3.1

We write for short η = c0

√
log(p)
n , and ξ = 4eK0

√
log(9). To show the claim, it is

sufficient to show with probability at least 1− 9−n,

‖(1/p)ZZ ′ − (1 + η)In‖ ≤ 2ξ
√
n/p+ 2ηk/p. (2.4.1)

Once this is shown, then we combine it with the algebraic fact that

|( z√
1 + η

)2 − 1| ≥ | z√
1 + η

− 1|,

and take z as the singular values of Q/√p. The result follows that with probability at
least 1− 9−n, all the singular values of Q fall between√

m(1 + η)± [2λ
√
n+ 2ηk/

√
p]. (2.4.2)

To show (2.4.1), we need some preparations. Let (X, d) be a metric space and let
α > 0 be a small fixed constant. A subset Nα of X is called an α-net of X if for every
point x ∈ X, there is a point y ∈ Nε such that d(x, y) ≤ α. The minimal cardinality of
an α-net of X, if finite, is denoted N(X,α) and called the covering number of X. The
following lemmas are well-known in the literature of the Random Matrix Theory and
can be found in [Vershynin 2010, Page 8].

Lemma 2.4.1 Fix n > 1 and α > 0. For the unit sphere Sn−1 in Rn equipped with the
Euclidean metric, N(Sn−1, α) ≤ (1 + 2

α)n.

Lemma 2.4.2 Let A be a symmetric n×n matrix, and let Nα be an α-net of Sn−1 for
some α ∈ (0, 1/2). Then ‖A‖ = supx∈Sn−1{|a′Aa|} ≤ (1− 2α)−1 supa∈Nα{|a

′Aa|}.
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In particular, if we take α0 = 1/4, then there is an 1/4 net N1/4 such that

|N1/4| ≤ 9n. (2.4.3)

Moreover, for any x > 0 and any n× n symmetric random matrix A,

P (‖A‖ ≥ x) ≤ P (2 sup
a∈N1/4

{|a′Aa|} ≥ x) ≤
∑

a∈N1/4

P (|a′Aa| ≥ x/2). (2.4.4)

Combining (2.4.3) and (2.4.4), to show (2.4.1), it is sufficient to show that,

P (|a′((1/p)ZZ ′ − (1 + η)In)a| ≥ λ
√
n/p+ ηk/p) ≤ 9−2n, a ∈ N1/4. (2.4.5)

Now we try to show (2.4.5). Fix a ∈ Sn−1. Denote wj = Z ′ja and w =

(w1, w2, . . . , wp)
′. So, we have that ‖w‖2 = a′(ZZ ′)a, and that E[wj ]

2 = (1 + η)

for j ∈ S0, and that |E[wj ]
2 − 1| ≤ η for j ∈ S1. So there is

[
E[‖w‖22]− (1 + η)p

]
≤ 0,

and then there is

P (a′[(1/p)ZZ ′ − (1 + η)In]a ≥ x/√p+ ηk/m)

= P (‖w‖22 − E[‖w‖22] ≥ √px+ ηk + (1 + η)p− E[‖w‖22])

≤ P (‖w‖22 − E[‖w‖22] ≥ √px).

(2.4.6)

Similarly, we have that

P (a′[(1/p)ZZ ′− (1+η)In]a ≤ −x/√p−ηk/p) ≤ P (‖w‖22−E[‖w‖22] ≤ −√px). (2.4.7)

Note that for wj , we know that w2
j is sub-exponential distributed, with sub-

exponential normK. According to the Remark in Appendix, w2
j−E[w2

j ] is centered sub-
exponential random variables, with sub-exponential norm ‖w2

j−E[w2
j ]‖ψ1 ≤ K+1+η =

K0. Using Theorem 2.4.4, for any 0 < x < 2eK0
√
p,

P (
∣∣‖w‖22 − E[‖w‖22]

∣∣ > √px) ≤ 2e
− 1

8e2K2
0
x2

. (2.4.8)

Combining (2.4.8) with (2.4.6) and (2.4.7), there is

P (|a′((1/p)ZZ ′ − (1 + η)In)a| ≥ λ
√
n/p+ ηk/p) ≤ 2 · 9ne

− 1

8e2K2
0
x2

,

and (2.4.1) follows by taking x = 4eK0

√
n log(9) = λ

√
n and basic algebra. �

2.4.2 Details about sub-Gaussian R.V.

For independent sub-Gaussian random variables, the linear combination of them is also
sub-Gaussian distributed.
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Theorem 2.4.1 If Xi are independent sub-Gaussian random variables with common
parameter σ, 1 ≤ i ≤ n, then for any n× 1 constant vector a, the random variable a′X
is sub-Gaussian with parameter ‖a‖σ.

Proof. Note that
E[etXi ] ≤ eσ2t2/2, 1 ≤ i ≤ n,

so we have

E[et
∑n
i=1 aiXi ] =

n∏
i=1

E[etaiXi ] ≤ e
∑n
i=1 a

2
i σ

2t2/2 = e‖a‖
2σ2t2/2.

So the claim follows. �
Also, there is some equivalent conditions for sub-Gaussian random variables.

Theorem 2.4.2 For a centered random variable X, the following statements are equiv-
alent:

1. ∃σ > 0, such that E[etX ] ≤ eσ2t2/2, any t ∈ R;

2. ∃K1 > 0, such that for any s > 0, P (|X| ≥ s) ≤ 2e−K1s2;

3. ∃K2 > 0, such that E[eK2X2
] ≤ 2.

Proof. 1 → 2. With Markov inequality, combining with property 1 that E[etX ] ≤
eσ

2t2/2, we have that

P (|X| > s) ≤ e−tsE[etX ] ≤ e−ts+t2σ2/2.

Choose that t = s
σ2 to minimize the right side, and we get that

P (|X| > s) ≤ e−s2/2σ2
.

Take K1 = 1/2σ2 and property 2 follows.
2 → 3. Take K2 = K1/3. With property 2, we have that

P (eK2X2 ≥ eK2s2) = P (|X| ≥ s) ≤ 2e−K1s2 .

So, there is

E[eK2X2
] =

∫ ∞
0

P (eK2X2 ≥ eK2s2)d(eK2s2) ≤ 1 + 2

∫ ∞
0

2K2e
K2−K1s2d(s2).

Introduce in K2 = K1/3, then we have

2

∫ ∞
0

2K2e
K2−K1s2d(s2) =

∫ ∞
0

2

3
K1e

−2/3K1s2d(s2) = 1.
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So, there is E[eK2s2 ] ≤ 2 when K2 = K1/3.
3 → 1. The proof can be found at [Rivasplata 2012, Page 6].
Assume that E[eK2X2

] ≤ 2 for some K2 > 0. Recalling that X is centered, we have

E[etX ] = 1 +

∫ 1

0
(1− y)E[(tX)2eytX ]dy ≤ 1 +

t2

2
E[X2e|tX|].

As |tX| ≤ 1
2(t2/K2 +K2X

2), so we have

t2

2
E[X2e|tX|] ≤ t2

2
et

2/(2K1)E[X2eK2X2/2] ≤ t2

2
et

2/(2K2)E[eK2X2
].

So, we have

E[etX ] ≤ 1 +
t2

2
et

2/(2K2)E[eK2X2
] ≤ (1 + t2/K2)et

2/(2K2) ≤ e3t2/(2K2)

So X is sub-Gaussian with parameter σ =
√

3/K2. �
Besides sub-Gaussian random variables, we also introduce another type of random

variables: sub-exponential random variable, which have tails heavier than Gaussian
tails. Recall the definition of sub-exponential random variable as following.

Definition 2.4.1 A real-valued random variable X is said to be sub-exponential dis-
tributed, if ∃K, such that (E|X|p)1/p ≤ Kp, for all p ≥ 1. When X is sub-exponential
distributed, define the sub-exponential norm of X to be

‖X‖ψ1 = sup
p≥2

p−1(E|X|p)1/p.

Remark. According to triangle inequality, ‖X−E[X]‖ψ1 ≤ ‖X‖ψ1 + |E[X]|. So, when a
sub-exponential random variable is not centered, we could always make it to be centered
sub-exponential distributed.

Theorem 2.4.3 For a random variable X, if there exists c > 0 and s > 0, such that

P (|X| > t) ≤ c exp(−st), t > 0.

Then X is sub-exponential distributed.

Proof. We need to show that, there exists K > 0, such that for any p, there is

p−1(E|X|p)1/p ≤ K. (2.4.9)

So, we try to calculate E|X|p. As |X|p > 0 with probability 1, with elementary statis-
tics, we have

E[|X|p] =

∫ ∞
0

P (|X|p > tp)d(tp) =

∫ ∞
0

P (|X| > t)ptp−1d(t).
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Combining with that P (|X| > t) ≤ c exp(−st), we have that

E[|X|p] ≤
∫ ∞

0
ce−stptp−1d(t) =

cp

sp
Γ(p).

With Stirling’s approximation, when p is large, there is Γ(p) = p! ≤
√

2πp(p/e)pe1/(12p).
Introduce it into E[|X|p], and we have

E[|X|p] ≤ cp
√

2πp

sp
(p/e)pe1/(12p).

So, when p→∞, we have that

lim sup
p→∞

p−1(E[|X|p])1/p ≤ 1/(se).

As E[|X|p] is bounded when p is finite, so there exists K, such that (2.4.9) holds. �

Lemma 2.4.3 Let X be a centered sub-exponential random varaible. Then, for t such
that |t| ≤ 1/(2e‖X‖ψ1), there is

E[etX ] = exp(2e2t2‖X‖2ψ1
).

Proof. Note that

E[etX ] = 1 + tE[X] +
∞∑
p=2

tp
∑

E|X|p/p! ≤ 1 +
∞∑
p=2

(tp‖X‖ψ1)p/p!.

When |t| < 1/(2e‖X‖ψ1), the second term on the right can be controlled as

∞∑
p=2

(tp‖X‖ψ1)p/p! ≤
∞∑
p=2

(e‖X‖ψ1 |t|)p ≤ 2(e‖X‖ψ1 |t|)2.

So, we have
E[etX ] ≤ 1 + 2(e‖X‖ψ1 |t|)2 ≤ exp(2e2t2‖X‖2ψ1

).

�
With this lemma, we show the large deviation result for sums of independent sub-

exponential random variables, which can be viewed as an extension of Berstein inequal-
ity.

Theorem 2.4.4 Let X1, · · · , Xp be independent centered sub-exponential random vari-
ables, and K = maxi ‖Xi‖ψ1 . Then for every p × 1 constant vector a, and any t ≥ 0,
we have

P (|
p∑
i=1

aiXi| ≥ t) ≤ 2 exp(− 1

4e
min{ t2

2eK2‖a‖2
,

t

K‖a‖∞
}).
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Proof. The proof can be found in [Vershynin 2010, Page 14], and here is a copy of that
proof. Without loss of generality, we assume that K = 1 by replacing Xi with Xi/K

and t with t/K. With Markov inequality, we have that

P (|
p∑
i=1

aiXi| ≥ t) ≤ e−λtE[eλ(
∑p
i=1 aiXi)] = e−λt

p∏
i=1

E[eλaiXi ].

Combining with Lemma 2.4.3, if |λ| ≤ 1/(‖a‖∞2e) then |λai| ≤ 1/(2e), so there is

P (

p∑
i=1

aiXi ≥ t) ≤ exp(−λt+ 2e2t2λ2‖a‖2).

Choose λ = min{ t
4e2‖a‖2 , 1/(2e‖a‖∞)}, we obtain that

P (

p∑
i=1

aiXi ≥ t) ≤ exp(−min{ t2

8e2‖a‖2
,

t

4e‖a‖∞
}).

Repeating this argument for −Xi instead of Xi, we obtain the same bound for
P (−

∑p
i=1 aiXi ≥ t). A combination of these two bounds completes the proof. �





Chapter 3

Methodology

Contents
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Normality for Micro-array Data Sets . . . . . . . . . . . . . . . . . 28

3.2.3 Comparison with Other Methods . . . . . . . . . . . . . . . . . . . 30

3.2.4 Computation Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Background

In Chapter 1, I introduce the clustering problem, and state the difficulty for the clus-
tering problem with high dimensional data. The difficulty is not only for two-class
clustering problem, but also more complicated models with number of classes K > 2.
I have introduced how Spectral-HCT method can be extended to multi-class clustering
case. However, why can we extend the method in this way? Why it works? I will show
the idea in this chapter.

3.1.1 Model

When there are more than two classes, how do we model the data? Here I will talk
about this case. Assume that there are K classes in total.

For a feature vector Xi, take the label of Xi as el(i) = (0, 0, · · · , 1, · · · , 0)′, where
el(i) is a K×1 vector with only one nonzero element 1 at the location l(i). The location
of the element 1, which is l(i), indicates the class of Xi. Then, the feature vector can
be written as

Xi = el(i)M
′ + z, z ∼ N(0, In), (3.1.1)

where M is a p×K matrix, with M(j, i) indicates the mean of j-th variable for class i.
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In matrix form, it can be rewritten as

X = LM ′ + Z, (3.1.2)

where

L =


0 0 1 · · · 0

0 1 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1

1 0 0 · · · 0

 , (3.1.3)

which is an n×K matrix.
Assume that the proportion of class i is δi, then the overall mean for j-th variable

is that

dj =
K∑
i=1

δiM(j, i). (3.1.4)

Take dj1 = M(j, 1) − dj , dj2 = M(j, 2) − dj , and so on, then the data matrix can be
rewritten as

X = 1d′ + LD′ + Z, (3.1.5)

where 1 is an n × 1 vector with all elements as 1, and d is a p × 1 vector with overall
mean for each gene. L is the same as before, and D is a p ×K matrix with elements
D(j, i) = dji.

It is obvious that

K∑
i=1

δidji =

K∑
i=1

δi(µji − dj) =

K∑
i=1

δiµji − dj = 0,

so there is

dK =

K−1∑
i=1

δi
δK

dji.

Introduce it into the model (3.1.5), then the model can be written as

X = 1d′ + L̃D̃′ + Z, (3.1.6)

where L̃ is an n × (K − 1) matrix. When sample i is in group l, 1 ≤ l ≤ K − 1, then
Lil = 1, and other elements are 0. When sample i is in group K, then

Li = (− δ1

δK
,− δ2

δK
, · · · ,−δK−1

δK
). (3.1.7)

Matrix D̃ is a p× (K − 1) matrix, which is the first K − 1 columns of matrix D.
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In this way, the empirical dual covariance matrix H = (X − 1d′)(X − 1d′)′ is

H = L̃D̃′D̃L̃′ + L̃D̃′Z ′ + ZD̃L̃′ + ZZ ′. (3.1.8)

D̃′D̃ is an (K − 1)× (K − 1) matrix with rank K − 1. So L̃D̃′D̃L̃′ also has rank K − 1.
When the eigenvalues for the information matrix L̃D̃′D̃L̃′ is much larger than the

leading eigenvalue of noise part, then the recovered eigenvectors could indicate the class
for the samples. That’s why we want to do feature selection to reduce the magnitude
of leading eigenvalue for the noise matrix.

3.2 Methodology

In this section, I will introduce the clustering algorithm, and discuss the assumptions
of the algorithm for real data. At last, I will compare the new approach with other
approaches on several real data sets.

3.2.1 Algorithm

There are four steps in the algorithm. I will talk about them step by step.

1. Rank the features by Kolmogorov-Smirnov (KS) statistic.

For a feature vector Xi, the Kolmorov-Smirnov statistic is defined as following
equation,

KSn =
√
n sup
−∞<t<∞

|Fn(t)− Φ(t; µ̂i, σ̂i)|, (3.2.9)

where Fn(t) is the empirical cumulative density function from the feature vector
Xi, and µ̂i and σ̂i are the corresponding empirical mean and variance for data.
Kolmogorov-Smirnov statistic is to test the maximal difference between empirical
CDF and normal distribution.

Then, adjust the KS statistic by normalizing the mean and variance. According
to Efron’s paper ([Efron 2004]), the parameters for empirical null distribution is
different from that for theoretical null distribution. With the lighting of this idea,
we have to adjust the KS statistic by their mean and variance, to be at the same
scale for empirical null distribution.

With the adjusted KS statistic and simulated KS statistics, we can find the cor-
responding p-value for each gene. Denote the p-value by πi. Sort p-values in an
ascending way such that

π(1) ≤ π(2) ≤ · · · ≤ π(p).
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2. Feature selection by thresholding the p-value.

I use Higher Criticism Thresholding (HCT) for feature selection step. With the
sorted p-values, define the Higher Criticism functional by

HC(p, j) =

√
p(j/p− π(j))√

max{
√
n(j/p− π(j)), 0}+ j/p}

,

and let ĵ be the index that HCp,j reaches the maximum. We then keep all the
ĵ-features whose p-values πi are among the smallest (e.g. if ĵ = 50, then we keep
the 50 features with the smallest p-values). Then, we get the post-selection data
matrix X(t).

3. Post-selection PCA.

With the post-selection data matrix X(t), calculate the empirical dual covariance
matrix H(t) = X(t)(X(t))′. Assume that K is given, then we take K− 1 eigenvec-
tors with largest K − 1 eigenvalues. Denote the n× (K − 1) matrix combined by
these eigenvectors as U .

4. K-means clustering.

Apply K-means clustering algorithm for the matrix U we get in last step. It is
to find an n× (K − 1) matrix, with K identical rows, with smallest difference to
the matrix U in the sense of Frobenious norm. The labels found by K-means are
what we need.

3.2.2 Normality for Micro-array Data Sets

In Spectral-HCT algorithm, I assume that the noise is normal distributed. However,
is it true for real data sets? If not, we have to consider some other hypothesis testing
methods. To solve this problem, I investigate the normality assumption for some micro-
array data sets.

For the micro-array data sets not normally distributed, I find Dettling’s pre-
processing method ([Dettling 2003, Dudoit 2002]). It includes three steps: thresholding
the features by some lower bound and upper bound; excluding the features that the
maximum and the minimum are too near; and logarithm base 10 transformation. After
the pre-processing, most data sets performs as normally distributed. It can be seen
from the following figures about histogram and pp-plot for KS statistics of Lung2001
([Bhattacharjee 2001]) data set and Breast ([Wang 2005]) data set.

With the figures, we can see that the noise distribution can be assumed to be normal.
So the normal assumption won’t disturb the result much.
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Figure 3.1: Top Left: histogram for Lung2001 and corrected null distribution (red line).
Top Right: pp plot for Lung2001 data. Bottom Left: histogram for Breast data and
corrected null distribution (red line). Bottom Right: pp plot for Breast data.
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3.2.3 Comparison with Other Methods

How does this method work? I compare it with the other methods on different data
sets, including Leukemia data, Colon data, Lung cancer data, Brain data, Lymphoma
data, SRBCT data I introduced before. What’s more, I also compared Spectral-HCT
with other clustering methods on Lung2001 data, Breast cancer data, Prostate cancer
data ([Singh 2002]), and Su-Cancer data sets ([Su 2001]). A brief introduction of these
data sets is in the following table.

Data Name Source K n p

Brain Pomeroy (02) 5 42 5597
Breast Cancer Wang et al. (05) 2 276 22215
Colon Cancer Alon et al. (99) 2 62 2000
Leukemia Golub et al. (99) 2 72 3571
Lung Cancer Gordon et al. (02) 2 181 12533
Lung2001 Bhattacharjee et al. (01) 2 203 12600
Lymphoma Alizadeh et al. (00) 3 62 4062
Prostate Cancer Singh et al. (02) 2 136 6033
SRBCT Kahn (01) 4 63 2308
Su-Cancer Su et al (01) 2 174 7909

Table 3.1: The brief introduction of data sets.

There are 10 data sets in total, with number of classes from 2 to 5, number of genes
ranging from 2000 to 20,000, and year ranging from 1999 to 2005, which is very broad.
So, the comparison is very persuading.

For these data sets, I apply Spectral-HCT method, K-means, Hierarchical cluster-
ing, and SpectralGem. The result is in Table 3.2. It can be seen that Spectral-HCT
works well and improves the results for most data sets. For some data set it does not
behave well (such as Colon data), it does not did worse either.

3.2.4 Computation Cost

How about the computation cost? As the HC functional is very easy to compute
(computation cost O(p)), the only time consuming step is to simulate null distribution
of KS statistics. For each data set, we have to simulate 20,000 KS statistics with sample
size n. The computation cost for this step is about O(n), yet the constant is large.

How large it is? We record the computation cost for several data sets as Table 3.3.
In this table, we can see that it costs less than one minute even for data sets with 12533
genes. It is very fast compared to other methods with feature selection step.
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Data Name K K-means Hier SpectralGem Spectral-HCT
Brain 5 .433 .500 .436 .425
Breast Cancer 2 .357 .548 .333 .238
Colon Cancer 2 .461 .387 .484 .403
Leukemia 2 .278 .361 .264 .069
Lung Cancer 2 .122 .182 .315 .033
Lung2001 2 .433 .300 .478 .212
Lymphoma 3 .323 .468 .226 .048
Prostate 2 .422 .422 .480 .382
SRBCT 4 .603 .540 .540 .524
Su-Cancer 2 .452 .448 .483 .362

Table 3.2: The clustering error rate of different clustering methods for data sets. In
each box, the decimal shows the corresponding error rate.

Data set Leukemia Lung Prostate Colon
Computation Time 36 49s 48.5s 35s

Table 3.3: Computation cost for Leukemia data, Lung data, Prostate data and Colon
data.
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4.1 Background

In this chapter, I will introduce the elegant theory for Spectral-HCT algorithm in the
case of two-class clustering. I will introduce the model I work on, and the main result
about upper bound and lower bound for Spectral-HCT algorithm, and then the corre-
sponding phase diagram. Some related topic, such as false discovery rate (FDR) is also
discussed. In Section 5.4, I will show my simulation results for Spectral-HCT algorithm
under more complicated case. It can be seen that even with more complicated noise
and model, Spectral-HCT still improves the result. At last, I will show the proofs.

The paper has contributions in the following perspectives.

• Higher Criticism for threshold choice in spectral clustering. We find an intimate
relationship between the Hamming error functional of spectral clustering and
the recent notion of Higher Criticism. HC was developed earlier in a seem-
ingly unrelated settings (e.g., signal detection [Donoho 2004] and classification
[Donoho 2008, Jin 2009]), but the link we forge between HC and spectral cluster-
ing is new.

• Phase transition on PCA. Our study involves very delicate PCA, where the main
goal is to derive an explicit formula for the signal-to-noise ratio HC(t) in (1.2.10).
Our study is closely related but is more delicate than that [Paul 2007]. Johnstone
and Paul [Paul 2007] considers a setting where we have independent samples from
N(0,Σ), for which the covariance matrix Σ is “spiky" in the sense that most eigen-
values are 1 except for a few of them are larger than 1. They reveal an interesting
phase transition regarding the inner product between the leading eigenvector of
the empirical covariance matrix and that of Σ: depending how large the leading
eigenvalues of Σ is, the inner product converges to 1 or 0 as p diverges. In compar-
ison, our study in (1.2.10) reveals a similar phase transition on the inner product
between the label vector y and the leading eigenvector of H(t). However, to find
a good approximation to the Ideal Threshold, the study on the phase transition
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is inadequate, and we must derive an explicit formula for the signal-to-noise ratio
HC(t), which involves much more delicate analysis.

• Phase transition in spectral clustering. Our study reveals interesting phase tran-
sition of spectral clustering. In our model X = yµ′ + z, we call the p × 1 vector
µ the signal vector. If we call the two-dimensional space calibrating the signal
sparsity and signal strength, then the phase space partitions into two separate
regions, in one of them the signals is sufficiently strong so that successful spectral
is possible (say, we use post-selection PCA with the threshold set by HCT), in the
other region the signals are merely too rare and weak so spectral clustering must
fail. Such a phase transition has been found in signal detection [Donoho 2004],
classification [Donoho 2008, Jin 2009], and variable selection [Ji 2010], but not in
spectral clustering as far as we know.

4.2 Main results

In this section, we present the main theoretic results, Theorems 4.2.1-4.2.4. In Section
4.2.1, we introduce an asymptotic framework which we call the Asymptotic Rare and
Weak (ARW) model. Then in Section 4.2.2, we present the main results on post-
selection PCA, and introduce the notion of post-selection Signal-to-Noise Ratio (ps-
SNR). In Section 4.2.3, we introduce the ideal threshold (the threshold that maximizes
the ps-SNR) and the concept of phase diagram. We show that the post-selection PCA
yields optimal phase diagram if we set the threshold as the ideal threshold. In Section
4.2.5, we introduce the notion of ideal HCT, the non-stochastic counterpart of HCT,
and elaborates the close connection between the ideal HCT and the ideal threshold,
and show that spectral-HCT yields the optimal phase diagram.

4.2.1 Rare and weak signal model

Following the discussion in Chapter 1, we consider a model where the data matrix
X = Xn,p satisfies

X = yµ′ + Z, where Z = Zn,p has i.i.d. entries from N(0, 1). (4.2.1)

Here, µ is the p× 1 signal vector as in Model (1.1.3) and y is the n× 1 adjusted label
vector as in (1.1.2).

Under this model, the noise distribution is given, and the most natural summary
statistic for each feature is the one that based on the χ2-statistic. Define

Tj =
( n∑
i=1

x2
ij − n

)
/
√

2n. (4.2.2)
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If we let non-central χ2
n(ν) be the χ2-distribution with df = n and non-central parameter

ν, then
(
√

2nTj + n
∣∣µ, y) ∼ χ2

n(‖y‖2µ2(j)); (4.2.3)

note that when µ(j) = 0, (
√

2nTj + n
∣∣µ(j) = 0, y) ∼ χ2

n(0).
Fix δ ∈ (0, 1/2). We model the label vector ` in a way so that (`i + 1)/2 are i.i.d.

samples from Bernoulli(δ). As a result, the adjusted label vector y has independent
coordinates that satisfy

yi =

{
(1− δ), with probability δ,
−δ, with probability (1− δ); (4.2.4)

note that ‖y‖2/n ≈ δ(1− δ). For large n, by (4.2.3), we have that approximately,

Tj ∼ N
(
δ(1− δ)

√
n/2µ2(j), 1

)
.

In light of this, we re-scale µ(j) and suppose√
n/2δ(1− δ)µ2(j)

iid∼ (1− ε)ν0 + εF, (4.2.5)

where ν0 is the point mass at 0 and F is a distribution that has no mass at 0, and
ε ∈ (0, 1) is the parameter for signal sparsity.

We adopt a rare and weak signal model where p is the driving asymptotic parameter,
and other quantities (e.g., (n, ε, F )) are tied to p through fixed parameters. Fixing
θ ∈ (0, 1) and β ∈ (0, 1) we model the sample size n and the sparsity parameter ε by

n = np = pθ, ε = εp = p−β. (4.2.6)

As p also tends to ∞, np tends to ∞ but n � p, and εp tends to 0 so that the signals
get increasingly sparse, but the number of signals (which is approximately pεp) tends
to ∞.

For signals this sparse, it turns out that the most interesting range for the signal
distribution F is that F concentrates its mass at the order of O(

√
log(p)), a quantity

that goes to ∞ but in a very slow rate. The feature selection problem is relatively
easy when signals are much stronger than this, but is impossible when signals are much
weaker. For this reason, we fix r ∈ (0, 1) and let

τp =
√

2r log(p). (4.2.7)

For some of our results (e.g., Theorems 4.2.2-4.2.4), we assume F = Fp is a point mass
at τp:

F = Fp = ντp . (4.2.8)

This models the situation where all useful features have the same strength. This is not
an unusual assumption for literature on phase diagrams and Higher Criticism. Despite
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the seemingly simplicity of the model, the analysis it entails is already very subtle,
and the insight gained is valid for much broader cases. For some or our result (e.g.,
Theorems 4.2.1 and 4.2.3, and Section 4.6), we consider a much broader model where
we allow unequal signal strengths.

Definition 4.2.1 We call Model (4.2.1) and (4.2.4)-(4.2.8) the Asymptotic Rare and
Weak model ARW (β, r, θ, δ).

4.2.2 Post-selection Signal-to-Noise Ratio (SNR)

In this section, we derive the post-selection Signal-to-Noise Ratio (ps-SNR). In the
following context, we will talk about ps-SNR only. So we use SNR for short without
confusion. To show that the results hold much more generally than the ARW (β, r, θ, δ),
we digress in this section without the assumptions in Model (4.2.4)-(4.2.8).

To apply the post-selection PCA, we first select feature by thresholding Tj with
some threshold t > 0, where Tj is as in (4.2.2). To this end, denote the empirical
survival function associated with Tj by

F̄p(t) =
1

p

p∑
j=1

1{Tj ≥ t}, (4.2.9)

and denote F̃p(t) = F̃p(t, µ, y) by

F̃p(t, µ, y) = E[F̄p(t)
∣∣µ, y] =

1

p

p∑
j=1

P (Tj ≥ t
∣∣µ, y). (4.2.10)

At the same time, let

W̃p(t) = W̃p(t, µ, y) =
1

p

p∑
j=1

µ2(j)P (Tj ≥ t
∣∣µ, y). (4.2.11)

We define the SNR functional by

S̃NR(t) = S̃NR(t, µ, y, n, p) =
pW̃p(t)√

pF̃p(t)/n+ pW̃p(t)
.

At the same time, let Ŝ(t) be the set of all retained features:

Ŝ(t) = Ŝp(t,X) = {1 ≤ j ≤ p : Tj ≥ tp}.

We define X(t) as the n× |Ŝ| sub-matrix of X formed by restricting the columns of X
to Ŝ(t). As before, denote the n×n post-selection empirical dual covariance matrix by

H(t) = X(t)(X(t))′,
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and denote leading eigenvector of H(t) by ξ(t). The following theorem is one of the main
result of this paper, the underlying idea of which is discussed in detail in Section 4.4.

Theorem 4.2.1 (Post-selection PCA). Consider a sequence of clustering problems Y =

yµ′ + z that satisfy (4.2.1) and a sequence of thresholds t, where as p ranges, n = np,
t = tp with a

√
log(p) < tp <

√
2 log(p) for some constant a, y = y(np) and µ = µ(p) are

non-stochastic quantities that depend on p. As p → ∞, if np → ∞ and there exists a
constant c, such that

p−cS̃NR(tp, µ
(p), y(np), np, p)→∞,

then with probability at least 1− o(1/p),

ξ(tp) ∝ S̃NR(tp, µ
(p), y(np), np, p)[1 + o(1)] · y(np) + z(np) + rem(np),

where z(np) ∼ N(0, Inp), and ‖rem(np)‖22/np = o(1).

4.2.3 Ideal Threshold and success of post-selection PCA

We now move to ARW (β, r, θ, δ). As p→∞, some regularity appears, and

F̃p(t, µ, `, np) ≈ f̄p(t, εp, τp, np), W̃p(t, µ, `, np) ≈ wp(t, εp, τp, np),

where f̄p(t) = f̄p(t, εp, τp, np) and wp(t) = wp(t, εp, τp, np) (f̄p(t) is an unfortunate no-
tation and we should not misinterpret it as a density function) are defined by

f̄p(t, εp, τp, np) = Eεp,τp [F̃p(t, µ, y, np)], wp(t, εp, τp, np) = Eεp,τp [W̃p(t, µ, y, np)],

and so
S̃NR(t, µ(p), `(p), np) ≈

√
p · s̃nr(t, εp, τp, np),

where s̃nr is a non-stochastic function which we call the pseudo SNR.

s̃nr(t, εp, τp, np) =
wp(t, εp, τp, np)√

f̄p(t, εp, τp, np)/np + wp(t, εp, τp, np)
. (4.2.12)

Ideally, one would pick the threshold t to maximizes the pseudo SNR. This is the ideal
threshold.

Definition 4.2.2 The ideal threshold is the threshold that maximizes s̃nr(t, εp, τp, np):
tidealp = tidealp (εp, τp, np) = arg max0<t<∞{s̃nr(t, εp, τp, np)}.

We now further characterize s̃nr(t) and tidealp . The following notations are frequently
used in this paper.
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Definition 4.2.3 Lp > 0 denotes a generic multi-log(p) term which may vary from
occurrence to occurrence, and which satisfies that for any c > 0, Lpp−c → 0 and Lppc →
∞ as p→∞.

Definition 4.2.4 For any n ≥ 1 and ν ≥ 0, Ḡν(t, n) = 1−Gν(t, n) denotes the survival
function of (T − n)/

√
2n, where for T ∼ χ2

n(
√

2nν).

Note that for large n, Ḡτp(t, n) is very close to the survival function of N(τp, 1). By
direct calculations,

f̄p(t, εp, τp, np) = (1− εp)Ḡ0(t, np) + εpḠτp(t, np), (4.2.13)

and

wp(t, εp, τp, np) =

√
2

δ(1− δ)
εpτpn

−1/2
p Ḡτp(t, np). (4.2.14)

For any fixed q > 0, let
tp(q) =

√
2q log(p). (4.2.15)

Plugging (4.2.13)-(4.2.14) into (4.2.12), it follows from basic algebra and the closeness
between Ḡτp and the survival function of N(τp, 1) that

s̃nr(tp(q), εp, τp, np) ≡ s̃nr(t, εp, τp, np)
∣∣
t=tp(q)

= Lpp
−∆(q,β,r,θ),

where

∆(q, β, r, θ) =

{
β − 1

2 min{q, β − θ/2}, q ≤ r;
β + (

√
q −
√
r)2 − 1

2 min{q, β − θ/2 + (
√
q −
√
r)2}, q > r.

(4.2.16)
See ∆(q, β, r, θ) as a function of q, where (β, r, θ) are fixed. A noticeable feature is
that, for some (β, r, θ), the function is flat on the top, so there is an interval over which
∆(q, β, r, θ) does not depend on q, and remains as a constant (that depends on (β, r, θ)).
From a practical point of view, the flatness causes some unappealing features that can
be further improved. We address this in Section 4.3.

As a result, let
∆∗(β, r, θ) = min

0<q<∞

{
∆(q, β, r, θ)

}
.

It follows that

s̃nr(tidealp , εp, τp, np) = sup
0<t<∞

s̃nr(t, εp, τp, np) = Lpp
−∆∗(β,r,θ), (4.2.17)

and

∆∗(β, r, θ) =


β − r, r < (β − θ/2)/3,
θ
2 + (β−θ/2+r)2

8r , (β − θ/2)/3 < r < β − θ/2,
θ
4 + β

2 , r > β − θ/2.
(4.2.18)
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At the same time, with basic calculation we have that

tidealp ∼
√

2q∗ log(p),

where q∗ = q∗(β, r, θ) satisfies

q∗(β, r, θ) =

{
4r, r < (β − θ/2)/3,
(β−θ/2+r)2

4r , (β − θ/2)/3 < r < β − θ/2,
(4.2.19)

and
q−(β, r, θ) ≤ q∗(β, r, θ) ≤ q+(β, r, θ), if r > β − θ/2, (4.2.20)

where
q−(β, r, θ) = β − θ/2, q+(β, r, θ) = r. (4.2.21)

By Theorem 4.2.1 and (4.2.17), we expect so see that

S̃NR(tidealp , µ, `, np, p) ≈
√
ps̃nr(tidealp , εp, τp, np, p) = Lpp

1/2−∆∗(β,r,θ).

Therefore, the success of post-selection PCA hinges on the positivity of the exponent
of

1/2−∆∗(β, r, θ),

Introduce the clustering phase function by

ρ∗θ(β) =


0, β < 1/2,

β − 1/2, 1
2 < β < 3−θ

4 ,

(
√

1− θ −
√

1 + θ/2− β)2, 3−θ
4 < β < 1− θ

2 .

(4.2.22)

By direct calculations, it is seen that

1/2−∆∗(β, r, θ) > 0 if and only if r > ρ∗θ(β).

Correspondingly, there is a phase-transition phenomenon associated with the post-
selection PCA. These are the following two theorems, which are proved in 4.7.1 - 4.7.14.

Theorem 4.2.2 Possibility. Under the conditions of ARW model, fix 0 < q < 1 and
suppose r > ρ∗θ(β). As p→∞, with probability at least 1− o(1/p),

ξ(tidealp ) ∝ Lpp1/2−∆∗(β,r,θ) · y(np) + z(np) + rem(np),

where z(np) ∼ N(0, Inp) and is independent of y(np), and ‖rem(np)‖2 = o(
√
np). Con-

sequently, if we use post-selection PCA where the threshold is set as tidealp , then the
clustering error → 0.

For q in this range, the inner product (ξ(tp(q)), y)/‖y‖ tends to 1 as p→∞ algebraically
fast, and the leading eigenvector ξ(tp(q)) is informative for estimating the adjusted label
vector y.
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4.2.4 Lower bound for post-selection PCA, phase diagram

Theorem 4.2.3 Impossibility. Under the conditions of ARW model, fix (θ, β, r, q) ∈
(0, 1)4 such that r < ρ∗θ(β). Then as p → ∞, with probability 1 + o(1/n), the inner
product of ξ(tp(q)) and the adjusted label vector y satisfies

(ξ(q), y)/‖y‖ ≤ Lpp1/2−∆(q,β,r,θ),

where Lpp1/2−∆(q,β,r,θ) → 0 for any q.

This says that when r < ρθ(β), the signal strength fall below a critical threshold, and
the leading eigenvector of H(tp(q)) is almost orthogonal to the adjusted label vector, and
is non-informative for clustering.

Together, Theorems 4.2.2-4.2.3 depict an interesting phase transition: when r <

ρθ(β), the signals are too rare and weak and post-selection PCA bounds to fail. When
r > ρθ(β), the signals are strong enough that post-selection PCA can be successful,
provided that we pick the thresholds in an appropriate range.

4.2.5 Ideal Higher Criticism Threshold (Ideal HCT)

Ideal HCT is the non-stochastic counterpart of HCT introduced earlier, and is also the
threshold that HCT tries to estimate. Recall that Ḡ0(t, n) is the survival function of Tj
when µ(j) = 0 (see (4.2.2)). Introduce the functional that is defined over all survival
function H̄ = 1−H associated with a positive random variable:

HC(t,H) = HC(t,H; Ḡ0, np) =
H̄(t)− Ḡ0(t, n)√

H̄(t) +
√
np[max{H̄(t)− Ḡ0(t, np), 0}]

. (4.2.23)

There are two survival functions that are of particular interest: the empirical survival
function associated with Tj , 1 ≤ j ≤ p, and its non-stochastic counterpart (both are
introduced slightly earlier in Section 4.2.3):

F̄p(t) =
1

p

p∑
j=1

1{Tj > t}, f̄p(t) = E[F̄p(t)]; (4.2.24)

recall that F̃p(t) = E[F̄p(t)|µ, y] and that

f̄p(t) = Eεp,τp [F̃p(t, µ, y, np)] = E[F̄p(t)]. (4.2.25)

Evaluating HC(t, H̄) at H̄ = F̄p and H̄ = f̄p gives rise to the HCT and Ideal HCT.

Definition 4.2.5 We call the threshold t that maximizes HCp(t, F̄p) the Higher Crit-
icism Threshold, and denote it by t̂HCp , and we call the threshold t that maximizes
HCp(t, f̄p) the Ideal Higher Criticism Threshold, and denote it by tidealHCp .
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In disguise, t̂HCp is the HCT we introduce earlier in Section 1.2.4. See details therein.
We explain why three thresholds we introduce are all close to each other (except for

a small probability):
t̂HCp ≈ tidealHCp ≈ tidealp . (4.2.26)

On one hand, if we denote

Vp(t) = Vp(t,X, np) = F̄p(t)− Ḡ0(t, np),

then we can rewrite HC(t, F̄p) and HC(t, f̄p) by

HC(t, F̄p) =
Vp(t)√

F̄p(t) +
√
np max{Vp(t), 0}

.

Similarly to discussions in Section 4.2.3, as p grows to ∞,

F̄p(t) ≈ f̄p(t), Vp(t) ≈ vp(t),

where f̄p(t) is as in (4.2.25) and

vp(t, εp, τp, np) = E[Vp(t)] = f̄p(t)− Ḡ0(t, np) > 0.

Therefore, we expect to see that

HC(t, F̄p) ≈
vp(t)√

f̄p(t) +
√
npvp(t)

≡ HC(t, f̄p).

and so with overwhelming probability,

t̂HCp ≈ tidealp . (4.2.27)

On the other hand, note that in comparison,

s̃nr(t, εp, τp, np) =

√
npwp(t)√

f̄p(t) + npwp(t)
, HC(t, f̄p) =

vp(t)√
f̄p(t) +

√
npvp(t)

.

By definition and that for t in the range of interest, Ḡ0(t, np)� Ḡτp(t, np),

vp(t, εp, τp, np) = εp[Ḡτp(t, np)− Ḡ0(t, np)] ≈ εpḠτp(t, np), (4.2.28)

where by recalling that

√
npwp(t, εp, τp, np) =

√
2

δ(1− δ)
εpτpḠτp(t, n),
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the right hand side of (4.2.28) is proportional to wp(t, εp, τp, np), with a factor of
√

2
δ(1−δ)τp.

Since the factor
√

2
δ(1−δ)τp only has a secondary effect over the the maximizing point of

either HC(t, f̄p) or s̃nr(t), so we expect to see that

tidealHCp ≈ tidealp . (4.2.29)

Together, (4.2.27) and (4.2.29) explain (4.2.26).
The closeness of three thresholds suggests that using HCT is a good threshold

choice, and spectral-HCT method should be successful. This is captured in the following
theorem, which is proved in Section 6.4.

Theorem 4.2.4 Under the conditions of ARW model and fix the parameters such that
r > ρ∗θ(β), say that the ideal threshold tidealp =

√
2qideal log p and the HC thresholding

under χ2 test is t̂HCp =
√

2qHC log p, then we have, when p → ∞, with probability at
least 1− o(1/p),

t̂HCp
tidealp

→ 1, r < β − θ/2;

lim
t̂HCp√

2q− log p
≥ 1, and lim

t̂HCp√
2q+ log p

≤ 1, r > β − θ/2.

Also, under the ARW model, in the successful region for ideal threshold, the error rate
with HCT clustering also goes to 0 with probability 1− o(1/p).

4.3 Variants of HCT and connection to FDR methodology

In the preceding section, we see that for (β, r, θ) such that r > β−θ/2, then the function
s̃nr(t, εp, τp, np) is flat in the interval

q−(β, r, θ) ≤ q ≤ q+(β, r, θ);

over which, every q attains the maximum of the function. In this case, at least asymp-
totically, many threshold choices would work almost equally well as does the ideal
threshold.

While this is true asymptotically, it is worthy to reinvestigate from a practical point
of view, where we have finite n and p: among many “equally good" threshold choices
(in terms of clustering behaviors), it is still desirable to select the threshold that has the
smallest (feature) False Discovery Rate (FDR). Call a feature useful or useless according
to µ(j) 6= 0 or µ(j) = 0. The (feature) FDR is the expected fraction of selected features
that are useless:

FDR = E

[
#{number of selected features that are useless}

#{total number of selected features}

]
.
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Figure 4.1: The order of HC when q changes. When r is large (in the right figure),
there is a flat area between β − θ/2 (0.2) and r (0.3).

In light of this, we propose a small variant of HCT. The variant has a similar
clustering behavior as the HCT in the preceding sections, but has a FDR that is more
appealing from a practical perspective.

To this end, we first investigate where the flatness of the function ∆(q, β, r, θ) comes
from. For any 0 < q < 1,

s̃nr(tp(q), εp, τp, np) =
vp(tp(q))√

f̄p(tp(q)) +
√
npvp(tp(q))

.

By similar calculations, when (β, r, θ) satisfy r > β − θ/2, for any fixed q such that
q−(β, r, θ) < q < q+(β, r, θ),

vp(tp(q)) ≈ εpΦ̄(tp(q)− τp) = εp[1−Lpp−(
√
q−
√
r)2

],
f̄p(tp(q))√
npvp(tp(q))

= Lpp
−(q+θ/2−β);

so there is a constant c(q, β, r, θ) = min{(√q −
√
r)2, q + θ/2− β} > 0 such that

s̃nr(tp(q), εp, τp, np) = p−(β/2+θ/4)[1− Lpp−c(q,β,r,θ)].

This says that in the interval of q−(β, r, θ) < q < q+(β, r, θ), the effect of q is only
on the algebraically small term, and so s̃nr(tp(q)) is almost flat. See Figure 4.1 for
illustration.

It is an easy fix of the flatness if consider the variant of s̃nr(t, εp, τp, np) by

˜̃snr(t, εp, τp, np) = a(t)s̃nr(t, εp, τp, np),
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where a(t) is monotone function that is slowly increasing for 0 ≤ t ≤
√

2 log(p) such
that a(0) = 1 and a(

√
2 log(p)) = 1 + o(1). There are many choices of such function,

and a convenient choice is

a(t) = 1− log Ḡ0(t, np)

log(p)
. (4.3.30)

In comparison, while ˜̃snr(t, εp, τp, np) ≈ s̃nr(t, εp, τp, np) for all 0 ≤ t ≤
√

2 log(p), the
function ˜̃snr tilde to the right hand slightly, to which the maximizing point is not only
much easier to pin down, and is also more robust to noise corruption.

Definition 4.3.1 We call a threshold arg maxt>0{˜̃snr(t, εp, τp, np)} the variant of the
ideal threshold, and denote it by tidealvariantp .

Compared to the ideal threshold, the variant is more appealing from a practical per-
spective, in terms of the FDR. We have the following corollary.

Corollary 4.3.1 Fix (β, r, θ) ∈ (0, 1)3. Under the conditions of ARW (β, r, θ), the
(feature) FDR associated with the tidealvariantp satisfies

FDR(tidealvariantp ) ∼


p−3r

p−3r+p−β
, r < (β − θ/2)/3,

1
1+p−θ/2

, (β − θ/2)/3 < r < β − θ/2,
p−r

p−β+p−r
, r > β − θ/2.

Correspondingly, we can modify HCT slightly so that it gives a good approximation
of tidealvariantp . The variant of HCT is defined with three similar steps as before, except
the function in step 3 is slightly different.

• Let πj = Ḡ0(Tj , n) be the p-values of Tj .

• Let π(1) < π(2) < . . . < π(p) be the sorted p-values.

• Let ĵ be the maximizing index of
√
p(j/p− π(j))√

max{
√
n(j/p− π(j)), 0}+ j/p

(1 +
log(1/π(i))

log p
).

The variant of HCT is then defined as T̂ĵ that has corresponding p-value πĵ .

The following theorem is similar to that of Theorem 4.2.4, and is proved in Section 6.4.

Theorem 4.3.1 Under the conditions of the ARW model and that r > ρ∗θ(β), with
probability 1− o(1/p2),

t̂HCvariantp

tidealvariantp

→ 1, p→∞;

and the error rate of spectral clustering with HCT variant also goes to 0 with probability
1− o(1/p2).
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4.4 Proof of Theorem 4.2.1

One of the major contribution of this paper is Theorem 4.2.1, which consists of delicate
analysis on post-selection PCA. In this paper, we illustrate the main ideas underlying
Theorem 4.2.1, and provides the proof in the end of the section. The proofs of other
theorems are also nontrivial, but are deterred to Section 6.4 for reasons of space and
exposition.

We review some notations we have before, and also introduce some new ones. We
are interested in Model (4.2.1), where X = yµ′ + Z. For any threshold t > 0,

Ŝ(t) = Ŝ(t,X, p) = {1 ≤ j ≤ p : Tj ≥ t} (4.4.31)

denotes the set of all the retained features, X(t) and Z(t) denote the n×|Ŝ(t)| sub-matrix
of X formed by restricting the columns of X to Ŝ(t), respectively, and µ(t) denotes the
|Ŝ(t)| × 1 sub-vector of µ formed by restricting the rows of µ to Ŝ(t). Note that even
when µ is non-stochastic, µ(t) is stochastic for it depends on Ŝ(t). Note that

X(t) = y(µ(t))′ + Z(t), (4.4.32)

We denote
H(t) = (X(t))(X(t))′, H

(t)
0 = (Z(t))(Z(t))′,

so that H(t) is the np × np empirical dual covariance matrix before, and H
(t)
0 is the

empirical dual covariance matrix in the special case of µ = 0.
We are primarily interested in the first leading eigenvector ξ(t) of H(t) =

(X(t))(X(t))′. To this end, we introduce four stochastic functions C
(t)
ij (λ) =

C
(t)
ij (λ, y, µ, Z, p, np), 1 ≤ i, j ≤ 2, defined over over all real values λ that are not

an eigenvalue of H(t)
0 by

C
(t)
11 (λ) = C

(t)
11 (λ, y, µ, Z, p, np) = y′[λInp −H

(t)
0 ]−1y, (4.4.33)

C
(t)
12 (λ, t) = C

(t)
21 (λ, y, µ, Z, p, np) = y′[λInp −H

(t)
0 ]−1Z(t)µ(t), (4.4.34)

and

C
(t)
22 (λ) = C

(t)
22 (λ, y, µ, Z, p, np) = (Z(t)µ(t))′[λInp −H

(t)
0 ]−1Z(t)µ(t); (4.4.35)

where λ is an eigenvalue of H(t)
0 , we let C(t)

ij (λ) = |i − j|. Moreover, we introduce
h(t)(λ) = h(λ, y, µ, Z, p, np) and g(λ) = g(t)(λ, y, µ, Z, p, np) by

h(t)(λ) = C
(t)
11 (λ)(‖µ(t)‖2+C

(t)
22 (λ))−(1−C(t)

12 (λ))2, g(t)(λ) =
1− C(t)

12 (λ)

C
(t)
11 (λ)

. (4.4.36)
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4.4.1 Some useful lemmas

The following lemma characterizes the eigenvalues and eigenvectors of H(t), and is
proved in the appendix.

Lemma 4.4.1 Fix p, n = np, and λ > 0. For any λ that [λInp −H
(t)
0 ] is non-singular,

we have that, with probability 1, it is equivalent with h(t)(λ) = 0 that λ is an eigenvalue
of H(t), and the corresponding eigenvector is

ξ ∝ [λInp −H
(t)
0 ]−1(g(t)(λ)y + Z(t)µ(t)). (4.4.37)

In this paper, we are primarily interested in the largest eigenvalue of H(t). In Lemma
4.4.3, we show that with probability 1, [λIn − H(t)

0 ] is non-singular if λ is the largest
eigenvalue of H(t) when SNR goes to infinity.

By Lemma 4.4.1, to study the leading eigenvalues/eigenvectors of H(t), the key is
to have a good understanding of h(t)(λ) and g(t)(λ); the analysis it entails is subtle as
it involves the post-selection random matrix Z(t). Note that Z(t) is the noise matrix
associated with only the features that survived the feature selection. As a result, the
columns of Z(t) are non-independent and have a distribution that is not easy to ana-
lyze. For this reason, existing results on PCA of random matrices (which usually deals
with matrices with i.i.d. entries) do not directly apply, and we have to develop new
techniques. The following lemma plays a key role in our analysis, and is proved in the
appendix.

In Chapter 2, Theorem 2.3.1 extends well-known results on random matrices with
i.i.d. Gaussian entries (e.g., [Vershynin 2010]) to the more difficult case of post-selection
random matrices, where the ε-net argument in [Vershynin 2010] is very helpful. The-
orem 2.3.1 is useful in evaluating many quantities, including the largest eigenvalue of
H

(t)
0 , C(t)

ij (λ), h(t)(λ), and g(t)(λ). In particular, we have the following lemma, which is
proved in Section 6.4.

Note that the leading term is very important here. So we should consider two cases,
(a) Z(t) has more rows than columns, which means that np/pF̃p(t) → ∞; and (b) Z(t)

has more columns than rows, which means that np/pF̃p(t) → 0. As we talk about
the asymptotic behavior when p → ∞, we mean that there exists a constant c, such
that p−cnp/pF̃p(t) → ∞ when we say np/pF̃p(t) → ∞, and it is similar for the case
np/pF̃p(t)→ 0. For case (b), the leading term is pF̃p(t), which is m in Theorem 2.3.1.

There is another term k associated with the singular values, which can be denoted
as the features with signals. Even though the term k is not the leading term here, we
still need a denotation for it in our case. So we have the following definition.

Definition 4.4.1 Define ¯TP p(t) = 1
p

∑p
j=1 1{Tj ≥ t}1{µ(j) 6= 0}, and T̃P p(t) =

T̃P p(t, µ, y) = E[ ¯TP p(t)|µ, y].
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With the lemmas, we have the result for the leading eigenvalue of H(t)
0 for the cases as

following.

Lemma 4.4.2 Fixing 0 < q < 1, let tp <
√

2 log(p) and Z = Znp,p be the same as that
in Theorem 4.2.1. As p→∞, with probability at least 1− o(1/p2), there is

‖H(tp)
0 ‖2 ≤ 2np, np/pF̃p(tp)→∞,

and, when np/pF̃p(tp)→ 0,

‖H(tp)
0 − pF̃p(tp)(1 + ct

√
log(p)

n
)In‖2 ≤ 8eK0

√
npF̃p(tp) +

√
8

n
tpT̃F p(tp),

where K0 = 4
√

2 log(p) + 1 + 1 + 2
√

log(p)/n, and ct is a constant that depends on tp
only.

4.4.2 The largest eigenvalue of H(tp)

Fix 0 < q < 1 and let tp <
√

2 log(p) as Theorem 4.2.1. In this section, we characterize
the largest eigenvalue of H(tp), λ1(H(tp)).

Definition 4.4.2 Fix n ≥ k ≥ 1. For any n× n symmetric matrix M , λk(M) denotes
the k-th largest eigenvalue of M .

Take the case np/F̃ (tp(q))→∞ as an example. By (4.4.32), it is seen that

H(tp) = H
(tp)
0 +A. (4.4.38)

Let ‖ · ‖2 be the spectral norm of matrix, and by triangular inequality we have that∣∣‖H(tp)‖2 − ‖A‖2
∣∣ ≤ ‖H(tp)

0 ‖2. (4.4.39)

On one hand, A is a rank 2 matrix, the eigenvalue of which is easy to derive, which
is

λ±(A) =
‖y‖2‖µ(tp)‖2

2
(1±

√
1 +

4y′Z(tp)µ(tp)

‖y‖2‖µ(tp)‖2
+

4‖Z(tp)µ(tp)‖2

‖y‖2‖µ(tp)‖4
)+y′Z(tp)µ(tp). (4.4.40)

In fact, by basic techniques on large-deviation (proved in Section 4.7.6), with probability
at least 1− o(1/p2), there is

|y′Z(tp)µ(tp)| ≤
√

6‖y‖‖µ(tp)‖2 log(p). (4.4.41)

Combining this with (4.4.40), with probability at least 1− o(1/p2), we have

|λ1(A)− ‖y‖2‖µ(tp)‖2| ≤
√

6‖y‖‖µ(tp)‖2 log(p). (4.4.42)
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Combining (4.4.39) with (4.4.42) and Lemma 4.4.2, expanding quadratic term and
ignoring the lower order terms, it can be derived that with probability at least 1 −
o(1/p2),

|λ1(H(tp))− ‖y‖2pW̃p(tp)| ≤ 2np. (4.4.43)

Similarly, when np/pF̃ (tp) → 0, define Ctrp(tp) = Ctr(p, tp, np) = pF̃p(tp)(1 +

ct
√

log(p)/n) for short, and we have that H(tp) = [A+Ctrp(tp)In]+H
(tp)
0 −Ctrp(tp)In.

With triangle inequality, there is∣∣‖H(tp)‖2 − ‖A+ Ctrp(tp)In‖2
∣∣ ≤ ‖H(tp)

0 − Ctrp(tp)In‖2.

Combining with (4.4.42) and Lemma 4.4.2, we have that, with probability at least
1− o(1/p2),

|λ1(H(tp))− ‖y‖2pW̃p(tp)− Ctrp(tp)| ≤ errp(tp), (4.4.44)

where errp(tp) = 8eK0

√
npF̃p(tp) +

√
8
n tT̃F p(tp), with K0 defined in Lemma 4.4.2 as

a constant.
Now, if we restrict λ to the interval

‖y‖2pW̃p(tp) +

{ (
−2np, 2np

)
, np/pF̃ (tp)→∞,(

Ctrp(tp)− errp(tp), Ctrp(tp) + errp(tp)
)
, np/pF̃p(tp)→ 0

,

(4.4.45)
when pW̃p(tp)→∞, there exists one and only one solution of h(λ) with probability 1,
which is the leading eigenvalue of H(tq).

Lemma 4.4.3 Under the conditions of Theorem 4.2.1, as p → ∞, with probability
1− o(1/p2), the leading eigenvalue λ has behavior as{ ∣∣λ− ‖y‖2pW̃p(tp)

∣∣ ≤ 2np, np/pF̃ (tp)→∞,∣∣λ− [Ctrp(tp) + ‖y‖2pW̃p(tp)]
∣∣ ≤ errp(tp), np/pF̃p(tp)→ 0.

, (4.4.46)

where errp(tp) = 8eK0

√
nppF̃p(tp) +

√
8
np
tT̃P p(tp), with K0 = 4

√
2 log(p) + 2.

4.4.3 Proof of Theorem 4.2.1

By Lemma 4.4.1, the (first) leading eigenvector satisfies

ξ(tp) ∝ [λ1(H(tp))Inp −H
(tp)
0 ]−1(g(tp)(λ)y + Z(tp)µ(tp)).

The notations become rather complicate, and it is desirable to use short-hand notations.
Fo this end, we write λ1 = λ1(H(tp)), a = Ctrp(tp)1{pF̃p(tp) > np}, H0 = H

(tp)
0 ,

In = Inp , and g(λ) = g(tp)(λ). Also, we let M be the matrix

M = [H0 − aInp ]/(λ1 − a), (4.4.47)
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By our analysis in the previous section, it is seen that the largest eigenvalue of M

is λ1(H0)−a
λ1−a ≤ max{2np,errp(tp)}

‖y‖2pW̃p(tp)
. When

√
pF̃p(tp)/np � pW̃p(tp), which indicates that

errp(tp) � ‖y‖2pW̃p(tp), the largest eigenvalue of M is much smaller than 1, so we
expect to have

(λ1I −H0)−1 = (λ1 − a)−1[I −M ]−1 ≈ (λ1 − a)−1[I +M ],

In light of this, approximately,

ξ(tp) ∝ (λ1 − a)−1[In +M ][g(λ1)y + Z(tp)µ(tp)] ∝ y + I + II,

where
I =

1

g(λ1)
Z(tp)µ(tp) +My, II =

1

g(λ1)
MZ(tp)µ(tp).

According to our restriction of leading eigenvalue λ, on the interval (4.4.45), when
p→∞, with probability 1 + o(1/p), we have that

g(λ) ∼ λ− a
‖y‖2

. (4.4.48)

Also, we have following lemmas for I and II.

Lemma 4.4.4 Under the conditions of Theorem 4.2.1, when ‖M‖ ≤ 1, let

I =
1

g(λ1)
Z(tp)µ(tp) +My, (4.4.49)

then, with probability 1− o(1/p), each coordinate of I can be decomposed as

Ii =

√√√√ 1

pW̃ (tp)
+

F̃ (tp)

‖y‖2pW̃ 2(tp)
z + error,

where z ∼ N(0, 1), and |error| is o(1) term compared to the coefficient of z.

Lemma 4.4.5 Under the conditoin of Theorem 4.2.1, when ‖M‖ ≤ 1, let

I =
1

g(λ1)
Z(tp)µ(tp) +My, II = (

∞∑
i=1

M i)I.

Then with probability 1− o(1/p),

‖II‖ ≤

√√√√np max{np, pF̃p(tp)}
‖y‖2pW̃p(tp)

‖I‖(1 + o(1)) = o(1) · ‖I‖,

which is neglible.
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Combining the Taylor expansion with Lemma 4.4.4 and Lemma 4.4.5, it turns out that
the leading eigenvector of H(tp) can be decomposed as

ξ ∝ y +

√√√√ 1

pW̃ (tp)
+

pF̃ (tp)

‖y‖2p2W̃ 2(tp)
z + error ∝ 1√

1

pW̃ (tp)
+

pF̃ (tp)

‖y‖2p2W̃ 2(tp)

y + z + error.

It is easy to find that 1√
1

pW̃ (tp)
+

pF̃ (tp)

‖y‖2p2W̃2(tp)

=
pW̃ (tp)√

pW̃ (tp)+pF̃ (tp(q))/np
, which is SNR. So,

Theorem 4.2.1 is proved.

4.5 Simulations

We conducted a simulation study to investigate the numerical performance of spectral
clustering with HCT and HCT variant, compared with spectral clustering without fea-
ture selection, and hierarchical clustering. The method k-means is not included as it
costs too much time when p is large that the computer cannot load it. The thing is
the same for hierarchical clustering with feature selection and k-means with feature
selection.

In the simulation, we set the parameters (β, θ, δ), signal strength τ and p, and
assume σ = 1 for noise. Then, with the parameters, we do the following steps.

1. Set np = pθ, εp = p−β .

2. Generate b = (b1, · · · , bp) with bi
i.i.d.∼ Bernoulli(εp), and set µ =

√
τp/
√
nb.

3. Generate ` = (`1, · · · , `n) with `i
i.i.d.∼ Bernoulli(1− δ)− (1− δ).

4. Generate n × p matrix Z, where each column Zi ∼ N(0,Ω). Set X = `µ′ + Z,
and apply spectral clustering with HCT, HCT variant, without thresholding, and
hierarchical clustering to X.

5. Repeat 1 - 4 independently, and record the average Hamming distance.

The simulations contain 4 different experiments, which we will show separately as
following.

Experiment 1. In this experiment, we study the effect of µ when it has equal signals
and unequal signals. Also, we study the effect of δ. We set the covariance matrix
as Ω = Ip. Fix (p, θ) = (4 × 104, 0.65), and then there is n = pθ ≈ 1000. Let
β ∈ {0.55, 0.62}, and let τ ∈ {6, 8, 10, 12}. The experiment contains 3 sub-experiments
1a-1c.
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In Experiment 1a, we set δ = 1/2, which means that the size for two classes is equal.
Set the signal µ is a vector with coordinates either 0 or

√
τ/
√
n. The average Hamming

errors of 50 experiments are reported in Table 4.1.
In Experiment 1b, we still set δ = 1/2, and the setting for µ changes. Let

|n1/4µj |
i.i.d.∼ (1 − εp)ν0 + εpνF , where F ∼ 0.8

√
τ + 0.2

√
τ(1 + V/3), V ∼ χ2

1. The
average Hamming errors of 50 experiments are reported in Table 4.2.

In Experiment 1c, we set δ = 1/3, so the size for two classes are different. Set µ as
Experiment 1b. Let |n1/4µj |

i.i.d.∼ (1− εp)ν0 + εpνF , where F ∼ 0.8
√
τ +0.2

√
τ(1+V/3),

V ∼ χ2
1. The average Hamming errors of 50 experiments are reported in Table 4.3.

The results show that spectral clustering with HCT is much better than spectral
clustering without thresholding or hierarchical clustering. Spectral clustering with HCT
variant does a bit worse than that with HCT, but also goes to 0 quickly.

τ Spectral Clustering HCT HCT variant Hierarchical Clustering

β = 0.55

6 0.4596 0.4095 0.4148 0.4860
8 0.3127 0.1573 0.1796 0.4829
10 0.1787 0.0518 0.0610 0.4872
12 0.0992 0.0154 0.0187 0.4924

β = 0.62

6 0.4826 0.4737 0.4739 0.4872
8 0.4776 0.4148 0.4211 0.4879
10 0.4768 0.2977 0.2966 0.4862
12 0.4471 0.1111 0.1162 0.4881

Table 4.1: Comparison of Hamming errors (Experiment 1a).

τ Spectral Clustering HCT HCT variant Hierarchical Clustering

β = 0.55

6 0.3960 0.2339 0.2525 0.4864
8 0.2184 0.0848 0.0918 0.4867
10 0.1214 0.0238 0.0244 0.4871
12 0.0635 0.0049 0.0067 0.4861

β = 0.62

6 0.4813 0.4656 0.4688 0.4874
8 0.4717 0.3207 0.3161 0.4857
10 0.4523 0.1702 0.1654 0.4864
12 0.3862 0.0669 0.0684 0.4864

Table 4.2: Comparison of Hamming errors (Experiment 1b).
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τ Spectral Clustering HCT HCT variant Hierarchical Clustering

β = 0.55

6 0.4405 0.3736 0.3689 0.4886
8 0.2916 0.1542 0.1682 0.4800
10 0.1924 0.0741 0.0809 0.4664
12 0.1268 0.0361 0.0433 0.4419

β = 0.62

6 0.4823 0.4713 0.4722 0.4863
8 0.4792 0.4262 0.4207 0.4865
10 0.4557 0.2346 0.2318 0.4887
12 0.4475 0.1517 0.1501 0.4903

Table 4.3: Comparison of Hamming errors (Experiment 1c).

Experiment 2. In this experiment, we examine how HCT and the variant of HCT
changes with respect to τ . Set (β, θ) = (0.62, 0.65), and take τ ∈ {7, 11, 16}. Let
n1/4µj

i.i.d.∼ (1 − ε)ν0 + εν√τp , where ε = p−β . As it is large deviation result, take
p = (4 × 104, 8 × 104, 1.2 × 105, 1.6 × 105), and take correpsonding np = pθ. With the
parameters, calculate HCT and threshold with variant of HCT for the data, and then
divide over

√
2 log p. Repeat the process 50 times, and take the average of the threshold.

For δ = 1/2 and δ = 1/3, we have the results. The result is as Table 4.4 and 4.5.

p 4× 104 8× 104 1.2× 105 1.6× 105

τ = 7
HCT 0.3938 0.3585 0.3694 0.3519

HCT variant 0.4364 0.3941 0.4252 0.3964

τ = 11
HCT 0.3922 0.3567 0.3793 0.3679

HCT variant 0.4570 0.4061 0.4201 0.4184

τ = 14
HCT 0.3935 0.4025 0.4075 0.4202

HCT variant 0.4672 0.4633 0.4626 0.4725

Table 4.4: Comparison of thresholding (Experiment 2, δ = 1/2).

Experiment 3. In this experiment, we study the effect of covariance matrix for
Hamming errors. Fix p = 4 × 104, and np = pθ ≈ 1000. Fix β = 0.6, and let ε = p−β .
Let τ ∈ {7, 8, 9, 10, 11, 12, 13, 14}. Generate µ as either 0 or

√
τ/
√
np. Let δ = 1/2. To

set the noise to be correlated, we generate indepedent p × 1 normal variables Zi, and
then take Zi = AZi, so that Σ = AA′. For each τ , we set Σ to be tridiagonal covariance
matrix Σ and penta-diagonal matrix.

The experiment contains 2 sub-experiments.
In Experiment 3a, we take Σ to be tridiagonal matrix. To make it, we set the main
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p 4× 104 8× 104 1.2× 105 1.6× 105

τ = 7
HCT 0.3662 0.3884 0.3716 0.3678

HCT variant 0.4067 0.4080 0.4045 0.3962

τ = 11
HCT 0.3665 0.3807 0.3696 0.3722

HCT variant 0.4170 0.4180 0.4246 0.4207

τ = 14
HCT 0.4002 0.3821 0.3675 0.3819

HCT variant 0.4730 0.4239 0.4179 0.4353

Table 4.5: Comparison of thresholding (Experiment 2, δ = 1/3).
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Figure 4.2: Left figure: The average Hamming error for tridiagonal covariance matrix.
Right figure: The average Hamming error for penta-diagonal covariance matrix.

diagonal of A as 1/
√

1.04, and the first diagonal below main diagonal as 0.2/
√

1.04. The
denominator is to make sure the noise has variance 1. The average Hamming error over
50 repetitions for spectral clustering without thresholding, with HCT, and the variant
of HCT is showed in Figure 4.2.

In Experiment 3b, we take Σ to be penta-diagonal matrix. To make it, we set
A as tridiagonal matrix, with 1/

√
1.08 on the main diagonal, and 0.2/

√
1.08 on the

off-diagonals. The average Hamming error over 50 repetitions for spectral clustering
without thresholding, with HCT, and variant HCT is showed in Figure 4.2.
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Experiment 4. In Experiment 4, we study the behavior of our method for data with
noise other than Gaussian noise. As the distribution of noise changes, we cannot use
chi-square test to calculate p-values. In this experiment, we apply Kolmogorov-Smirnov
test, as following.

1. According to the noise distribution, generate 2× 106 sample with sample size n,
and calculate the corresponding KS value.

2. Calculate the KS value for each feature with data.

3. Find the p-value with simulated KS values. Then apply HC function.

Fix (p, θ) = (2 × 104, 0.65), and np = pθ ≈ 600. Set β = 0.6, δ = 1/3, and µ

as Experiment 1b. Let τ ∈ {7, 8, 9, 10, 11, 12, 13, 14}. As it is hard to take dependent
samples for non-Gaussian distributions in matlab, so we assume Σ = Ip. For each τ ,
simulate the data, apply our method with KS test, and get the Hamming distance. It
contains 3 sub-experiments.

In Experiment 4a, we take the noise as student t distribution, with degree of freedom
5. So the mean is 0, and the variance is 5/3. The left figure in Figure 4.3 reports the
average of Hamming distance among 50 repetitions.

In Experiment 4b, we take the noise as zij
i.i.d.∼ Exp(1) − 1. The middle figure in

Figure 4.3 reports the average of Hamming distance among 50 repetitions.
In Experiment 4c, we take the noise as zij

i.i.d.∼ Unif(−2, 2). The right figure in
Figure 4.3 reports the average of Hamming distance among 50 repetitions.

The result shows that spectral clustering with HCT/HCT variant is better than the
other two methods.

4.6 Discussions and extension

4.6.1 Extension

In the ARW (β, r, θ, δ) model, we assume that the signal is either a constant or 0. Now,
we generalize Model (4.2.1) with the distribution that

µ(j) =

{
0, with Prob 1 - εp,
∼ F, with Prob εp;

where F is some distribution on R\{0}.
For a better expression, we re-parametrize µ by defining a vector r, with r(j) = δ(1−

δ)µ2(j)
√

n
2 log p . So the distribution F for µ(j) could be transformed into a distribution

for r(j), which is denoted as Fr. The distribution of r(j) is

r(j) =

{
0, with Prob 1 - εp,
∼ Fr, with Prob εp.

(4.6.50)
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Figure 4.3: Left figure: t noise with df = 5 (Experiment 4a). Middle figure: exponential
noise (Experiment 4b). Right figure: Uniform noise (Experiment 4c).

Assume that Fr is some fixed distribution that does not depend on p. The
ARW (β, F, θ, δ) model with (4.6.50) is called generalized ARW (β, F, θ, δ) model.

Under the generalized setting, Theorem 4.2.1 still holds. So we need an approxima-
tion of F̃p(tp) and W̃p(tp) in this case. Note that the expectations are different now,
which should be

f̄p(t, εp, Fr, np) = (1− εp)Ḡ0(t, np) + εp

∫
Ḡ√

log(p)γ
(t, np)dFr(γ), (4.6.51)

wp(t, εp, Fr, np) = εpn
−1/2
p

√
2 log(p)

δ(1− δ)

∫
γḠ√

log(p)γ
(t, np)dFr(γ), (4.6.52)

and that s̃nr(t, εp, Fr, np) =
wp(t,εp,Fr,np)

f̄p(t,εp,Fr,np)/np+wp(t,εp,Fr,np)
. With similar induction in

Section 6.2, the threshold that maximizes s̃nr(t, εp, Fr, np) approximates the one that
maximizes S̃NR(t, µ(p), `(p), np).

Now, if we define HC function as before, the intimate relationship between
s̃nr(t, εp, Fr, np) and HC function still holds. So, the threshold that maximizes HC func-
tion approximates the threshold that maximizes s̃nr(t, εp, Fr, np). HCT still achieves
the optimal thresholding. According to the behavior of the ideal threshold, we have the
following theorem about the phase diagram.

Theorem 4.6.1 Under the conditions of generalized ARW (β, F, θ, δ) model, set the
threshold as tq(p) = q

√
log p, then we have the following statements:

• When the support of Fr is bounded above by (ρ∗θ(β))2/2, where ρ∗θ(β) is the clus-
tering phase function defined in (4.2.22), the error rate of spectral clustering with
any threshold goes to 1/2;
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• When the support of Fr is bounded above by some large constant, but with constant
positive probability there is r > (ρ∗θ(β))2/2, then spectral-HCT will succeed with
error rate converging to 0 and HCT achieves the ideal threshold;

• When the support of Fr could not be bounded above, tHC would give a threshold
that spectral clustering approach is successful.

The theorem states that even in the unequal signal situation, HCT would achieve
the optimal threshold when the distribution of signal satisfies some condition. The
proof is very similar with the main proof, with an extension to unequal signals, so we
do not show it in details here.

4.7 Proofs

4.7.1 Proof of Lemma 4.4.1: Eigenvector

We write for short H0 = H
(t)
0 , H = H(t), g(λ) = g(t)(λ), h(λ) = h(t)(λ), µ = µ(t), and

Z = Z(t). We now consider the two claims separately.
Consider the first claim that λ is an eigenvalue of H(t) is equivalent with that

h(λ) = 0. With our short-hand notations,

H = ‖µ‖2yy′ + Zµy′ + y(Zµ)′ +H0.

Since η is an eigenvector of H and λ is the corresponding eigenvalue,

λη = Hη = ‖µ‖2(y, η)y + (y, η)Zµ+ (η, Zµ)y +H0η, (4.7.53)

where (·, ·) denotes the inner product. Denote for short

a = ‖µ‖2(y, η) + (Zµ, η), b = (y, η). (4.7.54)

It follows from (4.7.53) that

(λ−H0)η = ay + bZµ.

Now, since that λI −H0 is non-singular, we have

η = (λI −H0)−1(ay + bZµ). (4.7.55)

Introduce the expression of η into the inner product. Using the definitions of Cij(λ), it
follows from basic algebra that

(Zµ, η) = aC12(λ) + bC22(λ), (4.7.56)
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and
(y, η) = aC11(λ) + bC12(λ). (4.7.57)

Combine (4.7.54)-(4.7.57) and re-organize,{
[‖µ‖2C11(λ) + C12(λ)− 1]a+ (‖µ‖2C12(λ) + C22(λ))b = 0,

C11(λ)a+ [C12(λ)− 1]b = 0.

Since a and b can not equal to 0 simultaneously, the determinant of the following 2 by
2 matrix must be 0:(

‖µ‖2C11(λ) + C12(λ)− 1 ‖µ‖2C12(λ) + C22(λ)

C11(λ) C12(λ)− 1

)
. (4.7.58)

By basic algebra, this is equivalent to that of

0 = (1− C12(λ))2 − C11(λ)(‖µ‖2 + C22(λ)), (4.7.59)

and the first claim follows by the definition of h(λ).
Consider the second claim. By (4.7.58)-(4.7.59), it follows from direct calculations

and the definition of g(λ) that(
a

b

)
∝
(

[C12(λ)− 1]/C11(λ)

1

)
≡
(
g(λ)

1

)
. (4.7.60)

Plugging this into (4.7.55), we have that

η ∝ [g(λ)y + Zµ],

which gives the second claim. �

4.7.2 Proof of Lemma 4.4.2

There are two cases here, that (a) np/pF̃p(tp(q)) → ∞, and (b) np/pF̃p(t) → 0. The
proof is different, so we will discuss it case by case.

In the case that np/pF̃p(t) → ∞, we need a lemma to bound the eigenvalues of
Z(t)(Z(t))′, which is the post-selection random matrix. An extension of the random
matrix theory could show that,

Lemma 4.7.1 For an np × p random matrix Znp,p, where all the entries are i.i.d.

standard normal distributed, let QS be a sub-matrix of Z that restricted on the set of
columns S = (j1, j, · · · , jm). For each sub-matrix QS, let HS

0 = QS(QS)′. Given
m < np, for all possible sets S with cardinality |S| = m, with probability p−m,

(
√
np −

√
m− 2

√
m log(p))2 ≤ all eigenvalues of {HS

0 }|S|=m
≤ (

√
np +

√
m+ 2

√
m log(p))2.
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Now, we introduce in that Ŝ = Ŝ(t) = {1 ≤ j ≤ p : Tj > t}, then we have that
|Ŝ| = pF̄p(t), and Z Ŝ = Z(t). According to this lemma, when pF̄p(t) log(p) � np, for
the matrix Z(t), with probability at least 1− o(p−2) there is

‖H(t)
0 ‖ < (

√
np +

√
pF̄p(t) + 2

√
pF̄p(t) log(p))2 < 2np.

So we want to prove that the random variable pF̄p(t)� np with large probability.
Now we know that E[pF̄p(t)] = pF̃p(t) � np. For any b > 0 and any sequence of

independent random variables Wi such that |Wi| ≤ b, E[Wi] = 0, and Var(Wi) ≤ σ2
i

for 1 ≤ i ≤ p. Write for short σ2 = σ2
1 + σ2

2 + · · · + σ2
p. Bennett’s Lemma [Jin 2012b,

Page 38] says that,

P (|
p∑
j=1

|Wj − E[Wj ]| ≥ s) ≤ 2 exp(− c0

2σ2
s2), if sb ≤ σ2,

where c0 = ψ(1) ≈ 0.733. Applying this with Wj = 1{Tj ≥ t} − E[1{Tj ≥ t}], b = 1,
and s = 2

√
2 log(p)σ and noting that

∑
1≤j≤p Var(Wj) ≤ pF̃p(t) = σ2, with probability

at least 1 + o(1/p2), ∣∣∣∣pF̄p(t)− E[pF̄p(t)]

∣∣∣∣ ≤ 2

√
2pF̃p(t) log(p). (4.7.61)

So, the result follows that pF̄p(t) ≤ pF̃p(t) + 2
√

2pF̃p(t) log(p) ≤ 2pF̃p(t). Combine

this estimation with the fact that pF̃p(t) � np, and we have that pF̄p(t) � np. By
Lemma 4.7.1, with probability 1− o(1/p2), the result ‖H(tq)

0 ‖ ≤ 2np follows.
In the case that np/pF̃p(t) → 0, Theorem 2.3.1 helps to bound the eigenvalue of

column independent random matrix. However, we need to show that the post-selection
random matrix Z(t) satisfies the conditions in Theorem 2.3.1, which is shown in Lemma
4.7.2.

Lemma 4.7.2 Let z be np × 1 random vector where z ∼ N(0, Inp), and y is np × 1

non-stochastic vector with ‖y‖2 ≤
√

2n log(p). Given threshold 0 < t <
√

2 log(p),
define events A = {z : ‖z‖2 − n ≥

√
2nt}, and B = {z : ‖z + y‖2 − n ≥

√
2nt}.

Then, for any non-stochastic np × 1 vector a with ‖a‖ = 1,
[
(z′a)2|A

]
is sub-

exponential distributed with norm K ≤ 4, and
[
(z′a)2|B

]
is sub-exponential distributed

with norm K ≤ 4
√

1 + 2 log(p). Furthermore, as np →∞, we have{
E[|z′a|2|A] = 1 +

√
2/n φ(t)

Φ̄(t)
(1 +O(1/

√
n)),

1 ≤ E[|z′a|2|B] ≤ 1 +
√

2/n φ(t)
Φ̄(t)

(1 +O(1/
√
n)).
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Define Ŝ as the set of selected features, then we have that Z(t) = Z Ŝ . Then Ŝ =

S1 ∪S2, where S1 = {1 ≤ j ≤ p : Tj > t, µj 6= 0} and S2 = {1 ≤ j ≤ p : Tj > t, µj = 0}.
According to Lemma 4.7.2, we have the control on the second moment for the random
variables in S1 and S2. We also have that |S1| = ¯TP p(t). Let m = pF̄p(t), η =

√
2/npt.

According to Theorem 2.3.1, when pF̄p(t)� np, there is, with probability 1− o(9−n),

‖Z(t)(Z(t))′ − pF̄p(t)(1 +
√

2/npt)Inp‖ ≤ 8eK0

√
npm log 9 + 2η ¯TF p(t), (4.7.62)

where K0 = 4
√

1 + 2 log(p) + 1 + t
√

2/n.
Combine (4.7.61) with (4.7.62), and note that c

√
log p/np = O(

√
log p/np), with

similar induction we have that, with probability 1− o(1/p2),

‖H(t)
0 − pF̃p(t)(1 +O(

√
log p

np
))In‖ ≤ 8eK0

√
nppF̃p(t) + 2

√
2tT̃F p(t)/

√
np.

Combine the two cases, and we have the result.

4.7.3 Proof of Lemma 4.7.1

According to random matrix theory ( [Vershynin 2010, Corollary 35] ), we have that
Corollary Let A be an N×n matrix whose entries are independent standard normal

random variables. Then for every t ≥ 0, with probability at least 1− 2 exp(−t2/2), one
has √

N −
√
n− u ≤ smin(A) ≤ smax(A) ≤

√
N +

√
n+ u,

where smin(A) and smax(A) are correspondingly minimum and maximum eigenvalue of
random matrix A.

Recall that the sub-matrix QS is to restrict Zn,p to S = {j1, · · · , jm} columns. So,
the columns of QS is i.i.d normal distributed. Apply with A = QS , and N = n, n = m,
u = 2

√
m log(p), then with probability at least 1 − p−2m, the eigenvalues of Qm are

between √
n−
√
m± 2

√
m log(p).

It is easy to find that the number of all the sub-matrices with m columns is less than
pm. All of these sub-matrices have i.i.d standard Gaussian variables, so the lemma
about eigenvalue also stands. The probability that the eigenvalue is not in the range
[
√
n−
√
m− 2

√
m log(p),

√
n+
√
m+ 2

√
m log(p)] is smaller than∑

all QS,|S|=m

p−2m ≤ p−m.

It means that, with probability 1− pm, we have

(
√
n−
√
m− 2

√
m log(p))2 ≤ all eigenvalues of {HS

0 }|S|=m
≤ (

√
n+
√
m+ 2

√
m log(p))2.
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�

4.7.4 Proof of Lemma 4.7.2

In this proof, we use φ(·) and Φ(·) to denote probability density function (pdf) and
cumulative density function (cdf) for standard normal distribution. Let ga(t, n) and
Ga(t, n) to denote the pdf and cdf for (Y −n)/

√
2n where Y is non-central χ2 distributed

random variable with parameter
√

2npa. Also, for a random variable X, we use fX(s)

to denote the pdf of X at s.
There are two events here. (a) A : {‖z‖2 ≥ n +

√
2nt}, and (b) B : {‖z + y‖2 ≥

n+
√

2nt}. We will discuss about them separately.
In case (a), we conditional on ‖z‖2 ≥ n +

√
2nt, which means that we cut a ball

from the center. To show (z′a)2|A is sub-exponential distributed, we should start from
the pdf of z′a|A. To make things easy, take an orthogonal matrix Q, such that the first
row of U is a. As ‖a‖ = 1, U exists. Let w = z′U , then w1 = z′a, and w ∼ N(0, In). As
‖w‖2 = z′UU ′z = ‖z‖2, the event A = {z : ‖z‖2 ≥ n+

√
2nt} = {w : ‖w‖2 ≥ n+

√
2nt}.

So, the pdf for z′a|A is equivalent with w1|A.
The pdf for w1|A can be written according to the definition of conditional distribu-

tion, as
fw1|A(s) = φ(s)R(s), (4.7.63)

where

R(s) = P (A|w1 = s)/P (A) =
P (
∑n

i=2w
2
i > n+

√
2nt− s2)

P (A)
.

According to Theorem 2.4.3, to show that (w2
1|A) is sub-exponential distributed, it

is sufficient to show that the tail probability for (w2
1|A) can be controlled by ce−λx for

some λ > 0 and c > 0, which is equivalent with

P (|w1| > s|A) ≤ 2e−λs
2
, s > 0. (4.7.64)

To show (4.7.64), we decompose (4.7.63) into range |s| <
√

8 log(p) and |s| >
√

8 log(p).
In the range |s| <

√
8 log(p), with basic algebra, there is

R(s) = 1− 1− s2

√
2n

g0(t, n− 1)

Ḡ0(t, n)
(1 +O(1/

√
n)) ≤ 1− min{1− s2, 0}√

2n
t ≤ es2/4.

Combining with (4.7.63), we have that

fw1|A(s) ≤
√

1/(2π)e−s
2/4, n→∞. (4.7.65)

In the range |s| >
√

8 log(p), there is R(s) ≤ 1/P (A) ≤ t
√

2πet
2/2 with basic

algebra. As |t|2 < 2 log(p) < s2/2− log(p), so we have

R(s) ≤ t
√

2πes
2/4p−1 ≤ es2/4, p→∞.
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Combining with (4.7.63), we have that

fw1|A(s) ≤
√

1/(2π)e−s
2/4, |s| >

√
8 log(p). (4.7.66)

Combining (4.7.65) and (4.7.66), there is fw1|A(s) ≤
√

2/(3π)e−s
2/3. With basic

calculation, we have the tail probability as

P (|w1|2 ≥ s|A) ≤
√

2e−s/4, s > 0.

According to Theorem 2.4.3, we have that [w2
1|A] is sub-exponential distributed, with

the norm ‖w2
1‖ψ1 ≤ 2.

Next, we calculate the second moment of w1|A. According to Lemma 4.7.8, we have
that g0(t, np) = φ(t)(1 +O(1/

√
n)). Let T ∼ N(0, 1), then we have that

E[T |T > t] =
φ(t)

Φ̄(t)
(1 + o(1)). (4.7.67)

Combining with fY (t) = φ(t)(1 +O(1/
√
n)), we have

E[‖w‖2|A] = n+
√

2n
φ(t)

Φ̄(t)
(1 +O(1/

√
n)).

As w|A is symmetric for every direction, the conditonal expectation of w2
1 is 1/n fraction

of E[‖w‖2|A]. It means that, for any a, we have

E[‖z′a‖2|A] = 1 +
√

2/n
φ(t)

Φ̄(t)
(1 +O(1/

√
n)). (4.7.68)

In case (b), ‖z + y‖2 ≥ n+
√

2nt, a ball with center y is cut off.
We have to estimate the pdf for z′a|B first. For any a with ‖a‖ = 1, we construct

an orthogonal matrix U with the first row as a. Let w = z′U , and v = (z + y)′U ,
then ‖v‖2 = ‖w + y‖2. Also, w ∼ N(0, In), and v ∼ N(y′U, In). Now, we want to find
distribution and second moment of w1|B, where B = {z : ‖z+ y‖2 > n+

√
2nt} = {w :

‖w + y′U‖2 > n+
√

2nt}.
With basic statistics, the conditional pdf for w1 is

fw1|B(s) = φ(s)R(s), (4.7.69)

where

R(s) =
P (
∑n

i=2 v
2
i > n+

√
2nt− (s+ y′a)2)

P (B)
.

Still, we decompose it into |s| >
√

8 log(p) and |s| <
√

8 log(p).
In the range |s| <

√
8 log(p), with basic algebra, there is

R(s) = 1− 1− s2 − 2y′as√
2n

g‖y‖2/
√

2n(t, n− 1)

Ḡ‖y‖2/
√

2n(t, n)
(1 +O(1/

√
n)) ≤ es

2
√

log(p)
n + 2

√
2s log(p).



4.7. Proofs 63

Combining with (4.7.69), we have that

fw1|B(s) ≤ 1√
2π
e−s

2/4 + 2 log(p)
√

1/πe−s
2/4, n→∞. (4.7.70)

In the range |s| >
√

8 log(p), there is R(s) ≤ 1/P (B) ≤ t
√

2πet
2/2 with basic

algebra. As |t|2 < 2 log(p) < s2/2− log(p), so we have

R(s) ≤ t
√

2πes
2/4p−1 ≤ 1/

√
2πes

2/4, p→∞.

Combining with (4.7.69), we have that

fw1|B(s) ≤
√

1/(2π)e−s
2/4, |s| >

√
8 log(p). (4.7.71)

Combining (4.7.70) and (4.7.71), there is fw1|B(s) ≤ (1 + 2
√

2 log(p))/
√

(2π)e−s
2/4.

With basic calculation, we have the tail probability as

P (|w1|2 ≥ s|B) ≤ (
√

2 + 4 log(p))e−s/4, s > 0.

According to Theorem 2.4.3, we have that [w2
1|B] is sub-exponential distributed. With

basic calculation, the sub-exponential norm is ‖w2
1‖ψ1 ≤ 4

√
2 log(p) + 1.

Now, we go on to calculate the second moment of w1|B. Without loss of generality,
we suppose y′a > 0. What’s more, we suppose that y′a > log(n). In the case that
y′a ≤ log(n), a simplification of our proof would work. Note that R(s) < 1 when
−y′a−

√
(y′a)2 + 1 ≤ s ≤ −y′a+

√
(y′a)2 + 1. On the left it is at the order of y′a, and

on the right it is at constant order.
Now, we decompose the region into two parts, |s| ≤ log(n) and |s| > log(n).
In the case that |s| < log(n), we have that s2 ≤ sy′a �

√
n. According to Taylor

expansion,

R(s) = 1− 1− s2 − 2sy′a√
2n

g‖y‖2(t)

Φ̄(t− ‖y‖2/
√

2n)
(1 +O(1/n1/4)). (4.7.72)

Combine (4.7.69) and (4.7.72) on the region |s| < log(n), with that g‖y‖2(t) = φ(t −
‖y‖2/

√
2n)(1 +O(1/n1/4)),∫ logn

− logn
s2φ(s)R(s)ds = 1 + 2

1√
2n

φ(t− ‖y‖2/
√

2n)

Φ̄(t− ‖y‖2/
√

2n)
(1 +O(1/n1/4)) + o(n−c), for any c.

(4.7.73)
In the case that |s| > log n, note that the supereme of R(s) is 1

Φ̄(t−‖y‖2/
√

2n)
, and the

minimum is larger than 1/2 by calculation. The integration of s2φ(s) over |s| > log n

goes to 0 faster than n−c for any c. So both 1
Φ̄(t−‖y‖2/

√
2n)

and 1/2 times the integration
also go to 0 faster than any n−c.
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Combine the two cases, the approximation of E[(z′a)2|B] = 1 +

3 1√
2n

φ(t−‖y‖2/
√

2n)

Φ̄(t−‖y‖2/
√

2n)
(1 +O(1/n1/4)). Using Mill’s ratio, there is,

1 ≤ E[(z′a)2] ≤ 1 +
2|t− ‖y‖2/

√
2n|√

2n
≤ 1 +

√
2/n

φ(t)

Φ̄(t)
.

So, the claim follows. �

4.7.5 Proof of (4.4.40)

Lemma 4.7.3 Let A = ‖µ(t)‖2yy′ +Z(t)µ(t)y′ + y(Z(t)µ(t))′, then the eigenvalues of A
are

λ±(A) =
‖y‖2‖µ(t)‖2

2
(1±

√
1 +

4y′Zµ

‖y‖2‖µ(t)‖2
+

4‖Z(t)µ(t)‖2
‖y‖2‖µ(t)‖4

) + y′Z(t)µ(t).

Proof. To simplify the notations, we use Z, µ instead of Z(t) and µ(t).
Note that A is the matrix expanded by Zµ and y, so there should be two eigenvectors

as linear combination of y and Zµ, and all the other eigenvectors are with eigenvalue 0.
Assume the eigenvector is ξ = ay + bZµ, with eigenvalue λ. So there is Aξ = λξ =

λay + λbZµ. Introduce ξ = ay + bZµ and A, and we have

Aξ =

[
a‖y‖2‖µ‖2 + ay′Zµ+ b‖µ‖2y′Zµ+ b‖Zµ‖2

]
y

+

[
a‖y‖2 + by′Zµ

]
Zµ.

Compare Aξ with λξ, and we get that a system of equations as(
‖y‖2‖µ‖2 + y′Zµ− λ ‖µ‖2y′Zµ+ ‖Zµ‖2
‖y‖2 y′Zµ− λ

)(
a

b

)
=

(
0

0

)
.

As it is impossible that a and b equal to 0 simultaneously, the determinant of coefficient
matrix must be 0, which is equivalent with that

(y′Zµ− λ)2 + (y′Zµ− λ)‖y‖2‖µ‖2 − ‖y‖2‖µ‖2y′Zµ− ‖y‖2‖Zµ‖2 = 0.

Elementary calculations show that

λ±(A) =
‖y‖2‖µ‖2

2
(1±

√
1 +

4y′Zµ

‖y‖2‖µ‖2
+

4‖Zµ‖2
‖y‖2‖µ‖4

) + y′Zµ.

�
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4.7.6 Behavior of y′Zµ

Lemma 4.7.4 With threshold t = tp, where c
√

log(p) < tp <
√

2 log(p) for some
constant c, Z(t), µ(t) and y are the post-selection random matrix and vector as we
defined. When ‖µ(t)‖ → ∞, with probability 1− o(1/p2), there is

|y′Z(t)µ(t)| ≤
√

6‖y‖‖µ(t)‖2 log(p).

Proof. To show the claim, it is suffcient to show that for any given µ, y and tp, with
probability at least 1− o(1/p2), there is

|y′Z(t)µ(t)| ≤
√

6‖y‖‖µ(t)‖2 log(p). (4.7.74)

To show (4.7.74), it is sufficient to show that, with probability at least 1 − o(1/p2),
there is

|y′Z(t)µ(t) − E[y′Z(t)µ(t)]| ≤ 6‖µ(t)‖‖y‖
√

log(p), (4.7.75)

and that

|E[y′Z(t)µ(t)]| ≤ ‖µ
(t)‖2‖y‖2√

n

√
6 log(p) (4.7.76)

Combine with that ‖µ(t)‖ → ∞, and the claim follows.
To prove (4.7.75) and (4.7.76), we start with the random variable [Z ′y/‖y‖|Tj > t].

Let ỹ = y/‖y‖, and construct an n × n orthogonal matrix U with the first row as ỹ.
Let w = Z ′jU , so w1 = Z ′j ỹ, and wi

i.i.d∼ N(0, 1). With basic algebra, the conditional
distribution for w1 is that

f(w1 = s|‖Zj + µjy‖ > n+
√

2nt) = φ(s)R(s), (4.7.77)

where

R(s) =
Ḡ0(

√
n
n−1 t−

1√
2(n−1)

− (s+µj‖y‖)2√
2(n−1)

, n− 1)

Ḡµ2
j‖y‖2/

√
2n(t, n)

.

To solve it, we decompose the region into |s| >
√

6 log(p) and |s| <
√

6 log(p).
When |s| ≥

√
6 log(p), then R(s) ≤ p and the integration of φ(s) is smaller than

p−3. So the integration of w1 is smaller than pqp−3 = o(1/p2).
When |s| ≤

√
6 log(p), with boundary on R(s), we have that

1√
2π
− φ(

√
6 log(p)) ≤

∫√6 log(p)
0 sφ(s)R(s)ds

≤ ( 1√
2π
− φ(

√
6 log(p)))(1 +

µj‖y‖√
2n

2
√

3 log(p)).
(4.7.78)

and

−[ 1√
2π
− φ(

√
6 log(p))] ≤

∫ 0

−
√

6 log(p)
sφ(s)R(s)ds

≤ −( 1√
2π
− φ(

√
6 log(p)))(1− µj‖y‖√

2n
2
√

3 log(p)).
(4.7.79)
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Combine (4.7.78)-(4.7.79) with the analysis, we have that,

|E[Z ′j ỹ|Tj > t]| ≤ |µj |‖y‖√
2n

2
√

3 log(p). (4.7.80)

Consequently, we have that

|E[y′Z(t)µ(t)]| ≤ ‖µ
(t)‖2‖y‖2√

2n
2
√

3 log(p).

So, (4.7.76) is proved.
Now we want to prove that [y′Z(t)µ(t)] is near to E[y′Z(t)µ(t)] with large probability.

Let ξ be p × 1 vector, where ξj = [Z ′j ỹ|Tj > t] − E[Z ′j ỹ|Tj > t]. We show that ξj is
sub-Gaussian distributed, and then use the tail probability of sub-Gaussian random
variables to control.

With basic algebra, we find that

E[eξ
2
j /4] ≤ 2.

So, ξ is sub-Gaussian distributed with E[etξj ] ≤ e9t2/2 according to Theorem 2.4.2.
With Theorem 2.4.1, we could get that

∑
Tj>t

ξjµj is also sub-Guassian distributed,
with parameter 3‖µ(t)‖.

According to the property of sub-Gaussian random variables in Theorem 2.4.2, there
is

P (|ỹ′Z(t)µ(t) − E[ỹ′Z(t)µ(t)]| > λ) ≤ 2 exp(− λ2

18‖µ(t)‖
).

Take λ = 6‖µ(t)‖
√

log(p), then with probability at least 1− o(1/p2), we have

|ỹ′Z(t)µ(t) − E[ỹ′Z(t)µ(t)]| ≤ 6‖µ(t)‖‖y‖
√

log(p).

So, the claim follows. �

4.7.7 Proof of g(t)(λ)

Recall that for any t,

g(t)(λ) =
1− C(t)

12 (λ)

C
(t)
11 (λ)

,

where λ is any λ in (4.4.46). Also, recall that for short,

ap(t) = ap(t, F̃p) = Ctrp(tp)1{pF̃p(t) > np}.
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Lemma 4.7.5 Let t = tp, where c
√

log(p) ≤ tp ≤
√

2 log(p) with some constant c. As
p→∞, when S̃NR(tp, µ, y, n, p)→∞, with probability at least 1 + o(1/p2),

g(t)(λ)
∣∣
t=tp

= (1 + o(1))[(λ− ap(t))]/‖y‖2, (4.7.81)

where o(1)→ 0 uniformly for all λ ∈ ‖y‖2pW̃p(t)+ap(t)±(−errp(t), errp(t)) as (4.4.46),
with

errp(t) =

{
2np, n/pF̃p(t)→∞,

8eK0

√
npF̃p(t) +

√
8/ntT̃P p(t), n/pF̃p(t)→ 0.

(4.7.82)

By simple calculation, to show the claim, it is sufficient to show that with probability
at least 1− o(p−2),

‖C(t)
11 (λ)− (λ− ap(t))−1‖y‖2‖ ≤ (λ− ap(t))−2errp(t)‖y‖2, (4.7.83)

and
‖C(t)

12 (λ)‖ ≤ 1

λ− ap(t)
‖y‖pW̃p(t) log p ∼ log p

‖y‖
. (4.7.84)

In fact, recall that by ‖y‖2pW̃p(t)→∞, for all λ in (4.4.46),

λ− ap(t) ∼ ‖y‖2pW̃p(t).

So once (4.7.83)-(4.7.84) are proved, then by basic algebra, with probability at least
1− o(1/p2), uniformly for all λ in (4.4.46),∣∣(λ− ap(t))−1g(t)(λ)‖y‖2 − 1

∣∣ ≤ max{ log p

‖y‖
,

errp(t)

‖y‖2pW̃p(t)
}.

As S̃NR(t, µ, y, n, p) → ∞, which means that pW̃p(t) → ∞ and that

pW̃p(t)/
√
pF̃p(t)/n → ∞. So, when n/pF̃p(t) → 0, errp(t)/‖y‖2pW̃p(t) =

C/(pW̃p(t))→ 0; when n/pF̃p(t)→∞, errp(t)/‖y‖2pW̃p(t) = C1

√
pF̃p(t)/n/pW̃p(t) +

C2/‖y‖2 → 0. Then the claim follows.
We now show (4.7.83) and (4.7.84). Since the proofs are similar, we only show the

first one. As in (4.4.47), we let M = [H
(t)
0 − ap(t)In]/(λ − ap(t)). By definitions and

basic algebra,

C
(t)
11 (λ) = y′[λIn −H(t)

0 ]−1y = (λ− ap(t))−1y′[In −M ]−1y.

By the definition ofM and the result of Lemma 4.4.2 about ‖H0−aIp‖, with probability
at least 1− o(1/p2), there is

‖M‖ ≤

{
2np/(λ− ap(t)), np/pF̃p(t)→ 0,(
8eK0

√
2npF̃p(t) log(p) +

√
8
n tT̃F p(t)

)
/(λ− ap(t)), np/pF̃p(t)→∞.

(4.7.85)
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Note that by λ− ap(t) ∼ ‖y‖2pW̃p(t),

‖M‖ ≤ errp(t)/‖y‖2pW̃p(t).

At the same time, by basic algebra, for any n× n matrix (non-stochastic) A such that
‖A‖ < 1,

‖In − [In −A]−1‖ ≤ ‖A‖/(1− ‖A‖).

Applying this with A = M gives that with probability at least 1− o(1/p2),

‖In − [In −M ]−1‖ ≤ ‖M‖/(1− ‖M‖) . errp(t)

‖y‖2pW̃p(t)
.

Combining with the condition that pW̃p(t) → ∞ and
√
pF̃p(t)/np

pW̃p(t)
→ 0 and the claim

follows. �

4.7.8 Proof of Lemma 4.4.4

In the proof, we use t as shorthand for tp(q). The goal is to find the marginal distribution
of the coordinates of v = 1

g(t)(λ)
Z(t)µ(t) +My. We discuss for the cases (a) pF̃p(t)/np →

0, and (b) pF̃p(t)/np → ∞, separately. The arguments are similar, so we focus on the
first case, and keep it very brief on the second case.

Consider (a). Recall that

Z = [z1, z2, . . . , zp], and Z ′ = [Z1, Z2, . . . , Zn].

Fix 1 ≤ i ≤ n. Let η be the p×1 (random) vector such that ηj = [‖y‖2µj+y′Zej ]1{Tj >
t}. By definitions and Lemma 4.7.5, the i-th coordinate of v is

vi =
1

λ

p∑
j=1

Zij · [‖y‖2µj + y′Zej ]1{Tj > t} ≡ 1

λ
η′Zi.

To deal with the weak dependence between η and Z, we use decoupling technique. Let
Z̃ be the n× p matrix formed by replacing the i-th row of Z by a p× 1 vector that is
distributed as N(0, Ip) and that is independent of Z. Let T̃ and η̃ be the counterpart
of T and η, respectively, where Z is replaced by Z̃ but (y, µ) are not changed. Define

ṽi =
1

λ

p∑
j=1

Zij · [‖y‖2µj + y′Z̃ej ]1{T̃j > t} ≡ 1

λ
η̃′Zi.

Now, first, by definition, η̃ is independent of Zi, and so

η̃′Zi/‖η̃‖ ∼ N(0, 1).
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Second, by elementary large deviation results, with probability at least 1− o(1/p2),

‖η̃‖2 = (1 + o(1))(‖y‖2pW̃p(t) + pF̃p(t))‖y‖2.

Compare these with the claim, all we need to show is, with probability 1− o(1/p2),

λ|vi − ṽi| ≤ o(1)(‖y‖
√
‖y‖2pW̃p(t) + pF̃p(t)). (4.7.86)

Now, by definitions,

η̃j − ηj = (‖y‖2µj + y′Z̃ej)(1{T̃j ≥ t} − 1{Tj ≥ t}) + yi(Z̃ij − Zij)1{Tj ≥ t},

and so
λ(ṽi − vi) = ‖y‖2 · Ia+ Ib+ yi · Ic,

where

Ia =

p∑
j=1

Zijµj(1{T̃j ≥ t} − 1{Tj ≥ t}),

Ib =

p∑
j=1

Zijy
′Z̃ej(1{T̃j ≥ t} − 1{Tj ≥ t}),

and

Ic =

p∑
j=1

Zij(Z̃ij − Zij)1{Tj ≥ t},

Consider Ia first. Note that µ is sparse, and we decompose the signal µ into the set
that S1 = {j : |µj | > c(log(p)2/n)1/4} and that S2 = {j : |µj | ≤ c(log(p)2/n)1/4}. Then
we have that

|Ia| ≤
∑
j∈S1

|Zijµj ||1{T̃j ≥ t} − 1{Tj ≥ t}|+
∑
j∈S2

|Zijµj ||1{T̃j ≥ t} − 1{Tj ≥ t}|.

With probability at least 1 − p−2, max1≤i≤n,1≤j≤p{|Zij |} ≤ 3
√

log(p), then we have
that

|Ia| ≤
p∑

j∈S2

|Zijµj ||1{T̃j ≥ t} − 1{Tj ≥ t}| ≤ 3 log(p)/n1/4
∑
µj 6=0

|1{T̃j ≥ t} − 1{Tj ≥ t}|.

(4.7.87)
By definitions and elementary statistics, there is an event with probability at least
1− o(1/p2) over which

|T̃j − Tj | ≤ (Z2
ij + Z̃2

ij)/
√
n ≤ 4 log(p)/

√
n.
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It follows that over the event,

|1{T̃j ≥ t} − 1{Tj ≥ t}| ≤ 1{|T̃j − t| ≤ 4 log(p)/
√
n}, (4.7.88)

Inserting this into (4.7.87), with probability at least 1− o(1/p2),

|Ia| ≤ C[log2(p)/
√
n] ·

∑
j:µj 6=0

1{|T̃j − t| ≤ 4 log(p)/
√
n}. (4.7.89)

Note that the right hand side is distributed as Binomial(m, δn), with m = |{1 ≤ j ≤
n : µj 6= 0}| ∼ pεp, and δn = P (|T̃ − t| ≤ 4 log(p)/

√
n) ∼ fT̃ (t)8 log(p)/

√
n, where fT̃ (t)

is the pdf of T̃ at t. Combining this with (4.7.89), it follows from elementary statistics
that with probability at least 1− o(1/p2),

|Ia| ≤ C[(log(p))2/
√
n] · (mδn +

√
mδn log p).

Now, in our notation, pW̃p(t) ≥ (c/ log(p))mδn. Therefore, with probability at least
1− o(1/p2),

|Ia| ≤ 32(log(p))2/
√
npW̃p(t). (4.7.90)

Consider Ib. Let ω be a p× 1 vector with ω = Z̃ ′y. It is seen that

Ib =

p∑
j=1

Zijωj(1{T̃j ≥ t} − 1{Tj ≥ t}). (4.7.91)

Since ω/‖y‖ ∼ N(0, Ip), so with probability at least 1− o(1/p),

max
1≤j≤p

|ωj | ≤ 2
√

log(p). (4.7.92)

Note that with probability at least 1− p−2, max1≤i≤n,1≤j≤p{|Zij |} ≤ 3
√

log(p). Com-
bining these, with probability 1− o(1/p),

|Ib| ≤
p∑
j=1

|Zijωj ||1{T̃j ≥ t} − 1{Tj ≥ t}| ≤
p∑
j=1

6 log(p)|1{T̃j ≥ t} − 1{Tj ≥ t}|.

Combine with (4.7.88), with probability 1− o(1/p),

|Ib| ≤ 12(log(p))2pF̃p(t)/
√
n. (4.7.93)

Consider Ic. Similarly, let ξ be the p× 1 vector such that ξj = Zij1{Tj ≥ t}. It is
seen

Ic = ξ′Z̃i − ‖ξ‖2. (4.7.94)

Since ξ is independent of Z̃i.
ξ′Z̃i/‖ξ‖ ∼ N(0, 1),
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so with probability at least 1− o(1/p2),

|ξ′Z̃i| ≤ 2
√

log(p)‖ξ‖ (4.7.95)

Combining (4.7.94) and (4.7.95) gives that with probability 1− o(1/p2),

|Ic| ≤ ‖ξ‖(‖ξ‖+ 2
√

log(p)).

We now bound ‖ξ‖. Introduce event A = {|Zij ≤ 3
√

log(p)}. It is seen that P (Ac) ≤
1/p2. Letting Z∗ij = Zij · 1{|Zij | ≤ 3

√
log(p)}, then over the event A,

‖ξ‖2 =

p∑
j=1

(Z∗ij)
21{|Tj | ≥ t}.

Now, for any b > 0 and any sequence of independent random variables Wi such that
|Wi| ≤ b, E[Wi] = 0, and Var(Wi) ≤ σ2

i for 1 ≤ i ≤ p. Write for short σ2 = σ2
1 + σ2

2 +

· · ·+ σ2
p. Bennett’s Lemma [Jin 2012b, Page 38] says that,

P (|
p∑
j=1

|Wj − E[Wj ]| ≥ s) ≤ 2 exp(− c0

2σ2
s2), if sb ≤ σ2,

where c0 = ψ(1) ≈ 0.733. Applying this with Wj = (Z∗ij)
21{Tj ≥ t} − E[(Z∗ij)

21{Tj ≥
t}], b = 9

√
log(p) + 1, and s = 2

√
2 log(p)σ and noting that Var(Wj) = Lpp

−q, with
probability at least 1 + o(1/p2),

p∑
j=1

(Z∗ij)
21{|Tj | ≥ t} ≤ E[

p∑
j=1

(Z∗ij)
21{Tj ≥ t}] + 2

√
6pF̃p(t) log(p).

Combining this with the expectation, with probability at least 1 + o(1/p2),

‖ξ‖2 ≤ pF̃p(t) + 2

√
6pF̃p(t) log(p),

and so
|Ic| ≤ pF̃p(t) + 6

√
2pF̃p(t) log(p). (4.7.96)

Finally, combining (4.7.90), (4.7.93) and (4.7.96) gives

|λ(ṽi − vi)| ≤ cpF̃p(t) + c
√
n(log p)2pW̃p(t).

Note that in our case, there is pF̃p(t)/np → 0, and pF̃p(t)/n/
√
pW̃p(t)→ 0. With basic

calculation, the right hand side is smaller order term of (‖y‖
√
‖y‖2pW̃p(t) + pF̃p(t)).

Combining with (4.7.86), it gives the claim. �
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4.7.9 Proof of Lemma 4.4.5

Note that

II = (
∞∑
i=1

M i)I.

By the definition of M and the result of Lemma 4.4.2 about ‖H0 − ap(t)Ip‖, with
probability at least 1− o(1/p2), there is

‖M‖ ≤ errp(t)/(λ1 − ap(t)),

where

S(t) = S(t, p, np, µ) =

{
2np, np/pF̃p(t)→ 0,

4eK0

√
2nppF̃p(t) log(p) +

√
8
n tT̃P p(t), np/pF̃p(t)→∞.

Combining with Lemma 4.4.3 about λ1, with probability 1− o(1/p2), there is

‖M‖ ≤ errp(t)/‖y‖2pW̃p(t).

We have shown that when S̃NR(t, µ, y, np, p) → ∞, errp(t)/‖y‖2pW̃p(t) → 0. Then
‖M‖ goes to 0 with probability 1− o(1/p2).

At the same time, by basic algebra, for any n × n matrix (non-stochastic) A such
that ‖A‖ < 1,

‖
∞∑
i=1

Ai‖ ≤ ‖A‖/(1− ‖A‖).

Applying this with A = M gives that with probability at least 1− o(1/p2),

‖
∞∑
i=1

M i‖ ≤ ‖M‖/(1− ‖M‖) . errp(t)

‖y‖2pW̃p(t)
,

and that

‖II‖ ≤
√
errp(t)√

‖y‖2pW̃p(t)
‖I‖,

and errp(t)→ 0. So the claim follows. �

4.7.10 Proof about s̃nr for ARW model

Lemma 4.7.6 Under the conditions of ARW (β, r, θ, δ) model, given threshold t =√
2q log p, where 0 < q < 1 is a constant, then with probability 1 − o(1/p2), there
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is ∣∣∣∣F̃p(t, µ, y, np)− f̄p(t, εp, τp, np)∣∣∣∣ ≤ (2

√
log(p)

pεp
+ c(δ)

log2(p)√
n

)f̄p(t, εp, τp, np),(4.7.97)∣∣∣∣W̃p(t, µ, y, np)− wp(t, εp, τp, np)
∣∣∣∣ ≤ (2

√
log(p)

pεp
+ c(δ)

log2(p)√
n

)wp(t, εp, τp, np),(4.7.98)

where c(δ) is a non-stochastic term that depends on δ only.

The proof for F̃p(t, µ, y, np) and W̃p(t, µ, y, np) is quite similar. So we will show the
proof for F̃p(t, µ, y, np) only.

Let f̃p(t, εp, τp, np) = Eεp,τp,y[F̃p(t, µ, y, np)]. With basic algebra, if we have that,
with probability 1− o(1/p2),

|F̃p(t, µ, y, np)− f̃p(t, εp, τp, np)| ≤ 2

√
log(p)

pεp
f̃p(t, εp, τp, np), (4.7.99)

and that

|f̃p(t, εp, τp, np)− f̄p(t, εp, τp, np)| ≤ c(δ)
log2(p)√

n
f̄p(t, εp, τp, np), (4.7.100)

the claim follows.
The first approximation can be found by large deviation result. Let k =∑p
j=1 1{µj 6= 0}, then k ∼ Binomial(p, εp), and

F̃p(t, µ, y, np) =
k

p
P (Tj > t|µj = u, y) + (1− k

p
)P (Tj > t|µj = 0, y). (4.7.101)

Introduce that E[k] = pεp, we have

f̃p(t, εp, τp, np) = εpP (Tj > t|µj = u, y) + (1− εp)P (Tj > t|µj = 0, y). (4.7.102)

Combining with Berstein’s inequality for binomial random variables ([Lugosi 2004, Page
12]), applying with binomial random variable k with parameter p and εp, we have that

P (|k − E[k]

p
| > λ) ≤ 2 exp(− pλ2

2[εp(1− εp) + 2λ/3]
).

Take λ = 2
√
εp log(p)/p, when 1

p < εp < 1/2, which means that 0 < β < 1, 2λ/3 �
εp(1−εp). Applying with E[k] = pεp, we have that, with probability at least 1−o(1/p2),
there is

|k − pεp| < 2
√
pεp log(p).
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Combining with the definition of F̃p(t, µ, y, np) and f̃p(t, εp, τp, np) in (4.7.101) -
(4.7.102), with probability at least 1− o(1/p2),

|F̃p(t, µ, y, np)− f̃p(t, εp, τp, np)| ≤ 2

√
log(p)

pεp
f̃p(t, εp, τp, np). (4.7.103)

The second approximation comes from the large deviation result about ‖y‖2. Recall
that

f̄p(t, εp, τp, np) = Eεp,τp [F̃p(t, µ, y, np)] = εpḠ0(t, np) + (1− εp)Ḡτp(t, np). (4.7.104)

Compare with f̃p(t, εp, τp, np), the difference here is between the term Ḡτp(t, np) and
P (Tj > t|µj = u, y). Given y and µj , there is Tj ∼ χ2

n(µ2
j‖y‖2). So we care about ‖y‖2.

Let l =
∑n

i=1 1{yi = 1 − δ}, then l ∼ Binomial(n, δ), and ‖y‖2 = nδ2 + l(1 − 2δ).
With Bernstein’s inequality for binomial random variables ([Lugosi 2004, Page 12]),
applying with random variable l with parameter n and δ, with 0 < δ < 1/2. We have
that

P (

∣∣∣∣ l − E[l]

n

∣∣∣∣ > λ) ≤ 2 exp(− nλ2

2[δ(1− δ) + 2λ/3]
).

Take λ = 2
√
δ(1− δ) log(p)/n, then with probability at least 1− o(1/p2), there is

|l − E[l]| < 2
√
δ(1− δ)n log(p).

Combining with basic algebra, with probability at least 1− o(1/p2), there is∣∣‖y‖2 − E[‖y‖2]
∣∣ < 2(1− 2δ)

√
δ(1− δ)n log(p). (4.7.105)

With basic algebra, Combining with (4.7.105), with probability at least 1 − o(1/p2),
there is

|P (Tj > t|µj = u, y)−P (Tj > t|µj = u, ‖y‖2 = nδ(1−δ))| ≤ 16(1− 2δ)√
δ(1− δ)

log2(p)√
n

Φ̄t−τp(t, np).

(4.7.106)
Note that Ḡτp(t, np) = Φ̄t−τp(t, np)(1 + O(1/n1/4)). Combining with the definition
of f̃p(t, εp, τp, np) and f̄p(t, εp, τp, np), and take c(δ) = 16(1−2δ)√

δ(1−δ)
, then with probability

1− o(1/p2), there is

|f̃p(t, εp, τp, np)− f̄p(t, εp, τp, np)| ≤ c(δ)
log2(p)√

n
f̄p(t, εp, τp, np). (4.7.107)

So, the claim follows. �



4.7. Proofs 75

4.7.11 Proof about ∆(q, β, r, θ)

Define
(
√
q −
√
r)+ = max{√q −

√
r, 0}.

When tp(q) =
√

2q log(p), where 0 < q < 1, with basic algebra, there is
Ḡ0(tp(q), np) = Φ̄(t)(1 + O(1/

√
n)). For non-central chisquare distribution with pa-

rameter λ =
√

2nτp, there is Ḡτp(tp(q), np) = Φ̄(t−τp)(1+o(log2(p)/n1/4)). So we have
that

f̄p(t, εp, τp, np) = (1−εp)Φ̄(t)(1+O(1/
√
n))+εpΦ̄(t−τp)(1+o(log2(p)/n1/4)), (4.7.108)

and that

wp(t, εp, τp, np) = εpτ
2
p Φ̄(t− τp)/

√
n(1 + o(log2(p)/n1/4)). (4.7.109)

Using Mill’s ratio, we have that

f̄p(t, εp, τp, np) = Lp(1− εp)p−q + Lpp
−βp−(

√
q−
√
r)2

+ , (4.7.110)

and
wp(t, εp, τp, np) = Lpp

−βp−(
√
q−
√
r)2

+p−θ/2. (4.7.111)

Introduce them into s̃nr(t, εp, τp, np), and we get ∆(q, β, r, θ). �

4.7.12 Proof of q∗(β, r, θ)

According to different relationship between r, β, and θ, the function about ∆(q, β, r, θ)

is different. So we have to discuss it in two cases: (a) r < β− θ/2, and (b) r > β− θ/2.
In case (a), r < β − θ/2, so when q < r, there is q < β − θ/2. As q increases, there

are 3 stages for ∆(q, β, r, θ), which is

∆(q, β, r, θ) =


−β + q/2, q < r,

−β + r − 1
2(
√
q − 2

√
r)2, r < q < (β−θ/2+r)2

4r ,

−1
2 [β + (

√
q −
√
r)2]− θ/4, q > (β−θ/2+r)2

4r .

In the first stage, ∆(q, β, r, θ) keeps increasing as q increases. In the third stage,
∆(q, β, r, θ) keeps decreasing as q increases. So the maximum will be achieved at the
second stage or the endpoints of the second stage.

Study the function at the second stage, that −β + r − 1
2(
√
q − 2

√
r)2 for q > 0.

As q increases, the function keeps increasing till q = 4r, and then decreases. As the
restriction is that r < q < (β−θ/2+r)2

4r , we have to study whether q = 4r is in this
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range or not. If q = 4r is not in this range, then the maximum will be achieved at the
endpoint q = (β−θ/2+r)2

4r . With basic algebra, there are two cases as following,

q∗ =

{
4r, r < (β − θ/2)/3,
(β−θ/2+r)2

4r , (β − θ/2)/3 < r < β − θ/2.
(4.7.112)

In case (b), r > β−θ/2. For this case, there are also 3 stages for ∆(q, β, r, θ), which
is a little different at the second stage, as following,

∆(q, β, r, θ) =


−β + q/2, q < r,

−β/2− θ/4, β − θ/2 < q < r,

−1
2 [β + (

√
q −
√
r)2]− θ/4, q > r.

(4.7.113)

It is easy to find that ∆(q, β, r, θ) still increases as q increases in the first stage, and
decreases as q increases in the third stage. However, for the second stage, ∆(q, β, r, θ)

is flat, which does not change as q changes.
So, for β − θ/2 < q < r, the maximum is achieved.
Combine the two cases and we get the result. �

4.7.13 Proof of Theorem 4.2.2

According to Lemma 4.7.6, √ps̃nr(t, εp, τp, np) is very near to S̃NR(t, µ, y, np, p)

under the ARW (β, r, θ, δ) model. With Mill’s ratio, Section 4.7.11 shows that
s̃nr(t, εp, τp, np) ≈ Lpp

−∆(q,β,r,θ). Section 4.7.12 shows that, when q > ρ∗θ(β), the
signal √ps̃nr(t, εp, τp, np) goes to infinity, which means that S̃NR(t, µ, y, np, p) goes to
infinity with probability 1 − o(1/p2) too. Combining with Theorem 4.2.1, the result
follows. �

4.7.14 Proof of Theorem 4.2.3

For simplification, we use ỹ to denote the standardized y, which is y/‖y‖. Also, we use
H, H0, ξ, Z, µ t to denote H(tp(q)), H(tp(q))

0 , ξ(tp(q)), Z(tp(q)), µ(tp(q)), and tp(q). Recall
that H = H0 + A, where A is a rank 2 matrix. For any given matrix B, we use λ1(B)

to denote the leading eigenvalue of B.
Let ξ be the leading eigenvector of H, and we want to prove that (ξ, ỹ) → 0 with

large probability. By basic algebra, to show the claim, it is sufficient to show that with
probability at least 1− o(1/n),

λ1(H0) ≥ pF̃p(t) +
1

2

√
nppF̃p(t), (4.7.114)

and that with probability at least 1− o(1/p2),

λ1(A) ≤ 2nppW̃p(t), (4.7.115)
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and that
ỹ′H0ỹ ≤ pF̃p(t) + 2

√
6pF̃p(t) log(p). (4.7.116)

Combining (4.7.114) and (4.7.116), with basic algebra we can find that, there is a

vector w orthogonal to ỹ, and that w′H0w ≥ pF̃p(t)+
√
nppF̃p(t)/2−2

√
6pF̃p(t) log(p).

Combine this result with (4.7.115), with basic algebra, there is that, with probability
1 + o(1/n),

(ξ, ỹ)2 ≤ 3
2nppW̃p(t) + 2

√
6pF̃p(t) log(p)√

nppF̃p(t)/2− 2
√

6pF̃p(t) log(p)
.

Combining with the condition that r < ρ∗θ(β), which indicates that

nppW̃p(t)/
√
nppF̃p(t) → 0, the claim follows. So, what left to prove are the

equations (4.7.114) - (4.7.116).
Let M = H0−pF̃p(t)In, then there is λ1(H0) = pF̃p(t) +λ1(M). Then, to calculate

the lower bound of λ1(H0) is equivalent with the problem to calculate the lower bound
of λ1(M).

Let ‖M‖F to denote the Frobenious norm ofM if we see it as an n2
p×1 vector. With

basic calculation, there is E[‖M‖2F ] = n2
ppF̃p(t)(1 + O(1/

√
np)), and V ar(‖M‖2F ) ≤

n3
p(pF̃p(t))

2. With Chebyshev’s inequality, there is

P (|‖M‖2F − E[‖M‖2F ]| ≥ η) ≤
n3
p(pF̃p(t))

2

η2
.

Take η =
n2
ppF̃ (t)

log p , then with probability at least 1− o(1/np), there is

‖M‖2F ≥ n2
ppF̃p(t)−

n2
ppF̃p(t)

log(p)
. (4.7.117)

For any np × np matrix (non-stochastic) B such that rank(B) = k, there is ‖B‖ ≥
‖B‖F /

√
k. Note that rank(M) = np with probability 1. So, with probability at least

1− o(1/np),

‖M‖ ≥
√
nppF̃p(t)(1−

1

2 log(p)
). (4.7.118)

Combining with the definition of M , and the relationship between λ1(M) and λ1(H0),
then there is, with probability at least 1− o(1/np),

λ1(H0) ≥ pF̃p(t) +

√
nppF̃p(t)/2. (4.7.119)

For the rank 2 matrix A, we have that

‖A‖ ≤ ‖‖µ‖2yy′‖+ ‖Zµy′‖+ ‖y(Zµ)′‖ ≤ 3‖y‖2‖µ‖2/2. (4.7.120)
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Introducing ‖y‖2 and ‖µ‖2, with probability at least 1− o(1/p2), there is

‖A‖ ≤ 2nppW̃p(t). (4.7.121)

Now we bound |ỹ′H0ỹ|, which is ‖Z ′ỹ‖2. Let w be a p × 1 vector where wj =∑n
i=1 ỹiZij , then w ∼ N(0, Ip). Introduce event E = {|wj | ≤ 2

√
log(p)}. It is seen that

P (Ec) ≤ 1/p. Let w∗j = wj · 1{|wj | ≤ 2
√

log(p)}, then over the event E,

‖Z ′ỹ‖2 =

p∑
j=1

(w∗j )
21{|Tj | ≥ t}.

Now, for any b > 0 and any sequence of independent random variables Wi such that
|Wi| ≤ b, E[Wi] = 0, and Var(Wi) ≤ σ2

i for 1 ≤ i ≤ p. Write for short σ2 = σ2
1 + σ2

2 +

· · ·+ σ2
p. Bennett’s Lemma [Jin 2012b, Page 38] says that,

P (|
p∑
j=1

|Wj − E[Wj ]| ≥ s) ≤ 2 exp(− c0

2σ2
s2), if sb ≤ σ2,

where c0 = ψ(1) ≈ 0.733. Applying this with Wj = (w∗j )
21{|Tj | ≥ t}−E[(w∗j )

21{|Tj | ≥
t}], b = 4 log(p) + 1, and s = 2

√
2 log(p)σ and noting that Var(Wj) = Lpp

−q, with
probability at least 1− o(1/p2),

p∑
j=1

(w∗j )
21{|Tj | ≥ t} ≤ E[

p∑
j=1

(w∗j )
21{|Tj | ≥ t}] + 2

√
6pF̃p(t) log(p).

Combining this with the expectation, with probability at least 1− o(1/p),

|ỹ′H0ỹ| ≤ pF̃p(t) + 2

√
6pF̃p(t) log(p).

So, the claim follows. �

4.7.15 Relationship between ideal HC and HC

Lemma 4.7.7 For all |t| <
√

2 log p, with probability 1− o(1/p), there is that

|HCp(t, F̄p)−HCp(t, f̄p(t))| ≤
Lp√
p

+ Lp

√
pf̄p(t)

pεGτ (t, n)
HCp(t, f̄p(t)). (4.7.122)

What’s more, for |t| < 2 log p, with probability 1− o(1/p2), we have that

|HCp(t, F̄p)−HCp(t, f̄p(t))| ≤
Lp√
p
. (4.7.123)



4.7. Proofs 79

In the proof, we use n, f̄ to denote np and f̄p(t) as shorthand notations. Let
g0(t, n) = dG0(t,n)

dt , and gτ (t, n) =
dGτp (t,n)

dt . Also, write n for np for short, and
To prove the claim, we decompose (−

√
2 log p,

√
2 log p) into p small intervals equally,

and try to prove the claim on each interval. Let

ti = −
√

2 log p+
2
√

2 log p

p
i, 0 ≤ i ≤ p,

and take the i-th interval as (ti, ti+1] for 0 ≤ i ≤ p − 1. Then each interval has length
2
√

2 log p/p, and the union of intervals covers the whole interval (−
√

2 log p,
√

2 log p).
Now we try to find the relationship between HCp(t, F̄p) and HCp(t, f̄) on the interval
(ti, ti+1]. Note that

HCp(t, F̄p)−HCp(t, f̄) = I + II + III, (4.7.124)

where
I = HCp(t, F̄p)−HCp(ti+1, F̄p),

II = HCp(ti+1, F̄p)−HCp(ti+1, f̄),

and that
III = HCp(ti+1, f̄)−HCp(t, f̄).

Consider I first. Take HCp(t, h) as a bivariate function about t and h, where

HCp(t, h) =
h− Ḡ0(t, n)√

(1 +
√
n)h−

√
nG0(t, n)

. (4.7.125)

Take the derivative of HC(t, h) with respect to h, then there is

∂ HCp(t, g)

∂g

∣∣
g=F̄p

=
1

2
(

1

F̄p − Ḡ0(t, n)
+

Ḡ0(t, n)

(F̄p − Ḡ0(t, n))[(1 +
√
n)F̄p −

√
nḠ0(t, n)]

)HCp(t, F̄p).

(4.7.126)
The difference between pF̄p(ti) and pF̄p(ti+1) is distributed as binomial random variable
with parameter p and f̄(ti+1) − f̄(ti). Applying Berstein’s inequality for binomial
random variables, we have that, with probability at least 1− o(1/p2), there is

|F̄p(ti)− F̄p(ti+1)| ≤ 2
√

(f̄(ti+1)− f̄(ti))/p
√

log(p).

Combining them, and the difference caused by F̄p(t) is bounded above as

Lp

√
f̄

pεpḠτ (t, n)
HCp(ti+1, F̄p(ti+1)). (4.7.127)
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Note that t also changes in this interval. Take the derivative of HCp(t, F̄p) with respect
to t, and we have that

∂ HCp(t, F̄p)

∂t
=

g0(t, n)

2(F̄p − Ḡ0(t, n))
[3− F̄p

(1 +
√
n)F̄p −

√
nḠ0(t, n)

]HCp(t, F̄p). (4.7.128)

Combining with |t− ti+1| ≤ 2
√

2 log p/p for any t ∈ (ti, ti+1), then the difference from
t is bounded above by

HC(t, F̄p) · LpḠ0(t, n)/(pεḠτ (t, n)). (4.7.129)

Combining the results from h and t, we have that, with probability at least 1−o(1/p2),

|I| ≤ Lp

√
f̄

pεpḠτ (t, n)
HCp(ti+1, F̄p(ti+1)). (4.7.130)

Now we find an upper bound to II. For II, the only difference is that HCp(t, h)

take h = F̄p and h = f̄ . Note that pF̄p ∼ Binomial(p, f̄). With Bernstein’s inequality,
we have that when 0 < q < 1 and 0 < β < 1, with probability at least 1− o(1/p2),

|F̄p − f̄ | ≤ 2
√
f̄/p

√
log(p). (4.7.131)

Combining (4.7.131) and (4.7.126), with basic algebra, we have that, with probability
at least 1− o(1/p2), there is

|II| = |HCp(ti+1, F̄p)−HCp(ti+1, f̄)| ≤ Lp

√
pf̄

pεpḠτ (t, n)
HCp(ti+1, f̄). (4.7.132)

Consider III. For III, we should consider f̄ as a function of t, and so HCp(t, f̄(t))

is a function of t only. With basic calculation, ignoring small terms, we have that

dHCp(t, f̄)

dt
=

εp

2(f̄ − Ḡ0(t, n))
[g0(t, n)−gτ (t, n)+

g0(t, n)Ḡτ (t, n)− gτ (t, n)Ḡ0(t, n)

f̄ +
√
nεpḠτ (t, n)

]HCp(t, f̄).

(4.7.133)
Combining with that |t− ti+1| ≤ 2

√
2 log(p)/p for t ∈ (ti, ti+1), then we have that,

|III| = |HCp(t, f̄)−HCp(ti+1, f̄)| ≤ Lp
p
HCp(t, f̄) (4.7.134)

Combining (4.7.130), (4.7.132) and (4.7.141), we have that, with probability 1 −
o(1/p3),

|HCp(t, F̄p)−HCp(t, f̄)| ≤ Lp

√
pf̄

pεGτ (t, n)
HCp(t, f̄), t ∈ (ti, ti+1), 0 ≤ i ≤ p− 1.

(4.7.135)
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Combine the p intervals, and we have that, with probability 1− o(1/p),

|HCp(t, F̄p)−HCp(t, f̄)| ≤ Lp

√
pf̄

pεGτ (t, n)
HCp(t, f̄), t ∈ (−

√
2 log(p),

√
2 log(p)).

(4.7.136)
Introduce in HCp(t, f̄), and we have that, with probability 1− o(1/p),

|HCp(t, F̄p)−HCp(t, f̄)| ≤ Lp√
p
. (4.7.137)

�

4.7.16 Relationship between s̃nr(t) and ideal HC

Recall that the definition for ideal HC and s̃nr is

HCp(t, f̄) =
f̄ − Ḡ0(t, n)√

f̄ +
√
n(f̄ − Ḡ0(t, n))

,

and
s̃nr =

wp√
f̄/n+ wp

.

With basic calculation, we can get that

τ2
pHCp(t, f̄) =

τ2
p εpḠτp(t, n)√

f̄ +
√
nεpḠτp(t, n)

(1 +O(Ḡ0(t, n)/Ḡτp(t, n))),

and

s̃nr =
τ2
p εpḠτp(t, n)√

f̄ + τ2
p

√
nεpḠτp(t, n)

.

So the claim follows. �

4.7.17 Proof of Theorem 4.2.4

To show the claim, it is sufficient to show that, for any u >
√

Lp
√
pf̄

pεpGτp (tideal,n)
, there is

HC(tideal ± u, F̄p(t)) < HC(tideal, F̄p(t)), r < β − θ/2,

and that when r > β − θ/2,

HC(
√

2q+ log(p) + u, F̄p(t)) < HC(
√

2q+ log(p), F̄p(t)),

HC(
√

2q− log(p)− u, F̄p(t)) < HC(
√

2q− log(p), F̄p(t)).
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When r > ρ∗θ(β), with basic calculation, there is Lp
√
pf̄

pεpGτp (tideal,n)
→ 0, so the claim follows.

To show the claim, first we show that tidealHC is near to tideal. There are two cases
here, case (a): r < β − θ/2, and case (b): r > β − θ/2.

Introduce a function h(t) as the estimation of HC(t, f̄), where

h(t) = h(εp, τp, τ, n) =
εpḠτp(t, n)√

f̄ +
√
nεpḠτp(t, n)

,

then we have that

HC(t, f̄) = h(t)(1 +O(Ḡ0(t, n)/Ḡτp(t, n))). (4.7.138)

So we could go on to analyze h(t).
In case (a), when r < β−θ/2. When u > c

√
log(p) for some constant c, it is obvious

that tideal + u will change the order of HC(t, f̄), and much smaller than HC(tideal, f̄).
Now, we come to the case that u = o(

√
log(p)). For the difference between

HC(tideal + u, f̄) and HC(tideal, f̄), note that we have

HC(tideal + u, f̄)−HC(tideal, f̄) = I + II + III, (4.7.139)

where
I = HC(tideal + u, f̄)− h(tideal + u),

II = h(tideal)−HC(tideal, f̄),

and that
III = h(tideal + u)− h(tideal).

Combining with (4.7.138), we have that

|I + II| ≤ (h(tideal) + h(tideal + u))O(Ḡ0(tideal, n)/Ḡτp(t
ideal, n)). (4.7.140)

With basic calculation, we have that

III ≤ (e−u
2/4 − 1)h(tideal). (4.7.141)

Combining (4.7.139), (4.7.140) and (4.7.141), when |u| >

Lp

√
Ḡ0(tideal, n)/Ḡτp(t

ideal, n), there is

HC(tideal+u, f̄)−HC(tideal) ≤ h(tideal)(e−u
2/4−1+O(Ḡ0(tideal, n)/Ḡτp(t

ideal, n))) < 0.

Case (b), r > β − θ/2. In this case we want to show that tidealHC is in the range of
[
√

2q− log(p) − u,
√

2q+ log(p) + u]. Here, we show just one side that when u is large,
there is

HC(tideal + u, f̄)−HC(tideal, f̄) ≤ 0.
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The analysis for the other side is the same.
Decompose HC(

√
2q− log p − u, f̄) −HC(

√
2q− log p, f̄) in the same as (4.7.139).

For I and II, we have the same result. For III, with basic calculation, we have that,
when |u| = o(

√
log(p)),

h(
√

2q− log(p)− u)− h(
√

2q− log(p)) ≤ exp[u(u− 2
√

2q− log(p))/4]h(
√

2q− log(p)).

(4.7.142)
Combining I, II and III, when u > p−β+θ/2, there is HC(

√
2q− log(p) − u, f̄) <

HC(
√

2q− log p, f̄).
Combining the two cases, and we find that tidealHC ∈ (tideal − a, tideal + a) when

r < β − θ/2, and tidealHC ∈ (
√

2q− log(p) − a,
√

2q+ log(p) + a) when r > β − θ/2,
where

a = a(r, β, θ, p) =

{
Lp

√
Ḡ0(tideal, n)/Ḡτp(t

ideal, n), r < β − θ/2,
p−β+θ/2, r > β − θ/2.

Now, we will show that tidealHC is near to tideal. For u, we have that

HC(tidealHC + u, F̄p)−HC(tidealHC , F̄p) = I + II + III, (4.7.143)

where
I = HC(tidealHC + u, F̄p)−HC(tidealHC + u, f̄),

II = HC(tidealHC , f̄)−HC(tidealHC , F̄p),

and that
III = HC(tidealHC + u, f̄)−HC(tidealHC , f̄).

Combining I and II with (4.7.136), there is

|I + II| ≤ Lp

√
pf̄

pεpGτp(t
ideal, n)

(HC(tidealHC , f̄) +HC(tidealHC + u, f̄)).

For III, with similar analysis before, we have that

III ≤ [exp(au− u2/4)− 1]HC(tidealHC , f̄).

Combine, with basic algebra, when u > Lp

√
Lp
√
pf̄

pεpḠτp (tideal,n)
, there is

I+II+III ≤ Lp
√
pf̄

pεpGτp(t
ideal, n)

(HC(tidealHC , f̄)+HC(tidealHC+u, f̄))−HC(tidealHC , f̄)u2/4 < 0.

So, the claim follows. �
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4.7.18 HCT variant

Here we show that ideal threshold for ˜̃snr(t, εp, τp, np) and associated FDR.
In the terms of wp, f̄p, ˜̃snr can be written as

˜̃snr =

√
npwp(tp(q))√

f̄p(tp(q)) + npwp(tp(q))
(1− log(Ḡ0(tp(q)))

log(p)
). (4.7.144)

Introduce in tp(q) =
√

2q log p, and Ḡ0(tp(q)) = Lpp
−q, we have that˜̃snr = s̃nr(1 + q + log(Lp)/ log(p)). (4.7.145)

So, the ideal threshold turns to be tidealvariant ∼
√

2qideal log p, where

qideal =


4r, r < (β − θ/2)/3,
(β−θ/2+r)2

4r , (β − θ/2)/3 < r < β − θ/2,
r, r > β − θ/2.

(4.7.146)

We have that

FDR =
p(1− εp)Ḡ0(tidealvariant)

p(1− εp)Ḡ0(tidealvariant) + pεpḠτ (tidealvariant)
. (4.7.147)

Combine (4.7.146) and (4.7.147), then we get the FDR related with tidealvariant as

FDR(tidealvariantp ) =


Lpp−3r

Lpp−3r+p−β
, r < (β − θ/2)/3,

Lp
Lp+p−θ/2

, (β − θ/2)/3 < r < β − θ/2,
Lpp−r

p−β+Lpp−r
, r > β − θ/2.

(4.7.148)

4.7.19 Proof of Theorem 4.3.1

Note that the variant of s̃nr(t, εp, τp, np) is that

˜̃snr(t, εp, τp, np) = s̃nr(t, εp, τp, np)(1−
log(Ḡ0(t, np))

log(p)
),

which does not include F̄p or f̄p in the new term. So, the analysis about the difference
between s̃nr(t, εp, τp, np) and HC function can be easily extended to the variant of HC
functional, with a multiplied term. The details here are left to readers.

However, when t changes, the difference between ˜̃snr(t, εp, τp, np) and ˜̃snr(t +

∆t, εp, τp, np) is larger than that for s̃nr(t, εp, τp, np). For the case that r > β − θ/2,
with basic calculations we have that

HC(tidealvariant−u, f̄)−HC(tidealvariant, f̄) = HC(tidealvariant, (f̄)
u(u− 2t)

2 log(p)
)(1+o(1)).

Combine this with the derivations for HC functional, we get that the result. �
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4.7.20 χ2 distribution

Lemma 4.7.8 For a random variable Y = (X−n)/
√

2n, where X ∼ χ2
n, recall that the

probability density function (pdf) and cumulative density function (cdf) of Y is g0(·, n)

and G0(·, n). Recall that φ(·) and Φ(·) is pdf and cdf for standard normal distribution.
For any c > 0, and any |t| < c

√
log(n), there is

fY (t) = φ(t)(1 +O(1/
√
n)), (4.7.149)

and correspondingly,

FY (t) = Φ(t)(1 +O(1/
√
n)), 1− FY (t) = Φ̄(t)(1 +O(1/

√
n)). (4.7.150)

Proof. We start with (4.7.149) to show that pdf for Y is very close to φ(t), and then
show that the cdf is also close to Φ(t).

To show (4.7.149), we calculate the pdf for Y directly, and compare it with φ(t). By
the transformation, it is easy to find that g0(t, n) =

√
2nfX(n +

√
2nt). As X ∼ χ2

n,
the pdf for X at x = (n+

√
2nt) is that

fX(x) =
xn/2−1e−x/2

2n/2Γ(n/2)
, x ≥ 0.

Combining with Stirling’s approximation for Gamma function, the pdf can be estimated
as

fX(x) = 2
√
n/πxn/2−1e−x/22−n/2(e/(n/2))n/2(1 +O(1/n)).

With basic calculation, it can be written as

fX(x) =
1

2
√
nπ

exp(
n− x

2
+ (n/2− 1) log(x/n))(1 +O(1/n)).

Recall the transformation that x = n+
√

2nt, and fY (t) =
√

2nfX(x(t)), then we have

g0(t, n) =
1√
2π

exp(−
√
n/2t+ (n/2− 1) log(1 +

√
2/nt))(1 +O(1/n)).

With Taylor’s expansion, we have that log(1 +
√

2/nt) =
√

2/nt− t2/n+O(t3/
√
n3).

Combining with fY (t), with basic calculation, there is

fY (t) =
√

1/(2π)e−(t+
√

2/n)2
(1 +O(t3/

√
n+ 1/n)).

For |t| < c1 log(n), any c1 > 0, there is fY (t) = φ(t)(1 +O(1/
√
n)).

Choose c0 > 0 such that c2
0 log2(n) > c2 log(n) + 1. As log(n) is large, there exists

such c0. To show that the cdf for Y is also close to the cdf of standard Gaussian, it is
sufficient to show that,

|FY (−c0 log(n))− Φ(−c0 log(n))| = O(1/
√
n)Φ(−c

√
log(n)), (4.7.151)
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and

[FY (t)− FY (−c0 log(n))] = [Φ(t)− Φ(c0 log(n))](1 +O(1/
√
n)). (4.7.152)

When (4.7.151) and (4.7.152) are proved, the summation of the two equations shows
that

FY (t) = Φ(t)(1 +O(1/
√
n)), |t| < c

√
log(n).

In the same way, 1− FY (t) = Φ̄(t)(1 +O(1/
√
n)) can also be proved.

We have proved that (4.7.149) holds for |t| < c1 log(n) for any c1, and it also holds
when c1 = c0. Integrate the pdf over the interval (−c0 log(n), t) and we can get (4.7.152).

To show (4.7.151), it is sufficient to show that

FY (−c0 log(n)) ≤ 1√
2π
e−c

2
0 log2(n), (4.7.153)

and that
Φ(−c0 log(n)) ≤ 1√

2π
e−c

2
0 log2(n).s (4.7.154)

With Mill’s ratio, it is easy to show (4.7.154) holds. Then the only thing left to show
is that (4.7.153) holds. The cdf for Y at t is that

P (Y ≤ t) = P (X ≤ n+
√

2nt) = (x/2)n/2e−x/2
∞∑
k=0

(x/2)k

Γ(n/2 + k + 1)
,

where x = n+
√

2nt. Combining with Stirling’s approximation, with basic calculation,
we have that

P (Y ≤ t) = e1−x/2
∞∑
k=0

√
2π

n/2 + k

( xe/2

n/2 + k

)n/2+k
(1 +O(1/n)). (4.7.155)

We start with ( ex/2
n/2+k )n/2+k. Introduce in that x = n+

√
2nt, and we have

(
ex/2

n/2 + k
)
n
2

+k = exp((
n

2
+ k) log(

x

n+ 2k
) + 1) = exp((

n

2
+ k) log(1− 2k −

√
2nt

n+ 2k
) + 1).

(4.7.156)
With basic algebra, we have log(1 − x) ≤ −x − x2/2 when x < 1. Combining with
(4.7.156), and we get that

(
ex/2

n/2 + k
)
n
2

+k ≤ exp
[
n/2 +

√
n/2t− (2k −

√
2nt)2

4(n+ 2k)

]
.

Combining with (4.7.155), with basic calculation we have that

P (Y ≤ t) ≤ 2e
√
π/n

∞∑
k=0

exp
[
−(2k −

√
2nt)2

4(n+ 2k)

]
(1 +O(1/n)). (4.7.157)
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Now, we go on to estimate the term (2k−
√

2nt)2

4(n+2k) . It is obvious that

(2k −
√

2nt)2

4(n+ 2k)
=
n+ 2k

4
− (n+

√
2nt)/2 +

(n+
√

2nt)2

4(n+ 2k)
.

Combining with (4.7.157) and that 1
1+x ≥ 1− x, with basic calculation we have that

P (Y ≤ t) ≤ 2e
√
π/ne−t

2/2
∞∑
k=0

exp
[√

2/nt+ t2/n
]k

(1 +O(1/n)). (4.7.158)

Take t = −c0 log(n), then we have that

P (Y ≤ t) ≤
2e
√
π/ne−c

2
0 log2(n)/2

1− exp[c0 log(n)
√

2/n+ c2
0 log2(n)/n]

(1+O(1/n)) =

√
2πe

c0 log(n)
e−c

2
0 log2(n).

As log(n)→∞, then (4.7.153) can be proved.
So, the claim follows. �
We also treat with non-central χ2 distribution. We show that the non-central χ2

distribution is near to non-central normal distribution.

Lemma 4.7.9 Define a random variable Y = (X − n)/
√

2n, where X ∼ χ2
n(nδ), with

δ ≤ c
√

log(n)/n for some c > 0. Define the cdf of Y is G√
n/2δ

(·, n). Recall that Φ(·)

is cdf for standard normal distribution. For any |t| < c0

√
log(n), any c0 > 0, there is

G√
n/2δ

(t, n) = Φ(t−
√
n/2δ)(1+O(1/n1/4)), 1−G√

n/2δ
(t, n) = Φ̄(t−

√
n/2δ)(1+O(1/n1/4)).

(4.7.159)

Proof. According to the definition of non-central χ2 distribution, let X =
∑n

i=1(Zi +
√
δ)2, where Zi

i.i.d.∼ N(0, 1). With basic calcuation, we have that

P (Y ≤ t) = P (X ≤ n+
√

2nt) = P

( n∑
i=1

Z2
i +2

√
δ

n∑
i=1

Zi+nδ ≤ n+
√

2nt

)
. (4.7.160)

As
∑n

i=1 Zi ∼ N(0, n), we have that

P (|
n∑
i=1

Zi| ≤ c1

√
n log(n)) = Φ̄(c1

√
log(n)) ≤ n−c21/2.

Let c1 = c0 + 1, then we have that, with probability at least 1− o(n−c20/2−1/2), there is
|
∑n

i=1 Zi| ≤ c1

√
n log(n).

Combining with (4.7.160), and it follows that

P (Y ≤ t) ≤ P
( n∑
i=1

Z2
i ≤ n+

√
2nt− nδ + 2c1

√
nδ log(n)

)
+ o(n−c

2
0/2−1/2).
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As
∑n

i=1 Z
2
i is central χ2 distributed, combining with Lemma 4.7.8, letting t0 = t −√

n/2δ + c1

√
2δ log(n), and we have that

P (Y ≤ t) ≤ Φ(t−
√
n/2δ + c1

√
2δ log(n))(1 +O(1/

√
n)) + o(n−c

2
0/2−1/2),

As δ = O(1/
√
n), and n−c20/2−1/2 = O(n1/2Φ(t−

√
n/2δ)), so we have that

P (Y ≤ t) ≤ Φ(t−
√
n/2δ)(1 +O(1/n1/4)). (4.7.161)

On the other hand, similarly we have that

P (Y ≤ t) ≥ P

(∑n
i=1 Z

2
i ≤ n+

√
2nt− nδ − 2c1

√
nδ log(n)

)
+ o(n−c

2
0/2−1/2)

= Φ(t−
√
n/2δ)(1 +O(1/n1/4)).

(4.7.162)
Combining (4.7.152) and (4.7.153), and we get the result. �

Lemma 4.7.10 Define a random variable Y = (X−n)/
√

2n, where X ∼ χ2
n(nδ), with

δ ≤ c
√

log(n)/n for some c > 0. Define the cdf of Y is g√
n/2δ

(·, n). Recall that φ(·) is

pdf for standard normal distribution. For any |t| < c0

√
log(n), any c0 > 0, there is

g√
n/2δ

(t, n) = φ(t−
√
n/2δ)(1 +O(1/n1/4)). (4.7.163)

Proof. To prove the claim, it is sufficient to show that

exp[

√
n

2
tδ − n

4
δ2](1 +O(1/n1/4)) =

∞∑
i=0

e−nδ/2(nδ/2)i

i!

xiΓ(n/2)

2iΓ(n/2 + i)
, (4.7.164)

where x = n+
√

2nt. The sufficiency could be shown by that

φ(t−
√
n/2δ) = φ(t) exp[

√
n

2
tδ − n

4
δ2],

and that

fY (t, δ) =
√

2n
∞∑
i=0

e−nδ/2(nδ/2)i

i!
fχ2

n+2i
(x, 0) =

√
2nfχ2

n
(x, 0)

∞∑
i=0

e−nδ/2(nδ/2)i

i!

xiΓ(n/2)

2iΓ(n/2 + i)
.

As we have that φ(t) =
√

2nfχ2
n
(x, 0)(1 +O(1/

√
n)) from Lemma 4.7.8, so what leaves

to prove is (4.7.164) only.
With the property of Gamma function, we have that

xiΓ(n/2)

2iΓ(n/2 + i)
=

i∏
j=1

x

n+ 2j − 2
= exp[

∞∑
i=0

log(
n+
√

2nt

n+ 2j − 2
)]. (4.7.165)
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Combining with Taylor expansion for log(n+
√

2nt
n+2j−2 ), and we have that

∞∑
i=0

log(
n+
√

2nt

n+ 2j − 2
) =

√
2

n
t− i(i− 1)

n
+O(1/

√
n), i < 2c0

√
n log(n).

Introduce it into (4.7.165), then we have

xiΓ(n/2)

2iΓ(n/2 + i)
= exp

[
i
√

2/nt− i2/n+ i/n)

]
(1 +O(1/

√
n)), i < 2c0

√
n log(n).

Combining with (4.7.164), the right side of (4.7.164) can be written as

RHS = e−nδ/2
∞∑
i=0

e−i
2/n

(
nδe
√

2/nt+1/n

2

)i
/i!(1 +O(1/n1/4)).

With Taylor’s expansion for e−i2/n =
∑∞

k=0(i2/n)k/k!, we have that

RHS = e−
nδ
2

∞∑
k=0

(−n2δ2e2
√

2/nt/4)k

nkk!

∞∑
i=0

(
nδe
√

2/nt+1/n

2

)i
/i!(1 +O(1/n1/4)).

With basic calculation, we can find that

RHS = exp[
nδ

2
(e
√

2/nt − 1)]e−nδ
2e2
√

2/nt/4 = e
√
n/2tδ−nδ2/4(1 +O(1/n1/4)) = LHS.

So, the claim is proved. �
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5.1 Introduction

We observe an n × p matrix W , which can be thought of a rank-1 matrix hidden in
noise:

W = `µ′ + Z, Z = Zn,p.

where ` is an n × 1 vector and µ is a p × 1 vector, both of which are unknown to us.
Usually, we regard ` as a label vector and µ as a sparse feature vector. Such a setting
can be found in various application areas.

• Two-class clustering. We have gene microarray data from two-classes, but the
class labels are unknown and it is of major interest to recover them. In the simplest
setting, two classes are equally likely, and `i = ±1 with equal probabilities. The
vector µ is the contrast feature vector, which is unknown but is presumably sparse,
and Z is the matrix of measurement noise. The main goal is to recover `. A good
reference is our forthcoming manuscript ([Jin 2012a]).

• Sparse PCA. In this setting, `i
iid∼ N(0, σ2), µ is the sparse feature vector, and

Z is the matrix of noise. The main interest is to recover µ. A good example is
[Johnstone 2009].

• Community detection in network analysis. In the simplest case we only have two
communities. In this example, p = n, and `µ′ is replaced by a rank-2 p×p matrix,
say, L, where L(i, j) represents the probability that there is an edge between node
i and node j. Also, Z is a p×p matrix the entries of which are (centered) Bernoulli
noise. A good reference is [Bickel 2009].

The above studies, especially the clustering problem, motivates us to study the
Kolmogorov-Smirnov (KS) statistics. Our study on two gene microarray data sets
(Leukemia data by [Golub 1999], and Lung cancer data by [Gordon 2002] shows that
using Komogorov-Smirnov test to assess the significances of gens is especially successful.
In contrast, using moment-based approaches to assess the significances of genes are
comparably much more unsatisfactory.

5.1.1 Two models

In this note, we are interested in the the tail behavior of the KS-statistics in two idealized
models. In the first model, we suppose that we have n different (univariate) samples

Xi
iid∼ N(µ, σ2), (5.1.1)

where both parameters (µ, σ) are unknown. We are interested in the tail probability of
the KS-statistics, with estimations of (µ, σ) plugged in.
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In the second model, we have n different (univariate) samples from a two component
mixture:

Xi
i.i.d.∼ (1− δ)N(µ1, σ

2) + δ(µ2, σ
2), (5.1.2)

where all parameters (δ, µ1, µ2, σ) are unknown. To misuse the notation a little bit, we
let

µ = (1− δ)µ1 + δµ2, (1− δ)d1 = −δd2 = d0, where d0 = µ2 − µ1.

Similarly, we are primarily interested in the tail behavior of the KS-statistics with
estimations of (µ, σ) plugged in. We assume d0 is small, so the problem is challenging
but is still solvable.

5.1.2 Literature review

In the literature, there are two noteworthy approaches to calculate the tail probability
of the KS statistic. The first approach is—probably the earliest of all—is given by
Kolmogorov himself [Kolmogorov 1933], which solves the problem in the case where
both (µ, σ) are known. This approach uses Kolmogorov’s Forward Equation, and relies
on explicit formula of the joint density of the j-th and k-th order statistics of the n
independent samples from U(0, 1), for any 1 ≤ j, k ≤ n. To extend the approach to
the case where (µ, σ) are unknown and have to be estimated, we have to calculate the
joint density of any such pairs of order statistics conditional on first two moments of the
samples. Seemingly, this is a challenging problem, which makes Kolmogorov’s approach
hard to extend.

Alternatively, there are the modern approaches by Durbin [Durbin 1985] and by
Loader [Loader 1992]. These two approaches share a common ground in that they both
attempt to approximate the so-called first passage probability and use it to approximate
the tail probability. However, two approaches are also different in important ways:
Durbin [Durbin 1985] uses a Gaussian process approaches, and Loader [Loader 1992]
uses a locally Poisson process. In comparison, the latter is found to be more accurate.

In this note, driven by the modern interest of “large p", we are mainly interested in
large-deviation results related to the KS statistics. We start with Loader’s approxima-
tion of first passage probability, and derive simple and explicit large-deviation formula
for the tail probability of the KS statistics. Our study covers both the Null model (5.1.1)
and the Alternative model (5.1.2), and is readily extendable to exponential families.

5.1.3 Content

In Section 5.2, we derive approximations for the tail probabilities of the KS-statistic
associated with Model (5.1.1), and in Section 5.2.3, we discuss that associated with
Model (5.1.2). Section 5.4 contains some numerical results, illustrating how accurate
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the approximations are in terms of the tail probability as well as the mean and standard
deviation.

5.2 Main results

In this section, we first introduce some necessary notations. We then give the main
large-deviation formula for the KS statistic associated with Model (5.1.1) and Model
(5.1.2).

5.2.1 Notations

In either of the two models, we estimate µ and σ2 by

µ̂n = µ̂n(X1, · · · , Xn) =
1

n

n∑
i=1

Xi, σ̂2
n = σ̂2

n(X1, · · · , Xn) =
1

n

n∑
i=1

(Xi − µ̂n)2.

(5.2.3)
Next, let Φ(t;µ, σ) be the CDF of N(µ, σ2):

Φ(t;µ, σ) =

∫ t

−∞

1√
2πσ

e−
(x−µ)2

2σ2 dx, (5.2.4)

and let φ(t;µ, σ) be the density of N(µ, σ2):

φ(t;µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2 . (5.2.5)

In the special case of (µ, σ) = (0, 1), we write Φ(t) = Φ(t; 0, 1) and φ(t) = φ(t; 0, 1) for
short. Also, later in this note,

Φ(t; µ̂n, σ̂n) = Φ(t;µ, σ)

∣∣∣∣
{(µ,σ)=(µ̂n,σ̂n)}

, φ(t; µ̂n, σ̂n) = φ(t;µ, σ)

∣∣∣∣
{(µ,σ)=(µ̂n,σ̂n)}

At the same time, denote the empirical CDF by

Fn(t) =
1

n

n∑
i=1

1{Xi ≤ t}. (5.2.6)

The KS-statistic with estimations of (µ, σ) plugged-in is defined as

KSn =
√
n sup
−∞<t<∞

|Fn(t)− Φ(t; µ̂n, σ̂n)|. (5.2.7)

Similarly, we define

KS±n =
√
n sup
−∞<t<∞

{±[Fn(t)− Φ(t; µ̂n, σ̂n)]}. (5.2.8)
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5.2.2 Large deviation approximations for Model (5.1.1)

Consider Model (5.1.1) first, where Xi
i.i.d.∼ N(µ, σ2) and (µ, σ) are unknown. The main

result is

Theorem 5.2.1 Fix (µ, σ) such that σ > 0. As n → ∞, if ηn → ∞ and ηn/
√
n → 0,

then

P (KS±n ≥ ηn) = (1 + o(1)) ·
(√

2π

π − 2
e−

2π
π−2

η2
n

)
,

and

P (KSn ≥ ηn) = (1 + o(1)) ·
(

2

√
2π

π − 2
e−

2π
π−2

η2
n

)
.

Theorem 5.2.1 give approximations for P (KSn ≥ ηn) (and similar approximations for
KS±n by

P (KSn ≥ ηn) ≈ min

{
1, 2

√
2π

π − 2
e−

2π
π−2

η2
n

}
(5.2.9)

In Section 5.4, we further investigate this approximation numerically, focusing on small
or moderately large ηn.

We remark that, first, it is not hard to see that the distribution of KSn and KS−n
does not depend on (µ, σ), so it is not surprising that all approximations above do not
involve (µ, σ). Second, we recall that in the case where (µ, σ) are known, then for any
η > 0,

P (KS−n ≥ η) = e−2η2
,

and when ηn →∞,
P (KSn ≥ ηn) ∼ 2e−2η2

n .

The inequalities we derive above are quite similar.

5.2.3 The tail probability of the KS-statistics with Model (5.1.2)

Consider Model (5.1.2) where Xi
i.i.d.∼ (1− δ)N(µ1, σ

2) + δN(µ2, σ
2). Recall that

µ = (1− δ)µ1 + δµ2, (1− δ)d1 = −δd2 = (µ2 − µ1) ≡ d0.

First, we figure out what is the right calibration for d0. Note that when both (µ, σ) are
unknown, the best way for testing µ1 = µ2 is to use the statistics based on the third
moment. By direct calculations,

1√
n

∑n
i=1X

3
i√

15σ̂3
≈ N(

√
nd3

0

δ(1− δ)(1− 2δ)√
15σ3

, 1). (5.2.10)

Assume
d0(1− 2δ) > 0,
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so that in the mixture model (5.1.2), the component with the smaller mass always has
a larger mean. Note this requires δ 6= 1/2. The case δ = 1/2 is similar, but the detailed
calculations are different, so we leave it to later. In light of (5.2.10), we calibrate with

τn = τn(δ, d0) =
√
nd3

0

δ(1− δ)(1− 2δ)√
15σ3

. (5.2.11)

Introduce a constant

a0 =

√
5

24π
, b0 = (7− 3π)a0,

Asymptotically, as τn →∞, the statistics KS−n and KSn “centered" at a0τn, and KS+
n

centered at
√

5
6πe
−3τn. As KS+

n centered at a smaller point, KSn is decided mostly by
KS−n .

Theorem 5.2.2 Fix (µ, σ) such that σ > 0. As n→∞, if τn →∞, we have that

E[KS]

a0τn
→ 1,

Theorem 5.2.3 Fix a > 0. As n→∞, if τn →∞ and τn/
√
n→ 0, then

P
(
KS−n ≥ aτn

)
∼

 1, a < a0,√
a−a0
a−b0

[√
2π
π−2e

− 2π
π−2

(a−a0)2τ2
n

]
, a > a0,

and

P
(
KSn ≥ aτn

)
∼

 1, a < a0,√
a−a0
a−b0

[√
2π
π−2e

− 2π
π−2

(a−a0)2τ2
n

]
, a > a0,

As a result, it is not hard to see that

lim
n→∞

{E[KS−n ]/(a0τn)] = 1.

Note that for the claim in the case of a < a0, the requirement of τn/
√
n → 0 can be

removed.

5.3 Proof of Theorem 5.2.1

In this section, we prove Theorem 5.2.1. The proofs for other theorems and lemmas are
in Section 6.4.
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Since the study is similar, we only discuss that of KS−n . Write W =

(
∑n

i=1Xi,
∑n

i=1X
2
i )′ for short. First, since the statistic KS−n is ancillary to the pa-

rameters (µ, σ), so it is independent of W . In particular,

P (KS−n ≥ η) = P
(
KS−n ≥ η|W = (0, n)′

)
.

We now evaluate P
(
KS−n ≥ η|W = (0, n)

)
. Recall KS−n =√

n sup−∞<t<∞{−[Fn(t) − Φ(t; µ̂n, σ̂n)]}. We note that given W = (0, n), (µ̂n, σ̂n) =

(0, 1), and so Φ(t; µ̂n, σ̂n) = Φ(t; 0, 1) ≡ Φ(t). Write for short

Gn(t) = nFn(t) =
n∑
i=1

1{Xi ≤ t}, qt = Φ(t)− η/
√
n, εn = η/

√
n.

We have

P
(
KS−n ≥ η|W = (0, n)′

)
= P

(√
n sup
−∞<t<∞

{−Fn(t) + Φ(t)} ≥ η
∣∣W = (0, n)′

)
= P

(
inf

−∞<t<∞

{
Fn(t)− Φ(t) + η/

√
n
}
≤ 0
∣∣W = (0, n)′

)
(5.3.12)

≡ P
(

inf
−∞<t<∞

{Gn(t)− nqt} ≤ 0
∣∣W = (0, n)′

)
. (5.3.13)

Let tj be the solution of

nqt = j, j = 1, . . . , n− 1.

Introduce the first boundary crossing time by

τ = inf{t : Gn(t) < nqt}.

Since (a) Gn(t) only take integer values, and (b) qt is strictly increasing in t, two key
observation are that {τ < ∞} = {t1, t2, . . . , tn−1} with probability 1, and that given
τ = tj , Gn(tj) = j. It follows that

P
(

inf
−∞<t<∞

{Gn(t)− nqt} ≤ 0
∣∣W = (0, n)′

)
=

n∑
j=1

P (τ = tj , Gn(tj) = j|W = (0, n)′)

=

n∑
j=1

P
(
τ = tj

∣∣Gn(tj) = j,W = (0, n)′
)
· P
(
Gn = j

∣∣W = (0, n)′
)
.

(5.3.14)

We now analyze P (τ = tj |Gn = j) for each 1 ≤ j ≤ n. These are the follow-
ing lemmas, which are proved in the appendix. In the literature, this is referred to
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“first-passage" probability, and how to approximate it is a well-known difficult prob-
lem. There are two noteworthy approaches, that by Durbin [Durbin 1985] and that by
Loader [Loader 1992]. In comparison, the latter is more accurate. In fact, by Loader
[Loader 1992, 11],

P
(
τ = tj |Gn(tj) = j,W = (0, n)′

)
= 1−

[
(
∂qt
dt

)−1µ(t, qt)
]∣∣∣∣
t=tj

+ o(1), (5.3.15)

where µ(t, qt) is defined in (5.7.24).

Lemma 5.3.1 For each 1 ≤ j ≤ n,

P
(
τ = tj

∣∣Gn(tj) = j
)

=
Φ(−tj) + tjφ(tj)(1 + t2j/2)√

Φ(tj)Φ(−tj)− φ2(tj)(1 + t2j/2)
εn(1 + o(1)).

Lemma 5.3.2 For each 1 ≤ j ≤ n,

P
(
Gn = j

∣∣W = (0, n)′
)

=
1√

2πn(Φ(tj)Φ(−tj)− φ2(tj)(1 + t2j/2))
e
− nε2n

2(Φ(tj)Φ(−tj)−φ2(tj)(1+t2
j
/2)) (1+o(1)).

Combining two lemmas, we have

P (KS−n ≥ η) = (1+o(1))
n−1∑
j=1

(
Φ(−tj) + tjφ(tj)(1 + t2j/2)

)
εn√

2πn(Φ(tj)Φ(−tj)− φ2(tj)(1 + t2j/2))3
e
− nε2n

2(Φ(tj)Φ(−tj)−φ2(tj)(1+t2
j
/2)) .

where the right hand side converges to a Riemann integral∫ 1/
√
εn

−
√
− log(εn)

√
nεnh(t)e−nε

2
ng(t)dt,

where

g(t) =
1

2

1

Φ(t)Φ(−t)− φ2(t)(1 + t2/2)
, h(t) =

Φ(−t)φ(t) + tφ2(t)(1 + t2/2)√
2π(Φ(t)Φ(−t)− φ2(t)(1 + t2/2))3

.

The claim now follows from the following lemma.

Lemma 5.3.3 As ηn →∞,∫ 1/
√
εn

−
√
− log(εn)

√
nεnh(t)e−nε

2
ng(t)dt =

√
π

π − 2
e−

2π
π−2

η2

(1 + o(1)).
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5.4 Simulations

We conducted a small-scale simulation study, investigating the tail behavior of KSn
and KS−n , as well as their means and standard deviations. Below, we discuss KS−n and
KSn separately.

5.4.1 The KS− statistics

The study in this section contains two experiments which we now discuss separately.
Experiment 1. In this experiment, for any fixed n, since the distribution of KS−n

does not depend on (µ, σ), we generate samples X1, X2, . . . , Xn from N(0, 1). For any
η > 0, we simulate the value of P (KS−n ≥ η) by repeatedly generating samples for a
large number of times, which can be thought of as the true value of P (KS−n ≥ η). At
the same time, we compute the approximation of P (KS−n ≥ η) given by Theorem 5.2.1.
The experiment contains two sub-experiments, Experiment 1a and 1b.

In Experiment 1a, we let n range in {50, 100, 500, 5000} and let η range between
0.2 and 1.3 with an increment of 0.01. For each combination of (n, η), we first sim-
ulate the value P (KS−n ≥ η) by 20,000 independent repetitions, and then obtain the
approximation given by Theorem 5.2.1 as above. The results are displayed in Figure
5.1. For large n (e.g. n ≥ 500), the approximation is impressively accurate. Figure 5.2
shows the ratio between empirical tail probability and approximated tail probability. It
is very close to 1 when η is large.

In Experiment 1b, we fix n = 500, and let η range from 0 to 1.5 with an increment
of 0.01. For each η, we simulate the value of P (KS−n ≥ η) using 104 independent
repetitions. We then use P (KS−n ≥ η) for all these η to compute the mean and standard
deviation of KS−n , which can be viewed as the true mean and true standard deviation.
At the same time, we compute P (KS−n ≥ η) for all η using the approximation formula
in (??), and then use the results to approximate the mean and standard deviation of
KS−n . The results are summarized in Table 5.1, which suggest that the approximations
for both the mean and for the standard deviation are reasonably accurate.

Mean Standard Deviation
True Value 0.5471 0.1528
Simplified Approx. 0.5634 0.1386

Table 5.1: Experiment 1b. Theoretical mean and standard deviation of KS−n (based
on simulations), and simplified approximated values (based on Theorem 5.2.1).

Experiment 2. We use the same setting as in Experiment 1, except that we generate
samplesX1, X2, . . . , Xn fromModel (5.1.2) instead of Model (5.1.1). Note that similarly,
since the distribution of KS−n does not depend on (µ, σ), we take (µ, σ) = (0, 1). At
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Figure 5.1: Experiment 1a. Comparison of P (KS−n ≥ η) (blue) and the approximation
in Theorem 5.2.1 (green). x-axis: η. y-axis: P (KS−n ≥ η).

the same time, we let δ = 1/3 and choose d0 such that

τn =
√
nd3

0

δ(1− δ)(1− 2δ)√
15

= (
5

6
)3
√

log(n).

The results are displayed in Figure 5.3, which suggest that the approximations are
satisfactory, especially when n ≥ 500. In Figure 5.4, we show the ratio of empirical
probability and approximated probability for n = 500 and n = 5000. The result is not
as good as model (5.1.1).

5.4.2 The KSn statistics

In this section, we investigate the performance of KSn. The study contains two exper-
iments, Experiment 3 and 4.
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Figure 5.2: Experiment 1a. Ratio of empirical tail probability to approximated
tail probability for n = 100 (blue) and n = 500 (green.) x-axis: η. y-axis:
Empirical/Approximated.

Experiment 3. The experiment contains two sub-experiments, Experiment 3a and
3b.

In Experiment 3a, we use the same setting as in Experiment 1a, except for that we
investigate KSn instead of KS−n . For each combination of (n, η), we report the true
value of P (KSn ≥ η) using 20, 000 independent simulations, as well as the approximated
value given by (5.2.9), respectively. The results are in Figure 5.5, which suggest that the
approximation is reasonably good. The ratio plot Figure 5.6 also shows the excellent
matching.

In Experiment 3b, we use the same setting as in Experiment 1b, except for that
we investigate the mean and standard deviation of KSn instead of those of KS−n . The
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Figure 5.3: Experiment 2. Comparison of P (KS−n ≥ η) (blue) and the associated
approximation given by Theorem 5.2.3 (green). x-axis: η. y-axis: P (KS−n ≥ η).

results are reported in Table 5.2. The results suggest that the approximation of mean
and standard deviation are reasonably good (note that n = 500).

Mean Standard Deviation
True Value 0.6299 0.1476
Approximation 0.6695 0.1199

Table 5.2: Experiment 3b. Theoretical mean and standard deviation of KSn (based on
simulations) and approximated values (based on (5.2.9)).

In Experiment 4, we use the same setting as in Experiment 2, except for that we
investigate KSn instead of KS−n . The results are displayed in Figure 5.7, which suggest
the approximations are reasonably good.
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Figure 5.4: Experiment 2. Ratio of empirical tail probability to approximated
tail probability for n = 500 (blue) and n = 5000 (green.) x-axis: η. y-axis:
Empirical/Approximated.

5.5 Case Study

5.5.1 Cardio Data

Why do we care about KS statistics instead of other statistics? Here we show the
comparison of KS statistic and third moment statistic for Cardio cancer data, to have
a look at the power and robustness for two statistics. In this data set, there are 44
healthy people, and 19 cardiovascular patients. For each people, the information of
20426 genes are recorded. Through these genes, most of them contain no information
about the disease, and only a small fraction of genes have signal. In data analysis, we
hope to recover as many as informative genes while we make only a few errors. So, as
we have some statistics to do goodness of fitting, we can evaluate the p-value for each
gene with the distribution of corresponding statistics under null hypothesis. Here, we
assume that under null hypothesis, each gene is Gaussian distributed.

For cardio data set, to find the null distribution for two statistics, we run simula-
tion. As n = 63, we take 10k samples, with 63 Gaussian distributed data points for
each sample. For each sample, we calculate the KS statistic and third moment, while
the mean is standardized to be 0 and variance is standardized to be 1. After we got
the distribution, we calculate the tail probability for statistics from data and simula-
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Figure 5.5: Experiment 3a. Comparison of P (KSn ≥ η) (blue) and the approximation
given in (5.2.9) (green). x-axis: η. y-axis: P (KS−n ≥ η).

tion. Figure 5.9 shows the corresponding fitting result for KS statistic and 3rd moment
statistic.

According to Efron’s idea, we should correct the parameters of statistics from em-
pirical data.

In Figure 5.9, we can find that the fitting of KS statistic is much better than 3rd
moment statistic. On the left figure, the two lines almost overlap, except the blue line
is a little right shifted, which is because of signals. On the right figure, the fitting is not
so good. The statistic from data is kind of far from the simulated distribution, which
means that the fitting is bad.

Interestingly, here we assume the gene distributed as Gaussian distribution when
they do not contain information, and the fitting result turns to be good. In fact, for
most cases, the null distribution is unknown, and probably not Gaussian distribution.
So, KS statistic turns to be much more robust than 3rd moment statistic. Even though
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Figure 5.6: Experiment 3a. Ratio of empirical tail probability to approximated
tail probability for n = 100 (blue) and n = 500 (green.) x-axis: η. y-axis:
Empirical/Approximated.

the hypothesis does not stand for some genes, the performance of KS statistic is also
similar to the case that the hypothesis stands, while for 3rd moment statistic, the result
changes much.

The fitting of distribution can also be observed from the qq plot, which is as figure
5.10.

In Figure 5.10, the same problem happens, that the 3rd moment statistic fitting is
not as robust as KS statistic.

As we zoom in the figure on the range [0, 0.1], which is usually the range for infor-
mative genes, we have the following figures. 5.10.

In figure 5.11, we can find some interesting things. First, both statistics can recover
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Figure 5.7: Experiment 4. Comparison of P (KSn ≥ η) (blue) and the approximation
given in Theorem 5.2.3 (green). x-axis: η. y-axis: P (KSn ≥ η).

some genes, as the blue line is lower than the red line at the beginning, which means
that the informative genes performed. Second, 3rd moment statistic is more powerful.
It recovers some genes and then go back to the line quickly, while the KS statistic is
always under the red line in left figure. At last, even 3rd moment statistic is powerful,
the fitting is bad, even in this small range. It is far away from red line around 0.1. So,
even though KS statistic is not as powerful as 3rd moment statistic, it is more robust,
which is better for real data. That’s why we choose KS statistic instead of moment
statistic.

5.5.2 Goodness of fit for multiple data sets

For real data analysis, the approximation of tail probability with this easy formula
(5.2.9) also fits data well. Here, we show that for micro-array data sets.

In micro-array data set, we have a set of n patients from two possible classes: normal
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Figure 5.8: Experiment 4. Theoretical mean and standard deviation of KSn (based on
simulations) and approximated values (based on Theorem 5.2.3).

or diseased. The class label for each patient is unknown and it is of interest to find out.
For each patient, a gene microarray chip is generated, with measurements on the same
set of p genes. Table 5.3 display three such data sets, the Leukemia data analyzed in
Golub et al (1999) ([Golub 1999]), the Colon cancer data analyzed in Alon et al (1999)
([Alon 1999]), and the Cardio data analyzed in [?]. In these examples, the number of
genes p is much larger than the sample size n. Also, only a few fraction of genes contain
information of classes, and the other genes have the same distribution for two classes.
As most genes are from null distribution, we can assume that the KS statistic from
the data is distributed as model (5.1.1), and compared the probability with (5.2.9).
Here we assume that the noise is Gaussian distributed, and the result shows that the
assumption works.
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Figure 5.9: Cardio data: On the left, we show the tail probability of KS statistics from
data (blue line) and simulation (green line). On right, we show the tail probability of
3rd moment statistics from data (blue line) and simulation (green line).
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Figure 5.10: Cardio data: On the left, we show the qq plot of KS statistics from data
(blue line) and simulation (green line). On right, we show the qq plot of 3rd moment
statistics from data (blue line) and simulation (green line).

We remark that it is necessarily to correct the mean and standard deviation of
{KSj}1≤j≤p, following Efron’s idea of choosing a null distribution ([Efron 2004]).

Calculate the tail probability for three data sets with corrected mean and standard
deviation. The comparisons of real data results and theoretical approximation for the
three data sets are shown in Figure 5.12, Figure 5.13, and Figure 5.14. With Efron’s
correction, the tail distribution of KS statistic for real data sets is very similar with our
approximation. It means that our approximation definitely can be used for real data
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Figure 5.11: Cardio data: On the left, we show the qq plot of KS statistics from data
(blue line) and simulation (green line). On right, we show the qq plot of 3rd moment
statistics from data (blue line) and simulation (green line).

Data Name Source n, # samples p, # features
Leukemia [Golub 1999] 72 3571
Colon [Alon 1999] 62 2000
Cardio [?] 63 20426

Table 5.3: Three examples of microarray data sets.

analysis when the data fits Gaussian assumption.

5.6 Discussion

The proof depends on (a) an accurate approximation of the first passage probability,
and (b) Borovkov and Rogozin approximation. Both approximations hold for general
exponential families. Therefore, we expect similar results can be extended to exponen-
tial families.

5.7 Proofs

In this section, we gives the proofs of all theorems and lemmas.
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Figure 5.12: Leukemia data. The left figure shows comparison of P (KS−n ≥ t) (blue)
and the approximation (5.2.9). The middle figure shows the comparison of exponential
term,

√
− log(P (KS > t)) for data (blue) and approximation (green). The right figure

shows the ratio of the exponential term between data and theory.
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Figure 5.13: Colon data. The left figure shows comparison of P (KS−n ≥ t) (blue)
and the approximation (5.2.9). The middle figure shows the comparison of exponential
term,

√
− log(P (KS > t)) for data (blue) and approximation (green). The right figure

shows the ratio of the exponential term between data and theory.

5.7.1 Proof of Lemma 5.3.1

By Loader [Loader 1992, (11) and Lemma B.2],

P
(
τ = tj |Gn(tj) = j,W = (0, n)′

)
= 1−

[
(
∂qt
dt

)−1µ(t, qt)
]∣∣∣∣
t=tj

+ o(1), (5.7.16)
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Figure 5.14: Cardio data. The left figure shows comparison of P (KS−n ≥ t) (blue)
and the approximation (5.2.9). The middle figure shows the comparison of exponential
term,

√
− log(P (KS > t)) for data (blue) and approximation (green). The right figure

shows the ratio of the exponential term between data and theory.

where µ(t, qt) is defined in (5.7.24). We now use Lemma 5.7.2, and it is easy to find
that

P
(
τ = tj

∣∣Gn(tj) = j
)

=
Φ(−tj) + tjφ(tj)(1 + t2j/2)√

Φ(tj)Φ(−tj)− φ2(tj)(1 + t2j/2)
εn(1 + o(1)).

So, the lemma is proved. �

5.7.2 Proof of Lemma 5.3.2

Consider P
(
Gn(tj) = j|W = (0, n)′

)
next. The following theorem is due to Borovkov

and Rogozin [Borovkov 1965] and can be found for example in [Woodroofe 1978].

Lemma 5.7.1 Consider an exponential family f(x; θ) of the form of

f(x; θ) = h(x) exp(< θ, x > −ψ(θ)), x = (x1, x2, · · · , xd).

Then the density for
∑n

i=1Xi = nx is

f
(n)
0 (x) = (1 + o(1)) · (2πn)|−d/2(ψ′′(θ̂)|)−1/2e−n`θ̂(x),

where θ̂ is MLE from sufficient statistics
∑n

i=1Xi = nx, and

`θ̂(x) =< θ̂ − θ, x > −(ψ(θ̂)− ψ(θ)).
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We now show the lemma. Write

P
(
Gn(tj) = j|W = (0, n)′

)
= P

(
Gn(tj) = j,W = (0, n)′

)
/P
(
W = (0, n)′

)
. (5.7.17)

Consider P
(
W = (0, n)′

)
first. Rewrite the density of N(µ, σ2) as

φ(x;µ, σ2) = exp
(
αy + βx+

β2

4α
− 1

2
log(−π

α
)
)
,

where
y = x2, α = − 1

2σ2
, β =

µ

σ2
. (5.7.18)

Using Lemma 5.7.1 gives

P
(
W = (0, n)′

)
= (1 + o(1)) · 1

2πn
√

2
en(1/2+α+β2/4α−log(−2α)/2). (5.7.19)

Next, we consider P
(
Gn(tj) = j,W = (0, n)′

)
. For any fixed t, we embed the above

normal density into a three-parameter exponential family

ft(x;α, β, δ) = exp(αx2 + βx+ δ1{x > t} − ψt(α, β, δ)), (5.7.20)

where

ψt(α, β, δ) =
β2

4α
− 1

2
log
(
−π
α

) + log(Φ(−2αt− β) + eδΦ(2αt+ β)
)
. (5.7.21)

For clarification, note that t a fixed number and is not a parameter here. Recall that
Φ(x) is the CDF of N(0, 1). Also, note that when δ = 0, ft(x;α, β, δ) ≡ φ(x;µ, σ).

Now, first, we let

qt = qt(η, n) = φ(t)− η/
√
n, ht = ht(α, β) = −

√
−2αt+

β√
−2α

, (5.7.22)

and let (α∗n(t), β∗n(t), δ∗n(t)) be the solution of the following equation system:
βΦ(ht)Φ(−ht)−

√
(1− βt)[qt − Φ(ht)]φ(ht) = 0,

α = (βt− 1)/2,

eδ = qt
1−qtΦ(−ht)/Φ(ht).

(5.7.23)

Second, we let

µ(t, qt) =
exp(α∗n(t)t2 + β∗n(t)t+ β∗n(t)2

4α∗n(t) −
1
2 log(−π/α∗n(t)))

Φ(
√
−2α∗n(t)t− β∗n(t)/

√
−2α∗n(t)) + eδ∗n(t)Φ(−

√
−2α∗n(t)t+ β∗n(t)/

√
−2α∗n(t))

,

(5.7.24)
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`(t) =
β̂t

2
+

1

2
log(1−β̂t)− β̂2

2(1− β̂t)
+(1−qt) log

1− qt
Φ(−ht(β̂))

+qt log
qt

Φ(ht(β̂))
, (5.7.25)

where,

ht(β̂) = ht(β)

∣∣∣∣
β=β̂

.

Last, we let ψ′′t (α∗n(t), β∗n(t), δ∗n(t)) be the 3× 3 Hessian matrix of ψt(α, β, δ), evaluated
at the point (α∗n(t), β∗n(t), δ∗n(t)), and let t0 = t0(η, µ̂n, σ̂n, n) be the solution of

Φ(t; µ̂n, σ̂n) = η/
√
n. (5.7.26)

For this exponential family, the sufficient statistics are (n − Gn(t),W ). Similarly,
applying Lemma 5.7.1 gives

P
(
Gn(tj) = j,W = (0, n)′

)
∼ (2πn)−3/2(|ψ′′t (α∗n(t), β∗n(t), δ∗n(t))|)−1/2 exp(−n`θ(x)),

(5.7.27)
where ψ′′t (α∗n(t), β∗n(t), δ∗n(t)) is the Hessian matrix of ψ at the point (α∗n(t), β∗n(t), δ∗n(t)).
α∗n(t), β∗n(t), and δ∗n(t) are MLE for α, β, δ. Inserting (5.7.19)-(5.7.27) into (5.7.17) and
using the definition of conditional probability, we have gives

P
(
Gn(tj) = j|W = (0, n)′

)
=

exp(− nε2n
2(Φ(tj)Φ(−tj)−φ2(tj)(1+t2j/2))

)√
2πn(Φ(tj)Φ(−tj)− φ2(tj)(1 + t2j/2))

(1 + o(1)).

(5.7.28)
�

The claim now follows from the following lemma and direct calculations.

Lemma 5.7.2 When εn = ηn/
√
n is very small, we have the following approximations

for MLE (α∗n(t), β∗n(t), δ∗n(t)) as
α∗n(t) = (β∗n(t)t− 1)/2,

eδ
∗
n(t) = 1−qt

qt

Φ(
t−β∗n(t)(t2+1)√

1−β∗n(t)t
)

Φ(
β∗n(t)(t2+1)−t√

1−β∗n(t)t
)
,

β∗n(t) = − φ(t)
Φ(t)Φ(−t)−(t2/2+1)φ2(t)

ε+O(ε2).

Also, the other terms can be approximated as

2`(t) =
1

Φ(t)Φ(−t)− φ2(t)(1 + t2/2)
ε2n +O(ε3n),

φ(t)− µ(t, qt) = φ(t)
Φ(−t) + tφ(t)(1 + t2/2)√

Φ(t)Φ(−t)− φ2(t)(1 + t2/2)
εn +O(ε2n),

and
det |ψ′′(α∗n(t), β∗n(t), δ∗n(t))| = 2(Φ(t)Φ(−t)− (t2/2 + 1)φ2(t)) +O(ε2n).

Here, α∗n(t), β∗n(t) and δ∗n(t) are functions of n and t.
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Lemma 5.7.2 is proved later in this section. �

5.7.3 Proof of Lemma 5.3.3

We want to analyze ∫ 1/
√
εn

−
√
− log(εn)

√
nεnh(t)e−nε

2
ng(t)dt,

where εn = ηn/
√
n and

g(t) =
1

2

1

Φ(t)Φ(−t)− φ2(t)(1 + t2/2)
, h(t) =

Φ(−t)φ(t) + tφ2(t)(1 + t2/2)√
2π(Φ(t)Φ(−t)− φ2(t)(1 + t2/2))3

.

Lemma 5.7.3 As a function of t, Φ(t)Φ(−t)−φ2(t)(1+t2/2) is symmetric and positive
in t ∈ (−∞,∞) and is strictly decreasing in (0,∞), reaches it maximum at t = 0.

The function g(t) of t is positive in t ∈ (−∞,∞), and the first derivative is 0 at
t = 0.

Proof. It is sufficient to prove the monotonicity. In fact, first, the symmetry follows
trivially. Second, by Mills’ ratio, Φ(t)Φ(−t)− φ2(t)(1 + t2/2) & Φ(−t) as t → ∞, and
the positivity follows by combining this with the monotonicity.

We now show the monotonicity. By direct calculations, for any t ≥ 0, the derivative
of the function at t is

φ(t)[(t+ t3)φ(t)− (2Φ(t)− 1)].

It can be shown that the term in the bracket is strictly monotonely decreasing in [0,∞),
with a maximum of 0 reached at t = 0, and so φ(t)[(t + t3)φ(t) − (2Φ(t) − 1)] < 0 for
all t > 0. This gives the claim.

For h(t), it is clear that h(t) > 0, and with calculation, h′(0) = 0. �
We now come back to the integration. Note that for |t| ≥ 1, there is a constant

C > 0 such that
g(t) ≥ g(1) + C|t− 1|.

This can be shown by using the monotonicity of g and that

lim
t→1+

g(t)− g(1)

t− 1
= g′(1) > 0, lim

t→∞

g(t)− g(1)

t− 1
=∞.

Now, write for short bn = a
−5/12
n so that bn → 0, anb3n → 0, but anb2n → ∞. We write

the integral as
I + II + III,
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where

I =

∫
|t|≤bn

√
anh(t)e−ang(t)dt, II =

∫
bn≤|t|≤1

√
anh(t)e−ang(t)dt, III =

∫
|t|>1

√
anh(t)e−ang(t)dt.

First, note that h(t) can be bounded by some constant as h(t)→ 0 and it is continuous.
For sufficiently large n, we have∫

t≥1

√
anh(t)e−an[g(1)+C|t−1|]dt ≤

√
ane
−ang(1)

∫
t≥1

h(t)e−anC|t−1|dt ≤
√
anCe

−ang(1),

and∫
t≤−1

√
anh(t)e−an[g(1)+C|t−1|]dt ≤

√
ane
−ang(1)

∫
t≤−1

e−anC|t−1|+log h(t)dt ≤
√
anCe

−ang(1).

So we have that
III ≤

√
anCe

−ang(1).

Second, as h(t) is continuous function on [−1,−bn] and [bn, 1], it is bounded by some
constant C. Also, using monotonicity of g(t) and basic calculus, for sufficiently large n,

II ≤ 2C
√
ane
−ang(bn) ≤

√
anCe

−an[g(0)+g′′(0)b2n/2+O(b3n)],

and so
II . C

√
ane
−ang(0)−g′′(0)anb2n/2.

Last,

I =

∫ bn

−bn

√
anh(t)e−ang(t)dt =

√
ane
−ang(0)

∫ bn

−bn
(h(0) +O(t2))e−ant

2g′′(0)/2+O(anb3n)dt.

By the choice of bn and that g(1) > g(0), it is seen that

I ∼
√
an
√

2πh(0)e−ang(0)/
√
ang′′(0) =

√
2πh(0)e−ang(0)/

√
g′′(0), II+III = o(1)·I.

Combining these gives that the integral∫ 1/
√
εn

−
√
− log(εn)

√
nεnh(t)e−nε

2
ng(t)dt ∼

√
2πh(0)e−ang(0)/

√
g′′(0).

In our case, we have that an = nε2n = η2
n. To introduce the result of integration, we

need h(0), g(0), and g′′(0). With fundamental calculation, we have that

g(0) =
2π

π − 2
, g′′(0) =

4π

(π − 2)2
, h(0) =

√
4π

(π − 2)3/2
.
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Introduce these terms in, and we have the one sided probability as

P (KS−n > ηn) ≤
√

2π

π − 2
e−

2π
π−2

η2
n , ηn →∞.

So, the two-sided boundary crossing probability is

P (KSn > ηn) ≤ 2

√
2π

π − 2
e−

2π
π−2

η2
n , ηn →∞.

�

5.7.4 Proof of Lemma 5.7.2

To prove this problem, we go over the terms one by one.
First, let’s have a look at the MLE. To solve the MLE, we have to solve the equation

system (5.7.23) as following:
βΦ(ht)Φ(−ht)−

√
(1− βt)[qt − Φ(ht)]φ(ht) = 0,

α = (βt− 1)/2,

eδ = 1−qt
qt

Φ(−ht)/Φ(ht).

Introduce the second equation α = (βt− 1)/2 into ht(α, β), and we got

ht(β) = ht(α, β) =
β(t2 + 1)− t√

1− βt
. (5.7.29)

So the first equation becomes an equation about β only. The main problem is to
calculate β from the first equation. Note that when εn = 0, the first equation becomes

βΦ(ht)Φ(−ht)−
√

1− βt[Φ(t)− Φ(ht)]φ(ht) = 0,

and the solution is β = 0 as ht = t when β = 0. So we guess that, when there is a small
perturbation εn, the impact on β would be a small perturbation of β from 0. Based
on the idea, we express the first equation by Taylor expansion. The corresponding
expression is

β(Φ(−t)Φ(t) + β(t2/2 + 1)φ(t)(Φ(t)− Φ(−t)))−
√

1− βt(Φ(t)− εn − Φ(t) + β(t2+1)√
1−βt φ(t))(φ(−t) + β(t2/2+1)√

1−βt tφ(t)) = 0.

Simplify it, and drop off the second order terms, we got the simplified result as

βΦ(−t)Φ(t)− φ(t)(β(t2/2 + 1)φ(t)− εn) +O(ε2n) = 0,

so the approximated solution is

β∗n(t) = − φ(t)

Φ(t)Φ(−t)− (t2/2 + 1)φ2(t)
εn.
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With the expression of β∗n(t) and the two equations in the equation system, we get the
approximation of α∗n(t) and δ∗n(t) as{

α∗n(t) = (β∗n(t)t− 1)/2,

eδ
∗
n(t) = 1−qt

qt

Φ(−ht(β∗n(t)))
Φ(ht(β∗n(t))) .

So the result about MLE is proved.
Now, from MLE, we could go on to calculate `(t). The equation for `(t) is

`(t) = (α+1/2)+δ(1−qt)+ψ(α = 1, β = 0)−ψ(α, β)−log(Φ(−ht(α, β))+eδΦ(ht(α, β)))

Introduce α∗n(t) = (β∗n(t)t − 1)/2 and eδ∗n(t) = 1−qt
qt

Φ(−ht(β∗n(t)))
Φ(ht(β∗n(t))) , and we get `(t) at the

point (α∗n(t), β∗n(t), δ∗n(t)) as

`(t)|α∗n(t),β∗n(t),δ∗n(t) =
β̂nt

2
+

1

2
log(1−β̂nt)−

β̂n
2

2(1− β̂nt)
+(1−qt) log

1− qt
Φ(ht(β∗n(t)))

+qt log
qt

Φ(−ht(β∗n(t)))
.

The first derivative of `(t) about β is

∂`(t)

∂β
=
β(βt3 − 2t2 + 2βt− 2)

2(βt− 1)2
− ∂ht(β)

∂β
φ(β − t)( 1− qt

Φ(β − t)
− qt

Φ(t− β)
),

and
∂`(t)

∂εn
= log

1− qt
qt

Φ(−ht(β))

Φ(ht(β))
.

When β = 0, we got that ∂`(t)
∂β = 0, and ∂`(t)

∂εn
= 0, so the first order terms cancel.

Calculate the second order term, we have that

∂2`(t)

∂β2
|(0,0) = −(t2/2 + 1)

(t2/2 + 1)2φ2(t)

Φ(−t)Φ(t)
,

∂2`(t)

∂β∂εn
|(0,0) =

φ(t)

Φ(t)Φ(−t)
(t2/2 + 1),

and
∂2`(t)

∂ε2n
|(0,0) =

1

Φ(t)Φ(−t)
.

So, we got an approximation for `(t), which is

2`(t) =
((t2/2 + 1)φ(t)β∗n(t)− εn)2

Φ(−t)Φ(t)
− (t2/2 + 1)β∗n(t)2 +O(ε3n)

=
1

Φ(t)Φ(−t)− φ2(t)(1 + t2/2)
ε2n +O(ε3n).

The result for `(t) is proved.
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The third term is φ(t)− µ(t, qt). Let’s have a look at the approximation of it. The
exact for for µ(t, qt) is

µ(t, qt) =
exp(αt2 + βt+ β2

4α −
1
2 log(−π/α))

Φ(−ht(α, β)) + eδΦ(ht(α, β))
.

Introduce the MLE α∗n(t), β∗n(t), and δ∗n(t) in the formula, we have

µ(t, qt)|α∗n(t),β∗n(t),δ∗n(t) =
qt

Φ(−ht(β∗n(t)))
φ(ht(β

∗
n(t))).

Try to simplify it, notice that

ht(β) =
β(t2 + 1)− t√

1− βt
= −t+ β(1 + t2/2) +O(β2),

so we have

µ(t, qt) =
Φ(t)− εn

Φ(t)− β(1 + t2/2)φ(t)
[φ(t) + tφ(t)β(1 + t2/2)]

= φ(t)[1− εn
Φ(t)

+ β(1 + t2/2)
φ(t)

Φ(t)
+ βt(1 + t2/2)].

So, the approximation for φ(t)− µ(t, qt) is

φ(t)− µ(t, qt) =
φ(t)

Φ(t)
εn − φ(t)(t2/2 + 1)(

φ(t)

Φ(t)
+ t)β∗n(t)

= φ(t)
Φ(−t) + tφ(t)(1 + t2/2)√

Φ(t)Φ(−t)− φ2(t)(1 + t2/2)
εn +O(ε2n).

The most complicated term is the Hessian matrix of ψ(α, β, δ). According to delicate
calculation, we could find each element is

∂2ψ(α, β, δ)

∂α2
=
α− β2

2α3
+

(−β/2α+ t)2(eδ − 1)2φ2(ht(α, β))

2α(Φ(−ht(α, β)) + eδΦ(ht(α, β)))2

+
φ(ht(α, β))(eδ − 1)((t− β

2α)2(t+ β
2α) + 3β

4α2 − t
2α)

√
−2α(Φ(−ht(α, β)) + eδΦ(ht(α, β)))

,

∂2ψ(α, β, δ)

∂α∂β
=

β

2α2
+

(eδ − 1)(φ(ht(α,β))√
−2α

− ht(α, β)φ(ht(α, β)))

−2α(Φ(−ht(α, β)) + eδΦ(ht(α, β)))
,

∂2ψ(α, β, δ)

∂α∂δ
=

(t− β
2α)eδφ(−ht(α, β))

√
−2α(Φ(−ht(α, β)) + eδΦ(ht(α, β)))

−
eδΦ(ht(α, β))(t− β

2α)(eδ − 1)φ(ht(α, β))
√
−2α(Φ(−ht(α, β)) + eδΦ(ht(α, β)))2

,
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∂2ψ(α, β, δ)

∂β2
= − 1

2α
+

(eδ − 1)2φ2(−ht(α, β))

2α(Φ(−ht(α, β)) + eδΦ(ht(α, β)))2
+

−ht(α, β)φ(−ht(α, β))(eδ − 1)√
−2α(Φ(−ht(α, β)) + eδΦ(ht(α, β)))

,

∂2ψ(α, β, δ)

∂β∂δ
=

eδφ(ht(α, β))√
−2α(Φ(−ht(α, β)) + eδΦ(ht(α, β)))

− eδΦ(ht(α, β)φ(ht(α, β)eδ − 1))√
−2α(Φ(−ht(α, β)) + eδΦ(ht(α, β)))2

,

∂2ψ(α, β, δ)

∂δ2
=

eδΦ(ht(α, β)Φ(−ht(α, β)))

(Φ(−ht(α, β)) + eδΦ(ht(α, β)))2
.

With these terms we have the Hessian matrix. Introduce the MLE approximation
(α∗n(t), β∗n(t), δ∗n(t)), we get that the determinant for it is

det |ψ′′(α∗n(t), β∗n(t), δ∗n(t))| = 2(Φ(t)Φ(−t)− (1 + t2/2)φ2(t)) +O(ε2n).

Now, all the terms are calculated, and the result is proved. The approximation here
is important, as we can also use it for algorithms. �

5.7.5 Proof of Theorem 5.2.2

For model (5.1.2), note that µ̂ and σ̂ changes the location and scale only, which does
not impact the distribution of KS statistic. So, without loss of generality, we assume
that

∑n
i=1Xi = 0,

∑n
i=1X

2
i = n.

Lemma 5.7.4 When the data is distributed under model (5.1.2), with probability 1 +

o(1/n), the corresponding KS statistic can be approximated by

KSn =
√
n sup
−∞<t<∞

|Fn(t, Y )− Φ(t; µ̂n,y, σ̂n,y)− φ(t; µ̂n,y, σ̂n,y)

√
15

6
τ(1− t2)/

√
n+O(µ4))|,

where Y = Φ−1(F (t)), which is a sample from standard normal distribution.

Now we try to find the expectation of KS statistcs. According to this lemma, we
have that

KSn ≤
√
n sup
−∞<t<∞

|Fn(t, Y )−Φ(t; µ̂n,y, σ̂n,y)|+ sup
−∞<t<∞

|φ(t; µ̂n,y, σ̂n,y)

√
15

6
τ(1−t2)|+O(

√
nµ4).

The last term
√
nµ4 → 0 as n→∞, so we can ignore it. The first term is the standard

KS statistic, where we have found the mean around 0.64, and maximum around 1.4.
The second term will achieve maximum at t = 0, which is a0τn. So, as τn → ∞, the
second term would be the most important, and we have that

E[KSn] ≤ C1 + a0τn, E[KSn] ≥ −C1 + a0τn,

where C1 is the expectation of KS statistics under model (5.1.1), which is a constant
around 0.6.
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So we have
−C1

a0τn
+ 1 ≤ E[KSn]/a0τn ≤

C1

a0τn
+ 1,

which means that E[KSn]
τn

→ 1 when τn →∞.
Similarly, we can find the center for KS+

n and KS−n . �

5.7.6 Proof of Theorem 5.2.3

For the second claim, we also use Lemma 5.7.4 to calculate. According to this lemma,
the calculation the tail probability for KS statistic under model (1.2) is similar with the
KS statistic under model (1.1), with boundary at qt = Φ(t)−η/

√
n+

√
15
6 τ(1− t2)/

√
n.

Recall that a = ηn
τn
, then we have the boundary as

qt = Φ(t)− (1−
√

15

6
(1− t2)φ(t)/a)ηn/

√
n.

Now, there are two possible behavior of a.

• Case 1: when a < a0, then qt < Φ(t) over an open interval containing t = 0. So,
Loader’s approximation could not be applied to this case.

• Case 2: when a > a0, we have some relevant results, with the proof very similar
to KS statistic under model (1.1).

For case 1, we have that

KSn ≥ −
√
n sup
−∞<t<∞

|Fn(t, Y )−Φ(t; µ̂n,y, σ̂n,y)|+ sup
−∞<t<∞

|φ(t; µ̂n,y, σ̂n,y)

√
15

6
τ(1−t2)|+O(

√
nµ4).

The maximum of the second term is a0τn, so the probability that KSn ≤ ηn is smaller
than the probability that

P (
√
n sup
−∞<t<∞

|Fn(t, Y )− Φ(t; µ̂n,y, σ̂n,y)| ≥ ηn − a0τn) = 2

√
2π

π − 2
e−

2π
π−2

(ηn−a0τn)2
.

When ηn →∞, the probability for it goes to 0. So we have that P (KSn ≥ ηn)→ 1.
For case 2, where a > a0, introduce it into Lemma 5.7.2. Set the new boundary as

qt = Φ(t; µ̂n,y, σ̂n,y)−
ηn√
n

+ φ(t; µ̂n,y, σ̂n,y)

√
15

6
(1− t2)τn/

√
n,

then apply the similar proof as Theorem 5.2.1. As the boundary has changed, we
have new estimation of conditional probability P (G(tj) = j|W = (0, n)′) and the first
passage probability. Let εn = ηn/

√
n, we have that

2`(t) =
(1−

√
15
6 (1− t2)φ(t)/a)2

Φ(t)Φ(−t)− φ2(t)(1 + t2/2)
ε2n +O(ε3n),
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φ(t)−µ(t, qt) = φ(t)((1−
√

15

6
(1−t2)φ(t)/a))

Φ(−t) + tφ(t)(1 + t2/2)√
Φ(t)Φ(−t)− φ2(t)(1 + t2/2)

εn+O(ε2n),

and
det |ψ′′(α∗n(t), β∗n(t), δ∗n(t))| = 2(Φ(t)Φ(−t)− (t2/2 + 1)φ2(t)) +O(ε2n).

So, the probability becomes that

P (KS−n ≥ ηn) =

∫ +∞

t:qt>0

φ(t)− µ(t, qt)√
π det |ψ′′(α∗n(t), β∗n(t), δ∗n(t))|

e−n`(t)(1 + o(1)),

In this case, note that we still have `(t) as symmetric and positive function. Also, `(t)
achieves the minimum at t = 0, and `(t) ≈ 1

Φ(−t) →∞ when t→∞. When 0 < t ≤
√

3,
`(t) is monotone decreasing function, and when t >

√
3, the minimum of `(t) is much

larger than `(0). So, we can decompose the integration into I + II + III, similar as
proof of theorem 5.2.1. So, if we set

h(t) =
φ(t)− µ(t, qt)√

π det |ψ′′(α∗n(t), β∗n(t), δ∗n(t))|
=
φ(t)((1−

√
15
6 (1− t2)φ(t)/a))Φ(−t) + tφ(t)(1 + t2/2)√

2π((Φ(t)Φ(−t)− (t2/2 + 1)φ2(t)) +O(ε2n))3
,

we have that
P (KS−n ≥ ηn) ∼

√
2πh(0)e−g(0)η2

n/
√
g′′(0).

As h(0) =
√

2
√

2π
(π−2)

√
π−2

(1−
√

5
24π/a), g(0) = 2π

π−2(1−
√

5
24π/a)2, and g′′(0) = 4π

(π−2)2 (1−√
5

24π/a)(1− (7− 3π) 5
24π/a), so the one side result is

P (KS−n ≥ ηn) =

√
π

π − 2

√
ηn −

√
5/24πτn

ηn − (7− 3π)
√

5/24πτn
e−

2π
π−2

(ηn−
√

5/24πτn)2

(1 + o(1)).

Recall that a0 =
√

5/24π, b0 = (7− 3π)a0, we have that

P (KS−n ≥ ηn) =

√
π

π − 2

√
a− a0

a− b0
e−

2π
π−2

(a−a0)2τ2
n(1 + o(1)).

For KS+
n , it is a little different. as the part −φ(t)

√
15
6 τ(1 − t2) would be the most

important part, we find that it is smaller than 0 when t = 0. So, the maximum
would achieved when t is large. According to calculation, the maximum will be around
t = ±

√
3, and the corresponding result is

√
5

6πe
−3τn, which is much smaller than KS−n .

So, the probability that KS+
n > η will be o(1) order compared to KS−n , and then we

have the probability for KSn is the same with KS−n . �
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Fundamental Limits for Matrix
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6.1 Introduction

Nowadays, high dimensional data analysis is a topic of broad interest in both statistic
and machine learning. For the high dimensional data, many classical problems have
new challenges for statisticians. Take the clustering problem as an example. In classical
setting, we solve the clustering problem easily by summing over the features over one
sample. When the dimension is low, the noise is weak, and then the sign of summation
can differentiate two groups. However, it won’t happen in high dimensional data, as
the noise will be too strong. This circumstance is called "Curse of Dimensionality". In
my thesis, I studied the problem for the clustering problem, signal recovery problem,
and detection problem for high dimensional data.
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For simplicity, we assume a two-class clustering model. Assume that there are two
clusters in the model. In other words, all the samples can be assigned with labels
Y1, Y2, . . . , Yn, where Yi ∈ {−1, 1} without loss of generality. For each sample i, the
information of feature is recorded in a p × 1 vector Xi. Here, Yi are unknown. The
problem here is to recover Y . In many applications (Genomics, e.g.), Big Data are of
interest, which means that both p and n are large, and p� n.

Regard to this model, we have the sparsity assumption. Sparsity means that only
a few features contain information, and most features act as noise. However, we don’t
know which are useful features. So there are three main problems regarding to this
model for different applications. First, how to recover the labels Yi? Second, how to
recover the features that contain information? Third, how to detect whether there
is information in X or not? We call them Clustering problem, Signal Recovery
problem, and Detection problem. In our analysis, we focus on clustering problem.
The signal recovery problem and detection problem will be referred in Section 6.3. In
all, we want to recover the information from the noisy data matrix, that’s why it is
called matrix recovery problem.

Nowadays, there are many methods to solve the clustering problems. For example,
hierarchical clustering, k-means, exhausted search and so on are all generally used
classical clustering methods. For high dimensional data, new versions of these classical
clustering methods are also be found. With all these methods, a natural question comes
out: how good can we do? By intuition, when the signal is too weak and sparse, any
method will fail. Otherwise, when the signal is very strong, any method will work.
For an appropriate range of signal, only some method work. So, what is the boundary
between the case that any method fail and some method work? At what level, all of
the methods will fail? On the contrary, which method will work at the boundary? Is
there any algorithm for this method? That’s the problem we are interested in.

6.1.1 Asymptotic rare and weak model

In the two-class clustering model for high dimensional data, it is assumed that the infor-
mation is included in a low rank model compared to the high dimensional data matrix
for sparsity. In the simplified clustering case, where we take the sample information
as an n × 1 vector `, where `i ∈ {−1, 1} is the label for samples. Assume that ` is
Bernoulli sample from {−1, 1}, with prameter δ. The feature information is taken as
a p × 1 vector µ, where µj ∈ {η, 0}, and η is some constant. So, we assume that the
signal is either a constant or 0, which is a simplified case. In this case, the data matrix
X is the rank 1 information matrix `µ′ covered by an n × p noise matrix. When we
take the noise as standard normal noise, the model can be written as

X = `µ′ + Z, Zij
i.i.d∼ N(0, 1),
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where

`i = 2Bernoulli(δ)− 1, µj =

{
η, with prob ε,
0, with prob 1− ε.

According to the sparsity of the model, we take ε → 0 as p → ∞, which means that
the number of useful features is asymptotically sparse. Also, we take η → 0 as p→∞,
which means that the signal is asymptotically weak. With these two properties, this
model is called “Asymptotic Rare and Weak (ARW)” model. Note that the definition
of ARW model here is different from what we defined in Chapter 3.

More specifically, we use p as the driving asymptotic parameter, and say that we
have

n = np = pθ, ε = εp = p−ϑ, η = ηp = p−β.

This is the model for this paper.
Under this model, the 3 problems can be described as

• Clustering Problem: recover `;

• Signal Recovery Problem: recover µ;

• Detection Problem: test whether `µ′ = 0 or not.

For problem (∗), we hope to find a boundary f∗(ϑ, θ), such that when β > f∗(ϑ, θ), the
problem is impossible to solve. When β < f∗(ϑ, θ), there is some method to solve the
problem. Now, even though the problem can be solved, the method might be NP-hard,
and we also discuss it in our paper.

Today, we want to focus on clustering problem. For the simplified ARW model, the
signal recovery problem and detection problem are also solved, which will be discussed
in the extention section.

6.1.2 Fundamental Limit for Clustering Problem under ARW model

Say that ˆ̀ is the estimation of ` from some method. As we have the estimation ˆ̀, we
define the error rate as the Hamming distance,

Hamm(ˆ̀;ϑ, r, θ) =
1

n

n∑
i=1

E[`i 6= ˆ̀
i].

Obviously, even in the worst case where there is no information about `, the error rate
will be no larger than 1/2. When Hamm(ˆ̀) → 1/2 for any method, we say that it is
the impossible area. When the method works, Hamm(ˆ̀) should go to 0 as p → ∞.
Now we want to find the boundary between the two cases.

How to find the boundary? There are two statements to confirm, which are
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(a) Possibility: When the signal strength is larger than the boundary strength, there
is some method with error rate going to 0;

(b) Impossibility: When the signal strength is smaller than the boundary strength,
any method would have error rate going to 1/2.

To prove the impossibility, we use L1 distance. With intuition, when the distance
between two hypotheses goes to 0 when p → ∞, then any method will fail. So, the
calculation of L1 distance will give a lower bound of signal strength for impossible area,
which means an upper bound of β.

Now that we have the lower bound of signal strength from L1 distance, we want to
find an upper bound. For every method, we have a bound. When the signal strength
is at that bound, there is a method that solve the clustering problem. So, it is an
upper bound of signal strength. If an upper bound from some method meets the lower
bound from L1 distance, then the boundary is found out. Also, the method works at
the boundary is also found out.

With the idea and some proof, we get the main theorem.

Theorem 6.1.1 In the setting above, the error rate of recovering label ` goes to 1/2
for any method when

β > f clu(ϑ, θ),

and either the exhaust search or classical method would have error rate go to 0 when

β < f clu(ϑ, θ),

where

f clu(ϑ, θ) =


1
2 − ϑ, ϑ < 1−θ

2 ,

θ/2, 1−θ
2 < ϑ < 1− θ,

1−ϑ
2 , ϑ > 1− θ.

In the theorem, we got the boundary for clustering problem under our model, and the
method at the boundary. We will introduce the two methods in Section 6.2.

6.1.3 Related Works

Compare the result with the analysis of combinatorial testing
problem([Addario-Berry 2010]). In that paper, when the size of set is given, for
all the K sets, the signal strength is required to be in the order of µ ∼

√
p/K2.

However, in that setting, the label effect is not considered in. It could be extended
here.
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6.1.4 Content

In Section 6.2, we show the proof for main theorem from two aspects. We also extend
the result to signal recovery problem and detection problem under ARW model, with
the corresponding result, in Section 6.3.

6.2 Main Proof

There are two statements to prove here. First, when β > f clu(ϑ, θ), the Hamming
distance will go to 1/2. Second, when β < f clu(ϑ, θ), the clustering error rate for either
exhaust search or classical clustering will go to 0.

We prove them in following sections.

6.2.1 Lower Bound

Assume we know the labels for all but one samples, and we want to find the label
for that sample, then it is a classification problem. There is more information in the
classification problem. So, if we cannot solve the classification problem, then we cannot
solve the clustering problem. According to the analysis, we calculate the L1 distance
for the classification problem.

Say that ˜̀ is the true label for X2, · · · , Xn, which is an (n − 1) × 1 vector. Now
we want to calculate the probability density function for X when the label of X1 is 1
and -1. These two cases are symmetric. So the problem is equivalent with whether
the distance goes to 0, which is the distance between the pdf of X when the label of
X1 is 1 and 0. In calculation, there are two cases. When the signal is sparse, we use
Cauchy ineuqality to decompose the integral of L1 distance into the integral over X,µ
and X1, µ. Then, by direct calculation we can find the bound of L1 distance. When
the signal is dense, we have to use Hellinger distance to control L1 distance, and then
apply similar method as classication problem ([Jin 2009]) to find the bound.

As a result, we get the following lemma. The detailed proof can be found in Section
6.4.

Lemma 6.2.1 Under ARW model, the error rate of recovering label ` goes to 1/2 for
any method when

β > f clu(ϑ, θ),

where

f clu(ϑ, θ) =


1
2 − ϑ, ϑ < 1−θ

2 ,

θ/2, 1−θ
2 < ϑ < 1− θ,

1−ϑ
2 , ϑ > 1− θ.

The proof of lower bound indicates us to find possible methods according to whether
the signal is dense or sparse, which is the idea in upper bound.
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6.2.2 Upper Bound

Now, with the lower bound, we hope that we can find some method that meet the lower
bound. For any method, there is some area that the method would work, which is the
upper bound for our problem. If there is some method, such that the bound for it meets
the lower bound, then we can say that the boundary is exactly the boundary of possible
area and impossible area.

Is there some method that just meets the lower bound? Luckily we found it. It
differs according to the sparsity of signal. When the signal is sparse, we use exhaust
search to find the true label and signals. When the signal is dense, the true set of signal
is not so important, and we use classical method to find the true label.

6.2.2.1 Classical method

When we say classical method, we mean that we estimate ` by

ˆ̀
i = sgn[

p∑
j=1

Xij ].

As the signal is dense, the noise generated by
∑p

j=1Xij cannot cover the signal, so the
sign of it will indicate the label of Yi. That’s the idea of classical method.

According to our assumption, the summation of Xij over j is a normal variable
with variance as p and mean as η ×#signals. When the mean is much larger than the
standard deviation, the classical method will work. Some calculation shows that we
need η > 1√

pε to make sure that the classical method works. That’s the boundary for
classical method.

Introduce the assumption that ηp = p−β and εp = p−ϑ, the condition η > 1√
pε is

equivalent with β < 1/2− ϑ, which meets the lower bound when ϑ < 1−θ
2 .

6.2.2.2 Exhaust Search

For the approach of exhaust search, search over all the possible combinations of signals.
Without loss of generality, assume that we know the number of signals, as k = pε. Let
ν be a p× 1 vector, where ‖ν‖0 = k. When ν ′µ = 0, then Xν is noise, and there is no
information about `. When ν = µ, then the sign of Xν indicates the label vector `. Let
ˆ̀= sgn(Xν), then ˆ̀′Xν will be very large when ν is truly discovered.

According to the idea, there are three steps in exhaust search approach.

• Calculate ‖Xν‖1 =
∑n

i=1 |(Xν)i| over all possible ν with ‖ν‖0 = k;

• Find ν̂ that maximizes ‖Xν‖1;

• ˆ̀= sgn(Xν̂).
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When does exhaust search work? Given the size k, then the number of all possible
ν is about pk. When ν ′µ = 0, then X ′ν is standard multivariate normal distribution.
According to the properties of folded normal distribution, the mean of it is n

√
2kπ, and

the variance of it is π−2
π nk. When we got ν as the true signal, then the distribution

of statistic is N(nkη, nk). With some calculation, we need that η > max{ 1√
n
, 1√

k
}.

Introduce k = pε, n = pθ, ε = p−ϑ, and η = p−β , we find that we need

β <

{
θ
2 ,

1−θ
2 < ϑ < 1− θ;

1−ϑ
2 , ϑ > 1− θ. (6.2.1)

It meets the other part of lower bound we found in Lemma 6.2.1.
According to the analysis and calculation, we have the following lemma about the

upper bound of impossible area.

Lemma 6.2.2 Under ARW model, the error rate of recovering label ` goes to 0 when

β < f clu(ϑ, theta).

6.3 Some Extensions

6.3.1 Signal Recovery Problem

Theorem 6.3.1 In the setting above, the features with signal µ 6= 0 could be discovered
when

β > ρsigθ (ϑ),

and the sum of type I error and type II error would go to 1/2 when

β < ρsigθ (ϑ),

where

ρsigθ (ϑ) =

{
θ/2, ϑ < 1− θ
1+θ−ϑ

4 , ϑ > 1− θ

In Amini and Wainwright ([Amini 2008]), the recovery of µ is studied. The setting
is similar but a little different. The number of nonzero signals is known as k, and
X =

√
k
η

√
βvµT +

√
ΓG, where G is noise and vi ∼ N(0, 1), and β is a constant relative

with Γ. When G = I, β could be any positive number. In this setting, we have that

XTX = β
k

η2
vT vµµT +GGT +

√
βk

η
GT vµT +

√
βk

η
µvTG.

In this paper, it is stated that with Semi-definite programming, µ could be recovered
when k = O(log p), we need n

k log p > θ1 to have rank-one solution, and n
k log p > θ2, such
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that the solution would converge to the truth. When k is in higher order, they stated
the correctness of theorem still holds in simulation, but they did not prove it. When
n

k log p <
1+β
β2 , the probability of error of any method is at least 1/2, which means that

µ could not be recovered.
So, the phase diagram of µ recovery is studied in this paper. In our setting, we could

approximately treat the number of signals as pεp. In their setting, the signal strength
should be in the order of 1/

√
k = 1/

√
pε, and µ could not be recovered when ϑ < 1− θ.

When µ > 1− θ, it could be recovered by diagonal thresholding method. In the range
inbetween, it seems that SDP could recover the signal in µ in simulation. However, the
optimality of SDP is only proved when k = O(log p).

Compare it with our result by exhaust search, when ϑ > 1− θ, both µ and labels `
could be recovered when η ∼ 1/

√
k. The paper provides a feasible method to realize the

signals. When the signal strength is weak, the paper does not discuss about it. Accord-
ing to the discussion of exhaust search in following section, if our target is to recover
signals only, we need that the difference diff >

√
2nk2 log p, where the difference is

diff =

{
1√
2π
nk3/2η2, kη2 → 0;

n(kη −
√
k 2
π ), kη2 →∞.

Calculate the inequality in both cases, and it turns out that the signal strength should
be

η > max{ 1√
n
,

1

(nk)1/4
},

which is an upper bound for the recovery of µ. For classical PCA, the upper bound is
that η ∼ pϑ/2−1/4−θ/4.

6.3.2 Detection Problem

Theorem 6.3.2 In the setting above, the hypothesis that µ 6= 0 could be detected when

β > ρdetθ (ϑ),

and the sum of type I error and type II error would go to 1/2 when

β < ρdetθ (ϑ),

where

ρDetθ (ϑ) =


(2 + θ − 4ϑ)/4, ϑ < 2−θ

4

θ/2, 2−θ
4 < ϑ < 1− θ

(1 + θ − ϑ)/4, ϑ > 1− θ

As the rank of matrix yµ′ is only 1, it could be viewed as a low-rank matrix recovery
problem, with noise terms. In Candes and Plan ([Candes 2011]), the recovery of low
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rank matrix M when y = A(M) + z is studied, where A is a linear transformation.
Here, in our problem, we could use the setting that M = `µ′, A(·) is identity mapping,
and z is i.i.d Gaussian noise. So, in their program, they try to find a solution M̂ , to
ensure that

minimize ‖M‖1
subject to |σmax(y −M)| ≤ λ,

where ‖ · ‖1 is the nuclear norm of a matrix, and |σmax(y−M)| is the function norm of
a matrix.

In their paper, they proved that in our case, λ should be set as λ = Cp to make
sure that the true matrix could be one solution. Under this condition, the solution to
the problem, M̂ , satisfies that

‖M̂ −M‖2F ≤ C0 min(σ2(M), nσ2),

with probability at least 1 − 2e−cn for constants C0. What’s more, they have proved
that the minimax error over rank 1 matrices is lower bounded by p, which is∑

M :rank(M)≤1

E‖M̂(y)−M‖2F ≥ p.

So, the Frobenius norm between recovered M̂ and M will be at the order of √p.
In our case, as the rank of M is 1, the Frobenius norm is easy to be found as

‖`‖‖µ‖ ∼ η
√
npε. If the Frobenius norm of difference between matrix is very small

compared to the truth, the matrix should be recovered. It means that η2npε >> p, and
it turns out to require the signal strength as

η > p
ϑ−θ

2 .

When ϑ > θ, it means that the signal should go to infinity, which is too strong. When
ϑ < θ, it turns out to be 1√

nε
. Compared to 1√

n
when 1−θ

2 < ϑ < 1 − θ, it needs the
signal strength to be much stronger to recover the whole matrix.

6.4 Proofs

6.4.1 Proof of Lemma 6.2.2

Proof: Here, we discuss the upper bound in two cases: (a) When signal is dense, we
apply classical method; and (b) when signal is sparse, we apply exhaust search. Now,
we discuss them one by one.

In case (a), the signal is dense. Then the information part is the main part, and
we use the classical method. To apply classical method, we assign the label as ˆ̀

i =

sgn[
∑p

j=1Xij ]. The distribution of statistic
∑p

j=1Xij is

N(`iη#signals, p).
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So, the error rate is Φ(−ε#signals/√p). When p is large, the number of signals con-
trates at pε, so we can estimate the error rate as Φ(−εη√p). To make sure that it goes
to 0, we need εη√p→∞, which is equivalent with

η >
1
√
pε
.

So, the classical method gives an upper bound as

η ∼ pϑ−
1
2 . (6.4.2)

In case (b), the signal is sparse. In this case, we have to apply exhaust search
method. Here, we assume that we know the number of signals, say it is k = pε. To
do the search, search over all the possible combinations of features that have nonzero
signals. Let ν be a p× 1 vector, where ‖ν‖0 = k. When ν ′µ = 0, then Xν is noise, and
there is no information about `. When ν = µ, then the sign of Xν indicates the label
vector `. Let ˆ̀= sgn(Xν), then ˆ̀′Xν will be very large when ν is truly discovered.

What is the bound given by exhaust search? When ν ′µ = 0, the distribution of
statistic is the summation of absolute value of n normal variables with mean 0 and
variance k. When we got ν as the true signal, then the distribution of statistic is the
summation of absolute value of n normal variablesN(kη, k). According to the properties
of folded normal distribution, in the null case, the mean of statistic is n

√
2k/π, and

the variance is π−2
π nk. In the alternative case, according to calculation, the statistic

has mean as
n[
√

2k/πe−1/2kη2
+ kµ(1− 2Φ(−

√
kη))].

So, the difference between the value from true set and the value from wrong set is{
1√
2π
nk3/2η2, kη2 → 0;

n(kη −
√
k 2
π ), kη2 →∞.

Now, there are two things we should consider. First, we have to recover the true
signals to do clustering, so we need the true set. As there are about but less than pk

wrong sets, we hope the statistic from true set is larger than the maximum value from
all the statistic from pk sets. Accord to large deviation theory, the maximum value of pk

samples from folded normal distribution is at the order of n(kη−
√
k 2
π )+

√
2nk log(pk).

So, we hope the difference between them is large. Second, even though we get the true
signals, we need the data information to find the label. Note that when ν is the true
signal vector, Xν ∼ N(kη`, k). So, the clustering error rate would be Φ(−

√
kη). To

make sure that the clustering rate goes to 0, we need
√
kη → 0. Combine the two

requirements, we need that

η > max{ 1√
n
,

1√
k
} ≈ max{ 1√

n
,

1
√
pε
}.
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So, the upper bound given by exhaust search is

η ∼

{
1√
n
, ϑ < 1− θ,

1√
pε , ϑ > 1− θ. (6.4.3)

Combine the two cases, from 6.4.2 and 6.4.3, we get the conclusion. �

6.4.2 Proof of Lemma 6.2.1

Proof: First, we show that when the classification problem cannot be solved, the
clustering cannot be solved either. Let Xn×p = (x1, x2, · · · , xp), where xi is an n × 1

vector. For label vector `, let ˜̀= (`2, `3, · · · , `n), which is an n− 1× 1 vector. Without

loss of generality, let `1 = 1. Take f(x, ˜̀) =
∏p
j=1[1 − ε + εeη

˜̀′xj+ηX1j−nη
2

2 ], and

correspondingly g(x, ˜̀) =
∏p
j=1[1− ε+ εeη

˜̀′xj− (n−1)η2

2 ]. The information contains in `1
can be denoted by the L1 distance between f(x, ˜̀) and g(x, ˜̀), which is

E|
∫
f(x, ˜̀)− g(x, ˜̀)d˜̀| ≤

∫
E|f(x, `)− g(x, `)|d˜̀.

On the right side, it happened to be the L1 distance for classification problem, where
˜̀ is known. According to the symmetry of `, if we could prove that for some `, the
classification problem has o(1) L1 distance, then it holds for other `, and therefore the
left side also has o(1) L1 distance. So, our problem is to find the lower bound for
classification problem, which has been solved partly in previous paper ([Jin 2009]).

According to the symmetry of `, without loss of generality, we assume ˜̀ =

(1, 1, 1, · · · , 1). Write f(x) and g(x) instead of f(x, ˜̀) and g(x, ˜̀) for clear notation.
Now, let’s discuss it in different cases: (a) signal is sparse, and (b) signal is dense.

Case 1: Data is sparse, where ϑ > 1 − θ. When data is sparse, we apply Cauchy
Inequality to L1 distance to find a lower bound. Let

X =


X ′1
X ′2
...
X ′n

 .

Let A(X1, µ) = eX
′
1µ−‖µ‖2/2−1, and B(X,µ) =

∏n
i=2

[
cosh(X ′iµ)e−‖µ‖

2/2
]
, and then we

have the L1 distance as

E0|
∫
A(X1, µ)B(X,µ)dF (µ)|.

According to Cauchy Inequality, the bound for L1 distance is

(E0

∣∣∫ A(X1, µ)B(X,µ)dF (µ)
∣∣)2 ≤ E0[

∫
B(X,µ)dF (µ)]E0[

∫
A(X1, µ)2B(X,µ)dF (µ)].
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It is easy to found that E0[
∫
B(X,µ)dF (µ)] = 1, and because of the independence

between X1 and Xi, 2 ≤ i ≤ n, we have

E0[

∫
A(X1, µ)2B(X,µ)dF (µ)] =

∫ ∫
A(X1, µ)2B(X,µ)dF (X)dF (µ) =

∫
A(X1, µ)2dF (X1)dF (µ),

Calculate
∫
A(X1, µ)2dF (X1)dF (µ) directly, we could get∫

A(X1, µ)2dF (X1)dF (µ) = (1− ε+ εeη
2
)p − 1 ∼ epεη2 − 1.

So, when pεη2 → 0, the L1 distance is o(1). Equivalently, when η < 1√
pε , the clustering

error rate goes to 1/2 as p→∞.
Case 2: Data is dense, where ϑ < 1 − θ. In this case, we have to introduce

Hellinger distance to control L1 distance. Define the Hellinger affinity by H(f, g) =∫ √
f(x)g(x)dx, then we have ‖f − g‖1 ≤ 2

√
1−H(f, g). So, when Hellinger affinity

goes to 1, the L1 distance goes to 0, which means that it is impossible to separate the
two hypothesis. The Hellinger affinity between f(x) and g(x) is

H(f, g) = E

√√√√ p∏
j=1

[1− ε+ εeη
˜̀′xj+ηX1j−nη

2

2 ][1− ε+ εeη
˜̀′xj− (n−1)η2

2 ].

As different coordinates are independent, we could study each coordinate first, and it
is

H(f, g) = (E

√
[1− ε+ εeη

˜̀′x+ηX1−nη
2

2 ][1− ε+ εeη
˜̀′x− (n−1)η2

2 ])p,

where the expectation is over x ∼ N(0, In−1) and X1 ∼ N(0, 1).
What we need to prove is that

m = E

√
[1− ε+ εeη

˜̀′x+ηX1−nη
2

2 ][1− ε+ εeη
˜̀′x− (n−1)η2

2 ] = 1 + o(1/p).

Define h(x) = eη
˜̀′x− (n−1)η2

2 , a(x) = eηX1−η2/2 − 1, and so we have that

m = E
√

[1− ε+ εh(x)(a(x) + 1)][1− ε+ εh(x)] = E[1−ε+εh(x)]

√
1 +

εh(x)a(x)

1− ε+ εh(x)
.

As h(x) = eη`
′x−n−1

2
η2
, if we regard the expectation is on random variable x ∼ (1 −

ε)N(0, In−1) + εN(η, In−1), then we could dismiss the term 1− ε+ εh(x), and it could
be written as

m = E

√
1 +

εh(x)a(x)

1− ε+ εh(x)
.
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Since |
√

1 + x− 1− x/2| ≤ Cx2 for any x > −1, there is

|E

√
1 +

εh(x)a(x)

1− ε+ εh(x)
− 1− 1

2
Ea(x)| ≤ CE(

εh(x)a(x)

1− ε+ εh(x)
)2.

According to calculation,

Ea(x) = EeηX1−η2/2 − 1 = 0, Ea2(x) = E[eηX1−η2/2 − 1]2 = eη
2 − 1 ≤ η2.

For the term E ε2h2(x)
(1−ε+εh(x))2 , let’s consider different cases where x ∼ N(0, In−1) and

x ∼ N(η, In−1). They are quite similar, so I will discuss the first case in detail and
extend it to the second case. Note that when p→∞, 1−ε+εh(x) > 1/2, so εh(x)

1−ε+εh(x) ≤
2εh(x). In case 2εh(x) > 1, which means that approximately `′x > ϑ log p

η + n−1
2 η, with

probability Φ(− ϑ log p√
n−1η

−
√
n−1
2 η) → 0 anyway. So, 2εh(x) is a good upper bound. So

the integration becomes that

E
ε2h2(x)

(1− ε+ εh(x))2
≤ 4Eε2h2(x) = 4ε2e(n−1)η2

.

Similarly, apply it to the case x ∼ N(η, In−1), we could get an upper bound ε2e3(n−1)η2 .
In all, we have that

E
ε2h2(x)

(1− ε+ εh(x))2
≤ 4(1− ε)ε2e(n−1)η2

+ 4ε3e3(n−1)η2
,

and the whole term

m = E

√
1 +

εh(x)a(x)

1− ε+ εh(x)
≤ Cη2ε2e(n−1)η2

.

When η < 1√
n
, e(n−1)η2 → 1, and we need that η2ε2 ∼ o(1/p), which means

that η ∼ o( 1√
pε). When η > 1√

n
, we could not do it in this way. In all, when

η < min{ 1√
n
, 1/
√√

pε}, the Hellinger affinity goes to 1, which means that it is im-
possible to do clustering.
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