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Abstract

As the use of renewable energy technologies and electric vehicles continues to expand in our

electricity generation and transportation sectors, demand for energy storage technologies will only

grow. Meeting this increased demand will require both technology innovations, but also new ways

of thinking about the costs of implementing these technologies. This dissertation examines elec-

trochemical energy storage technologies at multiple phases of the product cycle to assess how

to meet some of the challenges associated with widespread adoption of electrochemical energy

storage. Using a process-based cost model to identify the factors that contribute most to bat-

tery manufacturing cost, I find that economies of scale cost reductions have largely already been

achieved. However, changes in cell design parameters can help to lower the per kWh cost of

lithium-ion cells. Looking at a use case for energy storage in a hybrid microgrid, I find that both

battery chemistry characteristics and technology costs impact the overall performance of hybrid

microgrids and the cost of delivering electricity. As more batteries are produced to meet growing

demand, the greenhouse gas emissions associated with battery manufacturing and waste dis-

posal will become increasingly important. Using an attributional life cycle analysis, I compare the

emissions associated with two different recycling processes: pyrometallurgical recycling and direct

cathode recycling. While pyrometallurgical recycling does not offer emissions reductions, direct

cathode recycling does have the potential to reduce greenhouse gas emissions, even if the cath-

ode recovery process has relatively low yield rates. Using these recovered cathode materials is

contingent on a market that will accept these recycled materials. A survey of current electric vehi-

cle owners shows that consumer preferences about battery materials differ depending on whether

consumers purchased a plug-in hybrid or an all electric vehicle. Overall, plug-in hybrid vehicle

owners seem to have a slightly negative perception of recycled battery materials. For electric

vehicle owners that have an all-electric vehicle, there are more diverse preferences, with groups

that have positive, negative, and indifferent preferences about the type of battery material used

in their vehicle. The heterogeneous preferences of different electric vehicle owners could enable

different trends in material recovery and reuse as the number of electric vehicles on the road, and

the battery energy storage used for transportation, increase.

iii



Acknowledgments

First, I would like to thank the members of my committee: Jay Whitacre, my advisor and committee

chair, for supporting me throughout my time in EPP and allowing me the freedom to shape my

own research path. To my committee members: Meagan Mauter for her mentorship and practical

advice; Jeremy Michalek for the thoughtful discussions that helped to shape several chapters of

this thesis; and Costa Samaras for his encouragement and enthusiasm for my work. Additionally,

I would like to thank all the administrative staff in the Engineering and Public Policy department for

their help over the years.

A huge thanks to my friends and family for their constant support and encouragement. Special

thanks to my parents, Al and Brenda, and brother, Matthew for their love, support, and patience

throughout this and all my previous journeys. Thanks to all my friends in EPP and at CMU for their

support, insight, and collaboration over the years.

I must also thank the sources of financial support over the course of my doctoral research.

These sources include a National Science Foundation Graduate Research Fellowship under Grant

No. DGE 1252522, the Department of Engineering and Public Policy, the Bushnell Fellowship in

Engineering, the Friedman Fellowship, Aquion Energy, and a Carnegie Mellon GSA/Provost Office

Graduate Small project Help Grant.

iv



Contents

1 Introduction 1

2 Manufacturing costs of lithium-ion batteries: impacts of form factor, material inputs,

and economies of scale 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Battery Cell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Cost model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Cathode Material Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Unit Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Cost Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Comparitive techno-economic analysis of hybrid microgrid systems utilizing differ-

ent battery types 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 System Operational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Economic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Battery operational lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2 Levelized cost of electricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.3 Sensitivity to discount rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

v



3.3.4 Renewable energy requirement . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.1 Price changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.2 Feed-in tariffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.3 Carbon tax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.4 Other policy recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Prospects for reducing battery manufacturing emissions from direct material recov-

ery 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 LCA Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.2 Cost Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Cell Manufacturing Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Cell Recycling Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.3 Impact of Transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.4 Breakeven Recovery Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Recycling and future market demand for metals . . . . . . . . . . . . . . . . . 61

5 Evaluating Consumer Risk Perceptions of Recycled Batteries in the Electric Vehicle

Market 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Theory: Revealed and Stated Preference Studies . . . . . . . . . . . . . . . . . . . . 65

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.1 Survey Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.3 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

vi



5.5.1 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Conclusions 81

6.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Policy Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A Electric Vehicle Market Information and Process Based Cost Model Assumptions 85

A.1 Electric vehicle battery analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.2 Uncertainty Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.2.1 Equipment Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.2.2 Operating Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.2.3 Formation Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.2.4 Labor Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2.5 Cell dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2.6 Cell Yield rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2.7 Material Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.2.8 Maintenance and overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2.9 Building cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.2.10 Cathode Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.3 Cost drivers by process step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.4 Assumptions for prismatic cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.5 Cascading Unplanned Downtime in Sequenced Processes . . . . . . . . . . . . . . 95

B Calculation Details for Battery Model Calculations 97

B.1 Carbon Tax Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.2 Generation Subsidy Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.3 Power Flow Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

B.4 Battery Degradation Models & Manufacturer Data . . . . . . . . . . . . . . . . . . . . 99

B.5 Matlab Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

C Recycling Model Assumptions and Detailed Results 101

D Survey Design Data 123

D.1 Market Data for Survey Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

vii



D.2 Number of Classes Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

D.3 Alternative Model Specifications and Results . . . . . . . . . . . . . . . . . . . . . . 124

viii



List of Figures

2.1 Historical prices and future cost predictions for lithium ion batteries. Estimates in-

clude both cell- and pack-level cost assessments, which is reflected in the significant

variability in the cost estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Estimate of storage capacity (by GWh), broken out by chemistry, format, and vehicle

type. BEVs account for 79% of total capacity. . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Historical prices and future cost predictions for lithium ion batteries. Estimates in-

clude both cell- and pack-level cost assessments, which is reflected in the significant

variability in the cost estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Cost per cell and per kWh for NCA, LMO, and NMC batteries, assuming 18650

cells, 70µm electrodes, and 2GWh of annual production . . . . . . . . . . . . . . . . 17

2.5 Cost per kWh of NCA, NMC, and LMO batteries generally reach economies of scale

at 1GWh of annual production, and remain stable as the annual production volumes

increases. Production volumes used in later sensitivity analyses (2 GWh, 4 GWh,

and 8 GWh) are highlighted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6 Change in cost per kWh for NCA and NMC batteries as production volumes, cell

dimensions, and electrode thicknesses vary (50 µm to 100 µm) . . . . . . . . . . . . 19

2.7 Per kWh baseline and optimistic cost breakdowns for NCA and NMC cells. Materials

account for roughly 40% of the total cost. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Per kWh material cost breakdown for NCA and NMC cells . . . . . . . . . . . . . . . 21

2.9 per kWh cost breakdown comparison for baseline 18650 cylindrical cells, optimistic

20720 cylindrical cells, and BatPaC prismatic cells . . . . . . . . . . . . . . . . . . . 22

2.10 Material costs per kWh of 18650 cylindrical and prismatic NCA cells . . . . . . . . . 23

ix



2.11 Additional cost per kWh for batteries made with purchased cathode materials (in

green), relative to the cost per kWh for in-house manufacturing of active material

for baseline 18650 cylindrical cells, optimistic 20720 cylindrical cells, and BatPaC

prismatic cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Model overview diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Relationships between the number of cycles and SOC swing for lead acid, high

energy density Lithium ion, and high power density Lithium-ion batteries. . . . . . . 32

3.3 Nameplate storage capacity for different battery operational lifetimes as maximum

state of charge swing varies with a 75% renewable requirement for a) lead-acid, b)

high power density lithium-ion, and c) high energy density lithium-ion batteries. . . . 34

3.4 Median daily SOC swing (with 95% confidence interval) compared to the maximum

cumulative SOC swing for high energy density lithium-ion batteries. . . . . . . . . . . 36

3.5 LCOE for different battery operational lifetimes with a 75% renewable requirement

and 5% discount rate as maximum state of charge swing varies for (a) lead-acid, (b)

high power density lithium-ion, and (c) high energy density lithium-ion. . . . . . . . . 37

3.6 Optimal number of battery sets over 20 year lifetime with 5% discount rate as max-

imum SOC swing varies for a) lead-acid, b) high power lithium ion, and c) high

energy lithium ion batteries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 (a) Lowest LCOE envelope for each battery chemistry as maximum SOC swing

varies with 75% renewable requirement at 5% discount rate and with a comparison

to diesel-only generation and (b) how the Lowest LCOE for each chemistry varies

with discount rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.8 Required storage capacity and corresponding percentage of energy from renewable

sources as the renewable target and operational lifetime of the high energy density

lithium-ion batteries vary (1, 5, and 20 years) . . . . . . . . . . . . . . . . . . . . . . 40

3.9 (a) Diesel prices required to switch to hybrid system depending on discount rate and

assumed storage prices for each battery chemistry and (b) Battery price changes

required to switch to a hybrid system as discount rate varies . . . . . . . . . . . . . . 41

x



3.10 Incentives policies to induce switch to a hybrid system with variation in discount rate.

Feed in tariffs (a) required to reach LCOE parity between lowest-cost systems and

diesel-only generation, with comparison to the highest and lowest US electricity

provider Feed-In Tariff rates and (b) Carbon taxes required to switch to a hybrid

system, with comparison to existing global tax rates. . . . . . . . . . . . . . . . . . . 43

4.1 Cathode materials are a substantial contributor to overall costs and CO2e emissions

for manufacturing NMC cylindrical cells. . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Manufacturing (in blue), pyrometallurgical (in yellow), and direct cathode recycling

(green) pathways for NCA and NMC cells. Ni, Co, and Mn inputs can be sourced

from either sulfates or nitrates. Mn is only an input for NMC cells, Al(OH)3 is only

for NCA cells. We do not consider the emissions for cell use. . . . . . . . . . . . . . 49

4.3 kg CO2e per kg of cell emitted during the manufacturing of NMC and NCA cylin-

drical batteries using US average, NWPP, and RFCM average grid emissions data.

Manufacturing includes processing of cathode material preparation . . . . . . . . . . 54

4.4 CO2e emissions per kg of battery for (a) manufacturing and recycling processes

(pyrometallurgical and direct cathode recycling) less the emissions offsets from re-

covered materials, and the (b) net CO2 emissions avoided by using a recycling

process for NMC and NCA cells and recovering material. All processes use the US

average electricity grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 net kg of CO2e emissions avoided per kg battery when combining manufacturing

with direct cathode recycling over using no recycling method after manufacturing.

As the cathode yield rate from the direct recycling process decreases, so do emis-

sions benefits. Pyrometallurgical recycling does not offer significant greenhouse

gas emissions reductions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.6 Relithination cost per kg of cathode material for NMC and NCA cells as production

volumes vary. The process reaches economies of scale at roughly 1,500 tons of

annual production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Flow chart for survey version decision based on current vehicle owned . . . . . . . . 67

5.2 Sample discrete choice question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

xi



5.3 Partworth, Linear, and Logarithmic models of range for BEV and PHEV data. A

logarithmic model is a better fit to the partworth data than a linear model for the

vehicle range attribute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 PHEV owners willingness to pay for miles of range and final range (when percent-

age is 70%). There is decreasing willingness to pay as the miles of range available

increases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Overall and latent class perceptions of recycled and refurbished batteries for BEV

and PHEV owners. Error bars represent the 95% confidence interval. The environmentally-

conscious group of BEV owners (class 2), and risk-averse PHEV owners (class 3)

are the only groups that have a willingness to pay that is significantly different from

zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.6 Percentage reduction in pack costs for risk-averse PHEV owners to be willing to

accept recycled and refurbished battery materials. Accounting for the uncertainty

in their aversion to both types of battery packs, the cost reductions for recycled

battery packs to be competitive for very short range vehicles are high relative to

overall pack cost at nearly 50%. Additional work is necessary to determine if there

are any segments of the overall PHEV owners group where range influences overall

willingness to pay for recycled and refurbished materials. . . . . . . . . . . . . . . . 80

A.1 Material costs per kWh of 18650 cylindrical and prismatic NCA cells . . . . . . . . . 91

A.2 Per kWh costs by manufacturing step for baseline NCA and NMC cell production . . 94

C.1 kg CO2e (with 95% confidence) per kg of cell emitted during the manufacturing pro-

cess of NMC and NCA cylindrical cells for US average, NWPP, and RFCM average

grid emissions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C.2 MJ (with 95% CI) of input energy per kg of battery produced using a US average,

NWPP, and RFCM grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C.3 kg CO2e emitted per kWh of battery produced on US average, NWPP, and RFCM

grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C.4 MJ of input energy per kWh of battery produced on US average, NWPP, and RFCM

grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xii



C.5 Top: CO2e emissions per kg of battery for battery manufacturing and pyrometallurgi-

cal recycling (blue) and for battery manufacturing and direct recycling (yellow) less

the emissions offsets for product outputs for NCA and NMC cells on US average,

NWPP, and RFCM grids. Bottom: Net CO2e emissions avoided using a pyrometal-

lurgical or direct recycling process. For NMC batteries, pyrometallurgical recycling

has a median environmental cost (no CO2e emissions avoided). For NCA cells, the

emissions offsets of a pyrometallurgical process are not significantly different from

zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

C.6 Top: MJ of input energy per kg of battery for battery manufacturing and pyrometal-

lurgical recycling (blue) and for battery manufacturing and direct recycling (yellow)

less the emissions offsets for product outputs for NCA and NMC cells on US aver-

age, NWPP, and RFCM grids. Bottom: Net energy savings from using a pyrometal-

lurgical or direct recycling process. For both chemistries, the median energy savings

from pyrometallurgical recycling is positive, but not significantly different from zero. . 113

C.7 Top: CO2e emissions per kWh of battery for battery manufacturing and pyrometal-

lurgical recycling (blue) and for battery manufacturing and direct recycling (yellow)

less the emissions offsets for product outputs for NCA and NMC cells on US av-

erage, NWPP, and RFCM grids. Bottom: Net CO2e emissions avoided using a

pyrometallurgical or direct recycling process. For NMC batteries, pyrometallurgical

recycling has a median environmental cost (no CO2e emissions avoided). For NCA

cells, the savings of a pyrometallurgical process are not significantly different from

zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

C.8 Top: MJ of input energy per kg of battery for battery manufacturing and pyrometal-

lurgical recycling (blue) and for battery manufacturing and direct recycling (yellow)

less the emissions offsets for product outputs for NCA and NMC cells on US aver-

age, NWPP, and RFCM grids. Bottom: Net energy savings from using a pyrometal-

lurgical or direct recycling process. For both chemistries, the median energy savings

from pyrometallurgical recycling is positive, but not significantly different from zero. . 115

C.9 net kg CO2e avoided per kg of battery when combining manufacturing with di-

rect cathode recycling over using no recycling method after manufacturing. Yield

rates of recovered cathode material vary from 0 to 100% for both NMC and NCA

chemistries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xiii



C.10 MJ of energy saved by using a direct recycling process over doing nothing after cell

manufacturing. Yield rates of the recovered cathode material vary from 0 to 100%

for both NMC and NCA chemistries. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

C.11 net kg CO2e avoided per kWh of battery by using a direct recycling process over

doing nothing after cell manufacturing. Yield rates of recovered cathode material

vary from 0 to 100% for both NMC and NCA chemistries. . . . . . . . . . . . . . . . 117

C.12 MJ of energy saved by using a direct recycling process over doing nothing after cell

manufacturing. Yield rates of the recovered cathode material vary from 0 to 100%

for both NMC and NCA chemistries. . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

C.13 kg CO2e avoided per kg of battery by using a direct recycling process over a py-

rometallurgical process. Yield rates of recovered cathode material vary from 0 to

100% for both NMC and NCA chemistries. Because pyrometallurgical has more

environmental benefits for NCA cells than NMC cells, the yield rate for cathode

material recovered during the direct recycling process must be higher for direct re-

cycling to be more beneficial than pyrometallurgical recycling. . . . . . . . . . . . . 118

C.14 MJ of input energy avoided per kg of battery by using a direct recycling process

over a pyrometallurgical process. Yield rates of recovered cathode material vary

from 0 to 100% for both NMC and NCA chemistries. Because pyrometallurgical

has more environmental benefits for NCA cells than NMC cells, the yield rate for

cathode material recovered during the direct recycling process must be higher for

direct recycling to be more beneficial than pyrometallurgical recycling. . . . . . . . . 118

C.15 kg CO2e avoided per kWh of battery by using a direct recycling process over a

pyrometallurgical process. Yield rates of recovered cathode material vary from 0

to 100% for both NMC and NCA chemistries. Because pyrometallurgical has more

environmental benefits for NCA cells than NMC cells, the yield rate for cathode

material recovered during the direct recycling process must be higher for direct

recycling to be more beneficial than pyrometallurgical recycling. . . . . . . . . . . . 119

xiv



C.16 MJ of energy avoided per kWh of battery by using a direct recycling process over

a pyrometallurgical process. Yield rates of recovered cathode material vary from 0

to 100% for both NMC and NCA chemistries. Because pyrometallurgical has more

environmental benefits for NCA cells than NMC cells, the yield rate for cathode

material recovered during the direct recycling process must be higher for direct

recycling to be more beneficial than pyrometallurgical recycling. . . . . . . . . . . . 119

C.17 Relithination costs and breakeven costs as the percentage of lithium added varies

between 0 and 100%. For both cell chemistries, the lithination costs are nearly

indistinguishable. In practice, no more than 60% of the lithium would need to be

replaced, as the original cathode crystal structure collapses if more than 60% of the

lithium is removed from the cathode (shaded in gray). . . . . . . . . . . . . . . . . . 120

C.18 kg CO2e emissions per kg of battery manufactured and recycled using a direct

recycling process, less the emissions offset from recycling process outputs as the

lithium recovered through direct recycling varies. In practice, no more than 60%

of the lithium would need to be replaced, as the original cathode crystal structure

collapses if more than 60% of the lithium is removed from the cathode (shaded in

gray). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

C.19 MJ of energy saved per kg of battery manufactured and recycled using a direct

recycling process, less the emissions offset from recycling process outputs as the

lithium recovered through direct recycling varies. In practice, no more than 60%

of the lithium would need to be replaced, as the original cathode crystal structure

collapses if more than 60% of the lithium is removed from the cathode (shaded in

gray). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C.20 kg CO2e emissions per kWh of battery manufactured and recycled using a direct

recycling process, less the emissions offset from recycling process outputs as the

lithium recovered through direct recycling varies. In practice, no more than 60%

of the lithium would need to be replaced, as the original cathode crystal structure

collapses if more than 60% of the lithium is removed from the cathode (shaded in

gray). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xv



C.21 MJ of energy saved per kWh of battery manufactured and recycled using a direct

recycling process, less the emissions offset from recycling process outputs as the

lithium recovered through direct recycling varies. In practice, no more than 60%

of the lithium would need to be replaced, as the original cathode crystal structure

collapses if more than 60% of the lithium is removed from the cathode (shaded in

gray). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

D.1 Electric Range and Manufacturer’s Suggested Retail Price (MSRP) for BEVs and

PHEVs available in 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

D.2 Historical US sales of PHEVs by lowest model price (2010 - 2017) . . . . . . . . . . 125

xvi



List of Tables

2.1 Cell BOM Parameters examined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Facility wide model parameters and sensitivity ranges . . . . . . . . . . . . . . . . . 10

2.3 Material yield rates and associated manufacturing steps. Uncertainty in the cell

yield rate is italicized and included below the baseline estimate . . . . . . . . . . . . 10

2.4 Equipment, area, labor, and process rate assumptions for each manufacturing step.

BatPaC point estimates are used for each of the steps common for all cell formats.

Uncertainty bounds for the cylindrical cells and precursor preparation steps are ital-

icized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Precursor drying and calcining process assumptions . . . . . . . . . . . . . . . . . . 15

2.6 Cathode active material costs per kg with uncertainty bounds, 2015$ . . . . . . . . . 16

2.7 Impact of lithium prices on NCA and NMC cells in baseline and optimistic scenarios 20

3.1 Fixed System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Fixed System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Battery chemistries and degradation models . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 System component cost assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Comparison of greenhouse gas emissions and energy inputs to cell manufacturing

between this and other studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Attribute Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Respondent Demographic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 BEV Willingness to pay results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 PHEV Willingness to Pay Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xvii



5.5 Latent classes for BEV owners in the willingness to pay space. Environmentally-

concious owners, with a positive opinion of refurbished materials, make up 35% of

the sample population. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Latent classes for PHEV owners in the Willingness to pay space. Risk-averse own-

ers make up 40% of those sampled. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.1 U.S. BEV sales and storage capacity, 2010-2015. Blank cells indicate no vehicle

sales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.2 U.S PHEV sales and storage capacity, 2010-2015. Blank cells indicate no vehicle

sales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.3 Cell dimension parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.4 Material cost values (excluding cathode precursors) . . . . . . . . . . . . . . . . . . 92

A.5 Cathode precursor cost assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.6 Prismatic cell step assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.7 Prismatic cell physical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.8 Connected Manufacturing Steps and Cumulative Operating Time . . . . . . . . . . . 96

A.9 Change in cost per kWh as a result of cascading unplanned downtime . . . . . . . . 96

B.1 Power Flow Optimization Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.2 Capacity Loss Calculations for different battery chemistries . . . . . . . . . . . . . . 100

B.3 Charging and Discharging Power Flow Limits . . . . . . . . . . . . . . . . . . . . . . 100

C.1 Cell Input Assumptions for NMC Cells. Baseline assumptions are listed along with

upper and lower bounds (italicized) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

C.2 Cell Input Assumptions for NCA Cells. Baseline assumptions are listed along with

upper and lower bounds (italicized) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C.3 Material inputs and output for cathode precursor mixing step using nitrate precursor

materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C.4 Material inputs and output for cathode precursor mixing step using sulfate precursor

materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C.5 Material and energy inputs for manufacturing sulfate precursor materials . . . . . . . 104

C.6 Material inputs for manufacturing nitrate precursor materials . . . . . . . . . . . . . . 104

C.7 Material inputs and output for lithination of NMC and NCA . . . . . . . . . . . . . . . 104

xviii



C.8 Energy inputs for cathode drying and calcining . . . . . . . . . . . . . . . . . . . . . 104

C.9 Emissions and heat input assumptions for electricity and natural gas inputs . . . . . 104

C.10 Embodied emissions for cathode materials . . . . . . . . . . . . . . . . . . . . . . . 105

C.11 Emboddied Emissions for Cell Materials (excluding cathode) . . . . . . . . . . . . . 105

C.12 Per ton-mile emissions for water, rail, and road transport . . . . . . . . . . . . . . . . 105

C.13 Transportation Distance Assumptions (in miles) by mode for RFCM, NWPP, and US

average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C.14 Process inputs for pyrometallurgical Recycling. Emissions and Resource data sourced

from GREET 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C.15 Percentage of metal content that goes to Slag and Alloy in pyrometallurgical process

[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C.16 Facility-wide parameter assumptions [2,3] . . . . . . . . . . . . . . . . . . . . . . . . 107

C.17 Equipment, labor, and process rate assumptions for cathode manufacturing/ repro-

cessing steps [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.18 Material price assumptions for cathode precursor metals and lithium carbonate.

Data is based on USGS data [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

C.19 Comparison of greenhouse gas emissions and energy inputs to cell manufacturing

between this and other studies per kWh of battery . . . . . . . . . . . . . . . . . . . 111

D.1 Market Data - Battery Warranties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

D.2 Survey versions and attribute levels . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

D.3 2- and 3- Latent Class Models for BEVs in the preference space . . . . . . . . . . . 128

D.4 4 latent class model for BEVs in the preference space . . . . . . . . . . . . . . . . . 129

D.5 5 latent class model for BEVs in the preference space . . . . . . . . . . . . . . . . . 130

D.6 6 latent class model for BEVs in the preference space . . . . . . . . . . . . . . . . . 131

D.7 2- and 3- Latent Class Models for PHEVs in the preference space . . . . . . . . . . 132

D.8 4 Latent Class Models for PHEVs in the preference space . . . . . . . . . . . . . . . 133

D.9 Latent Class Selection Criteria for PHEVs . . . . . . . . . . . . . . . . . . . . . . . . 133

xix



xx



Chapter 1

Introduction

As electrochemical energy storage technologies have improved and become less expensive in

recent years, the number of applications where these technologies are viable has only increased.

Two such applications are for grid electricity storage, which can occur at many different scales and

locations within an electricity system, and electric vehicles.

Between 2010 and the end of 2015, roughly 419,000 battery electric and plug-in hybrid vehicles

were sold in the U.S., with a combined storage capacity of 11 GWh.1 Similarly, according to the

Department of Energy Global Energy Storage Database, there are nearly 1,000 grid-connected

electrochemical energy storage projects that can provide over 3MW of power in the U.S. today,

with most of the growth occurring since 2010 [5].

These two technology markets are also projected to increase as additional intermittent re-

newable electricity sources are brought online and fuel economy standards drive higher adoption

rates of hybrid and battery electric vehicles. However, there are still outstanding questions about

the technology cost, performance, emissions, and acceptance that have the potential to impact the

size and scope of these future markets. My dissertation seeks to address some of these questions,

with particular focus on lithium-ion and other established, widely available battery chemistries.

Despite recent technology improvements and cost reductions, there are still challenges to mak-

ing energy storage technologies economically viable in many situations. The Department of En-

ergy Vehicle Technology Office estimates that battery costs will have to fall to $125/kWh or less to

truly be cost competitive [6]. In Chapter 2, I investigate the potential for manufacturing cost reduc-

tions of the large-format cylindrical and prismatic lithium-ion batteries commonly found in today’s
1Additional detail provided in Appendix A.1
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U.S. electric vehicle market. Using a process-based cost model, I compare the costs of several

cell chemistries and variations at different production volumes. Although there is some potential

for reducing costs by adjusting the cell parameters and format, additional savings from economies

of scale alone are minimal relative to the overall battery cost.

Today’s batteries also offer substantial trade-offs between capital cost, performance, and cy-

cleability. In Chapter 3 I examine how these technology and performance tradeoffs impact the

levelized cost of electricity delivered in a hybrid microgrid system. Although the electricity from

hybrid systems was almost always more expensive than a diesel generator, high energy density,

moderately expensive lithium-ion batteries were cost competitive with inexpensive but less effi-

cient lead acid batteries. The improved performance of high power density lithium-ion batteries

that offer excellent cycle life was insufficient to justify the much higher capital cost when compared

to other storage options.

As battery energy storage use increases, we will need to develop new ways to minimize the

environmental impact of producing these technologies, and ways to recover some of the valuable

materials used to make batteries. In Chapter 4, I address the potential cost and emissions savings

from a new battery recycling process, which directly recovers high-value cathode material, instead

of a traditional pyrometallurgical recycling process. Using a lifecycle analysis that accounts for

the emissions and energy consumption of manufacturing, recycling, and offsets from the recov-

ered materials, I find that new, direct methods offer robust greenhouse gas emissions, while more

traditional methods are not guaranteed to reduce emissions overall. Because of the costs associ-

ated with manufacturing cathode materials, there it is also possible that these new direct recovery

methods can be profitable relative to other cathode manufacturing processes.

Chapter 5 begins to answer whether these materials that are recovered from the direct cathode

recovery process have consumer support to be successful in the market. Using a choice-based

conjoint survey of current electric vehicle owners, I examine whether consumers have strong

preferences about battery materials (conventional, recycled, and refurbished) relative to other

attributes that are related to battery performance (like range and warranty coverage of battery

performance). We find that there is heterogeniety in consumer preferences, with PHEV owners

overall having a slightly negative perception of recycled batteries, while BEV owners as one group

are indifferent. However, within these groups we see a broader range of opinions, with some BEV

owners having a positive opinion of refurbished batteries. For PHEV owners, roughly 40% of the

respondents were considered risk-averse, requiring cost reductions of $7,000 ($600 - $13,000) to

2
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accept a recycled or refurbished battery pack. Additional examination of the demographics that

may be associated with these different preferences is necessary, as is analysis of how recycled or

refurbished battery performance could impact other attributes, like range and final range, that are

consistently important to consumers.

Finally, Chapter 6 provides a summary of the findings of the previous chapters, along with

policy recommendations to help to further reduce the costs of battery energy storage and its

applications as the market continues to grow.
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Chapter 2

Manufacturing costs of lithium-ion

batteries: impacts of form factor,

material inputs, and economies of scale

This chapter is based on work published in:

R. E. Ciez and J.F. Whitacre, ”Comparison between cylindrical and prismatic lithium-

ion cell costs using a process based cost model,” Journal of Power Sources, Volume

340, 2017, Pages 273-281.

2.1 Introduction

Because of the significance of manufacturing costs, models of the production costs of lithium-ion

batteries have been developed. The most notable model is the BatPaC model developed by Ar-

gonne National Lab. [7, 8] Using multiple battery pack configurations and lithium-ion chemistries,

the model determines the cost per kWh, allowing for increases in production volume from the

baseline rate of 100,000 packs year-1. Additional work has been done to analyze some of the

specific steps of pouch cell manufacturing outlined in the BatPaC model. Wood et al find that

reducing the duration of solid-electrolyte interphase (SEI) formation and replacing expensive sol-

vents can reduce the costs of manufacturing of small batches of batteries [9]. Both Wood et al [9]
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Figure 2.1: Historical prices and future cost predictions for lithium ion batteries. Estimates include both cell-
and pack-level cost assessments, which is reflected in the significant variability in the cost estimates.

and Sakti et al [10] find that there are also cost savings when electrode thicknesses are increased,

increasing the energy storage capacity of each cell.

All of these models produce cost estimates that are largely in line with current industry prices.

Nykvist and Nilsson compiled stated predictions, news reports, and journal articles to analyze

trends in lithium-ion cell- and pack-level prices [11]. Their data is reproduced in Figure 2.1, along

with BatPaC estimates (using the May 2015 version), the estimates from Sakti et al [10], and

expert predictions collected by Sakti et al [12].

However, since these models and analyses were introduced, the lithium-ion battery market has

shifted. 419,000 battery vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs) were sold

between 2010 and the end of 2015. The number of vehicles sold and the storage capacity of these

vehicles varies significantly. The Tesla Model S, one of the most popular electric vehicles, has a

battery pack that varies between 75 and 90 kWh, much larger than the 10.5 kWh average pack size

for PHEVs and double the 42 kWh average for BEVs. These packs also use cylindrical lithium-ion

cells, a departure from the prismatic cells examined in previous models. Electric vehicle sales and

pack sizes also impact the most commonly used lithium-ion chemistries. Lithium Nickel Cobalt

Aluminum Oxide (NCA) is the most common chemistry, accounting for half of the storage capacity
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Figure 2.2: Estimate of storage capacity (by GWh), broken out by chemistry, format, and vehicle type. BEVs
account for 79% of total capacity.

on the road today, and Lithium Manganese Oxide (LMO) and Lithium Nickel Manganese Cobalt

Oxide (NMC) account for approximately a quarter each. Other chemistries have been used in

niche applications (predominantly in California compliance cars and early electric vehicle models),

but have largely been phased out. Figure 2.2 shows the split of battery chemistries and formats,

and Appendix A provides full details on vehicle sales and associated battery storage.

Also as a result of these sales trends, on a per kWh basis, the majority of lithium-ion batteries

on the road in the US today are cylindrical. To date, manufacturing process research and cost

models have focused exclusively on prismatic cells, and there is no specific model to address

the costs of manufacturing cylindrical cells. To address the disparity between the current EV

battery market and research, we present a process-based cost model specifically adapted for

manufacturing cylindrical lithium-ion cells.

The model uses common inputs from the BatPaC model for the steps that are identical for both

prismatic and cylindrical cell manufacturing and accounts for the three chemistries most commonly

used in electric vehicles. The model also allows for variations in the cylindrical cell dimensions.

We use 18650 cells as a baseline (18 mm diameter, 65 mm height), but allow for 10% increases

in cell height and diameter, allowing for a per-cell increase in storage capacity. We also account

for variations in the cell electrode thickness. For any combination of parameters, we calculate the
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Table 2.1: Cell BOM Parameters examined

Parameter Values
Cell Chemistry LMO (100 mAh/g), NMC (200 mAh/g), NCA (180 mAh/g)
Cell Dimensions 18650, 18720, 20650, 20720
Electrode Thickness 50, 70, 100 µm

manufacturing cost at various production volumes to compare the costs between chemistries and

determine whether there are additional economies of scale that have not been realized. The man-

ufacturing costs include in-house preparation of cathode active materials, which are commonly

purchased at a markup by battery manufacturers.

2.2 Methods

The model consists of two parts: the first builds a cell based on desired cell dimension and chem-

istry, the second computes the per kWh cost of manufacturing these cells at varying production

volumes.

2.2.1 Battery Cell Model

The model allows us to specify several parameters about the final form factor of the battery: the

chemistry (LMO, NMC, or NCA), the diameter and height of the cells, and the electrode thickness.

The upper bounds on the cell height and diameter are based on industry-specified limitations on

heat transfer away from the cells. Similarly, the upper bound on the thickness of the electrode is

limited by the cylindrical cell geometry. Unlike prismatic cells, where the electrodes are stacked,

the electrodes in cylindrical cells must be wound. Since the current collecting foils are coated on

both sides, the thickness of each individual coating cannot exceed 100 µm. Thicker electrode

coatings would likely crack when wound because of the very small radius at the center of the cell.

Electrode coatings are also somewhat limited by current manufacturing capabilities, as outlined in

the interviews conducted by Sakti et al [12].

Depending on the parameter selections, the model calculates the bill of materials required to

construct the battery, and determines the overall storage capacity of each cell. Table 2.1 lists

the user-specified cell parameter selections. The energy storage capacity is determined by the

active cathode material in each cell and the cell chemistry’s specific energy storage capacity and

voltage. Specific internal dimensions were based on a combination of the user specified param-
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eters (namely the electrode thickness and height of the cell) and on published dimensions of the

electrode thicknesses of prototype cylindrical cells [13]. The energy stored (E) in each cell is

the product of the material voltage (V ) and specific storage capacity (s) and the mass of cathode

material (m), as shown in equation 2.1.

E = V sm (2.1)

The active material mass depends on the cathode volume (vCATH ), the density of the final

cathode material (ρCATH ), and the percentage of active material in the cathode (pACT ) (equation

2.2).

m = ρCATHvCATHpACT (2.2)

The cathode volume is a product of the electrode height (xH ), cathode length (xL), and the

total (double-sided) thickness (xT ) as shown in equation 2.3.

vCATH = xHxLxT (2.3)

The length of the cathode is determined by equation 2.4, which accounts for all of the interior

volume of the cell, vcell (assumed to be 85% of the cell volume calculated from exterior dimen-

sions). Here, we assume that the anode and cathode foils (xF ) and active material coatings (xT )

are of the same thickness and height (xH ). However, the cathode and separators (with thickness

xS) are assumed to be 10% longer than the anode, in line with the dimensions specified in proto-

type cells [13]. The separator thickness is doubled to account for the two separators needed for

the doublesided coating. The volume available within the cell is then divided by the volume of the

electrodes (with varying lengths) and the volume of the separators, as shown in equation 2.4.

xL = 1.1

(
vCELL

xH(xT + xF + 1.1(xT + 2xS + xF ))

)
(2.4)

2.2.2 Cost model

We model the cell cost using a process-based cost model (PBCM) for each of the steps involved in

manufacturing cylindrical lithium-ion cells. This method has been applied to numerous industries,

but it originated with the electronics industry, where design for manufacturing is a key concern
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Table 2.2: Facility wide model parameters and sensitivity ranges

Input Base Units Optimistic Pessimistic
Working days per year 300 Days/year 360 240
8-hour shifts per day 3 Shifts/day 3 3
Unpaid breaks per shift 1 Hours/shift 0.5 1.5
Paid breaks per shift 0.75 Hours/shift 0.5 1
Building costs $3000 $/m2 $1600 $4000
Labor rate $18 $/hour $15 $25
Building useful life 20 Years 20 20
Capital useful life 6 Years 6 6
Discount rate 10% % 10% 10%
Auxilary equipment cost 10% % of main machine cost 10% 10%
Maintenance 10% % of main machine cost 5% 15%
Fixed overhead 33% % of main machine, building, 30% 35%

aux. equipment, and
maintenance cost

Energy cost 3% % of material and labor cost 3% 3%

Table 2.3: Material yield rates and associated manufacturing steps. Uncertainty in the cell yield rate is
italicized and included below the baseline estimate

Material Yield Rate Step
Cathode material 92.2% 3.1 Cathode material mixing
Anode material 92.2% 3.2 Anode material mixing
Cathode foil 90.2% 3.1 Cathode coating
Anode foil 90.2% 3.2 Anode coating
Solvent recovery 99.5% 3.1 Cathode coating
Separators 98% 9 Cell winding
Electrolyte 94% 11 Electrolyte fill & seal
Cells 95% 15 Charge retention

90 - 99%

[3, 14, 15]. Sakti et al also applied this method for calculating the cost of prismatic lithium-ion

cells [10]. Here, we adapt this cost model to specifically focus on cylindrical cells. Figure 2.3

outlines each of the manufacturing steps included. Those in gray are the same for both cylindrical

and prismatic cells. Those in green are specifically for cylindrical cells. The precursor preparation

step (in blue) is common to all cell formats, but is not in the scope of the BatPaC model.

The total production cost in a PBCM is determined by summing material, equipment, auxiliary

equipment, building, maintenance, labor, energy, and fixed overhead costs. The per-unit cost is

the sum of these costs divided by the final output. Equipment and building costs are determined

using discrete increases in required machinery necessary to produce increased production vol-

umes, accounting for yield losses in the production process. Table 2.2 shows the facility-wide
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Figure 2.3: Historical prices and future cost predictions for lithium ion batteries. Estimates include both cell-
and pack-level cost assessments, which is reflected in the significant variability in the cost estimates.

assumptions, and sensitivity ranges used to calculate the cost of each of the steps. Table 3 shows

the equipment, area, and labor requirements for each step. For the steps common to both pris-

matic and cylindrical cells, these estimates are based on the BatPaC model, but are adjusted to

2015$. Although the steps listed in Figure 2.3 are common to manufacturing all of the types of

cylindrical cells derived from the cell model, there is equipment customization required for many

of the steps depending on the cell electrode dimensions. As a result, the cost of switching a man-

ufacturing process from one type of cell to another is very expensive, and would include not only

additional equipment costs (as improperly tooled equipment would need to be replaced, possibly

before its recovery period), but would also result lost production time to accommodate the instal-

lation. These costs are excluded from our analysis, and we look at the processes for a single cell

format throughout.

Cylindrical Cell Steps

For the cylindrical-cell specific steps, we contacted a number of equipment manufacturers to obtain

specific information about the machinery necessary for these steps. These estimates included

equipment prices, footprint, process rates, and information on labor, and whether there are specific

tooling requirements. These estimates are included in Table 2.4.

11



Chapter 2. Manufacturing costs of lithium-ion batteries: impacts of form factor, material inputs, and economies of scale

Precursor Mixing

The precursor mixing step calculations included assumptions about the specific precursor materi-

als used, the costs of the precursor materials used, and the machinery and equipment necessary

for this type of processing. Because of the steps and processes involved, it is very common for

battery producers to outsource these steps to another company. However, doing so does increase

the materials cost because of the additional markup that producers pay for the convenience of fi-

nalized active materials. Including an assessment of the in-house costs provides a better estimate

of the true cost floor of battery manufacturing.

For the precursor material costs themselves, we used historical price data from the USGS

2015 Mineral Commodity Summary for each of the key constituent parts. The lithium price data

listed is specifically based on lithium carbonate data (because of its dominance in the global

market). For the other elements (Ni, Co, Al, Mn), we assumed that the price per unit mass of the

constituent compound was determined entirely by the active element in the constituent compound.

For example, the 5-year average nickel price is $19/kg, NiSO4 is 38% nickel by mass, so we

assumed the cost per kg of NiSO4 to be $7/kg. Similar calculations were done for the other

precursor materials, but we did correct for the impurity of the manganese prices quoted in the

USGS data.

12
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2.2. Methods

Table 2.5: Precursor drying and calcining process assumptions

Drying∗ Calcining
Furnace length 15 feet
Temperature (°C) 100 800
Cycle time (hours) 10 18

(8-12) (12-24)
Power consumption (kW ) 70 200

(63-77) (180-220)
∗ NCA and NMC precursor manufacturing only

The steps and machinery required for precursor mixing depended on the specific chemistry.

For both NMC and NCA, the cathode materials are prepared using a mixed hydroxide method,

where the nickel, manganese, and cobalt compounds are pre-mixed and dried before adding

lithium. [16, 17] The lithium compounds are then mixed with the hydroxide or oxide materials and

calcined. For both mixing steps in the precursor preparation process, we used the assumptions

listed for mixing equipment in the BatPaC model. For both the drying and calcining steps, we

sourced quotes from manufacturers on both price and energy consumption for the required dif-

ferent operating temperatures. The equipment price, area requirements, labor requirements, and

process rate are listed in Table 2.4. Additional assumptions about the drying and calcining pro-

cesses are detailed in Table 2.5.

The power consumption values listed in Table 2.5 were used to calculate the additional cost

of energy associated with precursor mixing. This step is fairly energy intensive, and the BatPaC

assumption of energy costs (3% of the total material and labor cost) both excludes these steps and

is not representative of the energy requirements of drying and calcining the precursor materials.

Energy consumption for the mixing steps is negligible compared to the energy required for drying

and calcining, and is excluded. The additional energy consumption is calculated based on the

number of hours per year the machinery is operated for, and with an assumed electricity price of

$0.07/kWh, the median price of electricity for industrial customers in 2015. [18]

Cell Hardware Costs

Cell canister costs were based on inflation-adjusted unit costs of the cell container ($0.22 per cell),

but did not include additional expenses that result from additional mass. The positive and negative

terminal assemblies for cylindrical cells differ slightly. One terminal, in this case, the negative

terminal, uses the cell canister as the current conductor. There is also a polymer insulator inside
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Chapter 2. Manufacturing costs of lithium-ion batteries: impacts of form factor, material inputs, and economies of scale

Table 2.6: Cathode active material costs per kg with uncertainty bounds, 2015$

Battery Chemistry Precursor PBCM BatPaC assumed values
LMO $3.75 $10.9

($2.60 - $5.36) ($8.72 - $21.8)
NMC $21.43 $28.34

($16.89 - $27.43) ($28.34 - $31.61)
NCA $26.17 $35.97

($21.53 - $31.98) ($35.97 - $40.33)

the cell. [19] This insulator costs on the order of $0.05-$0.10 per cell. The other terminal, in this

case the positive terminal, include a polymer insulator and current interrupting device, in addition

to a separate metallic cap. The cost of this terminal assembly is on the order of $0.10-$0.20 per

cell. The safety devices are a substantial contributor to the assembly cost, and the cap contributes

<$0.05 per cell. [20] This puts the positive terminal assembly at a slightly lower cost estimate than

the unit cost for prismatic cell terminals assumed in BatPaC.

2.3 Results & Discussion

2.3.1 Cathode Material Costs

When we account for all of the materials purchased, equipment, labor, and energy inputs required

for each of the cathode active materials, we find that our estimates are lower than the assumed

values in other models. Table 2.6 lists our costs per kg, with comparisons to other assumed values.

Although these reductions could include some economies of scale savings over other production

lines, much of the savings is likely attributable to elimination of profit margin markups for outside

suppliers.

2.3.2 Unit Costs

Comparing the manufacturing costs of the baseline 18650 cell with 70µm electrodes and 2 GWh of

storage capacity produced annually, we find that the cost per cell is lowest for LMO cells (as shown

in Figure 2.4). However, when we examine the cost on a per kWh basis, the LMO cells are signifi-

cantly more expensive than both other chemistries we examine. While the active materials needed

per cell are less expensive, the number of cells required to produce 2 GWh of storage capacity is

roughly double the number of NCA or NMC cells necessary to store the same amount of energy.

16



2.3. Results & Discussion

Figure 2.4: Cost per cell and per kWh for NCA, LMO, and NMC batteries, assuming 18650 cells, 70µm
electrodes, and 2GWh of annual production

This cost pattern holds regardless of the production volume, as Figure 2.5 shows. The figure also

shows that economies of scale of the production are largely reached at volumes of 1GWh/year

with limited reductions in cost at higher volumes. Additional detail about the uncertainty in the cost

estimates is provided in Appendix A.

2.3.3 Sensitivity Analysis

Because of the inefficiency of LMO batteries in this cylindrical format, we focus our further analysis

on NCA and NMC chemistries. Figure 2.6 is a tornado plot that shows how the cost per kWh of

storage capacity changes as we vary the model parameters specified. For both chemistries, we

find that only decreasing the electrode thickness (from 70µm to 50µm) is the only change that

results in a higher price per kWh, as more of the battery volume is occupied by separators and

current collectors instead of active material. While the per kWh cost increases with these thinner

electrodes, this can be desirable in applications where a high power density battery is required, as

is the case in PHEVs. Increasing the thickness (from 70µm to 100µm), changing the format of the

battery to be taller or wider (or both), and doubling or quadrupling annual production volumes all

decrease the cost per kWh. However, none of these changes is alone sufficient to reach the DOE

17



Chapter 2. Manufacturing costs of lithium-ion batteries: impacts of form factor, material inputs, and economies of scale

Figure 2.5: Cost per kWh of NCA, NMC, and LMO batteries generally reach economies of scale at 1GWh
of annual production, and remain stable as the annual production volumes increases. Production volumes
used in later sensitivity analyses (2 GWh, 4 GWh, and 8 GWh) are highlighted.

energy storage target of $125/kWh. Even in the most optimistic scenario, when the cells are the

largest (20720), electrodes the thickest (100µm), and the production volume is 8 GWh per year,

the cost per kWh is well above the DOE target of $125/kWh: the NCA cells are $206/kWh and

NMC cells are $180/kWh.

2.3.4 Cost Breakdown

For both our baseline model (18650 cells, 70µm electrodes, and 2GWh of production per year)

and the most optimistic (20720 cells, 100µm electrodes, and 8GWh of production per year) com-

bination of parameters, we find that the total cost is dominated by materials costs, which account

for roughly 40% of the cost per kWh. Figure 2.7 shows the cost breakdown for both NCA and NMC

cells in the baseline and most optimistic combinations of model parameters.

The dominance of material cost is also evident when we examine the costs per kWh associated

with each step in the manufacturing process. Figure A.2 (included in the Appendix A) shows the

most expensive steps (each with a cost of more than $5/kWh) for manufacturing the baseline

18650 cells with either an NMC or NCA cathode. In both cases, we see that materials play a

substantial role in the overall cost of many of these steps. Processes that have a long cycle time -

formation cycling and charge retention - are also costly.

18



2.3. Results & Discussion

Figure 2.6: Change in cost per kWh for NCA and NMC batteries as production volumes, cell dimensions,
and electrode thicknesses vary (50 µm to 100 µm)

Figure 2.7: Per kWh baseline and optimistic cost breakdowns for NCA and NMC cells. Materials account
for roughly 40% of the total cost.
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Table 2.7: Impact of lithium prices on NCA and NMC cells in baseline and optimistic scenarios

Scenario 18650, 70µm, 2GWh 20720, 100µm, 8GWh

Chemistry NCA NMC NCA NMC
Li2CO3 Price [$/kg] $7.50 $25 $7.50 $25 $7.50 $25 $7.50 $25
Cost of Li2CO3 per kWh $6.10 $20.30 $5.60 $18.66 $6.10 $20.30 $5.60 $18.66
Percentage of materials cost 5% 16% 5% 18% 7% 19% 8% 22%
Percentage of overall cost 2% 6% 2% 7% 3% 8% 3% 10%
Change in cost/kWh - +5% - +6% - +7% - +7%

The data also shows that many of the most expensive steps are associated with cell struc-

tural materials. Figure 2.8 breaks down the materials costs for both chemistries and baseline and

optimistic scenarios. Nearly half of the materials cost is associated with cell hardware, including

the container and terminal assemblies. These materials have been used in mass-produced cylin-

drical batteries (both primary and secondary) for decades, and are unlikely to have further cost

reductions from large-scale production. Cathode precursor materials account for 27% of material

costs for NCA baseline, 20% for NMC baseline, and play a larger role for larger cells with higher

production volumes, where cell hardware, which scales by a combination of the number of pieces

and size, contributes less to the cost per kWh.

It is important to note that these material costs are not driven by the price of lithium. Previous

analysis shows that the price of lithium carbonate, the main source of lithium for batteries, has little

impact on the overall cost of prismatic batteries, even if commodities prices undergo significant

fluctuations. [21] This holds for cylindrical cells as well: even if the price of lithium carbonate

increases to $25/kg (from the baseline value of $7.50), lithium never accounts for more than 10%

of the total cell cost per kWh, and the resulting change in the cost per kWh is always below 10%,

as shown in Table 2.7.

Although equipment costs are a relatively large percentage of the overall cost per kWh, they

do decrease as the cell dimensions increase. This holds true even if we account for cascading

downtime as a result of connected steps in the manufacturing process. Overall, the cost increase

of more constrained system operation is relatively small (∼10%). Additional details about the

assumptions for cascading system downtime are available in Appendix A.5.

Figure 2.9 compares both the baseline and optimistic cost breakdowns for all 3 chemistries to

prismatic cells with roughly 25 Ah of capacity. The exact prismatic cell dimensions and bill of ma-

terials is determined using BatPaC (version 4, May 2015), with three modifications. 1) We allowed

the maximum electrode thickness constraint to increase to 200 µm, 2) we reduced the power
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Figure 2.8: Per kWh material cost breakdown for NCA and NMC cells

requirement on the cells and 3) the specific capacities of the cathode materials was updated to

match the assumptions included in Table 2.1. Costs are calculated using a process-based cost

model adapted from Sakti et al with conversions to 2015$ and using in-house precursor prepa-

ration. Specific information about the prismatic cell dimensions is provided in the supplementary

information.

For all three battery chemistries, the cost per kWh for larger prismatic cells is lower than the

cost for both types of cylindrical cells. This is consistent with previous analysis of the cost of pris-

matic LMO cells, which also showed that larger formats can offer reduced costs, even when elec-

trodes are not allowed to increase to 200µm. [21] Although the overall cost per kWh decreases,

the cost of electrode materials per kWh increases slightly as larger amounts are scrapped per cell

when there are manufacturing defects in prismatic cells. This effect is most pronounced when the

overall annual storage capacity produced and the capacity of each cell is similar in magnitude.
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Figure 2.9: per kWh cost breakdown comparison for baseline 18650 cylindrical cells, optimistic 20720
cylindrical cells, and BatPaC prismatic cells

Overall, reduced hardware costs associated with larger cells more than offset the additional ex-

pense. Details about the material cost differences between the 18650 cells and prismatic cells are

shown for NCA cells in Figure 2.10. It is also important to note that both of the NCA and NMC

batteries are not able to deliver electricity at high power because of the relatively small electrode

surface area relative to the thickness of the electrodes. The lower costs for prismatic cells persists

even when purchased cathode materials are used instead of lower-cost in-house production, as

shown in Figure 2.11.

2.4 Conclusions

The process-based cost model we construct for cylindrical lithium-ion cells shows that the cell

chemistry has a significant impact on the per kWh cost of the batteries. For LMO batteries, with

a low specific energy, the cylindrical cell format is too small and does not allow for the electrode

thickness to increase sufficiently. As a result, additional cells are required to meet a specified

energy storage production target. Prismatic LMO cells, which offer more opportunities for large

cell formats with thicker electrodes and reduced hardware costs per kWh offer more opportunity
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Figure 2.10: Material costs per kWh of 18650 cylindrical and prismatic NCA cells

for future cost reductions. Both NMC and NCA cylindrical batteries are less expensive per kWh to

manufacture than LMO cylindrical cells, and further cost reductions are possible by increasing the

cylindrical cell dimensions and the electrode thickness. While initial cost savings are possible from

increasing production volumes, the possibility for cost reductions from scale alone are minimal past

1GWh of annual production, a volume which large battery manufacturers have already surpassed.

At these higher production volumes materials play a significant role in the cost of energy storage

per kWh, accounting for roughly half of the overall expenses.

Cathode material costs can be reduced by producing them from precursors in-house instead

of purchasing them from suppliers. LMO is subject to the highest markup, at almost 200%, but the

markup for NCA and NMC have substantial impacts on the cost per kWh as well. Like prismatic

cells, lithium prices play a small role in the cost of NMC and NCA cylindrical cells. A more than

200% increase in the price of lithium carbonate leads to a less than 10% increase in the cost per

kWh for each of the cell configurations considered.

Cell hardware is a significant contributor to the overall material cost per kWh. Prismatic cells,

which have more design flexibility to account for specific chemistry characteristics, can be larger,

requiring less hardware per kWh and reducing costs. This reduction is most pronounced for LMO

prismatic cells, which can be manufactured for less than half the cost of cylindrical LMO cells.

There is also potential for reducing the manufacturing cost for NCA and NMC cells using a pris-

23



Chapter 2. Manufacturing costs of lithium-ion batteries: impacts of form factor, material inputs, and economies of scale

Figure 2.11: Additional cost per kWh for batteries made with purchased cathode materials (in green),
relative to the cost per kWh for in-house manufacturing of active material for baseline 18650 cylindrical
cells, optimistic 20720 cylindrical cells, and BatPaC prismatic cells

matic format, but the cells produced with that format are more rate-limited than LMO counterparts.
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Chapter 3

Comparitive Techno-Economic analysis

of hybrid microgrid systems utilizing

different battery types

This chapter is based on work published in:

R. E. Ciez and J.F. Whitacre, ”Comparative techno-economic analysis of hybrid micro-

grid systems utilizing different battery types,” Energy Conversion and Management,

Volume 112, 2016, Pages 435-444.

3.1 Introduction

Determining the appropriate balance between capital costs and technology longevity for distributed

hybrid micro-grids with solar PV, battery storage, and diesel generation is particularly important as

more markets incorporate small-scale energy storage and behind-the-meter energy storage poli-

cies. Germany and Japan have implemented subsidy programs to encourage behind-the- meter

energy storage and independent power generation [22]. In the US, both Hawaii and California

have issued energy storage requirements for grid operators, and California has approved sub-

sidies for self-generation technologies, including energy storage [23–27]. There is also a rapidly

growing demand in developing coun- tries with poor electricity infrastructure and ample solar re-

sources, and incentives from both development agencies (including the USAID’s Beyond the Grid
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Initiative) and home governments (like several state-run Renewable Energy Development Agen-

cies in India) are in place to support this growth [28,29]. To examine how these policies align with

the reality of battery operation in these applications, we focus on standalone micro-grids that uti-

lize renewable (photovoltaic solar panels) and fossil fuel electricity generation resources (a diesel

generator), combined with battery storage.

Long-term battery performance in these systems is influenced by many factors, including how

deeply the battery is exercised per cycle, the rate and frequency of battery charging and dis-

charging, and operating temperature. As new battery technologies, notably lithium-ion batteries

of various chemistries and form factors, improve and become more widely available, interest has

grown in determining how these batteries perform over the system life- time compared to widely

available and inexpensive lead acid batteries that have historically been the technology of choice.

In the past, researchers have developed multiple models for lead-acid battery behavior in off-

grid energy systems. The CIEMAT model, introduced by Copetti and Chenlo [30] and used by

Achaibou et al. [31], and the model introduced by Manwell and McGowan [32] model lead acid

batteries as an equivalent circuit, while Lander [33] modeled chemical dynamics. Empirical mod-

els are also available from case studies conduced by Protogeropoulos et al. [34], Spiers and

Rasinkoski [35], West and Krein [36], Schiffer et al. [37], and Binder et al. [38]. Other models

focus on the implementation of solar PV systems with battery storage. The model implemented by

Bortolini et al. [39] provides detailed information on the power flows between system components,

and uses this information to inform decisions on optimal system component size to minimize the

levelized cost of electricity (LCOE), while accounting for the possibility of selling electricity to an

electricity grid. Similarly, Kaldellis et al. [40] present a model of power flows for sizing the system

components in a hybrid micro-grid for remote Greek islands that lack access to a larger electricity

grid. However, both of these system models make broad assumptions about battery performance

and technology, and do not deeply explore how different operating parameters impact the lifespan

of the storage implemented. Neither the lead acid battery models or the PV system models offer a

comparative assessment that incorporates the loss in function over the lifetime between lithium-ion

batteries, which have inherent characteristics specific to the battery chemistry that cause each to

age differently in different use cases.

Our model uses a realistic power versus time electrical load typical of a rural, multi-dwelling

community without access to an electricity grid, along with appropriate temperature and solar data

[41–43]. We model three contrasting battery types to provide energy storage. Specifically, a thin-
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Figure 3.1: Model overview diagram

electrode, high power density lithium ion battery (similar to the A123 Systems M1 product), a thick-

electrode high energy density lithium-ion battery (similar to the Panasonic NCR-18650 series) and

a generic, low cost deep cycle lead-acid battery were considered. We choose to examine two

distinct types of lithium-ion battery devices and the lead acid battery because these devices are

predicted to be dominant in the distributed storage marketplace for at least the next five years [7].

While there are other emerging battery technologies that could be considered, we start with these

since they are most relevant to the vast majority of the systems being implemented around the

world today. The model then produces levelized costs of electricity for given combinations of

battery type and size, fraction of energy allowed from the diesel generator, and discount rate.

This model can be adapted in our future work to examine other emerging technologies. Further

analysis examines what market conditions or policy incentives are required to induce a switch to

hybrid generation systems over diesel-only systems. Although it is impossible to encapsulate all

possible behavior of solar PV/battery storage hybrid systems, by using a consistent solar and load

profile throughout our analysis, we are able to isolate the impacts on the batteries considered. In

doing so, we highlight the general trends in the levelized cost of electricity that result from using

different types of battery storage.
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Table 3.1: Fixed System Parameters

Parameter Values
Installed Solar PV capacity (kW) 7.5
Solar PV efficiency 15%
Diesel Generator capacity (kw) 2.5
Battery round-trip efficiency 90%
Storage retirement condition 80% of initial capacity

3.2 Methods

The model is composed of two parts: an operational model that dispatches power to find the min-

imum storage capacity required to meet specified operating parameters while minimizing diesel

consumption, and an economic model of the costs associated with the system components and

power mix that result from the operational model. A flowchart describing the process is provided

in Figure 3.1. we use this process to compare the costs associated with 315 operating scenarios,

with varying battery chemistries, state of charge swings, battery operational lifetime, and percent-

age of energy from renewable resources, and the costs associated for each system at varied

discount rates. From this analysis, we could determine the scenarios for each battery chemistry

that yield the lowest LCOE and compare amongst the three chemistries.

3.2.1 System Operational Model

The model combines a set of fixed components: a 7.5 kW solar PV array, a 2.5 kW diesel gen-

erator, and an off-grid micro-grid load profile with an average daily energy consumption of 20.5

kW h. Additional assumptions about these components are given in Table 3.1, and the average

daily load and solar PV output profiles are plotted in Figure 3.1, with 95% confidence intervals.

We selected the size of the PV array to provide enough power from solar resources to slightly

exceed the average daily load, to meet both daily demand and provide surplus power to charge

the batteries to provide power when solar was unavailable. Similarly, we size the diesel generator

to meet full electricity demand in the event of insufficient insolation.

With these elements fixed, we then specify a number of operating conditions to apply to the

battery storage. These conditions are the maximum allowable state of charge (SOC) swing, the

maximum amount of electricity from the diesel generator (which dictates the amount of electricity

from renewable sources), and the number of times the battery pack was replaced over the 20-year

lifetime (dictating how long a pack was used). Table 3.2 shows a complete list of all of the operating
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Table 3.2: Fixed System Parameters

Parameter Values
Battery operational lifetime (years) 1, 2, 5, 10, 20
Maximum allowable SOC swing 30%, 40%, 50%, 60%, 70%, 80%, 90%
Maximum electricity from diesel generator 5%, 15%, 25%
Storage retirement 80% of initial capacity

parameters we consider and combine into 105 scenarios, which we repeat for each of the three

battery chemistries. The selected values are a subset of all the possible number of replacements

over the timeframe considered, and serve as bounding examples.

Under these operating conditions, we implement a battery chemistry and pack size, and op-

timize power flows to minimize diesel consumption over the entire specified lifetime. We iterate

through different pack sizes until all of specified operating conditions are met, and the storage ca-

pacity remains above 80% of the initial capacity for the entire specified lifetime. This final storage

capacity, and the power flows associated with it are used in the LCOE calculations.

Power flow optimization

The model assumes perfect information for both hourly solar availability and hourly load profile,

thus providing a best-case scenario for energy storage utilization. Hourly temperature and solar

data is combined with a load profile using documented electricity consumption for a rural com-

munity and HOMER Energy’s load pro- file generation tool. These load and solar PV data are

combined with battery storage and a diesel generator to deliver electricity to equal the demand

for every hour in the time period considered. We iterate through different storage capacities to

determine the minimum capacity required for the system to function for the specified number of

years, t, and meet renewable energy targets,with the remaining electricity produced by the diesel

generator when other sources were insufficient. Under these conditions, we minimize the costs

associated with diesel generation, xGEN
i , in all i time periods (Equation 3.1), so any additional

storage capacity would be utilized in all time periods.

min
x

t∑
i=1

xGEN
i (3.1)

The other constraint on the diesel generation is that the total electricity from the diesel genera-

tor
(∑t

i=1 x
GEN
i

)
could not exceed a certain percentage of the total electricity produced. The limits
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are specified in Table 3.2.

We assume that the restrictions between the system components could be negligible, so the

majority of the system constraints are on the battery storage component. The the model calculates

energy stored in the batteries using data on the current level of energy stored in the previous

hour,xBAT
i , and the energy inputs, uCHARGE

i , scaled with the round-trip efficiency, η, and the energy

outputs, uDISCHARGE
i (Equation 3.2). We assume that because of the frequent battery cycling,

self-discharge effects would be minimal; it commonly takes weeks or months for significant self-

discharge to occur in these batteries. The model uses a load- following strategy, where only the

solar PV panels can charge the batteries, to compute the power stored in the batteries at any

given time. The specified maximum SOC swing, S, and the initial storage capacity determine the

lower limit on the amount of energy stored. The values of S are specified in Table 3.2.

Stored energy is limited to the maximum storage capacity, C. Because batteries lose storage

capacity as they are cycled, we recalculate this maximum storage capacity on a weekly basis over

the course of the system operational lifetime, and use these calculations to update the constraints

when computing the power flows for the following week (Equation 3.3). The formulae we use in

these calculations are chemistry-specific and are outlined in Section 2.1.2. The model assumes

that the batteries have to be operational (with capacity greater than or equal to 80% of their initial

capacity) for the entire specified operating lifetime (1, 2, 5, 10, or 20 years) (Equation 3.4). If

the system modeled violates these restrictions (Equations 3.3 and 3.4), or the initial restrictions

specified (Table 3.2)., the storage capacity increases and the system recalculates the power flows

until we find the minimum storage capacity to meet all of these requirements.

xBAT
i+1 = xBAT

i + ηuCHARGE
i − uDISCHARGE

i (3.2)

(1− S)C INITIAL ≤ xBAT
i ≤ C (3.3)

0.8C INITIAL ≤ C ∀i ∈ t (3.4)

Battery degradation models

Different battery chemistries have vast disparities in response to different operating conditions, in-

cluding temperature and depth of cycling. Generally, the deeper an electrochemical battery is cy-
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Table 3.3: Battery chemistries and degradation models

Mathematical relationship
between cycle life

Battery Chemistry Sensitivity to SOC swing and SOC swing
Lead Acid High Power
High power-density

Low Linear
Lithium-ion
High energy-density

Medium Power
Lithium-ion

cled through its state of charge (SOC) window, the fewer total cycles possible over its lifetime. This

effect is most profound in lead acid batteries, while some high-performing lithium-ion chemistries

can endure thousands of cycles [44,45]. These sensitivities are detailed in Table 3.3. The models

we use attempt to capture these sensitivities, when sufficient data is available to differentiate the

effects of temperature and SOC swing.

Lead acid battery

The degradation model for lead-acid batteries is based on the power-law relationship, charac-

terized by increased degradation (fewer lifetime cycles) at higher SOC swings, with more cycles

possible at lower SOC swings, as shown in Figure 3.2 [44]. As a result of this relationship, the

total throughput over the battery’s lifetime is higher if it is cycled shallowly for thousands of cycles,

instead of deeply cycling the battery for a few hundred cycles. Equation 3.5 shows how we use

this relationship to determine the capacity loss for lead acid batteries
(
CLOSS

LA

)
; using the average

SOC swings between charge cycles over the weekly timeframe, SDAILY
AVG and the number of cycles,

Y .

CLOSS
LA =

(
C INITIAL − 0.8C INITIAL)(
SDAILY

AVG /12.838
)−1.838 Y (3.5)

High power density lithium-ion battery

Data about the impact of both temperature and SOC swing on battery degradation are available

for high power density lithium-ion batteries, which have a thin electrode system and a lower voltage

LiFePO4 cathode active material. For example, A123Systems provides battery data for the lifetime

impacts for varied temperature and discharge conditions. Using the manufacturer specified data
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Figure 3.2: Relationships between the number of cycles and SOC swing for lead acid, high energy density
Lithium ion, and high power density Lithium-ion batteries.

[46], along with the model operating temperature and the average percentage capacity lost per

cycle at each of those temperatures, we calculate capacity losses
(
CLOSS

HPL

)
using the formula in

Equation 3.6:

CLOSS
HPL =

((
5× 10−6

)
TAVG

)
Y C INITIAL (3.6)

where Y is the number of cycles and TAVG is the average temperature over the time period for

which capacity, C, is being recalculated. Charging and discharging limits are also based on man-

ufacturer recommended levels, with charging voltage of 3.6 V and current of 3 A, and discharging

voltage of 4.2 V at 5 A [46].Previous testing by Peterson et al. [45] shows that manufacturer data

are largely accurate, and that there is a linear, and relatively fixed, relationship between the SOC

swing and the capacity processed by the cell. When plotted in terms of cycles available depend-

ing on the depth of battery cycling (Figure 3.2), the entire curvature is driven by the relationship

between the depth of cycling and its relationship to a full charge cycle, and throughput is largely

constant.

High energy density lithium-ion battery

Data about the performance of high-energy density lithium-ion batteries are very limited. Other

models have previously identified the power law relationship that these lithium-ion batteries obey

[44], although these models do not account for improvement in performance of these batteries
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Table 3.4: System component cost assumptions

Cost
Component Units (range)
Lead acid battery $/kWh $200

$150 -$250
High power density Lithium-ion battery $/kWh $680

$530-$1000
High energy density Lithium-ion battery $/kWh $250

$200 - $300
Lithium-ion Pack costs $/kWh $40

$35 - $50
Diesel $/l $1.50
Generator Efficiency l/kWh 0.3
Generator Capital Cost $ $2,500
Solar PV Capital Cost $ $24,000

over the past few years. Our cycle testing of high energy density batteries with a thick electrode

layered metal oxide active cathode material (and a >4.1 V full state of charge) at different SOC

swings shows that these batteries exhibit a power-law relationship between the number of cycles

possible (until end of life) and the state of charge swing encountered on each cycle, similar to

that of lead-acid batteries, and we use this data to scale the power law relationship to map to a

current, if somewhat optimistic model of high energy density lithium-ion battery performance [44].

The results are plotted in Figure 3.2, which also shows that there is no appreciable difference in

performance between lead acid and high-energy lithium ion batteries once the SOC swing drops

below roughly 10%. Like the lead acid battery model (Equation 3.5), we use this relationship

between SOC swing and the number of cycles to determine the weekly capacity loss
(
CLOSS

HEL

)
using the relationship in Equation 3.7.

CLOSS
HEL =

(
C INITIAL − 0.8C INITIAL)(
SDAILY

AVG /1307.4
)−0.95 Y (3.7)

The charging and discharging limits are based on manufacturer data (from Panasonic) speci-

fying the maximum charging voltage as 4.2 V, and current of 1.925 A, and discharging voltage and

current as 3.6 V and 2.75 A, respectively [47].

33



Chapter 3. Comparitive techno-economic analysis of hybrid microgrid systems utilizing different battery types

Figure 3.3: Nameplate storage capacity for different battery operational lifetimes as maximum state of
charge swing varies with a 75% renewable requirement for a) lead-acid, b) high power density lithium-ion,
and c) high energy density lithium-ion batteries.

3.2.2 Economic Model

Using the storage capacity determined by the power flow opti- mization for each set of operating

conditions considered, we com- pute the LCOE of each complete system using a baseline discount

rate of 5%, which is consistent with the discount rates used on capital-intensive projects. We

also perform sensitivity analyses with discount rates ranging from 0% to 15%. Cost and efficiency

assumptions for the system components are drawn from previous literature [48–50]. Many of these

components are mature technologies, with easily sourced commercial prices. The main exception

to this is the lithium-ion battery pack costs, which are a relative newcomer to the market. Battery

pack cost assumptions (in $/kW h) are sourced from both literature and direct communication with

suppliers [10, 11, 46, 48, 51–54]. Their baseline values and ranges, and other system component

costs are detailed in Table 3.4. Our assumptions have generally been confirmed, as additional

information becomes available as new products (including the Tesla PowerWall, which has a pack

cost of roughly $55/kW h) become available [55].
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3.3 Results

3.3.1 Battery operational lifetime

Using the power flow optimization outlined in 3.2.1 to dispatch power between the solar PV, diesel

generator, and battery storage to meet the electricity demand, we determine the storage capac-

ity required as the operating conditions specified in Table 3.2 are combined into 105 scenarios

for each battery chemistry. Throughout our optimization, we implement the battery degradation

models (Equations 3.5 - 3.7) for each chemistry to more accurately depict reductions in storage

capacity. We find that the storage capacity required to meet or exceed the minimum specified

operating requirements is highly dependent on the maximum allowable SOC swing and the num-

ber of years the batteries were used before replacement. This is shown in the storage capacities

required for a subset of the scenarios where the maximum percentage of electricity from diesel

is limited to 25%, with 75% or more from renewable sources, which is presented in Figure 3.3

for all 3 chemistries. With the fixed diesel generator contribution, both the maximum SOC swing

and battery lifetime vary through the values specified in Table 3.2, and these 35 combinations are

presented.

In the scenarios with short operational lifetimes, the storage capacity required drops as the

maximum SOC swing increases (as shown for the lithium-ion and batteries operating for 1- and 2-

years in Figure 3.3b and c), because more power is drawn from each battery. As the batteries are

used over a longer time period, the batteries degrade to the point that they are unable to deliver

the required number of cycles, especially at high SOC swings. To ensure the pack is functional for

the designated lifetime, the storage capacity increases (as shown in the 2-year scenario for lead

acid batteries Figure 3.3a).

While the storage capacity is increasing to ensure the batteries are functional for the desig-

nated time frame, the daily load profile is relatively consistent. This means that the average SOC

swing on any given day falls, because the same amount of electricity is drawn from a larger battery

pack. However, for the cases when storage capacity is just starting to increase to compensate for

degradation, cumulative cycling may still result in a maximum SOC swing very close to the speci-

fied maximum. This is shown in Figure 3.4, which plots the average daily SOC swing with a 95%

confidence interval, and compares it to the maximum SOC swing experienced by the high energy

density lithium-ion batteries, with at least 75% of electricity from renewable sources. The storage

capacity for these scenarios is plotted in Figure 3.3c. Points on the black line represent when
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Figure 3.4: Median daily SOC swing (with 95% confidence interval) compared to the maximum cumulative
SOC swing for high energy density lithium-ion batteries.

daily SOC cycles are equal to the maximum specified limit on the SOC swing. The line for the

2-year replacements shows how the storage capacity increases result in decreases in the daily

SOC swing, but still have a high cumulative cycle. For the batteries operated for longer (5-, 10-,

or 20-year) timeframes, while the daily SOC swing is generally fairly consistent, the more relaxed

SOC swing constraints allow the maximum SOC swing (which is plotted on the x-axis in Figures

3.3 and 3.4), to vary in the rare events where the packs can cycle to lower depths over the span of

several days, when solar resources are unavailable (full recharge of the battery at these capaci-

ties is not possible for the given solar resources). Such cycling is not possible when the maximum

SOC swing is constrained to a lower value, and these systems rely on more diesel generation to

compensate.

3.3.2 Levelized cost of electricity

Nameplate storage capacity has a direct impact on the levelized cost of electricity. We see this

when we compare the storage capacities (plotted in Fig. 3) with the LCOE plotted in Figure 3.5

for the scenarios with a minimum of 75% renewable energy for all 3 battery chemistries. The

uncertainty bounds in Fig. 5 reflect the uncertainty in battery prices and the values plotted use the
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Figure 3.5: LCOE for different battery operational lifetimes with a 75% renewable requirement and 5%
discount rate as maximum state of charge swing varies for (a) lead-acid, (b) high power density lithium-ion,
and (c) high energy density lithium-ion.

base- line 5% discount rate. For the lead acid batteries, we find that very long operational lifetimes

with high storage capacity cycled very shallowly over the system lifetime were less expensive than

more frequent replacements. It should be noted that because of their volume, large battery packs

could be subject to higher infrastructure costs, which are not included in the scope of this analysis.

Using the LCOE for each of the different chemistries and replacement schemes considered

(and plotted in Figure 3.5), the number of battery sets over the 20-year time frame associated

with the lowest LCOE is selected, as maximum SOC swing varied, and the LCOE and number of

replacements are plotted in Figure 3.6c. For low maximum SOC swing, fewer replacements are

favored. As SOC swing increased, more frequent battery replacements are required for lead acid

batteries to attain the deep cycling, and frequent replacements with higher maximum SOC swings

delivered lower cost electricity for both lithium-ion batteries. For both lithium- ion batteries, the

least expensive scenarios occur while the batteries are able to cycle deeply for the entire specified

lifetime, but operate for short enough timeframes that the sensitivity to SOC swing had not yet

degraded the storage capacity to the point that additional storage was necessary. This results in

less installed total battery capacity over the 20-year lifetime, and allows for further discounting of

capital costs.

Comparing the lowest-cost LCOE profiles for each chemistry (plotted in Figure 3.7a), the
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Figure 3.6: Optimal number of battery sets over 20 year lifetime with 5% discount rate as maximum SOC
swing varies for a) lead-acid, b) high power lithium ion, and c) high energy lithium ion batteries.

lowest-cost storage option at a 5% discount rate is the high energy density lithium ion batter-

ies cycled through a maximum of 88% SOC and replaced every 2 years, for a LCOE of $0.69/kW

h (see Figure 3.6). This is still higher than a diesel-only gen- eration system, which has an LCOE

of $0.48/kW h at assumed cap- ital and fuel prices. This was slightly lower than the cost of a lead

acid hybrid system ($0.71/kW h), with the high power density bat- teries offering the highest cost

of electricity ($0.77/kW h).

3.3.3 Sensitivity to discount rate

Changes to the discount rate play a significant role in determining which of the hybrid systems

produced the lowest cost of electricity. We apply the discount rate to both the system costs and

the output electricity when calculating the LCOE. For the lead acid batteries, which delivered

lower cost electricity when a large battery pack is cycled shallowly for a long time period, lower

discount rates meant that the return (total electricity produced in future time periods) is more

highly valued, reducing the lowest LCOE for these systems. For both lithium-ion battery systems,

reducing the discount rate means that future replacement expenses are higher, so while future

electricity returns are more highly valued (lowering the LCOE), they are tempered by increased

capital expenses. For the high-energy density lithium ion batteries, this is sufficient to make lead
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Figure 3.7: (a) Lowest LCOE envelope for each battery chemistry as maximum SOC swing varies with 75%
renewable requirement at 5% discount rate and with a comparison to diesel-only generation and (b) how
the Lowest LCOE for each chemistry varies with discount rate

acid hybrid systems more cost effective at low discount rates (less than 4%) as shown in Figure

3.7b. At higher discount rates, more frequent battery replacements are favored, even increasing

the optimal number of replacements for the lead acid batteries. The high power density lithium-ion

batteries are never the least expensive option under any of the discount rates considered. For

the diesel-only system, capital costs are low, while the larger operating costs occur during the

same time period as the electricity is generated. As a result, the LCOE is relatively insensitive to

changes in the discount rate.
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Figure 3.8: Required storage capacity and corresponding percentage of energy from renewable sources as
the renewable target and operational lifetime of the high energy density lithium-ion batteries vary (1, 5, and
20 years)

3.3.4 Renewable energy requirement

Given that a common objective of hybrid systems is to reduce fossil fuel electricity generation, we

examine three different limits on the maximum electricity from diesel generation: 5%, 15%, and

25% (specified in Table 3.1), with the remaining balance of the electricity coming from renewable

sources. The results presented in Figures 3.3-3.6 are for a subset of these scenarios where the

diesel contribution was limited to 25%, with the 75% or more of the total electricity coming from

renewable sources. The impact of the renewable energy requirement varies depending on how

deeply the batteries are cycled and how long they are operated for. For short operational lifetimes,

where the batteries cycle through their maximum SOC swing on an almost daily basis, additional

storage is required at an increasing rate to deliver larger percentages of renewable electricity. For

longer operational lifetimes, the storage capacity is so large that daily battery cycling was lower

than the maximum SOC swing allowed. The large capacity enables the system to exceed the

specified renewable target, so no additional storage capacity is required to meet higher renewable

targets. As the storage capacity continues to increase for longer battery operating lifetimes, the

storage requirement begins to converge to one value that met all three of the specified renewable

energy targets, as shown in Figure 3.8. For many of the lowest-cost replacement scenarios, the

storage capacity was sufficiently large to exceed the specified renewable target, so the lowest

LCOE for each battery chemistry is relatively insensitive to changes in the renewable requirement,

with a maximum increase of $0.04/kW h.
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Figure 3.9: (a) Diesel prices required to switch to hybrid system depending on discount rate and assumed
storage prices for each battery chemistry and (b) Battery price changes required to switch to a hybrid system
as discount rate varies

3.4 Discussion

Because diesel-only generation is still less expensive than all of the off-grid hybrid micro-grid

options considered, we examine the market changes necessary to induce a switch from diesel-

only generation to a hybrid system, assuming no change in battery performance. Improvement in

battery cycle life, or slight variations in chemistry or cost across manufacturers could alter the mag-

nitude of the changes necessary to induce a switch to a hybrid system. However, the sensitivity

analyses included for each intervention capture these variations, and show the same trends. The

first market changes we examine are the changes in fuel and battery storage technology prices

that would trigger a switch to hybrid generation. The other two forces are more policy-focused:

feed-in tariffs on hybrid generation, and carbon emissions taxes. Finally, we comment on the

efficacy and structure of some existing incentives policies for distributed generation and storage.
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3.4.1 Price changes

Switchover analyses are conducted to determine (1) how much fuel prices need to increase to

achieve parity with the three storage options considered and (2) what battery price changes are

necessary to reach cost parity with the diesel-only generation system. The diesel prices required

to trigger a switch to each of the three battery chemistries, and their associated uncertainties

are plotted in Figure 3.9a, but to switch from diesel-only generation to the lowest-cost storage

system at a 5% discount rate, diesel prices need to increase by almost 50% to $2.20/l. These

price increases could result from changes in market supply, higher taxes on fuel (as is common

in Western Europe, where fuel prices have historically exceeded this amount) or from increased

transportation costs to remote areas, which can costs an additional $0.2/l for every 100 km of travel

distance [56, 57] . Like the LCOE of the different systems, the required change in diesel prices

is lowest at low discount rates, and increases as the discount rate increases. Similar percentage

changes on battery prices are required to reach LCOE parity with diesel-only generation, as shown

in Figure 3.9b. At the baseline 5% discount rate, lead acid and high energy density battery prices

need to drop by 54% to $93 and $114/kW h, respectively, while high power density lithium-ion

battery prices need to be reduced to $261/kW h (a 62% reduction).

3.4.2 Feed-in tariffs

Feed-in tariffs are a common method for encouraging renew- able electricity generation, and have

been implemented by many developed and developing countries [41]. Tariff rates necessary to

switch from diesel generation to a hybrid system at different discount rates are plotted in Figure

3.10a. At an assumed discount rate of 5% with the baseline price estimate of $250/kW h of high

energy density lithium ion batteries, the subsidy would have to be $0.20/kW h to reach parity with

diesel-only generation. This rate is on the higher end of the existing feed-in tariff rates in the US for

systems of this scale. The full range of values available in the US is plotted in Figure 3.10a, with the

lowest rate offered by the Tennessee Valley Authority (TVA) and the highest, offered by Madison

Gas and Electric (WI). These rates are comparable to many feed-in tariffs offered in EU countries,

and some developing countries, but are much higher than the subsidized feed-in tariffs proposed

as part of a globally managed Green Climate Fund, which are less than $0.06/kW h [58–60].

Even larger subsidies would be required to be competitive with lower-cost grid electricity [61, 62].

Determining a tariff to reach grid electricity parity is highly dependent on local electricity prices
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Figure 3.10: Incentives policies to induce switch to a hybrid system with variation in discount rate. Feed
in tariffs (a) required to reach LCOE parity between lowest-cost systems and diesel-only generation, with
comparison to the highest and lowest US electricity provider Feed-In Tariff rates and (b) Carbon taxes
required to switch to a hybrid system, with comparison to existing global tax rates.

and is outside of the scope of this study.

3.4.3 Carbon tax

Assuming that carbon taxes would only be applied to fossil fuel resources, they would need to be

fairly substantial to increase the LCOE of diesel-only generation to reach parity with the lowest-cost

hybrid system. At the assumed price of $250/kW h for high energy density lithium-ion batteries

and 5% discount rate, the required carbon tax is $245/ton of CO2. At lower discount rates, no

tax would be necessary, with taxes increasing as the discount rate increases (see Figure 3.10b).

These carbon tax values are higher than existing carbon taxes, which are generally on the order of

$10-$30/ton CO2e, and exceed the Swedish carbon tax - the highest in the world - of $168/ton [63].
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3.4.4 Other policy recommendations

As shown in Figure 3.5, many of the lowest-cost hybrid generation options utilize more frequent

battery replacements. However, many incentives programs, including California’s Self-generation

incentive program, require all subsidized technologies to have a ten-year warranty [27]. These

frequent replacements (1) generally require fewer batteries overall to meet the same demand and

(2) allow consumers to spread the capital costs of these systems over several years. Considering

the 20-year timeframe we use in this model, the California program would choose to subsidize 2

high- energy density lithium ion battery packs, each used for 10 years, with a total lifetime storage

capacity of 258 kW h over a system with 10 battery packs, each used for 2 years, with a total

lifetime storage capacity of 220 kW h. Discounting the replacement costs at 5%, the system with

10 packs is $17,000 less expensive than the system with 2 battery packs. Assuming the costs

of 8 additional replacements is less than this amount, more frequent replacement is more cost

effective.

3.5 Conclusions

A time-step battery degradation model was implemented for three types of batteries. The model

combined multiple operating variables to determine the energy storage required to meet specified

performance targets. It is important to note that this model did not use a smart battery man-

agement or predictive controller. Such a controller could be used to restrict battery charging and

discharging when not needed, which would allow the system to utilize less storage during some

time periods, reducing the overall battery degradation over time.

Using the combinations of storage capacity and diesel utilization from the model, we deter-

mined the lowest levelized costs of electricity for each type of battery. These costs were then

compared with each other and diesel-only generation.

• At assumed prices and discount rates of 1% or higher, diesel- only generation is the most

cost-effective option.

• For low (<4%) discount rates, lead acid batteries are the lowest cost hybrid option. At higher

discount rates, high energy density lithium ion batteries are have the lowest LCOE.
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3.5. Conclusions

• The optimal number of battery sets over the 20-year system lifetime varies substantially, with

only one, very large pack favored for lead-acid batteries, and smaller packs replaced more

frequently for both lithium-ion batteries.

• High power density lithium-ion batteries have the highest LCOE for all discount rates consid-

ered.

• Discount rate is significant in calculating the LCOE, determining which storage technologies

in hybrid systems are competitive, and how large price changes (on diesel or batteries) or

policy incentives (feed-in tariffs or carbon taxes) need to be to induce a switch to a hybrid

system.
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Chapter 4

Prospects for reducing battery

manufacturing emissions from direct

material recovery

4.1 Introduction

Electric vehicles are quickly becoming one of the largest markets for lithium-ion batteries, with ap-

proximately 16 GWh of storage capacity and 80,000 tons of cathode material on the roads today

in the US alone. As they have become more prevalent, a number of jurisdictions have imposed

regulations requiring their safe disposal. The European Union requires that 45% of all recharge-

able batteries be collected and that half of those batteries must be recycled, [64] while many US

states have similar requirements. [65,66] These regulations will become increasingly important as

the non-lead-acid automotive battery market continues to grow. Although the lithium-ion battery

market for EVs is currently larger than the market for grid-scale projects, electric vehicles still ac-

count for a very small portion of US vehicles (∼0.25%). If even 1% of US vehicles were plug-in

hybrid vehicles, with an average capacity of 11kWh, that would nearly double the current battery

capacity on the road to approximately 29 GWh, requiring roughly 145,000 metric tons of cathode

material per year. If manufacturers like Tesla and GM were to meet their 2020 production targets,

annual production capacity would be on the order of at least 40 GWh/year, or 200,000 tons of

cathode material annually. [67,68]

Today there are relatively few facilities that can process used lithium-ion batteries, and the
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Figure 4.1: Cathode materials are a substantial contributor to overall costs and CO2e emissions for manu-
facturing NMC cylindrical cells.

methods they employ are limited, typically relying on a pyrometallurgical process where mate-

rials are either downcycled into inputs for cement making or undergo significant processing for

to be useful in other applications. Most efforts to improve recycling processes have focused on

recovering specific valuable metals, especially cobalt. [69–75] More recently, direct physical pro-

cesses, [76] which recover battery materials as a mixture, rather than as individual metals have

been developed. These processes take advantage of the limited battery chemistries and pack

formats of electric vehicles to target the known cathode materials. This focus on cathode mate-

rials is a logical choice since they are the second largest contributor to cell material costs (after

cell packaging materials) and account for nearly one third of the emissions associated with battery

manufacturing, as shown in Figure 4.1. Dunn et al conducted an early analysis of the life cycle car-

bon emissions associated with employing a direct recycling process on lithium manganese oxide

(LMO) cathode materials. [77]

Here, we compare the environmental impacts and economic costs of battery manufacturing

and recycling using both pyrometallurgical and direct cathode recycling methods for the two most

common chemistries in US electric vehicles: lithium nickel manganese cobalt oxide (NMC) and
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Figure 4.2: Manufacturing (in blue), pyrometallurgical (in yellow), and direct cathode recycling (green) pathways for
NCA and NMC cells. Ni, Co, and Mn inputs can be sourced from either sulfates or nitrates. Mn is only an input for
NMC cells, Al(OH)3 is only for NCA cells. We do not consider the emissions for cell use.

lithium nickel cobalt aluminum oxide (NCA). We also focus on cylindrical cells, which make up

roughly half of the storage in EVs. [2] To make this comparison, we use an attributional life cycle

analysis to determine the greenhouse gas emissions and input energy resources that result from

mining raw materials, shipping, manufacturing, and recycling processes. We consider three dif-

ferent electricity grid assumptions to illustrate the impact of grid emissions on manufacturing and

recycling: the US average, a low emitting grid (NWPP NERC subregion), and a higher-emitting

grid (RFCM NERC subregion). Using a process-based cost model, we determine the cost of man-

ufacturing cathode materials from raw inputs and use this to find a breakeven recovery cost for

direct cathode recycling to be competitive with other sources. Finally, we comment on other waste

streams produced by these processes, and how pyrometallurgical and direct cathode recycling

align with recycling regulations.
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4.2 Methods

We use a Monte Carlo simulation to conduct an attributional life cycle assessment of the materials,

manufacturing, and recycling of lithium-ion batteries. We focus our analysis just on the green-

house gas emissions and energy consumption of these steps, and do not include the emissions

or energy associated with their use in electric vehicles. Figure 4.2 outlines the manufacturing,

pyrometallurgical, and direct cathode recycling processes modeled.

The cell bill of materials for each simulation was constructed based on literature estimates of

cell contents for two cell dimensions: 18650 (18 mm diameter, 65 mm tall) and 20720 (20mm

diameter, 72 mm tall). [13] Additional information about the cell material inputs and dimensions

is provided in Tables C.1 and C.2. We considered two types of inputs to produce the cathode

precursors: nitrate and sulfates. Tables C.1 - C.6 detail the required inputs for both pathways. [78]

These precursors are then combined with lithium carbonate and calcined to produce the final

cathode material (details included in Tables C.7 and C.8.

The pyrometallurgical process, outlined in an Umicore patent, [1] involves firing the battery ma-

terials with slag, limestone, sand, and coke to produce a metal alloy, which can be separated into

its constituent materials, and a slag that can be repurposed to make cement. The direct cathode

recycling process involves discharging and disassembling the batteries, extracting the electrolyte

using liquid or supercritical CO2, [79–82] then reducing the size of the recovered components and

separating out the cathode materials. [76,79,83]

For each process considered, we present the resulting emissions in carbon dioxide equivalent

using 20 year warming potentials and energy consumption in MJ. [84,85] We also use two different

functional units: kg of battery manufactured (including cell electrode materials, separators, and

packaging) and kWh of battery manufactured (including all cell components).

4.2.1 LCA Assumptions

The energy inputs and carbon emissions for the cell material inputs are modeled in GREET

2016, [86] often including a range of assumptions depending on the recycled content of the source

materials. Tables C.10 and C.11 list the specific assumptions and distributions used to model these

contributions to the overall greenhouse gas emissions and energy resources for cell manufactur-

ing.
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For the energy consumed at the battery manufacturing and recycling facilities, we assess the

damages from natural gas consumption using GREET 2016 assumptions for a kiln using north

American shale gas. For grid electricity emissions, we use EPA eGRID 2014 data. [84] Specifi-

cally, we consider the emissions associated with using a US average grid, the NWPP subregion

grid, and RFCM subregion region grid. These subregions were selected based on known EV

manufacturing locations, and the emissions assumptions are summarized in Table C.9. We use

average emissions assumptions because the processes modeled operate continuously.

Transportation Assumptions

We also use the location assumptions to create rough estimates of the distances to ship both raw

materials and to collect the used cells for recycling. Estimates for the distances traveled were

calculated using information about both where materials are produced and tools that calculate

distances between major ports. For steel and graphite, we assumed that the materials would be

shipped from Shanghai to Long Beach (for NWPP) or Newark (RFCM), [87] and then would be

shipped via rail for 600 miles each (approximately the distance between Newark and Detroit and

Long Beach and Reno). Most of the bauxite used in the US is imported from Jamaica (GREET

2016), [86] so we calculated the distance from Kingston to Newark, and then the shipping distance

by rail). Aluminum, copper, nickel, cobalt, and manganese are all produced in North America, and

the USGS has maps with locations of these production facilities. [4, 88] Distances between these

facilities and approximate locations were calculated and attributed to rail shipping. For the other

input chemicals, production is not tied to a specific location, and we assumed 500 miles rail. For

all the inputs, we assumed 50 miles of road transport to reach the final destination. The distances

assumed for different modes of transportation (water, rail, road) [87,88] and damages per ton mile

are listed in Table C.12 and C.13. We also conduct a sensitivity analysis on these estimates to

determine the impact of shipping on overall emissions and energy consumption.

Recycling Process Emissions, Energy Consumption, and Offsets

The pyrometallurgical process is based on the process detailed in US Patent 7,169,206 B2, [1]

where batteries are mixed with other input materials (listed in C.14 and heated to produce a metal

alloy and slag material. Process and heat inputs (listed in Table C.15) are fixed regardless of the
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specific cell chemistry or format. Estimates of the energy consumed for the leaching processes to

separate the metal slag are drawn from Dunn et al. [83]

The direct cathode recycling process consists of four main steps: discharge and disassembly,

electrolyte extraction, size reduction, and final separation. The electricity consumption assumption

for the discharge and disassembly step of 0.034 mmBtu/ton of battery comes from the Dunn et

al [83] assumption for the total electricity required during the formation cycle of battery cells. The

primary driver of electricity consumption for the electrolyte extraction step is the energy used

to compress the CO2 used as a solvent. Recent research [79–82] has focused on the optimal

combination of CO2, duration of the extraction process, and additional solvents, but we use the

assumptions from Grutzke et al. [79] They use liquid CO2 to fill a 100ml chamber, along with an

ACN/PC mixture. We use a triangle distribution to estimate the number of times the chamber is

filled (peak of 2, bounds of 1 and 4), and then scale this by the cell volume treated. To estimate

the energy consumed to produce the liquid CO2 we also use a triangle distribution, with a peak

of 0.0981 kWh/kg, [79] and bounds of 0.0719 kWh/kg (from Zahid et al) [82] and 0.1609 kWh/kg

(from Dunn et al). [83] For both the size reduction and final separation steps, we use the estimates

provided by Dunn et al, [83] but with triangular distributions to represent the uncertainty to the

functional unit. We use a triangular distribution to divide the 0.22 mmBtu for the size reduction

step, and divide it by the total cell mass, the cell mass that is present at that step, and the mass

of cathode material. We use the same functional units to divide the 0.02mmBtu assumed for the

final separation step.

To determine the environmental benefits of recycling, we calculate the greenhouse gas emis-

sions offset by the final products. For pyrometallurgical recycling, this includes copper, iron, nickel,

cobalt, and cement slag. The total amount of each material present in the smelted material is

calculated based on cell inputs and the amount of each metal recovered is calculated based on

the yield rates from the process patent, listed in C.15. For the direct cathode recycling process

the emissions and energy offsets include the sum of the embodied energy and emissions of the

cathode precursor materials, the transportation of these materials, and the energy consumed dur-

ing the cathode precursor drying step. The offsets are then scaled based on the yield rate of the

cathode recovery process.
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4.2.2 Cost Model

We use a process-based cost model to estimate the cost to produce cathode materials from raw

inputs. This modeling technique originated in the electronics industry, where it was used to inform

design decisions by estimating manufacturing costs. [14] The method has since been adopted

for product design more broadly, [3, 15] and has been used to examine battery manufacturing

costs. [2,10]

Process-based cost models disaggregate the many factors that come together during a man-

ufacturing process into discrete units that increase with production volumes. Labor, capital equip-

ment, and input materials are allocated for each step in the manufacturing process, with the pos-

sibility of sharing resources between steps where appropriate. Production volumes at each step

are adjusted based on yield rates of the downstream processes. This type of bottom-up mod-

eling makes it possible to make more granular comparisons between process technologies, to

determine the production volumes required to reach economies of scale, and to identify the inputs

and processes that contribute the most to product cost. These characteristics mean that process

based cost modeling can provide more substantive reasons for why technology costs are falling,

and because process models can be adapted for technologies that do not currently exist, it offers

a distinct advantage over models that examine overall learning rates or price curves, which rely on

historical sales or price data to make predictions. [89]

We leverage knowledge from this previous work examining battery manufacturing costs to fo-

cus on the manufacturing costs of the cathodes from raw materials, and contrast this with the costs

associated with the cathode materials from a direct cathode recycling process. The reprocessing

of the cathode materials from the direct cathode recycling process is essentially the same as the

lithination step of cathode manufacturing, so we can isolate the breakeven cost of recovering the

cathode material. Assumptions about equipment, labor, material, and energy costs are detailed in

Tables C.16 - C.18.

4.3 Results

4.3.1 Cell Manufacturing Emissions

As Figure 4.3 shows, greenhouse gas emissions associated with cell input materials are a sub-

stantial contributor to the overall emissions from the manufacturing process. These emissions
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Figure 4.3: kg CO2e per kg of cell emitted during the manufacturing of NMC and NCA cylindrical batteries
using US average, NWPP, and RFCM average grid emissions data. Manufacturing includes processing of
cathode material preparation

play a larger role for facilities that utilize lower-emitting electricity grids. For NMC cells, if the fa-

cility is located in the RFCM subregion, which is higher emitting than the US average, materials

account for 50% of total emissions per kg of battery, while the they account for 60% of the total

if the facility is in the NWPP subregion, which is lower emitting. Figure 4.3 also shows that our

baseline transportation assumptions have a minimal impact on the emissions per kg of battery

produced. Although there is a difference in the median CO2e emissions depending on the grid

assumptions, there is sufficient uncertainty in emissions from the input materials that there isn’t

a statistically significant difference in the total CO2e emissions between any of the grid locations.

Similar plots listing the uncertainty in greenhouse gas emissions and the input energy required per

kg of battery, as well as the greenhouse gas and energy inputs per kWh of battery are provided

in supplementary Figures C.1 - C.4. As the data provided in Table 4.1 show, our estimates of the

greenhouse gas emissions and energy consumption per kg of battery are largely in line with other

analyses of the battery manufacturing process. Table C.19 provides the same information on a

per kWh basis.
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Table 4.1: Comparison of greenhouse gas emissions and energy inputs to cell manufacturing between this
and other studies

Specific Greenhouse gas emissions [kg CO2e] &
Cathode Energy input energy [MJ] per kg battery

Reference Chemistry [kWh/kg] Materials Manufacturing Total
Notter et al

LMO 0.114
5 kg 0.98 kg 6 kg

(2010) [90] 86 MJ 18 MJ 100 MJ
Zackrisson et al

LFP 0.10
7.7 kg 9.5 kg 17 kg

(2010) [91] - - -

NCM 0.112
16 kg 6 kg 22 kg

Majeau-Bettez 130 MJ 80 MJ 210 MJ
et al (2011) [17]

LFP 0.088
16 kg 6.1 kg 22 kg

130 MJ 80 MJ 210 MJ
Dunn et al

LMO 0.13
4.8 kg 0.27 kg 5.1 kg

(2012) [77] 72 MJ 2.7 MJ 75 MJ

EPA (2013) [92] Average 0.15
11 kg 0.09 kg 11 kg

160 MJ 1.4 MJ 160 MJ
EPA (2013)

Average 0.09
7.2 kg 3 kg 10 kg

cells only [92] 110 MJ 55 MJ 160 MJ
Ellingsen et al

NCM 0.11
6.8 kg 11 kg 18 kg

(2014) [93] - - -
Ellingsen et al (2014)

NCM 0.17
9.2 kg 19 kg 28 kg

cells only [93] - - -

Kim et al (2016) [94] LMO/NCM 0.08
6.1 kg 5.2 kg 11 kg

- - -
Kim et al (2016)

LMO/NCM 0.14
4 kg 9.1 kg 13 kg

cells only [94] - - -

NMC 0.21

5.2 kg 3.6 kg 8.9 kg
(4.5 - 6.0 kg) (3.0 - 4.2 kg) (7.9-9.9 kg)

This study (US 69 MJ 49 MJ 120 MJ
average power mix, 61 - 76 MJ 41 - 57 MJ 108 - 130 MJ
95% confidence

NCA 0.19

4.8 kg 3.5 kg 8.4 kg
intervals) (4.0 - 5.6 kg) (2.9 - 4.1 kg) (7.4 - 9.5 kg)

64 MJ 48 MJ 114 MJ
(55 - 73 MJ) (40 - 56 MJ) (101 - 126 MJ)

4.3.2 Cell Recycling Emissions

Figure 4.4a shows the CO2e emissions associated with each kg of battery manufactured and recy-

cled using both pyrometallurgical and direct cathode recycling methods and an average US power

grid. Figure 4.4b shows the median and 95% confidence intervals for the greenhouse gas emis-

sions avoided by using both recycling processes. For both chemistries, a direct cathode recycling

process leads to net emissions savings. However, using a pyrometallurgical process for either cell
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Figure 4.4: CO2e emissions per kg of battery for (a) manufacturing and recycling processes (pyrometal-
lurgical and direct cathode recycling) less the emissions offsets from recovered materials, and the (b) net
CO2 emissions avoided by using a recycling process for NMC and NCA cells and recovering material. All
processes use the US average electricity grid.

chemistry does not guarantee such savings. For both chemistries, much of the pyrometallurgi-

cal recycling emissions offsets are derived from using the output slag as a substitute for cement

inputs. The other differences in pyrometallurgical emissions are the result of differences in the

cathode chemistries. While the median emissions for pyrometallurgical recycling of NCA cells

shows some net savings, for NMC cells only a few scenarios result in emissions savings. This

trend is largely driven by the presence of manganese as a cathode material present in NMC cells,

but not NCA cells. Manganese is not recovered during the pyrometallurgical recycling process,

and global recycling rates of manganese are very low, so the manganese for these cathodes is

assumed to be mined for each application. [95] The nickel and cobalt can be recovered by either

pyrometallurgical or direct cathode recycling. Although the metals recovered in a pyrometallurgical

process must be refined, the energy and associated emissions are less substantial than the emis-

sions and energy required to mine the material. However, for the metals recovered (nickel, copper,
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Figure 4.5: net kg of CO2e emissions avoided per kg battery when combining manufacturing with direct
cathode recycling over using no recycling method after manufacturing. As the cathode yield rate from the
direct recycling process decreases, so do emissions benefits. Pyrometallurgical recycling does not offer
significant greenhouse gas emissions reductions.

iron, and cobalt) there are already a variety of other recycling pathways, pathways that have lower

emissions than pyrometallurgical recycling of lithium-ion batteries. Because these existing recy-

cling pathways play such a large role in the current markets for these metals, pyrometallurgical

recycling does not offer significant greenhouse gas emissions reductions in any grid (shown in

Figure C.5). Similar trends hold when we consider different functional units. Figure C.7 shows that

when we consider emissions per kWh of battery, pyrometallurgical recycling of NMC cells does

not offer net reductions in emissions. Figures C.6 and C.8 consider the input energy per kg and

kWh, respectively.

Figure 4.4 assumes that 100% of the cathode material is recovered during the direct cathode

recycling process, but we are interested in determining how effective this process needs to be at

recovering cathode material to have net emissions benefits. Since the pyrometallurgical process

does not have significant environmental benefits for either chemistry, we compared the benefits

of using a direct cathode recycling method over doing nothing after the batteries are manufac-

tured. Holding fixed our assumptions about cell construction and the quantity of materials input,

we compare the avoided CO2e emissions as the yield rate for the direct cathode recycling process

varies from 0 to 100%. As Figure 4.5 shows, using direct cathode recycling for NMC cells offers

57



Chapter 4. Prospects for reducing battery manufacturing emissions from direct material recovery

slightly larger emissions savings than using the direct cathode recycling process for NCA cells.

Additionally, choosing a direct cathode recycling process makes sense for NCA cells only if the

direct cathode recycling yield rate is above 17% (13-25%), while the yield rate for direct cathode

recycling of NMC cells need only be 15%(11-20%) for direct cathode recycling to be more ben-

eficial than doing nothing. Figures C.9 - C.12 show the breakeven emissions and energy input

savings for different direct cathode recycling yield rates on a per kg and per kWh basis, for all

three electric grid options (US average, NWPP, and RFCM).

Because of uncertainty in the emissions associated with pyrometallurgical and direct cathode

recycling, the confidence intervals when comparing the emissions differences between the two are

much larger than when comparing direct recycling to no recycling after manufacturing. For NMC

cells, direct recycling yield rates must be 15% (2-29%) to be more favorable than pyrometallurgical

recycling. Because pyrometallurgical recycling has more potential for emissions offsets for NCA

cells, the recovery rate for cathode materials to outperform pyrometallurgical recycling is 33% (9-

61%). Figures C.13 - C.16 show the emissions as the recovery rate for direct cathode recycling

compare to pyrometallurgical recycling for all three electric grid options.

4.3.3 Impact of Transportation

Transportation of the input materials and for collecting the batteries before recycling is responsible

for only a small fraction of the total energy input into the process, and in turn only a small amount

of the greenhouse gas emissions. Under the baseline assumptions for an average US location,

transportation only accounts for 0.33 kg CO2e/kg battery, roughly 4% of the total when using a

pyrometallurgical process, and 5% when using a direct cathode recycling method.

Of the 0.33 kg of CO2e, 70% is attributed to battery collection. Because of strict regulations

on how batteries must be shipped, they are transported on trucks (the highest emitting form of

transportation). [96] Because of the limited number of facilities, we also assumed that the distance

traveled was 2,500 miles. Doubling the emissions factors, or both the emissions factors and dis-

tances traveled has a relatively small impact on the total emissions per kg. Doubling the emissions

factors increases CO2e emissions per kg battery by 4% while doubling both the emissions factors

and distances traveled increases the total CO2e emissions per kg battery by 12%.
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Figure 4.6: Relithination cost per kg of cathode material for NMC and NCA cells as production volumes vary. The process
reaches economies of scale at roughly 1,500 tons of annual production.

4.3.4 Breakeven Recovery Cost

Our process-based cost model of cathode material manufacturing shows that at scale, the cost

of manufacturing one kg of NCA cathode is $24 ($19-$40), and for an NMC cathode is $20 ($15

- $37). The at scale cost of relithinating the cathode materials recovered from a direct cathode

recycling process is approximately $6/kg ($5-$18) for both NMC and NCA cathodes, assuming

50% of the lithium is replaced. and economies of scale are reached (depicted in Figure 4.6) at

relatively low volumes: approximately 1,500 metric tons/year, enough for roughly 1 GWh of cells,

well within current manufacturing capacities. That allows direct cathode recycling to be profitable

at $18/kg ($15-$27) for NCA and $15/kg ($12-$24) for NMC cells.

Relithination costs depend on how much lithium carbonate is required. Figure C.17 shows

both the cost of relithination and the breakeven cost for direct recycling to be profitable as the

percentage of lithium required during relithination varies from 0 to 100%. In practice, the maximum

amount of lithium that would need to be added during reprocessing is 60% as the crystal structure

of the cathode material collapses if more than 60% of the lithium is lost. [97] Figure C.18 - C.21

show that the variation in lithium added during reprocessing has a minimal impact on the net

emissions and energy consumed by implementing a direct recycling process and the associated

offsets.

59



Chapter 4. Prospects for reducing battery manufacturing emissions from direct material recovery

4.4 Discussion

Although there is potential for both economic and environmental benefits to using a direct cath-

ode recycling process over a pyrometallurgical process, there is some contrast between these

environmental and economic objectives. The significant manganese content in NMC based cells

increases the potential environmental benefit from using a direct cathode recycling process, but

makes manufacturing the cathode from raw input materials less expensive. This narrows the po-

tential window for economic viability without any incentives. For NCA cells, which have a higher

percentage of high-value metals (cobalt and nickel), the cost associated with manufacturing the

cathodes from raw materials is higher, increasing the potential payoff from a direct cathode recy-

cling process, especially because of recent increases in cobalt commodity prices. [98,99] However,

the environmental benefit of a direct recycling process over a pyrometallurgical process is smaller

in this case, because both processes recover all of the constituent metals in NCA cathodes, which

is not true of today’s NMC pyrometallurgical recycling.

While recycling programs for lead acid automotive batteries have largely been successful (es-

pecially in the US, where 99% of lead acid batteries are recycled), [100] the prognosis for lithium-

ion batteries is less clear; in the US, federal law requires lead acid batteries to be recycled, and

many states have enacted exchange mandates: sellers must accept old batteries at the time of

new purchases. The lead acid recycling process is also relatively simple and profitable. [101] In

contrast, lithium-ion batteries have no overarching federal regulation, and the recycling require-

ments vary by state. Implementing consistent regulations for automotive lithium-ion batteries

across state lines, and adopting policies like refundable deposits with battery purchases could

increase collection rates. Non-refundable deposits could help to fund battery collection and trans-

portation to recycling facilities, easing the financial burden on recyclers and allowing more financial

resources to be devoted to recovering higher value materials.

The European Union also has regulations requiring lead acid automotive batteries to be re-

cycled, although collection rates have lagged the US. [102] TThey also have requirements for

lithium-ion battery recycling. The EU battery directive requires 50% by weight of the total battery

content be recycled. [64] For pyrometallurgical recycling, much of the cathode material, in addition

to some current collector and cell canister material is output as part of the metal alloy. The other

non-combustible cell components are output as part of slag that can be repurposed as cement

input materials. As such, combined, the metal alloy and slag material satisfy the requirement that

60



4.4. Discussion

50% by weight of battery materials be recycled to be compliant with EU regulations.

For direct cathode recycling, ensuring compliance with EU regulations depends on additional

recycling, despite the more substantial environmental benefits. Assuming a 100% yield, the cath-

ode material recovered during direct recycling accounts for approximately 30% of cell mass, less

than the 50% required. Others have noted similar mismatches between the environmental impact

of recycling and the mass requirements of manufacturing for other waste streams. [89] Recover-

ing and recycling other components, like current collectors (∼10% of cell mass) and cell canisters

(∼30% of cell mass) in addition to the direct recycling of the cathode could bring direct recycling

process into compliance. Selling them as scrap metal could also be another source of income

from the direct recycling process. Whether this combination of processes, potentially undertaken

at multiple facilities by multiple actors, would be considered compliant depends on how the EU

directive defines the boundaries of recycling facilities and the yield rate of the direct recycling

process.

4.4.1 Recycling and future market demand for metals

Demand for many metals used in lithium-ion batteries is expected to continue to increase in the

coming decades, [95, 103] with potential implications for both the economic viability and envi-

ronmental benefits for both pyrometallurgical and direct cathode recycling. Although some indi-

vidual metal prices are particularly volatile (in 2017 cobalt has been trading at roughly double

the price in 2016), [4, 99] prices of individual metals have relatively small impacts on the cost

of producing cathode material. Less dramatic but more systematic increases of input prices

have more substantial impacts. For example, cobalt prices have roughly doubled in the past few

months,Anonymous:6NX6dEld but the overall cost per kg of cathode material would only increase

by ∼$3/kg (roughly 12.5%). An increase of 50% for all cathode input materials increases the cost

per kg of material produced by roughly 25%.

As demand for different metals increases, less favorable sources will be mined at lower ef-

ficiencies, requiring additional energy and producing more emissions, [103] but also potentially

shifting the amount of material recycled through other pathways. These currently unused recy-

cling methods for non-battery materials would also likely consume more energy than the recycling

methods currently in use. These changes would shift both the upper bound and the peak for the

triangular distributions we used to assess the emissions associated with input materials like cobalt

and nickel, thereby increasing the emissions and energy offsets for both recycling processes. Al-
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though increases in the underlying emissions and energy consumed for input materials could make

pyrometallurgical recycling environmentally beneficial, the benefits would still be larger for direct

cathode recycling, especially because the direct cathode recycling process can better capitalize

on grid electricity emissions reduction trends.
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Chapter 5

Evaluating Consumer Risk Perceptions

of Recycled Batteries in the Electric

Vehicle Market

5.1 Introduction

Reducing transportation emissions will require both widespread adoption of alternative fuel ve-

hicles and low-carbon sources for these fuels. After decades of investment and policy support,

electric vehicles are now becoming accessible for many vehicle owners. This, combined with more

widespread adoption of carbon-free electricity generation technologies creates a promising path

for reducing transportation emissions. However, we need widespread consumer buy-in to achieve

emissions reductions. Much research has already been conducted to determine what attributes

are most important to consumers considering electric vehicles, and they rank vehicle price and

attributes related to the battery (vehicle range, recharge time) among the most important [104].

Despite recent declines in lithium-ion battery costs [10, 11], they are still a substantial contrib-

utor to the overall cost of electric vehicles. In addition to advancing cell chemistries to increase

storage capacity, recent efforts to reduce battery costs have also focused on recycling [76, 105]

and refurbishment methods to reduce material costs and insulate battery costs from global com-

modity bottlenecks [2,106].

While these recycling and refurbishment methods may be successful in reducing the costs

of electric vehicle batteries, this cost reduction may come with a penalty in battery performance.
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This could result in higher premature failure rates (currently about 1 in 10 million new cells) [107],

or accelerated capacity fade over time. Premature cell failures are low probability events, and the

impacts can be mitigated through the pack design, while accelerated capacity fade directly impacts

the electric range of the vehicle.

To assess how much of a trade-off in performance consumers are willing to accept, we use a

discrete choice survey to assess electric vehicle owners’ willingness to pay for different attributes

associated with battery health and usefulness over its lifetime, including warranty coverage of the

battery, whether the battery pack is made of recycled or refurbished materials, and initial vehicle

range.

5.1.1 Literature review

Discrete choice techniques have been widely applied to assess consumer preferences, including

vehicle preferences, although the types of data used and questions asked varies between studies.

The earliest example of this type of analysis is by Lave and Train, who used survey responses

from recent vehicle purchasers [108]. The multinomial logit model used in that original study has

been adapted and applied to other cases since them, including cases that use revealed preference

data. Berry et al use a combination of consumer level and aggregate data to improve predictive

power [109]. Historical sales data has also been used to assess the effectiveness of policies like

fuel economy standards, as in Whitefoot and Skerlos [110] and Allcott and Wonzy [111] or other

incentives programs as in Greene et al [112]. Other extensions of the basic multinomial logit model

include the random coefficients logit model used by Boyd and Mellman [113], and the mixed logit

model used by Berry et al [114] and Train and Winston [115]. The mixed logit model allows for

heterogeneity in consumer preferences and accounts for substitution patterns.

Others have used similar analytic techniques to assess stated-choice data. The surveys to

collect these stated preferences often utilize choice-based conjoint questions, where respondents

are given a selection of combinations of attributes and asked to select one they’d most likely pur-

chase, although other methods, like the interactive survey in Axsen et al [116], where respondents

select their ideal combination of attributes within some constraints can collect similar information.

Many of these choice-based conjoint studies use multinomial logit [117–120] models, and

mixed logit models have also been used to estimate heterogeneous preferences [117, 121–123].

More recently, latent class models, which can account for heterogeneity in consumer preferences,

without necessarily knowing what the underlying attribute driving the differences between groups,
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have been applied to vehicle and other transportation preference questions. Greene and Hen-

sher [124] compared the results of latent class models against mixed logit models for different

long-distance road travel. Both Shen [125] and Zito [126] use latent class analyses to compare

between different transit options. Latent class analyses have also been applied to different vehicle

types. Hidrue et al [127] used latent class analysis to identify an electric vehicle oriented from

gasoline vehicle oriented consumers, while Axsen et al [128] surveyed recent vehicle purchasers

and used latent class analysis to identify distinct groups based on vehicle preference (electric and

conventional) and lifestyle factors (like environment or technology-oriented lifestyles).

5.2 Theory: Revealed and Stated Preference Studies

Both revealed and stated choice methods used to assess consumer preferences, and both meth-

ods have strengths and weaknesses [129]. Revealed preference studies have the benefit of re-

flecting actual decisions that consumers make in the market. However, revealed preference stud-

ies can be subject to endogeneity problems that arise because it is impossible to account for all

possible attributes that consumers consider, especially as the complexity of the product in ques-

tion increases. Multicollinearity can also be a problem, as certain attributes often influence each

other [130–132]. The market data may also present very low variations in the attributes of vehicles.

This is particularly true for electric vehicles, where manufacturers are offering a limited number of

models with relatively little variability in their attributes. The limited number of manufacturers and

models is particularly limiting for attributes like warranty, which is highly correlated with the vehi-

cle brand [133]. Most importantly, the technology we want to examine (recycled and refurbished

battery materials) is not currently available for mass-produced electric vehicles.

Stated preference studies, on the other hand, can encompass wider variations in attribute lev-

els, including forward-looking levels that are not currently available. While there is this freedom

to expand the decision space, there is a possibility that respondents behave differently in sur-

veys than when they are making actual purchases, particularly with respect to the importance of

price [134]. In some contexts, it is possible to design stated preference studies with incentives that

can align the consumer responses with more realistic trade-offs with other purchases, although

that is best suited for lower-cost items [135]. Otherwise, it is possible that respondents will be less

sensitive to price in a stated preference choice than they would be in a real decision scenario,

although it would not affect the rank order of importance for the other attributes included in the
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survey. Additionally, although the attribute levels can vary more than is possible in revealed prefer-

ence studies, stated preference studies are subject to saliency problems because respondents are

forced to examine attributes that may rank fairly low on their overall list of priorities when making

an actual purchase.

For this study, we chose to use a stated preference method because of the flexibility to in-

clude technologies (recycled and refurbished batteries) that have not yet been introduced into

the market, and present attribute combinations that are not currently offered in today’s market

(like variation in different warranty packages). To minimize the impact of the relative insensitivity

to price that can occur during stated choice tasks, we bound the price attribute levels based on

our knowledge of the current electric vehicle the respondent owns. We also include a ”none of

these” option so that respondents were not forced to make a choice between two unaffordable

combinations. Additional details about the survey design and attributes are detailed below.

5.3 Methods

We use a choice-based conjoint analysis survey instrument to measure the consumer preferences

for different electric vehicle attributes that are directly related to the battery performance and price

of the vehicle. Below are details about the survey design, the attributes and levels used in the

survey, and information about how participants were recruited.

5.3.1 Survey Design

The objectives of the survey design were to isolate the respondents focus on the battery package

attributes rather than other parameters that factor into consumer vehicle purchase decisions (like

brand, technology features, etc.), to make the attribute levels included in the survey match the

attributes of electric vehicles available today, and to minimize the cognitive burden of each choice

task.

Our recruitment strategy focused on attracting current electric vehicle owners, who have ex-

perience and resolved preferences because of their interactions with the operation of an electric

vehicle/how batteries impact it. We screened respondents based on whether they owned an elec-

tric vehicle, and if they did, whether they owned a battery electric vehicle, a plug-in hybrid electric

vehicle, or if they were unsure about the type of electric vehicle they owned.
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Figure 5.1: Flow chart for survey version decision based on current vehicle owned

Attributes and Levels

Our choice experiment included five attributes related to electric vehicle batteries: price (the fi-

nal price after all government incentives), initial range (refers to the distance you can travel (in

miles) on a full battery charge when the vehicle and battery pack are new), percentage (the en-

ergy storage capacity guaranteed under the warranty period. If capacity drops below this amount,

the battery will be replaced), warranty (the duration (in years) the battery is covered by a manu-

facturer warranty), and battery material type (whether the battery pack is made from conventional

materials, made from recycled materials, or if the batteries are refurbished). The levels for each of

these attributes were drawn from current electric vehicle market data. Additional details about this

market data are available in the Supplementary Information (Section D). Because many of the at-

tribute levels, especially price and initial range, are very different depending on the type of vehicle

(BEV or PHEV) and brand, we fielded three different versions of the survey. Figure 5.1 shows how

survey respondents were sorted based on their answers to questions about their current vehicle,

with one version of the survey one if they had a Tesla Model S or Model X, one if they had another

battery electric vehicle, and one if they currently own a plug-in hybrid. If respondents were unsure

of the type of vehicle they own, they were given the plug-in hybrid version of the survey. The levels

for each attribute for each version of the survey are listed in Table D.2.
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Table 5.1: Attribute Descriptions

Attribute Description
pj Price the final price after all government incen-

tives
xRANGE
j Range the distance you can travel (in miles) on a

full battery charge when the vehicle and
battery pack are new

xPERCENT
j Percentage the percentage of battery capacity guar-

anteed under warranty
xWARRANTY
j Warranty the length (in years) a manufacturer will

guarantee battery performance
xRECY CLED
j Recycled a dummy variable that specifies whether

the battery pack is made from recycled
materials

xREFURB
j Refurbished a dummy variable that specifies whether

the battery pack is refurbished
xOG
j Outside Good a dummy variable that signifies whether

the outside good option was selected
xRANGE
j xPERCENT

j Final Range the range (in miles) guaranteed during
the warranty period. If the vehicle range
drops below this guaranteed range dur-
ing the warranty, the manufacturer will re-
place the battery.

xRANGE
j xPERCENT

j xWARRANTY
j Final Range the benefit of an additional mile of range

Under Warranty guaranteed with an additional year of war-
ranty coverage

Choice experiment

The choice section of the survey had one practice choice task and 15 randomized choice tasks.

Both the practice task and choice task featured 3 options: 2 vehicle battery packages and a

“neither of these” option. For the practice task, we specified one clearly dominant option, with

clearly preferable levels for price, range, percentage, and warranty. Since we do not know whether

consumers have a positive or negative perception of battery materials, both options presented in

the sample task included conventional battery materials. The practice task also included directions

that walked the respondents through each attribute and specified which option to select.

To reduce the cognitive burden of the survey on respondents, we made 2 key decisions in

the design of the choice tasks. First, we displayed the percentage attribute as the product of the

percentage of vehicle range and the initial vehicle range to display the final vehicle range guaran-

teed by warranty in miles (the product of the initial range (xRANGE
j ) and percentage (xPERCENT

j ).

Second, we displayed this final range in conjunction with the warranty attribute (in years of cover-
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age) together, so that for each decision respondents were only comparing across four metrics. A

sample question is shown in Figure 5.2.

Figure 5.2: Sample discrete choice question

5.3.2 Data Collection

Participants were recruited using Facebook ads and posts. Ads were targeted to those Facebook

users who were in the United States, 18 years old or older, and had expressed an interest in

electric vehicles. In the ads and posts, users were directed to an off-site survey link.

Of the completed survey responses (214), a number of responses were removed from the

final analysis. Responses were removed if 1) the respondent did not own an electric car, but

some other type of electrified vehicle (motorcycle, etc.), 2) if the respondent did not select the

correct, dominant option as instructed for the practice task (described in 5.3.1, 3) if the respondent

completed the survey in less than 5 minutes (the minimum time determined through preliminary

testing) or took an excessive amount of time to complete the survey (>2 hours) and 4) if the

respondent answered all of the choice questions by selecting the same option for all questions.

We were left with 83 EV survey responses, and 80 PHEV survey responses. Respondents were
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also asked a series of demographics questions at the end of the survey, which helped us to

determine the age, gender, income, and education level of the participants.

5.3.3 Model Specification

We estimate consumer utility using a multinomial logit model (MNL) in the willingness to pay space,

which is a transformation of a preference space utility model. In the preference space, the utility

(uij) that a respondent i gains from alternative j is modeled as:

uij = vij + εij = β′ixj + εij (5.1)

In the willingness to pay space, the utility of alternative j is:

uij = vij + εij = α
(
pj + γ′ixj

)
(5.2)

Where pj is the price of alternative j and the coefficients, γ, are equal to the preference-space

coefficients, β divided by the price coefficient, α. Assuming that the unobservable utility, εij , is

independent and identically distributed extreme value distribution, the closed-form solution for a

choice probability is given by:

Pij =
exp(vij)∑J
j=1 exp(vij)

(5.3)

We also explore the possibility of heterogeneity in consumer preferences using latent class

(LC) models. The theory of latent class models assumes that individuals are implicitly sorted into

Q classes, and that membership in these classes depends on both observable and unobservable

attributes. The latent class model uses the same closed-form logit model to assess the probability

that individual i selects alternative j in choice task t [124]. Assuming that each choice task t is in-

dependent, the contribution of each individual i to the overall likelihood in class q is the cumulative

probability:

Piq =

Ti∏
t=1

Pit|q (5.4)

We first use a simple latent class model with no covariates [136], so the probabilities of each

individual being a member of class q in Q is Hiq, where

70



5.3. Methods

Hiq =
exp(ziθq)∑Q
q=1 exp(ziθq)

(5.5)

Where z simplifies to 1 because this model does not account for different covariates, and θ is a

parameter maximized like the parameters of the utility function. Here, θ for class 1 is set to equal

zero, and we solve for Q− 1 values of θ. The overall likelihood function is then given by:

lnL =
N∑
i=1

ln

 Q∑
q=1

Hiq

(
Ti∏
t=1

Pit|q

) (5.6)

Since the number of true classes is unknown, there is no specific test to determine if the

correct number of classes have been included in the model. However, metrics including the Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC) have been commonly used

to guide the selection of the number of classes, with lower values for both criterion suggesting the

model may be preferred to others [124,125].

For each of these methods, we examined a number of model specifications using the attributes

listed in Table 5.1. Our baseline model (given in Equation 5.7) included price, a logarithmic trans-

formation of range, a logarithmic transformation of the final range, additional years of warranty over

the lowest warranty period offered, an interaction term between the additional years of warranty

coverage and final range, a recycled dummy variable, a refurbished dummy variable, an interaction

between recycled batteries and the initial range, an interaction between refurbished batteries and

the initial range, and an outside good term. Warranty is scaled to be additional years of warranty

coverage over a 7 year warranty period (the lowest warranty period level included in our model).

vj =α(pj + γ1 log(xRANGE
j ) + γ2 log(xFINALRANGE

j ) + γ3x
WARRANTY
j + (5.7)

γ4 log(xFINALRANGE
j )xWARRANTY

j + γ5x
RECY CLED
j + γ6x

REFURB
j +

γ7x
RECY CLED
j log(xRANGE

j ) + γ8x
REFURB
j log(xRANGE

j ) + γ9x
OG
j )

We chose to use a logarithmic transformation of range and final range because when we

compared models with both linear and logarithmic range parameters to a partworth model, we

found that the logarithmic model more closely aligned with the utility specified by the partworth

model, which does not make any assumptions about the relationship between attribute levels and
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Figure 5.3: Partworth, Linear, and Logarithmic models of range for BEV and PHEV data. A logarithmic
model is a better fit to the partworth data than a linear model for the vehicle range attribute.

utility. Figure 5.3 shows how the utilities of linear and logarithmic range models compare to the

partworth model.

The interaction terms on final range and warranty examine whether the value of an additional

year of warranty coverage is dependent on also having a longer final range guaranteed. The

interactions on battery material and initial range examine whether consumer willingness to pay for

different battery materials is dependent on how much they are willing to pay for a vehicle with a

longer range (and similarly larger battery pack).

We also examine a simplified model, which does not include any interaction terms outside of

the final range term, which is a product of the percentage of battery capacity guaranteed and the

initial range. This simplified model is given in Equation 5.8.

vj =α(pj + γ1 log(xRANGE
j ) + γ2 log(xFINALRANGE

j ) + γ3x
WARRANTY
j + (5.8)

γ4x
RECY CLED
j + γ5x

REFURB
j + γ6x

OG
j )
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Table 5.2: Respondent Demographic Data

BEV PHEV
Sample Size 86 79
Age (average) 49.2 45.9
Household income
"<$25,000 0.0 2.5
$25,000-$49,999 12.8 8.5
$50,000-$74,999 16.3 15.3
$75,000-$99,999 12.8 11.9
$100,000-$124,999 19.8 12.7
$125,000-$149,999 2.3 12.7
$150,000-$174,999 5.8 6.8
$175,000-$199,999 7.0 4.2
$200,000-$224,999 11.6 3.4
$225,000-$249,999 2.3 3.4
$250,000-$274,999 2.3 4.2
$275,000-$299,999 0.0 2.5
>$300,000 1.2 4.2
Household Size (average) 2.7 3.1
Education
High school degree or equivalent 3.5 3.8
Some college 26.7 22.8
Associate degree 5.8 15.2
Bachelors degree 33.7 31.6
Masters degree 18.6 19.0
Professional degree 5.8 2.5
Doctoral degree 5.8 3.8
Living Situation
Married or living with a partner 80.2 74.7
Singe 16.3 19
Divorced 3.5 3.8
Widowed 0.0 1.3
Sex
Male 89.5 89.9
Female 9.3 8.9

5.4 Results

Here, we present the results of both model specifications in the willingness to pay space, with

latent class analysis on the simplified model. Similar results in the preference space are available

in Appendix D. The data for BEV and PHEV respondents is analyzed separately and the results

are presented in Table 5.3 (BEVs) and Table 5.4. For each of the models we investigate, we find

that price is always significant, and range is almost always significant in determining overall utility.
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Table 5.3: BEV Willingness to pay results

Attribute Baseline Model Simplified Model
Price 0.025∗∗∗ 0.025 ∗∗∗

(.003) (.003)
ln(Range) 44.602 ∗∗∗ 40.011 ∗∗∗

(10.859) (9.113)
ln(finalrange) 8.320 ∗∗ 9.897 ∗∗∗

(3.346) (3.039)
Warranty -3.126 1.422

(4.933) (1.602)
Warranty*ln(finalrange) 1.105

(1.144)
Recycled 37.569 -1.273

(46.7) (4.226)
Refurbished 30.823 -3.003

(46.81) (4.263)
Recycled*ln(Range) -7.468

(8.957)
Refurbished*ln(Range) -6.505

(8.967)
Outside good 185.390 ∗∗∗ 168.070 ∗∗∗

(49.281) (38.737)
Log Likelihood 1051.400 1052.300
Observations 1290 1290
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

For our baseline model for BEV owners and PHEV owners, we see that price, range, and final

range are significant in their decision-making process. for BEV owners, the outside good is also

a significant predictor. Because none of the interaction terms are significant for either group, we

focus most of our additional analysis on the simplified model.

As with the baseline model, we find that for BEV owners as a whole, price, range, final range,

and the outside good are the most significant factors when determining the overall willingness to

pay for a vehicle. The logarithmic transformation on range and final range means that both BEV

and PHEV owners are willing to pay the same amount for percentage increases in range and final

range, but overall willingness to pay for additional miles of range and final range decreases as the

overall range or final range increases. Figure 5.4 shows PHEV owners’ diminishing willingness to

pay for range and final range as the miles of range and range covered increases.

Examining multiple latent class models using our simplified model (see full tables in Appendix

D), we find that for BEV owners, a 4-class latent class model meets the different criteria we exam-

ine and captures four distinct groups of consumers. Of these four groups, three are indifferent to
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Table 5.4: PHEV Willingness to Pay Results

Attribute Baseline Model Simplified Model
Price 0.067 ∗∗∗ 0.067 ∗∗∗

(.003) (.003)
ln(Range) 15.489∗∗ 17.994∗∗∗

(7.423) (6.874)
ln(finalrange) 7.604 ∗∗ 7.142 ∗∗

(3.69) (3.469)
Warranty 0.763 0.199

(2.316) (.723)
Warranty*ln(finalrange) -0.215

(.843)
Recycled -6.694 -3.291 ∗

(15.566) (1.992)
Refurbished -23.284 -1.848

(16.279) (1.997)
Recycled*ln(Range) 0.986

(4.52)
Refurbished*ln(Range) 6.264

(4.72)
Outside good 19.643 26.977 ∗

(18.039) (15.166)
Log Likelihood 801.330 802.350
Observations 1185 1185
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

the type of battery materials and one group (Class 2), which we refer to as the environmentally-

conscious group, has a positive valuation of refurbished battery materials. This group represents

roughly 35% of the respondents. Table 5.5 shows the latent class coefficients in the willingness to

pay model.

For PHEV respondents, we find that as one group, there is a weakly negative perception of

recycled batteries, with consumers willing to pay on average $3,000 less for a car that has a recy-

cled battery. As we segment this group into more distinct classes, we find that when there are four

latent classes, there is one group (Class 3 in Table 5.6) that has very negative perceptions of recy-

cled and refurbished materials. We refer to this group of PHEV owners as the risk-averse group,

and they require price reductions of approximately $7,000 to accept a recycled or refurbished bat-

tery pack. Figure 5.5 shows that the risk-averse PHEV owners’ willingness to pay for both recycled

and refurbished batteries is significantly different from zero. All other groups of PHEV owners are

indifferent to the type of battery materials in their vehicle.
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Table 5.5: Latent classes for BEV owners in the willingness to pay space. Environmentally-concious owners,
with a positive opinion of refurbished materials, make up 35% of the sample population.

Attribute Class 1 Class 2 Class 3 Class 4
Environmentally

conscious
Price 0.181∗∗∗ 0.168∗∗∗ 0.188∗∗∗ 0.001∗∗∗

(.028) (.022) (.018) (.)
ln(Range) 2.935 14.558∗∗∗ 14.909∗∗∗ 63.834

(7.203) (4.963) (3.639) (65.024)
ln(finalrange) 14.420∗∗∗ 13.613∗∗∗ 4.107 -70.695

(7.) (4.91) (3.451) (62.54)
Warranty -0.756 0.612 0.606 0.932

(.975) (.661) (.487) (8.728)
Recycled -3.614 2.378 -1.256 3.991

(2.636) (1.667) (1.248) (23.07)
Refurbished -4.155∗ 3.923∗∗ -1.280 5.769

(2.475) (1.724) (1.288) (23.219)
Outside good 62.273∗∗∗ 67.498∗∗∗ 61.487∗∗∗ 16.897

(14.844) (18.556) (6.108) (92.111)
Class 1.065∗∗∗ 1.092∗∗∗ 0.272

(.389) (.399) (.432)
12% 35% 36% 16%

Log Likelihood 755.11
AIC 1572.211
BIC 1732.245
Observations 1290
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

5.5 Discussion

Knowing that some PHEV owners are concerned with recycled and refurbished battery materi-

als, we need to contextualized whether manufacturers can maintain demand at current levels by

cutting pack costs to match consumers’ willingness to pay. Assuming that the batteries cost ap-

proximately $200/kWh ($125 - $300/kWh), the $7,000 ($600-$13,000) price differential represents

a relatively large portion of the total pack cost. For PHEVs with small and relatively inexpensive

battery packs, the average $7,000 reduction that consumers want in order to accept a vehicle with

recycled batteries is a much larger portion of overall pack costs, even exceeding the total pack

costs of some small PHEV battery packs available today. Figure 5.6 shows how the price differ-

ential compares as a percentage of the total cost for different battery storage capacities. If the

risk-averse PHEV owners’ actual willingness to pay is closer to the lower end of the range, and

is actually unaffected by changes in the vehicle range, recycling would need to reduce the cost
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Figure 5.4: PHEV owners willingness to pay for miles of range and final range (when percentage is 70%).
There is decreasing willingness to pay as the miles of range available increases

of the battery by roughly 50%, which is difficult to achieve. Refurbished options might be able to

meet these lower cost targets because refurbishing batteries avoids many of the steps required for

remanufacturing batteries, but there is still a high degree of uncertainty in the overall willingness

to pay.

However, on a per kWh basis, BEVs make up a much more substantial portion of the overall

automotive energy storage market than PHEVs (Figure 2.2), so recovering the materials used

in BEV batteries, where consumers seem to be less sensitive to the type of battery material, or

even have a positive valuation of refurbished materials, will have a larger net impact on reducing

manufacturing emissions.

5.5.1 Limitations and Future Work

Additional work is necessary to determine the demographic or other behaviors that are driving

membership in different classes. Income, education level, and age could all be important factors

that influence consumer behavior, and these potential relationships were not fully explored here.

These demographics are also important to identify to determine how the members of different
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Table 5.6: Latent classes for PHEV owners in the Willingness to pay space. Risk-averse owners make up
40% of those sampled.

Attribute Class 1 Class 2 Class 3 Class 4
Risk-Averse

Price 0.207∗∗∗ 0.136∗∗∗ 0.079∗∗∗ 0.126∗∗∗

(.063) (.013) (.007) (.023)
ln(Range) -10.331 20.229∗∗∗ 24.547∗∗∗ -29.356∗∗∗

(20.713) (5.875) (8.695) (10.867)
ln(finalrange) 32.449 1.975 25.589∗∗∗ 43.573∗∗∗

(20.118) (5.649) (8.627) (10.305)
Warranty 3.567 -0.854 1.859 0.399

(2.777) (.77) (1.179) (1.335)
Recycled -2.092 -2.032 -6.908∗∗ -2.266

(5.714) (2.068) (3.203) (3.675)
Refurbished -8.841 -0.767 -6.620∗∗ 2.435

(5.406) (2.189) (3.169) (3.702)
Outside good 52.972∗ 34.817∗∗∗ 89.057∗∗∗ -65.202∗∗∗

(32.085) (7.307) (11.749) (14.642)
Class 1.706∗∗∗ 1.707∗∗∗ 0.613

(.483) (.481) (.546)
7% 40% 40% 13%

Log Likelihood 568.22
AIC 1198.44
BIC 1355.84244
Observations 1185
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

latent classes compare to the population overall.

Although we found that the interaction terms between battery type and vehicle range were

insignificant for the overall BEV and PHEV respondents, additional analysis is necessary to de-

termine if there is a significant interaction between range (and commensurate pack sizes) and

consumer willingness to pay for different battery materials, whether that is the environmentally-

conscious BEV owners or risk-averse PHEV owners.

Beyond the additional analysis of how demographic or other behaviors influence how con-

sumers are sorted into different latent classes, it is also important to examine how the performance

of recycled or refurbished batteries compares to conventional cells, and whether those differences

impact attributes (like range or final range) that are consistently ranked as important to larger

groups of EV owners.
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5.5. Discussion

Figure 5.5: Overall and latent class perceptions of recycled and refurbished batteries for BEV and PHEV
owners. Error bars represent the 95% confidence interval. The environmentally-conscious group of BEV
owners (class 2), and risk-averse PHEV owners (class 3) are the only groups that have a willingness to pay
that is significantly different from zero.
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Chapter 5. Evaluating Consumer Risk Perceptions of Recycled Batteries in the Electric Vehicle Market

Figure 5.6: Percentage reduction in pack costs for risk-averse PHEV owners to be willing to accept recycled
and refurbished battery materials. Accounting for the uncertainty in their aversion to both types of battery
packs, the cost reductions for recycled battery packs to be competitive for very short range vehicles are
high relative to overall pack cost at nearly 50%. Additional work is necessary to determine if there are any
segments of the overall PHEV owners group where range influences overall willingness to pay for recycled
and refurbished materials.
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Chapter 6

Conclusions

Electrochemical energy storage has the potential to play an increasing role in decarbonized elec-

tricity and transportation sectors. However, to fully realized the technological potential, changes

to the manufacturing, use, and retirement of batteries for widely-implemented storage applications

may need to differ from initial innovations and policies.

6.1 Summary of Results

From the process based cost model of Chapter 2, we see that simple economies of scale in-

creases will not be sufficient on their own to further reduce the cost of large-format lithium-ion

cells. However, design decisions about the cell format and dimensions can reduce manufactur-

ing costs by taking advantage of a lower ratio of non-storage components to electrode material.

We also see that differences in cathode chemistry can exacerbate these differences, with lower

specific-capacity materials that require cheaper input materials, more poised to take advantage of

these changes in cell design. For example, for NMC and NCA cylindrical cells, the cost per kWh

from shifting to larger cylindrical cells is somewhat dramatic (∼ 25% reduction), but switching from

large cylindrical cells to prismatic cells offers relatively modest cost reductions. However, for LMO

cells, with a lower specific energy storage capacity, the cost per kWh is halved when switching

from cylindrical to prismatic cells, to a cost of roughly $150/kWh.

The hybrid microgrid considered in Chapter 3 is one possible application of the lithium-ion bat-

teries manufactured in Chapter 2. Although the cost of diesel electricity generation is still lower

that the hybrid options considered, the performance of some lithium-ion batteries, combined with

more moderate prices, is sufficient to make some lithium-ion batteries competitive with very inex-
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Chapter 6. Conclusions

pensive lead acid batteries.Depending on the assumed discount rate, high energy density lithium-

ion batteries were the least expensive technology because of the ability to stagger replacements

throughout the system lifetime. Very high performance lithium-ion batteries, which also have a high

capital cost, were never the lowest cost option in this application, which requires more consistent,

longer-duration charging and discharging to provide electricity when solar PV is not available.

The comparison of different battery recycling methods in Chapter 4 shows that traditional py-

rometallurgical recycling is not an effective way to reduce the greenhouse gas emissions asso-

ciated with disposing of lithium-ion batteries. However, direct cathode recycling, which recovers

the high-value cathode materials does offer substantial emissions benefits by offsetting additional

mining of materials and reducing the processing steps to manufacturing new batteries. Leverag-

ing some of the process-based cost model information from Chapter 2, I also find that there is

a window for the recovery of these materials to be cost competitive with cathode material that is

manufactured from scratch.

However, the ability to sell this recovered cathode material is contingent on a market that is

willing to accept recycled materials. In Chapter 5, I examine EV owner preference for these recy-

cled battery materials. Although there is evidence that some consumers have a negative view of

recycled battery materials, there is heterogeneity in their preferences, and for some consumers,

the cost reductions offered by recycled and refurbished materials could out weight any negative

perceptions. Other vehicle attributes, like range and battery capacity over the warranty are gen-

erally more important, and additional analysis is necessary to determine if recycled or refurbished

batteries would have an impact on those parameters.

6.2 Policy Recommendations

• Innovation for new batteries should focus on both higher energy-density materials, but also

new ways of designing cells to minimize the costs of non-storage battery components.

• Energy storage incentives programs should allow for flexible duration of the technology use.

In some applications, more frequent replacements of smaller energy storage components

can offer lower costs than larger battery storage systems designed to operate for a longer

time between replacements.

• Government regulations for automotive li-ion batteries should be at national level, ideally with
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standardized labeling of the cell chemistry and manufacturer to enable more environmentally

beneficial recycling methods.
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Appendix A

Electric Vehicle Market Information and

Process Based Cost Model

Assumptions

A.1 Electric vehicle battery analysis

Combined BEV and PHEV vehicle sales in the US were roughly 419,000 from 2010 to the end

of 2015, with a fairly even split between both types of electric vehicles (51.2% BEVs and 48.8%

PHEVs). The total storage capacity of these vehicles is 11 GWh (8.9 - 12 GWh). However, the

average storage capacity of BEVs and PHEVs varies significantly, with BEVs having a weighted

average of 42 kWh (34-43 kWh), almost four times the capacity of PHEVs, which have an average

of 10.5 kWh. Because of this difference, BEVs account for 81% (76%-82%) of the total storage

capacity of EV batteries currently on the road.

The most abundant battery chemistry also differs for BEVs and PHEVs. For BEVs, NCA

(lithium nickel cobalt aluminum oxide) batteries dominate. This is driven by both the popularity

of the Tesla Model S, and the large storage capacity of the Model S, which varied between 60-90

kWh since the vehicle’s introduction in 2012 [137, 138]. For plug-in hybrids, the dominant battery

chemistry is also driven by one vehicle, the Chevrolet Volt, which features a larger than average

16-16.5 kWh storage capacity and high sales numbers. The Volt uses a combination LMO-NMC

battery, and these two chemistries are the top two contributors in energy storage by kWh for

PHEVs. While the chemistry was developed in partnership with Argonne National Lab, the exact
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ratio of these two chemistries is uncertain [139,140]. The baseline approximation results in NMC

accounting for 67% (65%-77%) of all of the storage capacity in PHEVs, and 23% (10%-28%) of

capacity in LMO batteries. Other manufacturers, including GS Yuasa and AESC have also filed

patents for layered cathode materials, although it is unclear which exact chemistries, if any, have

been implemented in vehicles, and is thus not included in these estimates [141–143].

NCA batteries are the most abundant in the US, with LMO making up the second largest

portion. Lithium- nickel/manganese/cobalt oxide batteries with different ratios of the transition

metals account for the 3rd and 4th largest portions. LFP and LTO batteries are the smallest

contributors. However, it should be noted that LTO batteries are not currently being installed in

new vehicles, and LFP batteries being installed in the Mercedes S550 PHEV, with both a small

storage capacity and limited sales [144]. The use of LFP batteries in the Chevrolet Spark was

discontinued in 2015, and the Honda Fit EV, which used LTO batteries, was intended to be a

CARB compliance car, and was discontinued in 2014 [145–147]. Globally, the breakdown in cell

chemistry may vary, particularly as China integrates LFP batteries into electric buses [148].
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Figure A.1: Material costs per kWh of 18650 cylindrical and prismatic NCA cells

A.2 Uncertainty Analysis

There were many sources of uncertainty within the model. The sources are listed below, and their

individual uncertainty contributions are shown in Figure A.1

A.2.1 Equipment Assumptions

This included capital equipment, process rates, labor, and footprint assumptions for the precursor

preparation and cylindrical cell-specific steps included in the model (Steps 2, 8-11, 12 in Table

2.4).

A.2.2 Operating Time

The total operating time varied depending on the operating days per year and the length of breaks

per shift (both paid and unpaid), as listed in Table 2.2.

A.2.3 Formation Cycle

This included the capital equipment, process rate, labor, and footprint assumptions for the forma-

tion cycle step of the model (Step 12 in Table 2.4). These assumptions are also included in the
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sensitivity analysis on all of the equipment assumptions, but the formation cycle dominates these

impacts because of the expense associated with the long duration of the process and the low

batch size.

A.2.4 Labor Cost

The hourly price of labor varied from $15-$25/hour from a baseline of $18/hour (Table 2.2)

A.2.5 Cell dimensions

The cell dimension uncertainties were related to how much material was actually contained per

cell. The active volume (or volume of the cell not devoted to the housing structure), porosity of the

separator (which affected how much electrolyte was necessary), and the anode density all varied.

Values are listed in Table A.3

Table A.3: Cell dimension parameter values

Cell dimension parameter Baseline Units Lower Upper
Active volume 85 % 90 80
Separator porosity 42 % 40 44
Anode density 1.38 g/cm3 0.6 2.1

A.2.6 Cell Yield rates

The cell yield rate varied from 90-99% from a baseline of 95%, as listed in Table 2.3.

A.2.7 Material Cost

Uncertainty in the materials cost included the cathode precursor material uncertainties (listed in

Table A.4), along with the uncertainties on the material inputs presented in BatPaC.

Table A.4: Material cost values (excluding cathode precursors)

Material Baseline Units Lower Upper
Cathode foil $0.33 $/m2 $0.33 $0.87
Anode foil $1.31 $/m2 $1.31 $1.96
Separators $1.31 $/m2 $1.31 $2.18
Electrolyte $18.53 $/l $18.53 $19.62
Cell container $0.25 $/cell $0.24 $0.30
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A.2.8 Maintenance and overhead

There is uncertainty on the percentage markup for maintenance and overhead. Maintenance costs

varied from 5-15% of the annualized equipment expense, while overhead varied from 30-35% of

the sum of annualized capital equipment cost, annualized building expenses, auxiliary equipment

expenses, and maintenance.

A.2.9 Building cost

The cost per square meter varied from $1600 to $4000 from a baseline value of $3000 (as listed

in Table 2.2).

A.2.10 Cathode Cost

Cathode material cost uncertainties were based on market uncertainty and the content of the

materials in other compounds. They are listed in Table A.5.

Table A.5: Cathode precursor cost assumptions

Material Baseline Units Lower Upper
Li2Co3 $7.46 $/kg $6.63 $8.67
Mn3O4 $0.01 $/kg $0.01 $0.01
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A.3 Cost drivers by process step

Figure A.2: Per kWh costs by manufacturing step for baseline NCA and NMC cell production

A.4 Assumptions for prismatic cells

Table 2.3 lists the equipment assumptions for cylindrical cell manufacturing, including steps 8-11

and 13, which are specific to cylindrical cells. For the prismatic cell cost comparison, we used

different equipment assumptions (drawn from Sakti et al and updated for 2015$) [10]. Those

assumptions are listed in Table A.6. The physical parameters used to determine the materials per

cell are listed in Table A.7.
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Table A.6: Prismatic cell step assumptions

Step Equipment
Cost
(millions
of $)

Footprint
(m2)

Fractional
use of
labor

Process
rate

Unplanned
Downtime

Dedicated
(Yes/No)

8 Cell stacking† 1.09 150 1.25 225 bicell
layers/min

20% Yes

9 Tab welding† 1.09 150 1.25 5
cells/min

20% Yes

10 Enclosing Cells† 0.82 150 0.75 5
cells/min

20% Yes

11 Filling & first seal† 1.36 225 1.25 5
cells/min

20% Yes

13 Formation cycling 0.93 63 0.23 500 cells/
16 hours

20% Yes

† Steps enclosed in dry room control system, which is sized based on the building
area required for these steps

Table A.7: Prismatic cell physical parameters

Chemistry LMO spinel NMC NCA
Li1.05(Ni4/9 Mn4/9 Co1/9)0.95 O2 LiNi0.8 Co0.15 Al0.05 O2

Cell capacity 26.8 Ah 28.9 Ah 29.3 Ah
Cell Volume 258 cm3 192 cm3 201 cm3

Bicell Layers 10 10 9
Cathode Thickness 200 µm 147 µm 160 µm
Anode Thickness 121 µm 200 µm 200 µm
Power limit per cell 0.55 kW 0.24 kW 0.27 kW

A.5 Cascading Unplanned Downtime in Sequenced Processes

Several of the steps in the manufacturing process are connected very closely to preceding or

following steps, thus the assumption that the unplanned downtime for each step is independent

from others is not entirely correct. The equipment assumptions included here do not account for

perfectly scaled equipment where the process rates are exactly the same for each step in the

process, and we assume some allowances for material handling between lines.

However, for some portions of the process, these steps are connected and have similar pro-

cessing rates. The combinations of steps where this is the case are listed in Table A.8, along with

the cumulative operating probability (calculated with the same unplanned downtime assumptions

from Table 2.4. Overall, the impact of these larger cumulative downtimes is fairly minimal on the

overall cost per kWh of cells produced. The cost per kWh, along with the changes from the original
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Table A.8: Connected Manufacturing Steps and Cumulative Operating Time

Steps Cumulative Operating
Probability

Cathode Coating, Solvent Recovery, Cathode Calendaring 39%
Anode Coating, Anode Calendaring 49%
Electrode Slitting, Electrode Drying 64%
Cell Winding, Tab Welding, Canister Insertion, Electrolyte
Fill & Seal

41%

Table A.9: Change in cost per kWh as a result of cascading unplanned downtime

Production NMC NCA
Volume 18650 20720 18650 20720

Cost per kWh

2 GWh
$270 $204 $303 $232

($197 - $436) ($147-$325) ($223-$483) ($169 - $367)

4 GWh
$266 $200 $302 $228

($193-$432) ($144-$323) ($219-$481) ($167-$363)

8 GWh
$265 $199 $300 $227

($192-$420) ($143-$320) ($218-$479) ($165-$362)

2 GWh
$23 $16 $22 $18

($14-$48) ($8-$33) ($14-$53) ($9-$36)
Cost Increase

4 GWh
$21 $15 $23 $16

per kWh ($12-$47) ($9-$34) ($13-$52) ($10-$37)

8 GWh
$21 $15 $23 $17

($12-$47) ($9-$34) ($13-$51) ($9-$38)

2 GWh
9% 8% 8% 8%

(8% - 12%) (6% - 11%) (7% - 12%) (6%-11%)
Percentage

4 GWh
9% 8% 8% 8%

Increase (7% - 12%) (7% - 12%) (6% - 12%) (6%-11%)

8 GWh
9% 8% 8% 8%

(7% - 12%) (7% - 12%) (6% - 12%) (6%-12%)

assumptions, are listed in Table A.9
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Appendix B

Calculation Details for Battery Model

Calculations

B.1 Carbon Tax Calculations

Using Excel Solver, diesel prices need to increase by 20.5% to $1.82/l to become indifferent be-

tween diesel-only generation and a hybrid system with lead-acid batteries

There are 22.38 pounds of CO2/gallon of diesel (5.91 lbs CO2/L)

$1.82 - $1.50 1 L
= $0.054/lb CO2 = $108.25/ton CO21 L 5.91 lbs CO2

B.2 Generation Subsidy Calculations

The required subsidy per kilowatt hour was calculated by reducing the system operation costs

on a per kilowatt-hour basis for the net present value calculation for the system levelized cost of

electricity. It was assumed that the $0.092/kWh subsidy was applied to all power generated by the

hybrid system. If the subsidy is applied only to the power produced from renewable resources, the

subsidy required increases slightly to $0.095/kWh.

97



B.3 Power Flow Optimization

Objective minx,u,p,q f(x) =
∑T

i=1 x
GEN
i Minimize diesel generation

costs

Where
state variables: x =

xGEN
i

xBAT
i

∀i ∈ T Power from generator

Power stored in batteries

control variables: u =


uGEN
i

uCHARGE
i

uDISCHARGE
i

∀i ∈ T
Change in power from gener-

ator

Power to charge batteries

Power to discharge batteries

slack variable: p =


pGEN
i

pSOLAR
i

pBAT
i

pLOAD
i

∀i ∈ T
Power flows from generator

Power flows from solar PV

Power flows from batteries

Power flows to load

slack variable: q ∈ R4×T

Subject to xi+1 = Axi + Bui A =

1 0

0 1

 , B =

1 0 0

0 η −1


p = BELECq

pGEN
i = xGEN

i ∀i

pBAT
i = uDISCHARGE

i − uCHARGE
i ∀i Power from batteries is dif-

ference between discharging

and charging

pSOLAR
i ≤ ESOLAR

i Power from solar less than

or equal to available solar re-

sources

pLOAD
i = ELOAD

i Power to load must equal de-

mand 0

(1− S)CINITIAL

 ≤ x ≤

100

C

 Generator limit

Battery state of charge limits


−100

0

0

 ≤ u ≤


100

lCHARGE

lDISCHARGE


Ramping constraints

Battery charging limit

Battery discharging limit
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Table B.1: Power Flow Optimization Parameters

Parameter Value Description
T 169 Calculated timeframe, equal to 1

week in hourly increments + 1
η 0.9 Battery round-trip efficiency

BELEC


100 0 0 −100
0 200 −100 −100
0 −100 200 −100
−100 −100 −100 300

 DC power flow susceptance matrix

ESOLAR
i varies Solar power resources available
ELOAD

i varies Electricity demand
S varies (0.3 - 0.9) State of charge swing

CINITIAL varies Initial total storage capacity
C varies Current storage capacity, recalcu-

lated on weekly basis
lCHARGE varies Limit on power flow to charge bat-

tery
lDISCHARGE varies Limit on the power flow to discharge

the battery

B.4 Battery Degradation Models & Manufacturer Data

Storage capacity was recalculated on a weekly basis to appropriately model the reduction in avail-

able storage over time. C ∈ RN where N is the number of weeks in the simulation

Cn+1 = Cn − CLOSS
n (B.1)

Where CLOSS is a function dependent on the properties of the battery chemsitry (see Table

B.2) and the number of cycles, Y :

Yn =

T−1∑
i=1

uDISCHARGE
i

CINITIAL
(B.2)

Limits on the power flow to charge and discharge the batteries also varied for the different

chemistries considered. These limits are listed in Table B.3. C was not allowed to drop below 80%

of the initial capacity
(
0.8CINITIAL

)
. If it did, the initial storage capacity was increased, and new

capacity degradation was recalculated.
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Table B.2: Capacity Loss Calculations for different battery chemistries

Battery Chemistry Formula
Lead-acid CLOSS

n = 0.0002× CINITIAL × Yn

A123
CLOSS
n =

(
5× 10−6tAV G

)
YnC

INITIAL

where tAV G is the average temperature in week n
Panasonic CLOSS = 0.0005× CINITIAL × Yn

Table B.3: Charging and Discharging Power Flow Limits

Battery Chemistry Charging Limit
(
lCHARGE

)
Discharging Limit

(
lDISCHARGE

)
Lead acid Cn/4 Cn/4

A123 10.8 W/cell† 16.5 W/cell†

Panasonic 8.09 W/cell† 9.9 W/cell†

† Based on manufacturer data, scaled to the number of cells per 1kWh capacity stack

and the number of stacks

B.5 Matlab Solvers

Power flow optimization calculations to minimize diesel consumption were computed using the

YALMIP toolbox with an SDPT3 solver in MATLAB. YALMIP is capable of solving linear, quadratic,

and second-order cone programs using semidefinite programming. The problem formulated is an

affine system with a convex linear objective function, with linear constraints. SDPT3 is a second-

order cone programming solver capable of handling this problem formulation.
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Appendix C

Recycling Model Assumptions and

Detailed Results
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Table C.1: Cell Input Assumptions for NMC Cells. Baseline assumptions are listed along with upper and
lower bounds (italicized)

Input Units
Cell Dimensions

Distribution18650 canister, 20720 canister,
70m electrode 100m electrode

Steel g
13.23 18.87

Triangular
(12.74-24.47) (17.42-34.83)

Aluminum g
1.65 1.69

Triangular
(1.55-1.74) (1.59-1.79)

Copper wire g
4.97 5.1

Triangular
(4.67-5.26) (4.8-5.4)

Cathode Active Material g
14.93 21.92

Triangular
(14.06-15.81) (20.63-23.21)

Graphite g
6.78 9.95

Triangular
(2.78-10.93) (4.07-16.04)

PVDF g
1.2 1.76

Triangular
(0.94-1.46) (1.37-2.15)

LiPF6 g
0.81 1.12

Triangular
(0.75-0.86) (1.04-1.19)

Electrolyte (EC/DC) g
4.43 6.12

Triangular
(4.13-4.94) (5.72-6.82)

Polypropylene g
0.84 0.86

Triangular
(0.79-0.89) (0.81-0.91)

Specific Capacity mA/g 200 Point Estimate
Voltage V 3.57 Point Estimate
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Table C.2: Cell Input Assumptions for NCA Cells. Baseline assumptions are listed along with upper and
lower bounds (italicized)

Input Units
Cell Dimensions

Distribution18650 canister, 20720 canister,
70m electrode 100m electrode

Steel g
13.23 18.87

Triangular
(12.74-24.47) (17.42-34.83)

Aluminum g
1.65 1.69

Triangular
(1.55-1.74) (1.59-1.79)

Copper wire g
4.97 5.1

Triangular
(4.67-5.26) (4.8-5.4)

Cathode Active Material g
15.33 22.5

Triangular
(14.43-16.23) (21.18-23.83

Graphite g
6.78 9.95

Triangular
(2.78-10.93) (4.07-16.04)

PVDF g
2.25 3.3

Triangular
1.93-2.58) (2.83-3.79)

LiPF6 g
0.81 1.12

Triangular
(0.75-0.86) (1.04-1.19)

Electrolyte (EC/DC) g
4.43 6.12

Triangular
(4.13-4.94) (5.72-6.82)

Polypropylene g
0.84 0.86

Triangular
(0.79-0.89) (0.81-0.91)

Specific Capacity mA/g 180 Point Estimate
Voltage V 3.55 Point Estimate

Table C.3: Material inputs and output for cathode precursor mixing step using nitrate precursor materials

Input Units NMC (NiMnCo(OH)2) NCA (NiCo(OH)2)
Ni(NO3)2 g 81.2 153.86
Co(NO3)2 g 20.33 28.89
Mn(NO3)2 g 79.53 0
Energy kWh 0.34 0.34
Output g 91.07 92.75

Table C.4: Material inputs and output for cathode precursor mixing step using sulfate precursor materials

Input Units NMC (NiMnCo(OH)2) NCA (NiCo(OH)2)
NiSO4 g 68.78 130.32
CoSO4 g 17.22 24.47
MnSO4 g 68.78 0
NaOH g 79.99 79.99
NH3OH g 7.01 7.01
Energy kWh 0.34 0.34
Output g 91.07 92.75
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Table C.5: Material and energy inputs for manufacturing sulfate precursor materials

Input Units NiSO4 CoSO4 MnSO4

Transition Metal kg 334.06 438.17∗ 330.22
Sulfuric Acid kg 574.96 574.25 598.74
Energy (natural gas) kWh 193.43 0 0
Output kg 907.18 907.18 907.18
Source Dunn et al (2014) [83], Calculated Dunn et al (2014) [83],

GREET 2016 [86] GREET 2016 [86]
∗ cobalt oxide

Table C.6: Material inputs for manufacturing nitrate precursor materials

Input Units Ni(NO3)2 Co(NO3)2 Mn(NO3)2
Transition Metal kg 292.11 371.95∗ 70.94
Nitric Acid kg 625.05 625.05 126.04
Output kg 907.18 907.18 178.96
Source Wang et al [78] Wang et al (2015) [78] Calculated
∗ cobalt oxide

Table C.7: Material inputs and output for lithination of NMC and NCA

Input Units NMC NCA
Precursor g 86.51 88.11
Li2CO3 g 38.79 35.95
Al(OH)3 g 0 3.9
Energy kWh 0.61 0.62
Output g 93.48 96.08

Table C.8: Energy inputs for cathode drying and calcining

Chemistry NMC NCA
Precursor Drying [kWh/kg cathode] 3.7 3.6

2.6-4.8 2.6-4.7
Calcining [kWh/kg cathode] 6.5 6.5

3.9-9.5 3.9-9.5
Energy Source Natural Gas (kiln) Natural Gas (kiln)

Table C.9: Emissions and heat input assumptions for electricity and natural gas inputs

Energy Source Natural gas fired kiln US Mix NWPP RFCM
CO2e [kg/kWh] 0.257 0.5093 0.4114 0.6947
Heat Input [MJ/kWh] 4.004 6.83 5.16 8.64
NOx [kg/kWh] 0.004 0.0004 0.0005 0.0006
SOx [kg/kWh] 0.058 0.0007 0.0003 0.0016
Source GREET 2016 [86] eGrid 2014 [84]
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Table C.10: Embodied emissions for cathode materials

CO2e Recycled
emissions Resources Material in
[kg CO2e/ [MJ/kg Baseline

Input kg material] material] Assumption Distribution Source
Nickel 5.76 83 44% Triangular GREET 2016 [86]

1.6 - 9.03 23 - 131 -
Cobalt Oxide 8.20 121 44% Triangular GREET 2016 [86]

1.6 - 14.7 23 - 199 -
Manganese 9.05 122 0% Point Estimate GREET 2016 [86]
Lithium 3.94 43 - Point Estimate GREET 2016 [86]
Carbonate
Aluminum 0.741 10 - Point Estimate GREET 2016 [86]
Hydroxide
Sulfuric Acid 0.014 0.20 - Point Estimate GREET 2016 [86]
Nitric Acid 2.04 12 - Point Estimate GREET 2016 [86]
NaOH 2.3 33 - Point Estimate GREET 2016 [86]
NH3OH 2.76 43 - Point Estimate GREET 2016 [86]

Table C.11: Emboddied Emissions for Cell Materials (excluding cathode)

CO2e Recycled
emissions Resources Material in
[kg CO2e/ [MJ/kg Baseline

Input kg material] material] Assumption Distribution Source

Steel
3.86 45

73.6% Triangular GREET 2016 [86]
(1.54 - 4.69) (22 - 53)

Aluminum
3.09 49

85% Triangular GREET 2016 [86]
(2.0 - 9.27) (31 - 150)

Copper 3.28 40 - Point Estimate GREET 2016 [86]
Graphite 5.25 92 - Point Estimate GREET 2016 [86]
PVDF 2.55 37 - Point Estimate GREET 2016 [86]
LiPF6 13.26 188 - Point Estimate GREET 2016 [86]
Electrolyte 0.5 10 - Point Estimate GREET 2016 [86]
(EC/DC)
Polypropylene 2.73 80 - Point Estimate GREET 2016 [86]

Table C.12: Per ton-mile emissions for water, rail, and road transport

CO2e emissions Resources
Method CO2e/ton-mile [MJ/ton-mile] Source

Water 0.007 0.174
GREET 2016
(Marine Plug-in) [86]

Rail 0.0266 0.34
GREET 2016 [86]

Road 0.0863 1.111
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Table C.13: Transportation Distance Assumptions (in miles) by mode for RFCM, NWPP, and US average

RFCM NWPP US Average
Material Water Rail Road Water Rail Road Water Rail Road
Steel 10500 600 50 6000 600 50 8250 600 50
Aluminum 0 600 50 0 800 50 0 700 50
Copper 0 600 50 0 700 50 0 650 50
Graphite 10500 600 50 6000 600 50 8250 600 50
PVDF 0 500 50 0 500 50 0 500 50
LiPF6 0 500 50 0 500 50 0 500 50
Electrolyte 0 500 50 0 500 50 0 500 50
Polypropylene 0 500 50 0 500 50 0 500 50
Nitric Acid 0 500 50 0 500 50 0 500 50
Sulfuric Acid 0 500 50 0 500 50 0 500 50
Nickel 0 300 50 0 300 50 0 500 50
Cobalt 0 500 50 0 2500 50 0 1500 50
Manganese 0 700 50 0 2000 50 0 1350 50
Bauxite 1500 600 50 4000 600 50 2750 600 50
NaOH 0 500 50 0 500 50 0 500 50
Ammonium Hydroxide 0 500 50 0 500 50 0 500 50

Table C.14: Process inputs for pyrometallurgical Recycling. Emissions and Resource data sourced from
GREET 2016.

CO2e Emisssions Resources
Input Units Amount [kg CO2e/unit input] [MJ/unit input]

Li-ion batteries kg 1200
Output of Output of

previous process previous process
Limestone kg 100 0.013 0.18
Sand kg 110 0 0
Slag∗ kg 200 0 0
Coke kg 400 3.51 36.87
Natural Gas (kiln)∗∗ mmBtu 0.76 50.27 892

Total
Per 1200

- 1,456.98 15,658
kg batteries

∗1% by weight Fe
∗∗ interview referenced in Dunn et al [83]

Table C.15: Percentage of metal content that goes to Slag and Alloy in pyrometallurgical process [1]

Component Cu Ni Fe CaO SiO2 Al2O3 Li2O Co
Slag 7.2 1.0 35.5 100 100 100 100 6.0
Alloy 92.8 99.0 64.5 0 0 0 0 94.0
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Table C.16: Facility-wide parameter assumptions [2,3]

Input Base Units Optimistic Pessimistic
Working days per year 300 Days/year 360 240
8-hour shifts per day 3 Shifts/day 3 3
Unpaid breaks per shift 1 Hours/shift 0.5 1.5
Paid breaks per shift 0.75 Hours/shift 0.5 1
Building Costs $3000 $/m2 1600 4000
Labor Rate $18 $/hour $15 $25
Building Useful Life 20 Years 20 20
Capital Useful Life 6 Years 6 6
Discount Rate 10% % 10% 10%
Auxiliary Equipment Cost 10% % of main machine cost 10% 10%
Maintenance 10% % of main machine cost 5% 15%

Fixed Overhead 33%
% of main machine,

30% 35%building, aux. equip,
and maintenance cost

Energy Cost 3% % of material and labor cost 3% 3%
Natural gas price 2.8 Cents/kWh 2.2 3.7

Table C.17: Equipment, labor, and process rate assumptions for cathode manufacturing/ reprocessing steps
[2]

Equipment Fractional
Cost (millions Footprint use of Process Unplanned Dedicated

Step of $) (m2) labor rate Downtime (Yes/No)
1 Receiving 3.6 900 3 6667 kg/shift 20% Yes
2 Precursor preparation

Mixing 0.55 200 0.67 1000 l/shift 25% Yes

Drying
1.5 22 1 35 l/hr

25% Yes
(1.2 - 1.8) (20 - 25) (29 - 44 l/hr)

Mixing∗ 0.55 200 0.67 1000 l/shift 25% Yes

Calcining∗
1.5 22

1
20 l/hr

25% Yes
(1.2 - 1.8) (20 - 25) (15 - 30 l/hr)

∗ Steps shared by both cathode manufacturing from raw materials and reprocessing recovered
cathode materials

Table C.18: Material price assumptions for cathode precursor metals and lithium carbonate. Data is based
on USGS data [4]

Material Price Assumption [$/kg]
Nickel $14
Cobalt $12
Manganese $0.004
Aluminum $2.10
Lithium Carbonate $6.70

($6.10-$25∗)
∗ Not based on historical data, but instead the estimated

cost of extracting lithium from seawater
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Figure C.1: kg CO2e (with 95% confidence) per kg of cell emitted during the manufacturing process of NMC
and NCA cylindrical cells for US average, NWPP, and RFCM average grid emissions.
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Figure C.2: MJ (with 95% CI) of input energy per kg of battery produced using a US average, NWPP, and
RFCM grids

Figure C.3: kg CO2e emitted per kWh of battery produced on US average, NWPP, and RFCM grids
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Figure C.4: MJ of input energy per kWh of battery produced on US average, NWPP, and RFCM grids
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Table C.19: Comparison of greenhouse gas emissions and energy inputs to cell manufacturing between
this and other studies per kWh of battery

Specific Greenhouse gas emissions [kg CO2e] &
Cathode Energy input energy [MJ] per kg battery

Reference Chemistry [kWh/kg] Materials Manufacturing Total
Notter et al

LMO 0.114
44 kg 8.6 kg 53 kg

(2010) [90] 750 MJ 160 MJ 910 MJ
Zackrisson et al

LFP 0.10
74 kg 92 kg 170 kg

(2010) [91] - - -

NCM 0.112
140 kg 54 kg 200 kg

Majeau-Bettez 1200 MJ 710 MJ 1900 MJ
et al (2011) [17]

LFP 0.088
180 kg 69 kg 250 kg

1400 MJ 910 MJ 2300 MJ
Dunn et al

LMO 0.13
37 kg 2.1 kg 39 kg

(2012) [77] 560 MJ 21 MJ 580 MJ

EPA (2013) [92] Average 0.15
80 kg 33 kg 110 kg

1200 MJ 610 MJ 1800 MJ
EPA (2013)

Average 0.09
69 kg 0.59 kg 69 kg

cells only [92] 160 MJ 9.4 MJ 1000 MJ
Ellingsen et al

NCM 0.11
65 kg 110 kg 170 kg

(2014) [93] - - -
Ellingsen et al (2014)

NCM 0.17
53 kg 110 kg 160 kg

cells only [93] - - -

Kim et al (2016) [94] LMO/NCM 0.08
76 kg 65 kg 140 kg

- - -
Kim et al (2016)

LMO/NCM 0.14
27 kg 63 kg 90 kg

cells only [94] - - -

NMC 0.21

25 kg 17 kg 42 kg
(21-29 kg) (13-22 kg) (35-51 kg)

This study (US 330 MJ 230 MJ 570 MJ
average power mix, 280-380 MJ 180-300 MJ 480-680 MJ
95% confidence

NCA 0.19

26 kg 19 kg 45 kg
intervals) (21-31 kg) (14-24 kg) (37-54 kg)

340 MJ 260 MJ 610 MJ
(280-400 MJ) (200-320 MJ) (500-730 MJ)

111



Figure C.5: Top: CO2e emissions per kg of battery for battery manufacturing and pyrometallurgical recycling (blue)
and for battery manufacturing and direct recycling (yellow) less the emissions offsets for product outputs for NCA and
NMC cells on US average, NWPP, and RFCM grids. Bottom: Net CO2e emissions avoided using a pyrometallurgical
or direct recycling process. For NMC batteries, pyrometallurgical recycling has a median environmental cost (no
CO2e emissions avoided). For NCA cells, the emissions offsets of a pyrometallurgical process are not significantly
different from zero.
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Figure C.6: Top: MJ of input energy per kg of battery for battery manufacturing and pyrometallurgical recycling (blue)
and for battery manufacturing and direct recycling (yellow) less the emissions offsets for product outputs for NCA and
NMC cells on US average, NWPP, and RFCM grids. Bottom: Net energy savings from using a pyrometallurgical
or direct recycling process. For both chemistries, the median energy savings from pyrometallurgical recycling is
positive, but not significantly different from zero.
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Figure C.7: Top: CO2e emissions per kWh of battery for battery manufacturing and pyrometallurgical recycling (blue)
and for battery manufacturing and direct recycling (yellow) less the emissions offsets for product outputs for NCA and
NMC cells on US average, NWPP, and RFCM grids. Bottom: Net CO2e emissions avoided using a pyrometallurgical
or direct recycling process. For NMC batteries, pyrometallurgical recycling has a median environmental cost (no
CO2e emissions avoided). For NCA cells, the savings of a pyrometallurgical process are not significantly different
from zero.
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Figure C.8: Top: MJ of input energy per kg of battery for battery manufacturing and pyrometallurgical recycling (blue)
and for battery manufacturing and direct recycling (yellow) less the emissions offsets for product outputs for NCA and
NMC cells on US average, NWPP, and RFCM grids. Bottom: Net energy savings from using a pyrometallurgical
or direct recycling process. For both chemistries, the median energy savings from pyrometallurgical recycling is
positive, but not significantly different from zero.
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Figure C.9: net kg CO2e avoided per kg of battery when combining manufacturing with direct cathode recycling over
using no recycling method after manufacturing. Yield rates of recovered cathode material vary from 0 to 100% for
both NMC and NCA chemistries.

Figure C.10: MJ of energy saved by using a direct recycling process over doing nothing after cell manufacturing.
Yield rates of the recovered cathode material vary from 0 to 100% for both NMC and NCA chemistries.
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Figure C.11: net kg CO2e avoided per kWh of battery by using a direct recycling process over doing nothing after cell
manufacturing. Yield rates of recovered cathode material vary from 0 to 100% for both NMC and NCA chemistries.

Figure C.12: MJ of energy saved by using a direct recycling process over doing nothing after cell manufacturing.
Yield rates of the recovered cathode material vary from 0 to 100% for both NMC and NCA chemistries.
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Figure C.13: kg CO2e avoided per kg of battery by using a direct recycling process over a pyrometallurgical pro-
cess. Yield rates of recovered cathode material vary from 0 to 100% for both NMC and NCA chemistries. Because
pyrometallurgical has more environmental benefits for NCA cells than NMC cells, the yield rate for cathode ma-
terial recovered during the direct recycling process must be higher for direct recycling to be more beneficial than
pyrometallurgical recycling.

Figure C.14: MJ of input energy avoided per kg of battery by using a direct recycling process over a pyrometallurgical
process. Yield rates of recovered cathode material vary from 0 to 100% for both NMC and NCA chemistries.
Because pyrometallurgical has more environmental benefits for NCA cells than NMC cells, the yield rate for cathode
material recovered during the direct recycling process must be higher for direct recycling to be more beneficial than
pyrometallurgical recycling.
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Figure C.15: kg CO2e avoided per kWh of battery by using a direct recycling process over a pyrometallurgical
process. Yield rates of recovered cathode material vary from 0 to 100% for both NMC and NCA chemistries.
Because pyrometallurgical has more environmental benefits for NCA cells than NMC cells, the yield rate for cathode
material recovered during the direct recycling process must be higher for direct recycling to be more beneficial than
pyrometallurgical recycling.

Figure C.16: MJ of energy avoided per kWh of battery by using a direct recycling process over a pyrometallurgical
process. Yield rates of recovered cathode material vary from 0 to 100% for both NMC and NCA chemistries.
Because pyrometallurgical has more environmental benefits for NCA cells than NMC cells, the yield rate for cathode
material recovered during the direct recycling process must be higher for direct recycling to be more beneficial than
pyrometallurgical recycling.
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Figure C.17: Relithination costs and breakeven costs as the percentage of lithium added varies between 0 and
100%. For both cell chemistries, the lithination costs are nearly indistinguishable. In practice, no more than 60% of
the lithium would need to be replaced, as the original cathode crystal structure collapses if more than 60% of the
lithium is removed from the cathode (shaded in gray).

Figure C.18: kg CO2e emissions per kg of battery manufactured and recycled using a direct recycling process,
less the emissions offset from recycling process outputs as the lithium recovered through direct recycling varies.
In practice, no more than 60% of the lithium would need to be replaced, as the original cathode crystal structure
collapses if more than 60% of the lithium is removed from the cathode (shaded in gray).
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Figure C.19: MJ of energy saved per kg of battery manufactured and recycled using a direct recycling process,
less the emissions offset from recycling process outputs as the lithium recovered through direct recycling varies.
In practice, no more than 60% of the lithium would need to be replaced, as the original cathode crystal structure
collapses if more than 60% of the lithium is removed from the cathode (shaded in gray).

Figure C.20: kg CO2e emissions per kWh of battery manufactured and recycled using a direct recycling process,
less the emissions offset from recycling process outputs as the lithium recovered through direct recycling varies.
In practice, no more than 60% of the lithium would need to be replaced, as the original cathode crystal structure
collapses if more than 60% of the lithium is removed from the cathode (shaded in gray).
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Figure C.21: MJ of energy saved per kWh of battery manufactured and recycled using a direct recycling process,
less the emissions offset from recycling process outputs as the lithium recovered through direct recycling varies.
In practice, no more than 60% of the lithium would need to be replaced, as the original cathode crystal structure
collapses if more than 60% of the lithium is removed from the cathode (shaded in gray).
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Appendix D

Survey Design Data

D.1 Market Data for Survey Levels

Attribute levels for price, vehicle electric range, vehicle warranty coverage (both percentage of

the battery storage capacity guaranteed and duration of the warranty) were all based on current

market data. Figure D.1 shows the MSRP and vehicle ranges for EVs available in the US in 2017.

While the PHEV models have a relatively narrow band of available electric ranges, with a wide

variation in price, the BEVs are essentially split into 2 clusters, with the high-end Tesla Model S

and Model X offering a long electric range at a high price, and the other BEV models with both

lower ranges (with the exception of the Chevrolet Bolt and Tesla Model 3) and lower MSRP.

Based on the limited number of PHEV models available with a MSRP above $100,000, and

correspondingly low sales numbers (as shown in Figure D.2 for vehicles above this price point, we

capped the survey attribute price level for the PHEV survey at $100,000.

Many manufacturers distinguish between the vehicle warranty, a powertrain warranty, and a

battery warranty, with both the powertrain and battery warranties offering both longer coverage

periods and longer mileage coverage than for vehicle warranties alone. The warranty terms for

battery warranties are also very consistent across manufacturers and models, as shown in Table

D.1. In terms of the battery performance guaranteed most manufacturers specify that some loss

in storage capacity is normal, but relatively few list a specific threshold to define abnormal battery

degradation levels, which would trigger battery replacements [187, 188]. The exceptions to this

policy include BMW, which guarantees 70% of battery capacity over the warranty period (as stated

in the owners’ manual) [189] and Nissan, which guarantees that the LEAF battery should be able
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Figure D.1: Electric Range and Manufacturer’s Suggested Retail Price (MSRP) for BEVs and PHEVs avail-
able in 2017

to hold 9 of 12 bars of charge as displayed on the dashboard [190].

D.2 Number of Classes Selection Criteria

AIC = −2 lnL+ 2Φ (D.1)

Where Φ is the number of parameters estimated in the latent class model.

BIC = −2 lnL+ Φln(N) (D.2)

Where N is the number of respondents.

D.3 Alternative Model Specifications and Results

Baseline model in the preference space:

vj =β0pj + β1 log(xRANGE
j ) + β2 log(xFINALRANGE

j ) + β3x
WARRANTY
j + (D.3)

β4 log(xFINALRANGE
j )xWARRANTY

j + β5x
RECY CLED
j + β6x

REFURB
j +

β7x
RECY CLED
j log(xRANGE

j ) + β8x
REFURB
j log(xRANGE

j ) + β9x
OG
j
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Figure D.2: Historical US sales of PHEVs by lowest model price (2010 - 2017)

Simplified model in the preference space:

vj =β0pj + β1 log(xRANGE
j ) + β2 log(xFINALRANGE

j ) + β3x
WARRANTY
j + (D.4)

β4x
RECY CLED
j + β5x

REFURB
j + β6x

OG
j

Latent class models with more classes in for PHEVs are computationally singular, but do not

offer better performance:
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Table D.1: Market Data - Battery Warranties

Battery Warranty
Make & Model Type Years Miles Reference
BMW 330e PHEV 8 80,000 [191]
BMW 530e PHEV 8 80,000 [192]
BMW 740e PHEV 8 80,000 [193]
BMW i3 BEV 8 100,000 [194]
BMW i8 PHEV 8 100,000 [195]
BMW X5 xDrive40e PHEV 8 80,000 [196]
Cadillac CT6 PHV PHEV 8 100,000 [197]
Chevrolet Bolt BEV 8 100,000 [198,199]
Chevrolet Volt PHEV 8 100,000 [199]
Chrysler Pacifica Hybrid PHEV 10 100,000 [200]
Fiat 500e BEV 8 - [201]
Ford C-Max Energi PHEV 8 100,000 [202]
Ford Fusion Energi PHEV 8 100,000 [202,203]
Hyundai IONIQ Electric BEV 10 100,000 [204]
Hyundai Sonata PHV PHEV 10 100,000 [205]
Kia Soul EV BEV 10 100,000 [206]
Nissan LEAF BEV 8 100,000 [190]
Tesla Model S BEV 8 Unlimited [188]
Tesla Model X BEV 8 Unlimited [188]
Toyota Prius Prime PHEV 8 100,000 [207]
VW e-Golf BEV 8 100,000 [208]
Volvo XC90 PHEV 8 100,000 [209]
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Table D.2: Survey versions and attribute levels

Attribute
Vehicle Type

BEV
PHEV

Tesla (Model S & Model X) Other
$55,000 $15,000 $15,000

Price $60,000 $20,000 $20,000
$65,000 $25,000 $25,000
$70,000 $30,000 $30,000
$75,000 $35,000 $35,000
$80,000 $40,000 $40,000
$85,000 $45,000 $45,000
$90,000 $50,000
$95,000 $55,000
$100,000 $60,000
$105,000 $65,000
$110,000 $70,000
$120,000 $80,000
$130,000 $90,000
$140,000 $100,000

Vehicle
range with
new
battery

70 10
100 20
175 30
250 40
350 50

Vehicle
range
guarantee†

60%
70%
80%
90%

7 years
Warranty 8 years
Period† 9 years

10 years

Battery Type
Conventional

Recycled
Refurbished

†These attributes were displayed as a product of vehicle
range times range guarantee, and paired with a warranty period
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Table D.3: 2- and 3- Latent Class Models for BEVs in the preference space

Attribute Class 1 Class 2 Class 1 Class 2 Class 3
Price -0.170∗∗∗ -0.031∗∗∗ -0.162∗∗∗ 0.012 ∗∗∗ -0.169∗∗∗

(.014) (.003) (.013) (.004) (.021)
ln(Range) 0.841 1.151∗∗∗ 1.913∗∗∗ -0.421 2.622 ∗∗∗

(.681) (.383) (.629) (.649) (.804)
ln(finalrange) 1.604 ∗∗ 0.660∗ 1.046∗ 0.627 2.035∗∗

(.669) (.37) (.6) (.631) (.863)
Warranty 0.049 0.049 0.068 -0.078 0.104

(.085) (.052) (.076) (.09) (.105)
Recycled -0.166 -0.019 -0.336 -0.007 0.338

(.232) (.131) (.205) (.232) (.275)
Refurbished -0.204 -0.051 -0.337 0.056 0.550

(.234) (.134) (.215) (.232) (.336)
Outside good 7.370∗∗∗ 5.813∗∗∗ 9.631∗∗∗ 1.751∗ 12.195∗∗∗

(1.08) (.667) (1.012) (.99) (2.091)
Class 0.622∗∗∗ -0.888∗∗∗ -0.145∗∗

(.063) (.082) (.069)
35% 65% 44% 18% 38%

Log Likelihood -898.64 -789.63
AIC 1827.284 1625.256
BIC 1904.72 1743.991
Observations 1290 1290
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D.4: 4 latent class model for BEVs in the preference space

Attribute Class 1 Class 2 Class 3 Class 4
Price -0.181∗∗∗ -0.168∗∗∗ -0.188∗∗∗ 0.001

(.027) (.022) (.018) (.004)
ln(Range) 0.530 2.452∗∗∗ 2.802∗∗∗ -0.640

(1.296) (.854) (.712) (.653)
ln(finalrange) 2.606∗∗ 2.292∗∗∗ 0.772 0.708

(1.3) (.84) (.651) (.629)
Warranty -0.137 0.103 0.114 -0.009

(.174) (.11) (.091) (.087)
Recycled -0.653 0.401 -0.236 -0.038

(.488) (.281) (.234) (.231)
Refurbished -0.751 0.661∗∗ -0.241 -0.055

(.466) (.3) (.24) (.232)
Outside good 11.252∗∗∗ 11.366∗∗∗ 11.555∗∗∗ -0.173

(2.434) (3.325) (1.359) (.977)
Class 1.065∗∗∗ 1.092∗∗∗ 0.272∗∗

(.1) (.103) (.112)
12% 35% 36% 16%

Log Likelihood -755.11
AIC 1572.211
BIC 1732.245
Observations 1290
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D.5: 5 latent class model for BEVs in the preference space

hline Attribute Class 1 Class 2 Class 3 Class 4 Class 5
Price -0.316∗∗∗ -0.168∗∗∗ 0.001 -0.183∗∗∗ -0.151∗∗∗

(.047) (.022) (.004) (.024) (.025)
ln(Range) 1.277 2.284∗∗∗ -0.652 0.901 4.915∗∗∗

(1.391) (.848) (.645) (1.152) (1.155)
ln(finalrange) 1.987 0.237∗∗∗ 0.736 2.219∗ -0.058

(1.246) (.844) (.617) (1.144) (1.011)
Warranty -0.115 0.103 -0.003 -0.070 0.144

(.185) (.11) (.086) (.151) (.145)
Recycled 0.264 0.423 -0.046 -0.436 -0.708∗∗

(.497) (.282) (.228) (.425) (.354)
Refurbished 0.502 0.655∗∗∗ -0.061 -0.681 -0.531

(.468) (.295) (.23) (.426) (.382)
Outside good 5.608∗∗ 0.547 -0.100 11.151∗∗∗ 18.974∗∗∗

(2.655) (361.525) (.957) (2.047) (2.414)
Class 0.941∗∗∗ 0.197∗ 0.151 0.434∗∗∗

(.102) (.113) (.124) (.12)
13% 34% 16% 16% 21%

Log Likelihood -729.76
AIC 1537.521
BIC 1738.855
Observations 1290
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D.6: 6 latent class model for BEVs in the preference space

Attribute Class 1 Class 2 Class 3 Class 4 Class 5 Class 6
Price -0.183∗∗∗ -0.168∗∗∗ -0.315∗∗∗ 0.002 0.003 -0.150∗∗∗

(.024) (.022) (.047) (.004) (.015) (.025)
ln(Range) 0.851 2.295∗∗∗ 1.191 -1.191∗ 4.900∗ 4.860∗∗∗

(1.155) (.849) (1.388) (.692) (2.958) (1.143)
ln(finalrange) 2.285∗∗ 2.362∗∗∗ 2.030 1.261∗ -4.376 -0.041

(1.15) (.844) (1.248) (.666) (2.678) (1.003)
Warranty -0.077 0.104 -0.117 -0.001 0.098 0.139

(.152) (.11) (.185) (.091) (.344) (.144)
Recycled -0.428 0.423 0.216 -0.114 0.143 -0.705∗∗

(.424) (.282) (.495) (.244) (.798) (.352)
Refurbished -0.688 0.655∗∗ 0.460 -0.127 0.280 -0.528

(.43) (.295) (.467) (.246) (.888) (.38)
Outside good 11.179∗∗∗ 5.813 5.331∗∗ -0.608 5.812 18.795∗∗∗

(2.06) (26.516) (2.635) (1.027) (3.969) (2.382)
Class 0.788∗∗∗ -0.141 -0.115 -1.873∗∗∗ 0.277∗∗∗

(.093) (.123) (.108) (.203) (.106)
16% 34% 14% 14% 2% 21%

Log Likelihood -722.35
AIC 1538.698
BIC 1781.33
Observations 1290
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D.7: 2- and 3- Latent Class Models for PHEVs in the preference space

Attribute Class 1 Class 2 Class 1 Class 2 Class 3
Price -0.111∗∗∗ -0.074∗∗∗ -0.122∗∗∗ -0.130∗∗∗ -0.074∗∗∗

(.009) (.006) (.017) (.012) (.006)
ln(Range) 1.825∗∗ 0.998∗ 1.752 3.298∗∗∗ 0.864

(.701) (.557) (1.459) (.919) (.577)
ln(finalrange) 0.921 1.785∗∗∗ 0.938 0.388 1.857∗∗∗

(.656) (.551) (1.287) (.853) (.574)
Warranty -0.032 0.081 0.161 -0.137 0.105

(.091) (.074) (.176) (.115) (.077)
Recycled -0.325 -0.379∗ -0.615 -0.167 -0.378∗

(.24) (.2) (.511) (.302) (.211)
Refurbished -0.127 -0.386∗ 0.212 -0.116 -0.405∗

(.249) (.207) (.428) (.319) (.216)
Outside good 5.059∗∗∗ 2.856∗∗∗ 6.075∗∗∗ 6.485∗∗∗ 2.383∗∗∗

(.926) (.7) (1.872) (1.14) (.662)
Class 0.051 0.552 0.856

(.065) (.105) (.091)
49% 51% 20% 34% 46%

Log Likelihood -629.420 -599.010
AIC 1288.840 1244.026
BIC 1365.002 1360.808
Observations 1185 1185
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table D.8: 4 Latent Class Models for PHEVs in the preference space

Attribute Class 1 Class 2 Class 3 Class 4
Price -0.207∗∗∗ -0.136∗∗∗ -0.079∗∗∗ -0.126∗∗∗

(.062) (.013) (.007) (.022)
ln(Range) -2.128 2.748∗∗∗ 1.929∗∗∗ -3.686∗∗

(4.311) (.82) (.687) (1.569)
ln(finalrange) 6.702 0.268 2.012∗∗∗ 5.472∗∗∗

(4.184) (.768) (.69) (1.67)
Warranty 0.737 -0.116 0.146 0.050

(.591) (.105) (.094) (.169)
Recycled -0.433 -0.276 -0.543∗∗ -0.285

(1.182) (.278) (.25) (.466)
Refurbished -1.827 -0.104 -0.520∗∗ 0.306

(1.272) (.299) (.257) (.466)
Outside good 10.960∗ 4.731∗∗∗ 7.000∗∗∗ -8.188∗∗∗

(6.409) (.952) (.928) (2.245)
Class 1.706∗∗∗ 1.707∗∗∗ 0.613∗∗∗

(.125) (.124) (.141)
7% 40% 40% 13%

Log Likelihood -568.220
AIC 1198.444
BIC 1355.846
Observations 1185
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table D.9: Latent Class Selection Criteria for PHEVs

Number of classes Likelihood AIC BIC
2 -629.42 1288.84, 1365.002
3 -599.01 1244.026 1360.808
4 -568.22 1198.444 1355.846
5 -555.29 1188.592 1386.614
6 -540.01 1174.022 1412.664

133



134



Bibliography

[1] D. Cheret and S. Santen, “Battery Recycling,” US Patent 11/108 321, Jan., 2007.

[2] R. E. Ciez and J. F. Whitacre, “Comparison between cylindrical and prismatic lithium-ion cell

costs using a process based cost model,” Journal of Power Sources, vol. 340, pp. 273–281,

Feb. 2017.

[3] C. Bloch and R. Ranganathan, “Process-Based Cost Modeling,” IEEE Transactions on Com-

ponents, Hybrids, and Manufacturing Technology, vol. 15, no. 3, pp. 288–294, Jun. 1992.

[4] J. A. Ober, “Mineral commodity summaries 2017,” USGS, Tech. Rep., 2017.

[5] “DOE Global Energy Storage Database,” US Department of Energy. [Online]. Available:

http://www.energystorageexchange.org/projects/data_visualization

[6] D. Howell, B. Cunningham, T. Duong, and P. Faguy. (2016, Jun.) Overview

of the DOE VTO Advanced Battery R&D Program. [Online]. Available: http:

//energy.gov/sites/prod/files/2016/06/f32/es000_howell_2016_o_web.pdf

[7] A. A. Akhil, G. Huff, A. B. Currier, B. C. Kaun, D. M. Rastler, S. B. Chen, A. L. Cotter,

D. T. Bradshaw, and W. D. Gauntlett, “DOE/EPRI 2013 Electricity Storage Handbook in

Collaboration with NRECA,” Sandia National Laboratory, Tech. Rep., Jul. 2013.

[8] P. A. Nelson, K. G. Gallagher, I. Bloom, and D. W. Dees, “Modeling the Performance and

Cost of Lithium-Ion Batteries for Electric-Drive Vehicles,” Argonne National Lab, Tech. Rep.

ANL-12/55, Dec. 2012.

[9] D. L. Wood III, J. Li, and C. Daniel, “Prospects for reducing the processing cost of lithium ion

batteries,” Journal of Power Sources, vol. 275, pp. 234–242, Nov. 2014.

135



[10] A. Sakti, J. J. Michalek, E. R. H. Fuchs, and J. F. Whitacre, “A techno-economic analysis

and optimization of Li-ion batteries for light-duty passenger vehicle electrification,” Journal

of Power Sources, vol. 273, no. C, pp. 966–980, Sep. 2014.

[11] B. Nykvist and M. Nilsson, “Rapidly falling costs of battery packs for electric vehicles,” Nature

Climate Change, vol. 5, no. 4, pp. 329–332, Mar. 2015.

[12] A. Sakti, I. M. L. Azevedo, E. R. H. Fuchs, J. J. Michalek, K. G. Gallagher, and J. F. Whitacre,

“A new framework for technology forecasting: the case of Li-ion batteries for plug-in electric

vehicles,” Social Science Research Network, 2016.

[13] K. Nakura, K. Ariyoshi, H. Yoshizawa, and T. Ohzuku, “Characterization of Lithium Insertion

Electrodes and Its Verification: Prototype 18650 Batteries Consisting of LTO and LAMO,”

Journal of the Electrochemical Society, vol. 162, no. 4, pp. A622–A628, Jan. 2015.

[14] N. S. Ong, “Manufacturing cost estimation for PCB assembly: An activity-based approach,”

International Journal of Production Economics, vol. 38, no. 2, pp. 159–172, 1995.

[15] J. La Trobe-Bateman and D. Wild, “Design for manufacturing: use of a spreadsheet model

of manufacturability to optimize product design and development,” Research in Engineering

Design, Mar. 2003.

[16] J. M. Paulsen and J. R. Dahn, “O2-Type Li2/3[Ni1/3Mn2/3]O2: A New Layered Cathode Ma-

terial for Rechargeable Lithium Batteries,” Journal of the Electrochemical Society, vol. 147,

no. 7, pp. 2478–2485, 2000.

[17] G. Majeau-Bettez, T. R. Hawkins, and A. H. Strømman, “Life Cycle Environmental Assess-

ment of Lithium-Ion and Nickel Metal Hydride Batteries for Plug-In Hybrid and Battery Elec-

tric Vehicles,” Environmental Science and Technology, Apr. 2011.

[18] Electric Power Monthly. [Online]. Available: https://www.eia.gov/electricity/monthly/epm_

table_grapher.cfm?t=epmt_5_3

[19] S. I. Kohn and W. A. Hermann, “Cell cap assembly with recessed terminal and enlarged

insulating gasket,” US Patent 12/456,150, Nov., 2011.

[20] A. A. Pesaran, G.-H. Kim, K. Smith, and E. C. Darcy, “Designing Safe Lithium-Ion Battery

Packs Using Thermal Abuse Models,” in Lithium Mobile Power, Dec. 2008.

136



[21] R. E. Ciez and J. F. Whitacre, “The cost of lithium is unlikely to upend the price of Li-ion

storage systems,” Journal of Power Sources, vol. 320, pp. 310–313, Jul. 2016.

[22] L. B. V. Jaffe, S. Behind-the-meter energy storage: not hy-

pothetical anymore. [Online]. Available: http://www.smartgridnews.com/story/

behind-meter-energy-storage-not-hypothetical-anymore/2014-02-25

[23] J. St John. Hawaii Wants 200MW of Energy Storage for Solar, Wind

Grid Challenges. [Online]. Available: http://www.greentechmedia.com/articles/read/

hawaii-wants-200mw-of-energy-storage-for-solar-wind-grid-challenges

[24] “Commission’s inclinations on the future of hawaii’s electric utilities,” Public Utilities Commis-

sion of the State of Hawaii, 2014.

[25] L. Hay Newman. (2014, May) What California’s Energy Storage Requirement Really Means.

[26] D. Frankel. (2014) Storage gets a lift from california’s $415 million for behind-

the- meter generation. [Online]. Available: http://www.smartgridnews.com/story/

storage-gets-lift-california-s-415-million-behind-meter-generation/2014-06-25

[27] Gordon and Skinner, “Self-generation incentive program,” AB-1624, California Legislature,

pp. 1–5, Dec. 2014.

[28] Power africa’s beyond the grid increasing access through small-scale en-

ergy solutions. us department of energy. [Online]. Available: http://www.energy.gov/

articles/power-africa-s-beyond-grid-increasing-access-through-small-scale-energy-solutions

[29] D. Schnitzer, D. S. Lounsbury, J. P. Carvallo, R. Deshmukh, J. Apt, and D. M. Kammen,

“Microgrids for Rural Electrification,” United Nations Foundations, Tech. Rep., Feb. 2014.

[30] J. B. Copetti and F. Chenlo, “Lead/acid batteries for photovoltaic applications. Test results

and modeling,” Journal of Power Sources, vol. 47, no. 1-2, pp. 109–118, Jan. 1994.

[31] N. Achaibou, M. Haddadi, and A. Malek, “Modeling of Lead Acid Batteries in PV Systems,”

Energy Procedia, vol. 18, pp. 538–544, Jan. 2012.

[32] J. F. Manwell and J. G. McGowan, “Lead Acid Battery Storage Model for Hybrid Energy

Systems,” Solar Energy, pp. 399–405, 1993.

137



[33] J. J. Lander, “Further Studies on the Anodic Corrosion of Lead in H2SO4 Solutions,” Journal

of the Electrochemical Society, pp. 1–8, Nov. 2006.

[34] C. Protogeneropoulos, M. R.H., and B. Brinkworth, “Battery state of voltage modelling and

an algorithm describing dynamic conditions for long-term storage simulation in a renewable

system,” Solar Energy, pp. 517–527, 1994.

[35] D. Spiers and A. D. Rasinkoski, “Predicting the service lifetime of lead/acid batteries in

photovoltaic systems,” Journal of Power Sources, pp. 245–253, 1995.

[36] S. West and P. T. Krein, “Equalization of Valve-Regulated Lead-Acid Batteries: Issues and

Life Test Results,” IEEE Spectrum, pp. 1–8, 2000.

[37] J. Schiffer, D. U. Sauer, H. Bindner, T. Cronin, P. Lundsager, and R. Kaiser, “Model prediction

for ranking lead-acid batteries according to expected lifetime in renewable energy systems

and autonomous power-supply systems,” Journal of Power Sources, vol. 168, no. 1, pp.

66–78, May 2007.

[38] H. Binder, T. Cronin, P. Lundsager, J. F. Manwell, U. Abdulwahid, and I. Baring-Gould,

“Benchmarking – Lifetime Modelling,” European Commission Community Research and De-

velopment Information Service, Tech. Rep., Dec. 2013.

[39] M. Bortolini, M. Gamberi, and A. Graziani, “Technical and economic design of photovoltaic

and battery energy storage system,” Energy Conversion and Management, vol. 86, no. C,

pp. 81–92, Oct. 2014.

[40] J. Kaldellis, D. Zafirakis, K. Kavadias, and E. Kondili, “Optimum PV-diesel hybrid systems for

remote consumers of the Greek territory,” Applied Energy, vol. 97, no. C, pp. 61–67, Sep.

2012.

[41] E. M. Nfah, J. M. Ngundam, M. Vandenbergh, and J. Schmid, “Simulation of off-grid gen-

eration options for remote villages in Cameroon,” Renewable Energy, vol. 33, no. 5, pp.

1064–1072, May 2008.

[42] “Ncdc climate data: Tuscon international airport,” database. [Online]. Available:

http://rredc.nrel.gov/solar/old_data/nsrdb/

138



[43] “National solar radiation database,” database. [Online]. Available: http://rredc.nrel.gov/solar/

old_data/nsrdb/

[44] A. Pesaran and T. Markel, “Battery Requirements and Cost-Benefit Analysis for Plug-In

Hybrid Vehicles (Presentation),” in The 24th International Battery Seminar & Exhibit, Sep.

2007, pp. 1–22.

[45] S. B. Peterson, J. Apt, and J. F. Whitacre, “Lithium-ion battery cell degradation resulting from

realistic vehicle and vehicle-to-grid utilization,” Journal of Power Sources, vol. 195, no. 8, pp.

2385–2392, Apr. 2010.

[46] ANR26650 M1A. [Online]. Available: https://www.buya123products.com/goodsdetail.php?

i=11

[47] Panasonic NCR-18650, Panasonic, 2014.

[48] E. Hittinger, T. Wiley, J. Kluza, and J. Whitacre, “Evaluating the value of batteries in micro-

grid electricity systems using an improved Energy Systems Model,” Energy Conversion and

Management, vol. 89, no. C, pp. 458–472, Jan. 2015.

[49] S. Szabó, K. Bódis, T. Huld, and M. Moner-Girona, “Energy solutions in rural Africa: map-

ping electrification costs of distributed solar and diesel generation versus grid extension*,”

Environmental Research Letters, vol. 6, no. 3, p. 034002, Jul. 2011.

[50] M. Anderman, “The Plug-In Hybrid and Electric Vehicle Opportunity Report,” Advanced Au-

tomotive Batteries, Tech. Rep., May 2010.

[51] R. Ciez, “Price Inqiry-SDSHobby,” Personal Communication, Mar. 2015.

[52] ——, “Price Inquiry-Guangzhou Great Power Energy & Technology Co. ,” Personal Commu-

nication, Mar. 2015.

[53] ——, “Price Inquiry-Shenzhen Apollo Battery Tech. Development Co. ,” Personal Communi-

cation, Mar. 2015.

[54] ——, “Price Inquiry-Victpower Technology Co. ,” Personal Communication, Mar. 2015.

[55] “Quick Insights - The Economics of Residential Energy Storage,” Electric Power Research

Institute (EPRI), Tech. Rep., May 2015.

139



[56] Retail diesel prices. [Online]. Available: http://www.eia.gov/countries/prices/dieselwithtax.

cfm

[57] U. Deichmann, C. Meisner, S. Murray, and D. Wheeler, “The economics of renewable energy

expansion in rural Sub-Saharan Africa,” Energy Policy, vol. 39, no. 1, pp. 215–227, Jan.

2011.

[58] J. Huenteler, “International support for feed-in tariffs in developing countries—A review and

analysis of proposed mechanisms,” Renewable and Sustainable Energy Reviews, vol. 39,

pp. 857–873, Nov. 2014.

[59] A. Campoccia, L. Dusonchet, E. Telaretti, and G. Zizzo, “An analysis of feed-in tariffs for

solar PV in six representative countries of the European Union,” Solar Energy, vol. 107, pp.

530–542, 2014.

[60] S. Tongsopit and C. Greacen, “An assessment of Thailand’s feed-in tariff program,” Renew-

able Energy, vol. 60, pp. 439–445, 2013.

[61] Feed-in tariff: a policy tool encouraging deployment in renewable electricity technologies.

[Online]. Available: http://www.eia.gov/todayinenergy/detail.cfm?id=11471

[62] Feed-in tariffs and similar programs. [Online]. Available: http://www.eia.gov/electricity/

policies/provider_programs.cfm

[63] The World Bank. Putting a Price on Carbon with a Tax. [On-

line]. Available: http://www.worldbank.org/content/dam/Worldbank/document/Climate/

background-note_carbon-tax.pdf

[64] “Directive 2006/66/EC of the European Parliament and of the Council on batteries and accu-

mulators and waste batteries and accumulators and repealing Directive 91/157/EEC,” Sep.

2006.

[65] Recycling Laws By State. [Online]. Available: http://www.call2recycle.org/

recycling-laws-by-state/

[66] RCRA Orientation Manual 2014, 2014.

140



[67] J. Ayre. (2017, Jul.) GM Aiming For 500,000 “New Energy Vehicle” Sales

Per Year By 2025. [Online]. Available: https://cleantechnica.com/2017/07/10/

gm-aiming-500000-new-energy-vehicle-sales-per-year-2025/

[68] T. Randall. (2016, May) Tesla’s Wild New Forecast Changes the Trajectory of an

Entire Industry. [Online]. Available: http://www.bloomberg.com/news/articles/2016-05-04/

tesla-s-wild-new-forecast-changes-the-trajectory-of-an-entire-industry

[69] J. Xu, H. R. Thomas, R. W. Francis, K. R. Lum, J. Wang, and B. Liang, “A review of pro-

cesses and technologies for the recycling of lithium-ion secondary batteries,” Journal of

Power Sources, vol. 177, pp. 512–527, Jan. 2008.

[70] C. Hanisch, W. Haselrieder, and A. Kwade, “Recovery of Active Materials from Spent

Lithium-Ion Electrodes and Electrode Production Rejects,” in Glocalized Solutions for Sus-

tainability in Manufacturing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp.

85–89.

[71] R.-C. Wang, Y.-C. Lin, and S.-H. Wu, “A novel recovery process of metal values from the

cathode active materials of the lithium-ion secondary batteries,” Hydrometallurgy, vol. 99,

no. 3-4, pp. 194–201, Nov. 2009.

[72] S. M. Shin, N. H. Kim, J.-S. Sohn, D. H. Yang, and Y. H. Kim, “Development of a metal

recovery process from Li-ion battery wastes,” Hydrometallurgy, vol. 79, no. 3-4, pp. 172–

181, Oct. 2005.

[73] B. Swain, J. Jeong, J.-c. Lee, G.-H. Lee, and J.-S. Sohn, “Hydrometallurgical process for

recovery of cobalt from waste cathodic active material generated during manufacturing of

lithium ion batteries,” Journal of Power Sources, vol. 167, no. 2, pp. 536–544, May 2007.

[74] C. K. Lee and K.-I. Rhee, “Reductive leaching of cathodic active materials from lithium ion

battery wastes,” Hydrometallurgy, vol. 68, no. 1-3, pp. 5–10, Feb. 2003.

[75] M. Contestabile, S. Panero, and B. Scrosati, “A laboratory-scale lithium-ion battery recycling

process,” Journal of Power Sources, vol. 92, no. 1-2, pp. 65–69, Jan. 2001.

[76] S. Sloop, “Giga Life Cycle: Manufacture of Cells from Recycled EV Li-ion Batteries,” in

Vehicle Technolgies Office Merit Review 2015. Department of Energy Vehicle Technologies

Office, Apr. 2015.

141



[77] J. B. Dunn, L. Gaines, J. Sullivan, and M. Q. Wang, “Impact of Recycling on Cradle-to-Gate

Energy Consumption and Greenhouse Gas Emissions of Automotive Lithium-Ion Batteries,”

Environmental Science & Technology, vol. 46, no. 22, pp. 12 704–12 710, Oct. 2012.

[78] Z. Wang, P. Benavides, J. B. Dunn, and D. C. Cronauer, “Development of GREET Catalyst

Module,” Argonne National Laboratory, Tech. Rep. ANL/ESD-14/12, Sep. 2015.

[79] M. Grützke, X. Mönnighoff, F. Horsthemke, V. Kraft, M. Winter, and S. Nowak, “Extraction

of lithium-ion battery electrolytes with liquid and supercritical carbon dioxide and additional

solvents,” RSC Adv., vol. 5, no. 54, pp. 43 209–43 217, 2015.

[80] S. Nowak and M. Winter, “The Role of Sub- and Supercritical CO2 as “Processing Solvent”

for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes,” Molecules,

vol. 22, no. 3, p. 403, Mar. 2017.

[81] X. Mönnighoff, A. Friesen, B. Konersmann, F. Horsthemke, M. Grützke, M. Winter, and

S. Nowak, “Supercritical carbon dioxide extraction of electrolyte from spent lithium ion bat-

teries and its characterization by gas chromatography with chemical ionization,” Journal of

Power Sources, vol. 352, pp. 56–63, Jun. 2017.

[82] U. Zahid, J. An, U. Lee, S. P. Choi, and C. Han, “Techno-economic assessment of CO2

liquefaction for ship transportation,” Greenhouse Gases: Science and Technology, vol. 4,

no. 6, pp. 734–749, Jun. 2014.

[83] J. B. Dunn, L. Gaines, M. Barnes, J. L. Sullivan, and M. Wang, “Material and Energy Flows

in the Materials Production, Assembly, and End-of-Life Stages of the Automotive Lithium-Ion

Battery Life Cycle,” Argonne National Laboratory, Argonne, IL, Tech. Rep. ANL/ESD/12-3,

Sep. 2014.

[84] O. O. C. US EPA. Emissions & Generation Resource Integrated Database. [Online].

Available: https://www.epa.gov/energy/egrid

[85] “IPCC Fourth Assessment Report: Climate Change 2007,” UNEP, Tech. Rep., 2007.

[86] Argonne greet model. [Online]. Available: https://greet.es.anl.gov/

142



[87] Transit Time, Distance calculator & Port to port distances. [Online]. Avail-

able: https://www.searates.com/reference/portdistance/?D=706&G=15873&shipment=1&

container=20st&weight=1&product=0&request=&mode=&

[88] World copper smelters: interactive map. [Online]. Available: https://mrdata.usgs.gov/

mineral-resources/copper-smelters.html

[89] J. Sullivan and L. Gaines, “A Review of Battery Life-Cycle Analysis: State of Knowledge and

Critical Needs,” Argonne National Lab, Tech. Rep. ANL/ESD/10-7, 2010.

[90] D. A. Notter, M. Gauch, R. Widmer, P. Wäger, A. Stamp, R. Zah, and H.-J. Althaus, “Con-

tribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles,” Environmental

Science & Technology, vol. 44, no. 17, pp. 6550–6556, Sep. 2010.

[91] M. Zackrisson, L. Avellán, and J. Orlenius, “Life cycle assessment of lithium-ion batteries

for plug-in hybrid electric vehicles – Critical issues,” Journal of Cleaner Production, vol. 18,

no. 15, pp. 1519–1529, Nov. 2010.

[92] “Lithium-Ion Batteries and Nanotechnology for Electric Vehicles,” US EPA, Tech. Rep. EPA

744-R-12-001, Apr. 2012.

[93] L. A.-W. Ellingsen, G. Majeau-Bettez, B. Singh, A. K. Srivastava, L. O. Valøen, and A. H.

Strømman, “Life Cycle Assessment of a Lithium-Ion Battery Vehicle Pack,” Journal of Indus-

trial Ecology, vol. 18, no. 1, pp. 113–124, Nov. 2013.

[94] H. C. Kim, T. J. Wallington, R. Arsenault, C. Bae, S. Ahn, and J. Lee, “Cradle-to-Gate Emis-

sions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis,” Environ-

mental Science & Technology, vol. 50, no. 14, pp. 7715–7722, Jul. 2016.

[95] L. Ciacci, E. M. Harper, N. T. Nassar, B. K. Reck, and T. E. Graedel, “Metal Dissipation

and Inefficient Recycling Intensify Climate Forcing,” Environmental Science & Technology,

vol. 50, no. 20, pp. 11 394–11 402, Oct. 2016.

[96] “Hazardous materials: Transportation of Lithium Batteries,” vol. 79, no. 151, Aug. 2014.

[97] Y. IDEMOTO and T. MATSUI, “Thermodynamic stability, crystal structure, and cathodic per-

formance of Lix(Mn1/3Co1/3Ni1/3)O2 depend on the synthetic process and Li content,” Solid

State Ionics, vol. 179, no. 17-18, pp. 625–635, Jul. 2008.

143



[98] F. Wild, J. Riseborough, and T. Wilson. (2017, Feb.) Glencore Buys Out Billionaire With $1

Billion Congo Mining Deal. [Online]. Available: https://www.bloomberg.com/news/articles/

2017-02-13/glencore-said-to-agree-on-gertler-buyout-in-960-million-deal

[99] Cobalt:2010-2017 . [Online]. Available: tradingeconomics.com/commodity/cobalt

[100] “Advancing Sustainable Materials Management: 2013 Fact Sheet,” EPA.gov, no. EPA530-

R-15-003, pp. 1–21, Jun. 2015.

[101] L. Gaines, “The future of automotive lithium-ion battery recycling: Charting a sustainable

course,” Sustainable Materials and Technologies, vol. 1-2, pp. 2–7, Dec. 2014.

[102] (2008, Jun.) Recycling and Reuse: Batteries and Accumulators: European Union

Directive. [Online]. Available: https://archive.epa.gov/oswer/international/web/html/200806_

tl-eu-directive-batteries-accumulators.html

[103] A. Elshkaki, T. E. Graedel, L. Ciacci, and B. K. Reck, “Copper demand, supply, and associ-

ated energy use to 2050,” Global Environmental Change, vol. 39, pp. 305–315, Jul. 2016.

[104] J. Axsen, C. Kormos, S. Goldberg, and Z. Long, “Which Types of Zero-Emissions Vehi-

cles (ZEVS) Do Canadian Consumers Want and Why?” in Transportation Research Board

Annual Meeting, Washington DC, 2017.

[105] E. Gies, “Lazarus batteries,” Nature, vol. 526, pp. S100–S101, Oct. 2015.

[106] E. A. Olivetti, G. Ceder, G. G. Gaustad, and X. Fu, “Lithium-Ion Battery Supply Chain Con-

siderations: Analysis of Potential Bottlenecks in Critical Metals,” Joule, vol. 1, no. 2, pp.

229–243, Oct. 2017.

[107] D. Doughty and E. P. Roth, “A General Discussion of Li Ion Battery Safety,” The Electro-

chemical Society Interface, pp. 37–44, Jun. 2012.

[108] C. A. Lave and K. Train, “A disaggregate model of auto-type choice,” Transportation Re-

search Part A: General, vol. 13, no. 1, pp. 1–9, Feb. 1979.

[109] S. Berry, J. Levinsohn, and A. Pakes, “Automobile Prices in Market Equilibrium,” Economet-

rica, vol. 63, no. 4, p. 841, Jul. 1995.

144



[110] K. S. Whitefoot and S. J. Skerlos, “Design incentives to increase vehicle size created from

the U.S. footprint-based fuel economy standards,” Energy Policy, vol. 41, pp. 402–411, Feb.

2012.

[111] H. Allcott and N. Wozny, “Gasoline Prices, Fuel Economy, and the Energy Paradox,” Review

of Economics and Statistics, vol. 96, no. 5, pp. 779–795, Dec. 2014.

[112] D. L. Greene, P. D. Patterson, M. Singh, and J. Li, “Feebates, rebates and gas-guzzler taxes:

a study of incentives for increased fuel economy,” Energy Policy, vol. 33, no. 6, pp. 757–775,

Apr. 2005.

[113] J. H. Boyd and R. E. Mellman, “The effect of fuel economy standards on the U.S. Automotive

Market,” Transportation Research Part A: General, vol. 14A, pp. 367–378, 1980.

[114] S. Berry, J. Levinsohn, and A. Pakes, “Differentiated Products Demand Systems from a

Combination of Micro and Macro Data: The New Car Market,” Journal of Political Economy,

vol. 112, no. 1, pp. 68–105, Feb. 2004.

[115] K. E. Train and C. Winston, “Vehicle Choice Behavior and the Declining Market Share of

U.S. Automakers,” International Economic Review, vol. 48, no. 4, Nov. 2007.

[116] J. Axsen and K. Kurani, “The Early U.S. Market for PHEVs: Anticipating Consumer Aware-

ness, Recharge Potential, Design Priorities and Energy Impacts,” University of California

Davis Institute of Transportatation Studies, Tech. Rep. UCD-ITS-RR-08-22, Aug. 2008.

[117] J. P. Helveston, Y. Liu, E. M. Feit, E. Fuchs, E. Klampfl, and J. J. Michalek, “Will subsidies

drive electric vehicle adoption? Measuring consumer preferences in the U.S. and China,”

Transportation Research Part A: Policy and Practice, vol. 73, pp. 96–112, Mar. 2015.

[118] T. F. Golob, J. Torous, M. Bradley, D. Brownstone, S. S. Crane, and D. S. Bunch, “Commercial

fleet demand for alternative-fuel vehicles in California,” Transportation Research Part A:

Policy and Practice, vol. 31, no. 3, pp. 219–233, May 1997.

[119] P. S. McCarthy, “Market Price and Income Elasticities of New Vehicle Demands,” The Review

of Economics and Statistics, vol. 78, no. 3, p. 543, Aug. 1996.

145



[120] S. Choo and P. L. Mokhtarian, “What type of vehicle do people drive? The role of attitude

and lifestyle in influencing vehicle type choice,” Transportation Research Part A: Policy and

Practice, vol. 38, no. 3, pp. 201–222, Mar. 2004.

[121] W. H. Greene, D. A. Hensher, and J. Rose, “Accounting for heterogeneity in the variance of

unobserved effects in mixed logit models,” Transportation Research Part B: Methodological,

vol. 40, no. 1, pp. 75–92, Jan. 2006.

[122] D. McFadden and K. Train, “Mixed MNL models for discrete response,” Journal of Applied

Econometrics, vol. 15, no. 5, pp. 447–470, 2000.

[123] D. Brownstone and K. Train, “Forecasting new product penetration with flexible substitution

patterns,” Journal of Econometrics, vol. 89, pp. 109–129, 1999.

[124] W. H. Greene and D. A. Hensher, “A latent class model for discrete choice analysis: con-

trasts with mixed logit,” Transportation Research Part B: Methodological, vol. 37, no. 8, pp.

681–698, Sep. 2003.

[125] J. Shen, “Latent class model or mixed logit model? A comparison by transport mode choice

data,” Applied Economics, vol. 41, no. 22, pp. 2915–2924, Oct. 2009.

[126] P. Zito and G. Salvo, “Latent Class Approach to Estimate the Willingness to Pay for Transit

User Information,” Journal of Transportation Technologies, vol. 02, no. 03, pp. 193–203,

2012.

[127] M. K. Hidrue, G. R. Parsons, W. Kempton, and M. P. Gardner, “Willingness to pay for electric

vehicles and their attributes,” Resource and Energy Economics, vol. 33, no. 3, pp. 686–705,

Sep. 2011.

[128] J. Axsen, J. Bailey, and M. A. Castro, “Preference and lifestyle heterogeneity among poten-

tial plug-in electric vehicle buyers,” Energy Economics, vol. 50, pp. 190–201, Jul. 2015.

[129] J. P. Helveston, E. M. Feit, and J. J. Michalek, “Pooling stated and revealed preference data

in the presence of RP endogeneity,” Transportation Research Part B: Methodological, vol.

109, pp. 70–89, Mar. 2018.

146



[130] D. S. Bunch, M. Bradley, T. F. Golob, R. Kitamura, and G. P. Occhiuzzo, “Demand for clean-

fuel vehicles in California: A discrete-choice stated preference pilot project,” Transportation

Research Part A: Policy and Practice, vol. 27, no. 3, pp. 237–253, May 1993.

[131] D. Brownstone, D. S. Bunch, K. Train, and train, “Joint mixed logit models of stated and

revealed preferences for alternative-fuel vehicles,” Transportation Research Part B, vol. 34,

pp. 315–338, 2000.

[132] K. E. Train, Discrete Choice Methods with Simulation, 2nd ed. Cambridge: Cambridge

University Press, 2009.

[133] Q. Sun and F. Wu, “Warranty regulation and consumer demand: evidence from China’s

automobile market,” Journal of Regulatory Economics, vol. 49, no. 2, pp. 152–171, Jan.

2016.

[134] R. T. Carson and T. Groves, “Incentive and informational properties of preference questions,”

Environmental and Resource Economics, vol. 37, no. 1, pp. 181–210, May 2007.

[135] J. Min, I. L. Azevedo, J. Michalek, and W. B. de Bruin, “Labeling energy cost on light bulbs

lowers implicit discount rates,” Ecological Economics, vol. 97, pp. 42–50, Jan. 2014.

[136] W. Green, “Fixed and Random Effects in Nonlinear Models,” Department of Economics,

Stern School of Business, New York, NY, Tech. Rep. NYU Working Paper No. EC-01-01,

Jan. 2001.

[137] Compare Side-by-Side. [Online]. Available: http://www.fueleconomy.gov/feg/Find.do?

action=sbs&id=35994&id=34776&id=34775

[138] J. Voelcker. (2015, Jul.) UPDATED: Tesla Model S Gets New 90-kWh Battery, ’Ludicrous’

Performance Mode. [Online]. Available: http://www.greencarreports.com/news/1099178_

breaking-tesla-model-s-gets-new-90-kwh-battery-ludicrous-performance-mode

[139] J. R. Croy, D. Kim, M. Balasubramanian, K. Gallagher, S.-H. Kang, and M. M. Thackeray,

“Countering the Voltage Decay in High Capacity xLi2MnO3•(1–x)LiMO2 Electrodes (M=Mn,

Ni, Co) for Li+-Ion Batteries,” Journal of the Electrochemical Society, vol. 159, no. 6, pp.

A781–A790, Jan. 2012.

147



[140] A. Hardin, “LG Chem, Argonne sign licensing deal to make, commercialize advanced battery

material | Argonne National Laboratory,” Jan. 2011.

[141] T. Aoki, M. Nagata, and H. Tsukamoto, “Positive Electrode Active Material for Lithium Sec-

ondary Battery,” US Patent US 5 718 989, Feb., 1998.

[142] T. Itou, T. Saito, H. Horie, and Nissan Motor Co, Ltd, “Positive electrode material for

non-aqueous electrolyte lithium ion battery and battery using the same,” US Patent US

10/581,858, Apr., 2007.

[143] EV / HEV Safety. Nissan Moto Co., Ltd, 2012.

[144] Life Cycle Environmental Certificate Mercedes-Benz S-Class. [Online]. Avail-

able: http://media.daimler.com/Projects/c2c/channel/documents/2573527_rz_update_UZ_

S_engl_09_2015.pdf

[145] E. Loveday. GM Shifts 2015 Chevy Spark EV Battery Manu-

facturing To In-House Facility. [Online]. Available: http://insideevs.com/

gm-shifts-2015-chevy-spark-ev-battery-manufacturing-house-facility/

[146] Honda Fit EV Review. [Online]. Available: http://www.plugincars.com/honda-fit-ev

[147] (2012, Jul.) 2013 Honda Fit EV First Drive. [Online]. Available: https://www.edmunds.com/

honda/fit-ev/2013/

[148] K. Field. (2015, Nov.) Electric Bus Adoption Is Taking Off In China. [Online]. Available:

http://cleantechnica.com/2015/11/26/electric-bus-adoption-taking-off-china/

[149] (2014, Jul.) BMW Group and Samsung SDI expand partnership on electric drive batteries;

i3, i8 and additional hybrid models. [Online]. Available: http://www.greencarcongress.com/

2014/07/20140715-bmw.html

[150] BMW i3 Review. [Online]. Available: http://www.plugincars.com/bmw-i3.html

[151] B. Berman. (2012, Feb.) GS Yuasa to Triple Lithium-Ion Battery Cell Produc-

tion for Honda’s Plug-in Vehicles. [Online]. Available: http://www.plugincars.com/

gs-yuasa-triple-lithium-production-honda-113107.html

148



[152] G. Shenhar. (2013, Jun.) The Chevrolet Spark EV shocks

us. [Online]. Available: http://www.consumerreports.org/cro/news/2013/06/

first-drive-the-chevrolet-spark-ev-shocks-us/index.htm

[153] J. Cole. LG Chem To Supply 200 Mile Batteries In 2016; But To Whom? [Online]. Available:

http://insideevs.com/lg-chem-supply-200-mile-battery-2016/

[154] Fiat 500e First Responders Guide, Mar. 2013.

[155] E. Loveday. Daimler Ready to Exit Li-Tec Battery Joint Venture? | Inside EVs. [Online].

Available: http://insideevs.com/daimler-ready-to-exit-li-tec-battery-joint-venture/

[156] 2016 Focus Electric | View Focus Electric Highlights . [Online]. Available: http:

//www.ford.com/cars/focus/trim/electric/

[157] A. Ingram. (2010, Jun.) Ford Announces Battery Supplier For 2012 Fo-

cus Electric. [Online]. Available: http://www.greencarreports.com/news/1047189_

ford-announces-battery-supplier-for-2012-focus-electric

[158] E. Loveday. Full Details Released on 2015 Kia Soul EV’s "Ad-

vanced Battery" | Inside EVs. [Online]. Available: http://insideevs.com/

full-details-released-on-2015-kia-soul-evs-advanced-battery/

[159] (2014, Feb.) Green Car Congress: Kia using SK Innovation NCM Li-ion cells in Soul EV.

[Online]. Available: http://www.greencarcongress.com/2014/02/20140224-kia.html

[160] Mercedes B-Class Electric Drive. [Online]. Available: http://www.plugincars.com/

mercedes-b-class-e-cell

[161] “2012 Mitsubishi i-MiEV,” U.S Department of Energy Energy Efficiency and Renewable En-

ergy, Tech. Rep., Jun. 2014.

[162] T. Schafer, “Batteritechnologie: Trends, Entwicklungen, Anwendungen,” in

energiemetropole-leipzig.de, 2009.

[163] Model X. [Online]. Available: https://www.teslamotors.com/modelx

[164] (2012, Aug.) Green Car Congress: Toyota RAV4 EV key for meeting California

ZEV requirements; Tesla powertrain uses Model S components. [Online]. Available:

http://www.greencarcongress.com/2012/08/rav4ev-20120803.html

149



[165] M. Rovito. (2015, Jan.) 2015 VW e-Golf ushers in an era of interchangeable drive-

trains for every Volkswagen model. [Online]. Available: https://chargedevs.com/features/

the-2015-vw-e-golf-ushers-in-an-era-of-interchangeable-drivetrains-for-every-volkswagen-model/

[166] S. Blanco. (2011, Sep.) Toyota Plug-in Prius priced at 32, 000 ∗

andPriusV tostartat26,400*. [Online]. Available: http://www.autoblog.com/2011/09/16/

toyota-plug-in-prius-priced-at-32-000-prius-v-starts-at-26-40/

[167] B. Stertz, “Powerful battery in Audi electric car with cell modules from LG and Samsung,”

Aug. 2015.

[168] (2015, Nov.) First drive: US spec Audi A3 Sportback e-tron plug-in hybrid; 83-86 MPGe

with 16-17 mile EV range. [Online]. Available: http://www.greencarcongress.com/2015/11/

20151103-a3.html

[169] D. Sherman. (2014, May) All About the Batteries, Baby: 2015 BMW i8 Battery

Pack Dictated Its Entire Design. [Online]. Available: http://blog.caranddriver.com/

all-about-the-batteries-baby-2015-bmw-i8-battery-pack-dictated-its-entire-design/

[170] M. Kane. (2015, Mar.) Samsung SDI To Supply Lithium-Ion Battery Packs

For BMW X5 eDrive Plug-In Hybrid. [Online]. Available: http://insideevs.com/

samsung-sdi-supply-lithium-ion-battery-packs-bmw-x5-edrive-plug-hybrid/

[171] (2014, Feb.) Test Drive: BMW X5 eDrive Plug-In Hybrid Prototype. [Online]. Available:

http://insideevs.com/test-drive-bmw-x5-edrive-plug-in-hybrid-prototype/

[172] E. Loveday. Cadillac ELR Gets Priced at $75,995 | Inside EVs. [Online]. Available:

http://insideevs.com/cadilla-elr-gets-priced-at-75995/

[173] Chevrolet Volt Battery.

[174] E. Loveday. (2012, Feb.) Panasonic Selected to Electrify Ford Fusion En-

ergi, C-Max Energi Plug-in Hybrids. [Online]. Available: http://www.plugincars.com/

panasonic-selected-electrify-ford-fusion-energi-c-max-energi-plug-hybrids-113414.html

[175] 2016 Ford C-MAX | View Full Engine Specifications. [Online]. Available: http:

//www.ford.com/cars/cmax/specifications/engine/

150



[176] 2016 Fusion Sedan | Engine Specs . [Online]. Available: http://www.ford.com/cars/fusion/

specifications/engine/

[177] (2015, Jun.) Hyundai Sonata PHEV may be a game (and mind) changer. [Online]. Available:

http://www.autoblog.com/2015/06/17/hyundai-sonata-phev-game-mind-changer/

[178] M. Kane. (2015, Jun.) Hyundai Sonata PHEV First Drive. [Online]. Available:

http://insideevs.com/hyundai-sonata-phev-first-drive/

[179] K. Reynolds. (2015, May) 2016 Hyundai Sonata Hybrid, Plug-In -

First Drive Review. [Online]. Available: http://www.motortrend.com/news/

2016-hyundai-sonata-hybrid-first-drive-review/

[180] K. C. Colwell. (2014, Oct.) 2015 Porsche Cayenne S E-Hybrid -

First Drive Review. [Online]. Available: http://www.caranddriver.com/reviews/

2015-porsche-cayenne-s-e-hybrid-first-drive-review

[181] “From battery cell to electric motor Bosch paving the way to electromobility,” Bosch, Nov.

2011.

[182] Automotive(Electric Vehicle) Prismatic Battery Cells | Samsung SDI. [Online]. Available:

http://www.samsungsdi.com/automotive-battery/battery-cells

[183] K. Smith, M. Earleywine, E. Wood, J. Neubauer, and A. Pesaran, “Comparison of Plug-In

Hybrid Electric Vehicle Battery Life Across Geographies and Drive Cycles,” in SAE World

Congress and Exhibition, Apr. 2012.

[184] “Panasonic Group to Supply Lithium-ion Batteries for Toyota Prius Plug-in Hybrid | Head-

quarters News | Panasonic Newsroom Global,” Nov. 2011.

[185] S. Edelstein. (2015, May) 2016 Volvo XC90 T8: First Plug-In Hybrid With 240-

Volt Charging Cord. [Online]. Available: http://www.greencarreports.com/news/1098399_

2016-volvo-t8-first-plug-in-hybrid-with-built-in-240-volt-charging

[186] (2015, May) First drive: Volvo XC90 T8 Drive-E Twin Engine PHEV sets a high bar for

full-size luxury SUV plug-ins in US. [Online]. Available: http://www.greencarcongress.com/

2015/05/20150517-xc90.html

[187] 2017 Ford Focus Electric Owner’s Manual, Oct. 2016.

151



[188] (2017, Feb.) Tesla Vehicle Warranty. [Online]. Available: https://www.tesla.com/support/

vehicle-warranty

[189] T. Moloughney. (2017, Apr.) BMW i3 Long Term Battery Capacity Report:

Better Than Expected. [Online]. Available: http://www.bmwblog.com/2017/04/24/

bmw-i3-long-term-battery-capacity-report-better-expected/

[190] 2017 Nissan LEAF Electric Car Battery. [Online]. Available: https://www.nissanusa.com/

electric-cars/leaf/charging-range/battery

[191] BMW 330e iPerformance - Features & Specifications - BMW USA. [Online]. Available:

https://www.bmwusa.com/vehicles/3-series/sedan/330e-iperformance.html

[192] BMW 530e iPerformance - Features & Specifications - BMW USA. [Online]. Available:

https://www.bmwusa.com/vehicles/5-series/sedan/530e-iperformance.html

[193] BMW 740e xDrive iPerformance - Features & Specifications - BMW USA. [Online]. Available:

https://www.bmwusa.com/vehicles/7-series/sedan/740e-xdrive-iperformance.html

[194] BMW i3 - Features & Specifications - BMW USA. [Online]. Available: https:

//www.bmwusa.com/vehicles/bmwi/bmw-i3/bmw-i3-features-and-specs.html

[195] BMW i8 - Features & Specifications - BMW USA. [Online]. Available:

https://www.bmwusa.com/vehicles/bmwi/bmw-i8/bmw-i8-features-and-specs.html?from=

/Standard/Content/Vehicles/2017/i8/BMWi8/Features{\_}and{\_}Specs.aspx{\&}return=

/Standard/Content/Vehicles/2017/i8/BMWi8/Features{\_}and{\_}Specs.aspx

[196] BMW X5 xDrive40e - Features & Specifications - BMW USA. [Online]. Available:

https://www.bmwusa.com/vehicles/x-models/x5/x5-xdrive40e.html

[197] Cadillac | 2018 CT6 Plug-In - Build Your Own. [Online]. Avail-

able: http://www.cadillac.com/plug-in-hybrids/ct6-plug-in/build-and-price/features/trims/

?section=Highlights{\&}section=Dimensions{\&}section=Warranty{\&}styleOne=390680

[198] 2018 Bolt EV: Electric Car | Electric Vehicle | Chevrolet. [Online]. Available:

www.chevrolet.com/index/vehicles/2018/cars/bolt-ev/overview.html

[199] Complete Care: Warranty, Maintenance & More | Chevrolet. [Online]. Available:

www.chevrolet.com/index/experience-chevrolet/complete-care.html

152



[200] Official Mopar Site | Current Model Year Coverage. [Online]. Available: https:

//www.mopar.com/chrysler/en-us/care/current-model-year-coverage.html

[201] 2017 FIAT 500e - Electric Car. [Online]. Available: https://www.fiatusa.com/500e.html

[202] 2018 Model Year Ford Hybrid Car and Electric Vehicle Warranty Guide, Sep. 2017.

[203] 2017 Ford Fusion Energi | U.S. News & World Report. [Online]. Available: /cars-trucks/ford/

fusion-energi

[204] 2017 Hyundai Ioniq Electric - Features & Specs | Hyundai. [Online]. Available:

https://www.hyundaiusa.com/ioniq-electric/specifications.aspx

[205] 2017 Sonata Hybrid - Specs & Trim | Hyundai. [Online]. Available: https://www.hyundaiusa.

com/sonata-hybrid/specifications.aspx

[206] 2017 Kia Soul-EV | Compare Related Vehicles | Kia. [Online]. Available: https:

//www.kia.com/us/en/vehicle/soul-ev/2017/compare

[207] 2017 Prius Prime. [Online]. Available: https://www.toyota.com/priusprime/ebrochure

[208] 2016 E-Golf Press Kit. [Online]. Available: https://media.vw.com/press-kits/

2016-e-golf-press-kit

[209] T8 Hybrid Battery Warranty. [Online]. Available: http://volvo.custhelp.com/app/answers/

detail/a{\_}id/9590/~/t8-hybrid-battery-warranty

153


