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Abstract 

Statistical learning offers a trove of opportunities for problems where a large amount of data is available 

but falls short when data are limited. For example, in medicine, statistical learning has been used to 

outperform dermatologists in diagnosing melanoma visually from millions of photos of skin lesions. 

However, many other medical applications of this kind of learning are made impossible due to the lack 

of sufficient learning data, for example, performing similar diagnosis of soft tissue tumors within the 

body based on radiological imagery of blood vessel development. A key challenge underlying this 

situation is that many statistical learning approaches utilize unstructured data representations such as 

strings of text or raw images, that don’t intrinsically incorporate structural information. 

Shape grammar is a way of using visual rules to define the underlying structure of geometric data, 

pioneered by the design community. Shape grammar rules are replacement rules in which the left side of 

the rule is a search pattern and the right side is a replacement pattern which can replace the left side 

where it is found. Traditionally shape grammars have been assembled by hand through observation, 

making it slow to use them and limiting their use with complex data. This work introduces a way to 

automate the generation of shape grammars and a technique to use grammars for classification in 

situations with limited data. 

A method for automatically inducing grammars from graph based data using a simple recursive 

algorithm, providing non-probabilistic rulesets, is introduced. The algorithm uses iterative data 

segmentation to establish multi scale shape rules, and can do so with a single dataset. Additionally, this 

automatic grammar induction algorithm has been extended to apply to high dimensional data in a non-

visual domain, for example, graphs like social networks. We validated our method by comparing our 

results to grammars made of historic buildings and products and found it performed comparably 

grammars made by humans. 
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The induction method was extended by introducing a classification approach based on mapping 

grammar rule occurrences to dimensions in a high dimensional vector space. With this representation 

data samples can be analyzed and quickly classified, without the need for data intensive statistical 

learning. We validated this method by performing sensitivity tests on key graph augmentations and 

found that our method was comparably sensitive and significantly faster at learning than related existing 

methods at detecting graph differences across cases. 

The automated grammar technique and the grammar based classification technique were used together 

to classify magnetic resonance imaging (MRI) of the brain of 17 individuals and showed that our 

methods could detect a variety of vasculature borne condition indicators with short and long-term health 

implications. Through this study we demonstrate that automated grammar based representations can be 

used for efficient classification of anomalies in abstract domains such as design and biological tissue 

analysis. 
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Introduction 

Statistical based models and symbolic based models are two broad categories in which a majority of 

work in making artificially intelligent systems can be placed (Minsky, 1991). Symbolic models hinge on 

the idea of formally extracting structured information from the real world, while statistical approaches, 

often categorized as machine learning, use observed patterns’ repetition to make probabilistic guesses 

about the nature of the underlying information. Both methods have significant strengths, but fall prey to 

critical weaknesses too. Machine learning’s reliance on probabilistic models generally means that it 

requires more data to make inferences, and that it can have difficulty in making sense of rare 

occurrences in data. On the other hand, symbolic approaches require a significant amount of manual 

structuring of data to help an automated system make sense of the world. In this work, we explore one 

way to ally these approaches through an automated data structuring preprocess, which makes statistical 

learning more accessible for small datasets that have been structurally represented. 

Many domain specific data structuring techniques exist, however, one that has found prevalence in a 

diversity of fields is the concept of grammars, formalisms relating information’s structure through rules 

about types of information (Wand and Weber, 1993). The most straightforward demonstration of this is 

considering the grammar of the English language, where almost all sentences adhere to the general 

structure of a subject, followed by a verb, and terminated by an object. Each of these types of term or 

phrase represents a diversity of words or combinations of words that afford rich and expressive 

communication about the entirety of the human experience. The concept of grammar has also been 

applied through shape grammar in design (Stiny and Gips, 1972), graph grammar in engineering 

(Rozenberg, 1997), as well as more abstract formalisms such as pattern languages used first in 

architecture (Alexander, Ishikawa and Silverstein, 1977) and later influencing modern programming 

paradigms (Beck and Cunningham, 1987). The shared underlying notion is that by defining a vocabulary 
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around well-structured rules, a virtually unlimited number of potential outcomes can be generalized, and 

studied with significant efficiency. For instance, as we start to read a sentence we can make 

sophisticated guesses about how it will end, to the point that we have a strong tendency to interrupt one 

another during verbal discourse. 

A caveat with grammar representations is that many of the more abstract uses of them, such as in design, 

have not been adequately automated (Gips, 1999). Processing shape and graph grammars manually is 

laborious, and it seems likely this has led to reduced applications of these methods outside of academia. 

Thesis	

Grammar based representations can be automated and used for efficient classification of anomalies in 

abstract domains such as design and biological image analysis. 

To evaluate this thesis, Chapter 3 introduces a general purpose recursive grammar induction algorithm, 

demonstrating that grammar based representations can be automatically induced for graph based data. 

Chapter 4 establishes a rule frequency based representation to leverage grammars in classification, while 

needing less training data than standard methods require, showing efficient classification of anomalies in 

design. Chapter 5 applies this method in detecting conditions indicated by brain vasculature in MRI of 

sickle cell anemia patients, demonstrating grammar methods being used to aid in biological image 

analysis.  

This dissertation aims to introduce a generalizable approach for using grammatical formalism with data 

from the real world, in order to create useful abstractions that reflect critical structure, thereby making 

other types of inference more accessible. This approach relies on data that has some structural integrity, 

and data that can be segmented or isolated in such a way that that integrity can be readily observed. 
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Contributions	

To achieve the desired goal, several key steps have been taken which constitute 4 main contributions of 

this work, distributed through chapters 3, 4, and 5. 

Automated	grammar	induction	

Chapter 3 introduces a flexible and generalizable method for extracting grammars from data which can 

have a graph structure. The method is presented in the context of shape grammars and graph grammars, 

as means for abstracting rules about designs from visual information or from structured data about a 

design. Existing work has automated grammar induction for linear graphs, for statistically derivable 

rules, but has not provided a general purpose approach, as this work does. 

Grammar	induction	heuristics	

Chapter 3 also introduces a set of 4 heuristics to evaluate a grammar induction process, based on 

historical perspectives on the use of grammar to represent style in design. The heuristics measure the 

accuracy, variability, repeatability and conciseness of a given grammar, as a result of an induction 

process from a body of data. With this method, grammar induction processes can be quantitatively 

compared. Prior work has introduced measures for grammar effectiveness in specific cases, but have 

lacked a holistic approach allowing for comparison of induced grammars between cases, which is 

enabled with the introduced heuristics.  

Grammar	based	classification	

In Chapter 4, a method for utilizing grammar rule frequency as a feature for classification is introduced. 

With this approach, a small amount of training data can be used to learn robust differences between 
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differing classes of data. When combined with the automated grammar induction methods introduced in 

Chapter 3, the method can be conducted with an almost completely automated end to end pipeline. The 

method is validated against a statistical learning baseline for anomaly detection where it reaches 

comparable levels of accuracy with significantly less training data. The method is also validated in 

distinguishing design differences by categorizing spline networks representing a variety of cars into their 

respective automotive form factor categories.  

Applying	automated	grammar	based	classification	to	brain	vasculature	for	diagnosis	

In chapter 5, the methods from Chapters 3 and 4 are applied to time of flight (TOF) MRI scans of 17 

sickle cell anemia patients to show sensitivity in detecting indicative rules correlated with current 

conditions and predicted health outcomes. A pipeline for converting TOF MRI into a graph which can 

be used to build a grammar is utilized. The classification approach is then conducted, producing a rule 

frequency based representation of each patient. Patient conditions are correlated with rule frequency 

distributions to provide a reliable predictive model with only the 17 brain scans. 

Thesis	overview	

The disstertation includes a general related work section in Chapter 2 which introduces the key concepts 

used in the rest of the work and positions the work in the context of existing related attempts.  

Chapter 3 introduces the core automated grammar induction algorithm used by the rest of the work.  

Chapter 4 applies the grammar induction technique for classification, which is then further expanded in 

Chapter 5 with a specific application in medical image analysis. 
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Chapter 6 discusses the limitations of the current work, questions yet to be answered in this line of work, 

and the broader implications of utilizing intermediary structured representations in design and in other 

contexts where data is scarce and artificial intelligence features would be salient.  

Finally, Chapter 7 reiterates the contributions of the work and concludes the dissertation. 
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Related Work 

This chapter gives context to the variety of topics discussed in the rest of the dissertation. First 

background on shape and graph grammar methods will be provided, describing how those methods have 

been used, and where they have fallen short. Next details on inducing structural knowledge will be 

outlined, based on work in the field such as machine translation, computational design, and graph 

analysis. Following this, a discussion of computational methods around extracting information from 

frequency based representations of information will be introduced, and finally, the medical imaging 

techniques this work leverages will be outlined. 

Grammars	

A shape grammar (Gips, 1975; Stiny, 1980) is a set of rules that define shape transformations. In 

aggregate, these rules create a system of transformations which can be used together to create particular 

visual outputs. These are generally constructed in a planned way in order to demonstrate a design (Stiny 

and Gips, 1972), or are constructed retroactively from a design, with the intention of analyzing it in 

some way (Pugliese and Cagan, 2002; McCormack, Cagan and Vogel, 2004; Trescak, Rodriguez and 

Esteva, 2009). 

The convention is to visualize the rules in a shape grammar as a current state on the left hand side of the 

rule (LHS), which can be transformed into an alternative state on the right hand side of the rule 

(RHS)(Stiny, 1980). This simple representation affords significant flexibility because grammar rules can 

often be applied repeatedly, and at a variety of scales. This convention will be used for all the types of 

grammars dealt with in this dissertation.  

The basic idea of a shape grammar can also be extended by introducing parametric rules (Stiny and 

Mitchell, 1978), in which rules can encompass variables, such as overarching symmetry lines, or 
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numbers or sizes of particular features in a transformation. Another common extension to the 

fundamental idea of the shape grammar are rules which contain other rules, meta-rules (Sondheimer and 

Weischedel, 1980). Meta-rules enable complex and recursive behavior with grammars. These two 

approaches enable significantly more sophisticated emergence to be captured by grammar systems as 

they allow for decision making at the time of use of a grammar to have substantial and ongoing impacts 

on the outcomes. Because of the flexibility inherent in meta-rule systems, this work utilizes grammars 

with this feature, however, it does not explicitly deal with parameterizing grammar rules. The specific 

reason for this decision is that for most situations, parameterizations allow for fewer rules that are 

somewhat more easy for humans to use, however, since this work focuses on computerized 

implementations of grammars, this is not necessary, so more rules, and meta-rules can end up serving 

the same purpose. One nuanced difference is that meta rule systems do not inherently afford scale 

variability in grammar rule use. As a consequence, this work assumes scale variability on all grammar 

implementations.  

An alternative formalism of grammars is the graph grammar (Rozenberg, 1997), which is conceptually 

similar, however applying to ontological relationships in graphs, as opposed to shapes. Graph grammars 

are used in engineering to deal with diagrams of functional and structural relationships (Schmidt and 

Cagan, 1997; Schmidt and Chase, 2000) as well as domains less similar to design, where structured 

information may be represented in a graph form, such as in providing legal analysis and filtering 

(Pinkwart et al., 2006). Graph grammars, are a relatively more general form of grammar because they 

don’t require any implicit representation, and are thereby incredibly flexible. This work operates under 

the assumption that shape grammars can be recapitulated with graph grammars by treating the nodes in a 

graph ontology as shapes, and assuming that an edge in that graph is a shared position. This assumption 

allows the grammar manipulation and analysis tools introduced in this work to be more broadly applied, 
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to the extent that several of the experiments conducted in this work utilized structured graphs as 

challenging datasets that can be quickly generated. 

Inducing	Grammars	

One of the biggest remaining challenges underlying the use of shape and graph grammars is making 

them from existing structured data (Gips, 1999). This process is often referred to as grammar induction, 

because it requires using inductive reasoning to establish rules that are likely to capture aspects of the 

existing data. In this way the existing data provides a statistical ground truth for which rules should 

exist.  

Traditionally shape grammar induction has been done manually and is a painstaking process because 

rules must be established and duplicates must be removed by hand (Speller, Whitney and Crawley, 

2007). More recently a variety of approaches for making this easier and more automatic have been 

introduced. For example, statistical methods have been used to find likely grammar rules based on coded 

splines (Orsborn, Cagan and Boatwright, 2007), using visual design data with structure tags (Talton et 

al., 2012), and using image based analysis applied in machine vision (Teboul et al., 2010, 2011). This 

dissertation introduces a method for extracting this information from a graph representation, avoiding 

the need for these more data intensive statistical approaches. 

Graph grammar induction has been explored more successfully, in part because many graph problems 

can be treated as lingual grammar problems, which are less complicated on the basis that language can 

be represented as a fixed degree linear graph (Ding and Palmer, 2005). For example, Sequitur (Nevill-

Manning and Witten, 1997) was introduced as a grammar induction algorithm for arbitrary linear 

graphs. In this dissertation an extension to Sequitur is introduced in which repeated explorations of a 

graph can lead to an approach for inducing grammars without the linear restriction. 
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The domain of data mining has also led to the introduction of a variety of techniques for graph grammar 

induction style representations (Jiang, Coenen and Zito, 2013), in which graph based information is 

made simpler by applying subgraphs (Kuramochi and Karypis, 2001), and these subgraphs can be a tool 

for analysis (Yan and Han, 2002). For example, Subdue (Holder, 1994) was introduced as a method for 

learning rules and meta-rules from a graph for the purposes of compression and comparison. The 

induction method introduced in this dissertation provides additional flexibility compared with these 

approaches, in that it affords induction of graphs where structure is not explicitly defined in the 

representation, but instead, implicit to the nature of the data being induced, such as is the case with 

applications of grammars to design.  

A further challenge in inducing grammars is the fact that comparing grammars’ effectiveness is context 

dependent. For instance, shape grammars are used to encompass style (Stiny and Mitchell, 1978), 

though this is not an explicitly defined characteristic. Computational approaches have been introduced 

for evaluating groups of rules for generative design and determining rule quality (Königseder and Shea, 

2014), however, this approach does not introduce a formalism by which style can be evaluated. A 

contribution of this work is a principled approach to the interpretation of grammar in representing in 

order to help refine grammar induction techniques. Although this heuristic can be evaluated on any 

grammar induction process, it is most relevant for use with grammar induction with a focus on 

preserving stylistic notions intrinsic to the structure of a structured dataset. 

Anomaly	detection	with	grammars	

One of the applications of grammars explored by this work is in using them to detect anomalies. 

Grammar methods have been applied for classification of differences in an abstract setting (Cook and 

Holder, 1994; Eberle and Holder, 2007). Anomaly detection more generally, has seen broad spectrum 

use (Chandola, Banerjee and Kumar, 2009), such as social network analysis (Savage et al., 2014) and in 



	 	 	10	

other graphs (Akoglu, Tong and Koutra, 2015). In this work, an approach to using grammars for 

anomaly detection is introduced that leverages distance metrics and frequency based characterizations. 

The introduced approach is also benchmarked against Oddball (Akoglu, McGlohon and Faloutsos, 

2010), an anomaly detection algorithm based on an ensemble of subgraph indicators, which will be 

elucidated in chapter 4. 

Distance metrics use a heuristic to compute the distance in some space between cases. Early applications 

include detecting degree of differences between biological samples based on genetic feature maps 

(Hattemer, 1982); this technique has also seen use in measuring the distances between designs 

analogically (Christensen and Schunn, 2007). These techniques rely on vector spaces, which can be 

formalized as Hilbert spaces (Wootters, 1981), and afford quick computation of distance metrics such as 

the Euclidean distance. A significant benefit of these approaches is the relative simplicity by which they 

can be computationally interpreted. For this reason, this dissertation utilizes a distance metric based 

approach to facilitate analysis of grammar classification problems. 

The frequency distributions of features found in cases is another important indicator which has been 

used for classification (Hodge and Austin, 2004; Akoglu, Tong and Koutra, 2015). Techniques such as 

frequent subgraph mining (Kuramochi and Karypis, 2001; Jiang, Coenen and Zito, 2013), often rely on 

this modality, for example gSpan (Yan and Han, 2002) and AutoPart (Chakrabarti, 2004) are two 

established approaches in this domain. These kinds of approaches offer compelling support for inducing 

structure as an initial or intermediary step when performing data analysis, a theme which this work 

leverages with grammar, as a structural intermediary representation of many kinds of structured data. 

This dissertation moves beyond these existing approaches by focusing on grammar, in particular shape 

grammar, as a representation that can encompass important structural, morphological and ontological 

details when performing analysis. 
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Bag-of-words and bag-of-features models (Csurka et al., 2004) extend this concept by leveraging the 

assumption that relationships of elements in the data are not critical to effective detection. However, 

semi structured representations provide added insight that can have improved results with these tools in 

text mining (Wallach, 2006). A contribution of this work is to leverage the principle of feature frequency 

in the context of assessing differences using grammars rules as features with particular frequencies in 

observed data. 

Medical	Image	analysis	

Medical image analysis conducted by radiologists is a domain ripe for disruption though the introduction 

of automated approaches. For example, human dermatological diagnosis has recently been outperformed 

by a deep learning system (Esteva et al., 2017). 

Structured information in medical imagery has been a point of interest as a precursor to more automated 

methods. For example, methods have been introduced to isolate blood vessel graphs throughout the body 

and in the brain (Kaus et al., 2001; Bullitt et al., 2005). This dissertation leverages this capability to 

induce grammars of blood vessel networks in patients’ brains from MRI scans. 

Particular methods for segmenting medical imagery such as magnetic resonance imaging (MRI) scans 

into structured graphs of splines or surfaces are diverse depending on the desired features and modality 

of imagery (Clarke et al., 1995). However, in practice, simple techniques involving extracting threshold 

boundaries and coalescing them to splines to indicate blood vessels are used with a high degree of 

reliability for vascular segmentation (Helmberger et al., 2014). In this work, a similar approach is 

adopted for segmenting scans of brains because of its robustness and simplicity. 
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Extended	related	works	

This chapter has introduced literature from many of the topic areas covered by this dissertation. 

However, more focused context, describing particular issues, methods, and literature based 

considerations will be provided in the next 3 chapters when describing the key methods that the 

dissertation introduces. 
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Efficient Probabilistic Grammar Induction for Design 

Abstract	

The use of grammars in design and analysis has been set back by the lack of automated ways to induce 

them from arbitrary structured datasets. Machine translation methods provide a construct for inducing 

grammars from coded data which have been extended to be used for design through pre-coded design 

data. This work introduces a 4 step process for inducing grammars from un-coded structured datasets 

which can constitute a wide variety of data types, including many used in design. The method includes 

1) extracting objects from the data, 2) forming structures from objects, 3) expanding structures into rules 

based on frequency and 4) finding rule similarities that lead to consolidation or abstraction. To evaluate 

this method, grammars are induced from generated data, architectural layouts and 3D design models to 

demonstrate that this method offers usable grammars automatically which are functionally similar to 

grammars produced by hand. 

Introduction	

Grammars are a proven tool for the representation, generation, and analysis of design (Stiny, 1980), 

however, difficulty in producing grammars has hindered their widespread adoption outside of academia. 

The key challenges of using shape grammars—generation, parsing, and inference (Gips, 1999)—have 

been partially addressed by literature over the past 20 years in the form of grammar interpreters 

(Piazzalunga and Fitzhorn, 1998; McCormack and Cagan, 2002; Trescak, Rodriguez and Esteva, 2009), 

but automated grammar generation through inference programs remains largely unsolved for design 

grammars (Chau and Chen, 2004). A foremost challenge of automatically inducting grammars from a 

suitable dataset is that this process is of combinatorial complexity (Yue and Krishnamurti, 2013) and 

thus takes impractically long. Intuitively, forming a shape or graph grammar is a process of breaking a 



	 	 	14	

target graph down into a manageable set of morphological rules. To simply reproduce a graph is easily 

feasible, but to do so while maintaining subtlety of style or meaning is difficult, and to do it provably 

optimally requires considering every plausible rule and determining which minimal set demonstrates the 

grammar best, which makes it computationally intensive. 

Traditionally, grammar rules have been developed by hand and utilized via grammar interpreters (Gips, 

1999), which offer ways to apply grammar rules in order to achieve specific design outputs. Grammar 

inference, or grammar induction, requires developing a plausible set of rules, which may then be applied 

as needed to represent candidate designs (Gips, 1999). Interpreters either automatically (Orsborn and 

Cagan, 2009), or through user support, execute judgments about the coherent use of rules (Trescak, 

Esteva and Rodriguez, 2012). Inference, on the other hand, requires a relatively reversed judgment to be 

made, the process of determining where one rule stops and the next rule starts. 

Language translation is limited by many of the same challenges as developing grammars for design 

(Gips, 1999). However, due to the comparative linearity of language models, approaches for learning 

lingual grammars have existed for some time (Berwick and Pilato, 1987). The modern approach to 

machine translation involves extracting a grammar and lexicon for both the starting and final languages 

and constructing a transform from one to the other (Sánchez-Martínez and Pérez-Ortiz, 2010; DeNero 

and Uszkoreit, 2011). For example, when a sentence is translated from one language to another, 

grammatical models are used to improve translation quality significantly. Services that provide 

translation features use a number of other machine learning techniques to reduce errors and improve the 

speed of computation for this process (Schwenk, 2012; Mikolov, Le and Sutskever, 2013), but in 

essence, the practice of building a grammar and executing it is a quintessential step in effective 

translation. As a result, there are various mechanisms for inducting lingual grammars and ontologies that 

have been made efficient enough for practical use through years of refinement by industry players 

(Balahur and Turchi, 2014). For example, many popular translation tools use language models that are 
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constantly updated based on popular usage to improve accuracy and efficiency around new uses of 

language and jargon. Additionally, advanced methods of chunking have been developed to improve the 

performance of such systems (Kudo and Matsumoto, 2002; Lee and Wu, 2007). 

Learning from these advances in machine translation and their applications to design (Talton et al., 

2012), this chapter introduces a means for efficiently inducing grammars for design by using a 

probabilistic chunking method (Lee and Wu, 2007) paired with a multi scale random walk based graph 

exploration approach (Kang, Tong and Sun, 2012) to accommodate the complexities required in 

inducing design representations. The probabilistic approach does not reduce computational efficiency in 

the worst case, a random graph, but drastically reduces it in most cases likely to be assessed with 

grammars because chunk recognition can be done at a rate that is significantly faster than exhaustive 

searches, and the random walk allows for many discrete explorations of the graph without a time 

intensive exhaustive search in most cases (Fouss et al., 2007). 

To evaluate the success of the introduced method, experiments were conducted assessing four key 

attributes of each graph: accuracy, variability, repeatability and conciseness. The experiments utilized 

several datasets including rule based unidimensional graphs, rule based multidimensional graphs, 

historic buildings with well-established hand-made shape grammar representations, and a greenhouse 

design with component wise specificity. Rule based graphs were used to demonstrate basic 

effectiveness, while real world examples demonstrate specific applications of the induction method as 

well as alignment with human based grammar induction results. 

The remainder of this chapter will outline the related work in machine translation, graph isomorphism 

and grammar induction that lead to these results, the specific details of the proposed grammar induction 

method and its evaluation across 3 experiments. 
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Related	Work	

The difference between building grammars for translation and building grammars for design is that in 

general design problems do not use one-dimensional data structures, such as those of written languages, 

and don’t have clear representations, such as letters and words in written languages. Instead, shape 

grammars (Stiny and Mitchell, 1978; Stiny, 1980) use rules that refer to shape elements such as points, 

lines and surfaces to visually represent designs, and Graph grammars (Rozenberg, 1997; Schmidt and 

Cagan, 1997), which refer to sets of rules that adjust a graph’s ontology introducing nodes or edges. The 

sophistication of grammars used in design over those of language is important in several specific ways. 

Most directly, more complex representations introduce new ways to parse the data to be induced into a 

grammar, because where in text every word is immediately preceded by at a maximum one word, and 

tailed by at a maximum one word, in a shape design or graph context, any element or node could be 

connected to a large number of other elements, and this must be accommodated to build a complete 

grammar.  

Graph	Similarity	

Another aspect that makes building grammars for graphs challenging is that checking if two rules are the 

same is computationally intensive, and becomes exponentially harder as the average degree of the graph 

increases. In other domains, this problem is known as a subgraph isomorphism problem (McKay and 

Piperno, 2014), in which the task is to efficiently compare two subgraphs and determine if they are the 

same graph. Figure 1 shows two graphs that are identical in terms of connection but completely different 

in terms of visual arrangement. These graphs are isomorphic, but do not appear so. Graph isomorphism 

is widely considered non-deterministic polynomial-time hard (NP hard) (though recent work in this field 

intends to show that it may be polynomial) (Babai, 2015). The current state of the art approach to 



	 	 	17	

computing solutions to this type of problem are on the order of 2O(sqrt(n log(n))) (Babai, Kantor and Luks, 

1983). 
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Figure 1 Graph Isomorphism. Graph G and Graph H are identical sets of nodes and edges and hence 

isomorphic, but visually appear very different. 

Humans can process higher level similarities intuitively, so when building design grammars, they 

usually have the advantage of not needing to spend time to determine if two parts of an ontology are 

identical using brute force (Speller, Whitney and Crawley, 2007). Computational analysis does not have 

this intuitive advantage, so, for example, determining if two car door moldings from opposite sides of a 

car are the same door or a different door requires an extensive search involving finding an orientation in 

which similarity and symmetry are matched and then evaluating on a per node basis if the two parts are 

similar. With shape grammars the nodes might be sets of vertexes or B-Splines (Chau and Chen, 2004) 

while for graph grammar representations the nodes are some other kind of data object representation 

depending on the context (Rozenberg, 1997). Additionally, when considering richly connected 
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ontologies, humans also have difficulty making intuitive sense of the similarities of graphs, as Figure 1 

demonstrates. 

Inducing	Grammars	Without	Coded	Data	

Formulating formal grammars is a critical step in machine translation (Ding and Palmer, 2005). 

However, language data is full of examples of misuse, so probabilistic grammars can be used when 

formal representations can’t be computed. In these situations, a field of representations is used with 

probability weightings to generate systematic awareness of which cases are most likely to be the ones 

that should be formalized (Stolcke and Omohundro, 1994). Approaches like these afford inducing 

grammars from datasets that exhibit specific properties such as an annotated vocabulary, but cannot 

effectively support inducing grammars from generalized data; in other words, they do not resolve 

situations with no syntactical coding. As a result, they are not particularly suitable for making grammars 

in design more available or powerful at this time, because they would require input data with some 

structural coding, but may become useful as more dynamic approaches emerge. An example of this is 

demonstrated by Talton et al. (Talton et al., 2012), showing that with coded design data, in which 

elements are functionally or stylistically categorized before evaluation, machine translation methods can 

be effectively used to generate grammars. 

In addition to the reasons mentioned above, generating grammars automatically requires assessing many 

possible rules, and there are few metrics for determining the single best grammar out of a set of possible 

grammars (Königseder and Shea, 2015). As a result, high-level sketches for automated shape grammar 

induction have been proposed (Gero, 1994; Schnier and Gero, 1996; Gips, 1999), and some parts of the 

process have been automated with statistically generated rules (Orsborn and Cagan, 2009; Talton et al., 

2012). Additionally, context sensitive graph grammar induction has been elucidated through VEGGIE 
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(Ates and Zhang, 2007). However, these too do not sufficiently solve the issue for design grammar 

induction on data without semantic interpretability, which remains a major underlying challenge. 

Evaluating	Grammar	Generation	

In design, a grammar’s effectiveness can be judged first by its ability to communicate a design’s style, 

and then by its ability to do so in an optimal way, from a computational performance perspective. As a 

mechanism for conveying style, there are at least 3 critical previsions for effectiveness, adapted from 

Stiny & Mitchell (Stiny and Mitchell, 1978): 1) it should clearly convey the common elements of 

stylistically similar artifacts, 2) it should be complete enough to facilitate determining if an artifact is 

within a style or not, and 3) it should be usable to generate new artifacts that adhere to the style but were 

not part of the style corpus. 

The accuracy of a grammar, defined as how well the grammar affords representing the input materials 

used to establish it, is intended to evaluate Stiny & Mitchell’s first point above. However, quality of 

representation is essentially binary with non-probabilistic grammars because there is no margin of error 

– it’s either correct, or not correct – so for this work, accuracy is assumed to be a requirement of any 

grammar. Without this feature, the grammar is not even reliable enough to reproduce its own input and it 

should be rejected. Accuracy reports the percent of instances that a grammar induction system can 

produce its input. This is different from saying that the grammar is entirely stylistically accurate, 

because it can only be accurate enough to represent the data it is given, and it is important to note that 

accuracy is not binary if a grammar incorporates probabilistic representations, which is not focused on in 

this work. 

The variability of a grammar, on the other hand, interpreting Stiny & Mitchell’s third point, is defined as 

how well a given grammar can be used to generate new examples of the style or construction rules 

embedded in the grammar. Again, with non-probabilistic grammars, a grammar either offers variability, 
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or does not, so this will be considered a necessary condition for a grammar to be accepted. Variability 

reports the percent of instances of a grammar induction system that can produce alternatives to their 

input.  

Another aspect of a grammar system is the expectation that a similar grammar could be achieved from 

different observed artifacts. A practical example of this is if one builds a lingual grammar for English 

from two different instances of the New York Times Newspaper, there would be some hope that the 

contents of the two grammars would be similar and functionally interchangeable. We term this as the 

repeatability of a grammar, or the likelihood that grammars A and B will be identical when grammar B 

is learnt based on material generated from grammar A. In practice, grammar variability means that most 

data can be represented by many different valid grammars, so it is better to require that there is a 

grammar B in the set of grammars learnt from material generated by grammar A, such that grammar A 

and B are functionally identical. Repeatability is not exactly the same as Stiny & Mitchell’s second 

point, because for repeatability it is assumed that grammars of two different artifacts are comparable, as 

opposed to determining the degree to which one grammar serves two different artifacts. However, these 

two approaches end up being computationally similar in the worst case, because applying a grammar to 

an existing artifact is approximately as hard as developing a new grammar from that artifact. This work 

does not prove that claim, but since our definition of repeatability is stricter than Stiny & Mitchell’s 

second point, that is the preferred metric in this work. Specifically, repeatability reports the percentage 

of paired rules when computing a rule set from an induced grammar output.  

Computational complexity of grammars is a well-studied challenge (Slisenko, 1982; Yue and 

Krishnamurti, 2013), and determining if two different grammars can have identical output, with only a 

difference in complexity, is nontrivial. Prioritizing conciseness in generated grammars can be 

established by adhering to the information axiom found in Axiomatic Design (Suh, 2001); if two designs 

are otherwise equal, choose the simpler one. When learning grammars, and after ensuring they have 
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accuracy, variability and repeatability, the next priority is to establish that the selected grammar is the 

simplest. In practice, this is convenient for computational complexity but also because it implies that 

more salient information is stored per grammar rule, so arguably, it can demonstrate more nuance in 

alternative outputs. Conciseness in this work is reported as the percentage of rules in a grammar per 

unique node type in the data. Because some input data may have more types of nodes and others may 

have more types of rules connecting fewer nodes, it is not possible to set a specific goal for conciseness 

between datasets. However, it is feasible to minimize this among possible grammar solutions for a given 

dataset or group of similar datasets. This can be achieved by adjusting parameters such as the starting 

point of grammar induction or rule definition metrics, and evaluating the relative conciseness of each 

approach and selecting the most concise grammar representations. Additionally, across a large number 

of datasets this value tends toward 50% because on average a rule represents a relationship between two 

node types. 

Together, accuracy, variability, repeatability and conciseness offer a multi-factor means for establishing 

computational tractability as well as effective communication of style. Achieving the first two is a 

necessary condition for a grammar to be considered effective. The latter two offer helpful insight when 

deciding which grammar representation best suits a given data set. These will be used as key metrics for 

determining the effectiveness of grammar induction methods introduced in this chapter. 

Methods	

The approach introduced in this chapter induces arbitrary grammars from ontological data via the 

following steps (Table 1): 1. deconstruct the data into objects that constitute atomic units of meaning in 

the context of the data (e.g., words in text, points in a drawing, people in a social network), 2. formulate 

structures from known relationships between objects in the original data (e.g., word pairs, lines, and 

friendships, respectively), 3. compute frequency based assertions about probable inter-rule relationships, 
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4. establish new rules from probable inter-rule relationships that were found. The resulting rule set will 

be concise, and complete, however it may also introduce a number of anomalous rules that can be 

removed by expanding the dataset and checking for coherence between elements in the ontology. 

Because this approach can use abstract ontological data, it can be used for both shape and graph 

grammars, and consequentially, the grammar representation in this work stores only ontological 

structure of the rules. Figure 2 shows the abstracted form of this algorithm in pseudocode, and in the 

following subsections these steps are discussed in detail with contextualizing examples. 

 

Deconstructing	Data	for	Grammar	Induction	

The first step is deconstruction of data into objects. This involves breaking a dataset down into the 

smallest units that are relevant to a grammar. This is done so that the dataset can be treated as a 

computationally addressable graph and so that patterns in that graph can be used to establish the 

grammar. 

Input: Data representing a graph of connected objects 

Output: A set of rules that can be used to reconstruct the input graph 

1. Create a list of objects in the graph 

2. While the list is not empty: 

2.1. Remove the first object from the list and use it 

2.2. Find instances of this object in the graph 

2.3. Store collections of nodes within a distance parameter as candidate rules 

2.4. Check for collections that are structurally identical; store these as candidate inter rule 
relationships 

3. Repeat 2 with the list of collections instead of objects 

4. Remove duplicates 

Figure 2 Pseudocode of the automated grammar induction algorithm. 
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The process of data deconstruction is domain dependent, so approaches for deconstruction depend on 

the intrinsic hierarchy of the data representation, and the degree of connectedness within the data. For 

example, in text, words are easily extracted producing a linear graph as is shown in Step 1 in Table 1. In 

more complex data such as ontologies that represent buildings, data could be split into entities like a 

light switch or toilet, or any other element that is an isolated participant in the overall system graph. 

Piecewise models afford this kind of component level decomposition, so extra steps are not required for 

models that provide inherent hierarchy, such as the COLLADA file format (Barnes and Finch, 2008). If 

interpreting blueprints on the architectural feature level, points and lines can be treated as objects in this 

way, with positional information serving as the data structure, however detailed positional data is not 

needed when treating these structures as ontologies because position information can be stored alongside 

the intrinsic structure of the component graph. It is important to note that decomposition in more 

sophisticated, integrated models, such as an A-class injection moldings requires specialized methods that 

are not examined in this work. 

Table 1 Grammar Induction Example. Demonstrating 4 steps and sample output based on two types 

of data, sample text, to show the simplest form of rule development and a building plan (a subset of the 

Villa Malcontenta (Rowe, 1977)), to show application in a shape grammar context. Raw input data is 

segmented in step 1. Step 2 involves forming structures in the ontology. In step 3 relationships between 

structure sets are used to define rules. In step 4 parameterized relationships are used to form more 

sophisticated rules. Finally, output examples are shown that express different features from the input but 

also incorporate similar stylistic aspects. 
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Data Type Text Building Plan 

Raw Input 
…This is a sample English 

sentence…. 
 

Step 1. 

Extracting 

Objects 

(This, is, a, sample, English, 

sentence, .) 

 

Step 2. 

Forming 

Structures 

(This) ➞ (This, is) 

(is) ➞ (is, a)  

Step 3. 

Expanding 

Rules 

(This) ➞ (This, is, a) 
 

Step 4. 

Inter-Rule 

Relationships 

(This) ➞ (This, is, a, (insert object 

rule)) 

 

Sample Output This is a sample sentence. 
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Formulating	Initial	Structures	

In the second step, structures are formed based on only the structure of the graph and converted into 

initial rule candidates. Rules take the generic form of a token on the left hand side of the rule and a 

replacement token on the right hand side of the rule, which can replace the left hand side token in its 

given context. In text, this means a particular string can be replaced by an alternate string. In graphs, 

rules adhere to the same formalism, identifying a subgraph that can be replaced by an alternate subgraph 

and rejoin with the same edges in the graph. This way of dealing with rules allows for shape or graph 

grammar rules to be treated relatively similarly during induction. It also allows for rules to refer to large 

areas or chunks, and affords meta-rules, or rules that refer to other rules as elements of the graph. 

For parsing text, the words before and after each word become strong candidates for rules and they can 

be processed without any awareness of the part of speech or meaning of individual words. Rules can 

later be expanded to encompass larger groups of words or parametric patterns as they are encountered by 

the parser. Step 2 in Table 1 demonstrates this for the initial formulation of structures.  

In complex ontologies, establishing rules is less straightforward than in text because it requires finding 

matching subgraphs. To do this, ideally every traversal of the ontology would be evaluated, by 

enumerating possible paths through the graph, so all possible rule options are considered. This is not 

computationally practical, especially for heavily connected graphs, so constructing larger structures as 

chunks or sets of rules, by grouping or topological patterns, can be used to reduce the load (Ates and 

Zhang, 2007). A useful chunk is a larger region of the graph that is repeated, either identically, or 

thematically, in more than one place in a graph. Chunks are formed by finding matching regions in the 

ontology and exploring their local neighbors to find larger regions of similarity. In the example shown in 



	 	 	26	

Step 2 of Table 1, the architectural chunks demonstrate a key characteristic of this approach, that 

frequently repeated elements will appear as strong chunk candidates (e.g., door and window frames), 

while repeated elements that have internal differences are less strong candidates (e.g., the section of wall 

next to one side of a window frame). Because of the recursive nature of this process, rules and chunks 

are ontologically similar so no cutoff is needed, and chunking can continue until no more repeated graph 

sections are found. 

Probabilistic	Enhancement	

The frequency of a rule being found in the dataset is interpreted as a predictor of the likelihood of its use 

in the final grammar, so this is the main indicator that is used to determine how to extend initial rules of 

pairs of objects to encompass more objects as either one dimensional lists or graphs. For textual data this 

is a straightforward process of checking the data for repeated pairs or patterns through a direct string 

comparison on the rule level as is shown by Step 3 in Table 1. The frequency of repetition of a pattern 

may be used to determine its likelihood in the graph.  

For graphs, if any two rules match, the surrounding areas in the graph are evaluated and local patterns 

are defined. The process of frequency analysis for establishing rule likelihood is done continuously so 

by the time a pass of the data has been completed, both simple and complex rules (chunks) have already 

been established. This is necessary because the data is sampled randomly from unexplored parts of the 

graph, to enhance computation speed and avoid getting stuck exploring repeated localities. For well-

structured, intrinsically rule abiding datasets, it is generally the case that all rules will be found before a 

full traversal of the data is complete because chunks make up a majority of such data. 
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Rule	Parameterization	

Inter rule patterns are also established to extend the probabilistic rule set. This is functionally similar to 

evaluating a grammar on the rule level. The set of rules already in the grammar are treated as the input 

corpus for another grammar learning process. This builds parameterized rules that can refer to a 

contextual variable such as a rule or token that could be used to complete some part of the graph. The 

new abstract rule parameterization is then added back into the initial grammar as higher level rules. Step 

4 of Table 1 shows this in a text example where an object rule can be used to augment a new 

parameterized rule that has been developed. In practice, for text, these types of rules may represent 

higher level features such as writing tropes or an author’s particular writing style. In this way, this 

process can keep occurring providing more and more abstracted versions of rules governing a dataset, 

and these higher level rules can be optionally stored separately for use in other analysis approaches, such 

as trying to define meta-styles in writing. 

The parameterization of rich ontologies is a time consuming process because it requires the comparison 

of many rules to generate higher level rules. However, it can be executed by repeatedly running the 

same induction approach while new rules and their parameterizations are established (Rawson and 

Stahovich, 2009). This also ensures that groups of rules don't overlap significantly, which helps facilitate 

conciseness of the resulting grammar. This is arguably the slowest stage of the grammar induction 

approach but doing it after structured rules have been established reduces computation time. 

Efficiency	in	Induction	

The first and second steps are fast and run in linear time with the number of rules. The third and fourth 

steps are nondeterministic and slower, depending on the ease of establishing equivalence between rules. 

In datasets where rules are unidimensional, equivalence can be done very quickly by using a hashing 
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function on both sides of every rule. Hashing functions allow mapping large input signals, such as many 

lines of text, to a unique and fixed length key (Knuth, 1998). When data has more interconnection, such 

as in a social network or a building ontology, the hash approach only encompasses a single 

representation of the graph, and can lead to significant inaccuracies. The hashing approach only works 

on very accurate datasets and does not show any partial equivalence for noisy matches. As a result, in 

cases such as dealing with typos or poorly generated drawings, preprocessing of data may be required to 

create accurate matches to ensure objects that are semantically the same are interpreted similarly by the 

induction algorithm. 

Instead of hashing, when inducting graphs, isomorphism is established using the fastest current 

algorithm from Babai et al. (Babai, Kantor and Luks, 1983). Additionally, graph chunks can be hashed, 

affording speed increases as larger rules are constructed. 

Choosing steps to improve the performance of a grammar induction process is heavily dependent on 

attributes of the representation and underlying structure of the data. For this reason, provisions for 

processing each dataset to be evaluated will be outlined specifically. 

Evaluation	

Evaluations were conducted on 3 distinct datatypes: generated patterned ontologies, a building with 

known grammar representations, and a structured piecewise model. Generated partnered ontologies 

allow analysis of the proposed methods in an abstract context and allow for ontologies exhibiting 

specific features to be evaluated. Many buildings have received attention from the academic community 

and have well established grammatical representations which can be used for comparison. Because of 

the large body of existing grammatical analysis and clear rule abiding layout, Andrea Palladio’s Villa 

Foscari, La Malcontenta, a home near Venice, Italy built in 1550, was chosen for evaluation (Rowe, 
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1977; Stiny and Mitchell, 1978). The piecewise model used is a 3D model of an integrated, automated 

greenhouse in which each part is individually modeled and independently identified. Evaluating data of 

this kind allows multi scale graph representation of the structure and facilitates highly accurate 

chunking. Analysis was conducted using the accuracy, variability, repeatability and conciseness 

framework. 
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Figure 3 Example Small Generated Ontology. Rules on the left are used to generate the graph of 100 

nodes and the induction method is used to establish the rules on the right. Note that in this example, the 

induction method produces a grammar with 25% fewer rules. 

Inducing	Generated	Ontologies	

Randomly generated grammar rules were used to build the artificial data sets, as opposed to purely 

random data, to ensure that there were sufficient patterns for the grammar induction algorithm to find.  

A set of rules was constructed and then applied at random to produce datasets with specific size and 

connection properties. Graphs were generated with small (n=100, shown in Figure 3), medium 

(n=10,000) and large (n=1,000,000) numbers of nodes and average degree per node connection degrees 
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of 2, 4, and randomized degree, emulating text, visual design, and ontological design representations. 

These evaluation sizes were chosen to emulate problems of vastly different levels of complexity. The 

number of unique nodes in each case was 10% of the total number of nodes in that trial. Trial data 

objects consisted of strictly typed Universally Unique Identifiers (UUIDs) (Leach, Mealling and Salz, 

2005) for high speed comparison. 

The implementation was in Python 3 and interconnections were managed with the NetworkX library 

(Hagberg, Schult and Swart, 2008). All trials were run locally on commodity hardware with 8 cores and 

in instances in which processing lasted longer than one hour, trials were cut short. 

When evaluating performance on synthesized ontologies, the nodes and connections are intrinsic to the 

representation of the ontology so the first step of the procedure is not explicitly performed and the 

second step can be conducted directly. Other steps for this evaluation were functionally similar to the 

text example given in Table 1, with the exception that random starting positions were used, and 

traversing the graph was done by selecting edges at random from the current operational node. As a 

consequence, the heavily connected nature of these graphs lead to larger graphs exceeding the allotted 

computational time and, in some cases, being removed from the evaluation. 
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Figure 4 Villa Malcontenta. A. Illustration from plate XLIII in Quattro Libri (Rowe 1977), B. CAD 

rendition of features extracted from plan drawings of the villa. C. Visualization of the underlying graph 

with node position from coordinates in CAD information. 

Inducing	Palladio’s	Villa	

A 3-dimensional model of the Villa Foscari, La Malcontenta was produced from reference drawings 

(Rowe, 1977) using a CAD package, and the load bearing walls and high-level plan were extracted, as 
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shown in Figure 4. This data was chosen, instead of, for example, the entire 3D model, because it more 

closely reflects the existing grammars that have been created for the dataset facilitating direct 

comparison to the previously conducted methods. The CAD data was converted into an ontological form 

in which the points making up each line segment were treated as nodes in the dataset and the lines were 

interpreted as their connections in the ontology. In other words, only places where lines end or join 

become critical. For example, a wall is interpreted as just the connection between the start and finishing 

points of it. Similarly, a door is just a relationship of points where the walls of two rooms meet. This 

way the grammar making process is not constrained by the physical structure of the building but by the 

relationships of each point to each other point. Spatial information was retained but not made available 

to the grammar induction algorithm so that the evaluation would be ontological while building shapes 

could be visualized in the way shown in Table 1. In this sense, the building data was converted into a 

graph of points found at junctions of edges from the blueprints, allowing step 1 of the induction method 

to be conducted in a very straightforward fashion. In steps 2 and 3, feature frequency was used as the 

primary indicator about rule likelihood, or chunk likelihood, leading to the most common feature 

patterns being used as fundamental rules. This lead to coherent rules as were shown in Table 1, and 

meant that expanding rules and establishing inter-rule relationships could happen without unusual wall 

segments or stray edges appearing out of place. 

Because of the relatively small size of the grammar for the test data, the ontology could be completely 

parsed to find all rules existing in the data. Computations were performed on commodity computing 

hardware and all finished in less than 1 hour, so no measures were necessary to accommodate for 

computational complexity in this part of the study. 

Assessment tasks were to attempt to formulate building primitives and to recreate the input data. 

Palladio’s buildings have been the subject of a large amount of research on grammars so rule sets for 

comparison are readily available, such as from Stiny & Mitchell (Stiny and Mitchell, 1978), and were 
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used as plausible alternatives in the study of the variability of the produced grammars. Conducting this 

pairwise rule comparison offers insight into conciseness and variability of a grammar. 

 

Figure 5 Greenhouse model. A CAD model of an aquaponics greenhouse with automated delivery 

systems (Snowgoose, (2014). Aquaponics system 8x3.4, 3D Warehouse.). Components down to the 

bricks and fasteners are individually modeled and are represented discretely in. 

Inducing	piecewise	models		

The greenhouse model (Figure 5) was produced using a CAD package and processed using the 

COLLADA 1.5.0 standard (Barnes and Finch 2008). The model contained approximately 700 

components many of which were instances of other parts but configured in different relationships. All 

structural and machine components were included in the model but sub-assemblies were ignored when 

inducing the grammar because they were assumed to be readily purchased in that state, (e.g., a pump or 

a lightbulb would not be further decomposed).  
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Because of the nature of the COLLADA format, the model had an inherent structured representation so 

physical proximity was used to transcend structural isolation. As a result, Step 1 in the induction process 

involved traversing the COLLADA file and establishing a graph representation based on which 

components were in physical contact or orientation with one another. In this way, when processing rule 

chunking (i.e., Steps 2 and 3), only physical proximity was considered for building ontological 

relationships, hierarchical connection was not. This avoids giving weight to any assumptions made by 

the model’s author about other hierarchical aspects of the design. Similarly, in performing Step 4 of the 

grammar process, establishing inter-rule relationships, this interpretation affords succinct analysis of the 

overarching relationships found in the model in a way that a hierarchical representation would hinder. 

Results	

Results are reported on trial runs of generated datasets for specific complexity levels in Table 2. 

Reported values are the percent of resulting grammars that express accuracy, variability and 

repeatability while reported values for conciseness are the percentage of the ratio of rules to total data-

points, which agrees with computational bounds. All reported values are on 20 runs of the induction 

algorithm on the respective datasets, based on the metrics defined in Section 2 of this chapter. In data 

limited cases, such as the Palladian Villa and the Piecewise model, cross validation performed by 

inducing unique subsets of the data were conducted when needed, for each run. A necessary condition of 

any grammar to be selected was that it would achieve accuracy and variability; all evaluations reported 

achieved those goals. 

Table 2 Grammar metrics. Accuracy and Variability are necessary conditions. Repeatability is desired 

at 100% and conciseness, reported as a percentage ratio of induced rules to unique nodes, is dependent 

on the type of data being induced. Lower bounds are reported, indicating the first quantile of runs. 

Calculations are based on the specific approaches introduced in Section 2 of this chapter. Evaluations 
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with runtime over one hour were omitted. In instances providing only one dataset to evaluate, such as 

the Palladian Villa and the Piecewise model, cross validation was used, inducing two unique subsets of 

the data for each comparator. For repeatability comparisons are conducted between induced grammars 

from either cross validation or sample diversity. 

Trial 

Accuracy  

(% achieved)  

Variability 

(% achieved) 

Repeatability 

(% achieved) 

Conciseness 

(% rules/n) 

Degree 2 

Ontology 

100% ± 0 100% ± 0 90% ± 3 52% ± 1 

Degree 4 

Ontology 

100% ± 0 100% ± 0 80% ± 4 59% ± 4 

Random Degree  

Ontology 

100% ± 0 100% ± 0 78% ± 9 61% ± 4 

Palladio’s Villa 100% ± 0 100% ± 0 87% ± 2 56% ± 3 

Piecewise model 100% ± 0 100% ± 0 74% ± 5 51% ± 1 

 

Repeatability varied over the course of experimental cycles (Table 2). In the trial data cases, it varied 

proportionally to connectedness with higher dimensionality leading to significantly fewer repeatable 

grammars. This is likely because selecting for concise grammars may sometimes lead to certain 

grammar features being represented more than once. It can be very difficult to determine the difference 
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between two grammars for the same data set. For the random degree case this is not a problem for small 

examples, but for larger cases this might mean that it becomes almost impossible to rely on only 

searching for unique rules over all resulting grammars when the algorithm is run. 

Conciseness performed best on one dimensional cases but showed significantly less favorable results in 

more complex evaluations. This is attributable to the number of plausible and actual node connected 

pairs increasing significantly with more dimensionality. As a result, however, it means that the inducted 

grammars are too large to be useful and are likely to include many rules that are near duplicates of each 

other. Removing these is nontrivial and would make the current approach orders of magnitude longer to 

compute. This said, efficient rule reduction occurred in many cases. This is demonstrated by the 

example shown earlier in Figure 2 of a random degree ontology evaluation in which the induced 

grammar is shorter and simpler than the input grammar, while retaining key high complexity rules, and 

adding multifunction rule alternatives. 

The Palladian Villa grammar demonstrated similar results to the other evaluations. The induced 

grammar is able to almost perfectly express its source data and fail only where aspects of the source data 

were not fully induced. For example, the columns at the front of the house as well as the entry way stairs 

were not properly resolved because rules for those features had no ontological connection to the rest of 

the structure. This is not the case when the grammar is created using positional data but as previously 

mentioned, the intention was to build an ontological grammar from this data, because it is significantly 

more challenging to build grammars with no structural coding.  

In this process key differences between our automated grammar induction technique and the traditional 

human grammar generation methods become apparent as shown in Table 3. For instance, the rule 

system introduced by Stiny and Mitchell (Stiny and Mitchell, 1978), is largely top down, moving from 

the largest layout and symmetry rules to smaller details later in the ruleset which are seemingly built to 
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augment the previously constructed forms. This approach is visible in others’ assessments of the same 

buildings (Benrós, Hanna and Duarte, 2012), however it is not the only plausible approach as Stiny & 

Mitchell recognize. Using a bottom up approach, as is the case with our automated tool, derives high 

level constraints in the context of the details that relate to them. In this way, there are some differences 

in the strictness with which a design might be determined to be part of the same style. With the bottom 

up approach, grammar outputs always exhibit both plan level stylistic features, and detail design level 

stylistic features, for instance, large scale symmetry as relationships between doors and windows in the 

same room. On the other hand, the top down approach develops grammar rules that can be applied to 

generate buildings that are suitably symmetrical but have none of the low level features of the style.  

Table 3 Palladian Grammar Comparison. A comparison of grammar rules and results from 

foundational work on the Villa Malcontenta (Stiny and Mitchell, 1978) and an automatically induced 

grammar from the same source data. The outputs are largely identical but exhibit subtle differences 

relating to connected elements and the rendering of detail. For instance, more detail is retained in the 

automated output however that is due to how the manual approach was conducted, not because of 

fundamental differences in the approaches. The first rules are very different. Where the original 

approach started with grid definition, the automated approach chooses an arbitrary start point. Door rules 

show similarity; however, symmetry is not explicit in the automated approach. Rather, it is inferred by 

the ontology because components found to be part of the door making process cause the symmetry of 

the rule to emerge. Many rules are not directly comparable because of the difference in approaches but 

the results indicate that both can produce similar final results. 
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The piecewise model was also induced successfully, and this example provides a context for 

demonstrating how efficient a grammar can become when it is induced over a purely ontological model 

of a dataset, even if that data is 3D in nature. For example, rules extracted for this approach saw either 

very high repeated use or they implemented unique features. This shows that the induction process was 

able to build representative chunks that encompassed much of the inherent variability of details of the 

model. The rule set for such a complex model is rather large, encompassing over 800 rules governing 

3900 components, so only a small number of example rules are shown in Table 4, with the addition of 

an example alternative output from the induced ruleset. This example offers a striking case for using the 

Data Type 
Original Palladian Villa 

(Stiny and Mitchell, 1978) 
Automatically Induced 

Output 

  

First Rule 

 
 

Door Rules 
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shape agnostic, ontological approach adopted in this work. Parts in the induced model exhibited 

positional patterns but also functional patterns which emerged from broader symmetry and positional 

relationships. For example, positioning of pipes relative to valves and vats was performed accurately 

with the induced grammar in the example output in Table 4, even though these components had different 

physical relationships in the original induced model. 

Table 4 Piecewise Ontology Induction. The highly general rule shows the combining of bricks as one 

of the rules in forming the base structure. In this model there are several ways bricks relate but by using 

chunked rules only rules about direct relationships are needed and these can be combined with higher 

level rules about the layout of the system to achieve the complete base. On the other hand, highly 

specific rules such as the one showing adding a valve to a segment of pipe, are used to position parts in 

their context to subassemblies, such as the valve, or such as a vat next to which this assembly would 

appear. A more traditional structural rule is also included showing a wall segment being used to position 

a roof segment. The example output shows a different configuration of vats with the associated changes 

in floor layout and pipe layout. 
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Highly General 

Rule 
 

Highly Specific 

Rule 

 

Traditional 

Structural Rule 

 

Example 

Output 
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Conclusions	

This work has introduced a method of efficiently inducing shape and graph grammars of complex design 

contexts using un-coded data. The method was validated with experiments establishing the accuracy, 

variability, repeatability and conciseness of produced grammars, with several examples including 

abstract data and design data. Speed and accuracy challenges are reduced but remain somewhat critical, 

so these will be an important part of our future work. Fast and accurate machine translation remains a 

focus of many researchers in computer science and linguistics; incorporating more lessons from their 

approaches, as well as considering other ways in which automated grammar approaches can be 

developed and applied are directions of deep interest to advance this work. 

The difficulty of computing grammars used for design has made them relatively uncommon in industry. 

Facilitating their efficient use with this new automated approach may rekindle the formal assessment of 

shape in design outside of the academic community in computer aided design software, commercial 

design methods, and other fields that utilize special information. Furthermore, the academic advantages 

of having fast ways to generate grammars for a broad array of types of data opens the field to new 

grammar based endeavors. 
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Rule Frequency Analysis: Fast Classification for Design using Automated 

Grammars 

Abstract	

Detecting differences between designs is both challenging because of the wide range of ways design can 

be represented and used, and because of the need to differentiate brands. Grammar based methods have 

been used to represent designs and identify subtle differences but have seen limited application due to 

the difficulty of generating them manually. In other domains with straightforward representation 

schema, difference identification has been automated using machine learning, however, automating 

difference identification and classification using shape grammar techniques has not been previously 

demonstrated. This chapter introduces a multi-step pipeline for design classification, using automated 

shape grammar induction for case representation and the frequency of shared grammar rules as a set of 

features for difference detection. The method is validated through two experiments: a comparison to a 

common statistical learning based approach on simulated data, and with an automotive comparison task. 

The rule frequency approach introduced in this chapter is more sensitive and accurate than the statistical 

learning approach in a majority of cases and significantly faster, enabling learning with a minimal 

training set, due to leveraging the grammar based representation. 

Introduction	

Identifying subtle differences between designs can be important for clarifying brand differences and 

resolving intellectual property disputes, and in supporting designers as they develop novel products, 

however, there are few automated methods for this kind of distinction. Current approaches to 
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differentiating similar designs involve manual comparisons, which are time consuming, or high level 

comparisons, which tend to focus only on visual similarities, and fail to consider mechanistic or 

functional similarities. Shape grammars (Stiny, 1980) and graph grammars (Rozenberg, 1997) can be 

used to demonstrate systematic differences between designs (McCormack, Cagan and Vogel, 2004). For 

example, subtle brand differences have been assessed using shape grammar analysis (Agarwal and 

Cagan, 1998; McCormack, Cagan and Vogel, 2004). Graph grammars have also been used for 

difference detection, in contexts such as analyzing legal argumentation structure (Pinkwart et al., 2006). 

Analysis of this type is traditionally done by hand or by using direct comparison of grammars, which is 

computationally expensive and has not yet been automated. As a consequence, this application of shape 

grammars remains under explored, so many potential applications in design and other domains are not 

yet available to practitioners. 

Machine learning techniques provide a groundwork for classification and have been used in a wide 

range of domains that include structured representations and abstractions of data such as, abstractions of 

email text to classify mail as spam, and structured representations of photos to classify if an image 

includes a particular individual (Michie, Spiegelhalter and Taylor, 1994; Kotsiantis, 2007). A vast 

majority of classification techniques using machine learning require large amounts of data to establish 

probabilistic likelihood that a given classification is accurate. This finding means that machine learning 

approaches, while conceptually robust, are currently difficult to utilize in many of the situations where 

shape grammar classification would be relevant because of a lack of training data. For example, 

detecting brand differences in an industry with only a handful of products in the competitive market is 

not practical with many traditional machine learning methodologies due to the small data set. 

This work introduces a classification approach by generating a vector space reflecting the frequency of 

grammar rules derived through an automated grammar induction process (illustrated on two node graphs 

in Figure 6). Starting with comparable structured data cases that can be characterized by graphs (Figure 
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1A), grammars are induced from each case, generating a series of grammar rules. The rules appear as 

transformations based on subgraphs from the data, and the frequency with which they occur in the data 

serves as a classification feature (Figure 1B). In this way, subtle differences captured by induced 

grammars provide a tangible differentiator, even when similarities are not visually obvious. Because this 

approach converts singular cases into complex sets of semantic rules, this technique can be used for near 

one-shot learning (Fe-Fei, Fergus and Perona, 2003), where traditional statistical learning approaches 

may require large amounts of exemplar data to learn a suitable representation of cases to make an 

accurate classification. 

 

Figure 6 A pipeline for rule frequency based classification. A) The grammars of two graphs are 

induced into a set of common rules. Graph 1 depicts a less complex graph while graph 2 depicts a more 

complex graph with more connections per node on average. B) Checking how often each rule appears in 

each graph, a frequency representation is produced. In this example, increased average degree greatly 

influences the frequency of one particular rule, making classification of these graphs straightforward. 

The colors in the frequency chart indicate to which graph they relate. 
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The rule frequency method is validated in two experiments: evaluating its sensitivity to graph 

augmentations, and evaluating its ability to detect differences between automobile classes (Orsborn, 

Cagan and Boatwright, 2009). Sensitivity analysis is conducted comparatively to OddBall (Akoglu, 

McGlohon and Faloutsos, 2010), a common graph based statistical classification technique. The rule 

frequency based approach introduced in this chapter detects smaller differences in simulated graphs than 

OddBall given the same training sets, and is able to learn significantly faster. Additionally, the rule 

frequency technique was able to classify a majority of automotive categories with complete and partial 

representations of cars in as few as one comparison. 

Related	Work	

Classifying designed structures as being genuine or not has been an important area of ongoing inquiry. 

Establishing the legitimacy of art or writing, establishing who built what (Jones, Craddock and Barker, 

1990), and more recently, establishing if a designed product is brand name or counterfeit (Bamossy and 

Scammon, 1985) are all examples of this overarching need. Traditional techniques for detecting these 

differences include decomposing complex systems into their fundamental elements, and classifying 

instances by identifying features unique to them (Hodge and Austin, 2004). The frequency based 

approach introduced in this chapter mirrors these traditional techniques in an entirely automated 

pipeline, with a particular focus on systems and artifacts and datasets representable with graph and shape 

grammars. 

General anomaly detection 

Anomaly detection is conducted with a wide range of approaches depending on the particular needs of 

the application (Chandola, Banerjee and Kumar, 2009). Distance metrics and frequency based 

representations are two overarching categories of approaches. 
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Distance metrics use a heuristic to compute the distance in some space between cases. Initially theorized 

to establish the degree of difference between biological samples based on genetic feature maps 

(Hattemer, 1982), this technique has also seen use in measuring the distances between designs, both 

analogically (Christensen and Schunn, 2007), and based on structural features. These vector space 

techniques are also formalized under Hilbert spaces (Wootters, 1981). For these methods to work, a 

threshold distance is established that indicates a distance to be considered problematic. Sensing 

thresholds in high dimensions is also a field of rich discussion, however in this work only elementary 

methods are sufficient (e.g., nearest neighbors (KNN) (Cover and Hart, 1967)), so a more in-depth 

exploration has not been included. 

Frequency based approaches rely on detecting differences in frequency distributions of particular 

features in a sample (Akoglu, Tong and Koutra, 2015). Methods utilizing this type of detection have 

been a center point in outlier detection in the data mining and machine learning communities (Hodge 

and Austin, 2004). In particular, techniques such as frequent subgraph mining (Jiang, Coenen and Zito, 

2013), typified by gSpan (Yan and Han, 2002) and AutoPart (Chakrabarti, 2004), have been used with 

great success to find graph anomalies and outliers. OddBall (Akoglu, McGlohon and Faloutsos, 2010) is 

a technique for identifying anomalous nodes in a graph based on topology characteristics that has many 

similar properties to grammar based techniques, so it will be used as a basis for comparison in this study.  

OddBall identifies anomalous nodes in a graph by using a mixture of graph properties and eigenvalues 

in complex graphs (Akoglu, McGlohon and Faloutsos, 2010). The approach focuses on the local 

subgraph (Akoglu, Tong and Koutra, 2015), relying on the local structure of a graph in a similar way 

that grammar rules may be defined. In this way, it shares many properties with a grammar based 

approach, and critically, it works unsupervised, being able to establish difference metrics without 

knowledge of states, so it serves as a reasonable method for comparison, with which to establish a 
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performance and functional baseline. Unlike the proposed grammar method, OddBall requires learning 

data in order to provide accurate detection.  

Shape grammar as a basis for detection 

Shape grammars have been used to provide classification for product designs in a predominantly manual 

pipeline (Gips, 1999). This generally involves first building an overarching grammar, then establishing 

if the grammar can be manipulated to represent a challenging case. Due to the manual nature of this 

process, human perception of rules is a potential source of inaccuracy, but additionally, the large amount 

of time it takes to conduct such a procedure makes comprehensive analysis impossible. As a 

consequence, statistical shape base analysis of designs (Orsborn, Boatwright and Cagan, 2008) have 

been leveraged as an aid in generating concepts, but this approach does not have the semantic coherence 

of a full grammar representation. 

Grammar induction has been automated for a range of types of data in computational design and 

machine translation literature. A distinguishing factor of these approaches is how much information 

about the data being induced is required. For example (Sánchez-Martínez and Pérez-Ortiz, 2010) 

provides a method leveraging coded insight about words to produce lingual grammars. On the other 

hand, Sequitur (Nevill-manning, 1996) can interpret lingual data with no added information to formulate 

character level grammars. In design, coded visual design data, such as semantically coded parts of a 

website, have been used in automatically inducing Bayesian grammars (Talton et al., 2012), while (Wu 

and Song, 2015) explored an approach to statistically deconstructing visual information without 

semantic coding. Statistical shape grammar techniques have also been applied in automotive design 

(Orsborn, Cagan and Boatwright, 2007). An automated, non-statistical, shape grammar induction 

technique for un-coded design and graph data has also been introduced (Whiting, Cagan and Leduc, 

2017), allowing inducing grammars for almost any kind of structured data with a graph representation. 
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This final technique serves as a starting point for the rule frequency based analysis proposed in this 

chapter, and will be described herein.  

Rule equitability 

Frequency has served as a foundational indicator in information processing techniques (e.g., using a 

Fourier transform for spectroscopic classification of biological or chemical elements (Helm et al., 

1991)). However, to facilitate measures of frequency, equitability must be assessable over the elements 

for comparison. In other words, if rules can not be differentiated, and equated, then frequency for rules 

between cases (e.g. designs) being compared can not be derived. 

Equating rules is nuanced because in many situations rules can be used to make other rules that may be 

within a grammar. To face this challenge, isomorphism techniques are required for identifying and 

reducing rules that are hard to otherwise compare. Markov equivalence classes (Andersson, Madigan 

and Perlman, 1997) provide a mechanism for formal identification of unique subgraphs by establishing 

an essential graph that embodies the core ontological relationship of a particular subgraph component. 

This approach, though not traditionally used in this way, is useful in identifying rule similarities because 

rules can be treated as subgraphs. Similarly sets of rules can be identified as a combination of subgraphs. 

When a rule and a set of rules have the same essential graph, they conduct the same ontological function 

as rules in the grammar. 

Methods	

Our work introduces an automated approach to classification leveraging shape grammar induction 

(Whiting, Cagan and Leduc, 2017), rule de-duplication using Markov equivalence classes (Andersson, 

Madigan and Perlman, 1997), multi-scale rule frequency checking, and case representation based on 

Hilbert spaces (Smola et al., 2007), facilitating many classification techniques. Each step in this pipeline 
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(Figure 7) is described in detail in this section. 

 

Figure 7 An automated pipeline for detection of grammar differences. A) Input 2 cases (case 1-

green and case 2-red), B) Automatically induce grammars for each case, C) search for and remove 

duplicate rules; rules are given unique identifiers for future reference, D) process the frequency of each 

rule in the original cases and, E) treat the cases as vectors in a vector space of rules. For this example, 

only 2 rules are visualized, rule 3 on the x axis and rule 1 on the y axis. 

Automated Grammar Induction 

To use shape grammars for classification, the first step is to establish a reliable mechanism for acquiring 

consistent grammars from data. Depending on the source and features of the data, a range of approaches 

can be used. Essentially, any method is acceptable as long as it can produce induced grammar rules with 

consistency between the test cases being compared. In other words, a method is suitable, as long as there 
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is consistency in which properties of the data are interpreted as nodes and edges. For this reason, all data 

discussed in this work will explicitly describe the high-level segmentation approach of the data into a 

graph. It is important to note that many traditional uses of shape grammars are implicitly similar to 

graphs in the sense that line drawings are a form of graph and their rules are made up of subgraphs of 

that graph, so the distinction between shape grammars and graph grammars is blurred in the in this 

chapter.  

In this work a general mechanism for inducing grammars from un-coded data is used as the underlying 

approach to establish grammars for processing (Whiting, Cagan and Leduc, 2017), shown in Figure 2B. 

It has been used because it offers flexible and generic grammar induction, not requiring precoding of 

induced data, and being agnostic to both data complexity and structure. The approach recursively 

examines tokens’ relationships to find the most commonly repeated patterns in the graph and then 

defines rules based on those patterns. As more tokens are processed the number of rules iteratively 

grows, and the related elements of the graph are replaced with the new rules. Because this happens 

recursively, earlier rules are often referenced by later rules, and as a consequence, a network of rules 

emerges that can generalize the structure of the induced data. 

The implementation in this chapter uses a random starting point and a random walk, moving through the 

graph choosing the next node to evaluate at random from the connected nodes, to explore the 

unevaluated parts of the graph. Additionally, forming groups of parsed tokens and rules based on 

proximity within the graph facilitates faster rule generation by providing a kind of rule chunking 

(Whiting, Cagan and Leduc, 2017). Together these techniques constitute the first stage of rule frequency 

based classification, establishing the set of rules across all cases, which will then be deduplicated 

between cases, and have their frequency assessed in the data.  

Removing duplicate rules 
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After using a representative sample of test cases to induce a grammar with the previously described 

automated method, it is necessary to remove duplicate rules and to remove small groups of rules that are 

functionally equivalent. This is done so that a functionally similar part of two cases will be identified as 

similar when comparing with the grammar rules. 

Many repeated rules are easy to identify; if the left hand side and right hand side in each case match, 

then it’s reasonable to consider the rule identical. However small groups of rules that have similar 

collective function but are made up of unique rules are not so straightforward to identify. 

Markov equivalence classes identify groups of elements with shared members through an adjacency 

matrix representation (Andersson, Madigan and Perlman, 1997). Groups are formed for chains of rules 

that share input and outputs. In this way, chains of rules found in one case, which compare identically to 

chains of rules found in another case (Figure 3A), may be treated as similar meta rules and removed 

(Figure 3B), even when the individual rules making up these chains don’t compare exactly.  

 

Figure 8 Removing chains or rules that have the same function. A) A matrix showing all rules for 

given input and output pairs. The rule marked with a red x can be removed because the rules it points to 

can be used in succession to provide the same function. B) The simplified rule set, which now has one 

fewer output tokens. 

This process involves checking each possible subgroup of rules against its counterparts, essentially 

creating a higher level rule for each subgroup of rules. These higher level rules can be compared rapidly 
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in a pairwise fashion, but the process of checking each subgroup is computationally intensive. However, 

in practice, and in the examples conducted for this work, grammars are generally much smaller than 

10,000 rules, and at this scale the delay is unsubstantial for a standard modern computer. 

Ranking	rules	by	frequency	

Having established a set of shared rules, the instances of each rule are counted in each case to be 

compared. This is straightforward with simple rules in which both the left and right hand sides are 

particular elements or configurations. However, meta rules (Sondheimer and Weischedel, 1980), rules 

containing other rules and thereby encompassing high level, abstract relationships in the data, are only 

applicable when all the standard rules have already been applied. For this reason, all the standard rules 

are counted by applying them to the data. Then the meta rules can be counted by applying them to the 

combination of data and rules that remain. 

Rule frequency for each case is used as the core representation for learning and classification. Because 

groups of comparable cases are likely to share a majority of rules, after the initial induction process, 

further induction is not necessary except when there is a situation in which a rule is missing. If, in the 

process of checking rule frequency on a particular case, there’s a part of the data which no rule can be 

paired with, this is an indication that the ruleset being used does not completely define the relevant 

design space. In this situation, the new case should be induced and frequency counting should be 

repeated for any previously evaluated cases, to avoid biases due to the earlier, partial rule set. In practice 

this is an uncommon situation because needing to reevaluate rules tends to indicate that the differences 

between the cases of data are very significant, and may be obvious without utilizing a grammar based 

approach. 
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Classification	approaches	

Given the convenient rule frequency abstraction, many classification approaches are directly applicable. 

In this work, a simple vector space based mechanism is used as an exemplar, but others may be more 

suitable depending on the particular classification task. The vector space approach was deemed suitable 

in this chapter because it demonstrates a familiar representation which is compatible with many types of 

machine learning methods. 

Treating each rule as a dimension in a vector representing a particular case, and the corresponding 

frequency of that rule in that case as its value, a Hilbert space (Smola et al., 2007) of designs is derived, 

extending traditional vector space computation into high dimensions. Treating each rule as a dimension 

may mean that the space is thousands of dimensions, but the Hilbert space representation affords use of 

standard distance metrics such as Euclidean distance with many dimensions, providing a straightforward 

means to detect differences between induced cases. 

Figure 4 demonstrates a simplified example with 2 dimensions and 2 cases. The x axis indicates the 

normalized frequency of rule 3, while the y axis indicates the normalized frequency of rule 2 in each 

case, based on the rules defined in Figure 2. In this way, the colored vectors show where each case 

would be positioned in this space, due to their differing compositions of rules. The distance between 

these positions in space can be interpreted as the difference between the cases in this representation. 



	 54	 	

 

Figure 9 Treating cases as vectors in a high dimensional space. The depiction demonstrates 2 

dimensions associating with 2 rules in a simplified example. The length of the difference between 

vectors indicates how differently each case utilizes the grammar. This can serve as a proxy for a more 

general difference metric, and is akin to the Euclidean distance within the space of cases. Only 2 

dimensions are demonstrated for clarity, actual comparisons tend to integrate hundreds if not thousands 

of dimensions, one per rule in the deduplicated rule set. 

The vector space representation also lends its self to many more sophisticated statistical comparison 

techniques. For example, nearest neighbors (KNN)(Cover and Hart, 1967) could be used to establish a 

nuanced classification boundary if there were many cases to train with. KNN establishes a classification 

boundary based on the a priori classification of the K nearest training cases to the test case. Nearness is 

defined contextually, but in this case the Euclidian distance would suffice. Other statistical learning and 
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classification techniques are also facilitated by the discreet vector representation of designs proposed, 

however in this work only the KNN approach is applied for classifying over the vector space 

representations because it is a method which is widely used in the broader community of people utilizing 

machine learning techniques. 

Although many classification techniques require parameter tuning, for example, determining the 

smallest distance considered significant, aspects of this system require minimal intervention because 

there are no integrated parameters for adjusting the grammar induction and vector space representation 

approaches. Additionally, once a case domain has been established, further classification comes at a 

very low computational cost, requiring only deriving a rule histogram and then performing the preferred 

distance classification technique with the resulting case vector. 

Evaluation	

To evaluate the efficacy of the presented approach, two experiments were conducted: simulated test 

graphs with adjustable differences of a variety of types were classified against an existing classification 

method, and, systems of splines specifying particular automobiles were placed in automotive categories 

from the literature (Orsborn, Cagan and Boatwright, 2007). 

Graph	Classification	

Classification accuracy was measured for comparison by determining the smallest measurable difference 

detected by the introduced algorithm and by the Oddball algorithm (Akoglu, McGlohon and Faloutsos, 

2010), over a battery of standard graph properties. 

Test graphs were generated to simulate graph abstractions of designs. Test graphs, like the ones depicted 

in Figure 7, were used instead of real designs’ representative graphs because establishing small 
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measurable differences would afford improved gaging of accuracy and granular comparison with 

traditional methods. Previous work with automated grammar induction demonstrates that test graphs of 

this type have similar properties as induced grammars to their design counterparts (Whiting, Cagan and 

Leduc, 2017). 

The Test graphs were simulated with a random graph function in the NetworkX python package with a 

target graph size of 1000 nodes and 50 unique node types. They were then measured for graph 

properties, and small modifications were made to achieve slightly different graph properties with a 

similar graph. The graph properties studied are all standard measure of graphs that can be readily 

evaluated: 1) Circuit rank, the smallest number of edges that can be removed to achieve an acyclic 

graph, 2) Average diameter, the average distance between vertices, 3) Average girth, the average 

minimal unique cycle size, 4) Clique number (Alba, 1973), the number of nodes in a clique of maximal 

size, 5) Book thickness (Bernhart and Kainen, 1979), the smallest number of independent planes with a 

common edge, on which a graph can be represented, and 6) Boxisity (Fishburn, 1983; Esperet, 2016), the 

number of dimensions required to represent a graph’s edges through a Venn diagram style formalism. 

These are selected because they are fast to calculate for a given graph and change relatively 

independently of one another when modifications are made to graphs. Values of these properties were 

each normalized over a unit interval to allow for a straightforward comparison protocol. 

Generated graphs were augmented by adding edges between a random pair of nodes in an existing 

graph. During this process, graph statistics were calculated at each change. In this way, new graphs with 

different levels in each graph statistic could be found and added into the dataset. The frequency of 

augmented graphs was logarithmically dependent on their distance from the original generated graph. In 

this way, more test cases were similar to the original graph and fewer were different. 
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In addition to using the automated grammar based approach for classification, OddBall (Akoglu, 

McGlohon and Faloutsos, 2010), was used to set a baseline for functionally similar techniques. OddBall 

was set up to use the same data for classification, but due to its inability to conduct one-shot learning, 10 

trials were conducted as a singular training set, with cross validation performed against 1/10th of the 

data. 

Automotive	Category	Classification	

Automotive categories utilized a dataset of spline measurements from 49 automobile bodies, 

encompassing 23 independent splines common among automobile designs (Orsborn et al., 2006; 

Orsborn, Cagan and Boatwright, 2009). These data encompassed 3 distinct categories of automobile, 

coupe, sports utility vehicle (SUV) and pickup truck. This data enables grammatical analysis using the 

automated induction techniques by evaluating splines as elements in the structured graph to be induced. 

Additionally, by modulating spline parameters, a continuous space of automobile designs can be 

established allowing for a larger dataset to be evaluated with minimal cost to the data quality. 

In this experiment, known automotive models and generated automotive models spanning the parameter 

ranges of the known models (Orsborn et al., 2006) are classified into automotive categories. Generated 

models are used to standardize the number of cases to 100 in each category so that fair comparison can 

be conducted between more and less populated categories. Categorization is conducted using nearest 

neighbors in the grammar rule Hilbert space, and differences between designs are established with 

Euclidean distance. OddBall is not used here for comparison because of the nature of the representation 

it uses, relying on anomalous features on the graph level. 
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Figure 10 Vehicle splines for automotive category classification. The vehicle splines utilized: (1) 

front wheels, (2) rear wheels, (3) front wheel well, (4) rear wheel well, (5) front fender, (6) rear fender, 

(7) front bumper, (8) rear bumper, (9) front windshield, (10) rear windshield, (11) grill, (12) headlight, 

(13) hood, (14) roof, (15) trunk, (16) taillight, (17) rocker, (18) door, (19) front side window, (20) rear 

side window, (21) door handle, (22) ground, and (23) belt line (Orsborn et al., 2006). 

Results 

This research aims to evaluate how well automated grammar based classification compares with existing 

methods, both generally and in applications to design. In this way, the results for this analysis are 

grouped by research question, instead of by experiment. 

Is the grammar based approach accurate? 

The Rule Frequency grammar based approach detected smaller property differences on average than 

OddBall in simulated graphs, with the notable outlier of circuit rank (Table 1). Overall, the grammar 

method had an accuracy 8.6% better than OddBall in aggregate, based on the average difference of 

detection accuracies of all the normalized properties across all rounds. The potential reason for the 

outlier is that the underlying statistic did not influence graph structure meaningfully, thereby being less 

detectable with the structure based grammar method than the mixed analysis of OddBall. However, the 
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aim of this comparison  is to show parity with Oddball in this section. In the next segment of analysis, 

the rate at which each algorithm learnt is compared. 

Table 5 Graph property detection with rule frequency. Within simulated graphs, smallest change 

detectible with significance (p ≤ 0.05), normalized to a 0,1 interval, with significance established against 

cross validated cases over identical trials between evaluation methods. 

Graph property OddBall Rule Frequency 

Circuit rank .25 ± .01  .28 ± .00 

Girth .23 ± .02 .05 ± .04 

Clique number .23 ± .08 .16 ± .05 

Book thickness .37 ± .09 .17 ± .01 

Boxisity .08 ± .06 .07 ± .06 

 

In the automotive categorization problem, the grammar based method was used to successfully classify 

categories (Table 2) based on statistical category ranges identified in the literature (Orsborn et al., 2006), 

with simulated and actual automotive data. The SUV category had most notable performance, which 

was attributed to its structural overlap with the other two categories, making it most likely to have 

comparable rule frequencies with all other automobiles. In other words, this result demonstrates how 

rule frequency functions well for differences in relatively similar data cases, a key tenant of the 

approach’s design. 
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Furthermore the key splines (see Figure 5) were identified as indicative of particular category rule 

targets. The identified rule targets (Table 2) are those that were found as indicative of the appropriate 

category in the top 25% of rules. Functionally these align directly with features related to each category. 

Table 6 Automotive categorization accuracy and key rule targets used for differentiation. 

Classification accuracy indicates the percentage of models in that category that were accurately 

classified out of 100 trials including both existing models and simulated models adhering to the 

established categories. Rule targets’ semantic interpretation is based on rule descriptions from Orsborn 

(Orsborn et al., 2006). 

Category Classification accuracy Rule targets 

Coup 76% Tail light, headlight, grill, 

bumper orientation 

SUV 93% Truck closure, rear window 

Pickup 82% Truck bed, rear window 

 

Is the grammar based approach fast? 

As shown in Table 7, the amount of training needed to perform classification to a given percent accuracy 

is much smaller for the grammar based, rule frequency approach. In other words, the grammar based 

approach achieves similar accuracy with much less training data, making it useful for situations in which 

there is limited available data to train on. 
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Table 7 Learning rate for generated graphs, shown as the number of cases required in training, before 

a particular percentage of the achieved accuracy could be established. Trials are reported on cross 

validated data, identical between detection techniques. 

Accuracy 

threshold 

OddBall Rule Frequency 

25% 14 2 

50% 23 2 

90% 29 3 

 

In the automotive problem, learning rate is not directly measured because there is no baseline. However, 

the classification conducted showed the same degree of consistency as the graph comparison. In other 

words, learning was effective after 3 instances. 

Discussion		

The introduced method has implications in utilizing rule frequency as a general abstraction of a shape or 

graph grammar and is also useful for further consideration of alternate learning and analysis methods. In 

addition to helping designers deal with shape grammars, this may serve as a useful tool for improving 

the productivity of designers by supporting them in visualizing functional and ontological differences in 

their concepts by leveraging rule frequency based classification on differences in representations such as 

graph grammars, functional decompositions or bond graphs. These types of abstractions provide 

valuable insight into designs, but can be difficult to differentiate when complex systems are represented. 

Furthermore, the introduced approach could aid in patent or tradedress infringement litigation situations 
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where designs’ differences are subject to visual and functional scrutiny by formalizing demonstrative 

rules and facilitating the discussion of those rules as claims in intellectual property filings. 

Similarity detection is a useful prototype application covered in this chapter, but in the long run, many 

other types of insight, for example, learning semantic tags of design features, and developing design 

strategy awareness, are both facilitated by the graph based representation approach introduced in this 

work. In particular, the prospect of achieving numerically robust representations (Mehta and David J. 

Schwab, 2014) could be used to usher in a new variety of deep learning in which representations are 

generalizable and precomputed to drastically improve learning rates in many cases. The longer term 

implication in design is that more fully automated tools for design decision making could emerge, 

because the current roadblocks due to the intrinsic difficulty in representing design knowledge could be 

mitigated, if more design information can be treated as comparable graphs and automatically processed 

in this way. 

Conclusion	

This work contributes a new approach to classification of differences in designs using automated 

grammar induction and a representation relying on the frequency of grammar rules in test cases. 

Experimentation showed it performed as accurately and significantly more sensitively than existing 

approaches for graph based classification and design category distinction. Additionally, this technique 

achieves learning rates significantly faster than a traditional statistical learning method providing a 

turnkey means for quickly classifying designs’ differences that may have lasting impacts in the field of 

design, and may additionally have long-term implications for machine learning. 
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Automated shape grammar as a tool for vascular analysis 

Abstract 

Shape grammars provide an alternative representation which can enrich structured data, facilitating 

learning with smaller datasets. A majority of machine learning methods learn representations apposite 

for further computational analysis; paradoxically, in contexts where data is limited, this leads to limited 

applicability of machine learning techniques. A pressing example of this is in medical scenarios where 

traditional diagnoses rely heavily on biopsy, so related imagery is scarce. For example, refined imagery 

of vessels is rarely clinically produced, unless needed for specific surgery, despite the fact that 

angiogenesis (Bergers and Benjamin, 2003) and tortuosity are powerful indicators of medical conditions 

(Arvanitakis et al., 2017). This work introduces a method to leverage inherent structures, such as those 

found in blood vessel networks and nervous systems, to reduce the necessity for large quantities of data 

in producing assessments of medical conditions. The approach relies on a notion of shape grammars 

(Stiny, 1980), systems of structural rules, pioneered in the field of design and automated with techniques 

from machine translation and network analysis (Whiting, Cagan and Leduc, 2017). The method is 

validated with time-of-flight (TOF) MRI by generating grammars, and treating the set of grammar rules 

as a bag-of-features (Csurka et al., 2004) over which statistical methods can be readily used to identify 

problematic cases in a small number of patients (n=17). 

Introduction	

Machine learning today requires a large amount of data, for example more than 1 million data points 

were used to outperform humans in dermatology to diagnose skin legions as cancerous or not, when 
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leveraging deep learning techniques (Esteva et al., 2017). However, many kinds of medical data are in 

short supply. This is especially the case when indicative features are not identifiable by experts, such as 

radiologists. Vascular imagery is not traditionally used in many diagnosis contexts, and therefore the 

volume of suitable vascular imagery is relatively low. Yet, vascular tortuosity and angiogenesis have 

been associated with malignancy (Bullitt et al., 2005), and metastasis (Bergers and Benjamin, 2003) in 

sarcomas and other types of tumors. Additionally, vascular anomalies in the brain are a telling indicator 

of a variety of health outcomes in patients (Arvanitakis et al., 2017). 

The reason these traditional approaches require so much data is that the representation of the problem 

space is determined through an approach based on incremental learning from trial and error (LeCun, 

Bengio and Hinton, 2015). Important, however, is how this appears unintuitive, compared with human 

approaches to developing similar representations: we break things down in to visual chunks and make 

meaning of them at multiple scales (Gobet et al., 2001). 

In design literature, shape grammar (Stiny, 1980) and graph grammar (Rozenberg, 1997) techniques 

afford representing complex structural relationships at multiple scales by breaking the information into 

rules with the form of left hand side (lhs) and right hand side (rhs) token pairs, and the tenant that any 

time the lhs is observed it could be replaced by the rhs (Figure 11). Grammar based methods provide a 

tool for generating output within a stylistic language (Trescak, Rodriguez and Esteva, 2009), or 

analyzing existing data through comparison of rules (Stiny and Mitchell, 1978). Such methods have seen 

a diversity of applications including analyzing architecture (Stiny and Mitchell, 1978), comprehending 

the underlying brand principles of modern vehicles (Figure 11A)(Pugliese and Cagan, 2002; 

McCormack, Cagan and Vogel, 2004), and, in an abstract form, aiding in the design of complex 

mechanical systems (Rozenberg, 1997). Traditionally this technique has only been automated by 

computer systems in particular contexts (Gips, 1999; Talton et al., 2012), however, as discussed in 

Chapter 3, an automated technique has been introduced for establishing grammar rules from almost any 
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type of data that can be represented with a graph (Whiting, Cagan and Leduc, 2017). This method uses a 

recursive algorithm involving establishing rules based on similar components in a graph, replacing the 

components with new grammar rules, and then repeating the process, and establishing meta-rules 

(Sondheimer and Weischedel, 1980), rules composed of other rules, which are formulated with the same 

process. Over time the entire graph is induced providing a robust representation of the structural 

information encompassed in the original data.  

 

Figure 11 Shape grammar in design and biological graphs. A) Selected shape grammar rules for a 

motorcycle, which can be parameterized to articulate the Harley Davidson brand (Pugliese and Cagan, 

2002). B) A collection of grammar rules used to generate vessel structures in the form of node graphs. In 

both A and B, the rules are depicted with a left hand side (lhs), which can be detected in context, and a 

right hand side (rhs) which replaces the lhs providing a specific augmentation. In other words, where 

one of the sub-graphs on the left hand side of a rule in B is found in a graph, it can be replaced by any of 

the corresponding right hand side sub-graphs. To afford variability in the output, some rules have the 

same left hand side, while having different right hand sides, such as the first 4 rules depicted here, which 

use the same sub-graph as the left hand side. In A, the augmentations influence overall design shapes, 
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whereas with B, the augmentations adjust graph connections, such as the example shown depicting an 

abstracted vessel graph. 

Classification and analysis based on the frequency of features, such as support vector machines (Cortes 

and Vapnik, 1995) (SVM) and bag-of-features (Csurka et al., 2004) models, provide a context for 

converting a distribution of features into a meaningful signal about underlying data. A key principle of 

these methods is that particular relationships between features may not need to be considered to uncover 

a reliable signal (Wallach, 2006). For example, bag-of-words models of text use only the presence and 

frequency of word use to classify its content, while ignoring word order. A strength of this approach is 

that it affords analysis without true comprehension of complex data. On the other hand, a weakness is 

that small datasets can be confounding because word order plays a significant role on the sentence level. 

Treating grammar representable data as bags-of-rules enables this kind of analysis to be conducted with 

contextually derived features, grammar rules, as was shown in Chapter 4. A grammar based 

representation also has the strength that it is not simply a bag-of-words, but a bag of induced rules, 

which encompass structural information, affording analysis with even relatively small datasets. In this 

sense, the intuition of a rule in a grammar tends to be more like a single word in a multi-page document, 

as opposed to a word in just one sentence. 

Using automated grammar induction from Chapter 3 (Whiting, Cagan and Leduc, 2017) (Figure 12C), 

and grammar-based classification from Chapter 4 to determine differences, and key factors with medical 

outcome associations, this work introduces a technique for detecting important and specific differences 

between patients by leveraging a simple protocol for extracting spline networks of vasculature 

(Helmberger et al., 2014) (Figure 12B) from time-of-flight MRI data  (Figure 12A). The spline networks 

are converted to a graph which can then be used to build a grammar with the automated induction 

method. The resulting vessel grammar undergoes deduplication and simplifications before being used to 

evaluate how often each patient sample uses each rule. The rule counts serves as a feature for 
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differentiating indicative factors using a traditional statistical learning techniques such as those 

leveraging bag-of-features models (Csurka et al., 2004).  

 

Figure 12 A depiction of the pipeline from MRI to grammar rules. A) A time-of-flight MRI shown 

from the mid-sagittal plane and rendered with a maximum intensity projection of the full brain. B) 

segmentation from the shown MRI aligned at the same orientation with parts of the vessel structure 

marked indicating distinct areas found in highlighted rules. C) A subset of the induced rules shown with 

their index and description as well as instances found in the scan. This pipeline indicates the major 

processing steps in preparing rules for classification and then finding them in the data from a given scan 

to establish the bag-of-rules representation. Note that through the deduplication and matching process 

rules often do not appear identical to the actual cases in the scan but are abstracted through the grammar 

induction process. Additionally, note that some rules are relatively similar to the human eye, but 

structurally significant for the grammar analysis. These are 2D projections of 3D vessel networks, so 

some rules include vessels that overlap in this visualization but do not intersect, these situations are 

marked with a small black dot in the rules. The full set of rules is available in Appendix 1.  
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This work leverages T3 TOF MRI scans from 17 sickle cell anemia patients. Known condition 

indicators for each patient were annotated, and a regression of patients and diagnoses was conducted 

based on the rule frequency representation of patient scans from the automated grammar classification 

process. Repeated grammar induction and deduplication resulted in a stable set of 47 rules with diverse 

counts across the data (Figure 13). By checking how well each rule, and groups of rules predicted each 

condition, singular rules and groups of rules that are significantly indicative of the conditions were 

identified. In testing this model through cross-validation, setting aside all but one sample of the data for 

testing, and training on the rest of the available data, conditions were identified commensurate to the 

significance of the model in the first round of analysis. In addition, the rules whose presence was 

significantly indicative of conditions tended to be similar in form to indicators radiologists’ use when 

identifying these conditions. For instance, drastic reductions in venous radius indicated ischemia, a 

shortage of blood flow to a specific part of the body, causing infarction, the death of nearby tissue due to 

lack of blood flow. Rules indicating this reduction in venous radius were identified as prevalent 

indicators from the data as shown in Figure 17. 

  

Figure 13 Grammar rule counts shown across all patients. The red markers indicate the mean of patients’ 

rule frequencies for each rule. The black markers indicate that one of the 17 patients had that many 

instances of a particular rule in the evaluated data. Rule indices are assigned arbitrarily based on the 
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order the rules are finalized by the algorithm. This demonstrates that rule frequencies vary significantly 

across the body or rules.  

Methods	

Dataset	

Our dataset consists of 17 sickle cell anemia patients’ multi modal MRI scans of the brain taken as part 

of a larger study conducted under the guidance of Dr. Enrico Novelli and Dr. Joseph Mettenburg at the 

University of Pittsburgh Medical Center1. Patients ranged in age from 23 to 66 (average age 37.4) and in 

prognosis, from fully functional, to bedridden, and cognitively impaired. 7T time-of-flight imagery was 

used as it is a modality of MRI that provides coherent signals of arterial flow in the brain (as is visible in 

Figure 12A). The scans were taken with 320μm isotropic resolution over the full brain. An advantage of 

time-of-flight imagery is that at this resolution, the arterial flow is very clear and assumed to be 

physically accurate in terms of position and scale, due to minimal blooming in the time-of-flight 

modality. 

6 radiologically identifiable conditions were incorporated in this analysis based on key vascular 

indicators which can be used by radiologists when identifying them. 

1. General	 infarction	and	 ischemia	 is	correlated	with	areas	of	 reduced	flow	or	uneven	flow,	and	

can	 have	 impacts	 such	 as	 migraines.	 Ischemia	 is	 also	 age	 dependent	 in	 that	 a	 natural	

progression	of	brain	aging	is	for	some	tissue	to	die	irreparably.	

                                                
1 The data used in this study were used upon request from UPMC and are therefore not available to be 
shared publicly at the time of publishing. 



	 71	 	

2. Arteriolosclerosis,	 a	 variety	 of	 infarction	 caused	 by	 buildups	 of	 plaque,	 can	 be	 identified	 by	

signals	such	as	uneven	changes	in	venous	radius.	

3. Hypertension,	a	condition	brought	on	by	extended	high	blood	pressure	implicates	tortuosity	in	

arterial	vasculature.	

4. Aneurism	 is	 identified	 with	 areas	 of	 distended	 vasculature	 and	 has	 serious	 health	 impacts	

including	sudden	death.		

5. Signals	 like	abruptly	terminating	vessels	 in	the	brain	are	indicators	of	other	problems,	such	as	

potential	stroke.		

6. Lastly,	smooth	reductions	 in	venous	radius	can	indicate	local	pressure,	or	flow	problems	from	

infection.		

With these indicators and associated conditions 6 categories of vessel patterns are identified and are 

used in assessing patients in the analysis in this chapter. They will be referred to by number for the 

remainder of the chapter. 

 

Figure 14 Data preparation process. A) A sampling of the original MRI image, B) a 3d extraction of the 

brain and skull, C) A spline running through a singular vessel after point averaging.  
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Data	preparation	

Vascular surfaces were extracted from the time-of-flight scans and exported to the STL file format using 

Horos’s default threshold standard (Figure 14A). Extraneous data such as isolated venous artifacts and 

skull fragments were manually removed en masse in Blender (Figure 14B). The center splines of the 

vascular surfaces were identified by averaging 3D points’ locations until a singular point remained at 

every cross-section using the Blender API (Figure 14C). This process was conducted semi manually to 

provide added flexibility when dealing with this  small dataset; however, analogous approaches have 

been fully automated, achieving a similar resulting vessel graph (Zhang et al., 2006; Helmberger et al., 

2014). The distance threshold used to average vessels to splines was recorded at each spline point as an 

accurate approximation for vessel width. A graph was formed, identifying position and diameter at every 

point along all the resulting splines. Splines that, at some point, pass closer than the width of a vessel 

were considered intersecting for the sake of the graph abstraction, so a node would be added at that point 

in the graph encapsulating an intersection. 

Grammar	induction	and	checking	

Grammar rules were inferred from the vascular graph data of each patient by identifying repeated 

subgraph elements as rules and recursively expanding the bounds of the isolated subgraph to get the 

largest reasonable rule representation, leveraging the method introduced in Chapter 3 (Whiting, Cagan 

and Leduc, 2017). Meta-rules (Sondheimer and Weischedel, 1980) were inferred through the same 

recursive method after the initial data was entirely induced (Figure 12C demonstrates this pipeline and 

shows a subset of the induced rules). The set of rules was deduplicated between patients to achieve a 

minimal coherent set by using a Markov equivalence class (Andersson, Madigan and Perlman, 1997) 

approach that found groups of rules from different cases with overlapping functions using the methods 
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introduced in Chapter 4. The rules were counted in the data of each patient (Figure 13), producing a rule 

count representation amenable to use as a Hilbert space and for bag-of-feature style processing. 

This process was conducted repeatedly, with the entire set of 17 patients, and with subgroups of the 

population to evaluate how grammar induction results were impacted by the number of patients induced. 

47 rules were identified when the entire dataset was processed and deduplicated (the entire body of rules 

are visualized in Appendix 1). In alignment with the results in chapter 4, even inducing just 3 patient 

cases established a robust library of rules, enabling rule counting from other patients’ data. Adding more 

patients’ data to the induction process had a minimal impact on the quantity of resulting rules. As a 

consequence, and to leverage a standardized representation throughout the classification analysis, the set 

of 47 rules is used for the rest of this chapter. 

Identifying	condition	indicators	from	rules	

Condition indicators were treated as binary categorical features. Rules were treated as features of 

varying occurrences, depending on how many times the rule was found in a patient’s data. By 

associating patients with conditions they’re known to possess, rule count distributions for each condition 

were established. These were processed as deviations from the average number of times a particular rule 

was used, because rule count is not regularized (Figure 15 shows conditions deviance from the norm for 

each rule). By ranking the rules from most to least significant for each condition, rules with outstanding 

significance for unique conditions were identified (Figure 17). These rules are key indicators and for the 

conditions, in some cases, even just one rule was enough to identify a condition within the patients with 

better than 1:100 odds of error, based on the likelihood that a given rule is a statistically accurate 

representation of that condition indicator.  

The rules better than 1:20 odds of error were combined as generalized linear models predicting each 

condition for evaluation leading to 6 models with that set of rules. Additionally, models encompassing 
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the set of the 6 key rules and models with individual key rules for individual conditions were also 

assessed. These three groups of regressions were used to construct 18 models in total, because one was 

trained to predict each of the 6 condition indicators (all 18 regression tables are included in Appendix 2). 

The models were evaluated with leave-one-out cross validation, such that one patient’s data was not 

considered in generating the model for evaluation, and that patient was used as a test and the error of the 

model prediction versus the patient’s actual condition was recorded. After every patient had been 

evaluated in this way, the error was averaged. Error values for each condition, in each of the three model 

types are reported. 

 

 

Figure 15 Conditions’ deviance from rule count norms. Each condition (numbered) is rendered to 

show how it deviates from the average of patients for that rule. Bars indicate 95% confidence intervals 

of a particular condition for a particular rule. Some rules are clearly distinct indicators of particular 

conditions, for example rule 26 for condition indicator 6, and rule 39 for condition indicator 1. 
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Figure 16 Indicative error odds associated with each rule for each condition, rendered on a 

logarithmic scale. The inverse p-values were used to indicate the error rate of an individual rule at 

detecting a particular feature. Dotted and dashed lines indicate the 1:100 and 1:20 error odds thresholds 

respectively. These are analogous to p-values ≤0.01and ≤0.05. Several rules indicate conditions with 

better than 1:100 odds of error, while many more indicate at 1:20 odds of error. 

Results	

Identifying	indicative	rules	

Using a regression model, the significance of each rule in predicting a given condition indicator was 

computed (see Figure 5). With this approach, 6 key rules were identified which individually detect 

particular conditions with significance; rule 39 indicates condition 1 (p ≤ 0.035), rule 6 indicates 

condition 2 (p ≤ 0.020), rule 21 indicates condition 3 (p ≤ 0.007), rule 27 indicates condition 4 (p ≤ 

0.025), rule 44 indicates condition 5 stroke (p ≤ 0.027), and rule 29 indicates condition 6 (p ≤ 0.006) 

(These rules are visualized in Figure 17). Each condition has at least one rule above a 1:20 error odds 

threshold, and several perform with error odds of less than 1:100, in accordance with some clinical 

standards of accuracy, for example, rules 29 and 21 in identifying condition 5 and condition 3 

respectively. 
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This analysis provides the insight that individual rules can sometimes be very robust indicators of 

conditions. However, this analysis alone can’t distinguish the causal nature of the relationship between a 

rule and condition indicator because this data only encompasses one moment in the life of the patient.  

Evaluating	training	accuracy	

The leave-one-out cross validation experiment agreed with the model evaluation above by averaging 

error from each round of the cross validation when detecting each condition indicator. However, 

overfitting is expected, as rules judged important to the set, failed to indicate a condition in the 

experiment as accurately as the simpler models (Table 8). This is judged to be the case because of the 

large number of rules (or features) relative to the amount of training data.  

Some conditions, like condition 4, have much higher error in the larger models but relatively low error 

in the key rule alone case. This is related to the fact that condition 4 has only rule 27 as a significantly 

associated rule, as as shown in Figure 16. On the other hand, condition 5 retained relatively better 

predictive accuracy compared with other conditions, which is attributed to rules 40 and 44. This 

suggests that establishing indicative rules is a more effective diagnostic technique when broader signals 

are not available.  

Table 8 Leave-one-out cross validation of evaluation models for each condition indicator. The 

cross-validation error values are reported (smaller is better). The key rule alone column shows the error 

when predicting conditions using only the key rule. The key rule model column shows the error when 

predicting conditions using a model that encompasses all the key rules. The 1:20 rule model column 

shows the error when all of the rules with better than 1:20 odds (as shown in Figure 16) are used to 

generate the model. 

Condition Key rule alone Key rules model 1:20 rule model 
1 0.2050 0.2695 7.2847 
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2 0.1884 0.2892 7.6045 
3 0.1647 0.2141 8.3606 
4 0.2196 0.4108 25.0388 
5 0.2280 0.2797 1.2642 
6 0.1539 0.3427 5.8774 

	

Key	rules	in-situ	

Qualitatively comparing key rules to vessel patterns expected by radiologists for each condition 

indicator, there are some visually coherent rule associations, and some that do not align intuitively. 

Figure 17 shows each rule in-situ with the related diagnostic indicator. The key rules for condition 

indicators 1 and 3 show a pattern that can be visually interpreted similarly to the condition indicator. 

However, many of the other rules found to predict and indicator well don’t actually appear visually 

similar to the signals radiologists use. This does not degrade the accuracy of prediction, but speaks to a 

challenge that radiologists face when assessing conditions: traditional indicators remain relatively 

nonspecific, and, due to a lack of structured computational analysis, it is hard for them to formally refine 

the indicators for which they look. On the other hand, radiologists look for much more than a few graph 

rules when diagnosing a patient, and the wealth of other data they incorporate plays an instrumental role 

in achieving high quality diagnoses. 



	 78	 	

 

Figure 17 Rules in-situ vs rules in theory. A) key rules from the grammar with their rule index, B) key 

rules in-situ based on the detection conducted in the classification process, C) descriptions of each 

condition indicator based on the radiological assessment of a vessel pattern. Condition indicators 1 and 3 

are visually recapitulated by the grammar rules, however the others do not offer an obvious 
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interpretation. As a side note, rules in-situ show the outcome of the rule being applied, and in some 

cases, like condition 6, it is not obvious that a rule should be applied at this time, without insight from 

the specific graph context of the rule application process, which is not readily visualized. Also note that 

the grammar rules are abstracted during the induction process to make them applicable between cases, 

so examples from the data are not visually identical. Lastly, these are 2D projections of 3D vessel 

networks, so some rules include vessels that overlap in this visualization but do not intersect, these 

situations are marked with a small black dot in the rules.  

Discussion	

Data	limitations	and	opportunities	

This work introduced a mechanism for identifying a variety of conditions with a small number of 

patients as training data. Though some condition indicators were evaluated with a clinical level of 

accuracy, others remain too low for clinical application. This is attributed to a small dataset in which 

overfitting occurred, however, demonstrating robust accuracy for some conditions asserts that with more 

data and statistical relevance for each condition, reliable signals are likely able to be found with a dataset 

in which there are a similar number or more patients compared with rules. For example, a complete 

conditional model, describing how the ensemble of rules can indicate conditions together could be 

evaluated if more test cases were available. 

It is hard to draw conclusions about how conditions that were not explicitly identified in the data may or 

may not be revealed by the rule frequency technique. Assessment of larger medical diagnosis datasets 

and other nonmedical attributes, such as lifestyle data, are necessary for that analysis, and could lead to 

an exciting line of exploration.  
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The time-of-flight mode of imagery used in this study is effective for identifying large scale vessel 

structures. However, small vessels are not identified coherently by the method used for these scans due 

to a rate of flow threshold. The method introduced in this chapter is amenable to rich vessel graphs that 

include these smaller vessels, however traditional analysis techniques are not, so such data is not readily 

produced clinically. Incorporating this kind of data could provide a trove of previously unexplored 

signals. 

Another challenge faced in this work is that brain morphology and local vascular patterns were not 

considered. Vessels grow differently in each part of the brain, however the root cause for this difference 

is not yet readily understood, so it is challenging to quantify these differences without a targeted study. 

Additionally, other aspects of brain morphology, such as the cortical thickness were outside of the scope 

of the vascular graph and were not incorporated. 

Grammar	method	developments		

The number of grammar rules, or number of detection features, has direct implication on the kinds of 

analysis that can be conducted. By finding ways to better pair down the rule set before analysis is 

conducted, for example by defining a more aggressive approach to targeting rule deduplication, or by 

leveraging a probabilistic similarity check when conducting initial grammar induction, an even more 

concise grammar may be found to be sufficiently expressive. 

Alternative approaches to each step in the pipeline were not explicitly evaluated. For instance, 

automated techniques for segmenting and extracting a spline network, generating subgraph frequency 

based representations (Kuramochi and Karypis, 2001), and more advanced statistical anomaly detection 

methods could all have been used in comparison. In this way, this work stands as a proof of concept in 

introducing a new technique, which has many opportunities for growth and future research development. 
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Conclusion	

This work demonstrates two important perspectives on the state of automated data analyses, particularly 

relevant to computational radiological assessment: 1) data requirements are drastically decreased by 

utilizing inherent structural information and learning over structural features, making the bag-of-features 

approach assessable on a diversity of alternative types of data, 2) specific alternative representations, 

such as design based grammar models, afford structured symbolic abstraction of graph structured data. 

The combined implication of these is that many traditional applications of machine learning in medicine 

may be revisited, and many new avenues of analysis may be unlocked by both considering structural 

information as a key indicator, and identifying derivable high-level representations which can be learnt 

as preprocesses for further classification or analysis using statistical methods. The net effect of these 

methods is that clinical analysis can leverage greater speed in processing and greater reliability in 

isolating indicators for particular conditions. In the context of this work, the introduced approach is also 

highly suitable for many other types of analysis in the medical domain such as, oncology, neurology, 

hematology and epidemiology, in addition to fields outside of medicine that implicitly or explicitly 

utilize graph structured data.  
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Discussion 

This work has focused on presenting a way of inducing structural information that facilitates accurate 

training with fewer data samples than traditional, statistical learning techniques. In this case, automatic 

induction of shape and graph grammar has been used to form an intermediary representation that allows 

a small number of cases to be used with machine learning frameworks such as support vector machines, 

bag-of-features representations, and Hilbert spaces. However, a key implication of this work is that other 

similar alternative and intermediary representations may exist which could prove very useful for a wide 

range of applications. One example of this is medical analysis situations where governing models of a 

particular condition are known, but not being used when applying machine learning for data rich 

analysis. 

In this way, an important underlying concept of this work was not to suggest that grammars are the only 

reasonable structured representation, but to suggest that grammars may be one of many that can be used 

in a wide range of contexts. 

Limitations	

This work has taken a very practical and applied approach to evaluating the proposed techniques. There 

is the possibility to produce more generalizable claims and proofs about these types of methods, in 

particular, proving that structural preprocessing could improve information in such a way that a learning 

algorithm would perform provably better given such a representation, than using a traditional learnt 

representation through deep learning. This kind of analysis has not been included in this work as it 

intends to serve as a proof of concept, opening the door for more explorations of this type in the future, 

by communities of researchers who have particular focus in determining computational bounds.  
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Another core limitation of the approach taken is that a majority of the cases considered are from either 

engineering or design, and thereby have not explored the full spectrum of potential application areas. 

The medical application presented in Chapter 5 is a notable outlier in this way, however many other 

contexts would be exciting to explore in the future. For example, how do grammar induction and 

classification techniques work in identifying specific members in social networks, such as fake accounts 

on Facebook. Another group of exciting directions is in the analysis of information and logistic networks 

such as the internet, local intranets, or even physical networks like plumbing systems. During the 

preparation of this dissertation, many of these directions were considered, however the design and 

medical applications were settled upon because the design examples are most salient to the experts in the 

associated methods, shape and graph grammar, and because the medical application offers an 

application with a high potential to improve people’s lives. Additional medical applications were also 

explored in the preparation of this dissertation, in particular applying this method in assessing soft tissue 

tumor risk, however availability test data made it impossible to pursue that exciting direction. 

Constrained by the number of application areas studied in this dissertation, only a small number of 

statistical learning mechanisms were tested with the grammar based classification method. Initial tests 

indicate that other techniques would work well, but they were not explored as part of this work, which 

serves as an opportunity for further research. In particular, integrating structured representations into 

deep neural networks seems to be an exciting future pursuit which could lead to useful improvements in 

the learning speed of such systems. 

Larger	implications	

Learning more with less data is an oft cited challenge in trying to build artificially intelligent systems. 

Statistical machine learning can lead to high accuracy predictions, but the training data involved makes 

many types of prediction impossible. This work has tried to introduce an approach to avoiding this 
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problem, using a specific intermediary representation, grammar. However, other formalisms could be 

developed that led to even more robust efficiency gains. For instance, it may be possible to design 

formalisms specifically for the purpose of learning certain kinds of information quickly and robustly.  

In recent years, the tendency for deep analysis of the underlying intuitions of machine learning 

techniques has led us to realize that much of what deep learning does differently is evoke a learnt 

representation. Perhaps, with techniques like the one this work introduces, the processes for learning 

such representations can be accelerated, and made more strategically focused on the particular goals of 

the learning at hand. Though we are relatively unaware of the underlying mechanisms of how humans 

think so dynamically, the prospect of having higher order awareness of structural sensibilities about 

material to be learnt is intuitive, and yet, this multi-scale metacognition is still largely unaddressed by 

computational approaches to the same problem. 

An additional avenue of implications lies in the communities who already use grammars and who may 

be able to now leverage them more easily, and rapidly. For example, in design, shape grammars have 

been used to distinguish brand characteristics and help in related litigation cases. With an automated 

grammar based classification technique, this kind of analysis may be possible pre hoc, supporting 

designers in considering a wider spectrum of design solutions, and mitigate infringement situations. 

Although in this work, classification has been the main outcome of automated grammar induction, the 

prospect of pairing particular grammar rules with user intent, or designer intent, is also an exciting 

model which could lead to drastically new tools for automated design. 
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Conclusion 

This dissertation introduces an approach for detecting differences in structured datasets using a small 

amount of data based on a combination of automated grammar induction, and a rule frequency based 

representation, making statistical methods effective, despite limited training data. The method was 

validated with design cases, with comparator cases from machine learning literature, and in a medical 

application, identifying brain vasculature structure indicating health conditions in sickle cell anemia 

patients. 

This chapter will review the contributions and discuss avenues for future work.  

Summary	of	contributions	

This work has presented 4 main contributions: 

Automated	grammar	induction	

A generalizable automated grammar induction algorithm was introduced and found to be widely 

applicable, scalable, and efficient for moderately sized graphs. The literature is rife with solutions to 

parts of this problem, this work contributes a first complete and generalizable solution that can be 

applied in any context where a dataset can be represented as a graph of some kind. 

Grammar	induction	evaluation	heuristics	

A set of 4 simple metrics that can be used to evaluate a grammar induction process were introduced. 

Accuracy, variability, repeatability and conciseness leverage the existing literature on representing style 

with grammar and creating concise representations, to contribute a quick way for grammar induction 

efforts to be evaluated and compared. Although some methods exist for particular characteristics of 



	 86	 	

grammar representation effectiveness, these heuristics offer a new, simple and generalizable measure 

which can be applied in many different settings without adjustment. 

Grammar	based	classification	

A new pipeline and combined approach for using grammars to represent data in a rule frequency based 

Hilbert space or similar representation was introduced. In particular, providing a way to convert 

grammar data into a form that is easily processed by existing statistical learning methods, so it can then 

be quickly computationally processed, is of critical convenience for the use of grammars. In this case, 

doing so in an end-to-end, automated pipeline facilitates a trove of further applications of grammar 

formalisms being used in design and non-design classification situations.  

Application	of	grammar	based	classification	methods	in	medical	image	analysis	

Lastly, this work is the first to demonstrate using grammar based classification to predict health 

conditions based on rule distributions from grammars constructed with brain vasculature. The medical 

implication of this contribution is two-fold, 1) grammar methods may help in situations where a limited 

amount of diagnosis data is available, 2) existing radiological techniques can be extended through 

careful application of structured information. 

Impacts	

The most immediate impact of this work is to provide new ways for grammar based analysis to be 

applied. However, the long-term implications and impacts lie in the potential for these methods to be 

used in broader fields. Additionally, the key insight of this approach—using intermediary structuring 

representations to improve learning—can be applied with other structuring techniques and in other 
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domains. Together these factors mean that this work could have lasting impacts in a variety of research, 

business and clinical applications in which structured data is readily assessed.  

An additional impact of this dissertation could be to provide new ways to augment radiologists’ work, 

providing more affordable and more reliable service that can help let the radiologists focus on special 

cases that are not easily computationally addressed. 

Future	work	

The most pressing directions for future work are in exploring alternative structuring techniques, and 

establishing robust bounds for the general approach of utilizing intermediary representations to provide 

improved performance in statistical learning settings. Additionally, working to improve the efficiency 

and coverage of grammar induction methods, working to integrate a wider variety of statistical 

techniques for distinguishing grammars, and exploring the range of representation output styles, are all 

directions of research which would lead to long-term improvements in applying grammars in 

classification and machine learning problems. 

From a research perspective, each area this dissertation has focused provides opportunities for exciting 

future assessment. The grammar induction algorithm introduced in chapter 3 is robust and generalizable, 

but requires a graph based representation to start with. An important area of inquiry is in using this kind 

of method with a graph abstraction pre-process, which in many cases, may leverage transfer learning 

(Pan and Yang, 2010) to facilitate extracting graphs from unlabeled visual data, to be used with 

grammar methods. Also from chapter 3, the grammar induction heuristics have potential to become a 

useful assessment aid in the application of grammars in design, and through human-in-the-loop analysis, 

these heuristics could be validated stylistically, as well as computationally. 
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The methods described in chapters 4 and 5 also offer a wide range of opportunities for future research. 

This work served as the tip of the iceberg in applying grammar in assessment of medical conditions and 

in more general classification settings. Exploring how other machine learning techniques can be 

supported with grammars is a next step. Additionally, exploring how these techniques work with 

partially structured and unstructured data types may offer interesting meta insights into how some deep 

learning techniques operate, especially those in which fundamental representations are learnt.  

A	future	for	grammar	

This work has presented a range of opportunities for using grammars in data analysis. Automated 

induction makes this representation accessible, and adding classification techniques provides a context 

for using grammars with other existing computational tools and processes. Additionally, providing 

example applications opens the door for other applications and directions of inquiry. In addition to 

provoking consideration of alternative ways to structure machine learning processes, this work aims to 

make it possible for grammar techniques to be revisited in many domains where they have seen 

restricted use due to traditional difficulty. 



	 89	 	

 

References 

Agarwal, M. and Cagan, J. (1998) ‘A blend of different tastes: The language of coffeemakers’, 
Environment and Planning B: Planning and Design, 25(2), pp. 205–226. doi: 10.1068/b250205. 

Akoglu, L., McGlohon, M. and Faloutsos, C. (2010) ‘OddBall: Spotting anomalies in weighted graphs’, 
in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics), pp. 410–421. doi: 10.1007/978-3-642-13672-6_40. 

Akoglu, L., Tong, H. and Koutra, D. (2015) Graph based anomaly detection and description: A survey, 
Data Mining and Knowledge Discovery. doi: 10.1007/s10618-014-0365-y. 

Alba, R. D. (1973) ‘A graph-theoretic definition of a sociometric clique’, The Journal of Mathematical 
Sociology, 3(1), pp. 113–126. doi: 10.1080/0022250X.1973.9989826. 

Alexander, C., Ishikawa, S. and Silverstein, M. (1977) A Pattern Language, Ch. Alexander. doi: 
10.2307/1574526. 

Andersson, S. A., Madigan, D. and Perlman, M. D. (1997) ‘A characterization of Markov equivalence 
classes for acyclic diagraphs’, Annals of Statistics, 25(2), pp. 505–541. doi: 10.1214/aos/1031833662. 

Arvanitakis, Z., Capuano, A. W., Leurgans, S. E., Buchman, A. S., Bennett, D. A. and Schneider, J. A. 
(2017) ‘The Relationship of Cerebral Vessel Pathology to Brain Microinfarcts’, Brain Pathology, 27(1), 
pp. 77–85. doi: 10.1111/bpa.12365. 

Ates, K. and Zhang, K. (2007) ‘Constructing VEGGIE: Machine learning for context-sensitive graph 
grammars’, in Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI, pp. 
456–463. doi: 10.1109/ICTAI.2007.59. 

Babai, L. (2015) ‘Graph Isomorphism in Quasipolynomial Time’, arxiv, 7443327, p. 84. doi: 
10.1016/j.disc.2006.09.012. 

Babai, L., Kantor, W. M. and Luks, E. M. (1983) ‘Computational complexity and the classification of 
finite simple groups’, in 24th Annual Symposium on Foundations of Computer Science (sfcs 1983), pp. 
162–171. doi: 10.1109/SFCS.1983.10. 

Balahur, A. and Turchi, M. (2014) ‘Comparative experiments using supervised learning and machine 
translation for multilingual sentiment analysis’, Computer Speech & Language, 28(1), pp. 56–75. doi: 
10.1016/j.csl.2013.03.004. 

Bamossy, G. and Scammon, D. L. (1985) ‘Product Counterfeiting - Consumers and Manufacturers 
Beware’, Advances in Consumer Research, 12(Eds), pp. 334–339. 

Barnes, M. and Finch, E. L. (2008) ‘Collada-digital asset schema release 1.5.0’, Specification, Khronos 
Group. doi: 10.4161/auto.7.11.17661. 

Beck, K. and Cunningham, W. (1987) ‘Using Pattern Languages for Object-Oriented Programs’, 



	 90	 	

Proceedings of the OOPSLA workshop on the Specification and Design for ObjectOriented 
Programming, (No. CR-87-43), pp. 9–16. 

Benrós, D., Hanna, S. and Duarte, J. P. (2012) ‘A Generic Shape Grammar for the Palladian Villa, 
Malagueira House, and Prairie House’, Design Computing and Cognition ’12,  ’12(18), pp. 321–340. 
doi: 10.1007/978-94-017-9112-0_18. 

Bergers, G. and Benjamin, L. E. (2003) ‘Tumorigenesis and the angiogenic switch.’, Nature reviews. 
Cancer, 3(6), pp. 401–410. doi: 10.1038/nrc1093. 

Bernhart, F. and Kainen, P. C. (1979) ‘The book thickness of a graph’, Journal of Combinatorial 
Theory, Series B, 27(3), pp. 320–331. doi: 10.1016/0095-8956(79)90021-2. 

Berwick, R. C. and Pilato, S. (1987) ‘Learning Syntax by Automata Induction’, Machine Learning, 2(1), 
pp. 9–38. doi: 10.1023/A:1022860810097. 

Bullitt, E., Zeng, D., Gerig, G., Aylward, S., Joshi, S., Smith, J. K., Lin, W. and Ewend, M. G. (2005) 
‘Vessel tortuosity and brain tumor malignancy: A blinded study’, in Academic Radiology, pp. 1232–
1240. doi: 10.1016/j.acra.2005.05.027. 

Chakrabarti, D. (2004) ‘AutoPart: Parameter-Free Graph Partitioning and Outlier Detection’, in 
Boulicaut, J.-F., Esposito, F., Giannotti, F., and Pedreschi, D. (eds) Knowledge Discovery in Databases: 
PKDD 2004: 8th European Conference on Principles and Practice of Knowledge Discovery in 
Databases, Pisa, Italy, September 20-24, 2004. Proceedings. Berlin, Heidelberg: Springer Berlin 
Heidelberg, pp. 112–124. doi: 10.1007/978-3-540-30116-5_13. 

Chandola, V., Banerjee, A. and Kumar, V. (2009) ‘Anomaly detection: A survey’, ACM Computing 
Surveys (CSUR), 41(September), pp. 1–58. doi: 10.1145/1541880.1541882. 

Chau, H. and Chen, X. (2004) ‘Evaluation of a 3D shape grammar implementation’, Design Computing 
and …, (1972), pp. 357–376. doi: 10.1007/978-1-4020-2393-4_19. 

Christensen, B. T. and Schunn, C. D. (2007) ‘The relationship of analogical distance to analogical 
function and preinventive structure: the case of engineering design.’, Memory & cognition, 35(1), pp. 
29–38. doi: 10.3758/BF03195939. 

Clarke, L. P., Velthuizen, R. P., Camacho, M. A., Heine, J. J., Vaidyanathan, M., Hall, L. O., Thatcher, 
R. W. and Silbiger, M. L. (1995) ‘MRI segmentation: Methods and applications’, Magnetic Resonance 
Imaging, 13(3), pp. 343–368. doi: 10.1016/0730-725X(94)00124-L. 

Cook, D. J. and Holder, L. B. (1994) ‘Substructure Discovery Using Minimum Description Length and 
Background Knowledge’, Journal of Artiicial Intelligence Research Submitted, 1, pp. 231–255. doi: 
10.1613/jair.43. 

Cortes, C. and Vapnik, V. (1995) ‘Support vector machine’, Machine learning, pp. 1303–1308. doi: 
10.1007/978-0-387-73003-5_299. 

Cover, T. and Hart, P. (1967) ‘Nearest neighbor pattern classification’, IEEE Transactions on 
Information Theory, 13(1), pp. 21–27. doi: 10.1109/TIT.1967.1053964. 

Csurka, G., Dance, C., Fan, L., Willamowski, J. and Cedric Bray (2004) ‘Visual categorization with bag 



	 91	 	

of keypoints’, International Workshop on Statistical Learning in Computer Vision, pp. 1–22. doi: 
10.1234/12345678. 

DeNero, J. and Uszkoreit, J. (2011) ‘Inducing sentence structure from parallel corpora for reordering’, 
EMNLP 2011 - Conference on Empirical Methods in Natural Language Processing, Proceedings of the 
Conference, pp. 193–203. 

Ding, Y. and Palmer, M. (2005) ‘Machine Translation Using Probabilistic Synchronous Dependency 
Insertion Grammars’, Proceedings of the 43rd Annual Meeting of the Association for Computational 
Linguistics (ACL’05), 38(June), pp. 541–548. doi: 10.3115/1219840.1219907. 

Eberle, W. and Holder, L. (2007) ‘Anomaly detection in data represented as graphs’, Intelligent Data 
Analysis, 11, pp. 663–689. 

Esperet, L. (2016) ‘Boxicity and topological invariants’, European Journal of Combinatorics, 51, pp. 
495–499. doi: 10.1016/j.ejc.2015.07.020. 

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M. and Thrun, S. (2017) 
‘Dermatologist-level classification of skin cancer with deep neural networks’, Nature. Nature Publishing 
Group, 542(7639), pp. 115–118. doi: 10.1038/nature21056. 

Fe-Fei, L. F.-F. L., Fergus, R. and Perona, P. (2003) ‘A Bayesian approach to unsupervised one-shot 
learning of object categories’, Proceedings Ninth IEEE International Conference on Computer Vision, 
pp. 0–7. doi: 10.1109/ICCV.2003.1238476. 

Fishburn, P. C. (1983) ‘On the sphericity and cubicity of graphs’, Journal of Combinatorial Theory, 
Series B, 35(3), pp. 309–318. doi: 10.1016/0095-8956(83)90057-6. 

Fouss, F., Pirotte, A., Renders, J. M. and Saerens, M. (2007) ‘Random-walk computation of similarities 
between nodes of a graph with application to collaborative recommendation’, IEEE Transactions on 
Knowledge and Data Engineering, 19(3), pp. 355–369. doi: 10.1109/TKDE.2007.46. 

Gero, J. (1994) ‘Towards a model of exploration in computer-aided design’, Formal Design Methods for 
CAD. 

Gips, J. (1975) Shapes Grammars and their Uses Artificial Perception, Shape Generation and Computer 
Aesthetics, Artificial Intelligence. doi: 10.1007/978-3-0348-5753-6. 

Gips, J. (1999) ‘Computer Implementation of Shape Grammars’, NSF Workshop on Shape Computation, 
pp. 1–11. 

Gobet, F., Lane, P., Croker, S., Cheng, P., Jones, G., Oliver, I. and Pine, J. (2001) ‘Chunking 
mechanisms in human learning’, Trends in Cognitive Sciences, 5(6), pp. 236–243. doi: 10.1016/S1364-
6613(00)01662-4. 

Hagberg, A. a., Schult, D. a. and Swart, P. J. (2008) ‘Exploring network structure, dynamics, and 
function using NetworkX’, in Proceedings of the 7th Python in Science Conference (SciPy2008), pp. 11-
-15. 

Hattemer, H. H. (1982) ‘Genetic distance between populations’, TAG Theoretical and Applied Genetics, 
62(3), pp. 219–223. doi: 10.1007/BF00276242. 



	 92	 	

Helm, D., Labischinski, H., Schallehn, G. and Naumann, D. (1991) ‘Classification and identification of 
bacteria by Fourier-transform infrared spectroscopy.’, Journal of general microbiology, 137(1), pp. 69–
79. doi: 10.1099/00221287-137-1-69. 

Helmberger, M., Pienn, M., Urschler, M., Kullnig, P., Stollberger, R., Kovacs, G., Olschewski, A., 
Olschewski, H. and Bálint, Z. (2014) ‘Quantification of tortuosity and fractal dimension of the lung 
vessels in pulmonary hypertension patients’, PLoS ONE, 9(1). doi: 10.1371/journal.pone.0087515. 

Hodge, V. J. and Austin, J. (2004) ‘A survey of outlier detection methodologies’, Artificial Intelligence 
Review, pp. 85–126. doi: 10.1023/B:AIRE.0000045502.10941.a9. 

Holder, L. (1994) ‘Substucture Discovery in the SUBDUE System .’, (October 2014). 

Jiang, C., Coenen, F. and Zito, M. (2013) ‘A Survey of Frequent Subgraph Mining Algorithms’, The 
Knowledge Engineering Review, 28(2), pp. 75–105. doi: 10.1017/S000000000000000. 

Jones, M., Craddock, P. T. and Barker, N. (1990) ‘Fake? : the art of deception’, in Book, p. 312. 

Kang, U., Tong, H. and Sun, J. (2012) ‘Fast Random Walk Graph Kernel’, in Proceedings of the 2012 
SIAM International Conference on Data Mining, pp. 828–838. doi: 10.1137/1.9781611972825.71. 

Kaus, M. R., Warfield, S. K., Nabavi, A., Black, P. M., Jolesz, F. A. and Kikinis, R. (2001) ‘Automated 
segmentation of MR images of brain tumors.’, Radiology, 218(2), pp. 586–591. doi: 
10.1148/radiology.218.2.r01fe44586. 

Knuth, D. E. (1998) ‘The Art of Computer Programming Volume 3. Sorting and Searching’, Addison 
Wesley, 3, p. 829. doi: 10.2307/2005383. 

Königseder, C. and Shea, K. (2014) ‘Systematic rule analysis of generative design grammars’, Artificial 
Intelligence for Engineering Design, Analysis and Manufacturing, 28(3), pp. 227–238. doi: 
10.1017/S0890060414000195. 

Königseder, C. and Shea, K. (2015) ‘Analyzing Generative Design Grammars’, in Design Computing 
and Cognition ’14, pp. 363–381. doi: 10.1007/978-3-319-14956-1. 

Kotsiantis, S. B. (2007) ‘Supervised machine learning: A review of classification techniques’, 
Informatica, 31, pp. 249–268. doi: 10.1115/1.1559160. 

Kudo, T. and Matsumoto, Y. (2002) ‘Japanese dependency analysis using cascaded chunking’, 
proceeding of the 6th conference on Natural language learning - COLING-02, 20, pp. 1–7. doi: 
10.3115/1118853.1118869. 

Kuramochi, M. and Karypis, G. (2001) ‘Frequent subgraph discovery’, Proceedings 2001 IEEE 
International Conference on Data Mining, (Icdm), pp. 313–320. doi: 10.1109/ICDM.2001.989534. 

Leach, P., Mealling, M. and Salz, R. (2005) ‘A Universally Unique IDentifier (UUID) URN 
Namespace’, The Internet Society, pp. 1–32. 

LeCun, Y., Bengio, Y. and Hinton, G. (2015) ‘Deep learning’, Nature, 521(7553), pp. 436–444. doi: 
10.1038/nature14539. 

Lee, Y. S. and Wu, Y. C. (2007) ‘A robust multilingual portable phrase chunking system’, Expert 



	 93	 	

Systems with Applications, 33(3), pp. 590–599. doi: 10.1016/j.eswa.2006.06.022. 

McCormack, J. P. and Cagan, J. (2002) ‘Designing inner hood panels through a shape grammar based 
framework’, AI EDAM. Cambridge Univ Press, 16(4), pp. 273–290. 

McCormack, J. P., Cagan, J. and Vogel, C. M. (2004) ‘Speaking the Buick language: capturing, 
understanding, and exploring brand identity with shape grammars’, Design Studies. Elsevier, 25(1), pp. 
1–29. 

McKay, B. D. and Piperno, A. (2014) ‘Practical graph isomorphism, II’, Journal of Symbolic 
Computation, 60, pp. 94–112. doi: 10.1016/j.jsc.2013.09.003. 

Mehta, P. and David J. Schwab (2014) ‘An exact mapping between the Variational Renormalization 
Group and Deep Learning’, arXiv, pp. 1–7. 

Michie, E. D., Spiegelhalter, D. J. and Taylor, C. C. (1994) ‘Machine Learning , Neural and Statistical 
Classification’, Technometrics, 37(4), p. 459. doi: 10.2307/1269742. 

Mikolov, T., Le, Q. V and Sutskever, I. (2013) ‘Exploiting Similarities among Languages for Machine 
Translation’, arXiv preprint arXiv:1309.4168v1, pp. 1–10. 

Minsky, M. L. (1991) ‘Logical Versus Analogical or Symbolic Versus Connectionist or Neat Versus 
Scruffy’, AI Magazine, p. 34. doi: 10.1609/aimag.v12i2.894. 

Nevill-manning, C. G. (1996) Inferring Sequential Structure. 

Nevill-Manning, C. G. and Witten, I. H. (1997) ‘Identifying Hierarchical Structure in Sequences: A 
linear-time algorithm’, arXiv preprint cs/9709102, 7, pp. 67–82. doi: arXiv:cs/9709102. 

Orsborn, S., Boatwright, P. and Cagan, J. (2008) ‘Identifying product shape relationships using principal 
component analysis’, Research in Engineering Design, 18(4), pp. 163–180. doi: 10.1007/s00163-007-
0036-8. 

Orsborn, S. and Cagan, J. (2009) ‘Multiagent Shape Grammar Implementation: Automatically 
Generating Form Concepts According to a Preference Function’, Journal of Mechanical Design, 
131(12), p. 121007. 

Orsborn, S., Cagan, J. and Boatwright, P. (2007) ‘A methodology for creating a statistically derived 
shape grammar composed of non-obvious shape chunks’, Research in Engineering Design. Design 
knowing and learning: Cognition in design …, 18(4), pp. 181–196. 

Orsborn, S., Cagan, J. and Boatwright, P. (2009) ‘Quantifying Aesthetic Form Preference in a Utility 
Function’, Journal of Mechanical Design, 131(JUNE), p. 61001. doi: 10.1115/1.3116260. 

Orsborn, S., Cagan, J., Pawlicki, R. and Smith, R. C. (2006) ‘Creating cross-over vehicles: Defining and 
combining vehicle classes using shape grammars’, AIEDAM: Artificial Intelligence for Engineering 
Design, Analysis and Manufacturing, 20(3), pp. 217–246. doi: 10.1017/S0890060406060185. 

Pan, S. J. and Yang, Q. (2010) ‘A survey on transfer learning’, IEEE Transactions on Knowledge and 
Data Engineering, pp. 1345–1359. doi: 10.1109/TKDE.2009.191. 

Piazzalunga, U. and Fitzhorn, P. (1998) ‘Note on a three-dimensional shape grammar interpreter’, 



	 94	 	

Environment and Planning B: Planning and Design, 25(1), pp. 11–30. doi: 10.1068/b250011. 

Pinkwart, N., Aleven, V., Ashley, K. and Lynch, C. (2006) ‘Toward legal argument instruction with 
graph grammars and collaborative filtering techniques’, in Lecture Notes in Computer Science 
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 
227–236. doi: 10.1007/11774303_23. 

Pugliese, M. J. and Cagan, J. (2002) ‘Capturing a rebel: modeling the Harley-Davidson brand through a 
motorcycle shape grammar’, Research in Engineering Design, pp. 139–156. doi: 10.1007/s00163-002-
0013-1. 

Rawson, K. and Stahovich, T. F. (2009) ‘Learning design rules with explicit termination conditions to 
enable efficient automated design’, Journal of Mechanical Design, Transactions of the ASME, 131(3), 
pp. 310111–3101111. doi: 10.1115/1.3066681. 

Rowe, C. (1977) ‘Mathematics of the Ideal Villa and Other Essays’, Jae, p. 48. doi: 10.2307/1424540. 

Rozenberg, G. (1997) ‘Handbook of graph grammars and computing by graph transformation’, 
Handbook of Graph Grammars, 1, pp. 1–8. doi: 10.1142/9789812384720. 

Sánchez-Martínez, F. and Pérez-Ortiz, J. A. (2010) ‘Philipp Koehn, Statistical machine translation’, 
Machine Translation, 24, pp. 273–278. doi: 10.1007/s10590-010-9083-4. 

Savage, D., Zhang, X., Yu, X., Chou, P. and Wang, Q. (2014) ‘Anomaly detection in online social 
networks’, Social Networks, 39(1), pp. 62–70. doi: 10.1016/j.socnet.2014.05.002. 

Schmidt, L. C. and Cagan, J. (1997) ‘GGREADA: A graph grammar-based machine design algorithm’, 
Research in Engineering Design, pp. 195–213. doi: 10.1007/BF01589682. 

Schmidt, L. C. and Chase, S. C. (2000) ‘A Graph Grammar Approach for Structure Synthesis’, Journal 
of Mechanical Design, 122(DECEMBER), pp. 371–376. doi: 10.1115/1.1315299. 

Schnier, T. and Gero, J. S. (1996) ‘Learning Genetic Representations as Alternative to Hand-coded 
Shape Grammars’, Artificial Intelligence in Design, pp. 39–57. 

Schwenk, H. (2012) ‘Continuous Space Translation Models for Phrase-Based Statistical Machine 
Translation’, COLING (Posters), (December), pp. 1071–1080. 

Slisenko, A. O. (1982) ‘Context-free grammars as a tool for describing polynomial-time subclasses of 
hard problems’, Information Processing Letters, 14(2), pp. 52–56. doi: 10.1016/0020-0190(82)90086-2. 

Smola, A., Gretton, A., Song, L. and Schölkopf, B. (2007) ‘A Hilbert space embedding for 
distributions’, Proceedings of the 18th International Conference on Algorithmic Learning Theory, pp. 
13–31. doi: 10.1007/978-3-540-75225-7_5. 

Sondheimer, N. K. and Weischedel, R. M. (1980) ‘A rule-based approach to ill-formed input’, in 
COLING 1980, pp. 46–53. 

Speller, T. H., Whitney, D. and Crawley, E. (2007) ‘Using shape grammar to derive cellular automata 
rule patterns’, Complex Systems- …, 17(1/2), pp. 79–102. 

Stiny, G. (1980) ‘Introduction to shape and shape grammars’, Environment and planning B, 7(3), pp. 



	 95	 	

343–351. doi: 10.1068/b070343. 

Stiny, G. and Gips, J. (1972) ‘Shape grammars and the generative specification of painting and 
sculpture’, Information Processing 71 Proceedings of the IFIP Congress 1971. Volume 2, 71, pp. 1460–
1465. doi: citeulike-article-id:1526281. 

Stiny, G. and Mitchell, W. J. (1978) ‘The Palladian grammar’, Environment and Planning B: Planning 
and Design, pp. 5–18. doi: 10.1068/b050005. 

Stolcke, A. and Omohundro, S. (1994) ‘Inducing probabilistic grammars by Bayesian model merging’, 
Grammatical Inference and Applications, pp. 106–118. 

Suh, N. (2001) Axiomatic Design: Advances and Applications (The Oxford Series on Advanced 
Manufacturing), Clinical neurology and neurosurgery. doi: 10.1016/j.clineuro.2008.04.006. 

Talton, J., Yang, L., Kumar, R., Lim, M., Goodman, N. and Měch, R. (2012) ‘Learning design patterns 
with bayesian grammar induction’, Proceedings of the 25th annual ACM symposium on User interface 
software and technology - UIST ’12, p. 63. doi: 10.1145/2380116.2380127. 

Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P. and Paragios, N. (2011) ‘Shape grammar parsing 
via reinforcement learning’, Proceedings of the IEEE Computer Society Conference on Computer Vision 
and Pattern Recognition, pp. 2273–2280. doi: 10.1109/CVPR.2011.5995319. 

Teboul, O., Simon, L., Koutsourakis, P. and Paragios, N. (2010) ‘Segmentation of building facades 
using procedural shape priors’, Proceedings of the IEEE Computer Society Conference on Computer 
Vision and Pattern Recognition, pp. 3105–3112. doi: 10.1109/CVPR.2010.5540068. 

Trescak, T., Esteva, M. and Rodriguez, I. (2012) ‘A shape grammar interpreter for rectilinear forms’, 
CAD Computer Aided Design, 44(7), pp. 657–670. doi: 10.1016/j.cad.2012.02.009. 

Trescak, T., Rodriguez, I. and Esteva, M. (2009) ‘General shape grammar interpreter for intelligent 
designs generations’, in Proceedings of the 2009 6th International Conference on Computer Graphics, 
Imaging and Visualization: New Advances and Trends, CGIV2009, pp. 235–240. doi: 
10.1109/CGIV.2009.74. 

Wallach, H. M. (2006) ‘Topic Modeling: Beyond Bag-of-Words’, ICML, (1), pp. 977–984. doi: 
10.1145/1143844.1143967. 

Wand, Y. and Weber, R. (1993) ‘On the ontological expressiveness of information systems analysis and 
design grammars’, Information Systems Journal, 3(4), pp. 217–237. doi: 10.1111/j.1365-
2575.1993.tb00127.x. 

Whiting, M., Cagan, J. and Leduc, P. (2017) ‘Efficient Probabilistic Grammar Induction for Design 
Efficient Probabilistic Grammar Induction for Design’, AIEDAM: Artificial Intelligence for Engineering 
Design, Analysis and Manufacturing, pp. 1–31. 

Wootters, W. K. (1981) ‘Statistical distance and Hilbert space’, Physical Review D, 23(2), pp. 357–362. 
doi: 10.1103/PhysRevD.23.357. 

Wu, Z. and Song, S. (2015) ‘3D ShapeNets : A Deep Representation for Volumetric Shapes’, pp. 1912–
1920. doi: 10.1109/CVPR.2015.7298801. 



	 96	 	

Yan, X. and Han, J. (2002) ‘gSpan: Graph-Based Substructure Pattern Mining’, in Proceedings of IEEE 
International Conference on Data Mining, pp. 721–724. doi: 10.1109/ICDM.2002.1184038. 

Yue, K. and Krishnamurti, R. (2013) ‘Tractable shape grammars’, Environment and Planning B: 
Planning and Design, 40(4), pp. 576–594. doi: 10.1068/b38227. 

Zhang, Y., Bazilevs, Y., Goswami, S., Bajaj, C. L. and Hughes, T. J. R. (2006) ‘Patient-specific vascular 
NURBS modeling for isogeometric analysis of blood flow’, in Proceedings of the 15th International 
Meshing Roundtable, IMR 2006, pp. 73–92. doi: 10.1007/978-3-540-34958-7_5. 

 



	 97	 	

Appendices 

Apendix	1	

The full set of 47 induced and simplified grammar rules from the patient data that was processed. Note, 

the grammar rules have been simplified for visualization purposes. For instance, many left hand side 

tokens of rules here are depicted as a linear section of vessel which indicates a relatively arbitrary 

segment of vessel. Additionally, feature scale is not explicitly defined in this grammar approach so scale 

and orientation may change more than is visually obvious in a singular representation of each rule. 

Lastly, these are 2D projections of 3D vessel networks, so some rules include vessels that overlap in this 

visualization but do not intersect, these situations are marked with a small black dot in the rules.  
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Appendix	2	

Regression tables for each of the 18 models are provided. 
 
Condition 1 as predicted by Rule 39 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  0.952474   0.187807   5.072 0.000138 *** 
R39         -0.007339   0.002696  -2.722 0.015744 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4347 on 15 degrees of freedom 
Multiple R-squared:  0.3307,    Adjusted R-squared:  0.286  
F-statistic:  7.41 on 1 and 15 DF,  p-value: 0.01574 
 
 
Condition 2 as predicted by Rule 6 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  1.07832    0.21625   4.986 0.000163 *** 
R6          -0.03263    0.01129  -2.889 0.011236 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4259 on 15 degrees of freedom 
Multiple R-squared:  0.3575,    Adjusted R-squared:  0.3147  
F-statistic: 8.348 on 1 and 15 DF,  p-value: 0.01124 
 
 
Condition 3 as predicted by Rule 21 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 0.012186   0.176276   0.069  0.94580    
R21         0.008287   0.002372   3.494  0.00326 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3946 on 15 degrees of freedom 
Multiple R-squared:  0.4487,    Adjusted R-squared:  0.4119  
F-statistic: 12.21 on 1 and 15 DF,  p-value: 0.003265 
 
 
Condition 4 as predicted by Rule 27 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
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(Intercept)  0.984017   0.208642   4.716 0.000276 *** 
R27         -0.024691   0.009705  -2.544 0.022458 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4441 on 15 degrees of freedom 
Multiple R-squared:  0.3014,    Adjusted R-squared:  0.2549  
F-statistic: 6.473 on 1 and 15 DF,  p-value: 0.02246 
 
 
Condition 5 as predicted by Rule 44 
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) 0.186505   0.199447   0.935    0.365   
R44         0.020146   0.008407   2.396    0.030 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4455 on 15 degrees of freedom 
Multiple R-squared:  0.2769,    Adjusted R-squared:  0.2287  
F-statistic: 5.743 on 1 and 15 DF,  p-value: 0.03003 
 
 
Condition 6 as predicted by Rule 29 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) -0.158810   0.254437  -0.624  0.54190    
R29          0.012732   0.003744   3.401  0.00395 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3823 on 15 degrees of freedom 
Multiple R-squared:  0.4354,    Adjusted R-squared:  0.3978  
F-statistic: 11.57 on 1 and 15 DF,  p-value: 0.003949 
Key Rules ules together models’ regression tables 
 
 
 
Condition 1 as predicted by Rules 39, 6, 21, 27, 44, 29 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)   
(Intercept)  0.6480736  0.5140497   1.261   0.2360   
R39         -0.0069824  0.0028399  -2.459   0.0338 * 
R6          -0.0183819  0.0156622  -1.174   0.2677   
R21          0.0000135  0.0034917   0.004   0.9970   
R27          0.0060207  0.0098786   0.609   0.5558   
R44         -0.0013645  0.0097857  -0.139   0.8919   
R29          0.0080358  0.0049812   1.613   0.1378   
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--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4392 on 10 degrees of freedom 
Multiple R-squared:  0.5445,    Adjusted R-squared:  0.2712  
F-statistic: 1.992 on 6 and 10 DF,  p-value: 0.1602 
 
 
Condition 2 as predicted by Rules 39, 6, 21, 27, 44, 29 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)   
(Intercept)  1.404695   0.522715   2.687   0.0228 * 
R39          0.001563   0.002888   0.541   0.6002   
R6          -0.045881   0.015926  -2.881   0.0164 * 
R21         -0.004131   0.003551  -1.163   0.2717   
R27         -0.010914   0.010045  -1.087   0.3027   
R44         -0.004757   0.009951  -0.478   0.6429   
R29          0.005689   0.005065   1.123   0.2876   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4466 on 10 degrees of freedom 
Multiple R-squared:  0.529, Adjusted R-squared:  0.2464  
F-statistic: 1.872 on 6 and 10 DF,  p-value: 0.1818 
 
 
Condition 3 as predicted by Rules 39, 6, 21, 27, 44, 29 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  0.4332498  0.4139706   1.047  0.31993    
R39          0.0005442  0.0022870   0.238  0.81673    
R6           0.0045094  0.0126129   0.358  0.72813    
R21          0.0105579  0.0028119   3.755  0.00375 ** 
R27         -0.0012490  0.0079554  -0.157  0.87837    
R44          0.0024628  0.0078806   0.313  0.76107    
R29         -0.0109983  0.0040114  -2.742  0.02077 *  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3537 on 10 degrees of freedom 
Multiple R-squared:  0.7046,    Adjusted R-squared:  0.5273  
F-statistic: 3.975 on 6 and 10 DF,  p-value: 0.02693 
 
 
Condition 4 as predicted by Rules 39, 6, 21, 27, 44, 29 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)   
(Intercept)  1.2934544  0.6217659   2.080   0.0642 . 
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R39         -0.0009515  0.0034350  -0.277   0.7874   
R6          -0.0007726  0.0189441  -0.041   0.9683   
R21         -0.0006754  0.0042234  -0.160   0.8761   
R27         -0.0231766  0.0119486  -1.940   0.0811 . 
R44         -0.0046641  0.0118363  -0.394   0.7018   
R29         -0.0021220  0.0060250  -0.352   0.7320   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.5313 on 10 degrees of freedom 
Multiple R-squared:  0.3336,    Adjusted R-squared:  -0.06629  
F-statistic: 0.8342 on 6 and 10 DF,  p-value: 0.5701 
 
 
Condition 5 as predicted by Rules 39, 6, 21, 27, 44, 29 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)   
(Intercept)  0.644858   0.489014   1.319   0.2167   
R39         -0.002759   0.002702  -1.021   0.3313   
R6          -0.014607   0.014899  -0.980   0.3500   
R21         -0.001466   0.003322  -0.441   0.6683   
R27         -0.018252   0.009397  -1.942   0.0808 . 
R44          0.020484   0.009309   2.200   0.0524 . 
R29          0.005802   0.004739   1.224   0.2488   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.4178 on 10 degrees of freedom 
Multiple R-squared:  0.576, Adjusted R-squared:  0.3216  
F-statistic: 2.264 on 6 and 10 DF,  p-value: 0.1214 
 
 
Condition 6 as predicted by Rules 39, 6, 21, 27, 44, 29 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|)   
(Intercept) -1.734e-01  5.045e-01  -0.344   0.7382   
R39          4.668e-05  2.787e-03   0.017   0.9870   
R6           9.408e-03  1.537e-02   0.612   0.5541   
R21         -8.152e-04  3.427e-03  -0.238   0.8168   
R27          5.465e-03  9.694e-03   0.564   0.5854   
R44         -5.523e-03  9.603e-03  -0.575   0.5779   
R29          1.137e-02  4.888e-03   2.327   0.0423 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.431 on 10 degrees of freedom 
Multiple R-squared:  0.5214,    Adjusted R-squared:  0.2343  
F-statistic: 1.816 on 6 and 10 DF,  p-value: 0.1929 
1:20 rules models’ regression tables 
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Condition 1 as predicted by Rules 6, 9, 13, 16, 21, 26, 27, 29, 37, 39, 40, 44, 46 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|) 
(Intercept)  1.0161236  1.0510162   0.967    0.405 
R6          -0.0476424  0.0280170  -1.700    0.188 
R9           0.0057517  0.0088970   0.646    0.564 
R13         -0.0004716  0.0247245  -0.019    0.986 
R16          0.0054677  0.0078664   0.695    0.537 
R21         -0.0052966  0.0068166  -0.777    0.494 
R26         -0.0079283  0.0050983  -1.555    0.218 
R27          0.0162128  0.0147424   1.100    0.352 
R29          0.0118516  0.0099565   1.190    0.320 
R37          0.0008158  0.0102244   0.080    0.941 
R39         -0.0036944  0.0049171  -0.751    0.507 
R40         -0.0162696  0.0266353  -0.611    0.584 
R44         -0.0143228  0.0150392  -0.952    0.411 
R46          0.0038554  0.0039192   0.984    0.398 
 
Residual standard error: 0.4485 on 3 degrees of freedom 
Multiple R-squared:  0.8575,    Adjusted R-squared:  0.2403  
F-statistic: 1.389 on 13 and 3 DF,  p-value: 0.4423 
 
 
Condition 2 as predicted by Rules 6, 9, 13, 16, 21, 26, 27, 29, 37, 39, 40, 44, 46 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|) 
(Intercept)  1.377e+00  9.532e-01   1.445    0.244 
R6          -5.552e-02  2.541e-02  -2.185    0.117 
R9           1.245e-02  8.069e-03   1.543    0.221 
R13          1.003e-02  2.242e-02   0.447    0.685 
R16         -7.909e-03  7.134e-03  -1.109    0.348 
R21         -3.847e-03  6.182e-03  -0.622    0.578 
R26         -2.479e-03  4.624e-03  -0.536    0.629 
R27         -1.228e-02  1.337e-02  -0.918    0.426 
R29          3.931e-03  9.030e-03   0.435    0.693 
R37         -1.499e-02  9.273e-03  -1.617    0.204 
R39          1.634e-03  4.460e-03   0.366    0.738 
R40          2.004e-02  2.416e-02   0.829    0.468 
R44          1.019e-02  1.364e-02   0.747    0.509 
R46         -7.632e-05  3.555e-03  -0.021    0.984 
 
Residual standard error: 0.4067 on 3 degrees of freedom 
Multiple R-squared:  0.8828,    Adjusted R-squared:  0.3751  
F-statistic: 1.739 on 13 and 3 DF,  p-value: 0.3586 
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Condition 3 as predicted by Rules 6, 9, 13, 16, 21, 26, 27, 29, 37, 39, 40, 44, 46 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|) 
(Intercept)  7.046e-01  1.223e+00   0.576    0.605 
R6           4.468e-03  3.261e-02   0.137    0.900 
R9          -1.882e-03  1.036e-02  -0.182    0.867 
R13          7.483e-04  2.878e-02   0.026    0.981 
R16         -9.415e-04  9.157e-03  -0.103    0.925 
R21          1.345e-02  7.935e-03   1.695    0.189 
R26         -6.522e-05  5.935e-03  -0.011    0.992 
R27         -3.803e-03  1.716e-02  -0.222    0.839 
R29         -8.987e-03  1.159e-02  -0.775    0.495 
R37         -4.952e-03  1.190e-02  -0.416    0.705 
R39         -2.197e-03  5.724e-03  -0.384    0.727 
R40         -2.275e-02  3.100e-02  -0.734    0.516 
R44          3.742e-03  1.751e-02   0.214    0.844 
R46          1.060e-03  4.562e-03   0.232    0.831 
 
Residual standard error: 0.522 on 3 degrees of freedom 
Multiple R-squared:  0.807, Adjusted R-squared:  -0.02943  
F-statistic: 0.9648 on 13 and 3 DF,  p-value: 0.5911 
 
 
Condition 4 as predicted by Rules 6, 9, 13, 16, 21, 26, 27, 29, 37, 39, 40, 44, 46 
 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|) 
(Intercept)  2.547263   1.662674   1.532    0.223 
R6          -0.025234   0.044322  -0.569    0.609 
R9          -0.003108   0.014075  -0.221    0.839 
R13         -0.007918   0.039113  -0.202    0.853 
R16          0.007910   0.012444   0.636    0.570 
R21         -0.009467   0.010784  -0.878    0.445 
R26         -0.004801   0.008065  -0.595    0.594 
R27         -0.017969   0.023322  -0.770    0.497 
R29          0.010448   0.015751   0.663    0.555 
R37          0.012672   0.016175   0.783    0.491 
R39         -0.004422   0.007779  -0.568    0.610 
R40         -0.021986   0.042136  -0.522    0.638 
R44         -0.019628   0.023792  -0.825    0.470 
R46         -0.003313   0.006200  -0.534    0.630 
 
Residual standard error: 0.7094 on 3 degrees of freedom 
Multiple R-squared:  0.6435,    Adjusted R-squared:  -0.9014  
F-statistic: 0.4165 on 13 and 3 DF,  p-value: 0.8853 
 
 
Condition 5 as predicted by Rules 6, 9, 13, 16, 21, 26, 27, 29, 37, 39, 40, 44, 46 
 
Coefficients: 



	 105	 	

              Estimate Std. Error t value Pr(>|t|)   
(Intercept) -0.2425816  0.7473009  -0.325    0.767   
R6          -0.0166533  0.0199209  -0.836    0.465   
R9           0.0044095  0.0063260   0.697    0.536   
R13          0.0213104  0.0175798   1.212    0.312   
R16         -0.0056028  0.0055932  -1.002    0.390   
R21         -0.0059824  0.0048468  -1.234    0.305   
R26         -0.0023486  0.0036251  -0.648    0.563   
R27         -0.0054686  0.0104823  -0.522    0.638   
R29          0.0001924  0.0070794   0.027    0.980   
R37          0.0040234  0.0072698   0.553    0.619   
R39          0.0043714  0.0034962   1.250    0.300   
R40          0.0562807  0.0189384   2.972    0.059 . 
R44          0.0206813  0.0106933   1.934    0.149   
R46          0.0007762  0.0027867   0.279    0.799   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3189 on 3 degrees of freedom 
Multiple R-squared:  0.9259,    Adjusted R-squared:  0.6049  
F-statistic: 2.885 on 13 and 3 DF,  p-value: 0.2078 
 
 
Condition 6 as predicted by Rules 6, 9, 13, 16, 21, 26, 27, 29, 37, 39, 40, 44, 46 
 
Coefficients: 
              Estimate Std. Error t value Pr(>|t|) 
(Intercept) -1.0687371  0.8613625  -1.241    0.303 
R6           0.0332268  0.0229614   1.447    0.244 
R9           0.0009424  0.0072915   0.129    0.905 
R13          0.0105955  0.0202630   0.523    0.637 
R16         -0.0040567  0.0064469  -0.629    0.574 
R21          0.0061441  0.0055865   1.100    0.352 
R26          0.0085117  0.0041784   2.037    0.134 
R27         -0.0124972  0.0120822  -1.034    0.377 
R29          0.0021892  0.0081599   0.268    0.806 
R37         -0.0008290  0.0083794  -0.099    0.927 
R39         -0.0018143  0.0040298  -0.450    0.683 
R40          0.0043360  0.0218290   0.199    0.855 
R44          0.0177030  0.0123254   1.436    0.246 
R46         -0.0022358  0.0032120  -0.696    0.536 
 
Residual standard error: 0.3675 on 3 degrees of freedom 
Multiple R-squared:  0.8956,    Adjusted R-squared:  0.4433  
F-statistic:  1.98 on 13 and 3 DF,  p-value: 0.3145 


