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A B S T R A C T

An adaptive model predictive control (MPC) method using models derived from orthonor-
mal basis functions is presented. The defining predictor dynamics are obtained from
state-space realizations of finite truncations of generalized orthonormal basis functions
(GOBF). A structured approach to define multivariable system models with customizable,
open-loop stable linear dynamics is presented in Chapter 2. Properties of these model
objects that are relevant to the adaptation component of the overall scheme, are also dis-
cussed. In Chapter 3, non-adaptive model predictive control policies are presented with
the definition of extended state representations through filter operations that enable out-
put feedback. An infinite horizon set-point tracking policy which always exists under
the adopted modeling framework is presented. This policy and its associated cost are in-
cluded as the terminal stage elements for a more general constrained case. The analysis of
robust stability guarantees for the non-adaptive constrained formulation is presented, un-
der the assumption of small prediction errors. In Chapter 4, adaptation is introduced and
the certainty equivalence constrained MPC policy is formulated under the same frame-
work of its non-adaptive counterpart. Information constraints that induce the excitation
of the signals relevant to the adaptation process are formulated in Chapter 5. The con-
straint generation leverages the GOBF model structure by enforcing a sufficient richness
condition directly on the state elements relevant to the control task. This is accomplished
by the definition of a selection procedure that takes into account the characteristics of the
most current parameter estimate distribution. Throughout the manuscript, illustrative
simulation examples are provided with respect to minimal plant models. Concluding
remarks and general descriptions for potential future work are outlined in Chapter 6.
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1
I N T R O D U C T I O N

There has been a great deal of progress in the field of Model Predictive Control (MPC)

over the last couple of decades. Advances in dynamic optimization allow current non-

linear MPC formulations to solve problems with hundreds of thousands of variables in

the order of seconds (Biegler et al. 2015). Other recent significant developments include

the extension of the objective function to more general forms with Economic MPC for-

mulations (Griffith et al. 2017) and the inclusion of discrete actuators in the problem for-

mulation (Rawlings & Risbeck 2017). A summarizing overview of notable achievements

and promising new directions can be found in (Mayne 2014). Meanwhile, meaningful

advances in the specific field of adaptive MPC have been less common over the same

period. This has been mainly caused by the loss of feasibility guarantees that can of-

ten be claimed for the non-adaptive case. As a direct consequence, assertions derived

from Lyapunov theory with respect to closed-loop stability and robustness using classical

approaches (Goodwin & Sin 1984) are no longer applicable.

Nonetheless, some adaptive MPC formulations that integrate linear model estimation

attributes in their design have emerged in the literature. A defining distinction that can be

1



introduction

made with respect to the proposed methods is whether the formulation actively engages

in the generation of signals that enable adaptation or this is done passively through the

modification of the estimator. An example of the passive approach is the set-membership

identification formulation by Tanaskovic et al. (2014). In this method, a bounded number

of models, belonging to a fixed finite impulse response (FIR) model structure, is updated

recursively. The receding horizon problem is defined to satisfy constraints over all the

members of the model ensemble.

The approach to be presented here belongs to the active learning class. A common

feature found in this type of methods, is the incorporation of the evolution of information

into the constraint set of the optimal control problem. The most relevant approaches to

our work are the dual adaptive MPC by Heirung et al. (2017), the experiment design con-

strained formulation by Larsson et al. (2016), and, most notably, the persistent excitation

formulation by Marafioti et al. (2014). The theoretical basis and practical implications

for these three approaches are reviewed in detail in Chapter 5. Another notable recent

contribution with a similar structure, is the information matrix maximization approach of

Rathouskỳ & Havlena (2013). Instead of constraining the problem directly, the informa-

tion maximization feature is defined by a second stage optimization. The original idea of

including persistent excitation constraints to a predictive controller can be attributed to

Genceli & Nikolaou (1996). Their method is based an iterative semidefinite programming

approach to induce simultaneous model identification in an MPC problem for Single-

Input Single-Output (SISO) FIR systems.

2



1.1 dual control

1.1 dual control

A conceptual framework for the inclusion of active exploration in the control of uncertain

systems was proposed by Feldbaum (1960) as Dual Control Theory. In this seminal work,

the conflicting aspects of control and estimation are formalized as action and investiga-

tion risks. The former is characterized as the loss incurred by probing the system for

identification, steering it away from the desired or best attainable state. The latter, is its

counterpart from the estimation point of view. It represents the loss incurred by trying

to reach the desired state with no regard for the quality of the information generated in

the closed loop. Therefore, it is argued, the input to the system should be defined by

an optimal trade-off of these risks. A purely exploitative control would not lead to the

concentration of the probability densities of the uncertainty of the system. On the other

hand, a purely explorative control would deviate the system dynamics unnecessarily away

from its desired state.

As it will be shown, an adaptive MPC optimal control problem offers the opportunity

to express these risks as components of the objective function and the constraint set. In

our approach, the optimal trade-off of Dual Control will be determined by parameters in

the design that enforce the recursive generation of a desired level of information which

in turn lead to a reduction of the uncertainty of the parameter estimate.
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1.2 reinforcement learning

1.2 reinforcement learning

Approximate Dynamic Programming (ADP) and Reinforcement Learning (RL) methods

have been an increasingly active research area in many engineering disciplines (Lewis &

Liu 2013). These methods provide a similar structure for feedback control of complex,

uncertain systems. Sutton & Barto (1998) define the theoretical basis of RL under three

characteristics of the problem to be solved: the closed-loop nature of the interaction be-

tween an agent and its environment, an agent that must discover which actions yield the

most rewards, and a performance evaluation that considers extended periods. In the RL

context, the agent can be viewed as the MPC algorithm itself, which computes actions

adaptively by solving an optimal control problem defined by the environment’s response

in the form of output measurements.

Most of the research in this field is applicable to systems with discrete action and state

spaces. The solutions to these problems often involve different mathematical approaches

than those of MPC. A notable exception is Q-learning for uncertain discrete linear systems

with an infinite quadratic cost (Bradtke et al. 1994). An adaptive policy iteration scheme is

defined by the parametrization of the state-action Q-function in terms of bilinear features

formed by the state and input elements of the system. Convergence to an optimal policy

is achieved by the addition of an exploratory component to the current estimate of the

optimal linear policy.
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1.3 generalized orthonormal basis functions and adaptive mpc

1.3 generalized orthonormal basis functions and adaptive mpc

The backbone of MPC methods is the ability of the model structure to make accurate

predictions. Adaptation is introduced with the specific purpose of interacting with the

model structure towards this objective. This is not always accomplished in an efficient

manner. One could argue that conventional linear modeling approaches that have attrac-

tive properties for their offline identification may not have the appropriate structure for

their adjustment online in an adaptive scheme. For example, consider the Autoregressive

Exogenous (ARX) model form,

yt + a1yt−1 + · · ·+ anayt−na = b1ut−1 + · · ·+ bnbut−nb + et. (1.1)

This linear structure is at the heart of the most defining contributions to the field of adap-

tive control in the twentieth century. Its coefficients may be determined with least squares

methods and the direct use of elements of the input-output data record. The formulation

of the self tuning regulator by Åström & Wittenmark (1973) and the later generalization

to multivariable systems by Goodwin et al. (1980) were originally framed around this

type of model. The issues may not be evident when computing dead-beat control actions

with ARX estimates. However, when considering multi-step predictions required in the

receding horizon approach inherent of MPC, significant challenges may surface. Most

notably, the lack of stabilizability guarantees of a particular realization provided by the

online estimator. This leads to the so called admissibility problem which can be solved by

parallel estimation (Middleton et al. 1988) or non-convex optimization (Staus et al. 1996).

These methods are still computationally expensive and hard to apply for multivariable

5



1.4 thesis outline

systems. Moreover, model (1.1) can lead to ill-conditioned problems when there are close

pole-zero cancellations. These challenges also emerge for identification approaches with

state-space models. For this case, in general, the linearity of the estimation is also lost.

Beyond addressing the limitations described above, a good modeling alternative must

facilitate the incorporation of plant knowledge into the model, making accurate pre-

dictions more plausible, while facilitating the parallel adaptation component. In this

manuscript, we propose the Generalized Orthonormal Basis Functions (GOBF) modeling

approach, as a compelling framework to study. This choice limits the applicability to

systems that can be accurately approximated with open-loop stable linear models. This

scope still covers many interesting control problems encountered in process systems. A

comprehensive compilation of contributions to the identification and modeling aspects of

GOBF expansions can be found in (Heuberger et al. 2005).

The use of orthonormal expansions in predictive control was originally proposed by

the non-adaptive MPC formulation of Finn et al. (1993). The model structure considered

in this work is referred to as Markov-Laguerre functions. It consists of the arrangement of

two blocks in which the leading component has the FIR structure and the second portion

has an all pass component derived from a first order orthonormal element. Sbarbaro et al.

(1999) proposed a variety of unconstrained active strategies with different modifications

to the objective function using orthonormal basis models. Both formulations are applied

to SISO systems.
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1.4 thesis outline

Figure 1.1: Thesis Overview Diagram

1.4 thesis outline

In the subsequent chapters, we will disaggregate the exposition of the overall method

according to the block components illustrated in Figure 1.1. As a first logical step, the

relevant properties of the GOBF approach as well as a construction method for Multi-

Input Multi-Output (MIMO) state-space model objects will be presented in Chapter 2.

The Markov-Laguerre block structure of Finn et al. (1993) will be generalized by more

detailed structures with irreducible orthonormal contributions.

Provided with fixed linear dynamic models, the formulation of output feedback MPC

policies will be provided in Chapter 3. The feedback feature is an important element to

the overall framework since the state vectors associated with a GOBF models are filtered

versions of the input record. This is accomplished by the modification of the state-space

models defined in Chapter 2 with backwards difference filters. This model adjustment

leads to an alternative predictor representation that incorporates output measurements

and previous inputs as elements of an extended state.
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1.4 thesis outline

The Certainty Equivalence (CE) adaptive MPC algorithm with GOBF models is speci-

fied in Chapter 4. It leverages the feedback component and other useful elements from the

fixed model formulations in the preceding chapter. The effect of different orthonormal

expansions in the adaptive control performance is analyzed. A method to obtain suit-

able generating poles with available linear model representations is outlined and demon-

strated in an illustrative quadruple tank MIMO system.

Chapter 5 presents a modification to the CE problem that induces an active learning

strategy consistent with Dual Control Theory. Excitation is introduced throughout the

SISO subcomponents of the MIMO model by defining information constraints specific to

each input channel. This is accomplished by extending the ideas of Marafiori et al. (2014)

in terms of the scalar state elements that constitute the GOBF system representation. The

approach is demonstrated in a scenario that extends the analysis of the illustrative MIMO

plant example from Chapter 4. The dissertation is concluded with a set of summarizing

conclusions and proposed future work in Chapter 6.
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2
P R E D I C T I V E M O D E L S W I T H O RT H O N O R M A L B A S I S F U N C T I O N S

This chapter provides a general introduction to Generalized Orthonormal Basis Functions

(GOBFs) models. In addition, a method to construct Multi-Input, Multi-Output (MIMO)

state-space models, suitable for Model Predictive Control (MPC) within this framework

is presented. The MIMO model is generated by the decomposition of the plant into scalar

transfer function elements for each input-output pair. An algorithm to obtain Single-

Input, Single-Output (SISO) filters of arbitrarily high order and customizable dynamics is

presented. The desired MIMO structure is obtained through the appropriate arrangement

of these components. The SISO modeling approach is illustrated through a minimal mass-

spring example.

2.1 plant structure preliminaries

Since we are ultimately interested in the modeling of a MIMO system, we begin by stating

the assumptions on the structure of the plant to be modeled.

9



2.1 plant structure preliminaries

2.1.1 MIMO Linear Plant

The plant of interest is assumed to have stable, linear dynamics for each SISO pair. The

output signal y ∈ Rny is related to the input u ∈ Rnu with nu by

yt = Gp(q)ut + vt (2.1)

where

• Gp(q) is a ny × nu matrix filter in the shift operator q

Gp(q) =


G11(q) G12(q) · · · G1nu(q)

G21(q) G22(q) · · · G2nu(q)
...

...
. . .

...

Gny1(q) Gny2(q) · · · Gnynu(q)



• The disturbance signal is bounded, vt ∈ Rny , ‖vt‖2 ≤ kv

The indexing ij specifies a given input-output pair. The shift operator and its inverse, are

defined to act on a discrete time signal xt according to

q−1xt = xt−1

qxt−1 = xt.

A detailed account of this model description and other related concepts can be found

in standard system identification literature (Ljung 1999). The disturbance signal, vt, is

modeled as a stationary process with vt = Hv(q)νt, νt ∼ N (0,Λ). Hv is a ny ×ny matrix

transfer function, under the assumption of stable, monic diagonal elements and zeros

10



2.2 rational orthonormal basis functions

everywhere else. It is further assumed that it is independently parametrized with respect

to Gp. The model approach to be developed in the subsequent sections, focuses on the

input-output dynamics and satisfies these assumptions with the simplest fixed output

error model, Hv(q) = I .

The assumed linearity and stability of the elements of Gp imply that they can be rep-

resented by a rational scalar transfer function and its corresponding infinite impulse re-

sponse,

Gij(q) =
∞∑
k=0

gij,kq
−k (2.2)

This characterization corresponds to proper transfer function elements. It is further as-

sumed that these are strictly proper. Therefore,

lim
|z|→∞

Gij(z) = 0 =⇒ gij,0 = 0.

Which follows from the equivalence of expressions for filters in the shift operator q and

transfer functions in the complex variable z. Combining the assumed stability and the

previous condition,
∞∑
k=0

|gij,k| <∞ =⇒
∞∑
k=1

|gij,k| <∞

which is equivalent to bounded-input bounded-output (BIBO) stability.

2.2 rational orthonormal basis functions

The Laurent expansion elements that define the sum in equation (2.2)
(
i.e.

{
z−k
}∞
k=1

)
constitute the simplest case of a more structured general class of transfer functions that

11



2.2 rational orthonormal basis functions

define a rational orthonormal basis. As their name indicates, there are three properties for

a specific set of functions to constitute such set. First, they can be expressed as the ratio

of polynomial filters. Second, every subset of the basis must be orthonormal, as defined

by the inner product of the defining function space. Lastly, the elements of the basis must

form a structured basis which define a complete infinite expansion for any function in

this space.

The space of interest is defined in the complex plane as the Hardy space of square

integrable linear functions on the unit circle, (T), analytic on its exterior, denoted by H2.

Under the stated assumptions, this space contains the stable scalar transfer function com-

ponents of Gp(q), the matrix-value filter in equation (2.1). The discussion will be limited

to the subset of transfer functions in H2 with real-valued impulse responses. Under this

restriction, the inner product and its corresponding norm for two functions G1,G2 ∈ H2

is given by1

〈G1,G2〉 :=
1

2πi

∮
T

G1(z)G2(z
−1)

dz

z

‖G‖ :=
√
〈G,G〉

A similar operation, can be defined for matrix-valued transfer functions. In particular, it

will be useful to define the outer product for real-valued vector functions F ,G ∈ Hn2 ,

JF ,GK :=
1

2πi

∮
G

F (z)Y >(z−1)
dz

z
.

1 In general, for functions with complex-valued impulse responses the second function in the integrand is
replaced by its complex conjugate.

12



2.2 rational orthonormal basis functions

Definition 1. Orthonormal Set in H2. A set of scalar transfer functions, F = {F1,F2, . . . },

with scalar components in H2 is orthonormal if it satisfies

〈Fi,Fj〉 = δij =


0, for i = j

1, for i 6= j

for any i and j that define an element in the set.

Note that for a vector-valued function with n entries from an orthonormal set F, Fn ∈

Hn2 , the outer product gives the identity matrix, i.e. JFn,FnK = I . It follows from Cauchy’s

Residue Theorem that the impulse response functions satisfy orthonormality as defined

above.

Definition 2. Complete Orthonormal Basis. If the error obtained from a finite truncation

defined by the elements from an orthonormal basis, F = {F1,F2, . . . }, is bounded and

can be made arbitrarily small uniformly across all frequencies for any G(z) ∈ H2, F is

said to be complete.

∣∣∣∣∣
n∑
k=1

gkFk(z)−G(z)

∣∣∣∣∣ <∞,

∞∑
k=n+1

|gk| → 0, as n→∞ (2.3)

where the expansion coefficients are defined by gk := 〈G,Fk〉.

2.2.1 Generating Poles & Model Order

An orthonormal basis can be defined in terms of its generating poles contained on a

complex-valued set, ξ. Following standard transfer function notation, the poles corre-

13



2.2 rational orthonormal basis functions

spond to the roots of the denominator polynomials for all the transfer function elements

in the basis. For example, a finite impulse response (FIR) model is generated by a basis

defined by a singleton with a pole located at the origin of the complex plane, ξ = 0. This

choice is attractive due to its generality and simplicity. Since it is also complete, a desired

level of accuracy can be achieved with a truncation of sufficiently high order.

In terms of an identification, the associated regression problem is defined by a finite

sequence of past inputs. If one could afford extensive experimentation, unlimited flexi-

bility in input design, and no regard for model order, FIR models would be an excellent

choice. This is obviously not the case in control design for process systems. Nevertheless,

the step response model, which inherits the same limitations, is used in most commercial

applications of model predictive control2. A better choice would be to select generating

poles that reflect available information with respect to the system to be modeled. The FIR

and step response model choices corresponds to the situation of knowing nothing beyond

the fact that the plant can be accurately described by a model object in H2.

The most prominent feature of the GOBF modeling approach is the ability to retain

some of the generality and simplicity of the FIR approach while reducing the order of

the parameter space required for a comparable level of accuracy (Heuberger et al. 2005).

In general, accurate locations of the poles may not be available. However, as long as the

model is generated from a complete basis with approximate pole locations, the error is

bounded according to the expressions in (2.3). This idea can be expressed more exactly

for any basis that adheres to the general Takenaka-Malmquist (TM) form,

Fk(q) =

√
1− |ξk|2
q− ξk

k∏
i=1

(
1− ξ̄iq
q− ξi

)

2 e.g. Emerson’s DeltaV, Aspen DMC
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2.2 rational orthonormal basis functions

Completeness can be shown to hold for any TM basis (Ninness & Gómez 1996) if and

only if the associated infinite sequence of generating poles {ξk}∞k=1 satisfies

∞∑
k=1

(1− |ξk|) =∞ (2.4)

From equation (2.4) it is clear that a complete TM basis is restricted to generating poles

in the unit disk, |ξk| < 1. For the purpose of obtaining models suitable for control design,

the generating poles and the expansion order are treated as higher order parameters that

remain fixed. These structural properties are meant to be maintained based on the moni-

toring of appropriate measures of the data record, and known changes of the underlying

plant processes.

With a fixed basis and truncation order, the identification task reduces to specifying the

coefficients for the model structure denoted by the subscript m. Recall that the values for

the infinite expansion coefficients are determined by the inner product of the system and

a basis function element, 〈G,Fk〉. Since the plant is not known exactly, these are uncertain.

Therefore, the model must be parametrized with the aid of system identification routines.

In terms of the SISO decomposition of the model for (2.1), a parameter vector, θij , must

be estimated for each scalar filter element in the model. The corresponding SISO and

MIMO predictor filters are defined by,

ŷij,t := Gij,m(q;θij)uj,t (2.5a)

ŷt := Gm(q;θ)ut. (2.5b)
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2.2 rational orthonormal basis functions

This scalar contribution architecture allows flexibility in the control design to only include

the relevant dynamics among all input-output pairs and customize their generating pole

set and estimator order. The MIMO model Gm in equation (2.5b) is parameterized by a

vector, θ ∈ Θ ⊂ Rn, that contains all the SISO contributions to be identified. It is therefore

desirable to reduce the MIMO model parameter dimension,

n =

ny∑
i=1

nu∑
j=1

nij ,

for a given level of truncation error. As demonstrated by the illustrative example in the

last section, this is enabled by the appropriate selection of the generating poles.

2.2.2 Common OBF Expansions

Consider an individual SISO predictor (2.5a) generated with orthonormal elements of a

complete basis and drop the ij index for simplicity. The parametrization, just like in the

FIR case, is linear in the parameters with respect to an information vector. Instead of

being defined directly by the input record, this vector is obtained from the application of

a vector-valued linear filter. This follows from the decomposition of the associated scalar

filter, Gm(q;θ),

Gm(q;θ) =
n∑
k=1

θkFk(q)

= θ>Fn(q).

The elements of Fn define the information vector at each time t as shown in equation

(2.6). The linear structure for a given SISO predictor is illustrated in Figure 2.1. From
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2.2 rational orthonormal basis functions

this illustration, it is clear that truncation coefficients that lead to accurate predictor struc-

tures depend on the fixed vector-valued filter. Therefore, they are also functions of the

generating pole and order specified in the model structure.

ϕt := Fn(q)ut, Fn =


F1(q)

F2(q)
...

Fn(q)

 (2.6)

Figure 2.1: OBF SISO Model Structure

Table 2.1 lists common choices for OBF expansions suitable for the definition of linear

process models.

Table 2.1: Common OBF expansions

Name Generating Poles Scalar Filter All-Pass Filter

FIR ξk = 0 Fk(q) =
1
qΓk−1(q) Γk(q) = 1

qk

Laguerre ξk = ξ ∈ R Fk(q) =
√

1−ξ2
q−ξ Γk−1(q) Γk(q) =

(
1−ξq
q−ξ

)k
TM ξk ∈ C Fk(q) =

√
1−|ξk|2
q−ξk Γk−1(q) Γk(q) =

∏k
i=1

(
1−ξ̄iq
q−ξi

)

17



2.3 state-space realizations of obf models

Note that the FIR and Laguerre functions are special cases of the TM expansion. One

could conclude that this choice is sufficiently rich for control design for any function in

H2. An obvious caveat to this approach is that the information vector would, in general,

contain complex-valued signals. This would not be an issue if the design is limited to

real-valued poles, forcing ϕt ∈ Rn. However, this restriction impedes the efficient repre-

sentation of systems dominated by under-damped dynamics. To address this challenge,

we follow a generalized construction method derived from state-space realizations of TM

all-pass filters (Bodin et al. 2000), displayed in the bottom right corner in Table 2.1. In par-

ticular, the minimal Kautz all-pass filter, defined by a conjugate pair of poles will provide

an important component to the approach.

2.3 state-space realizations of obf models

The objective of this section is to specify a systematic approach to define a MIMO state-

space representation,

ϕt+1 = Aξϕt +Bξut

ŷt = Cθϕt,

(2.7)

for the predictor filter Gm(q) in equation (2.5). In the subsequent chapter, this linear

relationship will define the profiles to be optimized as a function of a finite sequence

of control actions in the MPC framework. The subscript ξ indicates that the matrices

in model (2.7) are defined by the set of generating poles used in the construction of

the predictor structure based on prior information. On the other hand, the state-output

predictor matrix, Cθ, is parametrized by the vector θ.

18



2.3 state-space realizations of obf models

A flexible state-space model generation method that allows the inclusion of the follow-

ing relevant features for process control is desired:

• Multi-Input Multi-Output (MIMO)

• Delays, first and second order contributions

• Systems with right half plane zeros (inverse response)

• Under-damped (oscillatory) dynamics

• Embedded stabilizability

With respect to the last point, a very useful property that is automatically satisfied by any

OBF expansion choice for the predictor model, is the inherent stability of the dynamics.

This property holds independently of the realization of the uncertain parameter, θ, since

any OBF choice only spans functions in H2. This in turn leads to the ability to specify

convex regions for the admissible parameters in the estimation process. This is not neces-

sarily the case for other linear modeling approaches, such as auto-regressive exogenous

(ARX) filters and general state-space models identified with a subspace method.

Following the SISO decomposition presented above, we begin by the simplified treat-

ment for this case. Consider first a design with a single generating pole, ξ ∈ R, and a

given order, n, as shown by the middle row of Table 2.1. The resulting information vector

dynamics can be expressed with the following one-pole Laguerre state-transition model,

Aξ =


ξ 0 · · · 0

(1− ξ2) ξ
. . .

...
...

. . . . . . 0

(−ξ)n−2(1− ξ2) · · · (1− ξ2) ξ

 , bξ =
√

1− ξ2


1

−ξ
...

(−ξ)n−1

 .
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2.3 state-space realizations of obf models

Note that with the generating pole at the origin, these pair collapses to an FIR model. Sim-

ple approaches as the one-pole Laguerre are limited with respect to some of the features

listed above.

Based on the properties discussed thus far, it should be apparent that customized OBF

expansions can offer much more. For obvious reasons, the design of predictive controllers

should include as much available prior information as the modeling framework can af-

ford. In an OBF model, this information is contained in the set of generating poles. A

generalized OBF (GOBF) model is simply defined by the inclusion of as many distinct

pole locations in the unit disk as required. The specification of the corresponding infinite

expansion elements is given in the next section. As discussed previously, from the per-

spective of identification of the MIMO model, variety in the generating pole set could be

favorable, as long as the locations of the poles is selected in a way that reduces the re-

quired order of the vector that parametrizes the predictor matrix filter in equation (2.5b).

2.3.1 All-Pass Cascade Decomposition

We adopt the cascading of all-pass filters with known state-space realizations (Bodin et al.

2000) as the method of choice to build model (2.7). This approach is efficient in obtaining

the desired difference equations since it circumvents the specification of the vector-valued

filter structure in equation (2.6) and provides a single input state-transition pair {Aξ, bξ}

directly. An all-pass filter is defined by the property of having a unit-gain for all frequen-

cies. This holds if the filter satisfies

Γ(q)Γ(q−1) = 1.
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2.3 state-space realizations of obf models

The last column of Table 2.1 includes some examples of orthogonal all-pass filters. Orthog-

onality of the filter is also given by an input balanced state-space realization. That is, the

scalar all-pass filter Γ(q) can be parametrized with {A, b, c, d} such that for yt = Γ(q)ut,

yt =
(
d+ c (qI −A)−1 b

)
ut, AA> + bb> = I (2.8)

In general, a scalar filter has both properties (all-pass and orthogonality) if and only if its

state-space realization satisfies

 A b

c d

 A b

c d

> = I (2.9)

Furthermore, the connection in series of all-pass orthogonal filters retains both properties

(Mullis & Roberts 1976). The state-transition pair for the cascade, defines a vector-valued

transfer function that can be used as the defining object to generate a GOBF infinite

expansion.

The restriction of dealing with real-valued vectors ϕ requires that complex poles are

included in conjugate pairs. The first step in generating the model is ordering the set of

poles to be included in a given SISO predictor filter (2.5a) with complex pairs adjacent to

each other. Such an ordered set allows the definition of a TM all-pass filter that decom-

poses into first order Laguerre and second order Kautz blocks that are themselves all-pass.

In addition to these elemental units, fixed order FIR blocks can be included in the struc-

ture by setting sequences of zeros of the corresponding size in the ordered generating set

(Finn et al. 1993).
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2.3 state-space realizations of obf models

The result is a blueprint for a TM all-pass filter with ñ elemental components and

a state-space realization of order n, equal to the sum of the order of all contributions.

The derivation of the irreducible real-valued blocks suitable for the cascading operation

depicted in Figure 2.2 is shown next.

Figure 2.2: All-Pass Decomposition

2.3.1.1 Laguerre Block State-Space

Note that a FIR block of any order can be cast as a cascade of multiple first-order Laguerre

blocks with all poles at the origin. Therefore, it is sufficient to derive the latter case. A

first order transfer function,

FL(z) =
kL
z − ξ

(2.10)

with ξ ∈ R, constitutes an orthonormal Laguerre singleton if it is normal, i.e.,

1 = 〈FL,FL〉

=
1

2πi

∮
T

FL(z)FL(1/z)
dz

z
.

The normalizing constant, kL, is determined by applying the residue theorem,

1 = k2LRes
ξ

(
1

(z − ξ)(1− ξz)

)

= k2L lim
z→ξ

z − ξ
(z − ξ)(1− ξz)

=
k2L

1− ξ2
.
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2.3 state-space realizations of obf models

By selecting the positive root, the first order Laguerre block in (2.10) is defined by,

FL(z) :=

√
1− ξ2
z − ξ

. (2.11)

The corresponding scalar state transition (2.12a) obtained from the equivalent filter ex-

pression is input balanced as a result. The remaining elements of the state-space, cL and

dL, are defined by the relationships implicit in (2.9).

ϕt+1 = aLϕt + bLut (2.12a)

yt = cLϕt + dLut (2.12b)

aL = ξ

bL =
√

1− ξ2

0 = aLcL + bLdL

1 = c2L + d2L

=⇒

 aL bL

cL dL

 =

 ξ
√

1− ξ2√
1− ξ2 −ξ



2.3.1.2 Kautz Block State-Space

Similarly to the Laguerre case, the first step of the derivation is to determine the required

conditions on the state filter structure imposed by orthonormality. A set of two scalar

functions, generated by a pair of complex poles, ξ1 and ξ2, such that ξ2 := ξ̄1, is orthonor-

mal if the associated pair of filters

FK1(z) =
kK1z

(z − ξ1) (z − ξ2)
, FK2(z) =

kK2 (1− αKz)

(z − ξ1) (z − ξ2)
(2.13)
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2.3 state-space realizations of obf models

satisfy,

1 = 〈FKi,FKi〉

=
1

2πi

∮
T

FKi(z)FKi(1/z)
dz

z

for i = 1, 2, and

0 = 〈FK1,FK2〉

=
1

2πi

∮
T

FK1(z)FK2(1/z)
dz

z
.

Note that the from of the scalar elements in equation (2.13) is not unique to represent

an orthonormal pair. For example, FK2 could have been specified as a function with no

zeros. We pick this pair as it yields a convenient state-space representation.

Applying the residue theorem to the normality condition for FK1, the following equality

is obtained,

1 = (kK1)
2

(
lim
z→ξ1

z

(z − ξ2)(1− ξ1z)(1− ξ2z)
+ lim

z→ξ2

z

(z − ξ1)(1− ξ1z)(1− ξ2z)

)

= (kK1)
2

(
ξ1(1− ξ22)− ξ2(1− ξ21)

(ξ1 − ξ2)(1− ξ21)(1− ξ22)(1− ξ1ξ2)

)
,

after some simplifying algebra,

(kK1)
2 =

(
1−

(
ξ1 + ξ2
1+ ξ1ξ2

)2
)(

1− (ξ1ξ2)
2
)
. (2.14)

From orthogonality of the pair, we get

0 = kK1kK2

(
lim
z→ξ1

z(z − αK)

(z − ξ2)(1− ξ1z)(1− ξ2z)
+ lim

z→ξ2

z(z − αK)

(z − ξ1)(1− ξ1z)(1− ξ2z)

)
.
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2.3 state-space realizations of obf models

Evaluation of the limit expressions followed by the multiplication of both sides by,

(ξ1 − ξ2)(1− ξ1ξ2)
kK1kK2

,

gives

0 =
ξ1(ξ1 − αK)

1− ξ21
− ξ2(ξ2 − αK)

1− ξ22
.

Leading to the following expression for the numerator coefficient in terms of the poles,

αK =
ξ1 + ξ2
1+ ξ1ξ2

. (2.15)

The normalizing constant for FK2 is determined equivalently, by evaluating

1 = (kK2)
2

(
lim
z→ξ1

(1− αKz)(z − αK)

(z − ξ2)(1− ξ1z)(1− ξ2z)
+ lim

z→ξ2

(1− αKz)(z − αK)

(z − ξ1)(1− ξ1z)(1− ξ2z)

)

= (kK2)
2

(
(1− αKξ1)(ξ1 − αK)(1− ξ22)− (1− αKξ2)(ξ2 − αK)(1− ξ21)

(ξ1 − ξ2)(1− ξ21)(1− ξ22)(1− ξ1ξ2)

)

which simplifies to

(kK2)
2 = 1− (ξ1ξ2)

2 . (2.16)

In general, for a conjugate pair
{
ξ, ξ̄
}

, the vector-valued function of interest, FK(z), is

obtained by inserting the expressions for the numerator coefficient and normalizing con-

stants in (2.13),

FK(z) =



√
(1− p2K) (1− α2

K)z

z2 − sKz + pK√
1− p2K (1− αKz)

z2 − sKz + pK

 (2.17)
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2.3 state-space realizations of obf models

where the positive roots have been selected, and

pK := ξξ̄, sK := ξ + ξ̄, αK :=
sK

1+ pK
.

The top scalar element yields the following difference equation,

ϕ1,t+1 = sKϕ1,t − pKϕ1,t−1 +
√
(1− p2K) (1− α2

K)ut.

Noting that the scalar filter elements are related by,

FK1(q) =
√
1− α2

K

q

1− αKq
FK2(q)

a second difference equation is obtained,

√
1− α2

Kϕ2,t+1 = −αKϕ1,t+1 + ϕ1,t.

The combination of the difference equations above yield the orthonormal state transition

dynamics, ϕt+1 = AKϕt + bKut, for the Kautz block,

ϕt+1 =

 αK −pK
√

1− α2
K√

1− α2
K αKpK

ϕt +√1− p2K

 √1− α2
K

−αK

ut.
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2.3 state-space realizations of obf models

Finally, with the input balanced state transition pair {AK, bK} above, the missing elements

for the state-space, cK and dK, are given by (2.9),

0 = AKc
>
K + bKdK

1 = cKc
>
K + d2K

=⇒
cK =

[
0
√

1− p2K
]

dK = pK

(2.18)

2.3.1.3 State-Space Construction

A summary of the state-space realizations for the elemental orthogonal all-pass building

blocks is given in Table 2.2. These contributions allow the construction of state-transition

dynamics for an ordered set of generating poles, obtained with the sequence of matrix

operations specified by Algorithm 2.1.

Algorithm 2.1 All-Pass Cascading

Require:

Ordered pole set ξ = {ξ1, ξ2, . . . , ξn} . Adjacent conjugate pairs, FIR blocks

Ensure:

{Aξ, bξ}

1: Generate {Al, bl, cl, dl} for l = 1, 2, . . . , ñ . Building blocks in Table 2.2

2: Ac ← A1, bc ← b1, cc ← c1, dc ← d1

3: for l = 2, . . . ,m do

4: Ac ←

 Ac 0

blcc Al

 , bc ←

 bc

bldc

 , cc ←
[
dlcc cl

]
, dc ← dldc

5: end for

6: Aξ ← Ac, bξ ← bc
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2.3 state-space realizations of obf models

Table 2.2: All-Pass Building Blocks

Name

(ξ ∈ D)

All-Pass SISO State-Space[
A b
c d

]

FIR

({0, 0, . . . , 0})


[
0 0
I 0

] [
1
0

]
[
1 0

] [
0
]


Laguerre

({ξ} ∈ R)

 [
ξ
] [√

1− ξ2
]

[√
1− ξ2

] [
− ξ
]



Kautz

(
{
ξ, ξ̄
}
∈ C)



 αK −pK
√

1− α2
K√

1− α2
K αKpK

 √
1− p2K

[ √
1− α2

K

−αK

]
[
0
√
1− p2K

] [
pK

]


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2.3 state-space realizations of obf models

Figure 2.3: GOBF Step Response

All-Pass Cascade Example

Consider the ordered generating pole set given by

ξ = {0, 0.6+ 0.5i, 0.6− 0.5i, 0.8,−0.2} ,

A state-transition pair, {Aξ, bξ}, with model with order n = 5, is constructed by cascading

the corresponding all-pass building blocks according to Algorithm 2.1. The unit step

response for the states corresponding to four scalar function elements is illustrated in

Figure 2.3.

The model contains FIR, Laguerre, and Kautz features. The delayed caused by the first

feature affects al the states as the leading element. The complex pair contribution to in ξ

defines a Kautz block that is reflected in the oscillatory profiles for ϕ2, ϕ3, and ϕ5. This

last one is dominated by the slower Laguerre contribution but still contains oscillations

as the preceding complex pair elements in the cascade also affect its dynamics.
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2.3 state-space realizations of obf models

2.3.2 MISO Structure

Note that, according to the defined MIMO model structure, each output predictor channel

can be expressed as

ŷi,t =
nu∑
j=1

Gij,m(q)uj,t, Gij,m(q) = θ>ij (qI −Aij,ξ)
−1 bij,ξ

where its multi-input single-output (MISO) state-space representation, is given by

ϕi,t+1 =


Ai1,ξ 0 · · · 0

0 Ai2,ξ
. . .

...
...

. . . . . . 0

0 · · · 0 Ainu,ξ


︸ ︷︷ ︸

Ai,ξ :=

ϕi,t +


bi1,ξ 0 · · · 0

0 bi2,ξ
. . .

...
...

. . . . . . 0

0 · · · 0 binu,ξ


︸ ︷︷ ︸

Bi,ξ :=

ut

ŷi,t =
[
θ>i1 θ>i2 · · · θ>inu

]
︸ ︷︷ ︸

θ>i :=

ϕi,t

for i = 1, 2, . . . ,ny. Finally, the MIMO state-space in (2.7), {Aξ,Bξ,Cθ}, is obtained by

the appropriate arrangement of the MISO systems,

Aξ :=


A1,ξ 0 · · · 0

0 A2,ξ
. . .

...
...

. . . . . . 0

0 · · · 0 Any ,ξ

 , Bξ :=


B1,ξ

B2,ξ

...

Bny ,ξ

 , Cθ :=


θ>1 0 · · · 0

0 θ>2
. . .

...
...

. . . . . . 0

0 · · · 0 θ>ny

 .
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2.4 gobf model properties

This MIMO model construction reduces to the incorporation of pole locations and

model order for each input-output pair into individual state transition dynamics {Aij,ξ, bij,ξ}

and their subsequent concatenation according to the expressions above.

2.4 gobf model properties

2.4.1 Infinite Expansion

Consider the vector-valued function defined by the ordered pole set, ξ = {ξ1, ξ2, . . . , ξn},

its state-transition pair as described in the previous section,

Fξ(z) := (zI −Aξ)
−1 bξ.

and its all-pass filter,

Γξ(z) :=
n∏
i=1

1− ξ̄iz
z − ξi

.

A structured infinite expansion, that in turn defines a complete basis, can be constructed

with these two objects such that, any scalar function, G(z) ∈ H2, has an infinite expansion,

G(z) =
∞∑
k=1

ϑ>k Vk(z), Vk(z) := Fξ(z) (Γξ(z))
k−1 . (2.19)

Note that this sum of vector-valued elements can also be expressed in terms of an infinite

expansion of the scalar elements of Vk. Equivalently to an scalar expansion, the exact
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2.4 gobf model properties

coefficient vector with n elements, ϑk, is defined by the plant dynamics and the matching

set of scalar transfer functions,

ϑk =


〈G,Fk+1〉

〈G,Fk+2〉
...

〈G,Fk+n〉


where the functions {Fk+1,Fk+2, . . . ,Fk+n} are the scalar elements of Vk.

The expansion expressed in equation (2.19) can be decomposed into the leading finite

contribution of order n and the infinite remainder,

G(z) = Gm(z) +Gv(z) (2.20)

where,

Gm(z) := θ>o Fξ(z), θo := ϑ1, Gv(z) :=
∞∑
k=2

ϑ>k Vk(z). (2.21)

Without loss of generality, a finite order model obtained with any of the pole structures

discussed thus far, can be equivalently expressed using this vector-valued expansion.

Therefore, it is assumed, that the model with order n, constructed by the cascading of

an arbitrary number of elemental blocks, defines a GOBF expansion in the general form

of equation (2.19).
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2.4 gobf model properties

2.4.2 Asymptotic Properties of the Least-Squares Estimate

An estimate, θ̂, that parametrize an uncertain SISO plant G with a fixed GOBF expansion

can be obtained via least squares with respect to the available data record,

YN = {yN , yN−1, . . . , y0,uN−1,uN−2, . . . ,u0} ,

by minimizing the observed model error.

θ̂N := arg min
θ

N∑
k=0

(
yk −ϕ>k θ

)2
(2.22)

The well known solution of the unconstrained least-squares estimation problem is given

analytically by

θ̂N =

(
N∑
k=0

ϕkϕ
>
k

)−1( N∑
k=0

ϕkyk

)

with ϕk = Fξuk. As shown in (Heuberger et al. 2005), for an input with constant unit

mean spectrum, the asymptotic limit of the matrix,

RN :=
1

N

(
N∑
k=0

ϕkϕ
>
k

)
,

is given by

R? := lim
N→∞

RN =
1

2πi

∮
T

Fξ(z)F
>
ξ (z−1)

dz

z
.

Which follows from Parseval’s Relation. From the definition of the vector outer prod-

uct and the orthonormality of the elements of Fξ, this expression gives R? = I . As a
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2.4 gobf model properties

result, the equations above are perfectly conditioned and the corresponding asymptotic

parameter estimate is,

θ? := lim
N→∞

1

N

N∑
k=0

ϕkE [yk]

it follows from the Gaussian noise assumption that E[vk] = 0. Using the infinite expansion

in (2.19), Parseval’s relation, and the definition of the vector outer product,

θ? = θo +
∞∑
l=2

JFξ,VlKϑl

The infinite sum term above corresponds to the tail of the expansion that is not included

in the model. This term equals zero as a result of orthonormality. In conclusion, under

the ideal conditions for the input described above, the orthonormal output error structure

delivers a consistent asymptotic parameter estimate, θ? = θo (Heuberger et al. 2005).

In terms of convergence, a more general asymptotic result that follows from the central

limit theorem (Ljung 1999) is stated,

lim
N→∞

√
N
(
θ̂N − θ̂?N

)
∼ N

(
0,σ2R−1N

)

where σ2 is the variance of the scalar measurement noise signal, and θ̂∗ is the asymptotic

estimate obtained from an arbitrary input spectrum. With these definitions, the differ-

ence between the model (with its parameter estimate, θ̂), and the system is conveniently

decomposed,

G(q)−Gm(q; θ̂) =
(
Gm(q;θo)−Gm(q; θ̂)

)
+
(
G(q)−Gm(q;θo)

)
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2.4 gobf model properties

The first term is the variance with respect to model parametrized by the first n infinite

expansion coefficients, while the second term is the structural bias contribution generated

by the tail that follows the finite truncation.

2.4.3 MIMO Model Error

To conclude the section, we return to the expression for the MIMO plant. Since the

finite subset of infinite expansion coefficients for each SISO model element are uncertain,

we parametrize the predictor filter with an estimate, θ̂. From the perspective of this

parametrization and the actual measured output, the plant can be decomposed into the

model and the error dynamics, as illustrated in Figure 2.4, and expressed in equation

(2.23).

Figure 2.4: Model Error Diagram

yt =
(
Gm(q; θ̂) + Ĝv(q; θ̂)

)
ut + vt

= Gm(q; θ̂)ut + v̂t.

(2.23)
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2.5 minimal gobf example

The model error vector is defined accordingly by

v̂t := Ĝv(q)ut + vt, (2.24)

with scalar elements, v̂i,t =
∑nu

j=1 Ĝij,v(q)uj,t + vi,t, for i = 1, 2, . . . ,ny.

Perfect knowledge of the true coefficients of the underlaying GOBF infinite expansion,

θo, has not been assumed. Therefore, each scalar model error transfer function must be

decomposed in two parts,

Ĝv(q) = θ̃>Fξ(q) +Gv(q)

where θ̃ = θo − θ̂ and Gv is defined in equation (2.21). The first term in the expression

above vanishes as the value of the parameter estimate approaches the expansion coeffi-

cients. Since both terms in the right hand side are defined by orthonormal elements that

span functions in H2. It follows that the input to error transfer function is always stable,

for any bounded θ̃.

2.5 minimal gobf example

A SISO model is constructed for a system of two masses connected by springs as illus-

trated in Figure 2.5. The continuous time dynamics are given by the damped harmonic

oscillator equations. The model is written in terms of a state vector containing the dis-

placement and acceleration, d and a respectively, of each block with mass m. The sub-

script h denotes the hidden mass that is indirectly related to the input-output structure.

The input is a force acting on the outer mass, while the output is a noisy measurement
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2.5 minimal gobf example

Figure 2.5: Connected Mass-Spring System

of its displacement. It is assumed that the damping force due to friction, fF , is linearly

proportional to acceleration, such that fF = −βa, β = 1.

A balance of forces for both masses, yields the following continuous time state-space

description,

ẋ =


0 1 0 0

−k/m −1/m k/m 0

0 0 0 1

k/mh 0 −(k+ kh)/mh −1/mh

x+


0

1/m

0

0

u

y =
[
1 0 0 0

]
x+ v

where x =
[
d a dh ah

]>
. The mass values are set to m = mh = 2 while the spring

constants are set to k = 0.1, kh = 1. Assume the system parameters yield units of time in

seconds. These values were chosen to specify the combination of under and over-damped

dynamics for the connected system.

A discretization with zero-order hold for the input and a sampling time of one second

results on a stable transfer function with the following poles, rounded to the nearest

second decimal place,

{0.89, 0.68, 0.59+ 0.50i, 0.59+ 0.50i} .
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2.5 minimal gobf example

Figure 2.6: Mass-Spring Laguerre (n = 4) Step Response

To illustrate the ideas presented in this chapter, the output profiles for a unit step and a

sinusoidal wave input sequence were simulated. The sine wave input signal is composed

by two simple sine contributions with different period and amplitude. The undisturbed

response (v = 0) is simulated to remove this effect from the analysis. The same pair

of input profiles was applied to the transfer functions obtained from a finite truncation

of the first 4 elements of different OBF expansions. The results are split in two groups

of three distinct cases each. The first, with one-pole Laguerre expansions, and a second,

obtained with the GOBF approach. In all cases, the expansion coefficients were computed

from the inner product of the discrete plant dynamics and the respective basis function

element. The first group is generated with an FIR expansion (ξ = 0) and two real pole

locations, ξ = 0.6 and ξ = 0.9. These latter two, were chosen from the nearest decimal

approximation for the real part of the system poles, located closest and furthest to the

origin, respectively. The results are displayed in Figures 2.6 and 2.7.

As expected, due to the defining plant poles location in the complex plane, the FIR

truncation with exact expansion coefficients can only represent the true dynamics for a
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2.5 minimal gobf example

Figure 2.7: Mass-Spring Laguerre (n = 4) Sine Input Response

short period corresponding to the truncation order. An accurate representation with this

approach would require roughly 50 parameters. Moving the generating pole location

along the real axis towards the plant poles provides better approximations. The green

dotted profile, for the intermediately accurate pole location, yields acceptable sinusoidal

response matching. On the other hand, the steady-state gain, shown in the step response

in Figure 2.6, provides a closer match to the system than the FIR case, but still grossly

misrepresented. Overall, the one-pole Laguerre expansion can be tuned to match the

mass-spring system simulated responses to the studied inputs only by the last case. A

pole location that is inconsistent with the system may require higher order truncations as

demonstrated by the limiting behavior of the FIR case.

The second set of simulations were made with model structures that belong to the

broader GOBF class, where multiple pole locations for a given expansion are specified.
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2.5 minimal gobf example

Three different model instances, with n = 4, are constructed according to the following

generating sets,

ξ1 =
{

0.9, 0.6+ 0.2i, 0.6− 0.2i, 0

}
ξ2 =

{
0.9, 0.6+ 0.2i, 0.6− 0.2i, 0.9

}
ξ3 =

{
0.9, 0.6+ 0.5i, 0.6− 0.5i, 0.7

}
.

(2.25)

Their location in the complex plane is illustrated in Figure 2.8 for a visual reference. The

truncation responses, for the same step and sine wave input profiles described above, are

shown in Figures 2.9 and 2.10. It is observed that even for the generating set that includes

a pole at the origin, the truncation obtained is capable of matching the simulated system

profiles accurately. In fact, the performance is comparable to the most accurate GOBF

basis. This indicates that as long as the pole choices are partially accurate with respect

to the system, good representations can be obtained. This is enabled by the dynamic

diversity expressed by the varying pole locations.

It is noted that the small steady-state gain offsets are observed in Figure 2.9. An ad-

ditional advantage of the GOBF framework, is that it offers the flexibility to address this

type of issue by the inclusion of tailored functions to the existing set. The new function

element can be derived from the existing set or with a new pole location. The Laguerre

expansion with the outer-most pole is capable of representing the system with accept-

able accuracy. This is possible because the pole corresponding to this location dominates

the dynamics as shown by the orthonormal component step response decomposition of

GOBF3 in Figure 2.11. For a system with a dominating feature that is oscillatory, this

would no longer be the case.
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Figure 2.8: GOBF Pole Locations

Figure 2.9: Mass-Spring GOBF (n = 4) Step Response
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Figure 2.10: Mass-Spring GOBF (n = 4) Sine Input Response

Figure 2.11: Mass-Spring GOBF3 (n = 4) Step Response State Decomposition
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2.6 conclusions

2.6 conclusions

The modeling approach3 to be followed in the subsequent chapters has been introduced.

The scope is limited to plants that can be usefully approximated with stable MIMO linear

filters. Different OBF structures have been presented along with general properties that

follow from the orthonormal expansion definition. A multivariable input-output model

is generated component-wise for each SISO filter under the generalized orthonormal ba-

sis functions framework. A cascading method for the customized construction of state

transition models with varying elemental, real-valued contributions is summarized in

Algorithm 2.1. The detailed derivation of these components from the defining orthonor-

mality condition was provided. Lastly, in section 2.5 we present a set of simulations

with a minimal mass-spring example that outlines the key properties of interest for the

proposed modeling framework.

3 The interested reader may find the detailed description of modeling and identification concepts in the com-
pilation of contributions in (Heuberger et al. 2005) and the references therein.
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3
G O B F M O D E L P R E D I C T I V E C O N T R O L

In this chapter, we are interested in leveraging the GOBF modeling approach to define

output feedback model predictive tracking control algorithms. This will require the ad-

justment of the models obtained through the systematic approach given in the previous

chapter. This adjustment is defined by the application of backward difference filters that,

in turn, enable output feedback. Once all modeling elements of the problem are properly

outlined, a series of MPC policies are provided. In particular, a robust MPC formulation

that takes into account the error dynamics associated with the filtered model is outlined

in detail.

In the interest of brevity, it is assumed that the reader is familiar with the receding

horizon approach inherent of all MPC methods. This allows us to direct our attention

immediately to the features of the standard components of the associated optimal control

problem. Before diving into these details, a contextualizing discussion of the associated

assumptions for an accurate model is provided. This will enable the application of stan-

dard MPC stability theory later in the chapter.
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3.1 model error preliminaries

Recall that, under the plant assumptions stated in Chapter 2, the overall MIMO state-

space model, constructed from a fixed underlying generating pole structure, allows the

following system description,

ϕt+1 = A(ξ)ϕt +B(ξ)ut, ϕ0 (3.1a)

yt = C(θ, ξ)ϕt + v̂t(θ, ξ). (3.1b)

where ϕo denotes the intial condition for the information state. The notational signifi-

cance of ξ is extended to indicate the collection of pole generating sets and truncation

orders for all the SISO relationships in the model. Also, note that instead of using sub-

scripts, as in the previous chapter, we have written the matrices and disturbance signal in

(3.1) explicitly as functions of the model parameters. These relationships are implied by

the system decomposition illustrated in Figure 3.1.

Figure 3.1: Structural Model Error

The system characterization above unveils the composition of the model error signal.

First of all, it is desired that the SISO generating pole sets and model orders can re-
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3.1 model error preliminaries

semble the dynamic components inherent to the system. Once this is accomplished, a

parametrization specified by θ, weight the built-in basis functions for suitable approxi-

mations. Both of these items were discussed in the previous chapter. Specifically, it was

shown how the GOBF approach offers flexible structures that reduce the effect of the un-

modeled dynamics, Ĝv, on the error when the model poles are close to those of the real

system.

In this chapter, we assume that a GOBF model that satisfies these structural require-

ments has been defined such that the composite disturbance in Figure 3.1 is bounded by

some constant, i.e. ‖v̂t‖ < k̄v ∀t. We will then focus on the ability of the optimal feed-

back action, provided by MPC algorithms, to handle the remaining uncertain disturbance

signal.

Three important assumptions are usually made on the defining linear state-space model

such as (3.1) and its initial state:

• Stabilizability of the pair {A,B}

• Detectability of the pair {C,A}

• Initial feasibility of the optimal control problem

We note that due to the defining characteristic of generating poles inside the unit disk,

a GOBF model state-space realization will automatically satisfy the first two items. This

property extends to the related filtered models to be introduced below. The last item

applies for any modeling approach. Therefore, we will continue under this assumption.
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3.2 tracking mpc objective

We aim to formulate a scalar MPC objective cost function, to be minimized, that adheres

to the following standard form,

JN (x̂0,u) :=
N−1∑
k=0

` (x̂k, ûk) + Jf (x̂N ) , x̂0 = xt. (3.2)

The functions `(·, ·) and Jf (·) are referred to as the stage and terminal costs respectively.

The state variable, xt, represents a signal that defines the process dynamics of interest.

Conventionally, its elements correspond to variables with physical significance. In our

development, these are defined by the control design structure and the GOBF information

vector, ϕt, as specified in the previous chapter. The receding horizon control vector, u,

concatenates N input elements. The hat accents on the state, x, and control, u, variables

indicate the evaluation in the receding horizon window, which is made with respect to a

nominal model parametrized θ.

For a tracking control problem, the stage cost is defined with respect to the output

reference signal, yrt . In contrast to u, beyond the N elements for each stage, this vector

includes an additional one, to be used in the definition of the terminal cost.

u :=


û0

û1

...

ûN−1

 ∈ R
Nnu , yrt :=


yrt

yrt+1
...

yrt+N

 ∈ R
(N+1)ny .
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With some abuse of notation, the reference signal time index, t, is excluded when making

statements with regards to the MPC problem, e.g., ŷk − yrk = ŷk − yrt+k.

We proceed with the definition of the tracking control stage cost function with respect

to a predictor model,

` (ŷ, û) := ‖ŷ− yr‖2Q + ‖∆û‖2R. (3.3)

Where the symmetric cost matrices, Q � 0 and R � 0, specify the relative importance

of tracking for different output channels and the magnitude of the control moves respec-

tively. The backward difference operator, ∆, in the second term, is given in terms of the

shift operator as

∆ := 1− q−1. (3.4)

Note that the stage cost has been defined directly in terms of the output prediction.

The modifications to be introduced in the section 3.2.1 will allow its formulation in the

standard form of equation (3.2). In general, linear-quadratic (LQ) controllers include a

contribution that penalizes the energy of the control directly (.i.e. ‖u‖2). However, this is

not explicit in the analysis below, mostly for compactness of the exposition. Its inclusion

is trivial and would not affect the results. Furthermore, under the tracking objective of

interest, a cost for ∆u is arguably more applicable as it does not penalize nonzero control

actions required to reach arbitrary, stationary reference signals.

3.2.1 Predictor Models with Backward Difference Filters

By construction, the information state vector ϕt in (3.1) is simply a filtered version of the

input record as defined in section 2.3. Therefore, using the state-space defined by the triad
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{Aξ,Bξ,Cθ} as the predictor directly, would not permit the inclusion of the information

provided by output measurements in the control design.

Figure 3.2: Output Feedback in MPC with GOBF Models

As shown in Figure 3.2, in the absence of a further modification, the output signal is

completely decoupled from the controller. In order to address this limitation, the model

is modified with a low-order backwards difference filter, ∆nd ,

∆nd = (1− q−1)nd

= 1+ d1q
−1 + · · ·+ dndq

−nd .

The filter is applied to predictions made with the nominal GOBF model (3.1), such that

∆ndϕ̂k+1 = Aξ∆
ndϕ̂k +Bξ∆

ndûk, ∆ndϕ̂0 = ∆ndϕt

∆nd ŷk = Cθ∆
ndϕ̂k.
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This system can be equivalently expressed in terms of the state-space triad {Am,Bm,Cm},

as

x̂m,k+1 =



Aξ 0 · · · · · · 0

CθAξ −d1I · · · · · · −dndI

0 I 0 · · · 0
...

. . . . . . . . .
...

0 · · · · · · I 0


︸ ︷︷ ︸

Am :=

x̂m,k +



Bξ

CθBξ

0
...

0


︸ ︷︷ ︸
Bm :=

∆nduk

ŷk =
[
0 I 0 · · · 0

]
︸ ︷︷ ︸

Cm :=

x̂m,k

(3.5)

where

x̂m,k :=
[
∆ndϕ̂>k ŷ>k ŷ>k−1 · · · ŷ>k−nd+1

]>
.

Output feedback has been introduced by updating the state vector with the corresponding

output measurements in the data record, {yt,yt−1, . . . ,yt−nd+1}, prior to the computation

of the optimal control.

The filtering feature is a control design tool and it is meant to remain independent of

the parameter estimation process when dealing with the adaptive formulations presented

in the following chapter. In addition to introducing output feedback, the filter reduces

the correlation with respect to the output noise signal (Finn et al. 1993). From (3.5), it

is clear that higher order filters imply additional elements of the data record in the state

update which could be useful when dealing with periodic disturbances. The backwards
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difference choice presents a couple of useful properties. First, it facilitates the recovery of

the unfiltered input signals with alternating sign coefficients given by Pascal’s triangle.

∆ = 1− q−1

∆2 = 1− 2q−1 + q−2

∆3 = 1− 3q−1 + 3q−2 − q−3

...

∆nd = 1− . . . . . . . . . . . . +(−1)ndq−nd .

More importantly, as the system approaches any steady state, ∆ndϕt → 0. For example,

with nd = 3, at steady state, ϕt = ϕt−1 = ϕt−2 = ϕt−3,

∆3ϕt = ϕt − 3ϕt−1 + 3ϕt−2 −ϕt−3

= (1− 3+ 3− 1)ϕt

= 0

3.2.2 Infinite-Horizon Constant Reference Tracking

Due to the inherent controllability of the input-output elements used in the construc-

tion of {Aξ,Bξ}, stabilizability for the corresponding state transition pair for the filtered

model, {Am,Bm}, in equation (3.5) follows. As a result, for any bounded parameter esti-

mate, θ̂, the solution of an unconstrained infinite horizon LQ problem for a constant ref-
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erence signal, yr, is possible in principle. For a model generated with the first backwards

difference filter, ∆, the objective function reduces to the following regulation problem,

J∞(xtr,∆ûk = κ(x̂tr,k)) := lim
N→∞

N−1∑
k=0

‖x̂tr,k‖2Qtr + ‖∆ûk‖
2
R, x̂tr,0 = xtr. (3.6)

Here, the policy κ is to be followed in the infinite horizon. The applicable state transition

dynamics and corresponding state, according to (3.5), are given by

x̂tr,k+1 = Amx̂tr,k +Bm∆ûk (3.7)

Am =

 Aξ 0

CθAξ I

 , Bm =

 Bξ

CθBξ

 , and x̂tr,k :=

 ∆ϕ̂k

ŷk − yr


The tracking state cost matrix Qtr is obtained from the model output matrix, Cm, and, Q,

in (3.3),

Qtr = C>mQCm � 0, Cm =
[
0 I

]
.

Equivalent expressions for higher order filtered models are obtained in a similar fashion.

The solution to this LQR problem is obtained from the associated Discrete Algebraic

Riccati Equation (DARE),

P∞ = A>mP∞Am −A>mP∞Bm

(
B>mP∞Bm +R

)−1
B>mP∞Am +Qtr. (3.8)

The symmetric matrix solution, P∞ � 0, defines the minimal cost, J?∞, for the uncon-

strained minimization with objective (3.6), under the model structure parametrized by

{Aξ,Bξ,Cθ},

J?∞ (xtr) := min
κ
J∞(xtr,κ(xtr)) = x>trP∞xtr, ∀xtr
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This cost is achieved by the minimizing policy, κ?∞(xtr) =K∞xtr,

K∞ := −
(
B>mP∞Bm +R

)−1
B>mP∞Am.

For a time varying reference signal and a finite receding horizon, the terminal cost,

Jf , is defined by the last element of the reference signal yrt and the infinite horizon cost

matrix,

Jf (x̂m) := ‖x̂m −xrm‖
2
P∞

(3.9)

where reference state signal, xrm, for ∆, is defined by the terminal cost reference, yr

x̂tr = x̂m −xrm, xrm :=

 0

yr

 (3.10)

This terminal cost choice implies that the objective function is computed assuming that

the optimal policy κ?∞ is followed beyond the receding horizon window.

3.3 extended model

Combining the stage and terminal cost definitions from the previous section, a general

time-varying reference tracking objective function is defined by

N−1∑
k=0

(
‖Cmx̂m,k − yrk‖

2
Q + ‖∆ûk‖2R

)
+ ‖x̂m,N −xsm,N‖

2
P∞

.

As expressed above, under a fixed model, this function depends on other signals in addi-

tion to the filtered model initial condition, x̂m,0, and the receding horizon control vector,
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u. The purpose of this section is to introduce model extensions that allow a compact prob-

lem definition that adheres to the form of (3.2). In practical terms, these model extensions

are entirely notational. However, they will be useful in the subsequent development.

3.3.1 Input Record Model

Appending a model for the control sequence is convenient for two reasons. First, it allows

the computation of filtered inputs from the initial condition. Secondly, it facilitates the

expression of input constraints in terms of the state. This is easily accomplished with the

controllable state-transition dynamics corresponding to the inverse filtering operation,

{Au,Bu}. For example, for ∆2, from equation (3.5), and the filter coefficients d1 = −2

and d2 = 1,

x̂u,k+1 = Aux̂u,k +Bu∆
2ûk (3.11)

Au =

 2I −I

I 0

 , Bu =

 I
0

 , x̂u,0 =

 ut−1
ut−2


Input constraints can be specified directly in terms of x̂u,k. On the other hand, inputs and

input moves are expressed with linear combinations of the input record contained in the

state and the filtered control,

û = L0x̂u,k +∆ndûk

∆ûk = L1x̂u,k +∆ndûk.
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For the particular case above, with nd = 2, L0 =
[
2I −I

]
, and L1 =

[
I −I

]
. The

control move cost in (3.3) can also be expressed in terms of the input record state and the

filtered input,

‖∆ûk‖2R = ‖x̂u,k‖2Ru + ‖∆
ndûk‖2R + 2x̂>u,kSu∆

ndûk (3.12)

where Ru = L>1RL1, and Su = L>1R.

3.3.2 Reference Signal Model

Similarly to the input record model, the reference signal can also be incorporated into the

state (Bitmead et al. 1990). This is accomplished with the following unforced dynamics,

x̂r,k+1 =



0 I 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . . . . 0

...
. . . . . . . . . I

0 · · · · · · · · · 0


︸ ︷︷ ︸

Ar :=

x̂r,k, x̂r,0 = yrt , (3.13)

and

yrk =
[
I 0 · · · · · · 0

]
︸ ︷︷ ︸

Cr :=

x̂r,k.
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3.3 extended model

The stability of the reference state follows trivially since Ar is nilpotent. Also, we note

that the tracking stage cost in (3.3) and the steady state signal in (3.9) can be equivalently

expressed by

Cmx̂m,k − yrk =
[
Cm −Cr

]  x̂m,k

x̂r,k


x̂m,N −xsm,N =

[
I −Cnd

r

]  x̂m,N

x̂r,N

 , Cnd
r :=


0

Cr
...

Cr

 (3.14)

3.3.3 Optimal Control Problem

An extended model state is obtained by concatenating the predictor model with the aux-

iliary models for the input record and the reference signal,

x̂k+1 = Ax̂k +B∆
ndûk (3.15)

A :=


Am 0 0

0 Au 0

0 0 Ar

 , B :=


Bm

Bu

0

 , and x̂k :=


x̂m,k

x̂u,k

x̂r,k

 .

In terms of the extended state, the time-varying reference tracking objective function

reduces to regulation with state-input costs (Bitmead et al. 1990),

JN (x̂0,u) :=
N−1∑
k=0

(
‖x̂k‖2Q` + ‖∆

ndûk‖2R + 2x̂>k S`∆
ndûk

)
+ ‖x̂N‖2Pf . (3.16)

The extended model cost matrices, {Q`,S`,Pf}, are defined by the original stage cost ma-

trices, {Q,R}, and the infinite horizon tracking cost matrix, P∞, related by the extended
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3.4 mpc properties

state definition and the expressions in (3.12) and (3.14). At a given time, t, the initial con-

dition, x̂0, is updated with the filtered GOBF vector, ∆ndϕt, the finite horizon reference

signal, yrt , and the relevant elements of the input-output data record. The optimal control

problem is composed by the objective function above with the nominal extended model

and a set of input/output and terminal constraints mapped onto the space of the control

sequence, such that u ∈ UN ,

PN (x) : J?N (x) = min
u

{
JN (x̂0,u)

∣∣ u ∈ UN , x̂0 = x
}
. (3.17)

The optimizing argument is denoted by u?. The optimization above is performed over

the filtered inputs, ∆ndûk for k ∈ I0:N−1. However, the optimal receding horizon control,

u?, can be recovered by the applying the inverse difference filter to the optimized filtered

input sequence. Since this is already built in the extended state definition, the desired

solution vector is equivalently recovered from the leading elements of x̂u,k for k ∈ I1:N .

The MPC optimal policy obtained from applying the first element of u? at each time, t, is

denoted by

κ?N (xt) := û?0. (3.18)

3.4 mpc properties

We are now interested in establishing the properties of MPC policies resulting from the

online solution of the receding horizon problem (3.17) under different scenarios. In addi-

tion to the control design choices made thus far, this analysis requires the assumption of

feasibility for the fixed horizon length. We start by defining the model error in terms of its
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3.4 mpc properties

GOBF expansion. Next, the derivation of an analytic solution for the unconstrained case

is presented. We compile the necessary ingredients for stability and optimality for the

constrained case under ideal conditions. The section is closed with the outline of a robust

constrained reformulation. As one would expect, these results follow from the predictive

accuracy of the model and the characteristics of the constraint set.

We make use of a simplifying choice for the filter order, nd = 1, below. All statements

to be made hold in the general case, nd > 1, with an equivalent treatment. As a result,

L1 = 0, and the objective function (3.16) simplifies to

JN (x̂0,u
?) :=

N−1∑
k=0

(
‖x̂k‖2Q` + ‖∆ûk‖

2
R

)
+ ‖x̂N‖2Pf . (3.19)

The related state is, x̂k =
[
∆ϕ̂>k ŷ>k û>k−1 x̂>r,k

]>, with transition dynamics given by

(3.15). Note that only the output signal elements are subject to unknown disturbances.

The system state transitions are described accordingly,

xt+1 = Axt +B∆ut︸ ︷︷ ︸
f(xt,ut) :=

+wt. (3.20)

The disturbance signal, wt, has the following structure

xt =


∆ϕt

yt

ut−1

yrt

 , wt =


0

wy,t

0

wr,t

 (3.21)
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3.4 mpc properties

where wy,t = ∆v̂t is the filtered unmeasured signal with model error and measurement

noise contributions as defined in the previous chapter. On the other hand, wr,t is deter-

ministic and known.

3.4.1 Unconstrained Optimal Linear Controller

In the absence of constraints there is no need for recursive optimizations as an equivalent

analytical solution for the optimal control function can be obtained off-line via Dynamic

Programming. The finite horizon control design is kept, allowing the incorporation of

future output reference changes N steps ahead of time through the disturbance wr.

The elements of the finite horizon control vector, u?, minimize a sequence of action-

state cost functions,

min
ûN−i

 x̂N−i

∆ûN−i

>  A>Pi−1A+Q` A>Pi−1B

B>Pi−1A B>Pi−1B +R

 x̂N−i

∆ûN−i

 , ∀i ∈ I1:N ,

where the quadratic cost matrices Pi are related by optimality, expressed by the following

Riccati matrix difference equation (RDE),

Pi = A>Pi−1A−A>Pi−1B(B>Pi−1B +R)−1B>Pi−1A+Q`, P0 = Pf

The optimal input for the first stage is computed from the stationary condition for the

quadratic action-state cost with i = N ,

∆û?0 = −(B>PN−1B +R)−1B>PN−1Ax
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3.4 mpc properties

Due to the structure of the extended state and the definition of the terminal cost, the

following equalities hold,

B>PN−1B = B>mP∞Bm

B>PN−1Ax =
[
B>mP∞Am 0 B>mPr,N−1Ar

]
x.

These relationships allow us to obtain the optimal control law from (3.8) and the com-

putation of the coupled model-reference cost matrix, Pr,N−1, which is given by a matrix

recursion of lower dimension,

Pr,i = (Am +BmK∞)
>Pr,i−1Ar −C>mQCr, Pr,0 = −P∞C>mCr.

The result, conveniently decomposes into a linear gain policy with filtered model, input,

and reference contributions that act on the corresponding elements of the extended model

state,

κnc,?
N (x) :=

[
K∞ Ku Kr

]
xm

xu

xr

 (3.22)

where,

Ku = I

Kr = −(B>mP∞Bm +R)−1B>mPr,N−1Ar

For higher order difference filters, the DARE and matrix recursion above must include

control-state contributions, while Ku is defined by the applicable linear combination of

input record elements that compose this portion of the extended state.
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3.4.2 Constraints

As noted earlier, the GOBF model state, does not necessarily have a direct interpretation

with respect to all physical variables of the system. As such, this framework is limited

to handle input and output signal constraints directly. More precisely, these can be ex-

pressed only for physical variables modeled as system inputs or outputs. Nonetheless,

both constraint sets, ûk ∈ U and ŷk ∈ Y , are expressed in term of the extended state,

X =
{
x
∣∣ xu ∈ U , Cmxm ∈ Y} .

It is assumed that the resulting region is a bounded polyhedral set. We aim to character-

ize the properties that follow from the choices thus far. Note that with (3.10), we have

implicitly defined the corresponding terminal policy in terms of the extended state,

κf (x) := xu +K∞(xm −xrm), xrm =

 0

yr

 . (3.23)

the infinite horizon policy, κ?∞, maps model states to filtered inputs. To be consistent with

f in (3.20), and the definition for κ?N , the terminal policy is defined to map from extended

states to inputs directly instead. Cases with higher order difference filters follow the same

form with a gain acting on xu determined by the respective inverse filter coefficients.

Next, the terminal region, Xf , and reachable sets Xj , for j = 1, . . . ,N , are introduced.

The former is defined to be a closed subset of X . The latter, as the set of states from

which Xf is reachable by a sequence of j controls, or less, while the corresponding state

trajectory remains in X . In particular, XN , denotes the set of admissible initial conditions.
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These elements are dependent on the polyhedral region X and the horizon N and can be

determined off-line with simulations.

By acknowledging the disturbance signal, w, we must include its effect in the analysis.

First, the special case with zero model error and a constant reference disturbance is stud-

ied. This simplified development follows the formulation of ingredients for optimality

and stability by Mayne et al. (2000). This is followed in the next section by the analysis

of the general case assuming that the disturbance belongs to a bounded compact set. The

problem reformulation is inspired by the work of Limon et al. (2010) and Zeilinger et al.

(2014). Appropriate modifications that follow from the adopted modeling framework are

made.

3.4.3 Perfect Model & Constant Reference Disturbance

With respect to its definition in (3.21), the disturbance signal in this case is given by

w0 :=


0

0

0

wr

 ,

where the nonzero portion of the disturbance appends a constant signal to the last element

of the reference state, i.e. wr :=
[
0 · · · 0 yr>

]>
.

The effect of the output disturbance, v̂, has been removed from the analysis. Given

that PN is defined with a tracking objective in mind, we skip the nominal, undisturbed

case. Nonetheless, the simplified description below covers it as a special case with yr = 0.

63



3.4 mpc properties

The constant reference signal is set to equal to the last element of yr0. Consequently, a

time invariant terminal cost, policy, and set are obtained for t ≥ 0. As time advances, the

reference state vector elements are all equal and PN collapses to the constant reference

tracking problem under a perfect model.

Table 3.1: Standard Nominal Stability Conditions

Condition Comments

C1
Xr(yr) ∩Xf 6= ∅,
Xf closed, Xf ⊂ X

Xr(yr) is defined to contain the set of
steady-state admissible inputs, with nomi-
nal output yr. For a given x ∈ Xr(yr),
the related infinite-horizon constant tracking
model state (3.7) equals zero.

C2
f(x,κf (x)) +w0 ∈ Xf ,
∀x ∈ Xf

This condition implies that the control con-
straints are satisfied in the terminal region,
i.e. κf (x) ∈ U , ∀x ∈ Xf , by construction of
the extended state.

C3
Jf (f(x,κf (x)) +w0)
−Jf (x) ≤ −`(x,κf (x)),
∀x ∈ Xf

The terminal policy is a Lyapunov func-
tion in a neighborhood of the origin of (3.7)
mapped onto the extended state space, for
the closed loop system with constant distur-
bance wr

0.

Table 3.1 summarizes the sufficient conditions for stability of the closed-loop system

under the optimal MPC policy, f(x,κ?N (x)) +w0 . In addition to meeting these criteria,

PN must be feasible, with a horizonN large enough and constraints that yield a nonempty

set of admissible initial conditions, XN . These properties are traditionally stated in terms

of an equivalent system with its coordinates shifted such that the origin correspond to

a steady state of interest. In that case, the first line of C1 in Table 3.1 is replaced with

0 ∈ Xf . Assuming that the number of output and input channels allow for the existence
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of such steady states, it follows from the controllability properties of the GOBF model

components, that Xr in nonempty. Furthermore, satisfaction of C1 implies yr ∈ Y . The

set Xr is a function of the constant reference and is formally defined by

Xr(yr) :=
{
x
∣∣ ∃ϕs, (Aξ − I)ϕs +Bξxu = 0, Cθϕ

s = yr
}
.

The infinite-horizon terminal policy drives the tracking state in (3.7) asymptotically to

zero. As a result, according to (3.23), xm − xrm → 0, and the policy approaches a steady

state, κf (x) → xsu ∈ U , ∀x ∈ Xf and ∀yr ∈ Y , with the same rate. Therefore, C2, is also

satisfied. C3 is determined via induction.

Theorem 1. Convergence under κ?N andw0 . Assuming C1 is satisfied, the closed loop system

f(x,κ?N (x)) +w
0 approaches an admissible steady state, xs ∈ Xs, asymptotically with

region of attraction XN .

Proof. Let κ?i , J
?
i ∀i ∈ I1:N−1, denote a sequence of optimal policies, and corresponding

costs. Each pair is defined equivalently to κ?N and J?N . Set κ?0 := κf and J?0 := Jf . From

optimality, it follows that

J?i (x) = `(x, κ̂?i (x)) + J?i−1(f(x, κ̂
?
i (x)) +w

0)

Noting that κ?1 = κf , for x ∈ X0 since X0 = Xf ⊂ X , the expression above gives

J?1 (x) = `(x,κ?1(x)) + J?0 (f(x,κ
?
1(x)) +w

0)︸ ︷︷ ︸
= Jf (x)
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3.5 robust reformulation

for i = 1. Therefore, J?1 (x) = J?0 (x), ∀x ∈ X0.

Assume that, J?i+1(x) ≤ J?i (x) ∀x ∈ Xi. Evaluating the difference, we get

0 ≥ J?i+1(x)− J?i (x)

= `(x,κ?i+1(x))− `(x,κ?i (x)) + J?i (f(x,κ
?
i+1(x)) +w

0)− J?i−1(f(x,κ?i (x)) +w0)

≥ `(x,κ?i (x))− `(x,κ?i (x)) + J?i (f(x,κ
?
i (x)) +w

0)− J?i−1(f(x,κ?i (x)) +w0)

= J?i (f(x,κ
?
i (x)) +w

0)− J?i (x) + `(x,κ?i (x))

By the principle of mathematical induction, monotonicity is established and

J?N (f(x,κ
?
N (x)) +w

0)− J?N (x) ≤ −`(x,κ?N (x)), ∀x ∈ XN .

This condition implies that the MPC objective cost for the closed-loop with constant dis-

turbance, w0, is a Lyapunov function in the shifted coordinates with the resulting steady

state at the origin. The result follows.

This simplified analysis does not necessarily apply to the general disturbance with a

nonzero model error and/or measurement noise. It is only possible due to the fact that

the disturbance set has a single deterministic, known element. For the general case neither

equality nor descent can be guaranteed for J?1 (x) with respect to J?0 (x).

3.5 robust reformulation

The robust linear MPC algorithms in (Limon et al. 2010; Zeilinger et al. 2014) for track-

ing piece-wise constant signals are adapted to the GOBF modeling approach. In order
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to enforce equivalent conditions to those in Table 3.1 for the general case, PN must be

reformulated. A more strict characterization of these conditions is covered by the concept

of input-to-state stability (ISS) as described in Appendix B of (Rawlings & Mayne 2009).

Under the piece-wise constant output reference restriction, the associated elements of

the extended model are unnecessary and cumbersome. Before the new problem is de-

scribed, the state transition model for the system is simplified by excluding them,

xt+1 = Axt +B∆ut +wt (3.24)

A :=

 Am 0

0 I

 , B :=

 Bm

I

 .

Where the state and disturbance vectors have the following notational structure,

x :=

 xm
xu

 ,xm :=

 xϕ
xy

 , and w :=

 wm

0

 ,wm :=

 0

wy


with xϕ := ∆ϕ, xy := y. The optimal control problem is designed for the tracking of a

reference signal, yrt , subject to step changes that occur at a much lower frequency than

the control action.

There are three main obstacles that make an adequate formulation with robust guaran-

tees non-trivial. First, the disturbed closed-loop system may undergo constraint violations

that yield inadmissible initial conditions due to the disturbance action. This issue is ad-

dressed by the tightening of the constraints with respect to a bounding set for the error

dynamics and a subsequent adjustment to the optimal control that keeps the disturbed

state in a region surrounding the stabilized nominal trajectory. Second, changes in the

reference signal may also render the problem infeasible. There are no guarantees that
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the shifted terminal region, associated to the new reference, remains reachable under the

fixed horizon. Additional decision variables are introduced to define an artificial steady

state. Third, the existence of an ISS Lyapunov function is desired in order to establish

associated guarantees. This is resolved by appending a cost that penalizes the distance

between the measurement and the optimization variables of the first stage cost that are

disturbed. In the following subsections, the required modifications to the objective and

the constraint set of the optimal control problem are introduced in detail.

3.5.1 Constraint Tightening

The key concept in this aspect of the reformulation is to split the optimal control action

into two interrelated processes (Mayne et al. 2005). The optimization is performed with

respect to the deterministic nominal system (3.24). The disturbed state is then steered

towards the optimized nominal trajectory with a suitable stabilizing proportional control

law. The robust design combines the effects of stabilization by the optimized nominal

control, and the ancillary law to counteract the disturbance which steers the actual trajec-

tory away from the optimized variables. In order to develop these ideas, the following

model error definition is adopted,

em := xm − x̂m

where,

x+
m := Amxm +Bm∆u+wm, ∆u = u−u−

x̂+
m := Amx̂m +Bm∆û, ∆û = û−u−

(3.25)
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Here we have adopted the superscripts +/− to denote a single forward/backward sam-

pling time move.

The proposed proportional law is specified by an optimized nominal input and state,

u = û? +Kme
?
m. (3.26)

The stabilizing gain Km, is chosen such that the closed loop matrix,

AK := Am +BmKm,

has all of its eigenvalues inside the unit circle. The optimized nominal state is constrained

to x̂u = xu such that the input move expressions in (3.25) always hold. The following

expression for the projected model error at the next sampling time is obtained,

e+m = AKe
∗
m +wm (3.27)

Under the existence of a region around the nominal trajectory with the following char-

acteristics with respect to (3.26), robust guarantees can be derived. First, the associated

tightening must result in nonempty feasible regions for the nominal variables in the op-

timal control problem. This property is related to the magnitude of the error signal and

the required stabilizing gain. Moreover, the set must be robustly positive invariant for the

disturbed closed loop (Rawlings & Mayne 2009).

Definition 2. Robust Positive Invariant (rPI) Set. Em is a rPI set for the closed loop error

system, e+m = AKem +wm, wm ∈ Wm, if AKEm ⊕Wm ∈ Em.
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A minimal region that reduces the tightening while meeting the invariance condition

is desired. It follows that if the nominal state trajectory remains in the interior of the

original constraints, X , with a margin specified by a suitable rPI set, the disturbed system

trajectory will satisfy x ∈ X . The tightened constraint sets are denoted with the subscript

w. For example, the state tightened extended state constraint set, Xw ⊆ X , is defined with

Xw :=
{
x
∣∣ xy ∈ Yw, xu ∈ Uw} .

The tightening of the input/output constraints is performed with respect to the largest

expected disturbance realization. Under the model structure, this is fixed by a lower-

dimensional set. To make this observation explicit, we rewrite (3.27) with the stabilizing

gain, Km =
[
Kϕ Ky

]
, in terms of the undisturbed GOBF vector and the disturbed

output,

 e+ϕ
e+y

 =

 Aξ +BξKϕ BξKy

Cθ(Aξ +BξKϕ) I +CθBξKy

 eϕ
ey

+

 0

wy


Noting that the filtered information state is deterministic, updated with the input record,

the optimal nominal state is also constrained to give e?m =
[
0 e?y

>
]>. The following

system of coupled equations is obtained

e+ϕ = BξKye
?
y (3.28a)

e+y = (I +CθBξKy)e
?
y +wy. (3.28b)

Both error systems are stable, by construction. It is then sufficient to specify a rPI set

for the output error system (3.28b), Ey ∈ Rny , such that e+y ∈ Ey, ∀ey ∈ Ey, wy ∈ Wy.
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Assuming Wy is a known compact set, the existence of a minimal rPI set is guaranteed

and a arbitrarily accurate outer approximation can be computed (Rakovic et al. 2005). The

model error rPI set is specified in (3.29).

Em = BξKyEy ×Ey. (3.29)

The tightened input/output constraints, that in turn define Xw, are given by

Yw := Y 	 Ey

Uw := U 	KyEy.
(3.30)

where the operations 	 and ⊕ denote the Minkowski sum and difference respectively.

3.5.2 Artificial Steady-State

With the modified constraint set definition in hand, the artificial steady state and its role

in the robust reformulation is presented. Consider the occurrence of a step change in

the reference trajectory going from yrt to yrt+ . Assume that the first references is robustly

admissible, i.e. yrt ∈ Yw, and prior to time t, the system has been stabilized to an rPI region

around a matching steady state. Once the step change is introduced, the MPC terminal set

must be shifted accordingly. If the new reference is not admissible, the optimal problem

is infeasible and the control action undefined. Even if this is not the case, there is no

guarantee that the shifted terminal set can be reached within the limited number of steps,

determined by the finite horizon, without constraint violations. The artificial steady state

simply allows the problem to remain feasible by defining a terminal set, consistent with
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the model, as close as possible to the one corresponding to the intended reference. The

stage and terminal costs are redefined accordingly,

`(x,u,xsm) := ‖xm −xsm‖
2
Q`

+ ‖u−xu‖2R

Jf (xm,x
s
m) := ‖xm −xsm‖

2
Pf

(3.31)

where, Q` = C>mQC
>
m, Pf = P∞. The artificial steady state variable, x̂s, must be consis-

tent with the model,

ϕ̂s = Aξϕ̂
s +Bξû

s

ŷs = Cθϕ̂
s

, x̂s =

 x̂sm
ûs

 , x̂sm =

 0

ŷs



and should be as close to the steady state that results on the intended output reference

signal, yrt . The artificial steady state characterization is completed with the definition of

the associated cost to be minimized,

Js(y
s,yr) := ‖ys − yr‖2T (3.32)

where the offset cost matrix, T , is symmetric and satisfies T � cTQ, for a scalar real

constant, cT ∈ (0, 1].

3.5.3 Reformulation

The modifications introduced in relation to PN (x) are briefly summarized. First, the

output element of the nominal state at the first stage, x̂y,0, is set as a decision variable
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and constrained to a neighborhood of the current measured output, y. A penalty cost

to the deviation from the measurement is added to the objective. Second, an artificial

steady state, that is also a decision variable, is defined with an associated offset cost to

be appended to the objective and additional constraints. The stage and final costs are

centered at the artificial steady state. The original input/output constraints are tightened

proportionally to an associated rPI set. The terminal constraint set, Xf ,w(x̂s), is defined

as an invariant set for tracking (Definition 2 in Limon et al. (2010)) and parametrized by

the artificial steady state. The terminal cost is centered at x̂s, implying that the stabiliz-

ing infinite horizon tracking policy is applied beyond the finite portion in the objective

according to (3.23),

κf (x,x
s
m) = xu +K∞(xm −xsm).

The optimal nominal input and initial state pair, {û?0, x̂?0}, is subsequently used to com-

pute a robust MPC policy (3.26).

The tracking invariance definition implies that the terminal set, Xf ,w(x̂s), parametrized

by a robustly admissible steady state,

x̂s ∈ Xs =
{
x̂s
∣∣ (3.33g) and (3.33h) hold

}
,

satisfies x̂s⊕ (Em×KyEy) ⊆ Xf ,w(x̂s) ⊆ X , and is positively invariant under the tracking

terminal policy,

f(x̂,κf (x̂, x̂
s
m)) ∈ Xf ,w(x̂s), ∀x̂ ∈ Xf ,w(x̂s) and ∀x̂s ∈ Xs.
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3.5 robust reformulation

At a given sampling instance, the optimal control problem is parametrized by the current

reference signal and the measured state. The tracking objective is redefined with the new

variables,

JN (x̂0,u, x̂
s
m) :=

N−1∑
k=0

`(x̂k, ûk, x̂
s
m) + Jf (x̂m,N , x̂

s
m)

The full robust MPC optimization problem obtained by appending the offset and mea-

surement deviation costs, along with the related constraints, Pw,N (x,yr), is stated below.

Pw,N (x,yr) : min
x̂0,u,x̂s,ϕ̂s

JN (x̂0,u, x̂
s
m) + Js(ŷ

s,yr) + Jf (xm, x̂m,0) (3.33)

s.t. x̂k+1 = f(x̂k, ûk), k ∈ I0:N−1 (3.33a)

x̂ϕ,0 = xϕ (3.33b)

xy ∈ x̂y,0 ⊕Ey (3.33c)

x̂u,0 = xu (3.33d)

x̂k ∈ Xw, k ∈ I1:N−1 (3.33e)

x̂N ∈ Xw,f (x̂s) (3.33f) Aξ − I Bξ

Cθ 0

 ϕ̂s
ûs

 =

 0

ŷs

 (3.33g)

x̂s ∈ Xw (3.33h)

Note that the terminal cost is used twice. Inside JN to penalize deviations from the

desired steady state at the end of the finite horizon, and a second time to penalize the

deviation of the first stage extended model variables, x̂m,0, from the measured states.
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3.5 robust reformulation

The associated optimal cost and robustly admissible set of measured states are implicitly

defined accordingly by J?w,N (x,y
r) and Xw,N .

Two additional adjustments, that allow the use of the optimal objective as an ISS Lya-

punov function, are required. First, if the measured error is sufficiently small, then the

first stage state is no longer optimized. Instead, it is fixed at the measured state. This is

achieved by enforcing the following condition,

if ∆(y−Cθϕ) ∈ cyEy,

replace (3.33b)-(3.33d)

with x̂0 = x,

(3.34)

where the real constant, cy, satisfies 0 < cy � 1. This modification will be useful to show

that the cost associated with the error is bounded. As shown in Figure 3.3, for a given

optimized error, wm can make the subsequent error at the next sampling instance either

greater or smaller, as measured by ‖·‖2Pf , as shown by the dashed lines. If the error is

fixed at zero by the adjustment above, the disturbance terminal cost is obtained. The

error cost is then bounded from above on both sides of the vertical dotted line for any

realization of the disturbance.

Figure 3.3: Bounded Disturbance Cost
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3.5 robust reformulation

Second, the finite horizon control is determined by the terminal policy if the tracking

is satisfied within a small region around the reference model state, xrm, i.e.,

if ‖xm −xrm‖
2
Pf
≤ ε

x̂?0 = x, x̂s,?m = xrm

u? =


κf (x̂

?
0, x̂

s,?
m )

...

κf (x̂N−1, x̂
s,?
m )


(3.35)

where ε defines the region

Em,ε(x
r
m) := {xm

∣∣ ‖xm −xrm‖2Pf ≤ ε} ⊆ xrm ⊕Em.
All the elements of the robust MPC control strategy have been introduced. Omitting the

dependence of the output reference, and noting that under the constraints imposed on

the nominal state Kme
?
m simplifies to Kye

?
y, the control law is

κrc,?N (x) := û?0 +Kye
?
y (3.36)

The policy is summarized in the pseudo-code in Algorithm 3.1 below.
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3.5 robust reformulation

Algorithm 3.1 Robust Control Action

Require:

Measured State, x, and Disturbance wm

rPI Set and Ancillary Gain Em, Km

GOBF Matrices A,B, and Cθ

Parameters cy,Q,R,T , and Pf

Ensure:

Control action u

1: Check (3.34), adjust constraints if necessary

2: Solve (3.33)

3: Check (3.35), update solution if necessary

4: Extract û?0, ŷ
?
0

5: u← û?0 +Ky(y− ŷ?0)

3.5.4 Input to State Stability

Before a ISS result can be stated, a few preliminary definitions and results are required.

Noting that for a fixed sequence of inputs, the objective function of Pw,N (x,yr) is fully

determined by the model portion of the state, xm, define the function V ? : Rnm → R+,

V ?(xm −xrm) := J?w,N (x,y
r),
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3.5 robust reformulation

and the projection of Xw,N onto Rnm , M := Projm(Xw,N ). Also, consider the following

shifted receding horizon control moves vector and initial condition,

∆u◦ :=


∆û?1

...

∆û?N−1

K∞(x̂?m,N − x̂
s,?
m )

 , x̂◦m,0 = x̂?m,1,

obtained from the optimal solution of P?w,N (x,yr). Due to the tightened constraints and

the assumed invariance of the terminal tracking target set, this vector along with the

artificial steady state variables, x̂s,?, ϕ̂s,?, parametrize a feasible solution of P?w,N (x+, ŷr).

Additionally, define V ◦(x+
m − xrm) as the associated suboptimal objective cost. Note that

for any pair, xam,xbm ∈ Rnm , it follows from the first order condition of convexity applied

to 1
2‖·‖

2
Q`

, that

‖xam‖
2
Q`

+ ‖xbm‖
2
Q`
≥ 1

2‖x
a
m + xbm‖

2
Q`

. (3.37)

Lastly, as shown in (R&M ref) the existence of an ISS Lyapunov function for a given

constrained dynamic system implies input to state stability. We proceed to show that

V ?(xm −xrm) satisfy the defining inequalities for an ISS Lyapunov function, that guaran-

tee robust stability.

Theorem 3. Constrained Input-to-State Stability under κrc,?N and wy ∈ Wy. Assuming a

nonempty compact setM, the closed-loop system trajectory for xm−xrm under the policy

κrc,?N is ISS inM.
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Proof. First note that, ∀xm ∈M,

V ?(xm −xrm) ≥ ‖x̂?m,0 − x̂s,?m ‖
2
Q`

+ ‖xm − x̂?m,0‖
2
Pf

+ ‖x̂s,?m −xrm‖
2
Ts

≥ ‖x̂?m,0 − x̂s,?m ‖
2
Q`

+ ‖xm − x̂?m,0‖
2
Q`

+ cT ‖x̂s,?m −xrm‖
2
Q`

≥ 1
2cT ‖xm − x̂

s,?
m ‖

2
Q`

+ 1
2cT ‖x

?
m − x̂?m,0‖

2
Q`

≥ 1
4cT ‖xm −x

r
m‖

2
Q`

.

where Ts = C>mTCm. The second line holds since the choice of matrices guarantee

‖·‖2Pf ≥ ‖·‖
2
Q`

and ‖·‖2Ts ≥ cT ‖·‖2Q` . The lines below follow from applying the inequality

in (3.37) and multiplying by positive constants less than one. It can be shown that there

exist a K∞-class function, α(‖xm−xrm‖) that bounds the right hand side from below since

Q` � 0. Therefore, V ?(xm − xrm) ≥ α(‖xm − xrm‖). On the other hand, an upper bound

can be obtained for xm ∈ Em,ε(xrm), since it follows from the assignments in (3.35) that

V ?(xm − xrm) ≤ ‖xm − xrm‖
2
Pf
≤ αε(‖xm − xrm‖). This upper bound can be extended to

the setM by another K∞-class function, α(‖xm −xrm‖) as long as Em,ε(xrm) ⊆M, which

was assumed to hold for all robustly admissible references. From optimality, it follows

that

V ?(x+
m −xrm)− V ?(xm −xrm) ≤ V ◦(x+

m −xrm)− V ?(xm −xrm).
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3.5 robust reformulation

Expanding the right hand side,

V ◦(x+
m −xrm)− V ?(xm −xrm) = −‖x̂?m,0 − x̂s,?m ‖

2
Q`
− ‖∆û?0‖

2
R

+ ‖x+
m − x̂?m,1‖

2
Pf
− ‖xm − x̂?m,0‖

2
Pf

≤ −(‖x̂?m,0 − x̂s,?m ‖
2
Q`

+ ‖xm − x̂?m,0‖
2
Q`

)

+ ‖x+
m − x̂?m,1‖

2
Pf

≤ −1
2‖xm − x̂

s,?
m ‖

2
Q`

+ ‖AKe
?
m +wm‖2Pf

The equality is obtained after the elimination of terms given by the shifted input sequence

and the optimality of the terminal cost. The first inequality holds since ‖·‖2R ≥ 0 and

‖·‖2Pf ≥ ‖·‖
2
Q`

. The application of the inequality in (3.37), and the definition of the model

error dynamics (3.27) yield the last line. It can be shown that for the optimal artificial

steady state at each sampling instance, there exists a scalar constant c?s ∈ (0, 1], such that

‖xm − x̂s,?m ‖2Q` = c?s‖xm − xrm‖
2
Q`

. In particular, if the assignments (3.35) apply, c?s = 1.

Therefore, there exists a K∞-class function, α(‖xm−xrm‖) such that −1
2c
?
s‖xm−xrm‖

2
Q`
≤

−α(‖xm − xrm‖). As shown above, (3.34) enables the definition of a K-class function,

γ(‖wm‖), that satisfies,

‖AKe
?
m +wm‖2Pf ≤ γ(‖wm‖).

Combining these inequalities with the previous observations, it is determined that ∀xm ∈

M, and ∀wy ∈ Wy,

V ?(x+
m −xrm) ≥ α(‖xm −xrm‖)

V ?(x+
m −xrm) ≤ α(‖xm −xrm‖)

V ?(x+
m −xrm) ≤ V ?(xm −xrm)− α(‖xm −xrm‖) + γ(‖wm‖)
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which define an ISS Lyapunov function and the result follows.

3.6 summarizing example

The control design elements, presented throughout the chapter, will be illustrated with

their application to the minimal mass-spring example from Chapter 2. The intention is

to follow incremental levels of sophistication in the control design, allowing us to draw

conclusions for each particular case in a didactic manner.

3.6.1 Experiment Definition

The stage cost parameters, Q = 0.1, R = 1, and a measurement noise sequence with

known bounds remain the same for all the cases presented. Two GOBF models are gen-

erated. First, an exact model with the poles and expansion coefficients that match the

physical system. Second, an approximate model with the generation pole set ξ3 from the

preceding chapter and the parameter output matrix Cθ =
[
2.25 1.00 0.00 0.75

]
is

specified.

3.6.2 Output Feedback

The first aspect to be discussed is the effect of output feedback, enabled by the model

obtained after implementing a backwards difference filter on the GOBF dynamics. In or-
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der to asses its value, a baseline is defined with an LQ controller applied to the following

unfiltered dynamics,

 ϕk+1

uk

 =

 Aξ Bξ

0 I

 ϕk

uk−1

+

 Bξ

I

∆uk
The unconstrained optimal policy is defined with respect to a steady state, ϕr, that mini-

mizes the steady state input magnitude and satisfies Cθϕr = yr. Where Cθ is generated

with the inaccurate parameters. In terms of the state above, the resulting tracking stage

cost for (3.19) is

‖yk − yr‖2Q + ‖∆uk‖2R = ‖ϕk −ϕr‖2Qθ + ‖∆uk‖
2
R, Qθ = C>θ QCθ.

With the transition dynamics and the cost matrices above, an infinite-horizon LQ policy

is obtained. Without output feedback, the state is determined exclusively by the input

record while the optimal policy is only updated by a shift in the reference output. A

limitation of this approach is that it will have a tracking offset under model mismatch

as shown in Figure 3.4. By replacing the model dynamics with the filtered version, mea-

surement feedback is enabled. Two unconstrained policies were presented. The infinite

horizon tracking policy (3.23), shown in Figure 3.5, and the extended state policy (3.22). In

contrast to the unfiltered case, there is no need to compute the GOBF vector steady state

as the model definition handles the output reference directly. In addition to measurement

feedback, the extended model policy introduces a known disturbance that appends the

future reference at the end of the finite horizon which is set at N = 10. The profile for

this case is illustrated in Figure 3.6.
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Figure 3.5: Infinite-Horizon Tracking Policy, Approximate Model

Figure 3.4: Unfiltered LQ Policy, Approximate Model
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Figure 3.6: Extended State Tracking Policy, Approximate Model

Compared to the control profile obtained with the unfiltered dynamics, the feedback

policies provide superior tracking performance. As seen in the figures above, the uncon-

strained feedback policies are identical initially, and only differ once the output reference

changes. The extended model offers the ability to anticipate the shift and adjust the

optimal input profile accordingly. This feature can be particularly useful for tracking ref-

erence profiles that are not piece-wise constant. Also, note that the input profile obtained

from the extended model policy has a less aggressive control moves as a result.

3.6.3 Robust Reformulation

Constraints handling could be achieved by the iterative or preemptive adjustment of the

cost matrices. Instead, the robust formulation circumvents this by the explicit declaration
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3.6 summarizing example

Figure 3.7: Robust Tracking Policy, Perfect Model

of the constraints in the associated optimal control problem (3.33). The system is now

subject to the constraints,

0.25 ≤ u ≤ 0.25

−1.5 ≤ y ≤ 1.5,

which are violated by the profiles obtained from the unconstrained policies above. In

order to illustrate the robust features, the ancillary gain and error bounds are computed

such that the steady states for the desired output references are near the boundary of

the tightened constraints. The offset cost is given by T = 2Q. The system input/output

profiles along with their related optimization variables are displayed for both models in

the Figures 3.7 and 3.8.

Under model mismatch, the tracking performance deteriorates slightly. With respect

to the perfect models, as one would expect, the settling times for the artificial steady
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Figure 3.8: Robust Tracking Policy, Approximate Model

state and the plant output increase. In Figure 3.9, the descent of the objective function

under a constant reference for the approximate model is illustrated. The filtered Gaussian

measurement noise and the overall output disturbance, including the model error, is

displayed in the bottom quadrant.

The effect of the offset cost is illustrated by increasing it with T = 10Q. This results

in a more aggressive policy as the artificial steady state is pushed towards the reference

by the increased cost which results in optimal control actions at the boundary for several

sampling instances after the reference step change. This is shown in detailed along with

the optimized variables in Figure 3.11.
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Figure 3.9: Lyapunov Descent and Output Disturbance, Approximate Model

Figure 3.10: Robust Tracking Policy with Higher Offset Cost, Approximate Model
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Figure 3.11: Robust Tracking Policy Constraint Enforcement, Approximate Model

Robust Reformulation Remarks

Assuming that the measurement noise component is Gaussian, the model error approaches

a constant in expectation for a steady input. Limon et al. (2010) suggest adjusting against

it with the aid of a stable estimator. For a given steady state, the following expression is

satisfied,

ŷ = y−Cm (I −AK)wm,

which follows from the definition of the error and its dynamics. Based on this expression,

the adjusted reference is defined,

ŷrt := yrt −Cm (I −AK) ŵm,t, (3.38)
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where ŵm,t is calculated with a suitable model disturbance estimator. For example, a

stable first order error filter

ŵm,t = ρ (xm,t − (Amxm,t−1 +Bm∆ut−1)) + (1− ρ)ŵm,t−1, ρ ∈ (0, 1).

For a non-negligible measurement noise, a more complex filter may be required. Al-

though this feature could be added to our formulation, this is not necessary as the integral

action of the filtered cost takes care of it.

The robust policy presented here is inspired by the work of Zeilinger et al. (2014),

in which a suboptimal feasible solution is obtained in limited time. We refer to their

manuscript for details on how to extend this formulation to consider limits to the solution

time. The most relevant modification required is the inclusion of a stabilizing constraint

that turns the current Quadratic Program (QP) formulaiton into a convex Quadratically

Contrained QP (QCQP).

The design criteria for the ancillary gain is more appropriately handled by H∞ methods

in general. This requires the solution of convex Linear Matrix Inequality (LMI) optimiza-

tion problems. Here, due to the simplicity of the illustrative system, it is specified with an

Linear quadratic regulator (LQR) policy. More details regarding this feature are provided

in Limon et al. (2010).
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4
C E RTA I N T Y E Q U I VA L E N C E A D A P T I V E G O B F - M P C

With the set of MPC policies for a fixed model structure properly defined, we advance into

the formulation of the adaptive case. The parameter adaptation method to be followed

is derived from the conditional distribution obtained under an idealized characterization

of the disturbance signal. Different adjustments and the introduction of new ingredients

in the resulting set of equations constitute the field of Recursive Least Squares (RLS)

methods. A specific RLS choice, with only a couple of parameters to adjust, is presented

and serves as the adaptation component to be included thereafter. The chapter proceeds

with a series of illustrative simulation examples for the infinite-horizon tracking control

policy applied to the mass-spring minimal SISO system. This is done with the aim to

place the focus solely on the effect of the GOBF generating pole set choice. Lastly, a

more general certainty equivalence control algorithm that includes signal constraints is

introduced. Its performance is illustrated on a quadruple tank MIMO system.
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Figure 4.1: Adaptive GOBF MPC

4.1 parameter adaptation

Adaptation can be understood as an indirect output feedback connection to the controller

with respect to the existing framework, as shown in Figure 4.1. By changing the coeffi-

cients of the GOBF expansions that parametrize the model, the tracking cost evaluation

changes accordingly. As a result, the computation of the optimal input changes with the

adaptation dynamics. The purpose of the inclusion of this feature is to find parameters

that approximate the true system transfer function in the neighborhood of the output

reference signal in situations where these are not already known. As noted in Chapter 2,

including pole locations into the model structure that are consistent with the true dynam-

ics is important to yield acceptable predictor structures. This was shown to be facilitated

by the GOBF structure as it allows multiple locations. The generating pole set can afford

inaccurate locations, as long as approximate ones for the dominant features are included.

If an accurate system model is already at hand, there is no need for adaptation and

the GOBF parametrization is not required. The inherent assumption of the approach is

that only approximate knowledge, expressed by a generating pole set, is available. Since
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the exact expansion coefficients may no longer be computed for uncertain dynamics, the

problem must be defined in terms of their estimates, conditioned to prior distributions

and the available data record.

4.1.1 Conditional Parameter Distribution

The model error signal has been characterized in section 2.4.3 with respect to the struc-

tural model error and a stochastic contribution. A necessary1 simplifying assumption, is

to treat each scalar model error signal sequence, corresponding to a single output chan-

nel, as i.i.d. samples drawn from zero-mean, Gaussian distributions with variance ri,v.

This simplification leads to the formulation of a least-squares problem for the parameter

estimate. Its solution can be expressed with a set of recursions that are equivalent to the

Kalman Filter applied to the estimate of an uncertain state with time-varying dynamics.

Consider a parameter vector that adheres to the following linear state-space representa-

tion,

θt+1 = Aθθt +Bθût +wt, θ0 = θ

yt = Cϕ,tθt + vt

(4.1)

where wk ∼ N (0,Qw), and vk ∼ N (0,Rv). Note that, unlike the state-transition dynam-

ics, the output matrix, Cϕ,t, is time-varying. For an unmeasured, uncertain vector with

known dynamics (4.1), the Kalman Filter specifies the estimate conditioned by an initial

Gaussian distribution given by θ̂0|0, P0|0, and the data record Yt. The resulting distribu-

1 For this derivation
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tion is also Gaussian and is obtained by the recursions (4.2), derived from the associated

least-squares problem.

Pk|k−1 = A>θ Pk−1|k−1Aθ +Qw

θ̂k|k−1 = Aθθ̂k−1|k−1 +Bθûk−1

Lk = Pk|k−1C
>
ϕ,k(C

>
ϕ,kPk|k−1Cϕ,k +Rv)

−1

θ̂k|k = θ̂k|k−1 +Lk(yk −Cϕ,kθ̂k|k−1)

Pk|k = (I −LkCϕ,k)Pk|k−1.

(4.2)

With these difference equations in place, the result below, adjusted from Theorem 7.1 in

Åström & Wittenmark (2008), is stated without proof.

Corollary 1. Conditional Gaussian Parameter Distribution. Consider a constant, uncertain

parameter vector, θ, related to a GOBF MISO system with output, yk = ϕ>k θ + vk, vk ∼

N (0, rv). Its estimate distribution at the current time, t, conditioned by the data record,

Yt and an initial Gaussian distribution N
(
θ̂0,Pθ,0

)
is also Gaussian, and satisfies the

following difference equations

Lt = Pθ,t−1ϕt(ϕ
>
t Pθ,t−1ϕt + rv)

−1 (4.3a)

θ̂t = θ̂t−1 +Lt(yt −ϕ>t θ̂t−1) (4.3b)

Pθ,t = (I −Ltϕ>t )Pθ,t−1 (4.3c)

where,

θ̂t = E[θ|Yt]

Pθ,t = E[(θ− θ̂t)(θ− θ̂t)>|Yt].
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with initial condition θ̂0,Pθ,0.

The expressions in Corollary 1 follow directly from the application of the Kalman Filter

(4.2) with the assignments below with respect to the time-varying general system (4.1).

Aθ = I, Bθ = 0, Cϕ,t = ϕ>t

θ̂t|t = θ̂t, Pt|t = Pθ,t

Qw = 0, Rv = rv

The conditional subscript notation has been eliminated for simplicity since this particu-

lar case allows it. At each sample instance, the vector ϕk is obtained from the known,

deterministic transition dynamics defined by the GOBF model. Note that the result has

been given in terms of MISO systems. With the working model definition, these recur-

sions apply independently for each input channel and their respective information vector.

This simplifies the inverse in (4.3a) to a scalar operation. In relation to predictive control

methods, the immediate consequence of this distribution characterization is that it allows

the evaluation of the analytical expectation of the tracking cost one step into the future,

conditioned to the data record and a given input vector, E[‖yt+1 − yr‖2Q | Yt,ut]. This

result cannot be easily extended into the subsequent stages in the objective function, as

the required future output realizations in (4.3b) are not available. A Certainty Equiva-

lence (CE) assumption corresponds to treating the current estimate as if it were the true

parameter, and make deterministic predictions accordingly.
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4.1.2 Recursive Least Squares Estimator

The Kalman Filter equations (4.3) are at the heart of Recursive Least Squares Methods. In

practice, a variety of adjustment are made. Here, we will follow a slightly more general

form given by,

Lt = Pθ,t−1ϕt(ϕ
>
t Pθ,t−1ϕt + λrv)

−1 (4.4a)

θ̂t = θ̂t−1 + δtLt(yt −ϕ>t θ̂t−1) (4.4b)

Pθ,t = λ−1(I − δtLtϕ>t )Pθ,t−1. (4.4c)

Only two modifications with respect to (4.3) have been included in the (4.4). First, an

exponential forgetting factor, λ ∈ (0, 1] has been introduced. As its name indicates, this

parameter effectively imposes a higher weight in the most recent error signal contribution

to the least-squares loss function, fading the effect of past data as time advances. The

second adjustment corresponds to a basic dead-zone supervision method. This feature

aims to detect and limit the effect of small errors that may accumulate and corrupt the

parameter estimate. The implementation of this supervision is achieved by defining the

following switch variable for each output channel,

δt =


1, if (yt − θ̂>t−1ϕt)2 ≥ εδ

0, otherwise

(4.5)
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where εδ is a small positive real number chosen in relation to the noise to signal ratio.

We refer the interested reader to the work of Dozal-Mejorada (2008) for a more detailed

discussion on the selection of these parameters.

4.2 ce adaptive infinite-horizon tracking

The simplest adaptive policy that adheres to the structure shown in Figure 4.1 is defined

with respect to the infinite-horizon cost of the filtered tracking state as defined below.

κ̂?∞,t(θ̂t,xtr,t) = ut−1 + K̂∞,txtr,t, xtr,t :=

 ∆ϕt

yt − yr

 . (4.6)

The corresponding transition dynamics can be obtained from the filtered extended model

with as shown in Section 3.2.2. Note that both, the policy, and the gain are now denoted

with a hat accent and the subscript t. This notation indicates that the policy is computed

with the current parameter estimate, θ̂t, given by the RLS estimator (4.4) at time t. The pol-

icy is updated online by solving the associated DARE for a given estimate realization that

parametrizes the output matrix Cθ. In conjunction with the fixed GOBF state transition

pair, {Aξ,Bξ}, these elements define the filtered tracking state dynamics. It follows from

the stability of the GOBF dynamics that there exist a solution to this DARE at each time,

for a suitable pair of cost matrices {Q,R}, irrespectively of the parameter realization.
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4.2.1 SISO Mass-Spring Example

A series of simulations under the policy (4.6), applied to the minimal mass-spring ex-

ample for different GOBF model structures are presented. The physical parametrization

of the model is identical to the base case in Chapter 2. The motivation of this study is

to contextualize the introduction of parameter adaptation into our working GOBF MPC

framework. The simplifying policy choice, focuses the attention to the effect of the model

structure and assumes the system is unconstrained. The scalar cost parameters are set to

Q = 0.1 and R = 10. The RLS estimator is set to its basic form (4.3), with Pθ,0 = 102I ,

λ = 1 and εδ = 0.

Different model choices with varying order, n, and generating pole structure are eval-

uated. The sequence of simulations is presented with increasing level of detail for the

model specification, illustrating the value of the GOBF approach. The tracking signal for

the output is set at a constant value of yr = 1. The system is set to be initially motion-

less, at its equilibrium point. A common Gaussian noise sequence, small in relation to

the reference signal, |vt| < 0.1 ∀t, is added to the system output in all simulations. The

parameter vector is updated recursively with close-loop data. Its elements are initialized

with θ̂k,0 = 1 for the first four elements, and θ̂k,0 = 0 for higher order contributions.

The results for the varying cases studied are displayed in figure pairs that display

the profiles for the input-output signals and the parameter estimates for the first four

elements of θ̂t. The first set of simulations is made with FIR models of varying order. The

results shown in Figure 4.2 illustrate an improvement on the control performance as the

model order increases. Once the output stabilizes, the parameters start drifting as shown

in Figure 4.3. This effect is more pronounced for the model with the lowest order. The

98



4.2 ce adaptive infinite-horizon tracking

Figure 4.2: FIR Control

second set corresponds to a one-pole Laguerre modeling choice. With respect to the FIR

approach, this option offers an additional degree of freedom for control design with the

choice of generating pole, ξ. First, the order remains fixed at n = 4 while the generating

pole varies. The results in Figure 4.4 show that it is possible to obtain significantly better

performance to the highest order FIR model above with any of the simulated pole choices.

Among these options, the best performance is obtained by ξ = 0.6.

Additional simulations with one-pole Laguerre models with higher order and a gener-

ating pole location at ξ = 0.8 were also tested. These profiles yield a conflicting result

to the observations made with FIR models. The performance actually deteriorates with

higher order contributions. In an effort to clarify this behavior, the estimation profiles for

parameters of higher order contributions, θ̂4,t− θ̂8,t, are displayed in Figure 4.8. Note that

parameters of matching order among all three cases have a similar trajectory as displayed

in Figure 4.7 and Figure 4.8. Also, higher order contributions display more chattering
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Figure 4.3: FIR Estimation

Figure 4.4: Laguerre Control with n = 4
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Figure 4.5: Laguerre Estimation with n = 4

than the leading counterparts. This could be attributed to the poor conditioning of the

recursive least-squares problem for that region of the parameter space. These features of

the estimation process introduce variance in the related state element contributions to the

output prediction. Ultimately, this is reflected in undesirable variations for the optimal

control signal. Ideally, with a proper choice for the generating pole, this could be avoided,

since the required expansion order is lower as a consequence.

Next, three different GOBF models that include a Kautz building block in their con-

struction are studied. In a similar fashion to the simulations in Chapter 2, these are

design to illustrate the effect of inaccurate generating pole set. The GOBF pole locations

in the unit disk are displayed in Figure 4.9 for each model along with those for the sys-

tem. These pole choices were made to feature increasing levels of accuracy with respect

to prior knowledge about the true dynamics. The first model, GOBF1, results from the

all-pass cascading using Algorithm 2.1 with two FIR blocks of order one and a Kautz
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Figure 4.6: Laguerre Control with ξ = 0.8

Figure 4.7: Laguerre Estimation with ξ = 0.8
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Figure 4.8: Laguerre Higher Order Estimation with ξ = 0.8

block in between with ξ = {0, 0.7± 0.2i, 0}. The intermediate model replaces the leading

block with a Laguerre contribution with a pole in the vicinity of the plant poles, ξ1 = 0.8.

GOBF3 matches the plant poles to the nearest decimal, ξ = {0.9, 0.6± 0.5i, 0.7}. Not sur-

prisingly, as shown in Figure 4.10, the latter model representation yields the best tracking

control while the first one performs worst. On the other hand, the intermediate case is

only marginally worse with respect to the accurate model.

To conclude this section, we examine the advantages of the GOBF model structure

compared to a fixed denominator model. The specific purpose of these simulations is to

determine whether accuracy in the system poles, without the orthonormal structure, is

sufficient to obtain good control performance under adaptation. This quality assessment

is made in terms of the evolution of the reciprocal condition number of the accumulated

information matrix. The fixed denominator model structure is similar to the GOBF ap-
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Figure 4.9: GOBF Pole Locations

Figure 4.10: GOBF Control with n = 4

104



4.2 ce adaptive infinite-horizon tracking

Figure 4.11: GOBF Estimation with n = 4

proach in that it is generated by a fixed choice of poles. These poles define a polynomial

that is set as the fixed denominator of a filter applied to the input,

ψi,t =
qn−i

D(q)
ut, i = I1:n, D(q) :=

n∏
i=1

(q− ξi)

=
qn−i

1+ d1q−1 + · · ·+ dnq−n
ut

In a similar fashion to an FIR model, the output is modeled as a linear combination of the

elements of a recorded sequence of the leading element of ψt,

ŷt = GD(q;θ)ut

= θ>ψt
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where,

GD(q;θ) :=
n∑
i=1

θi
qn−i

D(q)

ψt :=
[
ψ1,t ψ2,t . . . ψn,t

]>
=
[
ψ1,t ψ1,t−1 . . . ψ1,t−n+1

]>
the associated state transition dynamics are given by,

ψt+1 =



−d1 −d2 · · · · · · −dn
1 0 · · · · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0


ψt +



1

0
...
...

0


ut.

Similarly to the one-pole Laguerre model, with all poles at the origin this structure

also yields the FIR state transition pair. A fixed denominator model is constructed with

the pole set labeled as GOBF3 in Figure 4.9. The simulated profiles, using the same

control design and experiment definition above, are shown in Figuree 4.12 and 4.13. The

simulations show that the improved estimation provided by the GOBF model structure

is also important. Compared with all the preceding cases, the fixed denominator results

are only definitively superior to the FIR models. Even some of the low-order one-pole

Laguerre cases studied seem to outperform this case despite the accuracy of the model

poles with respect to the mass-spring system.

In order to determine the value of input balanced realizations, these results should be

compared to the GOBF model generated with the same poles, GOBF3, shown in figures

4.10 and 4.11. The output signal settling time to the tracking reference to noise level is

roughly doubled with the fixed denominator model. In an adaptive setting, it is important
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Figure 4.12: Fixed Denominator Control

Figure 4.13: Fixed Denominator Estimation
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to maximize the extraction of information from signal transients. Once the system reaches

a steady state, the error-driven estimation process either stabilizes or drifts as seen in the

figures above. The information aspect will be examined in more detail in the next chapter.

For now, we limit the exposition to the fact that the quality of the least-squares estimation

process is related to the conditioning of the inverse of the information matrix for a given

model,

P ϕ
θ,t :=

(
t∑

k=1

ϕkϕ
>
k

)−1
+Pθ,0

P ψ
θ,t :=

(
t∑

k=1

ψkψ
>
k

)−1
+Pθ,0.

As noted above, the matrix Pθ,0 is a parameter of the RLS estimator related to the

certainty level for θ̂0. The reciprocal condition number, 1/κ, for a matrix P is specified

by,
1

κ
:=

1

‖P−1‖1‖P ‖1
(4.7)

where the pseudo-inverse is used in place of the inverse for singular matrices. The profiles

displayed in Figure 4.14 were computed according to equation (4.7) with the recorded in-

formation state transitions for each model. The effect of the initial covariance is removed

by including only the recorded information, i.e. the reciprocal condition number is com-

puted for P ϕ
θ,t −Pθ,0 and its fixed denominator counterpart.
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Figure 4.14: Information Inverse Conditioning

A reciprocal condition number close to one is preferable than close to zero as it leads

to numerical robustness of the estimation process. It is evident, that even under a limited

amount of data from a short closed-loop transient, the input-balanced transition for the

GOBF model is far superior in this respect. After 10 samples, the reciprocal condition

number for the GOBF model is higher than the final value for the fixed denominator case.

4.3 certainty equivalence adaptive mpc

The observations in the previous section highlighted the importance of a proper GOBF

selection. In addition to this point, it was shown how the orthonormality property, built

into the model definition, is beneficial to the parameter estimation process. The perfor-

mance of the control and the coupled adaptation processes is only as good as the model

permits.

In this section we introduce a more general adaptive control algorithm, applicable to

constrained systems. In its definition, some of the features of the robust formulation in

Chapter 3 will be included. However, by adopting an adaptive approach, we have im-
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plicitly acknowledged that a proper characterization of the error bound is not available.

Without a description of the error bounding set, the constraint tightening and other mea-

sures taken against the disturbance cannot be made. This is aggravated by the fact that as

the model is updated, those measures would also have to be modified accordingly. Here,

we will assume that the satisfaction of an available constraint set for the input signal

will be sufficient. There is nothing that prevents output constraints to be included in the

formulation, but any satisfaction guarantees in this regard have been lost.

4.3.1 Optimal Control Problem

The extended state notation in Chapter 3 for the MPC optimization variables will be

readopted hereinafter. Again, we will limit the extended state definition with the first

backward difference filter, ∆. As a result, the vector x̂k denotes the stacking of the

filtered information vector, x̂ϕ,k := ∆ϕ̂k, the predicted output signal x̂y,k := ŷk, and the

preceding input, x̂u,k := ûk−1 in the finite horizon,

x̂k =


x̂ϕ,k

x̂y,k

x̂u,k

 .

Without an error bounding set, the variables of the first stage are fixed at the current

measurements. The time-varying state transition dynamics for this extended state are

given by the following model representation,

ft(x̂k, ûk) := Atx̂k +Bt(ûk − x̂u,k) (4.8)
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where,

At :=

 Am,t 0

0 I

 , B :=

 Bm,t

I



Am,t :=

 Aξ 0

Ĉθ,tAξ I

 , Bm,t :=

 Bξ

Ĉθ,tBξ

 .

Observe that the time-varying aspect of the dynamics is expressed solely in the output

matrix Ĉθ,t, which is updated with the latest available parameter estimate realization. For

a MIMO plant, each MISO subsystem has a lower-dimensional component of the overall

vector assigned to it. This collection of vectors, θ̂i,t for i = 1, . . . ,ny are updated by indi-

vidual estimation processes according to (4.4) and arranged as entries in Ĉθ,t according

to the overall model structure.

The inclusion of an artificial steady state is kept, along with the associated steady-state

equations in the constraint set. However, the constraints on the steady-state input are

dropped. In the robust case, the artificial steady-state input signal, ûs, is relevant as the

offset cost can be extended to penalize large deviations from it. This rationale is only

applicable to an accurate model. Here, the achievable steady inputs change with each

parameter update. Therefore, this portion of the problem definition is relaxed to avoid

infeasible problems. In the adaptive case, this could occur for a poorly parametrized

model realization. The artificial reference provides the problem flexibility in terms of the

its time-varying set of admissible initial conditions. On the other hand, the steady-state

input variable, along with its matching information vector, ϕ̂s, are treated as auxiliary

variables to impose the steady-state output under the current model. They are indirectly

bounded by the output constraint imposed on ŷs, which is kept.
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The optimal control problem for the adaptive CE algorithm, as described above, is

denoted by Pce,N (x,yr) and specified in (4.9). The extended state constraint set, X , is

defined to contain the input and output constraints,

X :=
{
x
∣∣ xy ∈ Y, xu ∈ U} .

For similar reasons of the exclusion of the artificial steady state input variable, the termi-

nal constraint set (4.9d) is not included explicitly in the problem formulation. Instead, it is

assumed to hold for the optimized artificial output reference and a sufficiently large finite

horizon size, N . In all the simulations to follow, X is defined by simple box constraints

on the input and output signal variables. The filtered information states are implicitly

constrained as a result.

Pce,N (x,yr) : min
u,ŷs

JN ,t(x̂0,u, x̂
s
m) + Js,t(ŷ

s,yr) (4.9)

s.t. x̂0 = x (4.9a)

x̂k+1 = ft(x̂k, ûk), k ∈ I0:N−1 (4.9b)

x̂k ∈ X , k ∈ I1:N−1 (4.9c)

x̂N ∈ Xf (ŷs) (4.9d) Aξ − I Bξ

Cθ 0

 ϕ̂s
ûs

 =

 0

ŷs

 (4.9e)

ŷs ∈ Y (4.9f)
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The time dependence of the CE control problem is denoted by the subscript, t, on the finite

horizon portion. This cost function is parametrized by the time-varying dynamics (4.8).

For more details on the definition of this object and other elements of the optimization,

we refer to the fixed model counter-parts description provided in the preceding chapter.

Overall, the CE adaptive approach for constrained systems is summarized in the pseudo-

code presented in Algorithm 4.1.

Algorithm 4.1 CE Adaptive Control Action

Require:

Current measured state, xt

Parameter estimate distribution at previous sampling time {θ̂t−1,Pθ,t−1}

GOBF state transition matrices {Aξ,Bξ}

Cost parameters {Q,R,T }

Ensure:

Control action u

1: Update parameter distribution with RLS (4.4), to get {θ̂t,Pθ,t}

2: Update state-transition model (4.8) with θ̂t

3: Solve filtered model DARE to obtain terminal cost matrix Pf ,t

4: Solve Pce,N (x,yr) in (4.9)

5: Extract optimal control element, û?0 = x̂?u,1

6: u← û?0
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4.3.2 Quadruple Tank MIMO Plant Example

A computational model for a quadruple-tank system, as shown in Figure 4.15, is pre-

sented next. Liquid flows into each unit from a set of feed lines. The specific flow for

each line is determined by the action of a pump and a routing valve that splits the pump

output into two. Each tank has an orifice at the bottom that results in a flow that feeds

either the tank below or the feed reservoir. The MIMO structure that defines the system of

interest is given by the measurement of the heights for the lower tanks as model outputs

and the voltage assigned to the pumps as inputs.

The model dynamics are derived from the coupled mass balances using Bernoulli’s law

for the orifice flows in (4.10).

Figure 4.15: Quad-Tank System Diagram
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dh1
dt

= − a1
aT

√
2gh1 +

a3
aT

√
2gh3 +

γ1k1
aT

ν1

dh2
dt

= − a2
aT

√
2gh2 +

a4
aT

√
2gh4 +

γ2k2
aT

ν2

dh3
dt

= − a3
aT

√
2gh3 +

(1− γ1)k1
aT

ν1

dh4
dt

= − a4
aT

√
2gh4 +

(1− γ2)k2
aT

ν2

(4.10)

A full description of the system and its properties is given in (Johansson 2000). A discrete

linear state-space model is generated using a standard first order approximation around

an operating steady state and its subsequent zero-order hold discretization with sampling

time of one second. It is important to note that this model is used only as a control design

tool and all the subsequent simulations for the system are obtained by the numerical

integration of the nonlinear dynamics (4.10). The nominal parametrization of the model

is obtained with the values in Table 4.1.

Table 4.1: Quad-Tank Model Nominal Parameters

Name Symbol Value Units

Orifice Areas {a1, a2, a3, a4} {0.48, 0.52, 0.26, 0.28} cm2

Cross-Sectional Area aT 10 cm2

Steady-State Heights {ho1,ho2,ho3,ho4} {9.0, 9.0, 12.0, 11.8} cm

Steady-State Voltages {νo1 , νo2} {13.3, 13.3} V

Split Fractions {γ1, γ2} {0.36, 0.4} −

Pump Constants {k1, k2} {5, 5} cm3/(V · s)

Gravity Constant g 980 cm/s2
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The values for the nominal upper level tank heights and the pump voltages are rounded

to the nearest decimal and are determined by fixing the remaining elements of the physi-

cal parameter set. This system offers a set of interesting features in relation to the GOBF

model representation. To elaborate on this point, consider the MIMO matrix filter descrip-

tion of the linear model,

yt = Gp(θ, q)ut, Gp =

 G1,1(θ, q) G1,2(θ, q)

G2,1(θ, q) G2,2(θ, q)

 (4.11)

where,

yt =

 h1,t − ho1
h2,t − ho2

 , ut =

 ν1,t − νo1
ν2,t − νo2

 .

At a given operation point, the time constants of the system are inversely proportional to

the square root of the height and the ratio of the tank and orifice areas,

τi :=
ai
aT

√
g

2hi

These time constants are expressed in the matrix filter (4.11) as the real pole locations of

its scalar components as shown in Figure 4.16.
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Figure 4.16: Linearized Quad-Tank Model Pole Locations

The rationale behind the variety of the physical model values selected for the nominal

case in Table 4.1 is to induce different pole locations for the first and second order transfer

function relationships that compose Gp. By setting the flow split fractions such that most

of the flow is directed to the top level, the gain of the off-diagonal second order elements

is higher with respect to the first order diagonal counterparts.

4.3.3 Quad-Tanks CE Adaptive MPC Results

We can now test the CE adaptive control strategies in terms of the relationship of the linear

approximation and the model structure definition, comprised of a MIMO set of generating

poles, and an initial parameter estimate distribution. Comparisons are made to fixed-

model versions of each simulation under identical conditions other than adaptation with

the RLS estimator (4.4). Since the system dynamics shift at different reference points, it is
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appropriate to activate the forgetting factor of the estimator with a value of λ = 0.99. The

dead-zone feature is also enabled with εδ = 2× 10−4.

The tracking objective and off-set costs functions are defined by the horizon size N = 20

and the matrices Q = I , R = 0.1Q, and T = 102Q. The same bounded white noise

sequence, |vi,t| < 0.01 ∀t, is added to all output measurements. Box constraints specify

(4.9c), such that,

− 3.5 ≤ ûi,k ≤ 3.5, ∀k ∈ I0:N−1, ∀i ∈ 1, 2

− 1.5 ≤ ŷi,k ≤ 1.5, ∀k ∈ I1:N−1, ∀i ∈ 1, 2.

The experiment is divided in four periods of 100 seconds each. For the first and final

intervals, the reference corresponds to the nominal heights. For the second and third, it

is updated with yr =
[
1− 1

]>
and −yr respectively.

The generating pole set structure, and the initial parameter estimate covariance, where

applicable, are also common for all cases. The former is matched exactly with the nominal

linear model as shown in Figure 4.16, while the latter is set at Pθ,0 = 103I . The experiment

is repeated for three different initial means, θ̂θ,0, for the parameter estimate distribution.

The different values are given in Table 4.2 below.

Table 4.2: Initial Model Parameterization for CE Adaptive Control Experiments

Instance y1 MISO Parameter, θ̂1,0 y2 MISO Parameter,θ̂2,0

Model 1 [0.2128, 0.1156, 0.1644]> [0.1191, 0.1683, 0.2269]>

Model 2 [0.30, 0.15, 0.15]> [0.15, 0.15, 0.30]>

Model 3 [0.40, 0.20, 0.30]> [0.20, 0.30, 0.40]>
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Figure 4.17: Quad-Tank Model 1 Output Profiles

The parameter set for Model 1 is derived analytically from the inner product expres-

sions that define the exact GOBF truncation coefficients. Model 2 and 3 are parametrized

to yield model error proportional to their difference with respect to Model 1. The sim-

ulated input-output profiles are given in Figures 4.17-4.22. The fixed model and CE

adaptive profiles are labeled with FM and CE respectively.

For the exact GOBF representation of the linear model, the policies obtained are nearly

identical. For fixed inaccurate models, as expected, the MPC feedback action takes longer

to bring the system to the desired reference. The adaptive versions converge to the same

policy shortly after the onset of the second constant reference interval. With the specified

parameters, models 1 and 2 effectively overestimate the gain of the diagonal transfer
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Figure 4.18: Quad-Tank Model 1 Input Profiles

Figure 4.19: Quad-Tank Model 2 Output Profiles
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Figure 4.20: Quad-Tank Model 2 Input Profiles

Figure 4.21: Quad-Tank Model 3 Output Profiles
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Figure 4.22: Quad-Tank Model 3 Input Profiles

function. It takes longer to reach the reference as a result. To illustrate the effect of the

model error, define the following measure,

ε∆ := ‖∆(yt −Cθϕt)‖. (4.12)

This measure is related to the disturbance from the point of view of the filtered model

that defines each MPC optimization. The closed-loop error signal for each of the specified

models is displayed in Figure 4.23. For both formulations, the error grows in between

reference steps but adjusts as the input stabilizes and the filtered information contribution

vanishes. Under the adaptive formulation, the control algorithm has the tools to bring

the error towards the origin quicker by adjusting the parameters. A common feature

observed in adaptive control formulations is the shattering of the input signal due to the
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Figure 4.23: Quad-Tank Filtered Error for Models 1-3

adaptation transients. Here, this aspect is not significant enough to impact the output

profiles.

The adaptive cases are capable of providing the desired tracking, irrespectively of the

initial mean for the parameter distribution. This is a good indication in terms of the

consistency of the estimation process. The parameter estimate transients for the adaptive

cases are displayed in Figure 4.24. The action of the dead-zone supervisor is expressed

in the constant periods for the parameter estimate elements. Note that the RLS estimator

has converged to an alternative representation for the system. This can be inferred by the

convergence of elements θ̂1 and θ̂6 to smaller values. These parameters correspond to the

diagonal transfer function elements in (4.11). While the pairs θ̂2, θ̂3 and θ̂4, θ̂5 parametrize

G1,2 and G2,1 respectively. The adaptive controller is effectively treating each lower tank

height output mainly as a separate second order transfer function, which corresponds to

the independent stacking of two tanks. This will be an appropriate representation for a
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Figure 4.24: Quad-Tank Parameter Estimation

perfectly symmetrical system. The small contribution from the diagonal elements adjusts

for the discrepancy as the system is not exactly symmetrical. If this type of solution

should be avoided, a constrained estimator can be easily incorporated into the framework.

The overall evaluation of the simulation set obtained with the triad of initial models

reassure the idea that, generating poles consistent with the plant enable the estimation

process to provide parameters that translate into good tracking performance.

124



4.4 conclusions

4.4 conclusions

Two different CE adaptive control strategies have been presented in this chapter. The

infinite-horizon policy is incorporated into the more general version with constraints as

its time-varying terminal policy. These is achieved by appending a recursive on-line

estimator into the working framework. The mass-spring minimal SISO system was stud-

ied to test the effect of varying orthonormal truncations in the context of the simpler,

infinite-horizon policy. This case study was extended to show the effect of the defining

orthonormality property of the GOBF model in the conditioning of the estimation. This

is a desirable feature for adaptive control, as it enables the efficient assimilation of the

closed-loop signal transients.

The artificial reference, from the robust formulation in the previous chapter, has been

kept with a few modifications. This inclusion expands the admissible set of feasible initial

conditions. This is important in the context of adaptation as it provides the controller

with additional degrees of freedom to find feasible solutions when the model is poorly

parametrized. The system description of a minimal MIMO quad-tank model has been

outlined. This tool was used to outline a general method to define the generating pole set

from a linear model related to the plant. A set of simulation results indicate that a suitable

selection of the poles with respect to the region of references to be tracked lead to good

control performance despite poor selection of the initial GOBF expansion coefficients.
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5
I N F O R M AT I O N C O N S T R A I N T S F O R G O B F M O D E L S

In this chapter, information constraints are incorporated into the CE adaptive control

strategy. Such constraints, benefit the estimation process for the uncertain uncertain vec-

tor, θ̂, that parametrizes the predictor model. This modification leverages the structural

properties of the GOBF model and the CE adaptive control algorithm. Prior to defining

the proposed strategy, a summarizing overview of three relevant methods for including

this type of constraints that have been proposed in the literature will be provided. By

discussing the advantages and limitations of these alternatives, the guiding principles for

the design of our method will become evident. The induction of exploratory features

through a constraint set instead of additional modifications to the objective function is

intended ot keep the focus on the control action. After the proper introduction of the

overall approach, simulation examples with an illustrative scenario applied to the quad-

tank system are presented.

The proposed approach has a direct interpretation in the scope of Dual Control Theory

(Feldbaum 1960) as introduced in Chapter 1. The trade-off between the action and inves-

tigation risks is balanced by the enforcement of information constraints that enhance the
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estimation process while optimizing a tracking CE objective that recursively adapts to the

informative closed-loop signals.

5.1 information preliminaries

A few important concepts, related to the simultaneous estimation process in an adaptive

formulation are presented next. The discussion is carried through the scope of our GOBF

modeling framework, facilitating the subsequent exposition of relevant strategies. Since

the estimation problem has been decomposed into MISO subsystems, all claims will be

made pertaining this simplified structure unless noted otherwise.

5.1.1 Anticipated Information

Heirung et al. (2017) proposed the definition of anticipated information for uncertain SISO

systems. The concept is applicable to state-space model representations with known state-

transition dynamics. Our model structure, as defined in Chapter 2, fits this description

with the minor modification of multidimensional input record elements. The equivalent

definition is given by,

Yk|t := {uk−1|t,Yt} for k > t

uk−1|t := {uk−1, . . . , ut}

Yt := {yt, . . . , y0,ut−1, . . . , u0},

(5.1)
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for a system with the a GOBF state-space representation of the following form,

ϕt+1 = Aξϕt +Bξut

yt = θ>ϕt + v, v ∼ N (0, rv) ,

(5.2)

where the vector θ is uncertain. The current estimate distribution, {θ̂t,Pθ,t}, is assumed

to be updated with RLS as outlined in the previous chapter. This characterization is made

in order to introduce a modified expectation evaluation that simplifies the prediction of

future estimates for the parameter estimate distribution beyond one step.

Corollary 1. Anticipated Parameter Covariance for GOBF MISO Systems. Consider system

(5.2) as described above. The parameter covariance matrix conditioned to the anticipated

information,

Pθ,k|t := E[(θ− θ̂t)(θ− θ̂t)>|Yk|t],

evolves deterministically for a sequence of anticipated control actions according to

ϕk|t = Aξϕk−1|t +Bξuk−1 (5.3a)

σ2y,k|t = ϕ>k|tPθ,k−1|tϕk|t + rv (5.3b)

Pθ,k|t = Pθ,k−1|t − (σ2y,k|t)
−1Pθ,k−1|tϕk|tϕ

>
k|tPθ,k−1|t (5.3c)

where, k > t, Pθ,t|t := Pθ,t, ϕt|t := ϕt, and the pair {Aξ,Bξ} is given by a known GOBF

MISO structure.

The recursions in (5.3) follow from the application of Theorem 1 in (Heirung et al. 2017)

to the GOBF state-space system (5.2) and the unmodified RLS covariance update. The
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useful property that this result provides is that the covariance matrix associated with a

GOBF model, Pθ,k|t, evolves independently of future output realizations.

5.1.2 Information Matrix

Note that (5.3b) and (5.3c) are equivalently obtained by applying the Matrix Inversion

Lemma to the inverse of the parameter covariance, Īθ,k|t := P−1θ,k|t,

Īθ,k|t = Īθ,k−1|t +
1

rv
ϕk|tϕ

>
k|t. (5.4)

The observed information matrix, Īθ,t|t := Īθ,t, and its anticipated extension are equiv-

alently derived from the prediction error parameter sensitivities, defined by the log-

likelihood function for the Gaussian observations,

Īθ,t = Īθ,0 +
1

rv

t∑
k=1

(
∂εk
∂θ

)(
∂εk
∂θ

)>

where,
∂εk
∂θ

=
∂

∂θ

(
yk − θ>ϕk

)
= −ϕk.

Since the error sensitivities are not functions of the parameter estimate realizations, the

anticipated information matrix contributions in (5.4) can be computed explicitly for a

sequence of inputs, uk−1|t, leading to an equivalent result to Corollary 1.
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5.1.3 Information Maximization

If the goal was to reduce the uncertainty of the parameter vector estimate, an optimal

system identification experiment could be derived in terms of the anticipated information

matrix. The related problem maximizes a suitable objective function, J : Sn+ → R. A

common choice is the smallest eigenvalue of the generated information matrix, Īθ,k|t ∈ Sn+.

The general form for such a problem is given, in broad terms, by

max
uN−1|t

J
(
Īθ,N |t

)
s.t. power constraints

amplitude constraints

Different optimality criteria (e.g. A,D,E-optimality) are defined by the particular form of

the objective function (Ljung 1999). The common feature for any of the available choices,

is that the solution defines a sequence of inputs that optimally reduce the volume of the

ellipsoidal confidence region associated with the parameter covariance estimate. Figure

5.1 illustrates the defining idea behind the optimization problem. The darkest ellipse rep-

resents an initial confidence region for a hypothetical system with two parameters. Each

of the dashed ellipses with sequentially decreasing size correspond to the effect of the

information gain of individual inputs. Overall, the input sequence leads to the optimized

region associated to the maximized information measure. Noting that a single control

action can only yield a rank-1 information gain, adjacent elliptical volume reductions are

depicted accordingly.
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Figure 5.1: Ellipsoidal Parameter Confidence Region Transient

For a complete description of a this problem and detailed strategies to solve subprob-

lems under different constraint sets, under a similar modeling approach, we refer to the

work of Manchester (2010). Here, we limit the discussion to the type of mathematical

structures that arise in the problem. The dynamics (5.3a) can be equivalently expressed

by,

ϕk|t = Ak−t
ξ ϕt +

k−1∑
i=t

Ai−t
ξ Bξuk−1−i+t.

A finite sum of rank-1 contributions, ϕk|tϕ>k|t, constitute the anticipated information.

From the expression above, it is clear that this is a bilinear matrix function in terms of the

vector formed by stacking the series of inputs in uk−1|t. In order to avoid the introduction
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of more variables, we will refer to this vector with the same notation. The anticipated

information in (5.4) is expressed in the following standard bilinear matrix form,

Īθ,k|t = Īθ,t +
1

rv

k∑
j=t+1

ϕj|tϕ
>
j|t

= F0 +
knu∑
i=1

uiFi +
knu∑
i=1

knu∑
j≥i

uiujHij ,

(5.5)

in terms of the scalar elements, ui ∈ R, of uk−1|t ∈ Rknu . The matrices F0,Fi,Hij ∈ Sn+

are implicitly defined in the expressions above.

Bilinear functions appear in many relevant optimization problems. Solution methods

often rely on relaxations obtained with linear approximations. For (5.5), by introducing a

symmetric positive semidefinite matrix variable, U, the last term on the right hand side

of the expression above can be reformulated to,

knu∑
i=1

knu∑
j≥i

UijHij , Uij = uiuj .

The overall result obtained from these treatment is the ability to formulate anticipated

information optimization problems a linear matrix function coupled with a set of non-

convex scalar equalities. Relaxations can be defined with the aid of McCormick envelopes

(Castro 2015) or Linear Matrix inequalities (Shor 1987) in terms of the latter.
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5.1.4 Persistent Excitation

A variety of defining conditions for persistent excitation can be found in standard litera-

ture of adaptive filtering (e.g. Goodwin & Sin (1984)). We use the following time domain

expression which applies directly to the information matrix.

Definition 2. GOBF MISO State Persistent Excitation. The vector ϕt ∈ Rn is said to be

persistently exciting of order n, if there exists an integer m and positive real constants, ρ,

and ρ̄ such that for all t,

ρI �
m∑
i=1

ϕt+iϕ
>
t+i � ρ̄I.

In practical terms, the existence of the lower bound guarantees an invertible information

matrix obtained from a finite sum of rank 1 gains. Therefore, it follows that m ≥ n

must hold. The upper bound is not a main concern given that, under the assumption of

inherent BIBO stability of the system dynamics, this will always exist as long as the input

is kept bounded by the controller. In relationship to the covariance illustration in Figure

5.1, persistent excitation can be understood as a non-zero tightening of the ellipsoidal

confidence region in all directions over the interval specified by m.

5.2 review of informative mpc formulations

We are now ready to present three different MPC formulations recently proposed in

the literature (Heirung et al. 2017; Larsson et al. 2016; Marafioti et al. 2014) which are

derived from the ideas presented in the previous section. Beyond describing the defining

characteristics for each of these strategies, we aim to adapt the applicable features to
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our method. The exposition is intended to highlight the limitations and advantages that

motivate our proposed alternative. As such, it is meant to be instructional rather than

comprehensive.

5.2.1 Dual Adaptive MPC (Heirung et al. 2017)

Provided with the result in Theorem 1, the expectation and variance for the tracking com-

ponent of the stage cost, conditioned to the anticipated information, yield the following

deterministic expression,

E[(yk − yr)2|Yk|t] = (θ̂>t ϕk|t − yr)2 + σ2y,k|t. (5.6)

A derivation of these results can be found as Corollaries 3 and 4 in (Heirung et al. 2017).

The key observation is that, under this conditioning, the expected value for the parameter

vector at all times k ≥ t remains fixed at the current estimate, θ̂t, whereas its actual future

expectation, θ̂k, depends on unrevealed stochastic output realizations. The conditioning

on the anticipated information can be understood as the approximation of distributions

N
(
θ̂k,Pθ,k

)
with N

(
θ̂t,Pθ,k|t

)
. For the GOBF model structure, or any other model for

which the information gains can be propagated deterministically through known dynam-

ics, Pθ,k = Pθ,k|t.

The proposed method reduces to appending the anticipated expected variance cost

to some or all the stages of the finite horizon portion of the objective function. This

requires the inclusion of additional decision variables and constraints associated with the

recursions in (5.3). As discussed previously, the nonlinear equations (5.3b) and (5.3c) are
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an alternative representation of the quadratic equality (5.4). With either formulation a

set of nonconvex equalities is obtained. The authors present a Quadratically Constrained

Quadratic Program (QCQP) reformulation by the introduction of an auxiliary variable,

zj|t :=
1

rv
Pθ,j−1|tϕj|t.

This allows the expression of the sum of anticipated variance contributions in (5.6) as a

bilinear function of the new variable and the information state,

k∑
j=t

σ2y,j|t =
k∑
j=t

(
ϕ>j|tPθ,j−1|tϕj|t + rv

)

= rv

k∑
j=t

(
ϕ>j|tzj|t + 1

)
.

(5.7)

Adopting the MPC notation for the finite horizon control vector, u, and the accent ˆ(·) for

optimization variables predicted with the current model, the cost and constraint set to be

appended to a CE adaptive optimal control problem is given in (5.8). To have an effect in

the MPC problem, the dual cost horizon, Nd, must satisfy, 2 ≤ Nd ≤ N .

Jd,N (ϕt, Īθ,t,u) := rv

Nd−1∑
k=1

ϕ̂>k ẑk (5.8)

ϕ̂0 = ϕt (5.8a)

ˆ̄Iθ,0 = Īθ,t (5.8b)

ϕ̂k = Aξϕ̂k−1 +Bξûk−1, k ∈ I1:Nd−1 (5.8c)

ϕ̂k = rv ˆ̄Iθ,k−1ẑk, k ∈ I1:Nd−1 (5.8d)

ˆ̄Iθ,k = ˆ̄Iθ,k−1 +
1

rv
ϕ̂kϕ̂

>
k , k ∈ I1:Nd−1 (5.8e)
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The variance cost for the first stage, ϕ̂>0 ẑ0, and the measurement noise , Ndrv, have been

excluded from the definition since they are constants and do not affect the cost optimiza-

tion.

The scalar elements of the symmetric matrix variable, (5.8e), grow quadratically with

the dimension of the parameter vector. On the other hand, the number of stage contribu-

tions, Nd, cause the constraint set to grow linearly. This problem defines the optimal com-

promise between the estimation and tracking aspects of the problem. However, MIMO

systems of practical importance may require both large horizon windows and models

with high-dimensional parameter vectors. Reported solution times of the associated MPC

problem take up to a few seconds in some instances for a low-dimensional FIR SISO sys-

tem under no structural model mismatch and a local nonlinear solver. Global optimality

is desired, since control actions corresponding to local solutions are not guaranteed to

induce the desired properties. This further deteriorate the applicability of the method

as larger sets of non-convex inequalities make the branching routines, inherent of global

solvers, increasingly complex.

5.2.2 MPC with Experiment Constraint (Larsson et al. 2016)

The dual variance cost is given by the interrelated evolution of the GOBF state vector

and the covariance matrix variables as shown in (5.3). Its non-negative value can be

driven to zero by regulating the vector, maximizing information, or a combination of

both. The preceding dual formulation is intended to accomplish whichever is optimal in

relation to the simultaneous tracking task, but practical limitations may prevent it success.

Information maximization is intrinsically contrary to the tracking task, while regulation
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is only desired if the reference is zero. One could, instead, define a bounding measure for

the information matrix obtained in the closed loop, and impose progress towards it onto

the MPC problem. This is, in very general terms, the approach proposed by Larsson et al.

(2016).

Instead of explicitly minimizing an appended cost to the objective, the problem is con-

strained such that the finite horizon control sequence causes the tightening of the hyper-

ellipsoidal confidence regions related to the parameter covariance matrix. The associated

experiment design constraint requires two defining parameters. A reference information

matrix, Īrθ, and the number of steps to reach it, TI. The former is determined by a prob-

abilistic constraint on a cost related to the MPC application. The latter is chosen with

respect to the relative importance of the control deterioration and the time it takes to

satisfy the reference information matrix. We refer to (Larsson 2014) for a detailed descrip-

tion of the theoretical development of the approach and its components. Here, we omit

the formal declaration of all the built-in assumptions and approximations by treating

these parameters as off-line design elements, fixed by the user, and declare the constraint

directly,

Īθ,0 +
1

rv

TI∑
k=1

ϕkϕ
>
k � Īrθ. (5.9)

Assuming that the importance of the control deterioration prevails when choosing TI,

one can afford to distribute the information gain over a number of steps larger than the

MPC finite horizon size, N . Instead of extending the MPC horizon (and the number of

optimization variables), an equivalent constraint is formulated with the declaration of a
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shorter information horizon, NI, and a deterministic nondecreasing sequence for a scaling

factor, κt, that satisfy

n ≤ NI < N ,

0 ≤ κ0 < 1,κt →∞.

The modified constraint (5.10) is a semidefinite Bilinear Matrix Inequality (BMI), in terms

of the MPC optimization variables.

Īθ,t +
1

rv

NI∑
k=1

ϕ̂kϕ̂
>
k � κtĪrθ. (5.10)

The number of steps for the reference information constraint to be satisfied is implicitly

specified by this pair. For example, the sequence can be set to increase linearly with

time, κt = t
TI

. Increments on the information horizon size, NI, distribute the specified

gain, κtĪrθ − Īθ,t, among a greater number of stages in the control horizon, resulting in

less aggressive excitation. This is done with the risk of obtaining optimal solutions that

sequentially postpone excitation, since only the first stage control element is actually ap-

plied. It is important to note that the proposed method is originally presented for a

more general linear modeling approach, where some of the uncertain parameter vector

elements define the state transition dynamics. The cost of this generality is that an adap-

tive controller is more challenging to define, as the prediction error sensitivities become

explicit functions of the parameters. This implies that each time the parameter estimate is

updated, the information matrix has to be recomputed with the data record. Due to this

limitation, the estimate, θ̂, is only updated after a period of closed loop experimentation,

terminated by the satisfaction of (5.9).
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In terms of the implementation, the solution of an MPC problem subject to (5.10) re-

mains challenging since BMIs are in general non-convex (VanAntwerp & Braatz 2000).

As shown in the previous section, this can be reformulated to a convex linear matrix in-

equality (LMI) coupled with a set of bilinear equalities. Without further modification, the

optimal control problem raises the same concerns of the dual variance cost formulation.

Relevant methods that can handle BMI constraints rely on LMI relaxations (Dinh et al.

2012; Manchester 2010). Exact solutions of the original problem formulation require the

iteration through several LMI subproblems. As an alternative, the authors propose the ad-

dition of a white noise component weighted by a matrix derived from the LMI relaxation

solution. This means that the applied control is not optimal with respect to the original

problem and only feasibility can be guaranteed.

The relationship to persistent excitation is clear by comparing (5.10) with the expres-

sion in Definition 2. The main contribution of this approach is enforcing excitation in

a directed fashion, through the reference information matrix. Ideally, the covariance

tightening occurs in the directions that matter the most for the problem at hand. This

represents another challenge, as the application cost must be defined by deviations of the

parameter estimate from those belonging to a good representation of the actual system.

The authors propose the computation of an application cost and the associated reference

information matrix via off-line simulations with current parameter estimates. One could

argue, that when performed with significant inaccuracies, this approach loses its validity.

On the other hand, if the parameters already give a good representation, the value of

introducing excitation is questionable. For this scenario, it could be sufficient to rely on

the information gathered passively with a conventional CE formulation.
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5.2.3 Persistently Exciting MPC (Marafioti et al. 2014)

The last approach to be discussed is similar to the previous in terms of the BMI form of

the constraint to be included in the MPC formulation. Instead of enforcing the excitation

directly in terms of future information gains, ϕ̂kϕ̂>k , it is implemented indirectly through

the first stage control action, ut = û0, and a finite sequence of past inputs {ut−1,ut−2, . . . }.

So far, the discussion in this chapter has been presented in terms of MISO models since the

working model structure follows the diagonal stacking of MISO components for a MIMO

system. This enables the segregated treatment of the information/covariance matrices for

each output channel. For this method, it is favorable to take a step back and look at the

SISO case since the key idea to be borrowed is derived with this simplified treatment.

A few concepts, adapted from the original statements in (Marafioti et al. 2014), are re-

quired for the development. The original definitions are made in the context of models

forms with regression vectors given explicitly by the data record (e.g. ARX). Their equiv-

alent counterparts for the SISO GOBF model structure are presented here. For ease of

notation, the past input record vector, pk, is introduced,

pk =


uk

uk−1
...

uk−n+1

 ∈ R
n. (5.11)

From the inherent controllability of the SISO GOBF model, it follows that any stateϕ ∈ Rn

is reachable from a finite sequence of inputs that can be expressed in terms of pk. This

allows the declaration of a related condition to persistent excitation, sufficient richness
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(SR) of the input. The SR condition can be interpreted as an indirect measure of the

information matrix.

Definition 3. Sufficiently Richness Condition. Consider a GOBF SISO system of order n.

The scalar input signal, uk, is sufficiently rich with respect to the SISO state vector if there

exists an integer m ≥ n and positive real constants, ρ, and ρ̄ such that for all t,

ρuI �
m−1∑
k=0

pt−kp
>
t−k � ρ̄I. (5.12)

Theorem 4. GOBF SISO Persistent Excitation from SR Inputs. A necessary and sufficient

condition for the state vector associated to a GOBF SISO model to be persistently exciting

over the interval [t+ 1− n, t+m] is that the input signal satisfies the SR condition over

the interval [t+ 1, t+m].

The result above, allows persistent excitation for the vector ϕ to be induced by the SR

condition applied on the input signal. From the implementation point of view, it is not

clear what has being gained since the constraint is also a BMI. However, provided with

a prior input sequence that satisfies the SR condition at time t− 1, the BMI has a special

form that can be reformulated to a quadratic scalar inequality in terms of ut.

For the general case with multiple inputs, an equivalent treatment unfolds into a BMI

in the dimension of the input signal. This is normally much lower than the state di-

mension. Nonetheless, the problem solution remains challenging for the same reasons

discussed previously. The difficulty is aggravated by the fact that the task of specifying

SR sequences for multi-input systems, required for initialization, is not an easy task on its

own. The detailed derivation of the scalar input case is given below, with the appropriate

modifications for the GOBF approach.
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5.3 informative gobf mpc

The discussion for the three strategies presented in the preceding section exposed a set of

features to be considered in the design of an alternative strategy. The direct optimization

of the dual variance cost, introduces a large set of non-convex equality constraints. This

set grows quadratically with the dimension of the uncertain parameter vector. In place

of explicit optimization, the problem can be posed such that the optimal control action

is constrained to yield sequential non-zero information matrix gains that in turn cause

the variance cost to decrease. The associated constraints of this indirect approach are, in

general, semidefinite BMIs in terms of the MPC control variables.

Persistent excitation can be induced by a sufficiently rich input signal as long as reach-

ability with respect to the information state vector holds. For a SISO GOBF component,

this is the case and it can be simplified to a scalar quadratic constraint. Overall, it is

desired to introduce excitation in a directed fashion pertinent to the deterioration of the

control task. Regardless of the approach, dealing with non-convex quadratic expressions

inherent of the least squares estimation problem seems unavoidable.

The PE inducing SR input condition can be adapted and generalized to a scalar filtered

GOBF signal. Similarly to the single input case, dealing with its filtered scalar version,

i.e. a GOBF state, vastly simplifies the computational burden of the required constraints,

as the SR condition can be reformulated to a scalar quadratic inequality. Furthermore, it

should be intuitive that enforcing persistent excitation for a smaller subspace than that

corresponding to the overall MIMO structure, should be simpler. Recall that the state-

space construction method in Chapter 2, generates the overall structure through diagonal

stacking of state-space SISO components. This approach, may not be the most efficient in
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terms of the state dimension representing the system. However, it offers the opportunity

to define SISO-specific informative constraints.

Each scalar transfer function component has its own independent GOBF state transition

dynamics and corresponding parameter vector. Therefore, we can direct the generation of

constraints to those subcomponents that need it the most. The definition and subsequent

enforcement of an SR condition with the order of the largest SISO vector for each input

channel, should induce persistent excitation for all other subcomponents related to that

input.

Including a set of SISO SR inequalities to the unmodified CE adaptive MPC problem

as presented in the previous chapter could still be inefficient from a computational point

fo view. It will be shown that a simplifying choice for the objective function, allows the

reformulation of the problem into a much more tractable QCQP. The control law switches

between the solution of the full CE problem and that of a reduced size informative formu-

lation. The non-convex features are only present in the latter, with variable and constraint

set sizes bounded by the dimension of the control signal.

The SR constraint definition will first be presented for the general case of an arbitrary

scalar GOBF information state element. The input version, as proposed originally, follows

as a special case. In order to determine which state elements generate the constraint set,

a heuristic measure, related to the dual variance cost, is introduced subsequently, as a

guiding tool for a selection procedure.
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5.3.1 SR GOBF State Constraint

Assume that for the jth input channel, a SISO system with index ij, and a scalar element

of its information vector have been selected. The matching state transition dynamics

{Aij,ξ, bij,ξ} and current vector-valued signal ϕij,t ∈ Rnij are extracted from the over-

all model. In order to facilitate the treatment of the expressions below, the ij index is

dropped.

Let the lth element of the vector ϕt be the scalar signal specified by the selection pro-

cedure. Recall from Chapter 2, that ϕt is determined by a vector filter object according

to,

ϕt =



F1(q)
...

Fl(q)
...

Fn(q)


ut = Fnut.

The reachability of ϕt holds equivalently with respect to a finite sequence of any of the

filtered GOBF state scalar components. By filtering the vector pk in (5.11), through the

basis function for the lth element and the backward difference operator, we get

∆Fl(q)pk+1 =

 ∆ϕl,k+1

φl,k

 ∈ Rn, φl,k := ∆


ϕl,k

ϕl,k−1
...

ϕl,k−n+2

 ∈ R
n−1.

Partitioning the filtered vector in this way facilitates the mathematical treatment below.

The index have been moved one sampling forward, since GOBF filters, as specified, are
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strictly proper. Note that this allows the application of Theorem 4 to obtain an equivalent

SR condition in terms of the filtered information states.

Corollary 5. GOBF SISO Persistent Excitation from SR States. A necessary and sufficient

condition for the state vector associated to a GOBF SISO model to be persistently exciting

over the interval [t+ 1− n, t+m] is that one of its scalar filtered elements satisfies the SR

condition over the interval [t+ 1, t+m] with m > n.

m−1∑
k=0

 ∆ϕl,t+1−k

φl,t−k

 ∆ϕl,t+1−k

φl,t−k

> � ρI. (5.13)

The upper bound is disregarded for the same reasons discussed previously. Note that

the lower bound in equation (5.12) is not necessarily the same as ρ above. Declaring the

SR condition directly in terms of these filtered GOBF states is useful since the tracking

problem is defined around the origin. This allows the initialization of the SR constraints

for arbitrary output reference signals with the same sequence, also centered around the

origin. Next, we adjust the derivation in (Marafioti et al. 2014) to obtain the GOBF scalar

quadratic inequality. Define the following matrix,

Ωt :=
m−1∑
k=0

φl,t−kφ
>
l,t−k

and rewrite (5.13),


(∆ϕl,t+1)

2 +
m−1∑
k=1

ϕ2
l,t+1−k − ρ ∆ϕl,t+1φ

>
l,t +

m−1∑
k=1

∆ϕl,t+1−kφ
>
l,t−k

∆ϕl,t+1φl,t +
m−1∑
k=1

∆ϕl,t+1−kφl,t−k Ωt − ρI

 � 0.
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All the elements in the expression above are determined by variables available prior to

defining the control action at time t, except ∆ϕl,t+1. This scalar element is a function of

the associated SISO vector ∆ϕt and the input move ∆ut, related by the state-transition

pair {Aξ, bξ}.

∆ϕl,t+1 = a>l,ξ∆ϕt + bl,ξ∆ut,

where the vector al,k is defined as the transpose of the lth row of Aξ, and bl,ξ denotes the

lth element of the input to state vector bξ. Using the expression above and the Schur Com-

plement Lemma, the semidefinite BMI (5.13) is equivalently enforced by the following

pair,

Ωt − ρI � 0 (5.14a)

αt(∆ut)
2 + 2βt∆ut + γt > 0 (5.14b)

where,

αt = b2l,ξ

(
1−φ>l,t(Ωt − ρI)−1φl,t

)
(5.15a)

ωt = (a>l,ξ∆ϕt)φl,t +
m−1∑
k=1

∆ϕl,t+1−kφl,t−k (5.15b)

βt = bl,ξ

(
a>l,ξ∆ϕt −ω>t (Ωt − ρI)−1φl,t

)
(5.15c)

γt = (a>l,ξ∆ϕt)
2 +

m−1∑
k=1

∆ϕ2
l,t+1−k −ω>t (Ωt − ρI)−1ωt − ρ (5.15d)
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The semidefinite inequality (5.14a) holds automatically if (5.13) holds strictly at t− 1. This

is easily shown by noting that the SR condition shifted back by one sampling time,

m−1∑
k=0

 ∆ϕl,t−k

φl,t−1−k

 ∆ϕl,t−k

φl,t−1−k

> =
m−1∑
k=0

 φl,t−k

∆ϕl,t−n+1−k

 φl,t−k

∆ϕl,t−n+1−k

> � ρI
can also be expressed as,


Ωt − ρI

m−1∑
k=0

∆ϕl,t−n+1−kφl,t−k

m−1∑
k=0

∆ϕl,t−n+1−kφ
>
l,t−k

m−1∑
k=0

(∆ϕl,t−n+1−k)
2 − ρ

 � 0.

As a principal sub-matrix, (5.14a) also holds. Provided with a feasible initialization, the SR

condition is satisfied at all future times by the recursive, strict satisfaction of (5.14b). Per-

sistent excitation is successfully introduced in the actual trajectory only if this is achieved

by a sequence over the interval [t0 + 1−n, t+m], where t0 denotes the initialization time.

In the event of an infeasible problem, the CE solution is applied, and the constraint set is

reinitialized at the subsequent sampling time.

The conventional SISO SR input condition (5.12), and its scalar constraint as originally

proposed, can be obtained by defining the 0th filtered scalar information vector ϕ0,t :=

q−1ut. The appropriate scalar dynamics are given by a0,k = 0 and b0,ξ = 1.
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5.3.2 Informative Optimal control Problem

A simplification of the CE MPC objective function is formulated based on the following

observations. First, the transients between reference signals are usually informative with-

out modification. Imposing information gains is only desired when the closed loop does

not provide them. Second, the objective function of the CE problem in a region around

the reference is equivalent to the terminal policy by construction. If the artificial reference

variable has stabilized to yr, and this is sufficiently far away from the bounds imposed

by the box constraints, the CE adaptive infinite-horizon tracking policy and the control

derived from Pce,N (x,yr) yield the same control move. Incorporating these remarks on

the design, we define a region around yr, based on the terminal cost, that serves as an

indicator for the activation of the informative control problem.

δsr,t =


1, if ‖xm,t −xrm‖

2
Pf ,t

< εsr, and yt ∈ Y

0, otherwise

(5.16)

The indicator δsr,t signals whether the control aspect has been sufficiently met and active

learning through the enforcing of (5.14b) can be afforded. Recall that the tracking steady

state is given by,

xrm =

 0

yr


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When δsr,t = 1, the SR optimal informative control problem (5.17), denoted by Psr(x,yr)

is solved instead of Pce,N (x,yr).

Psr(x,yr) : min
∆û0

Jf ,t(x̂m,1,x
r
m) (5.17)

s.t. x̂0 = x (5.17a)

x̂m,1 = Am,tx̂m,0 +Bm,t∆û0 (5.17b)

x̂1 ∈ X (5.17c)

αj,t∆û
2
j,0 + 2βj,t∆ûj,0 + γj,t > 0, j ∈ I1:nu (5.17d)

The objective function is the square of a quadratic norm defined by the terminal cost

matrix, Pf ,t � 0, computed for the full MIMO model with the latest estimate mean vector,

θ̂t.

Jf ,t(x̂m,1,x
r
m) = ‖x̂m,1 −xrm‖

2
Pf ,t

Other elements of (5.17) retain the description provided in the CE problem definition,

found in Chapter 4. Note that the unconstrained solution corresponds to the CE adaptive,

infinite-horizon tracking policy. The optimizing argument of (5.17), defines the admissible

input move that minimizes the deviation from the terminal policy infinite-horizon cost,

while enforcing the SR constraint set. The objective function is quadratic and convex. On

the other hand, the SR constraints are, in general, non-convex. Although only feasibility

is strictly required, it is also desired to obtain a global solution. In comparison to the

dual cost formulation (5.8), the size of the problem is significantly lower, which makes its

implementation in real time more plausible.
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5.3.3 Parameter Selection Heuristic

With the constraint set and optimal control problem properly introduced, the only miss-

ing element for the overall algorithm is the guiding criteria for selecting the scalar state

elements that define the SR constraint set. Ideally, this should be simple to check in real

time but at the same time relevant to the control performance. We begin its derivation by

assuming a diagonal cost matrix, Q. The following decomposition for the tracking cost

expectation, conditioned to one anticipated input, is made

E[‖yt+1 − yr‖2Q | Yt+1|t] =

ny∑
i=1

Qi

(
(θ̂>i,tϕi,t+1|t − yri )2 +ϕ>i,t+1|tPθi,tϕi,t+1|t + rvi

)
.

The intermediate term of the sum contributions should be the target of the informative

constraint.

Consider a scalar element ϕl of the vector, ϕ. Its contribution to the dual cost is propor-

tional to its own magnitude under a given reference signal, its variance, and the covari-

ance interactions with the other scalar elements. The input defines how these interactions

change from one sampling time to the next. A simplified indicator candidate, neglecting

the covariance and input interactions, is the square of the current state vector element

weighted by its variance. To see its relationship with the overall contribution, define the

following scalar function for a pair {Pθ,ϕ},

ψ(Pθ,ϕ) := max
l

(ϕ� diag(Pθ)�ϕ) ,
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where ϕ ∈ Rn, and � indicates the element-wise product. The operators diag(·), and

max
l

(·) yield the diagonal vector of a matrix and the maximum scalar element for l ∈ I1:n

respectively. Let ψij,t denote the cost indicator function evaluation for the SISO variables

corresponding to the ith output and jth input at time t, weighted by Q,

ψij,t := Qiψ(Pθij ,t,ϕij,t) (5.18a)

lij,t := arg max
l

(
ϕij,t � diag(Pθij ,t)�ϕij,t

)
. (5.18b)

The parameters {ψij,t, lij,t} can be updated cheaply at each sampling time. On the other

hand, the constraint set should only be updated periodically, allowing the completion of

sufficiently rich transients. When such an event takes place, for each jth input, the new

SR inequality is generated in terms of the lth element of the ijth SISO system with the

largest ψij,t,

ψ̄j := max
i

(ψij,t) (5.19)

5.3.4 Initialization

An important aspect of the approach is that the initialization of the SR constraint parame-

ters must be consistent with the model. This is important as we intend to switch between

two modes for the control action, and the effective initialization is required at the onset of

the informative regime. Not every scalar sequence that satisfies the SR condition will nec-

essarily lead to the desired recursive feasibility. The initialization sequence must match

the frequency, determined by the generating pole set, in order to facilitate it. Fortunately,

this is something that can be easily achieved off-line, as part of the control design.

152



5.4 implementation

First, a set of artificial input sequences that satisfy the original SR condition (5.12)

with a lower-bound defined by ρu are generated. These could come from a white noise

generator or a more elaborate input design method. The same sequence can be used for all

input channels, or dedicated assignments can be made. At this point, the record window

size, m, is also defined. By adjusting these parameters the introduced excitation can be

customized. With a longer information window size, the rank-1 gains are distributed

among more sampling times, resulting in less informative individual inputs for a fixed

ρu. For a fixed m, the bounding constant indicates the size of the desired shrinking of the

ellipsoidal covariance confidence regions for an SR cycle.

The set of input sequences are then filtered through the model dynamics. The final

adjustment is made by iteratively reducing, as necessary, the original bounding ρu until

(5.13) is satisfied. Once all these steps have been completed, the initial set of quadratic

inequality coefficients {α,β, γ} are generated for each information state element, ϕ, and

stored in memory with its respective sequence and bounding constant ρ. For large models,

the initialization can be simplified by selecting at least one state for each SISO object. We

now present a summarizing account of the steps for the proposed method including the

common features with the CE Adaptive Control algorithm as presented in the preceding

chapter.

5.4 implementation

Assume that all the quadratic inequality coefficients have been successfully initialized

according to the procedure outlined above and the system is at a sampling time at which

the information indicator switch, δsr,t, activates.
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Algorithm 5.1 Informative CE Adaptive Control Action

Require:

Current measured state, xt . ∆ϕt,yt,ut−1

Prior parameter estimate distribution {θ̂t−1,Pθ,t−1}

GOBF state transition matrices {Aξ,Bξ}, Cost parameters {Q,R,T }

SR parameters {αj,t,βj,t, γj,t} for j ∈ I1:nu . Selection by (5.18)-(5.19)

Ensure:

Control action u

1: Update parameter distribution to get {θ̂t,Pθ,t}

2: Update state-transition model with θ̂t

3: Solve filtered model DARE to obtain terminal cost matrix Pf ,t

4: while δsr,t = 1 do

5: Solve Psr(x,yr) in (5.17) . Update SR selection periodically

6: û?0 ← ∆û?0 + xu

7: Compute {αj,t+1,βj,t+1, γj,t+1} for j ∈ I1:nu with (5.15)

8: end while

9: Solve Pce,N (x,yr) . Use Algorithm 4.1

10: u← x̂?u,1

The modified certainty equivalence control algorithm with SR information constraints

is specified in Algorithm 1. The periodic state element selection in line 5 should be

performed with a frequency that allows at least two SR cycles for a given set.

154



5.4 implementation

5.4.1 Quad-Tank Simulation Results

Resuming the analysis of the quad-tank minimal example, recall that, with an appropri-

ate choice for the pole generating set, the conventional CE formulation was successful

in recovering the policy obtained with an accurate model regardless of the initial mean

for the parameter estimate. For that case, the passive learning introduced by the refer-

ence step changes is sufficient to provide good parameter estimates, that in turn yield

good control performance. This motivates the study of a different type of scenario for

the SR formulation, where this does not occur. Assume that the pole and order of the

system is only approximately known. A model structure is generated with poles dis-

tributed in the region where accurate pole locations are believed to be located. The off-

diagonal SISO filters are modeled with third order GOBF truncations with generating

pole set ξ = {0.90, 0.80, 0.70}. The diagonal elements, corresponding to the direct inter-

action of the pump flows to the lower tanks, are constructed with second order filters

and ξ = {0.75, 0.65}. These regions contain the poles of the linearized model around the

nominal steady-state. Overall, there are 10 parameter coefficients distributed according

to this structural description. The truncation scalar components that constitute the mean

estimate, θ̂, are initialized uniformly with θ̂ = 0.15.

For all the results below, the SR constraint initialization was performed with input-

specific scalar sequences that satisfy the SR condition with ρu = 0.01, m = 10, and n = 3.

These parameters are appropriate to induce persistent excitation on all the SISO com-

ponents for the model as specified. The constraint activation indicator (5.16) is defined

with εsr = 0.1. All other applicable MPC parameters and problem specifications remain

identical to the simulations in Chapter 4, unless noted otherwise.
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In the first experiment, we take a step back in order to illustrate what has been accom-

plished in terms of parameter estimation. The reference is set at zero, which corresponds

to the nominal steady state for the tank system. Additionally, the dead-zone supervisory

feature of RLS is removed. With this set up, we have isolated the analysis to the effect

of the SR constraint with state selection. Four different versions of the CE controller are

implemented:

(i) CE Constrained Adaptive MPC (Chapter 4)

(ii) Version (i), with input SR constraints

(iii) Version (i), with GOBF SR constraints, fixed state choice

(iv) Proposed approach. GOBF SR constraints and state selection every 50s

Figure 5.2 displays the evolution of the trace of the parameter estimate covariance matrix,

Pθ,t. This function is a good indicator of the quality of the estimation process. A lower

value indicates a higher level of certainty with respect to current mean estimate θ̂t. It is

observed that the proposed approach outperforms all the other alternatives under this

measure. The CE passive approach is the first to cease decreasing significantly. This

should not be surprising since there is nothing in the problem definition that asks for such

behavior. In general the initial descent of the GOBF versions is much more consistent than

the input version. The proposed approach departs from the fixed state version after the

first 50 second interval and continues decreasing, reaching a value roughly two orders of

magnitude lower at the end of the experiment. A zoomed portion of the input profiles

generated with these methods is shown in Figure 5.3. At some time between 200 and 300

seconds, the fixed direction SR constraints appear to enter a cyclic profile which could
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Figure 5.2: Quad-Tank Adapted Parameter Covariance with SR Constraints

explain the increment in the covariance trace, as the excitation introduced is not enough

to compete with the effect of the exponential forgetting factor. In other words, the new

information generated is the same that is continuously fading. This does not happen with

the state selection feature, as the small excitation pulses remain irregular throughout the

experiment.

The parameter estimation transient for two representative elements of the overall esti-

mate mean vector are shown in Figure 5.4. It is observed that the improved estimation

features discussed above are reflected on the stability of the transients for the parameters.

As discussed in Chapter 4, the orthonormality of the GOBF transfer functions results in

improved conditioning of the covariance. The main motive of the proposed constraints

is to introduce excitation in varying directions that matches the frequency of the model

components to further enhanced this aspect of the adaptive control problem.

For the second experiment, we repeat the reference step changes studied in Chapter

4 under the new model definition with approximate plant knowledge. The fixed GOBF

state version, (iii), is not included for this part. The dead-zone feature is reincorporated
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Figure 5.3: Quad-Tank Regulation SR Input Detailed Profiles

Figure 5.4: Quad-Tank Regulation SR Parameter Estimation
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Figure 5.5: Quad-Tank Output Profile Reference Intervals 1-2

in the RLS estimator to avoid parameter drifting that may render the problem infeasible

when the reference signal changes. The output transient between the first and second

reference intervals is illustrated in Figure 5.5. The magnitude of the excitation induced by

the SR constraints and their activation are illustrated in Figures 5.6 and 5.7 respectively.

Note that the large oscillations induced by the low quality of the estimation process does

not have a proportional adverse effect in the output profile. These spikes on the input

are buffered by the upper level tanks, which receive most of the flow. The overall input-

output profile is given in Figures 5.9 and 5.8. Both, the CE and input SR formulations

display large bursting episodes. Unlike the small information bursts induced by the

proposed method, these are not intentional and their magnitude is unpredictable.

The dead-zone feature of the RLS estimator, is intended to remove the shattering ob-

served in the first experiment as shown in Figure 5.4. Note that the improved estimation
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Figure 5.6: Quad-Tank Input Profile Reference Intervals 1-2

Figure 5.7: Quad-Tank SR Activation

160



5.4 implementation

Figure 5.8: Quad-Tank Control Output Profiles

Figure 5.9: Quad-Tank Control Input Profiles
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provided by the SR GOBF constraints is also evident in the parameter estimate profiles in

Figure 5.10, under this estimator feature.

The state selection procedure based on the variance cost indicator (5.19), is set to act

every 40 seconds. The chosen sequence is listed in Table 5.1 for the 10 different periods at

which the SR constraint set is updated. State indexes 1-2 and 9-10 correspond to the direct

interactions of pumps 1 and 2 with their adjacent lower level tanks respectively. Indexes

3-5 and 6-8 belong to the higher order indirect cross-interaction through the upper level

tanks. Elements from all SISO subcomponents are selected, dominated by the leading

coefficient of the higher order off-diagonal filters. This is consistent with the model as the

system routing valves are set divert most of the flow through the upper level, and these

state contributions are expected to be more significant to the tracking task.

Table 5.1: SR GOBF State Selection Index

SR Interval 1 2 3 4 5 6 7 8 9 10

u1 6 2 2 6 6 6 6 6 7 7

u2 3 10 3 10 3 3 3 10 4 4

In computational terms, the related optimization problem for this illustrative model re-

duces to a nonconvex QCQP of dimension 2 which is solved with BARON 17.8.9 (Tawar-

malani & Sahinidis 2005). For a representative experient with the GOBF formulation, the

SR constraint set is activated 260 of the 400 sampling instances with no infeasible prob-

lems. Out of these, BARON reaches the imposed maximum time of one CPU second 16

times on a standard laptop computer. The average solution time for all QCQP instances

is 0.43 seconds.
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Figure 5.10: Off-Diagonal SISO Filters Parameter Estimation
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5.5 conclusions

The motivation and practical considerations of the inclusion of informative features in the

CE Adaptive MPC control problem with GOBF models has been presented. Alternatives

proposed in the literature have been framed into this modeling structure. Instead of re-

lying on linear relaxations or the direct optimization of the expected output variance, we

have proposed an indirect method that stems from the induction of persistent excitation

through sufficiently rich input signals. The working model structure enables the enforce-

ment of this condition in terms of the filtered GOBF state elements instead of the raw

input signal. In turn, this opens the doors for a new element in the constraint formula-

tion. Namely, the state selection procedure through the dual cost targeting function. With

the intent of obtaining faster solution times, the SR constraints are not applied directly to

the full-size constrained MPC problem. Instead, an indicator function that activates when

the system is near the tracking steady state was introduced. The activated optimal control

problem is consistent with the model and MPC cost definition. Different aspects of the

method were illustrated by its application on the illustrative MIMO Quad-Tank System.
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6.1 conclusions

We have presented the GOBF modeling approach as a compelling choice for adaptive

model predictive control. Several aspects have been discussed. There are two notable

benefits. First, the enhancement of the identification enabled by the orthonormal, in-

put balanced state-space realizations. Second, the inherent controllability properties that

allow the definition of infinite-horizon tracking terminal cost functions and convex pa-

rameter estimation problems that can be handled with unmodified RLS methods.

In Chapter 3, a variety of non-adaptive MPC policies were presented. The introduction

of output feedback that eliminates tracking offsets when the model is not exact was in-

troduced through the modification of the original MIMO model as presented in Chapter

2 with backwards difference filters. The importance of model representations that lead

to bounded error signals was demonstrated by the constraint tightening approach in the

robust formulation.
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The adaptive MPC formulation was motivated with a series of orthonormal basis rep-

resentations. The improvement of the conditioning of the least-squares parameter esti-

mation problem was demonstrated by a comparison to a fixed denominator structure,

representative of other linear approaches in this regard. A more general constrained

certainty equivalence MPC method was presented. The problem definition includes an

artificial reference optimization variable and its associated off-set cost. To our best knowl-

edge, this is the first time that this is incorporated in an adaptive MPC approach. The

construction of the GOBF MIMO model from an available linear representation for the

system was outlined. The recovery of control performance by adaptation from a poorly

parametrized original model was demonstrated on the illustrative Quad-Tank system.

The formulation of information constraints with suitable for the Constrained CE adap-

tive method of Chapter 4 is another notable contribution. The combined approach has

dual control characteristics by inducing probing features in the input signal. It is noted

that for a tracking control task, the transients between references are already informative.

The active probing features through small information gains are enforced only in periods

where the traditional certainty equivalence approach would not. The induced persistent

excitation with the selection procedure is shown to avoid large unexpected bursting that

are observed even with the conventional input SR constraints.

6.1.1 Publications

The contents of Chapters 4 and 5 are currently being modified into a series of two publi-

cations.

Adaptive MIMO MPC with Generalized Orthonormal Basis Functions (In Preparation)
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Dual Adaptive MPC with Generalized Orthonormal Basis Functions - Persistent Excitation Con-

straints (In Preparation)

This separation allows a more focused introduction to the features of the MIMO model

construction and its associated constrained CE adaptive MPC algorithm, which has many

features that have not been proposed in the literature. The second paper is intended to

extend the simulation results with other computational case studies that may benefit from

the active approach.

6.2 future work

6.2.1 Integration with Robust Controller

Based on the observations made this far, it is valid to ask when it is convenient for the

adaptation to cease. For systems with time invariant structure, one could envision an

approach that switches between adaptive and non-adaptive robust regimes. This requires

the definition of adequate measures, related to the evolution of the prediction error that

would define the supervisory layer that performs the switch. While adapting, the infor-

mation constraints can be enabled in the closed-loop as tuning mechanism and disabled

as necessary.
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6.2.2 MIQP Reformulation

Since the coefficients of the quadratic constraints are known prior to computing the con-

trol action, the convexity and feasibility of each constraint for each input channel can be

determined prior to the solution of the optimization. One could then solve specific QP

subcases and apply the best solution as shown in the SISO example in (Marafioti et al.

2014). This could also be done relatively simply for the Quad-Tank case since there only

two channels and the number of subproblems can only reach 4 when both constraints

are non-convex and feasible. As the dimension of the input variable and feasible noncon-

vex constraint grows, the number of combinations grows exponentially. These structure

could be more efficiently framed with the aid of integer variables assigned to each input

channel that would define convex MIQPs which could be more efficiently solved. For

example, consider a non-convex inequality quadratic constraint for input u with known

real roots r1 and r2, such that r1 < r2, and a large positive constant M . The nonconvex

quadratic equality, is equivalently represented by

u < r1 +Mz, u > r2 −M(1− z), z ∈ {0, 1}

6.2.3 Further Experimental Validation

There are many features of the proposed approach that have not been tested. For instance,

although the model was formulated in general for higher order backward difference fil-

ters, we limited the control design to the first order. For example, other type of distur-

bance like signals that have periodic attributes may benefit from a different selection of
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this feature of the model. Another aspect that remains unexplored is the incorporation of

more sophisticated estimator structures to the problem. For example, the quad-tank anal-

ysis could be modified with box constraints and moving horizon estimators that enforce

positive gains for all the SISO transfer function elements. This could be compared to sim-

pler projection approaches applied to the recursive least-squares update. In principle, the

GOBF approach would also facilitate these estimation modifications compared to other

linear model representations.

6.2.4 Adaptive Control with Physical Constraints

As it was observed in the Quad-Tank example simulations of Chapter 4, the original sys-

tem representation corresponding to the linearized nominal model is not recovered by

the adaptive estimator, even though the initial and final references coincide. As discussed

previously, this is related to the approximate symmetry of the system, but also of the

experiment as well. The estimation can then be constrained to constitutive relationships

between the predicted outputs of the MIMO system such as mass balances. These con-

straints could be relaxed during adaptation transients and strictly enforced around steady

state operations.
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