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Abstract

Well-designed demand response is expected to play a vital role in operat-

ing power systems by reducing economic and environmental costs. However,

the current system is operated without much information on the benefits of

end-users, especially the small ones, who use electricity. This thesis proposes a

framework of operating power systems with demand models including the di-

versity of end-users’ benefits, namely adaptive load management (ALM). Since

there are a large number of end-users having different preferences and condi-

tions in energy consumption, the information on the end-users’ benefits needs

to be aggregated at the system level. This leads us to model the system in

a multi-layered way, including end-users, load serving entities, and a system

operator. On the other hand, the information of the end-users’ benefits can be

uncertain even to the end-users themselves ahead of time. This information is

discovered incrementally as the actual consumption approaches and occurs. For

this reason ALM requires a multi-temporal model of a system operation and

end-users’ benefits within. Due to the different levels of uncertainty along the

decision-making time horizons, the risks from the uncertainty of information

on both the system and the end-users need to be managed. The methodology

of ALM is based on Lagrange dual decomposition that utilizes interactive com-

munication between the system, load serving entities, and end-users. We show

that under certain conditions, a power system with a large number of end-users

can balance at its optimum efficiently over the horizon of a day ahead of op-

eration to near real time. Numerical examples include designing ALM for the

right types of loads over different time horizons, and balancing a system with



a large number of different loads on a congested network. We conclude that

with the right information exchange by each entity in the system over different

time horizons, a power system can reach its optimum including a variety of

end-users’ preferences and their values of consuming electricity.
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Chapter 1

Introduction

1.1 Background

This thesis starts with a simple motivation: current power system operation lacks a model

of demand that includes a variety of the end-users’ objectives of using the system. System

operators take the most part of the demand as an exogenous value that is irresponsive to

the rest of the system. Historically, demand has been regarded as a parameter that has to

be met with generation resources by the system operator.

Recently, this has been changing as the cost of meeting the ever-rising capacity of

demand increases and the technology to connect and control some types of loads develops.

Nonetheless, policies to promote demand response in a system largely view demand as a

resource that can replace or substitute generation resources when needed. Markets accept

bids from load serving entities so that they can curtail demand in place of using generation

resources when demand curtailment is seen as less expensive. However, this does not

fully incorporate, or even distorts, what end-users intended to achieve from the system.

The issues with such demand response policies have been well discussed in the literature,

e.g., [5].

The fundamental problem with seeing demand of the system as an alternative/sub-

stitute of generation resources is simple in the sense that the objectives of demand and

supply in the system are not interchangeable. Loads exist in the power system to achieve
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end-users’ objectives, whether it is lighting a building to be able to work, heating a house

to keep warm and comfortable, or running a motor to operate a business. However, when

the cost of using electric energy outweighs the benefit of consuming energy, at least in

theory, end-users will cease or reduce their consumption. On the other hand, when the

benefit is greater than the cost, users will continue or even increase their consumption.

In reality the equilibrium of demand and supply of energy is not found this simply for

various reasons. First, to most end-users the price they pay for electricity does not reflect

the system condition; whether the system supply is scarce or not, they pay a uniform price.

Second, even if end-users pay a time-varying price that reflect the system condition, the

opportunity cost occurring from inconvenience of adjusting consumption with respect to

the price can outweigh the benefit of reducing energy cost. This inconvenience is worse

without automated and reliable infrastructure for end-users to communicate with the sys-

tem and to manage consumption. Third, even if a system and end-users are equipped with

communication and control infrastructure, we do not know whether the different end-users

and suppliers can be coordinated to keep the system in balance and/or at the optimum,

or how to achieve such an optimum.

Assuming the first two said problems are resolved, this thesis attempts to address the

last question of whether and how a system can reach its optimum including a large number

of end-users’ objectives. We propose a framework where the cost of providing energy service

to end-users with diverse consumption preferences and benefits is communicated between

the system operator and the end-users. The true cost of providing energy comes from

the suppliers, and the benefit of consuming it is specific to an end-user. Since the system

operator oversees the production and consumption of electricity in the whole system, the

cost of supply and the benefit of demand by the end-users are coordinated by the system

operator.

However, it is not easy, if not impossible, to account for every single individual end-

user’s benefits into system operation. Even if it is achievable, it is hard to justify the reason
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why the system operator should know every end-user’s profile of energy consumption.

Due to this privacy concern, the information on the end-users’ energy consumption and

their preferences should propagate as little as possible. Also because a system operator

cannot oversee every end-user’s energy consumption model, this information needs to be

aggregated at a certain level to the system, while keeping the particularity of each end-

user’s benefit model. This role is fulfilled by load serving entities, who provide electric

energy service to their customers and purchase energy on behalf of them in the market.

Since the price in the market is uncertain, load serving entities face the risk from this

uncertainty when purchasing electricity. Most end-users make contracts with their load

serving entities (LSEs) at a predetermined rate in order to avoid this risk. As a result, LSEs

effectively hedge the risk from the uncertain market price for the end-users. In addition to

hedging the risk of the uncertain market price for the end-users, since load serving entities

interact directly with the end-users, they can differentiate the service according to the

end-users’ needs and choices. They can offer various tariffs to the end-users on one side,

and purchase electric energy in a variety of ways in the market on the other side.

For the above reasons, we model the power system with a system operator who oversees

the overall supply and demand, various end-users who have different objectives in consum-

ing electric energy, load serving entities who aggregate the demand of their customers in

the system/market, and power producers on the supply side. While in the real system

there may be entities who involve in purely financial transactions without producing or

consuming energy, we do not consider these entities in this work.

By modeling end-users, load serving entities, and a system operator in a power system

comprehensively, we attempt to show a proof of concept in this thesis how this model,

namely adaptive load management (ALM), can theoretically work to coordinate the objec-

tives of the different entities in the system when the objectives of the end-users are fully

incorporated in system operation over multiple time steps. We especially focus on the fact

that end-users have their own local systems of using electric energy in order to maximize
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their benefits. They have different preferences on how much energy they are willing to

consume, and how much they are willing to pay for it. Load serving entities can also have

different objectives and risk preferences in the market.

ALM provides a consumer-centric, rather than grid-centric, view of operating a power

system. By communicating the preferences with respect to the signal from the system

level, the end-users can influence the market price and act as a price maker rather than

a mere price taker. In communicating their optimal demand with respect to the signal

from the system, the ALM framework enables end-users to optimize their objectives with

respect to their own preferences on risks and consumption costs, and physical dynamics

and limits of their local system of demand.

While our focus in modeling the system is on incorporating different physical dynam-

ics and economic preferences of end-users, our concept of exchanging information between

entities with different purposes can be extended to include other entities and components

in the system. Examples can range from physical components such as transmission con-

trol devices that communicate with the system to optimize its performance, to economic

entities such as electric vehicle chargers and their aggregators. We provide a generic in-

formation exchange framework that captures the local objectives and preferences that is

readily extensible to include these components and entities in system operation.

ALM also relates the objectives over different time horizons, as shown in Figure 1.1.

We recognize the relationship between the long- and short-term objectives. Long-term in

ALM is defined as any time horizon longer than day-ahead scheduling; long-term decisions

include multiyear capacity/energy decisions, monthly energy contract decisions. Short-

term decisions in ALM range from day-ahead scheduling to near-real-time1 adjustment of

the amounts settled a day ahead of time. The long-term decisions of any entity cannot

be made without projection of information on cumulative short-term conditions of the

1Real-time in this work refers to hour-ahead or shorter ahead of actual operation and consumption,
which is different from the conventional use of the term in the market. For example, real-time market
price is determined ex post, i.e., after the actual consumption and operation occurs.
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Figure 1.1: The timeline of adaptive load management (Note: the lengths not to scale)

system. The information of the end-users’ benefits can be uncertain even to the end-users

themselves ahead of time, and the external factors and conditions that suppliers or the

system operator assumed for the future can be highly uncertain as well. The information

used for decision making is discovered incrementally as the actual consumption approaches

and occurs, and the uncertainty of the information gradually decreases. On the other

hand, the amount of time available to make such decisions and actions also diminishes [6].

For example, in near real-time dispatch, the uncertainty of the system conditions and the

demand is very low while decisions on the actions of the entities need to be made within a

very short time frame. ALM recognizes this time-varying uncertainty of information and

the different time horizons for making decisions based on available information.

1.2 Problem statement

This section describes the problems that we tackle in this thesis. The ultimate goal is to

find an information exchange framework among the entities, including end-users, that reach

the system optimum over different time horizons. The settings and assumptions change

with respect to the perspective, i.e., who is making the decision, and the time horizon over

which the entity is making decisions. Specific mathematical models are presented in Parts

II.

First, we model the benchmark problem of the power system that encompasses the
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objectives of all entities, including end-users, over the longest time horizon. This includes

planning for capacity, long-term energy contracts, and short-term energy scheduling. We

reason why this problem cannot be solved in its intact form, and divide the problem into

more workable forms. Since the problems are formed over multiple time horizons, a lot

of parameters and conditions are uncertain at the time the entities make decisions. We

specify problems of a load serving entity hedging the risk from these uncertainties.

Second, we propose a specific framework where end-users’ benefits can be effectively

scheduled in the short-term economic dispatch, and show the proof of concept by numerical

examples. The method is based on dual decomposition of the system-level global prob-

lem. We propose two different approaches for different time horizons within the economic

dispatch timeline. In doing so, we examine the relationship between the optimum of the

global system and the optima of the local entities, i.e., suppliers and end-users, and how

they should be coordinated efficiently. We especially model price-responsive loads with

linear intertemporal2 dynamics by vectorizing the state and control variables of end-users’

demand systems. This makes the system-level global problem convex and decomposable

and converge to the primal optimum under mild conditions that we specify.

Third, we identify a methodology to design ALM in the real-world power network.

While we model the ALM framework in a generic way, deploying demand resources for

system operation is specific to the system due to distinctive system conditions and a com-

position of loads and generation resources. We explore 1) what loads can used for ALM

and 2) how they can be used, based on the specific examples and data analysis of the

actual system and loads.

1.3 Related work

The idea of finding the optimum of the power system by decomposing the problem has been

around for a long time. [7] introduced the idea of trading electric energy as a commodity

and the concept of price as a signal that entities can react to in order to balance the

2Intertemporal in this work implies dynamics over multiple discretized time steps.
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system. Since then, the US and a lot of other countries have developed electricity markets.

However, the current market does not necessarily fully communicate the market price in

order to balance the system, but rather have the participants bid in the price based on

what they think the market price will be. In literature, many technical methods have

been proposed to solve a complex system balance problem in a decomposed way, if not

with demand. For example, [8] compared different methods to decompose an augmented

Lagrangian function of an optimal power flow problem. Decoupling a power flow by control

areas has been a popular way of partitioning the global problem, e.g., [9, 10, 11]. Theories

behind decomposing optimal power flow with power network equations is studied in [12],

and [13] applies it to including the benefits of demand in the system. More recent literature

including benefits of demand in power balance problems appear in [14, 15, 16, 17]. The

limitations with the recent literature on demand response include 1) setting the end-users

as a price taker and solving a local problem, 2) obscure models of end-users’ benefits based

on assumptions not based on the physical models of the loads, and 3) ambiguity of the

settings and subjects of the problems such as who is a coordinator of the problem, who

defines the objective of the problem, etc.

The concept of multi-temporal electricity markets has been proposed in various forms

by several authors [5, 18]. Although markets that trade the long-term reliability or capacity

have been designed and implemented in some regional systems [19], their model of demand

is set rather arbitrarily by the system operator, without regard to any information from

the actual system users. There has been work that attempted to formulate this dynamic

system of the market and the demand responding to the system by price signal [20, 21]. On

the other hand, there have been practical efforts in testing out and analyzing the response

of end-users to the time-varying system condition or price, especially with increasing rollout

of smart meters [22, 23, 24, 25]. Much of the previous work relating the load aggregator’s

problem focuses either on a single time stage [26, 27], or a single or total load that a load

aggregator needs to serve [28, 29]. As a result, different risk sources and possibly different
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risk criteria at various time stages have not been considered. Risk managing strategies of

a load aggregator has little been considered in relation with the demand resources that are

adjustable [30, 31].

1.4 Contributions

By solving the problems in Section 1.2, we have the following results from this thesis.

1. We propose a framework that comprehensively includes the objectives of end-users in

a power system over the longest time horizon ranging from years to hours. Especially,

(a) we specify the end-users’ objectives of the system based on their various eco-

nomic preferences and physical intertemporal dynamics and limitations, and

(b) define a load serving entity’s problem where she hedges the risk from the un-

certainty of demand and market prices.

2. We propose a specific consumer-centric short-term information exchange framework

among the entities that

(a) effectively captures the variety of end-users’ needs without revealing their pref-

erences,

(b) while efficiently communicating with the system operator through load serving

entities within reasonable timeframe and communication limits,

(c) does not interrupt with the nature of the market where competitive participants

do not share information with each other, if the system is balanced through a

market,

(d) coordinates the entities’ objectives and intertemporal dynamics, including the

end-users, to manage congestion of a power network, and

(e) can furthermore be extended to incorporating other components such as storage

into system operation.

3. We design ALM based on the real-world data of the loads and power system in the
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Azores Islands where we

(a) identify the loads that can be deployed that are specific to the system,

(b) specify feasible methods by the types of loads,

(c) analyze the potential benefits of utilizing the different types of loads, and

(d) show the proof of concept how ALM works to achieve the system optimum with

the selected loads.
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Part II

Formulation and Methodology
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In this part of the thesis, we formulate the benchmark problem for electric energy

systems over multiple time horizons, including the long-term procurement of resources and

the short-term scheduling of the available resources. Then we examine this big problem

into smaller subproblems with respect to different time horizons and different optimization

entities. In Chapter 3, we propose a specific method to coordinate short-term decisions

made by entities in the system.

The objective of the system looking over the entire electric energy system of inter-

est, considering linearized network constraints, is to maximize the long-run social welfare

subject to cumulative short-run energy balance and long-run reliability criteria, and the

network flow limitations. It can be formulated as

maximize
PGi

,PDj
,KGi

,KDj

T
∑

t=1

[

NG
∑

i=1

−ci(PGi
(t)) +

ND
∑

j=1

bj(PDj
(t))] (1.1a)

−

Y
∑

y=1

[

NG
∑

i=1

CG
i (KGi

[y]) +

ND
∑

j=1

{−CD
j (KDj

[y]) +BD
j (P

max
Dj

[y])}] (1.1b)

subject to

NG
∑

i=1

PGi
(t) =

ND
∑

j=1

PDj
(t) ∀t (1.1c)

|H(CgPG(t)− CdPD(t))| � F (t) ∀t (1.1d)

˙PGi
(t) = fi(PGi

(t),Θi(t)) ∀i, t (1.1e)

˙PDj
(t) = fj(PDj

(t),Θj(t)) ∀j, t (1.1f)

Ry

ND
∑

i=1

Pmax
Dj

[y] ≤

NG
∑

i=1

{Pmax
Gi

[y] +KGi
[y]}+

ND
∑

j=1

KDj
[y] ∀y. (1.1g)

where t denotes the time step in energy market, typically an interval of an hour, that ranges

from 1 to T over the horizon, and y denotes the time step of a year for which the capacity

market clears. Supply entities in the market are indexed with i = 1, · · · , NG, and demand

entities with j = 1, · · · , ND. The energy produced by i-th entity at time step t is PGi
(t)

while the energy consumed by j-th entity is named PDj
(t). ci(·) and bj(·) denote the short-

run cost and benefit functions of the i-th supply entity and j-th demand entity, respectively.
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CG
i (·) and BD

j (·) denote the long-run cost and benefit function for providing or consuming

additionally provided capacity of K·[y] at year y, respectively. Note that a demand entity

can also provide additional capacity KDj
[y] by investing in energy efficiency. This means

that investing in energy efficiency by end-users can reduce the peak demand and has the

same effect of adding in additional capacity to the system. Pmax
Dj

[y] and Pmax
Gi

[y] denote the

peak demand and the maximum existing capacity at year y, and Ry is the pre-determined

rate of reserve for reliability. H is the power transfer distribution factor (PTDF) matrix

of the network, and F (t) is the transmission limits at time step t. Cg (Cd) is a supply

(demand) connection matrix with binary elements 0 and 1 in the dimension of (number of

buses except the slack bus)-by-NG (ND) that relates each supply (demand) entity to the

bus that it is connected to.

Equations (1.1c)-(3.2b) are related with the short-term decision making, and Equa-

tion (1.1g) defines the constraint for the long-term decision making. More specifically,

Equation (1.1c) dictates that the total generation and total demand need to match at any

given time period t. Equation (1.1d) limits the transmission line flows at each time period

t. Even though the real network dynamics also include reactive power and bus voltages

as its variables, since our interest is only in active power, we use a linearized network

model. Equations (1.1e) and (3.2b) define the physical short-term dynamics of each sup-

ply/demand entity’s power output/consumption with exogenous parameters denoted as Θ.

Equation (1.1g) ensures an adequate amount of capacity resources in the long run.

There are a few reasons why we cannot solve this benchmark problem in the form

above. First, the short-term external parameters and functions that decide the optimum

of the problem are highly uncertain at the time when the long-term decisions are made.

Therefore, the long-term decisions are based on forecast of these parameters and functions.

Second, there are two many different objectives and constraints attached to the problem.

Typically there are numerous end-users and their loads that have their own objectives

and intertemporal dynamics. In other words, NDj
is too large and not even known to
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the system level, and will entail as many equations such as (3.2b). The last reason also

has to do with the complexity of this problem, but in a slightly different perspective than

the large dimension of the problem. If we relieve the linear approximation of the network

dynamics (1.1d) and have complex nonlinear dynamic equations for (1.1e) and (3.2b),

the problem is structurally difficult to solve, regardless of its dimension. Tackling the

nonconvexity/nonlinearity of an optimization problem is out of the scope of this work, and

for this reason we assume linear network constraints and local dynamics in this problem.

The detailed models are presented in the following chapters.

For these reasons, we separate the problem in two interrelated ways in the next chapter:

by entities that have an objective and by time horizons. In the first section of Chapter 2,

we discuss the multi-layered aspect of the system. We describe the entities that compose

the system in more detail and how they are related in terms of their objectives. The

physical and economic interconnections of the entities are discussed. Section 2.2 presents

the multi-temporal aspect of the system optimization. We especially focus on the relation

of the optima in different time scales. We point out how disconnected the decisions at

different time scales are in the real-world system, and suggest a direction to change the

disconnection between the long-term procurement and the short-term scheduling.
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Chapter 2

Multi-layered and multi-temporal decision mak-

ing

2.1 Multi-layered aspect: the entities in the system

We view the power system as three layers based on their economic and physical objec-

tives; a system operator, load serving entities and power producers who make transactions

in the market, and the end-users. Figure 2.1 shows the system and the entities that we

consider in ALM.

2.1.1 System Operator

A system operator looks over the physical power system at a high-voltage transmission

level. The objective of the system operator is to meet the expected demand in the most

cost-efficient and reliable way. In the most comprehensive form, the system operator’s

problem is the same as Problem (1.1). Note that the system operator does not observe the

individual loads in making decisions on operation. Small end-users’ demand is aggregated

and represented in the system by load serving entities. The system operator, however, still

needs to forecast system demand and schedule resources to meet the expected time-varying

demand.

18



Figure 2.1: Information exchange in Adaptive Load Management

2.1.2 Load Serving Entities

Load serving entities (LSEs) purchase energy on behalf of end-users in markets or directly

from the power producers and provide energy to their end-use customers. The objective of

a load serving entity is to maximize profit by minimizing the cost of energy purchaseand

maximizing the revenue from their end-users. In this work we assume that there is no

gaming between different load serving entities and the revenue from the end-users are

fixed. This simplifies the objective of the load serving entities into minimizing the cost of

energy that their end-users consume.

Since the system operator does not observe individual small loads of end-users, load

serving entities play an important role in ALM. First, for end-users who like to avoid the

risk of uncertainty of the market price, load serving entities usually provide energy at a

uniform or “insulated” price. Load serving entities are said to usually procure up to about

80% of their customers’ energy through long-term contracts with energy traders and power

producers ahead of the scheduling markets. This is one way for a load serving entity and

a power producer to hedge against the risk of uncertainty in market prices. More on the

risk management of a load serving entity will be discussed in Section 2.2.3. Second, in

order to balance the system with the information of demand, the system operator needs an
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aggregator of this information so that it does not communicate with numerous individual

end-users. LSEs serve as a information exchange medium for end-users in specific clearing

methods of ALM, which is described in Chapter 3.

2.1.3 End-users

An end-user’s objective is to maximize her benefit from consuming energy and minimize

the incurring cost. The price of electricity depends on the contract that each user makes

with her own load serving entity. Most of the small residential users pay a uniform rate of

electricity to their load serving entities. However, in our formulation, we assume the ideal

connection between the true price of electricity in the system and the end-user’s benefit. In

reality, end-users may have various contracts with their load serving entities. The purpose

of formulating the end-users’ problems in terms of the true cost of electricity provides a

control scheme to adjust the flexible loads of the end-users. In other words, the true cost

of electricity acts as the control signal that affects the end-users’ systems of electricity

consumption. This way, the end-users are able to respond to the system condition by

reacting to the price.

While enabling the end-users to react to the system condition with the price is impor-

tant, the end-users’ benefit should not be compromised as long as they are willing to pay

the price. We model the end-users’ benefit in a quantitative way and include it in their

objective function and the constraints. We include in our formulation the fact that each

end-user can have a desirable state that she tries to achieve by consuming energy. An end-

user’s energy consumption is seen as a dynamic system where the possibly time-varying

desirable state is to be achieved with the input of energy consumption.

2.2 Multi-temporal aspect: the time horizons and risk manage-

ment

In order for the system operator to achieve cost efficiency and reliability of the system,

operational decisions need to be made over different time horizons. First, in order to
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guarantee that the highest point of demand is met, the system operator needs to project

the long-term change in demand and supply, and procure additional capacity if needed.

Since obtaining additional capacity can take as long as several years, it is important to

forecast the trend of long-term demand and plan ahead on procuring enough capacity.

Once the capacity of the system is set, the system operator needs to schedule the energy

resources in a weekly, daily, and hourly bases to meet the expected demand. System

operator should take into account contingencies, physical network constraints and physics,

and unexpected events in demand and/or supply.

What we particularly emphasize in the multi-temporal formulation is the connection

between the decisions in the long- and short-term horizons. The long-term decisions should

be made based on the projection of the short-term decisions forthcoming, and once the

decisions are made for the long-term decisions, they become the constraints for the short-

term decisions. Especially since the long-term decision making involves a great amount of

uncertainty in short-term decisions in the future, accurate forecast is important. On the

other hand, however, in making long-term decisions, the detailed information on how the

short-term decisions are to be made is not needed. In the following subsections, we detail

the decision making problems on long- and short-term horizons.

2.2.1 Long-term decision making

The objective of a power system in the long term is to secure an adequate amount of

capacity to meet the projected system demand in the future at the least cost. Therefore,

the most crucial information needed to make a decision in the long run is to project the

demand in the most accurate way. Electricity demand has a pattern depending on the

day of the week, season, and in the longer run, a trend dependent on the economic and

sociopolitical factors. For decisions in the long term, which we define to be longer than

three years, the most important information on demand is its long-run trend. Also the

projected load factor can be of importance; if the peak demand is expected to grow faster

than the rate of the average demand, fast-ramping resources may need to be planned prior
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to others.

In our framework of ALM, we formulate the long-term decision making of the power

system including information from end-users. While it may be more difficult for end-

users to project their individual demand in the long run, they do make decisions to save

energy in the long run. For example, some end-users purchase energy-efficient products

that are more expensive over cheaper and less efficient ones. Many end-users also improve

insulation of their buildings so that they use less energy for space conditioning. We suggest

that these decisions of the end-users should be included in the long-term decisions of the

system. Moreover, there should be appropriate incentives for end-users to improve energy

efficiency of their energy consumption systems, especially to overcome the inertia and

indifference. While policy making for such objectives is out of scope of this thesis, we

formulate the system’s decision making with the end-users’ long-run decisions.

Taking only the long-term variables from Problem (1.1), the long-term decision making

problem of a system operator can be rearranged as follows:

maximize
KGi

,KDj

−

Y
∑
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[
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∑

i=1
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i (KGi

[y]) +
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∑
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j (P
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[y])}] (2.1a)

subject to Ry

ND
∑

i=1

Pmax
Dj

[y] =
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∑

i=1

{Pmax
Gi

[y] +KGi
[y]}+

ND
∑

j=1

KDj
[y] ∀y. (2.1b)

In this formulation, individual constraints are not seen by the system operator. In order

to incorporate the decisions made by the end-users in the long-run efficiency, how much

capacity can be saved by each end-user should be known to the system. We assume that

this information can be expressed as a monetary benefit with respect to the capacity that

an end-user can provide, which is analogous to generation capacity bids.

An interactive long-term decision making of power producers and the system operator

has been studied to an extent, for example, [38]. Prica proposes that the short-term

electricity price should be the signal for each of the power producers and the load serving

entities to optimize their own sub-objectives, and the bids calculated with their optimum
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should be coordinated with the system operator. In this work the benefit of demand entities

is also modeled into the system objective, but the procedure on how to get the bids from

the demand remains abstract and it is modeled as an aggregate load.

We propose that the benefit of the demand side should be given by the end-users, and

be represented in the market by their load serving entities. The individual end-user (or

her agent, i.e., load serving entity) should calculate their optimal additional capacity with

respect to electricity price input. This price should include both the capacity price and

the energy price. With the expected price given by the load serving entity, the end-user

calculates their expected energy consumption and the expected capacity, i.e., the peak

demand, over the predetermined time horizon of interest. There can be different ways

in reaching the optimal capacity and energy quantities between the end-users and their

load serving entity. In any case, the expected system condition should be transferred to

the end-users through the load serving entity as the price to the end-users, and the end-

users should send their optimal consumption in response to the system condition. The

methodology of reaching the optimum in this case will be discussed in more detail in the

next chapters in terms of short-term decision making procedures. The same methods can

be applied to the long-term decision making, which we leave as one item of future work,

due to the difficulty in modeling policies and various social behaviors of end-users.

There are programs that help the end-users calculate the potential energy cost sav-

ings based on the appliances they own and their specifications, the characteristics of the

building, heating and cooling system specifications, etc. One example is shown in Figure

2.2. With information shown in the figure, end-users decide on whether and which energy

efficiency measures to invest in, along with the energy rate that they pay.

We can think of a more general way to obtain information of various energy efficiency

measures that the end-user chooses to invest in, and the tradeoff between the investment

cost and the energy cost savings. For example, each end-user can calculate, based on the

expected rate of charge for energy and capacity in the coming years that is given from
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Figure 2.2: An example of customized cost-benefit analysis of energy efficiency measures
of an end-user [1]

his/her LSE, the expected peak demand assuming that they install energy efficiency mea-

sures such as improving insulation of his/her house. If the investment in energy efficiency

measures is expected to be paid off by the energy cost savings within the time horizon that

the end-user is satisfied with, then s/he can give the information to the LSE in order to

bid into the capacity market in expectation of getting rewards from the capacity market.

Recently, creative business models that connect energy efficiency of end-users’ buildings

and capacity market earnings have also emerged [39]

How the rewards should be shared between the LSE and the end-user will depend on

the contract between the two parties. This procedure should be able to reduce the needs

for additional generation capacity if the end-users are willing to pay for the investment in

energy efficiency measures; if not, it means that the end-users have agreed to pay for the

additional capacity cost. Since the aggregation of investment in energy efficiency measures

is likely to be less expensive than installing a new peak generator, the end-users should be

compensated for their investment cost in the capacity market. How to incent the end-users
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with this reward from the capacity market, including defining the time horizon so that

the market gives enough time for demand to see the payoff of their investment, is an open

policy question.

2.2.2 Short-term decision making

Most of the energy resources in power systems need to be scheduled ahead of operation

because of their physical operation constraints such as ramp rates, startup and shutdown

times and costs, etc. The resources are usually scheduled a day ahead of operation by

the system operator as a unit commitment problem. This problem is solved with binary

variables including the on/off decisions of the resources, and can be solved efficiently as

a mixed-integer programming. Once the resources to be online are determined by unit

commitment, in order to make sure the resources are scheduled in the most economic way, or

to recalculate the optimum with slightly different settings than when units are committed,

the system operator can schedule the online resources more efficiently without the binary

variables. This problem is called economic dispatch, and we focus on this problem with

demand resources. The decisions made in the long-term procurement problem will affect

the capacity of the available resources when making the short-term scheduling decisions.

maximize
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,PDj

T
∑

t=1

[

NG
∑

i=1

−ci(PGi
(t)) +

ND
∑

j=1

bj(PDj
(t))] (2.2a)

subject to

NG
∑

i=1

PGi
(t) =

ND
∑

j=1

PDj
(t) ∀t (2.2b)

|H(CgPG(t)− CdPD(t))| � F (t) ∀t (2.2c)

˙PGi
(t) = fi(PGi

(t),Θi(t)) ∀i, t (2.2d)

˙PDj
(t) = fj(PDj

(t),Θj(t)) ∀j, t (2.2e)

Pmin
Gi

(t) ≤ PGi
(t) ≤ Pmax

Gi
(t) ∀i, t (2.2f)

Pmin
Dj

(t) ≤ PDj
(t) ≤ Pmax

Dj
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The long-term decisions that are already made in Problem (2.1) determine Pmax
Gi

and

Pmax
Dj

in Equations (2.2f) and (2.2g). In this work we model all the constraints in linear

forms, and assume all the variables to be continuous, which makes the problem convex.

Even so, this is a large problem depending on how many supply and demand entities you

have in your system. Also, within the short-term horizon, conditions of the system and

each entity can change after the scheduling has been settled, for example, a day ahead

of operation. The next part of the thesis discusses the methodology we use to solve this

problem.

2.2.3 Risk management

Since the benchmark problem cannot be solved deterministically without any uncertainty

in the future, decisions made by each entity involve risks from the uncertainty. Note that

in all our formulations for risk management, if we exclude the risk term in the objective

functions, then it is equivalent to solving the benchmark problem in a decomposed way

by each entity over a time horizon of interest. The bottom line of our approach to

risk management is that the end-users should be able to have enough information to make

decisions on savings and costs of investing in long-term energy efficiency so that the choices

of end-users are reflected into the system operation. While enabling this involves a great

deal of policy and business incentive issues, we focus on modeling end-users’ choices into

decision makings of a load serving entity. We point out the importance of enabling the

end-users’ choices into both long- and short-term energy purchase.

Long-term energy procurement of a load serving entity

As been pointed out in this section, the risks in long-term decision making of the power

system come from different sources such as sociopolitical changes, climate changes, and

uncertainty of demand as their result. To account for the uncertainty of demand in a

long-term decision making, scenarios of system demand change with different probabilities

can be set up.

However, incorporating the long-term decisions from demand resources into the system
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optimization has not been considered widely. One of the reasons is because it is more

difficult to measure the capacity savings from energy-efficient actions on the end-users’

side. Some Regional Transmission Organizations (RTOs) such as PJM offer a demand

response program in the capacity market. PJM evaluates energy efficiency that a load

serving entity likes to offer in the market and the capacity savings from it according to

their predetermined rules [32]. However, it still remains questionable how many demand

entities a system operator can evaluate and how reliable the evaluation is.

Another reason why it is difficult to include long-term decisions from demand is the

reliability of the resources. For example, when a demand resource is measured to be able to

potentially save certain megawatts by improving energy efficiency, can the system operator

rely on the number on a particular day when the system demand hits the peak? In order

to go around this problem, PJM mandates the demand resources that bid into the capacity

market to be able to respond when they are needed. However, this mandate discourages

the demand entities to participate in the capacity market because it is highly uncertain

when their resources are to be deployed throughout the contract period.

Lastly, it is not entirely obvious what incentivizes end-users to choose long-term energy

efficiency despite the investment cost and inertia of keeping their energy consumption

system as is. While the monetary incentive seems to matter, there are other situational

and behavioral factors that make a particular end-user choose energy efficient products and

actions. In other words, there lies a great deal of uncertainty in the end-users’ behaviors

and modeling of them, which remain as open problems.

In this subsection we formulate the problem of a load serving entity where she procures

energy that her customers will consume in the future [33]. We divide the time horizons into

yearly and monthly contracts. We especially focus on the multiple portfolio that an LSE

can choose such as bilateral contracts with suppliers in addition to the energy markets. In

this setting, an LSE is interested in hedging risks from the uncertainty of market prices,

while purchasing adequate amount of energy for her customers. The end-use customers
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are assumed to be divided into S groups by contracts they already settled with the LSE.

The rate charged to each group of end-users per unit of energy is denoted as r, a vector of

length S. The anticipated total energy usage by each group of end-users during a month

or a year is denoted as P̂ , also a vector of length S. The sum of all the elements of P̂

will be equal to the estimate of PDj
in our benchmark problem (1.1), where the LSE is

seen as demand entity j. The LSE’s long-term energy procurement by annual and monthly

bilateral contracts are denoted as φa and φm, respectively, while the spot market purchase

amount for hour t is denoted as φsp(t). End-users are charged a stratified rate for electricity

hours, months, and years, denoted by r[y], r[m], and r(t), respectively.

Decision making on energy years An LSE is given the long-term bilateral contract

offer for the years to come; a price per MWh on certain blocks of time during the year,

e.g. peak hours on weekdays from March to July. The LSE also has an estimate of how

its load would evolve for the period based on historic data, and the estimate of the spot

market price along with the monthly contract offers. With this price information of the

system and the information of the energy consumption of the end-users that it serves, the

LSE decides on how much energy to procure from the yearly contract; we call this amount

of energy energy year 1. The information on the demand of the end-users is formed as a

function of the yearly charge of energy to the users. In a long-term decision making, the

demand is also a function of investment in long-term energy efficiency measures such as

insulating a building or replacing an old refrigerator with a more energy-efficient one.

Then the LSE’s optimization problem can be formulated as minimizing the energy

cost and the risk from the uncertainty of demand and price minus the revenue from the

1The concept of energy minutes was coined by Professor Daniel Siewiorek at Carnegie Mellon University,
in the context of credit of energy bought by end-users that can be exchanged among each other.
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end-users:

minimize
φ,r,ζ

T
∑

t=1

{pltyφa(t) + p̂ltmφm(t) + p̂spφsp(t)}+ βFα(φa, ζ)−

Y
∑

y=1

rT [y]P̂y(r[y], Cinv,y)

(2.3a)

subject to E{dt} = φa(t) + φm(t) + φsp(t) ∀t (2.3b)

φa,min ≤ φa(t) ≤ φa,max ∀t (2.3c)

φm,min ≤ φm(t) ≤ φm,max ∀t (2.3d)

E{

ty,end
∑

t=ty,start

dt} = P̂y(r[y], Cinv,y) ∀y (2.3e)

P̂y,min ≤ P̂y ≤ P̂y,max ∀y (2.3f)

where

Fα(φa, ζ) = ζ +
1

1− α
E{[pltyφa(t) + p̂ltmφm(t) + p̂spφsp(t)− ζ ]+}

is a term for risk from the uncertainty of demand dt and price p̂ltm and p̂sp.

We assume a linear demand function throughout this paper, which is:

P̂ (r[·]) = Ar[·] + b

where A is an S-dimensional square matrix and b is a column vector of length S. The

diagonal elements of A are usually negative, in other words, the higher the price the lower

the demand. If we assume that the behavior of each group of end-users does not have

any influence on each other, then A is diagonal. In this yearly time scale including the

investment in energy efficiency, the demand function is

P̂y(r[y], Cinv) = A′
yr[y] + b′y.

If we define the demand function with no investment as P̂y(r[y], 0) = Ayr[y] + by, then the
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Figure 2.3: An example of long-term demand functions

elements of A′
y are likely to be greater than those of Ay. This is because if the end-user’s

premise is highly energy-efficient, then their energy usage is likely to be low without regard

to the price, and thus less sensitive to the price change. Also, b′y is likely to be smaller

than by because of the reduction in energy consumption overall. This is depicted in Figure

2.3.

Consumer surplus from investing in energy efficiency is the difference of the energy cost

from the case where they do not invest. If they do invest, it will incur them a certain

capital cost, but the energy cost is likely to reduce. If they decide not to, then they have

no initial capital cost, but the energy cost will be higher than the case where they improve

their energy efficiency. Consumer surplus with r[y] as a variable now can be defined as

CS(r[y]) = rT [y]P̂y(r[y], 0)− rT [y]P̂y(r[y], Cinv).

It only makes sense for an end-user to invest in energy efficiency when this CS is greater

than zero over the course of the optimization time horizon. Note that this optimization is

done by the end-users with r[y] offered by the LSE, which reflects the long-term price of

electricity in the system. The resulting optimal demand with respect to the given r[y] will

be sent back to the LSE in order to decide on the energy year she needs to purchase. This

procedure can be repeated until both the LSE and the end-user agree on the level of price
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and energy amount.

Decision making on energy months Now after settling on the yearly contract for the

next years, LSE likes to decide on, over a course of one year, how much energy to procure

for each month on a monthly contract, and how much to charge within each month to each

group of end-users. Monthly long-term bilateral contract energy prices are given to the

LSE by a supplier. We also assume that LSEs have forecast of the anticipated monthly

energy usage of the end-users as a function of the rate charged for each month, in a similar

way from the yearly optimization. It also has information on anticipated hourly spot

market price. As opposed to Equation 2.3a, the monthly contract price offer pltm is given

deterministically instead of as an expected value p̂ltm. Also, now you have better estimate

on the demand dt than in the previous problem.

minimize
φ,r,ζ

T
∑

t=1

{pltmφm(t) + p̂sp,tφsp(t)}+ βFα(φm, ζ)−
12
∑

m=1

rT [m]ûm(r[m]) (2.4a)

subject to E{dt} − φ⋆
a(t) = φm(t) + φsp(t) ∀t (2.4b)

φm,min ≤ φm(t) ≤ φm,max ∀t (2.4c)

E{

hm,end
∑

h=hm,start

Ph} = P̂m(r[m]) for m = 1, · · · , 12 (2.4d)

d̂m,min ≤ d̂m ≤ d̂m,max for m = 1, · · · , 12 (2.4e)

where

Fα(φm, ζ) = ζ +
1

1− α
E{[pltmφm(t) + p̂sp,hφsp(t)− ζ ]+},

is a term for risk from the uncertainty of demand dh and price p̂sp.

Note that solving for the hourly purchase amounts φm(t) and φsp(t) is a linear pro-

gramming problem and can be solved independently of r[m], if there were not the coupling

constraint 2.4d. This means that without the coupling relationship between the expected
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demand level and the monthly end-user rate, if p̂sp,h − pltm > 0 then the optimal φsp(t) is

its lower bound, and if p̂sp,h − pltm < 0 then φsp(t) is the upper bound. This makes sense

since when the spot market price2 is higher than the long-term contract price, then it is

most profitable for the LSE to purchase all its energy from the contract, and vice versa. In

reality, however, since the LSE does not have perfect knowledge on the anticipated price

of the spot market in the future, the optimum will depend on the tradeoff between the

expected cost that the LSE pays and the CVaR, the risk measure of the uncertainty.

Based on the optimal spot market purchase obtained from this formulation, we calculate

the long-term monthly contract purchase amount and the monthly end-user rate, which

is apart from the yearly end-user rate and energy amount locked in from the energy year

optimization. In other words, the end-users will have a different rate and the amount limits

on the energy that is purchased on the monthly contract, on top of the yearly contract

that they made with the LSE.

Implications of multi-temporal decision making of demand This proposed frame-

work calls for a fundamental change in the current market structure on the demand side

and the demand response programs. There needs a pricing structure between the LSEs

and the end-users to communicate and choose for the proper rate that the both parties

can agree on. The information needed from the end-users does not necessarily have to

be calculated by the end-users themselves. With the communication and computation

infrastructure rolled out and used more widely, the terminal devices (smart meters) can

do the job for the end-users when needed. On the end-users’s side, the interface should

be intuitive and simple so that the complicated and intelligent computation is conducted

by the computing terminal. LSEs can also think of a way to interpolate the end-users’

demand and price information from the historic data, if available. This assumption will

make the implementation of this framework much more feasible even to small end-users.

In any case, the information of the demand and their desired level of end-user rate should

2We use the term spot market to include both day-ahead and real-time markets.
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Figure 2.4: An example of optimal portfolio of LSEs with different risk aversion

be communicated to the LSEs, and ultimately to the system.

This extended demand subscription framework [34] can change the demand market

structure where the LSEs bear all the risk from the uncertainty of the demand and price,

while the end-users in return pay for the high premium of avoiding this risk with a high

flat rate. Since the end-users can opt to participate in procuring energy in advance with

a possibly lower rate of bilateral contracts, the LSEs can relieve some of the risk from

1) the uncertainty from the demand by communicating the end-users’ needs, and 2) the

uncertainty from the market price by procuring the more desired level of energy.

In minimizing the risk, the LSEs and the end-users will have a diversity in how much

risk they are willing to take. This can also open up more choices for the end-users to

subscribe to different energy services with various risk-reliability profiles. For example,

given the same expected demand profile for a year, an LSE that is financially risk-prone

(i.e. willing to take higher risks in price uncertainty) may choose to procure less amount

of energy from the bilateral contracts than its counterpart who is financially risk-averse.

This concept is depicted in Figure 2.4, where the vertical arrows denote the level of energy

procurement with long-term bilateral contracts and the rest of the load is purchased from

the spot market.

The long-term contracts can take different forms, and it can affect the risk from the

price uncertainty. For example, with the same risk aversion, the optimal portfolio will

differ if the LSE is allowed to sell back the energy that they procured from the previous

longer-term contracts. If they are not allowed to do so, then it would limit the LSE’s
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transactions on long-term contracts and result in more inflexible and conservative (i.e.

risk-averse) portfolios. Therefore, in designing the markets in various time scales, it should

be considered which markets should bind the physical transactions and which should allow

for financial sellbacks.

Short-term energy scheduling of a load serving entity

In this subsection, we propose a method where a load serving entity can minimize the risk

of uncertainty in day-ahead and real-time market prices [3]. The risk from the uncertainty

of demand can be hedged by running different scenarios of the end-users’ behaviors in

consuming energy, which we do not cover in this thesis.

Financial risks from the day-ahead and real-time markets We first start from

managing the financial risks from the spot market, without regard to any physical model of

the loads. In this setting, the LSE tries to minimize the risk from the spot market taking

into account the correlations between the hourly market prices in both the day-ahead and

real-time markets. Since the load does not have any dynamics, LSE only allows a minimum

and maximum constraints for the load to deviate and optimizes their purchase with respect

to the market price forecast.

A classical Markowitz portfolio optimization problem solves for the optimal mix of

purchase of assets with different risk levels, and can be formulated as a quadratic program-

ming [35]. Assuming that each of the assets has a normal distribution, the risk level is

quantified as the variance of the distribution. We apply this modern portfolio theory, also

called Markowitz mean-variance optimization, to minimizing the risk of energy purchase

in the spot market.

minimize
u

wru
TΣu+ wc(λ̄− Ir)Tu (2.5)

subject to umin ≤ u ≤ umax
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For simplicity, we denote PDj
in Problem (1.1) as u. It is the amount of energy purchase

by an LSE at each hour from day-ahead(DA) and real-time(RT) markets, where u =

[uT
DA uT

RT]
T = [uDA,1 uDA,2 · · · uDA,24 uRT,1 · · · uRT,24]

T . umin and umax are the minimum

and maximum hourly energy usage, respectively. wr, wc, wT are weights on risk, cost and

temperature deviations in the objective function, respectively, which are all scalars. I is a

48-by-24 matrix with binary elements defined as

I =



























Iii = 1 if i = 1, · · · , 24

I(i+24),i = 1 if i = 25, · · · , 48

Iij = 0 otherwise.

λ is the price of electricity in day-ahead and real-time markets at all hours, where λ =

[λT
DA λT

RT]
T = [λDA,1 λDA,2 · · · λDA,24 λRT,1 · · · λRT,24]

T . Note that for the price in the

future, this is a random vector with mean λ̄ and covariance Σ known. Otherwise, it is a

fixed-value vector.

Each of the hourly day-ahead and real-time market price is assumed to have the Gaus-

sian distribution, with mean and covariance calculated from the historic price data. The

covariance matrix shows how correlated the hourly market prices are, and the variance of

each of the hourly market prices itself. The covariance matrix can be divided into four

different submatrices as follows:
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Σ =









ΣDA ΣDA-RT

ΣDA-RT ΣRT









=



































σ2
DA,1-DA,1

· · · σ2
DA,1-DA,24

σ2
DA,1-RT,1

· · · σ2
DA,1-RT,24

...
. . .

...
...

. . .
...

σ2
DA,1-DA,24

· · · σ2
DA,24-DA,24

σ2
DA,1-RT,24

· · · σ2
DA,24-RT,24

σ2
DA,1-RT,1

· · · σ2
DA,1-RT,24

σ2
RT,1-RT,1

· · · σ2
RT,1-RT,24

...
. . .

...
...

. . .
...

σ2
DA,1-RT,24

· · · σ2
DA,24-DA,24

σ2
RT,1-RT,24

· · · σ2
RT,24-RT,24



































(2.6)

Each component in this matrix is calculated as

σ2
ij = E[(λi − E[λi])(λj −E[λj ])] (2.7)

where a sample of an hourly price is denoted as λi or λj.

Covariance matrices are semi-positive definite by definition. If the covariance matrix

in this problem is positive definite, then it has a closed-form solution

u(t) =



























umin if u⋆(t) ≤ umin

umax if u⋆(t) ≥ umax

u⋆(t) otherwise

(2.8)

for all hour t

u⋆ =
wc

2wr

Σ−1(Ir − λ̄)T . (2.9)

Relating the financial risk and physical constraints of the load Now if we assume

that the LSE can adjust some part of the loads and bid their price-responsiveness in the

form of demand functions into the day-ahead market, then the formulation should include
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the physical intertemporal dynamics of these loads. For the day-ahead market bidding, we

choose air-conditioning load as controllable. This is because air-conditioning loads have

a flexibility over multiple hours; in other words, the amount of energy consumed for air-

conditioning within an hour, which is the interval of the day-ahead market, can be varied

depending on the LSE’s optimization problem. On the other hand, the reason why loads

with storage with a shorter time constant such as a residential refrigerator are not suitable

for hourly bidding is because the state (or temperature) of a refrigerator varies with a much

shorter time constant than an hour. This makes the amount of energy that a refrigerator

can adjust very limited.

The modified Markowitz optimization including the physical dynamics of the loads

as a constraint now includes an additional term in its objective function: temperature

discomfort of the end-users. In this problem, it is defined as the squared error from the

temperature setpoint determined in an hourly interval by the end-users. The detailed

formulation of the first-order state space model of the air-conditioning load used in this

formulation can be found in [36].

minimize
u

wr(u
TΣu) + wc(λ̄− Ir)Tu+ wT (x− xset)

T (x− xset) (2.10)

subject to x(t + 1) = εx(t) + (1− ε){x(t)out + γ(u(t) + u(t+ 24))},

umin ≤ u(t) ≤ umax,

xmin ≤ x(t) ≤ xmax for all t = 1, 2, · · · , 24.
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Chapter 3

Methodology for short-term decision making

In this chapter, we discuss specific methodology to solve the short-term scheduling problems

posed in the previous part. While we discussed both long- and short-term decision making

of the problem, we put more emphasis on the short-term problem and propose a new

concept to schedule resources in economic dispatch and in near real time.

Since the short-term benchmark problem cannot be solved in one problem as is, we

decompose it with respect to different entities that optimize their sub-objectives and co-

ordinate them by a system operator. There are a couple of reasons why we propose a

decomposed optimization of this problem. First, the problem is of too high a dimension.

If we like to consider all the individual loads that can react to the system condition, the

dimension of the problem can reach millions1.

Secondly, related with the first argument, the system operator cannot have information

on the dynamics of each supply and demand entity that participates in the system. In other

words, the system operator can only know the key information that is needed to operate and

plan for the system in the most reliable and cost-efficient way. In the current U.S. markets,

RTOs usually take bids (i.e., quantity and price) from the market participants and clear the

optimum within the global constraints such as transmission limits. However, the current

market mechanism does not have a clear way to reconcile the global (system/market)

objectives and constraints with the local units (supply and demand entities), especially one

1The total number of end-use customers of electricity in the United States in 2011 was 144,509,146 [37].
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that takes into account the intertemporal dynamics of the units. After clearing the market,

if any physical constraints of the local units were violated, then the system operator simply

re-clears the market with some modification. In our proposed framework, we overcome this

problem by iterative communication between the units and the system operator, which we

describe in Section 3.1.

While the iterative method for a day-ahead scheduling is effective, it may not be suitable

for the near-real-time dispatch of supply and demand units. This is because the commu-

nication between the entities can take many iterations. Therefore, we suggest a different

approach for near-real-time dispatch. We also note that the real-time dispatch functions

as the correction of the result of day-ahead scheduling. This procedure is presented in

Section 3.2.

3.1 Short-term decision making I: day-ahead iterative clearing

We restate the short-term decision making problem formulated in Chapter 2:

maximize
PGi

,PDj

T
∑

t=1

[

NG
∑

i=1

−ci(PGi
(t)) +

ND
∑

j=1

bj(PDj
(t))] (3.1a)

subject to

NG
∑

i=1

PGi
(t) =

ND
∑

j=1

PDj
(t) ∀t (3.1b)

|H(CgPG(t)− CdPD(t))| � F (t) ∀t (3.1c)

˙PGi
(t) = fi(PGi

(t),Θi(t)) ∀i, t (3.1d)

˙PDj
(t) = fj(PDj

(t),Θj(t)) ∀j, t (3.1e)

Pmin
Gi

(t) ≤ PGi
(t) ≤ Pmax

Gi
(t) ∀i, t (3.1f)

Pmin
Dj

(t) ≤ PDj
(t) ≤ Pmax

Dj
(t) ∀j, t. (3.1g)

The objective function (3.1a) is the sum of objectives of the individual entities, and

the constraints (3.1d)-(3.1g) can be separated with respect to each entity’s problem. The

complicating constraints that include variables from multiple entities are (3.1b) and (3.1c).
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It is well known that the Lagrange multipliers associated with these network constraints

are related with the price of electricity. The Lagrange multiplier associated with constraint

(3.1b) gives the uniform price throughout the system, and the one with constraint (3.1c) is

the congestion cost at each bus. If there is no congestion, the system has a uniform price

for all the buses with congestion costs. Moreover, the uniform price without congestion

is the same as the price in a setting where you do not consider the network topology and

simply match the demand and supply. This argument is proven in Appendix A.

We assume that variables PGi
and PDj

are continuous, and the cost/benefit functions

are smooth convex/concave functions. The dynamics of the supply and demand entities in

Equations (3.1d) and (3.1e) are linear, but we discretize the time intervals in accordance

with the system operation rules. We assume hourly intervals in this work. Taking into

these assumptions, we slightly modify the constraints (3.1d) and (3.1e) into

|PGi
(t + 1)− PGi

(t)| ≤ Ri ∀i, t = 0, · · · , T − 1 (3.2a)

PDj
(t+ 1) = ajPDj

(t) + Θj(t) ∀j, t = 0, · · · , T − 1. (3.2b)

We assume that only the loads that respond to the system price can be modeled as 3.2b.

Therefore, we differentiate the demand entities that are controllable and not, and treat the

uncontrollable load (or inelastic demand) as an exogenous parameter. Moreover, an end-

user’s system dynamics is governed not only by the electric energy that she consumes.

An end-user’s system has a possibly time-varying desired state, which is driven by her

electricity consumption. This way an end-user’s benefit can be more clearly stated as

the proximity to the desired state. Incorporating these remarks, Problem (3.1) can be

rewritten as

maximize
PGi

,PDj
,xj

T
∑

t=1

[

NG
∑

i=1

−ci(PGi
(t)) +

ND
∑

j=1

bj(PDj
(t), xj(t))] (3.3a)
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subject to

NG
∑

i=1

PGi
(t) =

ND
∑

j=1

PDj
(t) + PDin

(t) ∀t (3.3b)

|H{CgPG(t)− Cd(PD(t)− PDin
(t))}| � F (t) ∀t (3.3c)

|PGi
(t+ 1)− PGi

(t)| ≤ Ri ∀i, t = 0, · · · , T − 1 (3.3d)

xDj
(t+ 1) = ajxj(t) + bjPDj

(t) + Θj(t) ∀j, t = 0, · · · , T − 1 (3.3e)

Pmin
Gi

(t) ≤ PGi
(t) ≤ Pmax

Gi
(t) ∀i, t (3.3f)

Pmin
Dj

(t) ≤ PDj
(t) ≤ Pmax

Dj
(t) ∀j, t. (3.3g)

3.1.1 Decomposing the problem

There are many ways to decompose a large optimization problem such as our short-term de-

cision making problem. We focus on the practical implication in decomposing this problem

while minding the technical and mathematical perspectives. It means that the methodol-

ogy that we propose for ALM framework has the following criteria: 1) it is feasible from

the technical and policy perspectives, and 2) it guarantees the optimal global solution at

least in our approximated problem settings. The first criterion considers the practical bar-

riers in communication and control infrastructure of the system; the communication time

should be short. The policy perspective is important in the sense that the information of

various entities’ objectives cannot or will not be shared if they compete for limited revenue,

customers, etc. The last criterion comes from the mathematical analysis of the problem.

We choose a dual decomposition method to solve this problem due to its direct economic

interpretation and confidentiality between the market participants. Primal decomposition

methods are not appropriate in a practical sense because it involves subproblems’ solutions

being exchanged with each other to reach the global optimum2.

2For comparison of primal and dual decomposition methods, see for example, [40]).
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Lagrange-relaxed dual decomposition

The Lagrange dual function of the global Problem 3.3 is defined as

g(λ, µ, µ) = sup
PG,PD,x

L(PG, PD, x, λ, µ, µ) (3.4)

where

L(PG, PD, x, λ, µ, µ) =
T
∑

t=1

[

NG
∑

i=1

−ci(PGi
(t)) +

ND
∑

j=1

bj(PDj
(t), xj(t))]

+

T
∑

t=1

λ(t){

NG
∑

i=1

PGi
(t)−

ND
∑

j=1

PDj
(t)− PDin

(t)}

−
T
∑

t=1

µT (t) [H{CgPG(t)− Cd(PD(t)− PDin
(t))} − F (t)]

−

T
∑

t=1

µT (t) [−H{CgPG(t)− Cd(PD(t)− PDin
(t))} − F (t)] .

(3.5)

With certain assumed values for the dual variables λ, µ, and µ, each supply entity i

can solve an individual subproblem

maximize
PGi

T
∑

t=1

[

−ci(PGi
(t)) + λ(t)PGi

(t)− µT
i (t)HiPGi

(t) + µT

i
(t)HiPGi

(t)
]

(3.6a)

subject to |PGi
(t + 1)− PGi

(t)| ≤ Ri for t = 0, · · · , T − 1 (3.6b)

Pmin
Gi

(t) ≤ PGi
(t) ≤ Pmax

Gi
(t) ∀t, (3.6c)

and each load serving entity (demand entity) j solves

maximize
PDj

T
∑

t=1

[

bj(PDj
(t), xj(t))− λ(t)PDj

(t) + µT
j (t)HjPDj

(t)− µT

j
HjPDj

(t)
]

(3.7a)

subject to xDj
(t+ 1) = ajxj(t) + bjPDj

(t) + Θj(t) for t = 0, · · · , T − 1 (3.7b)
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Pmin
Dj

(t) ≤ PDj
(t) ≤ Pmax

Dj
(t) ∀t (3.7c)

where µi(j) ≥ 0 is the congestion prices at the buses where supply(demand) unit i(j) is

located3, and Hi(j) is the column of H that corresponds to the supply(demand) entity

i(j). µ is a vector that has the length equal to the number of the buses that the entity is

connected to minus the slack bus since the power transfer distribution matrix H is defined

to be of size, (the number of lines)-by-(the number of buses without slack). Hi(j) is also a

vector with the same length as µi(j) that includes only the elements related to the entity

i(j) and the lines connected to it.

When the dual variables are known, each entity can calculate its optimum with respect

to them. However, since the dual variables cannot be known to either the system operator

or the entities, they need to be solved in an iterative way with the primal solutions of the

individual entities without information of their objectives and constraints. In practical

terms, the prices of electricity should be determined by communicating an estimate of the

prices and the optima of each entity with respect to the price iteratively. In the next

subsection, we discuss the way to coordinate the optima between the local primal optima

(i.e., supply/demand quantities) of the entities and the global dual optimum (i.e., price).

Observing Problems (3.6) and (3.7), we can deduce the locational marginal price from

the economic interpretation of the objective functions. Each problem can be viewed as

a supply entity’s maximization of its profit, and a demand entity’s maximization of its

benefit. (3.6) maximizes negative cost of production, the first term, plus revenue from the

market, while (3.7) maximizes benefit of consumption minus cost of purchase. Therefore,

the locational marginal price at bus i πi can be defined as

πi = λ−HT
i µi +HT

i µi
(3.8)

3When we refer to both µ and µ, we simply denote them as µ. Also when we use the variable in a
general sense without regard to particular supply or demand entity i or j, we simply drop the subscript i
and j.
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Coordinating decomposed objectives: subgradient method The dual of the orig-

inal global problem (3.3) is

minimize
λ,µ,µ

g(λ, µ, µ) = sup
PG,PD,x

L(PG, PD, x, λ, µ, µ) (3.9a)

=

T
∑

t=1

[

NG
∑

i=1

−ci(P
⋆
Gi
(t)) +

ND
∑

j=1

bj(P
⋆
Dj
(t), x⋆

j (t))]

+
T
∑

t=1

λ(t){

NG
∑

i=1

P ⋆
Gi
(t)−

ND
∑

j=1

P ⋆
Dj
(t)− PDin

(t)}

−

T
∑

t=1

µT (t) [H{CgP
⋆
G(t)− Cd(P

⋆
D(t)− PDin

(t))} − F (t)]

−
T
∑

t=1

µT (t) [−H{CgP
⋆
G(t)− Cd(P

⋆
D(t)− PDin

(t))} − F (t)] (3.9b)

subject to µ ≥ 0, µ ≥ 0 (3.9c)

where ⋆ denotes the optimum value of the variable. There are many ways to find the

optimum of this dual problem in an iterative way. Since this problem is convex and

continuous, a gradient-based method is appropriate.

There are a number of other ways to update the dual variables of a decomposed convex

problem. We choose the subgradient method because it requires the least amount of

information from the local entities to solve the global system problem. Cutting plane

method, bundle method, trust region method all require that the central coordinator know

at least part of the objective functions of the local problems, since the dual functions

need to be updated at every iteration [41]. Meanwhile, the subgradient method can be

slow to converge since it only requires the subgradient of the dual problem to update the

dual variables. However, exactly because of this reason, it is more desirable in the market

environment where the participants like to reveal the least amount of their information

to the system and the competitors. Faster algorithms such as the augmented Lagrange

relaxation method also compromise the level of local information exposure to the global
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system.

With the subgradient method, the dual variables can be updated at each iteration with

respect to the subgradient of the dual function. The subgradients are obtained from the

local primal optima calculated with the dual variables evaluated at the previous iteration.

Therefore, omitting (t) for simplicity since each equation applies to all t’s, we have

λ(ν+1) =λ(ν) + α
(ν)
λ {

NG
∑

i=1

P ⋆
Gi
(λ(ν), µ(ν), µ(ν))−

ND
∑

j=1

P ⋆
Dj
(λ(ν), µ(ν), µ(ν))− PDin

} (3.10a)

µ(ν+1) =
[

µ(ν) + α
(ν)
µ

[

H{CgP
⋆
G(λ

(ν), µ(ν), µ(ν))− Cd(P
⋆
D(λ

(ν), µ(ν), µ(ν))− PDin
)} − F

]

]+

(3.10b)

µ(ν+1) =
[

µ(ν) + α(ν)
µ

[

−H{CgP
⋆
G(λ

(ν), µ(ν), µ(ν))− Cd(P
⋆
D(λ

(ν), µ(ν), µ(ν))− PDin
)} − F

]

]+

(3.10c)

where ν denotes the iteration step, and [·]+ denotes the projection onto the nonnegative

orthant.

Convergence of dual problem to the primal optimum

If the cost and benefit functions are differentiable regardless of convexity of the problem,

the necessary Karush-Kuhn-Tucker (KKT) optimality conditions of the Lagrange function

in (3.9a) are

∂PGi
L =

NG
∑

i=1

{
−dci(PGi

)

dPGi

+ [ITb
... − ITb ]νi}+ λ−HT

i (µ− µ) = 0 (3.11)

∂PDj
L =

ND
∑

j=1

{
∂bj(PDj

, xj)

∂PDj

+
∂Fj(PDj

, xj ,Θj)

∂PDj

ηj} − λ+HT
j (µ− µ) = 0 (3.12)

NG
∑

i=1

PGi
−

ND
∑

j=1

PDj
= 0 (3.13)

Fj(PDj
, xj,Θj) = 0 ∀j = 1, · · · , ND (3.14)
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ηTi





IbPGi
−Ri

−IbPGi
− Ri



 = 0, ηi � 0, and





IbPGi
− Ri

−IbPGi
− Ri



 � 0 for i = 1, · · · , NG (3.15)

Note that in this condition, we include the local constraints in addition to the global ob-

jectives and constraints, and all the variables are vectorized, e.g., PGi
= [PGi

(1), · · · , PGi
(T )]T .

ηi and ηj are the local Lagrange multipliers associated with the local constraints (3.6b)

and (3.7b), which are both rearranged in an implicit form, i.e., they are





IbPGi
−Ri

−IbPGi
− Ri



 = 0 (3.16)

and

Fj(PDj
, xj ,Θj) = 0, (3.17)

respectively where Ib is a (T − 1)-by-T bidiagonal matrix defined as

Ib =



















1 −1 0 · · · 0

0 1 −1 · · ·
...

...
. . .

. . . 0

0 · · · · · · 1 −1



















.

Assuming that the local problems are always feasible and the global problem is convex,

the KKT conditions are necessary and sufficient for the strong duality to hold. In this case

the marginal price of the system is

λ =

NG
∑

i=1

{
dci(PGi

)

dPGi

− [ITb
... − ITb ]ηi}+HT

i (µ− µ) (3.18)

=

ND
∑

j=1

{
∂bj(PDj

, xj)

∂PDj

+
∂Fj(PDj

, xj ,Θj)

∂PDj

ηj +HT
j (µ− µ)}. (3.19)

We observe that the system price, or the locational marginal price that includes the
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congestion cost for the matter, is not exactly equal to the marginal cost/benefit of the

system supply/demand. The added second terms in both (3.18) and (3.19) are the mul-

tipliers associated with the local dynamics of a supply and demand unit. The difference

between these two multipliers is that ηi is for the inequality constraint while ηj is for an

equality constraint. Therefore, all the elements of ηi will be zero except when the inequality

constraint is binding.

More precisely, the inequality constraint is related with the ramp rate constraints of

a supply unit binding its minimum and maximum output at each time step. Therefore,

only at a time step t when generator i is running at its minimum or maximum ramp rate

constraint will ηi(t) be nonzero and affect the market price. On the other hand, since

the constraint related with ηj is an equality constraint, it will be nonzero in order for the

solution to be feasible. This can be interpreted as the marginal benefit adjusted by the

equality constraint, i.e., the physical dynamic model of the load.

If the strong duality holds for the original problem (3.3), the duality gap is zero and

the dual optimum obtained by (3.10) is equivalent to the primal solution of (3.3). The

most well-known condition for a convex problem to hold the strong duality is Slater’s

condition [42]. In addition to the global primal problem being convex, the local problems

should be strictly convex and finite for the local optima to converge to the global dual

optimum. Since we assume that the individual cost and benefit functions ci(PGi
) and

bj(PDj
, xj) are strictly convex/concave [40, 43, 44], this condition is also satisfied. The

inequality constraint of a generator (3.6b) is linear, and the demand dynamics (3.7b) is

also modeled as a linear system. While the total system load usually cannot be model

as a linear system, some loads with energy storage such as space conditioning, battery

charging, heating/cooling devices can be represented as a linear state space model with

electric energy usage as its input. In order for the local problems to be finite, there must

always exist a solution within the feasible regions of the problems. The iteration step sizes

in (3.10) can be chosen to satisfy limν→∞ α(ν) = 0,
∑∞

ν=0 α
(ν) = ∞ in order for the global
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dual problem (3.3) to converge [45].

Regarding the current market mechanism and generation cost models, we see that the

non-convexity of the cost functions comes not from the nature of the cost of production,

but rather from the modeling of the production cost and the rules of electricity markets.

Most markets take the cost of each generator as a single value with respect to its supply

quantity, and construct a stepwise increasing marginal cost supply curve for the whole

system. The steps (i.e., costs) of the generators here are already an approximation with

respect to the supply quantity. By setting the rule of cost functions to be convex in the

market, the costs of generators can actually be more accurately modeled with respect to

the quantity than with the single-valued costs.

Aggregation of end-users by load serving entities

If we assume that a load serving entity’s revenue is fixed from predetermined contracts with

its end-users and the LSE is simply trying to minimize the cost of purchasing energy from

the market, the load serving entity’s problem can be further decomposed into individual

end-users’ problems. The load serving entity’s objective function will be the aggregate of

the end-users’, and the end-users’ systems will have individual dynamic equations similar

to Equation (3.7b). In this case a load serving entity represents the aggregate load of its

customers in the market and simply passes on the system price information to the end-users

and the optimal quantity information from the end-users to the system operator.

However, the load serving entity’s problem in practice can be much more complicated.

If the revenue of the load serving entity depends heavily on the flexible energy usage, the

revenue should also be a function of PDj
. There can be a variety of contracts with end-

users, and finding the optimal contract with each end-user is a nontrivial problem by itself.

This also involves modeling other competing load serving entities for customers, and can

be approached as a game theory problem, which we leave as future work.
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3.1.2 The algorithm of day-ahead iterative clearing

The procedure of day-ahead iterative clearing is depicted in Figure 3.1. Each plot has the

supply and demand curves of the whole system. These can be thought as the aggregate

of different cost and benefit functions of the supply and demand entities. Note that these

curves are not known to the system operator. The system operator simply broadcasts an

initial guess of the global dual variables, which is the locational marginal price. The y-axes

of the plots denote this price that is sent to each local entity. The price can be different at

different time steps, as shown in the figure. After the local entities calculate their optimal

quantities and send them to the system operator, the system operator updates the global

dual variables (or the price) by (3.10) and send the new price to the local entities. This

procedure is repeated until the predetermined stopping criterion is satisfied. Note that this

procedure is done over a multi-step horizon, and the local entities calculate their optimum

over the horizon within their physical limits and subject to their local dynamics.

The following are the steps of the algorithm.

Figure 3.1: The procedure of day-ahead iterative clearing

1. Set ν = 0.

2. System Operator (SO) broadcasts a set of π
(ν)
i for all buses, which consists of λ(ν), µ(ν),

µ(ν), to all the market participants, supply i = 1, · · · , NG and demand j = 1, · · · , ND

entities, for the whole time horizon of T time steps. Note that µ(ν) and µ(ν) are

particular to the bus, and each entity receives different values for the bus where it is
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located. The initial λ(0) can be calculated based on the forecast of system load and

the correlation between the price and load.

3. Each market participant calculates its optimal energy production/consumption with

respect to π(ν) by solving either (3.6) or (3.7). The results are P
⋆(ν)
Gi

for i = 1, · · · , NG

and P
⋆(ν)
Dj

for j = 1, · · · , ND.

(a) Each load serving entity broadcasts the locational marginal price π(ν) that she

received from SO to its end-users.

(b) The end-users calculate their optimal energy consumptions with respect to the

locational marginal price and send them to the load serving entity.

(c) Load serving entities send the sum of their end-users’ consumption as her opti-

mal energy consumption to the SO.

4. The results from the previous step, which are vectors of length T , are sent to SO.

5. If the convergence criterion (e.g., the mismatch between the total supply and total

demand at each time step being less than a preset tolerance) is satisfied, it concludes

the algorithm. If the convergence criterion is not satisfied, SO updates the prices

λ(ν), µ(ν), µ(ν) as in (3.10), set ν = ν + 1 and go back to 2).

3.2 Short-term decision making II: real-time functional clearing

3.2.1 Background

For scheduling resources hours to a day ahead of operation, iterative clearing is effective

since it finds the global system optimum that also satisfies the local constraints and dy-

namics without having the local entities expose their information. However, it may take a

number of iterations to find the system optimum. For this reason, if the communication

time for scheduling is constrained, a different method should be considered. Moreover,

after the resources are scheduled with iterative clearing as discussed in the previous chap-

ter, the conditions of either the system network or the local entities can change. For this
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reason, there needs an algorithm that can modify the day-ahead scheduling in a faster time

scale.

We adopt the functional clearing method of Dynamic Monitoring and Decision Making

System (DYMONDS) [46] for the near-real-time adjustment. Each entity calculates its

own optimal quantity with its price sensitivity (i.e., price-quantity bid) and submit this

information to the system operator. The system operator clears the bids and each entity

operates the quantity dispatched from the system operator. The price sensitivity can

be obtained by calculating optimal quantities with respect to different prices, where the

ratio of the change in price to the change in quantity is defined as the price sensitivity of

demand/supply. Since the system balances at discrete time steps, this can be calculated at

each time step. However, the dynamics of the local units are intertemporal. Therefore, at

each time step, with the price sensitivity of supply/demand, the minimum and maximum

quantity limits should also be specified from the local units so that the system operator

dispatches within the feasible limits.

The exact quantity limits of supply and demand bids are difficult to set for further

into the future, since they are inter temporal and dependent on the initial quantity. For

example, if a power plant whose ramp rate is 3MW/hour is running at 40MW, in 10 hours

this plant can be operating anywhere between 10MW and 70MW or the plant’s capacity,

whichever is smaller. This is a pretty wide range, and if the plant ends up operating at

42MW in 9 hours, this range is not valid any more. For this reason of intertemporality of

the local units, we perform real-time functional clearing in a receding horizon.

3.2.2 Obtaining the price sensitivity of demand

In order to show the procedure to obtain the price sensitivity of supply/demand bids, in

this section we show the procedure for a demand entity. The same algorithm can be applied

to a supply entity.

The price sensitivity of demand ρj given the reference price π0 and demand PDj ,0 is
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defined as

ρj =
∆π

∆PDj

=
π′ − π0

P ′
Dj

− PDj ,0

. (3.20)

Note that the price sensitivity of demand is specific to the reference price and demand

quantity. Prices π0 and π′ are given to the demand entity, and come from the system

condition as described in Problem (3.7). In fact, π can be considered as πj = λ+ µT
j
Hj −

µT
j Hj , i.e., the locational marginal price of demand entity j that includes the congestion

costs.

Assume that the real-time clearance is done in an hourly interval, and the quantities

of supply and demand are settled from the day-ahead market. Thus we know how much

energy is purchased from the day-ahead market, and the price at which we pay the day-

ahead energy. Now we want to adjust the near-real-time energy consumption from the

day-ahead settlement. We reiterate Problem 3.7 but with slightly different notations to

account for the amount PDA
Dj

already purchased and settled from the day-ahead market.

maximize
PRT
Dj

T
∑

t=1

{bj(PDj
(t), xj(t))− πRT

0 (t)PRT
Dj

(t)} (3.21a)

subject to xDj
(t+ 1) = ajxj(t) + bj{P

DA
Dj

(t) + PRT
Dj

(t)}+Θj(t) for t = 0, · · · , T − 1

(3.21b)

Pmin
Dj

(t) ≤ PDA
Dj

(t) + PRT
Dj

(t) ≤ Pmax
Dj

(t) ∀t (3.21c)

Solving this problem gives the optimum PRT⋆
Dj ,0

(t) for t = 1, · · · , T , with a given set of price

πRT
0 = [πRT

0 (1), · · · , πRT
0 (T )]T . By replacing πRT

0 in the problem with

π′RT = [π′RT(1), πRT(2), · · · , πRT(T )]T

and solving the problem, we obtain P ′RT⋆
Dj

(t) for t = 1, · · · , T . Note that the price at only

the next time step t = 1 is changed and the price at the other time steps are intact. Since we

solve real-time functional clearing in a receding horizon, we calculate the price sensitivity
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of demand only for the next time step t = 1. Therefore, we get the price sensitivity of

demand at the next time step t = 1 by taking only the first elements of the solutions

PRT⋆
Dj ,0

(1) and P ′RT⋆
Dj

(1) and plugging them in (3.20). In our simulations, to account for the

price sensitivity of demand for both price increase and decrease, we calculated three sets

of different demand quantities with respect to the price, e.g., PRT⋆
Dj ,0

(1), PRT⋆
Dj ,1

(1), PRT⋆
Dj ,−1(1)

with respect to πRT
0 , πRT

1 , πRT
−1 , and extrapolated the sensitivity by least-square estimation.

This procedure is shown in Figure 3.2.

Figure 3.2: Procedure of calculating price sensitivity of demand

There can be different ways to construct demand functions as long as it captures the

sensitivity of demand with respect to the price. For example, assuming different sets and

values of πRT
0 , πRT

1 can yield different demand functions. The price sensitivity of demand

can also be calculated based on the historical data of price and demand and by learning

the correlation between the two. We leave improvement of calculation of demand functions

as future work.

Aggregation of end-users by load serving entities

In day-ahead iterative clearing discussed in Section 3.1, the optimal quantities and the

price can be passed on through the load serving entities by the end-users and the system
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operator. However, since the real-time functional clearing requires the price sensitivity

of aggregate demand to be sent to the system operator, there should be a more careful

coordination by the load aggregator. After a set of different prices for the next coming

time step, say πRT
0 , πRT

1 , πRT
−1 are sent to the end-users by the load aggregator, the end-

users calculate their optimal real-time energy usage PRT
Dj ,0

, PRT
Dj ,1

, PRT
Dj ,−1 with respect to the

set of prices. The end-users send the maximum and minimum energy usage limits along

with these energy quantities. The load serving entity calculates the price sensitivity of the

aggregate demand with the sum of the individual energy usages, along with the aggregate

maximum and minimum limits to bid into the system operator.

After the system operator clears the time step with the aggregate demand bids from

the load serving entities within the limits of each entity, the load serving entity needs

to realize the dispatch. Since the dispatch that a load serving entity received from the

system operator will lie within the limits that she bid in, she can calculate the portion

that she should consume, as an aggregate. For example, if the load serving entity bid in

between Pmin and Pmax MWh and received a dispatch of d MWh, then the load serving

entity dispatches the portion, which is p = d−Pmin

Pmax−Pmin
in this case, to the end-users. Each

end-user uses p of her energy bandwidth (the maximum minus the minimum limit that

she calculated and sent to the load serving entity earlier) and updates her initial state to

calculate her demand bids for the next time step.

3.2.3 The algorithm of real-time functional clearing

The procedure of real-time functional clearing is shown in Figure 3.3. Note that the

procedure is conducted on a moving horizon with updated initial states of the end-users.

The figure shows the demand side of the procedure, but the same goes with the supply

side as well. The following lists the steps of the procedure.

1. Let the current time step t. The real-time price up to time step t− 1 is known, since

the price is determined ex post.

2. System Operator (SO) broadcasts a set of λ = [λ(t), · · · , λ(T )]T , λ(ν) = [λ(t), · · · , λ(T )]T ,
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Figure 3.3: Procedure of real-time functional clearing

µ = [µ(t), · · · , µ(T )]T to all the market participants, supply i = 1, · · · , NG and de-

mand j = 1, · · · , ND entities, for the whole time horizon of T − t + 1 time steps.

3. Each market participant calculates its price sensitivity of optimal energy production/-

consumption with respect to λ and µ by solving (3.21) for the first forthcoming time

step. This price sensitivity is interpreted as supply/demand function of a supply/de-

mand unit, which is a marginal cost/benefit with respect to a given supply/demand

quantity. Note that each entity calculates its quantity limits of supply/demand for

the next time step given the current state (e.g., indoor temperature, generation out-

put) and its constraints (e.g., temperature dynamics, ramp rates).

4. SO clears the price λ(t). The optimal P ⋆
Gi
(λ(t))’s and P ⋆

Dj
(λ(t))’s are dispatched to

each supply/demand unit. This is equivalent to Step 2.

5. Each unit realizes the dispatch from SO and calculates the state at the next time

step. Given this state as the initial state, each unit can repeat the procedure in Step

3.
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3.3 Summary of the methodology and implications

In this chapter we proposed two different approaches for different time horizons in the

short-term decision making of the benchmark problem. For scheduling a day or shorter

in advance of operation, iterative clearing is effective for many reasons. It captures the

intertemporal dynamics and constraints of the local entities while settling to the global

system optimum, when modeled as a decomposable convex problem. The subgradient

method is used to coordinate the local optima and the global objective of the system. This

method allows the supply and demand entities, (and the end-uses) to keep their objectives

covert to the system operator (and their load serving entities).

After the day-ahead scheduling is settled, a near-real-time adjustment may be needed.

Since the iterative method used for day-ahead scheduling can take a large number of

iterations to reach the system optimum, we use the functional clearing method in a moving

horizon. The supply and demand entities bid in their price sensitivity of demand/supply

and their operational limits for the next coming time step only. The load serving entities

calculate this from the aggregate of their individual loads. After the system dispatches the

adjustment amount from the day-ahead settlement to each entity, a supply/demand entity

realizes the dispatch. A load serving entity does so by dispatching again the amount to its

individual end-users. With the current dispatch amount from the system operator, each

market participant and end-user updates her initial condition and repeats the procedure

of obtaining the price sensitivity of demand/supply for the next coming time step. This

functional clearing allows a timely update between the end-users, market participants, and

the system operator since it requires only one-time communication among the entities for

each time step.

The information exchange framework we proposed has implications on policy regard-

ing system operation when demand resources are included. We observe that day-ahead

scheduling should be done in a way that the intertemporal dynamics of demand systems

are included. On the other hand, since real-time adjustment is done for one time step
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in a moving horizon, different information, i.e., the price sensitivity and quantity limits,

is required from the day-ahead scheduling. We also emphasize that information exchange

between load serving entities and end-users shape the retail energy service products offered

from LSEs to end-users. For example, LSEs can offer a subscription service [34] that fixes

the day-ahead scheduled amount with the end-users and charges real-time market price

(or an approximated fixed time-varying rate) for real-time functional clearing. LSEs can

also make contracts with end-users to charge them a flat rate in exchange of having some

of their loads controlled within predetermined range. The variations can be numerous and

the optimal policy between LSEs and end-users remains as an open problem.
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Part III

Numerical Examples
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Chapter 4

The Azores Islands, Portugal

In this chapter we apply the short-term scheduling methods of Adaptive Load Management

(ALM) on the Azores Islands, Portugal. The contents are excerpted and edited from [47];

the studies in the book were done for the year 2008. We put emphasis on modeling the

demand resources and scheduling them with the rest of the generation resources over various

time horizons, based on scenarios including a large amount of wind power in two of the

islands, Flores and São Miguel. We identify the types of loads that can be used for different

time horizons, and calculate the potential benefits of adjusting some of the loads. For short-

term scheduling, we apply the functional clearing method a day ahead of operation and

point out the limitations of the method. This shows how the functional clearing method

described in Chapter 3.2 should be used over a moving horizon with constant updates of

the initial conditions of the local end-user systems, in order to guarantee the feasibility

of the local system. In order to focus on the clearing methods, we consider the system

without network constraints. The case of using both iterative and functional clearing over

the short-term scheduling horizon will be shown in the following Chapter 5.

4.1 Overview of the power systems in Flores and São Miguel

The Archipelago of the Azores (Açores) is composed of nine volcanic islands situated in

the North Atlantic Ocean, and is located about 1,500 km west of Lisbon, Portugal(Figure

4.1) [48]. We study the systems of two of the islands, Flores and São Miguel. The main
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Figure 4.1: Location of the Azores relative to Portugal (green) and the rest of the European
Union (dark blue) [2]

industries of the archipelago are agriculture, dairy farming, and tourism. The climate

is mild throughout the year, with daily maximum temperature between 15 to 25◦C and

minimum between 11 to 18◦C. Winter has a higher precipitation of 136 mm on average in

December while summer is dry where July has about 32 mm of precipitation. Flores has

a population of about 3907 inhabitants in an area of 143 km2, whereas São Miguel is the

biggest and most populous island in the archipelago with an area of 759 km2 and about

140,000 inhabitants.

4.1.1 Loads

Flores

For the year 2008, total electric energy produced in Flores was 11.6 GWh. Energy con-

sumption can be allocated by consumer type as shown in Figure 4.2 [49]. Statistics by

Electricidade dos Açores (EDA), the system operating utility for the Azores Islands, show

that residential customers used roughly 4.5 GWh of energy. The load duration curve of
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!Figure 4.2: Energy Consumption by Consumer Type for the Island of Flores, 2008

!

Figure 4.3: Flores Island System Load Duration Curve

our data for Flores Island in 2008 is plotted below in Figure 4.3. Figure 4.3 shows that

the system load is between 1800 kW and 1000 kW for the vast majority of the time. The

system reaches a maximum of 1978 kW and a minimum of 701 kW. Figure 4.4 shows the

annual averaged system load pattern, which is stratified into weekdays, Saturdays, and

Sundays.

São Miguel

In the same year, total electric energy produced in São Miguel was 441 GWh. Energy

consumption can be allocated by consumer type as shown in Figure 4.5 [49]. EDA statistics
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!

Figure 4.4: Annual System Load Profiles for Flores Island

!Figure 4.5: Energy Consumption by Consumer Type for the Island of São Miguel, 2008

show that residential customers used roughly 132 GWh of energy. The load duration curve

of our data for São Miguel Island in 2008 is plotted below in Figure 4.6. The vast majority

of the hours have loads between 30 and 70 MW. The system reaches a maximum load of

73.9 MW and a minimum of 25.4 MW. The annual average system load pattern for São

Miguel Island is shown in Figure 4.7.

4.1.2 Generation

Flores

Flores Island is powered by a fleet of diesel, hydropower, and wind generators. In 2008,

52% of energy produced was by diesel, 31% by hydropower, and 17% by wind power.
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!

Figure 4.6: São Miguel Island System Load Duration Curve for 2008

!

Figure 4.7: Averaged Annual System Load Profiles for São Miguel Island
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!Figure 4.8: Monthly Average Hydro Power Generation Profiles for Flores Islands

The energy available from hydropower and wind power changes significantly by season.

Monthly averages of the daily profile of hydropower output on Flores are plotted below in

Figure 4.8. Duration curves of wind and hydropower are also shown in Figures 4.9 and

4.10 for the different seasons.

Figures 4.8 and 4.9 show the seasonal variation in availability of hydropower on Flores

Island. November through March have the most hydropower availability while the summer

months have lower availability. Hydro output in the summer is below 400 kW for the

majority of the hours, while staying between 300 and 800 kW for the vast majority of the

winter.

Figure 4.10 below shows the variation in seasonal availability of wind power. Summer

clearly has the lowest wind resource. During the summer there are only 6 hours at maxi-

mum output, and the majority of hours have output below 100 kW. The other 3 seasons

achieve maximum output for roughly 200 hours. Winter and autumn appear to have the

best wind resource availability. Table 4.1 shows the power capacity, minimum output, and

fuel type of individual generators installed on Flores Island.
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!
Figure 4.9: Seasonal Duration Curves for Hydro Power on Flores Island

!Figure 4.10: Seasonal Duration Curves for Wind Power on Flores Island
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Table 4.1: Data for Installed Energy Generation Equipment on the Island of Flores as of
2008

Power plant Type Pmin (MW) Pmax (MW)

Além-Fazenda Diesel 0.18 0.5
0.18 0.5
0.18 0.5
0.28 0.7

Boca da Vereda Wind 0.33
0.33

Além-Fazenda Hydro 0.371
0.371
0.371
0.76

São Miguel

São Miguel currently has no wind power installed, and gets only 4.5% of its energy from

hydropower. However, São Miguel obtains nearly 40% of its energy from geothermal power

plants. The remainder of São Miguel’s energy is generated from heavy fuel oil [49].

Seasonal duration curves of geothermal power output are shown in Figure 4.11. This

plot shows the sum of the output from São Miguel’s two geothermal power plants. During

winter, spring, and summer, the power plants consistently produce over 18 MW. Autumn

has the weakest resource availability, yet output is greater than 20 MW half of the time.

The generation equipment installed on São Miguel is shown in Table 4.2.

4.2 Designing adaptive load management in the Islands

Even though the power systems in the Azores islands are not operated by a market mech-

anism and vertically integrated, one of the operational criteria is the cost of producing

energy. Also, while there are not any load aggregators or mediators that represent the

end-users’ value of electricity on the market, the end-users do respond to the tariffs that

their bills are based on. This implies that even when the market is not explicitly run in the

Azores’ systems, we can capture the costs of producing energy, and the value of consuming
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!Figure 4.11: Seasonal Power Duration Curves of Geothermal Power on São Miguel Island

Table 4.2: Data for Installed Energy Generation Equipment on the Island of São Miguel
as of 2008

Power plant Type Pmin (MW) Pmax (MW)

Caldeirão Fuel oil 3.848 7.5
3.848 7.5
3.848 7.5
3.848 7.5
8.41 18.165
8.41 18.165
8.41 18.165
8.41 18.165

Agraçor Biomass 0.4
0.4

Túneis Hydro 1.658
Tambores 0.094
Fábrica Nova 0.608
Canário 0.4
Ribeira Quente 0.8
Ribeira da Praia 0.8
Faiã Redonda 0.67

Pico Vemelho Geothermal 13
Ribeira Grande 14.8
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energy for the end-users, in order to optimize system operations.

To design the right demand response program for the islands, we explore various ways

of adjusting the demand to reduce the costs of installing or producing electric energy in

the systems in both the long and short terms. Some types of demand can be adjusted

with respect to the cost of producing electricity, while others may not be very flexible.

The design process to utilize demand most efficiently on the islands can be summarized in

three steps.

The first step is to use more energy when electricity is abundant and available, and to

suppress consumption when it is not, in both the long and short terms. For the long term,

we analyze the correlation between wind power and the loads and explore the benefit of

shifting the load according to the availability of wind. For short-run operations, we give an

hourly expected operational cost to responsive loads as a price signal to help them adapt

to the availability of power.

The second is to relate the uncertainty of supply with the rate of response of demand.

In order to operate volatile generation resources more efficiently in the short run such as

wind power, it is important for the suitable loads to obtain the signal of supply availability

(i.e., price) and respond to it within the right period of time. For the loads that are

less uncertain and can be shifted, such as loads that operate particular machinery in a

factory, generation resources with less volatility can be scheduled to supply their needs.

Intermittent resources may be more suitable for more flexible and uncertain loads that can

respond quickly within a certain range.

This brings us to the third step: to relate the physical characteristics of the loads to the

time interval of the system dynamics. The storage effect time constant, or the period of

time that the load can withhold its consumption without violating its physical constraints,

is crucial when designing the right demand response program for a particular type of load.

This also leads us to categorize loads with respect to their own suitable time scales.

Considering all these steps, we try to find the right program and signal for various
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types of demand. It is also important to note that within the ALM framework, control

of demand should minimize discomfort of the end-users. We also show this point in the

demand response schemes that we suggest and in the numerical examples.

4.3 Characterizing different loads

4.3.1 Candidate loads for adaptive load management

In order to see a significant impact in terms of the magnitude of the demand reduction

or shift, we first investigate if the largest consumers in the system are flexible at all and

which of their loads can be managed. Another way to have effective demand control is to

aggregate small flexible loads. We explain in more detail later what types of loads should

be used, and at which points they should be scheduled over the course of the dispatch in

the long and short terms.

We look at the types of loads on Flores and São Miguel, and generalize the idea of

utilizing different types of loads on different dispatch time scales, or shifting the loads in

the longer term.

Flores

Since the climate is very mild throughout the islands, and there are not many large business

and commercial end-users on Flores, we explore the possibility of aggregating small resi-

dential loads . A 2004 analysis of energy consumption in the Azores attributes roughly 42%

of residential consumption to household refrigerators [50]. Residential energy consumption

is a large part of the total load on all the islands, making refrigerators a significant energy

consumer in this system. We use ALM to model refrigerators on Flores as price-responsive

loads.

São Miguel

The largest end-users in São Miguel are mostly commercial or industrial: a large shopping

mall, and a cement company with an electricity bill of around 50,000 Euros a month, are

among them. Shopping malls generally consume most of their electricity on lighting and
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air conditioning. While lighting is not so flexible in terms of load adjustment since lights

need to be consistently on during business hours, air conditioning can be more flexible; the

air conditioning load can be adjusted as long as the people in the mall feel comfortable

with the temperature. There are also a few other industrial end-users that have potential

demand resources: a dairy farm that runs boilers, a pig farm that runs biofuel plants using

animal waste and sells the surplus electricity to EDA.

Smaller end-users include small businesses and residential homes. Potential demand

resources of these users are air conditioning, lighting and laundry loads in hotels, and

refrigeration loads in large grocery stores. An average three-star hotel with 200 rooms

and a grocery store both pay about 4,000 Euros a month. Residential users have small

appliances such as dehumidifiers and refrigerators. Note that since the climate in the

Azores is very moderate, the air conditioning load, especially from the residential sector,

is not significant; in fact, only 2.4% of residential houses have air conditioning. However,

due to humid winters, about 30% of residential households use dehumidifiers at that time

of year [51].

4.3.2 Identifying types of loads over different time horizons

We note that there is no one-fits-all solution that applies to every type of load to be

utilized as a demand resource. First, the different physical and economic characteristics of

the loads define the suitable time frame for the optimal demand control frame. The physical

characteristics of the loads to consider include storage availability of any type (whether

the load has thermal/electric storage that can shift its consumption) and the storage time

constant (how long the load is capable of physically withholding consumption).

The economic characteristics of the loads have more to do with the end-users’ use of

the loads, e.g., temperature/humidity setpoints of the air conditioners/dehumidifiers, or

the maximum or minimum energy consumption limits that an end-user would allow or

set for a certain appliance. This information can be included in a demand function as

the price sensitivity of demand by calculating the optimal energy usage with respect to
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different prices. For example, air conditioning loads with different temperature deviation

bands show different price sensitivities of demand [52].

There are also various factors, such as regulations on emission or noise, business hours,

labor laws, etc., that can affect the controllability of the loads. All these different factors

determine which types of technology are suitable, and when and how to schedule them. In

this chapter, we attempt to utilize as various loads as possible, based on the characteristics

of the loads.

The bottom line of our approach is to apply different frameworks for demand response

according to the time intervals and time scales of different types of loads; in other words,

loads that are more deterministic and can be pre-programmed (e.g. factory operation

schedules, A/C, dehumidifiers) may be scheduled ahead of time whenever the necessary

information is available. This information includes not only available loads and their

characteristics, but also system conditions such as wind power forecast. On the other hand,

more unpredictable and volatile loads (e.g. refrigerators, dehumidifiers) can be adjusted

in real time if there exists an adequate two-way communication infrastructure between

the loads and the system. However, we also understand that the only current framework

in the Islands to induce more demand response is the tariff that charges different prices

by season for different time blocks within a day, which can be categorized as time-of-use

(TOU) pricing.

4.3.3 End-users’ response to current tariff and energy policies, and the alter-

natives

End-users, especially large industrial users are already responding to the current TOU by

1) shifting their loads to cheaper time blocks, (e.g., a dairy company running its boilers

at night, even when it has to pay the labor force overtime) and 2) installing more energy-

efficient equipment (e.g., a big grocery store replacing light bulbs in the refrigerators with

LED lights). Also, in the Azores, intensive energy consumers are required by law to reduce

their energy consumption by 6% in six years. In response to this longer time-scale energy
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!

Figure 4.12: MT tariff over a day

savings plan, large industrial end-users are trying to curtail their energy bills. However,

there are some end-users that are not able to shift their loads, due to problems such as

regulatory issues and/or the characteristics of their loads. For example, a pig farm that also

runs a cookie manufacturing business runs its cookie mills only at night because electricity

is cheaper, but it cannot run its fodder production machines at night because of noise

regulations.

The current TOU system is shown in Figure 4.12 for MT (medium voltage level). It

is not clear how the rate for each time block is calculated. The system operators for the

Azores simply take the end-user rates that the regulatory body responsible for the whole

Portuguese electric power system imposes. From observing the rates shown in Figure 4.12,

the tariff is designed to suppress demand during peak hours by imposing a higher rate, and

the time blocks also change by season, reflecting the general seasonal operation conditions.

However, it is not clear whether this tariff is effective even in terms of the operational cost.

The tariff is applied across all the Islands, and the system conditions and/or the generation

resource mix are quite different depending on the island. Therefore, it is not cost-efficient

to impose a one-size-fits-all tariff on the Azores as a whole.

We propose that this tariff can improve by deciding on the rates for every season, or

even month, based on the cost of the generation resources unique to each island and on the

information available on the system condition and the changing demand. This information

can include the availability of the generation resources, especially that of wind and hy-
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dro, and the change in demand conditions, e.g., anticipated changes in the manufacturing

schedules of industrial end-users. We call this tariff “better time-of-use(TOU)” pricing.

The accuracy or credibility of wind power forecasts can differ significantly in different

time frames, especially if the system aims to operate on a large portion of wind power that

can be dispatched. Therefore, modifications in system operations planning are needed

ahead of time according to the different predictions of how much wind power is available.

This can be done on a seasonal, monthly, weekly, and/or daily basis. The right signal, that

depends on available information about system conditions along each of these different time

lines, should be sent to the flexible loads. The signals can be the expected value of the

marginal cost of system generation that incorporate the availability of renewable resources,

etc. The system operator should, in designing the signal, also consider the general price-

responsiveness of the loads so that the responsive loads can most efficiently respond to

system conditions over different time scales.

The right signal for responsive loads depends on the regulatory constraints (market

existence, price tariffs to the end-users, etc.), system operation conditions and priorities

(deploying more wind, reducing gas emissions, generation resource mix), and the technol-

ogy of the loads to be deployed (the response/communication rate of the loads). In the case

of the Azores, where they do not have a real-time market, a communication system/infras-

tructure between the loads and the wind availability can be constructed to exploit more

wind in real time and make the loads respond to it more promptly.

In order for ALM to work, the system operations and scheduling, and the tariff designs,

should consider: 1) the value of energy to the users, 2) the forecast accuracy of each time

line and the dependency of the different time lines on the forecast, and 3) the physical

characteristics of loads.

Demand functions capture the information on how the users value their energy us-

age [53]. A demand function characterizes the relationship between price and demand and

tells what the marginal demand is for a given price, or how much the optimal willingness-
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to-pay is for an additional unit of a given level of demand. This is an important piece

of information that can be incorporated into system operations in order to reflect the

economic value of energy as seen by an end-user.

For forecast accuracy and the dependency of time lines on it, the current goals of

the Azores to include more renewable generation resources should heavily integrate this

information into system operations and optimization. For example, how much wind should

be scheduled before a season, a day ahead or an hour ahead, etc. will determine how much

of the generation and demand resources available can be scheduled and dispatched when.

Finally, the physical characteristics of the loads should be determined in accordance

with the time scales and intervals of the scheduling of the resources. The questions to

consider include: how long the storage time constant of each load is, how fast it can

respond and communicate with the system or the price signal, and whether it can be

scheduled a day ahead or it can be adjusted flexibly in real time.

These three factors in combination determine the optimal framework of ALM to incor-

porate demand and renewable resources as much and as efficiently as possible.

4.4 Types of adaptive load management(ALM) frameworks for

different loads

Scheduling of adaptive loads for ALM should be done in a way such that loads with

higher uncertainty, and loads that cannot be well-predicted and pre-scheduled, pay for the

corresponding cost of the risk to the system operation. Loads that can be planned ahead

with higher certainty should be scheduled in advance so they can be met with lower-cost

base generation. On the other hand, the more volatile and uncertain loads are adjusted or

simply met with by generation resources that are more expensive and fast ramping.

In accordance with this idea, we categorize the loads into several different groups with

respect to their physical characteristics, and to the time lines. We give examples of loads

that can be scheduled in each of long and short time scales.
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4.4.1 Better Time-Of-Use (long-term scheduling)

This section analyzes the potential for reduction in fossil fuel-supplied electric energy by

simply scheduling energy consumption over long time horizons. In a hypothetical scenario

where 33 MW of wind power have been installed on São Miguel, we quantify the possible

benefits of some energy consumption being moved from weekdays to weekends. The benefits

of such a shift are analyzed probabilistically because of the random nature of wind power.

The factors that influence the size of these benefits are also analyzed. It is proposed that

energy consumers and producers can negotiate an agreement on how to share the benefits

and risks of such a shift.

Motivating and investigating load Shifting

To reduce the amount of fossil fuels burned, energy consumption should be shifted to times

when there is an excess of renewable energy from times when it does not meet the total

load. As shown in Section 4.1, wind power shows steady daily and seasonal patterns on

average, but is highly variable over the course of any particular day. Without the use of

communication and control systems, it is difficult for energy consumers to react to real-

time wind power conditions and shift consumption times. Because of this difficulty, we will

investigate the use of long-term scheduling to reduce the amount of wind power that goes

unused or is “spilled” on average.

Section 4.1 shows that electricity demand is generally higher on the weekdays than on

the weekends, yet the day of the week does not affect wind power. This leads to a situation

where the load exceeds the output of clean energy sources more often on weekdays than

on weekends. More importantly, essentially-free wind power is more likely to go unused

on the weekends. Our method for estimating the average wind power spilled on weekdays

and weekends is described next.

Using historical generation dispatch data from São Miguel in 2008 and normalized wind

data scaled to a proposed capacity, we can calculate the amount of wind power that would

likely be spilled in each half-hour of the year. The wind power is scaled to represent a
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Table 4.3: The mean and standard deviation of the weekly savings for each month, 2008,
on São Miguel

Month Mean fossil fuel energy
savings

Standard deviation of fuel
savings (MWh/week)

Mean hourly benefit
per firm ($/hour)

January 7.91 6.87 36.58
February 8.53 12.26 39.46
March 14.39 14.61 66.54
April 16.06 14.16 74.26
May 8.59 12.86 39.72
June 2.56 4.90 11.86
July 1.55 3.87 7.16
August -0.25 1.37 -1.18
September 3.91 5.93 18.1
October 6.68 11.53 30.91
November 5.87 8.47 27.13
December 0.23 7.56 1.05

power output with an installed capacity of 33MW. If hydropower and geothermal power

are assumed to be uncontrollable, then we only need to compare wind power with fossil

fuel power. The wind that would be spilled at each time step of the year was calculated as

the wind power output subtracted by the oil power output, or zero, whichever is greater.

Based on this method, we find that an average of 42.75 MWh of wind power is spilled

per weekday while an average of 53.82 MWh of wind power is spilled on each weekend

day. This indicates an opportunity to reduce the amount of fuel burned and wind spilled

by shifting consumption to the weekends. Our calculations show that the average amount

of money per hour that the electricity supplier would be able to pay to each of the load

shifting firms is 185 $/MWh, if we assume five firms participate in this load shifting, with

Table 4.3 showing the statistics of the savings for each month [54]. This may or may not be

an appealing offer, depending on the preferences of the firms management and employees.

4.4.2 Scheduling loads over different time horizons

In order to schedule generation resources with the loads a day to several hours ahead of op-

eration, the loads can submit one of two different types of information to the system. First,
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some loads can inform the system of their price-responsiveness. For more deterministic or

pre-programmable loads such as automated machinery operations in a factory, or loads

that have storage with a longer time constant such as air conditioning or water heating,

can be grouped in this category. With respect to the anticipated price that is either given

by the system operator or calculated by the end-user, the load aggregator, or the electricity

distributor, the demand functions can be calculated based on this price information [52].

The minimum and maximum energy consumption constraints should also be included in

addition to the price sensitivity information of the load sent to the system.

Another form of information that the loads can exchange with the system operator for

day-ahead scheduling is the energy minutes/hours. This is to notify the system how many

kilo or megawatts of energy the end-user plans to use each hour on the following day. The

loads that have a pre-determined amount of energy usage within a time interval are more

suitable to give this information to the system. The end-users with this type of load can

notify the system operator the minimum amount of energy that they must consume, which

can be considered as an inelastic demand for the hour.

After day-ahead scheduling is settled, with the more certain and predictable loads with

the cheapest and generation resources, the demand can still be met with the next least

expensive supply of reserve in real time. The day-ahead scheduled loads may or may

not have contracts with hard constraints (e.g., a high penalty if the goal is not met).

Regardless, there is always some degree of uncertainty surrounding the predicted or pre-

scheduled demand.

Real-time adjustment of flexible loads should therefore require fast information ex-

change between the status of the loads and the system condition. More unpredictable

loads, or loads that have storage with a shorter time constant than the time step of day-

ahead scheduling (e.g., refrigerators), are suitable for real-time adjustment scheme. Price

sensitivity with respect to the real-time signal, such as wind availability, that reflects the

status of the system, should be sent to the system operator from the loads. The minimum
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and maximum energy constraints calculated from the current status of the load (e.g., the

current temperature inside a refrigerator or the current motor speed of a dryer) should also

be communicated to the system operator, so that the system dispatch of this adjustable

load is within the physical limits and is met with the end-users’ preferences of particular

loads.

Data preparation for dispatch with price-responsive demand

Flores

: Calculating the demand functions of refrigerators For the year 2008, the total

electrical energy produced on Flores was 11.6 GWh. The statistics of the system operator

show that residential customers used roughly 4.5 GWh of energy. Knowing the percentage

of residential consumption that is used for refrigeration, we can calculate the annual energy

consumption of household refrigerators. Because refrigerators run constantly, we can divide

the annual consumption by the number of time steps to get the energy per unit of time.

On Flores, the aggregate energy consumption of refrigerators is 35.7 kWh per 10 minutes,

or a constant load of 214.2 kW. Because the duty cycle of refrigerators is 50% [55], 35.7

kWh represents the consumption when half of all the refrigerator compressors on the island

are running. Therefore, ALM assumes that the maximum amount of energy that can be

consumed in a ten-minute period by price responsive refrigerators is double the value, or

71.4 kWh per 10 minutes.

For ALM-enabled refrigerators to participate in energy markets, a physical model must

be used to derive the demand functions for energy. First, we model the temperature dy-

namics of an individual refrigerator. We assume a linear temperature increase/decrease

according to the on/off state of the compressor, within the maximum and minimum tem-

perature bounds [56]. We assume both the cooling and warming time constants to be 20

minutes [55]. The minimum temperature bound is 3◦C, and the maximum 8◦C.
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x(t) = xi + at with















a = acooling =
(xmin−xmax)

τcooling

a = awarming = (xmax−xmin)
τwarming

(4.1)

Based on the uncontrolled dynamics of the refrigerator’s temperature in Equation 4.1

from [57], we derive the temperature dynamics of the refrigerator with control allowed.

This yields

x(t1)− x(t0) = (t1 − t0){
60Pe

(t1 − t0)Pr
∗ ad + (1−

60Pe

(t1 − t0)Pr
) ∗ au} (4.2)

where t1 and t0 are the final and initial time points, x(·) is the temperature in the refrig-

erator at a given time step, Pr is the power rating [kW] of the refrigerator, and ad and au

are the heat transfer rates [◦C/minute] for the cooling and warming periods, respectively.

Pe is the electric energy input [kWh] within the time period.

Second, giving this temperature dynamic equation as a constraint and u in the equation

above as the control variable, we solve an optimization problem of minimizing the total

energy cost. The 10-minute interval electricity prices of a day are given as input, and the

price is denoted as λ in the following problem formulation:

minimize
Pe

144
∑

t=1

λ(t)Pe(t) (4.3)

subject to x(t + 1) = x(t) + 10{
6

Pr
Pe ∗ ad + (1−

6

P
)Pe ∗ au}

xmin ≤ x(t) ≤ xmax ∀t

Pe,min ≤ Pe(t) ≤ Pe,max ∀t

This optimization problem can be transformed into simple linear programming with

an equality constraint and minimum and maximum bounds. By solving this optimization

with respect to the given set of 144-by-1 vector λ, we obtain an optimal energy usage for
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the whole time horizon of the day.

Third, in order to obtain the price sensitivity of this individual refrigerator load, we

repeat the same optimization with respect to different price settings. We obtained the

different values of optimal energy usage at each time step by perturbing the expected price

given by ±10% and ±20%. This way, we have five different pairs of price and demand at

each time step. We interpolate, for each time step, these five points of price and demand

quantity to obtain a demand function, which is the relation between the demand quantity

and the price that the demand is willing to pay. We assume a linear (first-order polynomial)

demand function. The details for calculating a demand function and the overall idea of

ALM can be found in [52]. Note that this procedure is the same as Chapter 3.2 except that

the price sensitivity of demand is calculated for all hours at once a day ahead of time. The

quantities are also cleared at the system level for all 24 hours at once, instead of solving

for one time step and moving the horizon to repeat the procedure at the next time step.

For this reason, we call this procedure day-ahead static scheduling in order to differentiate

with day-ahead iterative clearing in Chapter 3.1.

The price sensitivity of demand calculated this way corresponds to only a portion of

the whole system demand. Therefore, in order to include this in the economic dispatch of

the system, the demand sensitivities for an individual refrigerator were scaled to coincide

with the value of the total refrigeration load size, 214.2 kW by our calculation.

The price sensitivities of a refrigeration load for a day were calculated with the expected

price at each time step of the day.

The resulting price sensitivities of demand on April 16, assuming two wind turbines

installed (with a total wind capacity of 0.66 MW), are shown in Figure 4.13. Demand

function slopes indicate the level of the demand’s sensitivity with respect to the price.

Note that a higher value (or a value closer to zero) of the demand function slope indicates

a higher price sensitivity of demand, i.e., a more elastic demand with respect to the price.

The overall tendency in this study is that a higher price induces the demand to be more
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Figure 4.13: Expected market price and the corresponding demand function slopes on
April 16, 2008

inelastic to price. Also, an interesting point to note is that at the time points where there

is an abrupt change in price level, such as at the first time step (0:00 a.m. in Figure 4.13)

and around hour 18 (5:50 p.m. in Figure 4.13), the demand was inelastic with respect to

the price. At Point 1, the optimal demand was fixed to be at its maximum level, while at

Point 2 the inelastic optimal demand was the minimum bound. This shows that look-ahead

optimization works with respect to the price and adjust the demand based on the price

forthcoming. Demand functions at some representative time points are plotted in Figure

4.14.

São Miguel

: Calculating the demand functions of an air-conditioning load in a shopping

mall We noted that a large shopping mall is operating business in São Miguel. Since

the climate of the Azores is moderate in summer, as described in Section 4.1, we find that

there is little air-conditioning usage there, except for perhaps big commercial buildings and

offices. Therefore, based on estimations of the physical parameters of the shopping mall

building, we simulated the air conditioning usage of the shopping mall and attempted to

prove how ALM can help move forward the efficient and clean use of electric energy.
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Figure 4.14: Demand functions at 0 a.m., 0:30 a.m., 12 p.m., 5:50 p.m. and 9 p.m. on
April 16, 2008
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The detailed procedure is as follows: we first obtain the market price data from the

economic dispatch for the given day. Then we calculate the optimal energy usage for 24

hours with respect to the price. Note that we optimize the energy usage based on the whole

24-hour horizon instead of one interval at a time; we call this look-ahead optimization.

Besides calculating the optimal hourly energy usage, we also calculate the price sensitivity

of demand by obtaining the optimal energy usage with respect to a slightly perturbed value

from the expected price.

For the representative summer day of July 16th, 2008, we first obtain the operational

cost of energy in 10-minute intervals from the system. We take this as the hourly price

input of the optimization problem for controlling the air conditioning system inside the

mall. We assume that the mall is open from 11 a.m. to 10 p.m., so the thermostat is set

to be 21◦C during those hours. We also assume that for one hour both before and after

business hours, the mall shop owners and staff will prepare for opening or closing, so we set

the temperature setpoints at 22◦C for those hours. We assume that the initial temperature

is 22◦C, and we set the last temperature setpoint to go back to this initial state, too.

Since the weather temperature is close to the setpoints throughout the day, and the

inertia factor of the indoor temperature is large because of the vast area of the mall, the

largest heat sources are the lighting and people. Therefore we attempt to estimate the

indoor temperature change by the heat sources first. The recommended illumination for

supermarkets is 750 lux or lumen/m2 and this intensity of light will emit approximately

25 W of heat per meter squared, according to the following equation1.

Pe = b/(ηeηrls) (4.4)

where

Pe: installed electric power (W/m2 floor area)

1All the equations and parameters regarding the heat sources and the temperature from them were
taken from The Engineering Toolbox (http://www.engineeringtoolbox.com).
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b: recommended light level (lux, lumen/m2)

ηe: light equipment efficiency

ηr: room lighting efficiency

ls: emitted light from the source (lumen/W)

The total land area of the shopping mall is estimated to be about 25,000 m2. Since the

mall has two stories, the total floor area is 50,000 m2, and the total emitted heat is 1.25

MW.

The heat emitted from the people in the stores is estimated at 220 btu/hour per person,

which is equivalent to 4.795 joules/hour per person. Assuming there are about 300 persons

in the mall at all business hours, the total heat that people emit will be 4.795 × 300

joules/3600 sec = 0.4 W. This is negligible compared to the heat emitted from the lighting;

therefore we only consider the heat from the lighting.

Since we have a dynamic equation of the temperature inside a building with a cooling

system, we are interested in by how much this heat will raise the indoor temperature. The

amount of heat needed to increase the temperature of a subject is expressed as:

Q = cpm dT (4.5)

where

Q: amount of heat (kJ)

cp: specific heat (kJ/kg·K)

m: mass (kg)

dT : temperature difference between hot and cold sides (K).

In one hour, the heat from the lighting will emit 4,500 MJ. The volume of the air in the

shopping mall, assuming the height of the whole building (two-story) is 30 meters, 25,000
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m2× 30 m = 750,000 m3. The air density at 20◦C is 1.204 kg/m3, so the mass of the air in

the mall is 903,000 kg. Applying these values to the equation above, we have 4,500,000 kJ

= 1 kJ/kg·K × 903,000 kg ×dT , and dT = (4,500/903) K = 4.98 K = 4.98◦C. Therefore,

when the lights are on in the shopping mall, the indoor temperature will rise by 4.98◦C in

an hour, or 0.83◦C in 10 minutes, without any temperature control.

Based on all these estimations and the temperature dynamics of the air conditioning

system [36], the resulting indoor temperature dynamic equation becomes

x(t + 1) =εx(t) + (1− ε)(Tout(t) + γPe(t)) (4.6)

where x(t): the indoor temperature at hour t

Tout(t): the outdoor temperature at hour t

Pe(t): the electric energy usage of the air conditioning system at hour t

ε: air inertia factor calculated to be e−τ/TC where τ is the time interval and

TC is the time constant (equal to the total thermal mass

divided by the thermal conductivity)

γ: steady-state temperature gain (− for cooling, + for heating)

during the closed hours, and +4.98 is added to the right-hand side for business hours due

to the heat emitted. The specific values of the parameters are calculated based on [36].

The optimization of the whole time horizon of 24 hours can be formulated as

minimize
Pe

∑

t∈open

{αλ(t)Pe(t) + (1− α)(x(t)− xset(t))
2}+

∑

t∈closed

αλ(t)Pe(t) (4.7)

subject to x(t + 1) = εx(t) + (1− ε)(Tout(t) + γPe(t)) + 4.98 for t ∈ open hours

x(t + 1) = εx(t) + (1− ε)(Tout(t) + γPe(t)) for t ∈ closed hours

Pe,min ≤ Pe(t) ≤ Pe,max ∀t.

87



0 5 10 15 20 25
0

50

100

150

200

250

300

350

hour

kW
h

 

 

static
look−ahead

Figure 4.15: Optimal energy usage with different optimization methods

Note that the objective functions are different depending on the hours when the desired

temperature is set (open hours) or not (closed hours). Figure 4.15 shows the difference in

the calculated optimal energy usage between the look-ahead approach and static optimiza-

tion. Static optimization is defined here as adjusting the electric energy usage according

to the expected temperature only at the very next time step. Static optimization is a more

myopic temperature control than look-ahead optimization, and does not include price in-

formation in its optimization. In this Figure 4.15, one can see that look-ahead optimization

has a lower energy usage the during peak hours than the static approach, and the energy

usage during the peak hours is shifted to the off-peak hours. This is more obvious in Fig-

ure 4.16. With look-ahead optimization, we can observe that they pre-cool the air before

business hours when the electricity price is cheaper (Figure 4.17). For this simulated day

alone, the look-ahead approach cost 127 Euros less than the static approach.

4.4.3 Direct load control

Direct load control is also an option to utilize flexible demand. Direct load control in this

context refers to a demand control schemed where a one-way signal from the system is sent

to the end-user to respond to. The response of the end-users’ loads in direct load control,

as opposed to other price-responsive demand schemes that we used in this thesis, is not
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Figure 4.16: Controlled indoor temperature with different optimization methods
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Figure 4.17: Hourly price input for look-ahead optimization
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Figure 4.18: Generation outputs with dispatch Method 3 in Flores on Jan 16 [58]

taken as a signal/input for the system or other suppliers to respond to. Loads that can

be interrupted on a short notice and for a short period of time are good candidates for

this. On São Miguel, dehumidifiers fit this description. End-users should notify the system

operator about how much of their loads can be curtailed, and the maximum disconnection

time allowed for the loads. Depending on the contract, they may also want to specify how

long in advance they would like to be notified before any upcoming curtailment.

According to a report on the energy use of the residential users in São Miguel, 14.2%

of residential households on São Miguel have their dehumidifiers kept on most of the time

during the winter [51]. This means that the number of dehumidifiers running in residential

homes would be about 7,570. Since one dehumidifier consumes about 0.5 kW, the amount

of power consumed by the dehumidifiers at a random moment would be 3,785 kW. This

is a substantial amount of power considering that the peak capacity in winter is about

60 to 70 MW. Assuming that turning off the dehumidifiers for about 10 minutes will not

discomfort end-users much, the system operator can consider shaving small spikes of oil

dispatch (shown in Figure 4.18). Turning off oil generators for 10 minutes fives times each

day can save about 700 Euros a season.
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4.5 Formulation of dispatch with price-responsive demand

In this section, we take the distributed look-ahead dispatch of generators in [58] and modify

it to fit elastic or price-responsive demand. This look-ahead dispatch is similar as the

functional clearing method described in Chapter 3.2, but instead of clearing deviations

from day-ahead scheduled quantities, it directly clears for actual operation quantities. In

this framework, price-responsive demand takes the anticipated price of electricity as the

input for its optimization over a time horizon. As we discussed in the previous sections,

the time horizon that a certain load or end-user oversees varies according to the physical

characteristics of the load and the needs and preferences for the use of electric energy. This

section discusses economic dispatch with price-responsive demand over a course of a day.

The sensitivity of demand to price is formulated as a demand function as shown in the

previous section. The demand functions of different loads are calculated with respect to

their unique physical dynamics and attributes as discussed in Section 4.4.2. Given these

demand functions, we can construct quadratic benefit functions that are analogous to the

quadratic cost functions of supply, by integrating the demand functions [59]. The following

notations are used for the formulation.

G set of all available generators

Gr set of intermittent energy generators

Z set of load zones

P̂z(t) expected demand at load zone z time step t

ci(PGi
) cost function of generator i

bz(Pz(t)) benefit function of load z consuming Pz(t)

Pmin
Gi

, Pmax
Gi

minimum and maximum output of generator i

P̂min
Gw

(t), P̂max
Gw

(t) expected minimum and maximum wind generation output
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at time step t, w ∈ Gr

gw(P̂Gw
) forecast of available output for generator w

Ri ramping rate of generator i, i ∈ G

T number of time steps in the optimization period

F, Fmax vector of line flows and their limits.

minimize
PG,Pz

T
∑

t=1

(
∑

i∈G

(ci(PGi
(t)))−

∑

z∈Z

(bz(Pz(t)))) (4.8)

subject to
∑

i∈G

PGi
(t) =

∑

z∈Z

Pz(t)

P̂max
Gw

(t) = gw(P̂
max
Gw

(t− 1)), w ∈ Gr

P̂min
Gw

(t) = hj(P̂
min
Gw

(t− 1)), w ∈ Gr

P̂min
Gw

(t) ≤ PGw
(t) ≤ P̂max

Gw
(t), w ∈ Gr

0 ≤ Pz(t) ≤ Pmax
z , z ∈ Z

Pmin
Gi

(t) ≤ PGi
(t) ≤ Pmax

Gi
(t), i ∈ G \Gr

|PGi
(t + 1)− PGi

(t)| ≤ Ri, i ∈ G

|F (t, PG, Pz)| ≤ Fmax ∀k

We apply this economic dispatch with elastic demand to the price-responsive loads that

we calculated in Section 4.4.2 and compare the results without elastic demand described in

[58]. We apply this dispatch to two different schemes, as described in Section 4.4.2. Day-

ahead static scheduling resembles the market clearance from day-ahead markets in many

operational regions in the US. End-users or load serving entities (or power producers)

submit their demand (or supply) bids before the day of clearance. They optimize their

bids with respect to anticipated price signals, since the prices are only determined after the
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Figure 4.19: The procedure of real-time adjustment with ALM [3]

market is cleared with all the supply and demand bids. They calculate the demand/supply

bids for the next day at every time step where the interval of each time step is set by the

system/market operator. The system operator clears quantity based on the bids at every

time step.

Real-time adjustment is a demand response scheme that we propose should be used

in real-time energy balance of supply and demand, in a moving time horizon. Assuming

an adequate communication infrastructure and the control of small devices such as re-

frigerators on the end-users’ premises, the end-users’ appliances and the system operator

communicate every time step in the real-time market (e.g., 5 or 10 minutes) to exchange

real-time price signals and the price sensitivity of demand based on the current physical

status of the appliance. The procedure of real-time adjustment is shown in Figure 4.19.

4.6 Simulation of scheduling dispatch with ALM

We discuss the simulation results of the dispatch with elastic loads for both Flores and

São Miguel. Both the day-ahead static scheduling and real-time adjustment methods are

simulated and presented in this section. The simulations were conducted for each island,

with different candidate loads for ALM that were determined in the previous sections. The
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time interval for all the simulations is 10 minutes, and optimization is done for a day or

24 hours.

4.6.1 Dispatch with refrigerators on Flores

Calculating the demand functions as shown in Section 4.4.2, we calculate the optimal

dispatch for four seasonally representative days in 2008. As in the generation dispatch of

the Flores system, described in [58], the power supply sources on Flores consist of diesel,

hydro and wind power generators. The same marginal costs were used for these simulations

as well.

Day-ahead static scheduling

The algorithm of day-ahead static scheduling is identical to what is shown in [58], except

that now we have an additional unit “elastic demand” also bidding into the system. The

procedure of getting the demand bids was explained in Section 4.4.2, and the system

dispatch formulation is shown in Section 4.5. In the simulations for the Flores system

with the refrigerator loads, we assume that the aggregate refrigeration load acts as one

large refrigerator. In other words, we do not include an algorithm that aggregates multiple

refrigerators with different temperature statuses. The results of the system dispatch with

this algorithm are shown for the four seasonally representative days in Figures 4.20-4.23.

Issues with day-ahead static scheduling The dispatch results for day-ahead static

scheduling do not keep track of the physical state of the elastic load at each time step,

and thus the cleared dispatch can be physically infeasible. The bids that are submitted

by supply and demand entities are based on expected price, but cannot be forecast by the

amount of energy to be consumed. The bid curves are highly dependent on the current

state of a bidder. If the state of a bidder deviates from the state calculated ahead of

the actual consumption, then the current and future bid functions are not guaranteed to

be feasible or representative of the current price sensitivity. The first instance where the

system clears at something other than the expected price will cause this deviation.
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Figure 4.20: Day-ahead static scheduling with control on the refrigerators load on January
16, 2008 for Flores
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Figure 4.21: Day-ahead static scheduling with control on the refrigerators load on April
16, 2008 for Flores
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Figure 4.22: Day-ahead static scheduling with control on the refrigerators load on July 16,
2008 for Flores
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Figure 4.23: Day-ahead static scheduling with control on the refrigerators load on October
15, 2008 for Flores
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Figure 4.24: Temperature inside the refrigerator assuming the load dispatch under day-
ahead static scheduling on October 15, 2008 for Flores

Using the day-ahead static scheduling described above and the model of ALM-enabled

refrigerators described in Section 4.4.2 results in the violation of temperature bounds for

the price-responsive refrigerator. Figures 4.20 - 4.23 show the generation dispatch resulting

from using this day-ahead static scheduling algorithm. The price-responsive load consumes

less than in the inelastic case at nearly all the time steps, as shown by the gap between

the stacked generation output and the baseline load. Figure 4.24 shows how the modeled

temperature state of ALM-enabled refrigerators would evolve if operated according to

the dispatch results. The refrigerator temperature model should only be considered valid

within a reasonable proximity to the minimum and maximum temperature bounds, so

one should disregard the resulting temperature evolution after the maximum temperature

constraint has been violated. Still the results clearly show that day-ahead static scheduling

dispatch results in an inadequate amount of energy consumption to satisfy the temperature

constraints. This pushes one toward the use of the real-time adjustment algorithm where

a new bid curve is formulated at each time step using the current state of a bidder in a

moving horizon.
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Figure 4.25: Real-time adjustment with control on the refrigerators load on January 16,
2008 for Flores

Real-time adjustment

In real-time adjustment dispatch, we overcome the problems of day-ahead static scheduling

by making a closed loop of information between the elastic load dispatch and the physical

dynamics of the elastic load, i.e., the temperature of the refrigerator. At each time step,

once the system operator clears the market, ALM uses the energy dispatched from the

system to calculate the temperature of the refrigerator at the next time step. Now the

demand bid function of the next time step will be calculated in the same way as the

system dispatch with day-ahead static scheduling, but with a specific initial temperature

calculated from the systems dispatch to the price-responsive load. This process is iterated

at every time step so that the dispatched energy amount follows the temperature dynamics

of the refrigerator across the time horizon. Figures 4.25 - 4.28 show that the total amount

of energy consumed over a day is close to the daily consumption of the baseline load.

Figure 4.29 shows the evolution of the refrigerator temperature when using this real-time

adjustment algorithm. We note that the temperature is kept within the bounds of 3 to

8◦C in this real-time adjustment case.
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Figure 4.26: Real-time adjustment with control on the refrigerators load on April 16, 2008
for Flores
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Figure 4.27: Real-time adjustment with control on the refrigerators load on July 16, 2008
for Flores
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Figure 4.28: Real-time adjustment with control on the refrigerators load on October 15,
2008 for Flores
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Figure 4.29: Temperature inside the refrigerator with load dispatch under real-time ad-
justment on October 15, 2008 for Flores
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Figure 4.30: Day-ahead static scheduling with control on the air-conditioning load on July
16, 2008 for São Miguel

4.6.2 Dispatch with an air-conditioning load on São Miguel

We calculated the air conditioning load in the shopping mall described in Section 4.4.2,

optimizing the load with the anticipated operational cost for July 16th, 2008. Compared

to the total load, the air conditioning load was insignificant in terms of the magnitude.

However, as shown in Section 4.4.2, if the price signal given to the end-user reflected the

true cost of the system operations, then the savings from shifting the load during peak

hours to off-peak was considerable at least from the end-user’s perspective.

São Miguel has four different sources of generation: oil, hydro, wind, and geothermal,

as described in Section 4.1.

Day-ahead static scheduling

The generation and demand dispatch results of day-ahead static scheduling are shown in

Figure 4.30. As can be noted, the elastic demand is very small. The air conditioning load

is separately plotted in Figure 4.31.

As pointed out in the previous simulations for Flores, day-ahead static scheduling
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Figure 4.31: Air-conditioning load dispatch under day-ahead static scheduling on July 16,
2008 for São Miguel

dispatch results can be infeasible for the load. Therefore, the resulting temperature change

in the mall is plotted in Figure 4.32 assuming that the air conditioning system follows

the day-ahead static scheduling dispatch. As with the results from the day-ahead static

scheduling on Flores, the results on São Miguel also turn out to be infeasible. This is more

obvious in a much warmer weather temperature setting, as shown in Figure 4.33.

Real-time adjustment

The algorithm for real-time adjustment on Flores was applied to the system on São Miguel

as well for the air conditioning load in the mall. The resulting generation and demand dis-

patch, the air-conditioning load, and the temperature change inside the mall are shown in

Figure 4.34, 4.35 and 4.36, respectively. We note that with this algorithm, the temperature

inside the mall is kept close to the desired temperature setpoints.

4.7 Discussions and Summary

In this section, we attempted to select the right types of loads for demand response on the

islands of Flores and São Miguel. We recognize that there are many different types of loads

that are suitable for a certain framework of demand response with the system dispatch or

102



0 5 10 15 20
18

19

20

21

22

23

24

hour

°  C

 

 

indoor
weather
setpoint

Figure 4.32: Temperature inside the mall assuming air-conditioning load dispatch under
day-ahead static scheduling on July 16, 2008 for São Miguel
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Figure 4.33: Air-conditioning load dispatch under day-ahead static scheduling assuming a
warmer weather condition
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Figure 4.34: Real-time adjustment with control on the air-conditioning load on July 16,
2008 for São Miguel
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Figure 4.35: Air-conditioning load dispatch under real-time adjustment on July 16, 2008
for São Miguel
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Figure 4.36: Temperature inside the mall with the air-conditioning load dispatch under
real-time adjustment on July 16, 2008 for São Miguel

longer-term scheduling. Table 4.4 summarizes the overall view of the possible tariffs or

dispatch frameworks and the corresponding loads that are suitable for each of them.

Each of the demand response technologies has different costs and savings associated

with it. Real-time adjustment demand dispatch requires near real-time communication

and control devices on both the end-users’ premises and the system operator, while the

longer-term demand scheduling by Better Time-Of-Use may not require any investment

in sophisticated infrastructure. Therefore, in order to fully evaluate the potentials of

the demand response programs suggested, further research on the tradeoff between the

investment costs and the benefit of each scheme should follow this work.

To look at how flexible loads can be scheduled a day ahead, demand and generation

dispatch on the islands of Flores and São Miguel were presented. Two distinct algorithms

for this dispatch, day-ahead static scheduling and real-time adjustment, were analyzed. By

comparing the results of these two methods, we conclude that timely information exchange

between the demand unit and the system operator is crucial for two reasons. First, the

demand can be adjusted within tolerable bounds due to accurate energy consumption limits

based on the current physical status of the load. Second, the system can guarantee the

commitment of the participating load by obtaining accurate energy consumption limits
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Table 4.4: Comparison of different tariffs

Tariff Description

Time-Of-Use Rates fixed within a season

Better Time-Of-Use Better representation of seasonal or monthly changes of gener-
ation and demand resources
Transitional tariff between the current one and the more ad-
vanced and detailed day-ahead static scheduling and real-time
adjustment
Induce large loads to schedule to shift to lower-cost periods

Day-ahead static
scheduling

Loads that can be scheduled a day ahead by quantity (physical
commitment)
or that can give information about price sensitivity (financial
contract)

Day-ahead static
scheduling + real-
time adjustment

Real-time two-way communication with the appliance and the
system operation
Loads that can respond promptly within a time step of the
real-time operation

and load flexibility.

This implies that a successful demand response program for “greening” a system re-

quires far more than simply getting more end-users or loads enrolled. An adequate com-

munication and control infrastructure is crucial for both the end-users’ and the system

operator’s objectives. The time interval and the duration of the communication between

the loads and the system must be well designed depending on the types of loads.
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Chapter 5

IEEE 30-bus test system

In this chapter we apply the methods proposed in Chapters 3.1 and 3.2 for short-term

scheduling of generation resources and demand. Day-ahead iterative clearing schedules

supply and demand entities with their intertemporal dynamics and constraints. Real-time

functional clearing adjusts the scheduled amounts in a moving horizon based on the bids

that are submitted by supply and demand entities.

5.1 System configuration

The system studied here is based on the IEEE 30-bus test system [60]. Transmission line

limits were added as in [61, 62], but in order to make one line congested at the peak hour,

the transmission limit of the line connecting bus 1 and 2 were reduced to 23 MW from the

original value of 130 MW (Figure 5.1).

Since the test system does not include the specifics of the loads, we configure the flexible

loads based on statistics and inference. We choose air conditioners in residential premises

as the flexible loads to be scheduled and adjusted with the generators in the system.

In order to estimate the number of air conditioners for each load bus, first we obtained

the number of residential air conditioning systems in Northwestern Power Coordinating

Council (NPCC) region [63], including part of the PJM and ISO New England areas,

Ontario, and Maritimes, and the hourly load in the same region on August 8th 2007, the

hottest day of the year. The numbers of residential air conditioners were obtained from
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Figure 5.1: Modified IEEE 30-bus test system (adjusted from [4])
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Figure 5.2: Hourly system load over 24 hours

[64, 65], and the load data was obtained from Professor Daniel Shawhan at Rensselaer

Polytechnic Institute who had processed the data from the websites of the RTOs in the

region for his own research purpose.

The test system only provides load data for a single time step. We calculated the

ratio of each hourly load to the maximum load of the day in the NPCC system. We then

multiplied each load value of the 30-bus test system by the 24 hourly ratios obtained from

the NPCC system, which gave us a 24-hour load profile at each bus in the test system.

The hourly system load calculated this way is depicted in 5.2.

The number of residential air conditioners at each bus of the test system was calculated

to be the same ratio of the number of air conditioners in NPCC system region to the

NPCC load values. The numbers were separately calculated for window- and central-unit

air conditioners. We assume that 10% of the central units and 1% of the window units

are participating in our framework, to make the case more realistic. Table 5.1 shows the

numbers of total air conditioners calculated for each load bus.

There are six generators in this 30-bus system. The profiles of these generators are

shown in Table 5.2.
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Table 5.1: Number of air conditioners at each bus of the system

Bus Central units Window units

2 1,532 114,592
3 169 12,641
4 536 40,092
7 1,609 120,351
8 2,118 158,424
10 409 30,593
12 791 59,166
14 438 32,762
15 579 43,309
16 247 18,475
17 635 47,497
18 226 16,905
19 671 50,190
20 155 11,594
21 1,235 92,377
23 226 16,905
24 614 45,927
26 247 18,475
29 169 12,641
30 748 55,950

Table 5.2: Profiles of generators in the system

Bus
Capacity Ramp rates Cost($) coefficients

(MW) (%/min) 2nd order 1st order

1 150 3 0.02 2
2 60 5 0.0175 1.75
22 62.5 10 0.0625 1
27 48.7 40 0.00834 3.25
23 40 30 0.025 3
13 44.7 40 0.025 3
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5.2 Modeling flexible loads

An end-user’s air conditioning system is model the same way as described in Chapter 4 for

the air conditioning system in a shopping mall in São Miguel. The dynamic equation for

the air conditioning system is rewritten here.

xe(t + 1) = εexe(t) + (1− εe)(Tout(t) + γePe(t)) (5.1a)

subject to xe,min ≤ xe(t) ≤ xe,max ∀t, ∀e (5.1b)

Pe,min ≤ Pe(t) ≤ Pe,max ∀t, ∀e (5.1c)

where xe(t): the indoor temperature at hour t of end-user e

Tout(t): the outdoor temperature at hour t

Pe(t): the electric energy usage of the air conditioning system at hour t

of end-user e

εe: air inertia factor calculated to be e−τ/TCe of end-user e

γe: steady-state temperature gain of end-user e

The difference from the system in the Azores is that in this work we have a total of 11,329

air conditioners to control along with 6 generators on a network with 30 buses and 42 lines.

Therefore, we assign different parameters εe and γe for each end-user e, while we assume

that the weather temperature Tout, shown in Figure 5.3, is the same in the whole area for

this network.

The power ratings of the most popular window and central air conditioners in the

market range from 7 to 10.6 kW, and from 2.3 to 3.5 kW, respectively. Since we look at

a time step of an hour, we assume that an air conditioner’s energy output within an hour

can be controlled anywhere between zero and its power rating. We generated uniformly

distributed random values between the ranges of the power ratings to decide Pe,max for

every end-user. εe and γe are randomly generated in a similar way to create different
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Figure 5.3: Outdoor temperature over 24 hours

parameters for the end-users’ cooling systems. To account for different energy consumption

preferences of end-users, we randomized and differentiated the temperature set points (the

desired state) of all the end-users over 24 hours. We also assumed that about 70% of the

residential users are away between 8 a.m. and 7 p.m., 20% of users occupant all day, and

10% of users away only during 11 a.m. to 4 p.m.

5.3 Short-term scheduling

Apart from the experiments in the Azores Islands in Chapter 4, we consider the power

network model in short-term scheduling. We apply day-ahead iterative clearing in Chapter

3.1 in order to schedule generators and loads a day ahead of consumption, and conduct

real-time functional clearing in Chapter 3.2 to account for any changes in the real-time

operation. In order to subject our framework to a congested network, we set the limit of

Line 1 connecting bus 1 and 2 to 23 MW, so that the line is congested at the peak hour,

which is hour 17 in Figure 5.2.
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5.3.1 Linearized network constraints with congestion

The network equation is linearly approximated as described in Chapter ??, with the power

transfer distribution factor and power injection at each bus. Lagrange multipliers associ-

ated with this equation are the marginal costs of congestion on each line; therefore it is

nonzero only when the line is congested. The locational marginal price at a bus is defined

as Equation (3.8).

Loads located at each bus receives this locational marginal price. In iterative clearing,

end-users calculate their optimal hourly consumption while in functional clearing, they

calculate the price sensitivity of demand along with their feasible consumption band (max-

imum minus minimum limit of consumption). Since the network is only congested at one

line, we use [12] to further simplify calculations of locational marginal prices. [12] proves

that if only one line is congested in a network, the locational marginal prices at all buses

can be calculated with respect to the price at one-end bus of the congested line and the

congestion cost.

5.3.2 Day-ahead iterative clearing

The initial locational marginal prices (LMPs) for all buses to start iteration were calcu-

lated based on the demand without any price-responsiveness, and without any network

constraints. This is have a good initial value for iterative clearing. The resulting initial

price over 24 hours is shown in Figure 5.4. Since we don’t take the network equation in

this calculation, all buses have the same price. An end-user j’s benefit function is defined

as bj = (xj − xj,set)
T (xj − xj,set) where xj,set denotes the hourly temperature set points of

end-user j.

After only 100 iterations, the system demand and supply match very closely; the mis-

match of supply and demand is less than 1e− 5 at all hours except −0.0286 MWh at hour

17, which is the peak hour when a line is congested. Figure 5.5 shows the system demand

and supply over 24 hours after 10 and 100 iterations, respectively. Note that this iteration

is done among a system operator and six generators and over 11,000 end-users, over 24
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Figure 5.4: The initial price for iterative clearing

hours including the intertemporal dynamics of the generators and the end-users’ cooling

systems.

We compared the energy consumption of the end-users with and without iterative

clearing with the system price. Assuming that the end-users only satisfy their temperature

comfort without regard to the hourly price, we obtain the case of the demand irresponsive

to the price. Figure 5.6 shows the compared results. Over the 24-hour horizon, the loads

scheduled with iterative clearing reduced the system load by 18.6 MWh, about 0.4% of the

total energy demand 3,770.8 MWh. Since we set the end-users’ temperature constraints as

hard constraints, there is little energy savings during the peak hours. This shows that it is

important to give the right price signal to the end-users if the system operator intends to

adjust demand. However, this should be done in a way that end-users are given a choice

of consuming energy at a high price or reducing consumption. The system operator is still

expected to benefit, by scheduling demand a day of operation with iterative clearing, from

having better information on how demand will behave. The resulting system price over 24

hours is shown in Figure 5.7. The congestion cost at hour 17 was ±0.1294$/MWh on bus

1 and 2.
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Figure 5.5: System supply and demand over 24 hours after 10 and 100 iterations
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Figure 5.6: Comparison of demand with and without iterative clearing
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Figure 5.7: System price from iterative clearing
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5.3.3 Real-time functional clearing

After the end-users and generators are scheduled a day ahead with iterative clearing, the

conditions of the system or a generator/end-user may change from what was assumed

during day-ahead scheduling. In order to account for this unexpected change from the

day-ahead scheduling, we apply real-time functional clearing described in Chapter 3.2,

with the outdoor temperature higher than assumed for day-ahead scheduling in Figure 5.3.

Specifically, the temperature from 10 a.m. to 2 p.m. was higher by 1◦F, and from 2 p.m. to

midnight by 2◦F. We applied the moving horizon method for functional clearing described

in Chapter 3.2, with locational marginal prices as the input signal for suppliers and end-

users to calculate their price sensitivity of supply/demand. The end-users’ information on

the price sensitivity of demand and consumption limits were aggregated by a load serving

entity, so that the system worked with six suppliers and one demand representing all the

end-users.

Figure 5.8 shows the difference between the hourly system demand from day-ahead and

real-time clearing. As a result of the higher temperature, the demand increased during

hotter hours. We can also observe that there is a small peak at hour 5. This is suspected

to be a result of look-ahead optimization; since the price at hour 5 was the lowest, a lot

of end-users consumed more energy and precondition their buildings at this hour. This

implies that in order to avoid unexpected system peaks as a result of price responsive

demand adjustment, a more sophisticated price signal system may be needed that can

disperse concentration of energy consumption at hours with a low price.

Meanwhile, the resulting transmission at all lines are successfully limited within the

bounds. Figure 5.9 shows the absolute values of the transmission flows and limits for all

lines.

5.3.4 Summary and discussion

We applied day-ahead iterative clearing and real-time functional clearing methods for short-

term scheduling of supply and demand entities on IEEE 30-bus test system over a 24-hour
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Figure 5.8: Comparison of demand with day-ahead and real-time clearing
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Figure 5.9: Transmission flows as a result of real-time functional clearing
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time horizon. The system network parameters were slightly adjusted to account for one

congested line at a peak hour. Air conditioners were chosen to respond to a locational

marginal price at an end-users’ premise. Iterative clearing could efficiently schedule the

generators and the end-users’ systems including their vectorized intertemporal dynamics

and constraints. The generators’ dynamics were linearly approximated with their ramp

rates, and the end-users’ cooling systems of their buildings were modeled as a linear system

with the indoor temperature as the state and the hourly energy consumption as the input.

Real-time functional clearing was conducted for near-real-time adjustment of both demand

and supply after the hourly supply and demand of each entity was cleared with day-ahead

iterative clearing. We assumed that the weather temperature rose higher than forecast at

the time when day-ahead scheduling was done. The system demand increased as a result

in order to satisfy the end-users’ benefit, which we set as a hard constraint, the system

could adjust from the day-ahead scheduling efficiently over moving horizons on a congested

network. For future work we can think of a way to eliminate secondary peak loads that

occur in real-time adjustment with look-ahead optimization of end-users. One of the ways

to tackle this issue can be to devise a cooperative coordination among end-users within a

load serving entity’s area.
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Part IV

Conclusion
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Motivated by the efforts of including more demand resources into power systems yet

failing to include the end-users’ benefit in the current system operation, this thesis pro-

vides a framework of operating a power system with end-users’ benefits, namely adaptive

load management (ALM). In order to represent a large number of end-users in the sys-

tem where the system supply and demand are scheduled to be balanced at its optimum,

we consider load serving entities to play a critical role of aggregating end-users’ demand

in ALM. Coordinating the objectives of a large number of different end-users and power

producers in the system subject to the system network requires a careful design of informa-

tion exchange scheme among the entities. We note that the information on the condition

and external factors of the system, end-users, and generators varies along the timeline of

operating and planning the system. For this reason, the information exchange framework

needs to be designed differently over various time horizons, and needs to be determined

according to the risks of uncertainty of this information. ALM provides a multi-layered

(from end-users to load serving entities to the system operator), multi-temporal (ranging

from a long-term capacity and energy decision making to a short-term scheduling including

day-ahead clearing and near-real-time adjustment) information exchange framework that

relates the decisions made by each entity over different time horizons. The decisions of

each entity and the information on the system condition were modeled based on Lagrange

dual decomposition of the system-level problem. The thesis provides a numerical example

where we design an ALM framework that is specific to the characteristics of the loads and

generators of the system. Another example shows that ALM can efficiently schedule a large

number of end-users with generators a day ahead of operation, and adjust the scheduled

amounts in near real time even when the system condition has changed from what was

expected. The biggest contribution of this thesis is in proposing and showing the proof of

concept of a system operation framework, which enables the choices of end-users that have

different energy consumption preferences and loads with physical dynamics. We show the

conditions under which the system optimum can be achieved with various objectives of the
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entities coordinated by the system operator.

Our ALM framework suggests changes in policy regarding system operation. For day-

ahead scheduling, the intertemporal dynamics and constraints of local supply and demand

units, including end-users, should be well incorporated in optimizing the system’s objective.

We showed that information to be exchanged in different time horizons, e.g., day-ahead and

real-time clearing, should be designed differently. The types of loads and their physical

characteristics should also be of concern when scheduling these resources with the rest

of traditional supply units, and especially with more uncertain and volatile renewable

generation resources. The information exchanged between load serving entities and end-

users has implications on the service products of LSEs, such as demand subscriptions

suggested in [34]. Moreover, due to the generality of the ALM framework, the information

exchange protocol can be applied to other components in a power system as well.

There is much future work ahead in order to relax many assumptions we made to

show the proof of concept. The objectives of load serving entities were approximated since

we assumed perfect competition and no gaming among them. In reality they need to

make decisions on the rates of electricity to offer end-users so that they keep customers

and maximize their revenue. Physics of a power system network was approximated to a

linear model with only active power supply and demand. However, our examples of air

conditioning loads are inductive and can have an impact on reactive power of the system.

For extension of the short-term scheduling, a novel methodology extending day-ahead and

real-time clearing methods may be needed to solve a nonconvex problem, including the

uplift costs of generators and nonlinear load dynamics.
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Appendix A

Proof regarding DC OPF without network con-

gestions

127



In this appendix, we prove that the optimal solution and the price of electricity defined

by the Lagrange multiplier of a Direct Current Optimal Power Flow (DC OPF) problem is

the same with the solution of an OPF problem without network constraints, when 1) the

network does not contain any shunt bus elements, and 2) not any transmission flows are

binding, i.e., at their limits.

Consider a power system network without any shunt bus elements and enough trans-

mission capacity without congestions. The solution of DC OPF of this network, modeled

with the linearized network equation including the bus voltage angles, is the same with the

solution of economic dispatch without considering the network equation. Economic dis-

patch, in this context, simply matches total supply and demand. Moreover, the locational

marginal prices (LMPs) at all buses are the same, and are equal to the universal price from

the economic dispatch.

Assume the network has a total of n buses where bus 1 is assumed to be a slack bus,

and nl lines. Pi denotes the net power injection at bus i, and P = [P1, · · · , Pn]
T . The

admittance matrix is linearized to a n-by-(n− 1) susceptance matrix with the first column

(slack bus column) omitted to avoid singularity, which is defined as

Bbus =













B12 B13 · · · B1n

...
. . .

. . .
...

Bn2 · · · · · · Bnn













where Bij denotes the susceptance on the line connecting bus i and j. The bus voltage

angles are θi, and since bus 1 is a slack bus and θ1 = 0, the bus voltage vector is defined as

Θ = [θ2, · · · , θn]
T . The convex cost function of injecting power Pi at bus i is defined by fi,

which can be generalized as a negative benefit function of consuming power Pi, if Pi < 0.

The nl-by-(n − 1) linear mapping of the bus voltage angles to the line flows is Bline and

Fmax a vector of length nl that denotes the lines’ active power flow limits.
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Then the problem of DC OPF on this network is

minimize
P,Θ

n
∑

i=1

fi(Pi) (A.1a)

subject to BbusΘ− P = 0 (A.1b)

|BlineΘ| ≤ Fmax (A.1c)

Pi,min ≤ Pi ≤ Pi,max ∀i. (A.1d)

The Lagrange relaxation of this problem is

L(P,Θ, λ, µ, µ) =
n

∑

i=1

fi(Pi) + λT (BbusΘ− P ) + µT (BlineΘ− Fmax) + µ(−BlineΘ− Fmax),

(A.2)

where λ, µ, µ are Lagrange multipliers associated with (A.1b), and (A.1c). Since this is a

convex problem, the necessary and sufficient Karush-Kuhn-Tucker (KKT) conditions for

the optimum are

∂L

∂Pi

=
dfi(Pi)

dPi

− λi = 0 ∀i (A.3a)

∂L

∂Θ
= BT

busλ+BT
line(µ− µ) = 0 (A.3b)

∂L

∂λ
= BbusΘ− P = 0 (A.3c)

µT (BlineΘ− Fmax) = 0, µ ≥ 0, BlineΘ− Fmax ≤ 0 (A.3d)

µT (−BlineΘ− Fmax) = 0, µ ≥ 0, −BlineΘ− Fmax ≤ 0 (A.3e)

where λi denotes the locational marginal price at bus i. (A.3d) and (A.3e) imply that if

the inequality constraints (A.1c) are not binding, i.e., the lines are not congested, then

µ = µ = 0,
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and as a result,

BT
busλ = 0

from (A.3b), or












B12 · · · Bn2

...
. . .

...

B1n · · · Bnn

























λ1

...

λn













=













0

...

0













.

Since this is linearly dependent, by removing the first row, we can rearrange it as

Bred













λ2

...

λn













= −













B12

...

B1n













λ1 (A.4)

where Bred is a full-ranked reduced susceptance matrix of dimension (n− 1) defined as

Bred =













B22 · · · Bn2

...
. . .

...

B2n · · · Bnn













Meanwhile, observing Bbus, since there are no shunt elements in the lines,

Bii = −

n
∑

j=1,
j 6=i

Bij = −

n
∑

j=1,
j 6=i

Bji ∀i.

Therefore,












B12

...

B1n













=













−B22 − B32 − B42 − · · · −Bn2

...

−B2n −B3n − B4n − · · · − Bnn













= −Bred













1

...

1













,
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and (A.4) becomes

Bred













λ2

...

λn













= Bred













1

...

1













λ1,

therefore

λ1 = λi i = 2, · · · , n.

This means that the locational marginal price at every bus is the same.

Also, according to (A.3a),

λi =
∂fi(Pi)

∂Pi
. (A.5)

This means that a globally uniform system price λ determines the optimal power injection

Pi at every bus i.

Now we compare this with the solution of an OPF problem without network constraints.

An OPF problem without a network is formulated as

minimize
P

n
∑

i=1

fi(Pi) (A.6a)

subject to
n

∑

i=1

Pi = 0, (A.6b)

and the Lagrangian relaxation is

L(p, λ) =
n

∑

i=1

fi(Pi)− λ
n

∑

i=1

Pi. (A.7)

The KKT condition for the optimum is

∂L

∂Pi
=

∂fi
∂Pi

− λ = 0.

131



So the system price

λ =
∂fi
∂Pi

which is exactly the same as (A.5).

This proof implies that if a network modeled without any shunt elements have no

congestions in any lines, it can be solved as a much simpler economic dispatch problem

where only supply and demand are matched without regard to the network.

132



Bibliography

[1] Environmental Energy Technologies Division of Lawrence Berkeley National Labo-

ratory, “Home Energy Saver.” http://hes.lbl.gov/consumer/.

[2] Tyk, “File:locator map of azores in eu.svg — Wikipedia, the free encyclopedia,”

2013. [Online; accessed Sep-9-2013].

[3] J.-Y. Joo and M. Ilic, “Multi-temporal risk minimization of adaptive load manage-

ment in electricity spot markets,” in Innovative Smart Grid Technologies (ISGT

Europe), 2011 2nd IEEE PES International Conference and Exhibition on, pp. 1–7,

IEEE, 2011.

[4] S. Chakrabarti and E. Kyriakides, “Optimal placement of phasor measurement units

for power system observability,” Power Systems, IEEE Transactions on, vol. 23,

no. 3, pp. 1433–1440, 2008.

[5] H. Chao, “Price-responsive demand management for a smart grid world,” The Elec-

tricity Journal, vol. 23, no. 1, pp. 7 – 20, 2010.

[6] P. P. Varaiya, F. F. Wu, and J. W. Bialek, “Smart operation of smart grid: Risk-

limiting dispatch,” Proceedings of the IEEE, vol. 99, no. 1, pp. 40–57, 2011.

[7] F. C. Schweppe, R. D. Tabors, M. Caraminis, and R. E. Bohn, “Spot pricing of

electricity,” 1988.

[8] B. Kim and R. Baldick, “A comparison of distributed optimal power flow algorithms,”

Power Systems, IEEE Transactions on, vol. 15, no. 2, pp. 599–604, 2000.

133

http://hes.lbl.gov/consumer/


[9] A. Bakirtzis and P. Biskas, “A decentralized solution to the dc-opf of interconnected

power systems,” Power Systems, IEEE Transactions on, vol. 18, no. 3, pp. 1007–

1013, 2003.

[10] F. J. Nogales, F. J. Prieto, and A. J. Conejo, “A decomposition methodology ap-

plied to the multi-area optimal power flow problem,” Annals of operations research,

vol. 120, no. 1-4, pp. 99–116, 2003.

[11] G. Hug-Glanzmann and G. Andersson, “Decentralized optimal power flow control for

overlapping areas in power systems,” Power Systems, IEEE Transactions on, vol. 24,

no. 1, pp. 327–336, 2009.

[12] F. Wu, P. Varaiya, P. Spiller, and S. Oren, “Folk theorems on transmission access:

Proofs and counterexamples,” Journal of Regulatory Economics, vol. 10, no. 1, pp. 5–

23, 1996.

[13] P. Wei, Y. Ni, and F. F. Wu, “Decentralised approach for congestion management

and congestion price discovering,” IEE Proceedings-Generation, Transmission and

Distribution, vol. 149, no. 6, pp. 645–652, 2002.

[14] N. Li, L. Chen, and S. H. Low, “Optimal demand response based on utility maxi-

mization in power networks,” in Power and Energy Society General Meeting, 2011

IEEE, pp. 1–8, IEEE, 2011.

[15] M. Kraning, E. Chu, J. Lavaei, and S. Boyd, “Dynamic network energy management

via proximal message passing,” Foundations and Trends in Optimization, vol. 1, no. 2,

pp. 70–122, 2013. to appear.

[16] H. Yang, D. Yi, J. Zhao, and Z. Dong, “Distributed optimal dispatch of virtual power

plant via limited communication,” Power Systems, IEEE Transactions on, vol. 28,

no. 3, pp. 3511–3512, 2013.

[17] A. Papavasiliou and S. S. Oren, “Large-scale integration of deferrable demand and

134



renewable energy sources,”

[18] Z. Wu and M. Ilić, “Toward the value-based generation investments and utiliza-

tion: Stratum electricity market,” in Probabilistic Methods Applied to Power Sys-

tems, 2006. PMAPS 2006. International Conference on, pp. 1 –10, June 2006.
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