
Acting under Uncertainty for Information
Gathering and Shared Autonomy

Shervin Javdani
July 11, 2017

CMU-RI-TR-17-52

The Robotics Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
J. Andrew (Drew) Bagnell, Co-Chair

Siddhartha S. Srinivasa, Co-Chair
Emma Brunskill, Stanford University

Wolfram Burgard, University of Freiburg

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

© Shervin Javdani, 2017





Abstract

Acting under uncertainty is a fundamental challenge for any decision
maker in the real world. As uncertainty is often the culprit of fail-
ure, many prior works attempt to reduce the problem to one with a
known state. However, this fails to account for a key property of act-
ing under uncertainty: we can often gain utility while uncertain. This
thesis presents methods that utilize this property in two domains:
active information gathering and shared autonomy.

For active information gathering, we present a general framework
for reducing uncertainty just enough to make a decision. To do so,
we formulate the Decision Region Determination (DRD) problem, mod-
elling how uncertainty impedes decision making. We present two
methods for solving this problem, differing in their computational
efficiency and performance bounds. We show that both satisfy adap-
tive submodularity, a natural diminishing returns property that imbues
efficient greedy policies with near-optimality guarantees. Empirically,
we show that our methods outperform those which reduce uncer-
tainty without considering how it affects decision making.

For shared autonomy, we first show how the general problem of
assisting with an unknown user goal can be modelled as one of act-
ing under uncertainty. We then present our framework, based on
Hindsight Optimization or QMDP, enabling us assist for a distribu-
tion of user goals by minimizing the expected cost. We evaluate our
framework on real users, demonstrating that our method achieves
goals faster, requires less user input, decreases user idling time, and
results in fewer user-robot collisions than those which rely on pre-
dicting a single user goal. Finally, we extend our framework to learn
how user behavior changes with assistance, and incorporate this
model into cost minimization.





Acknowledgements

First and foremost, I would like to thank my advisors Siddhartha Srinivasa and Drew Bagnell. It seems
like just yesterday when I bumped into you both talking about co-advising me. At the time, I knew our
interests aligned - but I could not have guessed you would be such fantastic mentors, teachers, and friends.
Thank you for being understanding and encouraging when I wanted to explore new ideas and concepts,
academic and otherwise.

I am grateful to the other members of my committee, Emma Brunskill and Wolfram Burgard. Thank you
for bringing your unique perspectives to this work, and providing new insights and ideas throughout.

I have learned so much from my collaborators throughout the years. Thank you to Andreas Krause,
Yuxin Chen, and Amin Karbasi for your contributions for information gathering under uncertainty. Thank
you to Matthew Klingensmith and Nancy Pollard for your insights from the ARM-S project and help with
Touch-Based Localization. Thank you to Katharina Muelling, Arun Venkatraman, Jean-Sebastien Valois,
John Downey, Jeffrey Weiss, Martial Hebert, Andrew B. Schwartz, and Jennifer L. Collinger for your work
on brain computer interfaces for shared control teleoperation. Thank you to Henny Admoni and Stefania
Pellegrinelli for your help on shared autonomy experiments for human-robot teaming and shared control
teleoperation. Thank you to Anca Dragan and Rachel Holladay for your work on modelling comparison
based learning as information gathering under uncertainty.

Being in both the Personal Robotics Lab and LAIRLab meant I had two sets of amazing labmates to
learn with. Thank you to everyone in the Personal Robotics Lab: Anca, Chris, Mehmet, Alvaro, Jenn,
Laura, Clint, Pras, Aaron, Pyry, Clint, Mike, other Mike, other other Mike, Brian, other Brian, Shushman,
Gilwoo, Liz, Rosario, Ariana, Oren, Daqing, Aditya, and Jimmy for making the lab such a great environ-
ment. An extra special thanks to Michael Koval for all your help with the Personal Robotics Lab systems
infrastructure, and Stefanos Nikolaidis for all your help with understanding how to run user studies.
Thank you to everyone in the LAIRLab: Paul, Kris, Katherina, Stephane, Daniel, Alex, Kevin, Dey, Arun,
Allie, Jiaji, Wen, Echo, Nick, and Shaurya for your weekly reading group discussions, talk feedback, and
influx of ideas that were always helpful and interesting.

These last few years haven’t been all work - but have been filled with intense fun beyond what I could
have imagined that has changed how I approach life and challenging problems. I’d like to thank Juan
Pablo Mendoza and Ben Eckart for being such close friends, and joining for many (mis)adventures. Thank
you to my partner Caitlin Rice for challenging my thoughts and beliefs, and making me feel loved and
supported through the toughest times. Thank you to the Hot Mass crew in Pittsburgh for providing such
an accepting space. My regular visits to this weekly Mass have been instrumental to keeping me feeling
creative, rejuvenated, and open.

Special thanks to my sisters Shabnam and Shiva. Shabnam, you often joke that you’re responsible for
everything good in my life - and you’re not (entirely) wrong. Shiva, thank you for being there whenever I



4

was down and needed some cheering up.
Finally, I would like to thank my parents Vida and Ahmad, whose love, support, and encouragement

help me everyday. I am forever grateful for your personal sacrifices, leaving your family, friends, and home
years ago so that my sisters and I could have better opportunities.



Contents

1 Introduction 9

1.1 Goal-Directed Active Information Gathering 10

1.2 Goal-Directed Shared Autonomy 11

1.3 Contributions 13

2 Active Information Gathering Background 15

2.1 Active Information Gathering in Robotics 15

2.2 Near-Optimal Active Information Gathering 18

2.3 Adaptive Submodularity Background 20

3 Hypothesis Pruning for Touch-Based Localization 27

3.1 Problem Formulation 28

3.2 Metrics for Touch-Based Localization 30

3.3 Experiments 34

3.4 Discussion 38

4 Decision Region Determination (DRD) 41

4.1 Decision Region Determination (DRD) Problem Statement 41

4.2 The HyperEdge Cutting (HEC) Method 44

4.3 HyperEdge Cutting (HEC) Experiments 50

4.4 The Decision Region Edge Cutting (DiRECt) Method 53

4.5 Decision Region Edge Cutting (DiRECt) Experiments 57

4.6 Discussion 60



6

5 Shared Autonomy Background 63

5.1 Teleoperation Interfaces 63

5.2 Intent Prediction 64

5.3 Shared Control Teleoperation 65

5.4 Human-Robot Teaming 67

6 Shared Autonomy via Hindsight Optimization 71

6.1 Problem Statement 73

6.2 Hindsight Optimization 75

6.3 User Modelling 77

6.4 Multi-Target MDP 80

7 Shared Autonomy User Studies 83

7.1 Shared Control Teleoperation 83

7.2 Human-Robot Teaming 99

7.3 Discussion 106

8 Prediction with Assistance in Shared Autonomy 109

8.1 Learning the User Policy with Assistance 110

8.2 Assistance Action Selection 111

8.3 Iterating Learning and Policy Updates 111

8.4 Experiments 112

8.5 Discussion 116

9 Final Thoughts 119

9.1 Active Information Gathering Future Work 120

9.2 Shared Autonomy Future Work 121

9.3 Acting Under Uncertainty Future Work 123



7

A Appendix 125

A.1 Hypothesis Pruning Proofs 125

A.2 HyperEdge Cutting (HEC) Proofs 132

A.3 Multi-Target MDPs 141





1
Introduction

Uncertainty presents a fundamental challenge for any decision maker
acting in the real world. It is particularly problematic in robotics,
where it accumulating from inaccurate models, noisy sensors, and
poor calibration. These challenges have been studied in manipula-
tion [LP+84; EM88; Gol93; Hsi+08; Kov+16], mobile robotics [Cas+96;
Bur+97; Fox+98; Roy+05], aerial robotics [Cho+17a], underwater
robotic inspection [Hol+13], and human-robot collaboration [MB13;
DS13a; LS15; Sad+16b]. Acting under uncertainty has also been stud-
ied in machine learning [Das04; Bal+06; Now09; KG09; Kar+12],
statistics [Lin56; Ber85; CV95], and decision theory [How66].

Figure 1.1: Pushing a small button on
a microwave requires dealing with the
uncertainty of object localization, noisy
sensors, and arm kinematics. In tasks
like these, we apply active information
gathering to reduce uncertainty enough
to achieve our goal.

Decision making in these domains is often formulated as a Par-
tially Observable Markov Decision Process (POMDP) [Kae+98]. This
enables us to optimize some objective function under uncertainty,
naturally trading off between information gathering and task accom-
plishing for the overall objective. However, finding optimal solutions
to POMDPs is PSPACE complete [PT87]. Although several promising
approximate solvers have been developed [Roy+05; SS05; Kur+08;
SV10; Sha+12; Som+13; Sei+15], they remain intractable in many real
world settings.

Figure 1.2: Assisting a user teleoperat-
ing a robotic arm requires dealing with
uncertainty over their desired goal. Our
work in shared autonomy is motivated
by tasks like these, where clutter makes
it impossible to infer the user’s single
goal until the end of execution.

For situations where POMDP solvers are not practical, many ap-
proximations have been proposed [Roy+05; Ros+08; DS13a; Heb+13;
KS13]. As uncertainty is often the culprit of failure, a common strat-
egy is to reach a known state with high probability, and then gain
utility for that state [Cas+96; Bur+97; Fox+98; Bou+02; Zhe+05;
Fu+07; Hsi+08; Heb+13; DS13a; KS13; LS15]. However, this strategy
overlooks a key property of POMDP solutions: not all uncertainty
impedes gaining utility. Even when uncertainty is high, there often
exist actions which gain utility over the entire distribution. Thus,
relying on a known state leads to suboptimal policies.

In this thesis, we formulate policies that do not rely on reducing
uncertainty to a known state to gain utility. We formulate policies
with this property in two domains: active information gathering and



10 acting under uncertainty for information gathering and shared autonomy

human-robot collaboration. For active information gathering, we
study problems where we are initially too uncertain to accomplish
a task (fig. 1.1). However, we need not reduce uncertainty entirely
to make a decision. While prior works rely on optimizing for uncer-
tainty reduction [Cas+96; Bur+97; Fox+98; Bou+02; Zhe+05; Fu+07;
Eri+08; Hsi+08; Heb+13; Sad+16b], we formulate an objective for
gathering just enough information to make a decision. For human-
robot collaboration, we study instances where the system must si-
multaneously predict a user’s goal while achieving a shared goal. We
term this instance shared autonomy (fig. 1.2). While prior methods rely
on predicting the user’s goal before acting [Yu+05; Kof+05; CD12;
DS13a; KS13; Mue+15], we develop a method that enables progress
for a distribution over user goals when it is possible. More succinctly:

Not all uncertainty is problematic - this thesis formulates ef-
ficient policies for gaining utility under uncertainty in active
information gathering and shared autonomy.

We call methods that need not reduce uncertainty entirely goal-
directed, as they deal with uncertainty only as required for achieving
a goal.

1.1 Goal-Directed Active Information Gathering

(a) Initial Uncertainty

(b) Target Uncertainty

Figure 1.3: We can successfully push
a button on a microwave even when
uncertain of it’s pose. For a given task
accomplishing action, we can compute
the uncertainty for which we could
succeed, depicted in (b) as a set of
object poses. There are many such
sets, each corresponding to putting
the end-effector in a particular pose
and moving forward. In chapter 4, we
present a near-optimal method for gath-
ering information to go form an initial
uncertainty (a), to any set of uncertainty
for which we could succeed.

In many situations, we may not be able to accomplish our task until
some uncertainty is resolved. For example, in medical diagnosis, we
may need to run tests about the state of a patient to determine proper
treatment [Kon01]. In object search, we may require finding a particu-
lar object required for the task [Won+13; Li+16]. In search and rescue,
we are tasked with quickly finding a target [Lim+15; Lim+16]. In bio-
logical conservation, we need to decide among expensive monitoring
strategies to decide a strategy for conservation [Run+11]. In tasks of
fine-manipulation, we must often accurately localize a target object to
achieve our goal [Hsi+08; Heb+13].

In these situations, we are interested in gathering the required in-
formation as quickly as possible [Cas+96; Hsi+08; Run+11; Won+13;
Heb+13]. To do so, these methods pick some measure of uncertainty,
such as the Shannon entropy, and optimize for tests to reduce this
measure. Once this measure reaches a target threshold, information
gathering terminates, and the system tries to accomplish the task.

Ideally, the measure being optimized for considers uncertainty
tolerance inherent in the task. Unfortunately, the most commonly
used metric, the reduction of Shannon entropy [Cas+96; Bur+97;
Fox+98; Bou+02; Zhe+05; Fu+07; Eri+08; Hsi+08; Heb+13; Sad+16b],
does not have this property. Optimizing for this metric amounts



introduction 11

to reducing uncertainty indiscriminately, without considering how
uncertainty impedes gaining utility. Information gathering for the
purpose of gaining utility is captured by the decision-theoretic Value
of Information (VoI) [How66]. Unfortunately, optimally selecting tests
for this measure is NPPP-complete [KG09].

Optimizing for many natural metrics related to uncertainty, such
as the reduction of Fisher Information [Hoi+06] and reduction of
Shannon Entropy [KG05], can be done efficiently while providing
performance guarantees. This is done by showing these metrics
are submodular, a natural diminishing returns property that renders
greedy algorithms near-optimal [Nem+78; Wol82]. These guarantees
hold in the open-loop setting, where a set of actions are chosen apriori
in expectation over observations.

Newer notions of adaptive submodularity [GK11] extend these
bounds to the adaptive setting, where action selection can depend
on observations received. We review this property, and how it differs
from submodularity, in section 2.3. A method similar to reducing the
Shannon entropy, known as Generalized Binary Search (GBS) [Das04;
Now08; Now09], uses this property to provide for indiscriminate un-
certainty reduction while performing near-optimally [KB99; GB09;
GK11]. Our first contribution is showing how a similar method can
be applied to active information gathering in robotics to provide
guarantees1 (chapter 3).

1 Shervin Javdani, Matthew Klingen-
smith, J. Andrew (Drew) Bagnell,
Nancy Pollard, and Siddhartha Srini-
vasa. “Efficient Touch Based Localiza-
tion through Submodularity”. In: IEEE
International Conference on Robotics and
Automation. 2013.We extend this work to consider how uncertainty impedes de-

cision making in chapter 4. We term this the Decision Region Deter-
mination (DRD) problem, with the goal of reducing uncertainty just
enough to make a decision. See fig. 1.3 for an illustration. We present
two methods for solving this problem, differing in their compu-
tational efficiency and performance bounds2,3. We show both are

2 Shervin Javdani, Yuxin Chen, Amin
Karbasi, Andreas Krause, J. Andrew
(Drew) Bagnell, and Siddhartha Srini-
vasa. “Near Optimal Bayesian Active
Learning for Decision Making”. In:
International Conference on Artificial
Intelligence and Statistics. 2014.

3 Yuxin Chen, Shervin Javdani, Amin
Karbasi, J. Andrew (Drew) Bagnell,
Siddhartha Srinivasa, and Andreas
Krause. “Submodular Surrogates
for Value of Information”. In: AAAI
Conference on Artificial Intelligence. 2015.

adaptive submodular, enabling us to guarantee near-optimal perfor-
mance with an efficient greedy algorithm. Furthermore, it is known
that achieving a much better approximation for adaptive submodular
maximization is NP-hard [GK11]. Thus, we believe our performance
exceeds that of a general POMDP solver which does not utilize this
property

We apply this general framework to touch-based localization in
robotic manipulation, wildlife conservation management, movie
recommendation, and Behavioral economics in section 4.54. 4 In other works, we have also imple-

mented this method for user preference
learning [Hol+16] and motion plan-
ning [Cho+17b]1.2 Goal-Directed Shared Autonomy

Human-robot collaboration studies interactions between humans
and robots sharing a workspace. One instance of collaboration arises
in shared autonomy, where both the user and robotic system act si-



12 acting under uncertainty for information gathering and shared autonomy

multaneously to achieve shared goals. For example, in shared control
teleoperation [Goe63; Ros93; AM97; Deb+00; DS13a], both the user and
system control a single entity, the robot, in order to achieve the user’s
goal. In human-robot teaming, the user and system act independently
to achieve a set of related goals [HB07; Ara+10; DS13b; KS13; MB13;
Gom+14; Nik+17b].

Figure 1.4: Our feeding experiment
(chapter 7), where the user wants to eat
one of the bites of food on the plate.
Though we do not know the users goal,
we can still provide assistance by ori-
enting the fork and moving towards all
bits of food. We achieve this affect by
minimizing the expected user cost over
uncertainty. In contrast, predict-then-act
methods did not provide assistance
for 69% of execution time on average
due to their uncertainty of the users
goal. Users commented that the initial
assistance orienting the fork and getting
close to all bites was the most helpful,
as this was the most time consuming
portion of the task.

Figure 1.5: Our teaming experiment,
where the user wraps a box, and the
robot must stamp a different box. Here,
the user’s motion so far suggests their
goal is likely either the green or white
box. Though we cannot confidently
predict their single goal, our method
starts making progress for the other
boxes.

While each instance of shared autonomy has many unique require-
ments, they share a key common challenge - for the autonomous
system to be an effective collaborator, it needs to know the user’s
goal. For example, feeding with shared control teleoperation, an im-
portant task for assistive robotics [Chu+13], requires knowing what
the user wants to eat (fig. 1.4). Wrapping gifts with a human-robot
team requires knowing which gift the user will wrap to avoid getting
in their way and hogging shared resources (fig. 1.5).

In general, the system does not know the user’s goal a priori. We
could alleviate this issue by requiring users to explicitly specify their
goals (e.g. through voice commands). However, there are often a
continuum of goals to choose from (e.g. location to place an object,
size to cut a bite of food), making it impossible for users to precisely
specify their goals. Furthermore, prior works suggest requiring ex-
plicit communication leads to ineffective collaboration [Van+03; GJ03;
Gre+07]. Instead, implicit information should be used to make collab-
oration seamless. In shared autonomy, this suggests utilizing sensing
of the environment and user actions to infer the user’s goal. This idea
has been successfully applied for shared control teleoperation [LO03;
Yu+05; Kra+05; Kof+05; AK08; CD12; DS13a; Hau13; Mue+15] and
human-robot teaming [HB07; Ngu+11; Mac+12; MB13; KS13; LS15].

Most shared autonomy methods do not assist when the goal is
unknown. These works split shared autonomy into two parts: 1) pre-
dict the user’s goal with high probability, and 2) assist for that single
goal, potentially using prediction confidence to regulate assistance.
We refer to this approach as predict-then-act. While this has been ef-
fective in simple scenarios with few goals [Yu+05; Kof+05; CD12;
DS13a; KS13; Mue+15], it is often impossible to predict the user’s
goal until the end of execution (e.g. fig. 1.2), causing these methods
to provide little assistance. Addressing this lack of assistance is of
great practical importance - in our feeding experiment (section 7.2.1),
a predict-then-act method provided assistance for only 31% of the
time on average, taking 29.4 seconds on average before the confidence
threshold was initially reached.

Instead, we would prefer a method that takes actions to assist the
user even when uncertainty is present. While we may not be able
to achieve a user’s goal without predicting it, we can often make
progress towards multiple goals even when uncertain. To do so,



introduction 13

we frame shared autonomy as a general problem of minimizing the
expected user cost.

While minimizing this quantity exactly is intractable, Hindsight
Optimization [Cho+00; Yoo+08], or QMDP [Lit+95] approximates
this solution and produces our desired behavior. These methods
have been empirically successful in many domains of acting under
uncertainty. We show how the general problem of shared autonomy
can be modelled in this framework in chapter 6

5. Our user studies 5 Shervin Javdani, Siddhartha Srinivasa,
and J. Andrew (Drew) Bagnell. “Shared
Autonomy via Hindsight Optimiza-
tion”. In: Robotics: Science and Systems
(RSS). 2015.

in chapter 7 demonstrate that our method outperforms predict-then-
act approaches, enabling users to accomplish their goal faster and
with less effort6. Finally, we show how to construct and utilize better

6 Stefania Pellegrinelli, Henny Admoni,
Shervin Javdani, and Siddhartha Srini-
vasa. “Human-Robot Shared Workspace
Collaboration via Hindsight Opti-
mization”. In: IEEE/RSJ International
Conference on Intelligent Robots and
Systems. 2016.

models that incorporate how user behavior changes as a system
provides assistance in chapter 8.

Our method enables optimization in continuous action spaces,
a notoriously difficult problem for POMDP solvers. While recent
POMDP solvers provide approximate solutions in this domain [Sei+15],
they remain computationally slow, taking taking multiple seconds to
select an action. Unfortunately, this rate is too slow for shared auton-
omy, as this makes systems feel unresponsive. Our system operates
at 50Hz, enabling shared-control teleoperation to feel fast and re-
sponsive while providing assistance for a distribution over goals.

1.3 Contributions

This thesis studies computationally efficient methods for dealing with
uncertainty for active information gathering and shared autonomy.
Compared to previous works, we incorporate the insight that goal-
directed progress can be made computationally efficiently even when
uncertainty is high. We make the following contributions:

• A connection between active information gathering in robotics
and submodularity with application to touch-based localization
(chapter 3, Jav+13).

• Provably near-optimal method for goal-directed information gath-
ering under uncertainty. We provide both theoretical analysis
and experimental evidence that these frameworks outperform
approaches that reduce uncertainty indiscriminately (chapter 4,
Jav+14; Che+15).

• A model for shared autonomy as acting under uncertainty, en-
abling us to make progress for a user’s goal even when uncertain
what the goal is (chapter 6, Jav+15).

• User studies of our shared autonomy framework for both shared-
control teleoperation and human-robot teaming, demonstrating



14 acting under uncertainty for information gathering and shared autonomy

that acting over the entire distribution enables faster performance
with less user effort (chapter 7, Jav+15; Pel+16).

• An extension of our shared autonomy framework learning how
users respond to assistance, and applying this model to minimize
their cost (chapter 8).



2
Active Information Gathering Background

Active information gathering methods attempt to quickly reduce the
uncertainty by intelligently selecting information gathering actions.
This general problem arises in many domains, such as automated
medical diagnosis [Kon01], policy making [Run+11], active learn-
ing [Das04; Bal+06; LZ14], active perception [Baj88], decision the-
ory [How66], automated data collection [Hol+12], robotic active local-
ization [Fox+98; KR08; Hsi+08; Heb+13], interactive learning [H+̈08;
VB10; GB11; Für+12; Kar+12; Sad+17] and more. We review back-
ground material most relevant to this thesis here, though there are
many more works for this general problem.

2.1 Active Information Gathering in Robotics

Active information gathering has been studied in many robotics
domains, such as manipulation [Hsi+08; Heb+13; Kov+16], mobile
robotics [Cas+96; Bur+97; Fox+98; Roy+05], aerial robotics [Cho+17a],
robotic inspection [Hol+13], policy learning [VB10; Akr+12; Akr+14;
Dan+14], and human-robot collaboration [Sad+16a; Sad+17].

Many previous works on active information gathering utilize on-
line planning within the POMDP framework [Ros+08], looking at
locally reachable states during action selection. In general, these
methods limit the search to a low horizon [Hsi09], often using the
greedy strategy of selecting actions with the highest expected ben-
efit in one step [Cas+96; Bur+97; Fox+98; Hsi+08; Heb+13]. After
searching over this horizon, they apply some metric for the value of
the resulting belief (e.g. information gained), and propagate that in-
formation through the POMDP to select the current action. This is
out of necessity - computational time increases exponentially with
the search depth. However, this simple greedy strategy often works
surprisingly well, often even providing performance guarantees1. 1 We discuss studies of these perfor-

mance guarantees in section 2.2.Perhaps the most commonly used metric for information gather-
ing is the expected decrease in Shannon entropy [Cas+96; Bur+97;



16 acting under uncertainty for information gathering and shared autonomy

Fox+98; Bou+02; Zhe+05; Fu+07; Eri+08; Hsi+08; Heb+13; Sad+16b].
This is referred to as the information gain metric, and is submodular
under certain assumptions [KG05]. This property renders a greedy
open-loop plan near-optimal2. Not surprisingly, many robotic sys- 2 However, most methods mentioned

here apply it in the adaptive setting,
where the policy changed based on
observations. The guarantees of sub-
modularity do not hold in this setting.
We discuss the differences and related
properties for the adaptive setting in
section 2.3.

tems which perform well with a low horizon use this metric [Cas+96;
Bur+97; Fox+98; Bou+02; Hsi+08; Heb+13; Sad+16b], though most do
not make the connection with submodularity3.

3 Hsiao [Hsi09] mentions that touch-
based localization could be formulated
as a submodular maximization.

A common use case for active information gathering is viewpoint
selection, where the system decides the location and direction of a
sensor (e.g. camera, laser range, radar) to gather information [Baj88].
Burgard et al. [Bur+97] and Fox et al. [Fox+98] use the information
gain metric for viewpoint selection of a mobile robot using laser
range sensors. Bourgault et al. [Bou+02] incorporate this metric into
the Simultaneous Localization and Mapping (SLAM) [LDW91] frame-
work. Roy et al. [Roy+05] derive policies in this domain utilizing
a full POMDP and belief compression. Kim and Likhachev [KL16]
design an adaptive submodular framework similar to ours (chap-
ter 3) for selecting viewpoints to gather information about partially
occluded objects for grasping. For the related domain of robotic in-
spection, where a robot must decide where to examine a target to
gather information about it, Hollinger et al. [Hol+13] explore active
information gathering for constructing 3D meshes.

Similar ideas have been explored for information gathering in
clutter, where the robot can both select a viewpoint and move ob-
jects around. Wong et al. [Won+13] present an algorithm for intel-
ligently searching for a target object, utilizing priors about object
constraints and object-object co-occurrences to gather information.
Their algorithm considers searching in different containers, as well
as moving occluding objects around, to gather information. Li et al.
[Li+16] construct a policy for finding an object in clutter by extending
DESPOT [Som+13] to incorporate task constraints. They show this
outperforms greedy approaches in their setting.

An interesting avenue of recent work attempts to learn informa-
tion gathering policies directly. Choudhury et al. [Cho+17a] do so
through imitation learning [Pom89; Ros+11]. They generate infor-
mation gathering policies offline, which can be non-greedy and have
access to the full world state (referred to as the clairvoyant policy).
They then train a policy with access only to partial observability,
which will be the case during online execution, to imitate the clair-
voyant policy.

Active methods have also been used to quickly learn policies that
incorporate user preferences. These methods produce a query to
present users (e.g. a pair of trajectories) and have them provide feed-
back about their preference (e.g. preferred trajectory). Wilson et al.



active information gathering background 17

[Wil+12] formulate a method for finding a parameterized policy by
showing users short pairs of trajectories, and asking which is bet-
ter. They present two active methods for selecting queries, and show
that both require fewer rounds of feedback then randomly generated
queries. Viappiani and Boutilier [VB10] formulate a criteria called
the Expected Utility of Selection (EUS), similar to the information-
theoretic Expected Value of Information (EVOI) while being compu-
tationally more efficient. They use this criteria to select informative
choice queries, where a user chooses one item from a set. Akrour
et al. [Akr+12] extend their method to learn a linear reward function
in a continuous space by demonstrating a trajectory, and having a
user rank it relative the highest-ranked trajectory so far. They show
this outperforms random query selection. Akrour et al. [Akr+14]
later extended this work to incorporate noisy user responses. Daniel
et al. [Dan+14] formulate a method for active information within the
framework of relative entropy policy search (REPS) [Pet+10]. While
most of the aforementioned methods focus on having users rank tra-
jectories, Daniel et al. [Dan+14] have users provide numerical values,
which they argue provides more information than just a preference.
Instead of optimizing over a set of predetermined queries, Sadigh
et al. [Sad+17] actively synthesize trajectory pairs to show users to
learn a reward function for autonomous driving.

2.1.1 Touch-Based Localization

A central problem considered in this thesis (chapters 3 and 4) is
touch-based localization, where a robot uses its manipulator to localize
itself or an object. Our work was motivated by promising results in
the DARPA Autonomous Robotic Manipulation Software (ARM-S)
challenge, where teams were required to localize and manipulate
objects within a time limit. Prior to attempting the task, most teams
relied on gathering information through a hand-coded sequence of
touches4. Similar strategies were used to enable a robot to prepare a 4 DARPA Autonomous Robotic Manipu-

lation (ARM) - Phase 1 videomeal with a microwave 5

5 HERB Prepares a Meal video
Early works in this domain focused on finding an open-loop se-

quence of actions to localize an object, potentially even without sen-
sors. Lozano-Pérez et al. [LP+84] address the classic peg-in-hole
problem by finding a sequence of complaint motions that handle un-
certainty. Erdmann and Mason [EM88] explore motion strategies to
localize a planar object by tilting a tray. Goldberg [Gol93] find a fixed
sequence of parallel-jaw gripper actions to orient a polygonal part.
When it is possible to compute a fixed sequence of actions offline,
these methods are very promising, enabling object localization with
minimal online computation.

http://www.youtube.com/watch?v=jeABMoYJGEU
http://www.youtube.com/watch?v=jeABMoYJGEU
http://www.youtube.com/watch?v=9Oav3JajR7Q


18 acting under uncertainty for information gathering and shared autonomy

Theoretical analysis of the adaptivity gap (section 2.3.4), the dif-
ference in performance of the optimal adaptive policy compared
to an open-loop plan, show that open-loop methods may require
exponentially more actions than an adaptive policy to acquire the
same information [GK11; Hol+11]. More recent works incorporate
the sensing and action history into action selection to form adaptive
policies [LH98; Hsi+08; Hsi09; Heb+13].

Many works in this domain utilize guarded moves [WG75], where
a trajectory terminates when contact is made with any object. This
gives us information about the location of a face of the object (where
contact was made), as well as space free of objects (where no contact
was made). Petrovskaya and Khatib [PK11] show that, with their
well designed particle filter, randomly chosen guarded moves were
able to localize a target object to within ∼ 5mm in a full 6DOF space.
However, they required an average of 29 actions, which subsequent
works reduce significantly with more intelligent action selection.

Also motivated by promising results in the DARPA ARM-S chal-
lenge, Hebert et al. [Heb+13] present a method for greedily select-
ing a touch sensing action. They select tests that maximize the one-
step reduction of Shannon entropy like many works in other do-
mains [Cas+96; Bur+97; Fox+98; Bou+02; Zhe+05; Fu+07; Eri+08;
Hsi+08; Heb+13; Sad+16b].

Hsiao et al. [Hsi+08; Hsi09] select a sequence of information gath-
ering tactile actions through forward search in a POMDP. Possible
actions consist of pre-specified world-relative trajectories [Hsi+08],
motions based on the current highest probability state. Actions are
selected by maximizing one of two metrics: either the reduction of
Shannon entropy, which indiscriminately reduces uncertainty about
all hypotheses (our aim in chapter 3), or a decision-driven approach
of maximizing the probability of grasp success6 (our aim in chap- 6 This is similar to maximizing the

decision-theoretic Value of Information
(VoI) [How66].

ter 4). Not surprisingly, the decision-driven approach enables success
with fewer information gathering actions [Hsi09], a result we also
find in our experiments (sections 4.3 and 4.5).

Other’s have exploited the structure of contact sensing to utilize
POMDPs for touch based localization. Erez and Smart [ES10] utilize
a Gaussian belief space with local controllers, modelling contacts as
constraints, to find policies that utilize contact to reduce uncertainty.
Koval et al. [Kov+16] decompose policies into pre- and post- contact
states to efficiently solve POMDPs for planar contacts.

2.2 Near-Optimal Active Information Gathering

Active information gathering, especially in discrete settings, has been
studied very generally in machine learning [Das04; Bal+06; Now09;



active information gathering background 19

KG09; Kar+12] and statistics [Lin56; Ber85; CV95]. The problem is
formulated as sequentially selecting tests to reduce uncertainty about
a set of hypotheses.

In many cases, the goal of active information gathering is to find
the optimal sequence of tests, which have the minimum cost (in ex-
pectation) while achieving some objective (e.g. amount of uncertainty
reduced). This can be modelled as a Partially Observable Markov
Decision Process (POMDP) [SS73; Kae+98]. Unfortunately, as the
state, action, and observation spaces are often large, the application
of many black-box POMDP solvers (e.g., [Pin+06; Kur+08; Ros+08;
SV10; Som+13]) are rendered infeasible.

While deriving the optimal policy even in simplified domains
is NP-hard [Cha+07], computationally efficient methods with ap-
proximation results are known in some settings. Surprisingly, many
methods with bounded near-optimal performance rely on greedy
algorithms, which only look one step ahead when selecting each test.

One often studied case is when the objective is to find the true
hypothesis. If tests are noise-free (i.e., deterministic functions of
the hidden state), the problem is known as the Optimal Decision
Tree (ODT) problem, and a simple greedy algorithm, called Gener-
alized Binary Search (GBS) [Das04; Now08; Now09], performs near-
optimally [KB99; GB09; GK11].7 7 Interestingly, Zheng et al. [Zhe+05]

show that, when tests have binary out-
comes, the commonly used strategy
of maximizing the reduction of Shan-
non entropy [Cas+96; Bur+97; Fox+98;
Bou+02; Zhe+05; Fu+07; Eri+08; Hsi+08;
Heb+13; Sad+16b]selects the same test
as GBS.

Extensions to the ODT problem, with similar bounds and meth-
ods, have been studied extensively. One line of work examines meth-
ods for noisy test outcomes. For independent tests with persistent
noise, where the same test will produce the same noisy outcome, an
algorithm known as Equivalence Class Edge Cutting (EC2) [Gol+10]
performs near-optimally. For correlated tests with persistent noise,
the Equivalence Class Edge Discounting (ECED) [Che+17] performs
near-optimally.

A different line of work removes the assumption that the cost
of tests is fixed, and attempts to find informative paths. Here, the
cost of a test is related to the distance we would travel to some
sensing location. For certain settings when the adaptivity gap (sec-
tion 2.3.4) is known to be small, the Nonmyopic, Adaptive, InformatiVE
(NAIVE) [Sin+09] algorithm produces near-optimal results with a
non-adaptive policy. For more general instances, the Recursive Adap-
tive Identification (RAId) Lim et al. [Lim+16] algorithm produces
near-optimal paths. Lim et al. [Lim+15] later extend this work to
incorporate noisy observations. While these works offer promising
results and analyses, they are computationally infeasible for many
real-world problems.

In some cases, the decisions (e.g. medical treatments) differ from
the hypotheses (e.g. diseases). Many of the aforementioned algo-



20 acting under uncertainty for information gathering and shared autonomy

rithms reduce uncertainty indiscriminately, without considering
how it affects the task. Often, we only need to reduce uncertainty
enough to make a decision. This is captured most generally by the
decision-theoretic Value of Information (VoI) [How66]. Optimizing this
criterion in general probabilistic models is NPPP-complete [KG09].
For cases when each hypothesis corresponds to only one decision,
the EC2 algorithm above can be used to provide near-optimal test se-
lection [Gol+10]. We extend this model to allow for the more general
case where there are multiple valid decisions for each hypothesis (e.g.
there are many ways to grasp an object) in chapter 4.

Many of these methods provide their guarantees by showing they
correspond to an adaptive submodular maximization [GK11], which we
discuss in section 2.3.

2.3 Adaptive Submodularity Background

In order to provide theoretical guarantees for an efficient lazy-greedy
policy, this thesis casts problems of active information gathering into
adaptive submodular maximizations. We briefly review this property
here, and the results derived by Golovin and Krause [GK11].

We assume a known prior distribution over hypotheses h ∈ H,
given by P(h). Each hypothesis represents a possible state of the
world. We gather information by running tests t ∈ T , each of which
has has a known cost c(t). Upon running a test, we observe an out-
come o ∈ O, which is deterministic given a hypothesis h. Thus, each
hypothesis h ∈ H can be considered a function h : T → O mapping
tests to outcomes. We assume there exists a true hypothesis h∗ ∈ H,
which will be consistent with all observed outcomes.

Suppose we have executed a set of tests T = {t1, . . . , tm} ⊆ T (e.g.,
medical tests, items shown to the user, moves made by the robot),
and have observed their outcomes h∗(t1), . . . , h∗(tm). Our evidence so
far is captured by the set of test-outcome pairs, S ⊆ T ×O, where
S = {(t1, h∗(t1)), . . . , (tm, h∗(tm))}. We denote the tests in S as ST ,
and the outcomes as SO.

Upon observing S , we can rule out inconsistent hypotheses, and
update the distribution P(h | S). We denote the resulting set of
hypotheses as the version space given S :

V(S) = {h ∈ H : ∀(t, o) ∈ S , h(t) = o} (2.1)

This quantity is similar to the notion of belief states in Partially Ob-
servable Mark Decision Processes (POMDPs) [Kae+98] in that it
captures our distribution over the world given the evidence so far.



active information gathering background 21

Symbol Description

h ∈ H Hypothesis, e.g. possible state of the world
t ∈ T Test, information gathering cation
o ∈ O Observation, outcome of a test

f Objective function
c Cost function, defined for each test

S ⊆ T ×O Evidence so far, captured by test-outcome pairs
V(S) ⊆ H Version space, hypotheses remaining given evidence S

π Policy, which maps evidence S to a test to run
S(π, h) Evidence from running π if h generated outcomes

Table 2.1: Variables used for adaptive
submodular functions.

2.3.1 Problems

We define an objective function over the evidence so far f (S), which
we wish to maximize. To do so, we run tests, for which we pay an
additive cost C(S) = ∑t∈ST

c(t).
Our goal is to find a policy π for running tests given the evidence

so far. We generally would like for this policy to maximize our objec-
tive while minimizing the cost (e.g. gather enough information while
minimizing cost). Let S(π, h) be the evidence we would gather by
running policy π if hypothesis h generated outcomes. Define C(π) as
the average-case cost of running π over H, C(π) = EH[C(S(π, h))].
We define two different problems we may want to optimize a policy
for.

Problem 1 (Adaptive Stochastic Minimum Cost Cover). Let Q be
some quota of the objective function we wish to obtain (e.g. gather enough
information to make a decision). We seek a policy that obtains this quota for
any hypothesis h ∈ H while minimizing the expected cost:

π∗ = arg min
π

C(π) s.t. f (S(π, h)) ≥ Q ∀h ∈ H (2.2)

We can also consider the worst-case cost, Cwc(π) = maxh C(S(π, h)).
For adaptive submodular problems, greedy policy provides guaran-
tees for both.

For this thesis, we formulate our active information gathering
problems as ones defined by problem 1. However, it turns out that
the same greedy algorithm provides guarantees for other problems of
interest as well8. 8 In addition to the problems defined

here, we can also provide guarantees
for the sum at each time step. This is
known as the Adaptive Stochastic Min-
Sum Cover problem. The definition and
bounds are provided by Golovin and
Krause [GK11]

Problem 2 (Adaptive Stochastic Maximization). Let B be some budget
on the total cost of tests we can run. We seek a policy that maximizes our
objective function f (in expectation) subject this this budget constraint:

π∗ = arg max
π

E
H
[ f (S(π, h))] s.t. C (S(π, h)) ≤ B ∀h ∈ H (2.3)



22 acting under uncertainty for information gathering and shared autonomy

It turns out that the same greedy policy provides guarantees for
all of these if the function satisfies adaptive submodularity and adaptive
monotonicity.

2.3.2 Submodularity

First, let us consider the case when we do not condition on outcomes,
optimizing for an open-loop plan. For this section, the objective is
defined only over tests, and not their outcomes. Let T ⊆ T be a set of
tests. We define the marginal utility as:

∆ f (t | T) = f (T ∪ {t})− f (T) (2.4)

Submodularity [Nem+78] (diminishing returns): A function f is
submodular if whenever T ⊆ T′ ⊆ T , t ∈ T \T′:

∆ f (t | T) ≥ ∆ f (t | T′)

That is, the benefit of t to the smaller set T is at least as much as
adding it to the superset T′.

Monotonicity (more never hurts): A function f is monotone if the
marginal utility is always positive:

∆ f (t | T) ≥ 0 ∀T, t /∈ T

The greedy algorithm maximizes
∆ f (t|T)

c(t) , the marginal utility per
unit cost. As outcomes are not incorporated, this corresponds to an
open-loop plan.

If submodularity and monotonicity are satisfied, the greedy algo-
rithm will be within a (1 + ln maxt f (t)) factor of the optimal solution
to problem 1 for integer valued f [Wol82], and (1− 1

e ) of the optimal
solution to problem 2 [Nem+78].

It turns out that many natural notions of information, such as the
reduction of Fisher Information [Hoi+06] and reduction of Shannon
Entropy [KG05], are submodular. Natural applications of submodu-
lar maximization arise in many problems, such as physical sensing
optimization problems, where the goal is to find the best locations
to place sensors [Mut+07], document summarization [LB11], opti-
mization of control libraries [Dey+12b; Dey+12a], social network
analysis [Les+07], and many more.

2.3.3 Adaptive Submodularity

The guarantees for submodular maximization only hold in the non-
adaptive setting, corresponding to an open-loop plan. Golovin and
Krause [GK11] extended notions of submodularity and their cor-
responding bounds to the adaptive setting, where test selection can



active information gathering background 23

depend on past observations. In this setting, the expected marginal
benefit of performing an action is:

∆ f (t | S) = ∑
h

P(h | S) [ f (S ∪ {(t, h(t))})− f (S)] (2.5)

Adaptive Submodularity (diminishing returns in expectation): A
function f is adaptive submodular if whenever S ⊆ S ′ ⊆ T ×O,
t ∈ T \S ′T :

∆ f (t | S) ≥ ∆ f (t | S ′)
That is, the expected benefit of adding t to a smaller set of evi-

dence S is at least as much as adding it to the superset S ′.9 9 Note that this must hold for any set of
selected tests, and outcomes we might
observe.

Adaptive Monotonicity (more never hurts in expectation): A
function f is adaptive monotone if the expected marginal utility is
always positive:

∆ f (t | S) ≥ 0 ∀S , t /∈ ST

Strong Adaptive Monotonicity (more never hurts): A function f is
strongly adaptive monotone if it increases for any outcome we might
observe10: 10 It is easy to see that strong adaptive

monotonicity implies adaptive mono-
tonicity, as holding for every outcome
implies holding in expectation.

f (S ∪ {(t, h(t))})− f (S) ≥ 0 ∀h, t /∈ ST

Similar to the submodular setting, the greedy algorithm maxi-

mizes
∆ f (t|S)

c(t) . We refer to the policy that greedily maximizes this
quantity as πg.

Theorem 1 (Adaptive Stochastic Minimum Cost Cover [GK11]).
Let f be an adaptive submodular, strongly adaptive monotone, and self-
certifying11 function. Let η be any value such that f (S) > Q− η implies 11 In this thesis, we are only concerned

with self-certifying instances, where
whenever the policy attains the maxi-
mum possible value, it has proof of this
fact. See Golovin and Krause [GK11] for
a rigorous definition.

f (S) = Q.12 Let pmin be the minimum prior probability of any hypothe-

12 η generally corresponds to the mini-
mum the function f can increase by.

sis, pmin = minh P(h). Let π∗ be any policy, (e.g. the optimal policy for
problem 1). The expected cost of the greedy policy is bounded by:

C(πg) ≤ C(π∗)
(

ln
Q
η
+ 1
)

And the worst case cost is bounded by:

Cwc(π
g) ≤ Cwc(π

∗)
(

ln
Q
δη

+ 1
)

Theorem 2 (Adaptive Stochastic Maximization [GK11]). Let f be an
adaptive submodular and adaptive monotone function. Let π∗ be any policy
(e.g. the optimal policy for problem 2). The expected objective of the greedy
policy is bounded by:

f (S(πg, h)) >
(

1− 1
e

)
f (S(π∗, h))



24 acting under uncertainty for information gathering and shared autonomy

Theorem 1 and theorem 2 generalize the bounds for submodular-
ity [Nem+78; Wol82] to the adaptive setting. Proofs are provided by
Golovin and Krause [GK11]. Functions which naturally exhibit these
properties arise in active learning settings, where the reduction of
version space probability mass [Das04; Now08; GK11], and variants
for noisy tests and outcomes [Gol+10; Che+17], are adaptive submod-
ular. In addition to our work which utilizes this property to provide
near-optimality guarantees in robotics (chapters 3 and 4) and user
preference learning [Hol+16], it has been used by others for selecting
viewpoints for partially occluded objects [KL16], and for autonomous
driving [Sad+17].

Furthermore, adaptive submodularity enables the use of a lazy-
greedy method [Min78; GK11], where we can skip the reevaluation of
some tests13. 13 Suppose we have the cost-normalized

marginal benefit for some test t, and it
is greater than the previously computed
cost-normalized marginal benefit
for another test t′. Due to adaptive
submodularity, we know the benefit of
t′ could not have increased, and thus
can skip it’s reevaluation.

In this thesis, we utilize these proofs to provide bounds for our
information gathering methods, either to discover the true state of
the world (chapter 3) or for gathering enough information to make a
decision (chapter 4).

2.3.4 Adaptivity Gap

We have mentioned that submodular functions provide guarantees
for open-loop plans, which do not condition on outcomes, while
adaptive submodular functions provide guarantees for adaptive
policies. Numerous works have investigated the adaptivity gap for
maximizing these functions, which is the difference in performance
of the optimal adaptive policy as compared to the optimal open-loop
plan.

For problem 1, Golovin and Krause [GK11] and Hollinger et al.
[Hol+11] show that the adaptivity gap is exponential in the number
of tests, even for adaptive submodular functions. As we formulate
our information gathering problems (chapters 3 and 4) in this form,
we implement adaptive policies.

However, for problem 2, the adaptivity gap can be much smaller.
While a general adaptivity gap is not known at this time, it has been
studied for special cases, such as for set cover [GV06], or the prob-
ing problem [AN16; Gup+17]. Depending on the particular problem,
the adaptivity gap can range from e

e−1 [AN16], to 3 [Gup+17], to a
function of the target [GV06], to numerous other values. Nonetheless,
if the application can be formulated as in problem 2, the adaptivity
may be small. This has been used by Hollinger et al. [Hol+13] to pro-
vide bounds for an open-loop plan compared to the optimal policy
for underwater robotic inspection.



active information gathering background 25

2.3.5 Interactive Submodularity

Similar to adaptive submodularity, Guillory and Bilmes [GB10] de-
fine interactive submodularity for bounding the performance of greedy
adaptive policies for problem 1

14. However, this framework only pro- 14 Guillory and Bilmes [GB11] extend
these results to the case where h∗ /∈ Hvides guarantees for the worst-case performance, whereas adaptive

submodularity provides bounds for the average-case and worst-case
performance.

While the average-case bound provided by adaptive submodular-
ity makes it more appealing, interactive submodularity is generally
easier to show. It only requires pointwise-submodularity, where the
function is submodular for any fixed hypothesis h. That is, f (T, h) is
submodular for every fixed h15. 15 In particular, adaptive submodular

functions require that the returns
are diminishing for any observed
outcome, and subsequent update to
the distribution P(h | S). In practice,
showing that the expected marginal
utility decreases for any possible
update to this distribution can be tricky.





3
Hypothesis Pruning for Touch-Based Localization

In this chapter, we draw a connection between touch-based local-
ization and (adaptive) submodularity (section 2.3), a natural diminish-
ing returns property that renders a greedy algorithm near-optimal.
We are motivated by the wide application and success of works in
robotics which use the reduction of Shannon entropy, known as the
information gain, for active information gathering [Cas+96; Bur+97;
Fox+98; Bou+02; Zhe+05; Fu+07; Eri+08; Hsi+08; Heb+13; Sad+16b].
This metric is submodular under certain assumptions [KG05].

The guarantees for submodular maximization only hold in the
non-adaptive setting (section 2.3), though we still may hope for good
performance. Adaptive submodularity [GK11] extends the guarantees
of submodularity to the adaptive setting, requiring properties sim-
ilar to those of submodular functions. Unfortunately, information
gain does not have these properties. With information gain as our
inspiration, we design similar metrics that do.

A natural analog of maximizing information gain, which aims
to concentrate the target distribution to a single point, is to identify
the true hypothesis. This is known as the Optimal Decision Tree (ODT)
problem [KB99]. An adaptive submodular method known as General-
ized Binary Search (GBS) [Das04; Now08; Now09] solves this problem
near-optimally [GB09; GK11]. We extend this method for touch-based
localization, modelling the necessary assumptions and allowing for
noisy observations while maintaining adaptive submodularity.

In this chapter, we present three greedy methods for selecting
uncertainty reducing actions. The first is our variant of information
gain. Our method is similar to previous works [Cas+96; Bur+97;
Fox+98; Bou+02; Zhe+05; Fu+07; Eri+08; Hsi+08; Heb+13; Sad+16b],
though we also enforce the assumptions required for submodular
maximization. While there are no formal guarantees for applying this
metric in the adaptive setting, we might hope for good performance.
The latter two methods both satisfy adaptive submodularity, and
differ in their models of noisy observations. Like GBS, these metrics



28 acting under uncertainty for information gathering and shared autonomy

seek to maximize the expected number of hypotheses disproved by
information gathering actions. We refer to this as hypothesis pruning.
We apply these methods to touch-based localization in simulation,
and report accuracy and computation time in section 3.3. Finally, we
show the applicability of these methods on a real robot.

3.1 Problem Formulation

Figure 3.1: Hypothesis Pruning Touch-
Based Localization for door grasping.
Our method adaptively selected 3 infor-
mation gathering actions, after which
successfully grasped the door handle.

Our formulation in this chapter builds on the general framework and
variables described in section 2.3. We restate the relevant definitions
here, while drawing a connection to touch-based localization.

We represent uncertainty as a set of hypotheses h ∈ H with prior
distribution P(h). For touch-based localization, each h represents the
full pose of the target object. We gather information by running tests
t ∈ T , which result in outcomes/observations o ∈ O. For touch-based
localization, these correspond to guarded moves [WG75], where the
hand moves along a path until it feels contact. The corresponding
outcome o tells us where along the trajectory the hand stopped, or
that it reached the end without contact. Guarded moves been used
for touch-based localization before [Hsi+08; Hsi09; PK11; Heb+13].

Given a set of test-outcome pairs, we can update the distribution
over hypotheses, e.g. eliminate object locations which could not have
resulted in contact at those locations. We call the set of test-outcome
pairs our evidence S ⊆ T ×O, where S = {(t1, o1), . . . , (tm, om)}.
Given evidence S , we update our distribution as P(h | S). This
quantity is similar to the notion of belief states in Partially Observable
Mark Decision Processes (POMDPs) [Kae+98] in that it captures our
current distribution of the world given the evidence so far.

We would like to find a policy π for running tests that allows us
to reduce uncertainty below some threshold Q. Let f (S) be a function
measuring the reduction of uncertainty (e.g. decrease in Shannon
entropy). A policy π maps the set of evidence so far S to the next
test to choose (or to stop running tests). We denote S(π, h) as the
evidence we would gather (tests we would run and outcomes we
would observe) by running policy π if hypothesis h were the true
hypothesis. See fig. 3.1 for an example execution of a policy used to
localize a door handle with an initially unknown pose.

Our ultimate goal is to find a policy π which reduces uncertainty
below Q while minimizing the cost of running tests. Each test t has
a known cost c(t). For touch-based localization, this corresponds to
the length of the guarded-move trajectory, plus some cost for getting
to the start. To gather evidence, we pay an additive cost for each test,
C(S) = ∑t∈ST

c(t). We compute the expected and worst-case costs of



hypothesis pruning for touch-based localization 29

Figure 3.2: Touch-based localization
as set cover. Each test-outcome pair
amounts to covering (green area) the
hypotheses (black dots) which do not
agree, ruling out those hypotheses as
they could not have generated that
test-outcome pair. Maximize this cov-
erage is adaptive submodular [GK11],
rendering efficient greedy algorithms
near-optimal.

a policy π as:

C(π) = E
H
[C(S(π, h))]

Cwc(π) = max
h

C(S(π, h))

As formulated here, this corresponds exactly to the Adaptive
Stochastic Minimum Cost Cover Problem (1), which we restate:

Problem 1 (Adaptive Stochastic Minimum Cost Cover). Let Q be
some quota of the objective function we wish to obtain (e.g. gather enough
information to make a decision). We seek a policy that obtains this quota for
any hypothesis h ∈ H while minimizing the expected cost:

π∗ = arg min
π

C(π) s.t. f (S(π, h)) ≥ Q ∀h ∈ H (2.2)

This is no surprise - we constructed our model specifically to en-
able this connection. With this connection made, we can view touch-
based localization as an instance of (adaptive) set cover, a classic exam-
ple of submodular maximization. In particular, our method attempts
to “cover” the uncertainty, as illustrated in fig. 3.2.

However, not all active touch-based localization methods fit in this
framework. We require that certain assumptions are satisfied which
are often violated [Hsi+08; Hsi09; Heb+13]. We now make clear these
assumptions, and their implications for touch-based localization.

3.1.1 Submodularity Assumptions for Touch Localization

Fitting into the framework of submodular maximization necessitates
certain assumptions, related to maintaining the diminishing-returns
property of f . Broadly speaking, this states that the expected benefit
of t diminishes as we gain more evidence. See section 2.3 for a rigor-
ous definition. In general, this corresponds to models where t does
not change the state of the belief in such a way that a test t′ becomes
more informative than it would be now.

This requirement places certain restrictions on our framework.
First, we cannot alter the underlying hypotheses h ∈ H, so tests
are not allowed to change the state of the environment or objects.



30 acting under uncertainty for information gathering and shared autonomy

If we could, a non-informative test t could suddenly become very
informative[Hsi09]. Therefore, we cannot intentionally reposition
objects, or model object movement caused by contact. In a perfect
world, guarded-moves would stop immediately on contact, satisfying
this assumption.

Second, the cost of each test C(t) must remain constant. In touch
based localization, this means that a cost function based on the
current position of the end-effector, which changes, is not applica-
ble [Heb+13]. However, models where the end-effector is assumed to
return to a fixed start position [Hsi09], do satisfy this requirement.

Finally, all tests must be available at every step. Intuitively, if tests
are generated at each step, then a new test may simply be better than
anything so far. Instead, we generate a large, fixed set of information
gathering trajectories at the start. This further enables us to precom-
pute quantities for our observations and updates, enabling faster
computation.

When applied to touch-based localization, this frameworks lends
itself towards heavy objects that remain stationary when touched.
For such problems, we believe having an efficient algorithm with
guaranteed near-optimality outweighs these limitations.1 1 One possible way to alleviate these

limitations would be through near-
touch sensors [Hsi+09; JS12], which
may enable information gathering
actions similar to guarded moves
without making contact.

3.2 Metrics for Touch-Based Localization

We now define our various metrics for active information gathering
for touch-based localization. Each corresponds to an instantiation of
an objective function f , which we greedily optimize.

3.2.1 Information Gain

Information gain has been applied to touch-based localization be-
fore [Hsi+08; Heb+13]. In contrast to these, we utilize a large fixed
set of actions, enforce the assumptions from section 3.1.1, and use a
particle-based model (as opposed to a histogram).

Following Krause and Guestrin [KG05], we define the information
gain as the reduction in Shannon entropy. Let H(H) be a measure of
Shannon entropy for the distribution of hypotheses H. Our objective
is defined as:

fIG(S) = H(H)− H(H | S)
At each iteration, we maximize for the cost-normalized marginal

utility ∆ f , defined here as2:

2 Instead of using the information gain,
we could have also used the entropy
of the resulting distribution directly,
∆ f = H(H | S). This measure is also
submodular [Fuj78], which follows
directly from the “information never
hurts” principle [CT91]. However,
Krause and Guestrin [KG05] argue
that this is a less direct measure for
reducing uncertainty. Experimentally,
they also show that information gain
outperforms directly optimizing for
entropy reduction.

∆ fIG
(t) = E

o
[ fIG(S ∪ {(t, o)})− fIG(S) | S ]

Krause and Guestrin [KG05] show that this function is monotone
submodular if the evidence S is conditionally independent given the



hypothesis pruning for touch-based localization 31

hypothesis h. Thus, if we are evaluating this open-loop, we would
be near-optimal compared to the optimal open-loop solution. How-
ever, this can actually perform exponentially worse than the online
solution [GK11; Hol+11]. Therefore, we apply this method with an
adaptive policy.

(a) Observation for h

(b) Observation for h′

(c) Observation Distance

Figure 3.3: The observations for test
t and two hypotheses, h and h′. Each
observation th and t′h corresponds to
the time along the straight line trajec-
tory when contact first occurs with the
object. We use the difference of times
|th − th′ | when measuring how far apart
observations are.

We also need to define the probability of an observation. Let th be
the time of contact for using guarded move t if the object where at
location h (fig. 3.3a). We consider a “blurred” measurement model
where the probability of stopping at o conditioned on hypothesis h
is weighted based on the time difference between o and th, using a
Gaussian with σ modelling the measurement noise:

P(tH = o | h) ∝ exp
(
−|o− th|

2σ2

)
See fig. 3.3 for an illustration.

We could consider evaluating H(H | S) with a discrete entropy
calculation, where each h ∈ H is treated as an individual item.
However, our particle set H models an underlying continuous dis-
tribution, and we would like to capture that. Thus, we instead fit a
Gaussian to P(H | S) and evaluate the entropy of that distribution.
Let ΣS be the covariance over the weighted set of hypotheses given
evidence S , and N the number of parameters (typically x, y, z, θ). We
approximate the entropy as:

H(H | S) ≈ 1
2

ln((2πe)N |ΣS |)

After performing the selected test, we update the belief by reweight-
ing hypotheses using our observation model and Bayes rule. We con-
tinue gathering evidence until we reach some desired threshold of
H(H | S).

3.2.2 Hypothesis Pruning

Intuitively, information gain is attempting to reduce uncertainty by
removing probability mass. Here, we formulate a method with this
underlying idea that also satisfies properties of adaptive submodular-
ity and strong adaptive monotonicity. We refer to this as Hypothesis
Pruning, since the idea is to prune away hypotheses that do not agree
with observations. Golovin et al. describe the connection between
this type of objective and adaptive submodular set cover [GK11]. Our
formulation is similar - see fig. 3.2 for a visualization.

We note that adaptive submodular functions [GK11] cannot han-
dle noise - they require any hypothesis h be consistent with only one
observation per test. However, we would like to model sensor noise.
A standard method for alleviating this is to construct a non-noisy



32 acting under uncertainty for information gathering and shared autonomy

problem by generating a noisy hypothesis for every possible noisy
observations of every h ∈ H. Let ΩT(h) = {ĥ1, ĥ2, . . . } be the func-
tion that generates the noisy hypotheses ĥi for every test T . With
this construction, we have transformed our problem into one where
we have deterministic observations, one for each ĥi. Underlying our
formulation, we consider constructing this problem. Luckily, we can
compute our objective function on the original H, and do not need
to explicitly perform this construction. We present this more effi-
cient computation below, and show how to construct the equivalent
non-noisy problem in appendix A.1.1.

As before, we consider a “blurred” measurement model through
two different observation models. In the first, we define a cutoff
threshold dT . If a hypothesis is within the threshold, we keep it
entirely. Otherwise, it is removed. We call this metric Hypothesis
Pruning (HP). In the second, we downweight hypotheses with a
(non-normalized) Gaussian, effectively removing a portion of the
hypothesis. We call this metric Weighted Hypothesis Pruning (WHP).
The weighting functions are:

ωHP
o (th) =

1 if |o− th| ≤ dT

0 else

ωWHP
o (th) = exp

(
−|o− th|2

2σ2

)
Given evidence S , we define wS (h) as the downweighted h given

S , corresponding to the product of weights:

wS (h) =

 ∏
{t,o}∈S

ωo(th)

 P(h)

Note that this can never increase the probability - for any S ,
wS (h) ≤ P(h).

Define MS as the total weight of hypothesis given evidence S , and
mS ,t,o as the weight of hypotheses remaining after an additional test t
and observation o:

MS = ∑
h∈H

wS (h)

mS ,t,o = ∑
h∈H

wS (h)ωo(th)

We can now define our objective function for any partial realiza-
tion S , corresponding to removing probability mass:

f (S) = 1−MS (3.1)

In particular, we define two objective functions fHP and fWHP, which
correspond to computing the probability mass with the two weight-
ing function ωHP and ωWHP, respectively.



hypothesis pruning for touch-based localization 33

In practice, we need to discretize the infinite observation set O.
Formally, we require that an equal number of observations per hy-
pothesis h are considered. That is, for any test t and any hypotheses
hi, hj, |Ωt(hi)| = |Ωt(hj)|3. In practice, we sample observations uni- 3 Note that we must be consistent

between contact and no-contact obser-
vations. That is, if we believe test t will
contact hi but not hj, it still must be that
|Ωt(hi)| = |Ωt(hj)|. Thus, we also have
multiple noisy no-contact observations.
See appendix A.1.2 for details.

formly along the trajectory to approximately achieve this effect.
To calculate the expected marginal utility, we also need to define

the probability of receiving an observation over all hypotheses. We
present it here, and show the derivation in appendix A.1.2. Intu-
itively, this will be proportional to how much probability mass agrees
with the observation. Let Ot be the set of all possible observations for
test t:

P(tH = o|S) = mS ,t,o

∑o′∈Ot mS ,t,o

The expected marginal utility corresponds to the expected weight
of hypotheses we remove:

∆ f (t | S) = E
o∈Ot

[ f (S ∪ {(t, o)})− f (S) | S ]

= ∑
o∈Ot

mS ,t,o

∑o′∈Ot mS ,t,o′
[M−mS ,t,o]

The greedy policy πg maximizes the expected weight of hypothe-

ses removed per unit cost,
∆ f (t|S)

c(t) . After selecting an test and receiv-
ing an observation, hypotheses are removed or downweighted as
described above, and test selection is iterated. We now present our
main guarantee:

Theorem 3 (Performance Bound of HP and WHP). Let our objective
function be f as defined in eq. (3.1), utilizing either weighting function
ωHP or ωWHP. Define a threshold Q for the total weight of hypotheses
we wish to remove. Let η be any value such that f (S) > Q − η implies
f (S) ≥ Q for all S . Let π∗avg and π∗wc be the optimal policies minimizing
the expected and worst-case cost of tests selected, respectively. The greedy
policy πg satisfies:

C(πg) ≤ C(π∗)
(

ln
Q
η
+ 1
)

Cwc(π
g) ≤ Cwc(π

∗)
(

ln
Q
δη

+ 1
)

With δ a constant based on the underlying non-noisy problem, described in
appendix A.1.3.

If we utilize ωHP as our weighting
function, we can use η = minh p(h). If
we utilize ωWHP, η is related to how we
discretize observations.

Our proof, located in appendix A.1, shows that fHP and fWHP

are adaptive submodular and strongly adaptive monotone. We then
utilize theorems 5.8 and 5.9 of [GK11] to provide our bound.

In addition to being within a logarithmic factor of optimal, adap-
tive submodularity enables an efficient lazy-greedy algorithm, which



34 acting under uncertainty for information gathering and shared autonomy

does not reevaluate all tests at every step, speeding up computa-
tion [Min78; GK11].

3.3 Experiments

We implement greedy test selection with each of the metrics de-
scribed above (IG, HP, WHP). In addition, we compare against two
other methods - random test selection, and a simple human-designed
method which approaches the object orthogonally along the X, Y and
Z axes. Each object pose h consist of a 4-tuple (x, y, z, θ) ∈ R4, where
(x, y, z) are the coordinates of the object’s center, and θ is the rotation
about the z axis.

We implement our algorithms using a 7-dof Barret arm with an
attached 4-dof Barret hand. We localize two objects: a drill upright
on a table, and a door. We define an initial sensed location Xs ∈ R4.
To generate the initial H, we sample a Gaussian distribution N(µ, Σ),
where µ = Xs, and Σ is the prior covariance of the sensor’s noise.
For simulation experiments, we also define the ground truth pose
Xt ∈ R4.

For efficiency purposes, we also use a fixed number of hypotheses
|H| at all steps, and resample after each selection, adding small noise
to the resampled set.

3.3.1 Action Generation

We generate our guarded moves [WG75] as linear motions of the end
effector, consisting of a starting pose and a movement vector. Each
test starts outside of all hypotheses, and moves as far as necessary to
contact every hypothesis along the path. Note that using straight-line
trajectories is not a requirement for our algorithm. We generate tests
via three main techniques.

Sphere Sampling

Starting positions are generated by sampling a sphere around the
sensed position Xs. For each starting position, the end-effector is
oriented to face the object, and the movement direction set to Xs.
A random rotation is applied about the movement direction, and a
random translation along the plane orthogonal to the movement.

Normal Sampling

These tests are intended to have the hand’s fingers contact the object
orthogonally. First, we uniformly sample random contacts from the
surface of the object. Then, for each fingertip, we align its pre-defined



hypothesis pruning for touch-based localization 35

contact point and normal with our random sample, and randomly
rotate the hand about the contact normal. We then set the movement
direction as the contact normal.

Table Contacting

We generate random start points around the sensed position Xs, and
orient the end effector in the −z direction. These are intended to
contact the table which the object is on, and reduce uncertainty in z.

3.3.2 Simulation Experiments Setup

We simulate an initial sensor error as Xt−Xs = (0.015,−0.015,−0.01, 0.05)
(in meters and radians). Our initial random realization H is sampled
from N(µ, Σ) with µ = Xs, and Σ a diagonal matrix with Σxx = 0.03,
Σyy = 0.03, Σzz = 0.03, Σθθ = 0.1. We fix |H| = 1500 hypotheses.

We then generate an identical test set T for each metric. The set
consists of the 3 human designed trajectories, 30 sphere sampled
trajectories, 160 normal trajectories, and 10 table contact trajectories
(section 3.3.1), giving |T | = 203.

We run 10 experiments using a different random seed for each,
generating a different set T and H, but ensuring each metric has
the same T and initial H for a random seed. Each method chooses
a sequence of five tests, except the human designed sequence which
consists of only three tests.

3.3.3 Simulation Experiments Results

0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

Action Number

S
u

m
 o

f 
E

ig
e

n
v
a

lu
e

s

Drill Covariance Evolution

 

 

IG
HP
WHP
Human
Random

(a) Drill Covariance Evolution

0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

Action Number

S
u

m
 o

f 
E

ig
e

n
v
a

lu
e

s
Door Covariance Evolution

 

 

IG
HP
WHP
Human
Random

(b) Door Covariance Evolution

Figure 3.4: Uncertainty after each test
for drill and door experiments. The
bars show the mean and 95% CI of the
sum of eigenvalues of the covariance
matrix over experiments described in in
section 3.3.2.

We analyze the uncertainty reduction of each metric as the sum of
eigenvalues of the covariance matrix, shown in fig. 3.4. All metrics
were able to reduce the uncertainty significantly – confirming that
that even random tests reduce uncertainty [PK11]. However, as the
uncertainty is reduced, the importance of test selection increases, as
evidenced by the relatively poor performance of random selection for
the later tests. Additionally, we see the human designed trajectories
are effective for the drill, but perform poorly on the door. Unlike
the drill, the door is not radially symmetric, and its flat surface and
protruding handle offer geometric landmarks that our test selection
metrics can exploit.

For one drill experiment, we also display the first 5 tests selected
in table 3.2. Note that the tests selected are very different, while
performance appears similar.
Observation 1: Information Gain (IG), Hypothesis Pruning (HP),
and Weighted Hypothesis Pruning (WHP) all perform similarly well.
On the one hand, you might expect IG to perform poorly with adap-



36 acting under uncertainty for information gathering and shared autonomy

IG HP WHP

Time (s) 47.171± 0.25 8.41± 0.58 25.70± 0.29

Table 3.1: Time to select one test for
each metric, average and 95% CI
over drill experiments described in
section 3.3.2

tive greedy selection, as we don’t have any guarantees. On the other,
Shannon entropy has many properties that make it a good measure
of uncertainty. Figure 3.4 displays the covariance of all particles,
which is the criterion IG directly optimizes. Note that, surprisingly,
HP and WHP perform comparably despite not directly optimizing
this measure.
Observation 2: The HP and WHP perform faster than IG (table 3.1).
This is due to their inherent simplicity and the more efficient lazy-
greedy algorithm [Min78; GK11]. Additionally, we lose little per-
formance with large computational gains with the non-weighted
observation model of HP.

3.3.4 Robot Experiments

We implemented each of our methods (IG, HP, WHP) on a robot
with a Barret arm and hand, and attempted to open a door. Xs is
initialized with a vision system corrupted with an artificial error
of 0.035m in the y direction. Our initial random realization H is
sampled from N(µ, Σ) with µ = Xs, and Σ a diagonal matrix with
Σxx = 0.02, Σyy = 0.04, Σzz = 0.02, Σθθ = 0.08. We fix |H| = 2000
hypotheses. We initially generate 600 normal tests trajectories (sec-
tion 3.3.1), though after checking for kinematic feasibility, only about
70 remain.

We utilize each of our uncertainty reducing methods prior to using
an open-loop sequence to grasp the door handle. Once a method
selects the next test, we motion plan to its start pose and perform the
straight line guarded-move using a task space controller. We sense
contact by thresholding the magnitude reported by a force torque
sensor in the Barret hand.

Without touch localization, the robot missed the door handle en-
tirely. With any of our localization methods, the robot successfully
opened the door, needing only two uncertainty reducing tests to do
so. Selected tests are shown in table 3.3.
Observation 3: Using our faster adaptive submodular metrics, se-
lecting a test takes approximately as long as planning and executing
it. This suggests that adaptive test selection will often outperform a
non-adaptive plan generated offline that requires no planning time,
but more tests.



hypothesis pruning for touch-based localization 37

IG HP WHP Random Human

A
ct

io
n

1
A

ct
io

n
2

A
ct

io
n

3
A

ct
io

n
4

A
ct

io
n

5

Table 3.2: First five tests selected for
each metric in one of our drill experi-
ments (except Human, which only has
3 tests). Hypotheses prior to the test
are grey, and hypotheses updated after
observation are yellow.



38 acting under uncertainty for information gathering and shared autonomy

IG HP WHP
A

ct
io

n
1

A
ct

io
n

2
Table 3.3: Tests selected during robot
experiment. Note that IG and HP select
the same first test. All metrics led to a
successful grasp of the door handle.

3.4 Discussion

In this work, we made a connection between submodularity and
information gathering in robotics with specific application to touch-
based localization. Our insight stems from noting that many nat-
ural notions of information, such as the reduction of Fisher Infor-
mation [Hoi+06] and reduction of Shannon Entropy [KG05], are
submodular. This property renders an efficient greedy policy near-
optimal [Nem+78; Wol82], an attractive property for active informa-
tion gathering as the computational cost grows exponentially with
search depth.

We first provided the specific assumptions required to model ac-
tive information gathering problems in robotics as submodular max-
imizations (section 3.1.1). With these assumptions, we presented our
own submodular variant of the information gain (IG) (section 3.2.1), a
commonly used metric in robotics [Cas+96; Bur+97; Fox+98; Bou+02;
Zhe+05; Fu+07; Eri+08; Hsi+08; Heb+13; Sad+16b]. This renders the
greedy algorithm near-optimal in the open-loop setting, where the
system does not choose tests based on observations it has received.
Next, we presented our own metrics, Hypothesis Pruning (HP) and
Weighted Hypothesis Pruning (WHP) (section 3.2.2) which satisfy
adaptive submodularity [GK11]. This enabled us to show that greedy
selection is guaranteed to provide near-optimal performance in the
adaptive setting. In addition, these metrics are much faster, both due



hypothesis pruning for touch-based localization 39

to their simplicity and a more efficient lazy-greedy algorithm [Min78;
GK11].

One potential downside of this work is that it reduces uncertainty
indiscriminately, without consider the task at hand. For example,
actions meant to grasp a hand can often tolerate uncertainty inher-
ently [DS10], enabling us to perform the task successfully perform
without identifying the true hypothesis. We address this limitation in
chapter 4.





4
Decision Region Determination (DRD)

In chapter 3, we choose tests that reduce uncertainty about the set
of hypotheses directly. In many practical problems, we are primarily
concerned about reducing uncertainty for the purpose of making a deci-
sion. That is, we would like to reduce uncertainty in a structured way
to ensure a decision will be successful. Choosing tests that reduce un-
certainty dramatically, but still leave it unclear what action to choose,
will not be effective.

This is captured most generally by the decision-theoretic Value of
Information (VoI) [How66]. Unfortunately, optimizing this criterion in
general probabilistic models is NPPP-complete [KG09].

Instead, we construct the Decision Region Determination (DRD)
problem (section 4.1), which captures uncertainty reduction for deci-
sion making in a discrete setting. We design surrogate objectives for
this problem, maximized if and only if uncertainty is reduced enough
to make a decision. Crucially, we prove that our objectives satisfy
adaptive submodularity and strong adaptive monotonicty (section 2.3), en-
abling us to provide near-optimality guarantees with a simple greedy
algorithm [GK11]. Experimentally, we show that our methods out-
perform optimizing for VoI directly, requiring fewer tests before a
decision can be made.

We present two efficient greedy methods with near-optimality
guarantees. The first, HyperEdge Cutting (HEC, section 4.2), exhibits
a tighter optimality bound, but is computationally inefficient in large
domains. The second, Decision Region Edge Cutting (DiRECt, sec-
tion 4.4), is computationally more efficient, with a looser bound, but
has nearly the same empirical performance.

4.1 Decision Region Determination (DRD) Problem Statement

(a) Hypotheses and Decision Re-
gions

(b) Test and Outcome

(c) Uncertainty in Decision Region

Figure 4.1: (a) The Decision Region De-
termination (DRD) problem, depicted
with dots for hypotheses and circles for
decision regions. (b) Each test and out-
come eliminates a subset of hypotheses.
(c) We aim to encapsulate all remaining
hypotheses in any one decision region.
While hypotheses, decisions, and tests
are depicted spatially, our method
utilizes arbitrary sets for each.

We present the Decision Region Determination (DRD) problem for
reducing uncertainty for decision making. As before, we represent
uncertainty as a set of hypotheses h ∈ H with prior distribution P.



42 acting under uncertainty for information gathering and shared autonomy

We gain information by running tests t ∈ T , which produce outcomes
o ∈ O. Each test and outcome eliminate inconsistent hypotheses1. 1 See section 2.3 and table 2.1 for more

rigorous variable definitions.In addition, suppose we have a set of decisions R, with the even-
tual goal of selecting one after gathering information. For example,
in medical diagnosis, we choose a treatment; in robotic manipula-
tion, we press a button; in content search, we recommend a particular
movie. Each decision region r ∈ r corresponds to the set of hypotheses
for which it would succeed, i.e., r ⊆ H. Formally, we also assume
that the set of hypotheses is covered by the collection of decision
regions, i.e., H = ∪Rr.

Our goal is to select tests that quickly concentrate all consistent
hypotheses in a single decision region. Upon doing so, we know a
decision that would succeed. See fig. 4.1.

Importantly, we need not reduce all uncertainty (i.e. identify h∗)
to make a decision. For example, to push a button, we can tolerate
uncertainty related to the size of the button and the direction we
will push (fig. 4.2). Compared to our prior work (chapter 3), and the
commonly used metric of reduction of Shannon entropy [Cas+96;
Bur+97; Fox+98; Bou+02; Zhe+05; Fu+07; Eri+08; Hsi+08; Heb+13;
Sad+16b], we desire an algorithm that reduces uncertainty while
considering the possible decisions. Similar methods have outperform
indiscriminate uncertainty reduction, requiring fewer tests before a
decision can be made [Hsi09].

Figure 4.2: A decision region for push-
ing the button of a microwave. Each
decision corresponds to putting the
end-effector at a particular position and
moving forward. For each decision,
there are many poses of the microwave
for which it would succeed. Instead of
finding fully localizing the microwave,
our goal is to reduce uncertainty just
enough to know a particular decision
will succeed.

Recall that our evidence so far is captured by the set of test-outcome
pairs, S ⊆ T ×O, where S = {(t1, h∗(t1)), . . . , (tm, h∗(tm))}. Given
the evidence, we denote the resulting set of consistent hypotheses as
the version space V(S), defined in eq. (2.1).

We would like to find a policy π for running tests that allows us
to determine a decision region r the true hypothesis h∗ is guaranteed
to lie in. Formally, a policy π is a function from a set of evidence
so far S , to the next test to choose (or to stop running tests). Upon
termination, we require that V(S) ⊆ r for some r ∈ R.

Our ultimate goal is to find a policy that determines a suitable
decision while minimizing the cost of tests. As before, let S(π, h) be
the evidence we would gather (tests we would run and observations
we would receive) by running policy π if hypothesis h were the true
hypothesis. Each test t has a known cost c(t). To gather evidence, we
pay an additive cost for each test, C(S) = ∑t∈ST

c(t). We compute the
expected cost of a policy π as2: 2 As before, we can also consider

the worst-case cost, Cwc(π) =
maxh C(S(π, h)). We focus here on the
average-case cost, but similar bounds
also hold for the worst-case cost with
the same methods. See section 2.3.3 for
details.

C(π) = E
H
[C(S(π, h))]

We are now ready to define our problem, which is similar to prob-
lem 1:



decision region determination (drd) 43

Problem 3 (Decision Region Determination (DRD)). We seek a policy
that guarantees the version space is encapsulated by any decision region
while minimizing the cost to do so:

π∗ = arg min
π
C(π) s.t. ∀h, ∃r : V(S(π, h)) ⊆ r (4.1)

Special cases of problem 3 have been studied before. In particular,
when each hypothesis is contained in a dedicated decision region,
this is called the Optimal Decision Tree (ODT) problem [KB99]. More
generally, the special case where the regions partition the hypothesis
space (i.e., do not overlap), is called the Equivalence Class Determi-
nation (ECD) problem [Gol+10]. For both of these special cases, it is
known that finding a policy π for which C(π) ≤ C(π∗)O(ln n) is
NP-hard [Cha+07]. Here, π∗ indicates the optimum policy.

4.1.1 General Strategy

Optimizing directly for eq. (4.1) is intractable. Instead, our general
strategy will be to transform problem 3 into an alternative repre-
sentation which is more amenable to optimization. In particular, we
construct surrogate objectives f which are maximized if and only if
problem 3 is solved. Importantly, these functions satisfy both strong
adaptive monotonicity and adaptive submodularity. Golovin and Krause
[GK11] show that if a function satisfies these properties, then an
efficient greedy algorithm provides near optimal solutions. See sec-
tion 2.3.3 for definitions and details.

We then choose tests to maximize f , which results in problem 3

being solved near-optimally.

4.1.2 Special case: Equivalence Class Determination

In general, multiple decisions are equally suitable for a hypothesis
(e.g. many ways to grasp an object). Hence, decision regions overlap
(fig. 4.1a), where hypotheses can be in multiple decision regions.

As a special case of the Decision Region Determination problem,
the Equivalence Class Determination (ECD) problem [Gol+10] only
allows disjoint decision regions, i.e., ri ∩ rj = ∅ for i 6= j. This means
that each hypothesis h is associated with a unique decision. For this
problem, Golovin et al. [Gol+10] present the EC2 algorithm. Our
algorithms extend EC2 to the case of overlapping decision regions. We
review this algorithm here, which serves as an inspiration for our
approaches.

Here, hypotheses are considered as nodes in a graph G = (V, E),
and weighted edges are drawn between hypotheses in different deci-



44 acting under uncertainty for information gathering and shared autonomy

sion regions. Formally:

E = ∪i 6=j{{h, h′} : h ∈ ri, h′ ∈ rj}

Where the weight of an edge is w({h, h′}) = P(h) · P(h′); similarly,
the weight of a set of edges is w(E′) = ∑e∈E′ w(e). Note that, by
construction, these edges are what must be disambiguated in order
to make a decision - if an edge exists, then we are unsure which
decision to make. Likewise, if there are no edges, everything is in a
single region, and problem 3 is solved.

Analogous to the definition of V(S) in eq. (2.1), we define the set
of edges consistent with S as those edges where both hypotheses
incident to the edge are consistent:

E(S) = {{h, h′} ∈ E : ∀(t, o) ∈ S , h(t) = o, h′(t) = o} (4.2)

A test t with outcome o is said to “cut” edges which are no longer
consistent (when either of incident hypotheses are inconsistent).
Performing tests will cut edges, and we aim to eliminate all edges
while minimizing the expected cost incurred, i.e. the number of tests
required.

The EC2 objective is defined as the total weight of edges cut:

fEC(S) = w(E)− w(E(S))

As in our general strategy, Golovin et al. [Gol+10] show that fEC

is maximized if and only if the ECD problem is solved, where all
remaining hypotheses are encapsulated by one decision region. Fur-
thermore, they show that fEC satisfies both strong adaptive mono-
tonicity and adaptive submodularity, rendering greedy solutions near-
optimal. However, these results only hold when decision regions are
disjoint3. 3 Additionally, this objective is fast to

compute by noting that the sum of
edge weights is a elementary symmetric
polynomial of order 2. See [Gol+10] for
details.

We now present two methods with the same general strategy for
the more general DRD problem, and analyze them both theoretically
and empirically.

4.2 The HyperEdge Cutting (HEC) Method

We now introduce and analyze our first method – HyperEdge Cutting
(HEC). Here, we transform the problem into alternative representa-
tion – a hypergraph for splitting decision regions. Observing certain
test outcomes corresponds to downweighting or cutting hyperedges
in this hypergraph. The construction is chosen so that cutting all
hyperedges is a necessary and sufficient condition for driving all
uncertainty into a single decision region.

Briefly, a hypergraph G is a pair G = (X, E), where X is a set of
elements called nodes, and E is a collection of multisets of X called



decision region determination (drd) 45

hyperedges. We note that we can fully specify the DRD problem by
setting X = H, E = R. We refer to this hypergraph as the region
hypergraph Gr = (H,R).

4.2.1 Splitting Hypergraph Construction

We construct a different hypergraph, the splitting hypergraph Gs, and
define our objective on that. Here, our hyperedges are not sets, but
multisets, a generalization of sets where members are allowed to
appear more than once. As a result, a node can potentially appear in
a hyperedge multiple times. The cardinality of a hyperedge refers to
how many nodes it is connected to.

We observe that for solving the DRD problem, we can group to-
gether all hypotheses that share the same region assignments. We
refer to this grouping as a subregion g, and the set of all subregions as
G. More formally, for any pair hk ∈ gi and hl ∈ gi, we have hk ∈ rj

if and only if hl ∈ rj. In a slight abuse of notation, we say that a sub-
region is contained in a region, g ∈ r, if ∀h ∈ g, h ∈ r (fig. 4.3b).
Similarly, we say that h ∈ e if ∃g ∈ e s.t. h ∈ g. It is easy to see that
all remaining hypotheses V(S) are contained in r if and only if all
remaining subregions are contained in r.

We construct the splitting hypergraph Gs over these subregions.
Each subregion g ∈ G corresponds to a node. The hyperedges e ∈ E
consist of all multisets of precisely k subregions, e = {g1, . . . , gk},
such that a single decision region does not contain them all (we will
describe how k is selected momentarily). Note that hyperedges can
contain the same subregion multiple times. Formally,

E = {e : |e| = k ∧ @ r s.t. ∀h ∈ e, h ∈ r}. (4.3)

Our splitting hypergraph is defined as Gs = (G, E). Figure 4.3b
illustrates the splitting hypergraph obtained from the DRD instance
of fig. 4.3a.4. 4 We could consider defining a hy-

pergraph where hyperedges are sets
instead of multisets, without containing
the same subregion multiple times,
and use this to solve the DRD problem.
However, when hyperedges have vary-
ing cardinality, the objective no longer
satisfies adaptive submodularity.

Hyperedge Cardinality k. Key to attaining our results is the proper se-
lection of hyperedge cardinality k. If k is too small, our results won’t
hold, and our method won’t solve the DRD problem. If k is too large,
we waste computational effort, and our theoretical bounds loosen.
Here, we define the cardinality we use practically. Our theorems hold
for a smaller, more difficult to compute k as well. See appendix A.2
for details.

k = min
(

max
h∈H
|{r : h ∈ r}|, max

r∈R
|{g : g ∈ r}|

)
+ 1 (4.4)

Note that each term is a property of the original region hypergraph
Gr: maxh |{r : h ∈ r}| is the maximum degree of any node, and



46 acting under uncertainty for information gathering and shared autonomy

maxr |{g : g ∈ r}| bounds the maximum cardinality of hyperedges.5 5 It is precisely the maximum cardinal-
ity of any hyperedge if we grouped
hypotheses into subregions in Gr .

4.2.2 Relating DRD and HEC

(a) Regions and hypotheses

1,1,3 1,2,3 1,3,3

(b) Subregions and Hypergraph

(c) Edges cut if all h ∈ g3 inconsistent

Figure 4.3: (a) An instance of the De-
cision Region Determination (DRD)
problem with two decision regions.
Black dots represent hypotheses and
circles represent decision regions. (b)
The resulting subregions and splitting
hyperedges constructed by Hyperedge
Cutting (HEC) method. Thickness
of edge represents weight, which is
proportional to weight in subregion.
(c) Resulting hypergraph when all
hypotheses in subregion g3 inconsistent,
causing all edges to be “cut”.

By construction, these hyperedges correspond to hypotheses we must
disambiguate if we are to make a decision. We utilize this to make
progress for problem 3. Observing a set of test-outcomes S ⊆ T ×O

eliminates inconsistent hypotheses, and consequently downweights
or eliminates (“cuts”) incident hyperedges (fig. 4.3c). Analogous to
the definition of V(S) in eq. (2.1) and consistent edges in EC2 in
eq. (4.2), we define the set of hyperedges consistent with S by

E(S) = {e ∈ E : ∀(t, o) ∈ S ∀h ∈ e, h(t) = o} (4.5)

The following result guarantees that cutting all hyperedges is a nec-
essary and sufficient condition for success, i.e., driving all uncertainty
into a single decision region.

Theorem 4 (Relation of DRD and HEC). Suppose we construct a
splitting hypergraph by drawing hyperedges of cardinality k according to
eq. (4.3). Let S ⊆ T ×O be a set of evidence. All consistent hypotheses lie
in some decision region if and only if all hyperedges are cut, i.e.,

E(S) = ∅ ⇔ ∃r : V(S) ⊆ r

The proof is provided in appendix A.2.2. Thus, the problem 3 is
equivalent to finding a policy of minimum cost that cuts all hyper-
edges. This insight suggests a natural algorithm: select tests that
cut as many edges as possible (in expectation). In the following, we
formalize this approach.

4.2.3 Solving DRD through HyperEdge Cutting

Given the above construction, we define a suitable objective func-
tion whose maximization will ensure that we pick tests to remove
hyperedges quickly, thus providing us with a method that identifies
a correct decision region. First, we define the weight of a subregion
as the sum of hypothesis weights, p(g) = ∑h∈g p(h). We define
the weight of a hyperedge e = {g1, . . . , gk} as w(e) = ∏k

i=1 P(gi).
More generally, we define the weight of a collection of hyperedges as
w({e1, . . . , en}) = ∑n

l=1 w(el). Now, given a pair of test/observation
(t, o), we can identify the set of inconsistent hypotheses, which in
turn implies the set of hyperedges that should be downweighted or
removed. Formally, given a set of test/observation pairs S ⊆ T ×O,
we define its utility fHEC(S) as

fHEC(S) = w(E)− w(E(S)). (4.6)



decision region determination (drd) 47

Thus fHEC(S) is the total mass of all edges cuts when we have evi-
dence S .

A natural approach to the problem 3 is thus to seek policies that
maximize eq. (4.6) as quickly as possible. Arguably the simplest ap-
proach is a greedy approach that iteratively chooses the test that
increases eq. (4.6) as much as possible, in expectation over test out-
comes.

Analogous to eq. (2.5), we define the expected marginal gain of a test
t given evidence S ⊆ T ×O as follows:

∆ fHEC
(t |S)=E

h
[ fHEC(S ∪ {(t, h(t))})− fHEC(S) | S ]

Thus, ∆ fHEC
(t | S) quantifies, for test t, the expected reduction in

hyperedge mass upon observing the outcome of the test. It is ap-
parent that all hyperedges are cut if and only if ∆ fHEC

(t | S) = 0
for all tests t ∈ T. Given this, our HEC method simply starts with
S = ∅. It then proceeds in an iterative manner, greedily selecting the
test t∗ that maximizes the cost-normalized expected marginal ben-

efit, t∗ = arg maxt
∆ fHEC

(t|S)
c(t) , observes the outcome h(t∗) and adds

the pair (t∗, h(t∗)) to S . It stops as soon as all edges are cut (i.e., the
marginal gain of all tests is 0).

4.2.4 Theoretical Analysis

The key insight behind our analysis is that fHEC satisfies two prop-
erties: strong adaptive monotonicity and adaptive submodularity. Those
properties are formally established for our fHEC objective and the
associated marginal gain ∆ fHEC

in the following Theorem:

Theorem 5 (Adaptive Submodularity of HEC). The objective function
fHEC defined in eq. (4.6) is adaptive submodular and strongly adaptive
monotone.

As stated before, Golovin and Krause [GK11] prove that for se-
quential decision problems satisfying adaptive monotonicity and
adaptive submodularity, greedy policies are competitive with the
optimal policy.

In particular, as a consequence of theorem 5 and Theorem 5.8 of
Golovin and Krause [GK11], we obtain the following result for our
HEC method:

Theorem 6 (HEC Performance Bound). Assume that the prior probabil-
ity distribution P on the set of hypotheses is rational. Then, the performance
of πHEC is bounded as follows:

C(πHEC) ≤ (k ln(1/pmin) + 1)C(π∗),

where pmin = minh∈H P(h) and π∗ is the optimal policy.



48 acting under uncertainty for information gathering and shared autonomy

Algorithm 1: Hyperedge Weight

procedure Hyperedge Weight(H, k)
Compute subregions G from H
W ← CHPk(G)
Initialize queue Q1 with every subregion g ∈ G
for all k̂ ≤ k do

for all ζ k̂ ∈ Qk̂ do
if ∃r s.t. ∀h ∈ ζ k̂, h ∈ r then

W ←W −∏g∈ζ k̂
p(g)CHPk−k̂(ζ k̂)

Add all supersets of ζ k̂ to Qk̂+1

return W

Proofs for these theorems are provided in appendix A.2
For the special case of disjoint regions (i.e., the ECD Problem, cor-

responding to k = 2), our objective fHEC is equivalent to the objective
function proposed by Golovin et al. [Gol+10], and hence our Theo-
rem 6 strictly generalizes their result. Furthermore, in the special case
where each test can have at most two outcomes, and we set k = 1,
the HEC method is equivalent to the Generalized Binary Search
algorithm for the ODT problem, and recovers its approximation guar-
antee.

4.2.5 Efficient Implementation

Our HEC method computes ∆ fHEC
(t | S) for every test in T , and

greedily selects one at each time step. Naively computing this quan-
tity involves constructing the splitting hypergraph Gs for every pos-
sible observation, and summing the edge weights. This is computa-
tionally expensive, as constructing the graph requires enumerating
every multiset of order k and checking if any region contains them
all, resulting in a runtime of O(|G|k). We can, however, quickly prune
checks and iteratively consider multisets of growing cardinality dur-
ing our computation by utilizing the following fact:

Proposition 1. A set of subregions G shares a region only if all subsets
G′ ⊂ G also share that region.

4.2.5.1 Utilizing Complete Homogeneous Symmetric Polynomi-
als

Our general strategy will be to compute the sum of weights over all
multisets of cardinality k, and subtract those that correspond to a
shared region. To do so efficiently, we identify algebraic structure
in computing a sum of multisets, where a multiset corresponds to a



decision region determination (drd) 49

product. Namely, it is equivalent to computing a complete homoge-
neous symmetric polynomial.

1,3,31,2,31,1,31,1,1 3,3,3

1,1,2 1,2,2 2,2,32,2,2 2,3,3

(a) All Multisets

1,3,31,2,31,1,3

(b) |ζ| = 1 Sets Removed

1,3,31,2,31,1,3

(c) |ζ| = 2 Sets Removed

Figure 4.4: A depiction of our method
as hyperedges. (a) The equivalent
hyperedges of CHP3(G). (b) First
iteration of algorithm 1 which re-
moves all |ζ| = 1 (light edges)
by subtracting g1CHP2({g1}) +
g2CHP2({g2}) + g3CHP2({g3}). (c)
Second iteration of algorithm 1 which
removes all |ζ| = 2 (light edges) by
subtracting g1g2CHP1({g1, g2}) +
g2g3CHP1({g2, g3})

For any G ⊆ G and cardinality k̂, we define Gk̂(G) as all multisets
over groups G of cardinality k̂. Unlike hyperedges, these multisets
can share a region. Formally

Gk̂(G) =
{
{g1, . . . , gk̂} ⊆ G

}
Recall that w(Gk̂(G)) = ∑Gk̂(G) ∏g P(g). Computing w(Gk̂(G)) can
be performed efficiently as this quantity is exactly equivalent to the
complete homogeneous symmetric polynomial (CHP) of degree k̂ over G.
We will briefly review a well known variant of the Newton-Girard
formulae which will make an efficient algorithm for computing
w(Gk̂(G)) clear.

Define any set of variables x = {x1, · · · , xn}.

PSi(x) = ∑
x∈x

xi

CHPi(x) = ∑
l1+...ln=i;lj≥0

∏
xj∈x

x
lj
j

Here PSi is the i-th power sum, and CHPi is the i-th complete homo-
geneous symmetric polynomial.

We have the identity [Mac98; Ser00]:

CHPi(x) =
1
i

i

∑
j=1

CHPi−j(x)PSj(x)

Thus, we iteratively compute CHP1(G). . .CHP̂k(G) to compute
w(Gk̂(G)) = CHP̂k(G) with runtime O(k̂|G|).

We now turn our attention to efficiently computing the weight
of all multisets that correspond to subregions encapsulated by a re-
gion. Let ζ be a set (not multiset) of subregions that shares a region.
Formally:

ζ = {g1 . . . gk̂} k̂ ≤ k,@r s.t. ζ ⊆ r

We compute the term corresponding to ζ we subtract from CHPk(G)
(weight of all multisets), as ζ shares a region. To avoid double count-
ing, we force the term to include ∏g∈ζ p(g) as a factor, i.e. if we think
of a hyperedge as a product, we force one link to each element of ζ.

w(ζ) = ∏
g∈ζ

p(g) ∑
l1+...lk̂=k−k̂;li>0

p(g1)
l1 . . . p(g

k̂
)lk̂

= ∏
g∈ζ

p(g)CHPk−k̂(ζ)

Using this, we compute w(E) = CHPk(G) − ∑ζ⊆G w(ζ) by finding
every set ζ ⊆ G that shares a region. Furthermore, we can utilize



50 acting under uncertainty for information gathering and shared autonomy

proposition 1 to prune sets, and only consider ζ k̂+1 which are super-
sets of any ζ k̂. The method is detailed in algorithm 1, and depicted in
fig. 4.4.

Additionally, we note that region assignments do not change as
observations are received. In practice, we find all sets of subregions
that share a region once. At each time step, we need only sum over
the terms corresponding to remaining hypotheses.

Note that in the worst case, this method still has complexity
O(|G|k). This occurs when many, at least k, subregions share a sin-
gle region. The complexity is then controlled by how many distinct
subregions a single region can be shattered into, and the largest num-
ber of regions a single hypothesis can belong to. However, for many
practical problems, we might expect many regions to be separated,
e.g., when |R| � k. In this case, algorithm 1 will be significantly
more efficient.

Finally, we note that we can utilize a lazy-greedy algorithm6, appli- 6 We describe this algorithm in more
detail in section 2.3.3.cable to all adaptive submodular functions, which directly uses the

diminishing returns property to skip reevaluation of actions [Min78;
GK11].

4.3 HyperEdge Cutting (HEC) Experiments

In this section, we empirically evaluate HEC on the two applications
- approximate comparison-based learning and touch based localiza-
tion with a robotic end effector.

We compare HEC with five baselines. The first two are variants of
methods for the specialized versions of the DRD problem described
earlier - generalized binary search [Now09] and equivalence class
edge cutting [Gol+10]. For generalized binary search (GBS), we as-
sign each hypothesis to its own decision region, and run HEC on this
hypothesis-region assignment until only one hypothesis remains. To
apply equivalence class edge cutting (EC2), decision regions must be
disjoint. Thus, we randomly assign each hypothesis to one of the de-
cision regions that it belongs to, and run EC2 until only one of these
new regions remains. For each of these, we also run a slightly mod-
ified version, termed GBS-DRDand EC2-DRDrespectively, which
selects tests based on these methods, but terminates once all hypothe-
ses are contained in one decision region in the original DRD problem
(i.e. when the HEC termination condition is met).

The last baseline is a classic heuristic from decision theory: my-
opic value of information (VoI) [How66]. We define a utility function
U(h, r) which is 1 if h ∈ r and 0 otherwise. The utility of V(S) cor-
responds to the maximimum expected utility of any decision region,
i.e., the expected utility if we made a decision now. VoI greedily



decision region determination (drd) 51

10
0

10
1

10
2

Number of regions

0

2

4

6

8

10

12

Q
u
e
ry

 c
o
m

p
le

x
it
y

GBS

HEC

EC2-DRD

GBS-DRD
VoI

EC2

(a) MovieLens 100k (k = 3)

1 2 3 4
Region overlap

4

5

6

7

8

9

10

11

12

Q
u
e
ry

 c
o
m

p
le

x
it
y

EC2

EC2-DRD

VoI
GBS

HEC

GBS-DRD

(b) MovieLens 100k (|R| = 12)

Figure 4.5: Results on MovieLens 100k

experiments. (a) Performance as we
vary the number of regions |R|. (b)
Performance as we vary cardinality k.

chooses the test that maximizes (in expectation over observations) the
gain in this utility. Note that if we could solve the intractable prob-
lem of nonmyopically optimizing VoI (i.e., look ahead arbitrarily to
consider outcomes of sequences of tests), we could solve the DRD
problem optimally. In some sense, HEC can be viewed as a surrogate
function for nonmyopic value of information.

4.3.1 Comparison-Based Preference Learning

(a) Partitions (k = 2)

(b) Decision regions (k = 3)

Figure 4.6: A 2-d illustration of
(overlapping) decision regions for
MovieLens 100k experiments. Dots
represent movies, cross markers rep-
resent cluster centroids, and colored
polygons represent decision region
boundaries. (a) Movies are partitioned
into 12 disjoint clusters. (b) Each movie
is assigned to the two closest centroids.

We evaluate HEC on the MovieLens 100k dataset [Her+99], which
consists of 1 to 5 ratings of 1682 movies from 943 users. We parti-
tion movies into decision regions using these ratings, with the goal
of recommending any movie in a decision region. In order to get a
similarity measurement between movies, we map them into a 10-
dimensional feature space by computing a low-rank approximation
of the user/rating matrix through SVD. We then use k-means to
partition the set of movies into |R| (non-overlapping) clusters, cor-
responding to decision regions. Each movie is then assigned to the
α closest cluster centroids. See fig. 4.6 for an illustration. A test cor-
responds to comparing two movies, an observation to selecting one
of the two, and consist hypotheses are those which are closer to the
selected movie (euclidean distance in 10-dimensional feature space).

Each experiment corresponds to sampling one movie as the “true”
movie. The size of a decision region determines how close our so-
lution is to this (exact) target hypothesis. As the number of regions
increases, the size of each decision region shrinks. As a result, the
problem requires the selected movie be closer to the true target, at
the expense of increased query complexity. Figure 4.5a shows the
query complexity of different methods as a function of the number of
regions, with the cardinality of the HEC hypergraph fixed to k = 3
(i.e., each hypothesis belongs to two decision regions). An extreme



52 acting under uncertainty for information gathering and shared autonomy

k 2 3 4 5

t(HEC) 0.026s 0.071s 2.5s < 2min

Table 4.1: Running time of HEC on
MovieLens 100k with different cardinal-
ity k (|R| = 12)

case is when there are only two regions and all hypotheses belong
to both regions, giving a query complexity of 0. Other than that, we
see that HEC performs consistently better than other methods (e.g.,
to identify the true region out of 8 regions, it takes on average 6.7
queries for HEC, as opposed to 8 queries for EC2-DRD, 8.5 queries
for GBS-DRD, and 10.3 queries for VoI).

To see how the cardinality and region overlap influence perfor-
mance, we compare the query complexity of different methods by
varying the number of regions each hypothesis is assigned to. If
we assign more regions to a hypothesis, then the search result is
allowed to be further away from the true target, and thus the num-
ber of queries required for approximated search should be smaller.
fig. 4.5b demonstrates such an effect. We fix the number of clusters
to 12, and vary the number of assigned regions (and thus the hyper-
edge cardinality) from 1 to 4 (k from 2 to 5, respectively). We see that
higher cardinality enables HEC to save more queries. For k = 5, it
takes HEC 5.3 queries to identify a movie, whereas VoI, GBS-DRD,
and EC2-DRDtook 8.8, 7.4, and 6.4 queries, respectively. Addition-
ally, table 4.1 shows the running time of HEC for these instances.
We see that the accelerated implementation described in section 2.3.3
enables HEC to run efficiently with reasonable hyperedge cardinality
on this data set.

4.3.2 Touch-Based Localization

(a) Hypotheses

(b) A decision region

(c) Two regions

Figure 4.7: Touch based localization
for pushing the button of a microwave.
Given hypotheses over object location
(a), decision actions are generated. The
corresponding decision regions are
computed by forward simulating to
find hypotheses for which it would suc-
ceed (b). Decision regions will overlap.
In (c), we see two regions (blue and
grey) and their overlap (yellow).

We evaluate HEC on a simple robotic manipulation example. Our
task is to push a button with the finger of a robotic end effector.
Given a distribution over object location, we generate a set of deci-
sions, corresponding to the end effector going to a particular pose
and moving forward in a straight line. Each of these decisions will
succeed on a subset of hypotheses, corresponding to a decision re-
gion. Decision regions may overlap, as a button can be pushed with
many decision actions. See fig. 4.7.

All hypotheses are not contained in a single decision region, so we
perform tests to reduce uncertainty. These tests correspond to guarded
moves [WG75], where the end effector moves along a path until con-
tact is sensed. After sensing contact, hypotheses are updated by
eliminating object locations which could not have produced contact,
e.g., if they are far away. Our goal is to find the shortest sequence of
tests such that after performing them, there is a single button-push



decision region determination (drd) 53

decision that would succeed for all remaining hypotheses.
Given some object location Xs, we generate an initial set of 2000

hypotheses H by sampling from N(µ, Σ) with µ = Xs, and Σ a
diagonal matrix with Σxx = Σyy = Σzz = 0.04. The robot generates
50 decision regions by picking different locations and simulating
the end effector forward, and noting which object poses it would
succeed on. Hypotheses range from being in zero decision regions
to 6, giving us a cardinality k = 7. For tests, the robot generates 150

guarded moves by sampling a random start location and orientation.
We conduct experiments on 10 random environments, and ran-

domly sample 100 hypotheses to be the “true” object location (for
producing observations during execution), for a total of 1000 exper-
iments. Figure 4.8 shows the query complexity of different methods
averaged over these instances. We see that HEC performs well, out-
performing GBS, GBS-DRD, EC2, and EC2-DRDhandily. Note that
myopic VoI performs essentially the same as HEC on these experi-
ments. This is likely due to the short horizon, where 2-3 actions were
usually sufficient for reducing uncertainty to a single decision region.
We would expect that for longer horizons, myopic VoI would not
perform as well.

GBS EC2 GBS-DRD EC2-DRD VoI HEC
Method

0

0.5

1

1.5

2

2.5

3

Q
u

e
ry

 c
o

m
p

le
x
it
y

Figure 4.8: Average performance of
different methods across button push
instances.

4.4 The Decision Region Edge Cutting (DiRECt) Method

Even with our implementation based on efficient calculation of com-
plete homogeneous symmetric polynomials, in the worst case, we remain
exponential in our hyperedge cardinality k. For cases when regions
overlap greatly, this is intractable to compute. We now present an
method which is linear in the maximum degree of any node in Gr,
which is related to the hyperedge cardinality k, defined in eq. (4.4).

Our basic strategy here is to construct an adaptive submodular
subproblem for each decision region, which is solved if and only if all
uncertainty is encapsulated within that decision region. We combine
these problems through a noisy-or formulation, and show that this
maintains the adaptive submodularity. Finally, we show how some
subproblems can be combined, enabling us to tighten our bound.

4.4.1 The Noisy-OR Construction

Suppose there are m possible decisions: |R| = m. We first reduce
the DRD problem to O(m) instances of the ECD problem, such that
solving any one of them is sufficient for solving the DRD problem.
Crucially, the problem we end up solving depends on the unknown
hypothesis h∗. We design our surrogate DiRECt so that it adaptively
determines which instance to solve in order to minimize the expected



54 acting under uncertainty for information gathering and shared autonomy

R1

R2

R3

h1

h2

h3

h4

R1

R2

R3 R1

R2

R3R1

R2

R3

_ _
t :

Xt = 0

Xt = 1 Edges cut by t

Xt = 1

Xt = 0
always

EC2 Graph 1 EC2 Graph 2 EC2 Graph 3The DRD problem

Subregions

Figure 4.9: A DRD problem with
three decision regions {R1,R2,R3},
and four possible hypotheses
{h1, h2, h3, h4}. Test t has two possi-
ble outcomes: ft(h1) = ft(h3) = 1 and
ft(h2) = ft(h4) = 0. For each possible
decision we can make, we construct
a separate ECD problem: The three
figures on the right illustrate the EC2

graphs for each of the ECD problems.
We can successfully make an optimal
decision once one of the graphs is fully
cut: e.g., if Xt = 0, graph 2 is fully cut,
and we identify the optimal decision d2.

total cost.
Concretely, we construct m different graphs, one for each decision.

The role of graph i is to determine whether the unknown hypothesis
h∗ is contained in decision region ri or not. Thus we aim to distin-
guish all the hypotheses in this decision region from the rest. To
achieve this, we model graph i as an ECD problem, with one of the
decision regions being ri. See fig. 4.9 for illustration.

4.4.2 Relating DRD and DiRECt

Notice that in this ECD problem, once all the edges are cut, either i
is the optimal decision, or one of the subregions encodes the optimal
decision. Therefore, optimizing the ECD problem associated with
one of the m graphs is a sufficient condition for identifying the optimal
decision.

Further notice that, among the m ECD problems associated with
the m graphs, at least one of them has to be solved (i.e., all edges cut)
before we uncover the optimal decision. Therefore, we get a necessary
condition of the DRD constraints: we have to cut all the edges in at
least one of the m graphs. This motives us to apply a logical OR op-
eration on the m optimization problems. Denote the EC2 objective
function for graph i as f i

EC, and normalize them so that f i
EC(∅) = 0

corresponds to observing nothing and f i
EC(S) = 1 corresponds to

all edges being cut. We combine the objective functions f 1
EC, . . . , f m

EC
using a Noisy-OR formulation:

fDRE(S) = 1−
m

∏
i

(
1− f i

EC(S)
)

(4.7)

Note that by design fDRE(S) = 1 iff f i
EC(S) = 1 for at least one i.

Similar to before, we define our expected marginal benefit for fDRE

as:
∆ fDRE (t |S)=E

h
[ fDRE(S ∪ {(t, h(t))})− fDRE(S) | S ]

As before, this suggests a natural algorithm: greedily select the
test t∗ that maximizes the cost-normalized expected marginal benefit,



decision region determination (drd) 55

R1

R2

R3

R4

R5 R6

R1 R3 R5

R6

R2 R4

The DRD problem Coloring the decision graph

R1

R2

R3

R4

R5 R6

ECD Regions corr. to

Figure 4.10: Reducing the cost upper
bound via graph coloring. We only
need to construct 3 ECD instances
to compute fDRE , instead of 6. The
middle figure shows a possible color-
ing assignment on the decision graph
of the DRD problem. On the right,
we show one example ECD problem
instance, corresponding to regions
{R1,R4,R6} (colored orange). In this
ECD problem instance, there are 7

disjoint regions: 3 (disjoint) decision
regions R1, R4, R6, and 4 subregions,
namely R2 \ (R1 ∪R3), R3 \ (R1 ∪R2),
(R2 ∩R3) \ R1, and R5 \ (R4 ∪R6).

t∗ = arg maxt
∆ fDRE

(t|S)
c(t) , observes the outcome h(t∗) and adds the

pair (t∗, h(t∗)) to S . Continue until all hypotheses are encapsulated
in any decision region (i.e., the marginal gain of all tests is 0).

4.4.3 Theoretical Analysis

As before, we show this formulation satisfies the properties of strong
adaptive monotonicity and adaptive submodularity, rendering this objec-
tive amenable to greedy optimization. More formally:

Theorem 7. The objective function fDRE defined in eq. (4.7) is adaptive
submodular and strongly adaptive monotone.

The proof of this result can be found in Chen et al. [Che+15]. The
key here is that applying the noisy-or operator on multiple EC2 in-
stances preserves the adaptive submodularity of EC2. Note that this
is not generally true for any adaptive submodular function, but we
show that this property is preserved for EC2.7 These properties make 7 Similar constructions have been used

for classical submodular set functions
[GB11; Des+14], utilizing the fact that
f = 1−∏m

i (1− fi) is submodular if
each fi is submodular. However, the
function f is not necessarily adaptive
submodular, even when each fi is
adaptive submodular and strongly
adaptively monotone.

fDRE amenable for efficient greedy optimization. More formally:

Theorem 8. Assume that the prior probability distribution P on the set of
hypotheses is rational. Then, the performance of πDRE is bounded as follows:

C(πDRE) ≤ (2m ln(1/pmin) + 1)C(π∗),

where pmin = minh∈H P(h) and π∗ is the optimal policy.

This result follows from theorem 7 and the general performance
analysis of the greedy policy for adaptive submodular problems by
Golovin and Krause [GK11]. More details are provided in Chen et al.
[Che+15]. The bound of the greedy algorithm is linear in the number
of decision regions. Here the factor m is a result of taking the product
of m EC2 instances. However, this bound can often be improved.

4.4.4 Improving the Bound via Graph Coloring

For certain applications, the number of decisions m can be large. In
the extreme case where we have a unique decision for each possible



56 acting under uncertainty for information gathering and shared autonomy

observation, the bound of Theorem 8 becomes trivial. As noted, this
is a result of taking the product of m EC2 instances. Thus, we can im-
prove this bound by constructing fewer instances, each with several
non-overlapping decision regions. As long as every decision region
is accounted for by at least one ECD instance, this problem remains
equivalent to the DRD problem. We select the sets of decision regions
for each ECD instance through graph coloring. See Figure 4.10 for
illustration.

Formally, we construct an undirected graph G := {D, E} over all
decision regions, where we establish an edge between any pair of
overlapping decision regions. That is, two decision regions ri and rj

are adjacent in G iff there exists a hypothesis h which is contained
in both decision regions, i.e., h ∈ ri ∩ rj. Finding a minimal set
of non-overlapping decision region sets that covers all decisions is
equivalent to solving a graph coloring problem, where the goal is to
color the vertices of the graph G, such that no two adjacent vertices
share the same color, using as few colors as possible. Thus, we can
construct one ECD problem for all the decision regions of the same
color, resulting in α different instances, and then use the Noisy-OR
formulation to assemble these objective functions. That gives us the
following theorem:

Theorem 9. Assume that the prior probability distribution P on the set
of hypotheses is rational. Let πDRE be the adaptive greedy policy computed
over ECD problem instances obtained via graph coloring, where α is the
number of colors used. Then, the performance of πDRE is bounded as:

C(πDRE) ≤ (2α ln (1/pmin) + 1)C(π∗),

where pmin = minh∈H P(h) and π∗ is the optimal policy.

While obtaining minimum graph colorings is NP-hard in general,
one can show that every graph can be efficiently colored with at most
one color more than the maximum vertex degree, denoted by deg,
using a greedy coloring algorithm [WP67]: consider the vertices in
descending order according to the degree; we assign to a vertex the
smallest available color not used by its neighbours, adding a fresh
color if needed. In the DRD setting, deg is the maximal number of
decision regions that any decision region can be overlapped with. In
practice, greedy coloring often requires far fewer colors than this up-
per bound. Additionally, note that when regions are disjoint, deg = 0
and DiRECt reverts to the EC2 algorithm.



decision region determination (drd) 57

4.5 Decision Region Edge Cutting (DiRECt) Experiments

We now consider four instances of the general non-myopic value of
information problem. Table 4.2 summarizes how these instances fit
into our framework.

Application Test Decision

Active Loc. guarded move manipulation action
Pref. learning pair of movies recommendation
Conservation monitoring / probing conservation action
Risky choice pair of lottery choices valuation theory

Table 4.2: Tests and decisions for
different applications

For each of the problems, we compare DiRECt against sev-
eral existing approaches as baselines8. The first baseline is my- 8 These are the same baselines used in

section 4.3.opic optimization of the decision-theoretic value of information
(VoI) [How66]. At each step we greedily choose the test that max-
imizes the expected value given the current observations S , i.e.,
t ∈ arg maxt Eh[U(S ∪ {(t, h(t))})]. We also compare with algo-
rithms designed for special cases of the DRD problem: generalized
binary search (GBS) and equivalence class edge cutting (EC2)9. We 9 When hypotheses are in multiple

decision regions, EC2 cannot be used
as is. Hence, we randomly assign
each hypothesis to one of the decision
regions that it is contained in.

compare with two versions of these algorithms: one with the algo-
rithms’ original stopping criteria, which we call GBS and EC2; and
one with the stopping criteria of the DRD problem, which is referred
to as GBS-DRDand EC2-DRDin the results. Finally, we also compare
to HEC.

4.5.1 Active Touch-Based Localization

Our first application is a robotic manipulation task of pushing a but-
ton, with uncertainty over the target’s pose. Tests consist of guarded
moves [WG75], where the end effector moves along a path until con-
tact is sensed. Those hypotheses which would not have produced
contact at that location (e.g., they are far away) can be eliminated.
Decisions correspond to putting the end effector at a particular lo-
cation and moving forward. The coinciding decision region consists
of all object poses where the button would successfully be pushed.
Our goal is to concentrate all consistent hypotheses within a single
decision region using the fewest tests.

We model pose uncertainty with 4 parameters: (x, y, z) for posi-
tional uncertainty, and θ for rotation about the z axis. An initial set
of 20000 hypotheses are sampled from a normal distribution N(µ, Σ),
where µ is some initial location (e.g., from a camera), and Σ is diago-
nal with σx = σy = σz = 2.5cm, and σθ = 7.5◦. To compute the myopic



58 acting under uncertainty for information gathering and shared autonomy

(a) Hypotheses (b) Test (c) Decision

Figure 4.11: Experimental setup for
touch-based localization. (a) Uncer-
tainty is represented by hypotheses
over object pose. (b) Tests are guarded
moves [WG75], where the end effector
moves along a path until contact is
sensed. Hypotheses which could not
have produced contact at that location
(e.g. they are too far or too close) are
removed. (c) Decisions are button-push
attempts: trajectories starting at a par-
ticular location, and moving forward.
The corresponding decision region con-
sists of all poses for which that button
push would succeed.

value of information (VoI) [How66], we define a utility function u(h, r)
which is 1 if h ∈ r and 0 otherwise.

We run DiRECt and HEC on simulated data. In the first simu-
lated experiment, we preselect a grid of 25 button pushing decisions
D while ensuring the overlap r is minimal. We randomly generate
guarded moves T to select from, varying |T| . In the second, we fix
|T| = 250 while randomly generate decisions to vary |D|. Results are
plotted in fig. 4.11. Note that HEC cannot be computed in the latter
experiment, as the overlap r becomes very large and HEC quickly
becomes intractable.

We see that HEC and DiRECt generally outperform all other
baselines, and perform very similarly in fig. 4.12a, despite HEC hav-
ing a tighter bound. Interestingly, EC2 actually performs worse when
the number of decisions increases, as randomly assigning each hy-
pothesis to a single decision region decreases the number of hypothe-
ses in each. We also note that myopic VoI performs comparably –
likely because the problem is solved within a short horizon.

We also demonstrate DiRECt on a real robot platform as illus-
trated in fig. 4.11.

0 200 400 600 800 1000

Number of Tests

2

2.5

3

3.5

4

4.5

5

Q
u

e
ry

 c
o

m
p

le
x
it
y

GBS

EC2

DiRECt

EC2-DRD

GBS-DRD
VoI

HEC

(a) Robot - varying |T|

0 50 100 150
Number of Decisions

2.5

3

3.5

4

4.5

5

5.5

Q
u
e
ry

 c
o
m

p
le

x
it
y

GBS

EC2

VoI

DiRECt

EC2-DRD

GBS-DRD

(b) Robot - varying |D|

Figure 4.12: Simulation experimental
results when we vary the (a) number
of tests and (b) number of decisions.
We find that methods that considered
the decision during test selection(VoI,
HEC, DiRECt) outperform those that
do not (GBS, EC2, GBS-DRD, EC2-
DRD). We also find that our adaptive
submodular methods (HEC, DiRECt)
outperform greedy optimization of VoI.

4.5.2 Comparison-Based Preference Learning

The second application considers a comparison-based movie rec-
ommendation system, which learns a user’s movie preference (e.g.,
the favorable genre) by sequentially showing her pairs of candidate
movies, and letting her choose which one she prefers. We use the
MovieLens 100k dataset [Her+99], which consists a matrix of 1 to 5 rat-
ings of 1682 movies from 943 users. For each movie we extract a 10-d
feature representation from the rating matrix through SVD. To gen-
erate decision regions, we cluster movies using k-means, and assign
each movie to the r closest cluster centers.



decision region determination (drd) 59

2 3 4 5 6 1
Region overlap

2

4

6

8

10

12

14

Q
u
e

ry
 c

o
m

p
le

x
it
y

VoI

EC2-DRD

HEC

DiRECt

GBS-DRD

EC2
GBS

(a) MovieLens

1 2 3 4 5 6
Region overlap

10
-2

10
-1

10
0

10
1

10
2

10
3

T
im

e
 c

o
m

p
le

x
it
y
 (

s
)

EC2

HEC

EC2-DRD

GBS
DiRECt

VoI

GBS-DRD

(b) MovieLens - time

0 0.1 0.2 0.3 0.4

Threshold

0

1

2

3

4

5

6

7

Q
u

e
ry

 c
o

m
p

le
x
it
y

DiRECt

VoI

GBS

EC2

HEC

EC2-DRD

GBS-DRD

(c) EMPCranes

0 0.1 0.2 0.3

Threshold

0

2

4

6

8

10

Q
u
e
ry

 C
o
m

p
le

x
it
y

GBS EC2

GBS-DRD

VoI

HEC

DiRECt

EC2-DRD

(d) Risky Choice Theory

Figure 4.13: Experimental results:
MovieLens, EMPCranes, and Risky Choice
Theory. Across our experiments, meth-
ods that considered the decision during
test selection(VoI, HEC, DiRECt)
handily outperform those that do not
(GBS, EC2, GBS-DRD, EC2-DRD). We
also find that our adaptive submodular
methods (HEC, DiRECt) outperform
greedy optimization of VoI. Finally,
the performance of HEC and DiRECt

are comparable, whereas HEC requires
significantly more computation (b).

We demonstrate the performance of HEC and DiRECt on Movie-
Lens in fig. 4.13a and fig. 4.13b. We fix the number of clusters (i.e.,
decision regions) to 12, and vary r, the number of assigned regions
for each hypothesis, from 1 to 6. Note that r controls the hyperedge
cardinality in HEC, which crucially affects the computational com-
plexity. As we can observe, the query complexity (i.e., the number of
queries needed to identify the target region) of HEC and DiRECt

are lower than all other baselines. However, DiRECt is significantly
faster to compute then HEC, and comparable to other baselines. See
fig. 4.13b (for r = 5, HEC failed to pick any tests within an hour).

4.5.3 Adaptive Management for Wild-Life Conservation

Our third application is a real-world value of information problem in
natural resource management, where one needs to determine which
management action should be undertaken for wild-life conservation.
Specifically, the task is to preserve the Eastern Migration Population
of whooping cranes (EMP Cranes). An expert panel came up with 8

hypotheses for possible causes of reproductive failure, along with 7

management strategies (as decisions). The decision-hypothesis utility
matrix is specified in Table 5 of Runge et al. [Run+11]. Tests aim to
resolve specific sources of uncertainty. Our goal is to find the best
conservation strategy using the minimal number of tests.

To create decision regions, we assign all hypothesis to decision re-
gions which are ε-optimal, or all decisions which are within ε utility
of the highest utility decision.10 10 These results actually correspond

to a model which can incorporate test
noise in the form of flipped outcomes
- see [Che+15] for details. Here, a
maximum of 1 flip is allowed for each
outcome vector.

Results are plotted in fig. 4.13c. We see that HEC and DiRECt

perform comparably well, while significantly outperforming myopic
VoI and all other baselines.



60 acting under uncertainty for information gathering and shared autonomy

4.5.4 Preference Elicitation in Behavioral Economics

We further conduct experiments in an experimental design task. Sev-
eral theories have been proposed in behavioral economics to explain
how people make decisions under risk and uncertainty. We test HEC
and DiRECt on six theories of subjective valuation of risky choices
[Wak10; TK92; Sha64], namely the (1) expected utility with constant rel-
ative risk aversion, (2) expected value, (3) prospect theory, (4) cumulative
prospect theory, (5) weighted moments, and (6) weighted standardized mo-
ments. Choices are between risky lotteries, i.e., known distribution
over payoffs (e.g., the monetary value gained or lost). Tests are pairs
of lotteries, and hypotheses correspond to parametrized theories that
predict, for a given test, which lottery is preferable. The goal, is to
adaptively select a sequence of tests to present to a human subject
in order to distinguish which of the six theories best explains the
subject’s responses.

We employ the same set of parameters used in Ray et al. [Ray+12]
to generate tests and hypotheses. The original setup in Ray et al.
[Ray+12] was designed for testing EC2, and therefore test realizations
of different theories cannot collide. In our experiments, we allow a
tolerance ε - that is, if one hypothesis differs from another by at most
ε, they are considered to be similar, and thus have the same set of
optimal decisions. Results for simulated test outcomes with varying ε

are shown in Figure 4.13d. We see that HEC and DiRECt generally
perform best in this setting, and comparably well to eachother.

4.6 Discussion

This chapter provides a framework for reducing uncertainty for the
purpose of making a decision. To do so, we formulated the Decision
Region Determination (DRD) problem (section 4.1). We represent
each possible decision by the subset of hypotheses for which it would
succeed, called the decision region. Our objective was to find a policy
that can guarantee the true hypothesis encapsulated by a single deci-
sion region. As optimizing for this directly is intractable, we instead
design two surrogate objectives (sections 4.2 and 4.4) that are more
amenable to optimization. These surrogates were designed to have
specific properties: they are maximized if and only if the problem 3 is
solved, and they satisfy adaptive submodularity and strong adaptive
monotonicity, enabling us to provide near-optimality guarantees.

We experimentally validated our methods (sections 4.3 and 4.5)
against a range of baselines. A key takeaway from these results is
that decision driven uncertainty reduction outperforms indiscriminate un-
certainty reduction. That is, across our experiments, methods which



decision region determination (drd) 61

considered the decision when selecting tests were able to solve prob-
lem 3 faster than those that did not. Furthermore, selecting tests
without considering decisions and simply terminating once we could
make a decision (e.g. GBS-DRDand EC2-DRD) was not enough, as
this was also outperformed by our methods. This is especially no-
table as the most commonly used criteria for active information gath-
ering, the reduction of Shannon entropy [Cas+96; Bur+97; Fox+98;
Bou+02; Zhe+05; Fu+07; Eri+08; Hsi+08; Heb+13; Sad+16b], does not
consider decisions.

Additionally, we knowing that considering only decision regions
also has poor performance. Golovin et al. [Gol+10] consider greedily
reducing the entropy over decision regions, compared to EC2. Even
in the non-overlapping setting11, they show how this method can 11 In the overlapping setting, this met-

ric does not capture how multiple
decisions can be used for a single hy-
pothesis, rendering this method further
suboptimal.

perform exponentially worse than EC2, which gains some utility for
removing hypotheses. The HEC and DiRECt methods we present
share this property, providing near-optimal information gathering
that outperforms considering only hypotheses, or only decision re-
gions.

Our two methods, HEC and DiRECt, have a few notable differ-
ences. The bound of HEC is tighter, and one can construct cases
where DiRECt requires many graph colors, but HEC can use
low-cardinality hyperedges. Empirically, the performance of both
methods is similar across our experiments (section 4.5). The biggest
difference lies in the computational complexity, where DiRECt is
significantly more efficient, enabling its application for many more
real-world problems.





5
Shared Autonomy Background

In this chapter, we review background and relevant work for our
methods on shared autonomy, where both the user and robotic system
act simultaneously to achieve shared goals. We focus on two appli-
cation areas for our framework: shared control teleoperation [Goe63;
Ros93; AM97; Deb+00; DS13a] and human-robot teaming [HB07;
Ara+10; DS13b; KS13; MB13; Gom+14; Nik+17b].

We first review different teloperation interfaces, highlighting the
limitations for providing teleoperation inputs to a robot in different
application areas (section 5.1). This will help inform our design deci-
sions for shared-control teleoperation system. Next, we discuss rele-
vant works for intent prediction in section 5.2, which we use to infer
user intent in our framework. Finally, we review background mate-
rial for both shared control teleoperation (section 5.3) and human-
robot teaming (section 5.4).

5.1 Teleoperation Interfaces

There are many different interfaces for robotic teleoperation - see
fig. 5.1 for examples. In surgical robotics, master-slave systems are
common, giving the surgeon control of all degrees of freedom of the
robotic end effector [Sim+12]. Interfaces for remote vehicles, such
as UAVs or cars, come in many forms, such as multi-axis joysticks,
buttons on a web interface, or multimodal controls where an operator
can switch control modes based on situational requirements [FT01;
Fon+01].

Figure 5.1: Example User Input Inter-
faces

Assistive robotics have many different interfaces for input, de-
pending on the impairments of the user and the control channels
available to them. For assistive wheelchairs, joysticks, chin joysticks,
switches, sip-and-puff devices, head tracking, and teeth clicking are
all used [Van+03; Sim+08]. Assistive arms, which have even more
degrees of freedom, present a different set of challenges. Interfaces
include 3d joysticks with different modes for control [Mah+11], task



64 acting under uncertainty for information gathering and shared autonomy

level point and click interfaces to specify objects to grasp [Tsu+08;
Lee+12; Kim+12], GUIs specifying end-effector waypoints [YH11;
Lee+12] or individual joint control [Lee+12], and many more.

Brain Computer Interfaces (BCIs) offer an attractive alternative for
assistive robotics and prostheses, especially for users with severe mo-
tor impairment. Interfaces vary from those placed on the scalp (e.g.
EEG), on the surface of the brain (e.g. ECoG), and within the cerebral
cortex (e.g. LFP) [Sch+06]. EEG based devices, which sit on the scalp,
have been successfully applied to wheelchairs giving simple motion
commands [Gal+08] and for arms to initiate the execution of sub-
tasks [Sch+15], or to interact with a GUI controlling an arm[Lut+07].
More invasive intracortical devices give superior bandwidth and have
been used for continuous high degree of freedom control of upper
limb prosthetics [Col+13]. These devices often degrade over time,
through there remains some usable signal [Sim+11].

5.2 Intent Prediction

Many prior works suggest that effective human-robot collaboration
should not rely on explicit mechanisms for communication (e.g. but-
tons) [Van+03; GJ03; Gre+07]. Instead, implicit information should be
used to make collaboration more seamless. In shared autonomy, this
suggests utilizing user inputs and sensing of the environment to infer
user intent. This idea has been successfully applied to shared auton-
omy settings [LO03; Yu+05; Kra+05; Kof+05; AK08; CD12; DS13a;
Hau13; Mue+15].

A variety of models and methods have been used for intent predic-
tion. Hidden markov model (HMM) based methods [LO03; Kra+05;
Aar+05; AK08] predict subtasks or intent during execution, treat-
ing the intent as latent state. Schrempf et al. [Sch+07] use a Bayesian
network constructed with expert knowledge. Koppula and Saxena
[KS13] use conditional random fields (CRFs) with object affordance to
predict potential human motions. Wang et al. [Wan+13] learn a gen-
erative predictor by extending Gaussian Process Dynamical Models
(GPDMs) with a latent variable for intention. Hauser [Hau13] utilizes
a Gaussian mixture model over task types (e.g. reach, grasp), and
predicts both the task type and continuous parameters for that type
(e.g. movements) using Gaussian mixture autoregression.

Many successful works in shared autonomy utilize of maximum
entropy inverse optimal control (MaxEnt IOC) [Zie+08] for user goal
prediction. Briefly, the user is modelled as a stochastic policy approx-
imately optimizing some cost function. By minimizing the worst-case
predictive loss, Ziebart et al. [Zie+08] derive a model where trajec-
tory probability decreases exponentially with cost. They then derive



shared autonomy background 65

a method for inferring a distribution over goals from user inputs,
where probabilities correspond to how efficiently the inputs achieve
each goal [Zie+09]. A key advantage of this framework for shared
autonomy is that the we can directly optimize for the cost function
used to model the user.

Exact global inference over these distributions is computation-
ally infeasible in general continuous state and action spaces. For the
special case of LQR systems, Ziebart et al. [Zie+12] show that exact
global inference is possible, and provide a computationally efficient
method for doing so. Levine and Koltun [LK12] provide a method
that considers the expert demonstrations as only locally optimal, and
utilize Laplace’s method about the expert demonstration to estimate
the log likelihood during learning. Similarly, Dragan and Srinivasa
[DS13a] use Laplace’s method about the optimal trajectory between
any two points to approximate the distribution over goals during
shared control teleoperation. Finn et al. [Fin+16] simultaneously
learn a cost function and policy consistent with user demonstra-
tions using deep neural networks, utilizing importance sampling
to approximate inference with few samples. Inspired by Generative
Adversarial Nets [Goo+14], Ho and Ermon [HE16] directly learn a
policy to mimic the user through Generative Adversarial Imitation
Learning.

We use the approximation of Dragan and Srinivasa [DS13a] in
our framework due to empirical evidence of effectiveness in shared
autonomy systems [DS13a; Mue+15].

5.3 Shared Control Teleoperation

(a) Mode 1

(b) Mode 2

(c) Mode 3

Figure 5.2: Modal control used in our
feeding experiment on the Kinova
MICO, with three control modes and
a 2 degree-of-freedom input device.
Fewer input DOFs means more modes
are required to control the robot.

Shared control teleoperation has been used to assist disabled users
using robotic arms [Kim+06; Kim+12; McM+14; Kat+14; Sch+15;
Mue+15] or wheelchairs [Arg14; CD12], operate robots remotely [She+04;
YH11; Lee+12], decrease operator fatigue in surgical settings [Par+01;
Mar+03; Kra+05; Aar+05; Li+07], and many other applications. As
such, there are a great many methods catering to the specific needs of
each domain.

One common paradigm launches a fully autonomous takeover
when some trigger is activated, such as a user command [She+04;
Bie+04; Sim05; Kim+12], or when a goal predictor exceeds some con-
fidence threshold [Fag+04; Kof+05; McM+14; Kat+14]. Others have
utilized similar triggers to initiate a subtask in a sequence [Sch+15;
Jai+15]. While these systems are effective at accomplishing the
task, studies have shown that users often prefer having more con-
trol [Kim+12].

Another line of work utilizes high level user commands, and relies



66 acting under uncertainty for information gathering and shared autonomy

on autonomy to generate robot motions. Systems have been devel-
oped to enable users to specify an end-effector path in 2D, which
the robot follows with full configuration space plans [YH11; Hau13].
Point-and-click interfaces have been used for object grasping with
varying levels of autonomy [Lee+12]. Eye gaze has been utilized to
select a target object and grasp position [Bie+04].

Another paradigm augments user inputs minimally to maintain
some desired property, e.g. collision avoidance, without necessar-
ily knowing exactly what goal the user wants to achieve. Sensing
and complaint controllers have been used increase safety during
teleoperation [Kim+06; Vog+14]. Potential field methods have been
employed to push users away from obstacles [CG02] and towards
goals [AM97]. For assistive robotics using modal control, where users
control subsets of the degrees-of-freedom of the robot in discrete
modes (fig. 5.2), Herlant et al. [Her+16] demonstrate a method for
automatic time-optimal mode switching.

πu

πr

Confidence

α

Arbitration
u

a

αa+
(1− α)u

Figure 5.3: Blend method for shared
control teleoperation. The user and
robot are both modelled as separate
policies πu and πr, each independently
providing actions u and a for a sin-
gle goal. These actions are combined
through a specified arbitration function,
which generally uses some confidence
measure to augment the magnitude
of assistance. This combined action is
executed on the robot.

πu πr

Cu(s, u) Cr(s, u, a)

u u, a

Figure 5.4: Policy method for shared
control teleoperation. The user is mod-
elled as a policy πu, which selects user
input u to minimizes the expected sum
of user costs Cu(x, u). The user input
u is provided to the system policy πr,
which then selects action a to minimize
its expected sum of costs cost Cr(s, u, a).
Both actions are passed to the robot for
execution. Unlike the blend method,
the user and robot actions are not
treated separately, which can lead to
catastrophic failure [Tra15]. Instead, the
robot action a is optimized given the
user action u.

Similarly, methods have been developed to augment user inputs
to follow some constraint. Virtual fixtures, commonly used in surgi-
cal robotics settings, are employed to project user commands onto
path constraints (e.g. straight lines only) [Par+01; LO03; Mar+03;
Kra+05; Aar+05; Li+07]. Mehr et al. [Meh+16] learn constraints online
during execution, and apply constraints softly by combining con-
straint satisfaction with user commands. While these methods benefit
from not needing to predict the user’s goal, they generally rely on a
high degree-of-freedom input, making their use limited for assistive
robotics, where disabled users can operate few DOF at a time and
thus rely on modal control [Her+16].

Blending methods [DS13a] attempt to bridge the gap between
highly assistive methods with little user control, and minimal assis-
tance with higher user burden. User actions and full autonomy are
treated as two independent sources, which are combined by some
arbitration function that determines the relative contribution of each
(fig. 5.3). Dragan and Srinivasa [DS13a] show that many methods
of shared control teleoperation (e.g. autonomous takeover, potential
field methods, virtual fixtures) can be generalized as blending with a
particular arbitration function.

Blending is one of the most used shared control teleopration
paradigms due to computational efficiency, simplicity, and empiri-
cal effectiveness [Li+11; CD12; DS13a; Mue+15; Gop+16]. However,
blending has two key drawbacks. First, as two independent deci-
sions are being combined without evaluating the action that will be
executed, catastrophic failure can result even when each indepen-
dent decision would succeed [Tra15]. Second, these systems rely on
a predict-then-act framework, predicting the single goal the user is



shared autonomy background 67

trying to achieve before providing any assistance. Often, assistance
will not be provided for large portions of execution while the sys-
tem has low confidence in its prediction, as we found in our feeding
experiment (section 7.1.2).

Recently, Hauser [Hau13] presented a system which provides
assistance for a distribution over goals. Like our method, this policy-
based method minimizes an expected cost-to-go while receiving user
inputs (fig. 5.4). The system iteratively plans trajectories given the
current user goal distribution, executes the plan for some time, and
updates the distribution given user inputs. In order to efficiently
compute the trajectory, it is assumed that the cost function corre-
sponds to squared distance, resulting in the calculation decomposing
over goals. Our model generalizes these notions, enabling the use of
any cost function for which a value function can be computed.

In this work, we assume the user does not change their goal or
actions based on autonomous assistance, putting the burden of goal
inference entirely on the system. Nikolaidis et al. [Nik+17c] present
a game-theoretic approach to shared control teleoperation, where
the user adapts to the autonomous system. Each user has an adapt-
ability, modelling how likely the user is to change goals based on
autonomous assistance. They use a POMDP to learn this adaptability
during execution. While more general, this model is computationally
intractable for continuous state and actions.

5.4 Human-Robot Teaming

In human-robot teaming, robot action selection that models and op-
timizes for the human teammate leads to better collaboration. Hoff-
man and Breazeal [HB07] show that using predictions of a human
collaborator during action selection led to more efficient task com-
pletion and more favorable perception of robot contribution to team
success. Lasota and Shah [LS15] show that planning to avoid portions
of the workspace the user will occupy led to faster task completion,
less user and robot idling time, greater user satisfaction, and greater
perceived safety and comfort. Arai et al. [Ara+10] show that users
feel high mental strain when a robot collaborator moves too close or
too quickly.

Motion planners have been augmented to include user models
and collaboration constraints. For static users, researchers have in-
corporated collaboration constraints such as safety and social ac-
ceptability [Sis+07], and task constraints such as user visibility and
reachability [Sis+10; PA10; Mai+11]. For moving users, Mainprice and
Berenson [MB13] use a Gaussian mixture model to predict user mo-
tion, and select a robot goal that avoids the predicted user locations.



68 acting under uncertainty for information gathering and shared autonomy

Similar ideas have been used to avoid moving pedestrians. Ziebart
et al. [Zie+09] learn a predictor of pedestrian motion, and use this to
predict the probability a location will be occupied at each time step.
They build a time-varying cost map, penalizing locations likely to be
occupied, and optimize trajectories for this cost. Chung and Huang
[CH11] use A* search to predict pedestrian motions, including a
model of uncertainty, and plan paths using these predictions. Bandy-
opadhyay et al. [Ban+12] use fixed models for pedestrian motions,
and focus on utilizing a POMDP framework with SARSOP [Kur+08]
for selecting good actions. Like our approach, this enables them to
reason over the entire distribution of potential goals. They show this
outperforms utilizing only the maximum likelihood estimate of goal
prediction for avoidance.

Others develop methods for how the human-robot team should be
structured. Gombolay et al. [Gom+14] study the effects of having the
user and robot assign goals to each other. They find that users were
willing to cede decision making to the robot if it resulted in greater
team fluency [Gom+14]. However, Gombolay et al. [Gom+17] later
show that having the autonomous entity assign goals led to less sit-
uational awareness. Inspired by training schemes for human-human
teams, Nikolaidis and Shah [NS13] present a human-robot cross
training method, where the user and robot iteratively switch roles to
learn a shared plan. Their model leads to greater team fluency, more
concurrent motions, greater perceived robot performance, and greater
user trust. Koppula and Saxena [KS13] use conditional random fields
to predict the user goal (e.g. grasp cup), and have a robot achieve a
complementary goal (e.g. pour water into cup).

Others have studied how robot motions can influence the belief
of users. Sisbot et al. [Sis+10] fix the gaze of the robot on its goal
to communicate intent. Dragan and Srinivasa [DS13b] incorporate
legibility into the motion planner for a robotic arm, causing the robot
to exaggerate its motion to communicate intent. They show this leads
to more quickly and accurately predicting the robot intent [Dra+13].
Rezvani et al. [Rez+16] study the effects of conveying a robot’s state
(e.g. confidence in action selection, anomaly in detection) directly on
a user interface for autonomous driving.

Recent works have gone one step further, selecting robot actions
that not only change the perceptions of users, but also their actions.
Nikolaidis et al. [Nik+17b] model how likely users are to adopt
the robot’s policy based on robot actions. They utilize a POMDP
to simultaneously learn this user adaptability while steering users
to more optimal goals to achieve greater reward. Nikolaidis et al.
[Nik+17a] present a more general game theoretic approach where
users change their actions based on robot actions, while not com-



shared autonomy background 69

pletely adopting the robot’s policy. Similarly, Sadigh et al. [Sad+16b]
generate motions for an autonomous car using predictions of how
other drivers will respond, enabling them to change the behavior of
other users, and infer the internal user state [Sad+16a].

Teaming with an autonomous agent has also been studied out-
side of robotics. Fern and Tadepalli [FT10] have studied MDPs and
POMDPs for interactive assistants that suggest actions to users, who
then accept or reject each action. They show that optimal action se-
lection even in this simplified model is PSPACE-complete. However,
a simple greedy policy has bounded regret. Nguyen et al. [Ngu+11]
and Macindoe et al. [Mac+12] apply POMDPs to cooperative games,
where autonomous agents simultaneously infer human intentions
and take assistance actions. Like our approach, they model users
as stochastically optimizing an MDP, and solve for assistance ac-
tions with a POMDP. In contrast to these works, our state and action
spaces are continuous.





6
Shared Autonomy via Hindsight Optimization

In this chapter, we switch gears to address acting under uncertainty
in shared autonomy, an instance of human-robot collaborations where
the user and robotic system act simultaneously to achieve shared
goals. For example, in shared control teleoperation [Goe63; Ros93;
AM97; Deb+00; DS13a], both the user and system control a single
entity, the robot, in order to achieve the user’s goal. In human-robot
teaming, the user and system act independently to achieve a set of
related goals [HB07; Ara+10; DS13b; KS13; MB13; Gom+14; Nik+17b]. User System

World
T (x0|x, u, a)

x0

u

au

Figure 6.1: Our shared autonomy
framework. We assume the user ex-
ecutes a policy for their single goal,
depicted as a heatmap plotting the
value function at each position. Our
shared autonomy system models all
possible user goals and their corre-
sponding policies. From user actions
u, a distribution over goals is inferred.
Using this distribution and the value
functions for each goal, the system
selects an action a. The world transi-
tions from x to x′. The user and shared
autonomy system both observe this
state, and repeat action selection.

A key challenge for these problems is acting while uncertain of the
user’s goal. To address this, most prior works utilise a predict-then-
act framework, which splits the task into two parts: 1) predict the
user’s goal with high probability, and 2) assist for that single goal,
potentially using prediction confidence to regulate assistance [Yu+05;
Kof+05; CD12; DS13a; KS13; Mue+15]. Unfortunately, it is often im-
possible to predict the user’s goal until the end of execution (e.g.
cluttered scenes), causing these methods to provide little assistance.

Instead, we aim to gain utility without reducing the problem to
one with a known goal. In chapter 4, our key insight was that we
could make make a decision even while uncertain. We apply a sim-
ilar insight for shared autonomy: there are often useful assistance
actions for distributions over goals, even when confidence for a particu-
lar goal is low (e.g. move towards multiple goals, figs. 1.4 and 1.5).

In this chapter, we present a general framework for goal-directed
shared autonomy that does not rely on predicting a single user goal
(fig. 6.1). We assume the user’s goal is fixed (e.g. they want a par-
ticular bite of food), and the autonomous system should adapt to
the user goal1. We formalize our model as a Partially Observable 1 While we assume the goal is fixed,

we do not assume how the user will
achieve that goal (e.g. grasp location) is
fixed.

Markov Decision Process (POMDP) [Kae+98], treating the user’s goal
as hidden state. When the system is uncertain of the user’s goal, our
framework naturally optimizes for an assistance action that is helpful
for many goals. When the system confidently predicts a single user
goal, our framework focuses assistance given that goal (fig. 6.2).



72 acting under uncertainty for information gathering and shared autonomy

0.0 0.5 1.0
Confidence

0.0

0.5

1.0

As
sis

t M
ag

ni
tu

de

(a) Assistance with Low Confidence

0.0 0.5 1.0
Confidence

0.0

0.5

1.0

As
sis

t M
ag

ni
tu

de

(b) No Assistance with Low Confidence

Figure 6.2: Arbitration as a function
of confidence with two goals. Confi-
dence = maxg p(g) − ming p(g), which
ranges from 0 (equal probability) to 1
(all probability on one goal). (a) Going
forward assists for both goals, enabling
the assistance policy to provide assis-
tance even with 0 confidence. (b) The
hand is directly between the two goals,
where no action assists for both goals.
As confidence for one goal increases,
assistance increases.

Computational efficiency is an important requirement for any
shared autonomy system, as we need the system to feel responsive.
As our state and action spaces are both continuous, generic POMDP
solvers do not fulfill this requirement [Roy+05; SS05; Kur+08; SV10;
Sha+12; Som+13; Sei+15]. Instead, we approximate using QMDP [Lit+95],
also referred to as Hindsight Optimization [Cho+00; Yoo+08]. This
approximation has many properties suitable for shared autonomy: it
is computationally efficient, works well when information is gathered
easily [Kov+14], and will not oppose the user to gather information.
The result is a system that minimizes the expected cost-to-go to assist
for any distribution over goals.

A key element of any shared autonomy framework is the user
model. Ideally, we model shared autonomy as a cooperative two-player
game [Aum61; Li+15; Nik+17a], where the user and robot learn and
adapt their strategies to each other. Unfortunately, this is computa-
tionally difficult for use in real-time systems. Instead, we approxi-
mate by assuming the user acts without knowledge of assistance, al-
lowing us to leverage existing works in user prediction in our shared
autonomy framework. We discuss the ideal model and implications
of our assumption in section 6.3.

In chapter 7, we show how to apply our framework for shared-
control teleoperation (section 7.1) and human-robot teaming (sec-
tion 7.2). We evaluate our framework on real users, demonstrating
that our method achieves goals faster, requires less user input, de-
creases user idling time, and results in fewer user-robot collisions
than those which rely on predicting a single user goal (chapter 7).



shared autonomy via hindsight optimization 73

Symbol Description

x ∈ X Environment state, e.g. robot and human pose
g ∈ G User goal
s ∈ S s = (x, g). State and user goal

u ∈ U User action
a ∈ A Robot action

Cu(s, u) = Cu
g (x, u) Cost function for each user goal

Cr(s, u, a) = Cr
g(x, u, a) Robot cost function for each goal

T(x′ | x, u, a) Transition function of environment state
T((x′, g) | (x, g), u, a) = T(x′ | x, u, a) User goal does not change with transition

Tu(x′ | x, u) = T(x′ | x, u, 0) User transition function assumes the user is in full control
Vg(x) = V∗(s) The value function for a user goal and environment state

Qg(x, u, a) = Q∗(s, u, a) The action-value function for a user goal and environment state
b Belief, or distribution over states in our POMDP.

τ(b′ | b, u, a) Transition function of belief state
Vπr

(b) Value function for following policy πr given belief b
Qπr

(b, u, a) Action-Value for taking actions u and a and following πr thereafter
VHS(b) Value given by Hindsight Optimization approximation

QHS(b, u, a) Action-Value given by Hindsight Optimization approximation

Table 6.1: Shared Autonomy variable
definitions6.1 Problem Statement

We present our problem statement for minimizing a cost function
for shared autonomy with an unknown user goal. We assume the
user’s goal is fixed, and they take actions to achieve that goal without
considering autonomous assistance. These actions are used to predict
the user’s goal based on how optimal the action is for each goal
(section 6.3.1). Our system uses this distribution to minimize the
expected cost-to-go (section 6.1.2). As solving for the optimal action
is infeasible, we use hindsight optimization to approximate a solution
(section 6.2). For reference, see table 6.1 for variable definitions.

6.1.1 Cost Minimization with a Known Goal

We first formulate the problem for a known user goal, which we will
use in our solution with an unknown goal. We model this problem as
a Markov Decision Process (MDP).

Formally, let x ∈ X be the environment state (e.g. human and
robot pose). Let u ∈ U be the user actions, and a ∈ A the robot ac-
tions. Both agents can affect the environment state - if the user takes
action u and the robot takes action a while in state x, the environ-
ment stochastically transitions to a new state x′ through T(x′ | x, u, a).

We assume the user has an intended goal g ∈ G which does not



74 acting under uncertainty for information gathering and shared autonomy

change during execution. We augment the environment state with
this goal, defined by s = (x, g) ∈ X × G. We overload our transi-
tion function to model the transition in environment state without
changing the goal, T((x′, g) | (x, g), u, a) = T(x′ | x, u, a).

We assume access to a user policy for each goal πu(u | s) = πu
g (u |

x) = p(u | x, g). We model this policy using the maximum entropy
inverse optimal control (MaxEnt IOC) framework of Ziebart et al.
[Zie+08], where the policy corresponds to stochastically optimizing
a cost function Cu(s, u) = Cu

g (x, u). We assume the user selects
actions based only on s, the current environment state and their
intended goal, and does not model any actions that the robot might
take. Details are in section 6.3.1.

The robot selects actions to minimize a cost function dependent on
the user goal and action Cr(s, u, a) = Cr

g(x, u, a). At each time step,
we assume the user first selects an action, which the robot observes
before selecting a. The robot selects actions based on the state and
user inputs through a policy πr(a | s, u) = p(a | s, u). We define the
value function for a robot policy Vπr

as the expected cost-to-go from
a particular state, assuming some user policy πu:

Vπr
(s) = E

[
∑

t
Cr(st, ut, at) | s0 = s

]
(6.1)

ut ∼ πu(· | st)

at ∼ πr(· | st, ut)

st+1 ∼ T(· | st, ut, at)

The optimal value function V∗ is the cost-to-go for the best robot
policy:

V∗(s) = min
πr

Vπr
(s)

The action-value function Q∗ computes the immediate cost of
taking action a after observing u, and following the optimal policy
thereafter:

Q∗(s, u, a) = Cr(s, u, a) + E
[
V∗(s′)

]
Where s′ ∼ T(· | s, u, a). The optimal robot action is given by
arg mina Q∗(s, u, a).

In order to make explicit the dependence on the user goal, we
often write these quantities as:

Vg(x) = V∗(s)

Qg(x, u, a) = Q∗(s, u, a)

Computing the optimal policy and corresponding action-value
function is a common objective in reinforcement learning. We assume



shared autonomy via hindsight optimization 75

access to this function in our framework, and describe our particular
implementation in the experiments.

6.1.2 Cost Minimization with an Unknown Goal

We formulate the problem of minimizing a cost function with an un-
known user goal as a Partially Observable Markov Decision Process
(POMDP). A POMDP maps a distribution over states, known as the
belief b, to actions. We assume that all uncertainty is over the user’s
goal, and the environment state is known. This subclass of POMDPs,
where uncertainty is constant, has been studied as a Hidden Goal
MDP [FT10], robust MDPs [Bag04], POMDP-lite [Che+16], and gener-
ally as the theory of dual control [Fel60].

In this framework, we infer a distribution of the user’s goal by
observing the user actions u. Similar to the known-goal setting (sec-
tion 6.1.1), we define the value function of a belief as:

Vπr
(b) = E

[
∑

t
Cr(st, ut, at) | b0 = b

]
st ∼ bt

ut ∼ πu(· | st)

at ∼ πr(· | st, ut)

bt+1 ∼ τ(· | bt, ut, at)

Where the belief transition τ corresponds to transitioning the known
environment state x according to T, and updating our belief over
the user’s goal as described in section 6.3.1. We can define quantities
similar to above over beliefs:

V∗(b) = min
πr

Vπr
(b) (6.2)

Q∗(b, u, a) = E

[
Cr(b, u, a) + E

b′

[
V∗(b′)

]]

6.2 Hindsight Optimization

Computing the optimal solution for a POMDP with continuous
states and actions is generally intractable. Instead, we approximate
this quantity through Hindsight Optimization [Cho+00; Yoo+08], or
QMDP [Lit+95]. This approximation estimates the value function by



76 acting under uncertainty for information gathering and shared autonomy

switching the order of the min and expectation in eq. (6.2):

VHS(b) = E
b

[
min

πr
Vπr

(s)
]

= E
g

[
Vg(x)

]
QHS(b, u, a) = E

b

[
Cr(s, u, a) + E

s′

[
VHS(s′)

]]
= E

g

[
Qg(x, u, a)

]
Where we explicitly take the expectation over g ∈ G, as we assume
that is the only uncertain part of the state.

Conceptually, this approximation corresponds to assuming that
all uncertainty will be resolved at the next timestep. At the next
timestep, the optimal cost-to-go would then be given by the value
function without uncertainty, Vg. The expectation comes from un-
certainty resolved with probability proportional to the current dis-
tribution. Note that this is the best case scenario given our current
distribution, as we would no longer require hedging against uncer-
tainty. Thus, this is a lower bound of the cost-to-go, VHS(b) ≤ V∗(b).

As it assumes all uncertainty will be resolved, this method never
explicitly gathers information [Lit+95], and thus performs poorly
when this is necessary. Nonetheless, hindsight optimization has
demonstrated effectiveness in other domains [Yoo+07; Yoo+08].

We believe this method is suitable for shared autonomy for many
reasons. Conceptually, we assume the user provides inputs at all
times, and therefore we gain information without explicit informa-
tion gathering. Works in other domains with similar properties have
shown that this approximation performs comparably to methods that
consider explicit information gathering [Kov+14]. Computationally,
computing QHS can be done with continuous state and action spaces,
enabling fast reaction to user inputs.

Computing Qg for shared autonomy requires utilizing the stochas-
tic user policy πu

g and the robot policy:

Stochastic user with robot

Estimate u using πu
g at each time step, e.g. by sampling and per-

forming rollouts, and utilize the full cost function Cr
g(x, u, a) and

transition function T(x′ | x, u, a) to compute Qg. This would be the
standard QMDP approach for our POMDP.

Unfortunately, this can be computationally expensive: for each
sample of the user policy, we would need to compute the correspond-
ing robot action a we would take, and repeat this process for the
duration of the trial. To estimate the value function, we would need
many many such rollouts.



shared autonomy via hindsight optimization 77

Deterministic user with robot

Estimate the user action as the most likely u from πu
g at each time

step, and utilize the full cost function Cr
g(x, u, a) and transition func-

tion T(x′ | x, u, a) to compute Qg. This uses our policy predictor,
as above, but does so deterministically, and is thus more computa-
tionally efficient. However, this approximation relies heavily on the
accuracy of the deterministic policy, and still requires performing a
rollout for each user goal.

Robot takes over

Assume the user will stop supplying inputs, and the robot will com-
plete the task. This enables us to use the cost function Cr

g(x, 0, a)
and transition function T(x′ | x, 0, a) to compute Qg. For many cost
functions, we can analytically compute this value, e.g. cost of always
moving towards the goal at some velocity. An additional benefit of
this method is that it makes no assumptions about the user policy
πu

g , making it more robust to modelling errors. We use this method
in our experiments.

User takes over

Assume the user will complete the task without any assistance. This
corresponds to using the distribution πu

g to generate user actions
u at each timestep, and transition with T(x′ | x, u, 0) to compute
Qg. Unlike the robot takes over approximation, this requires
using the stochastic user policy to compute the value function. For
discrete state and action spaces, this can be done efficiently prior to
execution [Zie+09].

Finally, as we often cannot calculate arg maxa QHS(b, u, a) directly,
we use a first-order approximation, which leads to us to following
the gradient of QHS(b, u, a).

6.3 User Modelling

Ideally, we model shared autonomy as a cooperative two-player game
[Aum61], where the user is aware of the shared autonomy assis-
tance strategy. To achieve this, we might model the user as a learner,
changing their actions as they interact with the shared autonomy sys-
tem and learn it’s behavior. The user could even be aware of how the
shared autonomy system adapts to the user’s behavior, and actively
teaches the shared autonomy system the assistance behaviour they
desire [HM+16]. These models have been suggested for human-robot
collaboration in some settings [Li+15; Nik+17a].



78 acting under uncertainty for information gathering and shared autonomy

Unfortunately, models for how a user learns are limited, and such
models are computationally intractable in continuous domains. A
simplifying assumption is that the user already knows the shared
autonomy strategy, and acts in accordance with their model of fu-
ture assistance. We explore an instantiation of this model in chap-
ter 8.These models are also computationally challenging, and our
framework in chapter 8 is limited to discrete worlds.

For application to continuous state and action spaces, we assume
the user acts without knowledge of assistance. This affects both user
goal prediction and the assistance strategy. For goal prediction, we
rely on models where a user input is based only on the current state
x. For the assistance strategy, we optimize for a cost function Cr

g
that minimizes the user’s cost under the same model. This can be
suboptimal - for example, knowing the user will rely on assistance
may lead us to take paths that are difficult for a user but easy for
autonomy.

In section 6.3.1, we present our model for goal prediction under
the assumption that the user acts without knowledge of assistance.
Empirically, we find our assumption this works well for user goal
prediction, quickly honing in on the user goal during interaction.
However, the assistance strategy may behave differently with knowl-
edge of assistance. In chapter 8, we show how optimizing for a user
cost that considers how they respond to assistance improves per-
formance, enabling users to achieve goals with less cost in discrete
settings. We leave extensions of this model to the continuous setting
as future work.

6.3.1 User Goal Prediction

In order to infer the user’s goal, we construct a user model πu
g to

provide the distribution of user actions at state x for user goal g.
In principle, we could use any generative predictor for this model,
e.g. [KS13; Wan+13]. We choose to use maximum entropy inverse
optimal control (MaxEnt IOC) [Zie+08], as it explicitly models a user
cost function Cu

g . Our assistance policy optimize for this user cost
directly by defining Cr

g as a function of Cu
g .

We define the user MDP with states x ∈ X and user actions u ∈ U
as before, transition Tu(x′ | x, u) = T(x′ | x, u, 0), and cost Cu

g (x, u).
With this MDP, we use MaxEnt IOC to compute a distribution over
user actions for each goal. The distribution of actions at a single state
are computed based on how optimal that action is for minimizing
cost over a horizon T. To compute this quantity, we first compute the
distribution over trajectories from any state, and compute the dis-
tribution over a single action as the sum over the trajectories which



shared autonomy via hindsight optimization 79

have that as the first action.
Define a sequence of environment states and user inputs as ξ =

{x0, u0, · · · , xT , uT}. Note that sequences are not required to be trajec-
tories, in that xt+1 is not necessarily the result of applying ut in state
xt. Define the cost of a sequence as the sum of costs of all state-input
pairs, Cu

g (ξ) = ∑t Cu
g (xt, ut). Let ξ0→t be a sequence from time 0 to t,

and ξt→T
x a sequence of from time t to T, starting at x.

Ziebart [Zie10] shows that minimizing the worst-case predictive
loss results in a model where the probability of a sequence decreases
exponentially with cost, p(ξ | g) ∝ exp(−Cu

g (ξ)). Importantly, one
can efficiently learn a cost function consistent with this model from
demonstrations [Zie+08].

Computationally, the difficulty in computing p(ξ | g) lies in the
normalizing constant

∫
ξ exp(−Cu

g (ξ)), known as the partition func-
tion. Evaluating this explicitly would require enumerating all se-
quences and calculating their cost. However, as the cost of a sequence
is the sum of costs of all state-action pairs, dynamic programming
can be utilized to compute this through soft-minimum value iteration
when the state is discrete [Zie+09; Zie+12]:

Qsoft
g,t (x, u) = Cu

g (x, u) + E
[
Vsoft

g,t+1(x′)
]

Vsoft
g,t (x) = softmin

u
Qsoft

g,t (x, u)

Where softminy f (y) = − log
∫

y exp(− f (y))dy and x′ ∼ Tu(· | x, u).
The log partition function is given by the soft value function,

Vsoft
g,t (x) = − log

∫
ξt→T

x
exp

(
−Cu

g (ξ
t→T
x )

)
, where the integral is

over all sequences starting at x and time t. Furthermore, the prob-
ability of a single input at a given environment state is given by
πu

t (u | x, g) = exp(Vsoft
g,t (x)−Qsoft

g,t (x, u)) [Zie+09].
Many works derive a simplification that enables them to only look

at the start and current states, ignoring the inputs in between [Zie+12;
DS13a]. Key to this assumption is that ξ corresponds to a trajectory,
where applying action ut at xt results in xt+1. However, if the system
is providing assistance, this may not be the case. In particular, if the
assistance strategy believes the user’s goal is g, the assistance strategy
will select actions to minimize Cu

g . Applying these simplifications
will result positive feedback, where the robot makes itself more con-
fident about goals it already believes are likely. In order to avoid this,
we ensure that the prediction comes from user inputs only, and not
robot actions:

p(ξ | g) = ∏
t

πu
t (ut | xt, g)

Finally, we apply Bayes’ rule to compute the probability of a goal



80 acting under uncertainty for information gathering and shared autonomy

given the partial sequence up to t,

p(g | ξ0→t) =
p(ξ0→t | g)p(g)

∑g′ p(ξ0→t | g′)p(g′)

6.3.2 Continuous state and action approximation

Soft-minimum value iteration is able to find the exact partition func-
tion when states and actions are discrete. However, it is computa-
tionally intractable to apply in general continuous state and action
spaces2. Instead, we follow Dragan and Srinivasa [DS13a] and use a 2 For the special case of LQR systems,

Ziebart et al. [Zie+12] provide a com-
putationally efficient method for exact
inference

second order approximation about the optimal trajectory. They show
that, assuming a constant Hessian, we can replace the difficult to
compute soft-min functions Vsoft

g and Qsoft
g with the min value and

action-value functions Vu
g and Qu

g :

πu
t (u | x, g) = exp(Vu

g (x)−Qu
g(x, u))

Recent works have explored extensions of the MaxEnt IOC model
for continuous spaces [Bou+11; LK12; Fin+16]. We leave experiments
using these methods for learning and prediction as future work.

6.4 Multi-Target MDP

There are often multiple ways to achieve a goal. We refer to each of
these ways as a target. For a single goal (e.g. object to grasp), let the
set of targets (e.g. grasp poses) be κ ∈ K. We assume each target has
a cost function Cκ , from which we compute the corresponding value
and action-value functions Vκ and Qκ , and soft-value functions Vsoft

κ

and Qsoft
κ . We derive the quantities for goals, Vg, Qg, Vsoft

g , Qsoft
g , as

functions of these target functions.
We state the theorems below, and provide proofs in the appendix

(appendix A.3).

6.4.1 Multi-Target Assistance

We assign the cost of a state-action pair to be the cost for the target
with the minimum cost-to-go after this state:

Cg(x, u, a) = Cκ∗(x, u, a) κ∗ = arg min
κ

Vκ(x′) (6.3)

Where x′ is the environment state after actions u and a are applied at
state x. For the following theorem, we require that our user policy be
deterministic, which we already assume in our approximations when
computing robot actions in section 6.2.



shared autonomy via hindsight optimization 81

Theorem 10. Let Vκ be the value function for target κ. Define the cost for
the goal as in eq. (6.3). For an MDP with deterministic transitions, and a
deterministic user policy πu, the value and action-value functions Vg and
Qg can be computed as:

Qg(x, u, a) = Qκ∗(x, u, a) κ∗ = arg min
κ

Vκ(x′)

Vg(x) = min
κ

Vκ(x)

6.4.2 Multi-Target Prediction

Here, we don’t assign the goal cost to be the cost of a single target Cκ ,
but instead use a distribution over targets.

Theorem 11. Define the probability of a trajectory and target as p(ξ, κ) ∝
exp(−Cκ(ξ)). Let Vsoft

κ and Qsoft
κ be the soft-value functions for target κ.

For an MDP with deterministic transitions, the soft value functions for goal
g, Vsoft

g and Qsoft
g , can be computed as:

Vsoft
g (x) = softmin

κ
Vsoft

κ (x)

Qsoft
g (x, u) = softmin

κ
Qsoft

κ (x, u)

(a) Value Function Target 1

(b) Value Function Target 2

(c) Assistance Value Function

(d) Prediction Value Function

Figure 6.3: Value function for a goal
(grasp the ball) decomposed into value
functions of targets (grasp poses). (a),
(b) Two targets and their corresponding
value function Vκ . In this example,
there are 16 targets for the goal. (c) The
value function of a goal Vg used for
assistance, corresponding to the mini-
mum of all 16 target value functions (d)
The soft-min value function Vsoft

g used
for prediction, corresponding to the
soft-min of all 16 target value functions.





7
Shared Autonomy User Studies

In this chapter, we study the efficacy of our shared autonomy frame-
work (section 6.1) on real users. We implement this framework with
two applications in mind: shared control teleoperation (section 7.1)
and human-robot teaming (section 7.2).

For shared control teleoperation, users performed two tasks: a
simpler object grasping task (section 7.1.1), and a more difficult feed-
ing task (section 7.1.2). In both cases, we find that our POMDP based
method enabled users to achieve goals faster and with less joystick
input than a state-of-the-art predict-then-act method [DS13a]. Sub-
jective user preference differed for each task, with no statistical dif-
ference for the simpler object grasping task, and users preferring our
POMDP method for the more difficult feeding task.

For human-robot teaming (section 7.2.1), the user and robot per-
formed a collaborative gift-wrapping task, where both agents had
to manipulate the same set of objects while avoiding collisions. We
found that users spent less time idling and less time in collision
while collaborating with a robot using our method. However, results
for total task completion time are mixed, as predict-then-act meth-
ods are able to take advantage of more optimized motion planners,
enabling faster execution once the user goal is confidently predicted.

7.1 Shared Control Teleoperation

We apply our shared autonomy framework to two shared control
teleoperation tasks: a simpler task of object grasping (section 7.1.1)
and a more complicated task of feeding (section 7.1.2). Formally, the
state x corresponds to the end-effector pose of the robot, each goal
g an object in the world, and each target κ a pose for achieving that
goal (e.g. pre-grasp pose). The transition function T(x′ | x, u, a)
deterministically transitions the state by applying both u and a as
end-effector velocities. We map user joystick inputs to u as if the user
were controlling the robot through direct teleoperation.



84 acting under uncertainty for information gathering and shared autonomy

User Robot
(a)

User Robot
(b)

User Robot
(c)

Figure 7.1: Estimated goal probabilities
and value function for object grasp-
ing. Top row: the probability of each
goal object and a 2-dimensional slice
of the estimated value function. The
transparent end-effector corresponds
to the initial state, and the opaque
end-effector to the next state. Bottom
row: the user input and robot control
vectors which caused this motion. (a)
Without user input, the robot automat-
ically goes to the position with lowest
value, while estimated probabilities
and value function are unchanged. (b)
As the user inputs “forward”, the end-
effector moves forward, the probability
of goals in that direction increase, and
the estimated value function shifts in
that direction. (c) As the user inputs
“left”, the goal probabilities and value
function shift in that direction. As the
probability of one object dominates,
the system automatically rotates the
end-effector for grasping that object.

For both tasks, we hand-specify a simple user cost function, Cu
κ ,

from which everything is derived. Let d be the distance between the
robot state x′ = Tu(x, u) and target κ:

Cu
κ (x, u) =

{
α d > δ

α
δ d d ≤ δ

That is, a linear cost near a target (d ≤ δ), and a constant cost
otherwise. This is based on our observation that users make fast,
constant progress towards their goal when far away, and slow down
for alignment when near their goal. This is by no means the best cost
function, but it does provide a baseline for performance. We might
expect, for example, that incorporating collision avoidance into our
cost function may enable better performance [YH11]. We use this
cost function, as it enables closed-form value function computation,
enabling inference and execution at 50Hz.

For prediction, when the distance is far away from any target
(d > δ), our algorithm shifts probability towards goals relative to
how much progress the user action makes towards the target. If
the user stays close to a particular target (d ≤ δ), probability mass
automatically shifts to that goal, as the cost for that goal is less than
all others.

We set Cr
κ(x, a, u) = Cu

κ (x, a), causing the robot to optimize for the
user cost function directly1, and behave similar to how we observe 1 In our prior work [Jav+15], we used

Cr
κ(x, a, u) = Cu

κ (x, a) + (a − u)2 in
a different framework where only
the robot action transitions the state.
Both formulations are identical after
linearization. Let a∗ be the optimal
optimal robot action in this framework.
The additional term (a− u)2 leads to
executing the action u + a∗, equivalent
to first executing the user action u, then
a∗, as in this framework.

users behaved. When far away from goals (d > δ), it makes progress
towards all goals in proportion to their probability of being the user’s
goal. When near a target (d ≤ δ) that has high probability, our sys-
tem reduces assistance as it approaches the final target pose, letting
users adjust the final pose if they wish.

We believe hindsight optimization is a suitable POMDP approx-
imation for shared control teleoperation. A key requirement for
shared control teleoperation is efficient computation, in order to



shared autonomy user studies 85

make the system feel responsive. With hindsight optimization, we
can provide assistance at 50Hz, even with continuous state and action
spaces.

The primary drawback of hindsight optimization is the lack of
explicit information gathering [Lit+95]: it assumes all information
is revealed at the next timestep, negating any benefit to information
gathering. As we assume the user provides inputs at all times, we
gain information automatically when it matters. When the optimal
action is the same for multiple goals, we take that action. When the
optimal action differs, our model gains information proportional to
how suboptimal the user action is for each goal, shifting probability
mass towards the user goal, and providing more assistance to that
goal.

For shared control teleoperation, explicit information gathering
would move the user to a location where their actions between goals
were maximally different. Prior works suggest that treating users as
an oracle is frustrating [GB11; Ame+14], and this method naturally
avoids it.

We evaluated this system in two experiments, comparing our
POMDP based method, referred to as policy, to a conventional predict-
then-act approach based on Dragan and Srinivasa [DS13a], referred
to as blend (fig. 5.3). In our feeding experiment, we additionally com-
pare to direct teleoperation, referred to as direct, and full autonomy,
referred to as autonomy.

The blend baseline of Dragan and Srinivasa [DS13a] requires esti-
mating the predictor’s confidence of the most probable goals, which
controls how user action and autonomous assistance are arbitrated
(fig. 5.3). We use the distance-based measure used in the experiments
of Dragan and Srinivasa [DS13a], conf = max

(
0, 1− d

D

)
, where d is

the distance to the nearest target, and D is some threshold past which
confidence is zero.

7.1.1 Grasping Experiment

Our first shared-control teleoperation user study evaluates two
methods, our POMDP framework and a predict-then-act blending
method [DS13a], on the task of object grasping. This task appears
broadly in teleoperation systems, appearing in nearly all applications
of teleoperated robotic arms. Additionally, we chose this task for its
simplicity, evaluating these methods on tasks where direct teleopera-
tion is relatively easy.



86 acting under uncertainty for information gathering and shared autonomy

7.1.1.1 Metrics

Our experiment aims to evaluate the efficiency and user satisfaction
of each method.

Objective measures. We measure the objective efficiency of the
system in two ways. Total execution time measures how long it took
the participant to grasp an object, measuring the effectiveness in
achieving the user’s goal. Total joystick input measures the magnitude
of joystick movement during each trial, measuring the user’s effort to
achieve their goal.

Subjective measures. We also evaluated user satisfaction with
the system through through a seven-point Likert scale survey. After
using each control method, we asked users to rate if they would like
to use the method. After using both methods, we asked users which
they preferred.

7.1.1.2 Hypotheses

Prior work suggests that more autonomy leads to greater efficiency
for teleoperated robots [YH11; Lee+12; DS13a; Hau13; Jav+15]. Ad-
ditionally, prior work indicates that users subjectively prefer more
assistance when it leads to more efficient task completion [YH11;
DS13a]. Based on this, we formulate the following hypotheses:
H1a Participants using the policy method will grasp objects significantly
faster than the blend method
H1b Participants using the policy method will grasp objects with signifi-
cantly less control input than the blend method
H1c Participants will agree more strongly on their preferences for the
policy method compared to the blend method

7.1.1.3 Experiment Design

Figure 7.2: Our experimental setup
for object grasping. Three objects - a
canteen, block, and glass - were placed
on the table in front of the robot in
a random order. Prior to each trial,
the robot moved to the configuration
shown. Users picked up each object
using each teleoperation system.

We set up our experiments with three objects on a table: a canteen, a
block, and a cup (fig. 7.2). Users teleoperated a robot arm using two
joysticks on a Razer Hydra system. The right joystick mapped to the
horizontal plane, and the left joystick mapped to the height. A button
on the right joystick closed the hand. Each trial consisted of moving
from the fixed start pose, shown in fig. 7.2, to the target object, and
ended once the hand was closed.

7.1.1.4 Procedure

We conducted a within-subjects study with one independent variable
(control method) that had two conditions (policy, blend). We counter-
act the effects of novelty and practice by counterbalancing the order



shared autonomy user studies 87

of conditions. Each participant grasped each object one time for each
condition for a total of 6 trials.

We recruited 10 participants (9 male, 1 female), all with experience
in robotics, but none with prior exposure to our system. To counter-
balance individual differences of users, we chose a within-subjects
design, where each user used both systems.

Users were told they would be using two different teleoperation
systems, referred to as “method1” and “method2”. Users were not
provided any information about the methods. Prior to the recorded
trials, users went through a training procedure: First, they teleop-
erated the robot directly, without any assistance or objects in the
scene. Second, they grasped each object one time with each system,
repeating if they failed the grasp. Users were then given the option of
additional training trials for either system if they wished.

Users then proceeded to the recorded trials. For each system,
users picked up each object one time in a random order. Users were
told they would complete all trials for one system before the sys-
tem switched, but were not told the order. However, it was obvious
immediately after the first trail started, as the policy method assists
from the start pose and blend does not. Upon completing all trials for
one system, they were told the system would be switching, and then
proceeded to complete all trials for the other system. If users failed at
grasping (e.g. they knocked the object over), the data was discarded
and they repeated that trial. Execution time and total user input were
measured for each trial.

Upon completing all trials, users were given a short survey. For
each system, they were asked for their agreement on a 1-7 Likert
scale for the following statements:

1. “I felt in control”
2. “The robot did what I wanted”
3. “I was able to accomplish the tasks quickly”
4. “If I was going to teleoperate a robotic arm, I would like to use the

system”

They were also asked “which system do you prefer”, where 1 cor-
responded to blend, 7 to policy, and 4 to neutral. Finally, they were
asked to explain their choices and provide any general comments.

7.1.1.5 Results

Users were able to successfully use both systems. There were a total
of two failures while using each system - once each because the user
attempted to grasp too early, and once each because the user knocked
the object over. These experiments were reset and repeated.



88 acting under uncertainty for information gathering and shared autonomy

We assess our hypotheses using a significance level of α = 0.05.
For data that violated the assumption of sphericity, we used a Greenhouse-
Geisser correction. If a significant main effect was found, a post-hoc
analysis was used to identify which conditions were statistically dif-
ferent from each other, with Holm-Bonferroni corrections for multiple
comparisons.

Control Want Quickly Like Prefer
Survey Questions

1

2

3

4

5

6

7

R
at

in
g

**
Blend Policy

Figure 7.3: Boxplots from our user
study. For each system, users were
asked if they felt in control, if the robot
did what they wanted, if they were able
to accomplish tasks quickly, and if they
would like to use the system. Addition-
ally, they were asked which system they
prefer, where a rating of 1 corresponds
to blend, and 7 corresponds to policy.
We found that users agreed with feeling
in control more when using the blend
method compared to the policy method
(p < 0.01).

1 2 3 4 5 6 7
Preference

-4
-3
-2
-1
0
1
2
3
4

Li
ke

D
iff

er
en

ce

Figure 7.4: The like rating of policy
minus blend, plotted against the prefer
rating. When multiple users mapped to
the same coordinate, we plot multiple
dots around that coordinate. Colors
correspond to different users, where the
same user has the same color in fig. 7.5.

Trial times and total control input were assessed using a two-
factor repeated measures ANOVA, using the assistance method and
object grasped as factors. Both trial times and total control input had
a significant main effect. We found that our policy method resulted
in users accomplishing tasks more quickly, supporting H1a (F(1, 9) =
12.98, p = 0.006). Similarly, our policy method resulted in users
grasping objects with less input, supporting H1b (F(1, 9) = 7.76, p =

0.021). See fig. 7.5 for more detailed results.
To assess user preference, we performed a Wilcoxon paired

signed-rank test on our survey question asking if they would like
to use each system, and a Wilcoxon rank-sum test on the survey
question of which system they prefer against the null hypothesis of no
preference (value of 4). There was no evidence to support H1c.

In fact, our data suggests a trend towards the opposite: that users
prefer blend over policy. When asked if they would like to use the
system, there was a small difference between methods (blend: M =

4.90, SD = 1.58, policy: M = 4.10, SD = 1.64). However, when asked
which system they preferred, users expressed a stronger preference for
blend (M = 2.90, SD = 1.76). While these results are not statistically
significant according to our Wilcoxon tests and α = 0.05, it does
suggest a trend towards preferring blend. See fig. 7.3 for results for
all survey questions.

We found this surprising, as prior work indicates a strong correla-
tion between task completion time and user satisfaction, even at the
cost of control authority, in both shared autonomy [DS13a; Hau13]
and human-robot teaming [Gom+14] settings.2 Not only were users

2 In prior works where users pre-
ferred greater control authority, task
completion times were indistinguish-
able [Kim+12].

faster, but they recognized they could accomplish tasks more quickly
(see quickly in fig. 7.3). One user specifically commented that “[Pol-
icy] took more practice to learn. . . but once I learned I was able to do
things a little faster. However, I still don’t like feeling it has a mind of
its own”.

Users agreed more strongly that they felt in control during blend
(Z = −2.687, p = 0.007). Interestingly, when asked if the robot did
what they wanted, the difference between methods was less drastic.
This suggests that for some users, the robot’s autonomous actions
were in-line with their desired motions, even though the user did not
feel that they were in control.

Users also commented that they had to compensate for policy in



shared autonomy user studies 89

Blend Policy
Method

5

10

15

20
Ti

m
e

(s
)

**

0 10 20 30
Time Blend (s)

0

10

20

Ti
m

e
D

iff
er

en
ce

(s
)

Blend Policy
Method

5

10

15

20

Jo
ys

ti
ck

In
pu

t

*

0 10 20
Input Blend

0

10

20

In
pu

tD
iff

er
en

ce

Figure 7.5: Task completion times and
total input for all trials. On the left, box
plots for each system. On the right, the
time and input of blend minus policy,
as a function of the time and total input
of blend. Each point corresponds to one
trial, and colors correspond to different
users. We see that policy was faster
(p < 0.01) and resulted in less input
(p < 0.05). Additionally, the difference
between systems increases with the
time/input of blend.

their inputs. For example, one user stated that “[policy] did things
that I was not expecting and resulted in unplanned motion”. This
can perhaps be alleviated with user-specific policies, matching the
behavior of particular users.

Some users suggested their preferences may change with better
understanding. For example, one user stated they “disliked (policy)
at first, but began to prefer it slightly after learning its behavior.
Perhaps I would prefer it more strongly with more experience”. It
is possible that with more training, or an explanation of how policy
works, users would have preferred the policy method. We leave this
for future work.

7.1.1.6 Examining trajectories

Users with different preferences had very different strategies for
using each system. Some users who preferred the assistance policy
changed their strategy to take advantage of the constant assistance
towards all goals, applying minimal input to guide the robot to the
correct goal (fig. 7.6a). In contrast, users who preferred blending
were often opposing the actions of the autonomous policy (fig. 7.6b).
This suggests the robot was following a strategy different from their
own.



90 acting under uncertainty for information gathering and shared autonomy

0 2 4 6 8 10 12 14

-1.0

0.0

1.0

X
D

im

User Known Assist

0 2 4 6 8 10 12 14

-1.0

0.0

1.0

Y
D

im

0 2 4 6 8 10 12 14

-1.0

0.0

1.0

Z
D

im

0 4 8 12
Time (s)

-0.2

0.0

0.2

D
ot

Pr
od

Using Blend

0 1 2 3 4 5 6 7

-1.0

0.0

1.0

X
D

im

User Known Assist

0 1 2 3 4 5 6 7

-1.0

0.0

1.0

Y
D

im

0 1 2 3 4 5 6 7

-1.0

0.0

1.0

Z
D

im

0 2 4 6
Time (s)

-0.2

0.0

0.2

D
ot

Pr
od

Using Policy

(a) Prefers Policy

0 2 4 6 8 10 12 14

-1.0

0.0

1.0

X
D

im

User Known Assist

0 2 4 6 8 10 12 14

-1.0

0.0

1.0

Y
D

im

0 2 4 6 8 10 12 14

-1.0

0.0

1.0

Z
D

im

0 4 8 12
Time (s)

-0.2

0.0

0.2

D
ot

Pr
od

Using Blend

0 1 2 3 4 5 6 7 8

-1.0

0.0

1.0

X
D

im

User Known Assist

0 1 2 3 4 5 6 7 8

-1.0

0.0

1.0

Y
D

im

0 1 2 3 4 5 6 7 8

-1.0

0.0

1.0

Z
D

im

0 2 4 6 8
Time (s)

-0.2

0.0

0.2

D
ot

Pr
od

Using Policy

(b) Prefers Blend

Figure 7.6: User input and autonomous
actions for two users, using both blend
and policy. We plot the user input, au-
tonomous assistance with the estimated
distribution, and what the autonomous
assistance would have been had the
predictor known the true goal. We sub-
tract the user input from the assistance
when plotting, to show the autonomous
action as compared to direct teleop-
eration. The top 3 figures show each
dimension separately. The bottom
shows the dot product between the user
input and assistance action. (a) This
user, who preferred policy, changed
their strategy during policy assistance,
letting the assistance do the bulk of
the work. Note that this user never
applied input in the ‘X’ dimension in
this or any of their three policy trials,
as the assistance always went towards
all objects in that dimension. (b) This
user, who preferred blend, opposed the
autonomous assistance during policy
(such as in the ‘X’ dimension) for both
the estimated distribution and known
goal, suggesting the cost function didn’t
accomplish the task in the way the user
wanted. Even still, the user was able
to accomplish the task faster with the
autonomous assistance then blending.

7.1.2 Feeding Experiment

Building from the results of the grasping study (section 7.1.1), we
designed a broader evaluation of our system. In this evaluation, we
test our system in an eating task using a Kinova Mico robot manipu-
lator. We chose the Mico robot because it is a commercially available
assistive device, and thus provides a realistic testbed for assistive
applications. We selected the task of eating for two reasons. First,
eating independently is a real need; it has been identified as one of
the most important tasks for assistive robotic arms [Chu+13]. Sec-
ond, eating independently is hard; interviews with current users of
assistive arms have found that people generally do not attempt to use
their robot arm for eating, as it requires too much effort [Her+16]. By
evaluating our systems on the desirable but difficult task of eating,
we show how shared autonomy can improve over traditional meth-
ods for controlling an assistive robot in a real-world domain that has
implications for people’s quality of life.

We also extended our evaluation by considering two additional
control methods: direct teleoperation and full robot autonomy. Direct
teleoperation is how assistive robot manipulators like the Mico are
currently operated by users. Full autonomy represents a condition in
which the robot is behaving “optimally” for its own goal, but does



shared autonomy user studies 91

not take the user’s goal into account.
Thus, in this evaluation, we conducted a user study to evaluate

four methods of robot control—our POMDP framework, a predict-
then-act blending method [DS13a], direct teleoperation, and full
autonomy—in an assistive eating task.

7.1.2.1 Metrics

Our experiments aim to evaluate the effectiveness and user satisfac-
tion of each method.

Objective measures. We measure the objective efficiency of the
system in four ways. Success rate identifies the proportion of success-
fully completed trials, where success is determined by whether the
user was able to pick up their intended piece of food. Total execution
time measures how long it took the participant to retrieve the food
in each trial. Number of mode switches identifies how many times par-
ticipants had to switch control modes during the trial (fig. 5.2). Total
joystick input measures the magnitude of joystick movement during
each trial. The first two measures evaluate how effectively the par-
ticipant could reach their goal, while the last two measures evaluate
how much effort it took them to do so.

Subjective measures. We also evaluated user satisfaction with
the system through subjective measures. After five trials with each
control method, we asked users to respond to questions about each
system using a seven point Likert scale. These questions, specified
in section 7.1.2.4, assessed user preferences, their perceived ability
to achieve their goal, and feeling they were in control. Additionally,
after they saw all of the methods, we asked users to rank order the
methods according to their preference.

7.1.2.2 Hypotheses

As in the previous evaluation, we are motivated by prior work that
suggests that more autonomy leads to greater efficiency and accuracy
for teleoperated robots [YH11; Lee+12; DS13a; Hau13; Jav+15]. We
formulate the following hypotheses regarding the efficiency of our
control methods, measured through objective metrics.
H2a Using methods with more autonomous assistance will lead to more
successful task completions
H2b Using methods with more autonomous assistance will result in
faster task completion
H2c Using methods with more autonomous assistance will lead to fewer
mode switches
H2d Using methods with more autonomous assistance will lead to less
joystick input



92 acting under uncertainty for information gathering and shared autonomy

(a) Detect (b) Align (c) Acquire (d) Serve

Figure 7.7: Our eating study. A plate
with three bites of food was placed in
front of users. (a) The robot start by
detecting the pose of all bites of food.
(b) The user then uses one of the four
methods to align the fork with their de-
sired bite. When the user indicates they
are aligned, the robot automatically (c)
acquires and (d) serves the bite.

Feeding with an assistive arm is difficult [Her+16], and prior work
indicates that users subjectively prefer more assistance when the
task is difficult even though they have less control [YH11; DS13a].
Based on this, we formulate the following hypotheses regarding user
preferences, measured through our subjective metrics:
H2e Participants will more strongly agree on feeling in control for meth-
ods with less autonomous assistance
H2f Participants will more strongly agree preference and usability sub-
jective measures for methods with more autonomous assistance
H2g Participants will rank methods with more autonomous assistance
above methods with less autonomous assistance

Our hypotheses depend on an ordering of “more” or “less” au-
tonomous assistance. The four control methods in this study natu-
rally fall into the following ordering (from least to most assistance):
direct teleoperation, blending, policy, and full autonomy. Between
the two shared autonomy methods, policy provides more assistance
because it creates assistive robot behavior over the entire duration
of the trajectory, whereas blend must wait until the intent prediction
confidence exceeds some threshold before it produces an assistive
robot motion.

7.1.2.3 Experimental Design

To evaluate each robot control algorithm on a realistic assistive task,
participants tried to spear bites of food from a plate onto a fork held
in the robot’s end effector (fig. 7.7). For each trial, participants con-
trolled the robot through a joystick and attempted to retrieve one of
three bites of food on a plate.

Each trial followed a fixed bite retrieval sequence. First, the robot
would move to a pose where its wrist-mounted camera could detect
bites of food on the plate. This step ensured that the system was ro-
bust to bite locations and could operate no matter where on the plate
the bites were located. While the camera captured and processed the



shared autonomy user studies 93

scene to identify bite locations, we asked users to verbally specify
which bite they wanted to retrieve3, which allowed us to identify

3 Users verbally specified which bite
they wanted for all methods except
autonomous, in which the algorithm
selects the bite.

whether people were able to successfully retrieve their target bite.
Next, participants used the joystick to position the robot’s end

effector so that the fork was directly above their target bite. Six DOF
control was available in three modes of 2 DOF each (fig. 5.2), and
participants could switch between modes by pressing a button on the
joystick.

Once they had the fork positioned above their target bite, the
participant prompted the robot to retrieve the bite by pressing and
holding the mode switch button. The robot would then automatically
move straight down to the height of the table, spearing the bite on
the fork. Finally, the robot automatically served the bite.

7.1.2.4 Procedure

We conducted a within-subjects study with one independent vari-
able (control method) that had four conditions (full teleoperation,
blend, policy, and full autonomy). Because each participant saw all
control methods, we counteract the effects of novelty and practice by
fully counterbalancing the order of conditions. Each participant com-
pleted five trials for each condition for a total of 20 trials. The bite
retrieval sequence described in section 7.1.2.3 was the same in each
trial across the four control conditions. The only difference between
trials was the control method used for the alignment step, where the
fork is positioned above the bite. We measure the metrics discussed
in section 7.1.2.2 only during this step.

We recruited 23 able-bodied participants from the local community
(11 male, 12 female, ages 19 to 59). After obtaining written consent,
participants were given a brief overview of the feeding task, and told
the robot may provide help or take over completely. Users then re-
ceived instruction for teleoperating the system with modal control,
and were given five minutes to practice using the robot under direct
teleoperation. An eye tracking system was then placed on users for
future data analysis, but participant gaze had no effect on the assis-
tance provided by the robot.

As described in section 7.1.2.3, participants used a joystick to spear
a piece of food from a plate on a fork held in the robot’s end effector.
The different control methods were never explained or identified to
users, and were simply referred to by their order of presentation (e.g.,
“method 1,” “method 2,” etc.). After using each method, users were
given a short questionnaire pertaining to that specific method. The
questions were:

1. “I felt in control”



94 acting under uncertainty for information gathering and shared autonomy

Direct Blend Policy Auton
0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

R
at

e

*
*

(a) Trial Success

Direct Blend Policy Auton
0

40

80

120

Ti
m

e
(s

) *** ***
***

***
***

(b) Time

Direct Blend Policy Auton
0

5

10

15

20

M
od

e
Sw

it
ch

es ***
***

***
***

(c) Mode Switches

Direct Blend Policy Auton
0

40

80

120

160

Jo
ys

ti
ck

In
pu

t

***
***

** *** ***
***

(d) User Input

Direct Blend Policy Auton
0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
ti

on

(e) Assistance Ratio

Direct Blend Policy Auton

1

2

3

4

R
an

ki
ng

**

(f) Method Rank

Figure 7.8: Boxplots for each algorithm
across all users of the (a) task comple-
tion ratio, (b) total execution time, (c)
number of mode switches, (d) total
joystick input, (e) the ratio of time that
robotic assistance was provided, and (f)
the ranking as provided by each user,
where 1 corresponds to the most pre-
ferred algorithm. Pairs that were found
significant during post-analysis are
plotted, where ∗ indicates p < 0.05, ∗∗
that p < 0.01, and ∗∗∗ that p < 0.001.

2. “The robot did what I wanted”
3. “I was able to accomplish the tasks quickly”
4. “My goals were perceived accurately”
5. “If I were going to teleoperate a robotic arm, I would like to use the

system”

These questions are identical to those asked in the previous evalu-
ation (section 7.1.1), with the addition of question 4, which focuses
specifically on the user’s goals. Participants were also provided space
to write additional comments. After completing all 20 trials, partici-
pants were asked to rank all four methods in order of preference and
provide final comments.

7.1.2.5 Results

One participant was unable to complete the tasks due to lack of com-
prehension of instructions, and was excluded from the analysis. One
participant did not use the blend method because the robot’s finger
broke during a previous trial. This user’s blend condition and fi-
nal ranking data were excluded from the analysis, but all other data
(which were completed before the finger breakage) were used. Two
other participants missed one trial each due to technical issues.

Our metrics are detailed in section 7.1.2.1. For each participant, we
computed the task success rate for each method. For metrics mea-
sured per trial (execution time, number of mode switches, and total



shared autonomy user studies 95

joystick input), we averaged the data across all five trials in each con-
dition, enabling us to treat each user as one independent datapoint in
our analyses. Differences in our metrics across conditions were ana-
lyzed using a repeated measures ANOVA with a significance thresh-
old of α = 0.05. For data that violated the assumption of sphericity,
we used a Greenhouse-Geisser correction. If a significant main effect
was found, a post-hoc analysis was used to identify which conditions
were statistically different from each other, with Holm-Bonferroni
corrections for multiple comparisons.

Success Rate differed significantly between control methods
(F(2.33, 49.00) = 4.57, p = 0.011). Post-hoc analysis revealed that
more autonomy resulted in significant differences of task completion
between policy and direct (p = 0.021), and a significant difference
between policy and blend (p = 0.0498). All other comparisons were
not significant. Surprisingly, we found that policy actually had a
higher average task completion ratio than autonomy, though not
significantly so. Thus, we found support for H2a (fig. 7.8a).

Total execution time differed significantly between methods
(F(1.89, 39.73) = 43.55, p < 0.001). Post-hoc analysis revealed
that more autonomy resulted in faster task completion: autonomy
condition completion times were faster than policy (p = 0.001), blend
(p < 0.001), and direct (p < 0.001). There were also significant
differences between policy and blend (p < 0.001), and policy and
direct (p < 0.001). The only pair of methods which did not have a
significant difference was blend and direct. Thus, we found support
for H2b (fig. 7.8b).

Number of mode switches differed significantly between methods
(F(2.30, 48.39) = 65.16, p < 0.001). Post-hoc analysis revealed that
more autonomy resulted fewer mode switches between autonomy
and blend (p < 0.001), autonomy and direct (p < 0.001), policy and
blend (p < 0.001), and policy and direct (p < 0.001). Interestingly,
there was not a significant difference in the number of mode switches
between full autonomy and policy, even though users cannot mode
switch when using full autonomy at all. Thus, we found support for
H2c (fig. 7.8c).

Total joystick input differed significantly between methods
(F(1.67, 35.14) = 65.35, p < 0.001). Post-hoc analysis revealed
that more autonomy resulted in less total joystick input between all
pairs of methods: autonomy and policy (p < 0.001), autonomy and
blend (p < 0.001), autonomy and direct (p < 0.001), policy and
blend (p < 0.001), policy and direct (p < 0.001), and blend and direct
(p = 0.026). Thus, we found support for H2d (fig. 7.8d).

User reported subjective measures for the survey questions are
assessed using a Friedman’s test and a significance threshold of α =



96 acting under uncertainty for information gathering and shared autonomy

50 100
Time (s)

0

5

10

15

20

N
um

be
r

of
M

od
e

Sw
it

ch
es

Direct
Blend
Policy
Auton

(a) Time vs. Mode Switches

50 100
Time (s)

0

40

80

120

160

To
ta

lJ
oy

st
ic

k
In

pu
t

Direct
Blend
Policy
Auton

(b) Time vs. Total Joystick Input

0.00 0.25 0.50 0.75 1.00
Trajectory Time

0.00

0.25

0.50

0.75

1.00

A
ss

is
ta

nc
e

R
at

io

(c) Time vs. Assistance Ratio

Figure 7.9: Time vs. user input in both
the number of mode switches (a) and
joystick input (b). Each point corre-
sponds to the average for one user for
each method. We see a general trend
that trials with more time corresponded
to more user input. We also fit a line
so all points for all methods. Note that
the direct teleoperation methods are
generally above the line, indicating that
shared and full autonomy usually re-
sults in less user input even for similar
task completion time. (c) Ratio of the
magnitude of the assistance to user
input as a function of time. Line shows
mean of the assistance ratio as a func-
tion of the proportion of the trajectory.
Shaded array plots the standard error
over users. We see that blend initially
provides no assistance, as the predictor
is not confident in the user goal. In
contrast, policy provides assistance
throughout the trajectory. We also see
that policy decreases in assistance ratio
over time, as many users provided little
input until the system moved and ori-
ented the fork near all objects, at which
time they provided input to express
their preference and align the fork.

0.05. If significance was found, a post-hoc analysis was performed,
comparing all pairs with Holm-Bonferroni corrections.

User agreement on control differed significantly between methods,
ξ2(3) = 15.44, p < 0.001, with more autonomy leading to less feeling
of control. Post-hoc analysis revealed that all pairs were significant,
where autonomy resulting in less feeling of control compared to
policy (p < 0.001), blend (p = 0.001), and direct (p < 0.001). Policy
resulted in less feeling of control compared to blend (p < 0.001) and
direct (p = 0.008). Blend resulted in less feeling of control compared
to direct (p = 0.002). Thus, we found suppoert for H2e.

User agreement on preference and usability subjective mea-
sures sometimes differed significantly between methods. User
agreement on liking differed significantly between methods,
ξ2(3) = 8.74, p = 0.033. Post-hoc analysis revealed that between
the two shared autonomy methods (policy and blend), users liked the
more autonomous method more (p = 0.012).

User agreement on their perceived ability for achieving goals
quickly also differed significantly between methods, ξ2(3) =

11.90, p = 0.008. Post-hoc analysis revealed that users felt they
could achieve their goals more quickly with policy than with blend
(p = 0.010) and direct (p = 0.043). We found no significant differ-
ences for our other measures. Thus, we find partial support for H2f
(fig. 7.10).

Ranking differed significantly between methods, ξ2(3) =

10.31, p = 0.016. Again, post-hoc analysis revealed that between
the two shared autonomy methods (policy and blend), users ranked
the more autonomous one higher (p = 0.006). Thus, we find support
for H2g. As for the like rating, we also found that on average, users
ranked direct teleopration higher than both blend and full autonomy,
though not significantly so (fig. 7.8f).



shared autonomy user studies 97

Control Quickly Want Goals Like
1

2

3

4

5

6

7

Ra
tin

g

**
******

****
***

**
*

*
Direct Blend Policy Auton

Figure 7.10: Boxplots for user re-
sponses to all survey question. See
section 7.1.2.4 for specific questions.
Pairs that were found significant dur-
ing post-analysis are plotted, where ∗
indicates p < 0.05, ∗∗ that p < 0.01,
and ∗∗∗ that p < 0.001. We note that
policy was perceived as quick, even
though autonomy actually had lower
task completion (fig. 7.8b). Additionally,
autonomy had a very high variance
in user responses for many questions,
with users very mixed on if it did what
they wanted, and achieved their goal.
On average, we see that policy did
better then other methods for most user
responses.

7.1.2.6 Discussion

The robot in this study was controlled through a 2 DOF joystick and
a single button, which is comparable to the assistive robot arms in
use today.

As expected, we saw a general trend in which more autonomy
resulted in better performance across all objective measures (task
completion ratio, execution time, number of mode switches, and to-
tal joystick input), supporting H2a–H2d. We also saw evidence that
autonomy decreased feelings of control, supporting H2e. However,
it improved people’s subjective evaluations of usability and prefer-
ence, particularly between the shared autonomy methods (policy
and blend), supporting H2f and H2g. Most objective measures (par-
ticularly total execution time, number of mode switches, and total
joystick input) showed significant differences between all or nearly all
pairs of methods, while the subjective results were less certain, with
significant differences between fewer pairs of methods.

We can draw several insights from these findings. First, auton-
omy improves peoples’ performance on a realistic assistive task by
requiring less physical effort to control the robot. People use fewer
mode switches (which require button presses) and move the joystick
less in the more autonomous conditions, but still perform the task
more quickly and effectively. For example, in the policy method,
8 of our 22 users did not use any mode switches for any trial, but
this method yielded the highest completion ratio and low execution
times. Clearly, some robot autonomy can benefit people’s experience
by reducing the amount of work they have to do.

Interestingly, full autonomy is not always as effective as allowing
the user to retain some control. For example, the policy method had
a slightly (though not significantly) higher average completion ra-
tio than the full autonomy method. This appears to be the result of



98 acting under uncertainty for information gathering and shared autonomy

users fine-tuning the robot’s end effector position to compensate for
small visual or motor inaccuracies in the automatic bite localization
process. Because the task of spearing relatively small bites of food
requires precise end effector localization, users’ ability to fine-tune
the final fork alignment seems to benefit the overall success rate.
Though some users were able to achieve it, our policy method isn’t
designed to allow this kind of fine-tuning, and will continually move
the robot’s end effector back to the erroneous location against the
user’s control. Detecting when this may be occurring and decreasing
assistance would likely enhance people’s ability to fine-tune align-
ment, and improve their task completion rate even further.

Given the success of blending in previous studies [Li+11; CD12;
DS13a; Mue+15; Gop+16], we were surprised by the poor perfor-
mance of blend in our study. We found no significant difference for
blending over direct teleopration for success rate, task completion
time, or number of mode switches. We also saw that it performed
the worst among all methods for both user liking and ranking. One
possible explanation is that blend spent relatively little time assisting
users (fig. 7.8e). For this task, the goal predictor was unable to confi-
dently predict the user’s goal for 69% of execution time, limiting the
amount of assistance (fig. 7.9c). Furthermore, the difficult portion of
the task—rotating the fork tip to face downward—occurred at the be-
ginning of execution. Thus, as one user put it “While the robot would
eventually line up the arm over the plate, most of the hard work was
done by me.” In contrast, user comments for shared autonomy indi-
cated that “having help earlier with fork orientation was best.” This
suggests that the magnitude of assistance was less important then as-
sisting at a time that would have been helpful. And in fact, assisting
only during the portion where the user could do well themselves
resulted in additional frustration.

Although worse by all objective metrics, participants tended to
prefer direct teleoperation over autonomy. This is not entirely sur-
prising, given prior work where users expressed preference for more
control [Kim+12]. However, for difficult tasks like this one, users in
prior works tend to favor more assistance [YH11; DS13a]. Many users
commented that they disliked autonomy due to the lack of item se-
lection, for example, “While [autonomy] was fastest and easiest, it
did not account for the marshmallow I wanted.” Another user men-
tioned that autonomy “made me feel inadequate.”

We also found that users responded to failures by blaming the sys-
tem, even when using direct teleoperation. Of the eight users who
failed to successfully spear a bite during an autonomous trial, five
users commented on the failure of the algorithm. In contrast, of the
19 users who had one or more failure during teleoperation, only two



shared autonomy user studies 99

Metric

Autonmy Autonmy Autonmy Policy Policy Blend

— — — — — —
Policy Blend Direct Blend Direct Direct

Success Rate NS NS NS 0.050 0.021 NS
Completion Time <0.001 <0.001 <0.001 <0.001 <0.001 NS
Mode Switches NS <0.001 <0.001 <0.001 <0.001 NS
Control Input <0.001 <0.001 <0.001 <0.001 <0.001 0.004
Ranking NS NS NS 0.006 NS NS
Like Rating NS NS NS 0.012 NS NS
Control Rating <0.001 .001 <0.001 <0.001 0.008 .002
Quickly Rating NS NS NS 0.010 0.043 NS

Table 7.1: Post-Hoc p-value for every
pair of algorithms for each hypothe-
sis.For Success rate, completion time,
mode switches, and total joystick input,
results are from a repeated measures
ANOVA. For like rating and ranking,
results are from a Wilcoxon signed-
rank test. All values reported with
Holm-Bonferroni corrections.

commented on their own performance. Instead, users made com-
ments about the system itself, such as how the system “seemed off
for some reason” or “did not do what I intended.” One user blamed
their viewpoint for causing difficulty for the alignment, and another
the joystick. This suggests that people are more likely to penalize
autonomy for its shortcomings than their own control. Interestingly,
this was not the case for the shared autonomy methods. We find that
when users had some control over the robot’s movement, they did
not blame the algorithm’s failures (for example, mistaken alignments)
on the system.

7.2 Human-Robot Teaming

In human-robot teaming, the user and robot want to achieve
a set of related goals. Formally, we assume a set of user goals
gu ∈ Gu and robot goals gr ∈ Gr, where both want to
achieve all goals. However, there may be constraints on how
these goals can be achieved (e.g. user and robot cannot simul-
taneously use the same object [HB07]). We apply a conservative
model for these constraints through a goal restriction set R =

{(gu, gr) : Cannot achieve gu and gr simultaneously}. In order to
efficiently collaborate with the user, our objective is to simultaneously
predict the human’s intended goal, and achieve a robot goal not in
the restricted set. We remove the achieved goals from their corre-
sponding goal sets, and repeat this process until all robot goals are
achieved.

The state x corresponds to the state of both the user and robot,
where u affects the user portion of state, and a affects the robot por-
tion. The transition function T(x′ | x, u, a) deterministically transi-
tions the state by applying u and a sequentially.



100 acting under uncertainty for information gathering and shared autonomy

For prediction, we used the same cost function for Cu
κ as in our

shared teleoperation experiments (section 7.1). Let d be the distance
between the robot state x′ = Tu(x, u)4 and target κ: 4 We sometimes instead observe x′

directly (e.g. sensing the pose of the
user hand)

Cu
κ (x, u) =

{
α d > δ

α
δ d d ≤ δ

Which behaves identically to our shared control teleoperation setting:
when the distance is far away from any target (d > δ), probability
shifts towards goals relative to how much progress the user makes
towards them. When the user stays close to a particular target (d ≤
δ), probability mass shifts to that goal, as the cost for that goal is less
than all others.

Unlike our shared control teleoperation setting, our robot cost
function does not aim to achieve the same goal as the user, but rather
any goal not in the restricted set. As in our shared autonomy frame-
work, let g be the user’s goal. The cost function for a particular user
goal is:

Cr
g(x, u, a) = min

gr s.t. (g,gr) 6∈R
Cu

gr(x, a)

Where Cu
g uses the cost for each target Cu

κ to compute the cost func-
tion as described in section 6.4. Additionally, note that the min over
cost functions looks identical to the min over targets to compute the
cost for a goal. Thus, for deterministic transition functions, we can
use the same proof for computing the value function of a goal given
the value function for all targets (section 6.4.1) to compute the value
function for a robot goal given the value function for all user goals:

Vr
g(x) = min

gr s.t. (g,gr) 6∈R
Vu

gr(x)

This simple cost function provides us a baseline for performance.
We might expect better collaboration performance by incorporat-
ing costs for collision avoidance with the user [MB13; LS15], social
acceptability of actions [Sis+07], and user visibility and reachabil-
ity [Sis+10; PA10; Mai+11]. We use this cost function to test the via-
bility of our framework as it enables closed-form computation of the
value function.

This cost and value function causes the robot to go to any goal
currently in it’s goal set gr ∈ Gr which is not in the restriction set of
the user goal g. Under this model, the robot makes progress towards
goals that are unlikely to be in the restricted set and have low cost-
to-go. As the form of the cost function is identical to that which we
used in shared control teleoperation, the robot behaves similarly:
making constant progress when far away (d > δ), and slowing
down for alignment when near (d ≤ δ). The robot terminates and
completes the task once some condition is met (e.g. d ≤ ε).



shared autonomy user studies 101

Hindsight Optimization for Human-Robot Teaming

Similar to shared control teleoperation, we believe hindsight op-
timization is a suitable POMDP approximation for human-robot
teaming. The efficient computation enables us to respond quickly to
changing user goals, even with continuous state and action spaces.
For our formulation of human-robot teaming, explicit information
gathering is not possible: As we assume the user and robot affect
different parts of state space, robot actions are unable to explicitly
gather information about the user’s goal. Instead, we gain informa-
tion freely from user actions.

7.2.1 Human-Robot Teaming Experiment

We apply our shared autonomy framework to a human-robot team-
ing task of gift-wrapping, where the user and robot must both per-
form a task on each box to be gift wrapped. Our goal restriction set
enforces that they cannot perform a task on the same box at the same
time.

In a user study, we compare three methods: our shared autonomy
framework, referred to as policy, a standard predict-then-act system,
referred to as plan, and a non-adaptive system where the robot exe-
cutes a fixed sequence of motions, referred to as fixed.

7.2.1.1 Metrics

Task fluency involves seamless coordination of action. One measure
for task fluency is the minimum distance between the human and
robot end effectors during a trial. This was measured automatically
by a Kinect mounted on the robot’s head, operating at 30Hz. Our
second fluency measure is the proportion of trial time spent in col-
lision. Collisions occur when the distance between the robot’s end
effector and the human’s hand goes below a certain threshold. We
determined that 8cm was a reasonable collision threshold based on
observations before beginning the study.

Task efficiency relates to the speed with which the task is com-
pleted. Objective measures for task efficiency were total task duration
for robot and for human, the amount of human idle time during the
trial, and the proportion of trial time spent idling. Idling is defined as
time a participant spends with their hands still (i.e., not completing
the task). For example, idling occurs when the human has to wait for
the robot to stamp a box before they can tie the ribbon on it. We only
considered idling time while the robot was executing its tasks, so idle
behaviors that occurred after the robot was finished stamping the
boxes—which could not have been caused by the robot’s behavior—



102 acting under uncertainty for information gathering and shared autonomy

were not taken into account.
We also measured subjective human satisfaction with each method

through a seven-point Likert scale survey evaluating perceived safety
(four questions) and sense of collaboration (four questions). The
questions were:

1. “HERB was a good partner”
2. “I think HERB and I worked well as a team”
3. “I’m dissatisfied with how HERB and I worked together”
4. “I trust HERB”
5. “I felt that HERB kept a safe distance from me”
6. “HERB got in my way”
7. “HERB moved too fast”
8. “I felt uncomfortable working so close to HERB”

7.2.1.2 Hypotheses

We hypothesize that:
H3a Task fluency will be improved with our policy method compared
with the plan and fixed methods
H3b Task efficiency will be improved with our policy method compared
with the plan and fixed methods
H3c People will subjectively prefer the policy method to the plan or fixed
methods

7.2.1.3 Experimental Design

We developed a gift-wrapping task (fig. 7.11). A row of four boxes
was arranged on a table between the human and the robot; each box
had a ribbon underneath it. The robot’s task was to stamp the top
of each box with a marker it held in its hand. The human’s task
was to tie a bow from the ribbon around each box. By nature of
the task, the goals had to be selected serially, though ordering was
unspecified. Though participants were not explicitly instructed to
avoid the robot, tying the bow while the robot was stamping the box
was challenging because the robot’s hand interfered, which provided
a natural disincentive toward selecting the same goal simultaneously.

Figure 7.11: Participants performed a
collaborative gift-wrapping task with
HERB to evaluate our POMDP based
reactive system against a state of the
art predict-then-act method, and a
non-adaptive fixed sequence of robot
goals.

7.2.1.4 Implementation

We implemented the three control methods on HERB Srinivasa et al.
[Sri+12], a bi-manual mobile manipulator with two Barrett WAM
arms. A Kinect was used for skeleton tracking and object detection.
Motion planning was performed using CHOMP, except for our policy
method in which motion planning works according to section 6.1.



shared autonomy user studies 103

The stamping marker was pre-loaded in HERB’s hand. A stamp-
ing action began at a home position, the robot extended its arm to-
ward a box, stamped the box with the marker, and retracted its arm
back to the home position.

To implement the fixed method, the system simply calculated
a random ordering of the four boxes, then performed a stamping
action for each box. To implement the predict-then-act method, the
system ran the human goal prediction algorithm from section 6.3.1
until a certain confidence was reached (50%), then selected a goal that
was not within the restricted set R and performed a stamping action
on that goal. There was no additional human goal monitoring once
the goal action was selected. In contrast, our policy implementation
performed as described in section 7.2, accounting continually for
adapting human goals and seamlessly re-planning when the human’s
goal changed.

7.2.1.5 Procedure

We conducted a within-subjects study with one independent variable
(control method) that had 3 conditions (policy, plan, and fixed). Each
performed the gift-wrapping task three times, once with each robot
control method. To counteract the effects of novelty and practice, we
counterbalanced on the order of conditions.

We recruited 28 participants (14 female, 14 male; mean age 24,
SD 6) from the local community. Each participant was compensated
$5 for their time. After providing consent, participants were intro-
duced to the task by a researcher. They then performed the three
gift-wrapping trials sequentially. Immediately after each trial, before
continuing to the next one, participants completed an eight ques-
tion Likert-scale survey to evaluate their collaboration with HERB
on that trial. At the end of the study, participants provided verbal
feedback about the three methods. All trials and feedback were video
recorded.

7.2.1.6 Results

Two participants were excluded from all analyses for noncompliance
during the study (not following directions). Additionally, for the
fluency objective measures, five other participants were excluded
due to Kinect tracking errors that affected the automatic calculation
of minimum distance and time under collision threshold. Other
analyses were based on video data and were not affected by Kinect
tracking errors.

We assess our hypotheses using a significance level of α = 0.05.
For data that violated the assumption of sphericity, we used a



104 acting under uncertainty for information gathering and shared autonomy

Greenhouse-Geisser correction. If a significant main effect was found,
a post-hoc analysis was used to identify which conditions were sta-
tistically different from each other, with Holm-Bonferroni corrections
for multiple comparisons.

Fixed Plan Policy
0.0

0.1

0.2

0.3

0.4

D
is

ta
nc

e
(m

)

(a) Minimum Distance

Fixed Plan Policy
0

1

2

3

Pe
rc

en
t

*

(b) Percent in Collision

Figure 7.12: Distance metrics: no dif-
ference between methods for minimum
distance during interaction, but the
policy method yields significantly
(p < 0.05) less time in collision between
human and robot.

Fixed Plan Policy
0

2

4

6

Ti
m

e
(s

)
*

(a) Human Idle Time

Fixed Plan Policy
0

4

8

12

Pe
rc

en
t

(b) Human Idle Percentage

Figure 7.13: Idle time metrics: pol-
icy yielded significantly (p < 0.05)
less absolute idle time than the fixed
method.

To evaluate H3a (fluency), we conducted a repeated measures
ANOVA testing the effects of method type (policy, plan, and fixed)
on our two measures of human-robot distance: the minimum dis-
tance between participant and robot end effectors during each trial,
and the proportion of trial time spent with end effector distance be-
low the 8cm collision threshold (fig. 7.12). The minimum distance
metric was not significant (F(2, 40) = 1.405, p = 0.257). However,
proportion of trial time spent in collision was significantly affected
by method type (F(2, 40) = 3.639, p = 0.035). Interestingly, the
policy method never entered under the collision threshold. Post-
hoc pairwise comparisons with a Holm-Bonferroni correction reveal
that the policy method yielded significantly (p = 0.027) less time
in collision than the plan method (policy M = 0.0%, SD = 0; plan
M = 0.44%, SD = 0.7).

Therefore, H3a is partially supported: the policy method actu-
ally yielded no collisions during the trials, whereas the plan method
yielded collisions during 0.4% of the trial time on average. This con-
firms the intuition behind the differences in the two methods: the
policy continually monitors human goals, and thus never collides
with the human, whereas the plan method commits to an action once
a confidence level has been reached, and is not adaptable to changing
human goals.

To evaluate H3b (efficiency), we conducted a similar repeated
measures ANOVA for the effect of method type on task durations
for robot and human (fig. 7.14), as well as human time spent idling
(fig. 7.13). Human task duration was highly variable and no signifi-
cant effect for method was found (F(2, 50) = 2.259, p = 0.115). On the
other hand, robot task duration was significantly affected by method
condition (F(2, 50) = 79.653, p < 0.001). Post-hoc pairwise compar-
isons with a Bonferroni correction reveal that differences between
all conditions are significant at the p < 0.001 level. Unsurprisingly,
robot task completion time was shortest in the fixed condition, in
which the robot simply executed its actions without monitoring hu-
man goals (M = 46.4s, SD = 3.5s). It was significantly longer with
the plan method, which had to wait until prediction reached a confi-
dence threshold to begin its action (M = 56.7s, SD = 6.0). Robot task
time was still longer for the policy method, which continually moni-
tored human goals and smoothly replanned motions when required,
slowing down the overall trajectory execution (M = 64.6s, SD = 5.3).

Total task duration (the maximum of human and robot time) also



shared autonomy user studies 105

showed a statistically significant difference (F(2, 50) = 4.887, p =

0.012). Post-hoc tests with a Bonferroni-Holm correction show that
both fixed (M = 58.6s, SD = 14.1) and plan (M = 60.6s, SD = 7.1)
performed significantly (p = 0.026 and p = 0.032, respectively) faster
than policy (M = 65.9s, SD = 6.3). This is due to the slower execution
time of the policy method, which dominates the total execution time.

Total idle time was also significantly affected by method type
(F(2, 50) = 3.809, p = 0.029). Post-hoc pairwise comparisons with
Bonferroni correction reveal that the policy method yielded signif-
icantly (p = 0.048) less idle time than the fixed condition (policy
M = 0.46s, SD = 0.93, fixed M = 1.62s, SD = 2.1). Idle time per-
centage (total idle time divided by human trial completion time) was
also significant (F(2, 50) = 3.258, p = 0.047). Post-hoc pairwise tests
with Bonferroni-Holm correction finds no significance between pairs.
In other words, the policy method performed significantly better than
the fixed method for reducing human idling time, while the plan
method did not.

Fixed Plan Policy
0

20

40

60

80

100

Ti
m

e
(s

)

(a) Human Trial Duration

Fixed Plan Policy
0

20

40

60

80

100

Ti
m

e
(s

)

*** ***
***

(b) Robot Trial Duration

Fixed Plan Policy
0

20

40

60

80

100

Ti
m

e
(s

)

*
*

(c) Total Trial Duration

Figure 7.14: Duration metrics, with
pairs that differed significantly during
post-analysis are plotted, where ∗ indi-
cates p < 0.05 and ∗∗∗ that p < 0.001.
Human trial time was approximately
the same across all methods, but robot
time increased with the computational
requirements of the method. Total time
thus also increased with algorithmic
complexity.

Therefore, H3b is partially supported: although total human task
time was not significantly influenced by method condition, the total
robot task time and human idle time were all significantly affected
by which method was running on the robot. The robot task time was
slower using the policy method, but human idling was significantly
reduced by the policy method.

To evaluate H3c (subjective responses), we first conducted a
Chronbach’s alpha test to assure that the eight survey questions
were internally consistent. The four questions asked in the negative
(e.g., “I’m dissatisfied with how HERB and I worked together”) were
reverse coded so their scales matched the positive questions. The re-
sult of the test showed high consistency (α = 0.849), so we proceeded
with our analysis by averaging together the participant ratings across
all eight questions.

During the experiment, participants sometimes saw collisions with
the robot. We predict that collisions will be an important covariate
on the subjective ratings of the three methods. In order to account
for whether a collision occurred on each trial in our within-subjects
design, we cannot conduct a simple repeated measures ANOVA.
Instead, we conduct a linear mixed model analysis, with average
rating as our dependent variable; method (policy, plan, and fixed),
collision (present or absent), and their interaction as fixed factors;
and method condition as a repeated measure and participant ID as
a covariate to account for the fact that participant ratings were not
independent across the three conditions. Table 7.2 shows details
of the scores for each method broken down by whether a collision
occurred.



106 acting under uncertainty for information gathering and shared autonomy

No Collision Collision

mean (SD) N mean (SD) N

Fixed 5.625 (1.28) 14 4.448 (1.23) 12

Plan 5.389 (1.05) 18 4.875 (1.28) 8

Policy 5.308 (0.94) 26 — 0

Table 7.2: Subjective ratings for each
method condition, separated by
whether a collision occurred during
that trial.

We found that collision had a significant effect on ratings
(F(1, 47.933) = 6.055, p = 0.018), but method did not (F(1, 47.933) =
0.312, p = 0.733). No interaction was found. In other words, rat-
ings were significantly affected by whether or not a participant saw
a collision, but not by which method they saw independent of that
collision. Therefore, H3c is not directly supported. However, our
analysis shows that collisions lead to poor ratings, and our results
above show that the policy method yields fewer collisions. We believe
a more efficient implementation of our policy method to enable faster
robot task completion, while maintaining fewer collisions, may result
in users preferring the policy method.

7.3 Discussion

In chapter 6, we presented a method for shared autonomy that does
not rely on predicting a single user goal, but assists for a distribu-
tion over goals. Our motivation was a lack of assistance when using
predict-then-act methods - in our own experiment (section 7.1.2), re-
sulting in no assistance for 69% of execution time. To assist for any
distribution over goals, we formulate shared autonomy as a POMDP
with uncertainty over user goals. To provide assistance in real-time
over continuous state and action spaces, we used hindsight opti-
mization [Lit+95; Cho+00; Yoo+08] to approximate solutions. We
tested our method on two shared-control teleoperation scenarios, and
one human-robot teaming scenario. Compared to predict-then-act
methods, our method achieves goals faster, requires less user input,
decreases user idling time, and results in fewer user-robot collisions.

In our shared control teleoperation experiments, we found user
preference differed for each task, even though our method outper-
formed a predict-then-act method across all objective measures for
both tasks. This is not entirely surprising, as prior works have also
been mixed on whether users prefer more control authority or bet-
ter task completion [YH11; Kim+12; DS13a]. In our studies, user’s
tended to prefer a predict-then-act approach for the simpler grasping
scenario, though not significantly so. For the more complex eating
task, users significantly preferred our shared autonomy method to
a predict-then-act method. In fact, our method and blending were



shared autonomy user studies 107

the only pair of algorithms that had a significant difference across
all objective measures and the subjective measuring of like and rank
(table 7.1).

However, we believe this difference of rating cannot simply be ex-
plained by task difficulty and timing, as the experiments had other
important differences. The grasping task required minimal rotation,
and relied entirely on assistance to achieve it. Using blending, the
user could focus on teleoperating the arm near the object, at which
point the predictor would confidently predict the user goal, and
assistance would orient the hand. For the feeding task, however,
orienting the fork was necessary before moving the arm, at which
point the predictor could confidently predict the user goal. For this
task, predict-then-act methods usually did not reach their confidence
threshold until users completed the most difficult portion of the task
- cycling control modes to rotate and orient the fork5. This inabil- 5 These mode switches have been iden-

tified as a significant contributor to
operator difficulty and time consump-
tion [Her+16]

ity to confidently predict a goal until the fork was oriented caused
predict-then-act methods to provide no assistance for the first 29.4
seconds on average - which is greater then the total average time of
our method (18.5s). We believe users were more willing to give up
control authority if they did not need to do multiple mode switches
and orient the fork, which subjectively felt more tedious then moving
the position.

For human-robot teaming, the total task time was dominated by
the robot, with the user generally finishing before the robot. In situ-
ations like this, augmenting the cost function to be more aggressive
with robot motion, even at the cost of responsiveness to the user, may
be beneficial. Additionally, incorporating more optimal robot policies
may enable faster robot motions within the current framework.

Finally, though we believe these results show great promise for
shared control teleoperation and teaming, we note users varied
greatly in their preferences and desires. Prior works in shared con-
trol teleoperation have been mixed on whether users prefer control
authority or more assistance [YH11; Kim+12; DS13a]. Our own exper-
iments were also mixed. Even within a task, users had high variance,
with users fairly split for grasping (fig. 7.3), and a high variance for
user responses for full autonomy for eating (fig. 7.10). For teaming,
users were similarly mixed in their rating for an algorithm depending
on whether or not they collided with the robot (table 7.2). This vari-
ance suggests a need for the algorithm to adapt to each individual
user, learning their particular preferences.





8
Prediction with Assistance in Shared Autonomy

Our experiments in chapter 7 indicate that users had varied pref-
erences for when and how they would like to be assisted. In sec-
tion 7.1.1.6, we examined how users with different preferences
changed their inputs in different ways for each assistance strategy.
Users who preferred blend often opposed assistance, providing in-
puts to counteract the shared autonomy system even when it made
progress for their goal. Users who preferred policy often provided
no inputs while assistance was going towards their goal, letting the
shared autonomy system do the bulk of the work. See fig. 7.6.

In this chapter, we provide a method for learning a model of user
behavior during assistance, and incorporating this model into cost
minimization. These models are learned for each individual user
as they use our shared autonomy system. The shared autonomy
system then updates with the new predictor, which we use at the
next iteration. This process repeats. See fig. 8.1.

+

Assistance New Data

Old Data

Learn
Predictor

No Assistance 
Predictor

Figure 8.1: Our algorithm pipeline.
Given the current predictor, we utilize
the framework from chapter 6 to pro-
vide assistance under goal uncertainty.
Once the system achieves the user’s
goal, we add this trial to all previous
data. We use this entire dataset, along
with a prior model of user behavior
with no assistance, to learn a new
predictor. This induces a different assis-
tance policy, which we use at the next
iteration. We repeat this process.

In order to learn how a user responds to assistance quickly, we
use our previously described predictor (section 6.3.1) as a prior. In-
tuitively, we believe that user behavior during assistance will closely
resemble how they act without it. Our method learns a new dis-
tribution of user actions by minimizing the Kullback-Leibler (KL)
divergence with a distribution for user behavior without assistance.
Using this prior enables us to learn a good model with fewer data
points.

With this predictor, we perform a short rollout of actions the user
and robot would select during shared autonomy. If we predict an
assistance action will cause a user to oppose assistance, we account
for the additional cost the user would incur, and penalize that action.
If we predict an assistance action will enable a user to achieve their
goal without providing input, we predict they incur less cost, and
prefer that action.

We implement this method for a discrete gridworld scenario with
modal control [Her+16] (section 5.3). To simulate the cost of mode



110 acting under uncertainty for information gathering and shared autonomy

switching in shared-control teleoperation, users experienced a time
delay when they switched modes. At each timestep, our shared au-
tonomy system can provide assistance by automatically switching
modes for the user. In a study with users on mechanical turk, we
find that using this new predictor enabled users to achieve their goals
while incurring less cost, and with less fighting against assistance.

8.1 Learning the User Policy with Assistance

Intuitively, we believe that user behavior during assistance will re-
semble the way they act without assistance. Let Pme be a predictor
of user behavior without assistance, e.g. learned through maximum
entropy inverse optimal control (MaxEnt IOC) [Zie+08]. Notably, this
predictor is goal-driven, as it models the user as an agent stochas-
tically minimizing a cost function for a particular goal. Thus, this
captures how a user would attempt to achieve a goal without assis-
tance.

To learn a predictor with assistance, we employ the principle of
minimum cross-entropy [SJ80], matching the observed data while min-
imizing the Kullback-Leibler (KL) divergence to this prior distribu-
tion.

Let f ξ
u be some features of user input u and trajectory so far ξ. Let

f ξ
u be the average feature observed in the data:

arg min
Pkl

KL(Pkl‖Pme)

s.t. ∑
ξ∈Data

P(ξ)∑
u

Pkl(u|ξ) f ξ
u = f ξ

u

That is, the average feature of the data f ξ
u should match the expected

feature predicted by our learned distribution Pkl on the trajectories
observed in the data.

As our prior models how a user would achieve a goal, we choose
features f ξ

u to model how users respond to assistance. For compu-
tational purposes, we follow Nikolaidis et al. [Nik+16] and utilize
a bounded memory model, incorporating features of only a short
history k. For these past k timesteps, we select features to indicate
whether the user opposed assistance. We also use a feature for the
difference between the optimal cost-to-go for the user acting alone
minus if assistance were optimal for that goal. This feature captures
how likely a user is to select actions which rely on assistance, going
to states that are useful if assistance reacts optimally.



prediction with assistance in shared autonomy 111

8.2 Assistance Action Selection

Given a predictor, we can compute the value function for a known
goal similarly to our formulation in chapter 6. Once we have the
value function for each goal, we combine through QMDP/Hindsight
Optimization[Cho+00; Yoo+08; Lit+95] to select actions under goal
uncertainty. Once the user supplies an input, we use the new predic-
tor to update our distribution over goals.

Following eq. (6.1), we compute the value function for a single
goal:

Vπr
(s) = E

[
∑

t
Cr(st, ut, at) | s0 = s

]
ut ∼ Pkl(· | st, f ξt)

at ∼ πr(· | st, ut)

st+1 ∼ T(· | st, ut, at)

Where f ξt are trajectory features of up until time t. In section 6.2,
we discuss various approximations to this, where we do not need
to roll out ut for all time steps. In particular, we utilized the robot

takes over approximation in our experiments (chapter 7), which
corresponds to:

Vsection 6.2 (s) = min
πr

E

[
∑

t
Cr(st, 0, at) | s0 = s

]
(8.1)

This assumption was made for computational purposes - rolling
out the user and robot policies while selecting assistance actions is
computationally difficult. However, if we wish to incorporate the user
model into action selection - for example, to avoid fighting the user -
we must relax this assumption.

Instead, we approximate by rolling out our policy and predictor
for a short horizon, and utilize a heuristic thereafter:

V(s) ≈ min
πr

E

[
T

∑
t

Cr(st, ut, at) + Ṽ(xT) | s0 = s

]
(8.2)

Where Ṽ is some estimate of the cost-to-go, e.g. Ṽ = Vsection 6.2. In
practice, we let the horizon T equal the history our predictor uses.

8.3 Iterating Learning and Policy Updates

The above learning problem assumes that that the training and test-
ing distributions are independent and identically distributed (iid) -
that is, the training histories ξ ∈ Data are drawn from the same dis-
tribution of histories we will see during testing. However, updating



112 acting under uncertainty for information gathering and shared autonomy

our model of the user causes our shared autonomy policy to change,
and therefore the histories to be different, violating this assumption.

This common problem in reinforcement learning is addressed by
the DAgger method [Ros+11; RB12]. The solution is intuitively sim-
ple - iteratively update your policy, get a new set of data with the
current policy, and train the predictor with all data, including data
from previous policies. See fig. 8.1. In addition to providing theoreti-
cal no-regret guarantees in this setting, this has the empirical benefit
of continuously adapting to the user’s behavior during assistance1. 1 We can view our learning problem

as one of system identification, where
user inputs cause stochastic transitions
and costs. Ross and Bagnell [RB12]
show that the DAgger method provides
guarantees and good performance in
this setting.

8.4 Experiments

We implement this method for a discrete gridworld scenario in-
tended to mimic shared-control teleoperation for modal con-
trol [Her+16] (section 5.3). Briefly, modal control addresses the prob-
lem of controlling high degree of freedom systems with lower degree
of freedom inputs by defining a discrete set of control modes, each of
which controls a subset of the robot degrees of freedom.

We aimed to evaluate each user on the same set of maps using
three methods in randomized order:

1. Direct, where no assistance was provided
2. MaxEnt, where we used a predictor which assumed no assistance

(chapter 6)
3. Rollout, where we learn a predictor with assistance (section 8.1)

and a short rollout to estimate the new value function (section 8.2)

Prior to MaxEnt or Rollout, users went through a different set
of maps, which we use to learn the user policy Pme based on Max-
Ent IOC [Zie+08]. When using the Rollout method, we initialize
our predictor by running the optimization of section 8.1 with our
data without assistance. As described in section 8.3, we update this
predictor after every iteration, adding the trial data to our current
dataset, computing Pkl using our Pme as a prior, use this to compute
a new V, which leads to a new shared autonomy assistance policy.
See fig. 8.1. We repeat this process through all Rollout trials be-
tween every iteration.

In this experiment, our MaxEnt and Rollout could only pro-
vide assistance by automatically switching modes for users. In assis-
tive robotics, mode switching is a key cause of both cognitive load
and execution time, consuming about 17.4% of execution timeHerlant
et al. [Her+16]. Thus, automatically mode switching provides use-
ful non-intrusive assistance, and has been shown to be an effective
form of assistance [Her+16]. Unlike the continuous control space
from chapter 7, this discrete assistance cannot easily be modelled by



prediction with assistance in shared autonomy 113

blending [DS13a].
As the robot cannot complete the task on it’s own, we use the

user takes over approximation, detailed in section 6.2, when esti-
mating the value functions Vsection 6.2 (eq. (8.1) and Ṽ (eq. (8.2)).

8.4.1 Metrics

Our experiments aim to evaluate the effectiveness and user satisfac-
tion of each method.

Objective measures. We measure the objective efficiency of the
system in two ways ways. Cost measures the total cost a user incurs
in order to achieve their goal. This cost was proportional to time, as
users experienced a time delay proportional to the cost2. Assistance

2 Users frequently took breaks, so we do
not assess task completion time.

Fight Ratio measures how often the user and shared autonomy sys-
tem both mode switch at the same iteration, undoing the action while
causing the user to incur a large cost. We assess this metric only for
methods that can provide assistance.

Subjective measures. We also evaluated user satisfaction with
the system through subjective measures. After all trials with each
method, we asked users to respond to questions about each system
using a five point Likert scale. These questions, specified in sec-
tion 8.4.3, assessed a user’s perceived ability to achieve their goal,
and feeling of whether they were in control.

8.4.2 Hypotheses

We aim to evaluate through objective and subjective measures if
users were able to achieve their goals better using our prediction with
assistance framework. We formulate the following hypothesis regard-
ing the efficiency of our methods, based on our objective measures:
H4a Participants will achieve their goals while incurring less cost when
using assistance with better predictors
H4b Participants will fight with assistance methods less while using
assistance with better predictors

In line with our hypotheses in section 7.1.2.2, we also formulate
the following hypotheses about the subjective measures:
H4c Participants will more strongly agree on feeling in control for meth-
ods with less autonomous assistance
H4d Participants will more strongly agree preference and usability sub-
jective measures for assistance methods with better predictors

8.4.2.1 Experiment Design

(a) Example Map

(b) Map Testing Assistance Reliance

(c) User Controls and Target

Figure 8.2: Our experimental setup.
(a) Users must navigate the robot to
the specified goal, which the system
does not know a priori. The grid in-
cludes fast-moving squares (white),
slow-moving squares (green), and walls
(blue). (b) Some maps were designed
to distinguish between users who were
willing to rely on assistance to automat-
ically mode switch for a shorter path.
(c) User controls and displayed target,
where they move the robot through
modal control: left-right and up-down,
and can switch modes by rotating the
robot. The active control mode is de-
picted by the orientation of the robot,
and the opaque controls.

Users saw a map and controls, as shown in fig. 8.2. Their objective
was to navigate to the displayed goal using the on-screen controls.



114 acting under uncertainty for information gathering and shared autonomy

To simulate modal control, the robot had two control modes: left-
right and up-down. This was indicated by the orientation of the
robot itself, and the opacity of control buttons. When navigating,
users experienced a time delay proportional to the cost. The time
delay for moving on white and green squares was 80ms and 240ms,
respectively. The additional time delay for mode switching on either
square was 800ms. Blue squares on the screen represented walls,
which the users could not move onto.

We manually created 26 maps, each having between 1 and 3 goals.
Each map and goal is treated as a separate trial, with a total of 53

trials. For each user, we randomly assign 26 of these trials to training
the predictor for MaxEnt IOC, and 27 trials for testing all methods.
Maps consisted of a mix of simpler maps (e.g. fig. 8.2a), and maps
aimed at distinguishing between users who liked to rely on assis-
tance and those who preferred direct teleoperation (e.g. fig. 8.2b).

8.4.3 Procedure

We conducted a within-subjects study with one independent vari-
able (control method) that had three conditions (Direct, MaxEnt,
Rollout). Because each participant saw all control methods, we
counteract the effects of novelty and practice by counterbalancing the
order of conditions.

We recruited users through Amazon’s Mechanical Turk service.
In order to ensure reliable results, all participants were located in
the USA to avoid language barriers, and we required an approval
rate of over 95%. We asked a control question to ensure they paid
attention to the task, and eliminated users with incorrect answers
to this question. In addition, as our task was very long, many users
did not complete it. With those users removed, we ended up with 55
users who satisfied this criteria.

Users were first given instructions and 3 randomly selected prac-
tice trials with no assistance. After that, all users completed all tri-
als for training the MaxEnt IOC predictor. Once the predictor was
learned, users used our three control methods (Direct, MaxEnt,
Rollout) in random order. Prior to using either MaxEnt or Roll-
out, users also had 3 random trials with assistance, using the Max-
Ent method. The ordering and trials for these methods as identical.
Upon completing all trials for one method, users completed a short
survey with the following questions:

1. “I felt in control”
2. “I was able to accomplish tasks quickly”
3. “The robot did what I wanted”
4. “If I were going to use a system, I would like to use the system”



prediction with assistance in shared autonomy 115

8.4.4 Results

Direct MaxEnt Rollout
Method

20

30

40

50

60

C
os

t

*** *
***

5 10 15 20 25
Trial Start Number

16

17

18

19

C
os

t

MaxEnt
Rollout

MaxEnt Rollout
Method

0.0

0.1

0.2

0.3

A
ss

is
ta

nc
e

Fi
gh

tR
at

io *

5 10 15 20 25
Trial Start Number

0.00

0.02

0.04

0.06

A
ss

is
ta

nc
e

Fi
gh

tR
at

io

MaxEnt
Rollout

Figure 8.3: Objective measures for our
experiment. On the left, boxplots for
averages across all trials. Pairs that
were found significant are plotted,
where ∗ indicates p < 0.05, and ∗∗∗
indicates p < 0.001. We see that Roll-
out enabled users to achieve their goals
with significantly less cost, and with
significantly less fighting of assistance.
On the right, plots of averages across
trials, showing how both the user and
method adapt over iterations. For each
user, instead of averaging across all
trials for a user, we average from that
index until the end. We plot the mean
and standard error across users. We
see that cost and fight decrease over
time for MaxEnt, indicating that users
changed their behavior. The same effect
is observed for Rollout, which occurs
through a combination of user behavior
changes and the predictor learning how
they respond to assistance.

Our metrics are detailed in section 8.4.1. For each participant,
we computed the total cost accumulated for each method for each
trial. We average across all 27 test trials in each condition, enabling
us to treat each user as one independent datapoint in our analyses.
Differences in our metrics across conditions were analyzed with a
significance threshold of α = 0.05. If a significant main effect was
found, a post-hoc analysis was used to identify which conditions
were statistically different from each other, with Holm-Bonferroni
corrections for multiple comparisons.

We analyzed cost with a repeated measures ANOVA. As our data
violated the assumption of sphericity, we used a Greenhouse-Geisser
correction. We found that cost differed significantly between meth-
ods (F(1.311, 70.813) = 509.34, p < 0.0001). Post-hoc analysis re-
vealed a significant differences of cost between all pairs: Direct

and MaxEnt (p < 0.0001), Direct and Rollout (p < 0.0001),
and MaxEnt and Rollout (p = 0.039). We found that using the
Rollout policy resulted in users completing their task with less cost
on average (18.108± 0.408) than MaxEnt (18.804± 0.399) and Di-
rect (35.706± 0.569). Thus, we found support for H4a. As Rollout

learns through iterations, we also plot how the average cost changes
across trials. See fig. 8.3.

As there are only two conditions for the assistance fight ra-
tio, we analyzed with a paired sample t-test. We found a signifi-
cant difference between MaxEnt (0.0566 ± 0.0097) and Rollout

(0.0331± 0.0048), t(54) = 2.512, p = 0.015. Thus, we found support



116 acting under uncertainty for information gathering and shared autonomy

Control Quickly Want Like
1

2

3

4

5

R
at

in
g

** *
*

Direct MaxEnt Rollout
Figure 8.4: Boxplots of our user survey
responses for questions specified in sec-
tion 8.4.3. When our analysis revealed a
significant difference between methods,
we plot where ∗ indicates p < 0.05, and
∗∗ indicates p < 0.01.

for H4b. As Rollout learns through iterations, we also plot how the
assistance fight ratio changes across trials. See fig. 8.3.

User reported subjective measures for the survey questions are
assessed using a Friedman’s test and a significance threshold of α =

0.05. If significance was found, a post-hoc analysis was performed,
comparing all pairs using a Wilcoxon signed-rank test with Holm-
Bonferroni corrections.

User agreement on control differed significantly between methods,
ξ2(2) = 19.169, p < 0.001. Post-hoc analysis revealed that only one
pair was significant, with users feeling more in control with Direct

than Rollout (p = 0.005). Thus, we find partial support for H4c.
User agreement on their perceived ability to achieve goals quickly

differed significantly between methods, ξ2(2) = 9.529, p = 0.009.
Post-hoc analysis revealed that both assistance methods were per-
ceived to enable users to achieve goals more quickly than Direct,
using either MaxEnt (p = 0.017) or Rollout (p = 0.020). We found
no significant difference between MaxEnt and Rollout. Thus, we
find partial support for H4d.

We found significant differences for the subjective measures of
want and like. See fig. 8.4.

8.5 Discussion

In this chapter, we presented a method for modelling how users
change their behavior during shared autonomy, and using this model
to provide better shared autonomy. We were motivated by our ob-
servations that users had varied preferences, and these preferences
correlated with how users reacted to assistance. In section 8.1, we
presented a method to learn a distribution over user actions by using
a predictor learned without shared autonomy as a prior, enabling
learning with few iterations. In section 8.2, we demonstrated how to
incorporate this user model into action selection. In section 8.3, we
discuss how this affects learning our predictor, and present our solu-



prediction with assistance in shared autonomy 117

tion for learning through multiple iterations using DAgger [Ros+11;
RB12]. Finally, in section 8.4, we showed that this method enabled
users to achieve their goals while incurring less cost, and while fight-
ing the assistance strategy less.

While these results are a promising first step to incorporating
models of how assistance affects user action selection, there is still
much to be explored. Computationally, our method here is limited to
discrete problems or sampling techniques, due to the rollout required
for estimating the value function.

From an ideological point of view, we learn our predictor as if the
user action selection depends only on a short history of states, user
actions, and robot actions. In reality, we see that users will learn and
adapt their behavior through iterations (fig. 8.3). We hope to explore
methods that can model this user learning, and use it to provide
better shared autonomy assistance.





9
Final Thoughts

This thesis presented methods for acting under uncertainty that are
goal-directed, dealing with uncertainty only as required to achieve
a goal. They are connected by the insight that not all uncertainty
impedes gaining utility - even when uncertainty is high, there often
exist actions which gain utility over the entire distribution. This
insight enabled us to formulate and implement methods for active
information gathering and shared autonomy for real-world problems.

For active information gathering, we first drew a connection be-
tween information gathering in robotics and adaptive submodularity
(chapter 3), enabling us to provide near-optimality guarantees with
an efficient lazy-greedy algorithm. This method gathered uncertainty
indiscriminately, without considering the goal. To alleviate this, we
formulated the Decision Region Determination (DRD) problem, with
the goal of reducing uncertainty just enough to make a decision
(chapter 4). We presented two adaptive submodular methods this
problem, each providing rigorous guarantees and improved empirical
performance compared to state-of-the-art active information gather-
ing methods. Experimentally, we found this method outperformed
those which reduce uncertainty indiscriminately, such as the com-
monly used reduction of Shannon entropy [Cas+96; Bur+97; Fox+98;
Bou+02; Zhe+05; Fu+07; Eri+08; Hsi+08; Heb+13; Sad+16b].

We next formulated shared autonomy as a general problem of
acting under uncertainty (chapter 6). This formulation enabled us
to use hindsight optimization to make progress for a distribution of
user goals, rather than requiring the confident prediction in a sin-
gle goal prior to assisting. In user studies for both shared-control
teleoperation and human-robot teaming, we showed our method en-
abled faster performance with less user effort compared to methods
which predict a single user goal (chapter 7). Though objective mea-
sures of performance were improved, we found users were mixed
in their preference. To address this, we extended our shared auton-
omy framework to learn user-specific models for how they react to



120 acting under uncertainty for information gathering and shared autonomy

assistance, and utilize this to minimize user cost (chapter 8).
Based on our experiences developing and implementing these

ideas, we now discuss exciting areas of future work.

9.1 Active Information Gathering Future Work

Decisions as tests

Our Decision Region Determination (DRD) framework modelled
information gathering with three distinct components: hypotheses rep-
resenting the possible state of the world, tests to gather information,
and decisions valid for specific subsets of hypotheses. We showed how
a variety of information gathering problems could be split into these
three components (table 4.2).

However, decisions and tests need not be separate - in some situa-
tions, decisions can also be used to gather information. For example,
in touch-based localization (sections 3.3, 4.3.2 and 4.5.1), we could
attempt to accomplish the task prior to reducing uncertainty to a
decision region. If we succeed, utility is gained and the problem is
solved. If not, an observation is received, uncertainty is updated, and
the method continues.

We could consider adding the set of decisions to tests, and termi-
nating if a decision succeeds. However, this would be suboptimal - it
would not capture the cost difference between reducing uncertainty
to a decision region and then performing the decision, and accom-
plishing the task. One promising avenue for future work would be
an extension of our framework to incorporate the utility gained by
performing a decision, while maintaining adaptive submodularity.
This would provide improved performance and near-optimality guar-
antees compared to the policy that can gather information and gain
utility simultaneously.

Learning through trials

In our experiments, we found that our method often selected the
same tests, especially at the beginning of a trial. This is no surprise -
the initial uncertainty was similar1, and some outcomes occur with 1 We generally sampled uncertainty

from a continuous distribution to
start, so while the set of hypotheses
was different, they modelled the same
underlying distribution

much higher probability. Performing the same test and receiving a
similar outcome often resulted in selecting the same next test.

Incorporating a method which learns commonly occurring se-
quences of tests, observations, and the next selected test would en-
able us to sometimes skip test selection and gather information faster.
Choudhury et al. [Cho+17a] present a promising line of work with
a similar idea, using computationally intensive information gath-
ering offline as an expert, and imitating this policy for online use.



final thoughts 121

However, this method relies on learning a complicated policy for any
situation.

Instead, it might be better to combine this learned policy with the
ability to recompute test selection when necessary, e.g. when the ob-
served outcomes are not similar enough to data. Ideally, learning is
focused on commonly occurring sequences, enabling fast computa-
tion and good performance for most scenarios

We could also consider only learning this set for a small number
of initial tests, as each additional observation makes it less likely that
the entire sequence was observed. Additionally, computation is faster
after some information has been gathered, as the expectations are
computed over smaller sets.

9.2 Shared Autonomy Future Work

Capturing user preference and feeling of control

One of our unexpected findings in our shared autonomy experiments
was the variance in user preference. For disabled users, it has been
hypothesized that users view assistive robots as extensions of them-
selves, enabling them to interact with the world in a way that they
could not [Kim+12]. When objective performance was equal, users
tended to prefer full control [Kim+12]. However, prior work has
found that users subjectively prefer more assistance when it leads to
more efficient task completion [YH11; DS13a].

Our findings here were mixed - for the easier grasping experi-
ment, users tended to prefer less assistance, though not significantly
so (section 7.1.1). For the more difficult feeding experiment, users
preferred our shared autonomy framework to blending or direct tele-
operation (section 7.1.2). For our gift-wrapping experiment, users
preferred our shared autonomy method only when we conditioned
on whether they collided with the robot (section 7.2.1). This suggests
that user preference varies not simply on the amount of autonomy,
but the situation and task at hand, and the kind of assistance.

One potential next step would be to learn a model of when certain
assistance actions cause users to feel less control authority, and penal-
ize those actions differently. For example, users seemed to appreciate
extra-modal assistance in our feeding experiment, either because it
was more helpful, or because assistance in a mode the user does not
control affects their feeling of control authority less. Investigating this
difference, and altering the assistance cost based on the findings, may
enable greater user satisfaction.

Another variable that affected user preference was the task itself,
where users prefer assistance for more difficult tasks. This is not sur-



122 acting under uncertainty for information gathering and shared autonomy

prising, as we would expect users to give up control authority more
willingly for tasks they may not prefer. One possibility indicator of
how willing a user is to accept assistance is the difference in cost with
and without assistance - that is, the difference in value function from
a state if assistance were present or not. We utilized this difference as
a feature in our user-specific adaptation experiments (chapter 8), and
found it helped performance.

User-specific adaptation

Recent works in shared autonomy, described in this thesis and other-
wise [YH11; Lee+12; DS13a; Hau13], suggests that individual users
respond to assistance differently. New work by Nikolaidis et al.
[Nik+16; Nik+17c] captures these ideas through the user’s adaptabil-
ity,a parameter representing how likely a user is to change their strat-
egy based on the robot’s actions. Similarly, Sadigh et al. [Sad+16b]
explore how to learn a model for how a robot’s actions affect users,
and use this model for robot action planning for autonomous driv-
ing. Sadigh et al. [Sad+16a; Sad+17] also explore how to actively
gather information about the user’s state and preferences.

However, we believe more general models exploring how au-
tonomous assistance affects users should be explored and incorpo-
rated into action selection. In particular, learning user-specific models
can be greatly beneficial, as we observed high variance of preference
across users in our experiments (sections 7.1.1, 7.1.2 and 7.2.1). We
began exploring this idea in chapter 8, and how we could incorpo-
rate this model into providing assistance. However, this work was
limited to a simple gridworld example due to computational limita-
tions. Scaling these ideas to larger domains may lead to even more
improved performance, as assistance is often more helpful in more
complicated problems.

Incorporating better cost functions

In our experiments, we used a simple distance-based cost function,
for which we could compute value functions in closed form. This
enabled us to compute prediction and assistance 50 times a second,
making the system feel responsive and reactive. However, this simple
cost function could only provide simple assistance, with the objective
of minimizing the time to reach a goal. Ideally, more complicated
notions of the user’s cost would be incorporated into action selection.
Importantly, these methods should avoid performing rollouts online,
as we require very efficient policies for use in shared autonomy.

Recent successes in reinforcement learning, and in particular deep
learning, have largely focused on learning policies directly, instead



final thoughts 123

of value functions. Finn et al. [Fin+16] show a method for simultane-
ously learning a cost function and policy through Maximum Entropy
Inverse Optimal Control (MaxEnt IOC) [Zie+08], which would en-
able more complicated policies to be learned. Interestingly, , their
experiments suggest that directly using the learned policy outper-
forms using the learned cost function. While using the learned policy
directly is applicable for learning a single robot policy to imitate
demonstrations, using hindsight optimization over a distribution of
user goals requires learning a value function for each goal. An inter-
esting avenue of future exploration would be to take learned policies
and compute value functions for them, enabling our framework to
utilize hindsight optimization over these policies.

9.3 Acting Under Uncertainty Future Work

Ideally, methods for acting under uncertainty simultaneously opti-
mize over both information gathering and task accomplishing during
the selection of each action. This is captured generally by POMDP
solvers [Roy+05; SS05; Kur+08; SV10; Sha+12; Som+13; Sei+15]. How-
ever, optimizing for both simultaneously is often intractable.

Instead, the work in this thesis presents methods on two extremes
of acting under uncertainty. For active information gathering, we fo-
cused on gathering information efficiently prior to making a decision,
believing goal-directed progress could not be made until some uncer-
tainty was resolved. For shared autonomy, our method instead tries
to gain as much utility as possible under uncertainty, hoping uncer-
tainty resolves itself over time. We believe many problems of acting
under uncertainty falls into one of these categories.

We chose these extremes due to the contexts of each particular
problem, where we believed one approach presented the right trade-
offs. Ideally, a method would be imbued with some notion of which
is useful, and could select one method for action selection to opti-
mize over until some criteria was met. For example, our DRD frame-
work could use for a decision region some set of uncertainty for
which hindsight optimization would be successful. Methods which
could compute some criteria like this may enable systems to both
gather information and act under uncertainty without solving the full
POMDP.





A
Appendix

Here we provide the proofs and details for our theorems throughout this thesis.

A.1 Hypothesis Pruning Proofs

We present proofs for our Hypothesis Pruning (HP) theorems from chapter 3, showing the guarantee of
near-optimal performance. To do so, we prove our metrics are adaptive submodular, strongly adaptive
monotone, and self-certifying. Note that the bounds on adaptive submodular functions require that obser-
vations are not noisy - that is, for a fixed hypothesis h, a test can result in only one observation determinis-
tically. In our case, we would like to model a distribution of observations for each test t and hypothesis h,
as our sensors are noisy. Thus, we first construct a non-noisy problem by creating many weighted “noisy”
copies of each hypothesis h. We then show how to compute our objective on the original problem. Finally,
we prove our performance guarantee.

A.1.1 Constructing the Non-Noisy Problem

Similar to previous approaches in active learning, we construct a non-noisy problem by creating “noisy”
copies of each hypothesis h for every possible noisy observation [Gol+10; Bel+12]. Let Ωt(h) = {ĥ1, . . . ĥK}
be the function that creates K noisy copies for test t. Here, the original probability of h is distributed
among all the noisy copies, P(h) = ∑ĥ∈Ωt(h)

P(ĥ). For convenience, we will also consider overloading Ω
to take sets of tests, and sets of realizations. Let ΩT(h) recursively apply Ω for each t ∈ T. That is, if we let
T = {t1, t2, . . . } we apply Ωt1 to h, then Ωt2 to every output of Ωt1(h), and so on. Note that we still have
P(h) = ∑ĥ∈ΩT(h)

P(ĥ). Additionally, let ΩT(H) apply ΩT to each h ∈ H and combine the set.
The probability of each noisy copy comes from our weighting functions defined in section 3.2.2:

ΩT(h) = {ĥ1, . . . ĥK}

P(ĥ) = P(h)
ωtĥ

(th)

∑
ĥ′∈Ωt(h)

ωtĥ′ (th)
(one test)

P(ĥ) = P(h) ∏
t∈T

ωtĥ
(th)

∑
ĥ′∈Ωt(h)

ωtĥ′ (th)
(multiple tests)



126 acting under uncertainty for information gathering and shared autonomy

For simplicity, we also assume that the maximum value of our weighting function is equal to one for
any test. We note that our weighting functions in section 3.2.2 have this property for the non-noisy obser-
vation where tĥ = th:

max
ĥ∈Ωt(h)

ωtĥ
(th) = 1 ∀h, t (A.1)

We build our set of non-noisy realizations Ĥ = ΩT (H). Our objective function is over Ĥ, specifying
the probability mass removed form the original problem. One property we desire is if our observations are
consistent with one noisy copy of h, then we keep some proportion of all of the noisy copy (proportional to
our weighting function ωHP or ωWHP). In our HP algorithm for example, if any noisy copy of h remains,
the objective function acts as if all of the probability mass remains.

We define our utility function here in a slightly different form: if the evidence S is generated by running
tests T, with observations generated by ĥ, let f̂ (T, ĥ) = f (S). Note that we can always do this mapping, as
ĥ generates observations deterministically, and we can set T = ST . We compute our objective as:

f̂ (T, ĥ) = 1− ∑
h∈H

(
∏
t∈T

P(h)
max P(Ωt(h))

) ∑
ĥ′∈ΩT (h)

P(ĥ′) ∏
t∈T

δtĥtĥ′


Where δtĥtĥ′ is the Kronecker delta function, equal to 1 if tĥ = tĥ′ and 0 otherwise, h is the original

hypothesis from which ĥ was produced, and max P(Ωt(h)) is the highest probability of the “noisy” copies.
By construction, any test will keep at most max P(Ωt(h)) probability mass per test, since at most one noisy
copy from Ωt(h) will be consistent with the observation. Intuitively, multiplying by P(h)

max P(Ωt(h))
will make

it so if we kept the highest weighted noisy copy of h, our objective would be equivalent to keeping the
entire hypothesis h.

f̂ (T, ĥ) = 1− ∑
h∈H

(
∏
t∈T

P(h)
max P(Ωt(h))

) ∑
ĥ′∈ΩT (h)

P(ĥ′) ∏
t∈T

δtĥtĥ′


= 1− ∑

h∈H

(
∏
t∈T

P(h)
max P(Ωt(h))

) ∑
ĥ′∈ΩT(h)

∑
ĥ′′∈ΩT \T(ĥ′)

P(ĥ′′) ∏
t∈T

δtĥtĥ′′


= 1− ∑

h∈H

(
∏
t∈T

P(h)
max P(Ωt(h))

) ∑
ĥ′∈ΩT(h)

(
∏
t∈T

δtĥtĥ′

)
∑

ĥ′′∈ΩT \T(ĥ′)

P(ĥ′′)


= 1− ∑

h∈H

(
∏
t∈T

P(h)
max P(Ωt(h))

) ∑
ĥ′∈ΩT(h)

P(ĥ′) ∏
t∈T

δtĥtĥ′


Here, we separate the recursive splitting over the hypothesis h into those split based on tests in T and

those split from other tests. Since ∏t∈T δtĥtĥ′′ only depends on the response to tests in T, it only depends on
noisy copies made from ΩT . Thus, we can factor those out. Additionally, we marginalize over the copies of
ĥ′ as ∑ĥ′′∈ΩT \T(ĥ′)

P(ĥ′′) = P(ĥ′). Overall, this simplification enables us to only consider the copies from the



appendix 127

tests in T. We further simplify:

f̂ (T, ĥ) = 1− ∑
h∈H

(
∏
t∈T

P(h)
max P(Ωt(h))

) ∑
ĥ′∈ΩT(h)

P(ĥ′) ∏
t∈T

δtĥtĥ′


= 1− ∑

h∈H

(
∏
t∈T

P(h)

(
∑ĥ′′∈Ωt(h)

ωtĥ′′ (th)

maxĥ′∈Ωt(h)
ωtĥ′ (th)P(h)

)) ∑
ĥ′∈ΩT(h)

P(ĥ′) ∏
t∈T

δtĥtĥ′

 (A.2)

= 1− ∑
h∈H

∏
t∈T

∑
ĥ′′∈Ωt(h)

ωtĥ′′ (th)

 ∑
ĥ′∈ΩT(h)

P(ĥ′) ∏
t∈T

δtĥtĥ′

 (A.3)

= 1− ∑
h∈H

∏
t∈T

∑
ĥ′′∈Ωt(h)

ωtĥ′′ (th)

 ∑
ĥ′∈ΩT(h)

P(h)

(
∏
t∈T

ωtĥ′ (th)

∑ĥ′′∈Ωt(h)
ωtĥ′′ (th)

)
∏
t∈T

δtĥtĥ′


= 1− ∑

h∈H
P(h) ∑

ĥ′∈ΩT(h)

∏
t∈T

∑
ĥ′′∈Ωt(h)

ωtĥ′′ (th)

(∏
t∈T

ωtĥ′ (th)

∑ĥ′′∈Ωt(h)
ωtĥ′′ (th)

)(
∏
t∈T

δtĥtĥ′

)

= 1− ∑
h∈H

P(h) ∑
ĥ′∈ΩT(h)

(
∏
t∈T

ωtĥ′ (th)

)(
∏
t∈T

δtĥtĥ′

)
= 1− ∑

h∈H
P(h) ∑

ĥ′∈ΩT(h)
∏
t∈T

ωtĥ′ (th)δtĥtĥ′

Where eq. (A.2) corresponds to plugging in the value of Ωt(h), eq. (A.3) used eq. (A.1) above. Now we
consider how the function Ω generates noisy copies. We require that exactly one noisy copy ĥ′ ∈ ΩT(h)
agree with every observation received so far, and thus only one term will have a nonzero product
∏t∈T δtĥtĥ′ . We defer further specific details of Ω until the next section. We get:

f̂ (T, ĥ) = 1− ∑
h∈H

P(h) ∑
ĥ′∈ΩT(h)

∏
t∈T

ωtĥ′ (th)δtĥtĥ′

= 1− ∑
h∈H

P(h) ∏
t∈T

ωtĥ
(th)

At this point we can see how this equals the objective function f (S) from section 3.2.2. Here again, we
let S be the evidence gathered if we ran tests T and received observations generated by ĥ. We get:

f̂ (T, ĥ) = 1− ∑
h∈H

P(h) ∏
t∈T

ωtĥ
(th)

= 1− ∑
h∈H

wS (h)

= 1−MS
= f (S)

A.1.2 Observation Probabilities

To compute expected marginal utilities, we will need to define our space of possible observations, and
the corresponding probability for these observations. Recall that S = {ST ,SO}, where ST are the tests
in S , and SO are the observations. We call P(tH = o|S) the probability of receiving observation o from



128 acting under uncertainty for information gathering and shared autonomy

performing test t conditioned on evidence S , over all hypotheses H. Intuitively, this will correspond to
how much probability mass agrees with the observation. More formally:

P(tH = o|S) ∝ ∑
h∈H

∑
ĥ∈ΩT (h)

P(ĥ)δtĥo ∏
{t̃,õ}∈S

δt̃ĥ õ

Similar to before, we will be able to consider noisy copies made from only tests in ST and t (the deriva-
tion follows exactly as in appendix A.1.1). This will simplify to:

P(tH = o|S) ∝ ∑
h∈H

∑
ĥ∈Ω{ST∪t}(h)

P(ĥ)δtĥo ∏
{t̃,õ}∈S

δt̃ĥ õ

= ∑
h∈H

P(h) ∑
ĥ∈ΩST (h)

∑
ĥ′∈Ωt(ĥ)

(
ωtĥ′ (th)

∑ĥ′′∈Ωt(h)
ωtĥ′′ (th)

δtĥ′ o

) ∏
{t̃,õ}∈S

ωt̃ĥ′
(t̃h)

∑ĥ′′∈Ωt̃(h)
ωt̃ĥ′′

(t̃h)
δt̃ĥ′ õ


The first term in parenthesis comes from the weighting of performing test t and receiving observation

o, where we would like the only noisy copy of h that agrees with that observation. The second term comes
from that same operation, but for all tests and observations in S . Again, we know by construction that
exactly one noisy copy agrees with all observations. Hence, we can write this as:

P(tH = o|S) ∝ ∑
h∈H

P(h) ∑
ĥ∈ΩST (h)

∑
ĥ′∈Ωt(ĥ)

(
ωtĥ′ (th)

∑ĥ′′∈Ωt(h)
ωtĥ′′ (th)

δtĥ′ o

) ∏
{t̃,õ}∈S

ωt̃ĥ′
(t̃h)

∑ĥ′′∈Ωt̃(h)
ωt̃ĥ′′

(t̃h)
δt̃ĥ′ õ


= ∑

h∈H
P(h)

(
ωo(th)

∑ĥ′′∈Ωt(h)
ωtĥ′′ (th)

) ∏
{t̃,õ}∈S

ωõ(t̃h)

∑ĥ′′∈Ωt̃(h)
ωt̃ĥ′′

(t̃h)


Finally, we would also like for ∑ĥ′′∈Ωt(h)

ωtĥ′′ (th) to be constant for all tests t and realizations h, enabling
us to factor those terms out. To approximately achieve this, we generate noisy copies by discretizing the
trajectory uniformly along the path, and generate a noisy copy of each hypothesis h at every discrete loca-
tion. We approximate our hypothesis to be set at one of the discrete locations, such that th is equal to the
nearest discrete location. For many locations, the weighting function will be less than some negligible ε.
Let there be K discrete locations for any h and t where ωth > ε. We say that |Ωt(h)| = K. Thus, we can fix
the value of ∑ĥ′′∈Ωt(h)

ωtĥ′′ (th) = κ ∀t, h. Note that we also need to be consistent with observations cor-
responding to not contacting an object anywhere along the trajectory. Therefore, we also consider K noisy
copies for this case. Under these assumptions, we can further simplify:

P(tH = o|S) ∝ ∑
h∈H

P(h)

(
ωo(th)

∑ĥ′′∈Ωt(h)
ωtĥ′′ (th)

) ∏
{t̃,õ}∈S

ωõ(t̃h)

∑ĥ′′∈Ωt̃(h)
ωt̃ĥ′′

(t̃h)


≈ ∑

h∈H
P(h)

(
ωo(th)

κ

) ∏
{t̃,õ}∈S

ωõ(t̃h)

κ


∝ ∑

h∈H
P(h)ωo(th) ∏

{t̃,õ}∈S
ωõ(t̃h)

= ∑
h∈H

wS (h)ωo(th)

= mS ,t,o



appendix 129

Finally, we need to normalize all observations to get:

P(tH = o|S) = mS ,t,o

∑o′∈Ot mS ,t,o′

Where Ot consists of all the discrete stopping points sampled, and the K observations for non-contact.

A.1.3 Proving the Bound

We showed that our utility function is equivalent to the mass removed from the original H: f (S) =

1 − MS . This function can utilize either of the two reweighting functions ωHP or ωWHP defined in sec-
tion 3.2.2. Our objective is a truncated version of this: fQ(S) = min {Q, f (S)}, where Q is the target value
for how much probability mass we wish to remove. We assume that the set of all tests T is sufficient such
that, if f̂ (T , ĥ) ≥ Q, ∀ĥ ∈ Ĥ. Note that adaptive monotone submodularity is preserved by truncation, so
showing these properties for f implies them for fQ.

Using our utility function and observation probability, it is not hard to see that the expected marginal
benefit of an test is given by:

∆ f (t | S) = E
o∈Ot

[ f (S ∪ {(t, o)})− f (S) | S ] (A.4)

= ∑
o∈Ot

P(o|S) [(1−mS ,t,o)− (1−MS )]

= ∑
o∈Ot

mS ,t,o

∑o′∈Ot mS ,t,o′
[MS −mS ,t,o] (A.5)

This shows the derivation of the marginal utility, as defined in section 3.2.2. We now provide the proof
for theorem 3, by showing that this utility function is adaptive submodular, strongly adaptive monotone,
and self-certifying:

Lemma 1. Let A ⊆ T , which result in partial realizations SA. Our objective function defined above is strongly
adaptive monotone.

Proof. We need to show that for any test and observation, our objective function will not decrease in value.
Intuitively, our objective is strongly adaptive monotone, since we only remove probability mass and never
add hypotheses. More formally:

f (S) ≤ E
[

f (S ∪ {(t, o)})|S , ĥ(t) = o
]

⇔ 1−MS ≤ 1−M{S∪{(t,o)}}

⇔ 1−MS ≤ 1−mS ,t,o

⇔ mS ,t,o ≤ MS
⇔ ∑

h∈H
pS (h)ωo(th′) ≤ ∑

h∈H
pS (h)

As noted before, both of the weighting functions defined in Section 3.2.2 never have a value greater than
one. Thus each term in the sum from the LHS is smaller than the equivalent term in the RHS.

Lemma 2. Let S ⊆ S ′ ⊆ T ×O. Our objective function defined above is adaptive submodular.



130 acting under uncertainty for information gathering and shared autonomy

Proof. For the utility function f to be adaptive submodular, it is required that the following holds over
expected marginal utilities:

∆(a|S ′) ≤ ∆(a|S)

∑
o∈Ot

mS ′ ,t,o
∑o′∈Ot mS ′ ,t,o′

[
MS ′ −mS ′ ,t,o

]
≤ ∑

o∈Ot

mS ,t,o

∑o′∈Ot mS ,t,o′
[MS −mS ,t,o]

We simplify notation a bit for the purposes of this proof. As the test is fixed, we will replace Ot with O.
For a fixed evidence S and test t, let mS ,t,o = mo. Let ko = mS ,t,o − mS ′ ,t,o, which represents the difference
of probability mass remaining between partial realizations S ′ and S if we performed test t and received
observation o. We note that ko ≥ 0 ∀o, which follows from the strong adaptive monotonicity, and ko ≤
mS ,t,o, which follows from mS ′ ,t,o ≥ 0. Rewriting the equation above:

∑
o∈O

mo − ko

∑o′∈O mo′ − ko′
[MS ′ −mo + ko] ≤ ∑

o∈O

mo

∑o′∈O mo′
[MS −mo]

⇔
(

∑
o∈O

MS ′mo −m2
o + moko −MS ′ko + moko − k2

o

)(
∑

o′∈O

mo′

)
≤
(

∑
o∈O

MSmo −m2
o

)(
∑

o′∈O

mo′ − ko′

)
⇔ ∑

o∈O

∑
o′∈O

MS ′(momo′ −mo′ko) + 2momo′ko −mo′k
2
o ≤ ∑

o∈O

∑
o′∈O

MS (momo′ −moko′) + m2
oko′

We also note that MS −MS ′ ≥ max
ô∈O

(kô). That is, the total difference in probability mass is greater than

or equal to the difference of probability mass remaining if we received any single observation, for any
observation.

⇔ ∑
o∈O

∑
o′∈O

2momo′ko −mo′k
2
o ≤ ∑

o∈O

∑
o′∈O

(MS −MS ′)(momo′ −moko′) + m2
oko′

⇐ ∑
o∈O

∑
o′∈O

2momo′ko −mo′k
2
o ≤ ∑

o∈O

∑
o′∈O

max
ô∈O

(kô)(momo′ −moko′) + m2
oko′

⇐ ∑
o∈O

∑
o′∈O

2momo′ko −mo′k
2
o ≤ ∑

o∈O

∑
o′∈O

max(ko, ko′)(momo′ −moko′) + m2
oko′

In order to show the inequality for the sum, we will show it holds for any pair o, o′. First, if o = o′, than
we have an equality and it holds trivially. For the case when o 6= o′, we assume that ko > ko′ WLOG, and
show the inequality for the sum:

2momo′(ko + ko′)−mo′k
2
o −mok2

o′ ≤ 2momo′ko −moko′ko −mo′k
2
o + m2

oko′ + m2
o′ko

⇔ 2momo′ko′ −mok2
o′ ≤ m2

oko′ + m2
o′ko −mokoko′

⇔ 0 ≤ ko′(mo −mo′)
2 − (ko − ko′)ko′(mo −mo′) + (ko − ko′)mo′(mo′ − ko′)

⇐ 0 ≤ ko′(mo −mo′)
2 − (ko − ko′)ko′(mo −mo′) + (ko − ko′)ko′(mo′ − ko′)

We split into 3 cases:

A.1.4 ko′ = 0

This holds trivially, since the RHS is zero



appendix 131

A.1.5 ko′ 6= 0, mo ≤ 2mo′ − ko′

Since ko′ 6= 0, we can rewrite:

0 ≤ (mo −mo′)
2 − (ko − ko′)(mo −mo′) + (ko − ko′)(mo′ − ko′)

⇐ 0 ≤ −(ko − ko′)(mo −mo′) + (ko − ko′)(mo′ − ko′)

⇐ (mo −mo′) ≤ (mo′ − ko′)

Which follows from the assumption for this case.

A.1.6 mo ≥ 2mo′ − ko′

We show this step by induction. Let mo = 2mo′ − ko′ + x, x ≥ 0
Base Case: x = 0, which we showed in the previous case.
Induction Assume this inequality holds for mo = 2mo′ − ko′ + x . Let m̂o = mo + 1. We now show that

this holds for m̂o:

0 ≤ (m̂o −mo′)
2 − (ko − ko′)(m̂o −mo′) + (ko − ko′)(mo′ − ko′)

⇔ 0 ≤ (mo −mo′ + 1)2 − (ko − ko′)(mo −mo′ + 1) + (ko − ko′)(mo′ − ko′)

⇐ 0 ≤ 2mo − 2mo′ + 1− ko + ko′ by inductive hypothesis

⇐ 0 ≤ mo + 1− ko by assumption from case

⇐ 0 ≤ 1

And thus, we have shown the inequality holds for any pair o, o′. �
Finally, it is easy to see that the sum can be decomposed into pairs of o, o′. Therefore, we can see the

inequality over the sum also holds.

Lemma 3. The utility function f defined above is self-certifying.

Proof. Golovin and Krause [GK11] define an instance as self-certifying if whenever the maximum value
is achieved for the utility function f , it is achieved for all realizations consistent with the observation. See
Golovin and Krause [GK11] for a more rigorous definition. They point out that any instance which only
depends on the state of items in S is automatically self-certifying (Proposition 5.6 in Golovin and Krause
[GK11].) That is the case here, since the objective function f = min {Q, 1−MS} only depends on the
elements of S . Therefore, our instance is self-certifying.

We are now ready to provide the guarantees for our bound, which we restate here:

Theorem 3 (Performance Bound of HP and WHP). Let our objective function be f as defined in eq. (3.1), uti-
lizing either weighting function ωHP or ωWHP. Define a threshold Q for the total weight of hypotheses we wish to
remove. Let η be any value such that f (S) > Q− η implies f (S) ≥ Q for all S . Let π∗avg and π∗wc be the optimal



132 acting under uncertainty for information gathering and shared autonomy

policies minimizing the expected and worst-case cost of tests selected, respectively. The greedy policy πg satisfies:

C(πg) ≤ C(π∗)
(

ln
Q
η
+ 1
)

Cwc(π
g) ≤ Cwc(π

∗)
(

ln
Q
δη

+ 1
)

With δ a constant based on the underlying non-noisy problem, described in appendix A.1.3.

As we have shown our objective is adaptive submodular, strongly adaptive monotone, and self-
certifying, 3 follows from Theorems 5.8 and 5.9 of Golovin and Krause [GK11]. Following their nota-
tion, we let η be any value such that f (S) > Q − η implies f (S) ≥ Q for all S . For Hypothesis Prun-
ing, for example, we have η = minh P(h). Additionally, the bound on the worst case cost includes
δ = minĥ P(ĥ) ĥ ∈ Ĥ. The specific values of these constants are related to the weighting function and
how discretization is done. Nonetheless, for either weighting function and any way we discretize, we can
guarantee the greedy algorithm selects a near-optimal sequence.

A.2 HyperEdge Cutting (HEC) Proofs

In this section, we provide proofs for the theorems stated in section 4.2.

A.2.1 k for Bounds

We start by showing that for a properly defined k, the DRD problem is solved (V(S) ⊆ r) if and only if the
HEC objective is maximized. However, we sometimes require a slightly greater k to ensure the objective
fHEC is adaptive submodular. We define these below.

Let R be a set of regions, the length of which is related to k. To get equivalence of the DRD and HEC,
we require that for every region in R, there is some hypothesis in all but one region of R.

Riff = arg max
R

|R| s.t. ∀r ∈ R, ∃h : h /∈ r, h ∈ R\r

kiff = |Riff|

Sometimes, this is not sufficient for adaptive submodularity. For this, we also require that there is some
hypothesis in every region of R, and we also add one to the length of R.

Ras = arg max
R

|R| s.t. 1 ∃h̃ ∈ R 2 ∀r ∈ R, ∃h : h /∈ r, h ∈ R\r

kas = |Ras|+ 1

Before moving on, we prove that kas ≥ kiff.

Proposition 2. kas ≥ kiff

Proof. There are two cases:

1. ∃h ∈ Riff. In this case, Ras = Riff and kas = |Ras|+ 1 = kiff + 1.
2. 6 ∃h ∈ Riff. Define R̃ = Riff \ r for some r ∈ Riff. We know by definition of Riff that ∃h ∈ R̃. Additionally,

we know by definition of kiff that ∀r ∈ R̃, ∃h, h /∈ r, h ∈ Riff \ r, so it follows that h ∈ R̃ \ r. Therefore, we
know R̃ satisfies the constraints for Ras, and kas ≥ |R̃|+ 1 = |Riff| = kiff.



appendix 133

Our algorithm actually utilizes k = min
(

max
h∈H
|{r : h ∈ r}|, max

r∈R
|{g : g ∈ r}|

)
+ 1. We briefly show that

each of these also upper bound kas.

Proposition 3. maxh∈H |{r : h ∈ r}|+ 1 ≥ kas

Proof. Note that condition 1 in Ras bounds |Ras| by maxh∈H |{r : h ∈ r}|. The result follows.

Proposition 4. maxr∈R |{g : g ∈ r}|+ 1 ≥ kas

Proof. Let r be an element of Ras. By definition, it is required that at least |Ras| different subregions
g1 · · · g|Ras| be in that region - one which is in every other region in Ras to satisfy condition 1 , and
|Ras| − 1 which are in all but one of the Ras − 1 other regions to satisfy condition 2 . The result fol-
lows.

Thus, we can utilize k = min
(

max
h∈H
|{r : h ∈ r}|, max

r∈R
|{g : g ∈ r}|

)
+ 1 and apply the proofs using car-

dinality at least kas and kiff. While our bounds and algorithm are better if we knew the correct kas to use,
finding that value is itself hard to compute - thus, our implementation uses the value defined in section 4.2
and copied above.

A.2.2 Theorem 4: Equivalence of DRD and HEC

Theorem 4 (Relation of DRD and HEC). Suppose we construct a splitting hypergraph by drawing hyperedges of
cardinality k according to eq. (4.3). Let S ⊆ T ×O be a set of evidence. All consistent hypotheses lie in some decision
region if and only if all hyperedges are cut, i.e.,

E(S) = ∅ ⇔ ∃r : V(S) ⊆ r

Proof. We first prove that if all h are contained in one region, then all edges are cut, i.e. ∃r : V(S) ⊆ r ⇒
E(S) = ∅. This is by construction, since a hyperedge e ∈ E(S) is only between subregions (or hypotheses)
that do not share any regions. More concretely, our definition of e requires 6 ∃r s.t. ∀h ∈ e : h ∈ r. Since all
remaining nodes V(S) ⊆ r, there will be no such such set of hypotheses.

Next, we prove that if all edges are removed, then all h are contained in one region, i.e., E(S) = ∅ ⇒
∃r : V(S) ⊆ r. Clearly, if we set |V(S)| ≤ k, this condition would be met - E(S) would check every subset
of V(S) to see if they shared a region, and would draw a hyperedge i.f.f. they do not. To complete the
proof, we will make use of the following lemma:

Lemma 4. Define β as some constant s.t. β ≥ k. ∀H ⊆ H, |H| = β, ∃r : H ⊆ r ⇒ ∀{H ∪ h} ⊆ H, ∃r : {H ∪ h} ∈
r

Proof. For the sake of contradiction, suppose @r : {H ∪ h} ∈ r. This must mean h 6∈ H. Let {H ∪ h} =

{h1, h2, . . . , hβ+1}. Let Hi be the subset of {H ∪ h} which does not include the ith h from {H ∪ h}, i.e. Hi =

{h1 . . . , hi−1, hi+1, . . . hβ+1}. By assumption, we know ∃r : Hi ∈ r. Let ri be that region for Hi. If ri = rj, for
any i, j, this would imply {Hi ∪ Hj} = {H ∪ h} ∈ ri. Thus, each ri must be unique if 6 ∃r : {H ∪ h} ∈ r.
Furthermore, this implies hi 6∈ ri, and h ∈ rj, ∀j 6= i. Let Rβ+1 = {r1 . . . rβ+1}. By definition of β, we know
β ≥ k ≥ ki f f . But this causes a contradiction - by definition of ki f f , the maximum set of regions R where
hi 6∈ ri, hi ∈ rj∀j 6= i is kiff. But Rβ+1 would require such a set of regions where |Rβ+1| = β + 1 ≥ kiff + 1.
Thus, we have a contradiction, and have shown ∃r : {H ∪ h} ∈ r.



134 acting under uncertainty for information gathering and shared autonomy

By construction, we know that if E(S) = ∅ ⇒ ∀H ⊆ H, |H| ≤ k, ∃r : H ⊆ r. Applying lemma 4

inductively, this implies, ∀{H ∪ h1} ⊆ V(S), ∃r : {H ∪ h1} ⊆ r ⇒ ∀{H ∪ h1 ∪ h2} ⊆ V(S), ∃r : {H ∪ h1 ∪
h2} ⊆ r ⇒ · · · ⇒ ∃r : V(S) ⊆ r.

A.2.3 Theorem 5: Strong Adaptive Monotonicity and Adaptive Submodularity

Theorem 5 (Adaptive Submodularity of HEC). The objective function fHEC defined in eq. (4.6) is adaptive
submodular and strongly adaptive monotone.

Proof. We start with showing our formulation is strongly adaptive monotone.

Lemma 5. The function fHEC described above is strongly adaptive monotone, i.e.

fHEC(S ∪ {(t, h(t))})− fHEC(S) ≥ 0 ∀t, h

Proof. This states that our utility function must always increase as we take additional actions and receive
observations. Intuitively, we can see that additional action observation pairs can only cut edges, and thus
our utility function always increases. More concretely:

fHEC(S ∪ {(t, h(t))})− fHEC(S)
=
(
w(E)− w(E(S ∪ {(t, h(t))}))

)
−
(
w(E)− w(E(S))

)
= w(E(S))− w(E(S ∪ {(t, h(t))}))
= w({e ∈ E : ∀(i, o) ∈ S ∀h̃ ∈ e, h̃(i) = o})
− w({e ∈ E : ∀(i, o) ∈ S ∀h̃ ∈ e, h̃(i) = o, h̃(t) = h(t)}) by definition of E(S)

= w({e ∈ E : ∀(i, o) ∈ S ∀h̃ ∈ e, h̃(i) = o, h̃(t) 6= h(t)})
≥ 0 since w(e) ≥ 0 ∀e

Next, we prove that our formulation is adaptive submodular:

Lemma 6. The function fHEC described above is adaptive submodular for any prior with rational values, i.e. for
S ⊆ Ŝ ⊆ T ×O

∆ fHEC
(t |S) ≥ ∆ fHEC

(t | Ŝ) ∀t ∈ T\ST

where ST are the set of tests in S .

Proof. This states that our expected utility for a fixed action t decreases as we take additional actions and
receive observations. We rewrite our expected marginal utility in a more convenient form:

∆ fHEC
(t |S) = ∑

h
P(h |S)

(
fHEC(S ∪ {(t, h(t))})− fHEC(S)

)
= ∑

h
P(h |S)

(
[w(E)− w(E(S ∪ {(t, h(t))}))]− [w(E)− w(E(S))]

)
= ∑

h
P(h |S)

(
w(E(S))− w(E(S ∪ {(t, h(t))}))

)



appendix 135

For convenience, we define no
i to be the total probability mass in gi consistent with all evidence in S and

observation o. We define ni and no similarly. More formally:

no
i = ∑

h∈gi

P(h)1(h ∈ V(S ∪ {(t, o)}))

ni = ∑
o∈O

no
i

no = ∑
gi∈G

no
i

N = ∑
gi∈G

∑
o∈O

no
i

w(E(S)) = ∑
e∈E

∏
i∈e

ni

Similarly, we can also write w(E(S ∪ {(t, o)})) = ∑e∈E ∏i∈e no
i . We can rewrite our objective as:

∆ fHEC
(t |S) = ∑

h
P(h |S)

(
∑
e∈E

∏
i∈e

ni − ∑
e∈E

∏
i∈e

nh(t)
i

)
= ∑

o

no

N

(
∑
e∈E

∏
i∈e

ni − ∑
e∈E

∏
i∈e

no
i

)
= ∑

e∈E
∏
i∈e

ni −∑
o

no

N ∑
e∈E

∏
i∈e

no
i

Similarly, we define variables for the evidence Ŝ , i.e. n̂o
i for the total probability mass in gi consistent

with all evidence in Ŝ and observation o:

∆ fHEC
(t | Ŝ) = ∑

e∈E
∏
i∈e

n̂i −∑
o

n̂o

N̂
∑
e∈E

∏
i∈e

n̂o
i

We rewrite what we would like to show as:

∆ fHEC
(t |S)− ∆ fHEC

(t | Ŝ)

=
(

∑
e∈E

∏
i∈e

ni −∑
o

no

N ∑
e∈E

∏
i∈e

no
i

)
−
(

∑
e∈E

∏
i∈e

n̂i −∑
o

n̂o

N̂
∑
e∈E

∏
i∈e

n̂o
i

)
≥ 0

We will show that for any single action observation pair, which corresponds to eliminating a single hy-
pothesis, the expected utility of a test will always decrease. General adaptive submodularity, which states
the expected utility decreases with any additional evidence, follows easily. For convenience, we consider
rescaling our function so that all no

i are integers, which is possible since we assumed a rational prior. Note
that a function f is adaptive submodular i.f.f. c f is adaptive submodular for any constant c > 0, so show-
ing adaptive submodularity in the rescaled setting implies adaptive submodularity for our setting.

Lemma 6.1. If we remove one hypothesis from subregion k which agrees with observation c, i.e.

n̂o
i =

no
i − 1 if i = l and o = c

no
i else



136 acting under uncertainty for information gathering and shared autonomy

then

∆ =
(

∑
e∈E

∏
i∈e

ni −∑
o

no

N ∑
e∈E

∏
i∈e

no
i

)
−
(

∑
e∈E

∏
i∈e

n̂i −∑
o

n̂o

N̂
∑
e∈E

∏
i∈e

n̂o
i

)
≥ 0

Proof. Based on our definitions, it follows that:

n̂i =

ni − 1 if i = l

ni else

n̂o =

no − 1 if o = c

no else

N̂ = N − 1

We split the difference into three terms:

∆a = ∑
e∈E

(
∏
i∈e

ni −∏
i∈e

n̂i

)

∆b = ∑
o∈O\c

∑
e∈E

(
−no

N ∏
i∈e

no
i +

n̂o

N̂
∏
i∈e

n̂o
i

)

∆c = ∑
e∈E

(
−nc

N ∏
i∈e

nc
i +

n̂c

N̂
∏
i∈e

n̂c
i

)
∆a + ∆b + ∆c = ∆

To aid in notation, we define El = {e ∈ E : gl ∈ e}, hyperedges that contain region l, and El = E\El , all
other hyperedges. Additionally, let |el | be the number of times gl appears in the multiset e.

First term:

∆a = ∑
e∈E

(
∏
i∈e

ni −∏
i∈e

n̂i

)

= ∑
e∈El

[
∏
i∈e

ni −∏
i∈e

n̂i

]
+ ∑

e∈El

[
∏
i∈e

ni −∏
i∈e

n̂i

]

= ∑
e∈El

[
∏
i∈e

ni −∏
i∈e

ni

]
+ ∑

e∈El

[(
∏

i∈e,i 6=l
ni

)
n|el |

l −
(

∏
i∈e,i 6=l

ni

)
(nl − 1)|el |

]

= ∑
e∈El

(
∏

i∈e,i 6=l
ni

)(
n|el |

l − (nl − 1)|el |
)

≥ 0 (since nl ≥ 1)



appendix 137

Second term:

∆b = ∑
o∈O\c

∑
e∈E

(
−no

N ∏
i∈e

no
i +

n̂o

N̂
∏
i∈e

n̂o
i

)

= ∑
o∈O\c

∑
e∈E

(
−no

N ∏
i∈e

no
i +

no

N − 1 ∏
i∈e

no
i

)

= ∑
o∈O\c

∑
e∈E

no

N(N − 1) ∏
i∈e

no
i

≥ 0 (since each term ≥ 0)

Third term:

∆c = ∑
e∈E

(
−nc

N ∏
i∈e

nc
i +

n̂c

N̂
∏
i∈e

n̂c
i

)

= −nc

N ∑
e∈E

∏
i∈e

nc
i +

nc − 1
N − 1

(
∑
e∈E

(
∏

i∈e,i 6=l
nc

i

)
(nc

l − 1)|el |
)

= −nc

N ∑
e∈E

∏
i∈e

nc
i +

nc − 1
N − 1

(
∑
e∈E

(
∏

i∈e,i 6=l
nc

i

)(
(nc

l )
|el | − (nc

l )
|el | + (nc

l − 1)|el |
))

= −nc

N ∑
e∈E

∏
i∈e

nc
i +

nc − 1
N − 1

(
∑
e∈E

∏
i∈e

nc
i − ∑

e∈El

(
∏

i∈e,i 6=l
nc

i

)(
(nc

l )
|el | − (nc

l − 1)|el |
))

= − N − nc

N(N − 1) ∑
e∈E

∏
i∈e

nc
i −

nc − 1
N − 1

(
∑

e∈El

(
∏

i∈e,i 6=l
nc

i

)(
(nc

l )
|el | − (nc

l − 1)|el |
))

≤ 0 (since each term ≤ 0)

We also define:

∆c =

(
N − nc

N(N − 1)

)
∆c

1 +

(
nc − 1
N − 1

)
∆c

2

∆c
1 = − ∑

e∈E
∏
i∈e

nc
i

∆c
2 = −

(
∑

e∈El

(
∏

i∈e,i 6=l
nc

i

)(
(nc

l )
|el | − (nc

l − 1)|el |
))

∆a =

(
N(N − nc)

N(N − 1)
+

nc − 1
N − 1

)
∆a

=

(
N − nc

N(N − 1)

)
∆a

1 +

(
nc − 1
N − 1

)
∆a

2

∆a
1 = N ∑

e∈El

(
∏

i∈e,i 6=l
ni

)(
n|el |

l − (nl − 1)|el |
)

∆a
2 = ∑

e∈El

(
∏

i∈e,i 6=l
ni

)(
n|el |

l − (nl − 1)|el |
)



138 acting under uncertainty for information gathering and shared autonomy

The constants in front of the sum for ∆c
1 and ∆c

2 were from the equation, and ∆a was split up to include
the same constants. Now we will show that ∆a

1 + ∆c
1 ≥ 0 and ∆a

2 + ∆c
2 ≥ 0. We start with the latter:

∆a
2 + ∆c

2 = ∑
e∈El

[(
∏

i∈e,i 6=l
ni

)(
n|el |

l − (nl − 1)|el |
)
−
(

∏
i∈e,i 6=l

nc
i

)(
(nc

l )
|el | − (nc

l − 1)|el |
)]

≥ ∑
e∈El

[(
∏

i∈e,i 6=l
ni

)(
n|el |

l − (nl − 1)|el |
)
−
(

∏
i∈e,i 6=l

ni

)(
n|el |

l − (nl − 1)|el |
)]

(A.6)

= 0

Where (A.6) follows from ni ≥ nc
i ∀i.

∆a
1 + ∆c

1 = N ∑
e∈El

(
∏

i∈e,i 6=l
ni

)(
n|el |

l − (nl − 1)|el |
)
− ∑

e∈E
∏
i∈e

nc
i

≥ N ∑
e∈El

(
∏

i∈e,i 6=l
ni

)(
n|el |

l − (nl − 1)|el |
)
− ∑

e∈E
∏
i∈e

ni (A.7)

≥ N ∑
e∈El

(
∏

i∈e,i 6=l
ni

)
n|el |−1

l − ∑
e∈E

∏
i∈e

ni (A.8)

= (N − nl) ∑
e∈El

(
∏

i∈e,i 6=l
ni

)
n|el |−1

l + ∑
e∈El

(
∏

i∈e,i 6=l
ni

)
n|el |

l − ∑
e∈E

∏
i∈e

ni

= (N − nl) ∑
e∈El

(
∏

i∈e,i 6=l
ni

)
n|el |−1

l − ∑
e∈El

∏
i∈e

ni (A.9)

≥ (N − nl) ∑
e∈El

∏
i∈e,i 6=l

ni − ∑
e∈El

∏
i∈e

ni

Where (A.7) follows from ni ≥ nc
i ∀i, (A.8) follows from n|el |

l − (nl − 1)|el | ≥ n|el |
l − n|el |−1

l (nl − 1) =

n|el |−1
l , and (A.9) cancels edges in El exactly, leaving only edges in El .

We again want to separate out terms that cancel. We define:

E k̂ = {e : |e| = k̂ ∧ @ j s.t. ∀g ∈ e : g ⊆ rj}
Emin = {e : e ∈ E ,@ê ⊂ e : ê ∈ E k−1}
Emin = E\Emin

We defined E k̂ as the hyperedges for any specified cardinality k̂. We call Emin the minimal hyperedges
if k is the minimal cardinality at which these regions should be seperated. Thus, these are the hyperedges
where no subset of subregions {g1 . . . gk−1} ⊂ e would have a seperation hyperedge. All other hyperedges

are called non-minimal. We also define Emin
l , Emin

l , Emin
l , Emin

l as the minimal and non-minimal hyperedges



appendix 139

of El and El :

Emin
l = {e : e ∈ El ,@ê ⊂ e : ê ∈ E k−1}
Emin

l = {e : e ∈ El ,@ê ⊂ e : ê ∈ E k−1}
Emin

l = El\Emin
l

Emin
l = El\Emin

l

We also note that:

∑
e∈Emin

l

∏
i∈e

ni ≤ ∑
gj∈G\gl

nj ∑
e∈El

k−1
∏
i∈e

ni

= (N − nl) ∑
e∈El

k−1
∏
i∈e

ni

For convenience, we define one additional set of hyperedges Êl . These are hyperedges in El such that no
subset of k− 1 elements which do not include k are in El .

Êl = {e : e ∈ El ∧ @ek−1 ⊂ e s.t. ek−1 ∈ El
k−1}

This enables us to split the set El up into edges where El
k−1

are a subset, and Êl . We note that since

there is no region shared by all elements ek−1 ∈ El
k−1

, then there will be no region shared by e = ek−1 ∪ gl .
Thus, this will be an element of El . This gives us:

∑
e∈El

∏
i∈e,i 6=l

ni = ∑
e∈El

k−1
∏
i∈e

ni + ∑
e∈Êl

∏
i∈e,i 6=l

ni

Applying these:

∆a
1 + ∆c

1 ≥ (N − nl) ∑
e∈El

∏
i∈e,i 6=l

ni − ∑
e∈El

∏
i∈e

ni

= (N − nl)

 ∑
e∈El

k−1
∏
i∈e

ni + ∑
e∈Êl

∏
i∈e,i 6=l

ni

− ∑
e∈Emin

l

∏
i∈e

ni − ∑
e∈Emin

l

∏
i∈e

ni

≥ (N − nl)

 ∑
e∈El

k−1
∏
i∈e

ni + ∑
e∈Êl

∏
i∈e,i 6=l

ni

− (N − nl) ∑
e∈El

k−1
∏
i∈e

ni − ∑
e∈Emin

l

∏
i∈e

ni

= (N − nl)

∑
e∈Êl

∏
i∈e,i 6=l

ni

− ∑
e∈Emin

l

∏
i∈e

ni

At this point, we use the structure of our edge construction and definition of k to show this sum is ≥ 0.
We have a positive term, consisting of edges which include k, and a negative term, consisting of edges
that do not include k. We will show that for every product in the negative term, there is a corresponding
product in the positive term.

To do so, we show that for any e ∈ Emin
l , there is at least one corresponding e′ ∈ Êl to cancel the terms

out. More concretely:



140 acting under uncertainty for information gathering and shared autonomy

Lemma 6.1.1. Let e ∈ Emin
l . There exists some ek−1 ⊂ e, |ek−1| = k− 1 such that e′ = (ek−1 ∪ gl) ∈ Êl .

Proof. Recall that e is a multiset of subregions. It is straightforward to see that because e is minimal,
there can be no repeated elements in the multiset - and thus it is equivalent to a set. Define this set as
e = {ĝ1 . . . ĝk}. Define each distinct subset which does not include ĝi as ei = e\ĝi, 1 ≤ i ≤ k. By our defi-

nition of minimal hyperedges Emin
l , we know that ∀ei, ∃ri : ei ⊆ ri, which implies that ei 6∈ El

k−1
. Note that

each ri must be distinct. If ri = rj, for any i, j, this would imply (ei ∪ ej) = e ∈ ri. But since there exists
a separating hyperedge e, 6 ∃r : e ⊆ r. This implies ĝi 6⊆ ri. Combining this with our definition of Êl , if
6 ∃r : (ei ∪ gl) ⊆ r ⇒ (ei ∪ gl) ∈ Êl . To prove this lemma, we will show that this region cannot exist for all ei.

If gl 6⊆ ri ⇒ ei ∪ gl 6⊆ ri. For the sake of contradiction, suppose gl ⊆ ri∀i. Let R = {r1 . . . rk}. For this to
be true, it must be that: 1 ∀h ∈ gl , h ∈ R 2 ∀ri ∈ R, ∀ĥ ∈ ĝi : ĥ /∈ ri, ĥ ∈ R\ri where |R| = k. However,
by definition of k this cannot be true: the largest such R where this holds |R| = k − 1. Thus, we have a
contradiction, and have shown such a set of regions {r1 . . . rk} = R : gl ⊆ ri ∀ri cannot exist. Therefore,
∃ei : (ei ∪ gl) ∈ Êl .

In order to apply Lemma 6.1.1, we split every e ∈ Emin
l it up into ek−1 and g, where ek−1 is the subset of

e such that (ek−1 ∪ gl) ∈ Êl , and g = e\ek−1. Let n be the number of particles in subregion g, which we will
use in eq. (A.10):

∆a
1 + ∆c

1 ≥ (N − nl)

∑
e∈Êl

∏
i∈e,i 6=l

ni

− ∑
e∈Emin

l

∏
i∈e

ni

= (N − nl)

∑
e∈Êl

∏
i∈e,i 6=l

ni

− ∑
e∈Emin

l

n ∏
i∈ek−1

ni (A.10)

≥ (N − nl)

∑
e∈Êl

∏
i∈e,i 6=l

ni

− ∑
gj∈G\gl

nj

∑
e∈Êl

∏
i∈e,i 6=l

ni

 (A.11)

= (N − nl)

∑
e∈Êl

∏
i∈e,i 6=l

ni

− (N − nl)

∑
e∈Êl

∏
i∈e,i 6=l

ni


= 0

Where eq. (A.11) applies Lemma 6.1.1.
At this point, we have shown that ∆ = ∆a + ∆b + ∆c ≥ 0, since ∆b ≥ 0 and ∆a + ∆c ≥ 0, which is what

we needed to show.

It is not hard to see that for any S ⊆ Ŝ ⊆ T ×O, we could show that ∆ fHEC
(t | S) ≥ ∆ fHEC

(t | Ŝ1) ≥
∆ fHEC

(t | Ŝ2) · · · ≥ ∆ fHEC
(t | Ŝ) In other words, we can always find a sequence of removing one hypothesis

at a time to get from S to Ŝ when S ⊆ Ŝ ⊆ T ×O.



appendix 141

A.2.4 Theorem 6: Greedy Performance Bound

Theorem 6 (HEC Performance Bound). Assume that the prior probability distribution P on the set of hypotheses
is rational. Then, the performance of πHEC is bounded as follows:

C(πHEC) ≤ (k ln(1/pmin) + 1)C(π∗),

where pmin = minh∈H P(h) and π∗ is the optimal policy.

We would like to apply Theorem 5.8 of [GK11]. We have already shown adaptive submodularity and
strong adaptive monotonicty in appendix A.2.3. The theorem also requires that instances are self-certifying,
which means that when the policy knows it has obtained the maximum possible objective value immedi-
ately upon doing so. See [GK11] for details. As our objective is equivalent for all remaining hypotheses in
V(S), our function fHEC is self-certifying.

The performance bound now follows directly from Theorem 5.8 of [GK11]. To apply the theorem, we
needed to define two constants: a bound on the maximum value of fHEC(S), Q = 1, and the minimum our
objective function can change by, which corresponds to removing one hyperedge, η = pk

min. Plugging those
into Theorem 5.8 of [GK11] gives C(πHEC) ≤ (k ln(1/pmin) + 1)C(π∗).

A.3 Multi-Target MDPs

Below we provide the proofs for decomposing the value functions for MDPs with multiple targets, as intro-
duced in section 6.4.

A.3.1 Theorem 10: Decomposing value functions

Here, we show the proof for our theorem that we can decompose the value functions over that the targets
for deterministic MDPs:

Theorem 10. Let Vκ be the value function for target κ. Define the cost for the goal as in eq. (6.3). For an MDP with
deterministic transitions, and a deterministic user policy πu, the value and action-value functions Vg and Qg can be
computed as:

Qg(x, u, a) = Qκ∗(x, u, a) κ∗ = arg min
κ

Vκ(x′)

Vg(x) = min
κ

Vκ(x)

Proof. We show how the standard value iteration algorithm, computing Qg and Vg backwards, breaks
down at each time step. At the final timestep T, we get:

QT(x, a) = Cg(x, a)

= Cκ(x, a) for any κ

VT(x) = min
a

Cg(x, a)

= min
a

min
κ

Cκ∗(x, a)

= min
κ

VT
κ (x)



142 acting under uncertainty for information gathering and shared autonomy

Since VT
κ (x) = mina Cκ∗(x, a) by definition. Now, we show the recursive step:

Qt−1(x, a) = Cg(x, a) + Vt(x′)

= Cκ∗(x, a) + min
κ

Vt
κ (x′) κ∗ = arg min Vκ(x′)

= Cκ∗(x, a) + Vt
κ∗(x′) κ∗ = arg min Vκ(x′)

Vt−1(x) = min
a

Qt−1(x, a)

= min
a

Cκ∗(x, a) + Vt
κ∗(x′) κ∗ = arg min Vκ(x′)

≥ min
a

min
κ

(
Cκ(x, a) + Vt

κ (x′)
)

= min
κ

Vt−1
κ (x)

Additionally, we know that V(x) ≤ minκ Vκ(x), since Vκ(x) measures the cost-to-go for a specific target,
and the total cost-to-go is bounded by this value for a deterministic system. Therefore, V(x) = minκ Vκ(x).

A.3.2 Theorem 11: Decomposing soft value functions

Here, we show the proof for our theorem that we can decompose the soft value functions over that the
targets for deterministic MDPs:

Theorem 11. Define the probability of a trajectory and target as p(ξ, κ) ∝ exp(−Cκ(ξ)). Let Vsoft
κ and Qsoft

κ be the
soft-value functions for target κ. For an MDP with deterministic transitions, the soft value functions for goal g, Vsoft

g

and Qsoft
g , can be computed as:

Vsoft
g (x) = softmin

κ
Vsoft

κ (x)

Qsoft
g (x, u) = softmin

κ
Qsoft

κ (x, u)

Proof. As the cost is additive along the trajectory, we can expand out exp(−Cκ(ξ)) and marginalize over
future inputs to get the probability of an input now:

πu(ut, κ|xt) =
exp(−Cκ(xt, ut))

∫
exp(−Cκ(ξt+1→T

xt+1
))

∑κ′
∫

exp(−Cκ′(ξt→T
xt ))

Where the integrals are over all trajectories. By definition, exp(−Vsoft
κ,t (xt)) =

∫
exp(−Cκ(ξt→T

xt )):

=
exp(−Cκ(xt, ut)) exp(−Vsoft

κ,t+1(xt+1))

∑κ′ exp(−Vsoft
κ′ ,t (xt))

=
exp(−Qsoft

κ,t (xt, ut))

∑κ′ exp(−Vsoft
κ′ ,t (xt))



appendix 143

Marginalizing out κ and simplifying:

πu(ut|xt) =
∑κ exp(−Qsoft

κ,t (xt, ut))

∑κ exp(−Vsoft
κ,t (xt))

= exp

(
log

(
∑κ exp(−Qsoft

κ,t (xt, ut))

∑κ exp(−Vsoft
κ,t (xt))

))
= exp

(
softmin

κ
Vsoft

κ,t (xt)− softmin
κ

Qsoft
κ t(xt, ut)

)
As Vsoft

g,t and Qsoft
g,t are defined such that πu

t (u|x, g) = exp(Vsoft
g,t (x)−Qsoft

g,t (x, u)), our proof is complete.





List of Figures

1.1 Example Manipulation Task Information Acting Under Uncer-
tainty 9

1.2 Example Shared Autonomy Task for Acting Under Uncer-
tainty 9

1.3 Goal-Directed Active Information Gathering 10

1.4 Assistance with Ambiguous Goals in Shared Control Teleopera-
tion 12

1.5 Assistance with Ambigous Goals in Human-Robot Team-
ing 12

3.1 Hypothesis Pruning for Door Opening 28

3.2 Touch-Based Localization as Set Cover 29

3.3 Observation Model for Touch-Based Localization 31

3.4 Hypothesis Pruning Covariance Evolution 35

4.1 The Decision Region Determination (DRD) problem 41

4.2 A decision region for button pushing 42

4.3 HEC with two decision regions 46

4.4 A depiction of our method as hyperedges. (a) The equiva-
lent hyperedges of CHP3(G). (b) First iteration of algorithm 1

which removes all |ζ| = 1 (light edges) by subtracting
g1CHP2({g1}) + g2CHP2({g2}) + g3CHP2({g3}). (c) Second
iteration of algorithm 1 which removes all |ζ| = 2 (light edges)
by subtracting g1g2CHP1({g1, g2}) + g2g3CHP1({g2, g3}) 49

4.5 HEC Results on MovieLens 100k Experiments 51

4.6 Illustration of Decision Regions for MovieLens 100k for HEC
Experiments 51

4.7 Decision Regions for Microwave Touch Based Localization 52

4.8 HEC Robot Experiments Barchart 53

4.9 Noisy-Or Problem Instance 54

4.10 Noisy-Or Graph Coloring Decomposition 55

4.11 Noisy-Or Touch Based Localization Experimental Setup 58

4.12 Noisy-Or Robot Simulation Results 58



146 acting under uncertainty for information gathering and shared autonomy

4.13 DiRECt Experimental results for MovieLens, EMPCranes, and
Risky Choice Theory 59

5.1 Teleoperation Interfaces 63

5.2 Modal Control 65

5.3 Shared Autonomy Blend Diagram 66

5.4 Shared Autonomy Policy Diagram 66

6.1 Shared Autonomy Framework Diagram 71

6.2 Arbitration as a function of confidence in Policy Method 72

6.3 Multi-Target Value Functions 81

7.1 Example of Hindsight Optimization and Prediction with User
Inputs 84

7.2 Grasping Study Experimental Setup 86

7.3 Grasping Study Survey Response 88

7.4 Grasping Study User Preference vs. Like Ratings 88

7.5 Grasping Study Time and Control Plots 89

7.6 Grasp Study Trajectories for Two Users 90

7.7 Eating Study Experiment Setup 92

7.8 Eating Study Results 94

7.9 Eating Study Time vs. User Inputs and Assistance Ratio 96

7.10 Eating Study Survey Responses 97

7.11 Gift Wrapping Study Experiment Setup 102

7.12 Gift Wrapping Study Distance Metrics Boxplots 104

7.13 Gift Wrapping Study Idle Time and Percentage Boxplots 104

7.14 Gift Wrapping Study Trial Duration Boxplots 105

8.1 Prediction with Assistance Method Overview 109

8.2 Prediction with Assistance Experimental Setup 113

8.3 Prediction with Assistance Experiment Objective Mea-
sures 115

8.4 Prediction with Assistance Survey Responses 116



List of Tables

2.1 Variable Definiions for Adaptive Submodularity 21

3.1 Hypothesis Pruning Test Selection Time 36

3.2 Example Tests for Hypothesis Pruning Experiment 37

3.3 Hypothesis Pruning Real Robot Experiment 38

4.1 HEC Experiments Running Times on MovieLens 100k 52

4.2 DRD Problem Applications, and the Corresponding Tests and
Decisions 57

6.1 Shared Autonomy variable definitions 73

7.1 Eating Study Post-Hoc P-Values for Every Hypothesis 99

7.2 Gift Wrapping Study Subjective Ratings Depending on Colli-
sion 106





Bibliography

[Aar+05] Daniel Aarno, Staffan Ekvall, and Danica Kragic. “Adaptive Virtual Fixtures for Machine-
Assisted Teleoperation Tasks”. In: IEEE International Conference on Robotics and Automation.
2005.

[AK08] Daniel Aarno and Danica Kragic. “Motion intention recognition in robot assisted applica-
tions”. In: Robotics and Autonomous Systems 56 (2008).

[Akr+12] Riad Akrour, Marc Schoenauer, and Michèle Sebag. “APRIL: Active Preference Learning-
Based Reinforcement Learning”. In: European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases. 2012.

[Akr+14] Riad Akrour, Marc Schoenauer, Jean-Christophe Souplet, and Michèle Sebag. “Programming
by Feedback”. In: International Conference on Machine Learning. 2014.

[AM97] Peter Aigner and Brenan J. McCarragher. “Human integration into robot control utilising
potential fields”. In: IEEE International Conference on Robotics and Automation. 1997.

[Ame+14] Saleema Amershi, Maya Cakmak, W. Bradley Knox, and Todd Kulesza. “Power to the People:
The Role of Humans in Interactive Machine Learning”. In: AI Magazine (2014).

[AN16] Arash Asadpour and Hamid Nazerzadeh. “Maximizing Stochastic Monotone Submodular
Functions”. In: Management Science 62 (2016), pp. 2374–2391.

[Ara+10] Tamio Arai, Ryu Kato, and Marina Fujita. “Assessment of operator stress induced by robot
collaboration in assembly”. In: CIRP Annals - Manufacturing Technology 59.1 (2010), pp. 5–8.

[Arg14] Brenna D. Argall. “Modular and Adaptive Wheelchair Automation”. In: International Sympo-
sium on Experimental Robotics. 2014.

[Aum61] Robert J. Aumann. “The Core of a Cooperative Game Without Side Payments”. In: Transactions
of the American Mathematical Society 98.3 (1961), pp. 539–552.

[Bag04] J. Andrew (Drew) Bagnell. “Learning Decisions: Robustness, Uncertainty, and Approxima-
tion”. PhD thesis. Robotics Institute, Carnegie Mellon University, 2004.

[Baj88] Ruzena Bajcsy. “Active perception”. In: Proceedings of the IEEE 76 (1988).

[Bal+06] N. Balcan, A. Beygelzimer, and J. Langford. “Agnostic Active Learning”. In: International
Conference on Machine Learning. 2006.

[Ban+12] Tirthankar Bandyopadhyay, Kok Sung Won, Emilio Frazzoli, David Hsu, Wee Sun Lee, and
Daniela Rus. “Intention-Aware Motion Planning”. In: Workshop on the Algorithmic Foundations
of Robotics. 2012.



150 acting under uncertainty for information gathering and shared autonomy

[Bel+12] Gowtham Bellala, Suresh K. Bhavnani, and Clayton Scott. “Group-Based Active Query Se-
lection for Rapid Diagnosis in Time-Critical Situations”. In: IEEE Transactions on Information
Theory 58.1 (2012), pp. 459–478.

[Ber85] James O. Berger. Statistical decision theory and Bayesian analysis. Springer series in statistics.
Springer, 1985.

[Bie+04] Zeungnam Bien, Myung-Jin Chung, Pyung-Hun Chang, Dong-Soo Kwon, Dae-Jin Kim, Jeong-
Su Han, Jae-Hean Kim, Do-Hyung Kim, Hyung-Soon Park, Sang-Hoon Kang, Kyoobin Lee,
and Soo-Chul Lim. “Integration of a Rehabilitation Robotic System (KARES II) with Human-
Friendly Man-Machine Interaction Units”. In: Autonomous Robots 16 (2004).

[Bou+02] Frederic Bourgault, Alexei A. Makarenko, Stefan B. Williams, Ben Grocholsky, and Hugh F.
Durrant-Whyte. “Information Based Adaptive Robotic Exploration”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2002.

[Bou+11] Abdeslam Boularias, Jens Kober, and Jan Peters. “Relative Entropy Inverse Reinforcement
Learning”. In: International Conference on Artificial Intelligence and Statistics. 2011, pp. 182–189.

[Bur+97] Wolfram Burgard, Dieter Fox, and Sebastian Thrun. “Active Mobile Robot Localization”. In:
International Joint Conference on Artificial Intelligence. 1997, pp. 1346–1352.

[Cas+96] Anthony R. Cassandra, Leslie Pack Kaelbling, and James A. Kurien. “Acting under Uncer-
tainty: Discrete Bayesian Models for Mobile-Robot Navigation”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems. 1996.

[CD12] Tom Carlson and Yiannis Demiris. “Collaborative control for a robotic wheelchair: evaluation
of performance, attention, and workload”. In: IEEE Transactions on Systems, Man, and Cybernet-
ics, Part B 42 (2012).

[CG02] Jacob W. Crandall and Michael A. Goodrich. “Characterizing efficiency on human robot inter-
action: a case study of shared–control teleoperation”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2002.

[CH11] Shu-Yun Chung and Han-Pang Huang. “Predictive Navigation by Understanding Human
Motion Patterns”. In: International Journal of Advanced Robotic Systems 8.1 (2011), p. 3.

[Cha+07] Venkatesan T. Chakaravarthy, Vinayaka Pandit, Sambuddha Roy, Pranjal Awasthi, and
Mukesh K. Mohania. “Decision Trees for Entity Identification: Approximation Algorithms
and Hardness Results”. In: Proceedings of the ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems (PODS). 2007.

[Che+15] Yuxin Chen, Shervin Javdani, Amin Karbasi, J. Andrew (Drew) Bagnell, Siddhartha Srinivasa,
and Andreas Krause. “Submodular Surrogates for Value of Information”. In: AAAI Conference
on Artificial Intelligence. 2015.

[Che+16] Min Chen, Emilio Frazzoli, David Hsu, and Wee Sun Lee. “POMDP-lite for robust robot plan-
ning under uncertainty”. In: IEEE International Conference on Robotics and Automation. 2016.

[Che+17] Yuxin Chen, S. Hamed Hassani, and Andreas Krause. “Near-optimal Bayesian Active Learn-
ing with Correlated and Noisy Tests”. In: International Conference on Artificial Intelligence and
Statistics. 2017.



BIBLIOGRAPHY 151

[Cho+00] Edwin K. P. Chong, Robert L. Givan, and Hyeong Soo Chang. “A Framework for Simulation-
based Network Control via Hindsight Optimization”. In: IEEE Conference on Decision and Con-
trol. 2000.

[Cho+17a] Sanjiban Choudhury, Ashish Kapoor, Gireeja Ranade, and Debadeepta Dey. “Learning to
Gather Information via Imitation”. In: IEEE International Conference on Robotics and Automation
(2017).

[Cho+17b] Sanjiban Choudhury, Shervin Javdani, Siddhartha Srinivasa, and Sebastian Scherer. “Near-
Optimal Edge Evaluation in Explicit Generalized Binomial Graphs”. In: ArXiv e-prints (2017).

[Chu+13] Cheng-Shiu Chung, Hongwu Wang, and Rory A. Cooper. “Functional assessment and per-
formance evaluation for assistive robotic manipulators: Literature review”. In: The Journal of
Spinal Cord Medicine (2013).

[Col+13] Jennifer L Collinger, Brian Wodlinger, John E Downey, Wei Wang, Elizabeth C Tyler-Kabara,
Douglas J Weber, Angus JC McMorland, Meel Velliste, Michael L Boninger, and Andrew B
Schwartz. “High-performance neuroprosthetic control by an individual with tetraplegia”. In:
The Lancet 381 (2013), pp. 557–564.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley-Interscience, 1991.

[CV95] Kathryn Chaloner and Isabella Verdinelli. “Bayesian Experimental Design: A Review”. In:
Statistical Science 10 (1995), pp. 273–304.

[Dan+14] Christian Daniel, Malte Viering, Jan Metz, Oliver Kroemer, and Jan Peters. “Active Reward
Learning”. In: Robotics: Science and Systems (RSS). 2014.

[Das04] Sanjoy Dasgupta. “Analysis of a greedy active learning strategy”. In: Neural Information Pro-
cessing Systems. 2004.

[Deb+00] Thomas Debus, Jeffrey Stoll, Robert D. Howe, and Pierre Dupont. “Cooperative Human and
Machine Perception in Teleoperated Assembly”. In: International Symposium on Experimental
Robotics. 2000.

[Des+14] Amol Deshpande, Lisa Hellerstein, and Devorah Kletenik. “Approximation Algorithms for
Stochastic Boolean Function Evaluation and Stochastic Submodular Set Cover”. In: ACM-
SIAM Symposium on Discrete Algorithms. 2014.

[Dey+12a] Debadeepta Dey, Tian Yu Liu, Martial Hebert, and J. Andrew (Drew) Bagnell. “Contextual
Sequence Prediction with Application to Control Library Optimization”. In: Robotics: Science
and Systems (RSS). 2012.

[Dey+12b] Debadeepta Dey, Tian Yu Liu, Boris Sofman, and J. Andrew (Drew) Bagnell. “Efficient Opti-
mization of Control Libraries”. In: AAAI Conference on Artificial Intelligence. 2012.

[Dra+13] Anca Dragan, Kenton Lee, and Siddhartha Srinivasa. “Legibility and Predictability of Robot
Motion”. In: ACM/IEEE International Conference on Human-Robot Interaction. 2013.

[DS10] Mehmet Dogar and Siddhartha Srinivasa. “Push-Grasping with Dexterous Hands: Mechanics
and a Method”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. 2010.

[DS13a] Anca Dragan and Siddhartha Srinivasa. “A Policy Blending Formalism for Shared Control”.
In: The International Journal of Robotics Research (2013).



152 acting under uncertainty for information gathering and shared autonomy

[DS13b] Anca Dragan and Siddhartha Srinivasa. “Generating Legible Motion”. In: Robotics: Science and
Systems (RSS). 2013.

[EM88] Michael Erdmann and Matthew T. Mason. “An Exploration of Sensorless Manipulation”. In:
International Journal of Robotics and Automation 4 (1988), pp. 369–379.

[Eri+08] Lawrence Erickson, Joseph Knuth, Jason M. O’Kane, and Steven M. LaValle. “Probabilistic
localization with a blind robot”. In: IEEE International Conference on Robotics and Automation.
2008.

[ES10] Tom Erez and William D. Smart. “A Scalable Method for Solving High-Dimensional Contin-
uous POMDPs Using Local Approximation”. In: Conference on Uncertainty in Artificial Intelli-
gence. 2010.

[Fag+04] Andrew H. Fagg, Michael Rosenstein, Robert Platt, and Roderic A. Grupen. “Extracting user
intent in mixed initiative teleoperator control”. In: AIAA. 2004.

[Fel60] Alexander A. Feldbaum. “Dual control theory. I-IV”. In: Automation Remote Control 21,22

(1960-1961).

[Fin+16] Chelsea Finn, Sergey Levine, and Pieter Abbeel. “Guided Cost Learning: Deep Inverse Opti-
mal Control via Policy Optimization”. In: International Conference on Machine Learning. 2016,
pp. 49–58.

[Fon+01] Terrence Fong, Charles E. Thorpe, and Charles Baur. “Advanced Interfaces for Vehicle Tele-
operation: Collaborative Control, Sensor Fusion Displays, and Remote Driving Tools”. In:
Autonomous Robots 11 (2001).

[Fox+98] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. “Active Markov Localization for Mobile
Robots”. In: Robotics and Autonomous Systems 25 (1998).

[FT01] Terrence W. Fong and Chuck Thorpe. “Vehicle Teleoperation Interfaces”. In: Autonomous
Robots 11 (2001).

[FT10] Alan Fern and Prasa Tadepalli. “A Computational Decision Theory for Interactive Assistants”.
In: Neural Information Processing Systems. 2010.

[Fu+07] Jiaxin Fu, Siddhartha Srinivasa, Nancy Pollard, and Bart Nabbe. “Planar batting under shape,
pose, and impact uncertainty”. In: IEEE International Conference on Robotics and Automation.
2007.

[Fuj78] Satoru Fujishige. “Polymatroidal Dependence Structure of a Set of Random Variables”. In:
vol. 39. 1978, pp. 55–72.

[Für+12] Johannes Fürnkranz, Eyke Hüllermeier, Weiwei Cheng, and Sang-Hyeun Park. “Preference-
based Reinforcement Learning: A Formal Framework and a Policy Iteration Algorithm”. In:
Machine Learning 89 (2012).

[Gal+08] F. Galán, M. Nuttin, E. Lew, P.W. Ferrez, G. Vanacker, J. Philips, and J. del R. Millán. “A brain-
actuated wheelchair: Asynchronous and non-invasive Brain–computer interfaces for continu-
ous control of robots”. In: Clinical Neurophysiology 119.9 (2008).

[GB09] Andrew Guillory and Jeff Bilmes. “Average-Case Active Learning with Costs”. In: The Interna-
tional Conference on Algorithmic Learning Theory. 2009.



BIBLIOGRAPHY 153

[GB10] Andrew Guillory and Jeff Bilmes. “Interactive Submodular Set Cover”. In: International Confer-
ence on Machine Learning. 2010.

[GB11] Andrew Guillory and Jeff Bilmes. “Simultaneous Learning and Covering with Adversarial
Noise”. In: International Conference on Machine Learning. 2011.

[GJ03] Michael A. Goodrich and Dan R. Olsen Jr. “Seven principles of efficient human robot interac-
tion”. In: IEEE Transactions on Systems, Man, and Cybernetics. 2003.

[GK11] Daniel Golovin and Andreas Krause. “Adaptive Submodularity: Theory and Applications in
Active Learning and Stochastic Optimization”. In: Journal of Artificial Intelligence Research 42

(2011).

[Goe63] Ray C. Goertz. “Manipulators used for handling radioactive materials”. In: Human Factors in
Technology (1963).

[Gol+10] Daniel Golovin, Andreas Krause, and Debajyoti Ray. “Near-Optimal Bayesian Active Learning
with Noisy Observations”. In: Neural Information Processing Systems. 2010.

[Gol93] Kenneth Goldberg. “Orienting Polygonal Parts without Sensors”. In: Algorithmica (1993).

[Gom+14] Matthew Gombolay, Reymundo Gutierrez, Giancarlo Sturla, and Julie Shah. “Decision-
Making Authority, Team Efficiency and Human Worker Satisfaction in Mixed Human-Robot
Teams”. In: Robotics: Science and Systems (RSS). 2014.

[Gom+17] Matthew Gombolay, Anna Bair, Cindy Huang, and Julie Shah. “Computational Design of
Mixed-Initiative Human-Robot Teaming that Considers Human Factors Situational Aware-
ness, Workload, and Workflow Preferences”. In: The International Journal of Robotics Research
(2017).

[Goo+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial Nets”. In: Neural Infor-
mation Processing Systems. 2014.

[Gop+16] Deepak Gopinath, Siddarth Jain, and Brenna D. Argall. “Human-in-the-Loop Optimization of
Shared Autonomy in Assistive Robotics”. In: Conference on Automation Science and Engineering.
2016.

[Gre+07] Scott Green, Mark Billinghurst, XiaoQi Chen, and J. Geoffrey Chase. “Human-Robot Collab-
oration: A Literature Review and Augmented Reality Approach in Design”. In: International
Journal of Advanced Robotic Systems 5 (2007).

[Gup+17] Anupam Gupta, Viswanath Nagarajan, and Sahil Singla. “Adaptivity Gaps for Stochastic
Probing: Submodular and XOS Functions”. In: ACM-SIAM Symposium on Discrete Algorithms.
2017.

[GV06] Michel Goemans and Jan Vondrák. “Stochastic Covering and Adaptivity”. In: Proceedings of
International Latin American Symposium on Theoretical Informatics. 2006, pp. 532–543.

[H+̈08] Eyke Hüllermeier, Johannes Fürnkranz, Weiwei Cheng, and Klaus Brinker. “Label Ranking by
Learning Pairwise Preferences”. In: Artificial Intelligence 172 (2008).

[Hau13] Kris K. Hauser. “Recognition, prediction, and planning for assisted teleoperation of freeform
tasks”. In: Autonomous Robots 35 (2013).



154 acting under uncertainty for information gathering and shared autonomy

[HB07] Guy Hoffman and Cynthia Breazeal. “Effects of anticipatory action on human-robot team-
work: Efficiency, fluency, and perception of team”. In: ACM/IEEE International Conference on
Human-Robot Interaction. 2007.

[HE16] Jonathan Ho and Stefano Ermon. “Generative adversarial imitation learning”. In: Neural Infor-
mation Processing Systems. 2016.

[Heb+13] Paul Hebert, Thomas Howard, Nicolas Hudson, Jeremy Ma, and Joel Burdick. “The Next
Best Touch for Model-Based Localization”. In: IEEE International Conference on Robotics and
Automation. 2013.

[Her+16] Laura Herlant, Rachel Holladay, and Siddhartha Srinivasa. “Assistive Teleoperation of Robot
Arms via Automatic Time-Optimal Mode Switching”. In: ACM/IEEE International Conference on
Human-Robot Interaction. 2016.

[Her+99] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl. “An Algorithmic
Framework for Performing Collaborative Filtering”. In: Proceedings of the 22nd Annual Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval. 1999.

[HM+16] Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. “Cooperative In-
verse Reinforcement Learning”. In: Neural Information Processing Systems. 2016.

[Hoi+06] Steven C. H. Hoi, Rong Jin, Jianke Zhu, and Michael R. Lyu. “Batch Mode Active Learning
and Its Application to Medical Image Classification”. In: International Conference on Machine
Learning. ACM, 2006, pp. 417–424.

[Hol+11] Geoffrey A. Hollinger, Urbashi Mitra, and Gaurav S. Sukhatme. “Active Classification: Theory
and Application to Underwater Inspection”. In: International Symposium on Robotics Research.
2011.

[Hol+12] Geoffrey A. Hollinger, Sunav Choudhary, Parastoo Qarabaqi, Christopher Murphy, Urbashi
Mitra, Gaurav S. Sukhatme, Milica Stojanovic, Hanumant Singh, and Franz Hover. “Under-
water Data Collection Using Robotic Sensor Networks”. In: IEEE Journal on Selected Areas in
Communications 30 (2012).

[Hol+13] Geoffrey A Hollinger, Brendan Englot, Franz S Hover, Urbashi Mitra, and Gaurav S
Sukhatme. “Active Planning for Underwater Inspection and the Benefit of Adaptivity”. In:
The International Journal of Robotics Research 32 (2013).

[Hol+16] Rachel Holladay, Shervin Javdani, Anca Dragan, and Siddhartha Srinivasa. “Active Compar-
ison Based Learning Incorporating User Uncertainty and Noise”. In: RSS Workshop on Model
Learning for Human-Robot Communication. 2016.

[How66] Ronald A. Howard. “Information value theory”. In: IEEE Transactions on Systems Science and
Cybernetics. 1966.

[Hsi+08] Kaijen Hsiao, Tomás Lozano-Pérez, and Leslie Pack Kaelbling. “Robust Belief-Based Execution
of Manipulation Programs”. In: Workshop on the Algorithmic Foundations of Robotics. 2008.

[Hsi+09] Kaijen Hsiao, Paul Nangeroni, Manfred Huber, Ashutosh Saxena, and Andrew Y. Ng. “Reac-
tive grasping using optical proximity sensors”. In: IEEE International Conference on Robotics and
Automation. 2009.

[Hsi09] Kaijen Hsiao. “Relatively Robust Grasping”. PhD thesis. Massachusetts Institute of Technol-
ogy, 2009.



BIBLIOGRAPHY 155

[Jai+15] Siddarth Jain, Ali Farshchiansadegh, Alexander Broad, Farnaz Abdollahi, Ferdinando Mussa-
Ivaldi, and Brenna Argall. “Assistive Robotic Manipulation through Shared Autonomy and
a Body-Machine Interface”. In: IEEE/RAS-EMBS International Conference on Rehabilitation
Robotics. 2015.

[Jav+13] Shervin Javdani, Matthew Klingensmith, J. Andrew (Drew) Bagnell, Nancy Pollard, and Sid-
dhartha Srinivasa. “Efficient Touch Based Localization through Submodularity”. In: IEEE
International Conference on Robotics and Automation. 2013.

[Jav+14] Shervin Javdani, Yuxin Chen, Amin Karbasi, Andreas Krause, J. Andrew (Drew) Bagnell, and
Siddhartha Srinivasa. “Near Optimal Bayesian Active Learning for Decision Making”. In:
International Conference on Artificial Intelligence and Statistics. 2014.

[Jav+15] Shervin Javdani, Siddhartha Srinivasa, and J. Andrew (Drew) Bagnell. “Shared Autonomy via
Hindsight Optimization”. In: Robotics: Science and Systems (RSS). 2015.

[JS12] Liang-Ting Jiang and Joshua R. Smith. “Seashell Effect Pretouch Sensing for Robotic Grasp-
ing”. In: IEEE International Conference on Robotics and Automation. 2012.

[Kae+98] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. “Planning and Acting
in Partially Observable Stochastic Domains”. In: Artificial Intelligence 101 (1998).

[Kar+12] Amin Karbasi, Stratis Ioannidis, and Laurent Massoulie. “Comparison-Based Learning with
Rank Nets”. In: International Conference on Machine Learning. 2012.

[Kat+14] Kapil D. Katyal, Matthew S. Johannes, Spencer Kellis, Tyson Aflalo, Christian Klaes, Tim-
othy G. McGee, Matthew P. Para, Ying Shi, Brian Lee, Kelsie Pejsa, Charles Liu, Brock A.
Wester, Francesco Tenore, James D. Beaty, Alan D. Ravitz, Richard A. Andersen, and Michael
P. McLoughlin. “A collaborative BCI approach to autonomous control of a prosthetic limb
system”. In: IEEE Transactions on Systems, Man, and Cybernetics. 2014.

[KB99] Rao S. Kosaraju and Teresa M. Przytyck Aand Ryan S. Borgstrom. “On an Optimal Split
Tree Problem”. In: Proceedings of the International Workshop on Algorithms and Data Structures
(WADS). 1999.

[KG05] Andreas Krause and Carlos Guestrin. “Near-optimal Nonmyopic Value of Information in
Graphical Models”. In: Conference on Uncertainty in Artificial Intelligence. 2005.

[KG09] Andreas Krause and Carlos Guestrin. “Optimal Value of Information in Graphical Models”.
In: Journal of Artificial Intelligence Research 35 (2009).

[Kim+06] Hyun K. Kim, S. James Biggs, David W. Schloerb, Jose M. Carmena, Mikhail A. Lebedev,
Miguel A. L. Nicolelis, and Mandayam A. Srinivasan. “Continuous shared control for stabiliz-
ing reaching and grasping with brain-machine interfaces”. In: IEEE Transactions on Biomedical
Engineering 53 (2006).

[Kim+12] Dae-Jin Kim, Rebekah Hazlett-Knudsen, Heather Culver-Godfrey, Greta Rucks, Tara Cunning-
ham, David Portee, John Bricout, Zhao Wang, and Aman Behal. “How Autonomy Impacts
Performance and Satisfaction: Results From a Study With Spinal Cord Injured Subjects Using
an Assistive Robot”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part A 42 (2012).

[KL16] Sung Kyun Kim and Maxim Likhachev. “Planning for Grasp Selection of Partially Occluded
Objects”. In: IEEE International Conference on Robotics and Automation. 2016.



156 acting under uncertainty for information gathering and shared autonomy

[Kof+05] Jonathan Kofman, Xianghai Wu, Timothy J. Luu, and Siddharth Verma. “Teleoperation of
a robot manipulator using a vision-based human-robot interface”. In: IEEE Transactions on
Industrial Electronics (2005).

[Kon01] Igor Kononenko. “Machine learning for medical diagnosis: history, state of the art and per-
spective”. In: Artificial Intelligence in Medicine 23 (2001).

[Kov+14] Michael Koval, Nancy Pollard, and Siddhartha Srinivasa. “Pre- and Post-Contact Policy De-
composition for Planar Contact Manipulation Under Uncertainty”. In: Robotics: Science and
Systems (RSS). 2014.

[Kov+16] Michael C. Koval, Nancy S. Pollard, and Siddhartha S. Srinivasa. “Pre- and post-contact pol-
icy decomposition for planar contact manipulation under uncertainty”. In: The International
Journal of Robotics Research 35.1-3 (2016), pp. 244–264.

[KR08] Thomas Kollar and Nicholas Roy. “Efficient Optimization of Information-Theoretic Explo-
ration in SLAM”. In: AAAI Conference on Artificial Intelligence. 2008.

[Kra+05] Danica Kragic, Panadda Marayong, Ming Li, Allison M. Okamura, and Gregory D. Hager.
“Human-Machine Collaborative Systems for Microsurgical Applications”. In: The International
Journal of Robotics Research 24 (2005).

[KS13] Hema Koppula and Ashutosh Saxena. “Anticipating Human Activities using Object Affor-
dances for Reactive Robotic Response”. In: Robotics: Science and Systems (RSS). 2013.

[Kur+08] Hanna Kurniawati, David Hsu, and Wee Sun Lee. “SARSOP: Efficient point-based POMDP
planning by approximating optimally reachable belief spaces”. In: Robotics: Science and Systems
(RSS). 2008.

[LB11] Hui Lin and Jeff A. Bilmes. “A Class of Submodular Functions for Document Summariza-
tion.” In: Proceedings of the Annual Meeting of the Association for Computational Linguistics: Hu-
man Language Technologies. 2011, pp. 510–520.

[LDW91] John J. Leonard and Hugh F. Durrant-Whyte. “Simultaneous map building and localization
for an autonomous mobile robot”. In: 1991.

[Lee+12] Adam Leeper, Kaijen Hsiao, Matei Ciocarlie, Leila Takayama, and David Gossow. “Strategies
for Human-in-the-loop Robotic Grasping”. In: ACM/IEEE International Conference on Human-
Robot Interaction. 2012.

[Les+07] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, and
Natalie Glance. “Cost-effective Outbreak Detection in Networks”. In: ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD). 2007, pp. 420–429.

[LH98] Steven M. Lavalle and Seth A. Hutchinson. “An objective-based framework for motion plan-
ning under sensing and control uncertainties”. In: The International Journal of Robotics Research
17 (1998).

[Li+07] Ming Li, Masaru Ishii, and Russell H. Taylor. “Spatial Motion Constraints Using Virtual Fix-
tures Generated by Anatomy”. In: IEEE Transactions on Robotics 23 (2007).

[Li+11] Qinan Li, Weidong Chen, and Jingchuan Wang. “Dynamic shared control for human-
wheelchair cooperation”. In: IEEE International Conference on Robotics and Automation. 2011.



BIBLIOGRAPHY 157

[Li+15] Yanan Li, Keng Peng Tee, Wei Liang Chan, Rui Yan, Yuanwei Chua, and Dilip Kumar Limbu.
“Role adaptation of human and robot in collaborative tasks”. In: icra. 2015.

[Li+16] Jue Kun Li, David Hsu, and Wee Sun Lee. “Act to see and see to act: POMDP planning for
objects search in clutter”. In: IEEE/RSJ International Conference on Intelligent Robots and Systems.
2016.

[Lim+15] Zhan Wei Lim, David Hsu, and Wee Sun Lee. “Adaptive Stochastic Optimization: From Sets
to Paths”. In: Neural Information Processing Systems. 2015.

[Lim+16] Zhan Wei Lim, David Hsu, and Wee Sun Lee. “Adaptive Informative Path Planning in Metric
Spaces”. In: The International Journal of Robotics Research 35 (2016), pp. 585–598.

[Lin56] Dennis Victor Lindley. “On a Measure of the Information Provided by an Experiment”. In:
Annals of Mathematical Statistics 27 (1956), pp. 986–1005.

[Lit+95] Michael L. Littman, Anthony R. Cassandra, and Leslie Pack Kaelbling. “Learning Policies
for Partially Observable Environments: Scaling Up”. In: International Conference on Machine
Learning. 1995.

[LK12] Sergey Levine and Vladlen Koltun. “Continuous Inverse Optimal Control with Locally Opti-
mal Examples”. In: International Conference on Machine Learning. 2012.

[LO03] Ming Li and Allison M. Okamura. “Recognition of Operator Motions for Real-Time Assis-
tance Using Virtual Fixtures”. In: International Symposium on Haptic Interfaces for Virtual Envi-
ronment and Teleoperator Systems. 2003.

[LP+84] Tomás Lozano-Pérez, Matthew T. Mason, and Russell H. Taylor. “Automatic Synthesis of
Fine-Motion Strategies for Robots”. In: The International Journal of Robotics Research 3.1 (1984),
pp. 3–24.

[LS15] Przemyslaw A. Lasota and Julie A. Shah. “Analyzing the Effects of Human-Aware Motion
Planning on Close-Proximity Human–Robot Collaboration”. In: Human Factors 57.1 (2015),
pp. 21–33.

[Lut+07] Thorsten Luth, Darko Ojdanic, Ola Friman, Oliver Prenzel, and Axel Graser. “Low level con-
trol in a semi-autonomous rehabilitation robotic system via a Brain-Computer Interface”. In:
IEEE/RAS-EMBS International Conference on Rehabilitation Robotics. 2007.

[LZ14] Anqi Liu and Brian D. Ziebart. “Robust Classification Under Sample Selection Bias”. In: Neu-
ral Information Processing Systems. 2014.

[Mac+12] Owen Macindoe, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. “POMCoP: Belief Space
Planning for Sidekicks in Cooperative Games”. In: Artificial Intelligence and Interactive Digital
Entertainment Conference. 2012.

[Mac98] Ian Grant Macdonald. Symmetric Functions and Hall Polynomials. Oxford mathematical mono-
graphs. Clarendon Press, 1998.

[Mah+11] Veronique Maheu, Julie Frappier, Philippe S. Archambault, and François Routhier. “Evalu-
ation of the JACO robotic arm: Clinico-economic study for powered wheelchair users with
upper-extremity disabilities”. In: IEEE/RAS-EMBS International Conference on Rehabilitation
Robotics. 2011.



158 acting under uncertainty for information gathering and shared autonomy

[Mai+11] Jim Mainprice, E. Akin Sisbot, Léonard Jaillet, Juan Cortés, Rachid Alami, and Thierry
Siméon. “Planning human-aware motions using a sampling-based costmap planner”. In:
IEEE International Conference on Robotics and Automation. 2011, pp. 5012–5017.

[Mar+03] Panadda Marayong, Ming Li, Allison M. Okamura, and Gregory D. Hager. “Spatial motion
constraints: theory and demonstrations for robot guidance using virtual fixtures”. In: IEEE
International Conference on Robotics and Automation. 2003.

[MB13] Jim Mainprice and Dmitry Berenson. “Human-robot collaborative manipulation planning
using early prediction of human motion”. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems. 2013, pp. 299–306.

[McM+14] David P. McMullen, Guy Hotson, Kapil D. Katyal, Brock A. Wester, Matthew S. Fifer, Timothy
G. McGee, Andrew Harris, Matthew S. Johannes, R. Jacob Vogelstein, Alan D. Ravitz, William
S. Anderson, Nitish V. Thakor, and Nathan E. Crone. “Demonstration of a Semi-Autonomous
Hybrid Brain-Machine Interface Using Human Intracranial EEG, Eye Tracking, and Computer
Vision to Control a Robotic Upper Limb Prosthetic”. In: IEEE Transactions on Neural Systems
and Rehabilitation Engineering 22 (2014).

[Meh+16] Negar Mehr, Roberto Horowitz, and Anca D. Dragan. “Inferring and Assisting with Con-
straints in Shared Autonomy”. In: IEEE Conference on Decision and Control. 2016.

[Min78] Michel Minoux. “Accelerated greedy algorithms for maximizing submodular set functions”.
In: Optimization Techniques. Vol. 7. 1978.

[Mue+15] Katharina Muelling, Arun Venkatraman, Jean-Sebastien Valois, John Downey, Jeffrey Weiss,
Shervin Javdani, Martial Hebert, Andrew B. Schwartz, Jennifer L. Collinger, and J. Andrew
(Drew) Bagnell. “Autonomy Infused Teleoperation with Application to BCI Manipulation”. In:
Robotics: Science and Systems (RSS) (2015).

[Mut+07] Bilge Mutlu, Andreas Krause, Jodi Forlizzi, Carlos Guestrin, and Jessica Hodgins. “Robust,
Low-cost, Non-intrusive Sensing and Recognition of Seated Postures”. In: ACM Symposium on
User Interface Software and Technology (UIST). 2007, pp. 149–158.

[Nem+78] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. “An analysis of approxima-
tions for maximizing submodular set functions—I”. In: Mathematical Programming 14.1 (1978),
pp. 265–294.

[Ngu+11] Truong-Huy Dinh Nguyen, David Hsu, Wee-Sun Lee, Tze-Yun Leong, Leslie Pack Kaelbling,
Tomás Lozano-Pérez, and Andrew Haydn Grant. “CAPIR: Collaborative Action Planning with
Intention Recognition”. In: Artificial Intelligence and Interactive Digital Entertainment Conference.
2011.

[Nik+16] Stefanos Nikolaidis, Anton Kuznetsov, David Hsu, and Siddhartha Srinivasa. “Formalizing
Human-Robot Mutual Adaptation via a Bounded Memory Based Model”. In: ACM/IEEE
International Conference on Human-Robot Interaction. 2016.

[Nik+17a] Stefanos Nikolaidis, Swaprava Nath, Ariel Procaccia, and Siddhartha Srinivasa. “Game-
Theoretic Modeling of Human Adaptation in Human-Robot Collaboration”. In: ACM/IEEE
International Conference on Human-Robot Interaction. 2017.



BIBLIOGRAPHY 159

[Nik+17b] Stefanos Nikolaidis, David Hsu, and Siddhartha Srinivasa. “Human-robot mutual adapta-
tion in collaborative tasks: Models and experiments”. In: The International Journal of Robotics
Research (2017).

[Nik+17c] Stefanos Nikolaidis, Yu Xiang Zhu, David Hsu, and Siddhartha Srinivasa. “Human-Robot
Mutual Adaptation in Shared Autonomy”. In: ACM/IEEE International Conference on Human-
Robot Interaction. 2017.

[Now08] Robert Nowak. “Generalized Binary Search”. In: Allerton Conference on Communications, Con-
trol, and Computing. 2008.

[Now09] Robert Nowak. “Noisy Generalized Binary Search”. In: Neural Information Processing Systems.
2009.

[NS13] Stefanos Nikolaidis and Julie Shah. “Human-robot Cross-training: Computational Formula-
tion, Modeling and Evaluation of a Human Team Training Strategy”. In: ACM/IEEE Interna-
tional Conference on Human-Robot Interaction. 2013.

[PA10] Amit Kumar Pandey and Rachid Alami. “Mightability maps: A perceptual level decisional
framework for co-operative and competitive human-robot interaction”. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. 2010, pp. 5842–5848.

[Par+01] Shinsuk Park, Robert D. Howe, and David F. Torchiana. “Virtual Fixtures for Robotic Cardiac
Surgery”. In: Med. Image. Comput. Comput. Assist. Interv. 2001.

[Pel+16] Stefania Pellegrinelli, Henny Admoni, Shervin Javdani, and Siddhartha Srinivasa. “Human-
Robot Shared Workspace Collaboration via Hindsight Optimization”. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. 2016.

[Pet+10] Jan Peters, Katharina Mülling, and Yasemin Altün. “Relative Entropy Policy Search”. In: AAAI
Conference on Artificial Intelligence. 2010.

[Pin+06] Joelle Pineau, Geoffrey Gordon, and Sebastian Thrun. “Anytime Point-based Approximations
for Large POMDPs”. In: Journal of Artificial Intelligence Research 27 (2006).

[PK11] Anna Petrovskaya and Oussama Khatib. “Global Localization of Objects via Touch”. In: IEEE
Transactions on Robotics 27.3 (2011), pp. 569–585.

[Pom89] Dean A. Pomerleau. “ALVINN: An Autonomous Land Vehicle in a Neural Network”. In:
Neural Information Processing Systems. 1989.

[PT87] Christos Papadimitriou and John N. Tsitsiklis. “The complexity of Markov decision pro-
cesses”. In: Math. Oper. Res. 12.3 (1987), pp. 441–450.

[Ray+12] Debajyoti Ray, Daniel Golovin, Andreas Krause, and Colin Camerer. “Bayesian Rapid Op-
timal Adaptive Design (BROAD): Method and application distinguishing models of risky
choice”. In: Tech. Report (2012).

[RB12] Stephane Ross and J. Andrew (Drew) Bagnell. “Agnostic System Identification for Model-
Based Reinforcement Learning”. In: International Conference on Machine Learning. 2012.

[Rez+16] Tara Rezvani, Katherine Driggs-Campbell, Dorsa Sadigh, S. Shankar Sastry, and Ruzena Ba-
jcsy. “Towards Trustworthy Automation: User Interfaces that Convey Internal and External
Awareness”. In: IEEE Intelligent Transportation Systems Conference (ITSC). 2016.



160 acting under uncertainty for information gathering and shared autonomy

[Ros+08] Stéphane Ross, Joelle Pineau, Sébastien Paquet, and Brahim Chaib-draa. “Online planning
algorithms for POMDPs”. In: Journal of Artificial Intelligence Research 32 (2008), pp. 663–704.

[Ros+11] Stephane Ross, Geoffrey Gordon, and J. Andrew (Drew) Bagnell. “A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning”. In: International Conference
on Artificial Intelligence and Statistics. 2011.

[Ros93] Louis Barry Rosenberg. “Virtual Fixtures: Perceptual Tools for Telerobotic Manipulation”. In:
IEEE Virtual Reality Annual International Symposium. 1993.

[Roy+05] Nicholas Roy, Geoffrey Gordon, and Sebastian Thrun. “Finding Approximate POMDP solu-
tions Through Belief Compression”. In: Journal of Artificial Intelligence Research 23 (2005), pp. 1–
40.

[Run+11] Michael C. Runge, Sarah J. Converse, and James E. Lyons. “Which uncertainty? Using expert
elicitation and expected value of information to design an adaptive program”. In: Biological
Conservation (2011).

[Sad+16a] Dorsa Sadigh, Shankar S. Sastry, Sanjit Seshia, and Anca Dragan. “Information Gathering
Actions over Human Internal State”. In: IEEE/RSJ International Conference on Intelligent Robots
and Systems. 2016.

[Sad+16b] Dorsa Sadigh, S. Shankar Sastry, Sanjit A. Seshia, and Anca D. Dragan. “Planning for Au-
tonomous Cars that Leverage Effects on Human Actions”. In: Robotics: Science and Systems
(RSS). Robotics: Science and Systems (RSS). 2016.

[Sad+17] Dorsa Sadigh, Anca Dragan, Shankar S. Sastry, and Sanjit Seshia. “Active Preference-Based
Learning of Reward Functions”. In: Robotics: Science and Systems (RSS). 2017.

[Sch+06] Andrew B. Schwartz, X. Tracy Cui, Douglas J. Weber, and Daniel W. Moran. “Brain-Controlled
Interfaces: Movement Restoration with Neural Prosthetics”. In: Neuron 52.1 (2006).

[Sch+07] Oliver C. Schrempf, David Albrecht, and Uwe D. Hanebeck. “Tractable probabilistic models
for intention recognition based on expert knowledge”. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems. 2007.

[Sch+15] Sebastian Schröer, Ingo Killmann, Barbara Frank, Martin Voelker, Lukas D. J. Fiederer, To-
nio Ball, and Wolfram Burgard. “An Autonomous Robotic Assistant for Drinking”. In: IEEE
International Conference on Robotics and Automation. 2015.

[Sei+15] Konstantin M. Seiler, Hanna Kurniawati, and Surya P. N. Singh. “An online and approximate
solver for POMDPs with continuous action space”. In: IEEE International Conference on Robotics
and Automation. 2015.

[Ser00] Raymond Seroul. Programming for Mathematicians. Universitext - Springer-Verlag. Springer,
2000.

[Sha+12] Guy Shani, Joelle Pineau, and Robert Kaplow. “A survey of point-based POMDP solvers”. In:
Autonomous Agents and Multi-Agent Systems (2012), pp. 1–51.

[Sha64] William F. Sharpe. “Capital Asset Prices: A Theory of Market Equilibrium under Conditions
of Risk”. In: The Journal of Finance (1964).

[She+04] Jian Shen, J. Ibanez-Guzman, Teck Chew Ng, and Boon Seng Chew. “A collaborative-shared
control system with safe obstacle avoidance capability”. In: IEEE International Conference on
Robotics, Automation, and Mechatronics. 2004.



BIBLIOGRAPHY 161

[Sim+08] Tyler Simpson, Colin Broughton, Michel J. A. Gauthier, and Arthur Prochazka. “Tooth-Click
Control of a Hands-Free Computer Interface”. In: IEEE Transactions on Biomedical Engineering
55.8 (2008).

[Sim+11] John D. Simeral, Sung-Phil Kim, Michael J. Black, John P. Donoghue, and Leigh R. Hochberg.
“Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after
implant of an intracortical microelectrode array”. In: Journal of Neural Engineering 8 (2011).

[Sim+12] Anton Simorov, R.Stephen Otte, CourtniM. Kopietz, and Dmitry Oleynikov. “Review of sur-
gical robotics user interface: what is the best way to control robotic surgery?” In: Surgical
Endoscopy 26.8 (2012).

[Sim05] Richard C. Simpson. “Smart wheelchairs: A literature review”. In: Journal of Rehabilitation
Research and Development 42 (2005).

[Sin+09] Amarjeet Singh, Andreas Krause, and William Kaiser. “Nonmyopic Adaptive Informative
Path Planning for Multiple Robots”. In: International Joint Conference on Artificial Intelligence.
2009.

[Sis+07] Emrah Akin Sisbot, Luis F. Marin-Urias, Rachid Alami, and Thierry Siméon. “A Human
Aware Mobile Robot Motion Planner”. In: IEEE Transactions on Robotics 23.5 (2007), pp. 874–
883.

[Sis+10] Emrah Akin Sisbot, Luis F. Marin-Urias, Xavier Broquère, Daniel Sidobre, and Rachid Alami.
“Synthesizing Robot Motions Adapted to Human Presence”. In: International Journal of Social
Robots 2.3 (2010), pp. 329–343.

[SJ80] John E. Shore and Rodney W. Johnson. “Axiomatic derivation of the principle of maximum
entropy and the principle of minimum cross-entropy.” In: IEEE Transactions on Information
Theory 26 (1980), pp. 26–37.

[Som+13] Adhiraj Somani, Nan Ye, David Hsu, and Wee Sun Lee. “DESPOT: Online POMDP Planning
with Regularization”. In: Neural Information Processing Systems. 2013.

[Sri+12] Siddhartha Srinivasa, Dmitry Berenson, Maya Cakmak, Alvaro Collet Romea, Mehmet Dogar,
Anca Dragan, Ross Alan Knepper, Tim D Niemueller, Kyle Strabala, J Michael Vandeweghe,
and Julius Ziegler. “HERB 2.0: Lessons Learned from Developing a Mobile Manipulator for
the Home”. In: Proceedings of the IEEE 100.8 (2012), pp. 1–19.

[SS05] Trey Smith and Reid G. Simmons. “Point-Based POMDP Algorithms: Improved Analysis and
Implementation”. In: Conference on Uncertainty in Artificial Intelligence. 2005.

[SS73] Richard D. Smallwood and Edward J. Sondik. “The Optimal Control of Partially Observable
Markov Processes Over a Finite Horizon”. In: Operations Research 21 (1973).

[SV10] David Silver and Joel Veness. “Monte-Carlo Planning in Large POMDPs”. In: Neural Informa-
tion Processing Systems. 2010.

[TK92] Amos Tversky and Daniel Kahneman. “Advances in prospect theory: Cumulative representa-
tion of uncertainty”. In: Journal of Risk and Uncertainty 5.4 (1992).

[Tra15] Peter Trautman. “Assistive Planning in Complex, Dynamic Environments: a Probabilistic
Approach”. In: HRI Workshop on Human Machine Teaming. 2015.



162 acting under uncertainty for information gathering and shared autonomy

[Tsu+08] Katherine Tsui, Holly Yanco, David Kontak, and Linda Beliveau. “Development and Evalua-
tion of a Flexible Interface for a Wheelchair Mounted Robotic Arm”. In: ACM/IEEE Interna-
tional Conference on Human-Robot Interaction. 2008.

[Van+03] Dirk Vanhooydonck, Eric Demeester, Marnix Nuttin, and Hendrik Van Brussel. “Shared Con-
trol for Intelligent Wheelchairs: an Implicit Estimation of the User Intention”. In: Proceedings of
the ASER International Workshop on Advances in Service Robotics. 2003.

[VB10] Paolo Viappiani and Craig Boutilier. “Optimal Bayesian Recommendation Sets and Myopi-
cally Optimal Choice Query Sets”. In: Neural Information Processing Systems. 2010.

[Vog+14] Joern Vogel, Sami Haddadin, John D. Simeral, Sergey D. Stavisky, Daniel Bacher, Leigh R.
Hochberg, John P. Donoghue, and Patrick van der Smagt. “Continuous Control of the DLR
Light-Weight Robot III by a Human with Tetraplegia Using the BrainGate2 Neural Interface
System”. In: International Symposium on Experimental Robotics. Vol. 79. 2014.

[Wak10] Peter P. Wakker. Prospect Theory: For Risk and Ambiguity. Cambridge University Press, 2010.

[Wan+13] Zhikun Wang, Katharina Mülling, Marc Peter Deisenroth, Heni Ben Amor, David Vogt, Bern-
hard Schölkopf, and Jan Peters. “Probabilistic movement modeling for intention inference in
human-robot interaction”. In: The International Journal of Robotics Research (2013).

[WG75] Peter M. Will and David D. Grossman. “An Experimental System for Computer Controlled
Mechanical Assembly”. In: IEEE Trans. Computers 24.9 (1975).

[Wil+12] Aaron Wilson, Alan Fern, and Prasad Tadepalli. “A Bayesian Approach for Policy Learning
from Trajectory Preference Queries”. In: Neural Information Processing Systems. 2012.

[Wol82] Laurence A. Wolsey. “An Analysis of the Greedy Algorithm for the Submodular Set Covering
Problem”. In: Combinatorica 2.4 (1982), pp. 385–393.

[Won+13] Lawson L.S. Wong, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. “Manipulation-based
active search for occluded objects”. In: IEEE International Conference on Robotics and Automation.
2013.

[WP67] James Anthony Dominic Welsh and Martin B. Powell. “An Upper Bound for the Chromatic
Number of a Graph and Its Application to Timetabling Problems”. In: Computer Journal (1967).

[YH11] Erkang You and Kris Hauser. “Assisted Teleoperation Strategies for Aggressively Controlling
a Robot Arm with 2D Input”. In: Robotics: Science and Systems (RSS). 2011.

[Yoo+07] Sungwook Yoon, Alan Fern, and Robert Givan. “FF-Replan: A baseline for probabilistic plan-
ning”. In: International Conference on Automated Planning and Scheduling. 2007.

[Yoo+08] Sung Wook Yoon, Alan Fern, Robert Givan, and Subbarao Kambhampati. “Probabilistic Plan-
ning via Determinization in Hindsight”. In: AAAI Conference on Artificial Intelligence. 2008.

[Yu+05] Wentao Yu, Redwan Alqasemi, Rajiv V. Dubey, and Norali Pernalete. “Telemanipulation As-
sistance Based on Motion Intention Recognition”. In: IEEE International Conference on Robotics
and Automation. 2005.

[Zhe+05] Alice X. Zheng, Irina Rish, and Alina Beygelzimer. “Efficient test selection in active diagnosis
via entropy approximation”. In: Conference on Uncertainty in Artificial Intelligence. 2005.

[Zie+08] Brian D. Ziebart, Andrew Maas, J. Andrew (Drew) Bagnell, and Anind Dey. “Maximum En-
tropy Inverse Reinforcement Learning”. In: AAAI Conference on Artificial Intelligence. 2008.



BIBLIOGRAPHY 163

[Zie+09] Brian D. Ziebart, Nathan Ratliff, Garratt Gallagher, Christoph Mertz, Kevin Peterson, J. An-
drew (Drew) Bagnell, Martial Hebert, Anind Dey, and Siddhartha Srinivasa. “Planning-based
Prediction for Pedestrians”. In: IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. 2009.

[Zie+12] Brian D. Ziebart, Anind Dey, and J. Andrew (Drew) Bagnell. “Probabilistic Pointing Target
Prediction via Inverse Optimal Control”. In: International Conference on Intelligence User Inter-
faces. 2012.

[Zie10] Brian D. Ziebart. “Modeling Purposeful Adaptive Behavior with the Principle of Maximum
Causal Entropy”. PhD thesis. Machine Learning Department, Carnegie Mellon University,
2010.


	Introduction
	Goal-Directed Active Information Gathering
	Goal-Directed Shared Autonomy
	Contributions

	Active Information Gathering Background
	Active Information Gathering in Robotics
	Touch-Based Localization

	Near-Optimal Active Information Gathering
	Adaptive Submodularity Background
	Problems
	Submodularity
	Adaptive Submodularity
	Adaptivity Gap
	Interactive Submodularity


	Hypothesis Pruning for Touch-Based Localization
	Problem Formulation
	Submodularity Assumptions for Touch Localization

	Metrics for Touch-Based Localization
	Information Gain
	Hypothesis Pruning

	Experiments
	Action Generation
	Simulation Experiments Setup
	Simulation Experiments Results
	Robot Experiments

	Discussion

	Decision Region Determination (DRD)
	Decision Region Determination (DRD) Problem Statement
	General Strategy
	Special case: Equivalence Class Determination

	The HyperEdge Cutting (HEC) Method
	Splitting Hypergraph Construction
	Relating DRD and HEC
	Solving DRD through HyperEdge Cutting
	Theoretical Analysis
	Efficient Implementation
	Utilizing Complete Homogeneous Symmetric Polynomials


	HyperEdge Cutting (HEC) Experiments
	Comparison-Based Preference Learning
	Touch-Based Localization

	The Decision Region Edge Cutting (DiRECt) Method
	The Noisy-OR Construction
	Relating DRD and DiRECt
	Theoretical Analysis
	Improving the Bound via Graph Coloring

	Decision Region Edge Cutting (DiRECt) Experiments
	Active Touch-Based Localization
	Comparison-Based Preference Learning
	Adaptive Management for Wild-Life Conservation
	Preference Elicitation in Behavioral Economics

	Discussion

	Shared Autonomy Background
	Teleoperation Interfaces
	Intent Prediction
	Shared Control Teleoperation
	Human-Robot Teaming

	Shared Autonomy via Hindsight Optimization
	Problem Statement
	Cost Minimization with a Known Goal
	Cost Minimization with an Unknown Goal

	Hindsight Optimization
	User Modelling
	User Goal Prediction
	Continuous state and action approximation

	Multi-Target MDP
	Multi-Target Assistance
	Multi-Target Prediction


	Shared Autonomy User Studies
	Shared Control Teleoperation
	Grasping Experiment
	Metrics
	Hypotheses
	Experiment Design
	Procedure
	Results
	Examining trajectories

	Feeding Experiment
	Metrics
	Hypotheses
	Experimental Design
	Procedure
	Results
	Discussion


	Human-Robot Teaming
	Human-Robot Teaming Experiment
	Metrics
	Hypotheses
	Experimental Design
	Implementation
	Procedure
	Results


	Discussion

	Prediction with Assistance in Shared Autonomy
	Learning the User Policy with Assistance
	Assistance Action Selection
	Iterating Learning and Policy Updates
	Experiments
	Metrics
	Hypotheses
	Experiment Design

	Procedure
	Results

	Discussion

	Final Thoughts
	Active Information Gathering Future Work
	Shared Autonomy Future Work
	Acting Under Uncertainty Future Work

	Appendix
	Hypothesis Pruning Proofs
	Constructing the Non-Noisy Problem
	Observation Probabilities
	Proving the Bound
	ko' = 0
	ko' =0, mo 2mo' - ko'
	mo 2mo' - ko'

	HyperEdge Cutting (HEC) Proofs
	k for Bounds
	theory:hyperedgeiff: Equivalence of DRD and HEC
	th:hecas: Strong Adaptive Monotonicity and Adaptive Submodularity
	th:hecperformance: Greedy Performance Bound

	Multi-Target MDPs
	thm:mingoalassist: Decomposing value functions
	thm:mingoalpred: Decomposing soft value functions



