Supporting Information

Stereocontrolled Synthesis of Triols Containing Four Asymmetric Centers: Application of C,OChelated Germyl Enolates to a Diastereoselective Aldol Reaction

Yohei Minami, ${ }^{\dagger}$ Akihito Konishi, ${ }^{*, \dagger, \dagger}$ and Makoto Yasuda*, \dagger
\dagger Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)
\ddagger Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka 565-0871 (Japan)

1. General

NMR spectra were recorded on JEOL-AL400 spectrometers (400 MHz for ${ }^{1} \mathrm{H}$, and 100 MHz for ${ }^{13} \mathrm{C}$) with TMS as an internal standard. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals of compounds were assigned using HMQC, HSQC, HMBC, COSY, NOESY, and ${ }^{13} \mathrm{C}$ off-resonance techniques. Positive and negative FAB and EI mass spectra were recorded on a JEOL JMS-700 and Shimadzu GCMS-QP2010 Ultra, respectively. High-resolution mass spectra were obtained by magnetic sector type mass spectrometer. IR spectra were recorded as thin films or as solids in KBr pellets on a HORIBA FT-720 and a JASCO FT/IR 6200 spectrophotometer.

Data collection for X-ray crystal analysis was performed on a Rigaku/ R-AXIS RAPID ($\mathrm{MoK}_{\alpha} \lambda=0.71075 \AA$, and $\mathrm{CuK}_{\alpha} \lambda=1.54187 \AA$), Rigaku/XtaLAB Synergy-S/Mo $\left(\mathrm{MoK}_{\alpha} \lambda=0.71075 \AA\right)$, and Rigaku/XtaLAB Synergy-S/Cu $\left(\mathrm{CuK}_{\alpha} \lambda=1.54187 \AA\right)$ diffractometers. All calculations were performed with the observed reflections $[I>2 \sigma(I)]$ by the program CrystalStructure crystallographic software packages. ${ }^{1}$ All non-hydrogen atoms were refined with anisotropic displacement parameters and hydrogen atoms were placed at calculated positions and refined "riding" on their corresponding carbon atoms

2. Materials

Anhydrous dichloromethane, THF, acetonitrile, diethylether, toluene and hexane were purchased and used as obtained. All reagents were obtained from commercial suppliers and used as received. All reactions were carried out under nitrogen. GeCl_{2}-dioxane as prepared by the reported procedure. ${ }^{2}$ The α, β-unsaturated ketones $\mathbf{1 a}, \mathbf{1 b}$, and $\mathbf{1 d}$ were obtained from commercial supplies and $\mathbf{1 c}^{3}$ and $\mathbf{1} \mathbf{e}^{4}$ were prepared by the reported procedures.

3. Synthetic procedures

3-1. Syn-selective aldol reaction of α, β-unsaturated ketones with arylaldehydes using $\mathbf{G e C l}_{2}$-dioxane General procedure

In a nitrogen-filled glove box, to a mixture of GeCl_{2}-dioxane (0.2 mmol) and arylaldehyde $(0.2 \mathrm{mmol})$ in acetonitrile $(2 \mathrm{~mL})$ was added α, β-unsaturated ketone $(0.2 \mathrm{mmol})$. After the reaction mixture was stirring at room temperature for 2 h , the solvent was removed by decantation. The obtained solid is washed with acetonitrile $(5 \mathrm{~mL} \times 3)$ and hexane ($5 \mathrm{~mL} \times 3$). The residual solvent was removed under vacuum to give $\mathbf{4}$ as a colorless solid. Compounds 4aa4ei are too insoluble to record any NMR spectrum.

Table S1. Summary for Syn-selective aldol reaction ${ }^{a}$.

a) Isolated yield. All structures of 4aa-ah were determined by X-ray analysis.

According to the general procedure, this compound was prepared from $\mathbf{1 a}(0.0425 \mathrm{~g}, 0.204 \mathrm{mmol}), \mathbf{3 a}(0.0212 \mathrm{~g}$, $0.200 \mathrm{mmol}), \mathrm{GeCl}_{2}$-dioxane $(0.0477 \mathrm{~g}, 0.206 \mathrm{mmol})$, to give the product $\mathbf{4 a a}$ as a colorless solid ($0.0717 \mathrm{~g}, 79 \%$). $\mathrm{mp} 181.0^{\circ} \mathrm{C}$ (decomp.); IR (KBr) v=3060(w), 3026 (w), 2904 (w), 1631 (s), 1596 (s), 1577 (s), 1495 (s), 1450 (s), 1350 (m), 1219 (m), 1182 (w), 1117 (w), 1055 (s), 767 (m), 744 (m), 698 (s) cm ${ }^{-1}$; Analysis $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{GeO}_{2}$ (457.99), Calculated: C, 57.71; H, 3.96, Found: C, 57.73; H, 3.98.
$\left(\left(3 R^{*}, 4 R^{*}, 5 R^{*}\right)\right.$-2,2-Dichloro-5-(4-fluorophenyl)-3-phenyl-1,2-oxagermolan-4-yl)(phenyl)methanone 4ab

According to the general procedure, this compound was prepared from $\mathbf{1 a}(0.0415 \mathrm{~g}, 0.199 \mathrm{mmol}), \mathbf{3 b}(0.0248 \mathrm{~g}$, $0.200 \mathrm{mmol}), \mathrm{GeCl}_{2}$-dioxane $(0.0485 \mathrm{~g}, 0.210 \mathrm{mmol})$, to give the product $\mathbf{4 a b}$ as a colorless solid ($0.0713 \mathrm{~g}, 75 \%$). mp $175.0^{\circ} \mathrm{C}$ (decomp.); IR (KBr) $v=3063$ (w), 1631 (s), 1596 (s), 1574 (m), 1509 (s), 1448 (m), 1349 (m), 1279 (m), 1225 (s), 1054 (s) $985(\mathrm{~m}), 827(\mathrm{~m}), 684(\mathrm{~s}) \mathrm{cm}^{-1}$; Analysis $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{FGeO}_{2}$ (475.90), Calculated: C, 55.52; H, 3.60, Found: C, 55.51; H, 3.57.

According to the general procedure, this compound was prepared from $\mathbf{1 a}(0.0417 \mathrm{~g}, 0.200 \mathrm{mmol}), 3 \mathrm{c}(0.0285 \mathrm{~g}$, $0.203 \mathrm{mmol}), \mathrm{GeCl}_{2}$-dioxane $(0.0417 \mathrm{~g}, 0.200 \mathrm{mmol})$, to give the product $\mathbf{4 a c}$ as a colorless solid ($0.0810 \mathrm{~g}, 82 \%$). mp $170.0^{\circ} \mathrm{C}$ (decomp.); IR (KBr) $v=3062$ (w), 3030 (w), 1633 (s), 1595 (s), 1576 (s), 1493 (s), 1448 (m), 1352 (m), 1279 (m), 1223 (m), 1180 (m), 1090 (m), 1053 (m), 1012(m), $984(\mathrm{~m}), 829(\mathrm{~m}), 814(\mathrm{~m}), 781(\mathrm{~m}), 762(\mathrm{~m})$, 696 (s) cm ${ }^{-1}$; Analysis $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{GeO}_{2}$ (492.36) Calculated: C, 53.67 ; H, 3.48, Found: C, $53.55 ; \mathrm{H}, 3.48$.

According to the general procedure, this compound was prepared from $\mathbf{1 a}(0.0417 \mathrm{~g}, 0.200 \mathrm{mmol}), \mathbf{3 d}(0.0272 \mathrm{~g}$, $0.200 \mathrm{mmol}), \mathrm{GeCl}_{2}$-dioxane $(0.0463 \mathrm{~g}, 0.200 \mathrm{mmol})$, to give the product $\mathbf{4 a d}$ as a colorless solid ($0.0821 \mathrm{~g}, 84 \%$). $\mathrm{mp} 141.0^{\circ} \mathrm{C}$ (decomp.); IR (KBr) $v=3060$ (w), 3027 (w), 2935 (w), 1637 (s), 1597 (s), 1512 (s), 1450 (m), 1342 (m), 1300 (m), 1250 (s) 1174 (s), 1038 (s), 827 (m), 687 (s) cm ${ }^{-1}$; Analysis $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{GeO}_{3}$ (487.94) Calculated: C, 56.62; H, 4.13, Found: C, 56.36; H, 4.27.
$\left(\left(3 R^{*}, 4 R^{*}, 5 R^{*}\right)-2,2-D i c h l o r o-5-(n a p h t h a l e n-2-y l)-3-p h e n y l-1,2-o x a g e r m o l a n-4-y l\right)(p h e n y l) m e t h a n o n e ~ 4 a e ~$

According to the general procedure, this compound was prepared from $\mathbf{1 a}(0.0417 \mathrm{~g}, 0.200 \mathrm{mmol}), \mathbf{3 e}(0.0312 \mathrm{~g}$, $0.200 \mathrm{mmol}), \mathrm{GeCl}_{2}$-dioxane $(0.0463 \mathrm{~g}, 0.200 \mathrm{mmol})$, to give the product $\mathbf{4 a e}$ as a colorless solid ($0.0721 \mathrm{~g}, 71 \%$). $\mathrm{mp} 140.0^{\circ} \mathrm{C}$ (decomp.); IR (KBr) $v=3050$ (w), 2954 (w), 1636 (s), 1596 (s), 1577 (m), 1495 (m), 1449 (m), 1350 (m), 1332 (m), 1276 (m), 1226 (m), 1119 (m), 1051 (s) 764 (m), 683 (s$) \mathrm{cm}^{-1}$; Analysis $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{GeO}_{2}$ (507.97) Calculated: C, 61.48; H, 3.97, Found: C, 61.26; H, 4.08 .

According to the general procedure, this compound was prepared from $\mathbf{1 a}(0.0424 \mathrm{~g}, 0.204 \mathrm{mmol}), \mathbf{3 f}(0.0230 \mathrm{~g}$, $0.205 \mathrm{mmol}), \mathrm{GeCl}_{2}$-dioxane $(0.0478 \mathrm{~g}, 0.206 \mathrm{mmol})$, to give the product $\mathbf{4 a f}$ as a colorless solid $(0.0578 \mathrm{~g}, 62 \%)$. mp $172.0^{\circ} \mathrm{C}$ (decomp.); IR (KBr) $v=3062$ (w), 3030 (w), 1632 (s), 1597 (s), 1577 (m), 1495 (m), 1450 (m), 1348 (s), 1286 (m), 1230 (s), 1119 (w), 1055 (s), 1027 (m), 845 (m), 781 (m), 698 (s) cm ${ }^{-1}$; Analysis $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{GeO}_{2} \mathrm{~S}$ (463.94) Calculated: C, 51.78; H, 3.48, Found: C, 51.58; H, 3.57.
$\left(\left(3 R^{*}, 4 R^{*}, 5 S^{*}\right)\right.$-2,2-Dichloro-3-phenyl-5-((E)-styryl)-1,2-oxagermolan-4-yl)(phenyl)methanone 4ag

According to the general procedure, this compound was prepared from $\mathbf{1 a}(0.0416 \mathrm{~g}, 0.200 \mathrm{mmol}), \mathbf{3 g}(0.0264 \mathrm{~g}$, $0.200 \mathrm{mmol}), \mathrm{GeCl}_{2}$-dioxane $(0.0467 \mathrm{~g}, 0.201 \mathrm{mmol})$, to give the product $\mathbf{4 a g}$ as a colorless solid $(0.0504 \mathrm{~g}, 52 \%)$. $\mathrm{mp} 120.0^{\circ} \mathrm{C}$ (decomp.); IR (KBr) $v=3059$ (w), 3028 (w), 1641 (s), 1597 (s), 1495 (m), 1450 (m), 1352 (m), 1228 (m), 1084 (m), 974 (s), 877 (w), 694 (s) cm ${ }^{-1}$; Analysis $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{GeO}_{2}$ (483.95) Calculated: C, 59.56; H, 4.17, Found: C, 59.38; H, 4.16.
$\left(\left(3 R^{*}, 4 R^{*}, 5 S^{*}\right)-2,2-D i c h l o r o-5-h e x y l-3-p h e n y l-1,2-o x a g e r m o l a n-4-y l\right)(p h e n y l) m e t h a n o n e ~ 4 a h ~$

According to the general procedure, this compound was prepared from $1 \mathrm{a}(0.0411 \mathrm{~g}, 0.197 \mathrm{mmol}), \mathbf{3 h}(0.0228 \mathrm{~g}$, $0.200 \mathrm{mmol}), \mathrm{GeCl}_{2}$-dioxane $(0.0476 \mathrm{~g}, 0.205 \mathrm{mmol})$, to give the product $\mathbf{4 a h}$ as a colorless solid ($0.0337 \mathrm{~g}, 37 \%$). mp $149.0^{\circ} \mathrm{C}$ (decomp.); IR (KBr) $v=3060$ (w), 3030 (w), 2929 (s), 2856 (s), 1647 (s), 1597 (s), 1577 (m), 1495 (m), 1450 (s), 1335 (m), 1230 (s), 1186 (m), 1028 (m), 939 (w), 893 (w), 692 (s) cm ${ }^{-1}$; Analysis $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{GeO}_{2}$ (465.98) Calculated: C, 56.71 ; H, 5.62, Found: C, 56.28; H, 5.63.

According to the general procedure, this compound was prepared from $\mathbf{1 b}(0.0285 \mathrm{~g}, 0.195 \mathrm{mmol}), \mathbf{3 c}(0.0283 \mathrm{~g}$, 0.201 mmol), GeCl_{2}-dioxane ($0.0463 \mathrm{~g}, 0.200 \mathrm{mmol}$), to give the product $\mathbf{4 b c}$ as a colorless solid ($0.0711 \mathrm{~g}, 85 \%$). mp $190.0^{\circ} \mathrm{C}$ (decomp.); IR (KBr) $v=3072$ (w), 3030 (w), 2900 (w), 1682 (s), 1598 (w), 1493 (s), 1452 (m), 1404 (m), 1365 (m), 1331 (m), 1304 (m), 1281 (m), 1219 (m), 1182 (m), 1078 (s$), 1012$ (m), 941 (w), 814 (m), 773 (m), 694 (s) cm ${ }^{-1}$; Analysis $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{GeO}_{2}$ (430.29) Calculated: C, 47.45 ; H, 3.51, Found: C, $47.41 ; \mathrm{H}, 3.60$.
$\left(\left(3 R^{*}, 4 R^{*}, 5 R^{*}\right)-5-(4-B r o m o p h e n y l)-2,2-d i c h l o r o-3-(4-f l u o r o p h e n y l)-1,2-o x a g e r m o l a n-4-y l\right)(4-$ chlorophenyl)methanone 4ei

According to the general procedure, this compound was prepared from $\mathbf{1 e}(0.261 \mathrm{~g}, 1.00 \mathrm{mmol}), \mathbf{3 i}(0.189 \mathrm{~g}, 1.02$ $\mathrm{mmol}), \mathrm{GeCl}_{2}$-dioxane $(0.233 \mathrm{~g}, 1.01 \mathrm{mmol})$, to give the product $4 \mathbf{e i}$ as a colorless solid $(0.539 \mathrm{~g}, 91 \%)$. mp $175.0^{\circ} \mathrm{C}$ (decomp.); IR (KBr) $v=3091$ (w), 3052 (w), 2955 (w), 2892 (w), 1635 (m), 1589 (s), 1510 (s), 1487 (m), 1403 (m), 1345 (w), 1233 (s), 1179 (w), 1093 (m), 1070 (m), 836 (m), 734 (w) cm ${ }^{-1}$; Analysis $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BrCl}_{3} \mathrm{FGeO}_{2}$ (589.24) Calculated: C, 44.84 ; $\mathrm{H}, 2.57$, Found: C, 44.63 ; $\mathrm{H}, 2.79$.

3-2. Anti-selective aldol reaction of α, β-unsaturated ketones with 4 -chlorobenzaldehyde 3 c using $\mathbf{G e C l}_{2}$ dioxane aldol

1-(($\left.3 R^{*}, 4 R^{*}, 5 S^{*}\right)$-2,2-Dichloro-5-(4-chlorophenyl)-3-methyl-3-phenyl-1,2-oxagermolan-4-yl)ethan-1-one 4ce

In a nitrogen-filled glove box, to a mixture of GeCl_{2}-dioxane $(0.481 \mathrm{~g}, 3.00 \mathrm{mmol})$ and $\mathbf{3 c}(0.697 \mathrm{~g}, 3.00 \mathrm{mmol})$ in acetonitrile (4 mL) was added (E)-4-phenylpent-3-en-2-one ${ }^{3} \mathbf{1 c}(0.421 \mathrm{~g}, 3.00 \mathrm{mmol})$. After the reaction mixture was stirring at room temperature for 2 h , the solvent was removed by evaporation. The solid is washed with hexane $(2 \mathrm{~mL} \times 3)$ and ether $(2 \mathrm{~mL} \times 3)$. The residual solvent was removed under vacuum to give the product 4cc as a
colorless solid $(0.459 \mathrm{~g}, 34 \%)$. Although the NMR measurement of the crude product indicated that 4cc was quantitatively generated, the repeated wash and recrystallization of the crude product caused the decrease in the isolated yield.
mp $139.0^{\circ} \mathrm{C}$ (decomp.); IR (KBr) $v=3017$ (w), 2978 (w), 2924 (w), 1701 (s), 1598 (w), 1492 (s), 1443 (m), 1409 (w), 1364 (s), 1264 (w), 1225 (w), 1167 (s), 1088 (s), 995 (s), 831 (m), 759 (s), 735 (s), 697 (s), 673 (s) cm ${ }^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.38-7.31(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}), 7.17$ (d, $\left.J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{H}\right), 5.50(\mathrm{~d}, J$ $=4.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.79(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}, 8-\mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) 209.0 ($\mathrm{s}, \mathrm{C}-9$), 141.6 ($\mathrm{s}, \mathrm{C}-4$), 137.1 ($\mathrm{s}, \mathrm{C}-11$), 134.0 (d, C-14), 129.5 (d), 128.9 (d), 127.6 (d), 126.9 (d) 126.9 (d), 76.2 (d, C-3), 67.1 (d, C-2), 57.1 ($\mathrm{s}, \mathrm{C}-1$), 32.7 (q, C-10), 26.9 (q, C-8); Analysis $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{GeO}_{2}$ (444.31) Calculated: C, 48.66; H, 3.86, Found: C, 48.45; H, 3.82.

${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1-((4R*,5S*)-2,2-Dichloro-5-(4-chlorophenyl)-3,3-dimethyl-1,2-oxagermolan-4-yl)ethan-1-one 4dc

In a nitrogen-filled glove box, to a mixture of GeCl_{2}-dioxane $(0.695 \mathrm{~g}, 3.00 \mathrm{mmol})$ and $\mathbf{3 c}(0.421 \mathrm{~g}, 3.00 \mathrm{mmol})$ in acetonitrile (6 mL) was added 4-methyl-3-penten-2-one $\mathbf{1 d}(0.295 \mathrm{~g}, 3.00 \mathrm{mmol})$. After the reaction mixture was stirring at room temperature for 2 h , the solvent was removed by evaporation. The solid is washed with hexane (6 $\mathrm{mL} \times 3$) and acetonitrile (2 mL). The residual solvent was removed under vacuum to give the product $\mathbf{4 d c}$ as a colorless solid ($0.946 \mathrm{~g}, 82 \%$).
$\mathrm{mp} 122.0^{\circ} \mathrm{C}$ (decomp.); IR (KBr) $v=3072$ (w), 3056 (w), 2965 (w), 2895 (w), 1695 (s), 1492 (s), 1465 (m), 1408 (m), 1363 (s), 1178 (s), 1153 (m), 1089 (s), 1035 (s) 992 (s), 824 (s), 740 (s), 673 (s) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{H}), 5.33(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.10(\mathrm{~d}, J=4.4$ $\mathrm{Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}, 7-\mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 208.7 (s, C-6), 137.2 ($\mathrm{s}, \mathrm{C}-8$), 133.8 ($\mathrm{s}, \mathrm{C}-11$), 128.8 (d, C-10), 127.0 (d, C-9), 75.8 (d, C-3), 68.7 (d, C-2), 43.2 ($\mathrm{s}, \mathrm{C}-1$), 33.5 (q , C-7) 24.2 (q, C-5), 20.6 (q, C-4); MS (EI $\left.{ }^{+}, 70 \mathrm{eV}\right) m / z 384\left([\mathrm{M}+2]^{+}, 5\right), 382\left(\mathrm{M}^{+}, 7\right), 242$ (100); HRMS (EI, 70 eV) Calculated $\left(\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{GeO}_{2}\right)$: $381.9349\left(\mathrm{M}^{+}\right)$, Found: 381.9342; Analysis $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{GeO}_{2}$ (382.24) Calculated: 40.85; H, 3.96, Found: C, 40.64; H, 3.99.
${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(The cross marks (x) represent the signals from the residual solvents and inseparable impurities.)

${ }^{13}$ C NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(The cross marks (x) represent the signals from the residual solvents and inseparable impurities.)

3-3. Reduction of aldol adducts by BH_{3}-THF

$\left(1 R^{*}, 2 S^{*}, 3 R^{*}\right)$-1-(4-Chlorophenyl)-2-(($\left.R^{*}\right)$-germyl(phenyl)methyl)butane-1,3-diol 5bc

To a mixture of $\mathbf{4 b c}(0.129 \mathrm{~g}, 0.300 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added BH_{3}-THF complex $(0.9 \mathrm{M} \mathrm{in} \mathrm{THF}$,2.8 mL , 2.50 mmol). The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 15 h . The resulting mixture was poured into water and the organic phase was extracted with EtOAc. The organic layer was washed with water and brine, and dried over MgSO_{4}. The filtrate was evaporated under vacuum and the residue was purified by column chromatography on silica gel (hexane $/ \mathrm{AcOEt}=70: 30$) to give $\mathbf{5 b c}$ as a colorless solid $(0.0464 \mathrm{~g}, 43 \%)$.
$\mathrm{mp} 48.0-49.0^{\circ} \mathrm{C}$; IR (KBr) $v=3369$ (br), 3027 (w), 2971 (w), 2926 (w), 2095 (m), 1598 (m), 1492 (s), 1452 (m), 1381 (m), 1091 (s), 1013 (s$), 905$ (m), 830 (m), 786 (m), 699 (s) cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.20-7.09 (m, 9 H), $5.08(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.05-3.98(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.93(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}, 16-\mathrm{H}), 3.01(\mathrm{qd}, J=4.3 \mathrm{~Hz}, 2.8$ $\mathrm{Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 2.48-2.44(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}, 15-\mathrm{H}), 1.53(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, 14-\mathrm{H}), 1.27(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 1-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 143.9 (s), 142.2 (s , 132.6 (s), 128.7 (d), 128.4 (d), 128.2 (d), 127.3 (d), 125.5 (d), 73.5 (d, C-4), 70.3 (d, C-2), 55.1 (d, C-3) 28.9 (d, C-5), 21.4 ($\mathrm{q}, \mathrm{C}-1$); MS ($\mathrm{FAB}^{-}, 70 \mathrm{eV}$) m/z 367 ([M-H+2], 4), 365 ([M-H] $\left.{ }^{-}, 10\right), 153(100)$; HRMS ($\mathrm{FAB}^{-}, 70 \mathrm{eV}$) Calculated $\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{ClGeO}_{2}\right): 365.0364$ ($[\mathrm{M}-\mathrm{H}]^{-}$), Found: 365.0353.

${ }^{1} \mathrm{H}$ NMR: ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(The cross marks (x) represent the signals from the residual solvents and inseparable impurities.)

${ }^{13}$ C NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(The cross marks (x) represent the signals from the residual solvents and inseparable impurities.)

$\left(1 R^{*}, 2 R^{*}, 3 S^{*}\right)$-1-(4-Chlorophenyl)-2-((S^{*})-1-germyl-1-phenylethyl)butane-1,3-diol 5cc

To a mixture of $4 \mathbf{c c}(0.131 \mathrm{~g}, 0.294 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added BH_{3} - THF complex $(0.9 \mathrm{M}$ in THF, 1.7 mL , 1.50 mmol). The reaction mixture was stirred at room temperature for 1 h . The resulting mixture was poured into water and the organic phase was extracted with EtOAc. The organic layer was washed with water and brine, and dried over MgSO_{4}. The solvent was removed under vacuum and the residue was purified by column chromatography on silica gel (hexane $/ \mathrm{AcOEt}=70: 30$) to give $\mathbf{5 c c}$ as a colorless solid ($0.0381 \mathrm{~g}, 34 \%$). $\mathrm{mp} 120.0-121.0^{\circ} \mathrm{C}$ (decomp.); IR (KBr) $v=3361$ (br), 2931 (w), 2062 (s), 2041 (s), 2027 (s), 1597 (w), 1490 (m), 1394 (w), 1121 (m), 1090 (m), 1038 (m) 980 (w), 900 (m), 821 (s , 788 (m) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.34-7.29(\mathrm{~m}, 4 \mathrm{H}, 8-\mathrm{H}, 9-\mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}, 10-\mathrm{H}), 7.13(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 13-\mathrm{H}), 6.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 12-$ H), $4.78(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 4.36-4.28(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}, 17-\mathrm{H}), 2.54(\mathrm{dd}, J=5.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 2.41(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}, 1 \mathrm{H}, 15-\mathrm{H}), 2.32(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}, 5-\mathrm{H}), 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, 1-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 148.8 ($\mathrm{s}, \mathrm{C}-7$), 143.3 ($\mathrm{s}, \mathrm{C}-11$), 132.4 ($\mathrm{s}, \mathrm{C}-14$), 128.6 (d), 128.1 (d, C-13), 126.7 (d, C-12), 126.5 (d), 125.4 (d, C-10), 73.1 (d, C-6), 68.6 (d, C-2), 59.6 (d, C-3) 36.9 (s, C-4), 23.7 (q, C-1), 20.4 (q, C-5); MS (FAB ${ }^{-}, 70$ eV) $m / z 379\left([\mathrm{M}-\mathrm{H}+2]^{-}, ~ 2\right), 377\left([\mathrm{M}-\mathrm{H}]^{-}, ~ 4\right), 153$ (100); HRMS (FAB $\left.{ }^{-}, 70 \mathrm{eV}\right)$ Calculated $\left(\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{ClGeO}_{2}+\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}_{3}\right)$: 533.1024 ([M-H] $]^{-}$, Found: 533.1014.
(The cross marks (x) represent the signals from the residual solvents and inseparable impurities.)

${ }^{13}$ C NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(1 R^{*}, 2 S^{*}, 3 S^{*}\right)$-1-(4-Bromophenyl)-3-(4-chlorophenyl)-2-(($\left.R^{*}\right)$-(4-fluorophenyl)(germyl)methyl)propane-1,3diol 5ei

To a mixture of $4 \mathbf{e i}(0.294 \mathrm{~g}, 0.500 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added BH_{3}-THF complex $(0.9 \mathrm{M}$ in THF, 2.8 mL , 2.50 mmol). The reaction mixture was stirred at room temperature for 2 h . The resulting mixture was poured into water and the organic phase was extracted with EtOAc. The organic layer was washed with water and brine, and dried over MgSO_{4}. The solvent was removed under vacuum and the residue was purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=70: 30$) to give 5 ei as a colorless oil $(0.131 \mathrm{~g}, 50 \%)$.
$\operatorname{IR}(\mathrm{KBr}) v=3559(\mathrm{~m}), 3426(\mathrm{br}), 2912(\mathrm{w}), 2064(\mathrm{~s}), 1599(\mathrm{w}), 1505(\mathrm{~s}), 1403(\mathrm{w}), 1227(\mathrm{~m}), 1092(\mathrm{~m}), 1011(\mathrm{~m})$ $832(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.36-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.31(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.92(\mathrm{dd}, J=5.6,8.8 \mathrm{~Hz}, 2 \mathrm{H}, 14-\mathrm{H}), 6.79(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 15-\mathrm{H}), 4.82(\mathrm{dd}, J=6.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{t}, J=3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ge}-\mathrm{H}), 2.95-2.91(\mathrm{~m}, 1 \mathrm{H}, 4-\mathrm{H}), 2.55(\mathrm{td}, J=5.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 2.00(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{H}), 1.94(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 160.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=244.4 \mathrm{~Hz}, \mathrm{C}-16\right)$, 159.3 (s), 141.8 (s), 141.6 (s), 140.4 (d, ${ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.5 \mathrm{~Hz}, \mathrm{C}-13$), 133.5 (s), 131.2 (s), 129.9 (dd, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.2 \mathrm{~Hz}, \mathrm{C}-14$), 128.7 (d), 127.6 (d), 127.4 (d), 121.1 (d), 115.1 (dd, ${ }^{2} J_{\text {C-F }}=21.4 \mathrm{~Hz}, \mathrm{C}-15$), 75.3 (d), 73.3 (d), 56.9 (d, C-2) 27.8 (d, C-4); MS ($\left.\mathrm{FAB}^{-}, 70 \mathrm{eV}\right) m / z 525$ ([M-H+2] ${ }^{-}$, 26), 523 ([M-H] ${ }^{-}, 38$), 153 (100); HRMS ($\mathrm{FAB}^{-}, 70 \mathrm{eV}$) Calculated $\left(\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{BrClFGeO}_{2}\right): 522.9531\left([\mathrm{M}-\mathrm{H}]^{-}\right)$, Found: 522.9532.

${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

(The cross marks (x) represent the signals from the residual solvents and inseparable impurities.)

${ }^{13}$ C NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3-4. Synthesis of triol derivatives 6

(1 $\left.R^{*}, 2 R^{*}, 3 R^{*}\right)$-1-(4-Chlorophenyl)-2-(($\left.R^{*}\right)$-hydroxy(phenyl)methyl)butane-1,3-diol 6bc

To a mixture of $\mathbf{5 b c}(0.0776 \mathrm{~g}, 0.212 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ and methanol $(1 \mathrm{~mL})$ was added $\mathrm{KF}(0.0618 \mathrm{~g}, 1.06$ mmol), $\mathrm{KHCO}_{3}(0.511 \mathrm{~g}, 0.510 \mathrm{mmol})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ aq. $(0.350 \mathrm{~mL})$. The reaction mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h . The resulting mixture was poured into water and the organic phase was extracted with ether. The organic layer was washed with water and brine, and dried over MgSO_{4}. The filtrate was evaporated under vacuum to give the product $\mathbf{6 b c}$ as a colorless oil ($0.0581 \mathrm{~g}, 89 \%$).

IR (KBr) $v=3367$ (br), 3062 (w), 3028 (w), 2972 (w), 2929 (w), 1492 (s), 1452 (m), 1399 (m), 1329 (m), 1091 (s), 1013 (s), 826 (m), 701 (s) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.39-7.34 (m, 4H, 7-H, 8-H), 7.29-7.25 (m, 2H, 12H), $7.19(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 13-\mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 11-\mathrm{H}), 5.23(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 4.19$ ($\mathrm{qd}, J=6.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), 3.71 (bs, $2 \mathrm{H}, \mathrm{D}_{2} \mathrm{O}$-exchangeable), 2.17 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}, \mathrm{D}_{2} \mathrm{O}-\mathrm{exchangeable}$), 2.12-2.09 (m, 1H, 3-H), $1.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 1-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl ${ }_{3}$) 143.7 ($\mathrm{s}, \mathrm{C}-10$), 141.7 (s, C-6), $133.0(\mathrm{~s}$, C-9), 128.7 (d, C-8), 128.3 (d, C-12), 127.1 (d, C-7), 126.9 (d, C-13), 124.9 (d, C-11), 75.3 (d, C-4), 71.7 (d, C-5), 69.8 (d, C-2) 56.4 (d, C-3), 22.8 (q, C-1); MS ($\mathrm{FAB}^{-}, 70 \mathrm{eV}$) m/z 307 ([M-H+2], 19), 305 ([M-H] ${ }^{-}, 51$), 183 (100); HRMS (FAB $\left.{ }^{-}, 70 \mathrm{eV}\right)$ Calculated $\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClO}_{3}\right)$: 305.0944 ([M-H] $)$, Found: 305.0942.

${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(The cross marks (x) represent the signals from the residual solvents and inseparable impurities.)

${ }^{13}$ C NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left(2 R^{*}, 3 S^{*}, 4 R^{*}\right)$-3-(($\left.S^{*}\right)$-(4-Chlorophenyl)(hydroxy)methyl)-2-phenylpentane-2,4-diol 6cc

To $5 \mathbf{5 c c}(0.112 \mathrm{~g}, 0.296 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ and methanol $(1 \mathrm{~mL})$ was added $\mathrm{KF}(0.0573 \mathrm{~g}, 0.988 \mathrm{mmol}), \mathrm{KHCO}_{3}$ $(0.0511 \mathrm{~g}, 0.510 \mathrm{mmol})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ aq. $(0.350 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 24 h . The reaction was quenched by sodium thiosulfate aq. and the organic phase was extracted with ether. The organic layer was washed with water and brine, and dried over MgSO_{4}. The filtrate was evaporated under vacuum and the residue was purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=50: 50$) to give the product 6cc as a colorless solid ($0.0473 \mathrm{~g}, 50 \%$).
mp 1310-132.0 ${ }^{\circ} \mathrm{C}$; IR (KBr) $v=3365$ (br), 2975 (w), 2932 (w), 1600 (w), 1492 (s), 1447 (m), 1402 (m), 1377 (m), 1215 (w), 1119 (m), 1092 (s), 1013 (m), 907 (w), 816 (m), 755 (m), 703 (m) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 7.47 (dd, $J=8.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{H}), 7.39-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}, 14-\mathrm{H}), 5.65(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H})$, $4.94(\mathrm{~s}, 1 \mathrm{H}, 17-\mathrm{H}), 4.55(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, 16-\mathrm{H}), 4.06(\mathrm{ddq}, J=6.8,6.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 2.32(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}, 15-\mathrm{H}), 2.21(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}, 6-\mathrm{H}), 0.46(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 1-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}) 148.9 ($\mathrm{s}, \mathrm{C}-11$), 141.2 ($\mathrm{s}, \mathrm{C}-7$), 132.6 ($\mathrm{s}, \mathrm{C}-10$), 128.6 (d), 128.4 (d), 126.83 (d, C-8), 126.76 (d, C-14), 124.2 (d, C-12), 78.9 (s, C-5), 73.4 (d, C-4), 68.2 (d, C-2), 55.3 (d, C-3), 31.0 (q, C-6), 24.8 ($q, C-1$); MS ($\mathrm{FAB}^{-}, 70$ $\left.\mathrm{eV}) m / z 321[\mathrm{M}-\mathrm{H}+2]^{-}, 37\right), 319\left([\mathrm{M}-\mathrm{H}]^{-}, 100\right)$; $\mathrm{HRMS}\left(\mathrm{FAB}^{-}, 70 \mathrm{eV}\right)$ Calculated $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClO}_{3}\right): 319.1101\left([\mathrm{M}-\mathrm{H}]^{-}\right)$, Found: 319.1100.
${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(The cross marks (x) represent the signals from the residual solvents and inseparable impurities.)

${ }^{13}$ C NMR: ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1,3-diol 6ei

To a mixture of $4 \mathbf{e i}(0.251 \mathrm{~g}, 0.427 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added BH_{3}-THF complex $(0.9 \mathrm{M}$ in THF, 2.8 mL , 2.50 mmol). The reaction mixture was stirred at room temperature for 2 h . The resulting mixture was poured into water and the organic phase was extracted with EtOAc. The organic layer was washed with water and brine, and dried over MgSO_{4}. The filtrate was evaporated under vacuum. To a crude 5ei in THF (1 mL) and methanol (1 mL) was added $\mathrm{KF}(0.0484 \mathrm{~g}, 0.830 \mathrm{mmol}), \mathrm{KHCO}_{3}(0.0420 \mathrm{~g}, 0.420 \mathrm{mmol})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ aq. $(0.350 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 24 h . The resulting mixture was quenched by sodium thiosulfate aq. and the organic phase was extracted with ether. The organic layer was washed with water and brine, and dried over MgSO_{4}. The filtrate was evaporated under vacuum and the residue was purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=50: 50$) to give the product $6 \mathbf{e i}$ as a colorless solid $(0.0792 \mathrm{~g}, 40 \%)$. $\mathrm{mp} 147.0-148.0{ }^{\circ} \mathrm{C}$; IR (KBr) $v=3367$ (br), 2923 (w), 1604 (w), 1510 (s), 1489 (s), 1405 (m), 1225 (s), 1159 (w), 1068 (s), 1011 (s), $830(\mathrm{~s}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.46(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=8.4,5.4 \mathrm{~Hz}, 2 \mathrm{H}, 14-\mathrm{H}), 6.87(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 15-$ H), $5.13(\mathrm{bs}, 2 \mathrm{H}), 4.85(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.46-2.43(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $161.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=246.1 \mathrm{~Hz} \mathrm{C}-16\right), 141.7$ (s), 140.9 (s), 138.9 (d, $\left.{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}, \mathrm{C}-13\right), 133.3$ (s), 131.7 (d), 128.5 (d), 127.6 (d), 127.2 (d), 126.7 (dd, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.2 \mathrm{~Hz}, \mathrm{C}-14$), 121.4 (s), 115.0 (dd, ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.4 \mathrm{~Hz}, \mathrm{C}-15$), 74.3 (d), 73.7 (d), 71.0 (d, C-4), 57.9 (d, C-2); MS (FAB $\left.{ }^{-}, 70 \mathrm{eV}\right) \mathrm{m} / \mathrm{z}$ $467\left([\mathrm{M}-\mathrm{H}+2]^{-}, 6\right), 465\left([\mathrm{M}-\mathrm{H}+2]^{-}, 21\right), 463\left([\mathrm{M}-\mathrm{H}]^{-}, 16\right), 153$ (100); HRMS (FAB $\left.{ }^{-}, 70 \mathrm{eV}\right)$ Calculated $\left(\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{BrClFO}_{3}\right): 463.0112\left(\mathrm{M}^{+}\right)$, Found: 463.0105.
${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(The cross marks (x) represent the signals from the residual solvents and inseparable impurities.)

$\left(\left(R^{*}\right)-\left(\left(4 R^{*}, 5 S^{*}, 6 R^{*}\right)-4-(4-C h l o r o p h e n y l)-2,2,6-t r i m e t h y l-1,3-d i o x a n-5-y l\right)(p h e n y l) m e t h y l\right) g e r m a n e ~ 7 b c ~$

To a mixture of $\mathbf{5 b c}(0.122 \mathrm{~g}, 0.330 \mathrm{mmol})$ and dimethoxypropane $(0.5 \mathrm{~mL}, 4.00 \mathrm{mmol})$) in acetone (2 mL) was added pyridinium p-toluenesulfonate $(0.0300 \mathrm{~g}, 0.150 \mathrm{mmol})$. After the solution was heated under reflux for 24 h , the solvent was removed and the residue was partitioned between water and ether. The aqueous phase was extracted with ether. The organic layer was washed with water and brine, and dried over MgSO_{4}. The solvent was removed under vacuum and the residue was purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=80: 20$) to give the product $7 \mathbf{b c}(0.0642 \mathrm{~g}, 41 \%)$ as a colorless solid (from ethanol).
mp. $92.0^{\circ} \mathrm{C}$ (decomp.); IR (KBr) $v=3055$ (w), 2997 (w), 2991 (w), 2014 (s), 2051 (s), 1493 (s), 1380 (s), 1254 (s), 1202 (s), 1176 (m), 1133 (m), 1086 (m), 1067 (s) 1034 (w), 1012 (m), 986 (m), 953 (m) 891 (m), 825 (s), 774 (m), $703(\mathrm{~m}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $7.34(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 13-\mathrm{H}), 7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, 12-\mathrm{H}), 7.12(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{H}), 7.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 10-\mathrm{H}), 6.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{H}), 5.22(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H})$, 4.42 (qd, $J=6.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}), 4.06(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ge}-\mathrm{H}), 2.53-2.50(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.24(\mathrm{q}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}, 2-\mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}, 16-\mathrm{H}) 1.54(\mathrm{~s}, 3 \mathrm{H}, 15-\mathrm{H}), 1.31(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 5-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 146.2 ($\mathrm{s}, \mathrm{C}-7$), 139.2 ($\mathrm{s}, \mathrm{C}-11$), 132.6 ($\mathrm{s}, \mathrm{C}-14$), 129.3 (d, C-8), 128.5 (d, C-13), 128.1 (d, C-9), 126.9 (d, C-12), 125.1 (d, C-10) 100.0 ($\mathrm{s}, \mathrm{C}-4$), 75.5 (d, C-3), 70.9 (d, C-1), 49.9 (d, C-2), 29.4 ($\mathrm{q}, \mathrm{C}-16$), 25.8 (d, C-6), 20.9 (q, C-5), 19.6 (q, C-15); MS ($\mathrm{FAB}^{-}, 70 \mathrm{eV}$) m/z $407\left([\mathrm{M}-\mathrm{H}+2]^{-}\right), 405\left([\mathrm{M}-\mathrm{H}]^{-}, 13\right), 153$ (100); HRMS (FAB, $\left.70 \mathrm{eV}\right)$ Calculated $\left(\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{ClO}_{2} \mathrm{Ge}\right): 405.0677\left([\mathrm{M}-\mathrm{H}]^{-}\right)$, Found: 405.0678 .

${ }^{13}$ C NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
 cyanobenzoate) 8bc

A solution of $\mathbf{6 b c}, 4$-cyanobenzoyl chloride ($0.288 \mathrm{~g}, 1.74 \mathrm{mmol}$), DMAP ($0.002 \mathrm{~g}, 0.02 \mathrm{mmol}$) and pyridine (0.16 $\mathrm{mL})$ in acetonitrile (5 mL) was stirred at room temperature for 72 h . The mixture was diluted with water, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$ and the combined extracts were dried over MgSO_{4}. The filtrate was evaporated under vacuum and the residue was purified by column chromatography on silica gel (hexane/ $\mathrm{AcOEt}=80: 20$) to give the product $8 \mathbf{b c}(0.0993 \mathrm{~g}, 41 \%)$ as a colorless solid. Recrystallization from toluene/dichloromethane furnished a single crystal suitable for the X-ray crystallographic analysis.
mp 235.0-236.0 ${ }^{\circ} \mathrm{C}$; IR (KBr) $v=3104$ (w), 3063 (w), 2979 (w), 2951 (w), 2228 (s), 1724 (s), 1609 (m), 1571 (w), 1492 (s), 1453 (m), 1405 (m), 1390 (m), 1262 (s$), 1175$ (m), 1157 (m), 1102 (s$), 1017$ (m), 940 (m), 856 (m), 767 (s) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.16(\mathrm{~d} J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 9 \mathrm{H}), 6.71(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.43(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.56(\mathrm{~m}, 1 \mathrm{H}, 2-\mathrm{H}), 3.35-3.31(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 1.63(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}, 1-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) 163.7 (s), 163.61 (s), 163.57 (s), 137.9 (s , 136.7 (s), 134.5 (s$), 133.12$ (s), 133.07 (s$)$, 132.9 (s , 132.5 (d), 132.2 (d), 132.0 (d), 130.2 (d), 130.0 (d), 129.9 (d), 129.2 (d), 128.9 (d), 128.3 (d), 127.8 (d), 125.6 (d), 117.8 (s), 117.63 (s), 117.62 (s), 117.1 (s), 117.0 (s), 116.5 (s), 74.0 (d), 73.2 (d), 69.6 (d, C-2), 52.4 (d, $\mathrm{C}-3), 18.5(\mathrm{q}, \mathrm{C}-1)$; MS $\left(\mathrm{FAB}^{+}, 70 \mathrm{eV}\right) m / z 718\left([\mathrm{M}+\mathrm{Na}+2]^{+}, 1\right), 716\left([\mathrm{M}+\mathrm{Na}]^{+}, 2\right), 176(100) ; \mathrm{HRMS}\left(\mathrm{FAB}^{+}, 70\right.$ $\mathrm{eV})$ Calculated $\left(\mathrm{C}_{41} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}_{6}\right)$: $716.1559\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$, Found: 716.1577; Analysis $\mathrm{C}_{41} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}_{6}$ (694.14) Calculated: C, 70.94; H, 4.07, Found: C, 70.67; H, 3.83; N, 5.98.
${ }^{1} \mathrm{H}$ NMR: $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(The cross marks (x) represent the signals from the residual solvents and inseparable impurities.)

${ }^{13} \mathrm{C}$ NMR: $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4. X-ray crystallographic data

4-1. ((3R*, $\left.4 R^{*}, 5 R^{*}\right)$-2,2-Dichloro-3,5-diphenyl-1,2-oxagermolan-4-yl)(phenyl)methanone 4aa:

CCDC 1837677

Figure S1. ORTEP drawings of 4 aa at the 50% probability level.

Empirical Formula	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{GeO}_{2}$	$D_{\text {calc }}$	$1.558 \mathrm{~g} / \mathrm{cm}^{3}$
Formula Weight	457.88	F_{000}	928.00
Crystal Color, Habit	colorless, prism	$\mu\left(\mathrm{MoK}_{\alpha}\right)$	$18.562 \mathrm{~cm}^{-1}$
Crystal Dimensions	$0.300 \times 0.300 \times 0.300 \mathrm{~mm}$	Temperature	$-150.0{ }^{\circ} \mathrm{C}$
Crystal System	monoclinic	Function Minimized	$\Sigma w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2}$
Lattice Type	Primitive	Least Squares Weights	$1 / \sigma^{2}\left(F_{0}{ }^{2}\right)=1 / \sigma^{2}\left(F_{0}\right) /\left(4 F_{0}{ }^{2}\right)$
Lattice Parameters	$a=9.8841$ (7) \AA	No. Observations ($I>2.00 \sigma(I)$)	3573
	$b=17.4704(10) \AA$	No. Variables	262
	$c=11.5796(7) \AA$	Reflection/Parameter Ratio	13.64
	$\beta=102.4957(19)^{\circ}$	Residuals: $R_{1}(I>2.00 \sigma(I))$	0.0444
	$V=1952.2(2) \AA^{3}$	Residuals: $w R_{2}(I>2.00 \sigma(I))$	0.0640
Space Group	$P 2_{1} / c$ (\#14)	Goodness of Fit Indicator	1.940
Z value	4	Max Shift/Error in Final Cycle	0.000
		Maximum peak in Final Diff. Map	$0.84 \mathrm{e}^{-} / \AA^{3}$
		Minimum peak in Final Diff. Map	$-0.66 \mathrm{e}^{-} / \AA^{3}$

4-2. (($\left.3 R^{*}, 4 R^{*}, 5 R^{*}\right)$-2,2-Dichloro-5-(4-fluorophenyl)-3-phenyl-1,2-oxagermolan-4-yl)(phenyl)methanone 4ab: CCDC 1837678

Figure S2. ORTEP drawings of 4ab at the 50% probability level.

Empirical Formula	$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{FGeO}_{2}$
Formula Weight	475.87
Crystal Color, Habit	translucent, light, colorless,
	block
Crystal Dimensions	0.223 X 0.164 X 0.131 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	$a=8.6342(4) \AA$
	$b=22.7005(11) \AA$
	$c=10.0073(5) \AA$
	$\beta=101.649(5)^{\circ}$
	$V=1921.04(16) \AA^{3}$
Space Group	$P 2_{1} / c(\# 14)$
Z value	4

$D_{\text {calc }}$	$1.645 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	960.00
$\mu\left(\mathrm{MoK}_{\alpha}\right)$	$18.969 \mathrm{~cm}^{-1}$
Temperature	$-150.0{ }^{\circ} \mathrm{C}$
Function Minimized	$\sum w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}$
Least Squares Weights	Chebychev polynomial with 3
parameters	$94.3217,127.5530,35.0137$,
No. Observations $(I>2.00 \sigma(I))$	3828
No. Variables	321
Reflection/Parameter Ratio	11.93
Residuals: $R_{1}(I>2.00 \sigma(I))$	0.0385
Residuals: $w R_{2}(I>2.00 \sigma(I))$	0.0554
Goodness of Fit Indicator	1.150
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.88 \mathrm{e}^{-/} / \AA^{3}$
Minimum peak in Final Diff. Map	$-0.28 \mathrm{e}^{-/} / \AA^{3}$

4-3. ($\left(3 R^{*}, 4 R^{*}, 5 R^{*}\right)$-2,2-Dichloro-5-(4-chlorophenyl)-3-phenyl-1,2-oxagermolan-4-yl)(phenyl)methanone
4ac: CCDC 1837679

Figure S3. ORTEP drawings of $\mathbf{4 a c}$ at the 50% probability level.

Empirical Formula	$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{GeO}_{2}$
Formula Weight	492.32
Crystal Color, Habit	translucent, light, colorless,
	block
Crystal Dimensions	0.162 X 0.105 X 0.091 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	$a=8.7644(4) \AA$
	$b=22.8849(10) \AA$
	$c=10.3481(5) \AA$
	$\beta=102.344(5)^{\circ}$
	$V=2027.56(17) \AA^{3}$
Space Group	$P 2_{1} / c(\# 14)$
Z value	4

$D_{\text {calc }}$	$1.613 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	992.00
$\mu\left(\right.$ MoK $\left._{\alpha}\right)$	$19.206 \mathrm{~cm}^{-1}$
Temperature	$-150.0^{\circ} \mathrm{C}$
Function Minimized	$\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F^{2}\right)^{2}$
Least Squares Weights	Chebychev po
parameters	$28.8153,38$
No. Observations $(I>2.00 \sigma(I))$	3699
No. Variables	270
Reflection/Parameter Ratio	13.70
Residuals: $R_{1}(I>2.00 \sigma(I))$	0.0444
Residuals: $w R_{2}(I>2.00 \sigma(I))$	0.0722
Goodness of Fit Indicator	1.115
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$1.18 \mathrm{e}^{-/ / \AA^{3}}$
Minimum peak in Final Diff. Map	$-0.35 \mathrm{e}^{-} / \AA^{3}$

4-4. (($\left.\left.3 R^{*}, 4 R^{*}, 5 R^{*}\right)-2,2-D i c h l o r o-5-(4-m e t h o x y p h e n y l)-3-p h e n y l-1,2-o x a g e r m o l a n-4-y l\right)(p h e n y l) m e t h a n o n e$

4ad: CCDC 1837680

Figure S4. ORTEP drawings of 4 ad at the 50% probability level.

Empirical Formula	$\mathrm{C}_{23.5} \mathrm{H}_{21} \mathrm{Cl}_{3} \mathrm{GeO}_{3}$
Formula Weight	530.37
Crystal Color, Habit	Translucent, intense, colorless,
	plated
Crystal Dimensions	0.150 X 0.127 X 0.058 mm
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	$a=9.6035(3) \AA$
	$b=11.3751(3) \AA$
	$c=12.2291(4) \AA$
	$\alpha=115.083(3)^{\circ}$
	$\beta=93.191(3)^{\circ}$
	$\gamma=98.394(3)^{\circ}$
	$V=1186.63(7) \AA^{3}$
Space Group	$P-1(\# 2)$
Z value	2

$D_{\text {calc }}$	$1.484 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	538.00
$\mu\left(\mathrm{MoK}_{\alpha}\right)$	$16.496 \mathrm{~cm}^{-1}$
Temperature	$-150.0{ }^{\circ} \mathrm{C}$
Function Minimized	$\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}$
Least Squares Weights	$\mathrm{w}=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0590 \cdot \mathrm{P})^{2}+0.9622\right.$.
	$\mathrm{P}]$ where $\mathrm{P}=\left(\operatorname{Max}\left(F_{\mathrm{o}}^{2}, 0\right)+2 \mathrm{~F}_{\mathrm{c}}^{2}\right) / 3$
No. Observations $(I>2.00 \sigma(I))$	6043
No. Variables	283
Reflection/Parameter Ratio	21.35
Residuals: $R_{1}(I>2.00 \sigma(I))$	0.0400
Residuals: $w R_{2}(I>2.00 \sigma(I))$	0.1098
Goodness of Fit Indicator	1.021
Max Shift/Error in Final Cycle	0.001
Maximum peak in Final Diff. Map	$1.06 \mathrm{e}^{-} / \AA^{3}$
Minimum peak in Final Diff. Map	$-0.69 \mathrm{e}^{-} / \AA^{3}$

4-5. (($\left.3 R^{*}, 4 R^{*}, 5 R^{*}\right)-2,2-$ Dichloro-5-(naphthalen-2-yl)-3-phenyl-1,2-oxagermolan-4-yl)(phenyl)methanone 4ae: CCDC 1837681

Figure S5. ORTEP drawings of 4ae at the 50\% probability level.

Empirical Formula	$\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{GeNO}_{2}$
Formula Weight	548.99
Crystal Color, Habit	Translucent, light, colorless,
	block
Crystal Dimensions	0.211 X 0.170 X 0.106 mm
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	$a=10.1136(5) \AA$
	$b=11.2995(4) \AA$
	$c=11.3342(4) \AA$
	$\alpha=85.182(3)^{\circ}$
	$\beta=84.582(3)^{\circ}$
	$\gamma=74.782(3)^{\circ}$
	$V=1241.89(9) \AA^{3}$
Space Group	$P-1(\# 2)$
Z value	2

$D_{\text {calc }}$	$1.468 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	560.00
$\mu($ MoK $\alpha)$	$14.737 \mathrm{~cm}^{-1}$
Temperature	$-150.0{ }^{\circ} \mathrm{C}$
Function Minimized	$\sum w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}\right)^{2}$
Least Squares Weights	Chebychev
parameters	$86.2290,116$.
No. Observations $(I>2.00 \sigma(I))$	5132
No. Variables	390
Reflection/Parameter Ratio	13.16
Residuals: $R_{1}(I>2.00 \sigma(I)$	0.0331
Residuals: $w R_{2}(I>2.00 \sigma(I))$	0.0564
Goodness of Fit Indicator	1.059
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.49 \mathrm{e}^{-} / \AA^{3}$
Minimum peak in Final Diff. Map	$-0.42 \mathrm{e}^{-} / \AA^{3}$

4-6. (($\left.\left.3 R^{*}, 4 R^{*}, 5 R^{*}\right)-2,2-D i c h l o r o-3-p h e n y l-5-(t h i o p h e n-2-y l)-1,2-o x a g e r m o l a n-4-y l\right)(p h e n y l) m e t h a n o n e ~ 4 a f: ~$

CCDC 1837682

Figure S6. ORTEP drawings of 4af at the 50% probability level.

Empirical Formula	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{GeO}_{2} \mathrm{~S}$
Formula Weight	463.90
Crystal Color, Habit	colorless, prism
Crystal Dimensions	0.400 X 0.400 X 0.400 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	$a=9.9694(15) \AA$
	$b=16.935(2) \AA$
	$c=11.1790(16) \AA$
	$\beta=99.521(4)^{\circ}$
	$V=1861.3(5) \AA^{3}$
Space Group	$P 2_{1} / c(\# 14)$
Z value	4

$D_{\text {calc }}$	$1.655 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	936.00
$\mu\left(M o K_{\alpha}\right)$	$20.559 \mathrm{~cm}^{-1}$
Temperature	$-150.0{ }^{\circ} \mathrm{C}$
Function Minimized	$\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}$
Least Squares Weights	Chebychev polynomial with 3
parameters	$2523.2300,3539.6900,1165.2000$,
No. Observations $(I>2.00 \sigma(I))$	2747
No. Variables	251
Reflection/Parameter Ratio	10.94
Residuals: $R_{1}(I>2.00 \sigma(I))$	0.0499
Residuals: $w R_{2}(I>2.00 \sigma(I))$	0.0930
Goodness of Fit Indicator	0.996
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.61 \mathrm{e}^{-} / \AA^{3}$
Minimum peak in Final Diff. Map	$-0.64 \mathrm{e}^{-} / \AA^{3}$

CCDC 1837683

Figure S7. ORTEP drawings of $\mathbf{4 a g}$ at the 50% probability level.

Empirical Formula	$\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{GeNO}_{2}$	$D_{\text {calc }}$	$1.458 \mathrm{~g} / \mathrm{cm}^{3}$
Formula Weight	524.97	F_{000}	536.00
Crystal Color, Habit	colorless, prism	$\mu($ MoK $\alpha)$	$15.266 \mathrm{~cm}^{-1}$
Crystal Dimensions	0.100 X 0.100 X 0.100 mm	Temperature	$-150.0^{\circ} \mathrm{C}$
Crystal System	triclinic	Function Minimized	$\sum w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}$
Lattice Type	Primitive	Least Squares Weights	$1 / \sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)=1 / \sigma^{2}\left(F_{\mathrm{o}}\right) /\left(4 F_{\mathrm{o}}{ }^{2}\right)$
Lattice Parameters	$a=10.3751(8) \AA$	No. Observations $(I>2.00 \sigma(I))$	6233
	$b=10.7935(9) \AA$	No. Variables	312
	$c=12.5572(9) \AA$	Reflection/Parameter Ratio	19.98
	$\alpha=65.093(2)^{\circ}$	Residuals: $R_{1}(I>2.00 \sigma(I))$	0.0439
	$\beta=69.7194(19)^{\circ}$	Residuals: $w R_{2}(I>2.00 \sigma(I))$	0.0615
	$\gamma=83.035(2)^{\circ}$	Goodness of Fit Indicator	1.872
	$V=1195.84(16) \AA^{3}$	Max Shift/Error in Final Cycle	0.000
Space Group	$P-1(\# 2)$	Maximum peak in Final Diff. Map	$0.66 \mathrm{e}^{-} / \AA^{3}$
Z value	2	Minimum peak in Final Diff. Map	$-0.43 \mathrm{e}^{-} / \AA^{3}$

4-8. ($\left(3 R^{*}, 4 R^{*}, 5 S^{*}\right)$-2,2-Dichloro-5-hexyl-3-phenyl-1,2-oxagermolan-4-yl)(phenyl)methanone 4ah: CCDC
1837684

Figure S8. ORTEP drawings of 4ah at the 50% probability level.

Empirical Formula	$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{GeO}_{2}$
Formula Weight	465.94
Crystal Color, Habit	colorless, prism
Crystal Dimensions	0.300 X 0.300 X 0.300 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	$a=11.7814(4) \AA$
	$b=13.6254(3) \AA$
	$c=13.9935(9) \AA$
	$\beta=106.2710(0)^{\circ}$
	$V=2156.378(98) \AA^{3}$
Space Group	$P 2_{1} / n(\# 14)$
Z value	4

$D_{\text {calc }}$
F_{000}
$\mu\left(\mathrm{MoK}_{\alpha}\right)$
Temperature
Function Minimized
Least Squares Weights
parameters
No. Observations $(I>2.00 \sigma(I))$
No. Variables
Reflection/Parameter Ratio
Residuals: $R_{1}(I>2.00 \sigma(I))$
Residuals: $w R_{2}(I>2.00 \sigma(I))$
Goodness of Fit Indicator
Max Shift/Error in Final Cycle
Maximum peak in Final Diff. Map
Minimum peak in Final Diff. Map
$1.435 \mathrm{~g} / \mathrm{cm}^{3}$
960.00
$16.814 \mathrm{~cm}^{-1}$
$-150.0{ }^{\circ} \mathrm{C}$
$\sum w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}$
Chebychev polynomial with 3
$2848.3300,3964.2900,1257.5800$,
4921
270
18.23
0.0572
0.0753
1.157
0.000
$0.84 \mathrm{e}^{-} / \AA^{3}$
$-0.57 \mathrm{e}^{-} / \AA^{3}$

CCDC 1837685

Figure S9. ORTEP drawings of 4bc at the 50\% probability level.

Empirical Formula	$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{GeO}_{2}$
Formula Weight	430.25
Crystal Color, Habit	colorless, platelet
Crystal Dimensions	0.300 X 0.100 X 0.100 mm
Crystal System	monoclinic
Lattice Type	C-centered
Lattice Parameters	$a=23.911(14) \AA$
	$b=9.882(6) \AA$
	$c=16.166(9) \AA$
	$\beta=114.930(10)^{\circ}$
	$V=3464(3) \AA^{3}$
Space Group	$C 2 / c(\# 15)$
Z value	8

$D_{\text {calc }}$	$1.650 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	1728.00
$\mu\left(\mathrm{MoK}_{\alpha}\right)$	$22.350 \mathrm{~cm}^{-1}$
Temperature	$-150.0{ }^{\circ} \mathrm{C}$
Function Minimized	$\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}$
Least Squares Weights	$1 / \sigma^{2}\left(F_{\mathrm{o}}^{2}\right)=1 / \sigma^{2}\left(F_{\mathrm{o}}\right) /\left(4 F_{\mathrm{o}}{ }^{2}\right)$
No. Observations $(I>2.00 \sigma(I))$	2385
No. Variables	223
Reflection/Parameter Ratio	10.70
Residuals: $R_{1}(I>2.00 \sigma(I))$	0.0681
Residuals: $w R_{2}(I>2.00 \sigma(I))$	0.1012
Goodness of Fit Indicator	1.658
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$1.16 \mathrm{e}^{-} / \AA^{3}$
Minimum peak in Final Diff. Map	$-0.99 \mathrm{e}^{-} / \AA^{3}$

4-10.
$\left(\left(3 R^{*}, 4 R^{*}, 5 R^{*}\right)-5-(4-B r o m o p h e n y l)-2,2-d i c h l o r o-3-(4-f l u o r o p h e n y l)-1,2-o x a g e r m o l a n-4-y l\right)(4-$ chlorophenyl)methanone 4ei: CCDC 1837688

Figure S10. ORTEP drawings of $\mathbf{4 e i}$ at the 50% probability level.

Empirical Formula	$\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{BrCl}_{3} \mathrm{FGeO}_{2}$
Formula Weight	589.21
Crystal Color, Habit	Translucent, light colorless,
	block
Crystal Dimensions	0.163 X 0.147 X 0.083 mm
Crystal System	monoclinic
Lattice Type	C-centered
Lattice Parameters	$a=23.7288(13 \AA$
	$b=9.4007(4) \AA$
	$c=19.4853(7) \AA$
	$\beta=101.090(4){ }^{\circ}$
	$V=4265.4(3) \AA^{3}$
Space Group	$C 2 / c(\# 15)$
Z value	8
$D_{\text {calc }}$	$1.835 \mathrm{~g} / \mathrm{cm}^{3}$

F_{000}
$\mu\left(\mathrm{MoK}_{\alpha}\right)$
Temperature
Function Minimized
Least Squares Weights
parameters
No. Observations $(I>2.00 \sigma(I))$
No. Variables
Reflection/Parameter Ratio
Residuals: $R_{1}(I>2.00 \sigma(I))$
Residuals: $w R_{2}(I>2.00 \sigma(I))$
Goodness of Fit Indicator
Max Shift/Error in Final Cycle
Maximum peak in Final Diff. Map
Minimum peak in Final Diff. Map one 4cc: CCDC 1837686

Figure S11. ORTEP drawings of $\mathbf{4 c c}$ at the 50% probability level.

Empirical Formula	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Cl}_{3} \mathrm{GeO}_{2}$
Formula Weight	444.28
Crystal Color, Habit	colorless, prism
Crystal Dimensions	0.300 X 0.200 X 0.200 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	$a=14.9729(9) \AA$
	$b=10.0356(6) \AA$
	$c=12.3580(7) \AA$
	$\beta=99.8410(18)^{\circ}$
	$V=1829.62(18)) \AA^{3}$
Space Group	$P 2_{1} / c(\# 14)$
Z value	4

$D_{\text {calc }}$	$1.613 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	896.00
$\mu\left(\mathrm{MoK}_{\alpha}\right)$	$21.184 \mathrm{~cm}^{-1}$
Temperature	$-150.0^{\circ} \mathrm{C}$
Function Minimized	$\sum w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}$
Least Squares Weights	Chebychev polynomial with 3
parameters	$1358.2800,1899.7700,589.9290$,
No. Observations $(I>2.00 \sigma(I))$	3243
No. Variables	234
Reflection/Parameter Ratio	13.86
Residuals: $R_{1}(I>2.00 \sigma(I))$	0.0442
Residuals: $w R_{2}(I>2.00 \sigma(I))$	0.0761
Goodness of Fit Indicator	0.917
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.63 \mathrm{e}^{-} / \AA^{3}$
Minimum peak in Final Diff. Map	$-0.70 \mathrm{e}^{-} / \AA^{3}$

4-12. 1-((4R*,5 $\left.{ }^{*}\right)$-2,2-Dichloro-5-(4-chlorophenyl)-3,3-dimethyl-1,2-oxagermolan-4-yl)ethan-1-one
4dc: CCDC 1837687

Figure S12. ORTEP drawings of 4dc at the 50% probability level.

Empirical Formula	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{Cl}_{3} \mathrm{GeO}_{2}$	$D_{\text {calc }}$	$1.641 \mathrm{~g} / \mathrm{cm}^{3}$
Formula Weight	382.21	F_{000}	768.00
Crystal Color, Habit	colorless, prism	$\mu($ MoK $\alpha)$	$24.898 \mathrm{~cm}^{-1}$
Crystal Dimensions	0.600 X 0.500 X 0.400 mm	Temperature	$-150.0^{\circ} \mathrm{C}$
Crystal System	monoclinic	Function Minimized	$\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}$
Lattice Type	Primitive	Least Squares Weights	Chebychev polynomial with 3
Lattice Parameters	$a=17.3147(13) \AA$	parameters	$8374.4800,11721.9000,3694.5600$,
	$b=7.8971(8) \AA$	No. Observations $(I>2.00 \sigma(I))$	3810
	$c=11.8794(10) \AA$	No. Variables	187
	$\beta=107.727(3))^{\circ}$	Reflection/Parameter Ratio	20.37
	$V=1547.2(2) \AA^{3}$	Residuals: $R_{1}(I>2.00 \sigma(I))$	0.0344
Space Group	$P 2{ }_{1} / c(\# 14)$	Residuals: $w R_{2}(I>2.00 \sigma(I))$	0.0534
Z value	4	Goodness of Fit Indicator	1.085
		Max Shift/Error in Final Cycle	0.000
		Maximum peak in Final Diff. Map	$0.85 \mathrm{e}^{-\mathrm{e} / \AA^{3}}$
		Minimum peak in Final Diff. Map	$-0.37 \mathrm{e}^{-/ / \AA^{3}}$

Figure S13. ORTEP drawings of $\mathbf{5 c c}$ at the 50% probability level.

Empirical Formula	$\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{ClGeO}_{2}$
Formula Weight	379.42
Crystal Color, Habit	Translucent, intense, colorless
Crystal Dimensions	block
Crystal System	0.217 X 0.142 X 0.101 mm
Lattice Type	monoclinic
Lattice Parameters	C-centered
	$a=19.8583(8) \AA$
	$b=6.7852(3) \AA$
	$c=25.7564(10) \AA$
Space Group	$\beta=99.975(4) \AA^{\circ}$
Z value	$V=3418.0(2) \AA^{3}$
	$C 2 / c(\# 15)$
	8

$D_{\text {calc }}$	$1.475 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	1568.00
$\mu\left(\right.$ MoK $\left._{\alpha}\right)$	$19.518 \mathrm{~cm}^{-1}$
Temperature	$-150.0{ }^{\circ} \mathrm{C}$
Function Minimized	$\sum w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}$
Least Squares Weights	Chebychev polynomial with 3
parameters	$79.3067,106.8070,29.1684$,
No. Observations $(I>2.00 \sigma(I))$	3813
No. Variables	291
Reflection/Parameter Ratio	13.10
Residuals: $R_{1}(I>2.00 \sigma(I))$	0.0340
Residuals: $w R_{2}(I>2.00 \sigma(I))$	0.0476
Goodness of Fit Indicator	1.150
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.81 \mathrm{e}^{-/} / \AA^{3}$
Minimum peak in Final Diff. Map	$-0.61 \mathrm{e}^{-} / \AA^{3}$

4-14. $\quad\left(2 R^{*}, 3 S^{*}, 4 R^{*}\right)$-3-($\left.\left(S^{*}\right)-(4-C h l o r o p h e n y l)(h y d r o x y) m e t h y l\right)-2-p h e n y l p e n t a n e-2,4-d i o l \quad 6 c c: \quad$ CCDC 1837690

FigureS14. ORTEP drawings of 6cc at the 50\% probability level.

Empirical Formula	$\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{O}_{6}$
Formula Weight	320.82
Crystal Color, Habit	Translucent, light, colorless,
	block
Crystal Dimensions	$0.417 \times 0.134 \times 0.105 \mathrm{~mm}$
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	$a=11.3744(5) \AA$
	$b=8.3853(4) \AA$
	$c=33.8180(15) \AA$
	$\beta=97.992(4) \circ$
Space Group	$V=3194.2(3) \AA^{3}$
Z value	$P 2_{1} / n(\# 14)$
	4

$D_{\text {calc }}$	$1.334 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	1360.00
$\mu\left(\mathrm{MoK}_{\alpha}\right)$	$2.490 \mathrm{~cm}^{-1}$
Temperature	$-150.0^{\circ} \mathrm{C}$
Function Minimized	$\sum w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}\right)^{2}$
Least Squares Weights	Chebychev p
parameters	$64.7808,85$.
No. Observations $(I>2.00 \sigma(I))$	5438
No. Variables	439
Reflection/Parameter Ratio	12.39
Residuals: $R_{1}(I>2.00 \sigma(I))$	0.0826
Residuals: $w R_{2}(I>2.00 \sigma(I))$	0.1473
Goodness of Fit Indicator	1.000
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$1.77 \mathrm{e}^{-} / \AA^{3}$
Minimum peak in Final Diff. Map	$-1.22 \mathrm{e}^{-} / \AA^{3}$

4-15. ($1 R^{*}, 2 S^{*}, 3 S^{*}$)-1-(4-Bromophenyl)-3-(4-chlorophenyl)-2-(($\left.R^{*}\right)$-(4-

fluorophenyl)(hydroxy)methyl)propane-1,3-diol 6ei: CCDC 1837691

Figure S15. ORTEP drawings of 6ei at the 50\% probability level.

Empirical Formula	$\mathrm{C}_{44} \mathrm{H}_{38} \mathrm{Br}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{O}_{6}$
Formula Weight	931.49
Crystal Color, Habit	Translucent, intense, colorless,
	block
Crystal Dimensions	0.083 X 0.076 X 0.054 mm
Crystal System	Triclinic
Lattice Type	Primitive
Lattice Parameters	$a=6.8290(10) \AA$
	$b=13.8363(2) \AA$
	$c=21.7759(3) \AA$
	$\alpha=76.9851(12)^{\circ}$
	$\beta=89.8416(12)^{\circ}$
	$\gamma=86.0436(12)^{\circ}$
	$V=1997.97(5) \AA \AA^{3}$
Space Group	$P-1(\# 2)$
Z value	2

$D_{\text {calc }}$
F_{000}
$\mu\left(\mathrm{CuK}_{\alpha}\right)$
Temperature
Function Minimized
Least Squares Weights
parameters
No. Observations $(I>2.00 \sigma(I))$
No. Variables
Reflection/Parameter Ratio
Residuals: $R_{1}(I>2.00 \sigma(I))$
Residuals: $w R_{2}(I>2.00 \sigma(I))$
Goodness of Fit Indicator
Max Shift/Error in Final Cycle
Maximum peak in Final Diff. Map
Minimum peak in Final Diff Map
$1.548 \mathrm{~g} / \mathrm{cm}^{3}$
944.00
$42.951 \mathrm{~cm}^{-1}$
$-150.0^{\circ} \mathrm{C}$
$\sum w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}$
Chebychev polynomial with 3
$4888.5700,6769.3400,2021.6600$,
7475
546
13.69
0.0474
0.0509
1.278
0.000
$0.80 \mathrm{e}^{-} / \AA^{3}$
$-0.78 \mathrm{e}^{-} / \AA^{3}$

4-16. (($\left.\left.R^{*}\right)-\left(\left(4 R^{*}, 5 S^{*}, 6 R^{*}\right)-4-(4-C h l o r o p h e n y l)-2,2,6-t r i m e t h y l-1,3-d i o x a n-5-y l\right)(p h e n y l) m e t h y l\right) g e r m a n e ~ 7 b c: ~$ CCDC 1837692

Figure S16. ORTEP drawings of 7bc at the 50% probability level.

Empirical Formula	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClGeO}_{2}$
Formula Weight	405.46
Crystal Color, Habit	translucentintense, block
Crystal Dimensions	0.351 X 0.170 X 0.137 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	$a=11.23541(18) \AA$
	$b=10.13457(12) \AA$
	$c=17.7290(3) \AA$
	$\beta=105.5484(16)^{\circ} \AA^{\circ}$
	$V=1944.85(5) \AA^{3}$
Space Group	$P 2_{1} / n(\# 14)$
Z value	4

$D_{\text {calc }}$	$1.385 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	840.00
$\mu(\mathrm{CuK} \alpha)$	$34.656 \mathrm{~cm}^{-1}$
Temperature	$-150.0{ }^{\circ} \mathrm{C}$
Function Minimized	$\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2}$
Least Squares Weights	Chebychev polynomial with 3 parameters
	$12574.9000,17508.1000,5331.7400$,
No. Observations $(I>2.00 \sigma(I))$	3753
No. Variables	317
Reflection/Parameter Ratio	11.84
Residuals: $R_{1}(I>2.00 \sigma(I))$	0.0285
Residuals: $w R_{2}(I>2.00 \sigma(I))$	0.0312
Goodness of Fit Indicator	1.281
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.34 \mathrm{e}^{-/} / \AA^{3}$
Minimum peak in Final Diff. Map	$-0.38 \mathrm{e}^{-} / \AA^{3}$

4-17. ($\left.1 R^{*}, 2 R^{*}, 3 R^{*}\right)-2-\left(\left(R^{*}\right)\right.$-(4-Chlorophenyl)((4-cyanobenzoyl)oxy)methyl)-1-phenylbutane-1,3-diyl bis(4cyanobenzoate) 8bc: CCDC 1837693

Figure S17. ORTEP drawings of 8bc at the 50% probability level.

Empirical Formula	$\mathrm{C}_{83} \mathrm{H}_{58} \mathrm{Cl}_{4} \mathrm{~N}_{6} \mathrm{O}_{12}$	$D_{\text {calc }}$	$1.353 \mathrm{~g} / \mathrm{cm}^{3}$
Formula Weight	1473.22	F_{000}	1524.00
Crystal Color, Habit	Translucent, intense, colorless,	$\mu\left(\mathrm{CuK}_{\alpha}\right)$	$20.554 \mathrm{~cm}^{-1}$
	plate	Temperature	$-150.0{ }^{\circ} \mathrm{C}$
Crystal Dimensions	0.109 X 0.061 X 0.033 mm	Function Minimized	$\Sigma w\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}^{2}\right)^{2}$
Crystal System	triclinic	Least Squares Weights	$1 / \sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)=1 / \sigma^{2}\left(F_{\mathrm{o}}\right) /\left(4 F_{\mathrm{o}}{ }^{2}\right)$
Lattice Type	Primitive	No. Observations ($I>2.00 \sigma(I)$)	10199
Lattice Parameters	$a=11.2584(4) \AA$	No. Variables	1004
	$b=14.6929(8) \AA$	Reflection/Parameter Ratio	10.16
	$c=22.2536(8) \AA$	Residuals: $R_{1}(I>2.00 \sigma(I))$	0.1233
	$\alpha=80.011(4){ }^{\circ}$	Residuals: $w R_{2}(I>2.00 \sigma(I))$	0.1986
	$\beta=86.005(3){ }^{\circ}$	Goodness of Fit Indicator	2.637
	$\gamma=89.135(4)^{\circ}$	Max Shift/Error in Final Cycle	0.001
	$V=3616.5(3) \AA^{3}$	Maximum peak in Final Diff. Map	$0.86 \mathrm{e}^{-} / \AA^{3}$
Space Group	P-1 (\#2)	Minimum peak in Final Diff. Map	$-0.82 \mathrm{e}^{-/} \AA^{3}$
Z value	2		

5. Retro aldol reaction of 4aa.

Scheme S1. Retro aldol reaction of 4aa.

The aldol adduct $\mathbf{4 a a}$ readily converted into the starting chalcone and benzaldehyde upon treatment with various acids/basses, such as HCl aq., TFA, NaHCO_{3} aq., and DMAP (Scheme 3C). ${ }^{5-7}$ In our system, the reversibility appeared to arise from the intramolecular coordination of the carbonyl groups to the Ge(IV) centers in 4aa.

6. Facial selectivity of the reductions of 4 bc and 4 cc .

(A) Reduction of syn-isomer $\mathbf{4 b c}$ to $\mathbf{5 b c}$

(B) Reduction of anti-isomer 4cc to 5cc

Scheme S2. Facial selectivity of the reductions of 4bc and 4cc.

The rigid cyclic structures of the aldol adducts $\mathbf{4 b c}$ and $\mathbf{4 c c}$ and the electrostatic interaction between the boron center and the oxygen atoms of the aldol adducts were expected to allow such a high diastereoselective transformation (Scheme S2).

7. References

(1) CrystalStructure; 4.2; Rigaku Corporation: Tokyo, Japan, 2015.
(2) Lemierre, V.; Chrostowska, A.; Dargelos, A.; Baylère, P.; Leigh, W. J.; Harrington, C. R. Appl. Organomet. Chem. 2004, 18, 676.
(3) Harrington-Frost, N.; Leuser, H.; Calaza, M. I.; Kneisel, F. F.; Knochel, P. Org. Lett. 2003, 5, 2111.
(4) Schott, J. T.; Mordaunt, C. E.; Vargas, A. J.; Leon, M. A.; Chen, K. H.; Singh, M.; Satoh, M.; Cardenas, E. L.; Maitra, S.; Patel, N. V.; de Lijser, H. J. P. Chem. Pharm. Bull. (Tokyo). 2013, 61, 229.
(5) Sweeder, R. D.; Edwards, F. A.; Miller, K. A.; Banaszak Holl, M. M.; Kampf, J. W. Organometallics 2002, 21, 457.
(6) Sweeder, R. D.; Gdula, R. L.; Ludwig, B. J.; Banaszak Holl, M. M.; Kampf, J. W. Organometallics 2003, 22, 3222.
(7) Leigh, W. J.; Harrington, C. R.; Vargas-Baca, I. J. Am. Chem. Soc. 2004, 126, 16105.

