Supporting Information

for

Model Reactions for the Enantioselective Synthesis of $\boldsymbol{\gamma}$-Rubromycin: Stereospecific Intramolecular Photoredox Cyclization of an orhto-Quinone Ether to a Spiroacetal
 Fumihiro Wakita, Yoshio Ando, Ken Ohmori, and Keisuke Suzuki*

Department of Chemistry, Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551, Japan
E-mail: ksuzuki@chem.titech.ac.jp

Table of contents
General experimental procedure S-2
Experimental procedures and characterization data S-3
References S-22
NMR spectra S-23

General experimental procedure

All reactions were performed under an argon atmosphere unless otherwise stated. Ethereal solvents and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (anhydrous; Kanto Chemical Co., Inc.) were purified under argon by using an Organic Solvent Pure Unit (Wako Pure Chemical Industries, Ltd.). DMF, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{Et}_{3} \mathrm{~N}$, and $i-\mathrm{Pr}_{2} \mathrm{NH}$ were distilled prior to use according to the standard protocols. For thin-layer chromatography (TLC) analysis, Merck pre-coated plates (TLC silica gel $60 \mathrm{~F}_{254}$, Art 5715, 0.25 mm) were used. Silica-gel preparative thin-layer chromatography (PTLC) was performed using plates prepared from Merck silica gel $60 \mathrm{PF}_{254}$ (Art 7747). For flash column chromatography, silica gel 60N (Spherical, neutral, 63-210 $\mu \mathrm{m}$) from Kanto Chemical was used. Melting point (mp) determinations were performed using a Yanaco MP-500 instrument or a METTLER TOLEDO MP 70 melting point system, and are uncorrected. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ were measured on a Bruker Avance III $600(600 \mathrm{MHz})$ spectrometer in the solvent indicated; Chemical shifts (δ) are expressed in parts per million (ppm) downfield from internal standard (tetramethylsilane, 0.00 ppm or 7.26 ppm for CDCl_{3}, and 2.04 ppm for acetone $-d_{6}$), and coupling constants (J) are reported as hertz (Hz). Splitting patterns are indicated as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{sept}=$ septet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Infrared (IR) spectra were recorded on a Thermo Fisher SCIENTIFIC NICOLET iS5 FTIR spectrometer. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectra were recorded by using a Thermo Fisher SCIENTIFIC NICOLET iS5 FTIR spectrometer. High-resolution mass spectra (HRMS) were obtained with a Bruker micrOTOF-QII (ESI or APCI). High performance liquid chromatography (HPLC) analyses were performed by a LC-NetII/ADC for controller, a PU-2086 Plus for HPLC pump, and a UV-2075 Plus for UV/Vis detector. Photoreaction was performed using ASAHI SPECTRA Xenon Light Source MAX-303 (VIS). UV-VIS spectrum was recorded by using a JASCO V-650 spectrometer. X-ray crystallographic data was recorded with a RIGAKU R-AXIS RAPID-II IP diffractometer.

benzopyranone $\mathbf{S 2}$

To a solution of $\mathbf{S 1}(2.60 \mathrm{~mL}, 21.6 \mathrm{mmol})$ and diethyl oxalate $(7.8 \mathrm{~mL}, 58 \mathrm{mmol})$ in $\mathrm{EtOH}(320 \mathrm{~mL})$ was added $\mathrm{NaOEt}(7.6 \mathrm{~g}, 112 \mathrm{mmol})$ at room temperature. The reaction was refluxed for 2 h . After cooling to room temperature, the mixture was concentrated in vacuo. The residue was diluted with water and quenched by adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ at $0{ }^{\circ} \mathrm{C}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 3)$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc $=3 / 1$) to afford benzopyranone $\mathbf{S 2}(4.38 \mathrm{~g}, 93 \%)$ as a yellow solid. Spectroscopic data were identical with reported data. ${ }^{[1]}$
benzopyranone S2: $R_{\mathrm{f}} 0.38$ (hexane/EtOAc $=3 / 1$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.42(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$), 4.47 (q, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{ddd}, 1 \mathrm{H}, J=8.0,7.1,1.1 \mathrm{~Hz}), 7.62(\mathrm{dd}, 1 \mathrm{H}, J=8.7,1.1 \mathrm{~Hz}), 7.75(\mathrm{ddd}, 1 \mathrm{H}, J$ $=8.7,7.1,1.8 \mathrm{~Hz}), 8.21(\mathrm{dd}, 1 \mathrm{H}, J=8.0,1.8 \mathrm{~Hz})$.

chromane S3

A flask, thoroughly purged with argon, was charged with $10 \% \mathrm{Pd} / \mathrm{C}(1.17 \mathrm{~g})$, to which was added a solution of benzopyranone $\mathbf{S 2}(4.38 \mathrm{~g}, 20.1 \mathrm{mmol})$ in $\mathrm{EtOH}(120 \mathrm{~mL})$ and $\mathrm{AcOH}(14 \mathrm{~mL})$. The atmosphere was changed from argon to $\mathrm{H}_{2}(1 \mathrm{~atm})$, and the mixture was vigorously stirred for 13 h at room temperature. After changing the atmosphere from H_{2} to argon, the mixture was filtered through a Celite ${ }^{\circledR}$ pad (rinsed with EtOAc) and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane $/ \mathrm{EtOAc}=5 / 1$) to afford chromane $\mathbf{S 3}(3.89 \mathrm{~g}, 94 \%)$ as a pale yellow oil. Spectroscopic data were identical with reported data. ${ }^{[2]}$
chromane S3: $R_{\mathrm{f}} 0.55$ (hexane/EtOAc $=3 / 1$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.29(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$), 2.14-2.22 (m, 1H), 2.22-2.33 (m, 1H), 2.70-2.80 (m, 1H), 2.80-2.90 (m, 1H), 4.26 (q, 2H, $J=7.1 \mathrm{~Hz}), 4.71$ (dd, $1 \mathrm{H}, J=7.6$, $4.1 \mathrm{~Hz}), 6.87(\mathrm{dd}, 1 \mathrm{H}, J=7.8,7.2 \mathrm{~Hz}), 6.93(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.03(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.11(\mathrm{dd}, 1 \mathrm{H}, J=7.8$, 7.2 Hz).
aldehyde 4

To a solution of $\mathbf{S 3}(1.10 \mathrm{~g}, 5.32 \mathrm{mmol})$ in toluene $(8.0 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was added DIBAL-H $(0.61 \mathrm{M}$ solution in hexane, $9.2 \mathrm{~mL}, 5.6 \mathrm{mmol}$) at $-65^{\circ} \mathrm{C}$. After stiring for 4 h at $-65^{\circ} \mathrm{C}$, the reaction was stopped by adding $\mathrm{MeOH}(8.0 \mathrm{~mL})$ at $-65^{\circ} \mathrm{C}$ and allowed to warm to room temperature. The mixture was filtered through a Celite ${ }^{\circledR}$ pad (rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc $=2 / 1$) to afford aldehyde $4(852 \mathrm{mg}, 99 \%)$ as a pale yellow oil. Spectroscopic data were identical with reported data. ${ }^{[2]}$
aldehyde 4: $R_{\mathrm{f}} 0.43$ (hexane/EtOAc $=3 / 1$); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.98-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.91(\mathrm{~m}, 2 \mathrm{H})$, 4.49 (ddd, $1 \mathrm{H}, J=8.7,3.5,0.7 \mathrm{~Hz}), 6.80-6.95(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.17(\mathrm{~m}, 2 \mathrm{H}), 9.83(\mathrm{~s}, 1 \mathrm{H})$.

hydroxynaphthoquinone 5

To a solution of $4(335 \mathrm{mg}, 2.07 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added lawsone ($641 \mathrm{mg}, 3.68 \mathrm{mmol}$), L-proline $(121 \mathrm{mg}, 1.05 \mathrm{mmol})$ and Hantzsch ester $(551 \mathrm{mg}, 2.18 \mathrm{mmol})$ at room temperature. The reaction was refluxed for 10 h . After cooling to room temperature, the mixture was concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc $=6 / 1$) to afford hydroxynaphthoquinone $5(500 \mathrm{mg}, 76 \%)$ as an orange solid.
hydroxynaphthoquinone 5 (racemic): $R_{\mathrm{f}} 0.28$ (hexane/EtOAc $=3 / 1$); mp $145-147{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.80-1.88(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{dd}, 1 \mathrm{H}, J=13.2,6.0 \mathrm{~Hz}), 3.13(\mathrm{dd}, 1 \mathrm{H}, J=$ $13.2,7.2 \mathrm{~Hz}), 4.34-4.39(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.81(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.05$ (t, 1H, $J=7.8 \mathrm{~Hz}), 7.55(\mathrm{br}-\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 7.70(\mathrm{dd}, 1 \mathrm{H}, J=7.8,7.2 \mathrm{~Hz}), 7.77(\mathrm{dd}, 1 \mathrm{H}, J=7.8,7.2 \mathrm{~Hz}), 8.11(\mathrm{~d}, 1 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), 8.15(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.4,27.3,29.3,74.4,116.8,120.13,120.19$, $121.8,126.2,126.9,127.1,129.4,129.5,132.8,133.0,135.0,154.4,154.5,181.2,184.5$; IR (neat) 3343,1669 , 1634, 1592, 1587, 1494, 1458, 1340, 1273, 1229, 1073, 1048, 999, 725, $676 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) m / z$ 321.1121, found $m / z 321.1118$.

naphthoquinone 6

To a solution of $5(238 \mathrm{mg}, 0.742 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.7 \mathrm{~mL})$ was added $i-\mathrm{Pr}_{2} \mathrm{NEt}(260 \mu \mathrm{~L}, 1.48 \mathrm{mmol})$ and $\operatorname{MOMCl}(90 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ at room temperature. After stirring for 40 min , the reaction was quenched by adding saturated aqueous NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 3)$, and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc $=5 / 1)$ to afford naphthoquinone $6(253 \mathrm{mg}, 93 \%)$ as a yellow oil.
naphthoquinone 6: $R_{\mathrm{f}} 0.46$ (hexane/EtOAc $\left.=5 / 1\right)$) ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right) \delta 1.73-1.81(\mathrm{~m}, 1 \mathrm{H}), 2.08-$ $2.13(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.82(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{dd}, 1 \mathrm{H}, J=12.6,7.2 \mathrm{~Hz}), 3.18(\mathrm{dd}, 1 \mathrm{H}, J=12.6,6.9 \mathrm{~Hz}), 3.54(\mathrm{~s}, 3 \mathrm{H})$, 4.33-4.38(m, 1H), $5.51(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 5.54(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.75-6.79(\mathrm{~m}, 1 \mathrm{H})$, 6.99-7.04 (m, 2H), 7.82-7.87 (m, 2H), 8.05-8.08 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (150 MHz , acetone- d_{6}) $\delta 25.0,28.1,30.5$, $57.8,75.4,99.6,117.4,120.8,122.9,126.8,126.9,127.8,130.3,132.2,132.5,132.9,134.4,135.0,155.7,157.9$, 182.1, 185.7; IR (ATR) 3018, 2930, 2848, 1670, 1610, 1581, 1488, 1457, 1340, 1296, 1231, 1159, 1073, 950, 903, $756,726,667 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \mathrm{m} / \mathrm{z} 387.1203$, found $m / z 387.1209$.

naphthalene 7

A flask, thoroughly purged with argon, was charged with $10 \% \mathrm{Pd} / \mathrm{C}(7.8 \mathrm{mg})$, to which was added a solution of naphthoquinone $6(61.4 \mathrm{mg}, 0.168 \mathrm{mmol})$ in DMF $(1.1 \mathrm{~mL})$ at room temperature. The atmosphere was changed from argon to $\mathrm{H}_{2}(1 \mathrm{~atm})$, and the mixture was vigorously stirred for 1 h at room temperature. After changing the atmosphere from H_{2} to argon, the mixture was added NaH (63% dispersion in oil, $25.7 \mathrm{mg}, 0.674 \mathrm{mmol}$) and $(\mathrm{MeO}){ }_{2} \mathrm{SO}_{2}(32 \mu \mathrm{~L}, 0.34 \mathrm{mmol})$. The atmosphere was changed from argon to $\mathrm{H}_{2}(1 \mathrm{~atm})$, and the mixture was vigorously stirred for 9 h at room temperature. After changing the atmosphere from H_{2} to argon, the mixture was stopped by adding diethylamine ($174 \mu \mathrm{~L}, 1.68 \mathrm{mmol}$) and water at $0^{\circ} \mathrm{C}$ and filtered through a Celite ${ }^{\circledR}$ pad (rinsed with EtOAc$)$. The mixture was extracted with $\mathrm{EtOAc}(\times 3)$, and the combined organic extracts were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was purified by PTLC (silica gel, hexane/EtOAc $=4 / 1)$ to afford naphthalene $7(60.3 \mathrm{mg}, 91 \%)$ as a pale yellow oil. Racemic mixture of 7 were separated by preparative HPLC on a chiral stationary phase [DAICEL CHIRALPAK ${ }^{\circledR}$ IF (2 cm $\varphi \times 25 \mathrm{~cm}), \mathrm{UV}$ detection at 254 nm , hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $8.0 \mathrm{~mL} / \mathrm{min}$] to give $(S)-7\left(\mathrm{t}_{R}=32.2 \mathrm{~min}\right)$
as a pale yellow oil and $(R)-7\left(\mathrm{t}_{R}=38.2 \mathrm{~min}\right)$ as a pale yellow oil.

Enantiomeric purity of 7 was assessed by HPLC analysis on a chiral stationary phase [DAICEL CHIRALPAK ${ }^{\circledR}$ IF $(0.46 \mathrm{~cm} \varphi \times 25 \mathrm{~cm})$, UV detection at 254 nm , hexane $/ i-\mathrm{PrOH}=99 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R}}=14.5 \mathrm{~min}$ for (S)-isomer and 17.1 min for (R)-isomer.]

naphthalene 7: $R_{\mathrm{f}} 0.49$ (hexane $\left./ \mathrm{EtOAc}=5 / 1\right) ;(S)-7, t_{\mathrm{R}}=14.5 \mathrm{~min},[\alpha]_{\mathrm{D}}{ }^{20}+45\left(c 0.92, \mathrm{CHCl}_{3}\right) ;(R)-7, t_{\mathrm{R}}=17.1$ $\min [\alpha]_{\mathrm{D}}{ }^{20}-49\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.81-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.80$ (m, 2H), $3.19(\mathrm{dd}, 1 \mathrm{H}, J=13.2,7.8 \mathrm{~Hz}), 3.43(\mathrm{dd}, 1 \mathrm{H}, J=13.2,6.0 \mathrm{~Hz}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H})$, 4.44-4.50(m, 1H), $5.29(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 5.33(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}), 6.77(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.81(\mathrm{t}, 1 \mathrm{H}, J=7.2$ $\mathrm{Hz}), 7.03(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.06(\mathrm{dd}, 1 \mathrm{H}, J=8.4,7.2 \mathrm{~Hz}), 7.44-7.51(\mathrm{~m}, 2 \mathrm{H}), 8.03(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 8.09(\mathrm{~d}$, $1 \mathrm{H}, J=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 24.8,27.0,31.3,57.7,61.0,62.3,75.7,99.6,116.7,119.9,121.7$, $122.25,122.34,123.4,125.1,125.6,126.0,127.0,128.5,129.5,143.2,146.1,151.3,155.1$; IR (ATR) 2935, 2844, 1582, 1488, 1457, 1361, 1358, 1238, 1160, 1070, $1040 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ $m / z 417.1673$, found $m / z 417.1674$.

phenol 8

To a solution of $7(236 \mathrm{mg}, 0.598 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL})$ was added TFA $(0.6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 20 min , the reaction was quenched by adding saturated aqueous NaHCO_{3} at $0^{\circ} \mathrm{C}$. The mixture was extracted with EtOAc $(\times 3)$, and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by PTLC (silica gel, hexane/EtOAc $=2 / 1$) to afford phenol $\mathbf{8}(192 \mathrm{mg}, 92 \%)$ as a pale yellow solid.

According to the same procedure, $(R)-7$ and $(S)-\mathbf{7}$ were converted to $(R)-\mathbf{8}$ and $(S)-\mathbf{8}$, respectively.
phenol 8: $R_{\mathrm{f}} 0.39$ (hexane/EtOAc $\left.=5 / 1\right) ;(S) \mathbf{- 8},[\alpha]_{\mathrm{D}}{ }^{20}+21\left(c 1.05, \mathrm{CHCl}_{3}\right) ;(R)-\mathbf{8},[\alpha]_{\mathrm{D}}{ }^{20}-21\left(c 0.99, \mathrm{CHCl}_{3}\right)$; mp $110-111^{\circ} \mathrm{C}$ (racemic); ${ }^{1} \mathrm{H}$ NMR (600 MHz , acetone- d_{6}) $\delta 1.74-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.79(\mathrm{~m}$, $2 \mathrm{H}), 3.18(\mathrm{dd}, 1 \mathrm{H}, J=13.2,7.8 \mathrm{~Hz}), 3.37(\mathrm{dd}, 1 \mathrm{H}, J=13.2,6.6 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 4.45-4.51(\mathrm{~m}, 1 \mathrm{H})$, $6.71(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.77(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.00-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{dd}, 1 \mathrm{H}, J=7.8,7.2 \mathrm{~Hz}), 7.47(\mathrm{dd}, 1 \mathrm{H}$, $J=7.8,7.2 \mathrm{~Hz}), 7.95(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.01(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}$, acetone $\left.-d_{6}\right) \delta 25.3,27.9,31.6,61.7,62.7,76.2,117.3,120.1,120.7,121.4,123.1,123.4,123.9,124.1,126.9$, $127.8,128.9,130.4,137.7,146.6,152.6,155.9$; IR (neat) $3364,2952,1624,1598,1582,1487,1458,1365,1276$, 1226, 1192, 1067, 1037, 969, 770, $735 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z}$ 351.1591, found $m / z 351.1592$.

naphthoquinone 9

To a solution of naphthalene $8(22.3 \mathrm{mg}, 0.0636 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1.3 \mathrm{~mL})$ and water (0.40 mL) was added diacetoxyiodobenzene $(24.6 \mathrm{mg}, 0.0764 \mathrm{mmol})$ at room temperature. After stirring for 10 min , the reaction was quenched by saturated aqueous NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$ and poured into a mixed solvent of water and EtOAc. The mixture was extracted with EtOAc $(\times 3)$, and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was purified by PTLC (silica gel, hexane/EtOAc $=3 / 2$) to afford naphthoquinone $9(18.7 \mathrm{mg}, 88 \%)$ as an orange solid.

According to the same procedure, $(R)-\mathbf{8}$ and $(S)-\mathbf{8}$ were converted to $(R)-\mathbf{9}$ and $(S)-\mathbf{9}$, respectively.
naphthoquinone 9: $R_{\mathrm{f}} 0.40$ (hexane/EtOAc $=3 / 1$); $(S)-9,[\alpha]_{\mathrm{D}}{ }^{20}-127\left(c 0.82, \mathrm{CHCl}_{3}\right) ;(R)-9,[\alpha]_{\mathrm{D}}{ }^{20}+114(c 0.78$, CHCl_{3}); mp 126-128 ${ }^{\circ} \mathrm{C}$ (racemic); ${ }^{1} \mathrm{H}$ NMR (600 MHz , acetone- d_{6}) $\delta 1.70-1.77(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.15(\mathrm{~m}, 1 \mathrm{H})$, $2.77-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{dd}, 1 \mathrm{H}, J=13.2,6.6 \mathrm{~Hz}), 3.02(\mathrm{dd}, 1 \mathrm{H}, J=13.2,7.2 \mathrm{~Hz}), 4.11(\mathrm{~s}, 3 \mathrm{H}), 4.23-4.28(\mathrm{~m}$, $1 \mathrm{H}), 6.68(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.75-6.79(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{dd}, 1 \mathrm{H}, J=7.2,6.6 \mathrm{~Hz}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.60-$ $7.64(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.84(\mathrm{~m}, 2 \mathrm{H}), 8.01(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , acetone- $\left.d_{6}\right) \delta 25.2,28.2,30.7$, $62.6,75.1,117.3,120.8,122.9,126.2,126.3,127.8,129.6,130.4,131.5,131.6,133.4,136.2,155.7,167.9,179.4$, 182.2; IR (neat) 2943, 2838, 1692, 1652, 1608, 1582, 1488, 1455, 1349, 1273, 1230, 1219, 1116, 1088, 1061, 961, 885, 785, 759, 735, $705 \mathrm{~cm}^{-1}$; UV-Vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max } \mathrm{nm}(\varepsilon)=415$ (1652), 331 (1512), 254 (21916); HRMS (ESI-TOF) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) m / z$ 335.1278, found $m / z 335.1271$.
spiroacetal 10

fluorescent light irradiation

To a solution of naphthoquinone $9(27.3 \mathrm{mg}, 0.0816 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(8.1 \mathrm{~mL})$ was placed in a Pyrex ${ }^{\circledR}$ two necked round bottomed flask, and degassed three times by purging with argon under sonication. The solution was irradiated by visible light (Panasonic FHF32EX-D-H, 32W; distance from flask: ca. 1 m) for 156 h at room temperature. The reaction was concentrated in vacuo. The residue was purified by column PTLC (silica gel, hexane $/ \mathrm{EtOAc}=3 / 2$) to afford spiroacetal $10(14.7 \mathrm{mg}, 55 \%)$ as a white solid, naphthoquinone $9(2.5 \mathrm{mg}, 9 \%)$ as an orange solid, and trace amount of alcohol 11.
xenon lamp irradiation

To a solution of naphthoquinone $9(19.1 \mathrm{mg}, 0.0577 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5.8 \mathrm{~mL})$ was placed in a pyrex ${ }^{\circledR}$ two necked round bottomed flask, and degassed three times by purging with argon under sonication. The solution was irradiated by visible light (asahi spectra 300 W xenon lamp, $>380 \mathrm{~nm}$) for 20 min at room temperature. The reaction was concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane $/ \mathrm{EtOAc}=6 / 1)$ to afford spiroacetal $\mathbf{1 0}(13.7 \mathrm{mg}, 71 \%)$ as a white solid, alcohol $\mathbf{1 1}(2.3 \mathrm{mg}, 12 \%)$ as a pale yellow solid, and naphthoquinone $9(1.5 \mathrm{mg}, 8 \%)$ as an orange solid.
spiroacetal 10 (racemic): $R_{\mathrm{f}} 0.48$ (hexane/EtOAc $=3 / 1$); mp $153{ }^{\circ} \mathrm{C}$ (decomp.); ${ }^{1} \mathrm{H}$ NMR (600 MHz , acetone- d_{6}) δ $2.27(\operatorname{td}, 1 \mathrm{H}, J=13.2,5.4 \mathrm{~Hz}), 2.45(\mathrm{ddd}, 1 \mathrm{H}, J=13.2,5.7,2.1 \mathrm{~Hz}), 2.83-2.89(\mathrm{~m}, 1 \mathrm{H}), 3.14-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.70$ $(\mathrm{s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 6.72(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 6.95(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.13(\mathrm{dd}, 1 \mathrm{H}, J=7.8,7.2 \mathrm{~Hz}), 7.18(\mathrm{~d}, 1 \mathrm{H}$, $J=7.2 \mathrm{~Hz}), 7.33(\mathrm{dd}, 1 \mathrm{H}, J=7.8,7.2 \mathrm{~Hz}), 7.40(\mathrm{dd}, 1 \mathrm{H}, J=8.4,7.2 \mathrm{~Hz}), 8.02(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.09(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.8 \mathrm{~Hz}), 8.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , acetone $-d_{6}$) $\delta 22.4,30.7,41.3,60.6,110.6,116.8,117.7$, 122.01, $122.02,122.4,122.8,124.0,125.1,125.7,127.7,128.3,130.1,130.2,142.0,145.4,153.4$; IR (neat) 3380,2924 , 1650, 1642, 1585, 1492, 1433, 1379, 1310, 1206, 1175, 1093, 982, 955, 917, 832, 751, $636 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right) m / z 335.1278$, found $m / z 335.1272$.
${ }^{1} \mathrm{H}: \delta 3.70$

alcohol 11 (racemic): $R_{\mathrm{f}} 0.38$ (hexane/EtOAc $=3 / 1$); mp $149-151^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (600 MHz , acetone- d_{6}) $\delta 1.45$ (dt, $1 \mathrm{H}, J=13.8,2.4 \mathrm{~Hz}), 1.85(\mathrm{dt}, 1 \mathrm{H}, J=13.8,3.0 \mathrm{~Hz}), 2.29(\mathrm{dd}, 1 \mathrm{H}, J=16.2,3.0 \mathrm{~Hz}), 3.59(\mathrm{dd}, 1 \mathrm{H}, J=16.2,8.4$ $\mathrm{Hz}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.05-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 4.87(\mathrm{dtd}, 1 \mathrm{H}, J=9.6,3.0,2.4 \mathrm{~Hz}), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=7.8$ $\mathrm{Hz}), 6.83(\mathrm{td}, 1 \mathrm{H}, J=7.2,0.6 \mathrm{~Hz}), 7.16(\mathrm{td}, 1 \mathrm{H}, J=7.2,1.2 \mathrm{~Hz}), 7.22(\mathrm{dd}, 1 \mathrm{H}, J=7.8,0.6 \mathrm{~Hz}), 7.45(\mathrm{td}, 1 \mathrm{H}, J=$ $7.8,0.6 \mathrm{~Hz}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.67(\mathrm{td}, 1 \mathrm{H}, J=7.8,1.2 \mathrm{~Hz}), 7.90(\mathrm{td}, 1 \mathrm{H}, J=7.8,1.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , acetone $-d_{6}$) $\delta 26.7,28.6,32.4,61.0,69.7,75.6,117.9,120.0,123.2,123.6,125.1,128.3,128.8,129.3,130.0$, $134.8,135.1,135.5,151.5,153.5,198.2$; IR (neat) $3413,2951,2928,2851,1703,1597,1582,1485,1454,1272$, $1218,1078,1048,1009,958,757,718,683 \mathrm{~cm}^{-1}$; HRMS (ESI-TOF) calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) \mathrm{m} / \mathrm{z}$ 357.1097, found $m / z 357.1093$.

Table S-1. Optimization of photoredox reaction of (S)-(-)-9.

Enantiomeric purity of $(R)-\mathbf{1 0}$ was assessed by HPLC analysis on a chiral stationary phase [DAICEL CHIRALPAK ${ }^{\circledR}$ IB $(0.46 \mathrm{~cm} \varphi \times 25 \mathrm{~cm})$, UV detection at 254 nm , hexane $/ \mathrm{EtOAc}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R}}$ $=8.9 \mathrm{~min}$ for (R)-isomer, and 10.1 min for (S)-isomer]

Each HPLC analyses in Table S-1 are shown as follows. Some chromatograms contain a few impurities due to lability of $\mathbf{1 0}$.

Recemic material of spiroacetal 10

entry $1\left(\mathrm{CH}_{3} \mathrm{CN}\right.$, rt, $\left.53 \% e e\right)$
To a solution of naphthoquinone $(S)-9(18.8 \mathrm{mg}, 0.0562 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5.6 \mathrm{~mL})$ was placed in a Pyrex ${ }^{\circledR}$ two necked round bottomed flask, and degassed three times by purging with argon under sonication. The solution was
irradiated by visible light (asahi spectra 300 W xenon lamp, $>380 \mathrm{~nm}$) for 20 min at room temperature. The reaction was concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane $/ \mathrm{EtOAc}=6 / 1$) to afford spiroacetal $(R)-\mathbf{1 0}(12.9 \mathrm{mg}, 69 \%, 53 \% \mathrm{ee})$ as a white solid, alcohol $\mathbf{1 1}(3.4 \mathrm{mg}$, $18 \%)$ as a pale yellow solid, and naphthoquinone $(S)-9(1.3 \mathrm{mg}, 7 \%)$ as an orange solid.

	$\mathrm{tR} / \mathrm{min}$	peak area	peak area\%
$(R)-10$	8.983	1152907	76.299
$(S)-10$	10.042	358132	23.701

entry 2 (toluene, rt, $12 \% \mathrm{ee}$)
According to the synthesis of (R) - 10, 1,2-quinone $(S) \mathbf{- 9}(6.4 \mathrm{mg}, 0.019 \mathrm{mmol})$ in tolulene $(1.9 \mathrm{~mL})$ was irradiated for 20 min at room temperature and resulted crude material was purified by PTLC (silica gel, hexane/EtOAc $=$ $2 / 1)$ to afford $(R)-\mathbf{1 0}(0.6 \mathrm{mg}, 10 \%, 12 \% e e)$ as a while solid, $\mathbf{1 1}(0.3 \mathrm{mg}, 5 \%)$ as a pale yellow solid, and $(S)-\mathbf{9}$ $(1.0 \mathrm{mg}, 16 \%)$ as a orange solid.

	$\mathrm{tR} / \mathrm{min}$	peak area	peak area\%
$(R)-10$	9.225	344540	55.922
$(S)-10$	10.367	271567	44.078

entry 3 (THF, rt, 13\%ee)
According to the synthesis of $(R) \mathbf{- 1 0}, 1,2$-quinone $(S)-\mathbf{9}(6.0 \mathrm{mg}, 0.018 \mathrm{mmol})$ in THF $(1.8 \mathrm{~mL})$ was irradiated for S-11

20 min at room temperature and resulted crude material was purified by PTLC (silica gel, hexane/EtOAc $=3 / 2$) to afford $(R)-\mathbf{1 0}(2.0 \mathrm{mg}, 33 \%, 13 \% \mathrm{ee})$ as a while solid and $(S)-\mathbf{9}(1.1 \mathrm{mg}, 18 \%)$ as a orange solid.

	$\mathrm{tR} / \mathrm{min}$	peak area	peak area\%
$(R)-10$	8.883	158157	56.667
$(S)-10$	9.992	120944	43.333

entry 4 (acetone, rt, $42 \% e e$)
According to the synthesis of $(R) \mathbf{- 1 0}, 1,2$-quinone $(S) \mathbf{- 9}(6.1 \mathrm{mg}, 0.018 \mathrm{mmol})$ in acetone $(1.8 \mathrm{~mL})$ was irradiated for 20 min at room temperature and resulted crude material was purified by PTLC (silica gel, hexane/EtOAc $=$ $3 / 2)$ to afford $(R) \mathbf{- 1 0}(2.1 \mathrm{mg}, 34 \%, 42 \% e e)$ as a while solid, $\mathbf{1 1}(0.3 \mathrm{mg}, 5 \%)$ as a pale yellow solid, and (S)-9 $(1.8 \mathrm{mg}, 29 \%)$ as a orange solid.

	$\mathrm{tR} / \mathrm{min}$	peak area	peak area\%
$(R)-10$	8.867	709241	71.204
$(S)-10$	9.967	286832	28.796

entry $5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 31 \% e e\right)$
According to the synthesis of (R)-10, 1,2-quinone $(S)-\mathbf{9}(6.3 \mathrm{mg}, 0.019 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.9 \mathrm{~mL})$ was irradiated for 20 min at room temperature and resulted crude material was purified by PTLC (silica gel, hexane/EtOAc $=$ S-12

3/2) to afford $(R) \mathbf{- 1 0}(2.9 \mathrm{mg}, 46 \%, 31 \% e e)$ as a while solid and $\mathbf{1 1}(1.0 \mathrm{mg}, 16 \%)$ as a pale yellow solid.

	$\mathrm{tR} / \mathrm{min}$	peak area	peak area\%
$(R)-10$	8.858	455817	65.274
$(S)-10$	9.942	242498	34.726

entry 6 (MeOH, rt, 77\%ee)
According to the synthesis of $(R) \mathbf{- 1 0}, 1,2$-quinone $(S) \mathbf{- 9}(5.8 \mathrm{mg}, 0.017 \mathrm{mmol})$ in $\mathrm{MeOH}(1.7 \mathrm{~mL})$ was irradiated for 20 min at room temperature and resulted crude material was purified by column chromatography (silica gel, hexane/EtOAc $=6 / 1)$ to afford $(R)-10(3.7 \mathrm{mg}, 64 \%, 77 \% e e)$ as a while solid, $11(0.6 \mathrm{mg}, 10 \%)$ as a pale yellow solid, and (S)-9 (0.4 mg, 7\%) as a orange solid.

	$\mathrm{tR} / \mathrm{min}$	peak area	peak area\%
$(R)-10$	8.783	5609841	88.437
$(S)-10$	9.950	733450	11.563

entry 7 ($\mathrm{EtOH}, \mathrm{rt}, 61 \% \mathrm{ee}$)
According to the synthesis of $(R) \mathbf{- 1 0}, 1,2$-quinone $(S) \mathbf{- 9}(14.9 \mathrm{mg}, 0.0446 \mathrm{mmol})$ in EtOH $(4.5 \mathrm{~mL})$ was irradiated for 20 min at room temperature and resulted crude material was purified by column chromatography (silica gel, hexane $/ \mathrm{EtOAc}=6 / 1$) to afford $(R) \mathbf{- 1 0}(7.6 \mathrm{mg}, 51 \%, 61 \% \mathrm{ee})$ as a while solid, $\mathbf{1 1}(3.1 \mathrm{mg}, 21 \%)$ as a pale yellow solid, and $(S)-\mathbf{9}(1.0 \mathrm{mg}, 7 \%)$ as a orange solid.

	$\mathrm{tR} / \mathrm{min}$	peak area	peak area\%
$(R)-10$	8.750	296476	80.565
$(S)-10$	9.817	71519	19.435

entry 8 ($i-\mathrm{PrOH}, \mathrm{rt}, 45 \% \mathrm{ee}$)
According to the synthesis of $(R) \mathbf{- 1 0}, 1,2$-quinone $(S)-9(14.8 \mathrm{mg}, 0.0443 \mathrm{mmol})$ in $i-\mathrm{PrOH}(4.4 \mathrm{~mL})$ was irradiated for 20 min at room temperature and resulted crude material was purified by column chromatography (silica gel, hexane $/ \mathrm{EtOAc}=6 / 1)$ to afford $(R)-10(6.5 \mathrm{mg}, 44 \%, 45 \% e e)$ as a while solid, $11(1.6 \mathrm{mg}, 11 \%)$ as a pale yellow solid, and $(S)-9(1.5 \mathrm{mg}, 10 \%)$ as a orange solid.

	tR / \min	peak area	peak area\%
$(R)-10$	8.667	1072964	72.564
$(S)-10$	9.742	405680	27.436

entry $9\left(\mathrm{MeOH}, 0^{\circ} \mathrm{C}, 82 \% \mathrm{ee}\right)$
According to the synthesis of $(R) \mathbf{- 1 0}, 1,2$-quinone $(S) \mathbf{- 9}(17.3 \mathrm{mg}, 0.0517 \mathrm{mmol})$ in $\mathrm{MeOH}(5.2 \mathrm{~mL})$ was irradiated for 70 min at $0^{\circ} \mathrm{C}$ and resulted crude material was purified by column chromatography (silica gel, hexane $/ \mathrm{EtOAc}=6 / 1)$ to afford $(R)-10(11.2 \mathrm{mg}, 65 \%, 82 \% e e)$ as a while solid, $\mathbf{1 1}(1.6 \mathrm{mg}, 9 \%)$ as a pale yellow solid, and $(S)-9(0.9 \mathrm{mg}, 5 \%)$ as a orange solid.

	$\mathrm{tR} / \mathrm{min}$	peak area	peak area\%
$(R)-10$	8.642	6694151	90.844
$(S)-10$	9.842	674676	9.156

entry 10 (MeOH, $-40^{\circ} \mathrm{C}, 87 \%$ ee)
According to the synthesis of (R) - $\mathbf{1 0}$, 1,2-quinone $(S)-9(15.6 \mathrm{mg}, 0.0467 \mathrm{mmol})$ in $\mathrm{MeOH}(4.7 \mathrm{~mL})$ was irradiated for 2 h at $-40^{\circ} \mathrm{C}$ and resulted crude material was purified by column chromatography (silica gel, hexane $/ \mathrm{EtOAc}=6 / 1)$ to afford $(R) \mathbf{- 1 0}(10.9 \mathrm{mg}, 70 \%, 87 \% e e)$ as a while solid, $\mathbf{1 1}(1.6 \mathrm{mg}, 10 \%)$ as a pale yellow solid, and $(S)-9(1.2 \mathrm{mg}, 8 \%)$ as a orange solid.

entry 11 (MeOH, $-78^{\circ} \mathrm{C}, 98 \%$ ee)
According to the synthesis of (R) - $\mathbf{1 0}$, 1,2 -quinone $(S)-\mathbf{9}(12.4 \mathrm{mg}, 0.0371 \mathrm{mmol})$ in $\mathrm{MeOH}(3.7 \mathrm{~mL})$ was irradiated for 3 h at $-78^{\circ} \mathrm{C}$ and resulted crude material was purified by column chromatography (silica gel, hexane $/ \mathrm{EtOAc}=6 / 1)$ to afford $(R)-\mathbf{1 0}(4.2 \mathrm{mg}, 34 \%, 98 \% e e)$ as a while solid and $(S)-9(3.6 \mathrm{mg}, 29 \%)$ as a orange solid.

	$\mathrm{tR} / \mathrm{min}$	peak area	peak area\%
$(R)-10$	9.075	3198076	99.141
$(S)-10$	10.267	27696	0.859

entry $12\left(\mathrm{MeOH} / \mathrm{CH}_{3} \mathrm{CN}=3 / 1,-78{ }^{\circ} \mathrm{C}, 98 \% e e\right)$

According to the synthesis of $(R) \mathbf{- 1 0}, 1,2$-quinone $(S)-\mathbf{9}(12.6 \mathrm{mg}, 0.0377 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.94 \mathrm{~mL})$ and MeOH (2.8 mL) was irradiated for 3 h at $-78^{\circ} \mathrm{C}$ and resulted crude material was purified by column chromatography (silica gel, hexane/EtOAc $=6 / 1)$ to afford $(R)-10(8.6 \mathrm{mg}, 68 \%, 98 \% e e)$ as a while solid and $(S)-9(1.7 \mathrm{mg}, 13 \%)$ as an orange solid.
spiroacetal (R)-10 (98\% ee): mp $153{ }^{\circ} \mathrm{C}$ (decomp.); $[\alpha]_{\mathrm{D}}{ }^{20}-159\left(c 0.210, \mathrm{CHCl}_{3}\right)$.

	$\mathrm{tR} / \mathrm{min}$	peak area	peak area\%
$(R)-10$	8.742	7002934	99.163
$(S)-10$	9.975	59120	0.837

For the determination of absolute stereochemistry

carboxylic acid $\mathbf{1 2}$

To a solution of $\mathbf{S - 3}(1.35 \mathrm{~g}, 6.55 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(24 \mathrm{~mL})$ and THF $(6.0 \mathrm{~mL})$ was added $\mathrm{NaOH}(10.5 \mathrm{~g}, 26.3$ mmol) at room temperature. After stiring for 1 h , the reaction was washed with $\mathrm{Et}_{2} \mathrm{O}(\times 3)$. The aqueous layer was acidified by adding aqueous 1 M HCl at $0^{\circ} \mathrm{C}$. The mixture was extracted with t - $\mathrm{BuOMe}(\times 3)$, and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. This crude material was used for the next experiment without further purification. Spectroscopic data were identical with reported data. ${ }^{[2]}$
carboxylic acid 12: ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.13-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.86(\mathrm{~m}, 1 \mathrm{H})$, $2.86-2.94(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{dd}, 1 \mathrm{H}, J=8.6,3.4 \mathrm{~Hz}), 6.92(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.93(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.07(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.4 \mathrm{~Hz}), 7.17(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 10.6(\mathrm{brs}, 1 \mathrm{H})$.
carboxylic acid (R)-12

To a solution of $12(97.4 \mathrm{mg}, 0.547 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(490 \mu \mathrm{~L})$ and t - $\mathrm{BuOMe}(420 \mu \mathrm{~L})$ was added (R)-(-)-1-phenylpropylamine ($50 \mu \mathrm{~L}, 0.0348 \mathrm{mmol}$) in t-BuOMe $(80 \mu \mathrm{~L})$ dropwise at room temperature. The reaction mixture was seeded with white precipitate. After stiring for 0.5 h , the reaction was diluted with t - BuOMe $(400 \mu \mathrm{~L})$ and the mixture was further stirred for 5.5 h . The mixture was filtered and the filter cake was rinsed with t-BuOMe to afford (R)-S-4 ($80.3 \mathrm{mg}, 48 \%$) as a white solid. This crude material was used for the next experiment without further purification. To a solution of the crude material, including (R)-S-4 ($80.3 \mathrm{mg}, 0.263 \mathrm{mmol}$), in t - $\mathrm{BuOMe}(1.1 \mathrm{~mL})$ was added aqueous $6 \mathrm{M} \mathrm{HCl}(0.930 \mathrm{~mL})$ at room temperature. After stiring for 10 min , the mixture was extracted with t - $\mathrm{BuOMe}(\times 3)$, and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo to afford the caboxylic acid (R) - $\mathbf{1 2}$ ($32.5 \mathrm{mg}, 68 \%, 33 \%$ from caboxylic acid 12). Spectroscopic data were identical with reported data. ${ }^{[3]}$
caboxylic $\operatorname{acid}(R)-12:[\alpha]_{\mathrm{D}}{ }^{20}-4.1(c 0.67, \mathrm{MeOH})$, lit. $[\alpha]_{\mathrm{D}}{ }^{20}-6.3(c 1.05, \mathrm{MeOH})$.
methyl ester (R)-S-5

To a solution of $(R)-12(30.1 \mathrm{mg}, 0.169 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mu \mathrm{~L})$ and $\mathrm{MeOH}(40 \mu \mathrm{~L})$ was added trimethylsilyldiazomethane (0.60 M solution in hexane, $340 \mu \mathrm{~L}, 0.203 \mathrm{mmol}$) at room temperature. The reaction was concentrated in vacuo. The residue was purified by PTLC (silica gel, hexane/EtOAc $=3 / 1$) to afford methyl ester (R)-S-5 ($25.8 \mathrm{mg}, 81 \%$) as a colorless oil. Spectroscopic data were identical with reported data. ${ }^{[4]}$
methyl ester (R)-S-5: $R_{\mathrm{f}} 0.49$ (hexane/EtOAc $\left.=4 / 1\right) ;[\alpha]_{\mathrm{D}}{ }^{20}:-4.9\left(c=2.0, \mathrm{CHCl}_{3}\right)$, lit. $[\alpha]_{\mathrm{D}}{ }^{20}-6.9,\left(c 3.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1}{ }^{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.15-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.89(\mathrm{~m}, 1 \mathrm{H}), 3.80$ (s, 3H), $4.74(\mathrm{dd}, 1 \mathrm{H}, J=7.7,3.5 \mathrm{~Hz}), 6.87(\mathrm{td}, 1 \mathrm{H}, J=7.4,1.1 \mathrm{~Hz}), 6.93(\mathrm{dd}, 1 \mathrm{H}, J=8.2,0.8 \mathrm{~Hz}), 7.03(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.4 \mathrm{~Hz}), 7.12(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz})$.
aldehyde (R)-4

To a solution of (R)-S-5 $(25.8 \mathrm{mg}, 0.125 \mathrm{mmol})$ in toluene $(200 \mu \mathrm{~L})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mu \mathrm{~L})$ was added DIBAL-H (0.61 M solution in hexane, $220 \mu \mathrm{~L}, 0.131 \mathrm{mmol}$) at $-65^{\circ} \mathrm{C}$. After stiring for 4 h at $-65^{\circ} \mathrm{C}$, the reaction was stopped by adding $\mathrm{MeOH}(100 \mu \mathrm{~L})$ at $-65^{\circ} \mathrm{C}$ and allowed to warm to room temperature. The mixture was filtered through a Celite ${ }^{\circledR}$ pad (rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane $/ \mathrm{EtOAc}=2 / 1$) to afford aldehyde $(R)-\mathbf{4}$ $(18.8 \mathrm{mg}, 93 \%)$ as a pale yellow oil. Spectroscopic data were identical with reported data. ${ }^{[2]}$
aldehyde $(R)-4:[\alpha]_{\mathrm{D}}{ }^{20}:-79\left(c=0.56, \mathrm{CHCl}_{3}\right)$.
hydroxynaphthoquinone (R)-5

To a solution of $(R)-4(18.8 \mathrm{mg}, 0.116 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added lawsone ($36.3 \mathrm{mg}, 0.209 \mathrm{mmol}$),

L-proline ($6.7 \mathrm{mg}, 0.058 \mathrm{mmol}$) and Hantzsch ester ($29.4 \mathrm{mg}, 0.116 \mathrm{mmol}$) at room temperature. After refluxed for 10 h , the mixture was concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane $/ \mathrm{EtOAc}=6 / 1)$ to afford hydroxynaphthoquinone $(R)-5(29.1 \mathrm{mg}, 78 \%)$ as an orange solid.
hydroxynaphthoquinone $(R)-5:[\alpha]_{\mathrm{D}}{ }^{20}:-73\left(c=0.60, \mathrm{CHCl}_{3}\right)$.
naphthoquinone (R)-6

To a solution of $(R)-5(16.0 \mathrm{mg}, 0.0500 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mu \mathrm{~L})$ was added $i-\mathrm{Pr}_{2} \mathrm{NEt}(18 \mu \mathrm{~L}, 0.10 \mathrm{mmol})$ and $\mathrm{MOMCl}(6.0 \mu \mathrm{~L}, 0.080 \mathrm{mmol})$ at room temperature. After stirring for 40 min , the reaction was quenched by adding saturated aqueous NaHCO_{3} at $0{ }^{\circ} \mathrm{C}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 3)$, and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexane/EtOAc $=5 / 1)$ to afford naphthoquinone $(R)-6(16.6 \mathrm{mg}, 91 \%)$ as a yellow oil.
naphthoquinone $(R)-6:[\alpha]_{\mathrm{D}}{ }^{20}:-49\left(c=0.49, \mathrm{CHCl}_{3}\right)$.
naphthalene (R)-7

A flask, thoroughly purged with argon, was charged with $10 \% \mathrm{Pd} / \mathrm{C}(1.5 \mathrm{mg})$, to which was added a solution of naphthoquinone $(R)-6(14.7 \mathrm{mg}, 0.0403 \mathrm{mmol})$ in DMF $(200 \mu \mathrm{~L})$ at room temperature. The atmosphere was changed from argon to $\mathrm{H}_{2}(1 \mathrm{~atm})$, and the mixture was vigorously stirred for 1 h at room temperature. After changing the atmosphere from H_{2} to argon, the mixture was added $\mathrm{NaH}(63 \%$ dispersion in oil, $6.1 \mathrm{mg}, 0.161$ $\mathrm{mmol})$ and $(\mathrm{MeO})_{2} \mathrm{SO}_{2}(8.0 \mu \mathrm{~L}, 0.084 \mathrm{mmol})$. The atmosphere was changed from argon to $\mathrm{H}_{2}(1 \mathrm{~atm})$, and the mixture was vigorously stirred for 9 h at room temperature. After changing the atmosphere from H_{2} to argon, the mixture was stopped by adding diethylamine $(42 \mu \mathrm{~L}, 0.40 \mathrm{mmol})$ and water at $0{ }^{\circ} \mathrm{C}$ and filtered through a Celite ${ }^{\circledR}$ pad (rinsed with EtOAc). The mixture was extracted with EtOAc $(\times 3)$, and the combined organic extracts were washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was purified by PTLC (silica gel, hexane/EtOAc $=4 / 1)$ to afford naphthalene $(R)-7(14.4 \mathrm{mg}, 91 \%, 78 \% e e)$ as a pale
yellow oil.
Enantiomeric purity of $(R)-7$ was also assessed by HPLC analysis on a chiral stationary phase [DAICEL CHIRALPAK ${ }^{\circledR}$ IF $(0.46 \mathrm{~cm} \varphi \times 25 \mathrm{~cm})$, UV detection at 254 nm , hexane $/ i-\operatorname{PrOH}=99 / 1$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, t_{\mathrm{R}}$ $=14.4 \mathrm{~min}$ for (S)-isomer, and 16.6 min for (R)-isomer $]$

	$\mathrm{tR} / \mathrm{min}$	peak area	peak area\%
$(S)-7$	14.383	492693	10.978
$(R)-7$	16.592	3995147	89.022

ester (R)-14

To a solution of spiroacetal $(R)-\mathbf{1 0}(7.5 \mathrm{mg}, 0.022 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.70 \mathrm{~mL})$ was added DMAP $(1.4 \mathrm{mg}, 0.0068$ $\mathrm{mmol}),(-$-camphanic acid ($13.0 \mathrm{mg}, 0.0656 \mathrm{mmol}$) and EDCI $(9.5 \mathrm{mg}, 0.050 \mathrm{mmol})$ at room temperature. After stirring for 10 min , the reaction was quenched by adding saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and poured into mixed solvent of water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\times 3)$, and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. The residue was purified by PTLC (silica gel, hexane/acetone $=2 / 1)$ to afford ester $14(6.8 \mathrm{mg}, 59 \%$, d.r. $=99: 1)$ as a white solid. Recrystallization from hexane/EtOAc (3/1) afforded ester 14 as white needles.
ester 14: $R_{\mathrm{f}} 0.43$ (hexane/EtOAc $=3 / 1$); mp $188-189^{\circ} \mathrm{C}$ (hexane/EtOAc); $[\alpha]_{\mathrm{D}}{ }^{20}:-18\left(c=0.22, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.67(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{ddd}, 1 \mathrm{H}, J=13.2,9.0,4.2 \mathrm{~Hz}), 1.93(\mathrm{ddd}, 1 \mathrm{H}$, $J=13.2,10.8,4.8 \mathrm{~Hz}), 2.15(\mathrm{ddd}, 1 \mathrm{H}, J=13.2,9.0,4.2 \mathrm{~Hz}), 2.29(\mathrm{ddd}, 1 \mathrm{H}, J=13.2,13.2,6.0 \mathrm{~Hz}), 2.43(\mathrm{ddd}, 1 \mathrm{H}$,
$J=12.0,6.6,2.7 \mathrm{~Hz}), 2.53(\mathrm{ddd}, 1 \mathrm{H}, J=13.2,10.8,4.2 \mathrm{~Hz}), 2.87(\mathrm{dd}, 1 \mathrm{H}, J=16.8,6.0 \mathrm{~Hz}), 3.18(\mathrm{ddd}, 1 \mathrm{H}, J=$ $16.8,13.2,6.0 \mathrm{~Hz}), 3.61(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 3.81(\mathrm{~d}, 1 \mathrm{H}, J=16.8 \mathrm{~Hz}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 6.77(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$, $6.91(\mathrm{dd}, 1 \mathrm{H}, J=7.8,7.2 \mathrm{~Hz}), 7.08(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.09(\mathrm{dd}, 1 \mathrm{H}, J=7.8,7.2 \mathrm{~Hz}), 7.31(\mathrm{dd}, 1 \mathrm{H}, J=7.8,7.2$ $\mathrm{Hz}), 7.46(\mathrm{dd}, 1 \mathrm{H}, J=7.8,7.2 \mathrm{~Hz}), 7.69(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 8.12(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR $(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.8,16.0,16.6,21.9,29.0,30.2,30.5,40.8,54.5,54.8,60.0,91.3,110.3,114.2,117.4,119.8,120.9$, $121.6,121.8,122.3,123.8,124.1,127.0,127.6,128.4,128.9,146.9,150.1,152.0,164.8,178.1$; IR (neat) 2970, $2931,1778,1656,1585,1490,1435,1364,1304,1255,1223,1176,1092,1058,1042,982,949,914,828,755$ cm^{-1}; HRMS (ESI-TOF) calcd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right) \mathrm{m} / \mathrm{z} 515.2064$, found m / z 515.2081.

Diastereomeric purity of $(R) \mathbf{- 1 4}$ was assessed by HPLC analysis on a chiral stationary phase [DAICEL CHIRALPAK ${ }^{\circledR}$ IF $(0.46 \mathrm{~cm} \varphi \times 25 \mathrm{~cm})$, UV detection at 254 nm , hexane $/ i-\mathrm{PrOH}=55 / 45$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $t_{\mathrm{R}}=10.7 \mathrm{~min}$ for (S)-isomer, and 16.7 min for (R)-isomer]

HPLC analysis of $\mathbf{1 4}$ before recrystallization

	$\mathrm{tR} / \mathrm{min}$	peak area	peak area\%
*diastereomer	10.742	28857	1.080
14	16.708	2643541	98.920

*The retention time for the diastereomer of $\mathbf{1 4}$ was confirmed by comparison with the chromatogram obtained from esterification of $(R) \mathbf{- 1 0}$, which has low enantiomeric purity.

HPLC analysis of the crystal employed for X-ray diffraction analysis

Crystallographic data: $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{O}_{7}($ ester 14$)+0.285 \mathrm{C}_{6} \mathrm{H}_{14}($ hexane $)$, Formula Weight $=539.11,0.187 \times 0.059 \times 0.049$ mm , hexagonal, space group $P 6_{1}, \mathrm{Z}=6, \mathrm{Z}^{\prime}=1, \mathrm{~T}=93 \mathrm{~K}, a=19.2800(3), b=19.2800(3), c=12.8484(2) \AA \AA, \mathrm{V}=$ 4136.12(14) $\AA^{3}, \lambda(\mathrm{CuK} \alpha)=1.54186, \mu=0.739 \mathrm{~mm}^{-1}$, Intensity data were collected on RIGAKU R-AXIS RAPID-II IP area detector system. The structure was solved by direct methods and refined by the full-matrix least-squares on F^{2} (SHELXL-2016). A total of 48965 reflections were measured and 4914 were independent. Final $R 1=0.0370, w R 2=0.0955(4338$ refs, $I>2 \mathrm{~s}(I))$, and GOF $=1.035$ (for all data, $R 1=0.0441, w R 2=$ $0.1004)$. Flack Parameter $=-0.02(5)$.

X-ray structure of $\mathbf{1 4}$ (solvent and disordered atoms are omitted for clarity)

References

[1] Velema, W. A.; van der Toorn, M.; Szymanski, W.; Feringa, B. L. J. Med. Chem. 2013, 56, 4456-4464.
[2] Kwak, J.-H.; Won, S.-W.; Kim, T.-J.; Roh, E.; Kang, H.-Y.; Lee, H.-W.; Jung, J.-K.; Hwang, B.-Y.; Kim, Y.; Cho, J.; Lee, H. Arch. Pharm. Res. 2008, 31, 133-141.
[3] a) Gontcharov, A. V.; Nikitenko, A. A.; Raveendranath, P.; Shaw, C.-C.; Wilk, B. K.; Zhou, D. WO Patent 123941 A2, 2007. b) Shukla, M. R.; Sarde, A. G.; Loriya, R. M.; Pachpute, V. D.; Walke, N. B.; Khan, T. H.; Kulkarni, S. A.; Palle, V. P.; Kamboj, R. K. WO Patent 124828 A1, 2013.
[4] Kim, D. W.; Alam, M. M.; Lee, Y. H.; Khan, M. N. A.; Zhang, Y.; Lee, Y. S. Tetrahedron: Asymmetry 2015, 26, 912-917.

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (600 MHz , acetone- d_{6})

${ }^{13} \mathrm{C}$ NMR (150 MHz , acetone $-d_{6}$)

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (600 MHz , acetone- d_{6})

${ }^{13} \mathrm{C}$ NMR (150 MHz , acetone $-d_{6}$)

${ }^{1} \mathrm{H}$ NMR (600 MHz , acetone- d_{6})

${ }^{13} \mathrm{C}$ NMR (150 MHz , acetone $-d_{6}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR (150 MHz , acetone $-d_{6}$)

HMBC (acetone- d_{6})

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, acetone- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR (150 MHz , acetone $-d_{6}$)

HMBC (acetone- d_{6})

Key HMBC Correlations

Current $\substack{\text { NAME } \\ \text { NRPN } \\ \text { PRPO } \\ \text { PROCNO }}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

