Supporting Information

Oxidative Degradation of Multi-Carbon Substrates by an Oxidic Cobalt Phosphate Catalyst

Thomas P. Keane, Casey N. Brodsky and Daniel G. Nocera

Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, United States

Table of Contents

Experimental Methods	S3-S6
Figure S1. DEMS – ¹² C ethylene glycol oxidation	S7
Figure S2. DEMS – blank GC electrode control	S8
Figure S3 . DEMS – CO ₂ control	S9
Figure S4. DEMS – CO control	S10
Figure S5 . DEMS – ethylene glycol oxidation with ¹⁸ O-CoP _i	S11
Figure S6 . j_{OER} and FE_{O2} with and without EG	S12
Figure S7. ¹ H NMR product spectra	S13
Figure S8. ¹³ C NMR product spectra	S14
Figure S9. ¹ H and ¹³ C control NMR spectra	S15
Table S1 . CO ₂ Faradaic efficiency for on-pathway intermediates	S16

Experimental Details

Materials. Co(NO₃)₂•6H₂O 99.999% was used as received from Strem. KOH, 88% and KH₂PO₄, 99.9% were reagent grade and used as received from Macron. All electrolyte solutions were prepared with type I water (EMD Millipore, 18.2 M Ω cm resistivity). Fluorine-tin-oxide coated glass (FTO; TEC-7) was purchased as pre-cut 9" × 11" and 1 cm × 2.5 cm glass pieces from Hartford Glass. Unless stated otherwise, all experiments used FTO with 7 Ω /sq surface resistivity. Ethylene glycol (≥99% spectrophotometric grade), Kraft lignin, DMSO (reagent grade) and phenol (reagent grade) were purchased from Sigma Aldrich. KNO₃ was ACS reagent grade and was purchased from VWR. ¹³C-Labeled ethylene glycol, 99% ¹⁸O-labeled H₂O, 99% and D₂O, 99.96% were purchased from Cambridge Isotopes. Argon (research grade) and CO (research grade) were purchased from Airgas.

General electrochemical methods. All electrochemical experiments were conducted using a CH Instruments 760C or 760D bipotentiostat, a BASi Ag/AgCl reference electrode, and a Pt-mesh counter electrode for steady state electrochemical measurements. Steady-state electrochemical experiments were performed using a three-electrode electrochemical cell with a porous glass frit separating the working and auxiliary compartments. All experiments were performed at room temperature (23 ± 1 °C). Unless stated otherwise, the electrolyte comprised 0.1 M potassium phosphate (KP_i) electrolytes.

Differential electrochemical mass spectrometry (DEMS) experimental setup. DEMS experiments were conducted on a home-designed/assembled DEMS system that has a detection limit of ~0.1 nmol. The DEMS setup consists of two differentially pumped chambers (ionization chamber and analysis chamber) and a quadrupole mass spectrometer (Prisma-Plus[™] QMF 110, Pfeiffer-Vacuum). The ionization and analysis chambers are pumped to high vacuum by two Pfeiffer 65 L/s turbomolecular pumps backed by a Pfeiffer dry diaphragm pump, in order to avoid contamination by oil vapors. The PrismaPlus[™] quadrupole mass spectrometer was connected to the analysis chamber and equipped with electron multiplier/faraday cup dual detecting units. The time constant of the mass spectrometer was in the millisecond regime. Mass spectrometric data was collected with Quadera software, with three selective channels recording m/z of 32, 34, and 36 in real time during the electrochemical CV experiments.

A dual thin layer flow electrochemical cell made of Kel-F was connected to the ionization chamber via an angle valve. The upper chamber, which houses the electrochemical reaction, is connected to the lower chamber, which is under high vacuum and in line with the mass spectrometer, by 6 capillaries. In the upper compartment, the working electrode is pressed against a ~100 mm thick Teflon gasket with an inner diameter of 6 mm. This leaves an exposed area of 0.28 cm² and results in an electrolyte volume of ~3 μ L. In the lower compartment, a porous Teflon membrane (Gore-Tex) supported on a stainless steel frit serves as the interface between the electrolyte and vacuum. It is pressed against a ~100

mm thick Teflon gasket with an inner diameter of 6 mm. The Gore-Tex Teflon membrane has a thickness of ~ 75 μ m, a mean pore size of 0.02 μ m and a porosity of 50%. A leak-free Ag/AgCl reference electrode is connected at the inlet side of the flow cell by insertion into a capillary, and a Pt wire counter electrode is connected in a similar fashion at the outlet of the cell. Electrolyte (100 mM KP_i, 200 mM KNO₃) was purged with argon for 1 h before being transferred to a syringe pump (Harvard Apparatus PHD 2000 Infusion). Electrolyte flow into the electrochemical cell was then controlled by the syringe pump, at 60 mL/hr, which ensures fast transport of the species formed at the electrode to the mass spectrometric compartment, where the volatile products were evaporated into the vacuum system of the DEMS through the porous Teflon membrane. CV experiments were performed using a CH Instruments 760C potentiostat.

Preparation of Co-OEC thin film for use in DEMS experiments. A Co-OEC thin film electrocatalyst was prepared via an anodic electrodeposition process. A glassy carbon working electrode fabricated for use in the DEMS electrochemical cell (diameter 7.2 mm) was used as the substrate for deposition of Co-OEC films. Deposition was carried out in 0.1 M KP_i pH 7 electrolyte containing 1 mM Co²⁺. A constant potential was held at 0.9 V (all potentials are referenced to Ag/AgCl unless noted otherwise) for a total of 35 mC/cm² charge passed.

Preparation of ¹⁸O-labeled CoP_i thin film for use in DEMS experiments. A CoP_i thin film electrocatalyst was prepared via an anodic electrodeposition process. A glassy carbon working electrode fabricated for use in the DEMS electrochemical cell (diameter 7.2 mm) was immobilized upside-down and onto it was dropped a 0.12 mL droplet of 1 mM Co(NO₃)₂ in 97% H₂¹⁸O-labeled 100 mM KP_i buffer. A leak-free Ag/AgCl reference electrode (Warner Instruments) and a Pt wire counter electrode were suspended into the droplet and a constant potential was held at 0.9 V for a total of 35 mC/cm² charge passed. The electrode was rinsed quickly by dipping once into unlabeled de-ionized water for 1 s, and then immediately placed into the DEMS electrochemical cell.

Preparation of CoP_i **thin film for use in gas quantification experiments.** A CoP_i thin film electrocatalyst was prepared via an anodic electrodeposition process. A FTO-coated glass plate was used as the substrate for deposition of CoP_i films. Kapton tape was applied to the plate such that a 1 cm² area was exposed to the deposition solution. Deposition was carried out in 0.1 M KP_i pH 7 electrolyte containing 0.5 mM Co²⁺. A constant potential of 0.85 V was applied for a total of 15 mC charge passed.

Gas phase product distribution (CO₂, CO, O₂). Unless otherwise noted, all electrolyses for product quantification experiments were performed at a constant potential of 1.0 V with a 15 mC/cm² CoP_i film in solutions containing 500 mM ethylene glycol and 100 mM KP_i pH 7 electrolyte. CO₂ production was quantified using an airtight glass cell and an Agilent 7890A injection GC. Prior to electrolysis, the cell headspace was purged with N₂ for at least 1 hour to remove any atmospheric gases. Throughout electrolysis, 0.25 mL samples of the cell headspace were periodically extracted using an airtight syringe, and sampled to determine

the concentration of CO_2 in the cell. The cell was then backfilled with an equal volume of N_2 gas to avoid creating a pressure differential. The total amount of CO_2 produced was calculated using the following formula:

$$mol(\mathrm{CO}_2)_{\mathrm{Tot}} = \chi_{\mathrm{CO}_2} * P_{\mathrm{Tot}} * \left[\left(\frac{V_{\mathrm{HS}}}{RT} \right) + \left(V_{\mathrm{Soln}} * (5.45) * \left(K_{\mathrm{H, CO}_2} \right) \right) \right]$$
(S1)

where χ_{CO_2} is the measured concentration of CO₂ in the sample, V_{HS} and $V_{soln.}$ are the volumes of the headspace and solution, respectively, in the working compartment of the cell, K_{CO_2} is the Henry's law constant for CO₂, and 5.45 is a factor accounting for the speciation of CO₂ in water at pH 7.

The Faradaic efficiency of CO_2 production for each electrolysis was determined by plotting moles CO_2 produced vs. charge passed, and using the following equation,

$$FE_{\rm CO_2} = nF * \left(\frac{d(mol(\rm CO_2)_{\rm Tot})}{dQ}\right)$$
(S2)

where n is the number of moles of electrons required for the production of one mole of CO_2 .

The production of CO and O_2 was quantified using an airtight electrochemical cell connected directly to a gas chromatograph. Throughout electrolysis, argon gas was flowed through the cell at a constant rate. The composition of the cell headspace was sampled every 15 min. O_2 was quantified using a TCD detector, while CO was quantified using a FID detector equipped with a methanizer. Faradaic efficiencies for each gas were calculated using the following equations,

$$FE_{O_2} = v_{Flow} * [O_2]_{Detected} * \left(\frac{n_{OER} * F}{j_{tot}}\right)$$
(S3)

$$FE_{\rm CO} = v_{\rm Flow} * [\rm CO]_{\rm Detected} * \left(\frac{n_{\rm CO} * F}{j_{\rm tot}}\right)$$
(S4)

where v_{flow} denotes the flow rate of argon through the cell, and denotes the moles of electrons required to produce a mole of product.

Liquid phase product distribution. Liquid phase products were detected using ¹H and ¹³C NMR, and quantified via ¹H NMR. For ¹H NMR quantification experiments, 15-20 mL of solution were electrolyzed at 1.0 V until between 10-20 C had been passed. Following electrolysis, NMR samples were prepared by combining 700 μ L of electrolyte solution with 35 μ L of a standard solution containing 49.835 mM Phenol and 8.064 mM DMSO in D₂O. ¹H NMR spectra were obtained using an Agilent DD2 600 NMR, with a pre-saturation pulse applied at the chemical shift for H₂O to improve signal to noise for product detection. Product peaks were then quantified by referencing weighted proton integrations to the afore-

mentioned internal standards. Reported liquid phase product yields are the average of 4 separate experiments. A 13 C NMR product spectrum was obtained by electrolyzing a solution containing 100 mM of fully 13 C-labeled ethylene glycol and 100 mM KP_i pH 7 electrolyte at 1.0 V. Following electrolysis, the electrolyte solution was directly used for NMR analysis with a Varian I500 NMR.

Figure S1. DEMS experimental data for CoP_i operated in electrolyte containing 100 mM EG. Five consecutive CVs are scanned from 0.9 to 1.0 V vs. Ag/AgCl at 2 mV/s, while MS ion current is detected for mass channels m/z = 32, 28, 44 (bottom to top).

Figure S2. DEMS experimental data for a blank GC electrode operated in electrolyte containing 100 mM EG. Three consecutive CVs are scanned from 0.9 to 1.0 V vs. Ag/AgCl at 2 mV/s, while MS ion current is detected for mass channels m/z = 32, 28, 44 (bottom to top).

Figure S3. DEMS control experiment to test to what extent CO₂ fractionates to CO in the MS detector. Argon-sparged solution was flowed through the DEMS cell containing a blank GC electrode, and no potential was applied. The solution was switched to CO₂-saturated electrolyte solution at t = 22 min. MS ion current is detected for mass channels m/z = 32, 28, 44 (bottom to top). Only ~10% of CO₂ fractionates to CO.

Figure S4. DEMS control experiment to test whether CO is oxidized to CO_2 on CoP_i . A COsaturated electrolyte solution was flowed over a CoP_i electrode, and two consecutive CVs are scanned from 0.8 to 1.0 V vs. Ag/AgCl at 2 mV/s, while MS ion current is detected for mass channels m/z = 32 and 44 (bottom to top).

Figure S5. DEMS experimental data for ¹⁸O-CoP_i operated in electrolyte containing 100 mM EG. Five consecutive CVs are scanned from 0.9 to 1.0 V vs. Ag/AgCl at 2 mV/s beginning at t = 5 min, while MS ion current is detected for mass channels m/z = 32, 28, 30, 44, 46, and 48 (bottom to top).

Figure S6. Flow GC experiment for 15 mC/cm² CoP_i film at 1.1 V vs. Ag/AgCl in electrolyte containing 100 mM KP_i at pH 7, and either 0 mM EG (squares) or 500 mM EG (circles). O_2 Faradaic efficiency data is given in grey, and absolute oxygen current density is given in blue. In the system containing EG, both O_2 Faradaic efficiency and absolute OER current density are suppressed compared to a system in which EG is absent.

Figure S7. Representative ¹H NMR spectrum for 15 mC/cm² CoP_i film operated at 1.0 V in electrolyte containing 100 mM KP_i at pH 7, and 500 mM EG (Red). NMR spectrum of preelectrolysis solution is given for reference (Black). We note that there is a small peak at 4.82 assignable to methanediol, but this peak is not quantifiable due to overlap with solvent peak.

Figure S8. ¹³C NMR of 100 mM ¹³C-labeled EG, 100 mM KP_i pH 7 solution electrolyzed at 1.0 V with a 15 mC/cm² CoP_i film. Carbons are color-coded to match their corresponding NMR peaks. The peak at 81.70 ppm corresponds to methanediol, which is the hydrated form of formaldehyde. Methanediol was not quantified as an intermediate product, because it is not observed in the ¹H NMR spectra due to overlap with the water solvent peak region near 4.7 ppm. The doublets at ~89 ppm and ~64 ppm correspond to the two carbons in 1,1,2-ethanetriol. The splitting at each of these peaks is a result of ¹³C-¹³C coupling due to the fully ¹³C-labeled starting material used.

Figure S9. Control NMRs for on-pathway intermediates. (a) ¹H NMR; (b) ¹³C NMR. All NMRs were taken in 100 mM KP_i pH 7 buffer solution.

Table S1. CO_2 Faradaic efficiency for on-pathway intermediates. All experiments were performed with 15 mC/cm² CoP_i film held at 1.0 V in a solution containing 100 mM substrate, 100 mM KP_i, pH 7. Intermediates further along in the reaction pathway generate CO_2 at a higher Faradaic efficiency.

Intermediate	# e⁻ to intermediate	CO ₂ Faradaic Efficiency (%)
1,1,2-Ethanetriol	2	11.9 <u>+</u> 2.1
Glycolate	4	30.5 ± 9.8
Glyoxylate	6	60.1 ± 2.3