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Text S1

The Kalman filter is a recursive two-step process consisting of a state prediction step and an
update step, as graphically shown in Figure S3. A detailed derivation is available in Reid (2011).
The goal is to estimate the state vector x; as X; and its error covariance P, at each time step t.
The prediction step describes the temporal evolution of the state vector x; from the previous
step. The state-transition equation (Equation 5) is used to predict the expected value of the

state vector as i\?m_l based on the estimate at the previous time step X;_;:

Xtjt-1 = FX¢ 4

Similarly, the error covariance P. is predicted as P|;_; based on the covariance at the previous

step Py_1:
Pyiq =FP,_, F' +Q

The update step improves the estimate of the state vector by including observations z; through
the data correlation model. Based on the state-observation equation (Equation 7), the estimate

X; is determined by:
Xt =Xye-1 + Ke[z, — (HXye-1 + W],
where the Kalman gain K is determined by:
K;=Pyq H'[H Piq HT + Rt
The error covariance is updated as:

P, = (I_KtH)Pﬂt—l(I_KtH)T+KtRKZ;
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where I is the identity matrix.

Reference:
(1)  Reid, I. Estimation I
http://www.robots.ox.ac.uk/~ian/Teaching/Estimation/LectureNotes2.pdf (accessed Jan

1,2017).
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Figure S 1 —a) Interpolated log-normalized (see Methodology) time series of the contaminants U-238 and H-3, as well as b) the
groundwater quality variables SC and H* for samples taken between 1995 and 2016 at well FSB-95DR. c), d) The same variables
for samples taken between 1995 and 2007 at well FSB-110D.
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Figure S2
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Figure S 2 — a) Scatterplots for the entire time series with first order fitted trend lines and Pearson’s r for a) the SC and c) H' vs.
U-238 at well FSB-95DR and well FSB-110D (b) and d), respectively). e) — h) The same plots with H-3 as the contaminant.
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Figure S3
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Figure S 3 — Kalman filter overview. The filter is recursive and repeats two steps: the prediction and the update step. It predicts
the system state X, based on the previous time step at t — 1 and via the temporal evolution model. The predicted value is
then updated based on external observations z,. The resulting estimate is used as the basis for the next prediction.
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