Supporting Information

Tailoring a Thermally Stable Amorphous SiOC Structure for the Separation of Large Molecules: The Effect of Calcination Temperature on SiOC Structures and Gas Permeation Properties

Hiroki Inde¹, Masakoto Kanezashi¹,* Hiroki Nagasawa¹, Toshimi Nakaya², and Toshinori Tsuru¹

¹ Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan

² Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan

Corresponding author (M. Kanezashi, kanezashi@hiroshima-u.ac.jp)

Temperature dependence of gas permeances for SiOC membrane

Figure S1 shows temperature dependence of gas permeances for a SiOC membrane calcined at 500 $^{\circ}$ C in N₂ atmosphere. The permeances of He and H₂ were approximately independent of temperature, and N₂, CH₄, CF₄, and SF₆ molecules showed Knudsen type permeation behavior; permeance slightly increased with decreasing temperature. The permeance of CO₂ increased with decreasing temperature, which is surface diffusion mechanism, since CO₂ molecules are adsorptive and have strong affinity with SiOC structure.

Gas selectivity for small molecules (H_2/N_2 selectivity: 5.9) was controlled by Knudsen diffusion through network pores, and for large molecules (H_2/CF_4 : 240, H_2/SF_6 : 1400) by molecular sieving.

Figure S1 Temperature dependence of gas permeances for a SiOC membrane calcined at 500 $^{\circ}$ C in N₂ atmosphere