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Abstract

We show that almost every G . contains m edge disjoint spanning
m—out

trees.

Introduction

In this note we consider the maximum number of edge disjoint spanning

trees contained in the random graph G _ . Let a graph G = (V,E) have

property sL if it contains spanning trees T1tTo,...,T, which are pair-wise

edge disjoint.

We consider the random graph G = G . This has vertex set V =

m m-out n

{l,2,...,n}. Each v € V independently chooses a set out(v) of distinct

vertices as neighbours, where each m-subset of V -{v} is equally likely to

be chosen. This produces a random m out-regular diagraph D which has
m

been selected uniformly from ( ) distinct possibilities. G is obtained

by ignoring orientation but without coalescing edges. (See [1], [2], [3] for

properties of this model.)

Probability statements refer to the probability space of D and graph

theoretic statements refer to G .
m

Theorem 1

Let m > 2 be a fixed constant. Then

lim Pr(G € st ) = 1. I
n^> m m

[This is clearly best possible.]

The major graph theoretic result underpinning our proof is as follows.
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Theorem 2 (Nash-Williams [5], Tutte [6])

A graph G = (V,E) has property sL if and only if for every partition

SlfSo,...,S of V, 2 < t < |v|, there at least k(t-l) edges of G joining

vertices in different subsets of the partition. D

(The necessity of the condition is obvious. The "meat" is in the

sufficiency.)

Proof of main result

For S C V let -Y(S) = |{vw € E(D ): v € S, w CS} I.
"~ n m

Lemma 1

The following events occur with probability tending to 1 (as n -»<»).

(i) S C Yn. 1 < |S| < .49n implies -r(S) > m

(ii) S,T C V . S fl T = •. |S|, |T| > .49n. implies -r(S) + y(T) > m.

Proof

Observe that T ( S ) > |{v € S: out(v) £ S} |. Hence T ( S ) > m for

|S I < m and

P(3S C Vn : m < |s| < .49n and T(S) < m) < "s O ^ S
s=m+l

< 2 fn^sn~]

s=m+l

= 2 u , say.
s

s



In/31 In/31 , r - .̂i \
M •? s sf i-ne.s m-l,s>m(s-m+l)Now 2 ug < 2 (—) s (-) v '

s=m+l s=m+l

ln/3j t
y ^

s=m+l

Next l e t H(a) = ^ ( l - a ) 1 a, then

L-49nJ | .49n|
u < 2 e H(V()

S srn/3l n n

l.49nj 2. (1 - £•)
"V f f \ / f "\ \

s=fn/3l * ~ ^

and ( i ) fo l lows .

( i i )

Pr(3S,T C Vn. | S | , |T| I .49n, S f l T M and T ( S ) + T ( T ) < m)

| .51n| n-s , , , ,.
2 T fn")(n~s1f s + t

 WBBX{S. t}..m(s+t - nH-1)
S t s + t " M '



Proof of Theorem 1

Let S1SO,...,S be a partition of V where |Sn | > |SO| >...> |S I.

Now in the graph G there precisely T(S 1 ) + T(S O)+. . .+T(S ) edges joining
in x £ u

different subsets of the partition. But Lemma 1 implies

TrfSj) + ir(S2) 1 m (ii)

and

^(S3)+...+-r(St) 2 (t-2)m (i)

and so we can apply Theorem 3. D

We note the following interesting consequence Theorem 1: G^_ is

super-eulerian with probability tending to one. (A graph is super eulerian if

it contains a trail which includes every vertex). This is because every graph

in do has this property, Jaegar [4].

Acknowledgement: we thank P. Catlin for pointing out the connection between

Theorem 1 and super eulerian graphs.
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