NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

EDGE DISJOINT SPANNING TREES IN RANDOM GRAPHS

by

Alan M. Frieze

Department of Mathematics Carnegie Mellon University Pittsburgh, PA 15213

and

T. Łuczak

Institute for Mathematics and its Applications
University of Minnesota
Minneapolis, MN 55455
and
Instytut Matematyki
Uniwersytet Im. Adama. Mickiewicza
Ul. Matejki 48/49
60-769 Poznań
Poland

Research Report No. 88-4 $_{\mathcal{I}}$

February 1988

Edge Disjoint Spanning Trees in Random Graphs

by

A.M. Frieze
Department of Mathematics
Carnegie Mellon University
Pittsburgh
U.S.A.

and

T. Łuczak
Institute for Mathematics and its Applications
University of Minnesota
Minneapolis
U.S.A.

and

Instytut Matematyki Uniwersytet Im. Adama Mickiewicza Ul. Matejki 48/49 60-769 Poznań Poland

Abstract

We show that almost every G_{m-out} contains m edge disjoint spanning trees.

Introduction

In this note we consider the maximum number of edge disjoint spanning trees contained in the random graph G_{m-out} . Let a graph G = (V,E) have property \mathcal{A}_k if it contains spanning trees T_1, T_2, \ldots, T_k which are pair-wise edge disjoint.

We consider the random graph $G_m = G_{m-out}$. This has vertex set $V_n = \{1,2,\ldots,n\}$. Each $v \in V_n$ independently chooses a set out(v) of distinct vertices as neighbours, where each m-subset of $V_n - \{v\}$ is equally likely to be chosen. This produces a random m out-regular diagraph D_m which has been selected uniformly from $\binom{n-1}{m}^n$ distinct possibilities. G_m is obtained by ignoring orientation but without coalescing edges. (See [1], [2], [3] for properties of this model.)

Probability statements refer to the probability space of $\,D_{m}^{}\,$ and graph theoretic statements refer to $\,G_{m}^{}.\,$

Theorem 1

Let $m \ge 2$ be a fixed constant. Then

$$\lim_{n\to\infty} \Pr(G_m \in A_m) = 1.$$

[This is clearly best possible.]

The major graph theoretic result underpinning our proof is as follows.

Theorem 2 (Nash-Williams [5], Tutte [6])

A graph G = (V,E) has property \mathscr{A}_k if and only if for every partition S_1, S_2, \ldots, S_t of $V, 2 \le t \le |V|$, there at least k(t-1) edges of G joining vertices in different subsets of the partition. \Box (The necessity of the condition is obvious. The "meat" is in the sufficiency.)

Proof of main result

For $S \subseteq V_n$ let $\gamma(S) = |\{vw \in E(D_m) : v \in S, w \notin S\}|$.

Lemma 1

The following events occur with probability tending to 1 (as $n \to \infty$).

(i)
$$S \subseteq V_n$$
, $1 \le |S| \le .49n$ implies $\gamma(S) \ge m$

(ii)
$$S,T \subseteq V_n$$
, $S \cap T = \phi$, $|S|, |T| \ge .49n$, implies $\gamma(S) + \gamma(T) \ge m$.

Proof

Observe that $\gamma(S) \ge |\{v \in S: \operatorname{out}(v) \not\subseteq S\}|$. Hence $\gamma(S) \ge m$ for $|S| \le m$ and

$$\begin{split} P(\exists S \subseteq V_n : m < |S| \leq .49n \quad \text{and} \quad \gamma(S) < m) \leq \sum_{s=m+1}^{\left\lfloor .49n \right\rfloor} \binom{n}{s} \binom{s}{s-m+1} \cdot \left(\frac{\binom{s-1}{m}}{\binom{n-1}{m}}\right)^{s-m+1} \\ \leq \sum_{s=m+1}^{\left\lfloor .49n \right\rfloor} \binom{n}{s} s^{n-1} (\frac{s}{n})^{m(s-m+1)} \\ = \sum_{s=m+1} u_s, \quad \text{say}. \end{split}$$

Now
$$\frac{\text{In}/31}{2}$$
 $u_g \le \frac{1}{2}$ $(\frac{i-ne}{s})^s$ $s^{m^2l}(\frac{s}{s-m+1})^{n/(s-m+1)}$

$$= \frac{\ln/3j}{s=m+1} \stackrel{t}{\sim} s^{m-1}(\frac{s}{s-m})^{(m-1)}(s-m)$$

$$= 0(n^{-(m-1)}).$$

Next let $H(a) = ^(1-a)^{1-a}$, then

L49nJ

$$\Sigma$$

 $s = \lceil n/3 \rceil$ $u_S < \frac{2}{s \cdot n/3 \cdot n} e^{o(n)} H(v_S)^{ms}$

$$\leq e^{o(n)} \frac{1.49nj}{s = fn/3 \cdot n} \frac{2}{s \cdot n/3 \cdot n} \frac{(1 - \pounds \bullet)}{s \cdot n})^n$$

$$= o(1).$$

and (i) follows.

(ii)

 $Pr(3S,T \subseteq V_n$. |S|, |T| I .49n, SflTM and T(S) + T(T) < m)

$$\leq n^2 2^n 2^{.51n} n^{m-1} (.51)^{.98mn - m+1}$$

$$= o(1).$$

Proof of Theorem 1

Let S_1S_2,\ldots,S_t be a partition of V_n where $|S_1|\geq |S_2|\geq \ldots \geq |S_t|$. Now in the graph G_m there precisely $\gamma(S_1)+\gamma(S_2)+\ldots+\gamma(S_t)$ edges joining different subsets of the partition. But Lemma 1 implies

$$\gamma(S_1) + \gamma(S_2) \ge m \tag{ii}$$

and

$$\gamma(S_3)+\ldots+\gamma(S_t) \geq (t-2)m$$
 (i)

and so we can apply Theorem 3.

We note the following interesting consequence Theorem 1: G_{2-out} is super-eulerian with probability tending to one. (A graph is super eulerian if it contains a trail which includes every vertex). This is because every graph in A_2 has this property, Jaegar [4].

Acknowledgement: we thank P. Catlin for pointing out the connection between Theorem 1 and super eulerian graphs.

References

- [1] T.I. Fenner and A.M. Frieze, "On the connectivity of random m-orientable graphs and digraphs", Combinatorica 2 (1982) 347-359.
- [2] A.M. Frieze, "On maximum matchings in a class of random graphs", Journal of Combinatorial Theory B 40 (1986) 196-212.
- [3] A.M. Frieze and T. Łuczak, "Hamilton cycles in a class of random graphs: one step further", to appear.
- [4] F. Jaeger, "A note on subeulerian graphs", Journal of Graph Theory 3 (1979) 91-93.
- [5] C. St. J.A. Nash-Williams, "Edge disjoint spanning trees of finite graphs", Journal of the London Mathematical Society 36 (1961) 445-450.
- [6] W.T. Tutte, "On the problem of decomposing a graph into n connected factors", Journal of the London Mathematical Society 36 (1961) 221-230.

Carnegie Mellon University Libraries