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S1. General Methods

Reagents were obtained from commercial suppliers and used as received unless otherwise noted.
Dimethyl 5-iodoisophthalate (1)! and dimethyl 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-
yl)isophthalate (2)%! were prepared according to reported procedures. Column chromatography
was performed on silica gel (160-200 mesh) or alumina neutral (32—63 um, #060223L, Sorbent
Technologies, USA). Thin-layer chromatography (TLC) was performed on pre-coated silica gel
plates (0.25 mm thick, #1615126, Sorbent Technologies, USA) and observed under UV light.
Nuclear magnetic resonance (NMR) spectra were recorded on Varian Inova (400 MHz), Varian
Inova (500 MHz), Varian Inova (600 MHz) and Varian VXR (400 MHz) spectrometers at room
temperature (298 K). Chemical shifts were referenced on tetramethylsilane (TMS) or residual
solvent peaks. High resolution electrospray ionization (ESI) mass spectrometry was performed on
a Thermo Electron Corporation MAT 95XP-Trap mass spectrometer. Our current data set for the
cyanodimer:perchlorate crystal structure lacks high resolution data (beyond 1.5 A), which could
not be mitigated, even with excessive exposure times. This is a known pathology for highly
disordered cyanostar structuresS?-S* with large, solvent accessible areas. The unit cell, space group
and packing are unambiguously established. However, the structure cannot be fully determined
and refined because of a lack of data.

S2. Synthesis and Compound Characterization

Cyanodimer was prepared (Scheme 1) using a modification of the synthesis of the cyanosolo
macrocycle. With Suzuki coupling undertaken (step 2) prior to ester reduction (step 3), side
reactions involving palladium complexes and benzyl alcohols in water are avoided while also
allowing for facile reduction of the ester. Macrocyclization proceeded in a one-pot Knoevenagel
cyclocondensation from aldehyde monomer in a 38% yield.
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Dimethyl 2'-isopropyl-[1,1'-biphenyl]-3,5-dicarboxylate (3): 2 (2.10 g, 6.56 mmol), potassium
phosphate tribasic (4.18 g, 19.68 mmol), tris(dibenzylideneacetone)dipalladium(0) (0.300 g, 0.328
mmol), and 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (0.269 g, 0.656 mmol) were
combined in a round-bottom flask and degassed with argon. 1-lodo-2-isopropylbenzene (2.02 g,
7.87 mmol) dissolved in distilled tetrahydrofuran (50 mL) were added via syringe, followed by
argon-degassed H,O (50 mL). The solution was then stirred at 60 "C for 16 hours. The product was
then extracted with EtOAc (3 x 50 mL), and the organic layer was dried with magnesium sulfate
and concentrated in vacuo. The crude product was purified by silica gel column chromatography
(6% EtOAC in hexanes), yielding 3 (1.43 g, 4.58 mmol, 70% vyield) as a white, crystalline solid.
'H-NMR (500 MHz, CD2Cly) d (ppm) = 8.60 (t, J = 1.6 Hz, 1H), 8.13 (d, J =1.6 Hz, 2H), 7.40 (dd,
J=1.5,7.9Hz, 1H), 7.36 (dt, J =1.4, 8.0 Hz, 1H), 7.21 (dt, J =1.6, 7.6 Hz, 1H), 7.13 (dd, J = 1.3,
7.6 Hz, 1H), 3.90 (s, 6H), 2.89 (sep, J = 6.8 Hz, 1H), 1.12 (d, J = 6.8 Hz, 6H). *C NMR (125
MHz, CD.Cly) ¢ (ppm) = 166.1, 146.3, 142.8, 139.0, 134.4, 130.6, 129.7, 128.8, 128.4, 125.7,
125.5,52.2, 29.5, 23.8. HR-ESI-MS: C19H2004 M*, Calculated: 312.1362, Found: 312.1358
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2'-1sopropyl-[1,1'-biphenyl]-3,5-diyldimethanol (4): Lithium aluminum hydride (0.281 g, 7.49
mmol) was suspended in tetrahydrofuran (50 mL), and 3 (1.05 g, 3.36 mmol) was added dropwise
dissolved in tetrahydrofuran. The solution was heated at reflux for 4 hours. The reaction was
quenched by addition of H20 (0.3 mL), then conc. agq. NaOH (0.3 mL), followed by H.O (1 mL).
The solution was then filtered, and the cake was washed with EtOAc. The filtrate was then washed

with brine, dried with magnesium sulfate, and concentrated in vacuo, yielding 4 (8.197 g, 3.25
mmol, 97% yield. *H-NMR (500 MHz, CD:Cl,) & (ppm) = 7.37 (dd, J =1.2, 7.8 Hz, 1H), 7.35 (s,
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1H), 7.31 (dt, J = 1.3, 7.3 Hz, 1H), 7.18 (m, 3H), 7.12 (dd, J = 1.5, 7.6 Hz, 1H), 4.71 (d, J = 5.9
Hz, 4H), 3.00 (sep, J = 6.9 Hz, 1H), 1.77 (t, J = 5.9 Hz, 2H), 1.13 (d, J = 6.9 Hz, 6H). *C NMR
(125 MHz, CD2Cl2) & (ppm) = 146.0, 142.3, 141.3, 141.0, 129.4, 127.3, 126.4, 125.1, 124.9, 123.6,
63.7, 29.1, 23.2. HR-ESI-MS: C17H2002 M* Calculated: 254.1643, Found: 254.1639.

HOCN
5

2-(5-(Hydroxymethyl)-2'-isopropyl-[1,1'-biphenyl]-3-yl)acetonitrile (5): Diol 4 (0.820 g, 3.25
mmol) was dissolved in toluene at 70 °C, and 0.55 48% aq. HBr was added dropwise to the stirring
solution. The reaction was allowed to stir for 12 hours at 70 'C, then it was cooled to room
temperature. The toluene was concentrated in vacuo, and the crude product was redissolved
CH2Cl>. The organic phase was washed with sodium carbonate and brine, dried with magnesium
sulfate, and concentrated in vacuo. The crude product was then dissolved in acetonitrile at 60 ‘C,
and KCN dissolved in H>.O was added dropwise to the stirring solution. The solution was allowed
to stir at 60 "C for 16 hours, then the solution was cooled to room temperature. The acetonitrile
was removed by rotary evaporation, and the product was extracted with EtOAc (3 x 50 mL). The
organic phase was washed with sodium carbonate and brine, dried with magnesium sulfate, and
concentrated in vacuo. The crude product was purified by silica gel column chromatography (20%
EtOAc in hexanes), yielding 5 (0.592 g, 2.36 mmol, 69% yield). *H-NMR (500 MHz, CD.Cly) &
(ppm) = 7.38 (dd, J = 1.65, 9.7 Hz, 1H), 7.33 (m, 3H), 7.22 (s, 1H), 7.19 (dt, J = 1.8, 9.5 Hz, 1H),
7.15 (s, 1H), 7.11 (dd, J = 1.3, 9.5 Hz, 1H), 4.72 (d, J = 7.25 Hz, 2H), 3.80 (s, 2H), 2.97 (sep, J =
8.5 Hz, 1H), 1.90 (t, J = 7.35 Hz, 1H), 1.14 (d, J = 8.5 Hz, 6H). **C NMR (125 MHz, CDCls) &
(ppm) = 146.27, 143.35, 141.96, 139.97, 129.93, 129.78, 128.11, 127.96, 127.44, 125.69, 125.44,
124.75, 117.96, 64.56, 29.49, 24.30, 23.57. HR-ESI-MS: C18H19NO M* Calculated: 265.1467,
Found: 265.1461.
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2-(5-Formyl-2'-isopropyl-[1,1'-biphenyl]-3-yl)acetonitrile (6): Alcohol 5 (0.300 g, 1.19 mmol)
was dissolved in dichloromethane, to which a mixture of pyridinium chlorochromate (0.310 g,
1.40 mmol) and silica gel (0.450 g) was added. The mixture was allowed to stir at room
temperature for 12 hours, at which time it was poured directly onto a column of silica gel and
purified by silica gel column chromatography (dichloromethane), yielding 6 (0.296 g, 1.19 mmol,
quant. yield). *H-NMR (400 MHz, CD,Cl,) & (ppm) = 10.05 (s, 1H), 7.86 (s, 1H), 7.77 (s, 1H),
7.57 (s, 1H), 7.43 (dd, J = 0.9, 7.8 Hz, 1H), 7.39 (dt, J = 1.2, 7.9 Hz, 1H), 7.24 (dt, J = 1.2, 7.4 Hz,
1H), 7.16 (dd, J = 1.1, 7.6 Hz, 1H), 3.91 (s, 2H), 2.96 (sep, J = 6.8 Hz, 1H), 1.17 (d, J =6.8 Hz,
6H). *C NMR (100 MHz, CD2Cl>) & (ppm) = 191.4, 146.3, 144.0, 138.8, 136.9, 134.5, 131.4,
130.3, 129.6, 128.5, 126.9, 125.8, 125.5, 117.3, 29.5, 23.9, 23.4. HR-ESI-MS: C18H17NO M*
Calculated: 263.1310, Found: 263.1304.

2-1sopropylphenylcyanostar (cyanodimer): Cesium carbonate was dissolved in absolute ethanol
(85 mL) at 50 "C. Tetrahydrofuran (85 mL) was added and the solution was allowed to cool to
room temperature. Aldehyde 6 (0.2105 g, 0.84 mmol) was dissolved in tetrahydrofuran (5 mL)
and added to the stirring solution. The reaction vessel was covered in aluminum foil to protect it
from light. The solution was allowed to stir for 48 hours at room temperature, then it was
concentrated in vacuo, redissolved in dichloromethane, and filtered to remove solid cesium
carbonate. The filtrate was then dried with magnesium sulfate and concentrated in vacuo. The
crude product was purified by silica gel column chromatography (chloroform) yielding
cyanodimer (0.0788 g, 0.06 mmol, 38% yield) as a yellow powder. *H-NMR (400 MHz, CDCl,)
8 (ppm) = 8.53 (s, 5H), 7.96 (s, 5H), 7.95 (s, 5H), 7.81 (s, 5H), 7.42 (m, 10H), 7.27 (m, 10 H), 3.11
(sep, J = 6.8 Hz, 5H), 1.23 (d, J = 6.8 Hz, 30H). HR-ESI-MS: C90H75IN5 [M + I]7, Calculated:
1352.5073, Found: 1352.5123
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S3. Variable Concentration Spectra of Cyanodimer
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Figure S1. *H NMR Spectra of cyanodimer at various concentrations (CD2Clz, 298 K, 600 MHz)
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Figure S2. UV-Vis absorption spectra of cyanodimer at 0.1, 0.01, and 0.001 mM in CH2Cl»
(absorbance was divided by concentration and path length to give extinction coefficient).
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S4. IH-NMR Titrations of Cyanostar and Cyanodimer with Bisulfate in CDCls
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Figure S3. 'H-NMR spectra for cyanosolo (1 mM, CDCls, 298 K, 600 MHz) and cyanodimer (1
mM, CDCl3, 298 K, 600 MHz) 15 eq of HSO4. The analogous peak positions between the inner
proton peaks for cyanosolo and the new species in cyanodimer supports the assignment as a 1:1
complex. Peak labels are identical to other titrations and identifications for cyanodimer are based
on analogy to cyanosolo.
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S5. IH-NMR Titrations of Cyanostar and Cyanodimer with Bisulfate in CD2Cl»
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Figure S4. Aromatic regions of *H NMR titration data. (a) HSO," titration with cyanodimer (1
mM, CD2Cl, 298 K, 600 MHz). The 1:1 complex is labelled with blue dots. (b) HSO4™ titration
with cyanostar (1 mM, CD2Cly, 298 K, 600 MHz). Peak labels are for the 2:2 complex; there are
no resonances above 10 ppm.
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S6. 2D ROESY Spectrum of Cyanodimer:bisulfate 2:2 Complex
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Figure S5. 2D ROESY spectrum of a 2:2 cyanodimer bisulfate complex demonstrating through-

space correlation between protons H? and HY (1 mM, 298 K, CDCls, 500 MHz).
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S7. ESI Mass Spectra of a Cyanodimer:bisulfate Mixture
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Figure S6a. ESI Mass spectrum of a 2:1 mixture of cyanodimer and tetrabutylammonium bisulfate
(2 mM, CH,Cl;, 50 "C source, 20 V cone voltage).
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Figure S6b. ESI Mass spectrum of a 1:1 mixture of cyanodimer and tetrabutylammonium bisulfate
(2 mM, CHCl,, 50 "C source, 20 V cone voltage). This demonstrates a significant suppression of
the 3:2 complex relative to other complexes when compared to the parent cyanostar under the same
conditions.>®
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Figure S6c¢. ESI Mass spectrum of a 1:4 mixture of cyanodimer and tetrabutylammonium bisulfate
(2 mM, CHCls, 50 °C source, 20 V cone voltage). This demonstrates a significant suppression of
the 3:2 complex relative to other complexes when compared to the parent cyanostar under the same
conditions.s®

S8. Model of a Cyanodimer:bisulfate 3:2 Complex

Figure S7. Molecular model of a cyanodimer:bisulfate 3:2 complex (bisulfate omitted) energy-
minimized using molecular mechanics. The interplanar distance between each pair of macrocycles
is listed.
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S8. Torsional Entropy Calculations

Torsional entropy calculations were used to estimate the entropy change associated with
the dimerization of cyanostars arising from change in rotational characteristics of the biphenyl
substituents. The calculations were performed using the following equations from Whitesides and
coworkers:>2

Sior = [p_oP In P dP Eq Sl

—E/kT
p— e Eq S2

2r
f e E//(Td([)

o=0

Here, Stor is the change in torsional entropy when a bond is allowed to rotate freely, P is the
probability of the molecule existing in a rotational conformation of a given energy, E, which is
defined for each angle ® around a single bond. T is defined as being 300 K.

For this calculation, a model compound was used that represents one of cyanodimer’s
biphenyl units (Figure S8). We use this model under the assumption that each biphenyl bond
rotates independently from each other. Relative energies were calculated using density functional
theory (B3LYP/6-31G*) as a function of angle at 22.5° increments. Under the assumption that the
rotation around each biphenyl bond becomes restricted upon macrocycle dimerization, these
rotational energy profiles were used with the above equations (Eq 1 and Eq 2) to calculate a loss
in torsional entropy of 12.3 J mol™ K™ for each biphenyl unit. A total of 123 J mol™ K is
associated with restricting the rotation of 10 biphenyl units in a dimer of macrocycles
corresponding to a loss of ~34 kJ mol™ in free energy at 300 K.

(a)

CN

Figure S8. (a) Monomer used for torsional energy calculations, and (b) the rotational freedom of
the biphenyl bond as a monomer and a dimer.
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Figure S9 (a) The calculated potential energy map for the rotation of the biphenyl bond in the
model compound (B3LYP/6-31g*). (b) The probability, P, of each energy state being populated
is calculated according to Eq. 2 by dividing exp (E / kT) by its integral from 0 to 27 for each energy
E. (c) The change in torsional entropy is calculated by integrating P In P from 0 to 2.
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S9. Conformational Entropy Calculations

Conformational entropy calculations were used to estimate the lower bound of the entropy
change associated with dimerization of cyanodimer in the 2:1 complexes. In the free cyanodimer,
there are six distinct rotational isomers with differing numbers of degeneracies (Figure S10a) based
on whether the exterior isopropyl groups are facing upwards or downwards. If we assume that all
of these conformations are equally populated (within thermal energy RT = 0.6 kcal mol™), then
one cyanodimer has 32 degenerate conformations it can adopt (Figure S10).

(a) Conformers based on isopropyl orientation
downsg down4 up1 downs up, down2 up3 down1 up4
1 5
(b) Total ©) :
Conformers All conformers energetically degenerate
(d)
N, = = 32 degenerate Ny,c= 1 conformer

conformers Ng=1

2 w %

Figure S10. (a) Calculating the number of conformers in a free cyanodimer molecule by isopropyl
orientation results in (b) 32 total lowest-energy conformers that (c) are assumed to be energetically
degenerate. (d) When two macrocycles dimerize around an anion, all conformational freedom in
each macrocycle is lost and one conformer remains in the 2:1 complex.

When two cyanodimer macrocycles dimerize around an anion, the rotational freedom of
the isopropyl units on both macrocycles is lost and only one conformation remains accessible in
the complex. Using our above assumptions, we can make a crude estimate of the configurational
entropy loss cyanodimer incurs upon dimerization using the following formula:

AS°config = —RT In (Nnc/ Nu? Ng) Eq S3

Where Nn is the number of degenerate conformations in the host (32), Nug is the number of
degenerate conformations in the host-guest complex (one), and Ng is degenerate conformations in
the guest (one). This simple calculation gives a loss configurational entropy of ~57 J K-* mol~ or
loss in stability of ~17 kJ mol™ at room temperature in the 2:1 cyanodimer:anion complex upon
dimerization.
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S10. 'H-NMR Titrations of Cyanostar and Cyanodimer with Perchlorate in CD2Cl»
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Figure S11 (a) ClO4 titration with cyanodimer demonstrating the formation of a 2:1 complex
followed by a 1:1 complex, with stoichiometries defined by analogy to cyanostar (2:1) and
cyanosolo (1:1) (1 mM, CD2Cl;, 298 K, 600 MHz). (b) CIO4 titration with cyanostar
demonstrating the formation of only a 2:1 complex (1 mM, CD.Cly, 298 K, 600 MHz). In both
spectra, the 2:1 complex is labelled with red dots and the 1:1 complex is labelled with blue dots
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S11. Variable Temperature H-NMR Titrations of Cyanostar and Cyanodimer with
Perchlorate in C2D2Cl4

To test for the role of entropy in the loss of cooperativity, we heated the sample to confirm that we
could destabilize the 2:1 complex of cyanodimer to a greater extent than cyanostar. The
distribution of complexes with one equivalent of added TBACIO4 was examined by *H NMR
spectroscopy (280 uM, Figure S10-S11). Four temperatures from 298 to 353 K were examined
predicting use of tetrachloroethane (CDCI.CDCI). We used tetrachloroethane as a higher boiling
point halogenated solvent of similar polarity to dichloromethane to reach higher temperatures.
Cyanostar remained stable as a 2:1 complex across all temperatures and simply showed a cross
over from slow to fast exchange beyond 333 K. Cyanodimer, however, transitioned from a mixture
of the 1:1 and 2:1 complexes to a fast-exchanging mixture of free cyanodimer and the 1:1 complex
at 333 K. The loss in 2:1 complex for cyanodimer verifies a stronger entropic penalty than the
parent cyanostar and supports our hypothesis that cyanodimer’s cooperativity is impeded by an
entropic cost to dimerization caused by restricting rotations of the 10 biphenyl units.

a
d
o

353 K

a

d
b e

1eq 333K
298 K

| ! | ! | ! I ! | ! | ! I

8.6 8.4 8.2 8.0 7:8 7.6 7.4

Figure S12. Variable temperature *H-NMR spectra of cyanostar with 1 equivalent TBACIO4 (280
uM, C2D.Cls4, 500 MHz)
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333K

Figure S13. Variable temperature *H-NMR spectra of cyanostar with 1 equivalent TBACIO4 (280

uM, C2D2Cl4, 500 MHz)
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S12. Variable Temperature UV-Visible Titrations of Cyanostar and Cyanodimer with
Perchlorate in C2H4Cl»

Titration data were analyzed globally by equilibrium restricted factor analysis using Sivvu.5t
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Figure S14. UV-Vis titration of cyanodimer (100 uM) in C2H4Cl> at 305 K. (a) Raw absorbance
data. (b) Concentration profile generated from free energies. (c) Sivvu-generated absorptivity plots
of cyanodimer complexes. (d) Residuals obtained from the full data set across all equivalents of
ClO4~ and all wavelengths. (e) Hyss-generated speciation curve for cyanodimer (100 uM) and
ClO4™ using experimentally determined free energies.
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Figure S15. UV-Vis titration of cyanodimer (100 uM) in C2H4Cl; at 317 K. (a) Raw absorbance
data. (b) Concentration profile generated from free energies. (c) Sivvu-generated absorptivity plots
of cyanodimer complexes. (d) Residuals obtained from the full data set across all equivalents of
ClO4~ and all wavelengths. (e) Hyss-generated speciation curve for cyanodimer (100 uM) and
ClO4™ using experimentally determined free energies.

S20



(a ) Absorbance Data EL Cwse | ( b) x10"* Concentration Profiles at 335 K » )
T —_——— T T T T T T —T— -

.
ist col 1(CD) + 1(CIO4] % 1[COCIOd] AGE =-34.6072 kiimol (logK = 5.4)
oL 1IC0I+ 11CDCI0) % 1icD2cI04) AGS =-25.0901 ki/mol (logk = 3.91)
—.E g
S = —oc
g E ——cocios
£ e — CD2CIO4
2 § &1
<
C 1 1 - 0 1 1 1 Il T
250 300 350 400 1 2 3 4 5 6 7 ) 9 10
Wavelength (nm) Solution Number
RMS Residual Per (blue), L (red)) O RMS Residual Per Solution (blue). L (red)) Grid
T T T T . . ; . v v T :
005 g i
AL | i i 1 l 5
%0 300 350 400 1 2 3 4 5 6 7 8 9 10
x10° Molar Absorptiity Values at 335 K Leopy ciose | d Residuals at 335 K [eepy] [ cose |
T T .
(C) ——CD (37.232%) ( )

)
T

— CDCIO4 (51.4101%) [
— CD2CIO4 (11.3579%)

) ~
T T

o
T

Molar Absorptivity
IS

s \
b 300 350 400 9 0720 S alenyts om}
Wavelength (nm) Solution Number
RMS Residual Per (blue), L (red)) Grid RMS Residual Per Solution (blue), L (red)) 1 Grid
T T T T T T T T T T T T
005+
0.05
| | il | 1| | | I y l 0
gso 300 350 400 1 2 3 4 5 6 7 8 9 10

100
3 \
P 80
2 \
®60] |
o
s
= 40
E
G
v 20
° N
¢ CD,CI0

00 1.0E-4 20E-4 3.0E4
Total concentration of ClO4

Figure S16. UV-Vis titration of cyanodimer (100 uM) in C2H4Cl> at 335 K. (a) Raw absorbance
data. (b) Concentration profile generated from free energies. (c) Sivvu-generated absorptivity plots
of cyanodimer complexes. (d) Residuals obtained from the full data set across all equivalents of
ClO4~ and all wavelengths. (e) Hyss-generated speciation curve for cyanodimer (100 uM) and
ClO4™ using experimentally determined free energies.
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Figure S17. UV-Vis titration of cyanodimer (100 uM) in C2H4Cl: at 350 K . (a) Raw absorbance
data. (b) Concentration profile generated from free energies. (c) Sivvu-generated absorptivity plots
of cyanodimer complexes. (d) Residuals obtained from the full data set across all equivalents of
ClO4~ and all wavelengths. (e) Hyss-generated speciation curve for cyanodimer (100 pM) and
ClO4™ using experimentally determined free energies. K> generated by fixing K1 based on Ki
generated when the Kz equilibrium is excluded (Figure S16 cont.)
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Figure S17 (cont.). UV-Vis titration of cyanodimer (100 pM) in C2H4Cl2 at 350 K with the 2:1
equilibrium omitted. (a) Raw absorbance data. (b) Concentration profile generated from free
energies. (c) Sivvu-generated absorptivity plots of cyanodimer complexes. (d) Residuals obtained
from the full data set across all equivalents of ClIO4~ and all wavelengths.
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Figure S18. UV-Vis titration of cyanostar (100 uM) in C2H4Cl> at 305 K. (a) Raw absorbance
data. (b) Concentration profile generated from free energies. (c) Sivvu-generated absorptivity plots
of cyanostar complexes. (d) Residuals obtained from the full data set across all equivalents of
ClO4™ and all wavelengths. (e) Hyss-generated speciation curve for cyanostar (100 uM) and C104~
using experimentally determined free energies.
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Figure S19. UV-Vis titration of cyanostar (2 uM) in C2H4Cl> at 317 K. (a) Raw absorbance data.
(b) Concentration profile generated from free energies. (c) Sivvu-generated absorptivity plots of
cyanostar complexes. (d) Residuals obtained from the full data set across all equivalents of CIO4~
and all wavelengths. (e) Hyss-generated speciation curve for cyanostar (2 pM) and C104~ using
experimentally determined free energies.

S25



a \ Absorbance Data [Coprl [ close | b ) 10° Concentration Profiles at 333 K CE[W
T T T T T T T T T o —
I 2[CS] + 1[CI04] % 1[CS2CI04] AG; = -75.9621 kl/mol (logK = 11.92)
3
25F
—.E s 2 n
g 2 —cs
H g 6l ——Cs2c104
s S
@ S
<
1+
05F -
0 L L 0 T I L L 1 L L 1
250 300 350 400 2 4 6 8 10 12 14 16 18
Wanvelength (nm) Solution Number
x10° RMS Residual Per i icted (blue), L (red)) ) Grid x10° RMS Residual Per Solution R (blue), L (red)) Grid
T - T T T T T T T T
%0 i
300 350 400 0 2 Rl 6 8 10 12 14 16 18

10* Molar Absorptivity Values at 333 K
T

——CS (57.5517%) (d)
—— CS2CI04 (42.4483%)

Molar Absorptivity

g 5 16 250 Wavelength (nm)
. o Wavelength (nm) = o Solution Number 18
N 7] Grid
<10 RMS Residual Per (blue). L (red)) ow| | xaos 7 RYS Revael Rer Sokion € , fluw) Crvsioeind (o)
T T
1k
% 2 4 3 8 10 12 14 16 18
350 300 350 i

'S
o

% formation relative to CD

n
o

0
0 2.0E-6 4.0E-6 6.0E-6
Total concentration of CIO4

Figure S20. UV-Vis titration of cyanostar (2 uM) in C2H4Cl> at 333 K. (a) Raw absorbance data.
(b) Concentration profile generated from free energies. (c) Sivvu-generated absorptivity plots of
cyanostar complexes. (d) Residuals obtained from the full data set across all equivalents of ClO4~
and all wavelengths. (e) Hyss-generated speciation curve for cyanostar (2 pM) and ClO4~ using
experimentally determined free energies.
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Figure S21. UV-Vis titration of cyanostar (2 uM) in C2H4Cl> at 350 K. (a) Raw absorbance data.
(b) Concentration profile generated from free energies. (c) Sivvu-generated absorptivity plots of
cyanostar complexes. (d) Residuals obtained from the full data set across all equivalents of ClO4~
and all wavelengths. (e) Hyss-generated speciation curve for cyanostar (2 pM) and C104~ using
experimentally determined free energies.
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Table 1. Experimental thermodynamic data for cyanodimer 2:1 complexation with

perchlorate

T (K) AG21 =T AS21
(kJ / mol) (kJ / mol)
303 —63 + 4 35
317 —-62+2 36
333 -59+4 38
350 —58+2 40

AH2:1 (kJ / mol): —98 £ 6

ASz:1 (Jmol™ ' K): —115+18

AAS21 CS:CD (Jmol™' K™1): 103 + 34

Table 2. Experimental thermodynamic data for cyanostar 2:1 complexation with perchlorate

T (K) AG21 —T AS21
(kJ / mol) (kJ /' mol)
303 -76.3+1 —4
317 -75.7+0.1 —4
333 =759+£0.2 —4
350 =77.0£0.3 —4

AH2:1 (kJ / mol): =72.3 +£5.1

ASz:1 (Jmol ' K1): 12 + 16
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S13. Configurational Information for the Preliminary Crystal Structure

Figure S22. Five views of the preliminary crystal structure showing the orientations and disorder
in the substituents. Red indicates that the isopropyl group is facing inwards towards the
macrocycle-macrocycle seam, blue indicates the isopropyl group is facing outward, away from the
seam, and green indicates that the data is not well-resolved enough to assign an orientation.
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S14. 'H and 3C NMR Spectra (*) denotes impurities
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