

Dynamics in the early lexicon: Individual differences in word learning

Lena Ackermann^{1,2}, Robert Hepach³, & Nivedita Mani^{1,2}

Introduction

- We find considerable individual differences in early vocabularies – why?
- Input clearly shapes what a child will learn, but it alone cannot account for the variance we observe
- Recent approaches to word learning place the child in a more active role, highlighting the role of her curiosity towards objects in her environment [1]
- Dynamic theories of word learning emphasize the role of memory traces
- If children solicit information based on their interests [2, 3], memory traces could accumulate faster for items and categories the child is curious about

Research Questions

- How do curiosity and previous semantic knowledge interact in early word learning?
- We hypothesize that curiosity leads to a faster build-up of memory traces, which facilitates the acquisition of new word-object-associations (WOAs)
- Previous research [4] has shown that children more readily learn new WOAs from densely structured semantic domains, i.e. broad categories

Eyetracking Study

Participants

30-months-old German-learning infants (n = 40, M_{age} = 29 m 18 d; 22 f)

Stimuli

- 16 photos of familiar objects from two and two broad categories
- 4 novel objects, one from each category

Object presentation phase

- Blockwise presentation of 16 familiar objects and their labels
- Change in pupil dilation from scrambled to unscrambled image is measured as an index of curiosity [5]

3000 ms

3000 ms

Interleaved learning and test phase

- Presentation of 2x2 novel objects (10 naming events per object)
- Followed by 8 word recognition trials (4 familiar, 4 novel)

Results

Broad vs. narrow categories

- Growth curve analysis [6] was used to analyze proportion of target looking (PTL) as a function of time
- Familiar words from narrow categories were recognised faster
- Newly learnt words from broad categories were recognised faster

Pupil dilation

 No significant correlation between difference in pupil dilation during object presentation and PTL during test phase

Discussion

- Word recognition is boosted in narrow categories relative to broad categories
- This might be due to greater interference effects in densely structured categories
- Word learning is more robust in broad categories, which is consistent with previous findings [4]
- Developmental dynamics might help us better understand how curiosity and knowledge interact in word learning

References

- [1] Mani, N., & Ackermann, L. (2018): Why do children learn the words they do? Child Development Perspectives, advance online publication. doi:10.1111/cdep.12295.
- [2] Lucca, K., & Wilbourn, M. P. (2016). Communicating to Learn. *Child Development*, 89(3). doi: 10.1111/cdev.12707.
- [3] Begus, K., Gliga, T., & Southgate, V. (2014). Infants learn what they want to learn. *PloS one*, 9, e108817. doi:10.1371/journal.pone.0108817.
- [4] Borovsky, A., Ellis, E. M., Evans, J. L., & Elman, J. L. (2016). Lexical leverage: Category knowledge boosts real-time novel word recognition in 2-year-olds. Developmental Science, 19(6), 918-932. doi: 10.1111/desc.12343.
- [5] Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T., & Camerer, C. F. (2009). The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. *Psychological Science*, 20(8), 963-973. doi: 10.1111/j.1467-9280.2009.02402.x.
- [6] Mirman, D. (2014). *Growth Curve Analysis and Visualization using R*. Boca Raton: Chapman & Hall / CRC Press.

Contact & Materials

