# Kinetics of Huperzine A Dissociation from Acetylcholinesterase via Multiple Unbinding Pathways

## **Supporting Information**

J. Rydzewski, <sup>1,\*</sup> R. Jakubowski, <sup>1,2</sup> W. Nowak, <sup>1</sup> and H. Grubmüller<sup>3</sup>

<sup>1</sup>Institute of Physics, Faculty of Physics, Astronomy and Informatics,
Nicolaus Conemicus University, Gradziadzka, 5, 87-100, Torum, Poland

Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland

<sup>2</sup> Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland

<sup>3</sup> Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany

(Dated: March 26, 2018)

### S1. MOLECULAR DYNAMICS SIMULATIONS

TABLE S1. Summary of the MD simulations performed in this study.

| type         | RP  | time [ns] | information       |
|--------------|-----|-----------|-------------------|
| unbiased MD  | _   | 5         | equilibration     |
| biased MD    | _   | 20        | reaction pathways |
| metadynamics | pwf | 1400      | free energies     |
| metadynamics | pws | 1000      | free energies     |
| unbiased MD  | pwf | 800       | kinetic rates     |
| unbiased MD  | pws | 800       | kinetic rates     |

### S2. REACTION PATHWAYS

TABLE S2. List of the *Tc*AChE residues, which pair with hupA by hydrogen bonds, occurring along the dissociation pathways pwf and pws and the corresponding center-of-mass distance of these residues to the initial conformation of hupA.

| pathway     | residue | distance [Å] |
|-------------|---------|--------------|
| pwf and pwf | Pro86   | 13.77        |
|             | Arg88   | 16.87        |
|             | Trp84   | 5.29         |
|             | Asn66   | 14.35        |
|             | Val71   | 9.32         |
|             | Gly80   | 8.88         |
|             | Phe75   | 10.94        |
|             | Glu73   | 11.74        |
|             | Asn87   | 13.80        |
|             | Tyr70   | 8.75         |
|             | Asn85   | 7.45         |
|             | Met90   | 15.17        |
|             | Gly123  | 8.65         |
|             | Ser124  | 10.54        |
|             | Ser122  | 6.87         |
|             | Tyr334  | 8.00         |
|             | Glu278  | 13.98        |
|             | Gln69   | 10.22        |
|             | Tyr121  | 7.15         |
|             | Gln74   | 10.87        |
|             | Ser81   | 7.06         |
|             | Gly77   | 14.16        |
|             | Asp72   | 6.72         |
|             | Pro86   | 10.35        |

#### S3. RATE ESTIMATION

The transition matrix  $\mathbf{N}$  was built by counting the number of observed transitions from configuration i to j in the collective variable space within a specified lag time. The transition matrix contains all information needed to estimate the rate matrix  $\mathbf{T}$ 

$$T_{i\ i+1} = \frac{1}{\Delta t} \frac{N_{i\ i\pm 1} + N_{i\pm 1\ i}}{N_{i\ i} e^{-\beta(F(s_{i\pm 1}) - F(s_i))} + N_{i\pm 1\ i\pm 1}},\tag{1}$$

and

$$T_{i\ i} = -T_{i\ i+1} - T_{i\ i-1},\tag{2}$$

which were calculated to provide an initial guess of  $\mathbf{T}$ . Next, a Monte Carlo sampling was used to maximize the log-likelihood l and, in consequence,  $\mathbf{T}$ . At every iteration, a random element of  $\mathbf{T}$  was perturbed by adding a random number  $\epsilon$  from  $(-0.05/\Delta t, 0.05/\Delta t)$ . This required a modification of the neighboring elements of  $\mathbf{T}$ 

$$T_{j\ i} \equiv T_{j\ i} + \epsilon e^{-\beta(F(s_j) - F(s_i))}, \tag{3}$$

$$T_{ij} \equiv T_{ij} - \epsilon e^{-\beta(F(s_j) - F(s_i))}$$
(4)

and

$$T_{i\ i} \equiv T_{i\ i} - \epsilon. \tag{5}$$

These modifications were accepted with the Boltzmann probability  $\min(1, e^{\Delta l})$ , in which  $\Delta l$  is the difference between the old and new log-likelihood.

<sup>\*</sup> To whom the correspondence should be addressed: jr@fizyka.umk.pl

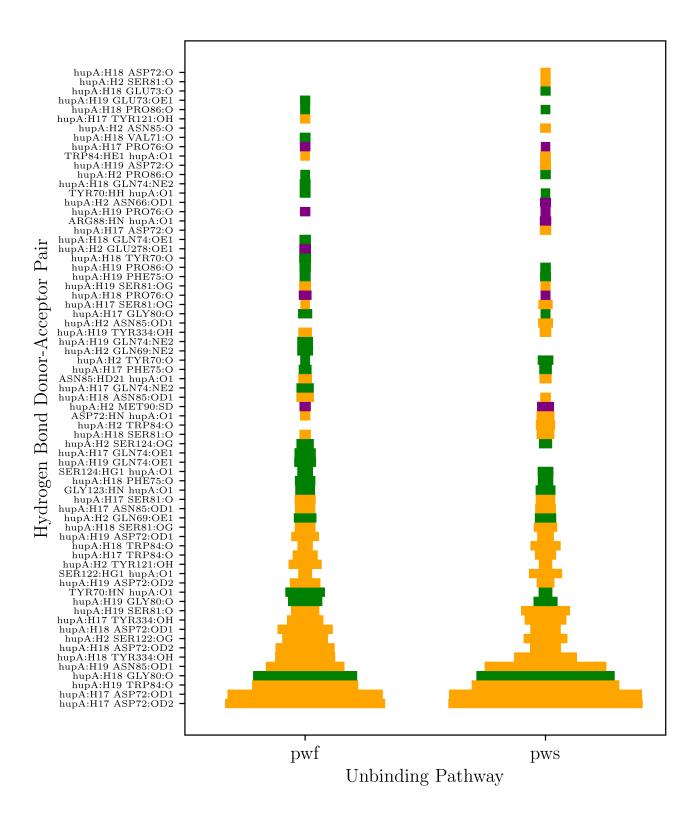
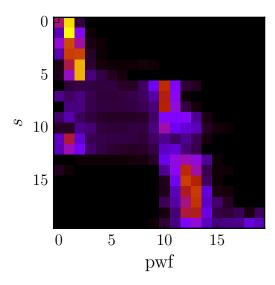




FIG. S1. Interaction frequency for hydrogen donor-acceptor pairs from the MS simulations. Horizontal bars are for individual hydrogen bond donor-acceptor pairs, which are indexed by the vertical axis and sorted by total frequency from the bottom to the top. Graphs are shown for each unbinding pathway as labeled on the horizontal axis. The total width of the bar corresponds to the total frequency of the interaction for the unbinding pathway. A hydrogen bond was counted between a donor-acceptor pair if the distance between the atoms was less than 4.1 Å and the donor-hydrogen-acceptor angle was within 100 and 180 degrees. The residues are clustered by the euclidean distances (Tab. S2) to the initial configuration of hupA using the Jenks optimization algorithm into 3 clusters with a GVF value (goodness of variance fit) of 0.88. The residues are colored by their cluster number: bound-orange, transition-green and unbound-purple.



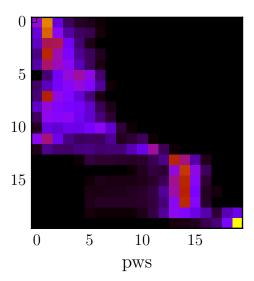



FIG. S2. Transition matrices N for  $\Delta t=2$  ps calculated using the unbiased MD simulations for pwf and pws. The unbiased trajectories were run from each configuration of the hupA-inhibited TcAChE, starting from s=1 and ending at s=20. For each configuration along the RPs, 20 unbiased MD simulations were performed, resulting in  $2\times20\times20\times2$  ns = 1.6  $\mu$ s of the simulation time.

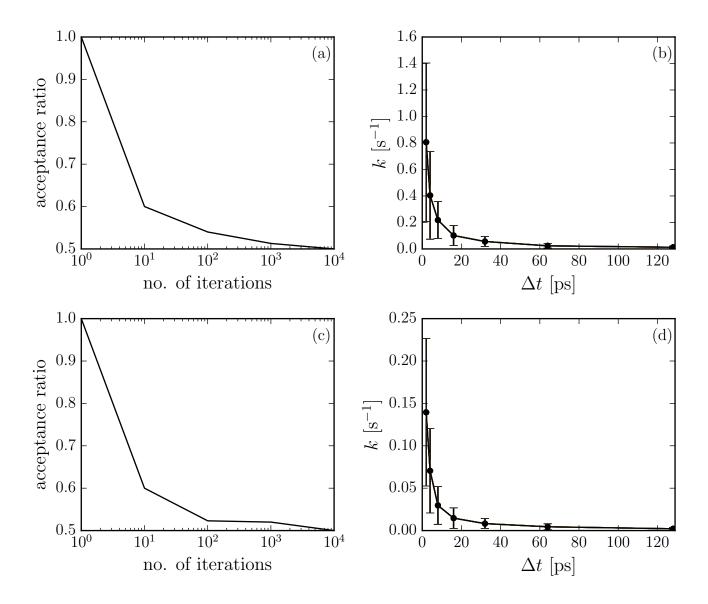



FIG. S3. Metropolis-Hastings acceptance ratios of the algorithm to estimate the s-dependent diffusion coefficients converge to 0.5 within 10000 iterations. The results are shown in (a) and (b) for pwf and (c) and (d) for pws. The average kinetic rates estimated for different values of the lag time  $\Delta t$  from 100 Monte Carlo simulations (a maximum-likelihood approach) for each lag time. The results show similar kinetic rates and decreased errors for  $\Delta t > 64$  ps.