SUPPORTING INFORMATION

Noncovalent Grafting of a Dy_2^{III} Single-Molecule Magnet onto Chemically Modified Multiwall Carbon Nanotubes

Vassilis Tangoulis,^{a*} Nikolia Lalioti,^a John Parthenios,^b Nikos Boukos,^c Ondrej Malina,^d Jiří Tucek,^d Radek Zboril^d

^a Department of Chemistry, University of Patras, GR-26504 Patras, Greece. Email Address: vtango@upatras.gr

^b Foundation for Research and Technology, Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE/HT), P.O. Box 1414 GR - 26504 Patras Greec

^c Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, "Demokritos", Patriarchoy Grigoriou & Neapoleos Str., GR-15310 Agia Paraskevi Attikis, Athens Greece

^{*d*} Regional Centre of Advanced Technologies and Materials, Departments of Physical Chemistry and Experimental Physics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic

Figure S1. The molecular structure of Dy2 molecule. Unprimed and primed atoms are related by the symmetry operation -x+2, -y, -z. Selected interatomic distances (Å) and angles (°): Dy1...Dy1' 3.738(1) Å, Dy1-O1 2.323(2) Å, Dy1-O1' 2.322(3) Å, Dy1-O2 2.200(3) Å, Dy1-N1 2.525(4) Å, Dy1-O(NO_3^- , DMF) 2.319(3)-2.482(3) Å ; O1-Dy1-O1' 72.8(1), O3-Dy1-O4 51.7(1)°,O1'-Dy1-O4 163.3(1)°, O2-Dy1-O6 146.9(1)°, Dy1-O1-Dy1' 107.2(1)°.

Figure S2. IR spectra of the Dy2 compound; the raw MWCNT material; the carboxylated MWCNT and the the final hybrid material after the washing cycles (from up to down).

Figure S3. Thermogravimetric measurements of the raw material MWCNT (red line); carboxylated MWCNT (green line); hybrid material Dy2@MWCNT (blue line) and the Dy2 compound (black line)

Figure S5. Survey XPS pattern of the Dy2 powder reference with the peaks belonging to C, N, O and Dy indicated

Figure S6. Survey XPS pattern of the hybrid material Dy2@MWCNT with the peaks belonging to C, N, O and Dy indicated.

	D /cm ⁻¹	G /cm ⁻¹	D' /cm ⁻¹	
	(Pos, FWHM, A)*	(Pos, FWHM, A)	(Pos, FWHM, A)	I_D/I_G
MWCNT	(1316.5, 53.5, 73.2)	(1589.4, 51.7, 28.6)	(1617.0, 21.0, 7.5)	2.6
MWCNT-COO	(1317.1, 56.7, 74.5)	(1587.1, 52.1, 27.7)	(1616.0, 23.2, 7.1)	2.7
Dy2@MWCNT	(1317.6, 57.6, 67.4)	(1588.5, 63.0, 32.2)	(1615.2, 17.7, 5.0)	2.1

Table S1. The profile characteristics of D, G, D' Raman bands

*Pos = position, A = area. All values based on averaged results from spectra of 6 analogous samples.

FIGURE S7. Magnetization measurements of the functionalized MWCNT-COOH at 2 K. In the inset is shown an enlargement of the low field region

FIGURE S8. AC susceptibility measurements of the functionalized MWCNT-COOH at 4 frequencies (10 Hz, 100 Hz, 997 Hz, 1488 Hz) using H_{AC} = 3 Oe, H_{DC} = 0 Oe