Supporting Information for

A Straighforward Access To Highly Substituted 2,3DihydroBenzo/b/Oxepines by Ring Expansion of Benzopyryliums with Donor-Acceptor Diazo Compounds

Thibaut Courant, Morgane Pasco, and Thomas Lecourt* Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA UMR 6014, 76000 Rouen, France
Thomas.Lecourt@insa-rouen.fr

Table of Contents

List of Abbreviations S1

1. General Methods S2
2. Synthesis of 4-phenylcoumarin acetals 1b-e and $\mathbf{2 0}$ S3
3. Synthesis and analytical data for dihydrobenzo[b]oxepines 3-11 and $\mathbf{2 1}$ S6
4. Synthesis and analytical data for dihydrobenzo[b]oxepines $\quad \mathbf{1 2 - 1 6}$ S12
5. Protocol for diastereo-enrichment of $\mathbf{3}$ and single crystal growth. S16
6. Protocol for mechanistic studies S17
7. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of benzoxepines 3-16 and 21, and for chromenes 1b-e and 20 S19

List of Abbreviations

PE	Petroleum Ether	DCM	Dichloromethane
EtOAc	Ethyl acetate	TFA	Trifluoroacetic acid
TMS	Trimethylsilyl		

1. General Methods

Technical grade solvents were used for quantitative flash chromatography. HPLC grade solvents purchased from Sigma-Aldrich or freshly distilled solvents were used for flash chromatography for compounds undergoing full characterization. Reaction solvents were purchased from ACROS 99.8% grade on molecular sieves. All other commercially available reagents were purchased from Acros, Aldrich, Fluka, VWR, Aplichem or Merck and used without any further purification. Flash chromatography was performed on silica gel (60-240 mesh) unless otherwise specified. Analytical thin layer chromatography (TLC) was performed on silica gel plates (Merck $60 \mathrm{~F}_{254}$) visualized either with a UV lamp (254 nm) or by using permanganate stain. Organic extracts were dried over anhydrous $\mathrm{MgSO}_{4} .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker Avance-III, at $300 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right.$ value) or $75 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$ value) in CDCl_{3}. Spectra were referenced to residual chloroform ($7.26 \mathrm{ppm},{ }^{1} \mathrm{H} ; 77.0 \mathrm{ppm}$, ${ }^{13} \mathrm{C}$) or TMS. Chemical shifts are reported in ppm, multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), qt (quintet), and m (multiplet or unresolved), br (broad signal). Coupling constants, J, are reported in hertz (Hz). All NMR spectra were obtained at 300 K unless otherwise specified.

Phenyldiazo-esters compounds were synthesized according literature procedure. ${ }^{1}$ 4-phenyl- 2 H -chromene $\mathbf{1}$ was synthesized according literature procedure from a. ${ }^{2}$

[^0]
2. Synthesis of 4-Phenyl-coumarin Acetals 1b to 1d and 20.

General Procedure for the synthesis of 4-phenyl-2H-chromen-2-enes $\mathbf{1 b}$-d and 20

2) $\mathrm{ROH} / \mathrm{TFA}$

ref. 2

$$
\begin{array}{ll}
\text { a } & \mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{Ph} \\
\text { b } & \mathrm{R}^{1}=6-\mathrm{tBu} ; \mathrm{R}^{2}=\mathrm{Ph} \\
\text { c } & \mathrm{R}^{1}=6-\mathrm{OMe} ; \mathrm{R}^{2}=\mathrm{Ph} \\
\text { d } & \mathrm{R}^{1}=7-\mathrm{Cl} ; \mathrm{R}^{2}=\mathrm{Ph} \\
\text { e } & \mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\overline{=} \mathrm{Ph}
\end{array}
$$

$20 \quad \mathrm{R}^{1}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{Ph} ; \mathrm{R}=\mathrm{iPr}$
1b $\quad R^{1}=6-t B u ; R^{2}=P h ; R=M e$
1c $R^{1}=6-O M e ; R^{2}=\mathrm{Ph} ; \mathrm{R}=\mathrm{Me}$
1d $\quad \mathrm{R}^{1}=7-\mathrm{Cl} ; \mathrm{R}^{2}=\mathrm{Ph} ; \mathrm{R}=\mathrm{Me}$
1e $\quad R^{1}=H ; R^{2}=\bar{Z} \mathrm{Ph} ; \mathrm{R}=\mathrm{Me}$

4-phenyl-2H-chromen-2-enes $\mathbf{1 b}$ to $\mathbf{1 d}$ were synthesized from corresponding known 4-phenyl-chromenones $\mathbf{b},{ }^{3} \mathbf{c},{ }^{4} \mathbf{d},{ }^{5}$ and e. ${ }^{6}$

To a stirred solution of 4-phenyl-chromenone (1.5 mmol) in dry DCM $(10 \mathrm{~mL})$, was added DIBAL-H ($1.1 \mathrm{eq}, 1 \mathrm{M}$ in heptane) over 1 h at $-78^{\circ} \mathrm{C}$ under argon atmosphere. The reaction was stirred 6 h at $-78^{\circ} \mathrm{C}$. The cooling bath was removed and the reaction was stirred for additional 10 h at r.t. The reaction was quenched by addition of a 2 M Rochelle's salt aqueous solution and the aqueous layer was extracted 3 times with DCM (20 mL). The combined organic phases were dried over MgSO_{4} and the solvents removed in vacuo. The crude colorless oil was directly engaged in the next step without purification.

The crude oil obtained was dissolved in suitable alcohol (MeOH or $i \mathrm{PrOH}$) (10 mL) and few drops of trifluoroacetic acid were carefully added to the reaction mixture at r.t upon vigorous stirring. After 3h the reaction was completed and was quenched by addition of a spatula of solid $\mathrm{K}_{2} \mathrm{CO}_{3}$. The suspension was filtered and the filter cake washed with MeOH . Rotary evaporation of the solvent gave a crude solid which was purified by flash silica gel chromatography with $\mathrm{PE} / \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}: 80 / 19 / 1$ as eluent.

[^1] synthesized according general procedure. ($1.4 \mathrm{mmol}, 400 \mathrm{mg}$) of 6-(tert-butyl) -4-phenyl-chromenone \mathbf{b} was used to give desired product as a white powder. (250 mg) 60%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.48-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.20\left(\mathrm{dd}, J_{I}=2.6 \mathrm{~Hz}\right.$, $\left.J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.09(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.76(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 149.3,144.1,139.2,137.9,128.9$ (2C), 128.4 (2C), 128.2, 126.5, 123.2, $120.9,117.9,116.4,95.9,55.2,34.3,31.5(3 \mathrm{C}) ; \mathrm{HRMS}[\mathrm{M}+\mathrm{H}]^{+}$calc for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{2} 295.1693$; found 295.1695 .

6-(methoxy)-2-methoxy-4-phenyl-2H-chromene 1c was synthesized according general procedure. ($1.2 \mathrm{mmol}, 300 \mathrm{mg}$) of 6-(methoxy)-4-phenyl-chromenone \mathbf{c} was used to give desired product as a white powder. (230 mg) 71%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 300 MHz): $\delta 7.38-7.27$ (m, 5H), 6.95 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.75 (dd, $\left.J_{I}=3.0 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.61(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80$ (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}) .3 .44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}): \delta 154.1,145.4,138.8,137.5,128.8$ (2C), 128.4 (2C), 128.2, 122.4, 118.6, 117.6, 115.1, 111.5, 95.7, 55.8, 55.3; HRMS [M+H] ${ }^{+}$calc 269.1172; found 269.1169.

Chemical Formula: $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{ClO}_{2}$

7-(chloro)-2-methoxy-4-phenyl-2H-chromene 1d was synthesized according general procedure. ($1.56 \mathrm{mmol}, 400 \mathrm{mg}$) of 7-(chloro) -4-phenyl-chromenone d was used to give desired product as a white powder. (340 mg) $80 \% .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}): \delta 7.38-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.15-5.88(\mathrm{~m}, 3 \mathrm{H}), 5.78$ (d, $J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 150.1,138.1,136.9,129.3,128.8(2 \mathrm{C}), 128.6(2 \mathrm{C}), 128.5,126.5,125.9$, 123.2, 118.9, 118.5, 95.9, 55.4. HRMS [M+H] calc 273.0677; found 273.0678.

2-methoxy-4-(phenylethynyl)-2H-chromene 1e was synthesized according general procedure. ($1 \mathrm{mmol}, 246 \mathrm{mg}$) of 4-(phenylethynyl)-chromenone \mathbf{e} was used to give desired product as a yellow oil. (182 mg) $69 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 300 MHz): $7.60\left(\mathrm{dd}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=1.65 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.49-7.43$ (m, 2H), 7.30-7.23 (m, 2H), 7.23-7.13 (m, 1H), 7.00-6.91 (m, $2 \mathrm{H}), 6.12(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}) 5.53(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}): \delta 150.9,131.8$ (2C), 130.1, 128.9, 128.5 (2C), 126.1, 123.5, 122.6, 121.8, 121.4, 120.0, 116.8, 95.6, 93.8, 84.3, 55.2; HRMS [M-OMe] ${ }^{+}$calc 231.0804; found 231.0810.

Chemical Formula: $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$

2-isopropoxy-4-phenyl-2H-chromene 20 was synthesized according general procedure using $i \mathrm{PrOH}$ as solvent for the second step. ($1 \mathrm{mmol}, 222 \mathrm{mg}$) of 4-phenyl-2H-chromen-2one a was used to give desired product as a coloress thick oil. (140 mg) 57%. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta 7.36-$ $7.25(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.06\left(\mathrm{dd}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=\right.$ $1.65 \mathrm{~Hz}, 1 \mathrm{H}), 6.95\left(\mathrm{dd}, J_{1}=8.2 \mathrm{~Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.82\left(\mathrm{dt}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.7$ $(\mathrm{s}, 2 \mathrm{H}), 4.11(\mathrm{st}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.18-1.10(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 151.7$, $138.3,137.8,129.3,128.9$ (2C), 128.3 (2C), 128.0, 126.2, 121.9, 121.2, 118.8, 117.1, 93.8, 70.7, 23.7, 22.4; HRMS: [M-OiPr] ${ }^{+}$calc 207.0804; found 207.0811.

3. Synthesis of dihydrobenzo/b/oxepines 3 to 11 and 21

General Procedure:

In an oven-dried microwave vial under argon atmosphere, to a solution of 2-methoxy-4-phenyl-2 H chromene $(0.25 \mathrm{mmol}, 60 \mathrm{mg})$ in dry DCM $(2.5 \mathrm{~mL})$ was added ethyl 2-diazo-2-phenylacetate (0.3 mmol, $1.2 \mathrm{eq}, 45 \mu \mathrm{~L}$). Then TMSOTf ($30 \mathrm{~mol} \%, 13 \mu \mathrm{~L}$) was carefully added dropwise at $-15^{\circ} \mathrm{C}$ to the solution. Immediate gas evolution was observed and reaction was stirred at $-15^{\circ} \mathrm{C}$ for further 30 min . The reaction was allowed to warm to room temperature and quenched by successive addition of $\mathrm{Et}_{3} \mathrm{~N}$ $(100 \mu \mathrm{~L})$ and water $(2 \mathrm{~mL})$. Aqueous phase was extracted with DCM ($3 \times 5 \mathrm{~mL}$) and combined organic phases were washed with brine and dried over solid anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvents gave a crude oil which was purified by column chromatography over silica gel ($\mathrm{PE} / \mathrm{EtOAc}$).

Procedure for 1 mmol scale synthesis of 3:

In an oven-dried microwave vial under argon atmosphere, to a solution of 2-methoxy-4-phenyl-2Hchromene $(1.0 \mathrm{mmol}, 238 \mathrm{mg})$ in dry $\mathrm{DCM}(10.0 \mathrm{~mL})$ was added ethyl 2-diazo-2-phenylacetate (1.2 $\mathrm{mmol}, 1.2 \mathrm{eq}, 228 \mathrm{mg}$). Then TMSOTf ($30 \mathrm{~mol} \%, 54 \mu \mathrm{~L}$) was carefully added dropwise at $-15^{\circ} \mathrm{C}$ to the solution. Immediate gas evolution was observed and reaction was stirred at $-15^{\circ} \mathrm{C}$ for further 30 min . The reaction was allowed to warm to room temperature and quenched by successive addition of $\mathrm{Et}_{3} \mathrm{~N}(500 \mu \mathrm{~L})$ and water $(5 \mathrm{~mL})$. Aqueous phase was extracted with $\mathrm{DCM}(3 \times 15 \mathrm{~mL})$ and combined organic phases were washed with brine and dried over solid anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvents gave a crude oil, which was purified by column chromatography over silica gel (PE/EtOAc: $9 / 1$) to give $87 \%(347 \mathrm{mg})$ of $\mathbf{3}$ as a thick yellow oil.

Ethyl 2-methoxy-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3carboxylate 3 was synthesized according general procedure from 2-methoxy-4-phenyl-2H-chromene $\mathbf{1}(\mathbf{0 . 2 5} \mathbf{~ m m o l})$ to give 89% of an amorphous white solid $(89 \mathrm{mg})$. d.r.: 2.8/1. $\mathrm{R}_{f}(\mathrm{PE} / \mathrm{AcOEt} 8 / 2)$ $=0.56 ;{ }^{1} \mathrm{H} \quad \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right):$ mixture of diastereoisomers (noted: dia1 $=$ minor $/ \operatorname{dia} 2=$ major) $\delta 7.50-$ $6.81(\mathrm{~m}, 14 \mathrm{H}), 6.48(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 0.2 \mathrm{H}$ dia1), $6.08(\mathrm{~s}, 0.8 \mathrm{H}, \mathrm{dia} 2), 5.79(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 0.2 \mathrm{H}$ dia1), $5.52(\mathrm{~s}, 0.8 \mathrm{H}, \mathrm{dia} 2), 4.42-4.19(\mathrm{~m}, 2 \mathrm{H}$, dia1+dia2) $3.56(\mathrm{~s}, 2.4 \mathrm{H}$, dia2) $3.49(\mathrm{~s}, 0.6 \mathrm{H}$, dia1), $1.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{dia} 1+\mathrm{dia} 2) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 171.6 / 171.0$ (dia1/dia2), 156.4/153.2 (dia1/dia2), $144.6 / 144.4$ (dia1/dia2), $140.5 / 140.1$ (dia1/dia2), 139.2/137.5 (dia1/dia2), 132.1/132.0 (dia1/dia2), 130.1 (2C) (dia1 or dia2), 129.5/129.4 (2C) (dia1/dia2), 129.3/129.2 (dia1/dia2), 129.1 (dia1 or dia2), 128.9/128.8 (dia1/dia2), 128.7/128.5 (dia1/dia2), 128.2/128.2 (2C), 127.6/127.5 (dia1/dia2), 127.5/127.4 (2C), 127.4/127.1 (dia1/dia2), 123.3/122.2 (dia1/dia2), 121.6/120.8 (dia1/dia2), 107.2/105.4 (dia1/dia2), 65.2/63.1 (dia1/dia2), 61.4 (dia1 or dia2), 57.7/57.3 (dia1/dia2), 14.2/14.1 (dia1/dia2); HRMS [M+NH4] ${ }^{+}$calc. 418.2013; found 418.2016.

Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{4}$

Methyl 2-methoxy-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3-

 carboxylate 4 was synthesized according general procedure from 2-methoxy-4-phenyl-2H-chromene 1 (0.25 mmol) to give 79 \% of a colorless oil $(70 \mathrm{mg})$. d.r.: 2.1/1; $\mathrm{R}_{f}(\mathrm{PE} / \mathrm{AcOEt} 8 / 2)=0.61$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: mixture of diastereoisomers (noted $: \operatorname{dia} 1=$ minor $/ \operatorname{dia} 2=$ major) $\delta 7.46-6.72(\mathrm{~m}, 14 \mathrm{H})$, $6.31(\mathrm{~s}, 0.3 \mathrm{H}, \mathrm{dia} 1), 5.89(\mathrm{~s}, 0.7 \mathrm{H}, \mathrm{dia} 2), 5.60(\mathrm{~s}, 0.3 \mathrm{H}, \mathrm{dia})$, $5.41(\mathrm{~s}, 0.7 \mathrm{H}, \mathrm{dia} 2), 3.70(\mathrm{~s}, 2 \mathrm{H}$, dia2), $3.66(\mathrm{~s}, 1 \mathrm{H}, \operatorname{dia} 1), 3.42\left(\mathrm{~s}, 2 \mathrm{H}\right.$, dia2), $3.36\left(\mathrm{~s}, 1 \mathrm{H}\right.$, dia1). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$: 172.2 (2C) (dia1+dia2), $156.3 / 153.3$ (dia1/dia2), 144.5/144.3 (dia1/dia2), 140.6/140.3 (dia1/dia2), 139.1/137.4 (dia1/dia2), 132.1/132.0 (dia1/dia2), 130.0 (2C), 129.4/129.3 (4C) (dia1/dia2), $129.1 \quad(2 \mathrm{C}), \quad 128.9 \quad$ (2C), $128.6 \quad$ (2C), $128.2 / 128.2 \quad 4 \mathrm{C} \quad$ (dia1/dia2), 127.7/127.6/127.5/127.5/127.4/127.1 10C (dia1/dia2), 123.4/122.3 (dia1/dia2), 121.5/120.9 (dia1/dia2), 107.0/105.4 (dia1/dia2), 65.2/63.3 (dia1/dia2), 57.7/57.4 (dia1/dia2), 52.7/52.7 (dia1/dia2); HRMS [M+NH4] ${ }^{+}$calc. 404.1856 ; found 404.1856.

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{4}$ dihydrobenzo[b]oxepine-3-carboxylate 5 was synthesized according general procedure from 2-methoxy-4-phenyl-2Hchromene $1(0.25 \mathrm{mmol})$ to give 79% of a colorless oil (70 mg). d.r.: $1.8 / 1 ; \mathrm{R}_{f}(\mathrm{PE} / \mathrm{AcOEt} 8 / 2)=0.60 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 300 MHz): mixture of diastereoisomers (noted : dial $=$ minor $/$ dia2 =major) $\delta 7.45-6.70(\mathrm{~m}, 15 \mathrm{H}), 6.34(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 0.3 \mathrm{H}$, dia1), 5.87 (s, $0.7 \mathrm{H}, \mathrm{dia} 2), 5.67$ (d, $J=1.5 \mathrm{~Hz}, 0.3 \mathrm{H}), 5.31(\mathrm{~s}, 0.7 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}, \mathrm{dia} 2), 3.37$ (s, $1 \mathrm{H}, \mathrm{dia} 1), 1.39(\mathrm{~s}, 5.7 \mathrm{H}, \mathrm{dia} 2)$, 1.36 (s, 3.3H, dia1); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): 170.5/169.9 (dia1/dia2), 156.7/153.1 (dia1/dia2), 144.7/144.6 (dia1/dia2), 140.1, 139.7/139.3 (dia1/dia2), 137.9, 132.1/131.9 (dia1/dia2), 130.2/130.1 (2C) (dia1/dia2), 129.9, 129.5/129.4 (2C) (dia1/dia2), 129.2/129.1 (dia1/dia2), 128.9/128.6 (dia1/dia2), 128.4/128.3 (2C) (dia1/dia2), 128.1/127.5 (dia1/dia2), 127.3/127.3 (2C) (dia1/dia2), 127.3/127.0 (dia1/dia2), 123.3/122.2 (dia1/dia2), 121.7/120.8 (dia1/dia2), 107.6/105.7 (dia1/dia2), 82.1/82.0 (dia1/dia2), 65.8/63.3 (dia1/dia2), 57.8/57.3 (dia1/dia2), 28.1/28.0 (3C) (dia1/dia2); HRMS [M+NH4] calc. 446.2326; found 446.2330.

Ethyl
2,7-dimethoxy-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 6 was synthesized according general procedure from 2,6-dimethoxy-4-phenyl-2H-chromene 1c (0.25 mmol) to give 78% of a colorless oil $(68 \mathrm{mg})$. d.r.: $1 / 1 ; \mathrm{R}_{f}(\mathrm{PE} / \mathrm{AcOEt} 8 / 2)=0.44$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: mixture of diastereoisomers (noted : dia1 $=$ minor $/ \operatorname{dia} 2=$ major) $\delta 7.42-7.11(\mathrm{~m}, 10 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.5 \mathrm{H}$, dia2), 6.87 (d, $J=8.8 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{dia} 1$), 6.73-6.60 (m, 1H, dia1+dia2), 6.43-6.37 (m, 1H, dia1+dia2), 6.34 (d, $J=1.4 \mathrm{~Hz}, 0.5 \mathrm{H}, \mathrm{dia} 1), 5.92$ ($\mathrm{s}, 0.5 \mathrm{H}, \mathrm{dia} 2$), 5.56 (d, $J=1.4 \mathrm{~Hz}, 0.5 \mathrm{H}$, dia1), 5.36 (s, $0.5 \mathrm{H}, \mathrm{dia} 2$), 4.29-4.02 (m, 2H, dia1+dia2), 3.53 ($\mathrm{s}, 1.5 \mathrm{H}$, dia2), 3.48 ($\mathrm{s}, 1.5 \mathrm{H}$, dia1), 3.42 (s , $1.5 \mathrm{H}, \mathrm{dia} 2), 3.38$ (s, 1.5 H, dia1), 1.22-1.09 (m, 3H, dia1+dia2). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$: 171.6/170.9 (dia1/dia2), 155.2/154.4 (dia1/dia2), 150.4/147.1 (dia1/dia2), 144.3/144.1 (dia1/dia2), 140.3/139.6 (dia1/dia2), 139.4/137.5 (dia1/dia2), 130.0 (2C), 129.9/129.8 (dia1/dia2), 129.7/129.7 (dia1/dia2), 129.5/129.4 (4C dia1/dia2), 128.5 (2C), 128.2/128.2 (4C dia1/dia2), 127.6/127.5/127.4 (7C), 127.2, 122.3/121.4 (dia1/dia2), 117.1/116.9 (dia1/dia2), 114.4/114.3 (dia1/dia2), 107.4/105.5 (dia1/dia2), 65.2/63.3 (dia1/dia2), 61.5/61.5 (dia1/dia2),
57.7/57.3 (dia1/dia2), 55.6/55.4 (dia1/dia2), 14.2/14.1 (dia1/dia2); HRMS $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calc. 448.2118; found 448.2126.

Ethyl 7-(tert-butyl)-2-methoxy-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 7 was synthesized according general procedure from 6-(tert-butyl)-2-methoxy-4-phenyl-2H-chromene 1b (0.20 mmol) to give 81% of a colorless oil (74 mg). d.r.: 1.3/1; $\mathrm{R}_{f}(\mathrm{PE} / \mathrm{AcOEt}$ $8 / 2)=0.56 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: mixture of diastereoisomers (noted : dia1 $=$ minor $/ \mathrm{dia} 2=$ major) $\delta 7.46-6.83(\mathrm{~m}, 14 \mathrm{H}), 6.33(\mathrm{~d}, \mathrm{~J}=$ $1.6 \mathrm{~Hz}, 0.4 \mathrm{H}, \mathrm{dia} 1), 5.89(\mathrm{~s}, 0.6 \mathrm{H}, \mathrm{dia} 2), 5.60(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 0.4 \mathrm{H}, \mathrm{dia} 1), 5.38$ ($\mathrm{s}, 0.6 \mathrm{H}, \mathrm{dia} 2$), 4.30-4.00 (m, 2H, dia1+dia2), $3.44(\mathrm{~s}, 1.6 \mathrm{H}, \mathrm{dia} 2), 3.32(\mathrm{~s}, 1.4 \mathrm{H}, \mathrm{dia} 1), 1.22-1.14(\mathrm{~m}, 3 \mathrm{H})$, 1.06 (s, 5H, dia2), $1.02(\mathrm{~s}, 4 \mathrm{H}, \mathrm{dia} 1) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 171.7 / 171.0$ (dia1/dia2), 154.3/150.9 (dia1/dia2), 145.8/144.7 (dia1/dia2), 144.6/144.4 (dia1/dia2), 140.9/140.2 (dia1/dia2), 139.5/137.5 (dia1/dia2), 130.2/129.5/129.5/129.3/129.1/128.9/128.8/128.5/ 128.3/128.3/128.1/128.0/127.9/127.8/127.6/127.5/127.4/127.1/126.7/126.2/125.8 (dia1/dia2), 121.0/120.0 (dia1/dia2), 107.2/105.5 (dia1/dia2), 65.3/63.2 (dia1/dia2), 61.5/61.4 (dia1/dia2), 57.8/57.3 (dia1/dia2), 34.3/34.2 (dia1/dia2), 31.3/31.2 (3C) (dia1/dia2), 14.2/14.1 (dia1/dia2); HRMS $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calc. 474.2639; found 474.2639.

Ethyl
8-chloro-2-methoxy-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 8 was synthesized according general procedure from 7-(chloro)-2-methoxy-4-phenyl-2H-chromene 1d (0.20 mmol) to give 83% of a colorless oil (72 mg). d.r.: $3.8 / 1 ; \mathrm{R}_{f}(\mathrm{PE} / \mathrm{AcOEt} 8 / 2)=0.55 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right): \delta$ mixture of diastereoisomers (noted : dia1 $=$ minor $/ \operatorname{dia} 2=$ major) $7.40-7.15(\mathrm{~m}, 11 \mathrm{H}), 7.10\left(\mathrm{dd}, J_{I}=3.9 \mathrm{~Hz}, J_{2}=8.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 0.2 \mathrm{H}, \mathrm{dia}), 5.97(\mathrm{~s}, 0.8 \mathrm{H}$, dia2), $5.70(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 0.2 \mathrm{H}, \mathrm{dia} 1), 5.48(\mathrm{~s}, 0.8 \mathrm{H}, \mathrm{dia} 2), 4.27-4.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{dia} 1+\mathrm{dia} 2), 3.40$ (s, 2.5 H , dia2), 3.36 ($\mathrm{s}, 0.5 \mathrm{H}$, dia1), 1.22-1.12 ($\mathrm{m}, 3 \mathrm{H}$, dia1+dia2); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ MHz): 171.3, 154.7, 143.6, 139.4, 137.2, 131.4, 130.7, 130.6, 129.8 (2C), 129.3 (2C), 129.0, $128.6,128.5$ (2C), 127.7, 127.6 (2C), 127.4, 122.3, 107.2, 65.0, 61.6, 57.5, 14.1; HRMS [M+ $\left.\mathrm{NH}_{4}\right]^{+}$calc. 452.1623; found 452.1613.

Ethyl
3-(4-bromophenyl)-2-methoxy-5-phenyl-2,3-dihydrobenzo[b/oxepine-3-carboxylate 9 was synthesized according general procedure from 2-methoxy-4-phenyl$\mathbf{2 H}$-chromene 1 (0.20 mmol) to give 60% of an amorphous white solid (70 mg). d.r.: $5 / 1 ; \mathrm{R}_{f}(\mathrm{PE} / \mathrm{AcOEt} 8 / 2)=0.53 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: mixture of diastereoisomers δ (noted : dia1 $=$ minor $/ \operatorname{dia} 2=$ major) $7.51-6.95(\mathrm{~m}, 12 \mathrm{H}), 6.95-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.31(\mathrm{~s}, 0.2 \mathrm{H}$, dia1), 5.80 ($\mathrm{s}, 0.8 \mathrm{H}, \mathrm{dia} 2$), 5.63 ($\mathrm{s}, 0.2 \mathrm{H}$, dia1), 5.36 ($\mathrm{s}, 0.8 \mathrm{H}, \mathrm{dia} 2$), 4.30-4.05 (m, $2 \mathrm{H}, \mathrm{dia} 1+$ dia2), $3.45(\mathrm{~s}, 2.5 \mathrm{H}, \operatorname{dia} 2), 3.36\left(\mathrm{~s}, 0.5 \mathrm{H}\right.$, dia1), 1.23-1.14 (m, 3H, dia1 + dia2), ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 171.1,156.5,144.1,141.1,136.4,132.2$ (2C, dia1), 132.1 (2C, dia2), 131.6, 130.5 (2C), 129.5 (2C, dia1), 129.4, 129.4 (2C, dia2), 129.3, 128.8, 128.4 (2C, dia1), 128.3 (2C, dia2), 127.5, 123.5, 122.0, 120.7, 107.0, 65.0, 61.7, 57.3, 14.2; HRMS [M+H] ${ }^{+}$ calc. 479.0852; found 479.0858.

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{NO}_{6}$

Ethyl 3-(4-nitrophenyl)-2-methoxy-5-phenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 10 was synthesized according general procedure from 2-methoxy-4-phenyl-2Hchromene 1 (0.20 mmol) to give 71% of yellow oil (77 mg). d.r.: $3.9 / 1 ; \mathrm{R}_{f}(\mathrm{PE} / \mathrm{AcOEt} 8 / 2)=0.46 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ MHz): mixture of diastereoisomers (noted: dial $=$ minor $/$ $\operatorname{dia} 2=$ major $) \delta 8.22-8.10(\mathrm{~m}, 2 \mathrm{H}$, dia1+ dia2), $7.67(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 0.5 \mathrm{H}$, dia1), $7.59(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1.5 \mathrm{H}, \mathrm{dia} 2), 7.46-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.06-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}, 0.2 \mathrm{H}, \mathrm{dia} 1), 5.88(\mathrm{~s}, 0.8 \mathrm{H}, \mathrm{dia} 2), 5.81(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 0.8 \mathrm{H}, \mathrm{dia} 2), 5.49$ (s, $0.8 \mathrm{H}, \mathrm{dia} 2$), 4.41-4.20 (m, 2H, dia1 + dia2), $3.55(\mathrm{~s}, 2.3 \mathrm{H}, \operatorname{dia} 2), 3.48(\mathrm{~s}, 0.7 \mathrm{H}$, dia1), 1.34-1.22 (m, 3H, dia1 + dia2). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 170.5,156.5,147.2,144.6,143.8,141.9$, 132.4/132.2 (dia1/dia2), 131.6 (2C dia2), 129.8 (2C dia1), 129.3 (2C dia2), 128.7, 128.5, 128.4 (2C dia2), 128.3, 128.2, 127.7 (2C dia1), 127.4/127.3 (dia1/dia2), 123.8/123.6 (dia1/dia2), 122.3, 121.5/120.6 (dia1/dia2), 106.8, 65.5/63.0 (dia1/dia2), 62.2/62.0 (dia1/dia2), 57.7/57.2 (dia1/dia2), 14.2; HRMS $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calc. 463.1864; found 463.1863.

Ethyl
2-methoxy-3-phenyl-5-(phenylethynyl)-2,3-

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{4}$ dihydrobenzo[b]oxepine-3-carboxylate 11 was synthesized according general procedure from 2-methoxy-4-phenyl-2Hchromene $\mathbf{1 e}(0.25 \mathrm{mmol})$ to give 79% of a colorless oil (70 mg). d.r.: 2.8/1; $\mathrm{R}_{f}(\mathrm{PE} / \mathrm{AcOEt} 8 / 2)=0.51 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, 300 MHz): mixture of diastereoisomers (noted: dia1 $=$ minor / dia2 =major) $\delta 8.12-7.99\left(\mathrm{dd}, J_{1}=2.0 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right.$, dia1+dia2), $7.54-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.06(\mathrm{~m}, 12 \mathrm{H}), 6.91\left(\mathrm{dd}, J_{1}=1.7 \mathrm{~Hz}, J_{2}=8.0 \mathrm{~Hz}, 0.33 \mathrm{H}\right.$, dia1), 6.51 (s, $0.66 \mathrm{H}, \mathrm{dia} 2$), 5.71 (d, $J=1.7 \mathrm{~Hz}, 0.33 \mathrm{H}, \mathrm{dia} 1$), 5.35 ($\mathrm{s}, 0.66 \mathrm{H}$, dia2), 4.22 (q, $J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}$, dia1+dia2), 3.38 ($\mathrm{s}, 2 \mathrm{H}$, dia2), 3.32 ($\mathrm{s}, 1 \mathrm{H}$, dia1), 1.26-1.12 (m, 3H, dia1+dia2) ; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): $\delta 170.8 / 170.4$ (dia1/dia2), 154.9/151.7 (dia1/dia2), 138.6/137.1 (dia1/dia2), 134.6/134.4 (dia1/dia2), 131.6/131.5 (2C) (dia1/dia2), 131.3, 129.9/129.9 (2C) (dia1/dia2), 129.7, 128.8/128.6 (dia1/dia2), 128.5/128.4 (dia1/dia2), 128.4/128.3 (2C) (dia1/dia2), 127.9/127.7 (dia1/dia2), 127.6/127.3 (2C) (dia1/dia2), 126.1/125.5 (dia1/dia2), 123.7/123.3 (dia1/dia2), 123.1/123.0 (dia1/dia2), 122.9/122.6 (dia1/dia2), 121.6/120.9 (dia1/dia2), 105.7/103.1 (dia1/dia2), 90.2/90.0 (dia1/dia2), 89.2/89.2 (dia1/dia2), 65.5/63.8 (dia1/dia2), 62.0/61.8 (dia1/dia2), 57.7/57.3 (dia1/dia2), 14.1; HRMS $[\mathrm{M}+\mathrm{Na}+\mathrm{MeCN}]^{+}$calc. 488.1838; found 488.1832.

Ethyl
 2-isopropoxy-3,5-diphenyl-2,3-

 dihydrobenzo[b]oxepine-3-carboxylate 21. was synthesized according general procedure from 2-isopropoxy-4-phenyl-2H-chromene 20 (0.25 mmol), to give 78% of desired product as a yellow oil. (84 mg). d.r.: 1.1/1; $\mathrm{R}_{f}(\mathrm{PE} / \mathrm{AcOEt} 8 / 2)=0.64 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 300 MHz): mixture of diastereoisomers (noted: dia1 =minor / dia2 =major) $\delta 7.52-7.45$ (m , $1 \mathrm{H}), 7.43-7.04(\mathrm{~m}, 10 \mathrm{H}), 6.97-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.42(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 0.45 \mathrm{H}$ dia1), $6.01(\mathrm{~s}, 0.45 \mathrm{H}$, dia1), 5.96 (d, $J=1.5 \mathrm{~Hz}, 0.55 \mathrm{H}, \mathrm{dia} 2), 5.7$ (s, $0.55 \mathrm{H}, \mathrm{dia} 2$), 4.31-4.13 (m, 2H, dia1+dia2), 4.01-3.88 (m, 1H, dia1+dia2), $1.33(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{dia} 1+\mathrm{dia} 2), 1.14-0.76(\mathrm{~m}, 6 \mathrm{H}$, dia1+dia2) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): \delta 171.7 / 171.1$ (dia1/dia2), 155.7/153.3 (dia1/dia2), 144.9/144.7 (dia1/dia2), 140.4/140.1 (dia1/dia2), 139.5/137.9 (dia1/dia2), 132.0/131.8 (dia1/dia2), 129.8/129.5 (dia1/dia2) (2C), 129.4/129.3 (dia1/dia2), 129.0/128.9 (dia1/dia2), 128.6/128.5 (dia1/dia2), 128.5/128.4 (dia1/dia2), 128.2/128.2 (dia1/dia2) (2C), 127.6/127.4(dia1/dia2), 127.5/127.3 (dia1/dia2) (2C), 127.3/127.1 (dia1/dia2); 127.0 (dia1+dia2), 123.0/121.9 (dia1/dia2), 121.7/121.3 (dia1/dia2), 103.0/101.0 (dia1/dia2), 71.3/71.0 (dia1/dia2), 65.2/63.3 (dia1/dia2), 61.6/61.4 (dia1/dia2), 22.9/22.6 (dia1/dia2), 20.9 (dia1+dia2), 14.2/14.1 (dia1/dia2); HRMS [M-OiPr] ${ }^{+}$calc. 369.1487; found 369.1497.

4. Synthesis of dihydrobenzo[b/oxepines 12 to 16

General Procedure:

In a oven-dried microwave vial under argon atmosphere, to a solution of 2-methoxy-4-phenyl- 2 H chromene ($0.25 \mathrm{mmol}, 60 \mathrm{mg}$) in dry DCM (2.5 mL) was added ethyl 2-diazo-2-phenylacetate (0.3 $\mathrm{mmol}, 1.2 \mathrm{eq}, 45 \mu \mathrm{~L}$). Then TMSOTf ($30 \mathrm{~mol} \%, 13 \mu \mathrm{~L}$) was carefully added dropwise at $-15^{\circ} \mathrm{C}$ to the solution. Immediate gas evolution was observed and reaction was stirred at $-15^{\circ} \mathrm{C}$ for further 30 min . To the resulting solution was added, $\mathrm{TiCl}_{4}(2.2 \mathrm{eq}, 0.55 \mathrm{mmol}, 60 \mu \mathrm{~L})$ dropwise, the reaction turned to a bright red color and suitable nucleophile (5 eq) was added dropwise at $-15^{\circ} \mathrm{C}$. The reaction was stirred for further 30 min at $-15^{\circ} \mathrm{C}$ after what the ice/salt bath was removed and the reaction was stirred 1 h at room temperature. The reaction mixture was quenched by successive addition of $\mathrm{Et}_{3} \mathrm{~N}(200 \mu \mathrm{~L})$, $\mathrm{MeOH}(500 \mu \mathrm{~L})$, water (1 mL), $\mathrm{HCl} 6 \mathrm{~N}(500 \mu \mathrm{~L})$ and finally diluted with $\mathrm{DCM}(2 \mathrm{~mL})$. Aqueous phase was extracted with DCM ($3 \times 5 \mathrm{~mL}$) and combined organic phases were washed with brine and dried over solid anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvents gave a crude oil, which was purified by column chromatography over silica gel ($\mathrm{PE} / \mathrm{EtOAc}$).

Ethyl 2-allyl-3,5-diphenyl-2,3-dihydrobenzolbloxepine-3-carboxylate 12 was synthesized according general procedure from 2-methoxy-4-phenyl-2H-chromene 1 (0.25 mmol) using allyltrimethylsilane as nucleophile ($1.25 \mathrm{mmol}, 5 \mathrm{eq}, 200 \mu \mathrm{~L}$) to give 84% of a colorless oil $(86 \mathrm{mg})$. d.r.: $3.2 / 1 ; \mathrm{R}_{f}(\mathrm{PE} / \mathrm{AcOEt} 8 / 2)=0.65 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: mixture of diastereoisomers (noted: dia1 $=$ minor $/$ dia2 $=$ major $) ~ \delta 7.34-7.19(\mathrm{~m}, 10 \mathrm{H}), 7.13-6.76(\mathrm{~m}, 4 \mathrm{H}), 6.28-6.20(1 \mathrm{H}$, dia1+dia2), 5.81-5.64 (m, 1H, dia1+dia2), 4.98-4.84 (m, 2H, dia1+dia2), 4.36-4.28 (m, 1H, dia1+dia2), 4.28-4.08 (m, 2H, dia1+dia2), 3.15-3.01 (m, 1H), 2.07-1.98 (m, 1H), 1.20-1.12 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 171.4,159.1,144.7,140.3,138.8,135.7,133.3,132.2$, 129.5 (2C), 128.9, 128.8 (2C), 128.2 (2C), 127.7, 127.5, 127.3 (2C), 127.1, 122.2, 121.1, 117.0, 86.2, 63.8, 61.3, 35.7, 14.1; HRMS [M+H] calc. 428.2220; found 428.2222.

Ethyl 3,5-diphenyl-2,3-dihydrobenzo[b]oxepin-3carboxylate 13 was synthesized according general procedure from 2-methoxy-4-phenyl-2H-chromene 1 (0.25 mmol) using triethylsilane as source of nucleophile ($1.25 \mathrm{mmol}, 5 \mathrm{eq}, 200 \mu \mathrm{~L}$) to give 91% of a colorless oil $(82 \mathrm{mg}) . \mathrm{R}_{f}(\mathrm{PE} / \mathrm{AcOEt} 8 / 2)=0.60 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ MHz): $\delta 7.34-7.12(\mathrm{~m}, 10 \mathrm{H}), ~ 7.10-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.78$ (m, 2H), 6.33 (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.88\left(\mathrm{dd}, J_{l}=1.5 \mathrm{~Hz}, J_{2}=12.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.24-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): 172.2, 160.8, 145.0, 139.8, 139.5, 132.8, 132.1, $130.2,129.5$ (2C), 128.9 (2C), 128.5, 128.2 (2C), 127.8, 127.2, 126.8 (2C), 123.0, 120.6, 77.8, 61.7, 60.9, 14.1; HRMS $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calc. 388.1907; found 388.1920.

Ethyl
2-azido-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 14 was synthesized according general procedure from 2-methoxy-4-phenyl-2H-chromene $\mathbf{1}(\mathbf{0} .1 \mathrm{mmol})$ using trimethylsilylazide as nucleophile ($0.5 \mathrm{mmol}, 5 \mathrm{eq}$, $65 \mu \mathrm{~L}$) to give 88% of a colorless oil (41 mg). d.r.: $4 / 1$;
$\mathrm{R}_{f}(\mathrm{PE} / \mathrm{AcOEt} 8 / 2)=0.61 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: mixture of diastereoisomers (noted: dia1 $=$ minor $/$ dia2 $=$ major) $\delta 7.44-6.98(\mathrm{~m}, 14 \mathrm{H}), 6.37(\mathrm{~s}, 0.2 \mathrm{H}$, dia1 $), 6.08(\mathrm{~s}, 0.2 \mathrm{H}$, dia1 $)$, 6.01 (s, $0.8 \mathrm{H}, \mathrm{dia} 2$), 5.95 ($\mathrm{s}, 0.8 \mathrm{H}, \mathrm{dia} 2$), 4.26-4.10 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{dia} 1+\mathrm{dia} 2$), 1.17 (t, $J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$): 171.0/170.4 (dia1/dia2), 156.6, 143.9/143.7 (dia1/dia2), 140.8, 136.7, 132.2/132.1 (dia1/dia2), 129.8/129.6 (2C) (dia1/dia2), 129.3/129.2 (2C) (dia1/dia2), 128.9/128.8 (dia1/dia2), 128.7, 128.3 (2C), 128.1/128.0 (dia1/dia2), 127.8/127.6, (2C) (dia1/dia2), 127.5, 124.2, 123.1, 121.3/121.1(dia1/dia2), 94.9/94.4 (dia1/dia2), 64.5, 62.0/61.9 (dia1/dia2), 14.1/14.0 (dia1/dia2); HRMS $[\mathrm{M}+\mathrm{Na}+\mathrm{ACN}]^{+}$calc. 475.1741 ; found 475.1741.

Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{3}$

Ethyl 2-cyano-3,5-diphenyl-2,3-dihydrobenzo[b/oxepine-3-carboxylate 15 was synthesized according general procedure from 2-methoxy-4-phenyl-2H-chromene 1 (0.1 mmol) using trimethylsilylcyanide as nucleophile $(0.5 \mathrm{mmol}, 5 \mathrm{eq}$, $63 \mu \mathrm{~L}$) to give 78% of a colorless oil (35 mg). d.r.: $1: 1$; $\mathrm{R}_{f}(\mathrm{PE} / \mathrm{AcOEt} 8 / 2)=0.49 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: mixture of diastereoisomers δ 7.47$6.85(\mathrm{~m}, 15 \mathrm{H}), 6.31(\mathrm{~s}, 0.5 \mathrm{H}), 6.22(\mathrm{~s}, 0.5 \mathrm{H}), 5.70(\mathrm{~s}, 0.5 \mathrm{H}), 5.12(\mathrm{~s}, 0.5 \mathrm{H}), 4.33-4.16(\mathrm{~m}, 2 \mathrm{H}$, dia1+dia2), 1.24-1.10 (m, 3H) ; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 170.4 / 169.7$ (dia1/dia2), 157.3/157.1 (dia1/dia2), 143.9/143.7 (dia1/dia2), 140.8/140.5 (dia1/dia2), 136.5/136.3 (dia1/dia2), 132.9/132.7 (dia1/dia2), 129.7/129.6 (2C) (dia1/dia2), 129.5, 129.3/129.2 (dial/dia2), 128.9/128.8 (2C) (dia1/dia2), 128.4/128.1 (dia1/dia2), 127.7/127.7 (2C) (dia1/dia2), 127.3/127.3 (2C) (dia1/dia2), 124.8/124.4 (dia1/dia2), 121.4/121.0 (dia1/dia2), 114.8, 74.9, 63.0/62.8 (dia1/dia2), 62.6/62.5 (dia1/dia2), 14.0; HRMS $[\mathrm{M}+\mathrm{H}]^{+}$calc. 413.1860; found 413.1863.

Ethyl
3,5-diphenyl-2-(prop-2-yn-1-yloxy)-2,3-dihydrobenzo[b]oxepine-3-carboxylate 16 was synthesized according general procedure from 2-methoxy-4-phenyl-2H-chromene $1(0.1 \mathrm{mmol})$ using propargyl alcohol as nucleophile ($0.5 \mathrm{mmol}, 5 \mathrm{eq}, 29 \mu \mathrm{~L}$) to give 86 $\%$ of a colorless oil $(41 \mathrm{mg})$. d.r.: $1 / 3 ; \mathrm{R}_{f}(\mathrm{PE} / \operatorname{AcOEt} 8 / 2)=$ 0.48; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right):$ mixture of diastereoisomers (noted $:$ dial $=$ minor $/ \operatorname{dia} 2=$ major) $\delta 7.44-7.01(\mathrm{~m}, 11 \mathrm{H}), 6.96-6.71(\mathrm{~m}, 3 \mathrm{H}), 6.45(\mathrm{~s}, 0.75 \mathrm{H}, \mathrm{dia} 2), 6.06(\mathrm{~s}, 0.75 \mathrm{H}$, dia2), $5.91(\mathrm{~s}, 0.25 \mathrm{H}, \mathrm{dia} 1), 5.76(\mathrm{~s}, 0.25 \mathrm{H}$, dia1), 4.38-4.06(m, 4H), 2.33-2.25(m, 1 H$), 1.26-1.06$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right): 171.2 / 170.7$ (dia1/dia2), 155.9/153.2 (dia1/dia2), 144.3/144.3 (dia1/dia2), 140.5/140.2 (dia1/dia2), 138.8/137.3 (dia1/dia2), 132.1/132.0 (dia1/dia2), 130.2, 129.4/129.2 (2C) (dia1/dia2), 129.0, 128.9/128.9 (dia1/dia2), 128.5/128.4 (2C) (dia1/dia2), 128.3/128.3 (dia1/dia2), 128.2/128.1 (2C) (dia1/dia2), 127.6/127.6 (dia1/dia2), 127.4/127.1 (2C) (dia1/dia2), 123.5/122.3 (dia1/dia2), 121.4/120.8 (dia1/dia2), 103.4/101.8 (dia1/dia2), 75.2/75.1 (dia1/dia2), 64.9/62.6 (dial/dia2), 61.8/61.6 (dia1/dia2), 56.1/55.7 (dia1/dia2), 14.2/14.0 (dia1/dia2); HRMS $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$calc 442.2013; found 442.2017 .

5. Protocol for diastereo-enrichment of 3 and single crystal growth.

- Diastereo-enrichment of 3

A minimal amount of $\mathbf{3}(342 \mathrm{mg})$ as a yellow oil was transferred to a vial. Small portions of diethyl ether (1 mL) were added to the oil to form a white precipitate, which was triturated with diethyl ether until disappearance of the yellow color. The white solid was dried under vacuum to give $\mathbf{3}$ ($100 \mathrm{mg}, 25 \%$) with a diastereoisomeric ratio of $8.8: 1$ determined by ${ }^{1} \mathrm{H}$ NMR analysis.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$: mixture of diastereoisomers (noted: dial $=$ minor $/ \operatorname{dia} 2=$ major) $\delta 7.50-6.81(\mathrm{~m}, 14 \mathrm{H}), 6.48(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 0.1 \mathrm{H}$ dia1), $6.08(\mathrm{~s}, 0.9 \mathrm{H}, \mathrm{dia} 2), 5.79(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 0.1 \mathrm{H}$ dia1), 5.52 ($\mathrm{s}, 0.9 \mathrm{H}, \mathrm{dia} 2$), $4.42-4.19$ ($\mathrm{m}, 2 \mathrm{H}$, dia1+dia2) 3.56 (s, $2.7 \mathrm{H}, \mathrm{dia} 2$) 3.49 (s, $0.3 \mathrm{H}, \mathrm{dia} 1), 1.31(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{dia} 1+\mathrm{dia} 2)$;

- Crystal growth of 3

A minimal amount of diastereo-enriched $3(10 \mathrm{mg})$ was dissolved in HPLC grade diethylether (5 mL) and growth of a single crystal was observed upon slow evaporation of the solvent over 1 week.

The CIF file has been registered to the CCDC as number 1819307.

6. Protocols for mechanistic studies

- \quad TiCl $_{4}$-mediated transketalization of $\mathbf{3}$ with MeOH

Entry	dr of starting 3	dr of obtained 3	Yield of 3 (\%)
1	$1.7: 1$	$1.2: 1$	78
2	$0.8: 1$	$1.2: 1$	83

In a oven-dried microwave vial under argon atmosphere, to a solution of Ethyl 2-methoxy-3,5-diphenyl-2,3-dihydrobenzo[b/oxepine-3-carboxylate $3(0.083 \mathrm{mmol}, 33 \mathrm{mg}$) in dry DCM $(2 \mathrm{~mL})$ was carefully added $\mathrm{TiCl}_{4}(2 \mathrm{eq}, 12 \mu \mathrm{~L})$ dropwise at $-15^{\circ} \mathrm{C}$ then $\mathrm{MeOH}(500 \mu \mathrm{~L})$. Reaction was stirred at $-15^{\circ} \mathrm{C}$ for further 30 min . The reaction mixture was quenched by addition of water (1 mL), and finally diluted with DCM (2 mL). Aqueous phase was extracted with DCM ($3 \times 5 \mathrm{~mL}$) and combined organic phases were washed with brine and dried over solid anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvents gave a crude oil which was purified by column chromatography over silica gel (PE/EtOAc: 9/1) to give $\mathbf{3}$ as a yellow oil.

Entry	dr of starting 3	dr of obtained 12	Yield of 12 (\%)
1	$3.8: 1$	$4.5: 1$	83
2	$1.1: 1$	$4.5: 1$	87

In a oven-dried microwave vial under argon atmosphere, to a solution of Ethyl 2-methoxy-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 3 ($0.05 \mathrm{mmol}, 20 \mathrm{mg}$) in dry DCM $(1 \mathrm{~mL})$ was added allyltrimethylsilane ($0.25 \mathrm{mmol}, 5 \mathrm{eq}, 40 \mu \mathrm{~L}$). Then $\mathrm{TiCl}_{4}(2 \mathrm{eq}, 12 \mu \mathrm{~L}$) was carefully added dropwise at $-15^{\circ} \mathrm{C}$ to the solution. Reaction was stirred at $-15^{\circ} \mathrm{C}$ for further 30 min . The reaction mixture was quenched by successive addition of MeOH (500 $\mu \mathrm{L}$), water (1 mL), and finally diluted with $\mathrm{DCM}(2 \mathrm{~mL})$. Aqueous phase was extracted with DCM ($3 \times 5 \mathrm{~mL}$) and combined organic phases were washed with brine and dried over solid anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of solvents gave a crude oil which was purified by column chromatography over silica gel (Pet. Ether/EtOAc: 99/1) to give 12 as a colorless oil.
ethyl 2-methoxy-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 3

ethyl 2-methoxy-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 3

methyl 2-methoxy-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 4

methyl 2-methoxy-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 4

tert-butyl 2-methoxy-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 5

ethyl 2,7-dimethoxy-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 6

ethyl 2,7-dimethoxy-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 6

	180	180	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

ethyl 8-chloro-2-methoxy-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 8

ethyl 8-chloro-2-methoxy-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 8

ethyl 3－（4－bromophenyl）－2－methoxy－5－phenyl－2，3－dihydrobenzolbloxepine－3－carboxylate 9

サ○	$\stackrel{-}{\text { m }}$	$\bigcirc 0$	－	\cdots ¢ ${ }^{\infty}$	$\stackrel{\sim}{\square}$
	m	\cdots.	m		サM．
－へ－へ－	6	๑）	\sim	みみみ	mm
HI/			1	N	11

ethyl 3-(4-bromophenyl)-2-methoxy-5-phenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 9

ethyl 3-(4-nitrophenyl)-2-methoxy-5-phenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 10

\underbrace{n}

ethyl 2-methoxy-3-phenyl-5-(phenylethynyl)-2,3-dihydrobenzo[b]oxepine-3-carboxylate 11

ethyl 2-methoxy-3-phenyl-5-(phenylethynyl)-2,3-dihydrobenzo[b]oxepine-3-carboxylate 11

ethyl 2-azido-3,5-diphenyl-2,3-dihydrobenzolb/oxepine-3-carboxylate 14

ethyl 2-azido-3,5-diphenyl-2,3-dihydrobenzo[b]oxepine-3-carboxylate 14

ethyl 3,5-diphenyl-2-(prop-2-yn-1-yloxy)-2,3-dihydrobenzo[b]oxepine-3-carboxylate 16

ethyl 3,5-diphenyl-2-(prop-2-yn-1-yloxy)-2,3-dihydrobenzo[b]oxepine-3-carboxylate 16

[^0]: ${ }^{1}$ X. Luo, G. Chen, L. He, X. Huang, J. Org. Chem. 2016, 81, 2943-2949
 ${ }^{2}$ H. D. Srinivas, P. Maity, G. P. A. Yap, M. P. Watson, J. Org. Chem. 2015, 80, 4003-4016.

[^1]: ${ }^{3}$ R. Li, S. R. Wang, W. Lu, Org. Lett. 2007, 9, 2219-2222.
 ${ }^{4}$ M. Peggoty, G. Breuzard, A. Pagano, D. Allegro, V. Peyrot, K. Chibale, Bioorg. Med. Chem. 2017, 25, 1652-1665.
 ${ }^{5}$ J. Li, H. Chen, D. Zhang-Negrerie, Y. Du, K. Zhao, RSC Adv. 2013, 3, 4311-4320.
 ${ }^{6}$ Y. Luo, J. Wu, Tetrahedron 2009, 65, 6810-6814.

