Supporting Information

For

Transforming a C₃-Symmetrical Liquid Crystal to a π -Gelator by Alkoxy Chain Variation

Anjamkudy Sandeep,+ Vakayil K. Praveen,^{†,§} D. S. Shankar Rao,[‡] S. Krishna Prasad,[‡] and Ayyappanpillai Ajayaghosh^{*,†,§}

[†] Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute of Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019 (India)

Email: ajayaghosh@niist.res.in

[§] Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST Campus, Thiruvananthapuram-695 019 (India)

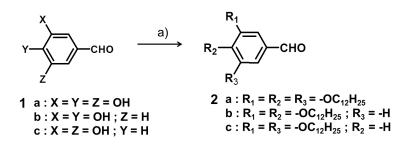
[‡] Centre for Nano and Soft Matter Sciences (CeNS), Jalahalli, Bengaluru 560 013 (India)

Index

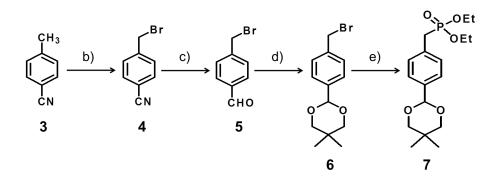
1.	Materials and Methods	S3
	1.1. Synthesis-General Procedures	S3
	1.2. Synthesis-Characterization Techniques	S3
	1.3. Scheme for the Synthesis.	S3
	Scheme S1	S3
	Scheme S2 and S3	S4
2.	Supporting Information Tables	S9
	Table S1	S9
	Table S2 and S3	S10
3.	Supporting Information Figures	S11
	Figure S1	S11
	Figure S2	S12
	Figure S3	S13
	Figure S4	S14
	Figure S5	S15
4.	Supporting Information References	S15

1. Materials and Methods

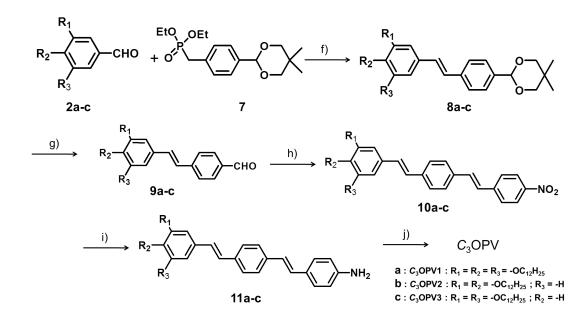
1.1. Synthesis-General Procedures


Unless otherwise stated, all starting materials and reagents were purchased from commercial suppliers and used without further purification. The solvents were purified and dried by standard methods prior to use. The reactions were monitored using thin layer chromatography (TLC) on silica gel 60 F_{254} (0.2 mm; Merck). Visualization was accomplished using UV lamp (365 nm). Column chromatography was performed on glass columns of different sizes hand packed with silica gel 60 (particle size 0.040–0.063 mm, Merck).

1.2. Synthesis-Characterization Techniques


NMR spectra were measured on a 300 or 500 MHz Bruker Avance DPX spectrometer. Chemical shifts are reported in parts per million (ppm) using tetramethylsilane (TMS) ($\delta_{\rm H}$ = 0 ppm) as an internal reference. The resonance multiplicity is described as s (singlet), d (doublet), t (triplet) and m (multiplet). Mass spectra (MS) were recorded on a JEOL JSM 600 fast atom bombardment (FAB) high-resolution mass spectrometer. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra were obtained on a Shimadzu AXIMA-CFR PLUS spectrometer using α -cyano-4-hydroxycinnamic acid as the matrix.

1.3. Scheme for the Synthesis


1.3.1. Synthesis

Scheme S1. Reagent and conditions: (a) 1-bromododecane, K₂CO₃, DMF, 70 °C, 14 h, 90-95%.

Scheme S2. Reagent and conditions: (b) *N*-bromosuccinimide, AIBN, CCl₄, 80 °C, 12 h, 90%;^{S1,S2} (c) DIBALH, dry toluene, 0 °C, 1 h, 70%;^{S1,S2} (d) 2,2-dimethyl 1,3-propanediol, dry benzene, pyridinium hydrochloride (catalytic amount) 100 °C, 10 h, 80%;^{S3} (e) triethylphosphite, 160 °C, 8 h, 90%.^{S1}

Scheme S3. Reagents and conditions: (f) NaH, dry THF, rt, 5 h; (g) trifluoroacetic acid, CH₂Cl₂, rt, 2 h; (h) diethyl(4-nitrobenzyl)phosphonate, NaH, dry THF, rt, 5 h; (i) stannous chloride, dry THF, 70 °C, 4 h; (j) trimesic acid chloride, Et₃N, dry CH₂Cl₂, rt, 6 h, 45% (**C**₃**OPV1**), 50% (**C**₃**OPV2**) and 42% (**C**₃**OPV3**).

Preparation of 3,4,5-tris-dodecyloxy-benzaldehyde (2a): A mixture of 3,4,5-trihydroxy benzaldehyde (2 g, 13 mmol), potassium carbonate (5 g) was mixed well in dry DMF (60 ml). The 1-bromododecane (11.00 g, 10.50 mL, 44 mmol) was added drop wise and the reaction mixture was stirred at 70 °C for 14 h. After checking the completion of the reaction using TLC, the reaction mixture was cooled to room temperature and poured to ice water. The precipitate thus formed was filtered. The crude product was then purified by silica gel column chromatography using 5% ethyl acetate-*n*-hexane as the eluent. The product was then precipitated by adding methanol into a concentrated solution of dichloromethane. Yield: 94% ¹H NMR (300 MHz, CDCl₃): δ = 9.83 (s, 1H), 7.08 (s, 2H), 4.06-4.01 (m, 6H), 1.83- 1.75 (m, 6H),

1.48-1.26 (m, 54H), 0.88-0.86 (t, 9H) ppm; MS-FAB (m/z): $[M+H]^{+}$ calculated for $C_{43}H_{78}O_4$ is 659.59; found 659.48.

Preparation of 4-bromomethyl-benzonitrile (4):^{S1,S2} To a solution of 4-methyl-benzonitrile (**3**) (1 g, 8.32 mmol) in 30 mL of dry carbon tetrachloride was added *N*-bromosuccinimide (1.77 g, 10 mmol) and AIBN. The reaction mixture was refluxed for 12 h. The hot solution was then filtered, concentrated and kept overnight for recrystallization and the product obtained filtered and dried. Yield: 90%; ¹H NMR (300 MHz, CDCl₃): δ = 7.63-7.68 (m, 2H), 7.26-7.51 (m, 2H), 4.48 (s, 1H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₈H₆BrN is 197.04; found 196.07.

(5):^{S1,S2} Preparation of 4-bromomethyl-benzaldehyde Compound 4 (4-(bromomethyl)benzonitrile) (1 g, 5.1 mmol) was dissolved in 10 ml of toluene and cooled at 0 °C. A portion of 1.08 M DIBAL-H in n-hexane (2 equiv.) was added drop wise under nitrogen atmosphere. The solution was stirred for another hour at 0 °C. Chloroform (75 ml) was added then followed by 10% hydrochloric acid (150 ml) and the solution was stirred at room temperature for another hour. The organic layer was separated washed with distilled water and dried over anhydrous Na₂SO₄ and filtered. The solvent was almost completely removed from the filtrate under reduced pressure and the residue was cooled, filtered and washed with cold nhexane and dried at 50 °C under vacuum. Yield: 70%; ¹H NMR (300 MHz, CDCl₃): δ = 10.02 (s, 1H), 7.86 (m, 2H), 7.57 (m, 2H), 4.52 (s, 2H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₈H₇BrO is 200.04; found 200.76.

Preparation of 2-(4-bromomethyl-phenyl)-5,5-dimethyl-[1,3]dioxane (6):^{S3} Compound **5** (4-(bromomethyl)benzaldehyde) (0.5 g, 1 mmol), 2,2-dimethyl-1,3-propandiol (0.3 g, 2.88 mmol) and catalytic amount of pyridinium hydrochloride were dissolved in dry benzene. The solution is then refluxed for 10 h at 100 °C. The side product water was separated from benzene using a dean-stark. After the completion of the reaction the excess benzene was distilled off and the residue is dissolved in dichloromethane. The compound was then extracted, dried over anhydrous Na₂SO₄. The product was then further purified using column chromatography over silica gel (30% CHCl₃-*n*-hexane). Yield: 80%; ¹H NMR (300 MHz, CDCl₃) δ = 7.61-7.49 (m, 2H), 7.41-7.38 (m, 2H), 5.39 (s, 1H), 4.59 (s, 2H), 3.79-3.63 (dd, 4H), 1.29 (s, 3H), 0.80 (s, 3H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₁₃H₁₇BrO₂: 286.18; found 287.5.

Preparation of [4-(5,5-dimethyl-[1,3]dioxan-2-yl)-benzyl]-phosphonic acid diethyl ester (7):^{S1} A mixture of triethyl phosphite (2.0 mL, 1.94 g, 11.6 mmol) and **6** (1.25 g, 5.1 mmol) was heated at 160 °C. The generated bromoethane was distilled off, as was the excess triethyl phosphite after a reaction time of 8 h, and the residue was purified by column chromatography over basic alumina using ethylacetate as an eluent. Yield: 90%; ¹H NMR (300 MHz, CDCl₃): δ = 7.46-7.43 (d, 2H), 7.31-7.28 (d, 2H), 5.37 (s, 1H), 4.13-3.96 (q, 4H), 3.78-3.62 (m, 4H), 3.18-3.11 (d, 2H), 1.36-1.21 (t, 6H), 0.79 (s, 6H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₁₇H₂₇O₅P is 343.37; found 343.16. **Preparation of 5,5-Dimethyl-2-{4-[2-(3,4,5-tris-dodecyloxy-phenyl)-vinyl]-phenyl}-[1,3]dioxane (8a):** Both the compound **2a** (0.4 g, 0.65 mmol) and compound **7** (diethyl 4-(2, 2dimethyl-1, 3-dioxan-5-yl)benzylphosphate) (0.35 g, 1.2 mmol) was taken in a two neck round bottom flask purged with argon. Dry THF was then added to the flask using a pressure equalizer. Small amount of sodium hydride was then added to the reaction mixture. The mixture was stirred for 5 h at room temperature. The reaction mixture was then extracted with chloroform and dried over anhydrous Na₂SO₄. The product thus obtained was purified by reprecipitation by adding excess methanol into chloroform solution. The resulting product was then further purified by column chromatography over silica gel using 40% CHCl₃-*n*-hexane as an eluent. Yield: 83%; ¹H NMR (300 MHz, CDCl₃): δ = 7.46-7.16 (m, 4H), 6.96-6.84 (m, 2H), 6.6 (s, 2H), 5.32 (s, 1H), 3.95-3.86 (m, 6H), 3.7-3.45 (m, 4H), 1.64-1.21 (m, 60H), 0.82-0.81 (t, 9H), 0.79 (s, 3H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₅₆H₉₄O₅ is 848.34; found 847.70.

Preparation of 4-[2-(3,4,5-tris-dodecyloxy-phenyl)-vinyl]-benzaldehyde (9a): Compound **8a** (0.4 g, 0.47 mmol) and trifluoroacetic acid in dichloromethane was stirred at room temperature for 2 h. The organic layer was then washed with water dried and evaporated to dryness. The product was then purified by column chromatography over silica gel using 30% CHCl₃-*n*-hexane as an eluent. Yield: 92%; ¹H NMR (300 MHz, CDCl₃): δ = 9.99 (s, 1H), 7.88-7.85 (d, 2H), 7.65-7.62 (d, 2H), 7.19-6.98 (m, 2H), 6.74 (s, 2H), 4.05-3.96 (t, 6H), 1.83-1.75 (m, 6H), 1.48-1.26 (m, 58H), 0.88-0.86 (t, 9H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₅₁H₈₄O₄ is 762.21; found 762.40.

Preparation of 1,2,3-tris-dodecyloxy-5-(2-{4-[2-(4-nitro-phenyl)-vinyl]-phenyl}-vinyl)benzene (10a): The compound **9a** (0.080 g, 0.1 mmol) and the compound (diethyl 4nitrobenzylphosphonate) (0.082 g, 0.3 mmol) were mixed in a two-necked round bottom flask purged with argon. The compounds were then dissolved in dry THF and sodium hydride was added. The reaction mixture was then stirred for 5 h. After the completion of the reaction checked by TLC, the reaction mixture was extracted using chloroform and washed with water for several times. The combined extracts were then dried over anhydrous Na₂SO₄. The product thus obtained was purified by reprecipitation by adding excess methanol into chloroform solution. The resulting product was then further purified by column chromatography over silica gel using 30% CHCl₃-*n*-hexane as an eluent. Yield: 83%; ¹H NMR (300 MHz, CDCl₃): δ = 8.28-8.21 (m, 2H), 7.71-7.63 (m, 2H), 7.53 (s, 4H), 7.18-7.1 (m, 2H), 7.04-6.95 (m, 2H), 6.73 (s, 2H), 4.05-3.98 (t, 6H), 1.83-1.76 (t, 6H), 1.56-1.27 (m, 57H), 0.88-0.86 (t, 9H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₅₈H₈₉NO₅ is 881.33; found 882.10.

Preparation of 4-(2-{4-[2-(3,4,5-tris-dodecyloxy-phenyl)-vinyl]-phenyl}-vinyl)-phenylamine (11a): The OPV nitro compound 10a (0.10 g, 0.11 mmol), stannous chloride in THF containing four drops of 37% hydrochloric acid was refluxed at around 70 °C for 4 h. The reaction mixture was then diluted with 50 ml dichloromethane and washed once with 0.1 M sodium bicarbonate solution and two times with water. The organic layer was then filtered through a silica pad using

dichloromethane as the eluent to afford the corresponding amino derivative. The product thus obtained was purified by reprecipitation by adding excess methanol into dichloromethane solution. Yield: 80%; ¹H NMR (300 MHz, CDCl₃): δ = 7.5-7.28 (m, 4H), 7.19-7.07 (m, 2H), 7.04-6.88 (m, 3H), 6.81-6.79 (m, 3H), 6.4-6.38 (d, 2H), 4.69 (s, 2H), 3.99-3.9 (t, 6H), 1.83-1.76 (t, 6H), 1.51-1.3 (m, 57H), 0.88-0.87 (t, 9H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₅₈H₉₁NO₃ is 851.35; found 852.10.

Preparation of 3,4-bis-dodecyloxy-benzaldehyde (2b): Synthesis of **1b** is carried out by following the same procedure for the synthesis of compound **2a**. Yield: 95%; ¹H NMR (300 MHz, CDCl₃): δ = 9.83 (s, 1H), 7.42-7.40 (m, 2H), 6.96-6.95 (d, 1H), 4.13-4.06 (m, 4H), 1.83- 1.75 (m, 4H), 1.48-1.26 (m, 36H), 0.88-0.86 (t, 6H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₃₁H₅₄O₃ is 475.76; found 474.31.

Preparation of 2-{4-[2-(3,4-bis-dodecyloxy-phenyl)-vinyl]-phenyl}-5,5-dimethyl-[1,3]dioxane (8b): Synthesis of 8b is carried out by following the same procedure for the synthesis of compound 8a. Yield: 85%; ¹H NMR (300 MHz, CDCl₃): δ = 7.92-7.91 (m, 2H), 7.6-7.45 (m, 4H), 6.89-6.86 (m, 3H), 5.32 (s, 1H), 3.95-3.86 (m, 4H), 3.7-3.45 (m, 4H), 1.64-1.21 (m, 40H), 0.82-0.81 (t, 9H), 0.79 (s, 3H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₅₆H₉₄O₅ is 664.02; found 663.45.

Preparation of 4-[2-(3,4-bis-dodecyloxy-phenyl)-vinyl]-benzaldehyde (9b): Synthesis of **9b** is carried out by following the same procedure for the synthesis of compound **9a**. Yield: 90%; ¹H NMR (300 MHz, CDCl₃): δ = 9.99 (s, 1H), 7.92-7.91 (m, 2H), 7.7- 7.54 (m, 4H), 6.89-6.86 (m, 3H), 4.05-3.96 (t, 4 H), 1.83-1.75 (m, 4H), 1.48-1.26 (m, 36H), 0.88-0.86 (t, 6H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₅₁H₈₄O₄ is 577.89; found 577.90.

Preparation of 1,2-Bis-dodecyloxy-4-(2-{4-[2-(4-nitro-phenyl)-vinyl]-phenyl}-vinyl)-benzene (10b): Synthesis of **10b** is carried out by following the same procedure for the synthesis of compound **10a**. Yield: 80%; ¹H NMR (300 MHz, CDCl₃): δ = 8.28-8.21 (m, 2H), 7.71-7.63 (m, 2H), 7.53 (s, 4H), 7.18-7.1 (m, 2H), 7.04-6.95 (m, 2H), 6.95- 6.73 (m, 3H), 4.05-3.98 (t, 4H), 1.83-1.76 (t, 4H), 1.56-1.27 (m, 37H), 0.88-0.86 (t, 6H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₅₈H₈₉NO₅ is 697.01; found 698.10.

Preparation of 4-(2-{4-[2-(3,4-bis-dodecyloxy-phenyl)-vinyl]-phenyl}-vinyl)-phenylamine Compound (11b): Synthesis of **11b** is carried out by following the same procedure for the synthesis of compound **11a**. Yield: 85%; ¹H NMR (300 MHz, CDCl₃): δ = 7.5-7.28 (m, 4H), 7.19-7.07 (m, 2H), 7.04-6.88 (m, 3H), 6.81-6.79 (m, 3H), 6.4-6.38 (d, 3H), 4.69 (s, 2H), 3.99-3.9 (t, 4H), 1.83-1.76 (t, 4H), 1.51-1.3 (m, 37H), 0.88-0.87 (t, 6H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₅₈H₉₁NO₃ is 851.35; found 852.10.

Preparation of 3,4-bis-dodecyloxy-benzaldehyde (2c): Synthesis of **2c** is carried out by following the same procedure for the synthesis of compound **2a**. Yield: 92%; ¹H NMR (300 MHz,

CDCl₃): δ = 9.89 (s, 1H), 6.99-6.98 (d, 2H), 6.96 (s, 1H), 3.99-3.97 (t, 4H), 1.81- 1.75 (m, 4H), 1.48-1.42 (m, 36H), 0.89-0.88 (t, 6H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₃₁H₅₄O₃ is 475.76; found 475.01.

Preparation of 2-{4-[2-(3,4-bis-dodecyloxy-phenyl)-vinyl]-phenyl}-5,5-dimethyl-[1,3]dioxane (8c): Synthesis of 8c is carried out by following the same procedure for the synthesis of compound 8a. Yield: 84%; ¹H NMR (300 MHz, CDCl₃): δ = 7.53-7.51 (m, 2H), 7.23-7.18 (m, 4H), 6.96-6.93 (m, 3H), 5.31 (s, 1H), 3.99-3.97 (t, 4H), 3.7-3.45 (m, 4H), 1.64-1.21 (m, 40H), 0.89-0.87 (t, 9H), 0.79 (s, 3H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₅₆H₉₄O₅ is 664.02; found 663.64.

Preparation of 4-[2-(3,4-bis-dodecyloxy-phenyl)-vinyl]-benzaldehyde (9c): Synthesis of **9c** is carried out by following the same procedure for the synthesis of compound **9a**. Yield: 87%; ¹H NMR (300 MHz, CDCl₃): δ = 9.98 (s, 1H), 7.53-7.51 (m, 2H), 7.31-7.28 (m, 4H), 6.96-6.93 (m, 3H), 3.99-3.96 (t, 4 H), 1.83-1.75 (m, 4H), 1.48-1.41 (m, 36H), 0.89-0.88 (t, 6H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₅₁H₈₄O₄ is 577.89; found 577.73.

Preparation of 1,2-Bis-dodecyloxy-4-(2-{4-[2-(4-nitro-phenyl)-vinyl]-phenyl}-vinyl)-benzene (10c): Synthesis of **10c** is carried out by following the same procedure for the synthesis of compound **10a**. Yield: 80%; ¹H NMR (300 MHz, CDCl₃): δ = 8.15-8.09 (m, 2H), 7.73-7.61 (m, 2H), 7.53-7.47 (m, 4H), 7.23-7.18 (m, 4H), 6.96-6.92 (m, 3H), 3.99-3.95 (t, 4 H), 1.83-1.75 (m, 4H), 1.48-1.39 (m, 36H), 0.89-0.88 (t, 6H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₅₈H₈₉NO₅ is 697.01; found 698.10.

Preparation of 4-(2-{4-[2-(3,4-bis-dodecyloxy-phenyl)-vinyl]-phenyl}-vinyl)-phenylamine Compound (11c): Synthesis of **11c** is carried out by following the same procedure for the synthesis of compound **11a**. Yield: 85%; ¹H NMR (300 MHz, CDCl₃): δ = 7.52-7.27 (m, 4H), 7.25-7.19 (m, 2H), 6.96-6.92 (m, 3H), 6.8-6.79 (m, 4H), 6.53-6.51 (m, 2H), 4.54 (s, 2H), 3.99-3.9 (t, 4H), 1.83-1.76 (t, 4H), 1.49-1.37 (m, 37H), 0.88-0.87 (t, 6H) ppm; MS-FAB (m/z): [M+H]⁺ calculated for C₅₈H₉₁NO₃ is 851.35; found 851.41.

2. Supporting Information Tables

Temp. (°C)	d _{meas} (Å)	d _{calc} (Å)	hk	Columnar Rectangula Parameters
	47.03	47.03	(10)	a = 54.31
250	17.84	17.78	(21)	
250 Col _h	17.69*			
	4.77*			
	47.67	47.67	(10)	a = 55.04
200	18.05	18.02	(21)	
Col _h	17.38*			
	4.77*			
	51.36	51.36	(11)	a = 59.84
100	50.04	50.04	(02)	b = 100.08
Col _r	25.59	25.68	(22)	
	18.97	18.98	(15)	
	17.34*			
	51.05	51.05	(10)	a = 59.49 b = 99.44
	49.72	49.72	(02)	D = 99.44
50 Col _r	25.46	25.53	(22)	
COIr	18.88	18.86	(15)	
	17.29*			
	51.26	51.26	(10)	a = 59.78 b = 99.62
28	49.81	49.81	(02)	0 - 99.02
Col _r	25.76	25.63	(22)	
	18.92	18.90	(15)	
	17.27*			
	4.43*			

Table S1. Temperature-dependent XRD data of the columnar LC phase of **C**₃**OPV1**, presenting the measured and calculated spacing, miller indices and lattice parameters.

*diffuse peak

Solvent	C₃OPV1 (λ _{max} in nm)		C₃OPV2 (λ _{max} in nm)		C₃OPV3 (λ _{max} in nm)	
	Abs.	Em.	Abs.	Em.	Abs.	Em.
THF	380	435	380	431	370	436
Toluene	380	435	370	504	360	436

Table S2. The absorption and emission spectral details of C_3 OPV1-3 (1 x 10⁻⁴ M).

Table S3. The gelation details of C_3 OPV1-3 with minimal gelation concentration (mM) in bracket.

Molecule	Cyclohexane	Methylcyclohexane	<i>n</i> -Decane	Toluene
C₃OPV1	S	S	S	S
C ₃ OPV2	G (14.86)	G (13.94)	G (9.29)	G (4.65)
C₃OPV3	S	S	S	S

S = solution; G = gel

3. Supporting Information Figures

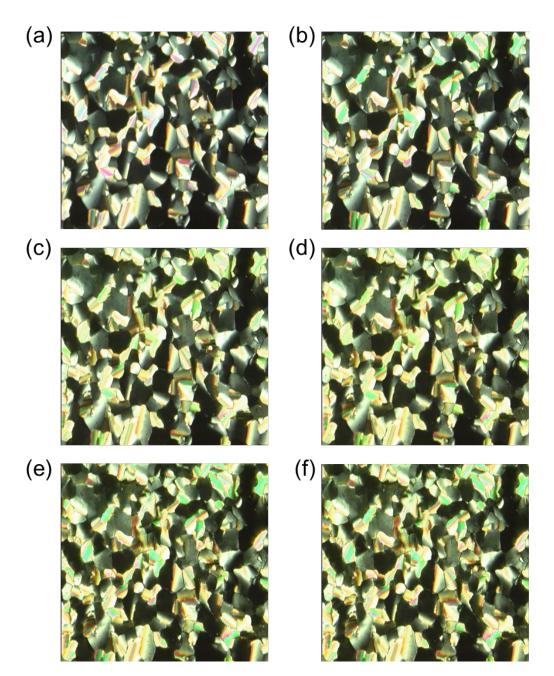


Figure S1. OPM images of C_3 OPV1 at (a) 218, (b) 200, (c) 165, (d) 118, (e) 65 and (f) 40 °C upon cooling the sample from higher temperature (260 °C).

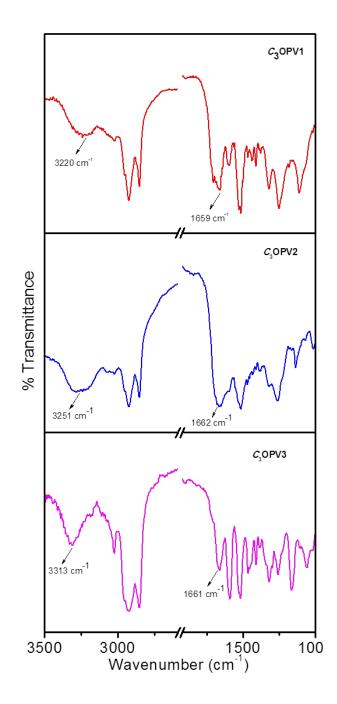


Figure S2. FT-IR spectra of C₃OPV1-3 in solid state.

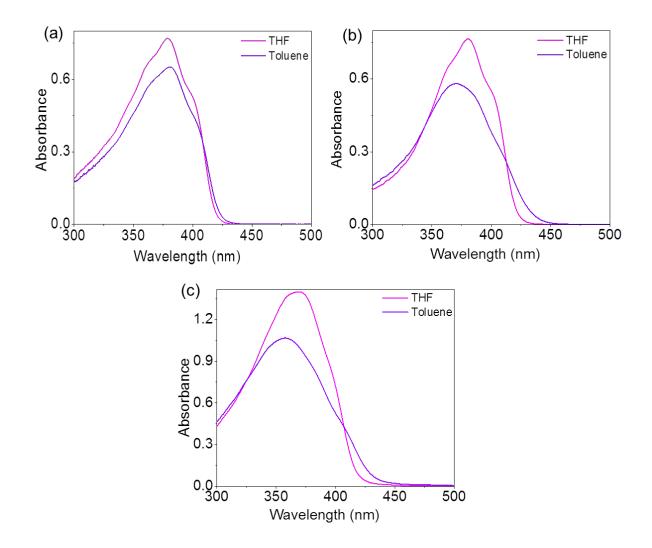
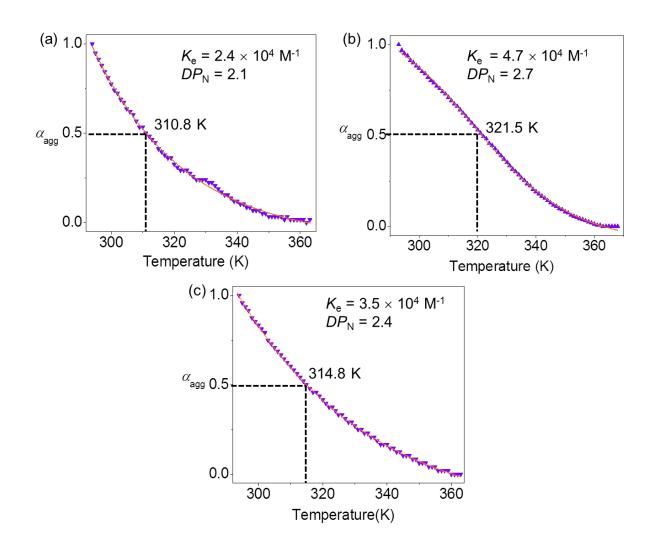



Figure S3. Absorption spectra of (a) C_3 OPV1, (b) C_3 OPV2 and (c) C_3 OPV3 in THF and toluene (1 x 10⁻⁴ M).

Figure S4. Plot of the fraction of aggregates ($_{agg}$) *versus* temperature for (a) **C**₃**OPV1**, (b) **C**₃**OPV2** and (c) 10% (v/v) of **C**₃**OPV2** in **C**₃**OPV1**. Absorbance was monitored at 425 nm with a rate of cooling of 1 K min⁻¹. (\checkmark is the normalized spectra and — is the curve fit). The value of association constant (*K*_e) and degree of polymerization (*DP*_N) are given in the inset.

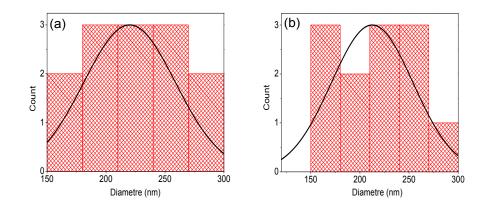


Figure S5. Histogram showing the size distribution of spherical particles formed by (a) C_3 OPV1 and (b) C_3 OPV3.

4. Supporting Information References

- S1 Meier, H.; Holst, H. C.; Oehlhof, A. Star-Shaped Compounds Having 1,3,5-Triazine Cores. *Eur. J. Org. Chem.* **2003**, *2003*, 4173–4180.
- S2 Wen, L.; Li, M.; Schlenoff, J. B. Polyporphyrin Thin Films From the Interfacial Polymerization of Mercaptoporphyrins. *J. Am. Chem. Soc.* **1997**, *119*, 7726–7733.
- S3 Eckert, J.-F.; Nicoud, J.-F.; Nierengarten, J.-F.; Liu, S.-G.; Echegoyen, L.; Barigelletti, F.;
 Armaroli, N.; Ouali, L.; Krasnikov, V.; Hadziioannou, G. Fullerene–Oligophenylenevinylene
 Hybrids: Synthesis, Electronic Properties, and Incorporation in Photovoltaic Devices. *J. Am. Chem. Soc.* 2000, *122*, 7467–7479.