Supplementary Information

Mixed Macromolecular Crowding: A Protein and Solvent Perspective

Saikat Biswas^{#1}, Jayanta Kundu^{#1}, Sanjib K Mukherjee¹ and Pramit Kumar Chowdhury^{*1}

¹Department of Chemistry, Indian Institute of Technology Delhi,

Hauz Khas, New Delhi 110016

*To whom correspondence should be addressed: Email : pramitc@chemistry.iitd.ac.in Tel :+911126591521 [#]These authors are equal contributors to the manuscript.

Supplementary Figures

Figure S1: Variation of interdomain distances for domain I-II (A) and II-III (B) with increasing Dextran 6 concentration in Dextran 40 (g/L), Dextran 6 and Dextran 40 only.

Figure S2: Variation of interdomain distances for domain I-II (A) and II-III (B) with increasing Dextran 6 concentration in Dextran 70 (g/L), Dextran 6 and Dextran 70 only

Figure S3: Variation of interdomain distances for domain I-II (A) and II-III (B) with increasing Dextran 6 concentration in Ficoll 70 (g/L), Dextran 6 and Ficoll 70 only

Figure S4: Variation of interdomain distances for domain I-II (A) and II-III (B) with increasing Dextran 6 concentration in PEG 8 (g/L), Dextran 6 and PEG 8 only

Figure S5: Variation of interdomain distances for domain I-II (A) and II-III (B) with increasing Dextran 40 concentration in Dextran 70 (g/L), Dextran 40 and Dextran 70 only

Figure S6: Variation of interdomain distances for domain I-II (A) and II-III (B) with increasing Dextran 40 concentration in Ficoll 70 (g/L), Dextran 40 and Ficoll 70 only

Figure S7: Variation of interdomain distances for domain I-II (A) and II-III (B) with increasing Dextran 70 concentration in Ficoll 70 (g/L), Dextran 70 and Ficoll 70 only

Figure S8: The variation of Δr as a function of crowder concentration in mixed macromolecular crowder ($\Delta r_{mc} = r_{mc} - r_0$) (A) and sum of individual crowders ($\Sigma \Delta r = \Delta r_{C_1(X)} + \Delta r_{C_2(200-X)}$) (B), where C_1 and C_2 are Dextran 6 and Dextran 70 respectively. [Inset shows the variation of $\Delta \Delta r$ ($\Delta \Delta r = \Delta r_{mc} - \Sigma \Delta r$)]

Figure S9: The variation of Δr as a function of crowder concentration in mixed macromolecular crowder ($\Delta r_{mc} = r_{mc} - r_0$) (A) and sum of individual crowders ($\Sigma \Delta r = \Delta r_{C_1(X)} + \Delta r_{C_2(200-X)}$) (B), where C_1 and C_2 are Dextran 6 and Ficoll 70 respectively. [Inset shows the variation of $\Delta \Delta r$ ($\Delta \Delta r = \Delta r_{mc} - \Sigma \Delta r$)]

Figure S10: The variation of Δr as a function of crowder concentration in mixed macromolecular crowder $(\Delta r_{mc} = r_{mc} - r_0)$ (A) and sum of individual crowders $(\Sigma \Delta r = \Delta r_{C_1(X)} + \Delta r_{C_2(200-X)})$ (B), where C_1 and C_2 are Dextran 6 and PEG8 respectively. [Inset shows the variation of $\Delta \Delta r$ ($\Delta \Delta r = \Delta r_{mc} - \Sigma \Delta r$)]

Figure S11: The variation of Δr as a function of crowder concentration in mixed macromolecular crowder $(\Delta r_{mc} = r_{mc} - r_0)$ (A) and sum of individual crowders $(\Sigma \Delta r = \Delta r_{C_1(X)} + \Delta r_{C_2(200-X)})$ (B), where C_1 and C_2 are Dextran 40 and Ficoll 70 respectively. [Inset shows the variation of $\Delta \Delta r$ ($\Delta \Delta r = \Delta r_{mc} - \Sigma \Delta r$)]

Figure S12: Representative three-state and two-state thermodynamic fits of domain movement in Ac-HSA (A) and NPA-HSA (B) in the 'Dextran6+Dextran 40' mixture.

Figure S13: Representative plots of fluorescence intensity of HSA, Acrylodan HSA (domain I) and NPA HSA (domain III) in absence of any crowder, 150 g/L Dextran 40, Dextran 6 and binary mixture of 50 g/L Dextran 6+150 g/L Dextran 40 (as mentioned in legends).

Figure S14: Normalized autocorrelation curves of FITC in presence of (A) 200 g/l of various individual macromolecular crowding agents and (B) 'Dextran 6+Ficoll 70' mixture with varying concentration of these two crowders. (C) A representative FCS trace showing the fit and the associated residuals.

Figure S15: Plot of τ_D/τ_0 as a function of the crowder concentration. (where τ_D is the diffusion time of FITC in presence of crowding agents and τ_0 is the diffusion time of FITC in simple buffer.)

Figure S16: Plot of τ_D/τ_0 against crowder concentration for (A) Dextran 70 and Ficoll 70, (B) Dextran 40 and Ficoll 70, (C) Dextran 40 and Dextran 70, (D) Dextran 6 and Ficoll 70, (E) Dextran 6 and Dextran 70, (F) Dextran 6 and Dextran 40 and (G) Dextran 6 and PEG 8 mixture. The red and black line represents the τ_D/τ_0 of mixed macromolecular crowding agents and sum of the individual crowding agents respectively.

Figure S17: Plot of τ_D/τ_0 against crowder concentration for (A) Dextran 70 and Ficoll 70, (B) Dextran 40 and Ficoll 70, (C) Dextran 40 and Dextran 70, (D) Dextran 6 and Ficoll 70, (E) Dextran 6 and Dextran 70, (F) Dextran 6 and Dextran 40 and (G) Dextran 6 and PEG 8 mixture. The red and black line represents the τ_D/τ_0 of mixed macromolecular crowding agents and sum of the individual crowding agents respectively.

