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Dissipative Particle Dynamics (DPD)

DPD is a coarse-grained simulation methodology in which particles (beads) interact via soft

repulsions and, in the most common version, with local pairwise friction and random forces

which provide a thermostat.1–3 The force acting on a DPD bead is

~Fi =
∑

j 6=i(
~FC
ij + ~FD

ij + ~FR
ij ) (1)

where ~FC
ij , ~FD

ij and ~FR
ij are respectively the conservative, dissipative and random forces acting

between pairs of beads (i and j).

The conservative force usually corresponds to a pairwise interaction potential such as the
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soft truncated repulsive form proposed by Groot and Warren,3

~FC
ij =

{
Aij(1− rij/Rij)êij rij < Rij ,

0 rij ≥ Rij

(2)

where ~rij = ~rj−~ri is the vector between beads i and j, rij is the distance between the beads,

êij = ~rij/rij is the unit vector, Aij is the interaction strength (which is chosen to correspond

to the bead types) and Rij is a cutoff distance for beads i and j, beyond which a pair of

particles do not interact. In much existing work a common value Rij = rc is assumed, but

in our parametrisation approach we allow Rij to depend on bead types.4

The dissipative force corresponds to pairwise friction between the beads and depends on

their relative velocity, ~vij = ~vj − ~vi, as

~FD
ij = −γwD(rij) (êij · ~vij) êij (3)

where γ is the dissipative force strength and wD(rij) is a distance-dependent weighting

function.

The random force similarly takes the form

~FR
ij = ∆t−1/2σwR(rij)ξij êij (4)

where σ is the random force strength, wR(rij) is another weight function, ξij = ξji is a

Gaussian-distributed random variable with zero mean and unit variance, and ∆t is the time-

step. To ensure the dissipative and random forces act as a momentum-conserving thermostat,

the following conditions should be met,2

σ2 = 2Tγ , wD(r) = [wR(r)]2 , (5)

where T is the required system temperature (in DPD units). Most DPD simulations set the
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random force weight function to have the same form as the conservative force law, i. e.

wR(r) =

{
1− r/Rγ r < Rγ ,

0 r ≥ Rγ

(6)

with Rγ = rc. This minimises the computational cost since the same function can be used for

each interacting pair of beads. In our work the cutoff in the conservative force law depends

on species type but we choose not to mirror this in the thermostat; rather we use the above

with the same value of Rγ for all pairs of particles, set equal to the maximum value of Rij.

Other interaction forces can optionally be included alongside the conservative force, e. g.

for bonds, angles and electrostatics (see below). The full force acting on a DPD bead in the

present study is therefore

~Fi = ~FE,L
i +

∑
j 6=i

(
~FC
ij + ~FD

ij + ~FR
ij + ~FB

ij + ~FE,S
ij

)
+
∑
k 6=j 6=i

~FA
ijk (7)

where ~FB
ij and ~FE,S

ij are the forces acting between pairs of beads (i and j) due to bond

stretching and short-range electrostatics (e. g. real space Ewald contribution) respectively,

~FA
ijk is due to bond angles between three beads (i, j and k), and ~FE,L

i accounts for the long-

range electrostatic force (e. g. reciprocal space Ewald contribution) acting on bead i. In the

cases of bond stretching and angles, the associated forces are derived as ~F = −∇U .

In this work we use the Slater-type charge smearing proposed by González-Melchor et

al. in which the Coulomb potential for pairs of point charges is modified to eliminate the

divergence at overlap.5 For the electrostatic pair potential therefore,

UE
ij (rij) =

Γqiqj
4πrij

[1− (1 + βrij)e
−2βrij ] , (8)

where rij is the ion separation, qi and qj are the ion charges (valencies), Γ = e2/(kBTε0εrrc)

is a dimensionless electrostatic coupling parameter which includes the relative background
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permittivity, and β is a tuneable Slater smearing parameter.

Since the modified Coulomb interaction retains the long-range 1/r dependence, it is

essential to account for the periodic boundary conditions. An appropriate approach is the

Ewald summation method,6 in which the total electrostatic energy is

UE
total =

Γ

4π

[∑
i

∑
j>i

qiqj
rij

[erfc(αrij)− (1 + βrij)e
−2βrij ]

+
2π

V

∑
~k 6=0

e−k
2/4α2

k2
S(~k)S(−~k)− α√

π

N∑
i

q2i

]
.

(9)

In this α is the parameter controlling the labor division between real and reciprocal space, ~k

are reciprocal space vectors concomitant with the periodic boundary conditions, and S(~k) =∑
i qie

i~k·~ri is the charge structure factor. Compared to the ‘vanilla’ Ewald method, the only

change required due to charge smearing lies in the real space contribution. In this case, the

associated pairwise short-range electrostatic force between beads i and j is

~FE,S
ij =

Γqiqj
4πr2ij

[
erfc(αrij) +

2αrij√
π
e−α

2r2ij

− e−2βrij [1 + 2βrij(1 + βrij)]
]
.

(10)

Any standard method for dealing with the reciprocal space part of the Ewald sum, such

as Smooth Particle Mesh Ewald (SPME),7 can be used without modification (including

the associated expressions for reciprocal space force ~FE,L
i ). For optimisation, a study of

truncation effects due to choice of the values of α, β and the real-space cutoff is given

by Vaiwala et al.8 In the case of SPME, the charge interpolation order is an additional

parameter: this can be carefully selected to ensure the reciprocal space Ewald interactions

are applied sufficiently accurately.
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