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Colocalisation: are two traits under
control of the same causal

variant(s)?



Colocalisation doesn’t care about causality between traits

Literally - do causal variants for two traits share the same location
Study all variants in a single genetic region (∼ 1000)
Anticipate correlation between these variants (linkage
disequilibrium - LD)
Explicitly do not assume causal variant for either is known

Nonetheless - often used to make causal inference if one trait is
biologically likely to precede another
This ignores potential for single variant to have two independent
effects



Colocalisation doesn’t care about causality between traits

Literally - do causal variants for two traits share the same location
Study all variants in a single genetic region (∼ 1000)
Anticipate correlation between these variants (linkage
disequilibrium - LD)
Explicitly do not assume causal variant for either is known
Nonetheless - often used to make causal inference if one trait is
biologically likely to precede another
This ignores potential for single variant to have two independent
effects



✓These signals colocalise

G

T1

T2

G

T1

T2

G1

G2

T1

T2

LD?

G1

G2

T1 ∗

T2

LD?

7These signals don’t

G

T1

T2

G1

G2

T1

T2

LD?

G1

G2

T1

T2

LD?

G1

G2

T1

T2

LD?



(1) Proportional colocalisation



Proportional colocalisation

If two traits share one or more causal variants, then regression
coefficients for the traits against any set of variants in the
neighbourhood of those causal variants should be proportional.
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Testing proportionality

Let bX , bY be estimates of regression coefficients βX , βY , with
variance-covariance matrices VX and VY respectively.

H0 : βX = 1
η

βY for some η

If η known X(η)2 = uT V−1u ∼ χ2
q , where

u =
(

bX − 1
η

bY

)
, V = VX + 1

η2 VY

Replace η by η̂, then X(η̂)2 ∼ χ2
q−1

Plagnol et al., Biostatistics 2009



Testing proportionality

Note: η is a nuisance parameter (initially)
Null hypothesis is proportionality
Test is for departure from proportionality → failure to reject the null
can be colocalisation or lack of power

Selection of variants

Too many variants → too many degrees of freedom
Weakly associated variants → loss of power
Selecting most significant → biased coefficients (winner’s curse)

Wallace, Genet Epidemiol, 2014
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Proportionality test for selected “best” variants
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Proportionality test for selected “best” variants
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Using most associated variants inflates type 1 error
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Two proposed solutions

Principal components

Summarize genetic variation by principal components
Do a (high degree of freedom) test for colocalisation based on
the most important components
No obvious choice for optimal number of principal components.

Wallace, Genet Epidemiol, 2013



Two proposed solutions

Model Averaging

Test colocalisation for all possible two SNP models
Calculate model probabilities via approximate Bayes factors
Average p values, weighted by model posterior probabilities
Generate a posterior predictive p value.
Computationally slower (but tolerable: minutes not hours).
NB Posterior predictive p values are not p values!

Wallace, Genet Epidemiol, 2013



Either maintains type 1 error…
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… but BMA tends to have better power
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(2) Colocalisation analyis via
enumeration



Alternative approach

Assume at most one causal variant in a region
Enumerate all possible configurations of association and
partition into hypotheses

H0 ×1

. . .

H1 ×n

. . .

H2 ×n

. . .

H3 × n(n−1)
2

. . .

H4 ×n

Giambartolomei et al., PLOS Genet 2014



Use Bayes factors to summarize evidence

Bayes factor for a configuration for SNP i, trait k is

BF
(k)
i0 = P (D|SNP i causal)

P (D|no SNP causal) = P (D|SNP i causal)
P (D|SNP i not causal)

Bayes factor for a set of configurations can be calculated for
independent datasets as

BF10 =
∑

i

BF
(1)
i0 BF30 =

∑
i ̸=j

BF
(1)
i0 BF

(2)
j0

BF20 =
∑

i

BF
(2)
i0 BF40 =

∑
i

BF
(1)
i0 BF

(2)
i0

Incorporates no prior knowledge about relative effect sizes

Giambartolomei et al., PLOS Genet 2014



Approximate Bayes factor calculations

Given estimated effect size for SNP i, trait k, β̂(k)
i and standard error√

V
(k)

i :

BF
(k)
i0 = 1√

1 − r
exp

−Z
(k)
i

2

2
r



β̂
(k)
i ∼ N(0, W ) Z

(k)
i = β̂

(k)
i√
V

(k)
i

r = W

V
(k)

i + W

W chosen according to effect size considered unlikely a priori
eg, if V = 1, W= 0.15 corresponds to an effect explaining 1% of
trait variance
only summary statistics required

Wakefield, Genet Epidemiol 2009



Priors

π(H1) = 1 × 10−4 π(H3) = 1 × 10−8

π(H2) = 1 × 10−4 π(H4) = 1 × 10−5

π(H1), π(H2) correspond to the proportion of genotyped SNPs
thought to be associated with disease.

π(H4)/π(H1) corresponds to the fraction of SNPs associated with
trait 1 we think may be also be associated with trait 2.

By working with Bayes factors, can consider a range of priors
without computational cost.



Comparision of proportional and
enumeration approaches



Effect of multiple causal variants on colocalisation
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Methods summary

Proportional testing

Must be applied carefully (selection of variants)
Requires access to full genotype data for both traits - can be
difficult
Prioritises any non-sharing

Enumeration

Accepts summary statistics
Assumes single causal variant
Prioritises any sharing



Applications of colocalisation



Colocalisation of T1D signals, monocyte eQTLs identified DEXI
as a candidate causal T1D gene

Additional support from chromosome conformation capture

Wallace et al., Hum Mol Genet 2012, Davison et al., Hum Mol Genet 2012



Six candidate causal autoimmune genes identified with
confidence in monocytes and B cells
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Can be applied to pairs of diseases, allowing for shared
controls
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Discussion

Colocalisation is not MR but if a trait is suitable for MR, then it
should colocalise with target trait
Colocalisation explicitly tackles uncertainty in causal variants,
winner’s curse, shared subjects
Does interpretation of colocalisation for partial sharing depend on
trait labels?
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