## Supporting Information

## Ultradeep Removal of Moisture in Gases to Parts-per-Billion Levels: The Exploration of Adsorbents

Lin Zhang,<sup>†,#</sup> Zheng-Zhong Kang,<sup>‡,§,#</sup> Shi-Chao Qi,<sup>†</sup> Xiao-Qin Liu,<sup>\*,†</sup> Zhi-Min Wang,<sup>†</sup> and Lin-Bing Sun<sup>\*,†</sup>

<sup>†</sup>Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China

<sup>‡</sup>Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China

<sup>§</sup>Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden

<sup>#</sup>L.Zhang and Z.-Z.Kang contributed equally to this work.

\*E-mail: liuxq@njtech.edu.cn (X.-Q.Liu).

\*E-mail: lbsun@njtech.edu.cn (L.-B.Sun).



Figure S1. The device of testing the ability of ultra-deep dewatering of adsorbents.



Figure S2. XRD patterns of (a)  $SiO_2$ , (b)  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, (c) 4A zeolite, and (d) NaX zeolite.



Figure S3. XRD patterns of (a) HKUST-1, (b) UiO-66, and (c) ZIF-8.



Figure S4.  $N_2$  adsorption-desorption isotherms of 4A, NaX,  $\gamma$ -Al<sub>2</sub>O<sub>3</sub>, and SiO<sub>2</sub>.



Figure S5. N<sub>2</sub> adsorption-desorption isotherms of HKUST-1, UiO-66, and ZIF-8.



**Figure S6.** Snapshot of the distribution of water molecules and extra-framework cations within X zeolites, as inferred from MD simulations.



**Figure S7.** Average binding energy per  $H_2O$  molecular (a) with framework and (b) with different ions in X zeolites calculated from MD simulations.