Supporting Information

Preparation and Characterization of $Mn_{0.4}Zn_{0.6}Fe_2O_4$ Nanoparticles Supported on Dead Cells of *Yarrowia Lipolytica* as a Novel and Efficient Adsorbent/Biosorbent Composite for the Removal of Azo Food Dyes: Central Composite Design Optimization Study

Arash Asfaram †, ‡, Mehrorang Ghaedi*, †, Kheibar Dashtian † and Gholam Reza Ghezelbash §

E-mail address: ar_asfaram@yahoo.com (A. Asfaram); Tel/Fax: +98-741-2223048.

E-mail address: dashtiankheibar@gmail.com (K. Dashtian); Tel/Fax: +98-741-2223048. E-mail address: gh.r.ghezelbash@gmail.com (G. R. Ghezelbash); Tel/Fax: +98-61-20443333

* Corresponding authors:

Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran

Tel/Fax: +98-741-2223048.

E-mail: m_ghaedi@mail.yu.ac.ir; m_ghaedi@yahoo.com (M. Ghaedi)

[†] Chemistry Department, Yasouj University, Yasouj, 75918-74831, Iran

[‡] Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran

[§] Biology Department, Faculty of Science, Shahid Chamran University, Ahvaz, 61357-831351, Iran

Contents
1. Figures

1. Figures

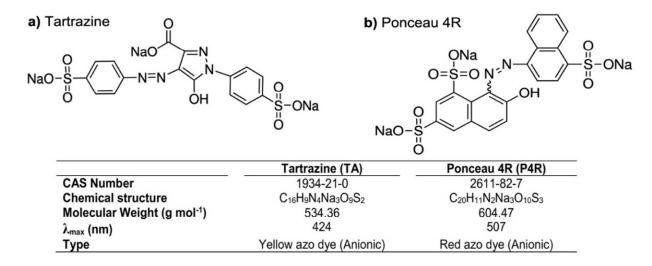
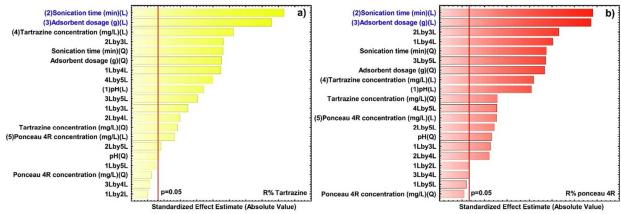



Figure S1. Chemical structures and general characteristics of TA (a) and P4R (b).

Figure S2. Pareto chart representing the order of the significant medium variables on dyes adsorption onto $Mn_{0.4}Zn_{0.6}Fe_2O_4$ -*D-YL-ISF7*.

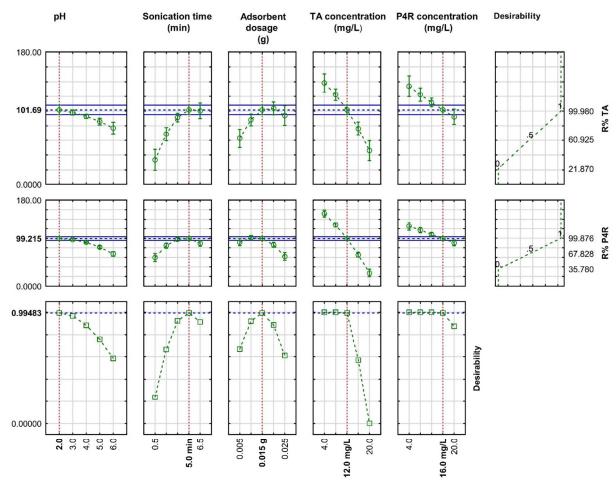


Figure S3. Desirability profiles.