Supporting Information

The photochemistry of *fac-*[Re(CO)₃(dcbH₂)(*trans-*stpy)]⁺: new insights on the isomerization mechanism of coordinated stilbene-like ligands

Leandro A. Faustino, Antonio Eduardo H. Machado and Antonio Otavio T.

Patrocinio

Figure S1. Electronic spectra of *fac*-[Re(CO)₃(dcbH₂)(*cis*-stpy)]⁺ in acetonitrile

Figure S2. H-H COSY spectrum (400 MHz) of fac-[Re(CO)₃(dcbH₂)(*trans*-stpy)]⁺ in CD₃CN.

Figure S3. ¹H NMR (400 MHz) spectral changes of fac-[Re(CO)₃(dcbH₂)(*trans*-stpy)]⁺ in CD₃CN under 405 nm irradiation

Figure S4. Emission spectra of *fac*-[Re(CO)₃(dcbH₂)(*trans*-stpy)]⁺ in acetonitrile at 298 K (—) and in 4:1 ethanol/methanol at 77 K (—); λ_{exc} = 405 nm.

Figure S6. Natural Transition Orbitals (NTOs) obtained for the lowest lying triplet states in *fac*-[Re(CO)₃(dcbH₂)(*trans*-stpy)]⁺ and *fac*-[Re(CO)₃(dcbH₂)(*cis*-stpy)]⁺

Figure S7. ATR-FTIR spectra of a TiO_2 film sensitized by *fac*-[Re(CO)₃(dcbH₂)(*trans*-stpy)]⁺ (a) and of the complex in powder form (b)

Table S1. Solvent corrected (acetonitrile) major transition energies to the excited states of fac-[Re(CO)₃(dcbH₂)(*trans*-stpy)]⁺ with their contributing excitations (%), oscillator strengths (f) and associated wavelengths (λ)

Transition ^a	f	Energy (eV)	λ (nm)	Character
H–L	0.0148	2.38	520	LLCT _{πstpy→π*dcbH2}
H-2 – L (40%) H-3 – L (60%)	0.0266	2.70	458	LLCT _{πstpy→π*dcbH2} MLCT _{d(Re)→π} * _{dcbH2}
H-2 – L (37%) H-1 – L (13%) H-3 – L (50%)	0.1406	2.83	437	LLCT _{πstpy→π⁺dcbH2} MLCT _{d(Re)→π} * _{dcbH2}
H-6 – L+1 (80%) H – L+1 (20%)	0.1297	3.21	385	$\begin{array}{c} LMCT_{O(2p) \rightarrow d(Ti)} \\ LMCT_{\pi stpy \rightarrow d(Ti)} \end{array}$
H – L+4	1.1161	3.41	363	IL _{πstpy→π*stpy}

^a H = HOMO, L = LUMO

Figure S8. Electronic spectra of fac-[Re(CO)₃(dcbH₂)(*trans*-stpy)]⁺ (—) adsorbed on TiO₂ films along with the calculated electronic transitions (vertical lines) for the complex covalently linked to an anatase cluster (refer to the main text for details).

Figure S9. Natural Transition Orbitals (NTOs) obtained for *fac*- $[Re(CO)_3(dcbH_2)(trans-stpy)]^+$ adsorbed on an anatase cluster.

