Supporting Information

SANS Study of Ring Topology Effects on the Miscibility of Polymer Blends

Yuki Kobayashi,[†] Yuya Doi,[†] Siti Sarah Abdul Rahman,[†] Eunhye Kim,[‡] Tae-Hwan Kim,[‡] Atsushi Takano^{*,†} and Yushu Matsushita^{*,†}

[†]Nagoya University (Japan) and [‡]KAERI (Korea)

S1. Preparation of ring *h*-R-PT and *d*-R-PI samples.

Ring *h*-R-PT and *d*-R-PI samples utilized in this study were prepared in the same manner as reported previously.¹⁻² Here, the results of preparation of *h*-R-PT-42 ($M_w = 41.7$ kg/mol, $M_w/M_n = 1.07$, purity ~ 99%) are shown while displaying the SEC and IC profiles in the process of preparation.

Figure S1a shows a SEC profile of telechelic *h*-L-PT-42 $(M_w = 42.0 \text{ kg/mol}, M_w/M_n = 1.06)$. This L-PT was cyclized in dilute THF solution (ca. 0.1%), and the cyclization product was obtained as shown in Figure S1b. This product includes ca. 40% of ring R-PT eluted at 20-22 min, which eluted slower than L-RT, together with various kinds of polycondensation products at 14-20 min. To isolate the R-PT, the preparative SEC and IC fractionations were successively conducted. Figure S1c shows the SEC profile of the final product obtained after fractionations. A unimodal main peak eluted at 19.5-22.5 min as well as a small peak shoulder at 18-19.5 min is observed in SEC. Here, the peak shoulder corresponds to the dimeric ring R-PT.

To confirm that the linear chains were successfully excluded from the final product, R-PT, IC measurements were conducted, and the result is shown in Figure S2. For R-PT in Figure S2b, the main peak was eluted at 9.5-15 min, and any other signals were not detected at the time range of 7.5-10.5 min where L-PT eluted in Figure S2a. Thus, we confirmed that no linear contaminations remain in the R-PT. This purified ring sample was utilized for SANS and OM measurements.

Figure S1. SEC profiles of (a) *h*-L-PT-42, (b) cyclization product of *h*-L-PT-42 and (c) *h*-R-PT-42 (i.e., the product after SEC and IC fractionations).

Figure S2. IC profiles of (a) h-L-PT-42 and (b) h-R-PT-42. The peaks eluted at 6-7.5 min indicate the solvent.

Following the same procedure, *d*-R-PI-28 ($M_w = 27.8 \text{ kg/mol}$, $M_w/M_n = 1.07$, purity ~99%) was also successfully prepared (see Table 1 in the main text), and was utilized for SANS measurements.

S2. Determination of incoherent scattering intensity.

As described in Experimental of the main text, the treatment of a background signal (i.e., incoherent scattering) is a delicate issue for SANS data reduction. Here, we assumed that the incoherent scattering intensity I_{incoh} is a *q*-independent constant, and determined by using raw data of the h-L-PT/d-L-PI (L/L) blend sample as follows. In bulk, linear polymer chains are known to follow the Gaussian statistics conformation due to the screening of the excluded-volume effect, and their SANS intensity obeys the q^{-2} power law dependence at high q regime.³ Figure S3 shows the SANS profiles of the L-L blend at 170 °C before and after subtracting an assumed Iincoh in (a) a double-logarithmic I(q) vs q and (b) Kratky plot $(I(q) \cdot q^2)$ vs In Figure S3b, we found that the intensity before *q*). subtracting I_{incoh} (i.e., $I(q)_{\text{all}}$) at high- $q \geq 0.05 \text{ Å}^{-1}$) keeps increasing. We carefully determined the I_{incoh} value as 0.20 cm⁻¹, and the intensity after subtracting I_{incoh} , i.e., I(q) (= $I(q)_{all} - I_{incoh}$, is also shown in Figure S3. As shown in Figure S3b, I(q) data clearly exhibit a plateau of the Kratky plot at high-q (≥ 0.05 Å⁻¹). This result corresponds to the q^{-2} dependence of I(q). We confirmed that I(q) curves at all temperatures of SANS measurements (130-180 °C) show $I(q) \sim q^{-2}$ at high-q regime by setting $I_{\text{incoh}} = 0.20 \text{ cm}^{-1}$ (cf. Figure 1a in the main text).

Figure S3. (a) Double-logarithmic plots of the SANS profiles (I(q) vs q) for L-L blend at 170 °C before and after subtracting the incoherent scattering intensity I_{incoh} (= 0.20 cm⁻¹). (b) Kratky plots ($I(q) \cdot q^2$ vs q) before and after subtracting I_{incoh} .

To confirm the validity of this I_{incoh} assumption, we also estimated I_{incoh} by the other method reported by Shibayama et al.⁴ Although we do not describe the details of the estimation, by using the sample thickness (= 1.5 mm) and the volume fraction of hydrogenous polymer (= 0.5), we estimated I_{incoh} as 0.21 cm⁻¹. This value

is in good agreement with that determined by using the raw scattering data of L-L at high $q (= 0.20 \text{ cm}^{-1})$ within an error of 5%. Thus, we can safely say that our treatment of the incoherent scattering intensities is adequate.

In this study, the same I_{incoh} value (= 0.20 cm⁻¹) is adopted for the other blends, i.e., R-L and R-R, since all three blends utilized for SANS measurements in this study possess the same hydrated/deuterated compound ratio (i.e., the amount of hydrogen is equivalent in three blends). The scattering behavior of the blends at high-q range, which mainly reflects the local chain conformation of the component chains, is discussed in the main text. Although I_{incoh} does not much influence the scattering behavior at low-q where the intermolecular interactions affect more dominantly, it is still important to estimate the accurate I_{incoh} value of the blends in order to discuss more correctly.

S3. SANS profiles

Figure S4. SANS profiles I(q) vs q for (a) L-L, (b) R-L and (c) R-R blends at various temperatures. (d) Comparison of the SANS profiles for L-L, R-L and R-R blends at 170 °C.

References:

- Takano, A.; Kadoi, O.; Hirahara, K.; Kawahara, S.; Isono, Y.; Suzuki, J.; Matsushita, Y. Preparation and Morphology of Ring-Shaped Polystyrene-block-Polyisoprenes. *Macromolecules* 2003, *36*, 3045-3050.
- 2. Cho, D.; Masuoka, K.; Koguchi, K.; Asari, T.; Kawaguchi, D,; Takano, A.; Matsushita, Y. Preparation and Characterization of Cyclic Polymers. *Polym. J.* **2005**, *37*, 506-511.
- 3. Debye, P. Molecular-Weight Determination by Light Scattering. J. Phys. Chem. 1947, 51, 18-32.
- Shibayama, M.; Nagao, M.; Okabe, S.; Karino, T. Evaluation of Incoherent Neutron Scattering from Softmatter. J. Phys. Soc. Jpn. 2005, 74, 2728-2736.