Supporting Information

Palladium and Lewis Acid-Catalyzed Intramolecular Aminocyanation of Alkenes: Scope, Mechanism, and Diastereoselective Alkene Difunctionalizations

Zhongda Pan,[†] Shengyang Wang, [†] Jason T. Brethorst, and Christopher J. Douglas*

Department of Chemistry, University of Minnesota - Twin Cities, 207 Pleasant St. SE, Minneapolis, MN 55455

1. General details	1
2. Optimization of aminocyanation conditions	2
3. Results of aminocyanation reactions	5
4. Transformations of aminocyanation products 2ad and 2af	
5. Double cross-over experiment	
6. Synthesis of substrates: N-acyl cyanamides	
6.1 Synthesis of cyanamides S2 (Step 1)	
6.2 Synthesis of carboxylic acids S4 (Step 2)	
6.3 Synthesis of substrates 1 (Step 3)	
7. Synthesis of substrates: N-sulfonyl cyanamides	
8. Study towards the stereochemistry of alkene addition step	
9. Computation of ¹ H-NMR chemical shifts of 2ad	
10. References	69
11. Spectra for new compounds	71

1. General details

Unless otherwise noted, all reactions were carried out using oven-dried glassware under a nitrogen atmosphere. Dichloromethane (CH₂Cl₂) and toluene were distilled from CaH₂ prior to use. Tetrahydrofuran (THF) was distilled from Na/benzophenone prior to use. *m*-Xylene and toluene were further degassed by bubbling a stream of argon through the liquid in a Strauss flask and then stored in a nitrogen-filled glove box. Acetonitrile (CH₃CN), benzene, methanol (MeOH), anhydrous *N*,*N*-dimethylformamide (DMF) and anhydrous diethyl ether (Et₂O) were purchased from Sigma-Aldrich and Alfa Aesar, and used without further purification. Unless otherwise noted, all chemicals were purchased from commercial sources and used as received. All transition-metal complexes, except for CpPd(1-phenylallyl), were purchased from Sigma-Aldrich or Strem and used as received. CpPd(1-phenylallyl) was synthesized following a known procedure.¹ Triphenylborane (BPh₃) was purchased from Strem and recrystallized from anhydrous heptanes under nitrogen.² Tris(pentafluorophenyl)borane [B(C₆F₅)₃] was purchased from Strem and used as received.

Analytical thin-layer chromatography (TLC) and preparative thin-layer chromatography were carried out using 250 μ m and 1000 μ m silica plates (SiliCycle), respectively. Eluted plates were visualized first with a UV lamp (254 nm) and then stained with potassium permanganate, iodine, or bromocresol green. Flash column chromatography was performed using 230–400 mesh (particle size 40–63 μ m) silica gel purchased from SiliCycle.

¹H NMR (400 and 500 MHz), ¹³C NMR (75 and 125 MHz), and ¹⁹F NMR (375 and 470 MHz) spectra were obtained on Varian Inova and Bruker Avance instruments. ¹H NMR spectra data were reported as δ values in ppm relative to TMS (δ 0.00) or chloroform (7.26) if collected in CDCl₃, or dimethyl sulfoxide (δ 2.50) if collected in DMSO-d₆. ¹³C NMR spectra data were reported as δ values in ppm relative to chloroform (δ 77.00) if collected in CDCl₃ or dimethyl sulfoxide (δ 39.50) if collected in DMSO-d₆. ¹⁹F NMR spectra data were reported as δ values in ppm using instrument standard. ¹H NMR coupling constants were reported in Hz, and multiplicity was indicated as follows: s (singlet); d (doublet); t (triplet); q (quartet); quint (quintet); m (multiplet); dd (doublet of doublets); ddd (doublet of doublet of doublet of doublet); t doublet of double

of doublets); dt (doublet of triplets); td (triplet of doublets); ddt (doublet of doublet of triplets); dq (doublet of quartets); app (apparent); br (broad). Raw NMR data files or processed NMR data files, referred to as ".mnova files" in the tables below, are available from the corresponding author upon request. Infrared (IR) spectra were obtained on a MIDAC FT-IR spectrometer. A thin-film of sample was prepared by evaporating solvent (CH₂Cl₂ or CDCl₃) on NaCl plates. High-resolution mass spectra (HRMS) in electrospray ionization (ESI) experiments were performed on a Bruker BioTOF II (Time-of-flight) instrument using PEG-300, PEG-400 or PPG-400 as an internal standard.

2. Optimization of aminocyanation conditions

A general procedure: In a nitrogen-filled glove box, a one-dram vial was charged with a magnetic stirring bar, substrate 1a (38.1 mg, 0.1 mmol), BPh₃ (9.7 mg, 0.04 mmol), Xantphos (5.8 mg, 0.01 mmol), and a solution of CpPd(1-phenylallyl) in toluene (0.02 M, 0.5 mL, 0.01 mmol). The reaction mixture was sealed with a PTFE lined cap, removed from the glove box, and heated in an aluminum heating block for 24 h. The resulting mixture was allowed to cool to room temperature and a stock solution of *p*-methoxyacetophenone (0.1 M in toluene, 0.3 mL, 0.03 mmol) was added as the internal NMR-standard. The resulting mixture was concentrated in vacuo and the yield of 2a was determined by ¹H NMR analysis. The isolated yield was obtained by concentrating the crude mixture onto Celite, followed by flash column chromatography.

Tol N CN Ph Ph Tol N CN Ph Me Tol N CN Lewis acid solvent, <i>T</i> , 24 h	→ O Ph Ph	+ Ph Ph Ph Me	Pd Pd Ph	Me Me
Tol = 4-methylphenyl	2a	1a'	CpPd(1-phenylallyl) :	Xantphos

Table S1. Optimization of aminocyanation of N-acyl cyanamide 1a

Entry	Palladium ^a	Ligand ^b	Lewis acid (equiv.)	Solvent	$T(^{\circ}\mathrm{C})$	Yield of 2a (%) ^c
1	CpPd(1-phenylallyl)	Xantphos	$BPh_3(0.5)$	PhMe	90	87^d
2	$Pd(OAc)_2$	Xantphos	$BPh_{3}(0.5)$	PhMe	90	67
3	$Pd(TFA)_2$	Xantphos	$BPh_{3}(0.5)$	PhMe	90	17
4	[Pd(allyl)Cl] ₂	Xantphos	$BPh_{3}(0.4)$	PhMe	100	0^e
5	Pd ₂ dba ₃	Xantphos	$BPh_{3}(0.5)$	PhMe	90	69
6	Pd(PPh ₃) ₄	_	$BPh_{3}(0.5)$	PhMe	90	81
7	CpPd(1-phenylallyl)	Xantphos ^f	$B(C_6F_5)_3(0.5)$	PhMe	100	0^e
8	CpPd(1-phenylallyl)	Xantphos ^f	$AlMe_2Cl(0.5)$	PhMe	100	0^e
9	CpPd(1-phenylallyl)	Xantphos ^f	$AlCl_{3}(0.5)$	PhMe	100	0^e
10	CpPd(1-phenylallyl)	Xantphos ^f	$ZnCl_{2}(0.5)$	PhMe	100	0^g
11	CpPd(1-phenylallyl)	Xantphos ^f	$Zn(OTf)_{2}(0.5)$	PhMe	100	0^g
12	CpPd(1-phenylallyl)	dppe	$BPh_{3}(0.4)$	PhMe	80	0^e
13	CpPd(1-phenylallyl)	dppp	$BPh_{3}(0.4)$	PhMe	80	23
14	CpPd(1-phenylallyl)	dppb	$BPh_{3}(0.4)$	PhMe	80	49
15	CpPd(1-phenylallyl)	DPEphos	BPh ₃ (0.4)	PhMe	80	72
16	CpPd(1-phenylallyl)	Xantphos	$BPh_{3}(0.4)$	PhMe	80	93
17	CpPd(1-phenylallyl)	Nixantphos	$BPh_{3}(0.4)$	PhMe	80	81
18	CpPd(1-phenylallyl)	DBFphos	$BPh_{3}(0.4)$	PhMe	80	0^e
19	CpPd(1-phenylallyl)	Xantphos ^f	$BPh_{3}(0.4)$	THF	80	26
20	CpPd(1-phenylallyl)	Xantphos ^f	$BPh_{3}(0.4)$	PhCF ₃	80	0^g
21	CpPd(1-phenylallyl)	Xantphos ^f	$BPh_{3}(0.4)$	dioxane	80	20
22	CpPd(1-phenylallyl)	Xantphos ^f	$BPh_{3}(0.4)$	1,2 - DCE	80	0^e
23	CpPd(1-phenylallyl)	Xantphos ^f	$BPh_{3}(0.4)$	DMF	80	0^g
24	CpPd(1-phenylallyl)	Xantphos ^f	$BPh_{3}(0.4)$	cyclohexane	80	85
25	CpPd(1-phenylallyl)	Xantphos	_	PhMe	80	$< 20^{h}$
26	_	_	$BPh_{3}(0.5)$	PhMe	100	0^e
27	_	_	$B(C_6F_5)_3(0.5)$	PhMe	80	0^e
28	_	_	$AlCl_{3}(0.5)$	PhMe	80	0^h
29	CpPd(1-phenylallyl)	Xantphos	$BPh_{3}(0.4)$	PhMe	80	89
30	CpPd(1-phenylallyl)	Xantphos	BEt ₃ (0.4)	PhMe	80	99

^{*a*}10mol% palladium complex. ^{*b*}10 mol% ligand. ^{*c*}Determined by ¹H NMR analysis using *p*-methoxyacetophenone as the internal standard. ^{*d*}Isolated yiled after column chromatography. ^{*e*}Only **1a** and **1a**' detected by NMR spectroscopy. ^{*f*}15mol% Xantphos. ^{*g*}Unconsumed **1a**. ^{*h*}Complex reaction mixture.

Table S2. Optimization of aminocyanation of N-sulfonyl cyanamide 3a

	Tol :	= 4-methylphenyl				
Entry	Palladium	Ligand	Lewis acid (equiv.)	<i>T</i> (°C)	Yield of $4a (\%)^a$	
1	_	_	$B(C_6F_5)_3(1.0)$	100	0^b	
2	_	_	$BF_3 \bullet OEt_2(1.0)$	100	0^b	
3	_	_	$BPh_{3}(0.4)$	100	0^b	
4	$Pd(OAc)_2$	Xantphos	$BPh_{3}(0.4)$	100	69	
5	Pd(PPh ₃) ₄	Xantphos	$BPh_{3}(0.4)$	100	32	
6	Pd(TFA) ₂	Xantphos	$BPh_{3}(0.4)$	100	63	
7	Pd ₂ dba ₃	Xantphos	$BPh_{3}(0.4)$	100	85	
8	Pd ₂ dba ₃	Xantphos	$BPh_{3}(0.4)$	90	95	
9	Pd ₂ dba ₃	Xantphos	$BPh_{3}(0.4)$	80	99^{c}	
10	Pd ₂ dba ₃	Xantphos	$BPh_{3}(0.4)$	70	78	
11	Pd ₂ dba ₃	Xantphos	_	100	0^b	

^{*a*}Determined by ¹H NMR analysis using DMSO-d₆ as the solvent and *p*-methoxyacetophenone as the internal standard. ^{*b*}Unconsumed starting material. ^{*c*}Isolated yield after column chromatography.

3. Results of aminocyanation reactions

Aminocyanation of 1a as a representative example: In a nitrogen-filled glove box, a one-dram vial was charged with a magnetic stirring bar, cyanamide 1a (76.2 mg, 0.2 mmol), BPh₃ or BEt₃ (BPh₃: 19.4 mg, 0.08 mmol; BEt₃: 1.0 M in Hex, 80 μ L, 0.08 mmol), Xantphos (11.6 mg, 0.02 mmol), and a solution of CpPd(1-phenylallyl) in toluene (0.02 M, 1.0 mL, 0.02 mmol). The reaction mixture was sealed with a PTFE lined cap, removed from the glove box, and heated at 80 °C in an aluminum heating block for 24 h. The resulting mixture was allowed to cool to room temperature, diluted with CH₂Cl₂ (5 mL), and concentrated onto Celite. The crude product was purified by gradient flash column chromatography (1:9 \rightarrow 15:85 EtOAc/Hex); to afford 2a as a pale yellow foam (0.198 mmol, 99% yield with BEt₃). R_f = 0.32 (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.50 (d, *J* = 7.7 Hz, 2H), 7.46 (d, *J* = 7.7 Hz, 2H), 7.35 (dt, *J* = 13.2, 7.6 Hz, 4H), 7.29 – 7.22 (m, 4H), 7.03 (d, *J* = 7.8 Hz, 2H), 3.33 (d, *J* = 13.7 Hz, 1H), 3.00 (d, *J* = 13.7 Hz, 1H), 2.42 (d, *J* = 16.6 Hz, 1H), 2.37 (s, 3H), 2.33 (d, *J* = 16.5 Hz, 1H), 1.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.9, 142.9, 142.8, 138.9, 132.2, 130.3, 129.2, 128.8, 128.5, 127.7, 127.6, 127.2, 127.0, 116.8, 59.8, 56.9, 46.7, 29.3, 26.5, 21.1; HRMS (ESI) calcd for [C₂₆H₂₄N₂O + Na]⁺ 403.1781, found 403.1786; IR (thin film) 2247, 1697, 1513, 1373.

Prepared from **1b** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (40 mol%) in toluene at 80 °C for 24 h. **2b** was purified by gradient flash column chromatography (1:9 \rightarrow 15:85 EtOAc/Hex) as an off-white foam (0.192 mmol, 96% yield). R_f = 0.24 (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.49 (m, 2H), 7.50 – 7.31 (m, 9H), 7.28 (td, *J* = 7.7, 7.1, 1.7 Hz, 2H), 7.20 – 7.14 (m, 2H), 3.36 (d, *J* = 13.8 Hz, 1H), 3.03 (d, *J* = 13.7 Hz, 1H), 2.44 (d, *J* = 16.5 Hz, 1H), 2.36 (d, *J* = 16.6 Hz, 1H), 1.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.0, 142.9, 142.7, 135.0, 129.7, 129.5, 128.9, 128.8, 128.6, 127.7, 127.6, 127.3, 127.1, 116.8, 59.9, 56.9, 46.8, 29.4, 26.6; HRMS (ESI) calcd for [C₂₅H₂₂N₂O + Na]⁺ 389.1624, found 389.1625; **IR** (thin film) 2247, 1697, 1493, 1371.

Prepared from 1c on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (40 mol%) in toluene at 80 °C for 24 h. 2c was purified by gradient flash column chromatography (1:9 \rightarrow 1:4 EtOAc/Hex) as a pale yellow foam (0.186 mmol, 93% yield). R_f = 0.51 (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, *J* = 8.1 Hz, 2H), 7.46 (ddd, *J* = 8.3, 3.8, 1.3 Hz, 4H), 7.39 – 7.23 (m, 6H), 7.08 (d, *J* = 7.1 Hz, 2H), 3.34 (d, *J* = 1.2 Hz, 1H), 3.02 (d, *J* = 1.1 Hz, 1H), 2.43 (d, *J* = 1.1 Hz, 1H), 2.36 (d, *J* = 16.5 Hz, 1H), 1.36 (d, *J* = 1.2 Hz, 3H), 1.33 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 175.0, 151.9, 143.0, 142.7, 132.1, 128.9, 128.8, 128.5, 127.7, 127.6, 127.3, 127.0, 126.7, 116.9, 59.9, 56.9, 46.7, 34.7, 31.2, 29.3, 26.6; HRMS (ESI) calcd for [C₂₉H₃₀N₂O + Na]⁺ 445.2250, found 445.2244; IR (thin film) 2247, 1696, 1510, 1372.

Prepared from 1d on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEts (40 mol%) in toluene at 80 °C for 24 h. 2d was purified by flash column chromatography (1:9 \rightarrow 1:4 EtOAc/Hex) as a pale yellow foam (0.180 mmol, 90% yield). R_f = 0.29 (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.48 (d, *J* = 7.7 Hz, 2H), 7.45 (d, *J* = 7.6 Hz, 2H), 7.36 (dt, *J* = 10.6, 7.6 Hz, 4H), 7.28 (t, *J* = 7.1 Hz, 2H), 7.15 (d, *J* = 6.6 Hz, 4H), 3.34 (d, *J* = 13.7 Hz, 1H), 3.03 (d, *J* = 13.7 Hz, 1H), 2.43 (d, *J* = 16.6 Hz, 1H), 2.35 (d, *J* = 16.6 Hz, 1H), 1.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.2, 162.6 (d, ¹*J*_{*F*-*C*} = 249.2 Hz), 142.7, 142.6, 131.4 (d, ³*J*_{*F*-*C*} = 8.7 Hz), 130.9 (d, ⁴*J*_{*F*-*C*} = 3.2 Hz), 128.9, 128.6, 127.7, 127.6, 127.4, 127.2, 116.8 (d, ²*J*_{*F*-*C*} = 22.8 Hz), 116.6, 59.9, 56.9, 46.7, 29.4, 26.5; ¹⁹F NMR (470 MHz, CDCl₃) δ -111.9; HRMS (ESI) calcd for [C₂₅H₂₁FN₂O + Na]⁺ 407.1530, found 407.1536; IR (thin film) 2247, 1698, 1509, 1374, 1221.

Prepared from 1e on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BPh₃ (60 mol%) in toluene at 80 °C for 24 h. 2e was purified by flash column chromatography (1:9 \rightarrow 15:85 EtOAc/Hex) as an off-white foam (0.172 mmol, 86% yield). R_f = 0.32 (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.51 – 7.41 (m, 6H), 7.36 (dt, *J* = 10.3, 7.6 Hz, 4H), 7.30 – 7.26 (m, 2H), 7.12 (d, *J* = 8.5 Hz, 2H), 3.34 (d, *J* = 13.7 Hz, 1H), 3.02 (d, *J* = 13.7 Hz, 1H), 2.42 (d, *J* = 16.6 Hz, 1H), 2.34 (d, *J* = 16.5 Hz, 1H), 1.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.0, 142.6, 142.5, 135.0, 133.6, 130.8, 130.0, 128.9, 128.6, 127.6, 127.5, 127.4, 127.2, 116.6, 59.9, 56.9, 46.7, 29.4, 26.6; HRMS (ESI) calcd for [C₂₅H₂₁ClN₂O + Na]⁺ 423.1235, found 423.1236; **IR** (thin film) 2247, 1698, 1493, 1371.

Prepared from **1f** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (40 mol%) in toluene at 80 °C for 24 h. **2f** was purified by flash column chromatography (1:3 EtOAc/Hex) as a pale yellow oil (0.190 mmol, 95% yield). $R_f = 0.32$ (3:7 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 8.2 Hz, 2H), 7.35 (dt, J = 12.5, 7.6 Hz, 4H), 7.30 – 7.24 (m, 2H), 7.08 (d, J = 8.6 Hz, 2H), 6.96 (d, J = 8.7 Hz, 2H), 3.81 (s, 3H), 3.33 (d, J = 13.7 Hz, 1H), 3.00 (d, J = 13.7 Hz, 1H), 2.42 (d, J = 16.6 Hz, 1H), 2.34 (d, J = 16.6 Hz, 1H), 1.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.1, 159.7, 143.0, 142.8, 130.6, 128.8, 128.5, 127.7, 127.6, 127.4, 127.2, 127.0, 116.9, 114.9, 59.8, 56.8, 55.5, 46.6, 29.3, 26.5; HRMS (ESI) calcd for [C₂₆H₂₄N₂O₂ + Na]⁺ 419.1730, found 419.1736; **IR** (thin film) 2247, 1696, 1512, 1375, 1251.

Prepared from **1g** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (40 mol%) in toluene at 80 °C for 24 h. **2g** was purified by flash column chromatography (1:3 \rightarrow 45:55 EtOAc/Hex) as an off-white foam (0.180 mmol, 90% yield). R_f = 0.59 (1:1 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.7 Hz, 2H), 7.45 (d, *J* = 7.8 Hz, 2H), 7.39 – 7.32 (m, 4H), 7.30 – 7.26 (m, 2H), 7.23 – 7.15 (m, 4H), 3.36 (d, *J* = 13.8 Hz, 1H), 3.03 (d, *J* = 13.7 Hz, 1H), 2.45 (d, *J* = 16.5 Hz, 1H), 2.37 (d, *J* = 16.6 Hz, 1H), 2.31 (s, 3H), 1.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.1, 169.0, 150.8, 142.7, 142.6, 132.4, 130.6, 128.8, 128.6, 127.7, 127.6, 127.3, 127.1, 122.9, 116.7, 60.0, 57.0, 46.7, 29.4, 26.6, 21.1; HRMS (ESI) calcd for [C₂₇H₂₄N₂O₃ + Na]⁺ 447.1679, found 447.1682; **IR** (thin film) 2247, 1755, 1698, 1507, 1371, 1196.

Prepared from **1h** on a 0.2 mmol scale with CpPd(1-phenylallyl) (15 mol%), Xantphos (15 mol%), and BEt₃ (100 mol%) in toluene at 70 °C for 30 h. **2h** was purified by flash column chromatography (1:4 \rightarrow 3:7 EtOAc/Hex) as a pale yellow foam (0.134 mmol, 67% yield). R_f = 0.36 (4:6 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 7.6 Hz, 2H), 7.45 (d, *J* = 7.6 Hz, 2H), 7.37 (dt, *J* = 11.6, 7.7 Hz, 4H), 7.29 (t, *J* = 7.6 Hz, 4H), 3.38 (d, *J* = 13.8 Hz, 1H), 3.06 (d, *J* = 13.7 Hz, 1H), 2.62 (s, 3H), 2.46 (d, *J* = 16.6 Hz, 1H), 2.38 (d, *J* = 16.6 Hz, 1H), 1.38 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 197.0, 175.0, 142.5, 142.4, 139.6, 137.1, 129.7, 129.6, 128.9, 128.7, 127.6, 127.5, 127.4, 127.2, 116.5, 60.2, 57.0, 46.9, 29.5, 26.8, 26.7; HRMS (ESI) calcd for [C₂₇H₂₄N₂O₂ + Na]⁺ 431.1730, found 431.1733; **IR** (thin film) 2247, 1687, 1600, 1367, 1266.

Prepared from **1i** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (80 mol%) in toluene at 70 °C for 24 h. **2i** was purified by flash column chromatography (1:9 \rightarrow 15:85 EtOAc/Hex) as a white foam (0.152 mmol, 76% yield). R_f = 0.31 (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.7 Hz, 2H), 7.46 – 7.32 (m, 8H), 7.31 – 7.26 (m, 2H), 7.17 (t, *J* = 1.3 Hz, 1H), 7.12 – 7.07 (m, 1H), 3.36 (d, *J* = 13.7 Hz, 1H), 3.03 (d, *J* = 13.7 Hz, 1H), 2.44 (d, *J* = 16.6 Hz, 1H), 2.36 (d, *J* = 16.6 Hz, 1H), 1.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.0, 142.6, 142.4, 136.3, 135.2, 130.7, 129.7, 129.3, 128.9, 128.6, 127.9, 127.6, 127.5, 127.4, 127.2, 116.5, 60.0, 56.9, 46.8, 29.4, 26.6; HRMS (ESI) calcd for [C₂₅H₂₁ClN₂O + Na]⁺ 423.1235, found 423.1234; **IR** (thin film) 2248, 1699, 1478, 1368.

Prepared from **1j** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (60 mol%) in toluene at 70 °C for 24 h. **2j** was purified by flash column chromatography (1:9 \rightarrow 1:4 EtOAc/Hex) as a pale yellow foam (0.172 mmol, 86% yield). R_f = 0.29 (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.69 (d, *J* = 7.9 Hz, 1H), 7.61 (t, *J* = 7.9 Hz, 1H), 7.49 (d, *J* = 7.9 Hz, 2H), 7.47 – 7.33 (m, 8H), 7.29 (dd, *J* = 8.8, 7.2 Hz, 2H), 3.37 (d, *J* = 13.8 Hz, 1H), 3.05 (d, *J* = 13.7 Hz, 1H), 2.43 (d, *J* = 16.6 Hz, 1H), 2.36 (d, *J* = 16.6 Hz, 1H), 1.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.1, 142.5, 142.4, 135.8, 133.2, 132.2 (q, ²*J*_{*F*-*C*} = 33.0 Hz), 130.4, 128.9, 128.7, 127.6, 127.51, 127.46, 127.3, 126.2 (q, ³*J*_{*F*-*C*} = 3.7 Hz), 125.8 (q, ³*J*_{*F*-*C*} = 3.8 Hz), 122.4 (q, ¹*J*_{*F*-*C*} = 270.9 Hz), 116.4, 60.1, 57.0, 46.8, 29.5, 26.7; ¹⁹F NMR (470 MHz, CDCl₃) δ -62.6; HRMS (ESI) calcd for [C₂₆H₂₁F₃N₂O + Na]⁺ 457.1498, found 457.1502; IR (thin film) 2249, 1700, 1328, 1129.

Prepared from 1k on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (60 mol%) in toluene at 70 °C for 24 h. 2k was purified by flash column chromatography (15:85 \rightarrow 3:7 EtOAc/Hex) as a pale yellow foam (0.184 mmol, 92% yield). R_f = 0.39 (3:7 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 8.10 (dt, *J* = 7.9, 1.4 Hz, 1H), 7.81 (t, *J* = 1.9 Hz, 1H), 7.56 (t, *J* = 7.9 Hz, 1H), 7.53 – 7.49 (m, 2H), 7.47 – 7.42 (m, 2H), 7.42 – 7.33 (m, 5H), 7.32 – 7.26 (m, 2H), 3.92 (s, 3H), 3.38 (d, *J* = 13.8 Hz, 1H), 3.04 (d, *J* = 13.7 Hz, 1H), 2.45 (d, *J* = 16.5 Hz, 1H), 2.39 (d, *J* = 16.5 Hz, 1H), 1.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.0, 165.9, 142.7, 142.4, 135.4, 134.2, 131.9, 130.3, 130.0, 129.9, 128.9, 128.6, 127.6, 127.5, 127.4, 127.1, 116.5, 60.0, 56.9, 52.4, 46.9, 29.4, 26.7; HRMS (ESI) calcd for [C₂₇H₂₄N₂O₃ + Na]⁺ 447.1679, found 447.1683; **IR** (thin film) 2250, 1723, 1699, 1370, 1291.

Prepared from **1** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (40 mol%) in toluene at 80 °C for 24 h. **21** was purified by flash column chromatography (15:85 \rightarrow 1:4 EtOAc/Hex) as a yellow oil (0.168 mmol, 84% yield). R_f = 0.19 (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.52 – 7.49 (m, 2H), 7.46 (d, *J* = 7.6 Hz, 2H), 7.38 – 7.32 (m, 5H), 7.31 – 7.22 (m, 2H), 6.95 (dd, *J* = 8.4, 2.5 Hz, 1H), 6.74 (dd, *J* = 7.7, 1.8 Hz, 1H), 6.71 (d, *J* = 2.3 Hz, 1H), 3.81 (s, 3H), 3.35 (d, *J* = 13.7 Hz, 1H), 3.01 (d, *J* = 13.7 Hz, 1H), 2.45 (d, *J* = 16.6 Hz, 1H), 2.35 (d, *J* = 16.6 Hz, 1H), 1.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.8, 160.4, 142.8, 142.7, 136.1, 130.3, 128.8, 128.5, 127.7, 127.6, 127.3, 127.1, 121.5, 116.8, 115.6, 114.2, 59.9, 56.9, 55.4, 46.7, 29.4, 26.6; HRMS (ESI) calcd for [C₂₆H₂₄N₂O₂ + Na]⁺ 419.1730, found 419.1732; **IR** (thin film) 2248, 1697, 1491, 1372, 1287, 1267.

Prepared from **1m** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (40 mol%) in toluene at 70 °C for 30 h. **2m** was purified by flash column chromatography (1:4 \rightarrow 1:3 EtOAc/Hex) as a pale yellow foam (0.174 mmol, 87% yield). R_f = 0.36 (3:7 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, *J* = 7.4 Hz, 2H), 7.46 (d, *J* = 7.5 Hz, 2H), 7.35 (dt, *J* = 9.7, 7.6 Hz, 4H), 7.30 – 7.24 (m, 2H), 6.50 (t, *J* = 2.3 Hz, 1H), 6.30 (d, *J* = 2.1 Hz, 2H), 3.79 (s, 6H), 3.35 (d, *J* = 13.7 Hz, 1H), 3.01 (d, *J* = 13.7 Hz, 1H), 2.49 (d, *J* = 16.6 Hz, 1H), 2.36 (d, *J* = 16.6 Hz, 1H), 1.34 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.6, 161.3, 142.8, 142.7, 136.6, 128.8, 128.6, 127.7, 127.6, 127.3, 127.1, 116.9, 107.8, 100.6, 59.9, 56.9, 55.5, 46.8, 29.4, 26.6; HRMS (ESI) calcd for [C₂₇H₂₆N₂O₃ + Na]⁺ 449.1836, found 449.1837; IR (thin film) 2248, 1698, 1206, 1157.

Prepared from **1n** on a 0.2 mmol scale with CpPd(1-phenylallyl) (15 mol%), Xantphos (15 mol%), and BEt₃ (100 mol%) in toluene at 70 °C for 48 h. **2n** was purified by flash column chromatography twice (first: 1:9 EtOAc/Hex; second: CH₂Cl₂) as a colorless oil (0.086 mmol, 43% yield). $R_f = 0.49$ (1:4 EtOAc/Hex); ¹H **NMR** (500 MHz, CDCl₃) δ 7.53 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 7.42 – 7.33 (m, 4H), 7.31 – 7.26 (m, 2H), 6.97 (s, 1H), 6.95 (d, J = 1.1 Hz, 2H), 3.29 (d, J = 13.9 Hz, 1H), 3.05 (d, J = 13.9 Hz, 1H), 2.54 (d, J = 16.7 Hz, 1H), 2.49 (d, J = 16.7 Hz, 1H), 2.28 (s, 3H), 2.11 (s, 3H), 1.41 (s, 3H); ¹³C **NMR** (125 MHz, CDCl₃) δ 161.8, 143.3, 143.3, 142.8, 133.0, 130.9, 129.8, 128.7, 128.4, 128.0, 127.9, 127.4, 127.2, 126.5, 120.7, 116.4, 81.1, 58.6, 48.7, 30.2, 26.9, 20.9, 18.4; **HRMS** (ESI) calcd for [C₂₇H₂₆N₂O + Na]⁺ 417.1937, found 417.1941; **IR** (thin film) 2253, 1698, 1494, 1125.

Prepared from **10** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (40 mol%) in toluene at 80 °C for 24 h. **20** was purified by flash column chromatography (1:4 \rightarrow 2:3 EtOAc/Hex) as a colorless oil (0.168 mmol, 84% yield).* R_f = 0.31 (2:3 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.11 – 7.04 (m, 2H), 6.97 – 6.91 (m, 2H), 5.85 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.07 (dq, *J* = 17.1, 1.7 Hz, 1H), 5.01 (dq, *J* = 10.2, 1.4 Hz, 1H), 3.97 (t, *J* = 6.4 Hz, 2H), 2.48 (s, 2H), 2.32 (d, *J* = 13.7 Hz, 1H), 2.28 – 2.20 (m, 2H), 2.11 (d, *J* = 13.7 Hz, 1H), 1.94 – 1.84 (m, 2H), 1.43 (s, 3H), 1.37 (s, 3H), 1.35 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 179.6, 159.1, 137.6, 130.6, 127.3, 117.1, 115.33, 115.27, 67.3, 59.6, 46.5, 39.6, 30.8, 30.0, 28.3, 28.2, 27.8, 27.0; HRMS (ESI) calcd for [C₂₀H₂₆N₂O₂ + Na]⁺ 349.1886, found 349.1881; IR (thin film) 2248, 1691, 1511, 1394, 1249.

* Note: Product contained a small amount of impurity (ca. 5%) presumably resulting from olefin isomerization.

Prepared from **1p** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (80 mol%) in toluene at 80 °C for 24 h. **2p** was purified by flash column chromatography (15:85 \rightarrow 3:7 EtOAc/Hex) as a pale yellow oil (0.192 mmol, 96% yield). R_f = 0.35 (3:7 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 2.6 Hz, 1H), 7.49 – 7.46 (m, 2H), 7.45 – 7.43 (m, 2H), 7.41 (dd, J = 8.7, 2.7 Hz, 1H), 7.36 (ddd, J = 11.2, 8.6, 7.0 Hz, 4H), 7.31 – 7.25 (m, 2H), 6.83 (d, J = 8.7 Hz, 1H), 3.95 (s, 3H), 3.34 (d, J = 13.7 Hz, 1H), 3.03 (d, J = 13.7 Hz, 1H), 2.41 (d, J = 16.6 Hz, 1H), 2.33 (d, J = 16.6 Hz, 1H), 1.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.5, 163.9, 147.3, 142.5, 142.5, 139.9, 128.9, 128.6, 127.6, 127.5, 127.4, 127.2, 125.1, 116.5, 111.9, 59.8, 56.9, 53.8, 46.6, 29.3, 26.4; HRMS (ESI) calcd for [C₂₅H₂₃N₃O₂ + Na]⁺ 420.1682, found 420.1690; **IR** (thin film) 2248, 1698, 1494, 1385, 1285.

Prepared from 1q on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (40 mol%) in toluene at 80 °C for 24 h. 2q was purified by flash column chromatography (1:4 \rightarrow 1:1 EtOAc/Hex) as pale yellow oil (0.186 mmol, 93% yield). R_f = 0.43 (1:1 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.28 – 7.21 (m, 2H), 7.09 – 7.04 (m, 2H), 2.49 (d, *J* = 1.5 Hz, 2H), 2.38 (s, 3H), 2.34 (d, *J* = 13.7 Hz, 1H), 2.12 (d, *J* = 13.7 Hz, 1H), 1.44 (s, 3H), 1.38 (s, 3H), 1.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 179.5, 138.7, 132.4, 130.3, 129.4, 117.1, 59.6, 46.7, 39.7, 30.9, 28.3, 27.8, 27.1, 21.1; HRMS (ESI) calcd for [C₁₆H₂₀N₂O + Na]⁺ 279.1468, found 279.1467; **IR** (thin film) 2248, 1694, 1514, 1393.

°CN

Prepared from 1r on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (40 mol%) in toluene at 80 °C for 24 h. 2r was purified by flash column chromatography (30:70:0 \rightarrow 30:70:0.5 EtOAc/Hex/MeOH) as a thick tan oil (0.176 mmol, 88% yield). R_f = 0.25 (1:1 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.10 (d, *J* = 8.6 Hz, 2H), 6.96 (d, *J* = 8.7 Hz, 2H), 3.82 (s, 3H), 2.48 (app s, 2H), 2.32 (d, *J* = 13.7 Hz, 1H), 2.11 (d, *J* = 13.7 Hz, 1H), 1.43 (s, 3H), 1.38 (s, 3H), 1.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 179.6, 159.6, 130.7, 127.5, 117.1, 114.8, 59.6, 55.4, 46.5, 39.6, 30.8, 28.2, 27.8, 27.0; HRMS (ESI) calcd for [C₁₆H₂₀N₂O₂ + Na]⁺ 295.1417, found 295.1413; **IR** (thin film) 2247, 1693, 1513, 1394, 1251.

Prepared from 1s on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (80 mol%) in toluene at 70 °C for 48 h. 2s was purified by flash column chromatography (1:9 \rightarrow 3:7 EtOAc/Hex) as a pale yellow oil (0.164 mmol, 82% yield). R_f = 0.32 (3:7 EtOAc/Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.26 (m, 10H), 6.89 – 6.82 (m, 2H), 6.58 – 6.51 (m, 2H), 3.77 (s, 3H), 3.49 (d, *J* = 13.0 Hz, 2H), 2.64 (d, *J* = 11.6 Hz, 1H), 2.61 (d, *J* = 11.6Hz, 1H), 2.31 (d, *J* = 14.5 Hz, 1H), 2.12 (d, *J* = 14.5 Hz, 1H), 1.56 (d, *J* = 16.0 Hz, 1H), 0.43 (d, *J* = 16.1 Hz, 1H), 0.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.7, 159.6, 137.9, 137.5, 130.91, 130.89, 130.5, 128.6, 128.3, 127.4, 127.2, 127.1, 117.0, 114.7, 58.9, 55.4, 51.9, 44.9, 44.8, 36.2, 29.2, 25.9; HRMS (ESI) calcd for [C₂₈H₂₈N₂O₂ + Na]⁺ 447.2043, found 447.2036; IR (thin film) 2250, 1689, 1512, 1249.

Prepared from 1t on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (60 mol%) in toluene at 70 °C for 24 h. **2t** was purified by flash column chromatography (30:70:0.5 \rightarrow 30:70:1 EtOAc/Hex/MeOH) as a pale yellow oil (0.186 mmol, 93% yield). R_f = 0.19 (30:70:0.5 EtOAc/Hex/MeOH); ¹H NMR (500 MHz, CDCl₃) δ 7.08 – 7.02 (m, 2H), 6.98 – 6.92 (m, 2H), 3.82 (s, 3H), 2.70 – 2.57 (m, 2H), 2.51 (d, *J* = 13.4 Hz, 1H), 2.48 (d, *J* = 16.7 Hz, 1H), 2.43 (d, *J* = 16.7 Hz, 1H), 2.33 (d, *J* = 13.4 Hz, 1H), 2.21 – 2.12 (m, 1H), 2.12 – 1.97 (m, 3H), 1.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 178.5, 159.5, 130.6, 127.5, 116.8, 114.8, 60.5, 55.4, 46.4, 44.6, 32.3, 31.6, 29.6, 26.8, 16.5; HRMS (ESI) calcd for [C₁₇H₂₀N₂O₂ + Na]⁺ 307.1417, found 307.1415; **IR** (thin film) 2248, 1692, 1512, 1386, 1250.

Prepared from 1u on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (100 mol%) in toluene at 80 °C for 36 h. 2u was purified by flash column chromatography (20:80:1 \rightarrow 20:80:2 EtOAc/Hex/MeOH) as a pale yellow oil (0.192 mmol, 96% yield). R_f = 0.16 (20:80:1 EtOAc/Hex/MeOH); ¹H NMR (500 MHz, CDCl₃) δ 7.12 – 7.04 (m, 2H), 6.98 – 6.92 (m, 2H), 3.82 (s, 3H), 2.52 (d, *J* = 16.5 Hz, 1H), 2.48 (d, *J* = 16.5 Hz, 1H), 2.34 (d, *J* = 13.4 Hz, 1H), 2.25 – 2.10 (m, 3H), 1.94 – 1.83 (m, 2H), 1.77 – 1.68 (m, 4H), 1.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 179.8, 159.5, 130.7, 127.6, 117.0, 114.8, 60.1, 55.4, 49.7, 47.1, 39.7, 39.2, 30.3, 27.5, 25.54, 25.46; HRMS (ESI) calcd for [C₁₈H₂₂N₂O₂ + Na]⁺ 321.1573, found 321.1570; **IR** (thin film) 2246, 1691, 1513, 1387, 1250.

Prepared from 1v on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (60 mol%) in toluene at 80 °C for 24 h. 2v was purified by flash column chromatography (40:60:0 \rightarrow 50:50:2 EtOAc/Hex/MeOH) as a colorless oil (0.170 mmol, 85% yield). R_f = 0.21 (50:50:1 EtOAc/Hex/MeOH); ¹H NMR (500 MHz, CDCl₃) δ 7.14 – 7.06 (m, 2H), 7.00 – 6.92 (m, 2H), 4.05 (ddt, *J* = 13.8, 11.7, 4.1 Hz, 2H), 3.83 (s, 3H), 3.58 (dddd, *J* = 16.4, 11.6, 10.6, 2.7 Hz, 2H), 2.52 (d, *J* = 16.8 Hz, 1H), 2.47 (d, *J* = 16.8 Hz, 1H), 2.37 (d, *J* = 13.9 Hz, 1H), 2.26 (d, *J* = 14.0 Hz, 1H), 2.24 – 2.13 (m, 2H), 1.63 (ddt, *J* = 13.6, 4.5, 2.4 Hz, 1H), 1.52 (ddt, *J* = 13.5, 4.5, 2.4 Hz, 1H), 1.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 177.8, 159.7, 130.7, 127.1, 117.1, 114.9, 64.1, 63.9, 60.1, 55.5, 43.3, 41.4, 35.4, 35.0, 30.9, 28.9; HRMS (ESI) calcd for [C₁₈H₂₂N₂O₃ + Na]⁺ 337.1523, found 337.1521; **IR** (thin film) 2249, 1687, 1513, 1384, 1251.

Prepared from 1w on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BPh₃ (40 mol%) in *m*-xylene at 120 °C for 24 h. 2w was purified by flash column chromatography (25:75:0 \rightarrow 40:60:0 \rightarrow 60:40:5 EtOAc/Hex/MeOH) as a pale yellow oil (0.066 mmol, 33% yield). R_f = 0.45 (5:95 MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.12 – 7.07 (m, 2H), 6.99 – 6.93 (m, 2H), 3.82 (s, 3H), 2.74 (ddd, *J* = 16.9, 9.9, 6.6 Hz, 1H), 2.63 (ddd, *J* = 17.5, 9.9, 6.3 Hz, 1H), 2.53 (d, *J* = 16.8 Hz, 1H), 2.48 (d, *J* = 16.8 Hz, 1H), 2.40 (ddd, *J* = 13.3, 9.9, 6.3 Hz, 1H), 2.18 (ddd, *J* = 13.3, 9.9, 6.6 Hz, 1H), 1.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.7, 159.8, 130.6, 127.1, 116.8, 115.0, 62.5, 55.5, 31.7, 29.4, 29.2, 26.7; HRMS (ESI) calcd for [C₁₄H₁₆N₂O₂ + Na]⁺ 267.1104, found 267.1105; **IR** (thin film) 2244, 1693, 1513, 1387, 1251.

Prepared from 1x on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (60 mol%) in toluene at 80 °C for 24 h. 2x was purified by flash column chromatography (20:80:0 \rightarrow 30:70:1 EtOAc/Hex/MeOH) as a pale yellow oil (0.180 mmol, 90% yield). R_f = 0.16 (3:7 EtOAc/Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.06 (m, 2H), 7.00 – 6.92 (m, 2H), 3.82 (s, 3H), 2.52 (d, *J* = 16.8 Hz, 1H), 2.42 (d, *J* = 16.8 Hz, 1H), 2.21 (d, *J* = 14.1 Hz, 1H), 2.14 (d, *J* = 14.1 Hz, 1H), 1.71 – 1.60 (m, 1H), 1.53 (ddd, *J* = 13.9, 11.6, 3.1 Hz, 1H), 1.41 (s, 3H), 1.33 (s, 3H), 1.45 – 1.22 (m, 4H), 0.93 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 180.0, 159.5, 130.5, 127.7, 117.5, 114.8, 62.8, 55.4, 42.8, 39.3, 39.3, 29.7, 27.7, 27.5, 26.4, 22.7, 13.9; HRMS (ESI) calcd for [C₁₉H₂₆N₂O₂ + Na]⁺ 337.1886, found 337.1892; IR (thin film) 2246, 1694, 1513, 1395, 1252.

Prepared from 1y on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (100 mol%) in toluene at 70 °C for 36 h. 2y was purified by flash column chromatography (20:80:0 \rightarrow 30:70:1 EtOAc/Hex/MeOH) as a pale yellow oil (0.160 mmol, 80% yield). R_f = 0.14 (3:7 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.33 – 7.27 (m, 2H), 7.24 – 7.20 (m, 1H), 7.19 – 7.10 (m, 4H), 7.00 – 6.89 (m, 2H), 3.81 (s, 3H), 2.74 (td, *J* = 12.6, 12.2, 4.3 Hz, 1H), 2.66 – 2.55 (m, 2H), 2.50 (d, *J* = 16.9 Hz, 1H), 2.34 (d, *J* = 14.2 Hz, 1H), 2.24 (d, *J* = 14.1 Hz, 1H), 1.98 (ddd, *J* = 14.1, 12.2, 5.6 Hz, 1H), 1.89 (ddd, *J* = 14.1, 12.1, 4.3 Hz, 1H), 1.45 (s, 3H), 1.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 180.0, 159.6, 139.9, 130.5, 128.8, 128.1, 127.5, 126.5, 117.3, 114.9, 62.6, 55.4, 42.9, 41.4, 39.3, 30.6, 29.8, 27.61, 27.57; HRMS (ESI) calcd for [C₂₃H₂₆N₂O₂ + Na]⁺ 385.1886, found 385.1888; **IR** (thin film) 2244, 1693, 1512, 1395, 1252.

Prepared from 1z on a 0.2 mmol scale with CpPd(1-phenylallyl) (20 mol%), Xantphos (20 mol%), and BEt₃ (100 mol%) in toluene at 90 °C for 24 h. 2z was purified by preparative thin-layer chromatography (30:70:3 EtOAc/Hex/MeOH) as a thick colorless oil (0.074 mmol, 37% yield). $R_f = 0.29$ (3:7 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.27 (m, 5H), 7.15 – 7.05 (m, 2H), 6.96 – 6.86 (m, 2H), 4.53 (s, 2H), 3.81 (s, 3H), 3.36 (d, J = 9.2 Hz, 1H), 3.30 (d, J = 9.3 Hz, 1H), 2.59 (d, J = 16.9 Hz, 1H), 2.42 (d, J = 16.9 Hz, 1H), 2.36 (d, J = 13.9 Hz, 1H), 2.13 (d, J = 14.0 Hz, 1H), 1.39 (s, 3H), 1.31 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 180.6, 159.6, 136.8, 130.7, 128.6, 128.1, 127.9, 127.5, 116.9, 114.8, 73.5, 73.1, 62.4, 55.5, 42.2, 39.4, 27.8, 27.1, 26.8; HRMS (ESI) calcd for [C₂₃H₂₆N₂O₃ + Na]⁺ 401.1836, found 401.1829; IR (thin film) 2253, 1692, 1512, 1396, 1251.

Prepared from **1aa** on a 0.2 mmol scale with CpPd(1-phenylallyl) (15 mol%), Xantphos (15 mol%), and BEt₃ (100 mol%) in toluene at 80 °C for 36 h. **2aa** was purified by flash column chromatography (15:85 \rightarrow 3:7 EtOAc/Hex) as a thick pale yellow oil (0.170 mmol, 85% yield). R_f = 0.42 (3:7 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.49 – 7.44 (m, 2H), 7.38 (dd, *J* = 8.6, 7.0 Hz, 2H), 7.35 – 7.32 (m, 2H), 7.31 – 7.26 (m, 1H), 7.24 – 7.16 (m, 8H), 7.07 – 6.96 (m, 2H), 6.83 – 6.70 (m, 2H), 3.74 (s, 3H), 3.51 (d, *J* = 14.1 Hz, 1H), 3.46 (d, *J* = 14.1 Hz, 1H), 3.19 (d, *J* = 16.9 Hz, 1H), 2.83 (d, *J* = 16.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 175.5, 158.6, 144.0, 141.0, 140.7, 128.8, 128.53 (two overlapped peaks), 128.46, 128.2 (two overlapped peaks), 127.8, 127.7, 127.2, 127.0, 126.5, 116.8, 114.3, 65.6, 56.9, 55.3, 49.1, 27.3; HRMS (ESI) calcd for [C₃₁H₂₆N₂O₂ + Na]⁺ 481.1886, found 481.1895; **IR** (thin film) 2250, 1694, 1511, 1361, 1252.

Prepared from **1ab** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (60 mol%) in toluene at 70 °C for 48 h. **2ab** was purified by flash column chromatography (12:88:0 \rightarrow 20:80:1 EtOAc/Hex/MeOH) as a colorless oil (0.094 mmol, 47% yield). R_f = 0.32 (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.45 – 7.40 (m, 2H), 7.39 – 7.26 (m, 8H), 7.23 (d, J = 8.2 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 4.26 (dddd, J = 11.4, 9.0, 6.8, 3.3 Hz, 1H), 3.22 (dd, J = 13.1, 5.9 Hz, 1H), 2.83 (dd, J = 13.0, 8.3 Hz, 1H), 2.66 (dd, J = 17.0, 3.3 Hz, 1H), 2.47 (dd, J = 16.9, 7.4 Hz, 1H), 2.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.4, 142.7, 141.1, 137.3, 133.3, 130.1, 128.7, 128.5, 127.9, 127.6, 127.4, 127.2, 124.9, 115.9, 57.8, 52.4, 40.1, 22.3, 21.1; HRMS (ESI) calcd for [C₂₅H₂₂N₂O + Na]⁺ 389.1624, found 389.1623; IR (thin film) 2251, 1699, 1514, 1385, 1298.

Prepared from **1ac** on a 0.2 mmol scale with CpPd(1-phenylallyl) (15 mol%), Xantphos (15 mol%), and BPh₃ (50 mol%) in *m*-xylene at 120 °C for 24 h. **2ac** was purified by flash column chromatography (1:9 \rightarrow 1:4 EtOAc/Hex) as a thick pale yellow oil (0.058 mmol, 29% yield). R_f = 0.35 (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.48 (m, 2H), 7.41 – 7.18 (m, 13H), 4.85 (d, *J* = 15.3 Hz, 1H), 4.39 (d, *J* = 15.3 Hz, 1H), 3.19 (d, *J* = 13.8 Hz, 1H), 2.84 – 2.71 (m, 1H), 2.11 (d, *J* = 16.7 Hz, 1H), 1.96 (d, *J* = 16.6 Hz, 1H), 1.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.0, 143.3, 142.2, 137.6, 128.90, 128.88, 128.4, 127.9, 127.8, 127.6, 127.5, 127.4, 126.9, 116.8, 59.0, 56.6, 47.1, 43.6, 28.8, 25.7; HRMS (ESI) calcd for [C₂₆H₂₄N₂O + Na]⁺ 403.1781, found 403.1782; **IR** (thin film) 2250, 1689, 1495, 1398.

Prepared from **1ad** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (60 mol%) in toluene at 80 °C for 24 h. **2ad** was purified by flash column chromatography (0.6:100 \rightarrow 1:100 MeOH/CH₂Cl₂) as a pale yellow foam (0.198 mmol, 99% yield). R_f = 0.29 (2:100 MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.96 (dt, *J* = 7.5, 1.0 Hz, 1H), 7.72 – 7.62 (m, 2H), 7.57 (td, *J* = 7.3, 1.2 Hz, 1H), 7.25 – 7.18 (m, 2H), 7.06 – 7.00 (m, 2H), 3.85 (s, 3H), 2.90 (d, *J* = 16.6 Hz, 1H), 2.70 (d, *J* = 16.7 Hz, 1H), 1.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.6, 159.9, 147.1, 132.7, 130.9, 130.8, 129.4, 126.6, 124.6, 121.2, 115.9, 115.2, 63.7, 55.5, 28.5, 24.8; HRMS (ESI) calcd for [C₁₈H₁₆N₂O₂ + Na]⁺ 315.1104, found 315.1101; IR (thin film) 2247, 1697, 1513, 1377, 1249.

Prepared from 1ae on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (60 mol%) in toluene at 80 °C for 24 h. 2ae was purified by flash column chromatography (1:100 MeOH/CH₂Cl₂) as a yellow foam (0.198 mmol, 99% yield). $R_f = 0.33$ (2:100 MeOH/CH₂Cl₂); ¹H NMR (400

MHz, CDCl₃) δ 8.14 – 7.95 (m, 1H), 7.71 – 7.54 (m, 2H), 7.41 – 7.28 (m, 4H), 7.11 – 7.03 (m, 2H), 6.83 – 6.71 (m, 4H), 3.76 (s, 3H), 3.49 (d, *J* = 16.4 Hz, 1H), 3.20 (d, *J* = 16.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 159.3, 147.6, 137.7, 133.1, 131.4, 129.61, 129.60, 129.1, 129.0, 127.0, 126.7, 124.6, 122.5, 115.6, 114.6, 68.8, 55.4, 25.8; HRMS (ESI) calcd for [C₂₃H₁₈N₂O₂ + Na]⁺ 377.1260, found 377.1269; **IR** (thin film) 2252, 1698, 1513, 1366, 1250.

Prepared from **1af** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (60 mol%) in toluene at 70 °C for 24 h. **2af** was purified by flash column chromatography (1:4 \rightarrow 1:1 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 7.5 Hz, 1H), 7.74 – 7.66 (m, 2H), 7.61 (td, J = 7.4, 1.3 Hz, 1H), 7.43 – 7.36 (m, 2H), 7.06 – 6.98 (m, 2H), 5.24 (dd, J = 7.4, 3.4 Hz, 1H), 3.85 (s, 3H), 3.00 (dd, J = 16.8, 3.5 Hz, 1H), 2.67 (dd, J = 16.8, 7.4 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 166.7, 158.4, 141.7, 132.6, 132.0, 129.8, 128.2, 126.2, 124.6, 122.3, 115.4, 114.9, 57.2, 55.5, 22.0; HRMS (ESI) calcd for [C₁₇H₁₄N₂O₂ + Na]⁺ 301.0947, found 301.0942; **IR** (thin film) 2250, 1695, 1514, 1249.

Prepared from **1ag** on a 0.2 mmol scale with CpPd(1-phenylallyl) (15 mol%), Xantphos (15 mol%), and BEt₃ (100 mol%) in toluene at 80 °C for 24 h. **2ag** was purified by preparative thin-layer chromatography (2:100 MeOH/CH₂Cl₂) as an yellow foam (0.188 mmol, 94% yield). $R_f = 0.48$ (2:100 MeOH/CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 7.8, 1.3 Hz, 1H), 7.53 (td, J = 7.5, 1.4 Hz, 1H), 7.41 (td, J = 7.6, 1.2 Hz, 1H), 7.32 – 7.26 (m, 1H), 7.14 – 7.08 (m, 2H), 7.00 – 6.92 (m, 2H), 3.84 (s, 3H), 3.40 (d, J = 15.9 Hz, 1H), 3.28 (d, J = 15.9 Hz, 1H), 2.69 (d, J = 16.6 Hz, 1H), 2.62 (dd, J = 16.5, 0.9 Hz, 1H), 1.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.8, 159.4, 134.7, 132.8, 131.1, 130.44, 130.37, 128.9, 128.3, 127.8, 127.6, 116.6, 115.0, 114.6, 58.6, 55.5, 40.3, 28.5, 26.2; HRMS (ESI) calcd for [C₁₉H₁₈N₂O₂ + Na]⁺ 329.1260, found 329.1262; IR (thin film) 2247, 1656, 1511, 1372, 1250.

Prepared from **1ah** on a 0.2 mmol scale with CpPd(1-phenylallyl) (20 mol%), Xantphos (20 mol%), and BEt₃ (100 mol%) in toluene at 70 °C for 48 h. **2ah** was purified by preparative thin-layer chromatography (40:60:4 EtOAc/Hex/MeOH) as a pale yellow oil (0.098 mmol, 49% yield). $R_f = 0.48$ (40:60:4 EtOAc/Hex/MeOH); ¹H NMR (400 MHz, CDCl₃) δ 7.13 – 6.85 (m, 4H), 3.81 (s, 3H), 2.54 (d, J = 16.7 Hz, 1H), 2.44 (d, J = 16.7 Hz, 1H), 2.37 (ddd, J = 13.8, 9.7, 4.0 Hz, 1H), 2.06 – 1.81 (m, 3H), 1.39 (s, 3H), 1.34 (s, 3H), 1.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.4, 159.0, 131.2 (br), 130.7, 117.1, 114.5, 59.2, 55.4, 38.4, 31.6, 31.5, 30.5, 27.9, 27.7, 27.5; HRMS (ESI) calcd for [C₁₇H₂₂N₂O₂ + Na]⁺ 309.1573, found 309.1565; IR (thin film) 2241, 1645, 1511, 1390, 1249.

unsuccessful substrates

The aminocyanation reactions of these substrates resulted in unconsumed starting material. No desired product was detected in the crude reaction mixture.

Prepared from **1al** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (100 mol%) in toluene at 80 °C for 24 h. **2al** was purified by flash column chromatography (1:4:0 \rightarrow 3:7:0.1 EtOAc/Hex/MeOH) as a pale yellow oil (0.096 mmol, 48% yield). R_f = 0.14 (3:7 EtOAc/Hex); > 20:1 d.r. based on ¹H NMR spectroscopy. ¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.21 (m, 5H), 7.16 – 7.09 (m, 2H), 7.00 – 6.91 (m, 2H), 4.13 (app t, *J* = 9.7 Hz, 1H), 3.82 (s, 3H), 2.91 (dd, *J* = 13.7, 9.6 Hz, 1H), 2.61 (d, *J* = 16.8 Hz, 1H), 2.53 (d, *J* = 16.7 Hz, 1H), 2.26 (dd, *J* = 13.7, 9.8 Hz, 1H), 1.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 174.5, 159.7, 138.9, 130.7, 128.8, 128.0, 127.3, 127.2, 117.0, 114.9, 60.8, 55.4, 46.3, 41.5, 28.5, 28.1; HRMS (ESI) calcd for [C₂₀H₂₀N₂O₂ + Na]⁺ 343.1417, found 343.1416; **IR** (thin film) 2244, 1695, 1512, 1387, 1251.

Assigned Structure	Key ¹ H NMR Signals	Irradiation	Key nOe Results	Associate File
OMe 5,6 H H CN	H1: 4.13 (app t, J = 9.7 Hz, 1H) H2: 2.26 (dd, J = 13.7, 9.8 Hz, 1H) H3: 2.91 (dd, J = 13.7, 9.6 Hz, 1H)	H4	nOe observed: H2, H5,6 nOe not observed: H1	2al-nOe-exp1.mnova
H H H H H 3 1 2 (±)-2al > 20:1 d.r.	H4: 1.42 (s, 3H) H5,6: 2.61 (d, $J =$ 16.8 Hz, 1H), 2.53 (d, $J =$ 16.7 Hz, 1H)	H1	nOe observed: H3, H5,6 nOe not observed: H4	2al-nOe-exp2.mnova

Assignment of stereochemistry of (±)-2al by nOe NMR experiments Conclusion: H1 and H4 are *anti*; Ph group and H4 are *syn*.

Prepared from **1am** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (60 mol%) in toluene at 80 °C for 24 h. **2am** was purified by flash column chromatography (4:6:0 \rightarrow 5:5:0.15 EtOAc/Hex/MeOH) as a pale yellow oil (0.118 mmol, 59% yield). R_f = 0.21 (1:1 EtOAc/Hex); 9:1 d.r. based on ¹H NMR spectroscopy. *Major diastereomer:* ¹H NMR (400 MHz, CDCl₃) δ 7.10 – 7.02 (m, 2H), 6.99 – 6.92 (m, 2H), 3.82 (s, 3H), 2.98 – 2.83 (m, 1H), 2.66 (dd, *J* = 13.4, 9.1 Hz, 1H), 2.54 (d, *J* = 16.7 Hz, 1H), 2.47 (d, *J* = 16.5 Hz, 1H), 1.78 (dd, *J* = 13.4, 9.8 Hz, 1H), 1.38 (s, 3H), 1.32 (d, *J* = 7.1 Hz, 3H); *Major diastereomer:* ¹³C NMR (100 MHz, CDCl₃) δ 177.2, 159.6, 130.6, 127.4, 117.1, 114.9, 60.7, 55.4, 40.9, 35.0, 28.3, 28.1, 16.7; HRMS (ESI) calcd for [C₁₅H₁₈N₂O₂ + Na]⁺ 281.1260, found 281.1267; IR (thin film) 2244, 1694, 1513, 1390, 1251.

Assigned Structure	Key ¹ H NMR Signals	Irradiation	Key nOe Results	Associate File
OMe 5,6 H H 7 H H 3 (±)-2am 9:1 d.r. major diasteromer	H1: $2.98 - 2.83$ (m, 1H) H2: 1.78 (dd, $J = 13.4$, 9.8 Hz, 1H) H3: 2.66 (dd, $J = 13.4$, 9.1 Hz, 1H) H4: 1.38 (s, 3H) H5,6: 2.54 (d, $J = 16.7$ Hz, 1H), 2.47 (d, $J = 16.5$ Hz, 1H) H7: 1.32 (d, $J = 7.1$ Hz, 3H)	Н2	nOe observed: H3, H4, H7 nOe not observed: H1, H5,6	2am-nOe-exp1.mnova

Assignment of stereochemistry of (±)-2am (major diastereomer) by nOe NMR experiments
Conclusion: H4 and H7 are svn.

Prepared from 1an on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (60 mol%) in toluene at 80 °C for 24 h. **2an** was purified by flash column chromatography (1:4 \rightarrow 3:7 EtOAc/Hex) to yield a mixture of diastereomers as an off-white solid (0.146 mmol, 73% yield). $R_f = 0.25$ (2.3) EtOAc/Hex); 19:1 d.r. based on ¹H NMR spectroscopy. The major and minor diastereomers could be separated as a saturated solution in 1:1 isopropanol:hexanes via HPLC using an Agilent Eclipse XDB-CN column, with an injection volume of 50 µL, flow rate of 5 mL/min., and eluting with an isocratic 15:85 isopropanol:hexanes solvent system. R_t major diastereomer = 6.93 min; R_t minor diastereomer = 9.36 min. Major diastereomer: ¹H **NMR** (500 MHz, CDCl₃) δ 7.56 – 7.51 (m, 2H), 7.40 (dd, J = 8.4, 7.2 Hz, 2H), 7.33 – 7.25 (m, 1H), 7.07 – 7.00 (m, 2H), 7.00 - 6.93 (m, 2H), 3.83 (s, 3H), 3.07 (d, J = 13.7 Hz, 1H), 2.31 (app t, J = 15.5 Hz, 2H), 2.18 $(d, J = 16.4 \text{ Hz}, 1\text{H}), 1.64 (s, 3\text{H}), 1.45 (s, 3\text{H}); Major diastereomer: {}^{13}C \text{ NMR} (125 \text{ MHz}, \text{CDCl}_3) \delta 177.0,$ 159.7, 144.0, 130.7, 129.2, 127.4, 127.2, 125.9, 116.9, 114.9, 59.8, 55.5, 48.5, 47.4, 28.4, 28.2, 27.3; Major *diastereomer*: ¹**H-NMR** (500 MHz; CD₃CN): δ 7.54-7.53 (m, 2H), 7.40 (t, J = 7.7 Hz, 2H), 7.31-7.29 (m, 1H), 7.16-7.14 (m, 2H), 7.03-7.02 (m, 2H), 3.83 (s, 3H), 2.80 (d, J = 13.8 Hz, 1H), 2.51 (d, J = 16.9 Hz, 1H), 2.40 (d, J = 13.8 Hz, 1H), 2.33 (d, J = 16.9 Hz, 1H), 1.62 (s, 3H), 1.41 (s, 3H), Minor diastereomer: ¹H-NMR (500)MHz; CD₃CN): δ 7.49-7.48 (m, 1H), 7.39 (t, *J* = 7.8 Hz, 1H), 7.28 (t, *J* = 7.4 Hz, 1H), 7.17-7.15 (m, 1H), 7.04-7.02 (m, 1H), 3.83 (s, 1H), 2.70 (d, J = 13.7 Hz, 1H), 2.62 (d, J = 16.9 Hz, 1H), 2.59 (d, J = 17.1 Hz, 1H), 2.51 (d, J = 13.7 Hz, 1H), 1.60 (s, 1H), 1.11 (s, 1H).

HRMS (ESI) calcd for $[C_{21}H_{22}N_2O_2 + Na]^+$ 357.1573, found 357.1595; **IR** (thin film) 2235, 1688, 1513, 1452, 1388, 1250.

Prepared from **1ao** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (60 mol%) in toluene at 80 °C for 24 h. **2ao** was purified by flash column chromatography (4:6:0 \rightarrow 5:5:0.2 EtOAc/Hex/MeOH) as a pale yellow foam (0.286 mmol, 77% yield). R_f = 0.22 (1:1 EtOAc/Hex); > 20:1 d.r. based on ¹H NMR spectroscopy. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (dd, J = 5.5, 3.0 Hz, 2H), 7.74 (dd, J = 5.5, 3.1 Hz, 2H), 7.24 – 7.17 (m, 2H), 7.03 – 6.95 (m, 2H), 5.34 (dd, J = 10.3, 9.3 Hz, 1H), 3.83 (s, 3H), 2.85 (dd, J = 13.7, 10.3 Hz, 1H), 2.70 (d, J = 16.8 Hz, 1H), 2.61 (d, J = 16.8 Hz, 1H), 2.51 (dd, J = 13.7, 9.3 Hz, 1H), 1.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.5, 167.3, 159.9, 134.3, 131.8, 130.5, 126.8, 123.5, 116.8, 115.0, 60.6, 55.5, 48.3, 36.8, 29.7, 27.3; HRMS (ESI) calcd for [C₂₂H₁₉N₃O₄ + Na]⁺ 412.1268, found 412.1277; **IR** (thin film) 2252, 1776, 1714, 1512, 1390, 1251.

Assignment of stereochemistry of (±)-2ao by nOe NMR experiments Conclusion: H1 and H4 are *anti*; NPhth group and H4 are *svn*.

Assigned Structure	Key ¹ H NMR Signals	Irradiation	Key nOe Results	Associate File
OMe 5,6 H H CN	H1: 5.34 (dd, J = 10.3, 9.3 Hz, 1H) H2: 2.51 (dd, J = 13.7, 9.3 Hz, 1H) H3: 2.85 (dd, J = 13.7, 10.3 Hz, 1H)	H1	nOe observed: H2, H3, H5,6 nOe not observed: H4	2ao-nOe-exp1.mnova
PhthN H H H H H H 2 (±)-2ao > 20:1 d.r.	H4: 1.49 (s, 3H) H5,6: 2.70 (d, J= 16.8 Hz, 1H), 2.61 (d, J=16.8 Hz, 1H)	H4	nOe observed: H2, H5,6 nOe not observed: H1	2ao-nOe-exp2.mnova

(±)-2ap

Prepared from **1ap** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (60 mol%) in toluene at 70 °C for 24 h. **2ap** was purified by flash column chromatography (2:8:0 \rightarrow 3:7:0.15 EtOAc/Hex/MeOH) as a yellow oil (0.148 mmol, 74% yield). R_f = 0.10 (3:7 EtOAc/Hex); 3.2:1 d.r. based on ¹H NMR spectroscopy. *Major diastereomer:* ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.28 (m, 5H), 7.14 – 7.07 (m, 2H), 7.00 – 6.93 (m, 2H), 5.07 (d, *J* = 11.7 Hz, 1H), 4.77 (d, *J* = 11.7 Hz, 1H), 4.43 (dd, *J* = 8.2, 5.6 Hz, 1H), 3.81 (s, 3H), 2.63 (dd, *J* = 14.0, 8.3 Hz, 1H), 2.46 (app s, 2H), 2.17 (dd, *J* = 13.9, 5.6 Hz, 1H), 1.42 (s, 3H); *Major diastereomer:* ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 159.8, 137.6, 130.4, 128.4, 128.0, 127.8,

126.6, 116.8, 115.0, 74.2, 72.5, 60.9, 55.4, 39.6, 29.3, 27.7; **HRMS** (ESI) calcd for $[C_{21}H_{22}N_2O_3 + Na]^+$ 373.1523, found 373.1536; **IR** (thin film) 2247, 1702, 1512, 1388, 1251.

Assigned Structure	Key ¹ H NMR Signals	Irradiation	Key nOe Results	Associate File
OMe 5,6 H H BnO H H H 3 (±)-2ap 3.2:1 d.r. major diastereomer	H1: 4.43 (dd, <i>J</i> = 8.2, 5.6 Hz, 1H) H2: 2.17 (dd, <i>J</i> = 13.9, 5.6 Hz, 1H) H3: 2.63 (dd, <i>J</i> = 14.0, 8.3 Hz, 1H) H4: 1.42 (s, 3H) H5,6: 2.46 (app s, 2H)	H1	nOe observed: H3, H5,6 nOe not observed: H4	2ap-nOe-exp1.mnova

Assignment of stereochemistry of (±)-2ap (major diastereomer) by nOe NMR experiments Conclusion: H1 and H4 are *anti*; OBn group and H4 are *syn*.

Prepared from **1aq** on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (60 mol%) in toluene at 80 °C for 24 h. **2aq** was purified by flash column chromatography (30:70:0 \rightarrow 30:70:0.5 EtOAc/Hex/MeOH) as a pale yellow oil (0.184mmol, 92% yield). R_f = 0.27 (1:1 EtOAc/Hex); 4.4:1 d.r. based on ¹H NMR spectroscopy. *Major diastereomer*: ¹H NMR (500 MHz, CDCl₃) δ 7.08 – 7.02 (m, 2H), 6.99 – 6.93 (m, 2H), 3.82 (s, 3H), 2.54 (app s, 2H), 2.20 (q, *J* = 7.4 Hz, 1H), 1.44 (s, 3H), 1.25 (d, *J* = 8.0 Hz, 3H), 1.24 (s, 3H), 1.22 (s, 3H); *Major diastereomer*: ¹³C NMR (125 MHz, CDCl₃) δ 179.8, 159.6, 130.9, 127.5, 117.3, 114.8, 62.9, 55.4, 49.1, 42.2, 27.9, 26.6, 24.4, 21.2, 9.6; HRMS (ESI) calcd for [C₁₇H₂₂N₂O₂ + Na]⁺ 309.1573, found 309.1578; **IR** (thin film) 2245, 1694, 1513, 1398, 1250.

Assignment of stereochemistry of (±)-2aq (major diastereomer) by nOe NMR experiments Conclusion: H3 and H5 are *syn*; H5 and H4 are *anti*.

Assigned Structure	Key ¹ H NMR Signals	Irradiation	Key nOe Results	Associate File
OMe HH O N CN	H1,2: 1.24 (s, 3H), 1.22 (s, 3H) H3: 2.20 (q, <i>J</i> = 7.4 Hz, 1H) H4: 1.25 (d, <i>J</i> =	Н3	nOe observed: H5, H4 nOe not observed: H6,7	2aq-nOe-exp1.mnova
Me 1,2 Me H Me 3 4 (±)-2aq 4.4:1 d.r. major diastereomer	8.0 Hz, 3H) H5: 1.44 (s, 3H) H6,7: 2.54 (app s, 2H)	Н5	nOe observed: H3, H6, 7 nOe not observed: H4	2aq-nOe-exp2.mnova

Prepared from **3a** on a 0.2 mmol scale with Pd₂dba₃ (5 mol%), Xantphos (10 mol%), and BPh₃ (40 mol%) in toluene at 80 °C for 16 h. **4a** was purified by flash column chromatography (15:85:1 EtOAc/Hex/MeOH \rightarrow 3:100 MeOH/CH₂Cl₂) as an amorphous pale yellow solid (0.198 mmol, 99% yield). R_f = 0.50 (1:1 EtOAc/Hex); ¹H NMR (400 MHz, CDCl₃)* δ 7.98 – 7.87 (m, 1H), 7.79 – 7.70 (m, 2H), 7.67 (ddd, J = 7.7, 5.9, 2.6 Hz, 1H), 7.39 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 2.91 (d, J = 16.7 Hz, 1H), 2.85 (d, J = 16.7 Hz, 1H), 2.43 (s, 3H), 1.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 139.0, 134.3, 133.4, 132.8, 130.7, 130.3, 127.0, 123.3, 121.9, 116.0, 63.4, 29.2, 25.2, 21.3; HRMS (ESI) calcd for [C₁₇H₁₆N₂O₂S + Na]⁺ 335.0825, found 335.0831; **IR** (thin film) 2254, 1508, 1180.

*Note: Sulfonamides **4a–4k** were only partially soluble in CDCl₃. For consistency, the corresponding ¹H and ¹³C NMR spectra were still collected in CDCl₃.

Prepared from **3b** on a 0.2 mmol scale with Pd₂dba₃ (5 mol%), Xantphos (10 mol%), and BPh₃ (40 mol%) in toluene at 80 °C for 16 h. **4b** was purified by flash column chromatography (15:85:1 EtOAc/Hex/MeOH \rightarrow 3:100 MeOH/CH₂Cl₂) as an amorphous pale yellow solid (0.186 mmol, 93% yield). R_f = 0.57 (1:1 EtOAc/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 7.92 (d, *J* = 7.8 Hz, 1H), 7.76 – 7.71 (m, 2H), 7.65 (ddd, *J* = 8.3, 5.0, 3.4 Hz, 1H), 7.53 (d, *J* = 8.6 Hz, 2H), 7.43 (d, *J* = 8.5 Hz, 2H), 2.92 (d, *J* = 16.7 Hz, 1H), 2.84 (d, *J* = 16.7 Hz, 1H), 1.71 (s, 3H), 1.35 (s, 9H); ¹³**C NMR** (125 MHz, CDCl₃) δ 153.5, 139.0, 134.1, 133.3, 132.5, 130.2, 127.0, 126.8, 123.3, 121.7, 116.0, 63.6, 34.8, 31.2, 29.1, 25.2; **HRMS** (ESI) calcd for [C₂₀H₂₂N₂O₂S + Na]⁺ 377.1294, found 377.1296; **IR** (thin film) 2253, 1511, 1297, 1178, 1151.

Prepared from **3c** on a 0.2 mmol scale with Pd₂dba₃ (5 mol%), Xantphos (10 mol%), and BPh₃ (40 mol%) in toluene at 80 °C for 16 h. **4c** was purified by flash column chromatography (15:85:1 EtOAc/Hex/MeOH \rightarrow 3:100 MeOH/CH₂Cl₂) as an amorphous pale yellow solid (0.188 mmol, 94% yield). R_f = 0.46 (1:1 EtOAc/Hex); ¹**H** NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 7.7 Hz, 1H), 7.82 – 7.63 (m, 3H), 7.52 (dd, *J* = 8.7, 4.9 Hz, 2H), 7.32 – 7.20 (m, 2H), 2.90 (d, *J* = 16.7 Hz, 1H), 2.84 (d, *J* = 16.8 Hz, 1H), 1.71 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.7 (d, ¹*J*_{*F*-*C*} = 251.7 Hz), 138.7, 135.0 (d, ³*J*_{*F*-*C*} = 9.1 Hz), 134.0, 133.6, 130.4, 125.7 (d, ⁴*J*_{*F*-*C*} = 3.3 Hz), 123.3, 121.9, 117.2 (d, ²*J*_{*F*-*C*} = 22.7 Hz), 115.7, 63.6, 29.3, 25.3; ¹⁹F NMR (470 MHz, CDCl₃) δ –109.3; **HRMS** (ESI) calcd for [C₁₆H₁₃FN₂O₂S + Na]⁺ 339.0574, found 339.0579; **IR** (thin film) 2253, 1505, 1302, 1291, 1178, 1152.

Prepared from **3d** on a 0.2 mmol scale with Pd₂dba₃ (5 mol%), Xantphos (10 mol%), and BPh₃ (40 mol%) in toluene at 80 °C for 16 h. **4d** was purified by flash column chromatography (15:85:1 EtOAc/Hex/MeOH \rightarrow 3:100 MeOH/CH₂Cl₂) as an amorphous pale yellow solid (0.186 mmol, 93% yield). R_f = 0.49 (1:1

EtOAc/Hex); ¹**H** NMR (500 MHz, CDCl₃) δ 7.93 (dt, J = 7.7, 0.9 Hz, 1H), 7.77 (td, J = 7.6, 1.2 Hz, 1H), 7.73 – 7.64 (m, 2H), 7.54 – 7.50 (m, 2H), 7.47 (dt, J = 8.9, 2.1 Hz, 2H), 2.90 (d, J = 16.7 Hz, 1H), 2.83 (d, J = 16.8 Hz, 1H), 1.71 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 138.7, 136.9, 134.3, 134.0, 133.6, 130.5, 130.4, 128.5, 123.3, 121.9, 115.7, 63.7, 29.3, 25.3; **HRMS** (ESI) calcd for [C₁₆H₁₃ClN₂O₂S + Na]⁺ 355.0278, found 355.0281; **IR** (thin film) 2253, 1490, 1302, 1177.

Prepared from **3e** on a 0.2 mmol scale with Pd₂dba₃ (5 mol%), Xantphos (10 mol%), and BPh₃ (40 mol%) in toluene at 80 °C for 16 h. **4e** was purified by flash column chromatography (15:85:1 EtOAc/Hex/MeOH \rightarrow 3:100 MeOH/CH₂Cl₂) as an amorphous white solid (0.178 mmol, 89% yield). R_f = 0.32 (1:1 EtOAc/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 7.93 (d, *J* = 7.8 Hz, 1H), 7.78 – 7.61 (m, 3H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.03 (d, *J* = 8.3 Hz, 2H), 3.86 (s, 3H), 2.90 (d, *J* = 16.8 Hz, 1H), 2.83 (d, *J* = 16.7 Hz, 1H), 1.70 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 161.0, 139.0, 134.3, 134.2, 133.4, 130.3, 123.3, 121.9, 121.6, 116.0, 115.3, 63.5, 55.6, 29.2, 25.2; **HRMS** (ESI) calcd for [C₁₇H₁₆N₂O₃S + Na]⁺ 351.0774, found 351.0763; **IR** (thin film) 2253, 1507, 1265, 1177.

Prepared from **3f** on a 0.2 mmol scale with Pd₂dba₃ (5 mol%), Xantphos (10 mol%), and BPh₃ (40 mol%) in toluene at 80 °C for 16 h. **4f** was purified by flash column chromatography (15:85:1 EtOAc/Hex/MeOH \rightarrow 3:100 MeOH/CH₂Cl₂) as a tan foam (0.190 mmol, 95% yield). R_f = 0.43 (1:1 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.94 (d, *J* = 7.7 Hz, 1H), 7.77 (dd, *J* = 7.4, 1.1 Hz, 1H), 7.73 (d, *J* = 7.7 Hz, 1H), 7.69 (td, *J* = 7.5, 1.2 Hz, 1H), 7.58 – 7.50 (m, 2H), 7.49 (t, *J* = 7.8 Hz, 1H), 7.45 (dt, *J* = 7.8, 1.6 Hz, 1H), 2.91 (d, *J* = 16.7 Hz, 1H), 1.74 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 138.7, 135.6, 133.9, 133.6, 133.1, 131.33, 131.30, 130.9, 130.8, 130.5, 123.3, 121.9, 115.6, 63.8, 29.4, 25.3; HRMS (ESI) calcd for [C₁₆H₁₃CIN₂O₂S + Na]⁺ 355.0278, found 355.0287; **IR** (thin film) 2254, 1588, 1471, 1180.

Prepared from **3g** on a 0.2 mmol scale with Pd₂dba₃ (5 mol%), Xantphos (10 mol%), and BPh₃ (40 mol%) in toluene at 80 °C for 16 h. **4g** was purified by flash column chromatography (15:85:1 EtOAc/Hex/MeOH \rightarrow 3:100 MeOH/CH₂Cl₂) as an amorphous pale yellow solid (0.180 mmol, 90% yield). R_f = 0.46 (1:1 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 7.7 Hz, 1H), 7.79 – 7.69 (m, 2H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 8.1 Hz, 1H), 7.16 – 7.02 (m, 3H), 3.84 (s, 3H), 2.94 (d, *J* = 16.8 Hz, 1H), 2.85 (d, *J* = 16.8 Hz, 1H), 1.72 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.6, 138.9, 134.2, 133.4, 130.9, 130.5, 130.3, 124.9, 123.3, 121.7, 118.6, 116.1, 115.9, 63.7, 55.5, 29.2, 25.3; HRMS (ESI) calcd for [C₁₇H₁₆N₂O₃S + Na]⁺ 351.0774, found 351.0782; **IR** (thin film) 2253, 1600, 1486, 1297, 1178.

Prepared from **3h** on a 0.2 mmol scale with Pd₂dba₃ (5 mol%), Xantphos (10 mol%), and BPh₃ (40 mol%) in toluene at 80 °C for 16 h. **4h** was purified by flash column chromatography (15:85:1 EtOAc/Hex/MeOH \rightarrow

3:100 MeOH/CH₂Cl₂) as an amorphous pale yellow solid (0.184 mmol, 92% yield). $R_f = 0.47$ (1:1 EtOAc/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 7.94 (d, J = 7.7 Hz, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.80 – 7.63 (m, 6H), 2.91 (d, J = 16.8 Hz, 1H), 2.85 (d, J = 16.8 Hz, 1H), 1.73 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 138.6, 136.5, 133.80, 133.75, 132.7 (q, ² $J_{F-C} = 33.2$ Hz), 131.0, 130.8, 130.6, 129.9 (q, ³ $J_{F-C} = 3.8$ Hz), 127.3 (q, ³ $J_{F-C} = 3.6$ Hz), 123.3, 123.2 (q, ¹ $J_{F-C} = 271.1$ Hz), 121.9, 115.5, 63.9, 29.4, 25.3; ¹⁹F NMR (470 MHz, CDCl₃) δ –62.6; **HRMS** (ESI) calcd for [C₁₇H₁₃F₃N₂O₂S + Na]⁺ 389.0542, found 389.0549; **IR** (thin film) 2255, 1332, 1179, 1151.

Prepared from **3i** on a 0.2 mmol scale with Pd₂dba₃ (5 mol%), Xantphos (10 mol%), and BPh₃ (40 mol%) in toluene at 80 °C for 16 h. **4i** was purified by flash column chromatography (15:85:1 EtOAc/Hex/MeOH \rightarrow 3:100 MeOH/CH₂Cl₂) as pale yellow foam (0.178 mmol, 89% yield). R_f = 0.24 (1:1 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 8.24 (dt, *J* = 7.8, 1.4 Hz, 1H), 8.16 (t, *J* = 1.9 Hz, 1H), 7.95 (dt, *J* = 7.8, 0.9 Hz, 1H), 7.81 – 7.73 (m, 3H), 7.70 (ddd, *J* = 7.6, 6.9, 1.5 Hz, 1H), 7.64 (t, *J* = 7.9 Hz, 1H), 3.95 (s, 3H), 2.92 (d, *J* = 17.0 Hz, 1H), 2.88 (d, *J* = 17.0 Hz, 1H), 1.76 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 138.8, 137.5, 134.1, 134.0, 133.6, 132.4, 131.5, 130.5, 130.4, 130.2, 123.4, 121.9, 115.7, 63.7, 52.5, 29.5, 25.2; HRMS (ESI) calcd for [C₁₈H₁₆N₂O₄S + Na]⁺ 379.0723, found 379.0714; **IR** (thin film) 2255, 1724, 1296, 1180.

Prepared from **3j** on a 0.2 mmol scale with Pd₂dba₃ (5 mol%), Xantphos (10 mol%), and BPh₃ (40 mol%) in toluene at 80 °C for 24 h. **4j** was purified by preparative thin-layer chromatography (35:65 EtOAc/Hex) as a yellow foam (0.116 mmol, 58% yield). $R_f = 0.37$ (3:7 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.81 (dd, J = 7.6, 1.2 Hz, 1H), 7.59 (td, J = 7.6, 1.4 Hz, 1H), 7.48 (td, J = 7.7, 1.2 Hz, 1H), 7.43 (dd, J = 7.5, 1.1 Hz, 1H), 7.21 – 6.85 (br m 4H), 3.61 (d, J = 15.2 Hz, 1H), 3.53 (d, J = 15.2 Hz, 1H), 2.76 (d, J = 16.5 Hz, 1H), 2.71 (d, J = 16.5 Hz, 1H), 2.36 (s, 3H), 1.37 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 139.7, 139.5, 133.0, 132.7, 131.8 (br), 131.3, 130.2, 129.2, 127.8, 122.3, 116.5, 60.7, 39.0, 30.5, 26.3, 21.1; HRMS (ESI) calcd for [C₁₈H₁₈N₂O₂S + Na]⁺ 349.0981, found 349.0952; **IR** (thin film) 2253, 1508, 1325, 1174.

Prepared from **3k** on a 0.2 mmol scale with Pd₂dba₃ (5 mol%), Xantphos (10 mol%), and BPh₃ (40 mol%) in toluene at 80 °C for 24 h. **4k** was purified by flash column chromatography (1:4 \rightarrow 1:1 EtOAc/Hex) as an pale yellow foam (0.152 mmol, 76% yield). R_f = 0.18 (3:7 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 8.5 Hz, 1H), 7.38 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.14 (d, *J* = 8.1 Hz, 2H), 3.92 (s, 3H), 2.88 (d, *J* = 16.7 Hz, 1H), 2.82 (d, *J* = 16.7 Hz, 1H), 2.42 (s, 3H), 1.69 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.6, 141.4, 140.6, 132.9, 130.6, 127.1, 126.1, 123.3, 116.6, 116.1, 108.0, 63.2, 56.0, 29.2, 25.2, 21.2; HRMS (ESI) calcd for [C₁₈H₁₈N₂O₃S + Na]⁺ 365.0930, found 365.0938; IR (thin film) 2254, 1597, 1293, 1172.

Prepared from **3e** on a 0.2 mmol scale with Pd₂dba₃ (5 mol%), Xantphos (10 mol%), and BPh₃ (40 mol%) in toluene at 80 °C for 16 h. **4e** was purified by flash column chromatography (15:85:1 EtOAc/Hex/MeOH \rightarrow 2:100 MeOH/CH₂Cl₂) as an amorphous white solid (0.178 mmol, 89% yield). R_f = 0.46 (1:1 EtOAc/Hex); ¹**H NMR** (400 MHz, CDCl₃) δ 7.96 – 7.91 (m, 1H), 7.78 – 7.70 (m, 2H), 7.67 (ddd, *J* = 7.7, 6.7, 1.8 Hz, 1H), 7.01 (dd, *J* = 8.2, 2.1 Hz, 1H), 6.96 (d, *J* = 2.0 Hz, 1H), 6.93 (d, *J* = 8.2 Hz, 1H), 6.07 (d, *J* = 1.1 Hz, 2H), 2.93 (d, *J* = 16.6 Hz, 1H), 2.84 (d, *J* = 16.6 Hz, 1H), 1.73 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 149.5, 148.7, 138.9, 134.1, 133.5, 130.4, 127.3, 123.4, 122.7, 121.9, 115.9, 113.3, 109.0, 102.2, 63.6, 29.2, 25.2; **HRMS** (ESI) calcd for [C₁₇H₁₄N₂O₄S + Na]⁺ 365.0566, found 365.0557; **IR** (thin film) 2139, 1482, 1295, 1177.

4. Transformations of aminocyanation products 2ad and 2af

Reaction conditions: (a) KOH, EtOH/H₂O, 90 °C, 40 h; (b) KOH, MeOH/H₂O, 90 °C, 2 h; (c) H₂SO₄ (1.2 equiv), *t*BuOH, 80 °C, 12 h; (d) TsOH·H₂O (2 equiv), *n*BuOH, 120 °C, 20 h; (e) Ni(acac)₂ (10 mol%), AlMe₃ (3 equiv), benzene, 50 °C, 5 h; (f) Pd(OAc)₂ (10 mol%), *p*-tolylboronic acid (2 equiv), 2,2'-bipyridyl (20 mol%), CF₃CO₂H (10 equiv), THF/H₂O, 90 °C, 28 h; (g) NaBH₄ (4 equiv), CoCl₂·6H₂O (1.5 equiv), MeOH, 0 °C, 2 h; (i) TMSN₃ (3 equiv), *n*Bu₂Sn(O) (0.5 equiv), NaBH₄ (4 equiv), CoCl₂·6H₂O (1.5 equiv), CH₃CN/H₂O, rt, 2 h; (k) Lawesson's reagent (1 equiv), PhMe, 100 °C, 2.5 h; (l) Tf₂O (1.2 equiv), CH₂Cl₂, 0 °C to rt, 30 min, then Hantzsch ester (3 equiv), rt, 4 h. acac = acetylacetonyl; PMP = 4-methoxyphenyl.

Synthesis of 5a: In a one-dram reaction vial, 2ad (58.5 mg, 0.2 mmol) was heated with KOH (224 mg, 4 mmol) in EtOH (0.6 mL) and H₂O (0.6 mL) at 90 °C for 40 h. The reaction was cooled to room temperature, acidified with 1 M HCl (10 mL), and extracted with EtOAc (15 mL × 3). The combined organic extracts were washed with brine (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. Analytically pure 5a was obtained as a pale brown powder without further purification (0.2 mmol, quant. yield). $R_f = 0.35$ (5:95 MeOH/CH₂Cl₂); ¹H NMR (400 MHz, DMSO-d₆) δ 12.08 (br s, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 7.5 Hz, 1H), 7.64 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.4 Hz, 1H), 7.26 (d, J = 8.8 Hz, 2H), 7.06 (d, J = 8.9 Hz, 2H), 3.81 (s, 3H), 3.01 (d, J = 15.9 Hz, 1H), 2.62 (d, J = 15.9 Hz, 1H), 1.48 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 170.3, 167.2, 158.8, 149.3, 131.8, 131.2, 130.9, 128.03, 128.00, 122.8, 122.1, 114.4, 64.3, 55.3,

41.0, 26.3; **HRMS** (ESI) calcd for $[C_{18}H_{17}NO_4 + Na]^+$ 334.1050, found 334.1058; **IR** (thin film) 1712, 1651, 1513, 1246, 1185.

Synthesis of 5b: In a one-dram reaction vial, **2ad** (58.5 mg, 0.2 mmol) was heated with KOH (224 mg, 4 mmol) in MeOH (1.0 mL) and H₂O (1.0 mL) at 90 °C for 2 h. The reaction was cooled to room temperature, acidified with 1 M HCl (10 mL), and extracted with EtOAc (15 mL × 3). The combined organic extracts were washed with brine (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting mixture was purified by flash column chromatography (4:96 \rightarrow 5:95 MeOH/CH₂Cl₂) to give **5b** as a white foam (0.160 mmol, 80% yield). R_f = 0.24 (2:100 MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 7.5 Hz, 1H), 7.63 – 7.56 (m, 2H), 7.48 (td, *J* = 7.1, 1.7 Hz, 1H), 7.16 (d, *J* = 8.8 Hz, 2H), 6.94 (d, *J* = 8.9 Hz, 2H), 5.64 (s, 1H), 5.42 (s, 1H), 3.82 (s, 3H), 2.74 (d, *J* = 14.6 Hz, 1H), 2.54 (d, *J* = 14.6 Hz, 1H), 1.63 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.8, 168.1, 159.4, 148.9, 132.2, 131.0, 130.9, 128.6, 127.5, 124.1, 122.0, 114.8, 65.3, 55.4, 44.1, 25.8; HRMS (ESI) calcd for [C₁₈H₁₈N₂O₃ + Na]⁺ 333.1210, found 333.1214; IR (thin film) 3327, 3191, 1670, 1615, 1513, 1387, 1248.

Synthesis of 5c: To a one-dram reaction vial was added **2ad** (58.5 mg, 0.2 mmol), *tert*-butyl alcohol (0.40 mL), and conc. H₂SO₄ (3 drops via glass pipiet, ca. 60 mg, 0.6 mmol). The reaction was heated at 80 °C for 24 h. The reaction was cooled to room temperature, diluted with CH₂Cl₂ (3 mL), and washed with saturated aqueous NaHCO₃ (5 mL). The aqueous phase was extracted with CH₂Cl₂ (3 mL × 3). The combined organic extracts were washed with brine (5 mL), dried over anhydrous Na₂SO₄, and concentrated in vacuo. The resulting mixture was purified by flash column chromatography (1:1 EtOAc/Hex) to afford **5c** as a white foam (0.176 mmol, 88% yield). R_f = 0.16 (1:1 EtOAc/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 7.95 (dd, *J* = 7.5, 0.9 Hz, 1H), 7.63 (dd, *J* = 7.4, 1.1 Hz, 1H), 7.59 – 7.49 (m, 2H), 7.37 – 7.31 (m, 2H), 7.04 – 6.97 (m, 2H), 4.77 (s, 1H), 3.85 (s, 3H), 2.70 (d, *J* = 14.3 Hz, 1H), 2.56 (d, *J* = 14.4 Hz, 1H), 1.59 (s, 3H), 1.06 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 167.4, 159.4, 149.0, 132.1, 131.6, 131.0, 128.7, 127.8, 124.9, 124.5, 121.7, 114.8, 65.7, 55.5, 51.1, 46.4, 28.3, 26.1; **HRMS** (ESI) calcd for [C₂₂H₂₆N₂O₃ + Na]⁺ 389.1836, found 389.1845; **IR** (thin film) 3330, 1680, 1656, 1512, 1391, 1247.

Synthesis of 5d: 2ad (0.2 mmol) was heated with TsOH·H₂O (76.1 mg, 0.4 mmol) and *n*BuOH (0.2 mL, 2.2 mmol) in a HPLC vial at 120 °C for 20 h. The reaction mixture was cooled to room temperature, concentrated onto Celite, and purified by flash column chromatography (1.5:100 MeOH/CH₂Cl₂) to afford 5d as a colorless oil (0.186 mmol, 93% yield). $R_f = 0.31$ (2:100 MeOH/CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.90 (dt, J = 7.5, 1.0 Hz, 1H), 7.62 – 7.56 (m, 1H), 7.52 – 7.47 (m, 2H), 7.33 – 7.27 (m, 2H), 7.05 – 6.95 (m, 2H), 3.85 (s, 3H), 3.82 (t, J = 6.7 Hz, 2H), 2.86 (d, J = 15.0 Hz, 1H), 2.79 (d, J = 15.0 Hz, 1H), 1.60 (s, 3H), 1.37 – 1.24 (m, 2H), 1.20 – 1.08 (m, 2H), 0.82 (t, J = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.0, 168.1, 159.4, 148.6, 131.8, 131.4, 131.0, 128.4, 127.8, 124.0, 121.6, 114.8, 64.8, 64.5, 55.4, 42.5, 30.2, 26.5, 18.9, 13.5; HRMS (ESI) calcd for [C₂₂H₂₅NO₄ + Na]⁺ 390.1676, found 390.1679; IR (thin film) 1730, 1696, 1513, 1377, 1248.

Synthesis of 5e:³ Under N₂, AlMe₃ (2 M Hex, 0.6 mL, 1.2 mmol) was added dropwise to a solution of **2ad** (117 mg, 0.4 mmol) and Ni(acac)₂ (10.4 mmol, 0.04 mmol) in benzene (0.4 mL) at room temperature. The reaction was heated at 50 °C for 5 h and was allowed to cool to room temperature and stir overnight. The reaction was cooled to 0 °C and quenched by careful addition of water (2 mL), which was then taken up to 1 M HCl (10 mL) and extracted with EtOAc (20 mL × 3). The combined organic extracts were washed with brine (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting mixture was purified by flash column chromatography (1.5:100 MeOH/CH₂Cl₂) to give **5e** as pale yellow oil (0.308 mmol, 77% yield). R_f = 0.27 (2:100 MeOH/CH₂Cl₂); ¹**H NMR** (500 MHz, CDCl₃) δ 7.97 – 7.90 (m, 1H), 7.58 (td, *J* = 7.4, 1.1 Hz, 1H), 7.54 (d, *J* = 7.1 Hz, 1H), 7.49 (td, *J* = 7.4, 1.2 Hz, 1H), 7.24 – 7.19 (m, 2H), 7.03 – 6.96 (m, 2H), 3.85 (s, 3H), 3.00 (d, *J* = 16.5 Hz, 1H), 2.80 (d, *J* = 16.6 Hz, 1H), 1.89 (s, 3H), 1.64 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 204.4, 168.0, 159.4, 148.9, 131.9, 131.4, 130.8, 128.3, 127.9, 124.1, 121.6, 114.7, 64.9, 55.4, 50.0, 31.4, 26.3; **HRMS** (ESI) calcd for [C₁₉H₁₉NO₃ + Na]⁺ 332.1257, found 332.1262; **IR** (thin film) 1689, 1613, 1513, 1379, 1247.

Synthesis of 5f:⁴ To a one-dram reaction vial was added **2ad** (58.5 mg, 0.2 mmol), *p*-tolylboronic acid (54.4 mg, 0.4 mmol), 2,2'-bipyridyl (6.2 mg, 0.04 mmol), Pd(OAc)₂ (4.5 mg, 0.02 mmol), CF₃CO₂H (150 μ L, 2.0 mmol), THF (0.5 mL), and H₂O (0.1 mL). The reaction vessel was briefly purged with N₂ for ca. 1 min and then heated at 90 °C for 28 h. The reaction was cooled to room temperature, diluted with EtOAc (20 mL), and washed with 1 M HCl (5 mL). The aqueous phase was extracted with EtOAc (10 mL × 2). The combined organic extracts were washed with brine (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting mixture was purified by flash column chromatography (1.5:100 MeOH/CH₂Cl₂) to give **5f** as an off-white powder (0.201 mmol, quant. yield). R_f = 0.28 (2:100 MeOH/CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dt, *J* = 6.3, 1.5 Hz, 1H), 7.70 – 7.56 (m, 2H), 7.52 – 7.38 (m, 3H), 7.23 – 7.09 (m, 4H), 7.03 – 6.86 (m, 2H), 3.81 (s, 3H), 3.50 (d, *J* = 16.8 Hz, 1H), 3.31 (d, *J* = 16.8 Hz, 1H), 2.36 (s, 3H), 1.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 168.3, 159.4, 149.3, 144.0, 134.7, 131.7, 131.5, 130.9, 129.2, 128.1, 128.0, 127.9, 124.0, 121.7, 114.8, 65.1, 55.4, 44.5, 26.5, 21.5; HRMS (ESI) calcd for [C₂₅H₂₃NO₃ + Na]⁺ 408.1570, found 408.1562; **IR** (thin film) 1687, 1606, 1513, 1380, 1247.

Synthesis of 5g: To a solution of 2ad (58.5 mg, 0.2 mmol) and CoCl₂·6H₂O (71.4 mg, 0.3 mmol) in MeOH (1.5 mL) was added NaBH₄ (30.3 mg, 0.8 mmol) in one portion at 0 °C. The resulting mixture was stirred at 0 °C for 2 h and quenched with saturated aqueous NH₄Cl (ca. 2 mL), which was then taken up to 1 N NaOH (10 mL) and extracted with EtOAc (15 mL × 3). The combined organic extracts were washed with brine (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting mixture was purified by flash column chromatography (5:95:0.5 \rightarrow 7:93:0.1 MeOH/CH₂Cl₂/Et₃N) to give 5g as a tan oil (0.160 mmol, 80% yield). R_f = 0.26 (5:95:0.5 MeOH/CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.5 Hz, 1H), 7.59 (td, *J* = 7.5, 1.2 Hz, 1H), 7.51 – 7.41 (m, 2H), 7.22 – 7.16 (m, 2H), 7.03 – 6.96 (m, 2H), 3.82 (s, 3H), 2.86 (br s, 2H), 2.62 (ddd, *J* = 12.0, 10.4, 4.8 Hz, 1H), 2.27 – 1.98 (m, 3H), 1.48 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ

168.3, 159.3, 149.2, 132.2, 131.1, 130.2, 128.3, 127.9, 124.2, 121.2, 114.9, 66.4, 55.4, 40.1, 36.7, 26.6; **HRMS** (ESI) calcd for $[C_{18}H_{20}N_2O_2 + Na]^+$ 319.1417, found 319.1417; **IR** (thin film) 3367, 1683, 1513, 1380, 1248.

Synthesis of 5h: To a solution of **2ad** (58.5 mg, 0.2 mmol), Boc₂O (109 mg, 0.5 mmol), and CoCl₂·6H₂O (71.4 mg, 0.3 mmol) in MeOH (1.5 mL) was added NaBH₄ (30.3 mg, 0.8 mmol) in one portion at 0 °C. The resulting mixture was stirred at 0 °C for 3 h and quenched with saturated aqueous NH₄Cl (ca. 2 mL), which was then taken up to 1 N NaOH (10 mL) and extracted with EtOAc (15 mL × 3). The combined organic extracts were washed with brine (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting mixture was purified by flash column chromatography (0.6:100 \rightarrow 1:100 MeOH/CH₂Cl₂) to give **5h** as a white foam (0.186 mmol, 93% yield). R_f = 0.15 (1:100 MeOH/CH₂Cl₂); ¹**H NMR** (500 MHz, CDCl₃) δ 7.91 (d, *J* = 7.5 Hz, 1H), 7.61 (t, *J* = 7.5 Hz, 1H), 7.53 – 7.41 (m, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.02 – 6.93 (m, 2H), 4.28 (br s, 1H), 3.84 (s, 3H), 3.02 – 2.95 (br m 1H), 2.73 – 2.60 (br m 1H), 2.23 – 2.13 (br m 1H), 2.05 – 1.97 (br m 1H), 1.49 (s, 3H), 1.39 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 168.3, 159.2, 155.6, 149.0, 132.3, 131.1, 130.3, 128.3, 128.0, 124.4, 121.3, 114.8, 66.2, 55.4, 37.8, 36.0, 28.3, 26.7; **HRMS** (ESI) calcd for [C₂₃H₂₈N₂O₄ + Na]⁺ 419.1941, found 419.1961; **IR** (thin film) 1683, 1513, 1382, 1249, 1173.

Synthesis of 5i:⁵ TMSN₃ (81 µL, 0.6 mmol) was added to a mixture of 2ad (58.5 mg, 0.2 mmol) and $nBu_2Sn(O)$ (24.9 mg, 0.1 mmol) in toluene (1.0 mL) at room temperature in a one-dram reaction vial. The resulting mixture was heated at 100 °C for 48 h. Upon cooling to room temperature, the reaction mixture was co-concentrated with MeOH (2 mL × 3 cycles). The residue was concentrated onto Celite and purified by flash column chromatography (3:100 \rightarrow 5:100 MeOH/CH₂Cl₂) to give 5i as an off-white solid (0.146 mmol, 73% yield). R_f = 0.20 (5:95 MeOH/CH₂Cl₂); ¹H NMR (400 MHz, DMSO-d₆) δ 7.65 – 7.53 (m, 3H), 7.53 – 7.47 (m, 2H), 7.43 (td, *J* = 7.2, 1.4 Hz, 1H), 7.13 – 7.03 (m, 2H), 3.82 (s, 3H), 3.55 (d, *J* = 15.2 Hz, 1H), 3.32 (d, *J* = 15.2 Hz, 1H), 1.63 (s, 3H); ¹³C NMR (100 MHz, DMSO-d₆) δ 166.9, 158.9, 152.5 (br), 147.9, 132.0, 131.5, 130.7, 128.4, 127.8, 122.9, 122.3, 114.4, 65.5, 55.3, 31.6, 25.5; LRMS (ESI) calcd for [C₁₈H₁₇N₅O₂ – H]⁻ 334.1, found 334.1; IR (thin film) 1654, 1514.

Synthesis of 5j: Cerium (IV) ammonium nitrate (658 mg, 1.2 mmol) was added in one portion to a solution of 2ad (58.5 mg, 0.2 mmol) in CH₃CN (1.6 mL) and H₂O (0.6 mL) at room temperature in a one-dram reaction vial. The resulting mixture was stirred for 2 h and diluted with water (10 mL), which was then extracted with EtOAc (15 mL × 3). Without further treatment,⁶ the combined organic extracts were washed with brine (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting mixture was purified by flash column chromatography (2:100 \rightarrow 4:100 MeOH/CH₂Cl₂) to give 5j as a pale yellow oil (0.142 mmol, 71% yield). R_f = 0.14 (2:100 MeOH/CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (br s, 1H), 7.87 (dt, *J* = 7.5, 1.0 Hz, 1H), 7.65 (td, *J* = 7.5, 1.2 Hz, 1H), 7.61 – 7.49 (m, 2H), 2.91 (d, *J* = 16.6 Hz, 1H), 2.84 (d, *J* = 16.6 Hz, 1H), 1.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 148.9, 132.8, 130.7, 129.4, 124.3, 121.2, 116.3, 58.9, 30.2, 25.2; HRMS (ESI) calcd for [C₁₁H₁₀N₂O + Na]⁺ 209.0685, found 209.0683; IR (thin film) 2251, 1699, 1470.

Synthesis of 5k: 2ad (58.5 mg, 0.2 mmol) was heated with Lawesson's reagent (80.8 mg, 0.2 mmol) in toluene (0.8 mL) at 100 °C for 2.5 h in a one-dram reaction vial. The reaction mixture was cooled to room temperature, concentrated onto Celite, and purified by flash column chromatography (0:100 → 0.6:100 MeOH/CH₂Cl₂) to afford **5k** as a bright yellow foam (0.184 mmol, 92% yield). $R_f = 0.58$ (1:100 MeOH/CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.17 (dt, J = 7.7, 1.0 Hz, 1H), 7.70 (td, J = 7.5, 1.2 Hz, 1H), 7.65 – 7.55 (m, 2H), 7.25 – 7.19 (m, 2H), 7.13 – 7.06 (m, 2H), 3.87 (s, 3H), 2.95 (d, J = 16.6 Hz, 1H), 2.75 (d, J = 16.6 Hz, 1H), 1.72 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 195.8, 160.2, 145.0, 137.4, 132.6, 130.6, 129.8, 128.7, 126.5, 120.9, 115.5, 115.4, 55.5, 28.0, 24.0; HRMS (ESI) calcd for [C₁₈H₁₆N₂OS+ Na]⁺ 331.0876, found 331.0883; **IR** (thin film) 2252, 1609, 1512, 1388, 1318, 1251.

Synthesis of 51:⁷ Tf₂O (40.4 µL, 0.24 mmol) was added dropwise to a solution of **2ad** (58.5 mg, 0.2 mmol) in CH₂Cl₂ (2.0 mL) at 0 °C under N₂. The reaction was stirred for 5 min at 0 °C, then it was allowed to warm to room temperature and stir for additional 30 min, whereupon Hantzsch ester (152 mg, 0.6 mmol) was added in one portion. The resulting mixture was stirred at room temperature for 4 h, then it was directly concentrated onto Celite and purified by flash column chromatography (CH₂Cl₂) to afford **5l** as a colorless oil (0.152 mmol, 76% yield). **5l** appeared to be unstable upon extended exposure to air (> 5 h), but it can still be handled and characterized without special precautions. R_f = 0.56 (CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.32 (m, 4H), 7.02 – 6.95 (m, 2H), 6.95 – 6.90 (m, 2H), 4.76 (d, *J* = 13.0 Hz, 1H), 4.60 (d, *J* = 13.1 Hz, 1H), 3.80 (s, 3H), 2.95 (d, *J* = 16.7 Hz, 1H), 2.90 (d, *J* = 16.7 Hz, 1H), 1.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 144.6, 138.3, 136.7, 128.3, 127.7, 122.5, 121.7, 118.8, 117.5, 114.9, 67.1, 55.7, 55.1, 27.8, 26.2; HRMS (ESI) calcd for [C₁₈H₁₈N₂O + Na]⁺ 301.1311, found 301.1314; **IR** (thin film) 2248, 1513, 1246.

Synthesis of dimesylate 6':⁸ A suspension of 3,4-dimethylaniline (606 mg, 5 mmol), 2-chloroethanol (1.7 mL, 25 mmol), CaCO₃ (1300 mg, 13 mmol), and KI (83 mg, 0.5 mmol) in water (5 mL) was heated to reflux (oil bath temperature 110 °C) for 24 h. The reaction mixture was cooled to room temperature, diluted with EtOAc (50 mL) and water (10 mL), filtered through a pad of Celite, and separated. The organic phase was washed with water (10 mL) and brine (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting diol product was used for next step without further purification. Next, the above obtained diol (5 mmol) theoretical) was dissolved in EtOAc (15 mL) and cooled to 0 °C. Et₃N (2.8 mL, 20 mmol), followed by a solution of MsCl (1718 mg, 15 mmol) in EtOAc (5 mL) was added dropwise at 0 °C. The resulting mixture was allowed to warm to room temperature and stir for 1 h. Upon completion, the reaction was diluted with

Et₂O (30 mL), filtered through a pad of Celite, washed with 1 M HCl (20 mL), and separated. The organic phase was washed with saturated aqueous NaHCO₃ (10 mL) and brine (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting mixture was purified by flash column chromatography (2:3 \rightarrow 3:2 EtOAc/Hex) to afford dimesylate **6'** as a pale yellow oil (4.3 mmol, 86% yield over 2 steps). R_f = 0.44 (2:100 MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.01 (d, *J* = 8.3 Hz, 1H), 6.55 (d, *J* = 2.8 Hz, 1H), 6.49 (dd, *J* = 8.3, 2.9 Hz, 1H), 4.34 (t, *J* = 5.9 Hz, 4H), 3.72 (t, *J* = 5.9 Hz, 4H), 2.97 (s, 6H), 2.23 (s, 3H), 2.17 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 144.3, 137.9, 130.7, 126.6, 114.7, 110.6, 66.7, 51.0, 37.4, 20.3, 18.5.

Synthesis of piperazine 6: To a solution of 2af (167 mg, 0.6 mmol) and CoCl₂·6H₂O (214 mg, 0.9 mmol) in THF/MeOH/H₂O (4.0, 0.5, 2.0 mL, respectively) was added NaBH₄ (182 mg, 4.8 mmol) in one portion at 0 °C. The resulting mixture was allowed to warm to room temperature and stirred for 2 h. The reaction was quenched with saturated aqueous NH₄Cl (ca. 5 mL), which was then taken up to 1 N NaOH (20 mL) and extracted with CH₂Cl₂ (20 mL \times 3). The combined organic extracts were washed with brine (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting amine product was used for next step without further purification. Next, the above obtained amine (0.6 mmol theoretical) was heated with dimesylate 6' (146 mg, 0.4 mmol)⁹ and K₂CO₃ (220 mg, 1.6 mmol) in CH₃CN (2 mL) at 80 °C for 4 h. The reaction was cooled to room temperature, diluted with EtOAc (30 mL), washed with water (5 mL), and separated. The organic phase was washed with brine (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting mixture was purified by flash column chromatography (4:6:0 \rightarrow 5:5:0.15 EtOAc/Hex/MeOH) to afford 6 as a pale yellow oil (0.29 mmol, 73% yield over 2 steps based on 6'). $R_f = 0.30$ (5:5:0.1 EtOAc/Hex/MeOH); ¹**H NMR** (500 MHz, CDCl₃) δ 7.92 (dt, J = 7.6, 1.1 Hz, 1H), 7.59 (td, J = 7.5, 1.1 Hz, 100 Hz, 11.2 Hz, 1H), 7.54 - 7.44 (m, 4H), 7.03 - 6.92 (m, 3H), 6.69 (d, J = 2.6 Hz, 1H), 6.62 (dd, J = 8.2, 2.7 Hz, 1H), 5.30 (dd, J = 6.0, 2.7 Hz, 1H), 3.84 (s, 3H), 3.06 - 2.98 (m, 4H), 2.41 - 2.34 (m, 4H), 2.20 (s, 3H), 2.19 - 1.96 (m, 7H); ¹³C NMR (125 MHz, CDCl₃) & 167.1, 157.4, 149.4, 144.6, 137.0, 132.4, 131.8, 130.1, 129.8, 128.3, 128.0, 125.4, 124.1, 122.1, 118.0, 114.4, 113.7, 59.6, 55.5, 53.2, 52.4, 49.5, 28.2, 20.1, 18.7; HRMS (ESI) calcd for $[C_{29}H_{33}N_3O_2 + H]^+$ 456.2646, found 456.2652; **IR** (thin film)1690, 1513, 1389, 1248.

Synthesis of amide 7: 2af (111 mg, 0.4 mmol) was heated with KOH (448 mg, 8 mmol) in EtOH (1 mL) and H₂O (1 mL) at 90 °C for 40 h. The reaction was cooled to room temperature, acidified with 1 M HCl (15 mL), and extracted with EtOAc (20 mL \times 3). The combined organic extracts were washed with brine (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting carboxylic acid product was used for next step without further purification. Next, to a suspension of the above obtained carboxylic acid (0.4 mmol theoretical) in THF (1 mL) was added one drop of DMF via glass pipet, followed by addition of (COCl)₂ (2.5 M solution in CH₂Cl₂, 0.32 mL, 0.8 mmol) at room temperature. The reaction mixture was stirred for 20 min, whereupon gas evolution ceased. The mixture was concentrated in vacuo at room temperature to afford the crude acid chloride, which was redissolved in THF (2 mL) and cooled to 0 °C. To this solution was added Et₃N (112 µL, 0.6 mmol), followed by a solution of 1,4-dioxa-8-azaspiro[4.5]decane (86 mg, 0.6 mmol) in CH₂Cl₂ (0.5 mL) at 0 °C. The reaction was allowed to warm to room temperature and stir overnight. Upon completion, the reaction was diluted with EtOAc (30 mL), washed with 0.5 M HCl (10 mL), and separated. The organic phase was washed with brine (10 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting mixture was purified by flash column chromatography $(3:2 \rightarrow 7:3 \text{ EtOAc/Hex})$ to afford amide 7 as a pale yellow oil (0.33 mmol, 82% yield over 2 steps based on **2af**). $R_f = 0.36$ (7:3 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, J = 7.3 Hz, 1H), 7.62 (d, J = 7.5 Hz, 1H), 7.56 (td, J = 7.4, 1.3 Hz, 1H), 7.54 – 7.48 (m, 3H), 7.04 - 6.87 (m, 2H), 5.79 (dd, J = 9.3, 3.7 Hz, 1H), 4.00 - 3.90 (m, 4H), 3.83 (s, 4H), 3.79 - 3.73(m, 1H), 3.72-3.66 (m, 1H), 3.36 - 3.26 (m, 2H), 2.88 (dd, J = 15.9, 3.7 Hz, 1H), 2.43 (dd, J = 16.0, 9.4 Hz, 1H), 1.71 - 2.43 (dd, J = 16.0, 9.4 Hz, 1.43 Hz, 1.43 (dd, J = 16.0, 9.4 Hz, 1.43 Hz, 1.43 (dd, J = 16.0, 9.4 Hz, 1.43 Hz, 1.43 (dd, J = 16.0, 9.4 Hz, 1.43 Hz, 1.43 (dd, J = 16.0, 9.4 Hz, 1.43 (dd, J = 16.0, 9.4 Hz, 1.43 (dd, J = 16.0) (dd, J = 16.0 (dd, J = 16.0) (dd, J = 16.0 (dd, J = 16.0) (dd, J = 16.0 (dd, 1.62 (m, 2H), 1.50 (t, J = 5.8 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 167.9, 166.7, 157.4, 145.3, 132.1,

131.8, 129.4, 128.6, 125.1, 123.9, 123.2, 114.5, 106.5, 64.4, 58.3, 55.4, 43.5, 39.9, 36.3, 35.3, 34.7; **HRMS** (ESI) calcd for $[C_{24}H_{26}N_2O_5 + Na]^+$ 445.1734, found 445.1749; **IR** (thin film) 1694, 1633, 1514, 1361, 1248.

5. Double cross-over experiment

[¹³C]**1r** was prepared in the same manner as **1r**, from cyanamide [¹³C]**S2g** and carboxylic acid **S4b**. ¹H **NMR** (500 MHz, CDCl₃) δ 7.22 – 7.14 (m, 2H), 6.98 – 6.90 (m, 2H), 4.99 – 4.89 (m, 1H), 4.87 (app s, 1H), 3.82 (s, 3H), 2.75 (s, 2H), 1.81 (s, 3H), 1.50 (s, 6H); ¹³C **NMR** (125 MHz, CDCl₃) δ 176.2 (d, ²*J*_{C-C} = 4.5 Hz), 159.9, 141.4, 128.8, 127.7, 114.9, 114.8, 111.1 (¹³CN), 55.5, 46.9, 44.9, 26.2, 23.9.

Double cross-over experiment: In a nitrogen-filled glove box, a one-dram vial was charged with a magnetic stirring bar, $[{}^{13}C]\mathbf{1r}$ (27.3 mg, 0.1 mmol), $\mathbf{1d}$ (38.4 mg, 0.1 mmol), BEt₃ (1.0 M in Hex, 120 µL, 0.12 mmol), Xantphos (11.6 mg, 0.02 mmol), and a solution of CpPd(1-phenylallyl) in toluene (0.02 M, 1.0 mL, 0.02 mmol). The reaction mixture was sealed with a PTFE lined cap, removed from the glove box, and heated at 80 °C in an aluminum heating block for 24 h. The resulting mixture was allowed to cool to room temperature, concentrated onto Celite, and purified by flash column chromatography (1:4 \rightarrow 1:1 EtOAc/Hex) to give an inseparable mixture of $[{}^{13}C]\mathbf{2r}$ and 2d. The yields were determined by integration of ${}^{1}H$ NMR spectrum of product mixture. 2d showed no detectable enrichment in ${}^{13}C$ by analysis of the ${}^{1}H$ and ${}^{13}C$ NMR spectra, or the HRMS data for the mixture.

6. Synthesis of substrates: N-acyl cyanamides

All *N*-acyl cyanamide substrates 1 are synthesized in 3 steps. Step 1 synthesizes aryl cyanamides **S2** from the corresponding anilines **S1**. Step 2 synthesizes carboxylic acids **S4**. Step 3 synthesizes substrates 1 by coupling cyanamides **S2** with acids **S4**.

6.1 Synthesis of cyanamides S2 (Step 1)

CAUTION! Cyanogen bromide (BrCN) is highly toxic and hydrolyzes readily to release hydrogen cyanide. The related preparation must be carried out in a well-ventilated fume hood. Excess BrCN should be destroyed with aqueous NaOH solution and the resulting aqueous solution should be disposed of properly.

Method A: A solution of BrCN (1271 mg, 12 mmol) in Et₂O (10 mL) was slowly added to aniline **S1** (20 mmol) in Et₂O (20 mL) at 0 °C. The reaction mixture was allowed to warm to room temperature and stir for 24 h. Upon completion, the mixture was diluted with Et₂O (40 mL) and filtered through a pad of Celite. The filtrate was washed with 1 M HCl (10 mL), saturated aqueous NaHCO₃ (10 mL), and brine (10 mL), and were dried over anhydrous MgSO₄, and concentrated. The crude product was purified by flash column chromatography or precipitated from Et₂O/Hex or CH₂Cl₂/Hex at 0 °C.

Method B: A solution of BrCN (2542 mg, 24 mmol) in MeOH (30 mL) was slowly added to a mixture of aniline (20 mmol) and NaOAc (60 mmol) in MeOH (30 mL) at 0 °C. The reaction mixture was stirred for 1 h, then was allowed to warm to room temperature and stir overnight. Upon completion, the reaction was neutralized with saturated aqueous NaHCO₃ (20 mL) and concentrated to a small volume. The residue was taken up to water (50 mL) and extracted with CH_2Cl_2 (30 mL × 3). The combined organic extracts were washed with brine (20 mL), dried over anhydrous MgSO₄, and concentrated. The crude product was purified by flash column chromatography.

Method C: To a solution of aniline **S1** (10 mmol) in THF (15 mL) was added benzoyl isothiocyanate (1.48 mL, 11 mmol) in THF (10 mL) at room temperature. The resulting solution was stirred for 2–3 h. Upon completion, the reaction was concentrated, and the residue was suspended in MeOH (30 mL) and treated with a solution of K_2CO_3 (30 mmol) in H₂O (10 mL). The reaction was stirred overnight and concentrated, which was then taken up to water (100 mL). The resulting thiourea product was precipitated and collected by filtration, and was used without further purification. Next, to a suspension of the above obtained thiourea (10 mmol theoretical) in EtOAc (30 mL) was added H₂O (2 mL) and Et₃N (2.8 mL, 20 mmol), followed by addition of I₂ (2792 mg, 11 mol) in 6–7 batches at room temperature. Upon complete addition of I₂, the reaction was stirred for additional 5 min and quenched by addition of saturated aqueous NaHSO₃ (2 mL). The resulting mixture was diluted with EtOAc (50 mL) and filtered through a pad of Celite. The filtrate was washed with H₂O (10 mL) and brine (10 mL), dried over anhydrous MgSO₄, and concentrated. The crude product was purified by flash column chromatography.

Method D: A solution of BrCN (2542 mg, 8 mmol) in toluene (4 mL) was slowly added to a mixture of aniline (4 mmol) and NaHCO₃ (14 mmol) in toluene (4 mL) at room temperature. The reaction mixture was stirred for overnight. Upon completion, the reaction was neutralized with saturated aqueous NaHCO₃ (5 mL) and taken up to water (20 mL). The crude product was collected by filtration and dissolved in DCM followed by water wash. The organic layer was dried over MgSO₄ and concentrated in vacuo to afford solid product.

Synthesized cyanamides S2

S2a, S2b, S2d–S2g, S2o, and S2s were known compounds and were prepared following reported procedures.¹⁰

S2c

Prepared from 4-(*tert*-butyl)aniline on a 20.0 mmol scale using method A. **S2c** was purified by flash column chromatography (2:100 MeOH/CH₂Cl₂) as an off-white solid (9.36 mmol, 94% yield). $R_f = 0.44$ (5:95 MeOH/CH₂Cl₂); mp 86–88 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.32 (m, 2H), 7.00 – 6.90 (m, 2H), 6.10 (br s, 1H), 1.30 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 146.8, 134.4, 126.6, 115.1, 111.3, 34.3, 31.3; HRMS (ESI) calcd for [C₁₁H₁₄N₂ + Na]⁺ 197.1049, found 197.1047; **IR** (thin film) 3159, 2227, 1517, 1253.

Prepared from 4-aminophenyl acetate¹¹ on a 9.7 mmol scale using method B. **S2h** was purified by precipitation (CH₂Cl₂/Hex) as an off-white solid (8.2 mmol, 85% yield). $R_f = 0.54$ (1:1 EtOAc/Hex); mp 95–97 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.04 (dd, J = 8.8, 1.1 Hz, 2H), 6.97 – 6.90 (m, 2H), 2.31 (d, J = 1.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.2, 146.3, 135.1, 122.8, 116.3, 111.0, 21.1; HRMS (ESI) calcd for [C₉H₈N₂O₂ + Na]⁺ 199.0478, found 199.0505; **IR** (thin film) 3183, 2237, 1757, 1510, 1221, 1195.

Prepared from *N*-(4-aminophenyl)acetamide on a 10 mmol scale using method B. **S2i** was purified by precipitation (MeOH/H₂O) as a tacky white solid. $R_f = 0.48$ (1:9 MeOH/CH₂Cl₂); ¹H NMR (500 MHz, DMSO-d₆) δ 9.88 (s, 1H), 7.54 (d, J = 8.6 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 2.01 (s, 3H); ¹³C NMR (125 MHz, DMSO-d₆) δ 167.9, 134.4, 133.7, 120.5, 115.2, 112.5, 23.8; HRMS (ESI) calcd for [C₉H₉N₃O + Na]⁺ 198.0638, found 198.0649; **IR** (thin film) 2227, 1670, 1449.

Prepared from 1-(4-aminophenyl)ethan-1-one on a 10.0 mmol scale using method C. **S2j** was purified by flash column chromatography (2:100 MeOH/CH₂Cl₂) as a pale yellow solid (6.2 mmol, 62% yield). $R_f = 0.45$ (5:95 MeOH/CH₂Cl₂); mp 110–112 °C; ¹H NMR (500 MHz, DMSO-d₆) δ 10.73 (s, 1H), 7.96 (d, J = 8.7 Hz, 2H), 7.05 (d, J = 8.7 Hz, 2H), 2.51 (s, 3H); ¹³C NMR (125 MHz, DMSO-d₆) δ 196.2, 143.2, 131.5, 130.5,

114.7, 111.2, 26.4; **HRMS** (ESI) calcd for $[C_9H_8N_2O - H]^-$ 159.0564, found 159.0526; **IR** (thin film) 3188, 2229, 1740, 1272.

Prepared from 4-(pent-4-en-1-yloxy)aniline¹² on a 7.3 mmol scale using method B. **S2k** was purified by flash column chromatography (1:100 \rightarrow 2:100 MeOH/CH₂Cl₂) as an oily purple solid (4.96 mmol, 68% yield). R_f = 0.28 (1:100 MeOH/CH₂Cl₂); ¹**H NMR** (500 MHz, CDCl₃) δ 6.97 – 6.91 (m, 2H), 6.90 – 6.85 (m, 2H), 6.11 (br s, 1H), 5.85 (ddt, *J* = 16.8, 10.1, 6.6 Hz, 1H), 5.06 (dt, *J* = 17.1, 1.5 Hz, 1H), 5.00 (dt, *J* = 10.2, 1.5 Hz, 1H), 3.93 (t, *J* = 6.6 Hz, 2H), 2.30 – 2.17 (m, 2H), 1.94 – 1.81 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 155.6, 137.7, 130.0, 116.8, 115.7, 115.2, 111.8, 67.6, 30.0, 28.3. **HRMS** (ESI) calcd for [C₁₂H₁₄N₂O + Na]⁺ 225.0998, found 225.0998; **IR** (thin film) 2218, 1640, 1510, 1233.

Prepared from 3-chloroaniline on a 15.0 mmol scale using method C. **S21** was purified by flash column chromatography (2:100 MeOH/CH₂Cl₂) as a pale yellow solid (10.51 mmol, 71% yield). $R_f = 0.48$ (5:95 MeOH/CH₂Cl₂); mp 68–70 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.22 (m, 1H), 7.07 (dd, J = 8.0, 1.8 Hz, 1H), 7.04 (t, J = 2.2 Hz, 1H), 6.92 (dd, J = 8.2, 2.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 138.3, 135.5, 130.8, 123.9, 115.7, 113.6, 110.7; HRMS (ESI) calcd for [C₇H₅ClN₂ – H]⁻ 151.0068, found 151.0060; IR (thin film) 3396, 2237, 1600.

Prepared from 3-(trifluoromethyl)aniline on a 20.0 mmol scale using method C. **S2m** was purified by flash column chromatography (2:100 MeOH/CH₂Cl₂) as a pale yellow solid (16.8 mmol, 84% yield). $R_f = 0.46$ (5:95 MeOH/CH₂Cl₂); mp 85–87 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.48 (t, J = 7.9 Hz, 1H), 7.36 (d, J = 7.8 Hz, 1H), 7.27 (d, J = 2.0 Hz, 1H), 7.23 (dd, J = 8.2, 2.3 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 137.9, 132.3 (q, ² $J_{F-C} = 32.8$ Hz), 130.5, 123.4 (q, ¹ $J_{F-C} = 270.8$ Hz), 120.5 (q, ³ $J_{F-C} = 3.8$ Hz), 118.6, 112.3 (q, ³ $J_{F-C} = 3.9$ Hz), 110.7; ¹⁹F NMR (470 MHz, CDCl₃) δ –63.0; LRMS (ESI) calcd for [C₈H₅F₃O₂ – H]⁻ 185.0, found 185.1; IR (thin film) 3110, 2242, 1331. The NMR data is consistent with a literature report.¹³

S2n

Prepared from methyl 3-aminobenzoate on a 15.0 mmol scale using method C. **S2n** was purified by flash column chromatography (1:100 \rightarrow 2:100 MeOH/CH₂Cl₂) as a pale yellow solid (13.5 mmol, 90% yield). R_f = 0.46 (5:95 MeOH/CH₂Cl₂); mp 88–91 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.76 (dd, J = 7.7, 1.3 Hz, 1H), 7.71 (app s, 1H), 7.44 (t, J = 7.9 Hz, 1H), 7.28 (dd, J = 8.1, 2.6 Hz, 1H), 3.94 (d, J = 1.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 166.6, 137.8, 131.5, 130.0, 124.6, 119.6, 116.4, 110.8, 52.6; HRMS (ESI) calcd for [C₉H₈N₂O₂ + Na]⁺ 199.0478, found 199.0478; **IR** (thin film) 3152, 2227, 1594, 1251.

Prepared from 3,5-dimethoxyaniline on a 10.0 mmol scale using method B. **S2p** was purified by flash column chromatography (3:100 MeOH/CH₂Cl₂) as a white solid (5.2 mmol, 52% yield). $R_f = 0.44$ (5:95 MeOH/CH₂Cl₂); mp 138–140 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.26 (s, 1H), 6.19 (d, J = 2.1 Hz, 1H), 6.16 (d, J = 2.1 Hz, 2H), 3.78 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 161.9, 138.8, 110.4, 95.8, 94.0, 55.5; HRMS (ESI) calcd for [C₉H₁₀N₂O₂ – H]⁻ 177.0670, found 177.0689. **IR** (thin film) 2946, 2242, 1114, 1028.

Prepared from 2,4-dimethylaniline on a 10.0 mmol scale using method A. **S2q** was purified by precipitation (Et₂O/Hex) as an off-white solid (8.4 mmol, 84% yield). $R_f = 0.46$ (5:95 MeOH/CH₂Cl₂); mp 102–104 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.08 (d, J = 8.1 Hz, 1H), 7.03 (d, J = 8.3 Hz, 1H), 6.96 (app s, 1H), 6.06 (br s, 1H), 2.28 (s, 3H), 2.20 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 133.3, 132.9, 131.6, 127.9, 124.1, 115.6, 111.9, 20.6, 16.9; HRMS (ESI) calcd for $[C_9H_{10}N_2 + Na]^+$ 169.0736, found 169.0740; IR (thin film) 3184, 2220, 1514.

Prepared from 6-methoxypyridin-3-amine on a 10.0 mmol scale using method C. **S2r** was purified by flash column chromatography (3:97 \rightarrow 5:95 MeOH/CH₂Cl₂) as a brick red solid (6.75 mmol, 68% yield). R_f = 0.44 (5:95 MeOH/CH₂Cl₂); mp 105–107 °C; ¹H NMR (500 MHz, DMSO-d₆) δ 10.11 (br s, 1H), 7.84 (dd, J = 3.0, 0.7 Hz, 1H), 7.36 (dd, J = 8.8, 3.0 Hz, 1H), 6.84 (dd, J = 8.8, 0.7 Hz, 1H), 3.80 (s, 3H); ¹³C NMR (125 MHz, DMSO-d₆) δ 159.6, 133.0, 129.6, 127.3, 112.1, 111.3, 53.3; HRMS (ESI) calcd for [C₇H₇N₃O + H]⁺ 150.0662, found 150.0654; IR (thin film) 3054, 2210, 1495.

Prepared from 6-methoxypyridin-4-amine on a 4.0 mmol scale using method C. **S2t** was purified by flash column chromatography (4:100 \rightarrow 5:100 MeOH/CH₂Cl₂) as a white solid (2.76 mmol, 69% yield). R_f= 0.44 (5:100 MeOH/CH₂Cl₂); mp 171–174 °C; ¹H NMR (400 MHz, DMSO-d₆) δ 11.47 (s, 1H), 7.88 (d, *J* = 5.7 Hz, 1H), 6.53 (d, *J* = 5.1 Hz, 1H), 6.21 (d, *J* = 1.7 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ 163.5, 156.9, 144.4, 114.1, 107.2, 94.6, 54.9; HRMS (ESI) calcd for [C₇H₇N₃O + Na]⁺ 172.0481, found 172.0510; IR (thin film) 2138, 1631, 1595, 1494.

S2u

Prepared from benzo[d][1,3]dioxol-5-amine on a 4.0 mmol scale using method D. **S2u** was collected as a white solid (0.13 mmol, 33% yield).). $R_f = 0.51$ (5:100 MeOH/CH₂Cl₂); mp 83–85 °C;¹H NMR (500 MHz, CDCl₃) δ 6.75 (d, J = 8.4 Hz, 1H), 6.57 (s, 1H), 6.45 (d, J = 8.2 Hz, 1H), 5.97 (s, 2H), 5.61 (br s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 148.7, 144.2, 131.6, 111.6, 108.7, 108.0, 101.6, 98.1; HRMS (ESI) calcd for [C₈H₆N₂O₂ + Na]⁺ 185.0321, found 185.0304; **IR** (thin film) 2222, 1637, 1485, 1199.

6.2 Synthesis of carboxylic acids S4 (Step 2)

S4j-S4o, S4r, and S4s were known compounds and were prepared following known procedures.¹⁴

Synthesis of S4a: To a solution of diphenylacetic acid **S3a** (10.610g, 50 mmol) in THF (100 mL) was slowly added *n*BuLi (2.5 M Hex, 44 mL, 110 mmol) at 0 °C. The mixture was stirred at 0 °C for 30 min, followed by slow addition of methally chloride (7.04 mL, 65 mmol). The reaction was heated to 45 °C for 5 hours, which was then cooled in an ice bath, acidified with 2 N HCl to pH < 2, and separated. The aqueous phase was extracted with Et₂O (30 mL × 3). The combined organic extracts were washed with water (20 mL) and brine (20 mL), dried over anhydrous MgSO₄, and concentrated to a small volume, whereupon acid **S4a** began to precipitate. Cold hexanes (ca. 80 mL) was added to allow further precipitation of **S4a**, which was collected by vacuum filtration as a white crystalline solid (8.65g, 32.5 mmol, 65% yield). $R_f = 0.32$ (1:4 EA/Hex); mp 117–118 °C; ¹**H NMR** (500 MHz, CDCl₃) δ 7.36 – 7.32 (m, 4H), 7.31 – 7.21 (m, 6H), 4.71 (t, *J* = 1.7 Hz, 1H), 4.55 (app s, 1H), 3.18 (s, 2H), 1.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 180.1, 142.6, 141.8, 129.0, 127.8, 126.9, 115.6, 60.1, 45.6, 24.3; **IR** (thin film) 3059, 1699, 1495, 1215. The NMR data is consistent with a literature report.¹⁵

Synthesis of S3b: To a solution of iPr_2NH (3.36 mL, 24 mmol) in THF (15 mL) was dropwise added *n*BuLi (2.5 M Hex, 9.2 mL, 23 mmol) at -78 °C. The resulting solution was stirred at -78 °C for 40 min, then a solution of methyl isobutyrate (2043 mg, 20 mmol) in THF (10 mL) was dropwise added. The reaction mixture was stirred at -78 °C for additional 1 h, followed by slow addition of methallyl bromide (2.62 mL, 26 mmol) at the same temperature. The resulting mixture was allowed to warm to room temperature and stir overnight, which was then quenched with saturated aqueous NH₄Cl (10 mL) and extracted with Et₂O (20 mL × 3). The

combined organic extracts were washed with brine, dried over anhydrous MgSO₄, and concentrated. The resulting mixture was purified by flash column chromatography (2:98 \rightarrow 1:9 Et₂O/Hex) to give ester **S3b** as a colorless oil (2340 mg, 15 mmol, 75% yield). R_f = 0.44 (5:95 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 4.81 – 4.74 (m, 1H), 4.62 – 4.60 (m, 1H), 3.64 (s, 3H), 2.28 (s, 2H), 1.62 (s, 3H), 1.16 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 178.3, 142.4, 114.1, 51.6, 48.5, 42.0, 25.5, 23.4; **IR** (thin film) 1734, 1643, 1199, 1131.

Synthesis of S4b: A mixture of S3b (1562 mg, 10 mmol), NaOH (800 mg, 20 mmol), MeOH (10 mL), and H₂O (10 mL) was heated at 80 °C for 20 h. The reaction was cooled to 0 °C, acidified with 2 N HCl to pH \leq 2, and extracted with Et₂O (20 mL × 3). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, and concentrated to give S4b as a bright yellow oil (1390 mg, 9.8 mmol, 98% crude yield). S4b was co-concentrated with benzene (5 mL × 3 cycles) and was used without further purification. ¹H NMR (500 MHz, CDCl₃) δ 4.84 – 4.82 (m, 1H), 4.71 – 4.69 (m, 1H), 2.34 (s, 2H), 1.71 (s, 3H), 1.21 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 185.2, 142.2, 114.4, 48.2, 42.0, 25.3, 23.6. The NMR data is consistent with a known report.¹⁶

Synthesis of S4c: To a solution of iPr_2NH (1.05 mL, 7.5 mmol) in THF (6 mL) was dropwise added *n*BuLi (2.5 M Hex, 2.9 mL, 7.2 mmol) at 0 °C. The resulting solution was stirred at 0 °C for 10 min, then a solution of 2-benzyl-3-phenylpropanoic acid **S3c**¹⁷ (721 mg, 3.0 mmol) in THF (3 mL) was slowly added. The reaction mixture was heated at 55 °C for 1 h, then was cooled back to 0 °C and added methallyl bromide (0.43 mL, 4.2 mmol). The reaction was allowed to warm to room temperature and stir overnight, then it was acidified with 2 N HCl to pH \leq 2 and extracted with Et₂O (20 mL \times 3). The combined organic extracts were washed with brine (10 mL), dried over anhydrous Na₂SO₄, and concentrated. The resulting mixture was purified by flash column chromatography (1:4 \rightarrow 3:7 Et₂O/Hex) to give acid **S4c** as a pale yellow oil (795 mg, 2.7 mmol, 90% yield). R_f = 0.39 (3:7 Et₂O/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 7.32 – 7.16 (m, 10H), 5.02 (app s, 1H), 4.87 (app s, 1H), 3.10 (d, *J* = 14.0 Hz, 2H), 3.05 (d, *J* = 14.0 Hz, 2H), 2.26 (s, 2H), 1.73 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 182.6, 142.1, 137.1, 130.4, 128.0, 126.6, 113.1, 50.5, 41.1, 40.9, 25.1; **HRMS** (ESI) calcd for [C₂₀H₂₂O₂ – H]⁻ 293.1547, found 293.1536; **IR** (thin film) 1700, 1454, 1265.

S4d and S4e were synthesized in the manner as S4c.

S4d was synthesized from cyclobutanecarboxylic acid **S3d** on a 5 mmol scale. **S4d** was purified by flash column chromatography (1:9 \rightarrow 15:85 EtOAc/Hex) as a colorless oil (648 mg, 4.2 mmol, 84% yield). R_f = 0.52 (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 4.76 (app s, 1H), 4.60 (app s, 1H), 2.56 (s, 2H), 2.55 – 2.47 (m, 2H), 2.06 – 1.98 (m, 2H), 1.98 – 1.90 (m, 2H), 1.69 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 183.7, 142.3, 112.1, 47.0, 45.4, 30.5, 23.3, 15.8; LRMS (ESI) calcd for [C₉H₁₄O₂ – H]⁻153.1, found 153.1; IR (thin film) 3076, 1698, 1650, 1256, 1225.

S4e was synthesized from cyclopentanecarboxylic acid **S3e** on a 15 mmol scale. **S4e** was purified by flash column chromatography (1:4 \rightarrow 1:3 Et₂O/Hex) as a pale yellow oil (1796 mg, 10.68 mmol, 71% yield). R_f = 0.32 (3:7 Et₂O/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 4.78 – 4.77 (m, 1H), 4.67 (d, *J* = 1.1 Hz, 1H), 2.42 (s, 2H), 2.19 – 2.11 (m, 2H), 1.70 (s, 3H), 1.68 – 1.50 (m, 6H); ¹³C **NMR** (125 MHz, CDCl₃) δ 184.6, 142.8, 113.2,

53.3, 46.4, 36.2, 24.8, 23.3; **HRMS** (ESI) calcd for $[C_{10}H_{16}O_2 - H]^-$ 167.1078, found 167.1049; **IR** (thin film) 3075, 1697, 1650, 1453, 1223.

S3f was synthesized in the same manner as **S3b**, starting from methyl tetrahydro-2*H*-pyran-4-carboxylate on a 7.3 mmol scale. **S3f** was purified by flash column chromatography (1:9 \rightarrow 15:85 Et₂O/Hex) as a pale yellow oil (1230 mg, 6.2 mmol, 85% yield). R_f = 0.42 (1:9 Et₂O/Hex); ¹H NMR (500 MHz, CDCl₃) δ 4.84 – 4.83 (m, 1H), 4.66 (dd, *J* = 2.1, 1.0 Hz, 1H), 3.82 (dt, *J* = 11.9, 3.8 Hz, 2H), 3.71 (s, 3H), 3.45 (td, *J* = 11.6, 2.3 Hz, 2H), 2.31 (s, 2H), 2.09 (dd, *J* = 13.9, 2.7 Hz, 2H), 1.67 (s, 3H), 1.55 (ddd, *J* = 13.8, 11.2, 4.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 176.0, 140.9, 114.9, 65.3, 51.6, 48.7, 45.0, 34.6, 23.7; HRMS (ESI) calcd for [C₁₁H₁₈O₃ + Na]⁺ 221.1148, found 221.1168; **IR** (thin film) 1730, 1647, 1194, 1134.

S4f was synthesized in the same manner as **S4b**, from the hydrolysis of **S3f** on a 10.0 mmol scale. **S4f** was obtained as a white solid (1784 mg, 9.7 mmol, 97% crude yield) and was used without further purification. ¹H **NMR** (500 MHz, CDCl₃) δ 4.88 – 4.83 (m, 1H), 4.72 (app s, 1H), 3.86 (dt, *J* = 12.0, 3.8 Hz, 2H), 3.53 (td, *J* = 11.7, 2.3 Hz, 2H), 2.35 (s, 2H), 2.09 (dd, *J* = 13.9, 2.6 Hz, 2H), 1.73 (s, 3H), 1.59 (ddd, *J* = 13.8, 11.2, 4.5 Hz, 2H).

i) LDA, 0 to 55 °C, 1h
ii)
$$R$$
 Br 0 °C to rt
Me Me Same conditions as S4c Me Me Me R S4g, R = *n*Bu
Me Me R S4h, R = CH₂CH₂Ph
Me Me R S4i, R = CH₂OBn

S4g–S4i were synthesized in the same manner as **S4c** by quenching the dianion of isobutyric acid with the corresponding substituted allyl bromide.

S4g was synthesized from isobutyric acid on a 8.0 mmol scale, using 2-(bromomethyl)hex-1-ene¹⁸ as the quenching electrophile. **S4g** was purified by flash column chromatography (5:95 \rightarrow 1:9 EtOAc/Hex) as a colorless oil (1066 mg, 5.78 mmol, 72% yield). R_f = 0.60 (1:4 EtOAc/Hex); ¹H NMR (400 MHz, CDCl₃) δ 4.84 (q, *J* = 1.5 Hz, 1H), 4.73 (app s, 1H), 2.33 (s, 2H), 1.97 (t, *J* = 7.3 Hz, 2H), 1.45 – 1.35 (m, 2H), 1.34 – 1.23 (m, 2H), 1.21 (s, 6H), 0.89 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 184.9, 146.3, 112.9, 46.2, 42.2, 36.7, 30.1, 25.4, 22.4, 13.9; LRMS (ESI) calcd for [C₁₁H₂₀O₂ – H]⁻ 183.1, found 183.2; IR (thin film) 3053, 1699, 1640, 1474.

S4h was synthesized from isobutyric acid 6.0 mmol scale. using on а $2(3-(bromomethyl)but-3-en-1-yl)benzene^{19}$ as the quenching electrophile. S4h was purified by flash column chromatography (5:95 \rightarrow 1:9 EtOAc/Hex) as a pale yellow oil (981 mg, 4.22 mmol, 70% yield). $R_f = 0.41$ (15:85 EtOAc/Hex);¹**H NMR** (500 MHz, CDCl₃) δ 7.30 – 7.23 (m, 2H), 7.20 – 7.12 (m, 3H), 4.88 (q, J = 1.5) Hz, 1H), 4.78 (app s, 1H), 2.79 – 2.69 (m, 2H), 2.37 (s, 2H), 2.33 – 2.22 (m, 2H), 1.22 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 184.8, 145.5, 142.0, 128.3, 128.3, 125.7, 113.8, 46.1, 42.2, 38.9, 34.6, 25.4; HRMS (ESI) calcd for $[C_{15}H_{20}O_2 - H]^-231.1391$, found 231.1375; **IR** (thin film) 3064, 1697, 1641, 1474, 1219.

S4i was synthesized from isobutyric acid on a 8.0 mmol scale, using 2(((2-(bromomethyl)allyl)oxy)methyl)benzene²⁰ as the quenching electrophile (performed at -78 °C instead of 0 °C). Unfortunately, several attempts to purify**S4i**by flash column chromatography were unsuccessful.**S4i**was thus taken to the next step without further treatment.

S3p was synthesized in the same manner as **S3b**, starting from methyl isobutyrate on a 20 mmol scale and using 4-iodo-2-methylbut-1-ene²¹ as the quenching electrophile. **S3p** was purified by flash column chromatography (5:95 Et₂O/Hex) as a colorless oil (2348 mg, 13.8 mmol, 69% yield). $R_f = 0.48$ (5:95 EtOAc/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 4.69 (app s, 1H), 4.67 (app s, 1H), 3.67 (s, 3H), 1.96 – 1.88 (m, 2H), 1.72 (s, 3H), 1.68 – 1.63 (m, 2H), 1.19 (s, 6H); ¹³**C NMR** (125 MHz, CDCl₃) δ 178.3, 145.7, 109.7, 51.6, 42.1, 38.8, 33.1, 25.1, 22.6; **IR** (thin film) 1734, 1650, 1194, 1133.

S4p was synthesized in the same manner as **S4b**, from the hydrolysis of **S3p** on a 13.8 mmol scale. **S4p** was obtained as a pale yellow oil (2051 mg, 13.1 mmol, 95% crude yield), and was used without further purification. ¹H **NMR** (500 MHz, CDCl₃) δ 4.71 – 4.69 (m, 1H), 4.69 – 4.68 (m, 1H), 2.05 – 1.93 (m, 2H), 1.74 (s, 3H), 1.72 – 1.64 (m, 2H), 1.22 (s, 6H).

Synthesis of S4q: To a solution of *i*Pr₂NH (1.9 mL, 13.5 mmol) in THF (10 mL) was dropwise added *n*BuLi (2.5 M Hex, 5.2 mL, 13.0 mmol) at 0 °C. The resulting solution was stirred at 0 °C for 10 min, followed by addition of isobutyric acid (475 mg, 5.4 mmol) in THF (5 mL). The reaction was heated at 55 °C for 1 h, which was then cooled back to -78 °C and was added CuCN•2LiCl (1 M THF solution, 6.4 mL, 6.4 mmol). The resulting mixture was stirred at -78 °C for 5 min, whereupon methyl 2-(bromomethyl)acrylate²² (1353 mg, 7.56 mmol) was added. The reaction was allowed to warm to room temperature and stir overnight, then it was quenched with saturated aqueous NH₄Cl (10 mL) and extracted with Et₂O (20 mL × 3). The combined organic extracts were washed with brine, dried over anhydrous Na₂SO₄, and concentrated. The resulting mixture was purified by flash column chromatography (2:100 \rightarrow 5:100 MeOH/CH₂Cl₂) to give **S4q** as a pale yellow oil (376 mg, 2.02 mmol, 37% yield). R_f = 0.54 (5:95 MeOH/CH₂Cl₂); ¹**H NMR** (500 MHz, CDCl₃) δ 6.26 (d, *J* = 1.5 Hz, 1H), 5.61 (d, *J* = 1.3 Hz, 1H), 3.73 (s, 3H), 2.66 (d, *J* = 1.0 Hz, 2H), 1.19 (s, 6H); ¹³C **NMR** (125 MHz, CDCl₃) δ 183.6, 167.9, 137.0, 128.3, 51.9, 42.8, 40.7, 24.6; **IR** (thin film) 1705, 1701, 1440, 1299, 1199, 1168.

S4t was synthesized in the same manner as **S4c** by quenching the dianion of propionic acid with methallyl bromide. **S4t** obtained as a pale yellow oil, which was sufficiently pure without column chromatography purification (95% yield). $R_f = 0.35$ (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 4.80 (app s, 1H), 4.74 (d, J = 1.0 Hz, 1H), 2.67 (sextet, J = 7.1 Hz, 1H), 2.45 (ddd, J = 14.2, 7.1, 1.2 Hz, 1H), 2.10 (ddd, J = 14.1, 7.8, 1.1 Hz, 1H), 1.72 (s, 3H), 1.17 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 182.9, 142.5, 112.5, 41.5, 37.6, 22.1, 16.5. The NMR data is consistent with a literature report.²³

S4u was synthesized in the same manner as **S4c** by quenching the dianion of 2-phenylpropanoic acid²⁴ with methallyl bromide. **S4u** was purified by flash column chromatography (1:9 EtOAc/Hex) as a pale yellow oil (68% yield). $R_f = 0.35$ (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.37 (m, 2H), 7.33 (dd, J = 8.5, 6.9 Hz, 2H), 7.29 – 7.22 (m, 1H), 4.85 – 4.79 (m, 1H), 4.66 (d, J = 1.2 Hz, 1H), 2.94 (d, J = 13.5 Hz, 1H), 2.65 (d, J = 13.5 Hz, 1H), 1.57 (s, 3H), 1.47 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 182.4, 142.9, 141.9, 128.4, 127.1, 126.2, 115.4, 49.2, 46.8, 23.8, 21.7; LRMS (ESI) calcd for [(C₁₃H₁₅O₂₎₂ + Na]⁻429.2, found 429.2. IR (thin film) 2941, 1690, 1449, 1408, 1375, 1320, 1274.

Synthesis of S3v: To a solution of *N*-phthaloylglycine (2462 mg, 12 mmol) in CH₂Cl₂ (20 mL) was added 4 drops of DMF via glass pipet, followed by addition of (COCl)₂ (2.5 M solution in CH₂Cl₂, 4.4 mL, 11 mmol) at room temperature. The reaction mixture was stirred for 15 min, whereupon gas evolution ceased, and it was cooled to 0 °C. To this solution was added Et₃N (3.34 mL, 24 mmol), followed by a solution of 2-methylprop-2-en-1-ol (721 mg, 10 mmol) in CH₂Cl₂ (6 mL) at 0 °C. The reaction was allowed to warm to room temperature and stir for 1.5 h. The reaction was diluted with CH₂Cl₂ (30 mL), washed with 1 M HCl (20 mL), and separated. The organic phase was washed with brine (20 mL), dried over anhydrous MgSO₄, and concentrated in vacuo. The resulting mixture was purified by flash column chromatography (1:4 EtOAc/Hex) to afford **S3v** as a white foam (2182 mg, 8.4 mmol, 84% yield). $R_f = 0.36$ (1:4 EtOAc/Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.89 (dd, J = 5.5, 3.1 Hz, 2H), 7.76 (dd, J = 5.5, 3.1 Hz, 2H), 4.98 (t, J = 1.2 Hz, 1H), 4.95 (dd, J = 1.6, 0.8 Hz, 1H), 4.59 (s, 2H), 4.49 (s, 2H), 1.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 167.0, 139.0, 134.2, 132.0, 123.6, 113.7, 69.0, 38.8, 19.4; **HRMS** (ESI) calcd for [C₁₄H₁₃NO₄ + Na]⁺ 282.0737, found 282.0744; **IR** (thin film) 1752, 1724, 1416, 1193.

Synthesis of S4v: To a solution of hexamethyldisilazane (2.2 mL, 10.4 mmol) in THF (4 mL) was dropwise added *n*BuLi (2.5 M Hex, 3.8 mL, 9.6 mmol) at 0 °C. The resulting LiHMDS solution was allowed to warm to room temperature and stirred for 20 min, which was then dropwise added to a solution of S3v (2074 mg, 8 mmol) and TMSCl (1.32 mL, 10.4 mmol) in THF (12 mL) at -78 °C. The reaction was stirred at -78 °C for 10 min and was allowed to warm to room temperature and stir overnight. 1 M HCl (20 mL) was added and the resulting mixture was stirred at room temperature for 30 min and extracted with EtOAc (20 mL × 3). The combined organic extracts were washed with brine, dried over anhydrous MgSO₄, and concentrated. The resulting mixture was purified by flash column chromatography (1:100:1 \rightarrow 2:100:0.5 MeOH/CH₂Cl₂/AcOH) to give S4v as a yellow foam (520 mg, 2.0 mmol, 25% yield). R_f = 0.44 (2:100:0.1 MeOH/CH₂Cl₂/AcOH); ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, J = 5.5, 3.1 Hz, 2H), 7.72 (dd, J = 5.5, 3.0 Hz, 2H), 5.14 (dd, J = 12.2, 4.2 Hz, 1H), 4.70 (t, J = 1.7 Hz, 1H), 4.66 (d, J = 1.9 Hz, 1H), 3.13 (dd, J = 14.4, 12.1 Hz, 1H), 2.83 (dd, J = 14.4, 1.1 Hz, 1H), 1.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 174.8, 167.4, 140.4, 134.2, 131.6, 123.6, 114.5, 50.1, 36.7, 21.4; LRMS (ESI) calcd for [C₁₄H₁₃NO₄ – H]⁻ 258.1, found 258.2; IR (thin film) 1775, 1714, 1391.

$$BnO \underbrace{CO_2H}_{CO_2H} \underbrace{Me}_{K_2CO_3, DMF, rt} O \underbrace{O}_{OBn} Me \underbrace{LiHMDS, TMSCI}_{-78 °C to rt} O \underbrace{O}_{BnO} Me \underbrace{S3w}_{S3w} S4w$$

Synthesis of S3w: 2-(benzyloxy)acetic acid²⁵ (2493 mg, 15 mmol) was stirred with methallyl bromide (2228 mg, 16.5 mmol) and K₂CO₃ (3105 mg, 22.5 mmol) in DMF (30 mL) at room temperature for 24 h. The reaction was taken up to water (150 mL) and extracted with Et₂O (30 mL × 3). The combined organic extracts were washed with 2 M LiCl (10 mL × 2) and brine (10 mL), dried over anhydrous MgSO₄, and concentrated. The resulting mixture was purified by flash column chromatography (5:95 EtOAc/Hex) to give **S3w** as a colorless oil (2766 mg, 12.6 mmol, 84% yield). $R_f = 0.32$ (5:95 EtOAc/Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.27 (m, 5H), 4.99 (t, *J* = 1.2 Hz, 1H), 4.96 – 4.92 (m, 1H), 4.65 (s, 2H), 4.59 (s, 2H), 4.14 (s, 2H), 1.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 139.4, 137.0, 128.4, 128.00, 127.97, 113.4, 73.3, 67.9, 67.1, 19.4; HRMS (ESI) calcd for [C₁₃H₁₆O₃ + Na]⁺ 243.0992, found 243.0996; **IR** (thin film) 1758, 1454, 1193, 1129.

Synthesis of S4w: To a solution of hexamethyldisilazane (2.9 mL, 14 mmol) in THF (5 mL) was dropwise added *n*BuLi (2.5 M Hex, 5.2 mL, 13 mmol) at 0 °C. The resulting LiHMDS solution was allowed to warm to room temperature and stirred for 20 min, which was then dropwise added to a solution of **S3w** (2203 mg, 10 mmol) and TMSCl (1.9 mL, 15 mmol) in THF (25 mL) at -78 °C. The reaction was stirred at -78 °C for 40 min and was allowed to warm to room temperature and stir for additional 2 h. 1 M NaOH (10 mL) was added and the resulting mixture was stirred at room temperature for 30 min, which was then diluted with water (50 mL), washed with Et₂O (10 mL × 2), and separated. The aqueous phase was acidified with concentrated HCl to pH < 2 and extracted with Et₂O (30 mL × 3). The combined organic extracts were washed with brine (10 mL), dried over anhydrous MgSO₄, and concentrated. The resulting mixture was purified by flash column chromatography (3:100 MeOH/CH₂Cl₂) to give **S4w** as a tan oil (1734 mg, 7.87 mmol, 79% yield). R_f = 0.42 (5:95 MeOH/CH₂Cl₂); ¹**H NMR** (400 MHz, CDCl₃) δ 10.85 (br s, 1H), 7.43 – 7.26 (m, 5H), 4.87 (t, *J* = 1.7 Hz, 1H), 4.83 (app s, 1H), 4.74 (d, *J* = 11.6 Hz, 1H), 4.50 (d, *J* = 11.6 Hz, 1H), 4.14 (t, *J* = 6.4 Hz, 1H), 2.54 (dd, *J* = 6.5, 1.0 Hz, 2H), 1.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 177.8, 140.6, 136.9, 128.4, 128.04, 128.02, 114.0, 76.6, 72.6, 40.8, 22.5; **HRMS** (ESI) calcd for [C₁₃H₁₆O₃ + Na]⁺ 243.0992, found 243.1000; **IR** (thin film) 1717, 1455, 1207, 1107.

Synthesis of S3x: To a solution of isobutyric acid (1489 mg, 16.9 mmol) in CH₂Cl₂ (13 mL) was added 6 drops of DMF via glass pipet, followed by addition of (COCl)₂ (2 M solution in CH₂Cl₂, 7.8 mL, 15.6 mmol) at 0 °C. The reaction mixture was stirred at 0 °C for 1 h, whereupon a solution of (*E*)-2-methylbut-2-en-1-ol²⁶ (1119 mg, 13 mmol) in CH₂Cl₂ (10 mL) was added, followed by addition of Et₃N (4.5 mL, 33 mmol) and DMAP (159 mg, 1.3 mmol). The reaction was allowed to warm to room temperature and stir overnight. The reaction was diluted with CH₂Cl₂ (40 mL), washed with 1 M HCl (30 mL), followed by saturated aqueous NaHCO₃ (20 mL) and brine, and separated. The organic phase was washed with brine (20 mL), dried over anhydrous MgSO₄, and concentrated in vacuo to afford **S3x** as a colorless oil (1137 mg, 7.3 mmol, 56% crude yield). **S3x** was used for next step without further purification. $R_f = 0.76$ (1:9 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 5.58 – 5.51 (m, 1H), 4.46 (d, *J* = 0.9 Hz, 2H), 2.57 (hept, *J* = 7.2 Hz, 1H), 1.68 – 1.59 (m, 6H), 1.19 (d, *J* = 0.7 Hz, 3H), 1.17 (d, *J* = 0.7 Hz, 3H); **IR** (thin film) 1737, 1471, 1191, 1155.

Synthesis of S4x: To a solution of *i*Pr₂NH (1.47 mL, 10.5 mmol) in THF (10 mL) was dropwise added *n*BuLi (2.5 M Hex, 4 mL, 10 mmol) at 0 °C. The resulting solution was stirred at 0 °C for 10 min then it was cooled to -78 °C and was added a solution of **S3x** (781 mg, 5 mmol) in THF (5 mL). The reaction was stirred at -78 °C for additional 1 h, followed by addition of TMSCl (1.27 mL, 10 mmol) at the same temperature. The resulting mixture was stirred at -78 °C for 10 min, then it was cooled to room temperature, stirred with 2 M HCl (15 mL) for 1 h, and extracted with Et₂O (20 mL × 3). The combined organic extracts were washed with brine, dried over anhydrous MgSO₄, and concentrated. Unfortunately, attempts to purify **S4x** by flash column chromatography were unsuccessful. **S4x** was thus taken to the next step without further treatment. R_f = 0.44

(15:85 EtOAc/Hex); ¹**H** NMR (500 MHz, CDCl₃) δ 4.86 (t, J = 1.7 Hz, 1H), 4.77 – 4.74 (m, 1H), 2.60 (q, J = 7.2 Hz, 1H), 1.73 (s, 3H), 1.17 (s, 3H), 1.16 (s, 3H), 1.06 (d, J = 7.2 Hz, 3H); **LRMS** (ESI) calcd for [C₉H₁₆O₂ – H]⁻ 155.1, found 155.2; **IR** (thin film) 1699, 1461, 1255.

6.3 Synthesis of substrates 1 (Step 3)

Synthesis of substrate 1a as a representative example, standard conditions: To a suspension of acid S4a (1598 mg, 6.0 mmol) in CH₂Cl₂ (5.0 mL) was added DMF (3 drops via glass pipet), followed by dropwise addition of (COCl)₂ (2.0 M in CH₂Cl₂, 2.8 mL, 5.5 mmol) at room temperature. The mixture was stirred for 15-20 minutes, whereupon gas evolution ceased and all acid dissolved. The reaction flask was cooled to -12 °C in an ethylene glycol/dry ice bath and a solution of Et₃N (1.67 mL, 12.0 mmol) in CH₂Cl₂ (4.0 mL) was dropwise added. Thereafter, a solution of N-(p-tolyl)cyanamide S2a (661 mg, 5.0 mmol) in CH₂Cl₂/THF (3.0 and 1.0 mL, respectively) was slowly added at the same temperature. The resulting mixture was allowed to warm up to room temperature and stir for 20 h. Et₂O (30 mL) was added to allow precipitation of triethylamine hydrochloride, which was filtrated through a short Celite column. Without further treatment.²⁷ the filtrate was concentrated in vacuo and the resulting oily residue was purified by flash column chromatography to afford substrate 1a as a white powder (1.79 mmol, 36% yield). $R_f = 0.49$ (1.9 EtOAc/Hex); mp 108–110 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.53 (dt, J = 6.2, 1.3 Hz, 4H), 7.40 (dd, J = 8.6, 6.8 Hz, 4H), 7.36 - 7.30 (m, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.10 - 7.03 (m, 2H), 4.77 (app s, 1H), 4.48 (app s, 1H), 3.42 (s, 2H), 2.35 (s, 3H), 1.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 141.0, 139.4, 139.2, 133.7, 130.2, 128.8, 128.3, 127.6, 125.9, 116.5, 109.3, 62.1, 47.1, 24.5, 21.1; **HRMS** (ESI) calcd for $[C_{26}H_{24}N_2O + Na]^+$ 403.1781, found 403.1778; IR (thin film) 2230, 1725, 1508, 1203.

Modified conditions: In step i), 5,5-dimethyl-3,3-diphenyldihydrofuran-2(3H)-one was formed as a by-product. This compound frequently coeluted with product 1 during column chromatography. It was found that the addition of 2-methyl-2-butene (8–10 equivalents) at step i) significantly reduced the amount of this by-product in the crude reaction mixture. Under such conditions, most substrates were readily purified after one column chromatography and were obtained as thick oil or tacky solid. Some substrates were further precipitated from CH₂Cl₂/Hex or CH₂Cl₂/pentane and were converted to crystalline solid.

Prepared from acid **S4a** and cyanamide **S2b** on a 5.0 mmol scale under standard conditions. **1b** was purified by flash column chromatography (2:3 \rightarrow 1:1 CH₂Cl₂/Hex) as a white powder (1.96 mmol, 39% yield). R_f = 0.53 (15:85 EtOAc/Hex); mp 101–103 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, J = 7.7 Hz, 4H), 7.44 – 7.31 (m, 9H), 7.20 (d, J = 7.6 Hz, 2H), 4.78 (app s, 1H), 4.49 (app s, 1H), 3.43 (s, 2H), 1.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 141.0, 139.1, 136.3, 129.6, 129.1, 128.8, 128.4, 127.7, 126.1, 116.6, 109.2, 62.2, 47.1, 24.5; HRMS (ESI) calcd for [C₂₅H₂₂N₂O + Na]⁺ 389.1624, found 389.1622; IR (thin film) 2231, 1725, 1491, 1204.

Prepared from acid **S4a** and cyanamide **S2c** on a 5.0 mmol scale under standard conditions. **1c** was purified by flash column chromatography (3:7 \rightarrow 2:3 CH₂Cl₂/Hex) as a white solid (2.28 mmol, 46% yield). R_f = 0.68 (1:1 CH₂Cl₂/Hex); mp 118–121 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, *J* = 8.5 Hz, 4H), 7.44 – 7.38 (m, 6H), 7.36 – 7.30 (m, 2H), 7.12 (dd, *J* = 8.6, 1.0 Hz, 2H), 4.78 (d, *J* = 1.6 Hz, 1H), 4.49 (app s, 1H), 3.43 (s, 2H), 1.42 (s, 3H), 1.30 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 173.1, 152.4, 141.1, 139.2, 133.6, 128.8, 128.3, 127.6, 126.6, 125.5, 116.6, 109.3, 62.2, 47.1, 34.7, 31.2, 24.5; HRMS (ESI) calcd for [C₂₉H₃₀N₂O + Na]⁺ 445.2250, found 445.2256; **IR** (thin film) 2231, 1725, 1510, 1205.

Prepared from acid **S4a** and cyanamide **S2d** on a 5.0 mmol scale under standard conditions. **1d** was purified by flash column chromatography (3:7 \rightarrow 1:1 CH₂Cl₂/Hex), and further precipitated (CH₂Cl₂/pentane, 1:40 v/v) as a white powder (2.21 mmol, 44% yield). R_f = 0.48 (1:1 CH₂Cl₂/Hex); mp 110–112 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, *J* = 7.8 Hz, 4H), 7.41 (dd, *J* = 8.5, 6.9 Hz, 4H), 7.34 (t, *J* = 7.3 Hz, 2H), 7.20 – 7.14 (m, 2H), 7.10 (t, *J* = 8.5 Hz, 2H), 4.78 (app s, 1H), 4.49 (app s, 1H), 3.42 (s, 2H), 1.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 162.4 (d, ¹*J*_{*F*-*C*} = 250.1 Hz), 141.0, 139.0, 132.2 (d, ⁴*J*_{*F*-*C*} = 3.2 Hz), 128.7, 128.4, 128.2 (d, ³*J*_{*F*-*C*} = 9.0 Hz), 127.8, 116.7 (d, ²*J*_{*F*-*C*} = 23.3 Hz), 116.58, 109.0, 62.2, 47.1, 24.5; ¹⁹F NMR (470 MHz, CDCl₃) δ –111.0; HRMS (ESI) calcd for [C₂₅H₂₁FN₂O + Na]⁺ 407.1530, found 407.1530; IR (thin film) 2233, 1727, 1506, 1202.

Prepared from acid **S4a** and cyanamide **S2e** on a 5.0 mmol scale under standard conditions. **1e** was purified by flash column chromatography ($35:65 \rightarrow 2:3 \text{ CH}_2\text{Cl}_2/\text{Hex}$), and further precipitated (CH₂Cl₂/Hex, 1:40 v/v) as a white powder (2.30 mmol, 46% yield). R_f = 0.38 (1:1 CH₂Cl₂/Hex); mp 116–118 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.55 – 7.47 (m, 4H), 7.44 – 7.36 (m, 6H), 7.36 – 7.30 (m, 2H), 7.14 (d, *J* = 8.7 Hz, 2H), 4.78 (app s, 1H), 4.48 (app s, 1H), 3.42 (s, 2H), 1.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.8, 141.0, 138.9, 135.1, 134.7, 129.8, 128.7, 128.4, 127.8, 127.4, 116.6, 108.8, 62.2, 47.1, 24.5; HRMS (ESI) calcd for [C₂₅H₂₁ClN₂O + Na]⁺ 423.1235, found 423.1242; **IR** (thin film) 2232, 1727, 1488, 1191.

Prepared from acid **S4a** and cyanamide **S2g** on a 5.0 mmol scale under standard conditions. **If** was purified by flash column chromatography (3:7 \rightarrow 1:1 CH₂Cl₂/Hex) as a white solid (2.37 mmol, 47% yield). R_f = 0.42 (1:1 CH₂Cl₂/Hex); mp 90–92 °C; ¹H **NMR** (500 MHz, CDCl₃) δ 7.56 (d, *J* = 8.3 Hz, 4H), 7.40 (t, *J* = 7.7 Hz, 4H), 7.37 (t, *J* = 7.1 Hz, 2H), 7.10 – 7.06 (m, 2H), 6.90 (d, *J* = 8.7 Hz, 2H), 4.77 (d, *J* = 1.4 Hz, 1H), 4.48 (app s, 1H), 3.79 (s, 3H), 3.42 (s, 2H), 1.42 (d, *J* = 1.4 Hz, 3H); ¹³C **NMR** (125 MHz, CDCl₃) δ 173.2, 159.9, 141.1, 139.2, 128.9, 128.8, 128.3, 127.6, 127.5, 116.5, 114.8, 109.4, 62.1, 55.5, 47.1, 24.5; **HRMS** (ESI) calcd for [C₂₆H₂₄N₂O₂ + Na]⁺ 419.1730, found 419.1736; **IR** (thin film) 2230, 1725, 1508, 1249.

Prepared from acid **S4a** and cyanamide **S2h** on a 5.0 mmol scale under standard conditions. **1g** was purified by flash column chromatography (1:1 CH₂Cl₂/Hex \rightarrow 15:85 EtOAc/Hex), and further precipitated (CH₂Cl₂/Hex, 1:40 v/v) as a white powder (1.34 mmol, 27% yield). R_f = 0.35 (1:4 EtOAc/Hex); mp 120–121 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.51 (d, *J* = 8.3 Hz, 4H), 7.40 (t, *J* = 7.3 Hz, 4H), 7.33 (d, *J* = 7.6 Hz, 2H), 7.23 – 7.19 (m, 2H), 7.18 – 7.12 (m, 2H), 4.78 (d, *J* = 1.5 Hz, 1H), 4.48 (app s, 1H), 3.42 (s, 2H), 2.29 (d, *J* = 0.9 Hz, 3H), 1.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.8, 168.8, 150.7, 141.0, 139.0, 133.5, 128.7, 128.4, 127.7, 127.2, 122.8, 116.6, 109.0, 62.2, 47.1, 24.5, 21.1; HRMS (ESI) calcd for [C₂₇H₂₄N₂O₃ + Na]⁺ 447.1679, found 447.1676; **IR** (thin film) 2232, 1765, 1726, 1503, 1190.

Prepared from acid **S4a** and cyanamide **S2j** on a 4.0 mmol scale under standard conditions. **1h** was purified by flash column chromatography (1:9 acetone/Hex) as a thick yellow oil (1.04 mmol, 26% yield). $R_f = 0.37$ (1:4 acetone/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 8.00 (d, J = 8.5 Hz, 2H), 7.53 (m, J = 7.5 Hz, 4H), 7.42 (t, J = 8.5 Hz, 4H), 7.35 (td, J = 8.5, 1.6 Hz, 4H), 4.79 (t, J = 1.8 Hz, 1H), 4.49 (app s, 1H), 3.43 (s, 2H), 2.60 (s, 3H), 1.41 (d, J = 1.4 Hz, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 196.5, 172.6, 140.9, 140.1, 138.8, 137.1, 129.6, 128.7, 128.5, 127.8, 126.0, 116.7, 108.6, 62.4, 47.1, 26.7, 24.5; **HRMS** (ESI) calcd for [C₂₇H₂₄N₂O₂ + Na]⁺ 431.1730, found 431.1721; **IR** (thin film) 2232, 1728, 1688, 1600, 1178.

Prepared from acid **S4a** and cyanamide **S2l** on a 5.0 mmol scale under standard conditions. **Ii** was purified by flash column chromatography (3:7 \rightarrow 4:6 CH₂Cl₂/Hex), and further precipitated (CH₂Cl₂/Hex, 1:40 v/v) as a white powder (2.27 mmol, 45% yield). R_f = 0.44 (1:9 EtOAc/Hex); mp 114–116 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, *J* = 7.7 Hz, 4H), 7.42 (t, *J* = 7.7 Hz, 4H), 7.38 – 7.32 (m, 4H), 7.22 (d, *J* = 2.1 Hz, 1H), 7.11 (dd, *J* = 6.1, 2.7 Hz, 1H), 4.79 (app s, 1H), 4.48 (app s, 1H), 3.42 (s, 2H), 1.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.7, 140.9, 138.9, 137.2, 135.1, 130.5, 129.4, 128.7, 128.5, 127.8, 126.5, 124.3, 116.7, 108.7, 62.3, 47.1, 24.5; HRMS (ESI) calcd for [C₂₅H₂₁ClN₂O + Na]⁺ 423.1235, found 423.1238; IR (thin film) 2232, 1729, 1589, 1190.

Prepared from acid **S4a** and cyanamide **S2m** on a 5.0 mmol scale under standard conditions. **1j** was purified by flash column chromatography (3:7 \rightarrow 4:6 CH₂Cl₂/Hex) as a white solid (2.31 mmol, 46% yield). R_f = 0.57 (1:1 CH₂Cl₂/Hex); mp 111–112 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 7.8 Hz, 1H), 7.59 – 7.50 (m, 5H), 7.48 (app s, 1H), 7.45 – 7.38 (m, 5H), 7.38 – 7.32 (m, 2H), 4.80 (app s, 1H), 4.50 (app s, 1H), 3.44 (s, 2H), 1.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.8, 140.9, 138.8, 136.8, 132.2 (q, ²*J*_{*F*-*C*} = 33.5 Hz), 130.3, 129.4, 128.7, 128.5, 127.9, 126.0 (q, ³*J*_{*F*-*C*} = 3.7 Hz), 123.3 (q, ³*J*_{*F*-*C*} = 3.8 Hz), 123.1 (q, ¹*J*_{*F*-*C*} = 271.0 Hz), 116.7, 108.6, 62.3, 47.1, 24.5; ¹⁹F NMR (470 MHz, CDCl₃) δ -62.7; HRMS (ESI) calcd for [C₂₆H₂₁F₃N₂O + Na]⁺ 457.1498, found 457.1501; **IR** (thin film) 2233, 1728, 1328, 1177.

Prepared from acid **S4a** and cyanamide **S2n** on a 5.0 mmol scale under standard conditions. **1k** was purified by flash column chromatography (3:7 \rightarrow 6:4 CH₂Cl₂/Hex) as a tacky white solid (3.07 mmol, 61% yield). R_f = 0.32 (1:1 CH₂Cl₂/Hex); ¹H **NMR** (500 MHz, CDCl₃) δ 8.06 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.90 (d, *J* = 1.8 Hz, 1H), 7.54 (dt, *J* = 8.2, 1.3 Hz, 4H), 7.50 (td, *J* = 7.9, 1.0 Hz, 1H), 7.42 (dd, *J* = 8.2, 6.8 Hz, 4H), 7.39 – 7.32 (m, 3H), 4.79 (app s, 1H), 4.50 (app s, 1H), 3.93 (s, 3H), 3.43 (s, 2H), 1.42 (s, 3H); ¹³C **NMR** (125 MHz, CDCl₃) δ 172.8, 165.5, 141.0, 138.9, 136.5, 131.9, 130.5, 130.2, 129.7, 128.8, 128.5, 127.8, 127.3, 116.7, 108.8, 62.3, 52.5, 47.1, 24.5; **HRMS** (ESI) calcd for [C₂₇H₂₄N₂O₃ + Na]⁺ 447.1679, found 447.1684; **IR** (thin film) 2233, 1727, 1289.

Prepared from acid **S4a** and cyanamide **S2o** on a 5.0 mmol scale under standard conditions. **11** was purified by flash column chromatography (5:95 \rightarrow 1:9 EtOAc/Hex) as a white solid (1.84 mmol, 37% yield). R_f = 0.42 (15:85 EtOAc/Hex); mp 80–83 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, *J* = 7.8 Hz, 4H), 7.40 (t, *J* = 7.7 Hz, 4H), 7.36 – 7.27 (m, 3H), 6.90 (dd, *J* = 8.4, 2.5 Hz, 1H), 6.78 (dd, *J* = 8.0, 2.0 Hz, 1H), 6.70 (t, *J* = 2.3 Hz, 1H), 4.78 (app s, 1H), 4.49 (app s, 1H), 3.76 (s, 3H), 3.42 (s, 2H), 1.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 160.3, 141.0, 139.1, 137.2, 130.2, 128.8, 128.3, 127.6, 118.2, 116.5, 114.7, 112.1, 109.1, 62.2, 55.5, 47.1, 24.5; HRMS (ESI) calcd for [C₂₆H₂₄N₂O₂ + Na]⁺ 419.1730, found 419.1725; IR (thin film) 2231, 1727, 1606, 1490, 1204.

Prepared from acid **S4a** and cyanamide **S2p** on a 4.5 mmol scale under standard conditions. **1m** was purified by flash column chromatography twice (8:92 \rightarrow 12:88 acetone/Hex) as a thick colorless oil (1.96 mmol, 44% yield). R_f = 0.23 (1:9 EtOAc/Hex); ¹H **NMR** (500 MHz, CDCl₃) δ 7.52 (d, *J* = 7.6 Hz, 4H), 7.40 (t, *J* = 7.6 Hz, 4H), 7.36 – 7.30 (m, 2H), 6.44 (t, *J* = 2.3 Hz, 1H), 6.30 (d, *J* = 2.3 Hz, 2H), 4.77 (app s, 1H), 4.47 (app s, 1H), 3.75 (s, 6H), 3.41 (s, 2H), 1.41 (s, 3H); ¹³C **NMR** (125 MHz, CDCl₃) δ 172.8, 161.2, 141.1, 139.1, 137.7, 128.8, 128.4, 127.7, 116.6, 109.1, 104.6, 101.1, 62.3, 55.5, 47.2, 24.5; **HRMS** (ESI) calcd for [C₂₇H₂₆N₂O₃ + Na]⁺ 449.1836, found 449.1828; **IR** (thin film) 2231, 1728, 1206, 1158.

Prepared from acid **S4a** and cyanamide **S2q** on a 5.0 mmol scale under standard conditions. **1n** was purified by flash column chromatography (3:7 \rightarrow 1:1 CH₂Cl₂/Hex), and further precipitated (pentane) as a white powder (0.46 mmol, 9% yield). R_f = 0.44 (1:9 EtOAc/Hex); mp 108–110 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.73 – 7.30 (m, 10H), 7.04 (d, *J* = 8.6 Hz, 2H), 6.97 (d, *J* = 7.9 Hz, 1H), 4.69 (app s, 1H), 4.40 (app s, 1H), 3.41 (app s, 1H), 3.35 (app s, 1H), 2.30 (s, 3H), 1.87 (s, 3H), 1.31 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.8, 141.0, 140.0, 135.5, 132.6, 132.2, 129.4, 128.9, 128.4, 128.3, 128.0, 127.8, 127.0, 116.7, 108.9, 62.5, 47.8, 24.5, 21.1, 16.8; HRMS (ESI) calcd for [C₂₇H₂₆N₂O + Na]⁺ 417.1937, found 417.1944; IR (thin film) 2230, 1721, 1499, 1209.

Prepared from acid **S4b** and cyanamide **S2k** on a 3.0 mmol scale under standard conditions. **10** was purified by flash column chromatography (4:96 \rightarrow 8:92 EtOAc/Hex) as a colorless oil (2.07 mmol, 69% yield). R_f = 0.49 (1:9 EtOAc/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 7.20 – 7.12 (m, 2H), 6.93 (d, *J* = 9.1 Hz, 2H), 5.84 (ddt, *J* = 16.9, 10.2, 6.6 Hz, 1H), 5.06 (dt, *J* = 17.1, 1.5 Hz, 1H), 5.01 (d, *J* = 10.1 Hz, 1H), 4.94 (app s, 1H), 4.86 (app s, 1H), 3.97 (t, *J* = 6.5 Hz, 2H), 2.75 (s, 2H), 2.26 – 2.21 (app q, 2H), 1.89 (p, *J* = 6.8 Hz, 2H), 1.81 (s, 3H), 1.49 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 176.2, 159.4, 141.4, 137.5, 128.6, 127.7, 115.4 (two overlapped

peaks), 114.8, 111.1, 67.4, 46.9, 44.8, 30.0, 28.2, 26.2, 23.9; **HRMS** (ESI) calcd for $[C_{20}H_{26}N_2O_2 + Na]^+$ 349.1886, found 349.1870; **IR** (thin film) 2227, 1508, 1249, 1190.

Prepared from acid **S4a** and cyanamide **S2r** on a 4.0 mmol scale under modified conditions. **1p** was purified by flash column chromatography (1:9 \rightarrow 15:85 EtOAc/Hex) as a tacky white solid (3.22 mmol, 81% yield). R_f = 0.62 (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, J = 2.7 Hz, 1H), 7.51 (dd, J = 8.5, 1.3 Hz, 4H), 7.40 (dd, J = 8.6, 6.8 Hz, 4H), 7.37 – 7.31 (m, 3H), 6.76 (d, J = 8.9 Hz, 1H), 4.79 (t, J = 1.7 Hz, 1H), 4.53 – 4.46 (m, 1H), 3.93 (s, 3H), 3.43 (s, 2H), 1.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.2, 164.0, 144.7, 140.9, 139.0, 136.6, 128.7, 128.4, 127.8, 127.0, 116.6, 111.7, 108.9, 62.1, 54.0, 46.9, 24.4; HRMS (ESI) calcd for [C₂₅H₂₃N₃O₂ + Na]⁺ 420.1682, found 420.1694; **IR** (thin film) 2233, 1728, 1492, 1388, 1202.

Prepared from acid **S4b** and cyanamide **S2a** on a 5.0 mmol scale under standard conditions. **1q** was purified by flash column chromatography (2:98 \rightarrow 5:95 EtOAc/Hex) as a pale yellow oil (4.39 mmol, 88% yield). R_f = 0.53 (1:9 EtOAc/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 7.28 – 7.22 (m, 2H), 7.18 – 7.11 (m, 2H), 4.94 (d, *J* = 1.6 Hz, 1H), 4.87 (t, *J* = 1.0 Hz, 1H), 2.75 (s, 2H), 2.37 (s, 3H), 1.81 (s, 3H), 1.50 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 176.0, 141.4, 139.3, 133.6, 130.2, 126.1, 114.8, 111.0, 46.9, 44.9, 26.1, 23.8, 21.1; **HRMS** (ESI) calcd for [C₁₆H₂₀N₂O + Na]⁺ 279.1468, found 279.1478; **IR** (thin film) 2228, 1725, 1509, 1190.

Prepared from acid **S4b** and cyanamide **S2g** on a 5.0 mmol scale under standard conditions. **1r** was purified by flash column chromatography (3:7 \rightarrow 1:1 CH₂Cl₂/Hex) as a colorless oil (3.61 mmol, 72% yield). R_f = 0.36 (1:9 EtOAc/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 7.20 – 7.17 (m, 2H), 6.95 (d, J = 8.8 Hz, 2H), 4.94 (d, J = 4.5 Hz, 1H), 4.87 (app s, 1H), 3.82 (s, 3H), 2.75 (s, 2H), 1.81 (s, 3H), 1.50 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 176.2, 159.9, 141.4, 128.8, 127.7, 114.9, 114.8, 111.1, 55.5, 46.9, 44.8, 26.2, 23.8; **HRMS** (ESI) calcd for [C₁₆H₂₀N₂O₂ + Na]⁺ 295.1417, found 295.1411; **IR** (thin film) 2228, 1724, 1509, 1250, 1189.

Prepared from acid **S4c** and cyanamide **S2g** on a 4.0 mmol scale under standard conditions. **1s** was purified by flash column chromatography twice (first: $3:7 \rightarrow 1:1 \text{ CH}_2\text{Cl}_2/\text{Hex}$; second: $3:97 \rightarrow 1:9 \text{ EtOAc/Hex}$) as a thick colorless oil (1.28 mmol, 32% yield). $R_f = 0.56$ (1:1 $\text{CH}_2\text{Cl}_2/\text{Hex}$); ¹H NMR (500 MHz, CDCl_3) δ 7.41 – 7.28 (m, 10H), 6.87 (app s, 4H), 5.09 (app s, 1H), 4.91 (app s, 1H), 3.79 (s, 3H), 3.36 (d, J = 14.7 Hz, 2H), 3.32 (d, J = 14.8 Hz, 2H), 2.74 (s, 2H), 1.85 (s, 3H); ¹³C NMR (125 MHz, CDCl_3) δ 174.9, 159.9, 141.9, 136.5, 130.5, 128.8, 128.4, 127.7, 127.1, 114.8, 112.5, 110.7, 55.5, 52.6, 41.1, 40.2, 25.1; HRMS (ESI) calcd for [C₂₈H₂₈N₂O₂ + Na]⁺ 447.2043, found 447.2050; IR (thin film) 2228, 1723, 1508, 1250, 1181.

Prepared from acid **S4d** and cyanamide **S2g** on a 4.0 mmol scale under modified conditions. **1t** was purified by flash column chromatography (5:95 \rightarrow 1:9 EtOAc/Hex) as a colorless oil (3.51 mmol, 88% yield). R_f = 0.36 (1:9 EtOAc/Hex); ¹**H NMR** (400 MHz, CDCl₃) δ 7.20 (dt, *J* = 9.1, 2.2 Hz, 2H), 6.94 (dt, *J* = 9.1, 2.2 Hz, 2H), 4.90 - 4.88 (m, 1H), 4.87 (t, *J* = 1.7 Hz, 1H), 3.82 (s, 3H), 2.96 (s, 2H), 2.84 - 2.73 (m, 2H), 2.32 - 2.21 (m, 2H), 2.12 - 1.99 (m, 1H), 1.96 - 1.83 (m, 1H), 1.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.6, 159.8, 142.1, 127.9, 127.4, 114.8, 114.3, 110.4, 55.5, 49.4, 45.1, 31.4, 23.0, 15.2; **HRMS** (ESI) calcd for [C₁₇H₂₀N₂O₂ + Na]⁺ 307.1417, found 307.1430; **IR** (thin film) 2230, 1728, 1509, 1251, 1188.

Prepared from acid **S4e** and cyanamide **S2g** on a 4.0 mmol scale under modified conditions. **1u** was purified by flash column chromatography (5:95 \rightarrow 15:85 EtOAc/Hex) as a pale yellow oil (3.27 mmol, 82% yield). R_f = 0.39 (1:9 EtOAc/Hex); ¹**H NMR** (400 MHz, CDCl₃) δ 7.18 (dt, J = 9.0, 2.1 Hz, 2H), 6.94 (dt, J = 9.0, 2.1 Hz, 2H), 4.93 – 4.92 (m, 1H), 4.91 (t, J = 1.6 Hz, 1H), 3.82 (s, 3H), 2.82 (d, J = 1.1 Hz, 2H), 2.48 (dddd, J = 13.5, 6.8, 3.7, 1.6 Hz, 2H), 1.87 (dddd, J = 13.2, 7.6, 5.2, 1.8 Hz, 2H), 1.79 (s, 3H), 1.76 – 1.64 (m, 4H); ¹³C **NMR** (100 MHz, CDCl₃) δ 176.1, 159.8, 142.2, 128.7, 127.6, 114.8, 114.4, 111.0, 55.7, 55.5, 46.1, 37.1, 25.1, 23.5; **HRMS** (ESI) calcd for [C₁₈H₂₂N₂O₂ + Na]⁺ 321.1573, found 321.1575; **IR** (thin film) 2228, 1724, 1509, 1250, 1184.

Prepared from acid **S4f** and cyanamide **S2g** on a 4.0 mmol scale under modified conditions. **1v** was purified by flash column chromatography twice $(1:9 \rightarrow 1:4 \text{ EtOAc/Hex})$ as a thick pale yellow oil (2.05 mmol, 51% yield). R_f = 0.34 (1:4 EtOAc/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 7.18 (dt, J = 9.0, 2.1 Hz, 2H), 6.97 (dt, J = 8.9, 2.4 Hz, 2H), 4.98 – 4.97 (m, 1H), 4.97 – 4.96 (m, 1H), 3.89 (dt, J = 12.2, 4.0 Hz, 2H), 3.83 (s, 3H), 3.59 (ddd, J = 12.5, 10.5, 2.4 Hz, 2H), 2.81 (s, 2H), 2.54 – 2.48 (m, 2H), 1.89 – 1.77 (m, 5H); ¹³C NMR (125 MHz, CDCl₃) δ 174.2, 160.1, 140.3, 128.4, 127.8, 115.8, 115.0, 110.8, 64.8, 55.6, 47.3, 46.1, 34.8, 23.9; **HRMS** (ESI) calcd for [C₁₈H₂₂N₂O₃ + Na]⁺ 337.1523, found 337.1518; **IR** (thin film) 2227, 1723, 1509, 1250, 1185, 1114.

Prepared from acid **S4o** and cyanamide **S2g** on a 3.0 mmol scale under standard conditions. **1w**was purified by flash column chromatography (1:9 \rightarrow 1:4 EtOAc/Hex) as a pale yellow oil (1.79 mmol, 60% yield). R_f = 0.21 (1:9 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.25 (d, J = 8.5 Hz, 2H), 6.96 (dd, J = 9.0, 0.8 Hz, 2H), 4.81 (app s, 1H), 4.74 (app s, 1H), 3.83 (s, 3H), 2.87 (br app s, 2H), 2.45 (t, J = 7.6 Hz, 2H), 1.77 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 171.7, 160.0, 143.0, 127.3, 127.0, 115.0, 111.3, 110.0, 55.6, 32.7, 32.0, 22.4; HRMS (ESI) calcd for [C₁₄H₁₆N₂O₂ + Na]⁺ 267.1104, found 267.1106; **IR** (thin film) 2233, 1735, 1509, 1251.

Prepared from acid **S4g** and cyanamide **S2g** on a 4.0 mmol scale under modified conditions. **1x** was purified by flash column chromatography (2:3 \rightarrow 3:2 CH₂Cl₂/Hex) as a colorless oil (2.72 mmol, 68% yield). R_f = 0.44 (1:1 CH₂Cl₂/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 7.18 (dt, J = 9.0, 2.0 Hz, 2H), 6.95 (dt, J = 9.0, 2.4 Hz, 2H), 4.94 (d, J = 1.5 Hz, 1H), 4.87 (d, J = 1.4 Hz, 1H), 3.82 (s, 3H), 2.74 (s, 2H), 2.08 – 2.02 (m, 2H), 1.52 – 1.42 (m, 8H), 1.39 – 1.28 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H); ¹³C **NMR** (125 MHz, CDCl₃) δ 176.2, 159.9, 145.6, 128.8, 127.7, 114.9, 113.0, 111.1, 55.5, 45.1, 45.0, 36.9, 30.1, 26.2, 22.4, 14.0; **HRMS** (ESI) calcd for [C₁₉H₂₆N₂O₂ + Na]⁺ 337.1886, found 337.1875; **IR** (thin film) 2230, 1724, 1509.

Prepared from acid **S4h** and cyanamide **S2g** on a 3.5 mmol scale under modified conditions. **1y** was purified by flash column chromatography (5:95 \rightarrow 1:9 EtOAc/Hex) as a pale yellow oil (2.55 mmol, 73% yield). R_f = 0.32 (1:9 EtOAc/Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.25 (m, 2H), 7.23 – 7.17 (m, 3H), 7.10 – 7.05 (m, 2H), 6.91 – 6.85 (m, 2H), 5.00 (d, *J* = 1.4 Hz, 1H), 4.93 (app s, 1H), 3.80 (s, 3H), 2.87 – 2.75 (m, 4H), 2.36 (dd, *J* = 8.9, 7.4 Hz, 2H), 1.50 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 176.2, 159.9, 144.8, 141.6, 128.7, 128.37, 128.35, 127.7, 125.9, 114.8, 113.7, 111.1, 55.5, 45.5, 45.0, 38.9, 34.4, 26.2; HRMS (ESI) calcd for [C₂₃H₂₆N₂O₂ + Na]⁺ 385.1886, found 385.1892; **IR** (thin film) 2227, 1724, 1508, 1250, 1183.

Prepared from acid S4i and cyanamide S2g on a 3.4 mmol scale under modified conditions. 1z was purified by flash column chromatography (5:95 \rightarrow 15:85 EtOAc/Hex) as a colorless oil (1.72 mmol, 51% yield). R_f = 0.42

(15:85 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.31 (m, 4H), 7.30 – 7.27 (m, 1H), 7.18 – 7.13 (m, 2H), 6.93 – 6.88 (m, 2H), 5.25 (d, J = 1.5 Hz, 1H), 5.12 (d, J = 1.3 Hz, 1H), 4.50 (s, 2H), 3.98 (s, 2H), 3.81 (s, 3H), 2.83 (d, J = 1.1 Hz, 2H), 1.50 (s, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 176.2, 159.9, 142.2, 138.0, 128.8, 128.4, 127.8, 127.8, 127.6, 116.3, 114.8, 111.1, 73.1, 71.8, 55.5, 44.7, 42.2, 26.1; HRMS (ESI) calcd for [C₂₃H₂₆N₂O₃ + Na]⁺ 401.1836, found 401.1833; **IR** (thin film) 2230, 1723, 1509, 1250, 1182.

Prepared from acid **S4j** and cyanamide **S2g** on a 4.0 mmol scale under modified conditions. **1aa** was purified by flash column chromatography twice (first: $1:4 \rightarrow 1:1 \text{ CH}_2\text{Cl}_2/\text{Hex}$; second: $8:92 \rightarrow 1:4 \text{ Et}_2\text{O}/\text{Hex}$) as a white foam (2.46 mmol, 61% yield). $R_f = 0.24$ (1:9 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.46 - 7.40 (m, 4H), 7.35 - 7.16 (m, 11H), 6.83 - 6.78 (m, 2H), 6.73 - 6.68 (m, 2H), 5.18 (d, J = 1.4 Hz, 1H), 4.70 (d, J = 1.3 Hz, 1H), 3.93 (s, 2H), 3.76 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 159.8, 143.9, 142.3, 139.4, 129.3, 128.7, 128.1, 128.0, 127.6, 127.4, 127.2, 126.7, 120.1, 114.6, 109.5, 62.0, 55.5, 44.1; HRMS (ESI) calcd for $[C_{31}H_{26}N_2O_2 + Na]^+ 481.1886$, found 481.1894; **IR** (thin film) 2230, 1725, 1508, 1249, 1202.

Prepared from acid **S4k** and cyanamide **S2a** on a 5.0 mmol scale under standard conditions. **1ab** was purified by flash column chromatography (3:7 \rightarrow 1:1 CH₂Cl₂/Hex), and further precipitated (CH₂Cl₂/Hex, 1:40 v/v) as a white powder (2.58 mmol, 52% yield). R_f = 0.54 (15:85 EtOAc/Hex); mp 99–100 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.51 – 7.39 (m, 8H), 7.39 – 7.31 (m, 2H), 7.24 – 7.18 (m, 2H), 7.12 – 7.05 (m, 2H), 5.65 (ddt, *J* = 17.2, 10.2, 7.0 Hz, 1H), 5.05 (ddd, *J* = 17.1, 3.4, 1.5 Hz, 1H), 5.01 – 4.98 (m, 1H), 3.36 (d, *J* = 7.0 Hz, 2H), 2.36 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 139.4, 138.9, 133.6, 133.2, 130.2, 128.8, 128.5, 127.8, 126.0, 119.2, 109.2, 62.1, 44.8, 21.1; HRMS (ESI) calcd for [C₂₅H₂₂N₂O + Na]⁺ 389.1624, found 389.1626; IR (thin film) 2231, 1725, 1508, 1206.

Prepared from acid **S4a** and cyanamide **S2s** on a 5.0 mmol scale under standard conditions. **1ac** was purified by flash column chromatography (3:7 \rightarrow 1:1 CH₂Cl₂/Hex) as a colorless oil (3.98 mmol, 80% yield). R_f = 0.55 (15:85 EtOAc/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 7.39 – 7.26 (m, 13H), 7.18 (dd, *J* = 7.4, 1.8 Hz, 2H), 4.72 (s, 2H), 4.63 (d, *J* = 1.9 Hz, 1H), 4.30 (app s, 1H), 3.30 (s, 2H), 1.31 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 172.8, 140.9, 138.9, 133.8, 128.9, 128.70, 128.65, 128.6, 128.2, 127.5, 116.4, 109.9, 62.0, 52.7, 47.1, 24.4; **HRMS** (ESI) calcd for [C₂₆H₂₄N₂O + Na]⁺ 403.1781, found 403.1781; **IR** (thin film) 2231, 1710, 1496, 1193.

Prepared from acid **S4I** and cyanamide **S2g** on a 5.0 mmol scale under modified conditions. **1ad** was purified by flash column chromatography (2:3 \rightarrow 3:2 CH₂Cl₂/Hex) as an oily solid (2.68 mmol, 54% yield). R_f = 0.20 (1:9 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.48 (m, 2H), 7.42 – 7.37 (m, 2H), 7.28 (d, *J* = 8.6 Hz, 2H), 6.95 (d, *J* = 8.9 Hz, 2H), 5.34 (app s, 1H), 5.13 (app s, 1H), 3.83 (s, 3H), 2.22 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 159.8, 143.2, 141.7, 131.4, 130.7, 128.1, 127.6, 127.5, 127.4, 126.8, 117.2, 114.8, 110.0, 55.6, 23.2; HRMS (ESI) calcd for [C₁₈H₁₆N₂O₂ + Na]⁺ 315.1104, found 315.1116; IR (thin film) 2235, 1723, 1509, 1250.

Prepared from acid **S4m** and cyanamide **S2g** on a 4.8 mmol scale under modified conditions. **1ae** was purified by flash column chromatography (1:9 \rightarrow 1:4 EtOAc/Hex), and further precipitated (CH₂Cl₂/pentane, 1:40 v/v) as a white powder (3.02 mmol, 63% yield). R_f = 0.43 (1:4 EtOAc/Hex); mp 103–105 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.63 (dd, J = 7.6, 1.3 Hz, 1H), 7.58 (td, J = 7.6, 1.4 Hz, 1H), 7.52 – 7.46 (m, 2H), 7.39 – 7.30 (m, 5H), 6.82 (dt, J = 9.1, 2.1 Hz, 2H), 6.78 (dt, J = 9.2, 2.1 Hz, 2H), 5.74 (app s, 1H), 5.49 (app s, 1H), 3.78 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 168.5, 159.7, 147.6, 141.2, 140.3, 131.9, 131.5, 131.2, 128.5, 128.3, 127.95, 127.89, 127.8, 127.0, 126.8, 117.4, 114.6, 110.0, 55.5; HRMS (ESI) calcd for [C₂₃H₁₈N₂O₂ + Na]⁺ 377.1260, found 377.1268; **IR** (thin film) 2253, 1726, 1509.

Prepared from acid **S4r** and cyanamide **S2a** on a 3.2 mmol scale under modified conditions. **1af** was purified by flash column chromatography (5:95 \rightarrow 1:4 EtOAc/Hex) as a waxy solid (1.33 mmol, 41% yield). R_f = 0.37 (1:4 EtOAc/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 7.61 – 7.57 (m, 1H), 7.51 – 7.47 (m, 2H), 7.36 (td, *J* = 7.6, 1.2 Hz, 1H), 7.33 – 7.29 (m, 2H), 7.00 – 6.88 (m, 3H), 5.79 (d, *J* = 17.4 Hz, 1H), 5.48 (d, *J* = 11.0 Hz, 1H), 3.82 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 169.1, 159.9, 136.5, 132.9, 131.7, 130.2, 127.7, 127.6, 127.4, 127.0, 126.7, 118.8, 114.9, 109.6, 55.6; **HRMS** (ESI) calcd for [C₁₇H₁₄N₂O₂ + Na]⁺ 301.0947, found 301.0947; **IR** (thin film) 2238, 1719, 1509, 1251.

Synthesis of 1ag following a different procedure:²⁸ To a solution of acid S4n (1057 mg, 6.0 mmol) and Cl₃CCN (1733 mg, 12.0 mmol) in CH₂Cl₂ (6.0 mL) was added PPh₃ (3147 mg, 12 mmol) in CH₂Cl₂ (6.0 mL) at room temperature. The resulting mixture was stirred for 1 h and cooled to 0 °C, whereupon a solution of Et₃N (1.0 mL, 7.5 mmol) in CH₂Cl₂ (3.0 mL) was added, followed by cyanamide S2g (741 mg, 5.0 mmol) in CH₂Cl₂-THF (4 mL, 3:1 v/v). The resulting mixture was allowed to warm to room temperature and stir overnight, which was then diluted with Et₂O (30 mL), filtered through a short Celite column, concentrated, and purified by flash column chromatography (1:9 \rightarrow 15:85 EtOAc/Hex) to afford 1ag as an oily yellow solid (4.57 mmol, 91% yield). R_f = 0.42 (15:85 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 8.3 Hz, 1H), 7.47 (td, *J* = 7.6, 1.4 Hz, 1H), 7.36 – 7.29 (m, 4H), 6.97 (d, *J* = 8.9 Hz, 2H), 4.93 (app s, 1H), 4.70 (app s, 1H), 3.84 (s, 3H), 3.53 (s, 2H), 1.73 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 169.0, 159.9, 144.3, 138.7, 131.7, 131.6, 131.3, 127.7, 127.4, 127.0, 126.4, 114.9, 113.1, 110.0, 55.6, 41.4, 22.4; HRMS (ESI) calcd for [C₁₉H₁₈N₂O₂ + Na]⁺ 329.1260, found 329.1269; IR (thin film) 2236, 1721, 1509, 1252.

Prepared from acid **S4p** and cyanamide **S2g** on a 4.0 mmol scale under modified conditions. **1ah** was purified by flash column chromatography (5:95 \rightarrow 15:85 EtOAc/Hex) as a colorless oil (3.29 mmol, 82% yield). R_f = 0.51 (1:1 CH₂Cl₂/Hex); ¹H **NMR** (500 MHz, CDCl₃) δ 7.19 (dt, *J* = 9.2, 2.4 Hz 2H), 6.95 (dt, *J* = 8.9, 2.1 Hz 2H), 4.77 (m, 1H), 4.76 (app s, 1H), 3.82 (s, 3H), 2.07 (app s, 4H), 1.80 (s, 3H), 1.49 (s, 6H); ¹³C **NMR** (125 MHz, CDCl₃) δ 176.1, 159.9, 144.7, 128.7, 127.7, 114.9, 110.8, 110.7, 55.5, 44.9, 37.6, 33.1, 25.2, 22.5; **HRMS** (ESI) calcd for [C₁₇H₂₂N₂O₂ + Na]⁺ 309.1573, found 309.1569; **IR** (thin film) 2228, 1725, 1509, 1250.

Prepared from acid **S4q** and cyanamide **S2a** on a 2.6 mmol scale under modified conditions. **1ai** was purified by flash column chromatography (3:2 CH₂Cl₂/Hex \rightarrow CH₂Cl₂) as a colorless oil (1.57 mmol, 61% yield). R_f = 0.61 (CH₂Cl₂); ¹**H NMR** (500 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 6.97 – 6.93 (m, 2H), 6.31 (d, *J* = 1.3 Hz, 1H), 5.70 (d, *J* = 1.2 Hz, 1H), 3.82 (s, 3H), 3.74 (s, 3H), 3.03 (d, *J* = 1.0 Hz, 2H), 1.46 (s, 6H); ¹³**C NMR** (125 MHz, CDCl₃) δ 175.5, 167.4, 159.9, 136.3, 129.1, 129.0, 127.9, 114.8, 111.3, 55.5, 52.1, 44.8, 40.9, 25.5; **HRMS** (ESI) calcd for [C₁₇H₂₀N₂O₄ + Na]⁺ 339.1315, found 339.1318; **IR** (thin film) 2230, 1721, 1509, 1250.

Prepared from acid **S4a** and cyanamide **S2f** on a 5.0 mmol scale under standard conditions. **1aj** was purified by flash column chromatography (3:7 \rightarrow 1:1 CH₂Cl₂/Hex) as a white solid (1.77 mmol, 35% yield). R_f = 0.33 (1:1 CH₂Cl₂/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 7.59 – 7.47 (m, 6H), 7.41 (t, *J* = 7.6 Hz, 4H), 7.37 – 7.30 (m, 2H), 7.08 (d, *J* = 8.6 Hz, 2H), 4.78 (d, *J* = 1.2 Hz, 1H), 4.48 (app s, 1H), 3.42 (s, 2H), 1.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.7, 141.0, 138.9, 135.3, 132.8, 128.7, 128.4, 127.8, 127.7, 123.1, 116.6, 108.7, 62.3, 47.1, 24.5; **HRMS** (ESI) calcd for [C₂₅H₂₁BrN₂O + Na]⁺ 467.0729, found 467.0729; **IR** (thin film) 2232, 1727, 1486, 1189.

Prepared from acid **S4b** and cyanamide **S2i** on a 5.0 mmol scale under standard conditions. **1ak** was purified by flash column chromatography twice (first: 1:20 MeOH/CH₂Cl₂; second: Et₂O) as a pale yellow oil (3.31 mmol, 66% yield). $R_f = 0.47$ (5:95 MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.78 (br s, 1H), 7.58 (d, J = 8.5 Hz, 2H), 7.20 (d, J = 8.5 Hz, 2H), 4.95 (app s, 1H), 4.86 (app s, 1H), 2.75 (s, 2H), 2.15 (s, 3H), 1.81 (s, 3H), 1.50 (d, J = 1.4 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 176.2, 168.6, 141.3, 138.8, 131.5, 127.0, 120.5, 114.9, 110.8, 46.9, 45.0, 26.1, 24.5, 23.9; HRMS (ESI) calcd for [C₁₇H₂₁N₃O₂ + Na]⁺ 322.1526, found 322.1526; **IR** (thin film) 2229, 1725, 1676, 1509, 1257, 1189.

Prepared from acid **S4s** and cyanamide **S2g** on a 4.0 mmol scale under modified conditions. **1al** was purified by flash column chromatography (5:95 \rightarrow 15:85 EtOAc/Hex) as a pale yellow oil (2.42 mmol, 61% yield). R_f = 0.31 (1:9 EtOAc/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 7.43 – 7.28 (m, 5H), 7.11 (d, *J* = 8.5 Hz, 2H), 6.90 (d, *J* = 9.2 Hz, 2H), 4.83 (app s, 1H), 4.74 (app s, 1H), 4.51 (br m, 1H), 3.81 (s, 3H), 2.94 (dd, *J* = 14.7, 9.2 Hz, 1H), 2.50 – 2.34 (br m, 1H), 1.75 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 172.3 (br), 160.1 (br), 142.0, 136.7, 129.0, 128.1, 128.0, 127.5 (br), 127.1, 114.8, 112.7, 110.0 (br), 55.6, 48.6 (br), 42.0, 22.8; **HRMS** (ESI) calcd for [C₂₀H₂₀N₂O₂ + Na]⁺ 343.1417, found 343.1423; **IR** (thin film) 2233, 1734, 1508, 1251.

Prepared from acid **S4t** and cyanamide **S2g** on a 3.0 mmol scale under modified conditions. **1al** was purified by flash column chromatography (1:9 EtOAc/Hex) as a pale yellow oil (1.47 mmol, 49% yield). $R_f = 0.56$ (3:7

EtOAc/Hex); ¹**H** NMR (500 MHz, CDCl₃) δ 7.26 – 7.20 (m, 2H), 6.99 – 6.88 (m, 2H), 4.88 – 4.82 (m, 1H), 4.77 (app s, 1H), 3.82 (s, 3H), 3.35 (br app s, 1H), 2.55 (dd, *J* = 14.0, 7.6 Hz, 1H), 2.17 (dd, *J* = 14.0, 6.9 Hz, 1H), 1.77 (s, 3H), 1.28 (d, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.5, 160.0, 141.9, 127.3, 127.1, 114.9, 113.2, 110.1, 55.5, 41.8, 36.6 (br), 22.3, 17.0; **HRMS** (ESI) calcd for [C₁₅H₁₈N₂O₂ + Na]⁺ 281.1260, found 281.1266; **IR** (thin film) 2231, 1736, 1509, 1251, 1180.

Prepared from acid **S4u** and cyanamide **S2g** on a 2.0 mmol scale under modified conditions. **1an** was purified by flash column chromatography (1:9 EtOAc/Hex) as an off-white tacky solid (0.72 mmol, 36% yield). $R_f = 0.42$ (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.42 (m, 2H), 7.39 – 7.31 (m, 3H), 7.16 – 7.10 (m, 2H), 6.96 – 6.87 (m, 2H), 4.95 (t, J = 1.8 Hz, 1H), 4.80 (dd, J = 2.1, 1.0 Hz, 1H), 3.81 (s, 3H), 3.19 (d, J = 14.0 Hz, 1H), 2.79 (d, J = 13.7 Hz, 1H), 1.80 (s, 3H), 1.48 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 175.3, 159.9, 141.6, 141.0, 129.0, 128.6, 127.8, 127.5, 126.4, 116.6, 114.8, 109.5, 100.0, 55.6, 52.2, 46.3, 24.1; HRMS (ESI) calcd for [C₂₁H₂₂N₂O₂ + Na]⁺ 357.1573, found 357.1578; **IR** (thin film) 2229, 1719, 1507, 1245, 1220.

Prepared from acid **S4v** and cyanamide **S2g** on a 1.67 mmol scale under modified conditions. **1ao** was purified by flash column chromatography (3:7 EtOAc/Hex) as a white foam (0.56 mmol, 33% yield). $R_f = 0.38$ (3:7 EtOAc/Hex); ¹**H** NMR (400 MHz, CDCl₃) δ 7.88 (dd, J = 5.5, 3.1 Hz, 2H), 7.76 (dd, J = 5.5, 3.0 Hz, 2H), 7.33 – 7.19 (m, 2H), 6.97 – 6.86 (m, 2H), 5.42 (dd, J = 11.0, 4.3 Hz, 1H), 4.74 (app s, 1H), 4.66 (app s, 1H), 3.80 (s, 3H), 3.05 (dd, J = 14.0, 11.0 Hz, 1H), 2.84 (dd, J = 14.1, 4.3 Hz, 1H), 1.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 166.8, 160.2, 139.9, 134.5, 131.3, 127.2, 127.1, 123.8, 115.6, 115.0, 108.9, 55.6, 50.6, 37.4, 21.6; **HRMS** (ESI) calcd for [C₂₂H₁₉N₃O₄ + Na]⁺ 412.1268, found 412.1273; **IR** (thin film) 2233, 1777, 1717, 1508, 1384, 1251.

Prepared from acid **S4w** and cyanamide **S2g** on a 5.0 mmol scale under modified conditions. **1ap** was purified by flash column chromatography (15:85 EtOAc/Hex) as a pale yellow oil (4.63 mmol, 93% yield). $R_f = 0.23$ (1:9 EtOAc/Hex); ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 5H), 7.16 – 7.08 (m, 2H), 6.96 – 6.86 (m, 2H), 4.92 (app s, 1H), 4.88 (app s, 1H), 4.68 (d, J = 11.5 Hz, 1H), 4.66 (br t, 1H), 4.60 (d, J = 11.5 Hz, 1H), 3.81 (s, 3H), 2.65 (d, J = 6.7 Hz, 2H), 1.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 171.2, 160.0, 140.0, 136.5, 128.5, 128.3, 128.2, 127.2, 126.8, 114.9, 114.7, 109.3, 72.9, 55.5, 40.6, 22.5 (one peak overlapped by CDCl₃); **HRMS** (ESI) calcd for [C₂₁H₂₂N₂O₃ + Na]⁺ 373.1523, found 373.1538; **IR** (thin film) 2232, 1745, 1509, 1251, 1183.

Prepared from acid **S4x** and cyanamide **S2g** on a 4.0 mmol scale under modified conditions. **1aq** was purified by flash column chromatography (3:97 \rightarrow 1:9 EtOAc/Hex) as a colorless oil (2.93 mmol, 73% yield). R_f = 0.35 (1:9 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.22 – 7.10 (m, 2H), 6.99 – 6.91 (m, 2H), 5.05 – 5.01 (m, 1H), 4.96 (t, *J* = 1.6 Hz, 1H), 3.82 (s, 3H), 3.36 (q, *J* = 7.1 Hz, 1H), 1.80 (s, 3H), 1.48 (s, 3H), 1.40 (s, 3H), 1.14 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 176.4, 159.9, 146.1, 129.0, 127.8, 114.8, 114.4, 111.2, 55.5, 48.6, 45.0, 23.1, 22.2, 21.5, 14.7; HRMS (ESI) calcd for [C₁₇H₂₂N₂O₂ + Na]⁺ 309.1573, found 309.1568; **IR** (thin film) 2227, 1723, 1509, 1250, 1179.

7. Synthesis of substrates: N-sulfonyl cyanamides

Synthesis of substrate 3a representative example: То of as a а solution 1-bromo-2-(prop-1-en-2-yl)benzene²⁹ (8672 mg, 44 mmol) in THF (40 mL) was dropwise added *n*BuLi (2.5 M Hex, 16 mL, 40 mmol) at -78 °C. The reaction was stirred at -78 °C for 30 min, whereupon a stock solution of SO₂ (ca. 2.3 M THF, 34.8 mL, 80 mmol)³⁰ was dropwise added. The reaction was allowed to warm to room temperature and stirred for additional 2 h. The reaction was concentrated to dryness to afford the lithium sulfinate as a white solid, which was triturated with pentane (20 mL \times 2) to remove the residual 1-bromo-2-(prop-1-en-2-yl)benzene, followed by suspended in hexanes (150 mL) and cooled to -78 °C. To this suspension was slowly added SO₂Cl₂ (2.92 mL, 36 mmol) in hexanes (40 mL). The resulting mixture was vigorously stirred at -78 °C for 20 min, which was then allowed to warm to room temperature and stir for additional 30 min. The reaction was guenched with saturated agueous NaHCO₃ (20 mL), diluted with H₂O (20 mL), and extracted with Et₂O (30 mL \times 3). The combined organic extracts were washed with water (20 mL) and brine (20 mL), dried over MgSO₄, and concentrated. The resulting mixture was purified by flash column chromatography (5:95 EtOAc/Hex) to afford sulforyl chloride S5a as a pale yellow oil (6684 mg, 30.8 mmol, 86% yield over 2 steps based on SO₂Cl₂). $R_f = 0.59$ (1:9 EtOAc/Hex). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (dd, J = 8.2, 1.3 Hz, 1H), 7.68 (td, J = 7.6, 1.3 Hz, 1H), 7.50 (ddd, J = 8.7, 7.6, 1.4 Hz, 1H), 7.35 (dd, J = 7.6, 1.4Hz, 1H), 5.38 (t, J = 1.5 Hz, 1H), 5.08 (t, J = 1.2 Hz, 1H), 2.17 (t, J = 1.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) & 144.0, 142.3, 141.9, 135.0, 131.5, 128.8, 127.9, 117.6, 25.1.

Next, the above obtained sulfonyl chloride **S5a** (520 mg, 2.4 mmol) was dissolved in CH₂Cl₂ (2.0 mL) and added to a solution of cyanamide **S2a** (2.0 mmol) and Et₃N (0.42 mL, 3.0 mmol) in CH₂Cl₂ (4.0 mL) at 0 °C. The reaction was allowed to warm to room temperature and stir for 4–6 h until TLC indicated the complete consumption of staring material. The mixture was then diluted with CH₂Cl₂ (30 mL), washed with 1 M HCl (10 mL), and separated. The organic phase was washed with brine (10 mL), dried over MgSO₄, and concentrated. The resulting mixture was purified by flash column chromatography (Hex \rightarrow 1:9 EtOAc/Hex) to afford substrate **3a** as a pale yellow oil (1.72 mmol, 86% yield). R_f = 0.51 (1:4 EtOAc/Hex). ¹H NMR (500 MHz, CDCl₃) δ 7.82 (dd, *J* = 8.1, 1.3 Hz, 1H), 7.64 (td, *J* = 7.6, 1.3 Hz, 1H), 7.40 (ddd, *J* = 8.5, 7.5, 1.4 Hz, 1H), 7.33 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.14 (d, *J* = 8.3 Hz, 2H), 7.09 – 7.03 (m, 2H), 5.30 (t, *J* = 1.5 Hz, 1H), 4.76

(t, J = 1.1 Hz, 1H), 2.34 (s, 3H), 2.10 (t, J = 1.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.2, 143.0, 140.2, 134.8, 134.0, 131.6, 131.4, 130.9, 130.4, 127.6, 126.1, 117.2, 108.1, 25.4, 21.1; **HRMS** (ESI) calcd for [C₁₇H₁₆N₂O₂S + Na]⁺ 335.0825, found 335.0818; **IR** (thin film) 2236, 1505, 1380, 1181.

Prepared from sulfonyl chloride **S5a** and cyanamide **S2c** on a 2.0 mmol scale. **3b** was purified by flash column chromatography (2:98 \rightarrow 1:9 EtOAc/Hex) as a white solid (1.70 mmol, 85% yield). R_f = 0.55 (1:4 EtOAc/Hex). mp 84–86 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.89 (dd, J = 8.1, 1.3 Hz, 1H), 7.65 (d, J = 1.4 Hz, 1H), 7.43 (d, J = 1.3 Hz, 1H), 7.35 (d, J = 8.8 Hz, 2H), 7.31 (dd, J = 7.6, 1.3 Hz, 1H), 7.09 (d, J = 8.7 Hz, 2H), 5.24 (app s, 1H), 4.64 (app s, 1H), 2.07 (s, 3H), 1.28 (s, 9H); ¹³C NMR (125 MHz, CDCl₃) δ 153.3, 145.2, 143.0, 134.8, 134.1, 131.5, 131.4, 130.8, 127.7, 126.8, 125.8, 117.0, 108.2, 34.8, 31.1, 25.4; HRMS (ESI) calcd for [C₂₀H₂₂N₂O₂S + Na]⁺ 377.1294, found 377.1306; **IR** (thin film) 2233, 1504, 1381, 1182.

Prepared from sulfonyl chloride **S5a** and cyanamide **S2d** on a 2.0 mmol scale. **3c** was purified by flash column chromatography (Hex \rightarrow 1:9 EtOAc/Hex) as a yellow oil (1.68 mmol, 84% yield). R_f = 0.53 (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.82 (dd, J = 8.1, 1.3 Hz, 1H), 7.66 (td, J = 7.5, 1.3 Hz, 1H), 7.45 – 7.39 (m, 1H), 7.34 (dd, J = 7.7, 1.4 Hz, 1H), 7.23 – 7.16 (m, 2H), 7.05 (dd, J = 9.1, 7.9 Hz, 2H), 5.30 (app s, 1H), 4.74 (app s, 1H), 2.11 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 163.0 (d, ¹ $_{JF-C} = 251.7$ Hz), 145.3, 143.1, 135.1, 133.7, 131.6, 131.0, 130.1 (d, ⁴ $_{JF-C} = 3.2$ Hz), 128.6 (d, ³ $_{JF-C} = 9.1$ Hz), 127.8, 117.2, 117.0 (d, ² $_{JF-C} = 23.3$ Hz), 107.9, 25.5; ¹⁹F NMR (470 MHz, CDCl₃) δ -109.4; HRMS (ESI) calcd for [C₁₆H₁₃FN₂O₂S + Na]⁺ 339.0574, found 339.0565; **IR** (thin film) 2237, 1503, 1383, 1181.

Prepared from sulfonyl chloride **S5a** and cyanamide **S2e** on a 2.0 mmol scale. **3d** was purified by flash column chromatography (5:95 \rightarrow 1:9 EtOAc/Hex) as a white solid (1.78 mmol, 89% yield). R_f = 0.49 (1:4 EtOAc/Hex); mp 68–70 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (dd, J = 8.1, 1.3 Hz, 1H), 7.66 (td, J = 7.5, 1.3 Hz, 1H), 7.43 (ddd, J = 8.6, 7.6, 1.4 Hz, 1H), 7.36 – 7.32 (m, 3H), 7.16 (dt, J = 8.8, 2.2 Hz, 2H), 5.31 (app s, 1H), 4.75 (app s, 1H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 143.0, 135.8, 135.2, 133.7, 132.8, 131.6, 131.0, 130.1, 127.8, 127.2, 117.3, 107.6, 25.4; HRMS (ESI) calcd for [C₁₆H₁₃ClN₂O₂S + Na]⁺ 355.0278, found 355.0275; **IR** (thin film) 2253, 2239, 1486, 1184.

Prepared from sulfonyl chloride **S5a** and cyanamide **S2g** on a 2.0 mmol scale. **3e** was purified by flash column chromatography (1:9 \rightarrow 1:4 EtOAc/Hex) as a colorless oil (1.78 mmol, 89% yield). R_f = 0.30 (1:4 EtOAc/Hex); ¹H NMR (400 MHz, CDCl₃) δ 7.79 (dd, J = 8.1, 1.3 Hz, 1H), 7.64 (td, J = 7.6, 1.3 Hz, 1H), 7.39 (ddd, J = 8.0, 7.5, 1.4 Hz, 1H), 7.34 (dd, J = 7.7, 1.3 Hz, 1H), 7.12 – 7.03 (m, 2H), 6.87 – 6.77 (m, 2H), 5.31 (t, J = 1.5 Hz, 1H), 4.78 (t, J = 1.1 Hz, 1H), 3.79 (s, 3H), 2.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.7, 145.2, 143.1, 134.8, 133.9, 131.4, 131.0, 128.3, 127.6, 126.5, 117.1, 114.9, 108.2, 55.6, 25.5; HRMS (ESI) calcd for [C₁₇H₁₆N₂O₃S + Na]⁺ 351.0774, found 351.0781; **IR** (thin film) 2253, 1507, 1383, 1265, 1182.

Prepared from sulfonyl chloride **S5a** and cyanamide **S2l** on a 2.0 mmol scale. **3f** was purified by flash column chromatography (1:9 \rightarrow 1:4 EtOAc/Hex) as a white solid (1.62 mmol, 81% yield). mp 58–61 °C; $R_f = 0.43$ (1:4 EtOAc/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (dd, J = 8.2, 1.3 Hz, 1H), 7.67 (td, J = 7.5, 1.3 Hz, 1H), 7.45 (ddd, J = 8.7, 7.5, 1.4 Hz, 1H), 7.40 – 7.33 (m, 2H), 7.30 (t, J = 8.0 Hz, 1H), 7.26 (dd, J = 3.9, 1.8 Hz, 1H), 7.13 (ddd, J = 8.0, 2.2, 1.1 Hz, 1H), 5.30 (app s, 1H), 4.73 (app s, 1H), 2.11 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 145.3, 143.0, 135.4, 135.3, 135.2, 133.7, 131.6, 131.0, 130.7, 129.8, 127.8, 125.7, 123.5, 117.3, 107.4, 25.4; **HRMS** (ESI) calcd for [C₁₆H₁₃ClN₂O₂S + Na]⁺ 355.0278, found 355.0284; **IR** (thin film) 2230, 1589, 1383, 1182.

Prepared from sulfonyl chloride **S5a** and cyanamide **S2o** on a 2.0 mmol scale. **3g** was purified by flash column chromatography (8:92 \rightarrow 1:9 EtOAc/Hex) as a yellow solid (1.43 mmol, 71% yield). R_f = 0.38 (1:4 EtOAc/Hex); mp 85–87 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dd, J = 8.2, 1.3 Hz, 1H), 7.64 (td, J = 7.6, 1.3 Hz, 1H), 7.42 (ddd, J = 8.1, 7.4, 1.4 Hz, 1H), 7.33 (dd, J = 7.7, 1.3 Hz, 1H), 7.23 (t, J = 8.5 Hz, 1H), 6.89 (ddd, J = 8.5, 2.3, 1.1 Hz, 1H), 6.79 – 6.72 (m, 2H), 5.32 (app s, 1H), 4.77 (app s, 1H), 3.74 (s, 3H), 2.11 (d, J = 1.2 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 160.4, 145.2, 142.9, 135.2, 134.9, 134.1, 131.5, 131.0, 130.4, 127.7, 117.6, 117.3, 115.6, 111.3, 107.8, 55.5, 25.4; HRMS (ESI) calcd for [C₁₇H₁₆N₂O₃S + Na]⁺ 351.0774, found 351.0785; **IR** (thin film) 2253, 2234, 1606, 1183.

Prepared from sulfonyl chloride **S5a** and cyanamide **S2m** on a 2.0 mmol scale. **3h** was purified by flash column chromatography (5:95 \rightarrow 1:9 EtOAc/Hex) as a thick pale yellow oil (1.62 mmol, 81% yield). R_f = 0.49 (1:4 EtOAc/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 7.91 (dd, J = 8.2, 1.3 Hz, 1H), 7.68 (td, J = 7.6, 1.3 Hz, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.53 (t, J = 7.9 Hz, 1H), 7.49 – 7.42 (m, 3H), 7.35 (dd, J = 7.6, 1.3 Hz, 1H), 5.27 (app s, 1H), 4.67 (app s, 1H), 2.10 (s, 3H); ¹³**C NMR** (125 MHz, CDCl₃) δ 145.3, 143.0, 135.4, 135.0, 133.5, 132.5 (q, ² $_{J_{F-C}}$ = 33.5 Hz), 131.7, 131.0, 130.6, 128.7, 127.9, 126.2 (q, ³ $_{J_{F-C}}$ = 3.7 Hz), 122.9 (q, ¹ $_{J_{F-C}}$ = 271.0 Hz), 122.5 (q, ³ $_{J_{F-C}}$ = 3.9 Hz), 117.2, 107.3, 25.4; ¹⁹**F NMR** (470 MHz, CDCl₃) δ -63.0; **HRMS** (ESI) calcd for [C₁₇H₁₃F₃N₂O₂S + Na]⁺ 389.0542, found 389.0539; **IR** (thin film) 2253, 1386, 1328, 1183, 1139.

Prepared from sulfonyl chloride **S5a** and cyanamide **S2n** on a 2.0 mmol scale. **3e** was purified by flash column chromatography (1:9 \rightarrow 1:4 EtOAc/Hex) as a pale yellow oil (1.69 mmol, 85% yield). R_f = 0.31 (1:4 EtOAc/Hex); ¹H NMR (400 MHz, CDCl₃) δ 8.09 – 8.01 (m, 1H), 7.92 – 7.85 (m, 2H), 7.67 (td, *J* = 7.6, 1.3 Hz, 1H), 7.51 – 7.40 (m, 3H), 7.35 (dd, *J* = 7.6, 1.3 Hz, 1H), 5.30 (app s, 1H), 4.75 (app s, 1H), 3.91 (s, 3H), 2.11 (d, *J* = 0.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2, 145.2, 143.0, 135.2, 134.7, 133.8, 132.1, 131.6, 131.0, 130.5, 130.0, 129.8, 127.8, 126.6, 117.4, 107.6, 52.6, 25.4; HRMS (ESI) calcd for [C₁₈H₁₆N₂O₄S + Na]⁺ 379.0723, found 379.0729; **IR** (thin film) 2254, 1727, 1265, 1184.

Synthesis of 1-bromo-2-(2-methylallyl)benzene: To a solution of *i*PrMgCl·LiCl (0.77 M in THF, 14.3 mL, 11 mmol) was slowly added 1,2-dibromobenzene (1.23 mL, 10 mmol) at -15 °C. The resulting solution was stirred at -15 °C for 2 h, whereupon methallyl bromide (1.21 mL, 12 mmol) and CuCN·2LiCl (1.0 M in THF, 1.0 mL, 1.0 mmol) were sequentially added. The reaction was allowed to warm to room temperature and stir overnight, which was then quenched with saturated aqueous NH₄Cl (10 mL) and extracted with Et₂O (20 mL × 3). The combined organic extracts were washed with brine, dried over Na₂SO₄, and concentrated to afford 1-bromo-2-(2-methylallyl)benzene as a pale yellow oil (1972 mg, 9.3 mmol, 93% crude yield), which was

taken to the next step without further purification. ¹H NMR (500 MHz, CDCl₃) δ 7.54 (dd, J = 7.9, 1.2 Hz, 1H), 7.28 – 7.20 (m, 2H), 7.07 (ddd, J = 7.9, 6.7, 2.3 Hz, 1H), 4.86 (app s, 1H), 4.59 (app s, 1H), 3.46 (s, 2H), 1.76 (s, 3H). The NMR data is consistent with a literature report.³¹

Synthesis of sulfonyl chloride S5b: Sulfonyl chloride **S5b** was prepared in the same manner as **S5a**, starting from 1-bromo-2-(2-methylallyl)benzene on a 2.5 mmol scale. **S5b** was purified by flash column chromatography (1:9 Et₂O/Hex) as a colorless oil (1.9 mmol, 76% yield). $R_f = 0.63$ (1:9 EtOAc/Hex); ¹H **NMR** (400 MHz, CDCl₃) δ 8.11 (dd, J = 8.1, 1.4 Hz, 1H), 7.66 (td, J = 7.6, 1.4 Hz, 1H), 7.50 (dd, J = 7.9, 1.3 Hz, 1H), 7.45 (td, J = 7.8, 1.4 Hz, 1H), 4.98 (t, J = 1.5 Hz, 1H), 4.68 – 4.57 (m, 1H), 3.89 (s, 2H), 1.78 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 143.3, 142.9, 139.5, 135.0, 132.5, 128.9, 127.1, 114.1, 40.1, 22.5.

Synthesis of substrate 3j: 3j was prepared in the same manner as 3a, starting from sulfonyl chloride S5b and cyanamide S2a on a 2.0 mmol scale. 3j was purified by flash column chromatography (1:9 → 1:4 EtOAc/Hex) as a colorless oil (1.17 mmol, 83% yield). $R_f = 0.30$ (1:9 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.84 (dd, J = 8.1, 1.4 Hz, 1H), 7.62 (td, J = 7.5, 1.4 Hz, 1H), 7.45 (dd, J = 7.9, 1.3 Hz, 1H), 7.35 (td, J = 7.7, 1.3 Hz, 1H), 7.15 (d, J = 8.3 Hz, 2H), 7.10 – 7.04 (m, 2H), 4.90 (app s, 1H), 4.48 (d, J = 0.7 Hz, 1H), 3.63 (s, 2H), 2.35 (s, 3H), 1.73 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 143.7, 140.6, 140.5, 134.9, 134.4, 132.6, 131.55, 131.53, 130.4, 127.1, 126.4, 113.6, 108.4, 40.7, 22.6, 21.1; HRMS (ESI) calcd for [C₁₈H₁₈N₂O₂S + Na]⁺ 349.0981, found 349.0993; **IR** (thin film) 2235, 1505, 1378, 1179.

Synthesis of sulfonyl chloride S5c: Sulfonyl chloride S5c was prepared in the same manner as S5a, starting from 1-bromo-4-methoxy-2-(prop-1-en-2-yl)benzene³² on a 7.2 mmol scale. S5c was purified by flash column chromatography (1:9 EtOAc/Hex) as an oily yellow solid (4.8 mmol, 67% yield). $R_f = 0.38$ (1:9 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, J = 9.1 Hz, 1H), 6.93 (dd, J = 9.1, 2.7 Hz, 1H), 6.78 (d, J = 2.7 Hz, 1H), 5.39 – 5.32 (m, 1H), 5.13 – 5.02 (m, 1H), 3.91 (s, 3H), 2.16 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.4, 146.6, 142.4, 133.8, 131.7, 117.2, 116.4, 112.8, 55.9, 25.0.

Synthesis of substrate 3k: 3k was prepared in the same manner as **3a**, starting from sulfonyl chloride **S5c** and cyanamide **S2a** on a 2.0 mmol scale. **3k** was purified by flash column chromatography (1:9 \rightarrow 1:4 EtOAc/Hex) as a white solid (1.74 mmol, 87% yield). R_f = 0.30 (1:4 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, *J* = 9.0 Hz, 1H), 7.17 – 7.13 (m, 2H), 7.11 – 7.05 (m, 2H), 6.84 (dd, *J* = 9.0, 2.7 Hz, 1H), 6.77 (d, *J* = 2.7 Hz, 1H), 5.27 (app s, 1H), 4.76 (app s, 1H), 3.89 (s, 3H), 2.34 (s, 3H), 2.10 (d, *J* = 0.5 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 164.2, 147.7, 143.1, 140.0, 133.7, 131.8, 130.4, 126.1, 125.3, 116.8, 116.5, 112.7, 108.4, 55.8, 25.3, 21.1; HRMS (ESI) calcd for [C₁₈H₁₈N₂O₃S + Na]⁺ 365.0930, found 365.0941; **IR** (thin film) 2235, 1590, 1369, 1242, 1176.

Prepared from sulfonyl chloride **S5a** and cyanamide **S2t** on a 1.0 mmol scale. **3I** was purified by flash column chromatography (15:85 \rightarrow 20:80 EtOAc/Hex) as a yellow gel (0.54 mmol, 54 % yield). R_f = 0.18 (1:4 EtOAc/Hex); ¹**H NMR** (500 MHz, CDCl₃) δ 8.11 (d, J = 5.8 Hz, 1H), 8.06 (dd, J = 8.1, 1.3 Hz, 1H), 7.67 (td, J = 7.5, 1.2 Hz, 1H), 7.53 – 7.46 (m, 1H), 7.33 (dd, J = 7.7, 1.4 Hz, 1H), 6.84 (dd, J = 5.8, 2.1 Hz, 1H), 6.67 (d, J = 2.1 Hz, 1H), 5.40 (s, 1H), 4.81 (s, 1H), 3.90 (s, 3H), 2.14 (s, 3H).¹³C NMR (125 MHz, CDCl₃) δ 165.3, 148.7, 145.2, 144.1, 142.4, 135.5, 134.0, 131.7, 131.2, 127.9, 118.2, 108.9, 105.9, 102.6, 54.0, 25.2. **HRMS** (ESI) calcd for [C₁₆H₁₅N₃O₃S + Na]⁺ 352.0726, found 352.0749; **IR** (thin film) 2230, 1594, 1481, 1381.

Prepared from sulfonyl chloride **S5a** and cyanamide **S2u** on a 1.0 mmol scale. **3m** was purified by flash column chromatography (1:4 EtOAc/Hex) as a yellow gel (0.65 mmol, 65% yield). $R_f = 0.45$ (1:4 EtOAc/Hex); ¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (dd, J = 8.2, 1.3 Hz, 1H), 7.65 (td, J = 7.5, 1.3 Hz, 1H), 7.42 (td, J = 7.8, 1.4 Hz, 1H), 7.35 (dd, J = 7.6, 1.4 Hz, 1H), 6.71 (d, J = 8.3 Hz, 1H), 6.68 (d, J = 2.2 Hz, 1H), 6.61 (dd, J = 8.3, 2.2 Hz, 1H), 6.02 (s, 2H), 5.34 (s, 1H), 4.82 (s, 1H), 2.12 (s, 3H)...¹³C **NMR** (100 MHz, CDCl₃) δ 149.0, 148.5, 145.3, 143.2, 135.0, 133.9, 131.5, 131.1, 127.7, 127.6, 121.0, 117.3, 108.5, 108.1, 108.0, 102.3, 77.3, 77.0, 76.7, 25.5.**HRMS** (ESI) calcd for [C₁₇H₁₄N₂O₄S + Na]⁺ 365.0566, found 365.0574; **IR** (thin film) 2229, 1607, 1505, 1482, 1180.

8. Study towards the stereochemistry of alkene addition step

Synthesis of mono-deuterated substrate trans-1ad-d1

The precursor of **S5** (2-bromo-1-ethynylbenzene) was prepared from 2-bromoiodobenzene in 2 steps based on the reported procedures.³³

(*E*)-1-bromo-2-(prop-1-en-2-yl-1-d)benzene (S5): The preparation of S5 was performed according to a literature reference. ³⁴ To a flame dried, N₂ purged, 25 mL round bottomed flask, bis(cyclopentadienyl)zirconium dichloride (73 mg, 0.25 mmol, 5.0 mol %) and Me₃Al (3.75 mL, 7.5 mmol, 1.5 equiv, 2.0 M solution in toluene) were added at 0 °C. Then isobutanol (0.05 mL, 0.5 mmol, 10 mol %) was added at the same temperature, while a white fume can be observed over the reaction mixture in the flask. After 10 minutes, 2-bromo-1-ethynylbenzene (905 mg, 5.0 mmol, 1 equiv.) was added. The mixture was stirred at room temperature overnight. D₂O (10 mL) was dropwise added to the mixture at 0 °C (*Caution!* Gas evolution, reaction vessel must be vented.) The aqueous phase was extracted with petroleum ether and the combined organic layers were dried over anhydrous MgSO₄ and concentrated in vacuum. The crude product S5 (815 mg) with 97% D-labeling was obtained as a dark orange oil. ¹H NMR (400 MHz, CDCl₃) δ 7.55 (dd, J = 8.0, 1.0 Hz, 1H), 7.28 – 7.24 (m, 1H), 7.19 (dd, J = 7.6, 1.8 Hz, 1H), 7.11 (td, J = 7.9, 1.9 Hz, 1H), 5.23 – 5.22 (m, 0.03H), 4.92 (s, 1H), 2.10 (d, J = 0.8 Hz, 3H).

Figure S1. The ¹H-NMR spectrum of crude S5

trans-S4I-*d*₁: To a solution of S5 (815mg, crude mass) in anhydrous THF (4 mL), nBuLi (1.5 mL, 2.5 M solution in hexanes) was added dropwise at -78 °C. After 30 minutes, CO₂ gas was bubbled into the flask for 10 minutes (CO₂ gas was introduced by warming dry ice and passing the vapor through an anhydrous CaSO₄ column prior to entering the reaction vessel). The resulting mixture was allowed to warm up to room temperature and stir overnight. The reaction was quenched with sat. NaHCO₃ solution (5 mL). The aqueous layer was extracted with diethyl ether (10 mL). The aqueous portion was then acidified with 1M HCl until pH=1 (as indicated by pH paper). The resulting milky-white aqueous layer was extracted with diethyl ether (3 × 10 mL). The combined organic layers were washed with brine, dried over MgSO₄ and concentrated in vacuo to afford the crude *trans*-S4I-*d*₁ as a pale-yellow solid (495 mg). ¹H NMR (400 MHz, CDCl₃) δ 10.94 (s, 1H), 7.98 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.53 (td, *J* = 7.5, 1.4 Hz, 1H), 7.38 (td, *J* = 7.7, 1.4 Hz, 1H), 7.30 – 7.26 (m, 1H), 5.38 (s, 0.07H), 4.91 (d, *J* = 0.9 Hz, 1H), 2.14 (d, *J* = 0.9 Hz, 3H).

Figure S2. The ¹H-NMR spectrum of crude *trans*-S4l-d₁

trans-1ad- d_1 : The preparation of *trans*-1ad- d_1 was performed based on standard conditions (See 6.3 synthesis of substrate 1ad) with modifications. To a suspension of acid *trans*-S4l- d_1 (495 mg, crude mass) in CH₂Cl₂ (3 mL) was added DMF (1 drop via glass pipet) and isoamylene (6.3 mL, 60 mmol), followed by dropwise addition of (COCl)₂ (2.0 M in CH₂Cl₂, 1.5 mL, 3.0 mmol) at room temperature. The mixture was stirred for 30 minutes, whereupon gas evolution ceased and all *trans*-S4I- d_1 dissolved. The reaction flask was cooled to -12 °C in an ethylene glycol/dry ice bath and a solution of Et₃N (0.82 mL, 6.0 mmol) in CH₂Cl₂ (2.0 mL) was added dropwise. Thereafter, a solution of cyanamide S2g (445 mg, 3.0 mmol) in CH₂Cl₂/THF (1.5 and 0.5 mL, respectively) was slowly added at the same temperature. The resulting mixture was allowed to warm up to room temperature and stir for 20 h. Et₂O (20 mL) was added to precipitate triethylamine hydrochloride, which was filtrated through a short Celite[®] column. Without further treatment, the filtrate was concentrated in vacuo and the resulting oily residue was purified by flash column chromatography to afford *trans*-1ad- d_1 as a sticky white wax (2.0 mmol, 67 % yield). $R_f = 0.20$ (1:9 EtOAc/Hex); ¹H NMR (500 MHz, CDCl₃) δ 7.56 - 7.48 (m, 2H), 7.43 - 7.36 (m, 2H), 7.28 (d, J = 8.6 Hz, 2H), 6.95 (d, J = 8.9 Hz, 2H), 5.34 (app s, 0.01H), 5.13 (app s, 1H), 3.83 (s, 3H), 2.22 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.1, 159.9, 143.1, 141.8, 131.5, 130.7, 128.2, 127.6, 127.52, 127.46, 126.9, 116.9 (t, J = 24.4 Hz), 114.9, 110.1, 55.6, 23.2; HRMS (ESI) calcd for $[C_{18}H_{15}DN_2O_2 + Na]^+$ 316.1104, found 316.1116; **IR** (thin film) 2230, 1712, 1607, 1506, 1244.

2ad-*d*1

Prepared from *trans*-1ad- d_1 on a 0.2 mmol scale with CpPd(1-phenylallyl) (10 mol%), Xantphos (10 mol%), and BEt₃ (60 mol%) in toluene at 80 °C for 24 h. **2ad**- d_1 was purified by flash column chromatography (0.6:100 \rightarrow 1:100 MeOH/CH₂Cl₂) as a pale yellow foam (0.19 mmol, 95% yield). R_f = 0.29 (2:100 MeOH/CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, J = 7.5 Hz, 1H), 7.70 – 7.62 (m, 2H), 7.57 (t, J = 7.3 Hz, 1H), 7.22 (d, J = 7.8 Hz, 2H), 7.03 (d, J = 7.8 Hz, 2H), 3.85 (s, 3H), 2.88 (s, 1H), 1.67 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 167.7, 160.0, 147.1, 132.7, 131.0, 130.9, 129.5, 126.7, 124.7, 121.3, 116.0, 115.3, 63.7, 55.6, 28.4 (t, J = 20.5 Hz), 24.9; HRMS (ESI) calcd for [C₁₈H₁₅DN₂O₂ + Na]⁺ 316.1167, found 316.1151; IR (thin film) 2246, 1691, 1609, 1511, 1370, 1246.

Assignment of stereochemistry of *trans*-1ad-d₁ by nOe NMR experiments

Assigned Structure	Key ¹ H NMR Signals	Irradiation	Key nOe Results	Associate File
OMe N-CN Me 3	H1: 5.15 (s, 1H) H2: 5.35 (s, 1H) H3: 2.23 (s, 3H)	H1	nOe observed: H2 nOe not observed: H3	lad-nOe-expl.mnova
H [⊥] H ₁ 1 2 1ad		Н3	Strong nOe: H2 Weak nOe: H1	1ad-nOe-exp2.mnova

Assigned Structure	Key ¹ H NMR Signals	Irradiation	Key nOe Results	Associate File
$ \begin{array}{c} $	H1: 5.14 (s, 1H) H3: 2.23 (s, 3H)	H1	nOe not observed: H3	1ad-D-nOe-exp1.mnova

Conclusion: The proton and methyl group are *trans*.

Assignment of stereochemistry of (±)-2ad by nOe NMR experiments

Assigned Structure	Key ¹ H NMR Signals	Irradiation	Key nOe Results	Associate File
H_{1}^{0} H_{2}^{0} H_{2	H1: 2.89 (d, J = 16.7 Hz, 1H) H2: 2.70 (d, J = 16.7 Hz, 1H)	H1	nOe observed: H2, H3, H4, H5,6	2ad-nOe-exp1.mnova
	16.7 Hz, 1H) H3: 7.66 – 7.63 (m, 1H) H4: 1.68 (s, 3H) H5,6: 7.22 (d, J = 8.9 Hz, 2H)	H2	nOe observed: H1, H4, H5,6 nOe not observed: H3	2ad-nOe-exp2.mnova

Assignment of stereochemistry of (\pm) -2ad- d_1 by nOe NMR experiments

Assigned Structure	Key ¹ H NMR Signals	Irradiation	Key nOe Results	Associate File
$(\pm)-2ad-d_{1}-I$	H1: 2.88 (s, 1H) H3: 7.66 - 7.63 (m, 1H) H4: 1.68 (s, 3H) H5,6: 7.22 (d, J = 8.9 Hz, 2H)	H1	nOe observed: H3 , H4 , H5 ,6	2ad-D-nOe-exp1.mnova

9. Computation of ¹H-NMR chemical shifts of 2ad

The protocol of computational prediction was provided by Hoye et al.³⁵ The studied molecule (**2ad**) was initially subjected to a Monte Carlo conformational search using MacroModel (version 11.0, MMFF forcefield) and Maestro (version 10.4.017), implemented in the Schrödinger software suite. Then each geometry of **2ad** was optimized at the M062X/6-31+G(d,p) level of theory with CPCM(chloroform) solvation model. The nature of each optimized geometry was verified by frequency calculation (298K, at the same level of theory). The relative free energies obtained from the frequency calculation were used to determine the Boltzmann weighting factors for each conformer. NMR calculation was performed for each conformer at the b3lyp/6-311+G(2d,p) level of theory. We used the scaling parameters for this protocol [b3lyp/6-311+G(2d,p)//M06-2X/6-31+G(d,p)] created by Tantillo et al.³⁶ The Boltzmann weighting factors were applied to the computed NMR shielding tensors for each nucleus of each individual conformer.

Table S3. Electronic Energies and Boltzmann Factor of 2ad Conformers 1-7

Conformer	Energy (a.u.)	Energy (kcal/mol)	Relative Energy (kcal/mol)	Boltzmann Factor	Equilibrium Mole Fraction
2ad-conf-1	-954.920767	-599221.749	0.837097528	0.243064839	0.071029052
2ad-conf-2	-954.920985	-599221.8858	0.70030048	0.306271354	0.089499428
2ad-conf-3	-954.91905	-599220.6715	1.914531152	0.039362362	0.011502574
2ad-conf-4	-954.919157	-599220.7387	1.847387647	0.04409124	0.012884459
2ad-conf-5	-954.921925	-599222.4756	0.110441653	0.8297664	0.242476539
2ad-conf-6	-954.922062	-599222.5616	0.024472866	0.959491986	0.280385294
2ad-conf-7	-954.922101	-599222.5861	0	1	0.292222654

Figure S3. The label number of the atoms in 2ad

Table S4. Predicted and experimental chemical shifts in ¹H-NMR of 2ad

Gaussian atom numbers	Predicted chemical shift (ppm)	Experimental Chemical Shift (ppm)	δ _{Exp-comp} (ppm)
13	2.60	2.70	0.10
24	7.49	7.64	0.15
25	7.77	7.97	0.20
26	7.44	7.58	0.14
27	7.54	7.68	0.14
28	1.79		
29	1.69	1.68	0.09*
30	1.30	-	
31	2.82	2.89	0.07
32	7.32	7.22	-0.10
33	6.93	7.03	0.10
34	6.93	7.03	0.10
35	7.22	7.22	0.00
36	3.91		
37	3.65	3.86	0.12*
38	3.65	_	

* For methyl protons, $\delta_{\text{Exp-comp}} = \delta_{\text{Exp}} - \overline{\delta_{comp}}$

Cartesian Coordinates 2ad-Conformer 1

С	3.737329	0.579261	0.279851	С	-3.28445	-0.25394	1.42171
С	2.463073	0.034384	0.160862	С	-1.90394	-0.37062	1.389717
С	2.297299	-1.31028	-0.1492	0	-5.35086	-0.00506	0.361395
С	3.376156	-2.15922	-0.36279	С	-6.12599	0.122259	-0.81871
С	4.65559	-1.61645	-0.25519	Н	3.891698	1.62496	0.531858
С	4.830163	-0.2643	0.063973	Н	3.215609	-3.20709	-0.60054
С	0.844815	-1.62392	-0.17997	Н	5.526453	-2.24521	-0.41445
Ν	0.199055	-0.44851	0.13218	Н	5.835772	0.13748	0.148806
С	1.108507	0.694388	0.336138	Н	1.679719	2.117278	1.862605
0	0.310465	-2.6945	-0.42094	Н	-0.05747	1.754698	1.830717
С	0.941824	1.322889	1.719484	Н	1.09262	0.564011	2.491259
С	0.827263	1.728933	-0.78467	Н	-0.21321	2.067118	-0.7143
Н	0.970864	1.260107	-1.76392	Н	-1.41166	-0.19456	-1.96416
С	1.69505	2.905647	-0.69811	Н	-3.86756	0.010217	-1.93437
Ν	2.384317	3.830472	-0.61598	Н	-3.83048	-0.28228	2.359566
С	-1.22148	-0.33323	0.168427	Н	-1.34495	-0.50359	2.311786
С	-1.94182	-0.19927	-1.01487	Н	-7.16253	0.185884	-0.49112
С	-3.33246	-0.08765	-0.99715	Н	-5.85858	1.031697	-1.36818
С	-4.00491	-0.11003	0.228025	Н	-5.99897	-0.7512	-1.46773
2ad-Con	former 2						
С	3.712518	0.566566	0.463941	С	-4.00121	-0.07511	-0.23807
С	2.44949	0.028563	0.239676	С	-3.39392	-0.2251	1.011575
С	2.302273	-1.31697	-0.07611	С	-2.00602	-0.35162	1.08749
С	3.389874	-2.17339	-0.1927	0	-5.33839	0.055659	-0.42559
С	4.659024	-1.63752	0.020398	С	-6.17415	0.027779	0.719098
С	4.814323	-0.28466	0.346307	Н	3.851462	1.612785	0.722673
С	0.855765	-1.62257	-0.2273	Н	3.243536	-3.22165	-0.43784
Ν	0.193198	-0.44208	0.023576	Н	5.536294	-2.27226	-0.06086
С	1.088972	0.69716	0.296729	Н	5.811627	0.111662	0.514374
0	0.336562	-2.69166	-0.50527	Н	1.538269	2.124595	1.859492
С	0.810244	1.33374	1.658186	Н	-0.19233	1.771457	1.682316
С	0.908835	1.727349	-0.84858	Н	0.890731	0.57773	2.443239
Н	1.131096	1.253104	-1.81038	Н	-0.13168	2.072251	-0.86753
С	1.773788	2.899297	-0.69457	Н	-1.23208	-0.17967	-2.21202
Ν	2.45992	3.82001	-0.5581	Н	-3.71462	0.046951	-2.36151
С	-1.2245	-0.31898	-0.06288	Н	-3.9781	-0.25456	1.923694
С	-1.84188	-0.17978	-1.31185	Н	-1.52888	-0.48819	2.053972
С	-3.21895	-0.0582	-1.4014	Н	-7.19202	0.143508	0.349899

Н	-6.08227	-0.92667	1.24908	Н	-5.9351	0.852041	1.400253
2ad-Conf	ormer 3						
С	3 842344	1 095638	0 222044	С	-3 14087	-0 31647	1 073531
C	2 654309	0 37692	0 158159	C	-1 74942	-0 31281	1 18239
C	2.67003	-1 00004	-0.01891	0	-5.06868	-0.48792	-0 40278
C	3 855071	-1 71537	-0.14152	C	-5 92357	-0.3178	0 71451
C	5.050082	-1 00023	-0.08131	Н	3 852218	2 173879	0.365102
C	5 040903	0 388837	0.098214	Н	3 838185	-2 79301	-0 27864
C	1 269062	-1 49603	-0.048	Н	5 99855	-1 52093	-0 17291
N	0.471752	-0 39238	0 157381	Н	5 983736	0.92633	0.143612
C	1 224649	0.871555	0 269632	Н	1 596529	2 474191	1 67185
0	0 881574	-2.64107	-0.21725	Н	-0.07367	1 879564	1.693721
С С	0.973271	1 577298	1 603216	Н	1 228133	0.908521	2,428936
C	0.917299	1.80829	-0.92655	Н	0.983484	1 246644	-1 86426
н	1 670547	2 603164	-0.95901	Н	-0.91811	-0 73838	-2 08004
C	-0 39615	2.005101	-0.85064	Н	-3 40647	-0.76236	-2 28566
N	-1 41089	3 011561	-0 78623	Н	-3 74141	-0 20588	1 968586
C	-0 9494	-0 44337	0.053011	Н	-1 28612	-0 21378	2 159839
C C	-1 54649	-0 61548	-1 20131	Н	-6 93918	-0 34942	0.322751
C C	-2 92544	-0.63259	-1 32121	Н	-5 78597	-1 12586	1 441634
C C	-3 72944	-0.03237	-0.18413	н	-5.76577	0.648574	1 199818
C	5.72744	0.4/152	0.10415	11	5.74715	0.010571	1.177010
2ad-Conf	ormer 4						
С	3.858588	1.069385	-0.00633	С	-3.03082	-0.20844	1.468331
С	2.662098	0.364319	0.051061	С	-1.6453	-0.2234	1.466007
С	2.649736	-1.01864	-0.07061	0	-5.08983	-0.36437	0.376607
С	3.814594	-1.75377	-0.25384	С	-5.84876	-0.54066	-0.80719
С	5.01794	-1.05266	-0.31465	Н	3.890092	2.152251	0.091508
С	5.036781	0.342513	-0.1926	Н	3.776595	-2.83575	-0.3446
С	1.245369	-1.49681	0.027089	Н	5.951242	-1.58925	-0.45647
Ν	0.478191	-0.37489	0.247551	Н	5.985678	0.868868	-0.24205
С	1.250866	0.881852	0.252901	Н	1.746969	2.531924	1.557854
0	0.835059	-2.64267	-0.06631	Н	0.077434	1.961584	1.732595
С	1.11079	1.641581	1.573083	Н	1.422247	1.00207	2.402566
С	0.860709	1.776854	-0.95093	Н	0.848003	1.179613	-1.86864
Н	1.616605	2.560572	-1.07182	Н	-1.10469	-0.77241	-1.83979
С	-0.43684	2.447152	-0.79697	Н	-3.56935	-0.77016	-1.85815
Ν	-1.43877	3.010781	-0.67119	Н	-3.59093	-0.06068	2.38642
С	-0.94699	-0.40712	0.2683	Н	-1.0965	-0.09908	2.395029
С	-1.6516	-0.61056	-0.91407	Н	-6.89324	-0.47061	-0.50701
С	-3.04575	-0.61072	-0.92303	Н	-5.62339	0.243801	-1.53813
С	-3.73709	-0.39647	0.272745	Н	-5.66045	-1.52416	-1.25203

2ad-Conformer 5

С	3.747511	-0.79175	-0.77006	С	-3.23326	0.691065	-1.37368
С	2.517382	-0.22118	-0.46688	С	-1.84819	0.7413	-1.36641
С	2.442322	0.941221	0.288972	0	-5.27802	0.222734	-0.34541
С	3.577081	1.58115	0.771505	С	-6.02299	-0.2097	0.780458
С	4.814707	1.013252	0.472722	Н	3.826116	-1.7024	-1.35958
С	4.896306	-0.15933	-0.2887	Н	3.490655	2.488597	1.362514
С	1.01249	1.31488	0.456757	Н	5.726199	1.480346	0.833348
Ν	0.291547	0.361898	-0.22984	Н	5.871193	-0.58513	-0.50817
С	1.125382	-0.68857	-0.83967	Н	1.626397	-1.50805	-2.7775
0	0.549204	2.26691	1.06246	Н	-0.08839	-1.08643	-2.59881
С	0.931866	-0.77656	-2.35454	Н	1.129873	0.196704	-2.81025
С	0.79958	-2.06567	-0.21309	Н	1.444588	-2.83384	-0.65203
Н	-0.24121	-2.33308	-0.4298	Н	-1.26737	-0.41525	1.772396
С	0.987334	-2.06813	1.240123	Н	-3.73078	-0.50585	1.787065
Ν	1.133019	-2.04609	2.386873	Н	-3.8039	1.011556	-2.23983
С	-1.13354	0.324986	-0.23736	Н	-1.31133	1.118287	-2.23233
С	-1.82435	-0.11634	0.887929	Н	-7.07069	-0.13694	0.492502
С	-3.21891	-0.16315	0.895537	Н	-5.78371	-1.24829	1.034676
С	-3.92478	0.235491	-0.24304	Н	-5.83468	0.434002	1.64673
2ad-Co	onformer 6						
С	3.705682	-0.68375	-0.98915	С	-3.10046	-0.36983	1.265533
С	2.487364	-0.16654	-0.56617	С	-1.72311	-0.27467	1.150939
С	2.43819	0.968025	0.233033	0	-5.25834	-0.08805	0.415567
С	3.588005	1.633068	0.640241	С	-6.13413	0.344353	-0.61132
С	4.813937	1.120241	0.21879	Н	3.764146	-1.57277	-1.61302
С	4.869534	-0.02504	-0.5853	Н	3.522068	2.518136	1.266742
С	1.015939	1.284643	0.532086	Н	5.736647	1.609329	0.516236
Ν	0.271304	0.332601	-0.12985	Н	5.835846	-0.40835	-0.90022
С	1.084877	-0.67086	-0.83833	Н	1.446099	-1.41854	-2.83559
0	0.573604	2.196673	1.210693	Н	-0.25947	-1.05728	-2.50177
С	0.768183	-0.72195	-2.33404	Н	0.898281	0.269841	-2.7739
С	0.856763	-2.07533	-0.22909	Н	1.483955	-2.80932	-0.74549
Н	-0.19034	-2.37105	-0.36296	Н	-1.522	1.110334	-1.94275
С	1.171645	-2.11209	1.201557	Н	-3.97257	0.927213	-1.77213
Ν	1.417518	-2.11607	2.331275	Н	-3.56432	-0.76453	2.164222
С	-1.14709	0.243789	-0.01567	Н	-1.08118	-0.58897	1.970038
С	-1.96806	0.677908	-1.05149	Н	-7.142	0.149928	-0.24764
С	-3.35704	0.580283	-0.95058	Н	-6.01412	1.416134	-0.80443
С	-3.92382	0.051547	0.212112	Н	-5.96337	-0.2177	-1.53635

2ad-Conformer 7

С	3.707261	0.597209	1.036411
С	2.486688	0.119987	0.574804
С	2.43173	-0.95656	-0.30075
С	3.578059	-1.60085	-0.74899
С	4.806344	-1.12757	-0.28955
С	4.86763	-0.04107	0.591963
С	1.008005	-1.24114	-0.6247
Ν	0.269218	-0.32642	0.093712
С	1.087264	0.615493	0.876898
0	0.560503	-2.10471	-1.36098
С	0.761886	0.558406	2.370384
С	0.874598	2.063434	0.373019
Н	-0.17057	2.357967	0.523472
С	1.198158	2.204706	-1.04913
Ν	1.450531	2.292686	-2.17399
С	-1.14958	-0.2286	-0.00608
С	-1.73009	0.398644	-1.11534
С	-3.10821	0.498653	-1.21757
С	-3.92723	-0.02792	-0.2091

С	-3.35559	-0.66402	0.896205
С	-1.96611	-0.76409	0.984994
0	-5.26289	0.122813	-0.39648
С	-6.13473	-0.42139	0.579447
Н	3.76981	1.440582	1.720414
Н	3.507991	-2.44003	-1.43532
Н	5.726455	-1.60198	-0.61723
Н	5.835611	0.31219	0.935643
Н	1.439614	1.212882	2.925967
Н	-0.26555	0.885074	2.555925
Н	0.884632	-0.4636	2.737166
Н	1.505084	2.750928	0.946287
Н	-1.09116	0.792289	-1.90191
Н	-3.57594	0.976142	-2.07307
Н	-3.96795	-1.09138	1.681422
Н	-1.51552	-1.27725	1.830033
Н	-7.14437	-0.20172	0.235641
Н	-6.00298	-1.50591	0.662345
Н	-5.97085	0.045178	1.557279

10. References

- (1) Fraser, A. W.; Besaw, J. E.; Hull, L. E.; Baird, M. C. Organometallics 2012, 31, 2470.
- (2) Köster, R.; Binger, P.; Fenzl, W. Inorg. Synth. 1974, 15, 134.
- (3) Modified based on a reported procedure: Begnell, L.; Jeffery, E. A.; Meisters, A.; Mole, T. *Aust. J. Chem.* **1974**, *27*, 2577.
- (4) Modified based on a reported procedure: Wang, X.; Wang, X.; Liu, M.; Ding, J.; Chen. J.; Wu, H. Synthesis 2013, 45, 2241.
- (5) Modified based on a reported procedure: Wittenberger, S. J.; Donner, G. B. J. Org. Chem. 1993, 58, 4139.
- (6) Washing the organic extracts with a reducing agent, such as aqueous NaHSO₃ solution, reduced 1,4-benzoquinone by-product to hydroquinone. Hydroquinone coeluted with 5j during chromatography.
- (7) Modified based on a reported procedure: Barbe, G.; Charette, A. B. J. Am. Chem. Soc. 2008, 130, 18.
- (8) Modified based on a reported procedure: Lin, S.; Sun, Q.; Ge, Z.; Wang, X.; Ye, J.; Li, R. Bioog. Med. Chem. Lett. 2011, 21, 940.
- (9) It was difficult to separate product **6** from the residual dimesylate **6'** during column chromatography. Thus **6'** was tentatively used as the limiting reactant.
- (10)(a) Rao, B.; Zeng, X. Org. Lett. 2014, 16, 314. (b) Kumar, V.; Kaushik, M. P. Mazumdar, A. Euro. J. Org. Chem. 2008, 1910. (c) Li, J.; Neuville, L. Org. Lett. 2013, 15, 6124. (d) Stolley, R. M.; Guo, W.; Louie, J. Org. Lett. 2012, 14, 322.
- (11)Bargota, R. S.; Akhtar, M.; Biggadike, K.; Gani, D.; Allemann, R. Bioorg. Med. Chem. Lett. 2003, 13, 1623.
- (12)Oleinik, I. I.; Oleinik. I. V.; Zaitsev, D. E.; Ivanchev, S. S.; Tolstikov, G. A. Russ. J. Org. Chem. 2014, 50, 191.
- (13)Sahoo, S. K.; Jamir, L.; Guin, S.; Patel, B. K. Adv. Synth. Catal. 2010, 352, 2358.
- (14)S4j: Zhang, Z.; Liu, F. Org. Biomol. Chem. 2015, 13, 6690. S4k: Marion Merrell Dow Inc. Patent: US5039691
 A1, 1991. S4I–S4o: Nicolai, S.; Erard, S.; González, D. F.; Waser, J. Org. Lett. 2010, 12, 384. S4r: Bunescu,
 A.; Wang, Q.; Zhu, J. Chem. Euro. J. 2014, 20, 14633. S4s: Barczak, N. T.; Jarvo, E. R. Chem. Euro. J. 2011, 17, 12912.
- (15)Kozo, S.; Koji, U.; Masayuku, S. Heterocycles 1994, 38, 641.
- (16)Nicolai, S.; Erard, S.; Gonzalez, D. F.; Waser, J. Org. Lett. 2010, 12, 384.
- (17)Koder, R. L.; Lichtenstein, B. R.; Cerda, J. F.; Miller, A.; Dutton, P. L. Tetrahedron Lett. 2007, 48, 5517.
- (18)Ma, S.; Ni, B.; Chem. Eur. J. 2004, 10, 3286.
- (19)Lipshutz, B. H.; Sharma, S.; Dimock, S. H.; Behling, J. R. Synthesis 1992, 191.
- (20)(a) Kippo, T.; Fukuyama, T.; Ryu, L. Org. Lett. 2011, 13, 3864. (b) Sagot, E.; Pickering, D. S.; Pu, X.; Umberti, M.; Stensbol, T. B.; Nielsen, B.; Chapelet, M; Bolte, J.; Gefflaut, T.; Bunch, L. J. Med. Chem. 2008, 51, 4093.
 (c) Maguire, R. J.; Mulzer, J.; Bats, J. W. J. Org. Chem. 1996, 61, 6936.
- (21)Larock, R. C.; Yang, H.; Weinreb, S. M.; Herr, R. J. J. Org. Chem. 1994, 59, 4172.
- (22)Kippo, T.; Fukuyama, T.; Ryu, L. Org. Lett. 2011, 13, 3864.
- (23) Tannert, R.; Milroy, L.; Ellinger, B.; Hu, T.; Arndt, H.; Waldmann, H. J. Am. Chem. Soc. 2010, 132, 3063.
- (24)Kundig, P. E.; Seidel, T. M.; Jia, Y.; Bernardinelli, G. Angew. Chem., Int. Ed. 2007, 46, 8484.
- (25)Yu, H.; Ballard, E.; Boyle, P. D.; Wang, B. Tetrahedron 2002, 58, 7663.
- (26)Das, P.; McNulty, J. Tetrahedron Lett. 2010, 51, 3197.
- (27) Washing the organic extracts with water or aqueous solutions (e.g., 1 M HCl) led to a heavy emulsion.

- (28)**S4n** cyclized completely to the lactone by-product under the standard conditions. This procedure was modified based on a known report: Jang, D. O.; Park, D. J.; Kim, J. *Tetrahedron Lett.* **1999**, *40*, 5323.
- (29) Chen, G.; Gui, J.; Li, L.; Liao, J. Angew. Chem., Int. Ed. 2011, 50, 7681.
- (30)Prepared by bubbling CaCl₂-dried SO₂ gas through THF in a Schlenk flask at 0 °C following a similar report: Li, W.; Beller, M.; Wu, X. *Chem. Commun.* 2014, *50*, 9513. The concentration of SO₂ was estimated by measuring the mass of dissolved SO₂ against the total volume of the resulting solution.
- (31) Watson, I. D. G.; Ritter, S.; Toste, D. F. J. Am. Chem. Soc. 2009, 131, 2056.
- (32)Kou, X.; Li, Y.; Wu, L.; Zhang, X.; Yang, G.; Zhang, W. Org. Lett. 2015, 17, 5566.
- (33)Suzuki Y.; Naoe S.; Oishi S.; Fujii N.; Ohno H.; Org. Lett., 2012, 14, 326.
- (34) Zhang, W.; Chen, P.; Liu, G.; Angew. Chem. Int. Ed., 2017, 56, 5336.
- (35) Willoughby, P.H.; Jansma, M.J.; Hoye, T.R.; Nat. Protoc., 2014, 9, 643.
- (36)Lodewyk, M.W.; Siebert, M.R.; Tantillo, D.J.; Chem. Rev., 2011, 112, 1839.

11. Spectra for new compounds

т 20 -100 f1 (ppm) 10 -10 -30 -50 -60 -70 -90 0 -20 -40 -80 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 S127

00.00

).5

10.0

9.5

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5 f1 (ppm) 4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

-0.5

-1.0

-1

0.0

----0.00

4.5 f1 (ppm)

S189

3.82

9.0

8.5

8.0

7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0 f1 (ppm) 3.5

2e

S206

---0.00

00.0

S242

00.00

82	200 200 200 200 200 200 200 200 200 200
ŝ	Y0007777777777777777777777777777777777

S259

N. OMe		148.7 145.2 144.1 112.4 135.5	- 134.0 - 131.7 - 131.2 - 118.2	~ 108.9 - 105.9 ~ 102.6	77.3 77.0	-54.0	-25.2	0.0
	1							
1.671(18 44411);149/14/14/14/14/14/14/14/14/14/14/14/14/14/	id (f) w (b) in (b) (g) / g)		L la fana de	unaayan minadayanya kapada ayada	allapianingkan ang kang kang kang kang kang kang	Minanetholikingkankankankankankankankankankankankankank	ALPHANING MAINAGANAGANAGAN ANA MANA MANA MANA MANA MA	กงไปขององกับปลากรถูกไฟ แล้งหน่งคุณๆคณาสมาชี/ครับสุดภูณฑรรณ์ได้ กรไปขององกับปลากรถูกไฟ แล้งหน่งคุณๆคณาสมาชี/ครับสุดภูณฑรรณ์ได้
)0 190 180	170 160	150 140	130 120	110 100 f) 90 80 1 (ppm)	70 60	50 40 30	20 10 0 -1 \$273

00:0-----

S288

00.0-----

S294

S337

00.00

S341

ΌΗ Me S4n

1.03⊥ 2.03⊥ D.99-J 1−96.0 1.01 __ 2.00-3.08

S395

		-147.12 132.75 130.99 130.87 129.50 124.70	115.26	-63.68	55.56	28.54 28.38 28.21 24.86	-0.01
D 2ad- <i>d</i> ₁							
						I	
							1
				"lavnargesniranaandargasara 		uniteda lanalanananananananananananananananana	
210 200 190 180	170 160	150 140 130 120	110 100 90 80 f1 (ppm)	70 60	50 40	30 20 10	0 -10 S410

-5.35 -5.16 -5.15

